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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. PRIGOGINE

STUART A. RICE
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PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the

series, Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume

119 is largely a dialogue between two schools of thought, one school concerned

with quantum optics and Abelian electrodynamics, the other with the emerging

subject of non-Abelian electrodynamics and unified field theory. In one of the

review articles in the third part of this volume, the Royal Swedish Academy

endorses the complete works of Jean-Pierre Vigier, works that represent a view

of quantum mechanics opposite that proposed by the Copenhagen School. The

formal structure of quantum mechanics is derived as a linear approximation for

a generally covariant field theory of inertia by Sachs, as reviewed in his article.

This also opposes the Copenhagen interpretation. Another review provides

reproducible and repeatable empirical evidence to show that the Heisenberg

uncertainty principle can be violated. Several of the reviews in Part 1 contain

developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories

distinct from the Maxwell–Heaviside theory, the predominant paradigm at this

stage in the development of science. Other review articles develop electro-

dynamics from a topological basis, and other articles develop conventional or

U(1) electrodynamics in the fields of antenna theory and holography. There are

also articles on the possibility of extracting electromagnetic energy from

Riemannian spacetime, on superluminal effects in electrodynamics, and on

unified field theory based on an SU(2) sector for electrodynamics rather than a

U(1) sector, which is based on the Maxwell–Heaviside theory. Several effects

that cannot be explained by the Maxwell–Heaviside theory are developed using

various proposals for a higher-symmetry electrodynamical theory. The volume

is therefore typical of the second stage of a paradigm shift, where the prevailing

paradigm has been challenged and various new theories are being proposed. In

this case the prevailing paradigm is the great Maxwell–Heaviside theory and its

quantization. Both schools of thought are represented approximately to the same

extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of

opinion is represented so that a consensus will eventually emerge. The

prevailing paradigm (Maxwell–Heaviside theory) is ably developed by several

groups in the field of quantum optics, antenna theory, holography, and so on, but

the paradigm is also challenged in several ways: for example, using general

relativity, using O(3) electrodynamics, using superluminal effects, using an

ix



extended electrodynamics based on a vacuum current, using the fact that

longitudinal waves may appear in vacuo on the U(1) level, using a reproducible

and repeatable device, known as the motionless electromagnetic generator,

which extracts electromagnetic energy from Riemannian spacetime, and in

several other ways. There is also a review on new energy sources. Unlike

Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and

many thousands of papers are reviewed by both schools of thought. Much of the

evidence for challenging the prevailing paradigm is based on empirical data,

data that are reproducible and repeatable and cannot be explained by the Max-

well–Heaviside theory. Perhaps the simplest, and therefore the most powerful,

challenge to the prevailing paradigm is that it cannot explain interferometric and

simple optical effects. A non-Abelian theory with a Yang–Mills structure is

proposed in Part 2 to explain these effects. This theory is known as O(3)

electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous

logistical support and to the Fellows and Emeriti of the Alpha Foundation’s

Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at

the U.S. Department of Energy is thanked for a Website reserved for some of

this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MYRON W. EVANS

Ithaca, New York
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I. INTRODUCTION

Conventional electromagnetic field theory based on Maxwell’s equations and

quantum mechanics has been very successful in its application to numerous

problems in physics, and has sometimes manifested itself in an extremely good

agreement with experimental results. Nevertheless, in certain areas these joint

theories do not seem to provide fully adequate descriptions of physical reality.

Thus there are unsolved problems leading to difficulties with Maxwell’s

equations that are not removed by and not directly associated with quantum

mechanics [1,2].

Because of these circumstances, a number of modified and new approaches

have been elaborated since the late twentieth century. Among the reviews and

conference proceedings describing this development, those by Lakhtakia [3],

Barrett and Grimes [4], Evans and Vigier [5], Evans et al. [6,7], Hunter et al. [8],

and Dvoeglazov [9] can be mentioned here. The purpose of these approaches

can be considered as twofold:

� To contribute to the understanding of so far unsolved problems

� To predict new features of the electromagnetic field

The present chapter is devoted mainly to one of these new theories, in

particular to its possible applications to photon physics and optics. This theory

is based on the hypothesis of a nonzero divergence of the electric field in vacuo,

in combination with the condition of Lorentz invariance. The nonzero electric

field divergence, with an associated ‘‘space-charge current density,’’ introduces

an extra degree of freedom that leads to new possible states of the electro-

magnetic field. This concept originated from some ideas by the author in the late

1960s, the first of which was published in a series of separate papers [10,12],

and later in more complete forms and in reviews [13–20].

As a first step, the treatment in this chapter is limited to electromagnetic field

theory in orthogonal coordinate systems. Subsequent steps would include more

advanced tensor representations and a complete quantization of the extended

field equations.

II. UNSOLVED PROBLEMS IN CONVENTIONAL
ELECTROMAGNETIC THEORY

The failure of standard electromagnetic theory based on Maxwell’s equations

is illustrated in numerous cases. Here the following examples can be given.

optical effects of an extended electromagnetic theory 3



1. Light appears to be made of waves and simultaneously of particles. In

conventional theory the individual photon is on one hand conceived to be

a massless particle, still having an angular momentum, and is on the

other hand regarded as a wave having the frequency n and the energy hn,

whereas the angular momentum is independent of the frequency. This

dualism of the wave and particle concepts is so far not fully

understandable in terms of conventional theory [5].

2. The photon can sometimes be considered as a plane wave, but some

experiments also indicate that it can behave like a bullet. In

investigations on interference patterns created by individual photons

on a screen [21], the impinging photons produce dot-like marks on the

latter, such as those made by needle-shaped objects.

3. In attempts to develop conventional electrodynamic models of the

individual photon, it is difficult to finding axisymmetric solutions that

both converge at the photon center and vanish at infinity. This was

already realized by Thomson [22] and later by other investigators [23].

4. During the process of total reflection at a vacuum boundary, the reflected

beam has been observed to be subject to a parallel displacement with

respect to the incident beam. For this so-called Goos–Hänchen effect,

the displacement was further found to have a maximum for parallel

polarization of the incident electric field, and a minimum for perpen-

dicular polarization [24,25]. At an arbitrary polarization angle, however,

the displacement does not acquire an intermediate value, but splits into

the two values for parallel and perpendicular polarization. This

behaviour cannot be explained by conventional electromagnetic theory.

5. The Fresnel laws of reflection and refraction of light in nondissipative

media have been known for over 180 years. However, these laws do not

apply to the total reflection of an incident wave at the boundary between

a dissipative medium and a vacuum region [26].

6. In a rotating interferometer, fringe shifts have been observed be-

tween light beams that propagate parallel and antiparallel with the

direction of rotation [4]. This Sagnac effect requires an unconventional

explanation.

7. Electromagnetic wave phenomena and the related photon concept

remain somewhat of an enigma in more than one respect. Thus, the latter

concept should in principle apply to wavelengths ranging from about

10�15 m of gamma radiation to about 105 m of long radiowaves. This

leads to an as yet not fully conceivable transition from a beam of

individual photons to a nearly plane electromagnetic wave.

8. As the only explicit time-dependent solution of Cauchy’s problem, the

Lienard–Wiechert potentials are claimed be inadequate for describing

4 b. lehnert



the entire electromagnetic field [2]. With these potentials only, the

implicitly time-independent part of the field is then missing, namely, the

part that is responsible for the interparticle long-range Coulomb

interaction. This question may need further analysis.

9. There are a number of observations which seem to indicate that

superluminal phenomena are likely to exist [27]. Examples are given by

the concept of negative square-mass neutrinos, fast galactic miniquasar

expansion, photons tunneling through a barrier at speeds greater than c,

and the propagation of so called X-shaped waves. These phenomena

cannot be explained in terms of the purely transverse waves resulting

from Maxwell’s equations, and they require a longitudinal wave

component to be present in the vacuum [28].

10. A photon gas cannot have changes of state that are adiabatic and isother-

mal at the same time, according to certain studies on the distribution

laws for this gas. To eliminate such a discrepancy, longitudinal modes,

which do not exist in conventional theory, must be present [29,30].

11. It is not possible for conventional electromagnetic models of the electron

to explain the observed property of a ‘‘point charge’’ with an excessively

small radial dimension [20]. Nor does the divergence in self-energy of a

point charge vanish in quantum field theory where the process of

renormalization has been applied to solve the problem.

III. BASIS OF PRESENT APPROACH

The present modified form of Maxwell’s equations in vacuo is based on two

mutually independent hypotheses:

� The divergence of the electric field may differ from zero, and a

corresponding ‘‘space-charge current’’ may exist in vacuo. This concept

should not become less conceivable than the earlier one regarding

introduction of the displacement current, which implies that a nonvanish-

ing curl of the magnetic field and a corresponding current density can exist

in vacuo. Both these concepts can be regarded as intrinsic properties of the

electromagnetic field. The nonzero electric field divergence can thereby be

interpreted as a polarization of the vacuum ground state [13] which has a

nonzero energy as predicted by quantum physics [5], as confirmed by the

existence of the Casimir effect. That electric polarization can occur out of

a neutral state is also illustrated by electron–positron pair formation from a

photon [18].

� This extended form of the field equations should remain Lorentz-invariant.

Physical experience supports such a statement, as long as there are no

results that conflict with it.

optical effects of an extended electromagnetic theory 5



A. Formulation in Terms of Electromagnetic Field Theory

1. Basic Equations

On the basis of these two hypotheses the extended field equations in vacuo

become

curl
B

m0

¼ j þ e0qE

qt
ð1Þ

curl E ¼ �qB

qt
ð2Þ

j ¼ �rC ð3Þ

in SI units. Here B and E are the magnetic and electric fields, j is the current

density, and �r the charge density arising from a nonzero electric field divergence

in vacuo. As a consequence of the divergence of equations (1) and (2),

div E ¼ �r
e0

ð4Þ

div B ¼ 0 B ¼ curl A ð5Þ

and

E ¼ �rf� qA

qt
ð6Þ

The space-charge current density in vacuo expressed by Eqs. (3) and (4)

constitutes the essential part of the present extended theory. To specify the thus

far undetermined velocity C, we follow the classical method of recasting

Maxwell’s equations into a four-dimensional representation. The divergence

of Eq. (1) can, in combination with Eq. (4), be expressed in terms of a four-

dimensional operator, where ðj; ic�rÞ thus becomes a 4-vector. The potentials A
and f are derived from the sources j and �r, which yield

�
�
r2 � 1

c2

q2

qt2

�
A;

if
c

� �
�

& A;
if
c

� �
¼ m0ðj; ic�rÞ ¼ m0�rðC; icÞ � m0J ð7Þ

when being combined with the condition of the Lorentz gauge. The Lorentz

condition is further discussed in Appendix A.

6 b. lehnert



It should be observed that Eq. (7) is of a ‘‘Proca type,’’ here being due to

generation of a space-charge density �r in vacuo (free space). Such an equation

can describe a particle with the spin value unity [31].

Returning to the form (3) of the space-charge current density, and observing

that ðj; ic�rÞ is a 4-vector, the Lorentz invariance thus leads to

j2 � c2�r2 ¼ �r2
�
C2 � c2

�
¼ const ¼ 0 C2 ¼ c2 ð8Þ

where j2 ¼ j2 and C2 ¼ C2. The constant in this relation has to vanish because it

should be universal to any inertial frame, and because the charge density varies

from frame to frame. This result is further reconcilable with the relevant

condition that the current density j of Eq. (3) should vanish in absence of the

space-charge density �r. In this way Eqs. (1)–(6) and (8) provide an extended

Lorentz invariant form of Maxwell’s equations that includes all earlier treated

electromagnetic phenomena but also contains new classes of time-dependent

and steady solutions, as illustrated later.

Concerning the velocity field C, the following general features can now be

specified:

� The vector C is time-independent.

� The direction of the unit vector of C depends on the geometry of the

particular configuration to be analyzed, as is also the case for the unit

vector of the current density j in any configuration treated in terms of

conventional electromagnetic theory. As will be shown later, the direction

of C thus depends on the necessary boundary conditions.

� Both curl C and div C can differ form zero, but here we restrict

ourselves to

div C ¼ 0 ð9Þ

We finally observe that a combination of Eqs. (1) and (4) leads to the classical

relation

div j ¼ � q�r
qt

ð10Þ

of the 4-vector ðj; ic�rÞ.
The introduction of the current density (3) in 3-space is, in fact, less intuitive

than what could appear at first glance. As soon as the charge density (4) is

permitted to exist as the result of a nonzero electric field divergence, the Lorentz

invariance of a 4-current (7) with the time part ic�r namely requires the

associated space part to adopt the form (3), that is, by necessity.

The degree of freedom introduced by a nonzero electric field divergence

leads both to new features of the electromagnetic field and to the possibility of

optical effects of an extended electromagnetic theory 7



satisfying boundary conditions in cases where this would not become possible

in conventional theory.

In connection with the basic ideas of the present approach, the question may

be raised as to why only div E, and not also div B, is permitted to be nonzero.

This issue can be considered to be both physical and somewhat philosophical.

Here we should remember that the electric field is associated with an equivalent

‘‘charge density’’ �r considered as a source, whereas the magnetic field has its

source in the current density j. The electric field lines can thereby be ‘‘cut off’’

by ending at a corresponding ‘‘charge,’’ whereas the magnetic field lines

generated by a line element of the current density are circulating around the

same element. From the conceptual point of view it thus appears more difficult

to imagine how these circulating magnetic field lines could be cut off to form

magnetic poles by assuming div B to be nonzero, than to have electric field lines

ending on charges with a nonzero div E.

Some investigators have included magnetic monopoles in extended theories

[32,33], also from the quantum-theoretic point of view [20]. According to Dirac

[34], the magnetic monopole concept is an open question. In this connection it

should finally be mentioned that attempts have been made to construct theories

based on general relativity where gravitation and electromagnetism are derived

from geometry, as well as theories including both a massive photon and a Dirac

monopole [20].

2. The Momentum and Energy Balance

We now turn to the momentum and energy balance of the electromagnetic field.

In analogy with conventional deductions, Eq. (1) is multiplied vectorially by B
and Eq. (2), by e0E. The sum of the resulting equations is then rearranged into

the local momentum balance equation

div 2S ¼ �rðE þ C 	 BÞ þ e0
q
qt

ðE 	 BÞ ð11Þ

where 2S is the electromagnetic stress tensor [35] and Eq. (3) has been

employed. The integral form of Eq. (11) becomes

ð
2S 
 n dS ¼ Fe þ Fm þ q

qt

ð
g dV ð12Þ

where dS and dV are surface and volume elements, respectively,

Fe ¼
ð
�rE dV Fm ¼

ð
�rC 	 B dV ð13Þ

8 b. lehnert



are the electric and magnetic volume forces, and

g ¼ e0 E 	 B ¼ 1

c2
S ð14Þ

can be interpreted as an electromagnetic momentum with S denoting the

Poynting vector. Here the component Sjk of the tensor 2S is the momentum

that in unit time crosses in the j- direction for a unit element of surface whose

normal is oriented along the k axis [35]. The difference in the present results

(11) and (12) as compared to conventional theory is in the appearance of the

terms, which include the nonzero charge density �r in vacuo.

In a similar way scalar multiplications of Eq. (1) by E and Eq. (2) by B=m0

yields, after subtraction of the resulting equations, the local energy balance

equation

�div S ¼ � 1

m0

� �
divðE 	 BÞ ¼ �rE 
 C þ 1

2
e0

q
qt

ðE2 þ c2B2Þ ð15Þ

This equation differs from that of the conventional Poynting theorem, due to the

existence of the term �rE 
 C in vacuo. That there should arise a difference has

also been emphasized by Evans et al. [6] as well as by Chubykalo and Smirnov-

Rueda [2]. These investigators note that the Poynting vector in vacuo is only

defined in terms of transverse plane waves, that the case of a longitudinal

magnetic field Bð3Þ leads to a new form of the Poynting theorem, and that the

Poynting vector can be associated only with the free magnetic field. We shall

return to this question later, when considering axisymmetric wavepackets and

the photon interpreted as a particle with an associated pilot wave. It will also be

seen later in this context that Fe, Fm, and the integral of �rE 
 C can disappear in

the special case of axisymmetric wavepackets, and that �rE 
 C disappears for

plane waves.

3. The Energy Density

The last term in Eq. (15) includes the local ‘‘field energy density’’

wf ¼
1

2
e0E2 þ B2

m0

� �
ð16Þ

interpreted in terms of the electromagnetic field strengths E and B. An

alternative form [35], which at least holds for steady states and for waves

where the field quantities vary as exp ð�iotÞ and have the same phases, is given

by the local ‘‘source energy density’’

ws ¼
1

2
ð�rfþ j 
 AÞ ¼ 1

2
�rðfþ C 
 AÞ ð17Þ
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interpreted in terms of the sources �r and j, which generate the electromagnetic

field, and where the form (17) is a direct measure of the local work performed

on the electric charges and currents. The total field energy becomes

W ¼
ð

wf dV ¼
ð

ws dV ð18Þ

provided it leads to surface integrals that vanish at infinity, and at the origin.

Thus, Eq. (18) does not hold when the field quantities become divergent at the

origin or at infinity.

In the present approach a physically relevant expression for the local energy

density is sometimes needed. In such a case we shall prefer the form (17) to that

of Eq. (16). Thus there are situations where the moment has to be taken of the

local energy density, with some space-dependent function f . Since wf and ws

represent entirely different spatial distributions of energy, it is then observed

that ð
f 
 wf dV 6¼

ð
f 
 ws dV ð19Þ

A further feature of physical interest is that the local energy density (17) can

become positive as well as negative in some regions of space, even if the total

energy W becomes positive as long as relation (18) holds. It is, however, not

clear at this stage whether the form (17) could open up a possibility of finding

negative energy states.

When considering the energy density of the form (17), it is sometimes

convenient to divide the electromagnetic field into two parts when dealing with

charge and current distributions that are limited to a region in space near the

origin. This implies that the potentials are written as

A ¼ As þ Av f ¼ fs ¼ fv ð20Þ

Here curl2 As 6¼ 0 and r2fs 6¼ 0 refer to the ‘‘source part’’ of the field that is

nonzero within such a limited region, whereas curl2 Av ¼ 0 and r2fv ¼ 0 refer

to the ‘‘vacuum part’’ outside the same region [13,20], and the notation

curl2 � curl curl is used henceforth. For a model of a charged particle such

as the electron, the potentials Av and fv would thus be connected with its long-

distance magnetic dipole field and electrostatic Coulomb field, respectively

[20]. The total energy becomes

W ¼ 1

2
e0

ð �
c2As 
 curl2 As � fsr2fs

�
dV þ 1

2
e0

ð
n 

�
c2ðAs 	 curl Av

� Av 	 curl AsÞ þ fsrfv � fvrfs

�
dS ð21Þ
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where S now stands for the bounding surfaces to be taken into account. There

are, in principle, two possibilities:

� When there is a single bounding surface S that can be extended to infinity

where the electromagnetic field vanishes, only the space-charge parts As

and fs will contribute to the energy (21). This possibility is of special

interest in this context, which concentrates mainly on photon physics.

� When there is also an inner surface Si enclosing the origin and at which the

field diverges, special conditions have to be imposed for As and fs to

represent a total energy, and for convergent integrated expressions still to

result from the analysis [13,20]. These conditions will apply to a model of

charged particle equilibrium states, such as those representing charged

leptons discussed in Section V.A and Appendix B.

B. Formulation in Terms of Quantum Mechanics

An adaptation of quantum mechanics implies that a number of constraints are

imposed on the system as follows.

� The energy is given in terms of the quantum hn; where n is the frequency.

� The angular momentum (spin) of a particle-like state becomes h=2p for a

boson and h=4p for a fermion.

� The magnetic moment of a charged particle, such as the electron, is

quantized according to the Dirac theory of the electron [36], including a

small modification according to Feynman [37], which results in an

excellent agreement with experiments. As based on a tentative model of

‘‘self-confined’’ (bound) circulating radiation [11,13,20], the quantization

of energy and its alternative form mc2 can also be shown to result in an

angular momentum equal to about h=4p, and a magnetic moment of the

magnitude obtained in the theory by Dirac. One way to obtain exact

agreement with the results by Dirac and Feynman is provided by different

spatial distributions of electric charge and energy density. This is possible

within the frame of the present theory [13,20]. However, it has also to be

observed that these results apply to an electron in an electromagnetic field,

and they could therefore differ from the result obtained for a free electron.

� With e as a given elementary electric charge, there is also a condition on

the quantization of magnetic flux. This could be reinterpreted as a subsi-

diary condition in an effort to quantize the electron charge and deduce its

absolute value by means of the present theory [13,18,20], but the details of

such an analysis are not yet available. Magnetic flux quantization is

discussed in further detail in Appendix B.

In a first step, these conditions can be imposed on the general solutions of the

present electromagnetic field equations. At a later stage the same equations
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should be quantized by the same procedure as that applied earlier in quantum

electrodynamics to Maxwell’s equations [39].

C. Derivation from Gauge Theory

It should finally be mentioned that the basic equations (1)–(8) have been derived

from gauge theory in the vacuum, using the concept of covariant derivative and

Feynman’s universal influence [38]. These equations and the Proca field

equations are shown to be interrelated to the well-known de Broglie theorem,

in which the photon rest mass m0 can be interpreted as nonzero and be related to

a frequency n0 ¼ m0c2=h. A gauge-invariant Proca equation is suggested by this

analysis and relations (1)–(8). It is also consistent with the earlier conclusion

that gauge invariance does not require the photon rest mass to be zero [20,38].

IV. MAIN CHARACTERISTICS OF MODIFIED
FIELD THEORIES

Before turning to the details of the present analysis, we describe and compare

the main features of some of the modified and extended theories that have been

proposed and elaborated on with the purpose of replacing Maxwell’s equations.

This description includes a Proca-type equation as a starting point. Introducing

the 4-potential Am ¼ ðA; if=cÞ and the 4-current Jm, the latter equation can be

written as

&Am ¼ m0 Jm ð22Þ

A. Electron Theory by Dirac

According to the Dirac [36] electron theory, the relativistic wavefunction �
has four components in spin-space. With the Hermitian adjoint wave function
��, the quantum mechanical forms of the charge and current densities become

[31,40]

�r ¼ e��� ð23Þ

and

j ¼ ceð��ai�Þ i ¼ 1; 2; 3 ð24Þ

where ai are the Dirac matrices of the three spatial directions ðx; y; zÞ. There is

more than one set of choices of these matrices [41].

Expressions (23) and (24) could be interpreted as the result of the electronic

charge being ‘‘smeared out’’ over the volume of an electron with a very small
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but nonzero radius. The 4-current of the right-hand side of equation (22) thus

becomes

Jm ¼ ceð��ai�; i���Þ ð25Þ

in this case.

B. Photon Theory by de Broglie, Vigier, and Evans

At an early stage Einstein [42] as well as Bass and Schrödinger [43] considered

the possibility for the photon to have a very small but nonzero rest mass m0.

Later de Broglie and Vigier [44] and Evans and Vigier [5] derived a corre-

sponding form of the 4-current in the Proca-type equation (22) as given by

Jm ¼
1

m0

� �
2pm0c

h

� �2

A;
if
c

��
ð26Þ

As a consequence, the solutions of the field equations were also found to include

longitudinal fields. Thereby Evans [45] was the first to give attention to a

longitudinal magnetic field part, Bð3Þ, of the photon in the direction of pro-

pagation.

C. Present Nonzero Electric Field Divergence Theory

The present approach of Eqs. (1)–(8) includes the four-current

Jm ¼ �rðC; icÞ ¼ e0ðdiv EÞðC; icÞ ð27Þ

The solutions of the corresponding field equations have a wide area of appli-

cation. They can be integrated to yield such quantities as the electric charge of a

steady particle-like state, as well as a nonzero rest mass in a dynamic state

representing an individual photon that also includes longitudinal field compo-

nents in the direction of propagation. Thereby application of de Broglie’s

theorem for the photon rest mass links the concepts of expressions (26) and (27)

together, as well as those of the longitudinal magnetic fields. This point is

illuminated further in the following sections.

The present theory should be interpreted as microscopic in nature, in the

sense that it is based only on the electromagnetic field itself. This applies to both

free states of propagating wavefronts and the possible existence of bound steady

axisymmetric states in the form of self-confined circulating radiation. Con-

sequently, the extended theory does not need to include the concept of an initial

particle rest mass. The latter concept does not enter into the differential

equations of the electromagnetic field, simply because a rest mass should first

originate from a spatial integration of the electromagnetic energy density, such

as in a bound state [11–13].
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When further relating the present approach to Eqs. (23) and (24) of the Dirac

theory, we therefore have to consider wavefunctions that only represent states

without a rest mass. One functions of this special class is given by [40]

� ¼ uðx; y; zÞ

U

0


U

0

2
664

3
775 ð28Þ

where u is an arbitrary function and U a constant. This form yields a charge

density

�r ¼ 2e�UU�uu ð29Þ

and the corresponding current density components

jz ¼ c�r; jx ¼ 0 and jy ¼ 0 ð30Þ

where a bar over U and u indicates the complex conjugate value. Other forms

analogous to the wavefunction (28) can be chosen to correspond to the cases

jy ¼ 
c�r: jz ¼ jx ¼ 0 ð31Þ
jx ¼ 
c�r; jy ¼ jz ¼ 0 ð32Þ

This result, as well as the form of expressions (23) and (24), shows that the

charge and current density relations (3), (4), and (8) of the present extended

theory become consistent with and related to the Dirac theory. It also implies

that this extended theory can be developed in harmony with the basis of

quantum electrodynamics.

The introduced current density j ¼ e0ðdiv EÞC is thus consistent with the

corresponding formulation in the Dirac theory of the electron, but this

introduction also applies to electromagnetic field phenomena in a wider sense.

D. Nonzero Conductivity Theory by Bartlett,
Harmuth, Vigier, and Roy

Bartlett and Corle [46] proposed modification of Maxwell’s equations in the va-

cuum by assigning a small nonzero electric condictivity to the formalism. As

pointed out by Harmuth [47], there was never a satisfactory concept of propa-

gation velocity of signals within the framework of Maxwell’s theory. Thus, the

equations of the latter fail for waves with nonnegligible relative frequency

bandwidth when propagating in a dissipative medium. To resolve this problem,

a nonzero electric conductivity s and a corresponding current density

js ¼ sE ð33Þ
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were thus introduced into a modified form of Maxwell’s equations in vacuo. In

the same system of equations, a magnetic current density given by a nonzero

magnetic field divergence was introduced as well [47].

This electric conductivity concept was later reconsidered by Vigier [48], who

showed that the introduction of the current density (33) is equivalent to adding a

related nonzero photon rest mass to the system, such as in the Proca-type

equation represented by expressions (22) and (26). The dissipative ‘‘tired light’’

mechanism underlying this conductivity can be related to a nonzero energy of

the vacuum ground state, as predicted by quantum physics [5,49]. That the

current (33) is related to the form (26) of a 4-current can be understood from the

conventional field equations for homogeneous conducting media [35].

The effects of the nonzero electric conductivity were further investigated by

Roy et al. [20,50–52]. They have shown that the introduction of a nonzero con-

ductivity yields a dispersion relation that results in phase and group velocities

depending on a corresponding nonzero photon rest mass, due to a tired-light

effect.

In principle, this nonzero conductivity effect could also be included in the

present theory of a nonzero electric field divergence.

E. Single-Charge Theory by Hertz, Chubykalo, and Smirnov-Rueda

A set of first-order field equations was proposed by Hertz [53–55], who subs-

tituted the partial time derivatives in Maxwell’s equations by total time

derivatives

d

dt
¼ q

qt
þ vd 
 r ð34Þ

Here vd denotes a constant velocity parameter that was interpreted as the

velocity of the ether. Hertz’ theory was discarded and forgotten at that time,

because it spoiled the spacetime symmetry of Maxwell’s equations.

Chubykalo and Smirnov-Rueda [2,56] have presented a renovated version of

Hertz’ theory, that is in accordance with Einstein’s relativity principle. For a

single point-shaped charged particle moving at the velocity v, the displacement

current in Maxwell’s equation is modified into a ‘‘convection displacement

current’’

jdisp ¼ e0
qE

qt
þ e0ðv 
 rÞE ð35Þ

The approach by Chubykalo and Smirnov-Rueda further includes long-

itudinal modes and Coulomb long-range electromagnetic fields that cannot be

described by the Lienard–Wiechert potentials [2,57].
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V. NEW FEATURES OF PRESENT APPROACH

The extra degree of freedom introduced into the present theory by the nonzero

electric field divergence gives rise to new classes of phenomena such as

‘‘bound’’ steady electromagnetic equilibria and ‘‘free’’ dynamic states, includ-

ing wave phenomena. These possibilities are demonstrated by Fig. 1.

A. Steady Equilibria

The form of the current density term in Eq. (1), as given by expressions (3) and

(8), predicts steady electromagnetic equilibria to exist in vacuo. For such

equilibria, Eq. (1)–(6) and (8) combine to

c2curl2A ¼ �C
�
r2f

�
¼ C�r

e0

ð36Þ

Detailed analyses of these equilibria and their applications are given elsewhere

[13,15,18,20]. Here we only summarize those parts of the theory that are of

interest in connection with wave phenomena, photon physics, and long-range

interaction. We later return to Eqs. (36) when discussing the concepts of

Electromagnetic theory with
nonzero electric field divergence

Steady equilibria

Particle-shaped
states

Divergent
generating

function

Convergent
generating

function

String-shaped
states

Plane wave
modes

Wave modes

Axisymmetric
wave modes

Charged leptons ; 
basic data, point
charge, nonzero
particle radius

Neutral leptons ; 
basic data, no
magnetic
moment, small
mass

String model ; 
of hadron
color field
structure

Total reflection ; 
at vacuum
interface;
damped incident
waves

Photon physics ; 
zero charge, zero
magnetic moment,
nonzero angular
momentum,
small rest mass;
possible unification
of particle and
wave concepts

Figure 1. New features introduced by the concept of nonzero electric field divergence in

vacuum space. The arrows point to possible areas of application.
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instantaneous interaction and long-range forces. A more detailed description of

the theory on the equilibrium state is given in Appendix B.

Among the steady states, axisymmetric equilibria are of special interest.

These states can be subdivided into two classes: (1) those of ‘‘particle-shaped’’

geometry, where the geometric configuration varies in the axial direction and

becomes bounded in both this and the radial directions; and (2) those of ‘‘string-

shaped’’ geometry, where the geometric configuration is uniform in the axial

direction.

For both these classes the general solution of the electromagnetic field is

given in terms of differential operators acting on a generating function CA � f,

where the particle-shaped equilibria are treated in a frame ðr; y;jÞ of spherical

coordinates, with a current density j ¼ ð0; 0;C�rÞ, a magnetic vector potential

A ¼ ð0; 0;AÞ, and C ¼ 
c. Analogously, the string-shaped equilibria are treated

in a frame ðr;j; zÞ of cylindrical coordinates, with j ¼ ð0;C�r; 0Þ, A ¼ ð0;A; 0Þ,
and no dependence on z. The analysis has been limited to separable generating

functions

F ¼ CA � f ¼ G0G G ¼ RðrÞ 
 TðyÞ ð37Þ

where G0 is a characteristic amplitude, r ¼ r=r0 with r0 as a characteristic

radius, R and T as parts of the dimensionless normalized generating function G,

and TðyÞ ¼ 1 in the case of string-shaped geometry.

1. Particle-Shaped States

From the general solutions for particle-shaped states, integrated field quantities

q0 ¼ 2pe0r0G0Jq ð38Þ

M0 ¼ pe0Cr2
0G0JM ð39Þ

m0 ¼ p
�
e0

c2

�
r0G2

0Jm ð40Þ

s0 ¼ p
�
e0C

c2

�
r2

0G2
0Js ð41Þ

are obtained where q0 is the net electric charge, M0 the magnetic moment, m0

the mass, s0 the angular momentum (spin), and ðJq; JM; Jm; JsÞ the correspond-

ing integrals with respect to r and y. These integrals include the charge and

mass densities; the latter are given by Einstein’s relation for the energy divided

by c2. Here the source energy density ws of expression (17), and not the field

energy density wf of expression (16), is used when forming the integrals of the

mass m0 and the angular momentum s0.
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Imposition of the quantum condition

s0 ¼ h

4p
ð42Þ

on a model for leptons can in a simple physical picture be regarded as an

application of a corresponding periodicity condition for ‘‘self-confined’’

(bound) electromagnetic radiation that circulates around the axis of symmetry.

Depending on the form of the radial part RðrÞ of the generating function,

there are two subclasses of particle-shaped axisymmetric equilibria as follows.

a. Convergent Case. A part R that converges at the origin r ¼ 0 leads to zero

net charge q0 and magnetic moment M0. Such a result can provide a model for

the neutrinos. The solution that is obtained after imposing the spin condition

(42) leads to a very small but nonzero value of the quantity m0r0, thus allowing

for a small mass. Concerning such a model, it has to be pointed out that

neutrinos in the laboratory frame move nearly at the speed of light, and that

their interaction with the surroundings is weak. The neutrino is neutral and has

no color charge.

b. Divergent Case. A part R that diverges at the origin r ¼ 0 leads to nonzero

values of all integrated quantities (38)–(41). These can still become finite when

permitting the radius r0 to shrink to the value of a ‘‘point charge,’’ thereby

outbalancing the divergence in the integrals ðJq; JM; Jm; JsÞ. This applies also to

a very small but nonzero radius r0. One further has to impose the spin condition

(42) and a condition on the magnetic moment. In presence of an electro-

magnetic field the latter becomes

H0 � M0m0

q0s0

¼ JMJm

2JqJs

¼ 1 þ dF ð43Þ

as being related to the Bohr magneton and Feynman’s [37] small correction

dF ¼ e2=4pe0hc ¼ 0:00115965246. The experimental values of dF are

0:00115965221 for the electron and about 0:00116 for the muon. An alternative

is to relate the magnetic moment to a free electron, thereby corresponding to

half the value given by Dirac.

The present configuration could become a model for charged leptons. With

these conditions imposed, the integrated charge q0 has been given by [20]

jq0j
e

¼
2e0chJ2

q

e2Js

 !1=2

ð44Þ

and is determined by a rather restricted range in parameter space. Thus, detailed

analysis shows that there are choices of the generating function by which the
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value jq0j ¼ e is covered within such a limited range. To investigate whether it

is possible to obtain the exact result jq0j ¼ e, an additional condition has to be

imposed. The flux quantization mentioned in Section III.B may provide a

candidate for this, combined with variational analysis [13,18,20]. A correspond-

ing electron model is described in Appendix B.

If the result jq0j ¼ e would come out of a pure theoretical deduction, then the

electronic charge would no longer be an independent constant of nature, but

would become a quantized charge determined by Planck’s constant and the

velocity constant c of light, as indicated by Eq. (44). According to relation (43),

this would then also apply to the product M0m0, whereas all quatitities M0 and

m0 have thus far not been deduced theoretically for the electron, but have been

determined by measurements.

On purely physical grounds it appears to be unacceptable to have a charged

particle whose characteristic radius r0 is strictly equal to zero, and where the

particle has no internal structure. Even if experiments as well as the present

theory are reconcilable with an extremely small radius, this does not exclude r0

from being nonzero. In the present model of a steady equilibrium one can

conceive electromagnetic radiation to be forced to propagate in circular orbits

around the axis of symmetry. This leads to the question of whether such a model

has to be modified to include a correction due to general relativity. When

passing by a gravitational mass, light is known to be deflected. This effect is

proposed here to be ‘‘inverted,’’ in the sense that the circular orbit is assumed to

give rise to an additional kind of centrifugal force that modifies the steady

balance of the bound state represented by Eq. (36). Using the expression for the

deflection of a light ray given by Weber [58], this extra force has been

introduced into the same equations as a small correction [15,20]. As a result,

an equilibrium can be established for a very small but nonzero radius r0, with a

small shift of the equilibrium parameters.

2. String-Shaped States

The string-shaped equilibria that result from Eqs. (36) can serve as an analogous

model that reproduces several desirable features of the earlier proposed string

configuration of the hadron color field structure. These equilibria have a

constant longitudinal stress that tends to pull the ends of the configuration

toward each other. The magnetic field is thereby located to a narrow channel,

and the system has no net electric charge. Since the divergence of the magnetic

field is zero, no model based on magnetic poles is needed.

B. Wave Phenomena

The basic equations (1)–(8) also predict the existence of free time-dependent

states, in the form of nontransverse wave phenomena in vacuo. Combination of
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the same equations yields

�
q2

qt2
� c2r2

�
E þ

�
c2rþ C

q
qt

�
ðdiv EÞ ¼ 0 ð45Þ

for the electric field. The magnetic field can be determined from the electric

field by means of Eq. (2). A divergence operation on Eq. (1) further gives

�
q
qt

þ C 
 r
�
ðdiv EÞ ¼ 0 ð46Þ

In some cases this equation will become useful for the analysis, but it does not

introduce more information than that already contained in Eq. (45). As will be

shown later, Eq. (46) leads to the same dispersion relation for div E 6¼ 0 as

Eq. (45) for the wave as a whole.

Three limiting cases can be identified on the basis of Eq. (45):

� When div E ¼ 0 and curl E 6¼ 0, the result is a conventional transverse

electromagnetic wave, henceforth denoted as an ‘‘EM wave.’’

� When div E 6¼ 0 and curl E ¼ 0, a purely longitudinal electric space-

charge wave arises, denoted here as an ‘‘S wave.’’

� When both div E 6¼ 0 and curl E 6¼ 0, a hybrid nontransverse electro-

magnetic space-charge wave appears, denoted here as an ‘‘EMS wave.’’

The S wave can be considered as a special degenerate form of the EMS

wave.

A general form of the electromagnetic field can be obtained from a super-

position of various EM, S, and EMS modes. Thereby it should be observed that

the EMS modes can have different velocity field vectors C. These wave

concepts provide new possibilities in the study of problems in optics and

photon physics, both when considering plane waves and axisymetric modes

with associated wavepackets.

It should finally be noted that many authors use the term ‘‘longitudinal

waves’’ for all modes having at least one field component in the direction of

propagation. This would then apply as a common term to both the S and EMS

waves.

VI. PLANE WAVES

Because of their relative simplicity, plane waves provide a convenient first

demonstration of the wave types defined in the previous section.
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A. General Features

The nontransverse plane waves that arise from the present approach are treated

in the case of a constant velocity vector C and where any field component Q is

assumed to have the form

Qðx; y; z; tÞ � Q0 expði�Þ � ¼ �ot þ k 
 r ð47Þ

and o and k ¼ ðkx; ky; kzÞ are the frequency and wavenumbers in a rectangular

frame with r ¼ ðx; y; zÞ. Equations (1)–(8) then yield

c2k 	 B ¼ ðk 
 EÞC � oE ð48Þ

oB ¼ k 	 E ð49Þ

There are three types of modes as demonstrated by Fig. 2, with k chosen in the z

direction and the velocity vector C located in the plane perpendicular to B.

1. The Conventional Electromagnetic Mode

When k 
 E ¼ 0 and k 	 E 6¼ 0, there is a conventional EM wave with a

magnetic field according to Eq. (49), and a dispersion relation

o ¼ 
kc ð50Þ

B

E

k
B

C

E

E
kk

EM wave

div E = 0
curl E ≠ 0
B = k × E/ω
k × E ≠ 0
ω = ± kc
vg = ck

S wave

Plane Waves

^

EMS wave

div E ≠ 0
curl E ≠ 0
B = k × E/ω
k × E ≠ 0      k × C ≠ 0
ω = k  . C   C = ± c    E . C = 0 
vg = C

div E ≠ 0
curl E = 0
B = 0
k × E = 0
ω = ± kc
vg = ck^

Figure 2. The three fundamental wave types of an extended electromagnetic theory with

nonzero electric field divergence in the vacuum, as demonstrated by the simple case of plane waves.
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The phase and group velocities are

vp ¼ 
c vg ¼ 
ck̂ k̂ ¼ k

k
ð51Þ

where k stands for the modulus of the wavenumber and k̂ for its unit vector. All

components of the electric and magnetic fields are perpendicular to the direction

of propagation that is along the wave normal.

2. The Pure Electric Space-Charge Mode

When k 
 E 6¼ 0 and k 	 E ¼ 0, there is a purely longitudinal S wave without a

magnetic field. Thus C 	 E ¼ 0 and k 	 C ¼ 0 due to Eq. (48). The dispersion

relation and the phase and group velocities are the same as (51) for the EM

wave. The field vectors E and C are parallel with the wave normal. Possibly this

mode may form a basis for telecommunication without induced magnetic fields.

3. The Electromagnetic Space-Charge Mode

When both k 
 E 6¼ 0, and k 	 E 6¼ 0, there is a nontransverse EMS wave with a

magnetic field due to Eq. (49). This is the mode of most interest to this context.

Here k 	 C differs from zero, and Eqs. (48) and (49) combine to

�
o2 � k2c2

�
E þ ðk 
 EÞF ¼ 0 ðB 6¼ 0Þ ð52Þ

and

F ¼ c2k � oC ð53Þ

which corresponds to Eq. (45). Scalar multiplication of Eq. (52) by k, combined

with the condition o 6¼ 0, leads to the dispersion relation

o ¼ k 
 C ðk 	 C 6¼ 0Þ ð54Þ

This relation could as well have been obtained directly from Eq. (46). Since k
and C are not parallel in a general case, the phase velocity becomes

vp ¼ o
k
¼ k̂ 
 C ð55Þ

and the group velocity becomes

vg ¼ qo
qk

¼ C ð56Þ
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Thus the phase and group velocities of the EMS wave differ from each other and

also from those of the EM and S waves. The field vectors E and C have

components that are both perpendicular and parallel to the wave normal.

From Eq. (49) we have k 
 B ¼ 0 and E 
 B ¼ 0. Scalar multiplication of

Eq. (53) by C in combination with relation (54) further yields C 
 F ¼ 0.

Combining this result with the scalar product of Eq. (52) with C, we obtain

E 
 C ¼ 0. Finally scalar multiplication of Eq. (48) by E results in E2 ¼ c2B2

when combined with Eq. (49).

4. Relations between the Plane-Wave Modes

For the EMS mode it is thus seen that k and E are localized to a plane per-

pendicular to B, and that E and C form a right angle. We can introduce the

general relation

k 
 E ¼ kEðcoswÞ ð57Þ

Conventional theory is then represented by the angle w ¼ p=2 and leads to a

single EM mode. Here the same angle stands for the extra degree of freedom

introduced by the nonzero electric field divergence, as a result of which a set of

possible plane wave solutions is being generated. The set thus ranges for

decreasing w, from the EM mode given by w ¼ p=2, via the EMS modes for

p=2 > w > 0, to the S mode where w ¼ 0. Thus the choice of w, wave type, and

the velocity vector C will depend on the boundary conditions and the geometry

of the special problem to be considered. An example of this is given later in the

discussion of total reflection in Section VI.B.

We finally turn to the momentum and energy balance equation (11)–(15) of

Section III.A.2. Since �r is nonzero for the S and EMS modes, these equations

will differ from those of the conventional EM mode in vacuo:

� For the S mode both balance equations contain a contribution from �rE but

have no magnetic terms.

� For the EMS mode the momentum balance equation includes the addi-

tional forces Fe and Fm. Because of the result E 
 C ¼ 0 the energy balance

equation (15) of a plane EMS wave will on the other hand be the same as

for the EM wave.

Poynting’s theorem for the energy flow of plane waves in vacuo thus applies

to the EM and EMS modes, but not to the S mode. Vector multiplication of

Eqs. (52) and (53) by k, and combination with Eq. (49) and the result E 
 C ¼ 0,

is easily shown [16,20] to result in a Poynting vector that is parallel with the

group velocity C of Eq. (56). Later in Section VII.C.3 we shall return to

Poynting’s theorem in the case of axisymmetric photon wavepackets.
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B. Total Reflection at a Vacuum Interface

The process of total reflection of an incident wave in an optically dense medium

against the interface of an optically less dense medium turns out to be of

particular and renewed interest with respect to the concepts of nontransverse

and longitudinal waves. In certain cases this leads to questions not being fully

understood in terms of classical electromagnetic field theory [26]. Two crucial

problems that arise at a vacuum interface can be specified as follows:

1. Because of the classical theory of total reflection, the excited electro-

magnetic field within the less dense medium consists of a nontransverse

wave confined to the immediate neighborhood of the bounding surface

[35]. When the less dense medium becomes a vacuum region, this may be

expected to cause complications. At first glance, matching at a vacuum

interface then appears to become impossible by a transmitted electro-

magnetic (EM) wave with a vanishing electric field divergence. Analysis

has shown, however, that such a matching is possible, but only in a

dissipation-free case [16,19,20].

2. Additional complications arise when the EM wave in a dissipative medium

approaches a vacuum interface at an oblique angle [26]. The incident and

reflected wave fields then become inhomogeneous (damped) in the direc-

tion of propagation. As a consequence the matching at the interface to a

conventional undamped electromagnetic wave in vacuo becomes

impossible.

Case 2 of a dissipative medium is now considered where x ¼ 0 defines the

vacuum interface in a frame ðx; y; zÞ. The orientation of the xy plane is chosen

such as to coincide with the plane of wave propagation, and all field quantities

are then independent on z as shown in Fig. 3. In the denser medium (region I)

with the refractive index nI ¼ n > 1 and defined by x < 0, an incident (i) EM

wave is assumed to give rise to a reflected (r) EM wave. Here j is the angle

between the normal direction of the vacuum boundary and the wave normals of

the incident and reflected waves. Vacuum region (II) is defined by x > 0 and has

a refractive index of nII ¼ 1. The wavenumber [35] and the phase (47) of the

weakly damped EM waves then yield

�i;r ¼
�o

c

�
½�ct 
 nðcosjÞx þ nðsinjÞy þ i�d

�o
c

�
n½
ðcosjÞx þ ðsinjÞy�

ð58Þ

with the upper and lower signs corresponding to (i) and (r), and where the

damping factor �d ¼ 1=2oZ�e � 1 with �e denoting the electric permittivity and Z
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the electric resistivity of medium I. For the phase of a transmitted wave we

further adopt the notation

�t ¼
o
c
ð�ct þ ptx þ rtyÞ þ i

�o
c

�
ðqtx þ styÞ ð59Þ

where ðpt; rt; qt; stÞ are real.

The possibility of matching a transmitted EM wave to the incident and

reflected waves is first investigated. This requires the phases (58) to be matched

at every point of the interface x ¼ 0 to the phase (59). This condition becomes

rt ¼ nj > 0 st ¼ �dnj > 0 nj ¼ nðsinjÞ ð60Þ

where total reflection corresponds to nj > 1. For the transmitted EM wave

in vacuo, combination of Eqs. (45) and (59) results in

1 ¼ p2
t þ r2

t �
�
q2

t þ s2
t

�
ð61Þ

qt

st

¼ � rt

pt

ð62Þ

The transmitted wave should further travel in the positive x direction, into

region II, and this also applies in the limit where the angle of its wave normal

Damped (inhomogeneous)
electromagnetic (EM) waves

Undamped electromagnetic
space-charge (EMS) waves

(t)
(r)

(i)

(I) nI > 1
Matter

(II) nII > 1
Vacuum

x

y

z

ψ
ϕ

ϕ

Figure 3. Total reflection of a plane incident damped (inhomogeneous) conventional EM wave

at the boundary x ¼ 0 between a dissipative medium (I) and a vacuum region (II). The incident and

reflected EM waves can be matched at x ¼ 0 to undamped transmitted EMS waves in the limit p=2

of the angle �, but not by an undamped transmitted EM wave in vacuo.
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with the vacuum interface approaches the zero value of total reflection. Thus

pt > 0. Equations (62) and (60) then yield the condition

qt ¼ �
n2
j
�d

pt

< 0 ð63Þ

For total reflection, however, there should be no flow of energy into medium II,

and the transmitted wave then must represent an energy flow directed parallel to

the interface, thereby limited in amplitude to a narrow layer at the vacuum side

of the interface [35]. This excludes the negative value of qt given by Eq. (63)

and the form (59). It does therefore become impossible to match the inhomo-

geneous (damped) EM waves in region I by a homogeneous (undamped) EM

wave in region II. This agrees with an earlier statement by Hütt [26].

Turning instead to the possibility of matching the incident and reflected

waves to EMS waves in the vacuum region, we consider the two cases of

parallel and perpendicular polarization of the electric field of the incident wave.

For an EMS wave the velocity C is now expressed by

C ¼ cðcosbcosa; cosbsina; sinbÞ ð64Þ

In combination with the definitions (47) and (59), the dispersion relation (54) of

this wave type yields

1

cosb
¼ pt cosaþ rt sina ð65Þ

qt cosa ¼ �st sina ð66Þ

For the factor qt in Eq. (66) matching of the phases by a transmitted EMS wave

then becomes possible when

qt ¼ �sttga ¼ �nj
�dtga ð67Þ

When there is total reflection, the velocity vector C of Eq. (64) and the corres-

ponding current density (3) can then be directed almost parallel with the

interface x ¼ 0, that is, when jcosaj � 1, jsinaj ffi 1, tga < 0. The EMS

wave can then be matched to the slightly decreasing amplitudes of the EMS

waves in the positive y direction of the interface. This also implies that qt in Eq.

(67) can be made positive and large for weakly damped EM waves in medium I.

Even a moderately large qt > 0 provides the possibility of having a transmitted

energy flow along the interface, within a narrow boundary layer, and for an

EMS wave amplitude to drop steeply with increasing distance x from the

interface. This possibility becomes consistent with the observed physical

behavior during total reflection.
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As a next step the electric and magnetic fields have to be matched at the

interface. This raises three questions that must be faced, in common with those

of conventional theory [35]:

1. The first issue is due to the expectation that the transmitted and reflected

waves are no longer in phase at the surface x ¼ 0 with the incident wave.

2. The second question concerns the amplitude ratios between the reflected

and incident waves. For both homogeneous and inhomogeneous incident

waves these ratios must have a modulus equal to unity, because no energy

loss through the instantaneous reflection process at x ¼ 0 is expected.

3. Question 2 leads to a third issue that concerns the energy flow of the

transmitted wave in medium II. This flow should be directed along the

surface x ¼ 0, and be localized to a narrow region near the same surface.

To meet these requirements we first observe that the wavenumber and the

phase are coupled to the angles of the velocity C given by expression (64). In

this way the angle of any transmitted EMS wave in medium II can be expressed

in terms of the angles a and b. In analogy with the classical analysis on total

reflection, which includes phase differences [35], we introduce a complex form

of the angle a of an EMS wave. The definitions

cosa ¼ g0 expði�gÞ ¼ g0 cos�gþ ig0 sin�g ¼ ð1 � sin2aÞ1=2 ð68Þ

sin2a ¼ 1 � g2
0 cos2�g� ig2

0 sin2�g ð69Þ

are therefore adopted where g0 and �g are real and g0 > 0.

The details of the deductions are given elsewhere [16,19,20]; the results can

be summarized and discussed as follows:

� For inhomogeneous (damped) incident EM waves the necessary matching

of the phases at the vacuum interface can be provided by the nontransverse

EMS waves, but not by conventional EM waves in the vacuum region.

� The reflected EM wave arising from an incident inhomogeneous EM wave

of plane polarization at an arbitrary angle has a nearly plane polarization

when being associated with transmitted EMS waves.

� In the cases of both homogeneous (undamped) and inhomogeneous

(damped) incident waves, the transmitted nontransverse EMS waves

become confined to a narrow layer at the vacuum side of the interface, and

no energy is extracted from the reflection process. The inclusion of EMS

waves in a dissipation-free case is, of course, unnecessary and

questionable.

� A far-from-simple question concerns the value of the damping factor �d,

which in physical reality forms the limit between the analysis of
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homogeneous and inhomogeneous incident waves. In most experimental

situations there is a very large ratio 1=�d between the damping length and

the wavelength of the incident wave, and this makes it difficult to decide

which results on the homogeneous and inhomogeneous cases would be

physically relevant. The results on inhomogeneous waves should first

become applicable at large enough values of the damping factor �d, but this

would require large initial amplitudes of the incident wave to give rise to a

detectable reflected wave.

VII. AXISYMMETRIC WAVE MODES

As discussed for several decades by a number of authors, the nature of light and

photon physics is related not only to the propagation of plane wavefronts but

also to axisymmetric wavepackets, the concepts of a rest mass, a magnetic field

in the direction of propagation, and an associated angular momentum (spin).

The analysis of plane waves is straightforward in several respects. As soon as

we begin to consider waves varying in more than one space dimension,

however, we will encounter new phenomena that further complicate the

analysis. This also applies to the superposition of elementary modes to form

wavepackets. In this section an attempt is made to investigate dissipation-free

axially symmetric modes in presence of a nonzero electric field divergence

[16,20]. Such a wavepacket configuration could provide a model for the

individual photon [19].

In analogy with the treatment of axisymmetric equilibria, we will also seek a

model where the entire vacuum space is treated as one entity, without internal

boundaries and boundary conditions, thereby also avoiding divergent solutions.

A. Elementary Normal Modes

A cylindrical frame of reference ðr;j; zÞ is introduced where j is an ignorable

coordinate. In this frame the velocity vector is now assumed to have the form

C ¼ cð0; cosa; sinaÞ ð70Þ

with a constant a. We further define the operators

D1 ¼ q2

qr2
þ 1

r

q
qr

þ q2

qz2
� 1

c2

q2

qt2
ð71Þ

D2 ¼ q
qt

þ cðsinaÞ q
qz

ð72Þ

D3 ¼ q2

qz2
� 1

c2

q2

qt2
ð73Þ
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The basic equations then reduce to

�
D1 �

1

r2

�
Er ¼

q
qr

ðdiv EÞ ð74Þ�
D1 �

1

r2

�
Ej ¼ 1

c
ðcosaÞ q

qt
ðdiv EÞ ð75Þ

D1Ez ¼
�
q
qz

þ 1

c
ðsinaÞ q

qt

�
ðdiv EÞ ð76Þ

and

D2ðdiv EÞ ¼ 0 ð77Þ

for the vector field E.

Using the operator (73) we have from Eq. (74)

D3Er ¼
q2Ez

qrqz
ð78Þ

Since D2 commutes with q=qr, combination of Eqs. (76) and (78) yields

D2

�
D1 �

1

r2

�
Er ¼ 0 ð79Þ

and

D2D1Ez ¼ 0 ð80Þ

when steady states defined by q=qt ¼ 0 are excluded. Equation (75) is further

combined with Eq. (78) to yield

D3

�
D1 �

1

r2

�
Ej ¼ 1

c
ðcosaÞ q2

qz qt
D1Ez ð81Þ

The set (77) and (79)–(81) of equations corresponds to two branches of

solutions:

1. When D2Er and D2Ez differ from zero, Eqs. (77)–(80) can be satisfied

only when div E ¼ 0. This, in turn, implies that the right-hand members

of Eqs. (74)–(76) all disappear. Consequently, this branch represents a

classical electromagnetic (EM) mode with vanishing electric field

divergence.
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2. When D2Er ¼ D2Ez ¼ 0, Eqs. (77) and (79)–(81) can all be satisfied when

div E 6¼ 0. This branch represents an electromagnetic space-charge (EMS)

mode with nonzero electric field divergence in vacuo.

These branches are now discussed for propagating modes depending on z and t

as exp ½ið�ot þ kzÞ�. In fact, there are a number of choices with respect to the

form (70) as represented by 
cosa and 
sina, and that satisfy the condition

C2 ¼ c2 of Eq. (8), thereby corresponding to the two directions along z and j.

From now on we also introduce the normalized radial coordinate r ¼ r=r0,

where r0 stands for a characteristic radial dimension.

1. Conventional Case of a Vanishing Electric Field Divergence

For branch 1 of a vanishing electric field divergence, the corresponding

axisymmetric EM mode is obtained from Eqs. (45) and (74)–(76). Since no

dispersion relation for such a mode is available at this point of the deductions,

we first introduce the notation

�y2 ¼ k2 �
�o

c

�2
� �

r2
0 ð82Þ

with �y2 � 0 for phase velocities o=k that at least do not exceed the limit c. The

general solution of the electric field would then become

ðEr;EjÞ ¼ ½ðcr1; cj1ÞI1ð�yrÞ þ ðcr2; cj2ÞK1ð�yrÞ� 	 exp ½ið�ot þ kzÞ� ð83Þ
Ez ¼

�
cz1I0ð�yrÞ þ cz2K0ð�yrÞ

�
	 exp

�
ið�ot þ kzÞ

�
ð84Þ

where cr1, cr2, cj1, cj2, cz1, cz2 are arbitrary constants and I1, K1, I0, K0 are

Bessel functions with imaginary argument. At the origin r ¼ 0 it is known that

I1 vanishes, I0 becomes finite, and both K1 and K0 become infinite. For large r,

both I1 and I0 tend to infinity, whereas K1 and K0 tend to zero. Consequently, a

nonzero form of the solutions (83) and (84) becomes infinite either at r ¼ 0 or

at large values of r.

As a next step we assume the value �y2 ¼ 0 corresponding to a phase velocity

where jo=kj ¼ c. Then Eqs. (74)–(76) reduce to

Dr �
1

r2

� �� �
ðEr;EjÞ ¼ 0 DrEz ¼ 0 ð85Þ

where

Dr ¼
q2

qr2
þ 1

r
q
qr

ð86Þ
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The solutions then have the form

ðEr;EjÞ / k1rþ k2

r
Ez / k3 ln rþ k4 ð87Þ

where k1, k2, k3, k4 are constants. This result agrees with that of Eqs. (83) and

(84) in the limit �y2 ¼ 0. We then recover the result that the nonzero form of the

electric field becomes infinite either at the origin or at infinity, and this also

applies to the magnetic field through Eq. (2). This divergent behavior of the EM

field in vacuo was realized by Thomson [22] and further by Heitler [59] as well

as by Hunter and Wadlinger [23].

Conventional theory thus results in axisymmetric modes in vacuo having the

following properties:

� The electric and magnetic fields have components in all three spatial

directions, and thus also in the longitudinal direction of propagation.

� The nonzero solutions of these field components either diverge at the

origin or become divergent at large distances from the axis of symmetry.

Such solutions are therefore not physically relevant to configurations that

are extended over the entire vacuum space. The introduction of artificial

internal boundaries within the vacuum region would also become

irrelevant from the physical point of view, nor would it remove the

difficulties with the boundary conditions.

2. Present Case of a Nonzero Electrical Field Divergence

From now on we therefore consider branch 2 of the axisymmetric EMS mode.

a. Field Components in the Laboratory Frame. The dispersion relation is

obtained from Eqs. (77) and (78), which yield

o ¼ kcðsinaÞ v ¼ cðsinaÞ ð88Þ

where the phase and group velocities o=k and qo=qk are both equal to v.

Equation (81) then takes the form

�
q2

qr2
þ 1

r

q
qr

� 1

r2
� k2ðcosaÞ2

�
Ej ¼ �ðtgaÞ

�
q2

qr2
þ 1

r

q
qr

� k2ðcosaÞ2

�
Ez

ð89Þ

We introduce the function

G0 
 G ¼ Ez þ ðcot aÞEj G ¼ RðrÞexp ½ið�ot þ kzÞ� ð90Þ
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where G0 is an amplitude factor and RðrÞ is a dimensionless function of r. The

operator

D ¼ Dr � y2ðcosaÞ2
Dr ¼ q2

qr2
þ 1

r
q
qr

y ¼ kr0 ð91Þ

is further defined, and the parameter y of this last equation should not be

confused with the polar coordinate of the spherical frame of reference used in

Section V.A and Appendix B. Using Eqs. (89), (90) and (78), the electric and

magnetic field components become

Er ¼ �iG0½yðcosaÞ2��1 q
qr

½ð1 � r2DÞG� ¼ � 1

r0

qf
qr

þ ioAr ð92Þ

Ej ¼ G0ðtgaÞr2DG ¼ ioAj ð93Þ
Ez ¼ G0

�
1 � r2D

�
G ¼ �ikfþ ioAz ð94Þ

and

Br ¼ �G0½cðcosaÞ��1r2DG ¼ �ikAj ð95Þ

Bj ¼ �iG0ðsinaÞ½ycðcosaÞ2��1 q
qr

½ð1 � r2DÞG�

¼ ikAr �
1

r0

qAz

qr
ð96Þ

Bz ¼ �iG0½ycðcosaÞ��1

�
q
qr

þ 1

r

�
ðr2DGÞ ¼ 1

r0

1

r
q
qr

ðrAjÞ ð97Þ

Consequently, the function G can be considered as a generating function

from which the entire electromagnetic field of an elementary axisymmetric

EMS mode can be determined, in analogy with the generating function (37) of a

steady equilibrium state. It should also be observed that G and its derivatives

can be chosen to become finite at r ¼ 0 and zero at r ¼ 1. Such a choice then

makes it possible for the EMS modes to remain finite and physically acceptable

within the entire range of r. Insertion into the basic equations confirms the

result (92)–(97).

Expressions for the charge density �r and the potentials A and f are readily

obtained from relations (92)–(97) as shown in detail elsewhere [19]. These

relations are thus given in the laboratory frame, and they can be considered to

correspond to the Lorentz gauge, which is discussed further in Appendix A.

As seen from Eqs. (90)–(97), the elementary axisymmetric EMS mode

consists of a three-dimensional propagating configuration that periodically
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repeats itself along the z axis with the wavelength 2pcðsinaÞ=o, and where each

of the fields E and B has three nonzero components. This mode can be

considered as the axisymmetric correspondence to the plane-wave mode in

rectangular geometry.

The result (92)–(97) is reconcilable with that of Evans and Vigier [5–7], in

the sense that all field components are nonzero, and thereby also the axial

magnetic field Bz. A vanishing component Bz of an axisymmetric field would

also be in contradiction with the basic equations. The three axisymmetric

magnetic and electric field components of Eqs. (92)–(97) form a helical

structure similar to that by Evans and Vigier [5–7] with its cyclic field relations.

The present result is, however, not identical with that of Evans and Vigier,

because it originates from equations leading to a Proca-type relation (7), which

differs from the forms (22) and (26) used by de Broglie, Vigier, and Evans.

b. Field Components in the Rest Frame. The intrinsic properties of a photon,

such as a possibly existing rest mass, should be related to a rest frame K 0, which

follows the phase and group velocity v of Eq. (88). In the present case where

v ¼ cðsinaÞ < c, such a ‘‘rest frame’’ becomes physically relevant, but not in

the case where v ¼ c. For this purpose we make a transformation from the

laboratory frame K to the rest frame K 0. Introducing

e � 1 �
� v

c

�2
� �1=2

¼ cosa v ¼ ½0; 0; cðsinaÞ� ð98Þ

the Lorentz transformation yields

r0 ¼ r z0 ¼ z � cðsinaÞt
e

� �z

e
ð99Þ

where a prime refers to the rest frame henceforth. Thus

q
qz0

¼ e
q
qz

� �
k0 ¼ ek y0 ¼ k0r0 ¼ ey ð100Þ

The normalized generating function then becomes

G ¼ RðrÞexp ½ið�ot þ kzÞ� ¼ RðrÞexpðik0z0Þ � G0 ð101Þ

which is time-independent in the rest frame. Further

D ¼ Dr � y2ðcosaÞ2 ¼ Dr � ðy0Þ2 � D0 DG ¼ D0G0 ð102Þ

holds for the operator D0 in K 0.
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The Lorentz transformation is further applied to the electric and magnetic

fields, which become

E0 ¼ 1

e
E �

�
1

e
� 1

��
ẑ 
 E

�
ẑ þ 1

e
v 	 B ð103Þ

B0 ¼ 1

e
B �

�
1

e
� 1

��
ẑ 
 B

�
ẑ � 1

e
v 	 E

c2
ð104Þ

where ẑ ¼ ð0; 0; 1Þ. This results in the components

E0
r ¼ �iG0ðy0Þ�1 q

qr
½ð1 � r2D0ÞG0� ð105Þ

E0
j ¼ 0 ð106Þ

E0
z ¼ G0ð1 � r2D0ÞG0 ð107Þ

and

B0
r ¼ �G0c�1r2D0G0 ð108Þ

B0
j ¼ 0 ð109Þ

B0
z ¼ �iG0ðcy0Þ�1

�
q
qr

þ 1

r

�
ðr2D0G0Þ ð110Þ

Here we observe that the axial components Ez ¼ E0
z and Bz ¼ B0

z are invariant

during the Lorentz transformation, as given by Eqs. (103) and (104).

The result obtained can also be interpreted in the way that the field

components in K 0 are obtained from those in K by replacing the angle a by

a0 ¼ 0, specifically, by replacing the velocity vector C in expression (70), which

refers to the frame K by the vector

C0 ¼ cð0; 1; 0Þ ða0 ¼ 0Þ ð111Þ

which refers to the rest frame K 0. This further supports the adopted form for the

velocity vector C. In the frame K 0 the current density (3) has a component in the

j direction only, and it circulates around the axis of symmetry, thereby

generating purely poloidal fields E0 and B0, that is, where E0
j ¼ 0 and B0

j ¼ 0.

This situation is similar to that of the ‘‘bound’’ steady equilibrium state

described in Section V.A.

From relations (105)–(110) expressions are also obtained for the charge

density �r0 and the potentials A0 and f0, as given elsewhere [19]. These ex-

pressions in the rest frame K 0 can be considered to correspond to the Coulomb

gauge.
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B. Wavepackets

To form a photon-like particle, the elementary normal EMS modes now have to

be superimposed to create a wavepacket of finite axial extensions and of finite

linewidth in wavelength space. Here we are free to choose an amplitude factor

G0 of the generating function (90) having the form

G0 ¼ g0ðcosaÞ2 ð112Þ

where g0 is constant.

The normal modes are further superimposed to form a wavepacket having the

amplitude

Ak ¼
k

k0

� �
exp ½�z2

0ðk � k0Þ2� ð113Þ

within the wavenumber interval dk and centered around the wavenumber k0.

Integration of the modes given by Eqs. (92)–(97) is then represented by the

integrals

Pm ¼
ðþ1

�1
kmAk exp ½ikðz � vtÞ�dk v ¼ cðsinaÞ ð114Þ

Introducing the variable

p ¼ z0ðk � k0Þ þ
i�z

2z0

�z ¼ z � vt ð115Þ

the integral (114) can be written as

Pm ¼ k
m
0

ffiffiffi
p

p

z0

� �
exp � �z

2z0

� �2

þik0�z

" #

 1 þ f

�z

z0

;
1

k0z0

� �� �
ð116Þ

where f is a polynomial in terms of the quantities �z=z0 and 1=k0z0. The case

k0z0 � 1 is of most physical interest, because it represents a small linewidth and

will be adopted in the following deductions. Then the contribution from f in Eq

(116) can be dropped with good approximation. The case of small linewidth is

demonstrated by the form (113), where the amplitude in k space drops to 1=e of

its maximum value for �k ¼ k � k0 ¼ 1=z0. Then the linewidth �k=k0 ¼ 1=k0z0

becomes small for k0z0 � 1.

Applying Eqs. (114) and (116) to the field quantities (92)–(97) and introdu-

cing the notation

E0 ¼ E0ð�zÞ ¼
g0

r0

� � ffiffiffi
p

p

k0z0

� �
exp � �z

2z0

� �2

þik0�z

" #
ð117Þ
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the wavepacket field components now become

Er ¼ �iE0½R5 þ ðy00Þ
2
R2� ð118Þ

Ej ¼ E0y0ðsinaÞðcosaÞ½R3 � ðy00Þ
2
R1� ð119Þ

Ez ¼ E0y0ðcosaÞ2½R4 þ ðy00Þ
2
R1� ð120Þ

Br ¼ � 1

c

� �
ðsinaÞ�1

Ej ð121Þ

Bj ¼ 1

c

� �
ðsinaÞEr ð122Þ

Bz ¼ �i
1

c

� �
E0ðcosaÞ½R8 � ðy00Þ

2
R7� ð123Þ

and

�r ¼ �i
e0

r0

� �
E0½R6 þ ðy00Þ

2
R9 � ðy00Þ

4
R1� ð124Þ

c � fþ C 
 A ¼ ir0E0½2R4 � RðcosaÞ2 þ 2ðy00Þ
2
R1� ð125Þ

where

y0 ¼ k0r0 y00 ¼ y0ðcosaÞ ð126Þ

and

R1 ¼ r2R R2 ¼ d

dr
ðr2RÞ ð127Þ

R3 ¼ r2DrR R4 ¼ ð1 � r2DrÞR ð128Þ

R5 ¼ d

dr
½ð1 � r2DrÞR� R6 ¼ Dr½ð1 � r2DrÞR� ð129Þ

R7 ¼ d

dr
þ 1

r

� ��
r2RÞ R8 ¼ d

dr
þ 1

r

� �
ðr2DrRÞ ð130Þ

R9 ¼ Drðr2RÞ � ð1 � r2DrÞR ð131Þ

In the rest frame K 0 analogous deductions can be made for small linewidths

because

k00z00 ¼ k0z0 � 1 ð132Þ
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according to the Lorentz transformation of Eqs. (99) and (100). Likewise, we

introduce

E0
0 ¼ E0

0ðz0Þ ¼
g0

r0

� � ffiffiffi
p

p

k00z00

� �
exp � z0

2z0

� �2

þik00z0

" #
ð133Þ

and obtain the field quantities E0
j ¼ B0

j ¼ 0 and

E0
r ¼ �iE0

0ðcosaÞ ½R5 þ ðy00Þ
2
R2� ð134Þ

E0
z ¼ E0

0y
0
0ðcosaÞ½R4 þ ðy00Þ

2
R1� ð135Þ

B0
r ¼ � 1

c

� �
E0

0y
0
0ðcosaÞ½R3 � ðy00Þ

2
R1� ð136Þ

B0
z ¼ �i

1

c

� �
E0

0ðcosaÞ½R8 � ðy00Þ
2
R7� ð137Þ

�r0 ¼ �i
e0

r0

� �
E0

0ðcosaÞ½R6 þ ðy00Þ
2
R9 � ðy00Þ

4
R1� ð138Þ

c0 � f0 þ C0 
 A0 ¼ ir0E0
0ðcosaÞ½2R4 � R þ 2ðy00Þ

2
R1� ð139Þ

We recall that these results are approximate, valid for small linewidths, where

ðz0=2z0Þ2
varies much more slowly with z0 than k00z0 in expression (133). In this

case conditions such as div0B0 ¼ div B ¼ 0 will be satisfied only approximately

by expressions (136) and (137).

In the limit of zero linewidth of a needle-shaped axisymmetric wavepacket,

having infinite length z0 in the direction of propagation, the present deduction

would reduce ‘‘backward’’ to the elementary normal mode investigated in

Section VII.A.2.

Here we also notice that, for a photon with nonzero rest mass, the intrinsic

properties of the wavepacket are expected to be clearly visible in the rest frame

K 0. Among other things, this applies to the components (134)–(137), which then

represent steady electric and magnetic fields being entirely localized to the r0z0

plane, thereby also having strong components in the axial direction of propaga-

tion. This property clearly supports the photon model with a static magnetic

field part Bð3Þ as deduced by Evans and Vigier [5–7,45], and where the axial

electric and magnetic field components of Eqs. (107), (110), (135), and (137)

are invariant to the Lorentz transformation.

C. Integrated Field Quantities

Considered as a particle, the photon constitutes a unique concept, because it

may never be seen at rest in the laboratory frame. Nevertheless, integrated field
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quantities such as the total charge q, magnetic moment M, rest mass m0, and

angular momentum (spin) s are properties that could be attributed to the photon

wavepacket model and the ‘‘rest frame’’ K 0 as shown by the present and

following deductions.

To proceed with the analysis, we first observe that the wavepacket compo-

nents ðEj;Ez;BrÞ in the laboratory frame are in phase with the generating

function G, whereas the components ðEr;Bj;BzÞ are 90� out of phase with G

according to Eqs. (118)–(123). Similarly, ðE0
z;B0

rÞ in the rest frame are in phase

with G0, whereas ðE0
r;B0

zÞ are 90� out of phase with G0 as shown by Eqs. (134)–

(137). In the analysis that follows we choose the normalized generating func-

tions (90) and (101) to be symmetric with respect to the axial centra �z ¼ 0 and

z0 ¼ 0 of the wavepackets. With �z ¼ z � cðsinaÞt, we thus have

G ¼ RðrÞcosk�z G0 ¼ RðrÞcosðk0z0Þ ð140Þ

where the real parts of expressions (90) and (101) have been adopted.

1. Charge and Magnetic Moment

In the laboratory frame the integrated electric charge is given by

q ¼ e0

ð
div E dV ¼ e0

ð
n 
 E dS ¼ 0 ð141Þ

where dV and dS are volume and surface elements, respectively, and the inte-

gration is extended over entire space. Here the surface integral vanishes because

of the choice of the generating function, which should vanish at infinity as well

as all its derivatives. The analogous result q0 ¼ 0 is obtained in the rest frame.

The integrated magnetic moment in the laboratory frame becomes

M ¼ 1

2
e0c

ð
rðdiv EÞ dV

¼ pe0c

ðþ1

�1

ð1
0

�
r
q
qr

ðrErÞ þ r2 q
qz

Ez

�
dr d�z

¼ pe0c

ð1
0

(
r
q
qr

r

ðþ1

�1
Er d�z

� �
þ r2½Ez�þ1

�1

)
dr ¼ 0 ð142Þ

because Ez vanishes at �z ¼ 
1, and Er of Eq. (118) has an antisymmetric form

due to the factor sink�z when the choice (140) is made for the generating

function G. The analogous result M0 ¼ 0 is obtained in the rest frame. Observe

that the local magnetic fields B and B0 of Eqs. (121)–(123) and (136)–(137) are

nonzero even when the total magnetic moments M and M0 vanish. For
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M ¼ M0 ¼ 0, the fields B and B0 will only decrease more rapidly toward zero at

an increasing distance from the origin than in cases where M and M0 would

become nonzero.

As in the case of the neutrino model of Section V.A.I.a, the photon could

have a structure with both positive and negative local contributions to the charge

and magnetic moment that add up to zero when integrated over the total volume.

2. Mass

To deduce expressions for the integrated mass and angular momentum, the

radial part RðrÞ of the generating function (140) has to be specified. Here we

make the choice

R ¼ r�g exp � 1

r

� �
r ¼ r

r0

g � 1 ð143Þ

which is convergent both at the axis r ¼ 0 and at infinity. We further consider

integrals of the form

Jm ¼
ð1

0

Fmdr Fm ¼ r�m exp � 2

r

� �
ð144Þ

The integrand Fm increases from zero at r ¼ 0 to a maximum at r ¼ r̂m
where

r̂m ¼ r̂m

r0

¼ 2

m
ð145Þ

and it then drops very steeply toward zero for increasing values of r beyond

r ¼ r̂m when m � 1. Here

r̂m

r̂m�1

¼ m� 1

m
! 1 ðm � 1Þ ð146Þ

The integral (144) is evaluated by making the substitution p ¼ 2=r, and then

becomes

Jm ¼ 2�ðm�1Þðm� 2Þ! ð147Þ

which yields

Jm

Jm�1

¼ m� 2

2
! m

2
ðm � 1Þ ð148Þ
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The integrated total mass in the laboratory frame K is now given by

m ¼ W

c2
ð149Þ

where expressions (17), (124), and (125) are used to perform the integration of

Eq. (18). For a volume element dV ¼ 2pr dr d�z we first carry out the integration

with respect to �z. With E0ð�zÞ given by Eq. (117) this leads to the integrals

Jz ¼
ðþ1

�1
exp �2

�z

2z0

� �2
" #(

ðsink0�zÞ2

ðcosk0�zÞ2

)
d�z ¼ z0

�
p
2

�1=2

ð150Þ

for a small line width. Introducing the notation

a0 ¼ e0p5=2g2
0z0

c2ðk0z0Þ2
ffiffiffi
2

p ð151Þ

the mass becomes

m ¼ a0
�Jm

�Jm ¼
ð1

0

Wms dr ð152Þ

where

Wms ¼ r½R6 þ ðy00Þ
2
R9 � ðy00Þ

4
R1� 
 ½2R4 � RðcosaÞ2 þ 2ðy00Þ

2
R� ð153Þ

In the rest frame K 0 the corresponding results are

J0
z ¼ z00

p
2

� �1=2

ð154Þ

and

a0
0 ¼ e0p5=2g2

0z00
c2ðk00z00Þ

2
ffiffiffi
2

p k00z00 ¼ k0z0 ð155Þ

The integrated mass in this frame becomes

m0 ¼ a0
0
�J0

m
�J0

m ¼
ð1

0

W 0
ms dr ð156Þ

where

W 0
ms ¼ r½R6 þ ðy00Þ

2
R9 � ðy00Þ

4
R1� 
 ½2R4 � R þ 2ðy00Þ

2
R� ð157Þ
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From expressions (128) and (143) combined with relations (144) and (148),

we can easily see that the integrals (152) and (156) of Wms and W 0
ms become

equal in the limit of large g. The same result comes out if we use the alternative

form wf of Eq. (16) for the energy density in combination with the field

components (118)–(123) and (134)–(137). According to Eqs. (151), (152),

(155), and (156) and the Lorentz transformation (99), we now have

m0 ¼ em e ¼ cosa ð158Þ

On the other hand, when introducing the phase and group velocities v of

expressions (88), the energy relations due to Planck, Einstein, and de Broglie

result in

hn ¼ ho
2p

¼ mc2 ¼ m0c2 1 � v

c

� �2
� ��1=2

¼ m0c2

cosa
ð159Þ

where m0 is the rest mass. Consequently, the mass m0 in the rest frame K 0 of the

present theory becomes identical with the conventional form for the rest mass

m0. This can be taken as an additional confirmation of the performed deduc-

tions.

3. Momentum and Energy Balance in an Axisymmetric Case

The momentum balance of the electromagnetic field is governed by Eqs. (11)–

(15). Here the local forces

fe ¼ �rE fm ¼ j 	 B ¼ �rC 	 B ð160Þ

and the Poynting vector S are considered in the laboratory frame K. Because of

the axial symmetry of the present configuration, all integrated components in

the r and j directions of the cylindrical frame ðr;j; zÞ will vanish. To

investigate the contributions to the volume integrals of Eqs. (12) and (13), we

can thus restrict ourselves in studying the symmetry properties with respect to

the axial direction, that is, to the center �z ¼ 0 of the propagating wavepacket.

With the chosen symmetric form (140) for G, it is then seen from Eqs. (118)–

(124) that ð�r;Er;Bj;BzÞ become antisymmetric with respect to �z, whereas

ðEj;Ez;BrÞ become symmetric.

In addition, Eqs. (118)–(124) show that ð�r;Er;BjÞ are of zero order in the

smallness parameter e of the definition (98), ðEj;Br;BzÞ are of first order in e,

and Ez of second order.

Because of the symmetry conditions integration of the local forces (160)

results in vanishing electric and magnetic volume forces Fe and Fm as given by

Eqs. (13). Of the Poynting vector S and the electromagnetic momentum vector g
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of the propagating wavepacket, only the component due to ErBr � ErBz is of

interest in forming the integral of expression (12), that is, in the z direction of

propagation.

Concerning the local energy balance of Eq. (15), it is finally seen that the

term

�rE 
 C ¼ �rðEjCj þ EzCzÞ ð161Þ

is antisymmetric and has a vanishing volume integral. Therefore Poynting’s

conventional energy theorem holds for the integrated work of the electromag-

netic forces in the present axisymmetric configuration.

4. Angular Momentum

As a consequence of the results just obtained, it is now possible to use the

conventional form

s ¼ r 	 S

c2
ð162Þ

for the density of the angular momentum as given by Schiff [39] and Morse and

Feshbach [31], where r represents the radius vector from the origin.

In the laboratory frame ErBz is of first order in e; and EzBr of third order.

Further, cBr ffi �Ej for small e according to Eq. (121). Therefore the density of

angular momentum can be written as

s ¼ 
 r

c

� �
wf ðcosaÞẑ ð163Þ

where ẑ ¼ ð0; 0; 1Þ,

wf ffi e0 E2
r ð164Þ

and the two spin directions in equation (163) correspond to the two alternative

choices of C as given by Eq. (8). This is analogous to the two spin directions in

a steady particle-shaped state as given by expression (41). The modulus of the

integrated angular momentum now becomes

s ¼ 1

c

� �
ðcosaÞ

ð
rwf dV ð165Þ

For the integrated mass the alternative expression

m ¼ 1

c2

� �ð
wf dV ð166Þ
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can then be used as given by Eq. (18), and will be equivalent to expression

(152).

5. Quantum Conditions

According to Eqs. (165), (166), (118), and (122) and the quantum conditions for

the photon to behave as a boson, the mass and angular momentum now become

m ¼ a0
�Jm ¼ hn

c2
�Jm ¼

ð1
0

Wmf dr ð167Þ

s ¼ a0r0c�Js ¼
h

2p
�Js ¼

ð1
0

rðcosaÞWmf dr ð168Þ

where

Wmf ¼ r½R5 þ ðy00Þ
2
R2�2 ð169Þ

Combination of Eqs. (167) and (168) results in

o ¼ 2pn ¼ c�Jm

r0
�Js

ð170Þ

Insertion of the radial function (143) into expressions (129) and (127) for R5

and R2 yields a corresponding form for Wmf of Eq. (169), which then consists of

10 terms. Integration of each of these terms by means of Eqs. (144) and (147)

yields expressions for �Jm and �Js, which in the limit of large g give rise to the

relation
�Jm

�Js

ðcosaÞ ¼ g ðg � 1Þ ð171Þ

The radii r̂m of Eq. (145), which define the maximum of each term in Wmf

thus converge for increasing g values toward a common value r̂, as given by Eq.

(146). Consequently
�Jm

r0
�Js

ðcosaÞ ¼ g
r0

¼ 1

r̂
ð172Þ

in the limit of large m, that is, where m ffi 2g � 1. Combination of relations

(172) and (170) finally yields

2pr̂ðcosaÞ ¼ c

n
¼ l0

sina
’ l0 ð173Þ

with very good approximation for ðcosaÞ2 � 1, and where l0 ¼ 2p=k0 is the

mean wavelength of the wavepacket that has a small linewidth, namely,
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k0z0 � 1 and n ffi n0 ¼ ck0=2p. This result thus applies to large g values of the

generating function, where the integrands Wmf and rWmf of the mass (167) and

angular momentum (168) have sharply peaked maxima located at the radius r̂.

The result (173) applies to a photon model with the angular momentum h=2p
of a boson, whereas the photon radius r̂ would become half as large for the

angular momentum h=4p of a fermion. Moreover, the present analysis on

superposition of EMS normal modes is applicable not only to narrow linewidth

wavepackets but also to a structure of short pulses and soliton-like waves. In

these latter cases the radius in Eq. (173) is expected to be replaced by an

average value resulting from a spectrum of broader linewidth.

VIII. FEATURES OF PRESENT INDIVIDUAL PHOTON MODEL

The present axisymmetric model of the individual photon becomes associated

with a number of important questions discussed in the current literature.

A. The Nonzero Rest Mass

The question of the possible existence of a nonzero photon rest mass was raised

by Einstein [42], Bass and Schrödinger [43], de Broglie and Vigier [44], and

further by Evans and Vigier [5], among others. It includes such crucial points as

the relation to the Michelson–Morley experiment, and the so far undetermined

value of such a mass and its experimental determination.

1. Comparison with the Michelson–Morley Experiment

The velocity of the earth in its orbit around the sun is about 10�4c. If this would

also turn out to be the velocity with respect to a stationary ether, and massive

photons would move at the velocity v ¼ cðsinaÞ in the same ether, then the

velocity u of photons recorded at the earth’s surface would become

u ¼ v þ w

1 þ ðvw=c2Þ ð174Þ

with w ¼ d 
 c and d ¼ 
10�4. Introducing

sina ¼ 1 � 1

2
ðcosaÞ2 � 1

8
ðcosaÞ4 � 
 
 
 � 1 � f ð175Þ

the departure from c of the recorded photon velocity would be given by

1 � u

c
¼ f

½1 � dð2 � f Þ þ d2ð1 � f Þ�
1 � d2ð1 � f Þ2

ffi 1

2
ðcosaÞ2ð1 
 2dÞ ð176Þ
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From Eq. (176) the following conclusions can be drawn regarding recorded

velocities:

� For cosa � 10�4, corresponding to a photon rest mass m0 < 0:74	
10�39 kg ffi 10�9me, a change in the eighth decimal of the recorded

velocity of light can hardly be detected.

� With the same assumption of cosa � 10�4, and when turning from a

direction where d ¼ þ10�4 to the opposite direction where d ¼ �10�4,

the change in 1 � ðu=cÞ would even become much less; 10�12. Also such a

value hardly becomes detectable.

Consequently, there should be no noticeable departure in recorded velocity from

the Michelson–Morley experiments when the photon rest mass is changed from

zero to about 10�39 kg ffi 10�9me or less. For a photon rest mass in the range

10�68 < m0 < 10�45 kg as considered by Evans and Vigier [5], this departure

would become extremely small and very hard to detect. Still the physics with

such a nonzero mass becomes fundamentally different from that being based on

a photon mass, which is exactly equal to zero. This is also clearly demonstrated

by the present analysis and its results in the laboratory and ‘‘rest’’ frames, as

given by the Lorentz transformation.

In all approaches with a nonzero photon rest mass the velocity c should be

considered as an asymptotic limit at infinite energy that can never be fully

approached in physical reality by a single photon in vacuo.

2. The Undetermined Value of the Rest Mass

In the case of the EMS mode of Eq. (45), the limit of zero rest mass corresponds

to cosa ¼ 0. In this limit where cosa and m0 are exactly equal to zero, the

result is like that of a conventional axisymmetric EM mode that either diverges

at the axis or at infinity, and must be discarded as pointed out in Section VII.A.1

on branch 1 of solutions. Therefore the present results hold only for a nonzero

rest mass, but this mass can be allowed to become very small. This implies that

the quantum conditions mc2 ¼ hn for the total energy and s ¼ h=2p for the

angular momentum are satisfied for a whole class of small values of cosa and

the corresponding rest mass.

As pointed out by de Broglie and Vigier [25], this indeterminableness of the

photon rest mass appears to be a serious objection to the underlying theory. The

problem is that the derivations depend simply on the existence of the nonzero

rest mass, but not on its magnitude. To this mass in their analysis, de Broglie

and Vigier use examples of other ‘‘macroscopic quantum effects’’ that have

been considered in theoretical physics, such as ferromagnetism and the possibi-

lity of indefinite precision in measuring Planck’s constant. Additional examples

are given in this context, such as those of the electron and neutrino masses and
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of the electric charge discussed in Section V.A.1, and where independent theo-

retical deductions of their absolute values have not been possible to make so far.

Thus, the uncertainty in the absolute value of the nonzero photon rest mass

does not necessarily imply that the corresponding theory is questionable, but

rather could be due simply to some so far ‘‘hidden’’ extra condition or

refinement that may have to be added at a later stage to obtain such a value.

3. Possible Methods for Determination of the Photon Rest Mass

For the determination of the photon rest mass, the following considerations can

be of importance:

� From the hypothesis of a nonzero electrical conductivity in the vacuum

and the corresponding dispersion relation [20,48, 50–52], the concepts of

‘‘tired light’’ and the observed cosmical redshift could be interpreted and

associated with a nonzero photon mass of about 10�68 kg. The related

frequency dependence can also become a measure of the mass.

� Anisotropic effects of the recorded frequency of cosmic microwave

background radiation have been proposed for photon rest mass deter-

mination [20].

� The Vigier mass of the photon being associated with the de Broglie

wavelength lB is

m0 ¼ h

lBc
ð177Þ

where lB ¼ 1026 m is put equal to the radius of the universe [48,60].

� Possibly a deeper understanding of the details in certain interference

phenomena, such as the Goos–Hänchen effect and the Sagnac effect

mentioned in Section II, list items 4 and 6 could provide estimates of the

photon rest mass. As shown by de Broglie and Vigier [44] and Vigier [61],

these effects can have explanations in terms of such a mass.

B. The Photon as a Particle with an Associated Wave

An essential feature of de Broglie’s picture of the wave-particle duality consists

of regarding the particle and the associated wave as simultaneously existing

physically real entities. Relations (70), (111), (118)–(123), (134)–(137), (158),

(159), and (170) of the present wavepacket model in the frames K and K 0 are

consistent with such a picture, which could be considered as a ‘‘hybrid’’ system

of unified wave and particle nature.

In the laboratory frame K this electromagnetic field configuration has the

total energy hn ¼ mc2. Thereby the fraction ðm � m0Þc2 can be regarded as the

energy of a ‘‘free’’ pilot wave of radiation, and the fraction m0c2 as the energy

46 b. lehnert



of a ‘‘bound’’ particle state of ‘‘self-confined’’ radiation. The rest mass m0 thus

represents an integrating part of the total field energy. In the j direction the

‘‘bound’’ radiation ‘‘moves’’ around the z axis of symmetry at the velocity

C0
j ¼ c according to Eq. (111). With the sharply defined radius r̂ of Eq. (146),

this part of the radiation field becomes associated with a frequency

n0 ¼ c

2pr̂
ð178Þ

of revolution around the z axis in the rest frame K 0. In combination with

relations (173) and (159), and for sina ffi 1, this yields

n0 ¼ nðcosaÞ ¼ n
m0

m

� �
ð179Þ

as also being supported by the idea that all parts of the EM field energy should

be included in the same way in the total energy hn. The relation

hn0 ¼ m0c2 ð180Þ

by de Broglie is then recovered through Eq. (179). In K the pilot wave thus

becomes associated with the component Cz ¼ cðsinaÞ, and the rest mass with

the component Cj ¼ cðcosaÞ.
Provided that m0=m is independent of the frequency n, the results (178)–

(180) and (88) thus permit the angle a also to be independent of n. This would

have two important consequences:

� For a constant angle a the phase and group velocities and the velocity

vector C of Eqs. (88) and (70) become independent of frequency. Then

there are no dispersion effects that would cause signals of different wave-

lengths to have different propagation times over large cosmical distances.

Even if there would arise a frequency dependence of a, the extremely

small rest mass mentioned in Section VIII.A.1 would lead to small

dispersion effects, even at large cosmical distances.

� The two-frequency paradox [6] by de Broglie can be resolved, in the sense

that the frequency n0 ¼ n0 is coupled to the frequency n by relation (179).

If Eqs. (178)–(180) would not become fully satisfied, thereby leading to a

frequency dependence for a, then Eq. (159) would result in a dispersion relation

that depends on the rest mass m0 as discussed in Section VIII.A.3.

C. The Electric Charge, Angular Momentum, and Longitudinal Field

The local electric charge density of the present theory can have either sign. In

the photon model, however, the boundary conditions on the electric field cause

optical effects of an extended electromagnetic theory 47



the total integrated charge to vanish as given by Eq. (141). A way out of the

discussed problem earlier of zero net charge of the photon is to assert that the

photon is its own antiphoton [5]. The result of Eq. (141) provides an alternative

to this.

At this point a question arises as to the possibility of having an expression for

the angular momentum also in the rest frame K 0. However, such a question is

not simple, because the definition of a Poynting vector in the rest frame of the

wavepacket is not straightforward.

As in the case of the electric charge, there are local contributions of various

signs to the total integrated magnetic moment. The latter vanishes in the present

analysis where these contributions outbalance each other. In spite of this, there

is a nonzero local magnetic field that has a nonzero component in the axial

direction that is invariant to Lorentz transformations in the same direction, and

is associated with a nonzero photon rest mass. This intrinsic axial magnetic field

is reconcilable but not identical with that of Evans and Vigier [5,6,45], who

have based their approach on a different form of 4-current (26) in the Proca-type

equation (22). As expected, the intrinsic current system and magnetic field are

purely poloidal in the rest frame, whereas the magnetic field in the laboratory

system is helical. The helicity of the photon field has also been considered in an

analysis by Evans [28] and Dvoeglazov [62].

In this connection it should finally be mentioned that Comay [63] and Hunter

[64] have discussed the Bð3Þ field concept by Evans and Vigier on the basis of

conventional electromagnetic theory where the 4-current of Eq. (22) vanishes in

the vacuum. Their analysis leads to the obvious conclusion that the Bð3Þ field

vanishes in such a case. This does, however, not rule out the existence of Bð3Þ

when there is a nonzero 4-current of the type (26) introduced by de Broglie,

Vigier and Evans. Thus, without a Proca-type equation (22), no steady-state

magnetic ‘‘spin field’’ can exist in a rest frame K 0.

D. The Photon Radius

The present photon model is partly supported by experiments performed. Thus

far in earlier investigations on two-slit interference phenomena of individual

photons in the ultraviolet range [21], dot-shaped marks were observed at a

screen, as in a similar case with electrons. Such a concentrated local energy

behavior is hard to reconcile with a plane wave, even when the distribution of

photon impacts exhibits a probability character given by quantum theory. In

the case of impinging individual photons, these marks seem to be consistent

with a limited radial extension of the wavepacket as given by Eq. (173), at least

when cosa � 10�5. Apart from the factor cosa, Eq. (173) agrees with a form

by Hunter and Wadlinger [23] which appears to be consistent with micro-

wave transmission experiments. Even if both these forms sometimes lead to a
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rather limited photon diameter, however, there remains the question how a

photon can release a single electron at atomic dimensions, such as in the

phtoelectric effect.

E. The Thermodynamics of a Photon Gas

With a nonzero rest mass one would at a first glance expect a photon gas to have

three degrees of freedom: two transverse and one longitudinal. This would alter

Planck’s radiation law by a factor of 3
2
, in contradiction with experience [20]. A

detailed analysis based on the Proca equation shows, however, that the Bð3Þ spin

field cannot be involved in a process of light absorbtion [5]. This is also made

plausible by the present model of Sections VII and VIII, where the spin field is

‘‘carried away’’ by the pilot field. As a result, Planck’s law is recovered in all

practical cases [20]. In this connection it has also to be observed that transverse

photons cannot penetrate the walls of a cavity, whereas this is the case for longi-

tudinal photons which would then not contribute to the thermal equilibrium [43].

The equations of state of a photon gas have been considered by Mézáros

[29] and Molnar et al. [30]. It has thereby been found that Planck’s distribution

and the Wien and Rayleigh–Jeans laws cannot be invariant to an adiabatic

change of state occurring in an ensemble of photons. The dilemma that arises is

due to the fact that the changes of state cannot be adiabatic and isothermal at the

same time. It is probable that the cause of this contradiction can be the lack of a

longitudinal magnetic flux density, such as the field Bð3Þ by Evans and Vigier, in

the original and standard treatments. Thus, in an adiabatically deformed photon

gas the intensity will change in time, and so will the field Bð3Þ. These important

questions may require further investigation.

F. Tests of the Present Model

The results achieved so far that support the present individual photon model can

be summarized as follows:

� The total reflection of an incident wave in a dissipative medium that is

bounded by a vacuum region

� The convergence of the axisymmetric solutions, which has no counterpart

in conventional theory

� The needle-shaped wavepacket solutions of the individual photon model,

which agree at least sometimes with the dot-shaped marks on a screen in

interference experiments

� The nonzero angular momentum which does not exist for circularly and

plane polarized conventional electromagnetic waves

� The contradictions that arise in the thermodynamics of a photon gas, and

that are likely to be clarified by having a longitudinal magnetic field part
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At this stage there is an open question as to whether other radial parts of the

generating function, exist being similar to that of Eq. (143) and giving results

same as or similar to those just mentioned. Thus the photon model and its

internal structure could also be tested in observations of various scattering

processes.

IX. NONLOCALITY AND SUPERLUMINOSITY

Another class of electromagnetic phenomena beyond the concepts of conven-

tional theory, has generated an increasing interest, namely, when considering

instantaneous long-range interaction as well as signals propagating at velocities

greater than c. Investigations within this new field are still at a preliminary stage,

also including questionable concepts and interpretations. Suggestions are made

here as to how the present approach could be included in the analysis.

A. General Questions

It was pointed out by Dirac [34] that, as long as we are dealing only with

transverse waves, we cannot bring in the Coulomb interactions. There must then

also arise longitudinal interactions between pairs. In fact, as already argued by

Faraday and Newton and further stressed by Chubykalo and Smirnov-Rueda [2],

among others, instantaneous long-range interaction takes place not instead of

but along with the short-range interaction in classical field theory. This point of

view has also been expressed by Pope [65] in stating that instantaneous ‘‘action

at a distance’’ and the finite speed of light are generally considered as

antithetical, but it is well known that in relativistic physics light has both finite

and infinite speed. Thus c is not a velocity but is a spacetime constant having the

dimensions of velocity. In this connection Argyris and Ciubotariu [66] point out

that the unquantized longitudinal–scalar part of the field yields the Coulomb

potential, and that transverse photons transport energy whereas longitudinal

(virtual) photons do not carry energy away. Thus, there is direct interaction

between a transverse photon and the gravitation field of a black hole, but not

with a longitudinal photon. The Coulomb field is therefore able to cross the

event horizon of a black hole. The Bð3Þ field concept should also be understood

to be related to this nonlocalized action at a distance [28].

In addition to the long-range interaction, there is also the phenomenon of

superluminosity, defined by signals that can propagate and possibly carry energy

at a finite speed but that exceeds the value c. There are a number of observations

reviewed by Recami [27] indicating that such motions could exist and can be

associated with tachyon particles.

B. Instantaneous Long-Range Interaction

The problem of nonlocality due to instantaneous long-range interaction is now

considered both in electromagnetic and in gravitational theory.
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1. The Electromagnetic Case

In their considerations on the field generated by a single moving charged

particle, Chubykalo and Smirnov-Rueda [2,56,57] have claimed the Lienard–

Wiechert potentials to be incomplete. These potentials are then not able to

describe long-range instantaneous Coulomb interaction. However, in a modified

theory by Chubykalo and Smirnov-Rueda such interaction is included. The

applicability of these potentials is, however, still under discussion [9].

A further analysis of the concept of long-range instantaneous interaction has

been presented [2,56,57] in which the Proca field equation is divided into two

pairs. The first of these manifests the instantaneous and longitudinal aspect of

electromagnetic nature, as represented by functions f ½RðtÞ� of an implicit time

dependence. For a single charge system this would then lead to the form

RðtÞ ¼ r � rqðtÞ, where r is a fixed vector from the point of observation to the

origin, and rqðtÞ is the position of the moving charge. The implicit time

dependence then implies that all explicit time derivatives disappear from the

basic equations of the first part of the divided pairs. The second part is

responsible for transverse wave phenomena, as represented by functions

gðr; tÞ of an explicit time dependence.

The basic equations (1)–(8) of the present extended formulation also include

Coulomb interaction. Likewise, these equations can be split into one

part representing long-range instantaneous interaction having an implicit time

dependence, and another part that represents signals having a nonzero propaga-

tion time and an explicit time dependence. The first part is then given by Eqs.

(1)–(8) without partial time derivatives, thereby reducing to a form being

analogous to the general equations (36) of a steady state. The second part

defined by Eqs. (1)–(8) with an explicit time dependence includes propagating

transverse EM waves, as well as S and EMS waves.

The subdivision of the solutions into parts of implicit and explicit time

dependence could in fact be interpreted in two ways:

1. For sufficiently slow time variations, the explicit time derivatives can be

neglected and the solutions of a quasisteady equilibrium are then obtained with

good approximation. Such a situation arises when the sources of the EM field, as

given by the charges and currents, vary slowly as compared to the time required

for a wave to pass from its source to the field point in question. Then a

corresponding interpretation of an implicit time dependence would not be

reconcilable with the absolute concept of instantaneous long-range interaction.

It would merely be due to the fact that the time variations of the sources have

been chosen slow enough for the propagation time of the wave to appear

infinitely short, somewhat in analogy with the situation of Achilles and the

turtle.

2. There are, however, a number of arguments that could support the exis-

tence of long-range instantaneous interaction. Thus, superluminal phenomena
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cannot be explained from Maxwell’s equations without longitudinal wave

concepts [28]. The energy of ‘‘longitudinal modes’’ cannot be stored locally in

space but can be spread by an arbitrary velocity [62]. Moreover, nonlocality

behaviour is supported by observations as a fundamental property of the

universe [67]. There are also several quantum-mechanical arguments in favor of

long-range interaction, such as that of the Aharonov–Bohm effect [68] and those

raised in connection with the Einstein–Podolsky–Rosen thought experiment.

With these arguments, and with the similarity between EM and gravitational

long-range interaction described in the next subsection (IX.B.2), it should be

justified to use the part of implicit time dependence in the basic equations as a

theoretical model for instantaneous long-range interaction.

Instantaneous action at a distance, represented here by longitudinal compo-

nents, can thus be interpreted as a classical equivalent of nonlocal quantum

interactions [2].

2. The Gravitational Case

There are some similarities between electromagnetism and gravitation that

could be important to the investigation of long-range interaction. Thus, there is a

resemblance between the Coulomb and Newton potentials [66]. A holistic view

of electromagnetism and gravitation would imply that action at a distance

occurs in a similar way in gravitation [28], and vice versa. This is supported by

the general principle that there exists no screen against gravitational forces

acting between distant massive sources [48]. In other words, the position,

velocity, and acceleration of a source of gravity would then be felt by the target

body in much less than the light–time between them.

C. Superluminosity

In addition to the long-range interaction at infinite speed, there are proposals for

the existence of superluminal phenomena that should manifest themselves in

propagation at a finite speed, but being larger than c. There now seems to be

observational evidence for such phenomena, as well as indications thereof in the

theoretical analysis, but further investigation is needed.

1. Observational Evidence

The longstanding idea of superluminal motion has become subject to renewed

interest, due to a number of recent discoveries and observations, as described in

a survey by Recami [27]. Thus the squared mass of muon–neutrinos is found to

be negative. There are further observations that can be interpreted as super-

luminal expansions inside quasars, in some galaxies and in galactic objects.

Also, so called ‘‘X-shaped waves’’ have been observed [69] to propagate at a
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velocity larger than c. Finally Nimtz et al. [70] have performed an experiment

where a wavepacket was used to transmit Mozart’s Symphony No. 40 at a speed

of 4:7c through a tunnel formed by a barrier of 114 mm length. There is a

difficulty in the interpretation of tunneling experiments, because no group

velocity can be defined in the barrier traversal that is associated with evanescent

waves.

2. Theoretical Analysis

Reviews on the theoretical analysis of superluminal phenomena have been

presented by Barut et al. [71] on tachyons and by Olkovsky and Recami [72] on

tunneling processes. A special study has been conducted by Walker [73] on the

propagation speed of a longitudinally oscillating electric field, generated along

the axis of vibration of an electric charge and based on Lienard–Wiechert

potentials. It was shown that both the phase and group velocities of the field

were infinite next to the charge, and then decayed rapidly to the speed of light in

one wavelength. In the zero-frequency limit this analysis gave results of a

nonlocal character, and their relation to or contradiction with the theory by

Chubykalo and Smirnov-Rueda [2,56,57] is not clear at this stage.

The central assumption underlying the standard approach to tachyon theory

is that the usual Lorentz transformation also applies to the superluminal case.

One therefore simply takes the Lorentz factor ½1 � ðv=cÞ2Þ�1=2
and substitutes

v > c into it [27,74]. This leads directly to an imaginary rest mass and

propagation time for tachyons, with many difficulties of interpretation [74].

These central concepts of tachyon theory also come out of the present

approach. An alternative way to satisfy the condition (8) of Lorentz invariance

is thus to replace the form (70) of the velocity vector C by

C ¼ cð0; i sinh a; cosh aÞ ¼ cð0;Cj;CzÞ ð181Þ

in an axisymmetric case. For propagating normal modes of the form

exp ½ið�ot þ kzÞ�, Eq. (46) for an EMS-like tachyon mode then yields the dis-

persion relation

o ¼ kCz ¼ kv v ¼ cðcosh aÞ ð182Þ

which replaces relation (88). Thus the phase and group velocities are both equal

to v > c for a given value of a.

If we further assume that relations (159) for a photon can be adopted and

modified to apply to the tachyon case, the result in combination with Eq. (182)

would become

hn ¼ mc2 ¼ m0c2 1 �
� v

c

�2
� ��1=2

¼ m0c2

iðsinh aÞ ð183Þ
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or

m0 ¼ iðsinhaÞhn
c2

¼ iðsinhaÞm m2
0 < 0 ð184Þ

Consequently, this leads to what could be considered as an imaginary rest mass,

as is also obtained in current tachyon theory.

The introduction of the form (181) for C into the basic equation would lead

to formal solutions analogous to those of Section VII for the axisymmetric EMS

mode and wavepacket. Physical interpretations of such solutions are assumed to

be difficult and have not been attempted at this stage. Here we shall only end the

discussion with some preliminary and speculative points related to the imagin-

ary rest mass. It is first noticed that an ansatz

m0c2 ¼ hn0 ð185Þ

analogous to that by de Broglie for the photon would lead to an imaginary

frequency

n0 ¼ m0c2

h
¼ inðsinhaÞ ¼ icðsinhaÞðcoshaÞ

l0

ð186Þ

with l0 as the average wavelength of a propagating tachyon wavepacket. This

frequency and rest mass are related to the component Cj of the velocity vector

C, and can be associated with a balance condition in the j direction. Second,

when returning to expression (173) for the photon wave packet, and by

comparing the forms (70) and (181), an analogous expression

2pr̂ ¼ l0

cosha
ð187Þ

could be attempted for the tachyon radius. With the imaginary velocity Cj of

‘‘revolution’’ in the j direction, the corresponding imaginary frequency would

then become

n0 ¼ Cj

2pr̂
¼ icðsinhaÞðcoshaÞ

l0
ð188Þ

which is the same result as that of Eq. (186). The interpretation of this imaginary

frequency is difficult, and it is not clear that it could become associated with a

damping factor and a limited tachyon life time.
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X. THE WAVE AND PARTICLE CONCEPTS OF A LIGHT BEAM

At this point it is appropriate to return to the general wave and particle concepts

of light. To be more specific, we can ask whether an individual photon can be

treated both as a plane wave and as a particle, and whether a broad light beam

can be considered both as a stream of individual photon particles and as a plane

wave. For a closer examination of these questions it becomes necessary to

investigate every particular case with respect to the following points:

� The choice of theoretical representation has to be reconcilable with the

geometric configuration to be studied.

� The boundary conditions impose certain constraints.

� The initial conditions by which light is being generated will influence the

choice of representation.

The analysis that follows is based partly on a preliminary and tentative

approach [75].

A. The Individual Photon

In many cases the photon can be represented by the two alternative models of a

plane wave and a particle-like wavepacket. This should also apply to inter-

ference phenomena with individual photons [21]. For a given point at the screen

of an experiment with two apertures, the resulting interference pattern obtained

from individual photon impacts could thus be interpreted in two alternative

ways:

� The photon is as a plane wave divided into two parts that pass through

either of the apertures, and then interfere at the screen.

� The photon is as an axisymmetric wavepacket divided into two parts that

pass the apertures and interfere with each other when ending up at the

screen to form a common dot-shaped mark.

Irrespective of whether the photon is considered as a plane wave or a

wavepacket of narrow radial extension, it must thus be divided into two parts

that pass each aperture. In both cases interference occurs at a particular point on

the screen. When leading to total cancellation by interference at such a point,

for both models one would be faced with the apparently paradoxical result that

the photon then destroys itself and its energy hn. A way out of this contradiction

is to interpret the dark parts of the interference pattern as regions of forbidden

transitions, as determined by the conservation of energy and related to zero

probability of the quantum-mechanical wavefunction.

The photon has the energy hn both at its source and at the screen. The

division into two parts of the photon during its flight would at first sight be in
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conflict with the quantization of energy. A possible solution of this problem can,

however, be found in terms of the Heisenberg uncertainty principle. A

randomness in phase can be assumed to arise when the plane wave parts are

transferred into dot-shaped geometry when hitting the screen, or when the

axisymmetric wavepacket parts are formed and reunited during their flight.

Since both photon models include long wavetrains in the direction of propaga-

tion, the average uncertainty in phase of the interference process is expected to

be of the order of half a wavelength l. At the surface of the screen this can in its

turn be interpreted as an uncertainty �t ffi l=2c ¼ 1=ð2nÞ in time. This finally

leads to an uncertainty �E ffi h=ð2p�tÞ ¼ hn=p in energy. The latter would

then become of the order of half the energy hn, thus being carried by each

photon part that passes through the apertures.

These questions appear to be understandable in terms of both photon models.

The wavepacket axisymmetric model has, however, an advantage of being more

reconcilable with the dot-shaped marks finally formed by an individual photon

impact on the screen of an interference experiment. If the photon would have

been a plane wave just before the impact, it would then have to convert itself

during the flight into a wavepacket of small radial dimensions, and this becomes

a less understandable behavior from a simple physical point of view. Then it is

also difficult to conceive how a single photon with angular momentum (spin)

could be a plane wave, without spin and with the energy hn spread over an

infinite volume. Moreover, with the plane-wave concept, each individual photon

would be expected to create a continuous but weak interference pattern that is

spread all over the screen, and not a pattern of dot-shaped impacts.

An individual axisymmetric photon wavepacket that propagates in vacuo and

meets a mirror surface, should be reflected in the same way as a plane wave, on

account of the matching of the electromagnetic field components at the surface.

Inside a material with a refraction index greater than that in vacuo, the

transmission of the wavepacket is affected by interaction with atoms and

molecules, in a way that is outside the scope of the discussion here.

Whenever applicable, the present wavepacket model of Section VII can be

regarded as a unification of the wave and particle concepts of an individual

photon. It propagates as a wave, and at the same time has a static part that is

associated with the intrinsic properties of spin, a nonzero rest mass, and a static

magnetic and electric field part. Although it is never at rest, the photon thus has

many features in common with other particles such as leptons, which, in turn,

also can behave as waves according to de Broglie. The geometric structure of

the individual ‘‘localized’’ photon wavepacket of the present simplified theore-

tical model is thereby not in conflict with the quantum-theoretical wavefunction

that represents the probability distribution of a photon before its position has

been localized through a measurement.

56 b. lehnert



B. Density Parameters of a Broad Beam of Wavepackets

A light beam is now being considered that consists of a stream of individual

axisymmetric photon wavepackets of narrow linewidth and where the macro-

scopic breadth of the beam is much larger than the individual photon radius r̂ of

Eq. (173). The volume density of the wavepackets is assumed to be uniform in

space. Then the mean distance between the centra of the wavepackets becomes

d ¼ 1

np

� �1=3

ð189Þ

With the energy hn ¼ hc=l0 of each photon, the energy flux per unit area is

given by

cp ¼ np vhc

l0

ffi nphc2

l0

l0 ¼ 2p
k0

ð190Þ

according to Eq. (88) when ðcosaÞ2 � 1. Combination of relations (189), (190),

and (173) then yields a ratio

y? ¼ d

2r̂
¼ p

hc2

cpl
4
0

 !1=3

ðcosaÞ ð191Þ

of the mean transverse separation distance between the photons and the

diameter 2r̂ of a single photon. Multiphoton states [23] are not considered

here, but could somewhat modify the analysis.

Since r̂ represents a sharply defined radius according to the theory described

earlier, there is a critical value y?c ffi 1 of the ratio (191). It corresponds to

�
cpl

4
0

�
?c
ðcosaÞ�3 ffi p3hc2 ffi 1:85 	 10�15 ½W 
 m2� ð192Þ

Equation (191) is related to an earlier analysis of multiphoton phenomena [23]

for which its left-hand member would have to be replaced by the value

y? ¼ ðp=2Þ2=3
.

In analogy with Eq. (191) there is also a ratio of the mean longitudinal

separation distance between two photon wavepackets situated on a common

axis and the individual wavepacket length 2z0, as given by

yk ¼
d

2z0

� y? ðz0 � r̂Þ ð193Þ
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for small linewidths. Here ykc ffi 1 is the corresponding critical value of yk.
The regimes of the parameters (191) and (193) are now subdivided with

respect to overlapping of the individual photon fields:

I(I) y? > y?c: There is no transverse overlapping, and there exist two

subregimes.

(Ia) y? � yk > ykc: There is no longitudinal overlapping.

(Ib) y? � yk < ykc: There is longitudinal overlapping.

(II) y? < y?c: There is both transverse and longitudinal overlapping.

1. Longitudinal Field Overlapping

When yk < ykc the photon wavepackets that are lined up after each other on the

same axis can match their phases and combine into more elongated packets. As

a result the linewidth of a single photon is expected to become larger than that

of a dense photon beam. The local energy flux density cp should at the same

time be given by the number of photons passing a cross-sectional area,

regardless of the value of the ratio yk.

2. Transverse Field Overlapping

The case of transverse field overlapping is far more complicated than that of

longitudinal overlapping. According to the previous analysis, the field energy is

limited mainly within a well-defined radius r̂. As long as the ratio y? exceeds

the critical value y?c, the photon wavepackets of the beam will not overlap and

will have hardly any mutual interaction. The beam then behaves as a stream

of individual photon particles, that is, when representing each photon as an

axisymmetric wavepacket.

When y? decreases beyond y?c, however, a rapidly increasing overlapping of

the individual photon fields would take place. An extensive analysis of modera-

tely large overlapping in the range near y?c is expected to become complicated,

and will not be undertaken here, where we limit the discussion to the range

y? � y?c of strong overlapping. For this latter range the following points apply:

� If the individual wavepacket solutions of the present theory could be

superimposed, this would imply that the field vectors become multivalued

at every point inside the photon beam. The individual photon fields would

then have to cancel each other. This implies that the axisymmetric small-

scale wavepacket solution of Section VII does not apply and cannot satisfy

the basic Eqs. (1)–(8) in the case of a nearly plane (one-dimensional) and

broad photon-dense beam configuration.

� From this mutual cancellation of the individual photon fields an apparently

paradoxical conclusion would follow, namely, that the beam energy

gradually vanishes as y? decreases beyond y?c. To preserve the energy
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flux, such a conclusion then must be combined with an additional

hypothesis, as will be shown in the following section.

When considering the model of a beam that consists of axisymmetric photon

wavepackets, it can finally be seen from relation (191) that transverse over-

lapping would not occur for visible light at very small energy fluxes, whereas

such overlapping should arise at the energy fluxes of strong laser light in the

visible regime as well as for electromagnetic waves in the radiofrequency

regime.

C. Energy Flux Preservation

Within any parameter regime, the quantization and preservation of the beam

energy flux has to be imposed as a necessity. Thus, to preserve this flux we

propose a tentative approach by assuming that the increasing deficit of beam

energy due to overlapping and cancellation of the axisymmetric EMS wave-

packet fields is compensated by the energy contribution due to a simultaneously

appearing and increasing plane wave of the EM or EMS type as being defined

earlier. This assumption is also supported by the requirement of having a wave

system with phase and group velocities in the direction of the beam, and with

wavefronts perpendicular to the direction of propagation. Consequently we

make the ansatz

cp ¼ cEMS þ cPL ð194Þ

where cEMS and cPL are the contributions to the total energy flux from the

individual EMS fields and from the plane wave, respectively. This proposed

scenario can thus be described as follows:

� In the regime y? � y?c of negligible field overlapping the beam consists

of a stream of individual EMS wavepackets, each with an energy hn and

rest mass m0, propagating at the velocity v ¼ cðsinaÞ and giving rise to the

energy flux cp ¼ cEMS.

� When y? decreases to values y? ffi y?c, field overlapping begins to

influence the beam and a rather complex hybrid state is established. In the

case of a plane EM wave, EMS and EM fields are then superimposed and

coupled, with a reduced rest mass, and propagating at a velocity v in the

range between cðsinaÞ and c, thereby giving rise to a combined energy

flux (194). The coupling of these two wave fields has been discussed to

some detail elsewhere [75].

� When finally reaching the regime y? � y?c, the EMS wave fields of

axisymmetric wavepackets would be canceled by overlapping, and only

the plane wave therefore remains as a possible solution of the basic

equations in the present macroscopic beam geometry. A plane EM wave

propagates at the velocity v ¼ c, thereby giving rise to an energy flux
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cp ¼ cPL for a beam consisting of photons, each having the energy hn. In

this regime we are thus back to the plane-wave representation, here

applying to the collective behavior of photons in a beam. Plane EMS

waves could also be involved under these conditions, such as in the special

process of total reflection described in Section VI.B.

A question that can be raised in this tentative approach concerns the angular

momentum. In the case of a low-density beam of negligible EMS field over-

lapping, all the individual axisymmetric photon wavepackets will carry their

own spin. For a high-density beam that has been converted into a plane EM

wave, however, there are two reasons why it is difficult to see how there could

exist a total nonzero spin related to the beam energy flux cp: (1) the plane

geometry makes it hard to picture how an angular momentum could arise for a

wave system of ‘‘flat’’ appearance and infinite spatial extension; and (2) the

extended approaches that are based on a nonzero 4-current in the Proca-type

equation (22) lead to photon models with intrinsic spin, whereas this does not

result from the transverse wave solutions of conventional electromagnetic

theory [5,20,25]. Such a conclusion is also consistent with that by Heitler

[59], who points out that a plane wave of infinite extension in the transverse

direction cannot have any angular momentum about an axis in the direction of

propagation. Further, for an axisymmetric circularly polarized beam of finite

circular cross section, there arises an angular momentum that can have

contributions from individual photons at its periphery, somewhat like the

contributions from the gyro motion of charged particles at the boundary of a

magnetized plasma body. In any case, these questions require further analysis in

which quantum-mechanical aspects may also have to be included.

D. Beam Conditions for Wave or Particle Representation

The preceding discussion thus indicates that the basic equations, with their

initial and boundary conditions, will determine whether a ray of comparatively

large transverse dimensions is to be represented by a plane wave or by a beam of

particle-like photon wavepackets. Thus two general cases should be observed:

� The condition y? � y?c of strong transverse overlapping is both

necessary and sufficient for the ray to be represented by a plane wave,

because the basic equations do not permit axisymmetric individual photon

wavepacket solutions to exist in such a case.

� The condition y? � y?c of negligible transverse overlapping is necessary

but not sufficient for the ray to be represented by a beam of axisymmetric

wavepackets, because the basic equations can then in principle be satisfied

both in plane wave and axisymmetric wavepacket geometry.

Energy flux preservation in the sense of the ansatz of Section X.C and

Eq. (194) should hold in both these cases, that is, irrespective of the value of y?.
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1. Initial Conditions

The initial conditions of the source can contribute to the character of the emitted

electromagnetic radiation. Thus emission from excited atoms occurs in the form

of individual photon wavepackets and can give rise to particle-like photon

beams under appropriate conditions. Electromagnetic radiation that is excited

by the current system of a macroscopic antenna is, on the other hand, expected

to produce nearly plane waves at large distances from the source.

2. Boundary Conditions

The boundary conditions can also have a decisive influence on the type of

representation. A first example is given by the transmitted wave at a vacuum

boundary, as discussed in Section VI.B. Here the incident and reflected plane

waves can be matched at the interface by a plane transmitted wave, but hardly

by a transmitted beam of axisymmetric photon wavepackets.

A second example is given by the microwave transmission experiments [23]

mentioned at the end of Section VIII.D. These were performed in presence of an

adjustable aperture. A cutoff of the transmitted power was observed at a certain

aperture size, in agreement with theory [23]. The question then arises how the

earlier discussed overlapping effects become reconcilable with such a result.

The answer is that microwave transmission in a device of limited size differs in

many respects from the behavior of a broad beam. An important feature of the

former case is due to the boundary conditions imposed by the aperture, in which

an essential part of the overlapping fields is being ‘‘scraped off.’’ As a result of

this, the single photon picture could still be relevant to the experimentally

observed behavior. But it should then also be remembered that light transmis-

sion through a circular hole becomes strongly reduced according to conven-

tional thory when the wavelength exceeds the hole diameter [76].

Large wavelengths and low energies hn favour transverse overlapping

according to Eq. (191). To avoid such overlapping, and thereby satisfy the

boundary conditions of an axisymmetric individual photon, the energy flux cp

has to be chosen at an extremely low level. Thus, to observe a ‘‘giant’’ axisym-

metric photon wavepacket in the radiofrequency regime, the energy flux of

equation (192) would have to become extremely small.

XI. CONCLUDING REMARKS

The present theory has been developed in terms of an extended Lorentz

invariant form of the electromagnetic field equations, in combination with an

addendum of necessary basic quantum conditions. From the results of such a

simplified approach, theoretical models have been obtained for a number of

physical systems. These models could thus provide some hints and first
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approximations to the properties of the individual photon, light beams, and

charged and neutral leptons. However, at least certain parts of the same models

must, in a future and more rigorous approach, be substituted by a quantization

of the extended field equations from the beginning. Possibly the present models

may still represent the ‘‘most probable states’’ of a corresponding rigorous

quantum-theoretical approach.

Last but not least, it must be further investigated whether light manifests

itself differently under different conditions. One of these manifestations is

represented by an axisymmetric solution of the present theory, which has the

nonzero angular momentum of a boson particle. Another is represented by a

plane-polarized wave having zero angular momentum.

As pointed out by Sarfatti [77], the basic form (7) of the four-current is

related to the result of anholonomic electrodynamics.

APPENDIX A: THE LORENTZ CONDITION

With the introduction of the two potentials A and f, the basic equations (1)–(6)

can be recast into the system

&A þrL ¼ �m0j ðA:1Þ

&f� q
qt

L ¼ � �r
e0

ðA:2Þ

where

L ¼ div A þ 1

c2

qf
qt

¼ r;� i

c

� �
q
qt

� �

 A;

if
c

� �
ðA:3Þ

In terms of O(3) covariant derivatives, Evans et al. [78] have shown that the

Proca-type equation represented by the form (22) can be derived without

imposing the conventional Lorentz condition L ¼ 0. This result is supported

by the following two considerations.

When the two square brackets in the right-hand member of Eq. (A.3) both

transform as 4-vectors, their ‘‘scalar’’ product becomes invariant in spacetime.

The quantity L is then equal to an arbitrary constant. Consequently the terms

containing L in Eqs. (A.1) and (A.2) vanish regardless whether the Lorentz

condition L ¼ 0 is being satisfied.

A second confirmation is obtained from a gauge transformation

A0 ¼ A þrw f0 ¼ f� qw
qt

ðA:4Þ
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with an arbitrary scalar function w ¼ wðx; y; z; tÞ. From Eq. (A.3) we then have

L ¼ div A0 þ 1

c2

qf0

qt
� r2 � 1

c2

q2

qt2

� �
w ¼ L0ðx; y; z; tÞ �&w ðA:5Þ

A choice of w is now made where

w ¼ w1 þ w2 ðA:6Þ

with

&w1 ¼ L0 ðA:7Þ
2w2 ¼ c0c2t2 � ðc1x2 þ c2y2 þ c3z2Þ ðA:8Þ

From equation (A.5) it is further seen that L0 is canceled by the choice of w1, as

in conventional theory. We then have

L ¼ �&w2 ¼ c0 þ c1 þ c2 þ c3 ¼ const ðA:9Þ

This also confirms that the Proca-type equation does not require L to vanish.

Moreover, Anastasovski et al. [79] have interpreted the basic EM field

equations in a new and different way. Thereby the Lorentz condition L ¼ 0 has

been discarded, and Eqs. (A.1) and (A.2) have been modified to the form

&A ¼ �rL ¼ m0 jA ðA:10Þ

&f ¼ q
qt

L ¼ �rA

e0

ðA:11Þ

where the new 4-current thus becomes

ðjA; ic�rAÞ ¼ � 1

m0

� �
r;� i

c

� �
q
qt

� �
L ðA:12Þ

which is Lorentz-invariant, as expected. This can be interpreted as a vacuum

current and charge. It further raises the question of a possible extraction of

electromagnetic energy from the vacuum [79].

APPENDIX B: ELECTRON MODEL OF PRESENT THEORY

The present model of charged particle states is connected with two fundamental

questions in EM field theory. The first of these concerns the electric charge

quantization, partly through its relation with the magnetic flux in non-Abelian
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electrodynamics [5]. Such a quantization has been discussed in terms of the

magnetic monopole theories by Dirac [34] and t’Hooft and Polyakov [80]. A

second question of fundamental importance concerns quantum field theory in

general. It has been stated by Ryder [80] that, despite the numerous success of

the latter theory, the question of how to describe the basic matter fields of nature

has remained unanswered, except through the introduction of quantum numbers

and symmetry groups. Thus, as far as field theory goes, the matter fields are

treated as point objects. Even in classical field theory these present us with

unpleasant problems, in the shape of the infinite self-energy of a point charge. In

the comparative success of renormalization theory the feeling remains that there

ought to be a more satisfactory way of doing things [80].

B.1. General Equations of the Equilibrium State

Turning now to a more detailed description of the theory on steady equilibria

described in Section V.A, the basic equations (36) in spherical coordinates with

the adopted axisymmetrix geometry can be written as

ðr0rÞ2�r
e0

¼ Df ¼
�
D þ ðsinyÞ�2�ðCAÞ ðB:1Þ

where the operator is given by

D ¼ Dr þ Dy; Dr ¼ � q
qr

�
r2 q

qr

�
; Dy ¼ � q2

qy2
� cosy

siny
q
qy

ðB:2Þ

Combination of Eqs. (B.1) and (37) yields

CA ¼ �ðsinyÞ2
DF ðB:3Þ

f ¼ �½1 þ ðsinyÞ2
D �F ðB:4Þ

�r ¼ �ðe0=r2
0r

2ÞD½1 þ ðsinyÞ2
D�F ðB:5Þ

According to Eq. (17), the source energy density now becomes

ws ¼
1

2
ð�rfþ j 
 AÞ ¼ 1

2
�rðfþ CAÞ ðB:6Þ

Introducing the functions

f ðr; yÞ ¼ �ðsinyÞD½1 þ ðsinyÞ2
D�G ðB:7Þ

gðr; yÞ ¼ �½1 þ 2ðsinyÞ2
D�G ðB:8Þ
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and the normalized integrals

Jn ¼
ð1
en

ðp
0

In dy dr ðn ¼ q;M;m; sÞ ðB:9Þ

the integrated charge q0, magnetic moment M0, mass m0, and angular momen-

tum s0 of expressions (38)–(41) become

q0 ¼ 2pe0r0G0 Jq Iq ¼ f ðB:10Þ
M0 ¼ pe0Cr2

0G0 JM IM ¼ rðsinyÞ f ðB:11Þ

m0 ¼ p
�
e0

c2

�
r0G2

0 Jm Im ¼ fg ðB:12Þ

s0 ¼ p
�
e0C

c2

�
r2

0G2
0Js Is ¼ rðsinyÞ fg ðB:13Þ

Here en are small dimensionless radii of circles centered at the origin r ¼ 0 in

the case when the radial part R of the generating function (37) is divergent at

r ¼ 0, and en ¼ 0 when R is convergent at r ¼ 0. The former case will be

shown to correspond to an electrically charged particle state, whereas the latter

leads to a neutral particle state. The former state will be mainly considered here.

For the same state we notice that q0 and M0 depend on the sign of G0 but not m0

and s0. The sign of C ¼ 
c affects M0 and s0 but not q0 and m0. The two spin

directions are related to the two signs of C. The integrals Jm and Js include the

energy density and should be positive in this analysis, which excludes negative

energy states.

With the separable normalized generating function G of Eq. (37), the

integrands In of the normalized expressions (B.9) become

Iq ¼ t0R þ t1ðDrRÞ þ t2DrðDrRÞ ðB:14Þ
IM ¼ rðsinyÞIq ðB:15Þ
Im ¼ t0t3R2 þ ðt0t4 þ t1t3ÞRðDrRÞ þ t1t4ðDrRÞ2

þ t2t3RDrðDrRÞ þ t2t4ðDrRÞ 
 ½DrðDrRÞ� ðB:16Þ
Is ¼ rðsinyÞIm ðB:17Þ

where

t0 ¼ �ðsinyÞðDyTÞ � ðsinyÞDy½ðsinyÞ2ðDyTÞ� ðB:18Þ
t1 ¼ �ðsinyÞT � ðsinyÞDy½ðsinyÞ2

T � � ðsinyÞ3ðDyTÞ ðB:19Þ
t2 ¼ �ðsinyÞ3

T ðB:20Þ
t3 ¼ �T � 2ðsinyÞ2ðDyTÞ ðB:21Þ
t4 ¼ �2ðsinyÞ2

T ðB:22Þ

optical effects of an extended electromagnetic theory 65



To demonstrate the principal difference between the charged and neutral

particle states, we now consider the case of a convergent radial part R at r ¼ 0,

and where we can put en ¼ 0. For the integral Jq of the electric charge (B.10)

integration by parts with respect to r then yields

Jq ¼
ð1

0

ðp
0

t0R drþ
ðp

0

(
� t1

�
r2 dR

dr

�1
0

þ t2

�
r2 d2

dr2

�
r2 dR

dr

��1
0

)
dy

ðB:23Þ

When R and its derivatives vanish at infinity and are finite at r ¼ 0, and when

the integrals of t1 and t2 given by Eqs. (B.19) and (B.20) are finite, Eq. (B.23)

reduces to

Jq ¼
ð1

0

R dr 

ðp

0

t0 dy � Jqr 
 Jqy ðB:24Þ

For convergent integrals Jqr we thus have to analyze the integral Jqy. Partial

integration with respect to y yields

Jqy ¼
�
ðsinyÞ d

dy
½ðsinyÞ2ðDyTÞ� þ ðsinyÞ dT

dy

�p

0

ðB:25Þ

For all finite functions T with finite derivatives at y ¼ ð0; pÞ, it is then seen that

Jq and q0 vanish in general.

Turning next to the magnetic moment (A.11) and its integral, partial

integration with respect to r yields

JMr �
ð1

0

rR dr ¼ � 1

2

� �ð1
0

rðDrRÞdr ¼ 1

4

ð1
0

rDrðDrRÞ dr ðB:26Þ

Combining expressions (B.26) with Eqs. (B.15) and (B.18)–(B.20), partial

integration with respect to y finally results in

JM ¼ JMr

�
ðsinyÞ3 d

dy
½ðsinyÞðDyT � 2TÞ�

�p

0

ðB:27Þ

where it is seen that finite functions T with finite derivatives at y ¼ ð0; pÞ lead to

JM ¼ 0, and to a vanishing magnetic moment M0.

Concerning the mass and angular momentum given by expressions (A.12),

(A.13), (A.16), and (A.17), the convergent normalized integrals Jm and Js
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cannot vanish in general. A simple test with R ¼ e�r and T ¼ 1 can be used to

illustrate this.

It is thus seen that radial functions R that are convergent at the origin lead to

a class of neutral particle states where q0 and M0 both vanish, whereas m0 and s0

are nonzero.

For the present theory to result in electrically charged particle states it

therefore becomes necessary to look into radial functions R that are divergent at

the origin. This leads to the subsequent question whether the corresponding

integrals (B.9) would then be able to form the basis of an equilibrium having

finite and nonzero values of all the quantities q0, M0, m0, and s0. In the next

section we will shown how this question can be answered.

B.2. The Charged-Particle State

The questions just being raised can be settled by studying a generating function

F ¼ G0RðrÞ 
 TðyÞ of the form [13,50]

R ¼ r�g expð�rÞ ðB:28Þ

T ¼ 1 þ
Xn

n¼1

fa2n�1 sin ½ð2n� 1Þy� þ a2n cos ½2ny�g

¼ 1 þ a1 sinyþ a2 cos2yþ a3 sin3yþ 
 
 
 ðB:29Þ

where g is a positive constant. A neutral particle state [20], as mentioned in

Section V.A.I.a, can instead be represented by g < 0 in the form (B.28). In the

same expression a change to a variable r ¼ const r only results in a change of

the amplitude G0 in expression (37). The form (B.28) diverges at r ¼ 0 and

tends strongly to zero as r tends to infinity. The part T of (B.29) is chosen to

have top–bottom symmetry with respect to the ‘‘equatorial’’ plane y ¼ p=2.

In the radial integration with the form (B.28), expressions (B.9) have

dominating contributions from the largest negative powers of r. Therefore a

single term is chosen in (B.28), and not a negative power series. Consequently

we can write [13,20]

Jn ¼ Jnr 
 Jny Jny ¼
ðp

0

Iny dy ðn ¼ q;M;m; sÞ ðB:30Þ

where

Jqr ¼ 1

g� 1
e�ðg�1Þ

q JMr ¼
1

g� 2
e�ðg�2Þ

M ðB:31Þ

Jmr ¼ 1

2g� 1
e�ð2g�1Þ

m Jsr ¼ 1

2ðg� 1Þ e
�2ðg�1Þ
s ðB:32Þ
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and

Iqy ¼ t0 � gðg� 1Þt1 þ g2ðg� 1Þ2t2 ðB:33Þ
IMy ¼ ðsinyÞIqy ðB:34Þ
Imy ¼ t0t3 � gðg� 1Þðt0t4 þ t1t3Þ þ g2ðg� 1Þ2ðt1t4 þ t2t3Þ

� g3ðg� 1Þ3t2t4 ðB:35Þ
Isy ¼ ðsinyÞImy ðB:36Þ

For all the integrands (B.31)–(B.32) to diverge at small values of all en, the

condition g > 2 has to be satisfied.

Finite and nonzero values of the integrated quantities (B.31)–(B.32) can now

be obtained by shrinking the characteristic radius r0 to very small values, as

represented by

r0 ¼ c0 
 eg�1 ð0 � e � 1 and g > 2Þ ðB:37Þ

where c0 is a positive constant having the dimension of length. Then it is further

necessary to make the choice

eq � e; eM ¼ e½2ðg�1Þ=ðg�2Þ�; em ¼ e½ðg�1Þ=ð2g�1Þ�; es ¼ e ðB:38Þ

which converts the radial integrals (B.31)–(B.32) into

Jqr ¼ 1

g� 1
e�ðg�1Þ JMr ¼

1

g� 2
e�2ðg�1Þ ðB:39Þ

Jmr ¼ 1

2g� 1
e�ðg�1Þ Jsr ¼

1

2ðg� 1Þ e
�2ðg�1Þ ðB:40Þ

In connection with expressions (B.38) we also notice that a choice eM ¼ em ¼ e
would lead to a form for JMrJmr due to equations (B.31) and (B.32), which

makes the product M0m0 finite and nonzero [18].

The integrated quantities (B.10)–(B.13) now become

q0 ¼ 2pe0c0G0Jqy

g� 1
ðB:41Þ

M0 ¼ pe0Cc2
0G0JMy

g� 2
ðB:42Þ

m0 ¼ pðe0=c2Þc0G2
0Jmy

2g� 1
ðB:43Þ

s0 ¼ pðe0C=c2Þc2
0G2

0Jsy

2ðg� 1Þ ðB:44Þ
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For the integrated charge q0 combination of equations (B.10), (B.13), and

(42) finally yields

jq0j
e

¼
�

2e0chJ2
qy

ðg� 1Þe2Jsy

�1=2

’ 11:71
Jqy�

ðg� 1ÞJsy
�1=2

ðB:45Þ

for C ¼ þc and where the charge is normalized in respect to the measured value

e. In equation (B.45) the coefficient 2e0ch=e2 is equal to the inverted value of

the fine structure constant. For g ¼ 2 the result of Eq. (44) is recovered.

B.3. The Point Charge Concept and the Related Divergence

It has thus been shown that the present theory of charged particle equilibria

necessarily leads to point-like configurations with an excessively small char-

acteristic radius r0, permitted, in principle, even to approach the limit r0 ¼ 0. In

this way the integrated field quantities can be rendered finite and nonzero. As

pointed out in Section V.A.1.b, a strictly vanishing radius would not become

physically acceptable, whereas a nonzero but very small radius is reconcilable

both with experiments and with the present analysis. It would leave space for

some form of internal particle structure. A small but lower limit of the radius

would also be supported by considerations based on general relativity [15,20].

In this connection there is an important question concerning the infinite self-

energy of a point charge in classical as well as in quantum field theory. The

latter uses a renormalization process to solve the problem, namely, by subtract-

ing two ‘‘infinities’’ to end up with a finite result. Despite the success of such a

procedure, a more physically satisfactory way is needed [80]. Possibly the

present theory may provide such an alternative, by tackling the divergence

problem in a more surveyable manner. The finite result of a difference between

two ‘‘infinities’’ due to renormalization theory would then be replaced by a

finite result obtained from the product of an ‘‘infinity’’ and a ‘‘zero,’’ as

demonstrated by the present analysis.

B.4. Quantized Charged Equilibrium

To specify the equilibrium state more in detail, the quantum conditions of

Section III.B now have to be imposed.

B.4.1. Conditions on Spin and Magnetic Moment

The imposed spin condition is represented by Eq. (42), which has to be

combined with expression (B.13) for the angular momentum.

Concerning the magnetic moment, relation (43) is combined with Eqs.

(B.41)–(B.44) to result in the form

H0 ¼ 	
JMyJmy

JqyJsy
; 	 ¼ ðg� 1Þ2

ðg� 2Þð2g� 1Þ ðB:46Þ
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In presence of an imposed external magnetic field, the quantity H0 ¼ 1 þ dF

stands for the right-hand member of Eq. (43), where e has been replaced by q0

in the Feynman correction dF . On the other hand, if the influence of the

magnetic field has a decisive effect on the internal balance of the equilibrium

state, the value for a free electron may instead have to be written as H0 ¼ 1
2
þ d ,

where d would become a corresponding as yet undeduced small correction.

This point is, however, an open question.

As a simple example, and to illustrate the ranges and orders of magnitude of

involved parameters, a polar part of the generating function

T ¼ 1 � NðsinyÞ�a ðB:47Þ

was earlier chosen in the case where g approaches the value 2 from above and N

and �a are the independent variables [13,20]. Since ðsinyÞ�a can be expanded into

a series of sinmy and cosmy terms with an integer m, the form (B.47) becomes a

special case of the general symmetric form (B.29). The result obtained from

(B.47) shows that the value jq0j ¼ e then obtained from Eq. (B.45) is included

within a relatively limited parameter range of the variables N and �a.

B.4.2. Condition on Magnetic Flux

According to Eq. (B.3), the magnetic flux function becomes

	 ¼ 2prAðsinyÞ ¼ �2pr0
G0

C

� �
rðsinyÞ3

DG ðB:48Þ

where

DG ¼ TðDrRÞ þ RðDyTÞ ðB:49Þ

and

DrR ¼ �½gðg� 1Þ þ 2ðg� 1Þrþ r2�R ðB:50Þ

after insertion of the radial part (B.28) and with the operators (B.2). The

magnitude of the flux 	 increases strongly as r approaches small values from

above. For such values relations (B.48)–(B.50) and (B.37) combine to

	 ffi �2p
c0G0

C

� �
ðsinyÞ3 ½DyT � gðg� 1ÞT�eg�1 
 r�ðg�1Þ ðr � 1Þ ðB:51Þ

We now choose the limiting radius e	 for this flux in analogy with the radii en of

Eq. (B.9), that is, where en ¼ e for q0, s0 and M0m0 according to Section B.2.

With r ¼ e	 ¼ e, it is then seen from expression (B.51) that there is a resulting

finite and nonzero magnetic flux 	.
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From the general expression (B.48) and the result (B.51), there is thus a

magnetic flux that vanishes at large radial distances r, and that for a decreasing

r grows in magnitude, to reach a steeply pronounced maximum at r ¼ e	. Such

a configuration resembles that of a thin current loop with almost all current at

r ¼ e. For such a loop the magnetic field lines cut the equatorial plane y ¼ p=2

at right angles, and there is a positive ‘‘upward’’ flux within an inner region

0 < r < e that is equal to a negative ‘‘downward’’ flux within the outer region

e < r. The upward flux in the equatorial plane thus becomes

	0 � �	

�
e; y ¼ p

2

�
¼ 2p

�
c0G0

C

�
A	 ðB:52Þ

where

A	 ¼ �½gðg� 1ÞT � DyT �½y¼p=2� ðB:53Þ

It has, however, to be stressed that expressions (B.52) and (B.53) are the result

of a first and preliminary deduction of the relevant magnetic flux. Thus,

magnetic island formation could somewhat increase its total value.

The quantization of the magnetic flux is based on the following line of

thought. The quantized value s0 of the angular momentum depends on the type

of configuration being considered. Thus it becomes s0 ¼ h=4p for fermions and

s0 ¼ h=2p for bosons. The electron, which is a fermion, can be considered as a

system that also has the quantized charge q0. If the total magnetic flux 	tot

associated with such a system should be quantized as well, it is likely to be

given by the two quantized concepts s0 and q0, in a relation having the

dimension of a magnetic flux:

	tot ¼
s0

q0

����
���� ¼ h

4pjq0j
ðB:54Þ

Using the spin condition (42) in combination with expressions (B.41), (B.44),

and (B.54), the condition for magnetic flux quantization is reduced to

8p fm A	Jqy ¼ Jsy ðB:55Þ

where fm > 1 when there is magnetic island formation, and fm ¼ 1 in absence of

such formation. With the definition (B.53), the quantities A	 and Jqy will have

the same signs.

B.4.3. Available Parameters of the Equilibrium State

With the adopted form (B.28)–(B.29) of the generating function, the indepen-

dent variables consist of the exponential factor g in the radial part (B.28) and 2n

amplitudes am in the polar part (B.29) with m ¼ 2n� 1 or 2n. There are two

resulting quantum conditions: (1) the combined spin and magnetic moment
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condition (B.46) with a given value of H0, the choice of which could have two

possible options; and (2) the magnetic flux condition (B.55). As the present

theory stands, there is thus a considerable degree of freedom for the resulting

charged particle equilibria, and this freedom could be even greater with the

possible existence of forms of the generating function other than (B.28)–(B.29)

that satisfy the basic conditions of a physically relevant charged equilibrium

state.

B.5. The Possible Extremum of the Electric Charge

In Section V.A.1.b the question was raised as to whether the magnitude of the

elementary electric charge e could be due to a unique quantized value that ought

to emerge from a variational analysis [13,20]. Here we shall outline a correspo-

nding analysis to some detail. The notation

An � Jny ðn ¼ q;M;m; sÞ ðB:56Þ

is introduced for polar integrals that are obtained from Eqs. (B.30) and (B.33)–

(B.36). Relation (B.45) can then be written as

q0

e

� �2

¼ 2
e0ch

e2

� �
S S ¼

A2
q

ðg� 1ÞAs

ðB:57Þ

The combined condition (B.46) for spin and magnetic moment has the further

form

Q ¼ H0 �
1

2
gs � dF ¼ 0 ðB:58Þ

with the notation

H0 ¼ ðg� 1Þ2
AMAm

ðg� 2Þð2g� 1ÞAqAs

ðB:59Þ

Here the Landé factor gs ¼ 2 corresponds to the electron with an imposed

magnetic field according to Dirac and Feynman, and gs ¼ 1 may represent a

possible option for a free electron. Further

dF ¼ q2
0

4pe0hc
¼ S

2p
ðB:60Þ

is the correction by Feynman in terms of expressions (B.41), (B.44), and (B.57),

whereas dF may have a modified value in the case of a free electron. In Eq.

(B.59) for values of g that approach 2 from above, it has been shown [13,20]

that AM=ðg� 2Þ still has a finite value, earlier [20] denoted by the symbol AM .

The condition (B.55) on magnetic flux quantization finally becomes

V ¼ 8p fm A	Aq

As

� 1 ¼ 0 ðB:61Þ
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The proposed variational analysis now implies that an extremum of the

normalized square (B.57) of the electric charge is being searched for, under the

subsidiary constraints (B.58) and (B.61). With 2n terms in the expansion (B.29),

the quantities S; Q; and V will all depend on 2n þ 1 variables ðg; a1;
a2; . . . ; a2nÞ. Defining the function

P ¼ S þ LQ 
 Q þ LV 
 V ðB:62Þ

where LQ and LV are Lagrange multipliers, the variational analysis then has the

form of a system with 2n þ 1 equations

qP

qg
¼ qS

qg
þ LQ

qQ

qg
þ LV

qV

qg
¼ 0 ðB:63Þ

qP

qam
¼ qS

qam
þ LQ

qQ

qam
þ LV

qV

qam
¼ 0

ðm ¼ 1; 2; 
 
 
 ; 2nÞ ðB:64Þ
qP

qLQ

¼ Q ¼ 0
qP

qLV

¼ V ¼ 0 ðB:65Þ

One way of eliminating LQ and LV is to use the first two equations (B.64), which

yield

LQ ¼
qS
qa1


 qV
qa2

� qS
qa2


 qV
qa1

qQ
qa2


 qV
qa1

� qQ
qa1


 qV
qa2

ðB:66Þ

LV ¼
qS
qa2


 qQ
qa1

� qS
qa1


 qQ
qa2

qQ
qa2


 qV
qa1

� qQ
qa1


 qV
qa2

ðB:67Þ

This results in a system of 2n þ 1 equations for the 2n þ 1 unknown indepen-

dent variables ðg; a1; a2; . . . ; a2nÞ as given by�
qQ

qa2


 qV

qa1

� qQ

qa1


 qV

qa2

�
qS

qg
þ
�

qS

qa1


 qV

qa2

� qS

qa2


 qV

qa1

�
qQ

qg

þ
�

qS

qa2


 qQ

qa1

� qS

qa1


 qQ

qa2

�
qV

qg
¼ 0 ðB:68Þ�

qQ

qa2


 qV

qa1

� qQ

qa1


 qV

qa2

�
qS

qam
þ
�

qS

qa1


 qV

qa2

� qS

qa2


 qV

qa1

�
qQ

qam

þ
�

qS

qa2


 qQ

qa1

� qS

qa1


 qQ

qa2

�
qV

qam
¼ 0 ðm ¼ 3; 4; . . . ; 2nÞ ðB:69Þ

Q ¼ 0 V ¼ 0 ðB:70Þ
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As seen from expressions (B.30), (B.33)–(B.36), (B.18)–(B.22), and (B.56)–

(B.61), the system (B.68)–(B.70) leads to highly nonlinear relations between the

independent variables.

Since a high degree of accuracy requires the inclusion of a large number 2n

of amplitudes am in the expansion (B.29), a numerical analysis is not expected

to become trivial. The objective is thus to determine whether S and q0 of

Eq. (B.57) will converge at large n toward an asymptotic value, and how this

value will be related to the experimentally determined elementary charge e.

Results of such an analysis are not available at this stage, and parts of it include

open questions such as those concerning the detailed spatial distribution of

the magnetic flux near the origin r ¼ 0 and its influence on the values of A	 and

fm in Eq. (B.55).

Without using the detailed variational equations, a first hint can be obtained

by applying the special polar part (B.47) of the generating function. A simple

numerical analysis in the case g ¼ 2 and fm ¼ 1 then yields the result

jq0=ej ffi 1:6 according to conditions (B.70), the form (B.55), and expression

(B.45). The corresponding extremum value should at least become somewhat

lower, because the special function (B.47) is not likely to be that function that in

a variational analysis should result in the lowest possible value of S and q0.
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I. TOPOLOGICAL BASIS FOR HIGHER-SYMMETRY
ELECTRODYNAMICS

Topology is the study of geometrical configurations invariant under transforma-

tion by continuous mappings. It provides what is probably the most fundamental

known framework for the description of physical models using the mathematical

techniques of group theory [1] and gauge theory [2]. A study of the topology of a
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given experiment can be used to decide whether that experiment is possible

or not, and the decision is made in the language of group theory. Topological

considerations can be applied to the vacuum itself, so that the vacuum becomes

structured, or has a given configuration. On the basis of the fact that topology is a

fundamental description, then it is also a fundamental description of the vacuum

itself, and decides the structure of physical objects such as electrodynamic field

equations [3,4] in the vacuum. The group-theoretic description of the received

equations of classical electrodynamics, the Maxwell–Heaviside equations [5], is

U(1), homomorphic with O(2) (U(1)�O(2)). The latter is the group of rotations

in two dimensions, and the former is the group of all numbers of the form eif ¼
cosfþ i sinf, whose group space is a circle. The two groups are homomorphic

or similar in form. Each element of O(2) is given uniquely [6] by an angle a, the

angle of rotation in a plane. The group space of both O(2) and U(1) is therefore a

circle. The received view [5,6] asserts that the classical electromagnetic field is a

gauge field invariant under local U(1) gauge transformations. In other words,

Maxwell–Heaviside theory is a U(1) symmetry Yang–Mills gauge field theory.

Unified field theory proceeds on this assertion, specifically, that the electro-

magnetic sector has U(1) symmetry. The topological basis for this conclusion in

the received view is given by such phenomena as the Aharonov–Bohm effect [6],

where the classical vacuum is deduced to have a nontrivial topology [6]. This is

combined with the view that electrodynamics is a U(1) gauge theory to give the

received explanation of the Aharonov–Bohm effect [3,4,6]. In gauge theory in

general, however, the vacuum has a rich topological structure, and this structure

is not confined to U(1). Other groups may be used, and each has physical, or

measurable, gauge-invariant, consequences. Therefore, the most fundamental

basis for the development of field equations, such as those of classical

electrodynamics, is the topology of the vacuum itself. In order to understand

this further, some topological concepts must be introduced and defined.

Basic to the understanding of topology are simply and non-simply connected

spaces. The relevant topological space is the vacuum itself. A simply connected

space is one in which all closed curves may be shrunk to a point; and in a

non-simply connected space, this is not true in general. In a non-simply

connected space, a function may be many-valued, for example cos (f� 2pn).

In this view therefore, the Aharonov–Bohm effect can exist physically if and

only if the vacuum itself is not simply connected. The group theoretic

description of the Aharonov–Bohm effect follows from these considerations.

The U(1)�O(2) group is not simply connected because its group space

(denoted S1) is a circle. The group space S1 itself is not simply connected

[6]. In the received view, this argument is used to show that the Aharonov–

Bohm effect is supported by a vacuum topology described by the group U(1).

In the 1990s, however, there have been several attempts to extend the

received view of classical electrodynamics, for example, the work of Barrett
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[3,4], Lehnert et al. [7–10], Evans et al. [11–20] and Harmuth et al. [21,22].

These attempts stem from anomalies and self-inconsistencies in classical elec-

trodynamics viewed as a U(1) gauge field theory. Some of these are reviewed in

Section III of this chapter. The basis for these developments resides, as it must,

in vacuum topology and its subsidiary languages of group and gauge theory. In

other words, it may be possible to describe classical electrodynamics with

groups other than U(1) in a non-simply connected vacuum, the relevant topolo-

gical space. Once a particular group is chosen, general gauge field theory [3,4,6]

may be used to write down the physical field equations of electrodynamics and

the field tensor [3,4,11–20]. The results of the hypothesis are compared with

empirical data as usual, and cross compared with the U(1) description. This

method is developed and reviewed in this chapter. The basis of our develop-

ment, therefore, is the topology of the vacuum, which ultimately decides which

set of field equations is the more accurate in its description of data. The basis for

gauge theory is fiber bundle theory, which is briefly reviewed in Section II.

We will be concerned in this article with the non-simply connected vacuum

described by the group O(3), the rotation group. The latter is defined [6] as

follows. Consider a spatial rotation in three dimensions of the form

X0

Y 0

Z 0

2
4

3
5 ¼ ðRÞ X

Y

Z

2
4

3
5 or r0 ¼ Rr ð1Þ

where R is a rotation matrix. Rotations have the property

X02 þ Y 02 þ Z 02 ¼ X2 þ Y2 þ Z2 ð2Þ

which can be written

r0T r0 ¼ rT r ð3Þ

where T denotes ‘‘transpose.’’ Therefore

rT RT Rr ¼ rT r

RT R ¼ 1
ð4Þ

where R is an orthogonal 3� 3 matrix. These matrices form a group. If R1 and R2

are orthogonal, then so is R1R2:

ðR1R2ÞT R1R2 ¼ RT
2 RT

1 R1R2 ¼ 1 ð5Þ

This group is denoted O(3) in three dimensions, and O(n) in n dimensions.

The rotation group O(3) is a Lie group (i.e., is a continuous group), and is
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non-Abelian (i.e., its rotation matrices do not commute) [6]. A simple example of

an O(3) group is the one formed by the unit vectors of a Cartesian frame in three-

dimensional space:

i� j ¼ k

j� k ¼ i

k� i ¼ j

ð6Þ

Therefore, we can adopt as our fundamental hypothesis that the topological

space under consideration (i.e., the vacuum) is described by O(3) rather than

U(1) and work out the consequences [11–20]. Some of the latter are reviewed in

this chapter. An O(3) group can also be formed by the complex unit vectors

defined by

eð1Þ ¼ i	 ijð Þffiffiffi
2
p

eð2Þ ¼ iþ ijð Þffiffiffi
2
p

eð3Þ ¼ k

ð7Þ

so that

eð1Þ � eð2Þ ¼ ieð3Þ�

eð2Þ � eð3Þ ¼ ieð1Þ�

eð3Þ � eð1Þ ¼ ieð2Þ�

ð8Þ

forms an O(3) group suitable for the description of circularly polarized radiation,

and therefore of radiation in general [11–20]. Here, an asterisk (*) denotes

complex conjugate. There are several other ways of defining the O(3) group, one

of which is that it is the little group of the Poincaré group of special relativity [6].

A little group with structure O(3) is the group of a particle with mass. So if O(3)

is adopted as the group describing classical electrodynamics, the photon, on

quantization, may have a tiny mass (empirically estimated [23] as less than

10	68 kg). The little group for the massless photon in the received view is

unphysical, it is the Euclidean E(2) [6,11–20]. This means that a particle without

mass is an unphysical object. The photon without mass is obtained by quantizing

a classical U(1) theory, suggesting that the received view is also unphysical.

We do not have to search far to find some unphysical properties of the U(1)

Yang–Mills gauge field theory of classical electromagnetism. For example, the

electromagnetic phase is random, the 4-potential Am is unphysical as the result of
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Heaviside’s development of Maxwell’s original concept of a physical vector

potential, which was based, in turn, on Faraday’s electrotonic state. Barrett [2]

has reviewed extensive empirical evidence for a physical classical Am, in

contradiction to U(1) theory, hereinafter described as ‘‘U(1) electrodynamics.’’

The vacuum for the Aharonov–Bohm effect is non-simply connected, and

therefore supports a physical Am [3,6]. The potential Am has no physically

discernible effect if and only if the space is simply connected. Since U(1) is non-

simply connected, there is a self-contradiction in the received view, [3,6] and

since Am, by definition, is unphysical in U(1) electrodynamics, we must search

for a new type of classical electrodynamics. In this chapter, we base this search

on the group O(3), and hereinafter describe it as ‘‘O(3) electrodynamics.’’ The

basic topological space is that of the vacuum, and is described by the O(3) group

and gauge theory based on this group. One consequence is that the potential is

physical as required, another is that the unphysical random phase of U(1)

electrodynamics is replaced by a gauge-invariant physical phase factor of O(3)

electrodynamics. These changes are shown to have foundational consequences in

interferometry and aspects of physical optics, for example. Furthermore, several

of the well-developed techniques of non-Abelian gauge field theory [3,4,6] may

be brought to bear on classical electrodynamics, because the group O(3) is a non-

Abelian group, as argued already. This enriches and develops the subjects of

classical and quantum electrodynamics and unified field theory.

The group space of O(3) is doubly connected (i.e., non-simply connected) and

can therefore support an Aharonov–Bohm effect (Section V), which is described

by a physical inhomogeneous term produced by a rotation in the internal gauge

space of O(3) [24]. The existence of the Aharonov–Bohm effect is therefore

clear evidence for an extended electrodynamics such as O(3) electrodynamics,

as argued already. A great deal more evidence is reviewed in this article in favor

of O(3) over U(1). For example, it is shown that the Sagnac effect [25] can be

described accurately with O(3), while U(1) fails completely to describe it.

The O(3) group is homomorphic with the SU(2) group, that of 2� 2 unitary

matrices with unit determinant [6]. It is well known that there is a two to one

mapping of the elements of SU(2) onto those of O(3). However, the group space

of SU(2) is simply connected in the vacuum, and so it cannot support an

Aharonov–Bohm effect or physical potentials. It has to be modified [26] to

SU(2)/Z2� SO(3).

Therefore, this is a statement of our fundamental hypothesis, specifically, that

the topology of the vacuum defines the field equations through group and gauge

field theory. Prior to the inference and empirical verification of the Aharonov–

Bohm effect, there was no such concept in classical electrodynamics, the ether

having been denied by Lorentz, Poincaré, Einstein, and others. Our develop-

ment of O(3) electrodynamics in this chapter, therefore, has a well-defined basis

in fundamental topology and empirical data. In the course of the development of
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this chapter, several misconceptions and inconsistencies of U(1) electrody-

namics are brought to light, and these are remedied straightforwardly by

changing the gauge group from U(1) to O(3). The implications are briefly

reviewed for quantum electrodynamics and unified field theory, starting with

electroweak theory. One major result of the latter is the existence of a novel

massive boson, the existence of which is consistent with novel empirical data as

discussed in Section XII. The gradual and consistent accumulation of evidence

leads in this chapter to the conclusion that an O(3) gauge group is to be

preferred over a U(1) gauge group in classical electrodynamics.

Some by-products of the development emerge, such as the fact that the

acceptance of a structured vacuum described by an O(3) gauge group leads

directly to the existence of novel charges and currents in the vacuum. These are

conserved, or Noether, currents and charges and are clearly topological in

origin. They spring from the fact that the vacuum is a topological space. Four

such entities emerge:

1. A topological vacuum electric charge, also proposed empirically by

Lehnert et al. [7–10]

2. A topological vacuum electric current, also proposed empirically by

Lehnert et al. [7–10]

3. A topological vacuum magnetic charge, proposed also by Barrett [3,4]

and Harmuth [21,22]

4. A vacuum topological magnetic current, proposed also by Barrett [3,4]

and Harmuth [21,22].

Each of these four objects can provide energy, which can be loosely termed

‘‘vacuum energy:’’ energy coming from the topology of the vacuum.

In well-defined limits, the field equations of O(3) electrodynamics can

collapse to a set of two complex conjugate equations that resemble those of

U(1) electrodynamics (Maxwell–Heaviside equations), and a third equation for a

novel fundamental spin component of O(3) electrodynamics, the B(3) compo-

nent [11–20] in the basis ((1),(2),(3)). This component also springs from the

topology of the vacuum, described by an O(3) gauge group and is therefore a

magnetic flux density that exists in the vacuum because of this choice of gauge

group. Clearly, the B(3) component is fundamental to O(3) electrodynamics and

is not a static magnetic field of U(1) electrodynamics. The B(3) component is an

observable of the third Stokes parameter, topological phases, interferometry,

and magneto-optics and is a radiated field that propagates with the radiation. In

the laboratory, it propagates for all practical purposes at the speed of light, c, as

does the third Stokes parameter to which it is proportional [11–20]. It is a

fundamental property of the O(3) electromagnetic field that emanates from the

topology of the vacuum. It forms an O(3) group with the plane wave B(1) ¼ B(2)*
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of magnetic flux density in the vacuum in O(3) electrodynamics, giving the B

cyclic theorem [11–20]

Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ�

Bð2Þ � Bð3Þ ¼ iBð0ÞBð1Þ�

Bð3Þ � Bð1Þ ¼ iBð0ÞBð2Þ�

Bð0Þ ¼ Bð3Þ
�� ��

ð9Þ

which is Lorentz-invariant, as it is, within a common factor on both sides, simply

a relation between rotation generators of the O(3) group.

An important by-product of the development in this chapter (Section X) is

the possible existence of scalar interferometry, which is interferometry between

structured scalar potentials, first introduced by Whittaker [27,28] and that can

be defined in terms of B(3). This is a type of interferometry that depends on

physically meaningful potentials that can exist self-consistently, as we have

argued, only in a non-singly connected O(3) vacuum, because potentials in the

nonsingly connected U(1) vacuum are assumed to be unphysical.

In summary of this introduction therefore, we develop a novel theory of

electrodynamics based on vacuum topology that gives self-consistent descrip-

tions of empirical data where an electrodynamics based on a U(1) vacuum fails.

It turns out that O(3) electrodynamics does not incorporate a monopole, as a

material point particle, because it is a theory based on the topology of the

vacuum. The next section provides foundational justification for gauge field

theory using fiber bundle theory.

II. BASIS IN FIBER BUNDLE THEORY

The gauge concept [3] was introduced by Weyl in 1918. In consequence of gauge

theory, the absolute magnitude or norm of a physical vector depends on its

location in spacetime. This notion is the basis of all contemporary gauge theory,

which is expressed in the language [6] of group theory and has been highly

developed mathematically [29–32]. For our purposes, it is sufficient to give a

brief account of the elements of gauge theory as used in optics and electrody-

namics, including O(3) electrodynamics. A gauge theory is a theory of special

relativity in O(3) and U(1) electrodynamics, and in electroweak theory, and

borrows concepts [6] from general relativity. For example, the homogeneous

field equation of both U(1) and O(3) electrodynamics are Jacobi identities akin to

the Bianchi identity in general relativity. Several reviews of contemporary gauge

theory are given in Ref. 4, and the theory is firmly rooted in rigorous mathe-

matical concepts such as fiber bundle theory. The latter leads to the field

equations of O(3) electrodynamics through concepts [29–32] such as principal
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bundle, associated vector bundle, connections on principal bundles, covariant

derivatives of sections of a vector bundle, exterior covariant derivative, and the

curvature of a connection. In optics and electrodynamics however, these

mathematical concepts reduce to those of gauge potentials. It is sufficient to

know, therefore, that the theory of O(3) electrodynamics is rigorously founded in

fiber bundle theory and in the theory of extended Lie algebra [4,15]. The

interested reader is referred elsewhere for mathematical details [29–32] because,

in natural philosophy, a theory stands or falls by comparison with empirical data,

not by mathematical rigor alone. The latter is necessary but not sufficient for a

theory in optics and electrodynamics.

A simple example in classical electrodynamics of what is now known as

‘‘gauge invariance’’ was introduced by Heaviside [3,4], who reduced the original

electrodynamical equations of Maxwell to their present form. Therefore, these

equations are more properly known as the Maxwell–Heaviside equations and, in

the terminology of contemporary gauge field theory, are identifiable as U(1)

Yang–Mills equations [15]. The subject of this chapter is O(3) Yang–Mills gauge

theory applied to electrodynamics and electroweak theory.

The Maxwell–Heaviside field equations are, in SI units

r 
E ¼ 0; r 
B ¼ 0

r� Eþ qB

qt
¼ 0

r� B	 1

c2

qE

qt
¼ 0

ð10Þ

where D is the electric displacement, r is the electric charge density, B is

magnetic flux density, E is the electric field strength, H is the magnetic field

strength, and J is the current density. The received view is to assert that in the

vacuum:

D ¼ e0E; B ¼ m0H ð11Þ

where e0 and l0 are permittivity and permeability in vacuo. Equations (12) then

reduce to

r 
D ¼ r; r 
B ¼ 0

r� Eþ qB

qt
¼ 0

r�H ¼ J þ qD

qt

ð12Þ
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The notion of gauge invariance is illustrated on this level by denoting

B ¼ r� A ð13Þ
E ¼ 	r� S ð14Þ

where A is the vector potential of Maxwell and S the vector potential of Stratton.

Using the identity

r�rw � 0 ð15Þ
B ¼ r� A ¼ r� ðAþrwÞ ð16Þ

it is seen that any gradient rw can be added to A or S, leaving B and E
unchanged. Therefore, in the received view, B and E are gauge-invariant,

measurable, and physical, whereas A and S are defined only up to an arbitrary

gradient function and are therefore mathematical in nature, are not measurable,

and have no physical effect. However, this can be true as argued in Section I only

if the vacuum is simply connected, whereas the group spaces of U(1) and O(3)

are not simply connected. We find empirically [3,4] several experimental

verifications of the fact that A and S are in fact physical quantities, and that A and

S cannot be changed arbitrarily by adding a gradient of a scalar. However

elaborate the mathematical justification for U(1) electrodynamics becomes, this

paradox remains.

During the course of this review chapter, we shall unearth several flaws in

U(1) electrodynamics, some of which are discussed in Section III. One con-

sequence of the gauge and metric invariance of the free space Maxwell–

Heaviside equations is that they are also invariant under the general Lorentz

transformation, consisting of boosts, rotations, and spacetime translations [6].

They are invariant also under the fundamental symmetry operations of motion

reversal (T) and parity inversion (P). These properties mean that they are unable

to describe interferometry and simple optical properties such as normal reflec-

tion without self-contradiction. The Maxwell–Heaviside theory and its gauge

invariance is rigidly adhered to in the received view, but nevertheless, these

basic flaws are there and are discussed systematically in this chapter. In the

course of development of O(3) electrodynamics, a more general form of gauge

theory is needed, and this more general form is based on vacuum topology and

group theory. Therefore, in our view, O(3) electrodynamical equations apply in

the vacuum as well as in field matter interaction [11–20]. In general, they must

be solved without approximation using numerical techniques, but with well-

defined assumptions, analytical solutions emerge. These include the B cyclic

theorem [11–20].

The systematic development of gauge theory relies on a rotation of a n

dimensional function c of the spacetime coordinate xm in special relativity. The
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rotation is expressed as

c0 ¼ exp ðiMa�aðxmÞÞc � S xmÞcð ð17Þ

where Ma are group generators, and where �a is an angle that is a function of xm

through special relativity [6]. In general, Ma are n� n matrices or tensors. In

O(3) electrodynamics, the indices a can be (1), (2), and (3) of the complex basis

(7), or Cartesian indices as in the basis (6). From Eq. (17), it is found that

qmc
0 ¼ S qmc

� �
þ qmS
� �

c ð18Þ

that is, that qmc does not transform covariantly. It is well known that this problem

is addressed through the introduction of the covariant derivative:

Dmc � ðqm 	 igMaAa
mÞc ð19Þ

where g is in general a proportionality constant giving the right units, and where

Aa
m is the vector potential, sometimes referred to as the ‘‘connection.’’ In U(1)

electrodynamics, Aa
m reduces to the familiar 4-potential Aa

m of the Maxwell–

Heaviside theory, a 4-vector. This means that in U(1) electrodynamics, the

internal gauge space is a scalar space in which M ¼ 	1 and in which the

covariant derivative reduces to

Dm Uð1Þð Þ ¼ qm þ igAm ð20Þ

which, in momentum space, is the familiar minimal prescription. In O(3)

electrodynamics however, Aa
m is a 12-vector, and can be expressed as

Am ¼ Að1Þm eð1Þ þ Að2Þm eð2Þ þ Að3Þm eð3Þ ð21Þ

in the basis ((1),(2),(3)). Similarly, the familiar field tensor Fmn of U(1) electro-

dynamics becomes

Gmn ¼ Gð1Þmn eð1Þ þ Gð2Þmn eð2Þ þ Gð3Þmn eð3Þ ð22Þ

in O(3) electrodynamics. Since ((1),(2),(3)) is a physical space, each of the

tensors G
ðiÞ
mn; i ¼ 1; 2; 3 is well defined in Minkowski spacetime [11–20].

General gauge field theory emerges when the covariant derivative is applied

to c [6]:

D0mc ¼ SDmc ð23Þ
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It is useful to go through this derivation in detail because it produces the

inhomogeneous term responsible for the Aharonov–Bohm effect in O(3)

electrodynamics. The effect of the rotation may be written as

ðqm 	 igA0mÞc
0 ¼ Sðqm 	 igAmÞc ð24Þ

which means that

qmc
0 ¼ SðqmcÞ þ ðqmSÞc

ðqmSÞc	 igA0mSc ¼ 	igSAmc

igA0mS ¼ igSAm þ qmS

A0mSS	1 ¼ SAmS	1 	 i

g
ðqmSÞS	1

A0m ¼ SAmS	1 	 i

g
ðqmSÞS	1

ð25Þ

The end result is that the inhomogeneous term 	ði=gÞðqmSÞS	1 appears in the

vacuum. This term originates in the topology of the vacuum, and it is different for

U(1) electrodynamics and O(3) electrodynamics. In U(1) electrodynamics, the

gauge transformation (25) reduces to

A0m ! Am þ
1

g
qm� ð26Þ

which is the covariant form of Eq. (15). In O(3) electrodynamics however, the

inhomogeneous term and the vector potential are both physical quantities, as

originally envisaged by Maxwell and Faraday. The 12-vector Am is the equivalent

of Faraday’s electrotonic state and of Maxwell’s physical vector potential [3,4].

It follows that the effect (25) on the vector potential in O(3) electrodynamics is

produced by a physical rotation, and later in this review, it is shown that this

physical rotation is the rotation of the platform in the Sagnac effect [20]. More

generally, a rotation in the internal gauge space of O(3) electrodynamics produces

a phase difference that is also physical and measurable [3,4]. O(3) electro-

dynamics is therefore able to describe the Sagnac effect precisely, whereas U(1)

electrodynamics has no explanation for the Sagnac effect because of its gauge

invariance. Quantities such as the 12-vector potential of O(3) electrodynamics

are gauge-covariant, not gauge-invariant, because the inhomogeneous term in

O(3) electrodynamics is a physical term, not a random mathematical construct as

in U(1) electrodynamics.

In general gauge field theory [6], the field tensor is proportional to the

commutator of covariant derivatives. This is the result of a round trip or closed
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loop with covariant derivatives in Minkowski spacetime, and in condensed

notation, the result can be written as

Gmn ¼
i

g
½Dm;Dn� ð27Þ

Gmn ¼ qmAn 	 qn Am 	 ig½Am;An� ð27aÞ

In U(1) electrodynamics, we recover the familiar 4-curl of Maxwell–Heaviside

theory because the commutator [Am;An] is zero. In O(3) electrodynamics,

Eq. (22) applies and each component G
ð1Þ
mn ;G

ð2Þ
mn , and G

ð3Þ
mn is defined as

GðiÞmn ¼ qmAðiÞn 	 qnAðiÞm 	 igeðiÞðjÞðkÞA
ðjÞ
m AðkÞn ; ðiÞ; ðjÞ; ðkÞ ¼ ð1Þ; ð2Þ; ð3Þ ð28Þ

in the complex circular basis ((1),(2),(3)), [11–20]. Whereas Fmn of U(1)

electrodynamics is gauge- and Lorentz-invariant, Gmn of O(3) electrodynamics

transforms covariantly under rotation in the internal space ((1),(2),(3)), a

representation of the physical space of three dimensions:

G0mn ¼ SGmnS	1 ð29Þ

The homogeneous field equation of O(3) electrodynamics is inferred from

the Jacobi identity of covariant derivativesX
cyclic

½Dr; ½Dm;Dn�� � 0 ð30Þ

and can be written as the identity [11–20]

Dm ~G
mn � 0 ð31Þ

The inhomogeneous field equation is not an identity, but an equation of the

Yang–Mills type [6]

DmHmn ¼ Jn ð32Þ

where Hmn is a generalization of Gmn to include polarization and magnetization,

and where Jn is the charge current 12-vector, defined as

JnðiÞ � rðiÞ;
JðiÞ

c


 �
i ¼ 1; 2; 3 ð33Þ

where c is the speed of light in vacuo for all practical purposes in the laboratory.

Equations (31) and (32) are developed fully in Section (IV) and are compared

with the Lehnert, Barrett, and Harmuth equations cited in Section I. These

equations extend the symmetry of the electromagnetic sector of unified field
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theory with many consequences, some of which are discussed in Section (XI)

for electroweak theory, and in Part 3 of this three-volume series for grand unified

theory.

The development just given illustrates the fact that the topology of the

vacuum determines the nature of the gauge transformation, field tensor, and field

equations, as inferred in Section (I). The covariant derivative plays a central role

in each case; for example, the homogeneous field equation of O(3) electro-

dynamics is a Jacobi identity made up of covariant derivatives in an internal

O(3) symmetry gauge group. The equivalent of the Jacobi identity in general

relativity is the Bianchi identity.

Finally, in this section, we develop the concept of electromagnetic phase

from U(1) to O(3). This is a nontrivial development [4] that has foundational

consequences for interferometry and physical optics for example. In U(1)

electrodynamics, the electromagnetic phase is defined up to an arbitrary factor

[4] because of gauge invariance. The U(1) phase is therefore

g � ot 	 j 
 rþ a ð34Þ
where o is the angular frequency at instant t; j is the wave-vector at coordinate

r, and a is random. In other words, the U(1) electromagnetic phase factor

exp ðiðot 	 j 
 rÞÞ can be multiplied by the factor eia because gauge transfor-

mation in U(1) is a random rotation in the (scalar) internal gauge space. The

random rotation is represented by the operator eia where a is random. This

operation leads to Eq. (26), where the gradient function is random as usual in

U(1) electrodynamics. Therefore the U(1) electromagnetic phase is unphysical.

This is true despite the fact that the theory of U(1) electrodynamics is the

received view, adhered to rigidly. Therefore [4], the field tensor in U(1) electro-

dynamics, is underdetermined because the phase is arbitrary; and the potential

4-vector of U(1) electrodynamics is overdetermined because it is also arbitrary—

an infinite number of Am corresponds, in the received view, to one physical

condition. Dirac attempted to remedy these flaws by introducing a phase factor

�ðCÞ ¼ exp i
e

�h

þ
C

Amdxm

 �

ð35Þ

where e is electric charge, and �h is the Dirac constant. The Dirac phase factor

completely defines [4] the system on the U(1) level. The phase factor in O(3)

electrodynamics is obtained by generalizing this concept, as first accomplished

by Wu and Yang [33]. The phase factor in O(3) electrodynamics can be written as

��ðCÞ ¼ P exp ig

þ
C

Am dxm

 �

ð36Þ

��ðCÞ ¼ P exp i

þ
C

km dxm

 �

¼ P exp ig

ð ð
Bð3Þ dAr


 �
ð36aÞ
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where a magnetic flux of topological origin appears on the right hand side, an

area integral over the B(3) (Evans–Vigier) field [11–20]. Here, ��ðCÞ specifies

parallel transport over any loop C in rotation, g is the same factor that appears in

the definition of the covariant derivative, [Eq. (20)], and P specifies path depen-

dence in the integral [4]. On the left-hand side appears the line integral corres-

ponding to the dynamical phase factor, which is equal through a non-Abelian

Stokes theorem to the topological phase defined by the surface integral over B(3).

This result is a clear illustration of the topological origin of B(3), and the phase

factor is not a random quantity as in U(1) electrodynamics, but a gauge-covariant

quantity. It is the holonomy of the connection Am in O(3) electrodynamics and

plays a central role in interferometry, including the Aharonov–Bohm effect.

Consideration of interferometry leads to the conclusion that O(3) electrody-

namics provides a self-consistent description of several situations where U(1)

electrodynamics either fails (e.g., the Sagnac effect) or is self-inconsistent (e.g.,

Michelson interferometry).

III. REFUTATION OF U(1) ELECTRODYNAMICS

From the foregoing, U(1) electrodynamics was never a complete theory,

although it is rigidly adhered to in the received view. It has been argued already

that the Maxwell–Heaviside theory is a U(1) Yang–Mills gauge theory that

discards the basic commutator A(1) � A(2). However, this commutator appears in

the fundamental definition of circular polarity in the Maxwell–Heaviside theory

through the third Stokes parameter

S3 ¼ j	io2Að1Þ � Að2Þj ¼ o2Að0Þ2 ð37Þ

so there is an internal inconsistency. In O(3) electrodynamics, on the other hand,

the fundamental definition of the B(3) field ensures that circular polarity is

consistently defined

Bð3Þ� ¼ 	igAð1Þ � Að2Þ ð38Þ

so that circular polarity in O(3) electrodynamics is due to the B(3) field, which is

therefore a foundational physical observable. This argument is a simple and

straightforward refutation of U(1) electrodynamics, specifically, of Maxwell–

Heaviside theory considered as a U(1) symmetry gauge field theory. The third

Stokes parameter is a fundamental signature of circular polarization and was first

recognized as such by Stokes in 1852 before the development of Maxwell’s

original equations in the 1860s [3]. Circular polarization was discovered empi-

rically by Arago in 1811.

There is in effect no circular polarization in U(1) electrodynamics if we

choose to define circular polarization in terms of the third Stokes parameter.
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This result is inconsistent with the fact that the differential equation developed

by Heaviside from Maxwell’s original equations describe circular polarization.

The root of the inconsistency is that U(1) gauge field theory is made to corres-

pond with Maxwell–Heaviside theory by discarding the commutator A(1) � A(2).

The neglect of the latter results in a reduction to absurdity, because if S3

vanishes, so does the zero order Stokes parameter:

S0 ¼ �S3 ð39Þ
and S0 describes the intensity of radiation. This result is another self incon-

sistency of U(1) electrodynamics.

In O(3) electrodynamics, on the other hand, Eq. (38), defining the B(3) field,

is consistent with the O(3) field Eq. (31) and (32) because Eq. (38) is part of the

definition of the field tensor in O(3) electrodynamics [11–20].

A second simple refutation of U(1) electrodynamics is perfect normal

reflection. The explanation of this foundational effect in Maxwell–Heaviside

electrodynamics relies on the phase in U(1) electrodynamics, which, as argued

already, is a random quantity. If we choose a in Eq. (34) to be zero for simplicity

and without loss of generality, then the received view of perfect normal

reflection (Fig. 1) is as follows:

exp ðiðj 
 r	 otÞÞ 	!R exp ðið	j 
 r	 otÞÞ ð40Þ
However, normal reflection, in, for example, the Z axis, is equivalent to the parity

inversion operation P. The effect of this operation on the U(1) phase factor is as

follows:

exp ðiðj 
 r	 otÞÞ 	!P exp ðiðj 
 r	 otÞÞ ð41Þ

r
P

r
P (r ) −r

P (κ) −κ

r⊥ = −rz
 k 

rz = r cos θ
r⊥ = r cos θk
P (r⊥) = −r cos θk = −r⊥θ θ

Figure 1. Equivalence of reflection and parity inversion.
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Thus the received view of normal reflection (1) in U(1) electrodynamics violates

parity. This violation is not allowed in classical physics. For off-normal reflection

(Fig. 1), projections on to the normal result in the same paradox using the

empirical fact that the angle of reflection is equal to the angle of incidence. In the

received view, Eq. (40) is held to rigidly, but is nevertheless in violation of parity.

This is true if and only if Snell’s law is true. In conclusion, Pðot 	 j 
 r ¼
ðot 	 j 
 rÞ, which is Snell’s law in Maxwell–Heaviside theory.

It is highly significant that this paradox disappears in O(3) electrodynamics

through the use of the physical phase factor:

� ¼ exp i

þ
j 
 dZ


 �
¼ exp ig

ð
Bð3Þ 
 dS


 �
ð42Þ

On the left-hand side appears a line integral, and on the right-hand side, there is

an area integral over B(3). If a beam of light originates at an origin O and is

normally reflected from a perfectly reflecting mirror at point Z, the line integral is

as follows: þ
j 
 dZ ¼

ðZ

0

kdZ 	
ð0

Z

kdZ ¼ 2kZ ð43Þ

Note that this gives, fortuitously, the same change, 2jZ, as in the U(1) description

of normal reflection, which therefore fortuitously describes the empirical result.

The area integral on the right-hand side of Eq. (42) is a topological phase [4],

because the origin of B(3) is topological as argued already, that is, B(3) springs

from the vacuum configuration. Using the relation [11–20]

g ¼ k2

Bð0Þ
ð44Þ

the right-hand-side exponent becomes j2S, where S is an area

S ¼ 2
k
Z

ð45Þ

If the distance OZ is n wavelengths, l, then the area becomes

S ¼ nl2

p
ð46Þ

The outcome of these two very simple examples is that all electrodynamics

(classical and quantum) must be upgraded to a gauge theory of higher symmetry,

such as O(3). Equation (42) is self-consistent, because under P, both sides are

negative. The left-hand side is negative because the line integral changes sign
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under P, and the right-hand side is negative because the integral is negative under

P (product of an axial vector B and a polar vector S).

Michelson interferometry is dependent on normal reflection from two

mirrors at right angles, and so the same foundational argument as just given

can be used to show that U(1) electrodynamics does not describe Michelson

interferometry self-consistently. Without loss of generality, we can write

Eq. (38) as

pRkAð0Þk 
Rk ¼ Bð3Þ 
Ark ð47Þ

which can be integrated straightforwardly to give the non-Abelian Stokes

theorem [11–20]

2pkAð0Þ
þ

R 
 dR ¼
ð ð

Bð3Þ 
 dAr ð48Þ

where R is given by

R ¼ 1

k
¼ l

2p
ð49Þ

and where l is the wavelength. Multiplying both sides by g ¼ j=Að0Þ defines the

required non-Abelian phase factor in terms of a non-Abelian Stokes theorem

� ¼ expð2pi

þ
j 
 dRÞ ¼ exp i

k
Að0Þ

ð ð
Bð3Þ 
 dAr


 �
ð50Þ

which is closely related to Eq. (42). The line integrals must be evaluated over a

closed curve [11–20] and have the foundational property

þ
AO

j 
 dR ¼ 	
þ

0A

j 
 dR ð51Þ

which is the root cause [34] of Michelson interferometry, and interferometry in

general. In U(1) electrodynamics, the change in phase of a light beam originating

at the beamsplitter [35] and arriving back at the beamsplitter after normal

reflection from either mirror is zero because of the property (41). This is contrary

to the empirical observation [35] of the Michelson interferogram, the basis of

Fourier transform infrared spectroscopy. In the usual U(1) theory, therefore, the

path-dependent part of the electromagnetic phase is the familiar j 
 r, and the

complete electromagnetic phase is ot 	 j 
 rþ a, where a is random and can be

set to zero for simplicity of argument. The phase ot 	 j 
 r is invariant under both

o(3) electrodynamics 95



P and T because it is a dimensionless number, and we shall show that the

complete failure of U(1) electrodynamics to describe the Sagnac effect is due to

the T invariance of U(1) phase. In Michelson interferometry, as described by

O(3) electrodynamics, there is a change in the measurable phase factor after

reflection because of the property of line integrals. The phase factors arriving

back at the beamsplitter from either mirror are different, and an interferogram

appears as observed [35] empirically by changing the length of one arm of the

interferometer. The Fourier transformation of this interferogram gives a

spectrum.

The inverse Faraday effect depends on the third Stokes parameter empirically

in the received view [36], and is the archetypical magneto-optical effect in

conventional Maxwell–Heaviside theory. This type of phenomenology directly

contradicts U(1) gauge theory in the same way as argued already for the third

Stokes parameter. In O(3) electrodynamics, the paradox is circumvented by

using the field equations (31) and (32). A self-consistent description [11–20] of

the inverse Faraday effect is achieved by expanding Eq. (32):

qmHmnð1Þ� ¼ Jnð1Þ� þ igAð2Þm �Hmnð3Þ ð52Þ

qmHmnð2Þ� ¼ Jvð2Þ� þ igAð3Þm �Hmnð1Þ ð53Þ

qmHmnð3Þ� ¼ Jnð3Þ� þ igAð1Þm �Hmnð2Þ ð54Þ

Using the constitutive relation

Hð3Þ� ¼ 1

m
Bð3Þ� ð55Þ

gives the magnetic field strength induced in the inverse Faraday effect from first

principles of O(3) gauge field theory as

Hð3Þ� ¼ 	i
g0

m0

Að1Þ � Að2Þ ð56Þ

where

g0 ¼ m0

m
g ð57Þ

Here, m is the magnetic permeability of the material in which the inverse Faraday

effect is observed. We can write Eq. (52) as

qmHmnð1Þ� ¼ Jnð1Þ� þ�Jnð1Þ� ð58Þ
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so that the transverse current detected [37] in the inverse Faraday effect is

given by

�Jnð1Þ� ¼ igeAð2Þm � Gmnð3Þ ð59Þ

and causes a signal in an induction coil due to the vacuum B(3) field appearing in

the O(3) field tensor Gmnð3Þ.
The explanation of the inverse Faraday effect in U(1) electrodynamics relies

on the clearly self-inconsistent introduction of Að1Þ � Að2Þ phenomenologically:

‘‘self-inconsistent’’ because U(1) gauge field theory sets Að1Þ � Að2Þ to zero

identically. As argued already, the conjugate product Að1Þ � Að2Þ is proportional

to the third Stokes parameter in the vacuum and so is a fundamental property of

circularly polarized light. As such, it must be considered as a fundamental

object in gauge field theory applied to electrodynamics. In U(1) gauge field

theory, this is not possible, but it is possible self-consistently in O(3) gauge field

theory.

In Maxwell–Heaviside electrodynamics, the field energy, Poynting vector,

and Maxwell stress tensor are incorporated in the stress energy momentum

tensor [38]. In order to obtain a non-null energy and field momentum (Poynting

vector), the method of averaging is used. The conventionally defined Poynting

vector, for example, becomes proportional to E� B� ¼ Eð1Þ � Bð2Þ. This

method is inconsistent with electrodynamics considered as a U(1) gauge field

theory, but consistent with O(3) electrodynamics.

Recall that in general gauge field theory, for any gauge group, the field tensor

is defined through the commutator of covariant derivatives. In condensed

notation [6]

Gmn ¼ qmAn 	 qnAm 	 ig½Am;An� ð60Þ

where the commutator is nonzero in general. The connection or generalized

potential Am is defined in general through the gauge group symmetry. The field

tensor Gmn is covariant for all gauge groups, and is always compatible with

special relativity for all gauge group symmetries. In this general theory therefore,

the homogeneous and inhomogeneous Maxwell equations in the vacuum are the

U(1) gauge field equations

Dn ~Gmn � 0 ð61Þ
DnGmn ¼ 0 ð62Þ

where Dn denotes the covariant derivative pertinent to U(1) and where ~Gmn is the

dual of Gmn as usual. In the U(1) gauge theory, the commutator in Eq. (60)

vanishes because the U(1) group has only one structure constant and the internal
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symmetry of the gauge theory is a scalar symmetry. The covariant derivative in

U(1) is

Dn ¼ qn þ igAn ð63Þ

Therefore Eqs. (61) and (62) reduce to

ðqn þ igAnÞ~Fmn � 0 ð64Þ
ðqn þ igAnÞFmn � 0 ð65Þ

which become the free-space homogeneous and inhomogeneous Maxwell–

Heaviside equations if and only if

An~Fmn ¼ 0 ð66Þ
AnFmn � 0 ð67Þ

or in vector notation

A 
B ¼ 0 A� E ¼ 0

A 
E ¼ 0 A� B ¼ 0
ð68Þ

For plane waves, and using the usual U(1) relation

B ¼ r� A ð69Þ

the vector potential is proportional to B and so

B� E ¼ 0 ð70Þ

If we attempt to define the free-space field energy and momentum in terms of the

products B 
B and B� E, the results are zero in U(1) gauge field theory. In order

to obtain the conventional field energy and Poynting vector of the free

electromagnetic field, products such as Bð1Þ � Bð2Þ and Bð1Þ � Eð2Þ have to be

used. This procedure, although common place, and referred to in the literature as

‘‘time averaging’’ [38], introduces phenomenology extraneous to U(1), because

it introduces the complex internal gauge space ((1),(2),(3)). These inconsisten-

cies in U(1) gauge field theory applied to electrodynamics are therefore

summarized as follows: (1) if the U(1) covariant derivative is used, the field

energy, momentum, and third Stokes parameter vanish; and (2) if the pheno-

menological ‘‘time averaging’’ procedure is used, the resultant Poynting vector is

proportional to Bð1Þ � Eð2Þ, and is perpendicular to the plane of definition of
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U(1), whose group space is a circle. This result is another internal inconsistency,

because the group space of a gauge theory is a circle, there can be no physical

quantity in free space perpendicular to that plane. It is necessary but not

sufficient, in this view, that the Lagrangian in U(1) field theory be invariant [6]

under U(1) gauge transformation.

In O(3) electrodynamics, the stress energy momentum tensor is defined [11–

20] as

Tn
m ¼ e0 Gmr 
Grm 	

1

4
Grn 
Grn


 �
ð71Þ

giving the field energy self-consistently as

U ¼ e0ðE1ð1ÞE
ð2Þ
1 þ E2ð1ÞE

ð2Þ
2 þ E1ð2ÞE

ð1Þ
1 þ E2ð2ÞE

ð1Þ
2 þ E3ð3ÞE

ð3Þ�
3 Þ ð72Þ

The Poynting vector is self-consistently defined as

T0
1 ¼ e0ðG02 
G21 þ G03 
G31Þ ð73Þ

T0
2 ¼ e0ðG01 
G12 þ G03 
G32Þ ð74Þ

T0
3 ¼ e0ðG01 
G13 þ G02 
G23Þ ð75Þ

and is finite. The Bð3Þ component is defined through Eq. (38), giving, self-

consistently, the result (39).

The root cause of these further problems with electrodynamics considered as

a U(1) gauge field theory is that parallel transport [6] must be used when an

internal gauge space is present. The internal gauge space of U(1) is a scalar, and

parallel transport results in a covariant derivative whose momentum represen-

tation is the minimal prescription [6]. This covariant derivative, however, leads

self-inconsistently to a null energy density and Poynting vector as just argued.

Therefore, in U(1), the Maxwell–Heaviside equations are obtained if and only if

the field energy and Poynting vector are identically zero. A null Poynting vector

means null energy and a null third Stokes parameter. The root cause of this is

the neglect of Að1Þ � Að2Þ, and we have come full circle. The only way out is to

adopt a gauge field theory of higher symmetry than U(1).

A related problem is that the linear momentum of radiation in U(1) is defined

by

hpi ¼ e0c

ð
E� B dV ð76Þ

which is again zero. The linear momentum of a photon, however, is nonzero in

quantum theory and is �hk, leading to the Compton effect and Compton
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scattering. It is well known that there is no classical equivalent of the Compton

effect [39], so the correspondence principle is lost in the received view based on

U(1) gauge field theory. In O(3) electrodynamics, however [11–20], there exists,

in general, the longitudinally directed potential Að3Þ as part of the definition of

the field tensor. The classical quantum equivalence in the Compton effect is then

given simply as

pð3Þ ¼ eAð3Þ ¼ �hj ð77Þ

where e is regarded as the coupling constant in the definition of the constant

g ¼ e=�h, which appears in free space in both U(1) and O(3) electrodynamics.

This is another characteristic of gauge field theory applied to electrodynamics,

that charge e can act as a coupling constant in the covariant derivative. This is

true for all internal gauge symmetries, so e need not be defined solely by the

charge on the electron. These concepts are discussed further in Ref. 6. Therefore

O(3) electrodynamics saves the quantum classical correspondence principle in

Planck–Einstein quantization. Equation (77) has the following manifestly

covariant form:

pmð3Þ ¼ eAmð3Þ ¼ �hkm

Amð3Þ ¼ 1

c
ðAð0Þ; cAð3ÞÞ

ð78Þ

These concepts of O(3) electrodynamics also completely resolve the problem

that, in Maxwell–Heaviside electrodynamics, the energy momentum of radiation

is defined through an integral over the conventional tensor Tmn, and for this

reason is not manifestly covariant. To make it so requires the use of special

hypersurfaces as attempted, for example, by Fermi and Rohrlich [40]. The O(3)

energy momentum (78), in contrast, is generally covariant in O(3) electro-

dynamics [11–20].

The Maxwell–Heaviside theory seen as a U(1) symmetry gauge field theory

has no explanation for the photoelectric effect, which is the emission of electrons

from metals on ultraviolet irradiation [39]. Above a threshold frequency, the

emission is instantaneous and independent of radiation intensity. Below the

threshold, there is no emission, however intense the radiation. In U(1), electro-

dynamics energy is proportional to intensity and there is, consequently, no

possible explanation for the photoelectric effect, which is conventionally

regarded as an archetypical quantum effect. In classical O(3) electrodynamics,

the effect is simply

En ¼ ecAð3Þ ¼ constant� frequency ð79Þ

and in Planck–Einstein quantization, the constant of proportionality is �h, which

turns out to be a universal constant of physics. The concomitant momentum
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relation, Eq. (77), is shown empirically by the Compton effect as argued already.

Equation (77) means that above a given threshold frequency, there is enough

energy in the photon to cause electron emission in the photoelectric effect. All

the energy and momentum of the photon are transferred to the electron in a

collision above a certain threshold frequency because at this point, the potential

energy responsible for keeping the electron in place is exceeded. If we attempt to

apply this logic to hpi in Eq. (76), there is no threshold frequency possible on the

classical level because hpi cannot be proportional to frequency, only to beam

intensity. The momentum pð3Þ ¼ eAð3Þ of classical O(3) electrodynamics is not

proportional to intensity; it is proportional to frequency through the gauge

equation (77), which also leads to the B cyclic theorem [11–20], the fundamental

Lorentz invariant angular momentum relation of O(3) electrodynamics.

In the O(3) Compton effect, the observable change of wavelength is

�l ¼ 2
eAð3Þ

mc


 �
l0 sin 2 y

2
ð80Þ

where l is the wavelength of the incident beam, m is the electron mass, and y is

the scattering angle. If Eq. (77) is applied to this result, we recover the usual

quantum description of the Compton effect.

The concept of Að3Þ can also be used to suggest a way out of the Dirac

paradox [41] of U(1) electrodynamics, in which Dirac maintains that so long as

we are dealing with transverse waves, we cannot bring in the Coulomb

interaction between charged particles. In O(3) electrodynamics, there is a force

given by

Fmð3Þ ¼ e
qAmð3Þ

qt
ð81Þ

whenever the beam interacts with an electron. This interaction results in a

longitudinal force with a change of wavelength as just described for the

Compton effect. This is not a Coulomb force since Eð3Þ is zero in vacuo

[11–20].

Similarly, Að3Þ can be used to suggest a way out of the de Broglie paradox

[42], which points out that momentum and energy transform differently under

Lorentz transformation from frequency. This paradox led de Broglie to postulate

the existence of empty waves, which, however, have never been observed

empirically. It can therefore be suggested that the Lorentz frequency transform

must always be applied to

eAð3Þ ¼ �ho
c

eð3Þ ð82Þ
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because this momentum is proportional to frequency empirically. If this

momentum is interpreted as that of a particle traveling at the speed of light, the

momentum becomes indeterminate (massless particle) or infinite (massive

particle) unless it is always interpreted as being a constant ð�hÞ multiplied by

o=c, which always exists empirically as the speed of light. The energy must

evidently be interpreted in the same way, namely, as a constant multiplied by

frequency. The Lorentz transform applied to frequency produces the aberration

of light as usual [39] in special relativity. In this interpretation, there is no

de Broglie paradox and no need to postulate the existence of empty waves [42].

The Sagnac effect cannot be described by U(1) electrodynamics [4,43]

because of the invariance of the U(1) phase factor under motion reversal

symmetry (T):

� ¼ exp ðiðot 	 j 
 rÞÞ 	!T exp ðiðot 	 j 
 rÞÞ ð83Þ

The T operator generates the counterclockwise (A) loop from the clockwise (C)

loop in the Sagnac effect, with the result that there is no difference in phase factor

for journeys around the A and C loops, and no interferogram. This is contrary to

observation when the Sagnac platform is at rest [43]. When the platform of the

Sagnac interferometer [3] is rotated, there is the well-known Sagnac phase shift,

which was first detected in 1913. This defies description by U(1) electro-

dynamics because the Maxwell–Heaviside field equations in the vacuum are

invariant to rotation, which is part of the most general type of Lorentz transform

[6]. The Maxwell–Heaviside equations in vacuo are also gauge- and metric-

invariant, and are not capable of describing the Sagnac effect at all. The O(3)

electrodynamics, in contrast, are completely successful in describing the

interferogram with platform at rest and with a rotating platform. The details of

this important advantage of O(3) electrodynamics are discussed in Section (VI),

where a kinematic explanation of the Sagnac effect is also given using O(3)

gauge theory. More details of magneto-optical effects are given in Section (VII).

The Aharonov–Bohm effect is self-inconsistent in U(1) electrodynamics

because [44] the effect depends on the interaction of a vector potential A with an

electron, but the magnetic field defined by B ¼ r� A is zero at the point of

interaction [44]. This argument can always be used in U(1) electrodynamics to

counter the view that the classical potential A is physical, and adherents of the

received view can always assert in U(1) electrodynamics that the potential must

be unphysical by gauge freedom. If, however, the Aharonov–Bohm effect is

seen as an effect of O(3) electrodynamics, or of SU(2) electrodynamics [44], it

is easily demonstrated that the effect is due to the physical inhomogeneous term

appearing in Eq. (25). This argument is developed further in Section VI.

Barrett has argued convincingly that there are several effects in classical

electrodynamics [3,4] where the potential must be physical, and Ref. 3 lists
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empirically observed effects where this is the case. The arguments in this

section point to the fact that U(1) electrodynamics, defined as U(1) gauge field

theory applied to electrodynamics, is self-inconsistent in the vacuum, as well as

in field–matter interaction. In the next section, the field equations of electro-

dynamics seen as an O(3) gauge field theory applied to electrodynamics are

given in full, revealing the presence in free space of conserved topological

charges and currents that do not appear in U(1) electrodynamics and that in

general are not zero.

IV. FIELD EQUATIONS OF O(3) ELECTRODYNAMICS
IN THE COMPLEX CIRCULAR BASIS

In their most condensed form, the field equations are Eqs. (31) and (32), respecti-

vely, and, in general, must be solved without approximation on a computer with

constitutive relations, as usual in classical electrodynamics. The familiar field

tensors ~Gmn and Hmnof the homogeneous and inhomogeneous Heaviside–

Maxwell equations [U(1) Yang–Mills gauge field theory] become vectors in

the O(3) symmetry internal gauge space of Eqs. (31) and (32), which are

equations of O(3) symmetry Yang–Mills gauge field theory. Therefore an object

such as ~Gmn is a vector in the internal gauge space and a tensor in Minkowski

spacetime, and an object such as Jm is a 3-vector in the internal O(3) space and a

4-vector in Minkowski spacetime. The ordinary derivatives of the Maxwell–

Heaviside equations are replaced in Eqs. (31) and (32) by covariant derivatives in

an internal gauge space, with three rotation generators [11–20]. Eqs. (31) and

(32) are gauge-covariant, and not gauge-invariant, under all conditions, including

the vacuum. As argued already, the homogeneous Eq. (31) is a Jacobi identity of

the O(3) group, and the tilde denotes dual tensor as usual. The homogeneous field

equation, Eq. (31), originates in the cyclic identity between O(3) covariant

derivatives, Eq. (30), and can be developed by writing out the covariant

derivative in terms of the coupling constant g, which has the classical units

j=Að0Þ [11–20]. The coupling constant, as usual in gauge theory [6], couples the

dynamical field to its source, so in Eqs. (31) and (32), the dynamical field is never

free of its source, and there is no source-free region. This is also true in U(1)

electrodynamics on a rigorous level because g also appears in the U(1) covariant

derivative as argued already. A field propagating without a source is a violation

of causality. On Planck quantization, the coupling constant g has the units e=�h in

both O(3) and U(1) gauge theory, and for one photon in free space

eAð0Þ ¼ �hj ð84Þ
signaling that the photon is always coupled to its source. The quantity e has the

dual role [6] of coupling constant and charge on the electron. The presence of g

in the theory does not mean that the gauge bosons are charged after quantization,
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anymore than it means that the U(1) gauge bosons are charged after quantization.

The role of g is to measure the ‘‘strength’’ with which the dynamical electro-

magnetic field couples to its source. This aspect of g [6] is a consequence of the

gauge principle, and g originates in parallel transport—it is a coefficient needed

to ensure that units are balanced [6].

The homogeneous field equation (31) can be expanded in terns of the O(3)

covariant derivative [6,11–20]:

ðqm þ gAm�Þ~Gmn � 0 ð85Þ

A particular solution is

qm ~Gmn ¼ 0 ð86Þ

the first equation of which gives

Am � ~Gmn ¼ 0 ð87Þ
qm ~GmnðiÞ ¼ 0; i ¼ 1; 2; 3 ð88Þ

that is, Heaviside–Maxwell-type equations and an equation for Bð3Þ, which in

vector form is

qBð3Þ

qt
¼ 0 ð89Þ

The latter equation can be interpreted to mean that the third Stokes parameter

does not vary with time in a circularly polarized beam of light. The particular

solution (87) gives the B cyclic theorem (9) self-consistently [11–20].

In the vacuum (in the absence of matter), the inhomogeneous O(3) field

equation (32) can be interpreted as

qmGmn ¼ 0 ð90Þ
Jn ¼ ge0Am � Gmn ð91Þ

where Jn is a conserved vacuum current. Equation (90) gives the component

equations:

qmGmnðiÞ ¼ 0; i ¼ 1; 2; 3 ð92Þ

The first two are Maxwell–Heaviside-type equations, and the third, in vector

form, is

r� Bð3Þ ¼ 0 ð93Þ
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which can be interpreted to mean that the third Stokes parameter is irrotational in

the vacuum. It can be shown [17] that the current Jn self-consistently gives the

vacuum energy

Enð3Þ ¼ 1

m0

ð
Bð3Þ 
Bð3ÞdV ð94Þ

due to the B(3) field.

In the presence of matter (electrons and protons), the inhomogeneous field

equation (32) can be expanded as given in Eqs. (52)–(54) and interprets the

inverse Faraday effect self-consistently as argued already. Constitutive relations

such as Eq. (55) must be used as in U(1) electrodynamics.

The fundamental field equations (31) and (32) can be expanded out fully in

the (1),(2),(3) basis defined by Eqs. (8) to give four field equations: the O(3)

equivalents of the Coulomb, Gauss, Ampère–Maxwell, and Faraday laws. This

expansion shows clearly that the adoption of an O(3) configuration for the

vacuum produces conserved vacuum charges and currents from the first

principles of gauge field theory. The vacuum electric charge and vacuum

electric current were introduced empirically and developed by Lehnert [7–

10]; and the magnetic equivalents were introduced and developed empirically

by Harmuth [21,22] and later developed from gauge theory by Barrett [3,4],

whose field equations in SU(2) gauge group symmetry are isomorphic with the

field equations in O(3) gauge group symmetry given here.

The Gauss law in O(3) electrodynamics is

r 
Bð1Þ� � igðAð2Þ 
Bð3Þ 	 Bð2Þ 
Að3ÞÞ ð95Þ

r 
Bð2Þ� � igðAð3Þ 
Bð1Þ 	 Bð3Þ 
Að1ÞÞ ð96Þ

r 
Bð3Þ� � igðAð1Þ 
Bð2Þ 	 Bð1Þ 
Að2ÞÞ ð97Þ

and allows for the possibility of a topological magnetic monopole originating in

the vacuum configuration defined by the O(3) gauge group. Empirical evidence

for such a monopole has been reviewed by Mikhailov [4] and interpreted by

Barrett [45]. However, the right-hand side of Eqs. (95) to (97) can also be zero

for particular solutions [11–20], in which case no magnetic monopole exists. In

general, Eqs. (95)–(97) must be solved numerically and simultaneously with the

other three equations [Eqs. (98)–(100)] given next. This is not a trivial task, but

would give a variety of solutions not present in U(1) electrodynamics, solutions

can be compared with empirical data.
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The Faraday law on the O(3) level is

r� Eð1Þ� þ qBð1Þ�

qt
� 	igðcA

ð3Þ
0 Bð2Þ 	 cA

ð2Þ
0 Bð3Þ þ Að2Þ � Eð3Þ 	 Að3Þ � Eð2ÞÞ

ð98Þ

r � Eð2Þ� þ qBð2Þ�

qt
� 	igðcA

ð1Þ
0 Bð3Þ 	 cA

ð3Þ
0 Bð1Þ þ Að3Þ � Eð1Þ 	 Að1Þ � Eð3ÞÞ

ð99Þ

r � Eð3Þ� þ qBð3Þ�

qt
� 	igðcA

ð2Þ
0 Bð1Þ 	 cA

ð1Þ
0 Bð2Þ þ Að1Þ � Eð2Þ 	 Að2Þ � Eð1ÞÞ

ð100Þ

and contains on the right-hand sides terms proportional to a conserved

topological vacuum magnetic current, which was introduced empirically by

Harmuth [21,22] and developed by Barrett [3,4] using SU(2) gauge field theory.

This vacuum magnetic current provides energy, in the same way as the current Jn

leads to the energy in Eq. (94), and this energy emanates from the vacuum

configuration. In principle, therefore, it can be used as a source of mechanical

energy provided devices are available to convert the vacuum topological

magnetic current into mechanical energy. The same is true of the topological

magnetic charge in Eqs. (95)–(97). These charges and currents vanish only in

very special cases [11–20], and in general are nonzero. They originate from

fundamental topological considerations as argued in Section I.

The O(3) Coulomb law in field–matter interaction is

r 
Dð1Þ� ¼ rð1Þ� þ igðAð2Þ 
Dð3Þ 	 Dð2Þ 
Að3ÞÞ ð101Þ
r 
Dð2Þ� ¼ rð2Þ� þ igðAð3Þ 
Dð1Þ 	 Dð3Þ 
Að1ÞÞ ð102Þ
r 
Dð3Þ� ¼ rð3Þ� þ igðAð1Þ 
Dð2Þ 	 Dð1Þ 
Að2ÞÞ ð103Þ

In the vacuum, the quantities rðiÞ; i ¼ 1; 2; 3; disappear, but the topological

Noether charges proportional to the remaining right-hand-side terms do not

disappear, leaving one of the Lehnert equations [7–10]. Lehnert introduced the

vacuum charge empirically. Lehnert and Roy [10] have given clear empirical

evidence for the existence of vacuum charge and current. The latter appears in

the O(3) Ampère–Maxwell law, which in field–matter interaction is

r�Hð1Þ� 	 Jð1Þ� 	 qDð1Þ�

qt

¼ 	igðcA
ð2Þ
0 Dð3Þ 	 cA

ð3Þ
0 Dð2Þ þ Að2Þ �Hð3Þ 	 Að3Þ �Hð2ÞÞ ð104Þ

r �Hð2Þ� 	 Jð2Þ� 	 qDð2Þ�

qt

¼ 	igðcA
ð3Þ
0 Dð1Þ 	 cA

ð1Þ
0 Dð3Þ þ Að3Þ �Hð1Þ 	 Að1Þ �Hð3ÞÞ ð105Þ
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r�Hð3Þ� 	 Jð3Þ� 	 qDð3Þ�

qt

¼ 	igðcA
ð1Þ
0 Dð2Þ 	 cA

ð2Þ
0 Dð1Þ þ Að1Þ �Hð2Þ 	 Að2Þ �Hð1ÞÞ ð106Þ

In the vacuum, the terms JðiÞ; i ¼ 1; 2; 3 disappear, but the topological Noether

electric vacuum currents on the right-hand sides of these equations do not.

These are the equivalents of the vacuum current introduced empirically by

Lehnert [7–10]. These vacuum charges and currents originate in the vacuum

configuration and provide energy as argued already. This can loosely be called

‘‘vacuum energy.’’ In principle, it can be converted to useful form, and this type

of energy does not originate in point electric charge; it originates in the topology

of the vacuum itself.

The Lehnert field equations in the vacuum also exist in U(1) form, and were

originally postulated [7–10] in U(1) gauge field theory. It can be demonstrated

as follows, that they originate from the U(1) gauge field equations when matter

is not present:

ðqn 	 igAn�ÞFmn ¼ 0 ð107Þ

This equation can also be written as

qnFmn ¼ igAn�Fmn g ¼ k=Að0Þ ð108Þ

giving the first Lehnert equation in the form

r 
D ¼ 	igA� 
D � r ð109Þ

Similarly, Eq. (107) shows that the second Lehnert equation is

r�H 	 qD

qt
¼ J ¼ igðcA0�Dþ A� �HÞ ð110Þ

and vacuum charge and current emanate directly from U(1) gauge field theory

as well as from O(3) gauge field theory as just argued. The constant e=�h must be

regarded as a coupling constant in both cases [6], because it arises from the

gauge principle. Similarly, the vacuum magnetic monopole and charge can be

obtained from the U(1) gauge equation:

ðqn 	 igAn�Þ~Fmn � 0 ð111Þ
and in vector form are

r 
B ¼ ig A� 
B ð112Þ
qB

qt
þr� E ¼ ig ðcA0�Bþ A� � EÞ ð113Þ
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In both U(1) and O(3), the existence of vacuum charges and currents depends on

the existence of the coupling constant g, which is due fundamentally to the

notion of covariant derivative, and can be traced, therefore, to the original gauge

principle of Weyl, as discussed in Section II. The coupling constant g must be

introduced in vacuo if we accept special relativity and the gauge principle. The

existence of vacuum charges and currents follows. The arguments in Section III

lead us to reject the U(1) gauge theory of electrodynamics in favor of another

theory such as O(3) electrodynamics. These vacuum charges and currents are

conserved in the sense that they are Noether currents, and therefore do not

violate the Noether theorem [6], specifically, conservation of charge/current,

energy, and momentum.

It is seen that as the gauge group is changed from U(1) to a higher symmetry,

more solutions are allowed for the field equations, and therefore for the vacuum

charges and currents. Mikhailov has detected a magnetic monopole in six inde-

pendent experiments [4], interpreted as a topological magnetic monopole by

Barrett [4,5], and a magnetic monopole means the presence of magnetic current.

This has also been detected empirically [46]. Both the magnetic charge and the

current are topological in origin. In the case of U(1) gauge field theory applied

to electrodynamics, the vacuum configuration is described by a U(1) group

symmetry, and in O(3) electrodynamics by an O(3) gauge group symmetry.

All gauge theory depends on the rotation of an n-component vector whose

4-derivative does not transform covariantly as shown in Eq. (18). The reason is

that cðxÞ and cðxþ dxÞ are measured in different coordinate systems; the field

c has different values at different points, but cðxÞ and cðxÞ þ dc are measured

with respect to different coordinate axes. The quantity dc carries information

about the nature of the field c itself, but also about the rotation of the axes in the

internal gauge space on moving from x þ dx. This leads to the concept of

parallel transport in the internal gauge space and the resulting vector [6] is

denoted cðxÞ þ dc. The notion of parallel transport is at the root of all gauge

theory and implies the introduction of g, defined by

dc ¼ igMa AA
m dxmc ð114Þ

where dxm is the distance over which the vector is carried, Ma are group rotation

generators, and Aa
m are generalized vector potentials for the given internal gauge

symmetry [e.g., U(1) or O(3)]. The covariant derivative is therefore

Dm � qm 	 igMaAa
m ð115Þ

and is defined in this way under all conditions, in the presence and absence of

matter (electrons and protons). It follows that the electromagnetic field tensor
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under all conditions for all gauge groups is

Gmn �
i

g
½Dm;Dn� ð116Þ

and if g is zero, the field tensor becomes infinite for any gauge group, including

U(1). Here, [,] denotes commutator as usual. The constant g interpreted in this

way is neither a property of the source (an electron) nor of the field, but a

constant that couples source and field. Note that gauge theory is a necessary

condition for the existence of vacuum charges and currents, but not sufficient.

The actual existence of these entities must be determined empirically, as in the

experiments by Mikhailov [4] and in the work of Lehnert and Roy [10]. The

gauge equations on both the U(1) and O(3) levels allow for the fact that vacuum

charges and currents may be zero [11–20]. The B(3) field of O(3) electro-

dynamics, however, is always nonzero in the vacuum, as it is the direct result of a

vacuum configuration described by O(3) symmetry. If vacuum charges and

currents do exist, however, they provide the possibility of extracting energy from

the vacuum as developed in Section XI.

V. FIELD EQUATIONS OF O(3) ELECTRODYNAMICS IN THE
CARTESIAN BASIS: REDUCTION TO THE LAWS OF

ELECTROSTATICS

In this section, it is shown that the field equations of O(3) electrodynamics

written in the Cartesian basis have a substantially different meaning from those

written in the complex circular basis of Section IV. The latter basis essentially

introduces motion and dynamics, while Eqs. (31) and (32), written in the

Cartesian basis, produce the laws of electrostatics self-consistently. This is

confirmation of the mathematical and physical correctness of Eqs. (31) and (32).

In the Cartesian basis, the O(3) field tensor is

Gmn ¼ GX
mn iþ GY

mn jþ GZ
mnk ð117Þ

and the O(3) potential is

Am ¼ AX
m iþ AY

m jþ AZ
mk ð118Þ

where the upper indices (X;Y ; Z) denote an O(3) internal space defined by the

Cartesian unit vectors in Eq. (6). The components of the field tensor are

G
mn
X ¼ qmAn

X 	 qnAm
X 	 ig½Am

Y ;An
Z � ð119Þ

G
mn
Y ¼ qmAn

Y 	 qnA
m
Y 	 ig½Am

Z ;An
X� ð120Þ

G
mn
Z ¼ qmAn

Z 	 qnAm
Z 	 ig½Am

X ;An
Y � ð121Þ
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where the potentials are real quantities. Therefore the commutators vanish:

½Am
Y ;A

n
Z � ¼ ½A

m
Z ;An

X� ¼ ½A
m
X;An

Y � ¼ 0 ð122Þ

The covariant derivative of O(3) electrodynamics in the Cartesian basis is

Dm ¼ qm 	 igMaAa
m ¼ qm 	 igðAX

m þ AY
m þ AZ

mÞ ð123Þ

and a rotation in the internal gauge space is denoted by

c0 ¼ eiðMa�aðxmÞc

¼ ei�XðxmÞei�Y ðxmÞei�Z ðxmÞc ð124Þ

For a rotation about the Z axis

c0 ¼ ei�ZðxmÞc � Sc ð125Þ

producing the gauge transformation:

AZ ! AZ þ
1

g
qZ� ð126Þ

This is, self-consistently, the same result as for O(3) electrodynamics in the

complex circular basis [11–20] because of the relation k ¼ e3.

The use of Cartesian indices for the internal O(3) gauge space produces the

laws of electrostatics as follows. For clarity, the derivation is given in detail.

First, the components of the magnetic field disappear:

BX ¼ G32
X ¼ q3A2

X 	 q2A3
X 	 ig½A3

Y ;A2
Z � ¼ 0 ð127Þ

BY ¼ G13
Y ¼ q1A3

Y 	 q3A1
Y 	 ig½A1

Z ;A3
X � ¼ 0 ð128Þ

BZ ¼ G21
Z ¼ q2A1

Z 	 q1A2
Z 	 ig½A2

X;A1
Y � ¼ 0 ð129Þ

This means that a magnetic field is always a quantity that depends on motion, or a

current. If there is no magnetic field, there is no electric current, that is, no

motion of charge. The use of Cartesian indices for the internal O(3) gauge space

therefore corresponds to an electrostatic situation where there is no movement of

charge. The use of complex circular indices corresponds to electrodynamics.

The nonzero static electric field components are given by equations such as:

G01
X ¼ q0A1

X 	 q1A0
X 	 ig½A0

Y ;A1
Z � ð130Þ

G10
X ¼ q1A0

X 	 q0A1
X 	 ig½A1

Y ;A0
Z � ð131Þ
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which correspond to

	EX ¼
1

c

q
qt

A1
X þ

q
qX

A0
X ð132Þ

Ex ¼ 	
1

c

q
qt

A1
X 	

q
qX

A0
x ð133Þ

The static electric field is therefore given self-consistently by

E ¼ 	rA0 	 1

c

q
qt

A ð134Þ

The vector potential A is zero, however, because the magnetic field is zero, and

we arrive at the familiar law of electrostatics:

E ¼ 	rA0 ð135Þ

Using the vector identity (16), it is found that E is irrotational:

r� E ¼ 0 ð136Þ

In the Cartesian basis, the homogeneous field equation of O(3) electrody-

namics can be written out as three component equations:

qm ~G
mn
X ¼ igðAY

m
~Gmn

Z 	 AZ
m
~Gmn

Y Þ ð137Þ
qm ~G

mn
Y ¼ igðAZ

m
~Gmn

X 	 AX
m
~Gmn

Z Þ ð138Þ
qm ~G

mn
Z ¼ igðAX

m
~Gmn

Y 	 AY
m
~Gmn

X Þ ð139Þ

For n ¼ 0

qm ~G0
X ¼ AY

m
~Gm0

Z 	 AZ
m
~Gm0

Y ð140Þ

and using

~G10 ¼ BX ð141Þ

this gives the result

qXBX ¼ 0 ð142Þ

The complete result for n ¼ 0 is therefore

r 
B ¼ 0 ð143Þ
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which is self-consistent with Eqs. (127)–(129), indicating the absence of a

magnetic field because of the absence of moving charges.

For n ¼ 1, we obtain

q0
~G01

X þ q2
~G21

X þ q3
~G31

X

¼ igðAY
0
~G01

Z þ AY
2
~G21

Z þ AY
3
~G31

Z 	 AZ
0
~G01

Y 	 AZ
2
~G21

Y 	 AZ
3
~G31

Y Þ ð144Þ

that is, q0BX
X ¼ 0. Repeating this procedure gives

qB

qt
¼ 0 ð145Þ

which is self-consistent with B ¼ 0.

The inhomogeneous field equation (32) in the Cartesian basis must be written

in the static limit where

Jn ¼ ðr; 0Þ ð146Þ

The component equations look like

qmH
mn
X þ igðAY

mH
mn
Z 	 AZ

mH
mn
Y Þ ¼ JnX ð147Þ

For n ¼ 0, we obtain

q1H10
X þ q2H20

X þ q3H30
X þ igðAY

1 H10
Z 	 AZ

1 H10
Y þ AY

2 H20
Z

	 AZ
2 H20

Y þ AY
3 H30

Z 	 AZ
3 H30

Y Þ ¼ J0
X ¼ r

ð148Þ

and this results in the equation

r 
D ¼ r ð149Þ

which is the Coulomb law of electrostatics. The Coulomb law is well known to

be self-consistent with Eqs. (135) and (136). For n ¼ 1 and other indices, we

obtain the self-consistent result

qD

qt
¼ 0 ð150Þ

which is true for an electrostatic displacement D.

In summary, the laws of O(3) electrodynamics in the Cartesian basis reduce

to the laws of electrostatics:

E ¼ 	rA0

r� E ¼ 0

r 
D ¼ r

ð151Þ
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and this is an indication of the correctness and self-consistency of Eqs. (31) and

(32). The need for the complex circular basis now becomes clear: this basis

introduces dynamics into the O(3) laws. The Cartesian representation of the

gauge space describes a static situation where there is charge but no current

(movement of charge). A magnetic field always requires the movement of

charge. It has therefore been shown that the laws of electrostatics are laws of a

gauge field theory of O(3) internal symmetry. This is another refutation of the

received view, that the laws of electrostatics are laws of a gauge field theory of

U(1) internal symmetry.

The Gauss and Ampère laws of magnetism are obtained mathematically, and

somewhat artificially, from the fact that using a Cartesian basis gives Eq. (143)

(the Gauss law); and from the fact that there is no current and no B, so we have

J ¼ r� B ¼ 0 ð152Þ

and the Ampère law follows. However, there is a more satisfactory way of

obtaining the Gauss and Ampère laws by using the complex circular basis. The

latter is needed because magnetism is not a static phenomenon, as evidenced by

the both the Ampère and Faraday laws. Magnetism is always a dynamic pheno-

menon, so we always need complex circular indices. Therefore the Gauss and

Ampère laws are obtained from the particular solutions (87) and (91) leading to

Eqs. (88) and (92). The phenomenon of radiation is then removed by removing

the Maxwell displacement current in Eqs. (88) and (92). This removes the

radiated B(3) field and leaves the Gauss, Ampère, Coulomb, and Faraday laws of

the received view at the expense of generality. This procedure is a method of

obtaining the old laws from O(3) electrodynamics, which is, however, more

general and self-consistent. In forcing a reduction of O(3) electrodynamics to the

received view, we lose the vacuum charges and currents and a great deal of

information.

Information is also lost if we replace the ((1),(2),(3)) basis by the (X; Y; Z)

basis for the internal gauge space. The reason is that the former basis is

essentially dynamical and the latter is essentially static. This is again a self-

consistent result, because electrodynamics, by definition, requires the movement

of charge. The misnamed subject of ‘‘magnetostatics’’ also requires the move-

ment of charge, and so is not static.

VI. EXPLANATION OF INTERFEROMETRY AND RELATED
PHYSICAL OPTICAL EFFECTS USING O(3)

ELECTRODYNAMICS

The explanation of interferometric effects in U(1) electrodynamics is in general

self-inconsistent, and sometimes, as in the Sagnac effect, nonexistent. In this
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section, the theory of interferometry and related physical optical effects is deve-

loped with O(3) electrodynamics, which is found to give an accurate and self-

consistent explanation, for example, of the Sagnac effect in terms of the

fundamental component B(3). The latter is therefore a physical observable in all

interferometry.

In order to understand interferometry at a fundamental level in gauge field

theory, the starting point must be the non-Abelian Stokes theorem [4]. The

theorem is generated by a round trip or closed loop in Minkowski spacetime

using covariant derivatives, and in its most general form is given [17] by

exp

þ
Dm dxm


 �
¼ exp 	 1

2

ð
½Dm;Dn�dsmn


 �
ð153Þ

where the integral over the closed loop on the left-hand side is related to an

integral over the hypersurface smn of the commutator of covariant derivatives.

The electromagnetic phase factor in O(3) electrodynamics is developed as an

exponential from Eq. (153) and is given most generally by

exp g

þ
Dm dxm


 �
¼ exp 	 1

2
g

ð
½Dm;Dn�dsmn


 �
ð154Þ

The observable phase is the real part of this exponential, specifically, the cosine.

Recall that in ordinary U(1) electrodynamics, the phase factor is given by the

exponent

f ¼ exp ðiðot 	 j 
 rþ aÞÞ ð155Þ

where a is random.

To reduce Eq. (153) to the ordinary Stokes theorem, the U(1) covariant

derivative is used

Dm ¼ qm þ igAm ð156Þ

to give the result þ
Am dxm ¼ 	 1

2

ð
Fmn dsmn ð157Þ

The space part of this expression is the ordinary, or Abelian, Stokes theorem

þ
A 
 dr ¼

ð
B 
 dAr ¼

ð
r� A 
 dAr ð158Þ
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with the following fundamental property:þ
OA

A 
 dr ¼ 	
þ

AO

A 
 dr ð159Þ

In U(1) electrodynamics in free space, there are only transverse components of

the vector potential, so the integral (158) vanishes. It follows that the area

integral in Eq. (157) also vanishes, and so the U(1) phase factor cannot be used to

describe interferometry. For example, it cannot be used to describe the Sagnac

effect. The latter result is consistent with the fact that the Maxwell–Heaviside

and d’Alembert equations are invariant under T, which generates the clockwise

(C) Sagnac loop from the counterclockwise (A) loop [17]. It follows that the

phase difference observed with platform at rest in the Sagnac effect [47] cannot

be described by U(1) electrodynamics. This result is also consistent with the fact

that the traditional phase of U(1) electrodynamics is invariant under T as

discussed already in Section (III). The same result applies for the Michelson–

Gale experiment [48], which is a Sagnac effect.

From Eqs. (157) and (158) the integral

Int ¼ 	 1

2

ð
Fmn dsmn ¼ 0 ð160Þ

vanishes in interferometry as described by U(1) electrodynamics. Therefore, in

order to explain interferometry and related optical effects by gauge theory, a non-

Abelian Stokes theorem and a non-Abelian phase factor are required. This means

that O(3) electrodynamics is capable of describing interferometry but U(1)

electrodynamics is not. An area integral is needed that does not vanish, as in

Eq. (160), and equated through the theorem (157) to a line integral. It is

straightforward to show that the only possible solution for the O(3) phase factor

is

P exp ig

þ
Að3Þ 
 dr


 �
¼ P0 exp ig

ð
Bð3Þ 
 dAr


 �
ð161Þ

and since g ¼ j=Að0Þ classically the phase factor reduces to

P exp i

þ
jð3Þ 
 dr


 �
¼ P0 exp ig

ð
Bð3Þ 
 dAr


 �
ð162Þ

for all interferometry and physical optics. Equation (162) is nonzero if and only

if the Evans–Vigier field B(3) is nonzero, and the latter is therefore responsible for

all interferometry and related physical optical effects.
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The P on the left-hand side of Eq. (162) denotes path ordering and the P0

denotes area ordering [4]. Equation (162) is the result of a round trip or closed

loop in Minkowski spacetime with O(3) covariant derivatives. Equation (161) is

a direct result of our basic assumption that the configuration of the vacuum can

be described by gauge theory with an internal O(3) symmetry (Section I).

Henceforth, we shall omit the P and P0 from the left- and right-hand sides,

respectively, and give a few illustrative examples of the use of Eq. (162) in

interferometry and physical optics.

The Sagnac effect with a platform at rest [47] is explained as the phase

factor:

exp i

þ
A	C

jð3Þ 
 dr


 �
¼ exp 2i

þ
jð3Þ 
 dr


 �
ð163Þ

which is nonzero and gives an observable interferogram, a cosine function:

g ¼ cos 2

þ
jð3Þ 
 dr� 2pn


 �
ð164Þ

Using the relation:

Bð0Þ ¼ Bð3Þ
�� �� ¼ gAð0Þ2 ð165Þ

the right-hand side of Eq. (162) may be written as

� ¼ expðik2ArÞ ð166Þ

and so Eq. (164) becomes

g ¼ cos 2
o2

c2
Ar � 2pn


 �
ð167Þ

This is an expression for the observed phase difference with the platform at rest

in the Sagnac experiment [47]; it is a rotation in the internal gauge space. In U(1)

electrodynamics, there is no phase difference when the platform is at rest, as

discussed already.

When the platform is rotated in the Sagnac effect, there is an additional

rotation in the internal gauge space described by

c0 ¼ expðiJZaðxmÞÞc ð168Þ

where aðxmÞ is an angle in the plane of the Sagnac platform [48]. The effect on

the gauge potential A
ð3Þ
m is as follows:

Að3Þm ! Að3Þm þ
1

g
qma ð169Þ
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The angular frequency of rotation of the platform is

� ¼ qa
qt

ð170Þ

and so Eq. (169) implies that the additional rotation of the platform has the effect

o! o� � ð171Þ

on frequency, depending on the sense of rotation of the platform, which therefore

produces the phase factor difference

�g ¼ exp i
Ar

c2
ððoþ �Þ2 	 ðo	 �Þ2Þ


 �
 �
ð172Þ

and an interferogram

Re ð�gÞ ¼ cos 4
o�Ar

c2
� 2pn


 �
ð173Þ

as observed [49] to very high accuracy. This formula was first given by Sagnac

[50] using kinematic methods. There is no explanation for it in U(1) electro-

dynamics [4].

The calculation can be repeated using matter waves, because the Sagnac

effect exists in electrons [51] as well as in photons. The starting point is the

same, namely, the assumption that the vacuum configuration is described by an

O(3) gauge group symmetry. The same structured vacuum applies to both

electrodynamics and dynamics, wherein the energy momentum tensor is also a

vector in the internal gauge space:

pm ¼ pmð1Þeð1Þ þ pmð2Þeð2Þ þ pmð3Þeð3Þ

¼ �hðjmð1Þeð1Þ þ jmð2Þeð2Þ þ jmð3Þeð3ÞÞ ð174Þ

where

o2 ¼ c2j2 þ m2
0c4

�h2
ð175Þ

Here, o is the angular frequency of a matter wave, such as that of an electron, j is

its wave number magnitude, and m0 is the rest mass of the particle corresponding

to the matter wave. The rest mass could be the photon’s rest mass, estimated to be

less than 10	68 kg.
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Both pm and jm are governed by a gauge transformation

pm ! SpmS	1 	 iðqmSÞS	1 ð176Þ

and similarly for jm. The rotation of the Sagnac platform is governed by Eq.

(168), from which we obtain

j0ð3Þ ! j0ð3Þ � q0a ð177Þ

which is the same as Eq. (171). This is a topological result given by the structure

of the vacuum and is valid for all matter waves, including the electromagnetic

wave as argued already. The holonomy difference with platform at rest for A and

C loops [round trips in Minkowski spacetime with O(3) covariant derivatives] for

matter waves is

�g ¼ expð2ij2ArÞ ð178Þ

where, from Eq. (175)

j2 ¼ o2

c2
	 m2

0c4

�h2
ð179Þ

The extra holonomy difference due to the rotating platform is the same as for

electromagnetic waves:

��g ¼ exp
4io�Ar

c2


 �
ð180Þ

This result is true for all matter waves and also in the Michelson–Gale

experiment, where it has been measured to a precision of one part in 1023 [49].

Hasselbach et al. [51] have demonstrated it in electron waves. We have therefore

shown that the electrodynamic and kinematic explanation of the Sagnac effect

gives the same result in a structured vacuum described by O(3) gauge group

symmetry.

The preceding is a result of special relativity precise to one part in 1023 [49].

Its explanation in standard special relativity is as follows. Let the tangential

velocity of the disk be v1 and the velocity of the particle be v2 in the laboratory

frame [52]. When the particle and disk are moving in the same direction, the

velocity of the particle is v2 	 v1 ¼ v3 relative to an observer on the periphery

of the disk. Vice-versa, the relative velocity is v2 þ v1 ¼ v4. The special theory

of relativity states that time for the two particles will be dilated to different
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extents, so the time dilation difference relative to the observer on the periphery

of the disk is

�t ¼ 1	 v2
3

c2


 �1=2

	 1	 v2
4

c2


 �	1=2

ð181Þ

using the binomial theorem. When the disk is stationary [53]:

t ¼ 2pr

v2
ð182Þ

where r is its radius. So the observable time difference of the Sagnac effect is

��t ¼ 4prv1

c2
¼ 4�Ar

c2
ð183Þ

as deduced already as a rotation in the O(3) gauge space of a structured vacuum.

The Maxwell–Heaviside theory of electrodynamics has no explanation for

the Sagnac effect [4] because its phase is invariant under T, as argued already,

and because the equations are invariant to rotation in the vacuum. The

d’Alembert wave equation of U(1) electrodynamics is also T-invariant. One

of the most telling pieces of evidence against the validity of the U(1)

electrodynamics was given experimentally by Pegram [54] who discovered a

little known [4] cross-relation between magnetic and electric fields in the

vacuum that is denied by Lorentz transformation.

It can be shown straightforwardly, as follows, that there is no holonomy

difference if the phase factor (154) is applied to the problem of the Sagnac

effect with U(1) covariant derivatives. In other words, the Dirac phase factor [4]

of U(1) electrodynamics does not describe the Sagnac effect. For C and A loops,

consider the boundary

X2 þ Y2 ¼ 1 ð184Þ

of the assumed circular paths of the two light beams of the Sagnac effect. The

line integral vanishes around the boundary

þ
dr ¼

ð2p

0

dX þ
ð2p

0

dY

¼ 	
ð2p

0

sinf dfþ
ð2p

0

cosf df

¼ 0 ¼ 	
ð

dr ð185Þ
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and so þ
j 
 dr ¼ 	

þ
j 
 dr ¼ 0 ð186Þ

in U(1) electrodynamics and the relevant holonomy in this symmetry of

electrodynamics is the same

exp i

þ
C

j 
 dr


 �
¼ exp 	i

þ
C

j 
 dr


 �
¼ 1 ð187Þ

for both beams. There is no interferogram with the platform at rest, contrary to

observation.

Furthermore, the only electromagnetic vector present in free space in the

Maxwell–Heaviside theory is the plane wave [11–20]:

Að1Þ ¼ Að2Þ� ¼ Að0Þffiffiffi
2
p ðiiþ jÞeiðot	j 
 rÞ ð188Þ

which is always perpendicular to r, so we obtain Eq. (187) self-consistently.

Owing to the gauge invariance of the Maxwell–Heaviside theory, there is no

extra effect of a moving platform, again contrary to observation. The principle of

gauge invariance, and U(1) electrodynamics in general, fail to describe the

Sagnac effect.

On the O(3) level, it can be shown that if we write out the commutator of

covariant derivatives in Eq. (153) the phase factor becomes [6]

g ¼ exp

ð
½Dm;Dn�dsmn


 �
ð189Þ

g ¼ exp 	i
g

2

ð
ðqmAn 	 qnAmÞdsmn 	 g2

ð
½Am;An�dsmn


 �
ð190Þ

ut as just argued, integrals such as

IðUð1ÞÞ ¼
ð
ðqmAn 	 qnAmÞdsmn ð191Þ

vanish for both A and C loops, leaving the only source of nonzero holonomy,

Eq. (162), leading to the observable interferogram in Eq. (167). This derivation

can be self-checked using a closed loop with O(3) covariant derivatives in

Minkowski spacetime [6] whereupon the holonomy in one direction is

gA ¼ exp 	i
g

2

ð
Gmn dSmn


 �
ð192Þ
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and in the other direction is

gC ¼ exp i
g

2

ð
Gmn dSmn


 �
ð193Þ

where Smn is the area enclosed by the loop. The holonomy represents a rotation in

the internal O(3) gauge space and is a general result for all gauge group

symmetries. If the internal basis of the space of O(3) is (a; b; c), the holonomy

can be expressed as

g ¼ exp �i
g

2

ð
ðqmAa

n 	 qnAa
m 	 igeabcAb

mAc
nÞdSmn


 �
ð194Þ

If the internal symmetry is U(1), the holonomy in either direction is

gðUð1ÞÞ ¼ exp �ig

ð
ðqmAn 	 qnAmÞdSmn


 �

¼ exp �ig

þ
Am dxm


 �
¼ 1 ð195Þ

and the ordinary Stokes theorem can be used to show that there is no holonomy

difference.

If the internal group symmetry is O(3) in the basis ((1),(2),(3)), we obtain:

exp �i
g

2

ð
ðqmAð1Þn 	 qnAð1Þm ÞdSmn


 �
¼ 1

exp �i
g

2

ð
ðqmAð2Þn 	 qnAð2Þm ÞdSmn


 �
¼ 1

exp �i
g

2

ð
ðqmAð3Þn 	 qnAð3Þm ÞdSmn


 �
¼ 1

ð196Þ

and the only source of holonomy difference is the commutator term, which is

written in general as [17]

g ¼ exp � g2

2

ð
eabcAa

mAc
n dSmn


 �
ð197Þ

Considering the special case

g ¼ exp � g2

2

ð
ðAð1ÞX A

ð2Þ
Y 	 A

ð2Þ
X A

ð1Þ
Y ÞdSXY


 �
ð198Þ
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and using Eqs. (165) and (188), it is found that the holonomy is

g ¼ expð�ik2ArÞ ð199Þ

The difference in holonomy is Eq. (178), and the interferogram can be written as

g ¼ cosð2k2Ar � 2pnÞ ð200Þ

with the platform at rest.

The Sagnac effect caused by the rotating platform is therefore due to a

rotation in the internal gauge space ((1),(2),(3)), which results in the frequency

shift in Eq. (171). The frequency shift is experimentally the same to an observer

on and off the platform and is independent of the shape of the area Ar. The

holonomy difference (172) derived theoretically depends only on the magni-

tudes o and �, and these scalars are frame-invariant, as observed experi-

mentally. There is no shape specified for the area Ar in the theory, and only its

scalar magnitude enters into Eq. (172), again in agreement with experiment.

In the one photon limit, O(3) electrodynamics [11–20] produces the result:

eAð0Þ ¼ �hk ð201Þ

Substituting this into

g ¼ exp �i
e

�h
Bð3ÞAr

� �
ð202Þ

for a beam made up of one photon, the flux Bð3ÞAr becomes �h=e and so, in the one

photon limit

g ¼ exp ð�iÞ ð203Þ

The observable phase difference is therefore nonzero for one photon in O(3)

electrodynamics. The effect with platform in motion is the same as Eq. (172) for

one photon.

Equations leading to Eq. (162) apply in general in O(3) electrodynamics and

to interferometry and physical optics in general. They imply the existence of the

quantity

gm �
1

V

ð
Bð3ÞdAr ð204Þ

in which the units of a topological magnetic monopole are directly dependent on

the vacuum configuration. We therefore have the relation

� ¼ ggmV ð205Þ

122 m. w. evans



and the observation of phase � implies the existence of both B(3) and gm. The

latter must not be confused with the Dirac point magnetic monopole or with the

quantities on the right-hand sides of Eqs. (95) to (97).

In the Maxwell–Heaviside theory of electrodynamics, the electromagnetic

phase is a product of two 4-vectors together with a random quantity a:

f ¼ kmxm þ a ¼ ot 	 j 
 rþ a ð206Þ

Let a ¼ 0 without loss of generality, because it is a random number. Then the

remaining part of the phase in Eq. (206) is invariant under parity inversion, which

is the same as perfect normal reflection as argued in Section III. Therefore the

phase arriving back at the beam splitter [55] in one arm of the Michelson

interferometer is unchanged for all r, the length of the arm. The same is true for

the other arm, and so there is no interferogram, because the phases arriving back

from either arm are always the same as the phase in the beam that initially

entered the beam splitter. This result is clearly contrary to observation, and U(1)

electrodynamics is unable to explain Michelson interferometry, the basis of

Fourier transform infrared spectral techniques and instruments.

In O(3) electrodynamics, the interferogram is described by the holonomy

exp i

þ
1	2

jð3Þ 
 dr


 �
¼ exp 2i

ð
Bð3Þ dAr


 �
ð207Þ

where 1–2 represents a path traversal from beam splitter to mirror and back to

beamsplitter. Using the property

þ
1

jð3Þ 
 dr ¼ 	
þ

2

jð3Þ dr ð208Þ

this is nonzero, and the interferogram is the cosine function [17]

ReðgÞ ¼ cosð2jð3Þ 
 r� 2pnÞ ð209Þ

which is nonzero and depends on r. By varying r, an interferogram is generated as

observed empirically [55]. Its Fourier transform is a spectral function, and in

general the beam is polychromatic.

The principle of interferometry in O(3) electrodynamics follows from the

fact that it is caused by a rotation in the internal gauge space

exp i

þ
1	2

kmdxm

 �

¼ expðiJZ�ðxmÞÞ exp i

þ
1

kmdxm

 �

ð210Þ
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or more succinctly

g0 ¼ eiJZ� xmð Þg ð211Þ

In Michelson interferometry, for example, the left-hand-side of Eq. (210)

becomes

g ¼ expð2ikmxmÞ ð212Þ

whose real part is Eq. (209), the interferogram. This result follows from the fact

that the rotation (211) in the O(3) internal gauge space results in

Að3Þm ! Að3Þm þ
1

g
qm�

o! oþ q�
qt

k! kþ 1

c

q�
qt

ð213Þ

and if o ¼ q�=qt, Eq. (212) follows. We have already applied Eq. (210) to the

Sagnac effect.

In U(1) electrodynamics, the equivalent of Eq. (210) is the rotation in the

U(1) internal gauge space:

ei ot	j 
 rþ�ð Þ ¼ ei�ei ot	j 
 rð Þ ð214Þ

in other words

c0 ¼ ei�c ð214aÞ

where � is random. The electromagnetic phase in U(1) electrodynamics is

defined only up to a random number �, whereas the phase in O(3) electro-

dynamics is fully defined and gives rise to physical effects in interferometry. The

details of the effect depend on the geometry of the interferometer.

Another example of a physical effect of this type is the Aharonov–Bohm

effect, which is supported by a multiply connected vacuum configuration such

as that described by the O(3) gauge group [6]. The Aharonov–Bohm effect is a

gauge transform of the true vacuum, where there are no potentials. In our

notation, therefore the Aharonov–Bohm effect is due to terms such as ð1=gÞqm�,

depending on the geometry chosen for the experiment. It is essential for the

Aharonov–Bohm effect to exist such that ð1=gÞqm� be physical, and not

random. It follows therefore that the vacuum configuration defined by the
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U(1) group does not support the Aharonov–Bohm effect [26]. The vacuum

configuration defined by the SU(2) group cannot support the effect because

SU(2) is singly connected [6], leaving O(3) as the only possibility. This is

another strong indication of the need for O(3) electrodynamics. Barrett [26] has

also reasoned that the U(1) vacuum configuration cannot support the Aharonov–

Bohm effect. First, there is a fundamental topological flaw in Heaviside’s

reduction of the potential to a mathematical convenience because this can apply

only in singly connected spaces, whereas U(1) itself is not singly connected, and

Maxwell–Heaviside theory is asserted to be a U(1) Yang–Mills gauge field

theory. This is another self-inconsistency of the received view. In fact, any

polarized classical wave such as a circularly polarized wave has two vectorial

components that form the O(3) symmetry basis ((1),(2),(3)) [3]. Another

inconsistency of the received view of the Aharonov–Bohm effect is that it

depends on the interaction of an assumed physical vector potential A with an

electron. However [26], the magnetic field B ¼ r� A is always zero at the

point of interaction, and the effect is described self-inconsistently [6] as an

integral over the flux due to B. At the point of interaction this flux is always

zero. The effect actually depends on the inhomogeneous term generated by the

gauge transform of the vacuum [6] into regions where both the magnetic field

and the potential are zero. So the effect is an interferometric effect determined

by gauge transformed terms such as

A0i ¼ 	
i

g
ðqiSiÞS	1

i ¼
1

g
qi�ðiÞ; i ¼ 1; 2; 3 ð215Þ

in O(3) electrodynamics, where these terms are physical. The Aharonov–Bohm

effect is therefore a rotation in the internal gauge space of a vacuum

configuration described by the O(3) group, and not the U(1) group, where terms

such as (215) are random.

VII. EXPLANATION OF MAGNETO-OPTICS AND OTHER
EFFECTS USING O(3) ELECTRODYNAMICS

The subject of O(3) electrodynamics was initiated through the inference of the

B(3) field [11] from the inverse Faraday effect (IFE), which is the magnetization

of matter using circularly polarized radiation [11–20]. The phenomenon of

radiatively induced fermion resonance (RFR) was first inferred [15] as the

resonance equivalent of the IFE. In this section, these two interrelated effects are

reviewed and developed using O(3) electrodynamics. The IFE has been observed

several times empirically [15], and the term responsible for RFR was first

observed empirically as a magnetization by van der Ziel et al. [37] as being

proportional to the conjugate product Að1Þ � Að2Þ multiplied by the Pauli matrix
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s in europium-ion-doped glasses. Good agreement was obtained [37] between

theory and experiment, implying that the resonance equivalent of this term is

present in nature. In other words, resonance can be induced between the states of

the Pauli matrix by circularly polarized radiation. This resonance phenomenon is

potentially of widespread utility as argued in this section because (1) it has a

much higher resolution than ESR or NMR, (2) it has its own spectral fingerprint

or chemical shift pattern, and (3) RFR can be observed without the use of

superconducting magnets. In O(3) electrodynamics, it is essentially due to the

product of the Pauli matrix with the B(3) field and also exists [20] in O(3)

quantum electrodynamics.

The IFE was inferred phenomenologically by Pershan [56] in terms of the

conjugate product of circularly polarized electric fields, E� E� ¼ Eð1Þ � Eð2Þ.
In O(3) electrodynamics, it is described from the first principles of gauge field

theory by the inhomogeneous field equation (32), which can be expanded as

qmHmnð1Þ� ¼ Jnð1Þ� þ igAð2Þm �Hmnð3Þ ð216Þ
qmHmnð2Þ� ¼ Jnð2Þ� þ igAð3Þm �Hmnð1Þ ð217Þ
qmHmnð3Þ� ¼ Jnð3Þ� þ igAð1Þm �Hmnð2Þ ð218Þ

that is, as three cyclically symmetric equations in the O(3) symmetry basis

((1),(2),(3)) without empiricism. In order to make further progress, a constitutive

relation must be used, as follows, but there is no need to assume the existence of

E� E� empirically. This is proportional to Að1Þ � Að2Þ which is part of the

fundamental definition of the O(3) field tensor [11–20]. The constitutive relation

used is [20]

Hmnð3Þ� ¼ eGmnð3Þ� ð219Þ

so that

Hð3Þ� ¼ 	i
g

m
Að1Þ � Að2Þ ð220Þ

where E and l are the electric permittivity and magnetic permeability of the

sample being magnetized by a circularly polarized electromagnetic field whose

signature, the third Stokes parameter, is proportional to Að1Þ � Að2Þ and therefore

to B(3) (Section III). If the vacuum configuration is assumed to be described by an

O(3) group, it follows that the inverse Faraday effect is due to B(3), and is

empirical evidence for B(3), leading to the development of O(3) electrodynamics.

The magnetization in the IFE is now defined as

qmHmnð1Þ� ¼ Jnð1Þ� þ�Jnð1Þ� ð221Þ
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where

�Jnð1Þ� ¼ igeAð2Þm � Gmnð3Þ ð222Þ

It can be worked out precisely [15] in an electron gas for a visible frequency laser

such as that used by van der Ziel et al. [37]. The magnetic flux density set up in

the electron gas is

B
ð3Þ
sample ¼

N

V

m0e3c2Bð0Þ

2m2o3


 �
B
ð3Þ
free space ð223Þ

where there are N electrons in a volume V , and where m is the mass of the

electron. It is inversely proportional to the cube of the angular frequency of the

circularly polarized laser. The free-space value of B(3) is

B
ð3Þ
free space ¼

m0I

c


 �1=2

ð224Þ

in terms of the intensity I (W/m2) of the laser and so

B
ð3Þ
sample ¼

N

V

m2
0e3c

2m2


 �
I

o3
eð3Þ ð225Þ

For example, for a pulsed Nd-YaG laser [57] where I ¼ 5:5� 1012 W/m2, and

o ¼ 1:77� 1016 rad/s, we obtain

jBð3Þsamplej ¼ 1:06� 10	35 N

V

� 10	9 T ¼ 10	5 G ð226Þ

which for N=V ¼ 1026 m	3 (Avogadro’s number) is the same order of magnitude

as that observed experimentally by van der Ziel et al. [37] in the first inverse

Faraday effect experiment. More generally, g=m is a frequency dependent hyper

polarizability [58], giving the possibility of the as yet undeveloped IFE

spectroscopy with its characteristic [58] spectral fingerprint. IFE spectroscopy

is magnetization near optical resonance caused by the B(3) field in O(3)

electrodynamics and is potentially as useful as infrared or Raman spectroscopy.

We can write Eq. (216) as

qmHmnð1Þ� ¼ Jnð1Þ� þ�Jnð1Þ� ð227Þ

where the transverse current can be developed as

�Jnð1Þ� ¼ eg2Að2Þm � ðAmð1Þ � Anð2ÞÞ ð228Þ
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causes a signal in an induction coil due to the vacuum Bð3Þ field, a component of

Gmnð3Þ. This transverse current causes the inverse Faraday effect as observed

experimentally in an induction coil [37].

The explanation of the IFE in the Maxwell–Heaviside theory relies on

phenomenology that is self-inconsistent. The reason is that Að1Þ � Að2Þ is intro-

duced phenomenologically [56] but the same quantity (Section III) is discarded

in U(1) gauge field theory, which is asserted in the received view to be the

Maxwell–Heaviside theory. In O(3) electrodynamics, the IFE and third Stokes

parameter are both manifestations of the Bð3Þ field proportional to the conjugate

product that emerges from first principles [11–20] of gauge field theory,

provided the internal gauge space is described in the basis ((1),(2),(3)).

Equation (228) can be developed further using the following result:

F� ðG�HÞ ¼ GðF 
HÞ 	HðF 
GÞ ð229Þ

This vector relation shows that

Að2Þm � ðAmð1Þ � Anð2ÞÞ ¼ Amð1ÞðAð2Þm

Anð2ÞÞ 	 Anð2ÞðAð2Þm


Amð1ÞÞ
¼ 	Að0Þ2Anð2Þ ð230Þ

Using

g ¼ k
Að0Þ
¼ o

cAð0Þ
ð231Þ

it is found that

�Jnð2Þ ¼ 	 e
c
o2Anð2Þ ð232Þ

On the one-electron level, the 4-current can be written in terms of the energy

momentum:

�Jnð2Þ ¼ e

mcV
pnð2Þ ð233Þ

defined through the minimal prescription. From Eqs. (232) and (233), we obtain

e ¼ w
c2V
¼ 	 e2

mo2V
ð234Þ

where w is the one-electron susceptibility.

This result is self-consistent with the demonstration [15] that the IFE can be

described through w by using the Hamilton–Jacobi equation for one electron in
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the classical electromagnetic field, but the O(3) derivation is far simpler. The

current �Jð2Þ is due to the field-induced transverse electronic linear momentum

[20].

Consider now the development of Eq. (218). From Eq. (219)

qmHmnð3Þ� ¼ 0 ð235Þ

and so

Jnð3Þ� ¼ 	igAð1Þm �Hmnð2Þ ð236Þ

Equation (235) follows from the theoretical and experimental finding that

[11–20]

qBð3Þ

qt
¼ r� Bð3Þ ¼ 0 ð237Þ

in the vacuum. In Eq. (236), Jnð3Þ� is induced self-consistently in the IFE as

follows.

Use the constitutive relation

Hmnð2Þ ¼ eGmnð2Þ ð238Þ

and the definition

Gmnð2Þ ¼ cðqmAnð2Þ 	 qnAmð2Þ 	 igAmð3Þ � Anð1ÞÞ ð239Þ

with

Að1Þm � ðAmð3Þ � Anð1ÞÞ ¼ 0 ð240Þ

Set n ¼ 3 in Eq. (236) to obtain

J3ð3Þ� ¼ 2igeAð1Þ � Bð2Þ ð241Þ

which is the current induced by the nonlinear cross-product Að1Þ � Bð2Þ. Using

Bð2Þ ¼ r � Að2Þ ð242Þ

this current is equal to that of the orbital IFE [36]

J3ð3Þ� ¼ igeckAð1Þ � Að2Þ

¼ 	 e2

moV
Bð3Þ ð243Þ
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and so J3ð3Þ� is the magnetization current due to B(3) for one electron. There is no

longitudinal source current in Eq. (218) because the source current of circularly

polarized radiation is necessarily transverse, the charge in the source goes around

in a circle whose plane is perpendicular to the (3) axis and the source does not

move forward along the (3) axis. There is therefore no current in the (3) axis, that

is, no source current in the (3) axis as argued.

The technique of RFR is simply the resonance equivalent of the IFE as argued

already, but is potentially of major utility. The techniques of nuclear magnetic

resonance (NMR), electron spin resonance (ESR), and magnetic resonance imag-

ing (MRI), are widely used in contemporary analytical science and medicine,

and all rely on the principle of fermion resonance induced between states of the

Pauli spinor. The resonance pattern is distinct for each sample, and in MRI, an

image can be built up. Optical methods have been used to enhance the subject

considerably [59–65] using laser frequencies. In conventional ESR and NMR,

the resonance is induced by a circularly polarized radio frequency (RF) or

microwave frequency coil, and the population of the energy states of the Pauli

matrices of electron or proton are separated by a very tiny amount by a powerful

and homogeneous magnet, usually a superconducting magnet. The resolving

power of these techniques is limited by the magnetic flux density of the magnet.

This limitation can be removed by replacing the magnet with a circularly

polarized electromagnetic field, resulting in RFR. In theory, the latter technique

has a much greater resolving capability than does NMR or ESR and can be

developed into an MRI technique based on the same principle, the induction of

resonance between the states of the Pauli matrix by a circularly polarized RF

field. The multi-million-dollar superconducting magnet of a conventional ESR

or NMR spectrometer could be replaced in principle by an ordinary RF field.

This result emerges self-consistently at all levels of physics, from the

classical nonrelativistic to the quantum electrodynamic. On the nonrelativistic

classical level, the technique of RFR is due to the interaction of B(3) with the

Pauli matrix. One way of demonstrating this result, which has been observed

empirically [37], is to extend the minimal prescription to complex A, starting

[66] with the Newtonian kinetic energy of the classical electron

HKE ¼
1

2m
p 
 p ð244Þ

where p is its linear momentum and m is its mass. The electron interacts with the

classical electromagnetic field through the O(3) covariant derivative written in

momentum space, in other words, with the minimal prescription with complex A,

with Að1Þ ¼ Að2Þ�. The interaction kinetic energy is therefore the real part of:

HKE ¼
1

2m
ðp	 eAð1ÞÞ 
 ðp	 eAð2ÞÞ ð245Þ
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where Að1Þ and Að2Þ are complex conjugate transverse plane waves for simplicity

of argument. The energy in Eq. (245) can be written out as

HKE ¼
1

2m
p 
 p	 e

2m
Re ðAð1Þ 
 pÞ 	 e

2m
Re ðp 
Að2ÞÞ þ e2

2m
Að1Þ 
Að2Þ ð246Þ

a well-known result of numerous textbooks [67]. The only difference is one of

notation. In the textbooks, A ¼ Að1Þ and A� ¼ Að2Þ. In order to derive the RFR

term, we use Pauli matrices as a basis for three-dimensional space following

Sakurai [68] in his Eq. (3.18). The interaction between the classical electron and

the classical electromagnetic field in this basis is described on the classical level

by

HKE ¼ 	
1

2m
s 
 ðp	 eAð1ÞÞs 
 ðp	 eAð2ÞÞ ð247Þ

and consists of four terms: (1) the magnetic dipole term

H1 ¼ 	
e

2m
p 
 ðAð1Þ þ Að2ÞÞ ¼ e

2m
m0 
Re B ð248Þ

where m0 is the magnetic dipole moment of the electron or proton and Re B is the

real part of the magnetic component of the electromagnetic field, (2) the spin–flip

term

H2 ¼ 	i
e

2m
r 
 p� ðAð2Þ 	 Að1ÞÞ ð249Þ

which, for an electron or proton moving in the Z axis, can be expressed as

H2 ¼ 	e
Að0Þffiffiffi

2
p pZrZ 
 ðj cosfþ i sinfÞ ð250Þ

where

f ¼ ot 	 kZ ¼ o t 	 Z

c


 �
ð251Þ

[it can be seen that if f ¼ 0, the Pauli matrix (or ‘‘spin’’) points in the Y axis;

when f ¼ p=2, in the X axis; when f ¼ p, in the 	Y axis; when f ¼ 3p=2, in

the 	X axis; and when f ¼ 2p, back in the Y axis].

Thirdly, the polarizability term which appears in the textbooks [67], is given

by

H3 ¼
e2

2m
Að1Þ 
Að2Þ ¼ e2

2m
Að0Þ2 ð252Þ
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and is the basis [69] of susceptibility theory, and (4) the RFR term, which is

missing from the textbooks, is given by the real-valued expression

H4 ¼ i
e2

2m
r 
Að1Þ � Að2Þ ¼ 	 e2

2m
Að0Þ2r 
 k ð253Þ

All four terms have been observed empirically. Terms 1–3 are well known, and

term 4 has been observed as a magnetization in europium ion doped glasses by

van der Ziel et al. [37] as argued already. The RFR term therefore emerges self-

consistently with three other well-known and well-observed terms from what is

effectively the O(3) covariant derivative.

This analysis of the classical non-relativistic level can be confirmed by

writing the four Stokes parameters [70] in terms of potentials in free space:

S0 ¼ A
ð1Þ
X A

ð2Þ
X þ A

ð1Þ
Y A

ð2Þ
Y

S1 ¼ A
ð1Þ
X A

ð2Þ
X 	 A

ð1Þ
Y A

ð2Þ
Y

S2 ¼ 	ðAð1ÞX A
ð2Þ
Y þ A

ð1Þ
Y A

ð2Þ
X Þ

S3 ¼ 	iðAð1ÞX A
ð2Þ
Y 	 A

ð1Þ
Y A

ð2Þ
X Þ

ð254Þ

For elliptically polarized electromagnetic radiation

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ¼ S2
3 ð255Þ

and for circularly polarized radiation

S0 ¼ �S3 ð256Þ

Therefore, the existence of Að1Þ 
 Að2Þ, which is proportional to S0 and to field

intensity, implies the existence of � iAð1Þ � Að2Þ, which is an observable

proportional to S3. If the light intensity tensor [70] is defined as

rab ¼
A
ð1Þ
a A

ð2Þ
b

Að0Þ2
ð257Þ

then from Eqs. (254) and (256), in circular polarization:

rab ¼
1

2Að0Þ2
S0 iS3

	iS3 S0

� �
ð258Þ

132 m. w. evans



Now define the Pauli matrices [6,68]

sX �
0 1

1 0

� �
;sY �

1 0

0 	1

� �
;sZ �

0 i

	i 0

� �
ð259Þ

which are interrelated by the following cyclic relation:

sX

2
;
sY

2

h i
¼ i

sZ

2
ð260Þ

The intensity tensor becomes

rab ¼
1

2Að0Þ2
ðS0 	 irZ 
A

ð1Þ � Að2ÞÞ ð261Þ

showing that the RFR term occurs in the fundamental definition of this tensor for

circularly polarized radiation. The RFR term is as fundamental as the intensity

itself, through Eq. (256).

For practical purposes, the critically important feature of the RFR term is its

dependence for a given beam intensity on the inverse of frequency squared of

the beam. This means that the spectral resolution [15] in RFR has the same

dependence. This critically important feature is shown straightforwardly from

the O(3) relations

Bð1Þ ¼ r � Að1Þ; Bð2Þ ¼ r � Að2Þ ð262Þ

so from Eq. (188), the magnetic transverse plane waves are

Bð1Þ ¼ Bð2Þ� ¼ Bð0Þffiffiffi
2
p ðiiþ jÞeiðot	kZÞ ð263Þ

and the electric transverse plane waves are

Eð1Þ ¼ Eð2Þ� ¼ Eð0Þffiffiffi
2
p ði	 ijÞei ot	kZð Þ ð264Þ

an analysis that results in the relation between conjugate products [15]

Að1Þ � Að2Þ ¼ c2

o2
Bð1Þ � Bð2Þ ¼ 1

o2
Eð1Þ � Eð2Þ ð265Þ

Expressing Bð1Þ 
 Bð2Þ in terms of beam power density (I in W/m2) results in

Bð1Þ � Bð2Þ ¼ i
m0

c
Ieð3Þ� ð266Þ

where l0 is the vacuum permeability in SI units.
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The basis of the RFR technique is that a probe photon at a resonance angular

frequency ores can be absorbed under the resonance condition

�hores ¼
e2c2Bð0Þ2

2mo2
ð1	 ð	1ÞÞ ð267Þ

defined by the transition from the negative to the positive states of the Pauli

matrix sZ . This is precisely analogous to the basic mechanism of ESR and NMR

and is a spectral absorption. The RFR resonance frequency is therefore

fres ¼
ores

2p
¼ e2m0c

2p�hm


 �
I

o2
ð268Þ

and is inversely proportional to the square of the angular frequency ores of the

circularly polarized pump electromagnetic field replacing the superconducting

magnet of ESR, NMR, and MRI [69].

For 1H proton resonance, the result (268) is adjusted empirically for the

different experimentally observed g factors of the electron (2.002) and proton

(5.5857). A more complete theory must rest on the internal structure of the

proton or other nuclei. The basic theory of RFR is straightforward, however, and

a term emerges with three other well-known terms. In principle, RFR can

investigate nuclear properties using microwave or RF generators instead of

multi-million superconducting magnets.

For proton resonance therefore, the RFR equation [15] is

ores ¼
5:5857e2m0c

2:002�hm


 �
I

o2
¼ 1:532� 1025 I

o2
ð269Þ

and some data from this equation are shown in Table I, where it is seen that RFR

proton resonances can be far higher than those in conventional NMR. The

TABLE I

RFR Frequencies from Eq. (27) for the Proton for I ¼ 10 W/cm2

Pump Frequency Resonance Frequency

5000 cm	1 (visible) 0.28 Hz

500 cm	1 (infrared) 28.0 Hz

1.8 GHz 1.8 GHz (autoresonance)

1.0 GHz (microwave) 6.18 GHz

0.1 GHz (RF) 20.6 cm	1 (far infrared)

10.0 MHz (RF) 2,060 cm	1 (infrared)

1.0 MHz (RF) 206,000 cm	1 (ultraviolet)
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concomitant resolution in RFR is also far higher than in NMR, and as will be

shown, the RFR technique has its own spectral fingerprint or chemical shift

pattern. The spinup–spindown population difference in RFR is also orders of

magnitude greater [15] than in NMR, and because of this, the homogeneity of the

pump electromagnetic field is not critical theoretically. This is another advantage

of the RFR technique. Any remaining objection to the existence of RFR is re-

moved by the empirical fact that the term (253) has been observed experimentally

as a magnetization [37]. The only remaining experimental challenge is to induce

resonance between the states of s in term (253).

If RFR is applied to the electron, the same overall advantage is obtained; the

equivalent of Eq. (269) is

ores ¼ 1:007� 1028 I

o2
ð270Þ

These conclusions can be obtained on the nonrelativistic level, and it is possible

in theory to practice proton and electron spin resonance without permanent

magnets, at much higher resolution, without the need for very high homogeneity,

and with a novel chemical shift pattern, or spectral fingerprint, determined by a

site-specific molecular property tensor, to be described later in this section.

On the classical relativistic level, the starting point is the Einstein equation

pmpm ¼ m2c2 ð271Þ

where pm and pm are energy/momentum 4-vectors. In order to demonstrate RFR,

Eq. (271) is rewritten in the basis (260) using the gamma matrices [68]

gmpm gmpm ¼ m2c2 ð272Þ

and the classical electromagnetic field is introduced through the O(3) minimal

prescription:

gmðpm 	 eAð1Þm Þgmðpm 	 eAð2Þm Þ ¼ m2c2 ð273Þ

In the compact Feynman slash notation [68], Eq. (272) becomes

6p6p ¼ m2c2 ð274Þ

and Eq. (273) becomes

ð6p	 e 6Að1ÞÞð6p	 e 6Að2ÞÞ ¼ m2c2 ð275Þ
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This is the classical relativistic expression for the interaction of an electron

or proton with the classical electromagnetic field. The quantized version of

Eq. (275) is the van der Waerden equation [1] as described by Sakurai [68] in his

Eq. (3.24). The RFR term in relativistic classical physics is contained within the

term e26Að1Þ6Að2Þ, a result that can be demonstrated by expanding this term as

follows

e26Að1Þ6Að2Þ ¼ e2gmAð1Þm gmAð2Þm

¼ e2ðg0A
ð1Þ
0 	 c 
Að1ÞÞðg0A

ð2Þ
0 	 c 
Að2ÞÞ ð276Þ

Using the well-known relation between the gamma and Pauli matrices [68]

ðc 
 pÞðc 
 pÞ ¼
0 r

	r 0

� �



p 0

0 p

� �
0 r

	r 0

� �



p 0

0 p

� �

¼
ðr 
 pÞðr 
 pÞ 0

0 ðr 
 pÞðr 
 pÞ

� �
ð277Þ

it is found that

e2 6Að1Þ 6Að2Þ ¼ e2ðAð1Þ0 A
ð2Þ
0 	 Að1Þ 
 Að2Þ 	 ir 
Að1Þ � Að2ÞÞ ð278Þ

an expression that includes the RFR term

TRFR ¼ 	ie2r 
Að1Þ � Að2Þ ð279Þ

On the nonrelativistic quantum level, both the time-independent and time-

dependent Schrödinger equations can be used to demonstrate the existence of

RFR. As shown by Sakurai [68], the time-independent Schrödinger–Pauli

equation can be used to demonstrate ordinary ESR and NMR in the nonrela-

tivistic quantum limit. This method is adopted here to demonstrate RFR in

nonrelativistic quantum mechanics with the time-independent Schrödinger–

Pauli equation [68]:

Ĥc ¼ Enc ð280Þ

where the Hamiltonian operator is

Ĥ ¼ 1

2m
ðr 
 pÞðr 
 pÞ þ V0 ð281Þ

Here, V0 is the potential energy, which, however, does not affect the RFR term.

This method is first checked for its self-consistency using a real-valued potential
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function A corresponding to a static magnetic field, then the same equation is

used to demonstrate the existence of the RFR term.

In a static magnetic field, the minimal prescription shows that the time-

independent Schrödinger–Pauli equation of a fermion in a classical field is

Ĥ ! 1

2m
ðr 
 ðpþ eAÞÞðr 
 ðpþ eAÞÞ þ V ð282Þ

The usual ESR or NMR term is obtained from

Ĥc ¼ i
e

2m
ðr 
 p� Aþ r 
A� pÞcþ � � �

¼ e�h

2m
r 
 ðr � ðAcÞ þ A�rcÞ þ � � �

¼ e�h

2m
r 
 ððr � AÞcþ ðrcÞ � Aþ A� ðrcÞÞ þ � � �

¼ e�h

2m
r 
Bcþ � � �

ð283Þ

and is the famous ‘‘half-integral spin’’ first derived by Dirac in relativistic

quantum mechanics. However, it also exists in nonrelativistic quantum

mechanics as just shown [68], but is a purely quantum term with no classical

equivalent because it depends on the operator relation:

p! 	i�hr ð284Þ

This is the spin Zeeman effect and in perturbation theory [69] gives the nonzero

ground-state energy:

En ¼ e�h

2m
0 r 
Bj j0i 6¼ 0h ð285Þ

It is the basis for all ESR and NMR.

To obtain the RFR term on this level, the same method is used for complex-

valued A. This gives an extra classical term, or expectation value, which can be

written as

En ¼ ie2

2m
r 
Að1Þ � Að2Þ ð286Þ

Perturbation theory gives the ground-state term

En ¼ ie2

2m
h0 r 
Að1Þ � Að2Þ
�� ��0i ð287Þ
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which is again classical and real-valued. It has the inverse square frequency

dependence described already and exists on the nonrelativistic quantum level

according to the correspondence principle. Therefore the RFR term is unlike the

ESR or NMR terms in that the RFR term is classical while the other two are

quantum.

The time-dependent Schrödinger equations

H	 ¼ i�h
q	
qt

ð288Þ

H ¼ Hð0Þ þ H1ðtÞ ð289Þ
	ðtÞ ¼ 	

n
e	iEnt ð290Þ

can also be applied to the RFR phenomenon. A two-level system can be

considered to consist of the fermion in its spinup and spindown states (states of

the Pauli matrix). The unperturbed two-level system has energies E1 and E2 and

eigenfunctions c1 and c2. These are solutions of [69]:

Hð0Þcn ¼ En cn ð291Þ

In the presence of a time-dependent perturbation Hð1ÞðtÞ, the state of the system

is described by a linear combination of basis functions:

	ðtÞ ¼ a1ðtÞ	1ðtÞ þ a2ðtÞ	2ðtÞ ð292Þ

and the system evolves under the influence of the perturbation, so a1 and a2 are

also time-dependent. If it starts as state 1, it may evolve to state 2. The

probability at any instant that the system is in state 2 is a2 tð Þa�2 tð Þ, and the

probability that it remains in state 1 is.

a1ðtÞa�1ðtÞ ¼ 1	 a2ðtÞa�2ðtÞ ð293Þ

Therefore

H	 ¼ a1Hð0Þ	1 þ a1Hð1ÞðtÞ	1 þ a2Hð0Þ	2 þ a2Hð1ÞðtÞ	2

¼ i�h
q
qt
ða1	1 þ a2	2Þ

¼ i�ha1
q	1

qt
þ i�h

qa1

qt
	1 þ i�ha2

q	2

qt
þ i�h

qa2

qt
	2 ð294Þ

Each basis function satisfies

Hð0Þ	n ¼ i�h
q	n

qt
ð295Þ
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and therefore

a1Hð1ÞðtÞ	1 þ a2Hð1ÞðtÞ	2 ¼ i�h _a1	1 þ i�h _a2	2 ð296Þ

This equation is

a1Hð1ÞðtÞc1e	iE1t=�h þ a2Hð1ÞðtÞc2e	iE2t=�h ¼ i�h _a1c1e	iE1t=�h þ i�h _a2c2e	iE2t=�h

ð297Þ

and can be multiplied through by c�1 and integrated over all space. Since c1 and

c2 are orthonormal

a1H
ð1Þ
11 ðtÞe	iE1t=�h þ a2H

ð1Þ
12 ðtÞe	iE2t=�h ¼ i�h _a1e	iE1t=�h ð298Þ

Similarly, multiply through by c�2:

a1H
ð1Þ
21 ðtÞe	iE1t=�h þ a2H

ð1Þ
22 ðtÞe	iE2t=�h ¼ i�h _a2e	iE2t=�h ð299Þ

Here

H
ð1Þ
ij ðtÞ �

ð
c�i Hð1ÞðtÞcj dt ð300Þ

and c1 and c2 are time-dependent parts of the wavefunction of states 1 and 2 of

the unperturbed fermion. Thus

H
ð1Þ
11 ðtÞ �

ð
c�1Hð1ÞðtÞc1 dt � h1jHð1ÞðtÞj1i ð301Þ

and so on.

At this point, the RFR Hamiltonian is inputted:

Hð1ÞðtÞ ¼ i
e2

2m
r 
Að1Þ � Að2Þ ð302Þ

so the existence of H
ð1Þ
11 ðtÞ and H

ð1Þ
12 ðtÞ and so on depends on the properties of s

between fermion states.

Define

S � 1

2
�hr ð303Þ
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and

a � 1

2
;
1

2

����� � state 1

b � 1

2
;	1

2

����� � state 2

ð304Þ

then

SZa ¼
1

2
�ha; SZb ¼ 	

1

2
�hb ð305Þ

and

hajSZ jaji ¼
1

2
�h ¼ 1

2
�h

ð
a�adt

hajSZ jbi ¼ 0 ¼ 	 1

2
�h

ð
a�bdt

ð306Þ

Now define

Bð3Þ� � 	i
e

�h
Að1Þ � Að2Þ ð307Þ

and

Hð1ÞðtÞ ¼ 	 e

m
S 
Bð3Þ ¼ 	 e

m
SZB

ð3Þ
Z ð308Þ

So Eqs. (252) and (253) become

a1H
ð1Þ
11 ðtÞ ¼ i�h _a1 ð309Þ

a2H
ð1Þ
22 ðtÞ ¼ i�h _a2 ð310Þ

because

H
ð1Þ
11 ðtÞ ¼ 	

e�h

2m
B
ð3Þ
Z ; H

ð1Þ
12 ðtÞ ¼ 0

H
ð2Þ
22 ðtÞ ¼

e�h

2m
B
ð3Þ
Z ; H

ð1Þ
21 ðtÞ ¼ 0

ð311Þ

Equations (309) and (310) are decoupled differential equations of the form

_a1 ¼ i
eB
ð3Þ
Z

2m
a1; _a2 ¼ 	i

eB
ð3Þ
Z

2m
a2 ð312Þ
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where

B
ð3Þ
Z �

e

�h
Að0Þ2 ð313Þ

with the constraint:

a1a�1 þ a2a�2 ¼ 1 ð314Þ

A particular solution of Eqs. (312) and (313) is

a1 ¼
1ffiffiffi
2
p exp i

etB
ð3Þ
Z

2m

 !
; a2 ¼

1ffiffiffi
2
p exp 	i

etB
ð3Þ
Z

2m

 !
ð315Þ

The perturbed wave function is therefore:

	 ¼ 	1ffiffiffi
2
p exp i

etB
ð3Þ
Z

2m

 !
þ 	2ffiffiffi

2
p exp 	i

etB
ð3Þ
Z

2m

 !
ð316Þ

and

p1 ¼ a1a�1 ¼ 0:5

p2 ¼ a2a�2 ¼ 0:5
ð317Þ

The probability of finding the system in one state or the other remains constant at

50%, and:

	 ¼ 	ffiffiffi
2
p exp iorestð Þ þ 	ffiffiffi

2
p expð	iorestÞ ð318Þ

where

ores ¼
eB
ð3Þ
Z

2m
ð319Þ

is the radiatively induced resonance frequency defined by

�hores ¼ Hð1ÞðtÞ ð320Þ

The final result is:

	 ¼ 	1ffiffiffi
2
p eiorest þ 	2ffiffiffi

2
p e	iorest ð321Þ
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where

H	 ¼ i�h
q	
qt

ð322Þ

which is a combination of states with energies��hores. The RFR term prepares or

dresses the fermion in a combination of a and b spin states analogously with ESR

or NMR.

On the relativistic quantum level, the Einstein equation becomes the van der

Waerden equation [1,68] with the usual operator rules

pm ! i�hqm

pm ! i�hqm
ð323Þ

to give

ðigmqmÞðigmqmÞcW ¼
m2c2

�h2
cW ð324Þ

where cW is a two component wave function as described by Sakurai [68] in his

Eq. (3.24). The classical electromagnetic field is introduced into eq. (324) using

O(3) covariant derivatives to give the term e26Að1Þ6Að2Þ on the quantum relativistic

level. The Dirac equation is obtained from the van der Waerden equation [68]

using standard methods, and the two equations are equivalent. The RFR term was

indeed first derived [15] using the Dirac equation.

On the level of quantum electrodynamics [17], a classical expression such as

H ¼ e2

2m
ðr 
Að1ÞÞðr 
Að2ÞÞ ð325Þ

becomes the interaction Hamiltonian

H ¼ e2

4m�he0V

X
k

I

ok

aþk ak þ
X

q

sð3Þ

oq

ðaþq ak	q 	 aqaþk	qÞ
 !

ð326Þ

describing the exchange of a photon that results in the change of the spin of the

electron. This process is equivalent [17] to the absorption of a photon in the

atomic transition i! j and the absorption of a photon in the atomic transition

j! i.

The free Hamiltonian term quadratic in Bð3Þ must also be considered and is

H1 ¼
e

2oqe0V

X
k;k0;q

ðaþkþqakaþk0	qak0 Þ ð327Þ

This term appears only in O(3) quantum electrodynamics and describes the

interaction between four photons [17]: the absorption of photons with modes
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k þ q and k0 	 q and the emission of photons with modes k and k0. This is a

physical process where two photons interact and mutually exchange momenta,

and is a process that is observable only in O(3) quantum electrodynamics. The

effect has been observed empirically by Tam and Happer [71] in two interacting

circularly polarized lasers and was explained using the concept of long range

spins by Naik and Pradhan [72]. If the direction of the rotation of the polarization

is the same, the two beams attract and vice versa. In O(3) quantum electro-

dynamics [17], the effect is a form of self-focusing or photon bunching that

would result if the spins of the photons were aligned in the same direction, as

observed empirically [71]. This result also suggests that O(3) quantum

electrodynamics could account for light-squeezing effects and also photon

anti-bunching if the photon spins were opposite.

The O(3) quantum electrodynamic equivalent of the RFR effect has been

numerically analyzed by Crowell [17] using the Hamiltonian (327). Numeri-

cally, it is possible to consider only a finite number of photon modes, and the

difference in energy between these modes is set equal to the difference between

the two spin states of the fermion. More complex situations were also analyzed

[17]. Crowell discovered a variety of effects numerically, including modified

Rabi flopping, which has an inverse frequency dependence similar to that obser-

ved in the solid state in reciprocal noise [73]. The latter is also explained by

Crowell [17] using a non-Abelian model. A variety of other effects of RFR on

the quantum electrodynamical level was also reported numerically [17]. The

overall result is that the occurrence, classically, of the Bð3Þ field means that there

is a quantum electrodynamical Hamiltonian generated by the classical term

proportional to 1
2

Bð3Þ2. This induces transitional behavior because it contributes

to the dynamics of probability amplitudes [17]. The Hamiltonian is a quartic

potential where the value of Bð3Þ determines the value of the potential. The latter

has two minima: one where Bð3Þ ¼ 0 and the other for a finite value of the Bð3Þ

field, corresponding to states that are invariants of the Lagrangian but not of the

vacuum.

Another potentially useful feature of RFR is that its site specificity is different

from that of NMR or ESR, because RFR relies on a different molecular property

tensor [74]. In a precursor to RFR, called optical NMR (ONMR) [59–65], site

specificity has been demonstrated at a spatial resolution corresponding to

quantum dots, a dramatic demonstration of the enhancement possible with the

use of circularly polarized lasers or circularly polarized microwave fields such

as in RFR.

The calculation of the chemical shift in RFR is straightforward [74] and

relies on a calculation of the second-order perturbation energy (SI units)

En ¼
X

n

0 Hj jnh i n Hj j0h i
�ho0n

ð328Þ
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with the perturbation Hamiltonian

H ¼ 1

2m
ðpþ eðAþ ANÞÞ2 þ V ð329Þ

where

AN ¼
m0

4pr3
mN � r ð330Þ

is the vector potential [69] due to the nuclear dipole moment mN . The

perturbation term relevant to the RFR chemical shift is the one photon off-

resonance population term [74], which is by far the dominant chemical shift term

(where c.c. ¼ complex conjugates):

En ¼ i
e3

m2�ho0n

X
n

h0 p 
Aj jnihnjAN 
A�j0i þ c:c: ð331Þ

The transition electric dipole moment is defined by [74]

h0jmjni ¼ e

mo0n

h0jpjni ð332Þ

and the vector relations:

iðl� ðmN � rÞÞ 
 ðAð1Þ � Að2ÞÞ
¼ iðl 
AÞððmN � rÞ 
Að2ÞÞ 	 iðl 
Að2ÞÞððmN � rÞ 
AÞ ð333Þ

and

l� ðlN � rÞ ¼ ðl 
 rÞmN 	 ðl 
mNÞr ð334Þ

demonstrate that Eq. (331) may be written as

E ¼ � i
e2

2m
r 
Að1Þ � Að2Þ


 �
ð335Þ

where

� ¼ gNem0

8pm

X
n

hojljnihnj r

r3
j0i ð336Þ

Here, mN ¼ gNðe=4mÞ�hr and Eq. (335) defines the RFR chemical shift factor

or shielding constant. This depends on the novel molecular property tensor in
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Eq. (336), which is not the tensor that defines the well-known NMR chemical

shift through the Lamb shift formula of NMR [69]. The order of magnitude of �
is about 10	6, roughly the same as in NMR. The complete RFR spectrum from

the protons in atoms and molecules is therefore

Eint ¼ i
e2

2m
ð1þ �Þr 
Að1Þ � Að2Þ ð337Þ

and is site-specific because of the site specificity of �.

The experimental or empirical demonstration of RFR is a logical conse-

quence of the detection of a term proportional to r 
Að1Þ � Að2Þ by van der Ziel

et al. [37], and some experimental details are suggested here. It would be

necessary to work initially on the interaction of a fermion beam with an

electromagnetic beam. All levels of one fermion theory given in this section

could then be tested under conditions that most closely approximate the theory.

A successful demonstration of RFR would require careful engineering in the

matter of beam interaction. The IFE has been demonstrated at 3.0 GHz by

Deschamps et al. [75], and this experiment provides clues as to how to go about

detecting RFR. It seems that the simplest demonstration is autoresonance,

where the circularly polarized pump frequency (o) is adjusted to be the same as

the RFR frequency (ores):

ores ¼ o ð338Þ

Under this condition, the pump beam is absorbed at resonance because the pump

frequency matches the resonance frequency exactly. Equation (270) simplifies to

o3
res ¼ 1:007� 1028I ð339Þ

Therefore, we can tune ores for a given I, or vice versa, using interacting fermion

and electromagnetic beams. Since autoresonance must appear in the gigahertz

range if the pump frequency is in this microwave range, the setup in Ref. 75 can

be used as a starting point for the RFR design. Essentially, the magnetization 75

must be converted into a resonance. In Ref. 75, a pulsed microwave signal at 3.0

GHz was detected from a klystron delivering megawatts of power over 12 ms with

a repetition rate of 10 Hz. The TE11 mode was circularly polarized inside a

circular waveguide of 7.5 cm diameter. A plasma was created by the very intense

microwave pulse. To detect RFR experimentally, the same standard of

engineering would have to be reached with an electromagnetic beam interacting

with an electron beam, rather than a plasma, which contains positive ions [15].

To detect resonance, the intensity of the microwave radiation would be much

lower, and governed by the autoresonance equation (339). As in the design used
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by Deschamps et al. [75], the section of the waveguide surrounding the tube

would perhaps be made of nylon coated with a micrometer-range layer of copper.

The incoming electron beam would have to be guided carefully into the circular

waveguide used to circularly polarize the microwave radiation. The engineering

design for RFR probably has to be at least as accurate as in the experiment [75] in

which magnetization was detected in the IFE at 3.0 GHz in a plasma. Cross-

referencing with the detection of the term r 
Að1Þ � Að2Þ in Ref. 37, at least part

of the signal detected by Deschamps et al. must be due to the RFR term, which is

the interaction of Bð3Þ with the Pauli spinor. Contemporary IFE experiments [76]

in plasma routinely detect this term and so routinely detect the Bð3Þ field.

Equation (339) predicts that the resonance occurs at 3.0 GHz if I is tuned to

0.0665 W/cm2 for an electron beam. For a circular waveguide of 7.0 cm

diameter, this requires only 2.94 W of power.

The preceding estimate is based on one-fermion theory, so the observed

resonance frequency in a fermion beam may be different as a result of fermion–

fermion interaction. Therefore, it is strongly advisable that I be tunable over a

wide range to search for the actual resonance pattern. The same experiment can

then be repeated in a proton, atomic or molecular beam and the RFR effect

should be I=o2-dependent with a pattern of resonance determined by the novel

chemical shift factor �. Spin–spin interaction between fermions would split the

spectrum as in ordinary NMR, but the RFR fingerprint would be unique.

It is to be emphasized finally that the RFR technique is simply the resonance

equivalent of a magnetization term proportional to r 
Að1Þ � Að2Þ that has now

been observed on numerous occasions [76] in the IFE in paramagnetic materials

and plasma. The experimental challenge is to convert this magnetization to

resonance.

VIII. CORRECTIONS TO QUANTUM ELECTRODYNAMICS IN
O(3) ELECTRODYNAMICS

As discussed by Crowell [17], quantized electric and magnetic fields exist in a

vacuum that is composed of virtual photons that are the result of the Heisenberg

uncertainty fluctuations in the electric and magnetic fields. These fluctuations

can be considered as first-order terms, and second-order terms involve

fluctuations with electrons and positrons. These virtual pairs [17] are randomly

distributed in the vacuum, but an electric field will preferentially align, or

polarize, the virtual charge separation. Therefore a photon, with its oscillating

electric field, will be associated with these virtual pairs of electrons and positrons

that are polarized with the photon electric field. In the formal language of

quantum electrodynamics, this is represented by Feynman diagrams [6,17].

The magnetic field is oriented perpendicular to the plane inscribed by a

completely polarized electron–positron pair [17]. The virtual electron–positron
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is accompanied by a virtual electromagnetic field, and as discussed by Crowell

[17], the charges of the virtual pair will separate under the influence of the

photon electric field. The magnetic field lines of the virtual electron–positron

pair will preferentially align with the magnetic field of the photon. Therefore

quantum theory is the action of the vacuum on particles and fields, so there are

terms such as Eð1;2Þ þ dEð1;2Þ and Bð1;2Þ þ dBð1;2Þwhere the variational terms are

quantum fluctuations. Now, following the argument by Crowell [17], consider

the differential form F ¼ dA, which can be written in spacetime as

F ¼ Fmndxm ^ dxn ð340Þ

The Yang–Mills functional [17] is defined by the integration of the wedge

product F ^� F, where * denotes the Hodge dual-star operator

k ¼ 1

8p2

ð
ðm;gÞ

FmnFabdxm ^ dxn ^ dxa ^ dxb ð341Þ

and where k is the instanton number. The electric and magnetic fields on the

manifold of three dimensions are

Ei ¼ e0jiF
0j; Bi ¼ ekjiF

kj ð342Þ

and the Yang–Mills functional is

k ¼ 1

16p

ð
ð½Ei;Bj� þ ½dEi; dBj�Þd4x ð343Þ

leading to the equal time commutator [17]

½dEa
i ðr; tÞ; dBb

j ðr0; tÞ� ¼ �hdijd
abdðr	 r0Þdðt 	 t0Þ ð344Þ

where the O(3) indices are included. Quantum-mechanically, the electric and

magnetic fields are conjugate variables, and the uncertainty relationship is

dictated by the fluctuations in these fields in the vacuum.

These field fluctuations in the vacuum will interact with the photon’s electric

and magnetic fields. The fluctuation in the interaction energy due to the

magnetic field is given by [17]

dE ¼
ð
dðj 
 AÞ ¼

ð
H 
 dB d3r ð345Þ

and can be estimated from the quantized flux 2p�h=e: This term is responsible for

the Lamb shift in the energy levels of atoms such as the hydrogen atom. The
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magnetic field fluctuation is defined as the magnetic flux quanta multiplied by the

small area enclosed by the electron-positron pair, an area that is determined by

the coordinate fluctuations of the electron and positron, and that can be estimated

by using the energy fluctuation dE ¼ dmc2, the uncertainty relation between the

energy and the time dEd t ¼ �h and the uncertainty in the position dx ¼ cd t.

The magnetic field fluctuation is approximately 5:6� 104 T over a range of

about 10	15 m, and lasts for about 10	23 s. Fluctuations on this scale occur at

about the classical radius of the electron.

O(3) electrodynamics predicts the existence of the B(3) field, which must also

have an effect on the stochastic motion of an electron on a fine scale [17]. There

exists in theory [17] the commutator

½dE
ð3Þ
i ðr; tÞ; dB

ð3Þ
j ðr0; tÞ� ¼ �hdijdðr	 r0Þdðt 	 t0Þ ð346Þ

and the uncertainty fluctuations:

dBð3Þ ¼ e

�h
ðdAð1Þ � Að2Þ þ Að1Þ � dAð2ÞÞ ð347Þ

The magnetic vector potentials will have the magnitude jBð3Þj=k, so the

magnitude of the B(3) fluctuation is expected to be [17]

jdBð3Þj ¼ 2e

�hk2
ðjdBjjBjÞ ð348Þ

The fluctuation in the ordinary magnetic field in this expression is

dB ¼ p
2

ðdmÞ2

e�h
ð349Þ

which is about 5:6� 104 T. The magnetic field associated with the photon,

without quantum fluctuations, is about 3� 10	14 T, so the fluctuation in B(3) is

approximately 6� 10	7 T. These result from virtual electron–positron pairs and

are expected to be 10 orders of magnitude smaller than the standard magnetic

field, giving measurable contributions to quantum electrodynamics in the

10-GeV range [17].

Crowell [17] argues that the vacuum contribution to the virtual B(3) field is a

very small effect, about a millionth of the Lamb shift.

The nonrelativistic estimate of the contribution of B(3) to the Lamb shift was

first carried out by Crowell [17] as follows. The interaction of the radiation field

with the electron is given by

H ¼ e

c

ð
d3r jðrÞ 
 AðrÞ ð350Þ
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The Ampère law is next used with a covariant definition of the curl operator

r ! D� ¼ r�þ i
e

�h

X
i

Ai� ð351Þ

implying

jðrÞ 
AðrÞ ¼ DðrÞ �HðrÞ 
AðrÞ
¼ HðrÞ 
D� AðrÞ þ D 
HðrÞ � AðrÞ ð352Þ

The last term is a boundary operator and is discarded, leaving a B(3) contribution

H ¼ 	i
e2

�hc

ð
d3rH 
Að1Þ � Að2Þ ð353Þ

which leads to the Lamb shift due to B(3). The interaction Hamiltonian (353) will

induce the spontaneous emission of a photon with wave number o ¼ ck and an

atomic state transition jni ! jn0i; which gives the second-order perturbation

shift in energy

�En ¼
X

n0

X
k;e

jhn0; k; ejHintjn; 0ij2

En 	 En0 	 ck

 !
ð354Þ

where E is the polarization state of the emitted photon. First, consider the term

B ¼ r� A with A ¼ A E. The matrix elements of the interaction Hamiltonian

are

hn0; k; ejHintjn; 0i ¼ e4

m2c2
A3hp� e 
 e� e�i ð355Þ

and if the sum over the photon numbers goes to the continuum, the energy shift is

�En ¼ 	
e4

m2c2
A3

ð
d3k

k3

X
n0;e

jhn0; kjp 
 e�jn; 0ij2

En 	 En0 	 ck0
ð356Þ

where the factor ð2p�hÞ	3
is absorbed into A(3). Now Crowell [17] sums over the

polarization states and puts the integral in spherical coordinate form:

�En ¼ 	
e4

m2c2
A3

ð1
0

dk

k

X
n0

jhn0jp 
 e�jnij2

En 	 En0 	 ck
ð357Þ

The integration of this result leads to

�En ¼ 	
e4

m2c2
A3
X

n0

jhn0jp 
 e�jnij2

En 	 En0
lim
k!0

ln 1þ E0n 	 En

�hkc


 �
ð358Þ

o(3) electrodynamics 149



which is divergent. This divergence is dealt with by recognizing that the

probability of emitting a photon depends on the electron current as a function of

wave number, so that the dipole approximation becomes

jhn0; kejpjn; 0ij ¼ jhn0jpjn; 0ij2j jðkÞj2 ð359Þ

where j(k) is a current for each wave number k divided by the total current, a ratio

that reflects the percentage of photons that are emitted with a given k. For a finite

number of photons, this will be a Poisson distribution. If the sample size of

photons is very large, but if the number of photons emitted is far less, then

j jðkÞj � k; and the following result is obtained

�En ¼ 	
e4

m2c2
A3
X

n0

jhn0jp 
 e�jnij2

En 	 En0
ln 1	 �hkc

En 	 E0n


 ������
1

0

ð360Þ

an integral that is logarithmically divergent in the ultraviolet range [17].

In U(1) quantum electrodynamics, the ultraviolet divergence is removed [17]

by countering it with a similar term. For the free electron, there is the infinite

term

�Ee	 ¼
2e2

3pm2c2

X
q

hqjpjpi2
ð1

0

dk ð361Þ

leading to the mass renormalization of the electron from the energy shift:

Ee	 ¼ E0
e	 þ�Ee	 ¼

1

p
hjpji þ 2e2

3pm2c2
hjpji2

ð1
0

dk ð362Þ

An analogous process in O(3) quantum electrodynamics involves, following

Crowell [17], the coupling of the electron with a nonlinear photon coupling

corresponding to the energy shift:

�EBð3Þ

e	 ¼
X
k;n

jhn; k; ejp2jAj2Aj0; 0ij2

¼ 	 8p
3

�h2e4

m2c2m4
A3
X

n0
jhn0jpjnij2

ð1
0

dk

ð363Þ

This correction is added to the energy shift due to the B(3) field to give

�EBð3Þ

e	 ¼ 	
8p
3

�h2e4

m2c2m4

1

�hc
A3
X

n0
jhn0jpjnij2

ð1
0

dk
ðEn0 	 EnÞ

En0 	 En 	 �hkc
ð364Þ
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which is logarithmically divergent, a divergence that is countered by the fact that

the amplitudes drop off sharply for processes with frequencies �ho > 2mc2,

where m is the mass of the virtual electron and positron. The integral (364) can be

cut off at this value, giving the final result:

�EBð3Þ

e	 ¼ 	
8p
3

�h2e4

m2c2m4
aA3

X
n0
jhn0jpjnij2 ln

2mc2

En0 	 En 	 �hkc


 �
ð365Þ

The calculation of the Lamb shift due to B(3) is completed by using the equations

Hjni ¼ Enjni ð366Þ

and

X
n0

jhn0jpjnij2

ðE0n0 	 EnÞ
¼ hn0j p

ðH0 	 EnÞ

 pjni ð367Þ

The momentum operator acts on (H0 	 EnÞ	1
as

p

ðH0 	 EnÞ
¼ 	 p

ðH0 	 EnÞ2
H0 ð368Þ

and the action of the two momentum operators on the free Hamiltonian is

p

ðH0 	 EnÞ

 p ¼ ½ p 
 ½H0; p�� ð369Þ

In the Lamb shift, the Coulomb potential between proton and electron contributes

to the commutator in the hydrogen atom, and the commutator with the free

Hamiltonian becomes ð�h2e2=2Þr2ð1=rÞ; which gives a delta function that is

evaluated in the matrix element when written out by completeness as an integral

over space:

e2�h2

2
hnjr2 1

r
jni ¼ e2�h2

2

ð
d3rc�ðrÞ2pdðrÞcðrÞ ð370Þ

For an atom in the s state, we have jcj2 ¼ ½1=pðna0Þ3�; where n is the principle

atomic number and a0 is the Bohr radius. The Lamb shift due to B(3) is therefore

LambðBð3ÞÞ ¼ 1

3p2

e2

a0


 �
a5 ln

2mc2

Em 	 En


 �
ð371Þ
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which is 5:33� 10	5 of the standard Lamb shift. This answer is about five times

the quantum fluctuation estimate made already.

On the relativistic level in O(3) quantum electrodynamics [O(3) QED], the

Lagrangian density is

L ¼ 	 1

4
Fa
mnF

amn ð372Þ

with the gauge covariant field:

Fa
mn ¼ qnAa

m 	 qmAa
n þ igeabc½Ab

n;Ac
m� ð373Þ

Variational calculus with this Lagrangian density leads [17] to the field equation:

qmFamn þ igeabcAb
mFcmn ¼ 0 ð374Þ

with electric and magnetic components:

Ea
i ¼ Fa

i0 ¼ 	 _Aa
i 	riA

a
0 þ igeabcAb

0Ac
i ð375Þ

In O(3) QED, the components of the vector potentials are expanded [17] in a

Fourier series of

ek
ijB

a
k ¼ riA

a
j 	rjA

a
i þ igeabcAb

i Ac
j ð376Þ

modes, with creation and annihilation operators that act on the Fock space of

states, with box normalization within a quantization volume V that has periodic

boundary conditions, thus giving:

Aa
i ðr; tÞ ¼

X
k

1

ð2oVÞ1=2
ðeia

aðkÞeik 
 r þ eia
aþðkÞe	ik 
 rÞ ð377Þ

The electric and magnetic components within O(3) QED are then

Ea
i ¼

X
k

1

ð2oVÞ1=2

jkj
c

eia
aðkÞeik 
 r þ jkj

c
eia

aþðkÞe	ik 
 r


 �
ð378Þ

ek
ijB

a
k ¼

X
k

1

ð2oVÞ1=2
ðk½ jei�a

aðkÞeik 
 r þ k½ jei�eia
aþðkÞe	ik 
 rÞ

þ igeabc
X
kk0

e½ jei�ðabðkÞeik 
 r þ abþðkÞe	ik 
 rÞðacðk0Þeik0 
 r þ acþðk0Þe	ik 
 rÞ

ð379Þ
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and the Hamiltonian for this non-Abelian field theory [17] contains novel quartic

terms.

If A
ð3Þ
i is phase-free, as discussed in Section III, and in Ref. 15, there are no

longitudinal electric field components. This also occurs if A
ð3Þ
i is zero [17]. The

Bð3Þ field is then a Fourier sum over modes with operators aþk	qaq and is

perpendicular to the plane defined by Að1Þ and Að2Þ. The four-dimensional dual

to this term is defined on a time-like surface, following Crowell [17], which can

be interpreted as Eð3Þ under dyad vector duality in three dimensions. The Eð3Þ

field vanishes because of the nonexistence of the raising and lowering operators

að3Þ; að3Þþ. The Bð3Þ is nonzero because of the occurrence of raising and lowering

operators in the expansion of Að1Þ and Að2Þ. These facts imply that Bð3Þ is

phaseless and longitudinal, but they do not necessarily represent a breakdown of

duality because [15] cBð3Þ can be dual to an imaginary valued iEð3Þ.
The effect of a local gauge transformation (Sction II) on the classical B(3)

field is described as

Bð3Þ
0
¼ igAð1Þ � Að2Þg	1 ð380Þ

where the group element g is an algebraic generator g ¼ eiX. So in �h ¼ c ¼ 1

units the effect on Bð3Þ is generated as

dA0 ¼ gðdAþ A ^ AÞg	1 ð381Þ

where g is the group element for the O(3) theory. In the case of quantum field

theory, a gauge transformation

Aa
m ! Aa

m þ dAa
m ð382Þ

is associated [17] with a unitary transform of the fermion field:

c! cþ dc ð383Þ

In quantum field theory, the gauge field is determined by its Lagrangian density,

and the fermion field, by the Dirac Lagrangian density:

LD ¼ 	�cðgmqm þ mÞc ð384Þ

In order to describe the interaction between the gauge and fermion fields, the

following equation is used:

qmFamn þ igeabcAb
mFcmn ¼ jn ð385Þ
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Here

jn ¼ qL
qAn

ð386Þ

and the addition of an interaction Lagrangian density Li ¼ jnAv is implied. The

current term is determined by the Dirac field and is

jn ¼ �cgnc ð387Þ

Mass renormalization requires [15] that an additional term �cgncdm be added

where dm is the difference between the physical and bare masses [77].

The total Lagrangian is then

L ¼LG þLD þLi ð388Þ

and describes the interaction between the fermions and the gauge field. The Dirac

field is the electron field and the gauge field is the non-Abelian electromagnetic

field. The theory describes the interaction between quantized electrons and

quantized photons on the O(3) level. Because it is a gauge theory, it conveys

momentum from one electron to another by the virtual creation and destruction

of a vector boson (the photon). There is no creation of any averaged momentum

from the virtual quantum fluctuation [17].

In order to upgrade these well-known methods [6,17] of U(1) quantum field

theory to involve the classical B(3) field, the following prescription is used:

Am ! taAa
m ð389Þ

Here ta is a group structure constant defined by

½ta; tb� ¼ 2eabctc ð390Þ

The amplitude contribution from the B(3) field occurs in a second-order process

using the sum over all possible fluctuations of B(3) in the virtual photon that

causes electron–electron interaction. The amplitude due to B(3) has an ultraviolet

divergence [17] described by Crowell. This may be removed by regularization

techniques.

This type of process is missing from U(1) quantum field theory [6]; the B(3)

field produces quantum vortices [17] that interact with electrons and other

charged particles. The vortices are quantized states and exist as fluctuations in

the QED vacuum, fluctuations that are associated, not with an E(3) field, but with

the Eð1Þ ¼ Eð2Þ� fields:

dBð3Þ ¼ i
e

�h

1

o2
ðdEð1Þ � Eð2Þ þ Eð1Þ � dEð2ÞÞ ð391Þ
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Therefore quantum fluctuations in B(3) are accompanied by fluctuations in the

transverse electric field. The ultraviolet divergence is probably unimportant [17]

because of the o	2 dependence of the fluctuation. The infrared divergence is also

damped statistically. The divergences in U(1) electrodynamics [6] can exist as a

subset of O(3) electrodynamics and can be absorbed into integrals that involve

photon loop processes associated with quantum fluctuations in B(3).

Crowell [17] has argued that O(3) QED is fully renormalizable. Renorma-

lization is necessary as in any quantum field theory because the potential and

propagator become divergent as the electrons approach each other. The

Heisenberg uncertainty principle �p�x � �h means that the momentum ex-

changed by the electrons becomes divergent [17]. The vacuum is filled with

virtual quanta, as argued by Crowell [17], with enormously high momentum

fluctuations: virtual quanta that may interact with systems to contribute

divergences in the short wavelength limit, the ultraviolet divergences. These

divergences affect the self-energy of the electron, vacuum polarization, and

vertex functions [6,15,17].

In O(3) QED, there is an additional effect from the effective photon bunching

or photon interaction that emerges essentially from the photon loop generated

from the A(1) on one photon interacting with the A(2) on the other photon. The

loop is associated with quanta of the B(3) field with intensity e=�h as in Eq. (347).

It will be argued, following Crowell [17], that these novel fluctuations are fully

renormalizable. The virtual fluctuation of a B(3) field does not lead to an

ultraviolet divergence, and so O(3) QED is renormalizable by dimensional

regularization.

The renormalization problem generated by O(3) is similar to the interaction

of the free electron with the vacuum through the Dirac equation [6,15,17] in

c ¼ 1; h ¼ 1 units:

ðgmðqm 	 ieAmÞ 	 mÞc ¼ 0 ð392Þ

If there is no electromagnetic field present, the quantized vector potential

fluctuates according to

Am ¼ hAmi þ dAm ð393Þ

and the fluctuation is present in the vacuum. This phenomenon manifests itself

through the zero point energy of the harmonic oscillator expansion of the fields

[17]; the electron will interact with the virtual photons, an interaction which is

expanded in terms of the order a ¼ ðe2=�hcÞ:The divergence [17] in the first term

of this series is countered by a mass term, introducing a difference between the

mass and the bare mass of the electron. Similar methods can be used

straightforwardly [17] to show that the loop fluctuations of photon, correlated

to the virtual quanta of the B(3) field, can be calculated to be finite without
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divergence. The end result of this standard but complicated calculation [17] is

that O(3) QED is free of intractable ultraviolet divergences. The Lamb shift

calculation given already shows that O(3) QED is free of intractable infrared

divergences.

In Section I, it was argued that O(3) electrodynamics on the classical level

emerges from a vacuum configuration that can be described with an O(3)

symmetry gauge group. On the QED level, this concept is developed by

considering higher-order terms in the Hamiltonian

H ¼ 1

2m
ðp	 eAÞ2 ð394Þ

and evolution operator U ¼ e	iH
0

t [17], where:

U ¼ e	iH0teAð1Þ 
Að2Þ ð395Þ

Here, H0 is the Hamiltonian without the quadratic term. The vector potentials are

expanded as

Að1Þ ¼ Að0Þffiffiffi
2
p ðeX þ ieYÞðakeik 
 r	iot 	 aþk e	ik 
 rþiotÞ ð396Þ

giving

Að1Þ 
Að2Þ ¼ Að0Þ2 aþaþ 1

2
	 1

2
ðaþ2e	2iðk 
 r	otÞ þ a2e2iðk 
 r	otÞÞ


 �
ð397Þ

The first two terms on the right-hand side [17] are precisely those obtained from

the standard harmonic oscillator Hamiltonian (Hem) for the electromagnetic field.

The evolution operator can then be written as

U ¼ e	iðH0þHemÞteðZaþ2þZ�a2Þ ð398Þ

where Z ¼ te	2iðj 
 r	otÞ:
The operator

SðZÞ ¼ expðZaþ2 þ Z�a2Þ ð399Þ

is a squeezed-state operator [17] that involves symmetries that are not precisely

defined by the Hamiltonian. The quantized B(3) field may correspond to such

symmetries of the vacuum, coming full circle with Section I. The reason is that

the B(3) field is generated by writing Eq. (394) in the basis of the Pauli matrices,

as discussed in Section VII.
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The absence of an E(3) field does not affect Lorentz symmetry, because in

free space, the field equations of both O(3) electrodynamics are Lorentz-

invariant, so their solutions are also Lorentz-invariant. This conclusion follows

from the Jacobi identity (30), which is an identity for all group symmetries. The

right-hand side is zero, and so the left-hand side is zero and invariant under the

general Lorentz transformation [6], consisting of boosts, rotations, and space-

time translations. It follows that the B(3) field in free space Lorentz-invariant,

and also that the definition (38) is invariant. The E(3) field is zero and is also

invariant; thus, B(3) is the same for all observers and E(3) is zero for all observers.

To prove the invariance of the B cyclic theorem [11–20], it is necessary only

to prove the invariance of the free-space Maxwell–Heaviside equations:

qm ~GmnðiÞ ¼ 0; i ¼ 1; 2; 3 ð400Þ

Consider, for example, a Lorentz boost in the Z direction using Jackson’s

notation [5], and start with the 4-derivative

q0m ¼

1 0 0 0

0 1 0 0

0 0 g igb
0 0 	igb g

2
664

3
775

q
qX

q
qY

q
qZ

i
c
q
qt

2
66664

3
77775 ¼

q
qX

q
qY

g q
qZ
	 gb

c
q
qt

	i gb q
qZ
	 g

c
q
qt

� �

2
66664

3
77775 ð401Þ

where

g ¼ 1	 n2

c2


 �	1=2

; b ¼ n
c

ð402Þ

Using the same Z boost

E0X ¼ gðEX 	 bBYÞ B0X ¼ BX þ bEY

E0Y ¼ gðEY þ bBXÞ B0Y ¼ BY 	 bEX

E0Z ¼ EZ B0Z ¼ BZ

ð403Þ

so

ðr 
EÞ0 ¼ r0 
E0 ¼ gr 
E ¼ 0 ¼ r 
E

ðr 
BÞ0 ¼ r0 
B0 ¼ gr 
B ¼ 0 ¼ r 
B
ð404Þ

Considering the i component of the Faraday law in frame K:

qEY

qZ
	 qEZ

qY
þ qBX

qt
¼ 0 ð405Þ
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the same component in frame K 0 is

g g
q
qZ
	 gb

c

q
qt


 �
ðEY þ bBXÞ 	 g

qEZ

qY
þ g 	gb q

qZ
þ g

c

q
qt


 �
ðBX þ bEYÞ ¼ 0

ð406Þ

On the U(1) level, we can consider EY and BX to be plane waves and EZ ¼ 0. The

following result is obtained in frame K 0:

g2 qEY

qZ
þ 1

c

qBX

qt


 �
	 g2b2

c

1

c

qBX

qt
þ qEY

qZ


 �
¼ 0 ð407Þ

This is true for all g and b because

qEY

qZ
þ 1

c

qBX

qt
¼ 0 ðGaussian unitsÞ ð408Þ

The result is obtained that Faraday’s law of induction is invariant under a Z boost.

Similarly, it can be shown to be invariant under the general Lorentz

transformation, and all solutions are invariant. In general, on the U(1) level

ðqm~FmnÞ0 ¼ qm~Fmn � 0 ð409Þ

ðqmFmnÞ0 ¼ qm~Fmn � 0 ð410Þ

It follows that the transverse field Bð1Þ ¼ Bð2Þ� is Lorentz-invariant in free space,

and so is the B cyclic theorem:

Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ�

in cyclic permutation
ð411Þ

The general principle being followed is that, if equations of motion are the same

in any Lorentz frame, that is, to any observer, then so are the solutions.

The invariance of the definition of B(3) can again be illustrated on the

simplest level by considering Lorentz boosts in the Z;X and Y directions of the

B(3) field:

B
ð3Þ0
Z ¼ B

ð3Þ
Z ð412Þ

B
ð3Þ0
Z ¼ gB

ð3Þ
Z þ gbE

ð3Þ
X ¼ gB

ð3Þ
Z ð413Þ

B
ð3Þ0
Z ¼ gB

ð3Þ
Z 	 gbE

ð3Þ
Y ¼ gB

ð3Þ
Z ð414Þ
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In Jackson’s notation, a Z boost of A(1), for example, leaves it unchanged:

Að1Þ ¼

1 0 0 0

0 1 0 0

0 0 g igb

0 0 	igb g

2
6664

3
7775

A
ð1Þ
X

A
ð2Þ
X

0

0

2
666664

3
777775 ¼ Að1Þ ð415Þ

and since A(2) is the complex conjugate of A(1), a Z boost in free space results in

ðBð3Þ� ¼ 	igAð1Þ � Að2ÞÞ0 ð416Þ

and leaves B(3) invariant. The effect of a Y boost on A(1) is as follows:

Að1Þ ¼

1 0 0 0

0 g 0 igb

0 0 1 0

0 	igb 0 g

2
6664

3
7775

A
ð1Þ
X

A
ð1Þ
Y

0

0

2
666664

3
777775 ¼

A
ð1Þ
X

gA
ð1Þ
Y

0

	igbA
ð1Þ
Y

2
666664

3
777775 ð417Þ

and using

B
ð3Þ�
Z ¼ 	igeð1Þð2Þð3ÞA

ð1Þ
X A

ð2Þ
Y ð418Þ

it is found that

gBð3Þ ¼ 	iggAð1Þ � Að2Þ ð419Þ

and the definition of B(3) is again invariant. Using Bð0Þ ¼ jAð0Þ [11–20] converts

Eq. (416) into the B cyclic theorem, and both are self-consistently invariant.

Therefore B(3) is a fundamental field [11–20].

The E(3) field is zero in frame K, and a Z boost means [from Eq. (403)] that it

is zero in frame K 0. This is consistent with the fact that E(3) is a solution of an

invariant equation, the Jacobi identity (30) of O(3) electrodynamics. Finally, we

can consider two further illustrative example boosts of E(3) in the X and Y

directions, which both produce the following result:

E
ð3Þ0
Z ¼ gE

ð3Þ
Z ð420Þ

o(3) electrodynamics 159



Therefore if E(3) is null in frame K, it is null in frame K 0. There is a symmetry

between the Lorentz transforms of B(3) and the hypothetical E(3):

X: B
ð3Þ0
Z ¼ gB

ð3Þ
Z ; E

ð3Þ0
Z ¼ gE

ð3Þ
Z

Y: B
ð3Þ0
Z ¼ gB

ð3Þ
Z ; E

ð3Þ0
Z ¼ gE

ð3Þ
Z

Z: B
ð3Þ0
Z ¼ B

ð3Þ
Z ; E

ð3Þ0
Z ¼ E

ð3Þ
Z

ð421Þ

This is self-consistent with the fact that B(3) may be regarded [11–20] as dual to

½	iEð3Þ=c], so that Bð3Þ2 þ Eð3Þ2 contributes to a nonzero Lagrangian and so that

B(3) is a real physical field.

These are mathematically valid results, but physically, the Lorentz transform

of B(3) and the null E(3) are governed by the equation

Dm ~G
mn ¼ 0n ð422Þ

where:

0n ¼ 0nð1Þeð1Þ þ 0nð2Þeð2Þ þ 0nð3Þeð3Þ ð423Þ

is a null 12-vector, whose components are null 4-vectors. The general Lorentz

transform of the null 4-vector is given by

00m ¼ �m
n0m ¼ 0m ð424Þ

and a null 4-vector is a null 4-vector in all Lorentz frames. This means that the

left-hand side of Eq. (422) is null in all Lorentz frames and is Lorentz-invariant.

Therefore its field solutions are also all Lorentz invariant, including, of course,

B(3) and E(3). This is self-consistent with the fact that Eq. (422) is equivalent to

the Jacobi identity (30) for the group O(3). Finally, when there is field–matter

interaction, all field components are Lorentz covariant, and no longer invariant,

on both the U(1) and O(3) levels.

In conclusion, the homogeneous field equation of O(3) electrodynamics is

Lorentz-invariant, and all its classical solutions must be also Lorentz-invariant.

The same result is obtained therefore in QED.

IX. NOETHER CHARGES AND CURRENTS OF O(3)
ELECTRODYNAMICS IN THE VACUUM

The first example of a vacuum current was introduced by Maxwell in order

to make the equations of electrostatics and magnetostatics self-consistent.

The second examples were introduced in 1979 [7] by Lehnert, and O(3)
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electrodynamics offers four vacuum charges and currents of topological origin as

discussed already. Maxwell was led to the displacement current because the

received view at the time was self-inconsistent [5]. The received view consisted

of four equations

r 
D ¼ r; r 
B ¼ 0; r�H ¼ J; r� Eþ qB

qt
¼ 0 ð425Þ

together with the continuity equation:

r 
 J þ qr
qt
¼ 0 ð426Þ

Maxwell used the continuity equation in the Coulomb law to give

r 
 J þ qD

qt


 �
¼ 0 ð427Þ

and replaced J by J þ ðqD=qtÞ. The final result is the Ampère–Maxwell law

r�H ¼ J þ qD

qt
ð428Þ

which produced electromagnetic waves and is, of course, a standard part of U(1)

electrodynamics. The latter asserts, in the received view [5] currently prevailing,

that in the vacuum, there is a displacement current

JD ¼ e0
qE

qt
ð429Þ

using the vacuum constitutive equation D ¼ E0E. The existence of Maxwell’s

vacuum displacement current is all-important for the theory of electromagnetic

radiation. The displacement current originates in the continuity equation, which

is a conservation law, similar to the laws of conservation of energy and

momentum summarized in Noether’s theorem [6]. The Maxwell displacement

current can therefore be referred to as a ‘‘Noether current.’’

More than a century later, Lehnert [7] introduced and developed [7–10] the

concept of vacuum charge on the classical level, and showed [7–10] that this

concept leads to advantages over the Maxwell–Heaviside equations in the

description of empirical data, for example, the problem of an interface with a

vacuum [7–10,15]. The introduction of a vacuum charge leads to axisymmetric

vacuum solutions akin to the B(3) vacuum component of O(3) electrodynamics

[10,15], and also leads to the Proca equation and the concept of photon mass.
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The latter is therefore related to the concept of the B(3) field through the Lehnert

equations, which in the vacuum are

r 
 D ¼ rvac; r 
 B ¼ 0; r�H ¼ Jvac þ
qD

qt
; r� Eþ qB

qt
¼ 0

ð430Þ
It can be seen that these are U(1) equations, but with the addition of the vacuum

charge density rvac and the vacuum current density Jvac. On the O(3) level, the

Lehnert charge density becomes

rð1Þ�vac ¼ igðAð2Þ 
Dð3Þ 	 Dð2Þ 
Að3ÞÞ ð431Þ
in cyclic permutation

and the Lehnert current density becomes

Jð1Þ�vac ¼ 	igðcA
ð2Þ
0 Dð3Þ 	 cA

ð3Þ
0 Dð2Þ þ Að2Þ �Hð3Þ 	 Að3Þ �Hð2ÞÞ ð432Þ

in cyclic permutation

and O(3) electrodynamics self-consistently produces longitudinal solutions in

the vacuum typified by the phaseless B(3) component. However, the magnetic

charge and current allowed for by O(3) electrodynamics do not appear in the

Lehnert equations (430).

The Lehnert equations are consistent [10] with the continuity equation (428)

of U(1) electrodynamics. Using the vacuum continuity equation in Lehnert’s

vacuum Coulomb law, we find

J ! J þ qD

qt
� J1

r�H ¼ J1 þ
qD

qt

r 
 J1 þ
qr1

qt
¼ 0

ð433Þ

Repeating this procedure gives

J1 ¼ J þ qD

qt

..

.

Jn ¼ J þ n
qD

qt
; n!1

rn ¼ �
ð
r 
 Jn dt; n!1

ð434Þ
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and theoretically, there are two infinitely large densities in the vacuum given by

rn ¼
ð
r 
 Jn dt; n!1

rn ¼ 	
ð
r 
 Jn dt; n!1

ð435Þ

because charge density can either be negative or positive. In this process, B and E
are unchanged, so the vector and scalar potentials defined by

B ¼ r� A; E ¼ 	 qA

qt
	rf ð436Þ

remain unchanged.

Therefore the vacuum potential energy difference is given by

�V ¼ �
ð

Jn 
Ad3x ð437Þ

and the rate of doing work is

qW

qt
¼ �

ð
Jn 
E d3x ð438Þ

In thermodynamic equilibrium, the net result is zero in both cases, but locally,

there may be a non-zero rate of doing work by these vacuum charges and currents

on a device, creating thermal or mechanical energy. This process is unknown

in the received view but conserves energy and is consistent with Noether’s

theorem [6].

The existence of charge density and current density in the vacuum is not

consistent with the Maxwell–Heaviside equations, but leads to a description of

empirical data [10,15] superior to that of the received view. Vacuum charge and

current density on the classical level are therefore postulates on the same

philosophical level as the existence of displacement current in the vacuum. The

latter emerges from the continuity equation (426) as argued already. If a

postulate leads to an improved description of empirical data, then the postulate

is valid in natural philosophy, irrespective of the received view. The role of the

coefficient g on the O(3) level may be discussed in a similar philosophical vein.

As argued already, the existence of g is a direct consequence of the gauge

principle, and it exists in the classical vacuum (or free space), on both the U(1)

and O(3) levels, in the respective covariant derivatives. It follows that e=�h exists

in the vacuum in the Maxwell–Heaviside point of view itself, if this be regarded

as a U(1) Yang–Mills gauge theory as is the current practice [6]. If e=�h exists in

the vacuum on the classical level, then charge density may exist in the vacuum
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as argued by Lehnert, and so current density may also exist. The Lehnert

equations were derived from U(1) gauge theory in Section IV. The existence of

e=�h in the vacuum on the O(3) level is therefore conceptually no different from

its existence in the vacuum on the U(1) level.

As argued in Section III, the form of the received Maxwell–Heaviside

equations in free space or classical vacuum is obtained for finite g. The factor

g is a direct consequence of gauge theory [6] and is in general, a proportionality

constant without which there is no gauge theory, and without which special

relativity is violated. The coefficient g is present for all gauge groups in the

vacuum, including U(1). The superiority of the O(3) gauge group over the U(1)

gauge group in electrodynamics in no way depends on the introduction of g in

O(3): g is also present in U(1). The gauge principle and special relativity

therefore force the conclusion that e is itself topological in origin, and is not

localized on the electron, a conclusion first reached by Frenkel [15]. The bosons

(photons) obtained from a quantization of electrodynamics in any gauge group

are not charged bosons, as discussed in Section VIII. The physical nature of g

may be roughly summarized by noting the fact that g is a coupling constant that

is a property of neither the source (electron) nor the field. As demonstrated in

Section VIII, the classical O(3) electrodynamics may be extended without

conceptual difficulty to quantum electrodynamics on both the nonrelativistic

and relativistic levels. Similarly, the constant g exists in the vacuum in U(1)

electrodynamics as a consequence of the gauge principle and special relativity,

and U(1) electrodynamics quantizes to quantum electrodynamics without

charged photons.

In field theory, electric charge [6] is a symmetry of action, because it is a

conserved quantity. This requirement leads to the consideration of a complex

scalar field f. The simplest possibility [U(1)] is that f have two components,

but in general it may have more than two as in the internal space of O(3)

electrodynamics which consists of the complex basis ((1),(2),(3)). The first two

indices denote complex conjugate pairs, and the third is real-valued. These

indices superimposed on the 4-vector Am give a 12-vector. In U(1) theory, the

indices (1) and (2) are superimposed on the 4-vector Am in free space, so Am in

U(1) electrodynamics in free space is considered as transverse, that is,

determined by (1) and (2) only. These considerations lead to the conclusion

that charge is not a point localized on an electron; rather, it is a symmetry of

action dictated ultimately by the Noether theorem [6].

By way of introduction to the Noether currents and charges that exist in O(3)

electrodynamics, the inhomogeneous field of Eq. (32) can be considered in the

vacuum (source-free space) and split into two particular solutions:

qmGmn ¼ 0 ð439Þ
Jn ¼ ge0Am � Gmn ð440Þ
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The first of these has been discussed in Section IV. The second is a vacuum

charge–current 12-vector in SI units. On the O(3) level, it is a physical charge–

current that gives rise to the energy

Enð3Þ ¼ 	
ð

Jn 
An dV ð441Þ

where V is the radiation volume. The energy term can be developed as follows

Enð3Þ ¼ 	 1

m0

ð
gAm � Gmn 
 An dV

¼ g

m0

ð
Gmn 
 Am � An dV

¼ g2

m0

ð
Am � An 
 Am � An dV

¼ 1

m0

ð
Bð3Þ 
 Bð3Þ dV

ð442Þ

and is the energy due to the B(3) component of O(3) electrodynamics. This is a

concise way of demonstrating that the Noether charge–currents of O(3)

electrodynamics give energy that in principle can be utilized for working

devices. In analogy, the Maxwell displacement current of the vacuum gives rise

to the electromagnetic field, which carries energy. The same principle is involved

on the U(1) and O(3) levels, and the ultimate source of the energy is the topology

of the vacuum, which manifests itself through the gauge principle and group

theory (Section I). If g were zero in Eq. (440), there would be no energy due to

B(3), revealing the latter’s topological origin. This energy can be thought of as

originating in a covariant derivative with O(3) symmetry, and a covariant

derivative is necessitated by special relativity and topology. So in this sense, the

energy due to B(3) can be thought of as energy from the vacuum, manifesting

itself as part of the electromagnetic field. It is probable that devices can be

constructed to take advantage of this property of the vacuum and convert energy

of this nature efficiently into usable form.

The principle of taking energy from the vacuum is the gauge principle, and

this is illustrated as follows on the U(1) level. The U(1) gauge equations in the

vacuum are [6]

qm þ igAm
� �

~Gmn � 0 ð443Þ
qm þ igAm
� �

Gmn ¼ 0 ð444Þ

where the vacuum 4-current is defined as

Jn ¼ 	ige0AmGmn ð445Þ
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If we set the index m ¼ 0 in Eq. (445), for example, the following relations are

obtained:

JX ¼ ige0EX

JY ¼ ige0EY

ð446Þ

The average energy from this vacuum current can be defined as

En ¼ c

ð
Jn�An dV ð447Þ

which is

En ¼ 	ikce0

ð
ðE�XAX þ E�YAYÞdV ¼ e0

ð
kcEð0ÞAð0Þ dV ð448Þ

Using

Eð0Þ ¼ kcAð0Þ ð449Þ

Eq. (448) becomes the familiar U(1) electromagnetic field energy:

En ¼ e0

ð
Eð0Þ2 dV ¼ 1

2

ð
e0Eð0Þ2 þ 1

m0

Bð0Þ2

 �

dV ð450Þ

The same result is obtained from Eq. (443) using the same proportionality factor

g ¼ k=Að0Þ. Note carefully that without the gauge term igAm, this energy would

vanish, and so the energy is due to the vacuum configuration and topology, in this

case assumed to be described by the U(1) group.

Similarly, the magnitude of the linear momentum of the electromagnetic field

can be obtained by using the proportionality g ¼ e=�h in either Eqs. (443) or

(444), giving

qm þ ie
Am

�h


 �
~Gmn � 0

qm þ ie
Am

�h


 �
Gmn ¼ 0

ð451Þ

Using the standard operator transformation of quantum mechanics

rm ¼ 	i�hqm ð452Þ
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Eqs. (451) both become

qm ~Gmn � 0

qmGmn ¼ 0
ð453Þ

and so we retrieve the familiar Maxwell–Heaviside equations in the vacuum. The

momentum is obtained from the equivalence

e

�h
¼ k

Að0Þ
ð454Þ

giving the magnitude of the linear momentum as

p ¼ �hk ¼ eAð0Þ ð455Þ

which is again a topological or vacuum property. Using En ¼ �ho, the energy is

given from Eq. (455) by

En ¼ ecAð0Þ ð456Þ

and is again topological in origin; that is, it originates from energy inherent in a

vacuum configuration described by the non-singly connected group U(1).

The principle behind this derivation is the gauge principle, and so is the same

for all gauge groups. The equivalence (456) was first demonstrated on the O(3)

level [15], but evidently exists for all gauge group symmetries. The gauge

principle in electrodynamics therefore leads to the energy and momentum of the

photon and classical field. The 4-current Jm appears in both Eqs. (443) and (444)

and is self-dual, a result that is echoed in the self-duality of the vacuum field

equations:

qm ~Gmn ¼ qmGmn ð457Þ

Another advantage of this principle is that the coupling constant g is always

present implicitly in the calculation, meaning that the energy and momentum

have a cause, or source. This source is not the charge on the electron, but rather

the structure or configuration of the vacuum itself, obtained as a direct result of

the gauge principle taken to its logical conclusion.

If the procedure is repeated for the rate of doing work by the vacuum

4-current Jn

dW

dt
¼ c

ð
J� 
E dV ð458Þ
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it is found that

dW

dt
¼ c

ð
J�XEX þ J�Y EY

� �
dV ð459Þ

which is zero if E is a transverse plane wave. This result means that the energy

corresponding to Jn is conserved in the vacuum because the rate of doing work is

energy per unit time. Therefore the field momentum is also conserved in the

vacuum. And therefore Jn is a Noether current in the vacuum.

On the O(3) level, several new sources of energy from the vacuum emerge as

follows. First, define the charge and potential 12-vectors:

JmðiÞ � r;
JðiÞ

c


 �
ð460Þ

AmðiÞ � ðf; cAðiÞÞ ð461Þ

so that the energy from a vacuum configuration considered to have O(3) gauge

group symmetry is

En ¼ 	
ð
ðJnð1Þ 
 Að2Þn þ Jnð2Þ 
 Að1Þn þ Jnð3Þ 
 Að3Þn ÞdV ð462Þ

(En is used here to denote energy, not to be confuse with E as an electrical field).

The 12-vector is a spinor in which the Greek indices in covariant contravariant

notation are 0; 1; 2; and 3 and the numerical index ðiÞ runs from 1 to 3,

representing the circular basis ((1),(2),(3)). For example [11–20]), Amð1Þ is the

4-vector, ðfð1Þ; cAð1ÞÞ, Amð2Þ is the 4-vector, ðfð2Þ; cA2Þ, and Amð3Þ is the 4-vector

ðfð3Þ; cAð3ÞÞ. Each of the three 4-vectors has four components, making a

12-vector. This must not be confused with a vector of 12 components. The field

12-vector is defined as

Gmn � Gð1Þmn eð1Þ þ Gð2Þmn eð2Þ þ Gð3Þmn eð3Þ ð463Þ

where each component in indices (1), (2), and (3) have the structure:

Gmn �

0 	 E1

c
	 E2

c
	 E3

c

E1

c
0 	B3 B2

E2

c
B3 0 	B1

E3

c
	B2 B1 0

2
666664

3
777775; Gmn �

0 E1

c
E2

c
E3

c

	 E1

c
0 	B3 B2

	 E2

c
B3 0 	B1

	 E3

c
	B2 B1 0

2
666664

3
777775
ð464Þ
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The field equations in the vacuum are (31) and (32), and there are two possible

vacuum charge current 12-vectors:

Jn
H ¼ 	ge0Am � ~Gmn ð465Þ

Jn ¼ 	ge0Am � Gmn ð466Þ

which, from Eq. (462), are sources of energy from energy inherent in a vacuum

configuration as a direct result of the gauge principle. These two 12-vectors

provide several more sources of energy, a result that can be illustrated with

Eq. (466) by developing it as follows in the ((1),(2),(3)) basis:

Jð1Þ� ¼ 	ige0Að2Þm � Gmnð3Þ

Jð2Þ� ¼ 	ige0Að3Þm � Gmnð1Þ

Jð3Þ� ¼ 	ige0Að1Þm � Gmnð2Þ

ð467Þ

This result follows because of the negative sign in Eqs. (465) and (466). Equation

(462) for the energy is therefore

En ¼ 	ige0

ð
Að3Þm � Gmnð1Þ 
Að2Þn dV þ

ð
Að2Þm � Gmnð2Þ 
 Að3Þn dV




þ
ð

Að1Þm � Gmnð2Þ 
 Að3Þn dV

�
ð468Þ

Now use the 3-vector identity:

F 
 G�H ¼ G 
 H � F ð469Þ

to obtain

En ¼ 	ige0

ð
Gmnð1Þ 
 Að2Þn � Að3Þm dV þ

ð
Gmnð3Þ 
 Að1Þn � Að2Þm dV




þ
ð

Gmnð2Þ 
 Að3Þn � Að1Þm dV

�
ð470Þ

The definition (461) implies that we can write

c2Bð1Þ�nm ¼ c2Bð2Þnm � 	igAð2Þn � Að3Þm ð471Þ
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The energy terms in Eq. (470) can therefore be developed as follows:

1.

En1 ¼ e0c2

ð
Gmnð1Þ 
 Bð2Þnm dV

¼ 1

m0

ð
Bmnð1Þ 
 Bð2Þnm dV

¼ 1

m0

ð
B3nð1Þ 
 B

ð2Þ
n3 dV

¼ 1

m0

ð
B31ð1ÞB

ð2Þ
13 þ B32ð1ÞB

ð2Þ
23 dV

¼ 1

m0

ð
	B2ð1ÞB

ð2Þ
2 	 B1ð1ÞB

ð2Þ
1 dV

¼ 1

m0

ð
B
ð1Þ
Y B

ð2Þ
Y þ B

ð1Þ
X B

ð2Þ
X dV ð472Þ

2.

En2 ¼ e0c2

ð
Gmnð3Þ 
 Bð3Þnm dV

¼ e0c2

ð
G12ð3ÞB

ð3Þ
21 þ G21ð3ÞB

ð3Þ
12 dV

¼ 1

m0

ð
B
ð3Þ
Z B

ð3Þ
Z þ B

ð3Þ
Z B

ð3Þ
Z dV ð473Þ

3.

En3 ¼ e0c2

ð
Gmnð2Þ 
 Bð1Þnm dV

¼ e0c2

ð
Gm3ð2Þ 
 B

ð1Þ
3m dV

¼ 1

m0

ð
B
ð2Þ
Y B

ð1Þ
Y þ B

ð2Þ
X B

ð1Þ
X dV ð474Þ

These derivations are given in full detail to show that the O(3) gauge principle

leads to several more terms than in U(1), where the same gauge principle leads

to Eq. (450).

The overall result for the vacuum energy in U(1) is

En ¼ 1

m0

ð
Bð0Þ2 dV ð475Þ
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and the corresponding result in O(3) is

En ¼ En1 þ En2 þ En3 ð476Þ

If we adopt a gauge group of higher symmetry than O(3), there will be more

terms and so on, and this is a general principle. Electromagnetic charge current

and electromagnetic energy depend on the configuration of the vacuum, and

ultimately on the topology of the vacuum as represented in the language of gauge

and group theory (Section I). Charge current is a property of the vacuum, and

charge is not localized to a point as in the conventional view. On both U(1) and

O(3) levels, the field equations can be expressed in terms solely of potentials that,

in the language of general relativity, are connections. The constant e becomes a

scaling factor and both g ¼ e
�h ¼ k

Að0Þ
and all field potentials are consequences of

the gauge principle for all gauge groups, including U(1).

We can begin to think of the electromagnetic field in the same terms as the

gravitational field, and the former is not an entity superimposed on the vacuum

irrespective of the vacuum structure. This conclusion is reminiscent of

Faraday’s concept, as adopted by Maxwell [4], of charge as being the result

of the field. In gauge theory, g is a property of neither electron nor field, but a

property of the structure of the vacuum itself. The energy and charge current

also come from the vacuum. These concepts are further developed in Section

XII. Finally, the energy momentum of the field on the O(3) level is a 12-vector:

pm � pð1Þm eð1Þ þ pð2Þm eð2Þ þ pð3Þm eð3Þ ð477Þ

giving a new view of field momentum. This view is quite different from the

problematic [4] view of electromagnetic energy proposed by Poynting.

Electromagnetic theory in the vacuum at the O(3) level begins to look like

the theory of gravitation, the electromagnetic field can be replaced by physical

potential differences, and these are primary. Analogously, mass in general

relativity is a curvature of spacetime, and the gravitational field is the coordinate

system itself. On the O(3) level, the potentials are connection coefficients, and

charge is the result of topology expressed through gauge theory and group

theory. It has been shown that the topology of the vacuum can produce energy,

and that charge–current emanates from the same source. If the potential is a

connection, then the field can be expressed in terms of the potential and

therefore wholly in terms of the connection, and therefore in terms of topology.

The view presented here of the field particle dualism of de Broglie is that all

particles are pseudo particles and the vacuum electromagnetic field is the

topology of the vacuum itself. This point of view rejects action at a distance,

as did Newton himself. It is clear that particles result from the gauge principle,

for example, photons and quarks, as the result of quantization of the potential.
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The potential is again primary in canonical quantization, and it has been shown

in Section IX that quantization of O(3) electrodynamics does not lead to

charged photons.

X. SCALAR INTERFEROMETRY AND CANONICAL
QUANTIZATION FROM WHITTAKER’S POTENTIALS

Whittaker’s early work [27,28] is the precursor [4] to twistor theory and is well

developed. Whittaker showed that a scalar potential satisfying the Laplace and

d’Alembert equations is structured in the vacuum, and can be expanded in terms

of plane waves. This means that in the vacuum, there are both propagating and

standing waves, and electromagnetic waves are not necessarily transverse. In this

section, a straightforward application of Whittaker’s work is reviewed, leading to

the feasibility of interferometry between scalar potentials in the vacuum, and to a

trouble-free method of canonical quantization.

Whittaker [27,28] derived equations defining the electromagnetic field in the

vacuum in terms of functions f and g with the units of magnetic flux directed

longitudinally in the axis of propagation (Z)

½ f ¼ Fk; g ¼ Gk ð478Þ

and defined all field components in terms of f and g. The electric and magnetic

field vectors in the vacuum, in SI units, are defined by

E ¼ cr� ðr � f Þ þ r � _g ð479aÞ

B ¼ 1

c
r� _f 	r� ðr � gÞ ð479bÞ

If we use the Stratton potential defined by

Bm � cP; Sð Þ ð480Þ

where

E ¼ 	r� S; B ¼ 	 qS

qt
	rP ð481Þ

and the 4-potential defined by

Am � f; cAð Þ ð482Þ

where

B ¼ 	r� A; E ¼ 	 qA

qt
	rf ð483Þ
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it is deduced that

A ¼ 	r� gþ 1

c
_f ð484Þ

S ¼ 	cr� f 	 _g ð485Þ

in the vacuum. So, in general, the Maxwell potential A and the Stratton potential

S both have longitudinal components in the vacuum. Both A and S are generated

from the more fundamental f and g, and their longitudinal components in the

vacuum are

AZ ¼
1

c
_F; SZ ¼ 	 _G ð486Þ

The longitudinal magnetic and electric field components are [27,28]:

BZ ¼
q2G

qX2
þ q2G

qY2
; EZ ¼

q2F

qZ2
	 1

c2

q2F

qt2
ð487Þ

It is now known that these equations correspond to twistor contour integral

solutions for a particle with zero rest mass, and lead to an O(3) symmetry gauge

group for electromagnetism in the vacuum because the Whittaker solution is a

spinor formalism. Electrodynamics on the O(3) level is also a spinor, and

ultimately a twistor, formalism. Using the Penrose transform [4], the full

significance of the Whittaker solution becomes apparent. Later in this section,

the B(3) field is expressed in terms of f and g, which are therefore physical. It is

this property that leads to the possibility of interferometry between scalar

potentials. In the received view [U(1) level], the scalar potential in the vacuum is

zero or unphysical, and so the received view loses a great deal of information.

The work of Whittaker therefore anticipates much of contemporary non-Abelian

gauge theory applied to electrodynamics in the vacuum. In the original equations

of J. C. Maxwell [78], Faraday’s electrotonic state is a physical vector potential,

a term that was introduced by Maxwell himself [79]. It is the later interpretation

of Maxwell’s original intent by Heaviside [80] that relegates the U(1) vector

potential to a mathematical subsidiary with no physical meaning. Several

refutations of Heaviside’s opinion have been given in this chapter already. It is

also incompatible with electromagnetism as a twistor theory, where Maxwell’s

original intent is realized, and vector potentials are physical on the classical

level. To be precise, vector and scalar potential differences can be measured

experimentally on the classical level.

Without loss of generality, it can be assumed that plane waves can be used

for the transverse parts of S and A, resulting in

S ¼ icA ð488Þ
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We obtain, self-consistently

f ¼ ig; _f ¼ i _g ð489Þ

The following scalar magnetic flux gives transverse plane waves for A and S

G ¼ Að0Þffiffiffi
2
p X 	 iYð Þeiðot	kZÞ ð490Þ

so that

A ¼ 	r� g ¼ Að0Þffiffiffi
2
p ðiiþ jÞeiðot	kZÞ

B ¼ 	r� A ¼ Bð0Þffiffiffi
2
p ðiiþ jÞeiðot	kZÞ

ð491Þ

Importantly, there also exists a longitudinal propagating part of the vector

potential

AL ¼
i

c
_Gk ¼ 	kAð0Þffiffiffi

2
p ðX 	 iYÞeiðot	kZÞk ð492Þ

that is not present in the received view [6]. For example, AL is zero in the

radiation and Coulomb gauges, and is considered in the received view to be

unphysical in the Lorenz gauge [6]. The longitudinal vector potential gives rise

to the transverse magnetic plane wave

B ¼ r� AL ¼ 	
Bð0Þffiffiffi

2
p ðiþ ijÞeiðot	kZÞ ð493Þ

and to the electric field:

EL ¼ 	
qAL

qt
	rf ¼ i

k2

c

Að0Þffiffiffi
2
p ðX 	 iYÞeiðot	kZÞk	rf ð494Þ

In general, therefore, there is a longitudinal propagating component of the

electric field in the vacuum. However, in the plane-wave approximation used

here, there occurs the relation

rf ¼ r� S	 qA

qt
ð495Þ
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and the longitudinal part of rf is

ðrfÞL ¼ 	
qA

qt
ð496Þ

so the net longitudinal propagating electric field vanishes. Similarly, the

longitudinal magnetic field is

BL ¼ 	ic
qAL

qt
	rP ¼ o2 Að0Þffiffiffi

2
p ðX 	 iYÞeiðot	kZÞ 	 rP ð497Þ

and using

rP ¼ r� Aþ qS

qt
ð498Þ

the longitudinal part of rP is

rPð ÞL¼
qS

qt
ð499Þ

and the longitudinal magnetic field vanishes. These results are consistent with

Whittaker’s

EZ ¼
q2F

qZ2
	 1

c2

q2F

qt2
¼ 0

BZ ¼
q2G

qX2
þ q2G

qY2
¼ 0

ð500Þ

when F and G correspond to plane waves. The presence of a longitudinal vector

potential and longitudinal f and g potentials in Whittaker’s theory demonstrate

that it is not a U(1) theory of electromagnetism. On the simplest level,

Whittaker’s theory defines the B(3) field as

Bð3Þ� ¼ 	i
j

Að0Þ
r � gð Þ � ðr � g�Þ ð501Þ

so g is a physical and measurable quantity, a result that is consistent with

Whittaker’s own result that G and F can be expanded in terms of plane waves and

are structured and physical quantities, and with the fact that Whittaker reduces

the U(1) equations in the vacuum to two d’Alembert equations

&F ¼&G ¼ 0 ð502Þ
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which are Lorentz- and gauge-invariant. Canonical quantization can therefore

proceed through consideration of F and G, giving the photon straightforwardly as

demonstrated later in this section. This type of canonical quantization is free of

the difficulties associated with canonical quantization [6] in the Coulomb and

Lorenz gauges.

In the plane-wave approximation, all electromagnetic effects are derived

from the structured time-like potential difference

f ¼ _F ¼ i _G ¼ 	oAð0Þffiffiffi
2
p ðX 	 iYÞeiðot	kZÞ ð503Þ

which is thereby a physical observable in effects such as those observed

reproducibly and repeatedly by Priore and others [81–85]. These effects have no

explanation in the received view, but may be highly beneficial if properly

developed. The entities known as electric and magnetic fields are double

differentials of f in the plane-wave approximation in the vacuum, a result that is

consistent with the ontology developed in Section IX, that the topology of the

vacuum is primary, and that potential differences are the result of the vacuum

topology. Whittaker uses the usual Lorenz condition, and it is easily verified that

r 
AL þ
1

c2

qfL

qt
¼ 0 ð504Þ

If gauge freedom is lost, however, the Lorenz condition is no longer valid, and a

far more comprehensive view of the electromagnetic entity would be obtained by

solving the O(3) equations numerically. On the O(3) level, there is no gauge

freedom, and no Lorenz condition.

As discussed by Frauendiener and Tsun in Ref. 4, gauge field theory is a

form of twistor theory, and as discussed in Section IX, the covariant derivative

must always be used in a gauge field theory, even on the U(1) level. The

covariant derivative must be used in curved spacetime, and in gauge theory

when used with ordinary flat spacetime. These authors also point out that the

phase on the U(1) level has no physical significance: it can be redefined by an

arbitrary rotation at any point in spacetime. The role of the covariant derivative,

or connection, is to compare phases at two neighboring points [4]. This property

leads directly to the conclusion that electromagnetism in the vacuum is not a

U(1) theory, but a Yang–Mills theory of higher symmetry. We have seen, for

example, that the U(1) covariant derivative does not describe the Sagnac effect,

whereas O(3) theory describes it accurately because of the nontrivial self

interaction [4] resulting in the Bð3Þ field concept. Since O(3) electrodynamics

is a Yang–Mills theory, it is also a spinor theory and also a twistor theory [4],

which takes us full circle to the fact that Whittaker’s theory is a twistor theory.
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Potential differences are primary in gauge theory, because they define both

the covariant derivative and the field tensor. In Whittaker’s theory [27,28],

potentials can exist without the presence of fields, but the converse is not true.

This conclusion can be demonstrated as follows. Equation (479b) is invariant

under

g! gþra; r� g! r� gþrb ð505aÞ

where a and b are arbitrary. This invariance implies that:

r� g! r� g ð505bÞ

The transverse part of the vector potential is therefore invariant under the

transformations (505), because of the definition

AT ¼ 	r� g ð506Þ

and this is a clear sign of the fact that Whittaker’s theory contains something

contrary to the received view that the transverse AT is always unphysical. The

gauge invariance of AT does not occur at the U(1) level, but on the O(3) level, the

vector potential is gauge covariant and physical, as in the Sagnac effect with

rotating platform.

The magnetic fluxes F and G obey the Klein–Gordon equation for a massless

particle in the vacuum:

&F ¼&G ¼ 0 ð507Þ

and if we apply Eq. (505), we obtain

& rað Þ ¼& rcð Þ ¼ 0 ð508Þ

indicating that a and c are not arbitrary. Therefore f and g are physical and

observable, AT is physical and observable, and the transverse part of Am is

physical. These conclusions refute U(1) electrodynamics.

This result is consistent with Whittaker’s main conclusion [27,28], that

the scalar potential f is structured and physical in the vacuum, leading to the

possibility of interferometry between different scalar potentials, without the

presence of fields. To reinforce this conclusion, we can differentiate Eq. (484)

_A ¼ 	r� _gþ 1

c

f ð509Þ

and use the Lorenz condition (also used by Whittaker)

r 
 Aþ 1

c2

qf
qt
¼ 0 ð510Þ
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to give the following expression for the scalar potential:

_f ¼ c2r 
 r � gð Þ 	 cr 
 _f ð511Þ

This results in the following expression for the potential 4-vector

Am ¼ f; cAð Þ

¼ c2

ð
r 
 r � gð Þdt 	 cr 
 f ;	cr� gþ _f


 �

¼ 	c2

ð
r 
Adt 	 cr 
 f ;	cr� gþ _f


 �
¼ ðf	 cr 
 f ; cAþ _f Þ
¼ ðfT ; cATÞ þ ðfL; cALÞ ð512Þ

where it is split into its transverse and longitudinal components in the vacuum.

The longitudinal component is

A
m
L ¼ ðfL; cALÞ ¼ ð	cr 
 f ; _fÞ ð513Þ

and is physical because f is physical. On canonical quantization, therefore, there

exist physical longitudinal photons and time-like photons. By definition

A
m
L ¼ 	c

qF

qZ
;
qF

qt
k


 �
ð514Þ

and in the special case where the transverse A
m
T consists of plane waves, F ¼ iG

and

A
m
L ¼ 	

Að0Þffiffiffi
2
p oðX 	 iYÞeiðot	kZÞð1; kÞ ð515Þ

The vacuum longitudinal potential is light-like

ALmA
m
L ¼ 0 ð516Þ

and may be written as

A
m
L ¼ ðfL; cfLkÞ ð517Þ

The potential fL obeys the massless Klein–Gordon equation

&fL ¼ 0 ð518Þ
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and it is well known that canonical quantization of this equation is straightfor-

ward [6]. This result is consistent with Whittaker’s main result that fL is physical

and made up of a sum of plane waves and standing waves in the vacuum [27,28].

The Lagrangian for Eq. (518) is well known [6] to be

L ¼ 1

2
gklðqkfLÞðqlf�LÞ ð519Þ

from which is obtained the energy momentum tensor

ymn ¼ q
L

qðqmfLÞ
qnf

�
L 	 dmnL ð520Þ

and the Hamiltonian

HL ¼
ð
y00 d3x ð521Þ

In SI units, the Hamiltonian is the positive definite

HL ¼
1

m0R2

ð
ðq0f

�
Lq0fL þrf�L 
 rfLÞdV ð522Þ

where the beam radius is R2 ¼ X2 þ Y2. Using the relations

fL ¼ 	
Að0Þffiffiffi

2
p oðX 	 iYÞeiðot	kZÞ

q0fL ¼ 	
1

c
io2ðX 	 iYÞeiðot	kZÞ Að0Þffiffiffi

2
p

rf�L ¼ i
Að0Þffiffiffi

2
p koðX þ iYÞe	iðot	kZÞ

rfL ¼ 	i
Að0Þffiffiffi

2
p koðX 	 iYÞeiðot	kZÞ

ð523Þ

the Hamiltonian reduces to

HL ¼
1

m0

ð
Bð0Þ2 dV ð524Þ

which is identical with Eq. (450) of Section IX. This result proves that fL is

physical because the result (524) is a physical vacuum electromagnetic energy.
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Whittaker theory refutes U(1) theory in several ways, so it may be more

appropriate to describe the result (524) as a component at the O(3) level:

HL ¼
1

m0

ð
Bð3Þ 
 Bð3ÞdV ð525Þ

It may also be argued as follows that f and g are physical. If an attempt is

made to apply the usual U(1) gauge transform rule to A
m
L

A
m
L ! A

m
L þ qmw; AL ! AL 	rw; f! fþ qw

qt
ð526Þ

it follows that

_f ! _f 	 crw; r 
 f ! r
 f 	 1

c

qw
qt

ð527Þ

and ð
rwdt ¼ 1

c2

ð
dw
dt

dZ ð528Þ

It follows from Eq. (528) that the quantity w is not random, contrary to the U(1)

rule that w must be random. Euation (528) implies solutions of the type

w ¼ w0eiðot	kZÞ ð529Þ

so that

A
m
L ! A

m
L þ A

m0

L ð530Þ

where

A
m0
L ¼ iow0eiyð1; kÞ ¼ ðf0L; cA0LÞ ð531Þ

and

&A
m0

L ¼ 0; f0L ¼ 0 ð532Þ

The net result is

fL ! fL þ iow0ei�

� ¼ ot 	 kZ
ð533Þ
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If, for example

iw0 � 	
Að0Þffiffiffi

2
p ðX 	 iYÞ ð534Þ

then

fL ! 2fL; F ! 2F; G! 2G ð535Þ

and a field such as [27,28]

EX ¼
q2F

qXqZ
þ 1

c

q2G

qYqt
ð536Þ

doubles in magnitude. The field is not invariant, contrary to the requirements of

U(1) theory. The only possibility is that w ¼ 0; and that is physical and

observable.

Physical potentials are present in Whittaker’s theory without fields. This is

demonstrated as follows in the special case of a plane wave for the transverse

parts of E and B. In this special case

f ¼ ig ð537Þ

and from Eqs. (479a) and (479b)

E ¼ icr� ðr � gÞ þ ar� _g ð538aÞ

B ¼ i

c
r� _g	r� ðr � gÞ ð538bÞ

Under the condition

r� ðr � gÞ ¼ i

c

q
qt
ðr � gÞ ð539Þ

all the components of E and B vanish. The condition (539) is satisfied by

r� AT ¼
i

c

qAT

qt
ð540Þ

whose solution is

AT ¼
Að0Þffiffiffi

2
p ðiiþ jÞe	iðot	kZÞ ð541Þ
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The overall result is

E ¼ B ¼ 0

AL ¼ 	k
Að0Þffiffiffi

2
p ðX 	 iYÞe	iðot	kZÞk

fL ¼ 	o
Að0Þffiffiffi

2
p ðX 	 iYÞe	iðot	kZÞ

G ¼ F

i
¼ Að0Þffiffiffi

2
p ðX 	 iYÞe	iðot	kZÞ

ð542Þ

so there can be both transverse and longitudinal physical potentials, or

connections. Electromagnetism can be described entirely without fields, and in

terms of the vacuum topology.

Whittaker also argued [27,28] that longitudinal standing waves occur in the

vacuum. These can be illustrated by the choice of flux

G ¼ Að0Þffiffiffi
2
p ðX 	 iYÞðeiðot	kZÞ þ e	iðot	kZÞÞ ð543Þ

a choice that obeys the d’Alembert equation:

&G ¼ 0 ð544Þ

The real part of Eq. (543) is

ReðGÞ ¼ 2ffiffiffi
2
p Að0ÞðX cosot cos kZ þ Y cos ot sin kZÞ ð545Þ

which is a standing wave in the vacuum, directed along the propagation axis.

Such waves do not exist in the received U(1) theory. The magnetic flux

g ¼ 2ffiffiffi
2
p Að0ÞðX cosot cos kZ þ Y cosot sin kZÞk ð546Þ

is a solution to the vibrating-string problem, and the idea that electromagnetism

must be described in the vacuum by transverse plane waves of E and B is clearly

erroneous. Fluxes of the type (546) give rise to scalar potential interferometry

where there are no detectible fields.

It has been shown that the electromagnetic field in Whittaker’s view

originates in the vacuum, and in the plane wave approximation, in the equation

fL ¼ _F ¼ i _G ¼ 	oAð0Þffiffiffi
2
p ðX 	 iYÞeiðot	kZÞ ð547Þ
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under conditions of circular polarization. The scalar potential fL is time-like,

physical, and structured, and it propagates. An experimental design can be used

to test experimentally whether f and g are physical. The principle of the design is

very simple. Two dipole antennae are set up in close proximity so that the vector

potentials from each antenna cancel:

A1 ¼ 	i
keikr

4pce0r
p1 ð548Þ

Here p1 and p2 are the dipole moments of each antenna and r is the magnitude of

the radius vector

A2 ¼ i
keikr

4pce0r
p2 ð549Þ

in spherical coordinates [86]. It follows that

E ¼ 0; B ¼ 0; A ¼ A1 þ A2 ¼ 0 ð550Þ

so there are no vector potentials or fields radiated into the vacuum by this antenna

arrangement. Whittaker’s f and g magnetic flux vectors are defined as follows by

this arrangement:

g1 ¼ 	g2; f 1 ¼ 	f 2 ð551Þ

However, the scalar magnitudes of g and f from both antennas (G and F) are the

same, because the scalar magnitude of a vector is the square root of the vector

squared. Thus the following quantity is radiated into the vacuum:

2G ¼ 2ffiffiffi
2
p Að0ÞðX 	 iYÞeiðot	kZÞ ð552Þ

and the scalar potential

fL � 2 _G ð553Þ

is also present in the vacuum. On canonical quantization, this scalar potential

gives an ensemble of massless photons from the Klein–Gordon equation. This

property will be proved later in this section. These are physical time-like photons

each with the Planck energy �ho: The energy from these photons is therefore

Eq. (524), and is phase-free. For a large number of frequencies, the photons are

distributed according to the Planck distribution for blackbody radiation [69],
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which is radiated heat detectible by a bolometer. There are no vector potentials or

fields present, so the heat is due entirely to the physical F and G. In the received

view, such photons are unphysical and no heat should be detected. An improve-

ment on this design, due to Labounsky [87], is shown in Fig. 2, which illustrates

how fieldless G waves can be generated.

Gyrotron

Waveguide T-Junction
Power Splitter

Waveguide
Directional Coupler

RF Output in form of
waveguide flange

Waveguide
Directional Coupler

Closed end of waveguide

Gyrotrons produce high-power
microwaves up to megawatt range

Scalar G waves Output

Open end of waveguide

2 oppositely-polarized TE10 modes
waves, excited and mutually
cancelled in the main waveguide
section, resulting in the production
of Whittaker scalar G waves

Figure 2. Practical conception for a source of scalar G waves.

184 m. w. evans



Scalar interferometry is possible in this view if F and G are physical in the

vacuum. When two scalar beams of the type

G1 ¼
Að0Þffiffiffi

2
p ðX 	 iYÞeiðot	kZ1Þ

G2 ¼
Að0Þffiffiffi

2
p ðX 	 iYÞeiðot	kZ2Þ

ð554Þ

interfere, an interferogram is generated, as usual, and their combined energy

density in the zone of interference is

En

V
¼ cI

R2o2
ð1þ cos ðkðZ1 	 Z2ÞÞÞ ð555Þ

where I is the combined power density of the two beams in watts per square

meter. Here, Z1 	 Z2 is the path difference as usual, that is, the difference in

distance traversed by each beam from source (the design in Fig. 2) to interference

zone. If we now define

G3 �
1

Gð0Þ
ðG1 þ G2ÞðG�1 þ G�2Þ ð556Þ

then

&G3 ¼ B 6¼ 0 ð557Þ

and a fluctuating magnetic flux density B appears in the zone of interference even

though no field is radiated by either source. The presence of a magnetic field

indicates the presence of an electric field. There are magnetic and electric fields

in the zone of interference but none outside. Equation (557) is a gauge-invariant

construct, and the E and B fields in the zone of interference are real and physical,

and so interact with matter in the zone of interference. The energy density within

this zone is also gauge-invariant and physical

En

V
¼ Bð0Þ2

m0

¼ GG�

R4m0

ð558Þ

where R2 is the beam area, assumed to be the same for each beam. The lateral

extent of the radiated beams from the device in Fig. 2 is constrained by the

inverse fourth-power dependence on R.

It has been proved that F and G of Whittaker are physical and gauge-

invariant, and it follows, as shown next, that there exist physical time-like and
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longitudinal photons. These have an independent existence and appear from

canonical quantization of the classical, physical, and time-like scalar potential

difference in vacuo [Eq. (547)]. Canonical quantization follows straightfor-

wardly from the massless Klein–Gordon equation:

&fL ¼ 0 ð559Þ

The potential fL is treated as usual [6] as an operator subject to the commutator

relation of quantum mechanics. This procedure gives the positive definite

Hamiltonian (521) and vacuum energy (524) self-consistently. The scalar

potential fL is Fourier expanded as

fL ¼
ð

q3k

ð2pÞ32ok
ðaðkÞe	ioZ þ aþðkÞeioZÞ ð560Þ

a procedure that is self-consistent with Whittaker’s original demonstration

[27,28] that fL can be expanded in a Fourier series in the argument denoted by

Whittaker in his general solution for fL. Equation (560) has frequencies ok ¼ kc

generated by the Fourier expansion. So many different photons emerge, each

corresponding to a different frequency; quantization results in an ensemble [6] of

physical time-like photons, each of energy �ho. This is consistent with the Planck

quantization of energy momentum

pm ¼ �hkm ð561Þ

where the time-like component has energy �ho.

The coefficients a and aþ in the expansion (560) are operators defined by the

commutators [6]:

½aðkÞ; aðk0Þ� ¼ ½aþðkÞ; aþðkÞ� ¼ 0

½aðkÞ; aþðk0Þ� ¼ ð2pÞ32okd
3ðk	 k0Þ

ð562Þ

The operator:

NðkÞ ¼ aþðkÞaðkÞ ð563Þ

represents the number of particles with energy �ho and longitudinal momentum

�hk. The Hamiltonian, after quantization, takes the form

H ¼ 1

2
P2ðkÞ þ o2

k

2
Q2ðkÞ ð564Þ
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where

PðkÞ ¼ ok

2

� �1=2

ðaðkÞ þ aþðkÞÞ

QðkÞ ¼ 1

ð2okÞ1=2
ðaðkÞ 	 aþðkÞÞ

ð565Þ

and fL, after quantization, is an infinite sum of oscillators, that is, an ensemble of

time-like photons with energy �ho. The operators a and aþ respectively are

therefore the annihilation and creation operators for the quanta of fL and the

energy of the quantized fL is rigorously positive. The photons obtained after this

type of quantization obey Bose–Einstein statistics [6], and any number of

particles (photons) can exist in the same quantization state. These photons are

spin zero and massless and, because they are spin zero, are not absorbed by an

atom or molecule, in contrast to physical space-like photons carrying angular

momentum. The received view of canonical quantization asserts [6] that these

photons are unphysical. Paradoxically, the received view also asserts that the

vector (561) is physical. This paradox is seen in the Compton and photoelectric

effects as argued already in Section III. There are insurmountable difficulties [6]

in the received methods of canonical quantization. In the radiation gauge, for

example, the scalar and longitudinal parts of the 4-vector Am are missing, so Am is

not fully covariant at the outset. In the Lorenz gauge, there are several difficulties

well summarized by Ryder [6]. For example, there is an indefinite metric where

the Lorenz condition has to be used and then discarded, then a gauge fixing term

has to be used, and the final result is paradoxical in that an admixture of time-like

and longitudinal photons are physical [6], but each component is unphysical. The

procedure of canonical quantization in the Lorenz gauge gives photons with spin,

and these are asserted to be physical transverse photons.

It is far simpler to introduce spin into the assumed massless photon by

following the little group method of Wigner [6], that is, by examining the most

general type of Lorentz transform possible for a particle without mass. This

produces the normalized helicities 	1 and 1 through parity considerations.

These correspond, in the received view, to physical right and left circularly

polarized photons. If the photon is massive, as implied by O(3) electrodynamics,

there occurs in addition the helicity zero, corresponding to a physical long-

itudinal space-like photon without spin and corresponding to a physical O(3)

symmetry little group. [The little group of the massless photon is the unphysical

[6,15] E(2), another paradox of the received view.] As argued already, there also

occurs a time-like photon that is a scalar and that is purely energetic in nature.

These various considerations point toward the O(3) definition of the energy-

momentum 4-vector:

pm ¼ pmð1Þeð1Þ þ pmð2Þeð2Þ þ pmð3Þeð3Þ ð566Þ
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There are therefore three energy-momentum 4-vectors present:

pmð3Þ ¼ ðEn; cpð3ÞÞ; pmð2Þ ¼ ðEn; cpð2ÞÞ; pmð1Þ ¼ ðEn; cpð1ÞÞ ð567Þ

Energy is a scalar and so does not carry an internal gauge index. There are three

momenta; p(3) is longitudinal, and p(1) and p(2) are circularly polarized

conjugates. Applying Planck quantization gives immediately a time-like photon

�ho without spin, a longitudinal photon �hkð3Þ without spin and with energy �ho;
and right and left circularly polarized photons �hkð1Þ;ð2Þ, each of energy �ho:

Therefore Whittaker’s theory points toward the existence of O(3) electro-

dynamics. This conclusion is reinforced by the fact that Eqs. (479a) and (479b)

are invariant under the duality transform:

f ! 	g

g! f
ð568Þ

and Eqs. (484) and (485) can be written as

r� f þ 1

c

qg

qt
¼ 	 1

c
S ð569Þ

r � g	 1

c

qf

qt
¼ 	A ð570Þ

These equations are invariant under the transform:

f ! 	g; g! f ; S! 	cA ð571Þ

Special relativity then dictates that there exists the set of equations

r 
 g ¼ f
c

r� g ¼ 1

c

qf

qt
	 A

r 
 f ¼ 	P

r� f þ 1

c

qg

qt
¼ 	 1

c
S

ð572Þ

which can be written as

qm~gmn ¼ An

qmgmn ¼ 	Sn ð573Þ
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where

~gmn ¼

0 0 0 	g3

0 0 f 3 0

0 	f 3 0 0

g3 0 0 0

2
6664

3
7775 ð574Þ

gmn ¼

0 0 0 	f 3

0 0 	g3 0

0 g3 0 0

f 3 0 0 0

2
6664

3
7775 ð575Þ

Equations (573) have overall O(3) symmetry, and have the same structure as the

Maxwell–Heaviside equations with magnetic charge and current [3,4]. From

Eqs. (573), we obtain the wave equation

&~gmn ¼ 1

2
Fmn ¼ 0 ð576Þ

which is consistent with Whittaker’s starting point:

&G ¼&F ¼ 0 ð577Þ

The received view asserts that Am is always random, but in this section, several

counter arguments have been given. Several more counterarguments appear

throughout this chapter and elsewhere in the literature [3].

XI. PREPARING FOR COMPUTATION

In this section, the field equations (31) and (32) are considered in free space and

reduced to a form suitable for computation to give the most general solutions for

the vector potentials in the vacuum in O(3) electrodynamics. This procedure

shows that Eqs. (86) and (87) are true in general, and are not just particular

solutions. On the O(3) level, therefore, there exist no topological monopoles or

magnetic charges. This is consistent with empirical data—no magnetic

monopoles of any kind have been observed in nature.

If consideration is restricted to the vacuum, the field equations (86) and (90)

apply. The Jacobi identity (86) is first considered and written in the following

form [6]:

DlGmn þ DmGnl þ DnGlm � 0 ð578Þ
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This reduces in general to the form

qlGmn þ qmGnl þ qnGlm � 0 ð579Þ

because

Am � ~Gmn � 0 ð580Þ

is identically zero. The proof of this latter result proceeds by using the definitions

Gð1Þ�mn ¼ qmAð1Þ�n 	 qnAð1Þ�m 	 igAð2Þm � Að3Þn

Gð2Þ�mn ¼ qmAð2Þ�n 	 qnAð2Þ�m 	 igAð3Þm � Að1Þn

Gð3Þ�mn ¼ qmAð3Þ�n 	 qnAð3Þ�m 	 igAð1Þm � Að2Þn

ð581Þ

and Jacobi identities such as:

A
ð2Þ
l � ðA

ð1Þ
m � Að2Þn Þ þ Að2Þm � ðAð1Þn � A

ð2Þ
l Þ þ Að2Þn � ðA

ð1Þ
l � Að2Þm Þ � 0 ð582Þ

The terms

A
ð1Þ
l � ðqm Að2Þn 	 qn Að2Þm Þ � 0

A
ð2Þ
l � ðqm Að3Þn 	 qn Að3Þm Þ � 0

A
ð3Þ
l � ðqm Að1Þn 	 qn Að1Þm Þ � 0

� � �

ð583Þ

vanish individually as follows:

A
ð1Þ
l � ðqm Að2Þn 	 qn Að2Þm Þ ¼ eð1Þð2Þð3ÞA

ð1Þ
l qmAð2Þn 	 eð1Þð2Þð3ÞA

ð1Þ
l qn Að2Þm

¼ A
ð1Þ
l Fð2Þmn 	 A

ð2Þ
l Fð1Þmn

¼ AXBXðeð2Þ 
 eð1Þ 	 eð1Þeð2ÞÞ � 0

� � � ð584Þ

Equation (584) implies that the topological magnetic charge–current

Jn
m / Am � ~Gmn � 0 ð585Þ

vanishes in the vacuum, while B(3) is nonzero in the vacuum, a result that is

consistent with empirical data, which show the existence of B(3) and the

nonexistence of a magnetic monopole and magnetic current.
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The computational problem reduces therefore to a numerical solution of

three differential equations:

qlGð1Þmn þ qmG
ð1Þ
nl þ qnG

ð1Þ
lm � 0 ð586Þ

qlGð2Þmn þ qmG
ð2Þ
nl þ qnG

ð2Þ
lm � 0 ð587Þ

qlGð3Þmn þ qmG
ð3Þ
nl þ qnG

ð3Þ
lm � 0 ð588Þ

using the definitions (581). There are three equations in three unknowns, so the

problem can be solved for given boundary conditions.

The work of Whittaker described in the previous section can be summarized

by the potential

Að3Þm � ðA
ð3Þ
0 ; cAð3ÞÞ ð589Þ

where the magnitude of A(3) is A
ð3Þ
0 =c: The O(3) theory allows A

ð3Þ
0 and A(3) to be

structured, constant or zero. The B(3) field exists in all three cases. If, however,

A(3) is zero, so is A
ð3Þ
0 and there is no scalar potential. The conclusion reached is

that there can be an infinite number of components of the 4-vector A
ð3Þ
m for a

given phaseless B(3). In other words, the scalar potential can be expanded in a

Fourier series, or some other suitable series that includes the terms A(3)¼ 0 and

A(3)¼ constant.

The disappearance of the magnetic charge–current (585) means that the

topological terms on the right-hand sides of Eqs. (95)–(100) vanish identically

in the vacuum. The only topological charges and currents present are therefore

those introduced by Lehnert [7–10]. There is no empirical evidence for the

existence of an E(3) field, so we are left with

r� Eð1Þ þ qBð1Þ

qt
� 0 ð590Þ

r � Eð2Þ þ qBð2Þ

qt
� 0 ð591Þ

qBð3Þ

qt
� 0 ð592Þ

as first proposed some time ago [11–20]. Equation (592) has been verified

empirically by Raja et al. [88] and Compton et al. [89]. The most general type of

solution must be found, however, by solving Eqs. (586)–(588) numerically, so

that potentials are primary and fields are derived from potentials. The

mathematical structure of O(3) Yang–Mills theory applied to electrodynamics
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allows for A(3) ¼ 0 as one of many possible solutions. However, if A(3) ¼ 0, then

the scalar potential is also zero, while the B(3) field remains nonzero.

The vanishing of the topological magnetic current in Eqs. (98)–(100) leads to

two components of the B cyclic theorem as follows. In Eq. (98)

A
ð2Þ
0 ¼ 0; Eð3Þ ¼ 0 ð593Þ

and so

	cA
ð3Þ
0 Bð1Þ ¼ Eð1Þ � Að3Þ ð594Þ

Bð1Þ ¼ 1

c
k� Eð1Þ ð595Þ

for any A
ð3Þ
0 ¼ cAð3Þ: This result is self-consistent with the left-hand side of

Eq. (98), because Eq. (595) is a solution of Eq. (596):

r� Eð1Þ þ qBð1Þ

qt
� 0 ð596Þ

The B cyclic component emerges as follows:

Bð1Þ � Bð2Þ ¼ 1

c
ðk� Eð1ÞÞ � Bð2Þ ¼ iBð0ÞBð3Þ�

� � �
ð597Þ

Therefore all is self-consistent.

These calculations show that B(3) is not dependent on the existence of a

vacuum magnetic monopole [11–20]. Therefore the explanation of phenomena

based on B(3) is not dependent on a topological magnetic charge or monopole.

The fundamental reason for this is that B(3) is defined in terms of quantities that

are not dependent on a magnetic monopole, namely, g, A(1), and A(2).

Furthermore, the structure of O(3) Yang–Mills theory forces us to conclude

that E(3) is zero through the structure of Eqs. (98)–(100) [11–20]. The existence

of a phaseless E(3) has never been observed empirically. Action at a distance in

electrodynamics is obviously denied by the fact that we are working with a

gauge theory, and there is no convincing evidence for superluminal phenomena

in electrodynamics. It should also be clear that B(3) is not a static magnetic field;

rather, it is a radiated field, propagating with the third Stokes parameter.

The three equations (586)–(588) can be written in condensed form

qm ~GmnðiÞ ¼ 0; i ¼ 1; 2; 3 ð598Þ
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which is self-dual to another set of three simultaneous equations suitable for

computation and derivable from Eq. (90):

DmHmnðiÞ ¼ 0; i ¼ 1; 2; 3 ð599Þ

where Gmn of Eq. (90) has been replaced by Hmn for greater clarity and to indicate

the presence of vacuum polarization Therefore

qm ~GmnðiÞ ¼ DmHmnðiÞ ¼ 0 ð600Þ

represents the O(3) wave equation, which has a much richer structure than its

U(1) counterpart, and many more solutions. The charge current 12-vector in

vacuo, Eq. (91), is nonzero. This can be demonstrated by writing it out in

component form:

Jnð1Þ� ¼ 	igAð2Þm �Hmnð3Þ

Jnð2Þ� ¼ 	igAð3Þm �Hmnð1Þ

Jnð3Þ� ¼ 	igAð1Þm �Hmnð2Þ

ð601Þ

Terms such as

Jnð2Þ ¼ 	igAð2Þm � ðq
mAnð3Þ 	 qnAmð3Þ 	 igAmð1Þ � Anð2ÞÞ ð602Þ

are obtained. The first part can be expanded as

Að2Þm � qmAnð3Þ 	 Að2Þn � qnAmð3Þ ¼ eð2Þð3Þð1ÞA
ð2Þ
m qmAnð3Þ 	 eð2Þð3Þð1ÞA

ð2Þ
m qnAmð3Þ

¼ 	Að2Þm Fmnð3Þ 	 Að3Þm Fmnð2Þ ð603Þ

which is nonzero in general. The second part can be expanded as

Að2Þm � ðAmð1Þ � Anð2ÞÞ ¼ Amð1ÞðAð2Þm

Anð2ÞÞ 	 Anð2ÞðAð2Þm


Amð1ÞÞ
¼ 	Anð2ÞðAð2Þm


Amð1ÞÞ ð604Þ

which is also nonzero in general.

Therefore we reach the important overall conclusion that the structure of the

O(3) equations is a development into O(3) symmetry of the Lehnert field

equations [7–10], which are written in U(1) form. The Lehnert field equations

have been extensively developed and tested empirically and theoretically

[7–10].
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The O(3) Coulomb and Ampère–Maxwell laws in the vacuum are therefore

written in terms of displacement and magnetic field strength, and are as follows.

The Coulomb Law in the vacuum is

r 
 Dð1Þ� ¼ igðDð2Þ 
 Dð3Þ 	 Dð2Þ 
 Að3ÞÞ
r 
 Dð2Þ� ¼ igðAð3Þ 
 Dð1Þ 	 Dð3Þ 
 Að1ÞÞ
r 
 Dð3Þ� ¼ igðAð1Þ 
 Dð2Þ 	 Dð1Þ 
 Að2ÞÞ

ð605Þ

and the Ampère–Maxwell law in the vacuum is

r�Hð1Þ� 	 qDð1Þ�

qt
¼ 	igðcA

ð2Þ
0 Dð3Þ 	 cA

ð3Þ
0 Dð2Þ þ Að2Þ �Hð3Þ 	 Að3Þ �Hð2ÞÞ

r �Hð2Þ� 	 qDð2Þ�

qt
¼ 	igðcA

ð3Þ
0 Dð1Þ 	 cA

ð1Þ
0 Dð3Þ þ Að3Þ �Hð1Þ 	 Að1Þ � Hð3ÞÞ

r �Hð3Þ� 	 qDð3Þ�

qt
¼ 	igðcA

ð1Þ
0 Dð2Þ 	 cA

ð2Þ
0 Dð1Þ þ Að1Þ �Hð2Þ 	 Að2Þ � Hð1ÞÞ

ð606Þ

The displacement D(3) for example can be developed as

Dð3Þ ¼ e0Eð3Þ þ Pð3Þ ð607Þ

and since E(3) is zero, we obtain

Dð3Þ ¼ Pð3Þ

indicating the presence of classical vacuum polarization P(3) due to the topology

of the vacuum as represented by a gauge field theory with an assumed O(3) gauge

group symmetry. Therefore the energy inherent in the vacuum is obtained

entirely from the electric charge current (91), as discussed in Section IV. The

magnetic charge-current (585) vanishes, and so there is no energy inherent in the

vacuum from the magnetic charge–current for an internal O(3) gauge group

symmetry. On the O(3) level, there can therefore be classical vacuum

polarization, whose analog in quantum electrodynamics is the photon self-

energy [6].

The constitutive equations in the vacuum in O(3) electrodynamics are not the

same as those of U(1) electrodynamics, and in general

DðiÞ ¼ e0EðiÞ þ PðiÞ; i ¼ 1; 2; 3 ð609Þ

where P(i) are vacuum polarizations.
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To summarize, there are three equations [Eqs. (586)–(588)] in three un-

knowns (indices of the vector potential appropriate to ~Gmn) and another three

equations [Eq. (599)] in three unknowns (indices of the vector potential

appropriate to Hmn in the vacuum). Simple vacuum constitutive relations such as

D ¼ e0E; H ¼ 1

m0

B ð610Þ

of U(1) electrodynamics no longer apply, because of the existence of classical

vacuum polarization. The latter also occurs in the Lehnert equations [7–10],

which are known to give axisymmetric solutions similar to B(3), to indicate

photon mass, and to be superior in ability to the Maxwell–Heaviside equations.

To put the O(3) equations into the form of the Lehnert equations, we use the

definitions

D ¼ Dð1Þ þ Dð2Þ þ Dð3Þ

H ¼ Hð1Þ þHð2Þ þHð3Þ

E ¼ Eð1Þ þ Eð2Þ þ Eð3Þ

B ¼ Bð1Þ þ Bð2Þ þ Bð3Þ

� � �

ð611Þ

to obtain

r 
B ¼ 0

r� Eþ qB

qt
¼ 0

r 
B ¼ rvac

r�H 	 qD

qt
¼ Jvac

ð612Þ

which are mathematically identical to the Lehnert equations. The O(3) gauge

theory, however, shows that the origin of the vacuum charge and current

postulated phenomenologically by Lehnert [7–10] is the topology of the vacuum

described by an O(3) gauge group. The O(3) theory also shows, self-consistently,

that there is a vacuum polarization, so that the simple constitutive relations (610)

used by Lehnert do not hold. The O(3) gauge theory also reveals that the

presence of the B(3)* component, through its definition, is proportional to the

conjugate product of potentials, A(1) � A(2). However, the mathematical form of

the O(3) equations (612) is identical with that of the Lehnert equations.
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Formally, the O(3) equations are written most generally as

r 
 H ¼ rm;vac

r� Dþ qH

qt
¼ Jm;vac

r 
 D ¼ rvac

r�H 	 qD

qt
¼ Jvac

ð613Þ

which are identical in mathematical structure with the Harmuth equations

[21,22] and Barrett equations [3,4]. However, in O(3) electrodynamics, there is

no magnetic monopole or magnetic current as argued already. The structure

(612) in the vacuum is identical with the structure of the Maxwell–Heaviside

equations as used for field-matter interaction.

The complete computational problem in the vacuum is therefore as follows:

1. Use eqs. (586) to (588) to obtain A
ð1Þ
m ;A

ð2Þ
m ;A

ð3Þ
m ; m ¼ 0; :::; 3 with the

simplifying definitions

A
ðiÞ
0 ¼ A

ðiÞ
3 ¼ 0; i ¼ 1; 2

Að3Þm ¼ ðA
ð3Þ
0 ; cAð3ÞÞ ¼ ðAð3Þ0 ; cA

ð3Þ
3 kÞ

A
ð1Þ
0 ¼ A

ð2Þ
0 ¼ 0;

A
ð3Þ
1 ¼ A

ð3Þ
2 ¼ 0

ð614Þ

2. Use Eqs. (101)–(103) to obtain D(1), D(2), and D(3).

3. Use Eqs. (104)–(106) to obtain H(1), H(2), and H(3).

4. The complete displacement and magnetic field strength vectors in the

vacuum are then

D ¼ Dð1Þ þ Dð2Þ þ Dð3Þ

¼ DXiþ DY jþ DZk ð615Þ
H ¼ Hð1Þ þHð2Þ þHð3Þ ð616Þ

5. Use

Bð1Þ ¼ r � Að1Þ

Bð2Þ ¼ r � Að2Þ

Bð3Þ ¼ 	igAð1Þ � Að2Þ

ð617Þ

to obtain B(1), B(2), and B(3).
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6. Use Eqs. (590)–(592) to obtain E(1) and E(2).

7. Simplify the code with

Bð1Þ ¼ Bð2Þ�

Eð1Þ ¼ Eð2Þ�

Að1Þ ¼ Að2Þ�

� � �

ð618Þ

8. Finally, find P(1), P(2), and P(3) and, if they exist, M(1), M(2), and M(3) in

the vacuum.

The computational problem for the vacuum involves the definition of vacuum

boundary conditions, which, for example, may be a volume of radiation or a

beam radius. The computational method assumes no Lorenz condition, and

gives a vast number of solutions. Having obtained these solutions, we can next

check whether the non-Abelian Stokes theorem (153) is obeyed numerically.

Essentially, everything is obtained from potentials in the vacuum, and every-

thing is expressible in terms of these potentials, including the charge and the

current. In evaluating the coupling constant j=Að0Þ, the denominator is the

magnitude of A(1) ¼ A(2)*, defined by

Að0Þ ¼ Að1Þ 
Að2Þ
� �1=2

ð619Þ

This is then a computational solution of a classical problem in the vacuum. If g is

defined as j=Að0Þ, then e is never used.

In field–matter interaction, the fields B and E remain unchanged. The fields

D and H change because P and M change. Equations (612) have precisely the

same structure as Eqs. (9-7) of Panofsky and Phillips [86] with the following

identifications:

rvac � rtrue; Jvac � Jtrue ð620Þ

The rtrue and Jtrue of Ref. 86 are therefore identified as being due to the topology

of the vacuum, a topology that gives rise to potential energy inherent in the

vacuum. The potential energy appears in O(3) electrodynamics through the

connections AðiÞm , and so the connections are regarded as physical entities. Fields,

currents, and charges are obtained from the potentials, or more precisely,

potential energy differences that are dictated by the topology of the vacuum

itself. On the classical level, g ¼ j=Að0Þ so the constant e does not appear in the

vacuum. As demonstrated already in this review, the equivalent of the Poynting

theorem can be obtained by considering the energy inherent in the vacuum, on

both the U(1) and on the O(3) levels.
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In dealing with Eqs. (612), the vacuum is treated as if it were a material, and

the equations are solved with stipulated boundary conditions and constitutive

relations. The ontology behind Eqs. (612) is that charge–current is the result of

spacetime. Similarly, in general relativity, matter is the result of spacetime. A

complete theory would obviate the need for constitutive relations and be based

on grand unified field theory with an O(3) electromagnetic sector. Equations

(612) deal only with the electromagnetic sector on a classical level and still

utilize the concept of field as a matter of convenience. So we still write in terms

of field–matter interaction, although the ontology dictates that field–matter

interaction is dictated solely by the topology of spacetime.

The computational problem in the vacuum has to be solved first, to obtain the

vacuum polarizations. To simulate the interaction with matter, the polarization

changes in the medium must be modeled using constitutive relations, and

boundary conditions defined according to the problem being solved. Integral

forms of Eqs. (612) may be useful, and integral forms must be obtained through

the non-Abelian Stokes theorem using O(3) covariant derivatives. For example,

the integral form of Eqs. (590)–(592) is

þ
Eð1Þ 
 drþ q

qt

þ
Bð1Þ 
 dAr ¼ 0 ð621Þ

þ
Eð2Þ 
 drþ q

qt

þ
Bð2Þ 
 dAr ¼ 0 ð622Þ

q
qt

þ
Bð3Þ 
 dAr ¼ 0 ð623Þ

and the integral form of r 
BðiÞ ¼ 0; i ¼ 1; 2; 3 isþ
BðiÞ 
 dr ¼ 0; i ¼ 1; 2; 3 ð624Þ

A simple example of a computational problem on the U(1) level is the

numerical solution of the equation

r r 
Að Þ 	 r2Aþ 1

c2

q
qt
rfþ 1

c2

q2A

qt2
¼ 0 ð625Þ

which is equivalent to solving the following equations simultaneously:

r� Eþ qB

qt
¼ 0

r� B	 1

c2

qE

qt
¼ 0

ð626Þ
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In the received opinion [5], these are the vacuum Faraday law and Ampère–

Maxwell law, respectively. The vacuum charges and currents are missing in the

received opinion. Nevertheless, solving Eq. (625) numerically is a useful

computational problem with boundary conditions stipulated in the vacuum. The

potentials and fields are related as usual by

B ¼ r� A

E ¼ 	 qA

qt
	rf

ð627Þ

In the received view, it is customary to simplify the problem of solving Eq. (625)

with the Lorenz condition

r 
 Aþ 1

c2

qf
qt
¼ 0 ð628Þ

to give the d’Alembert equation in vacuo

r2A	 1

c2

q2A

qt2
¼ 0 ð629Þ

an equation that has analytical solutions such as plane waves. The Lorenz

condition (628) is asserted to be the result of gauge freedom. The computational

problem therefore consists in solving Eq. (625) with and without Eq. (628) for

different boundary conditions.

Regardless of whether the Lorenz gauge is used, the equation &w ¼ 0 is

obtained. So w is not random after being assumed to be random (a reduction to

absurdity) proof of the self-consistency of the U(1) gauge ansatz. Ludwig V.

Lorenz introduced the idea of the Lorenz gauge or condition (often misattrib-

uted to Henrik Anton Lorentz) in 1867, so we can write the structured scalar

potential as f ¼ f0eioðtÞ, where (t) is the retarded time. So in this sense, we can

have pure time-like potentials (something that apparently was discussed between

Bearden and Wigner) in the context of a pure time-like photon. Whittaker’s

work depends on the Lorenz condition on the U(1) level.

Plane waves have infinite lateral extent and, for this reason, cannot be

simulated on a computer because of floating-point overflow. If the lateral extent

is constrained, as in Problem 6.11 of Jackson [5], longitudinal solutions appear

in the vacuum, even on the U(1) level without vacuum charges and currents.

This property can be simulated on the computer using boundary conditions,

for example, a cylindrical beam of light. It can be seen from a comparison of

Eqs. (625) and (629) that if the Lorenz condition is not used, there is no increase
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in the number of variables. Therefore Eq. (625) is one equation in two

unknowns, f and A. If we use the Lorenz condition

r 
 Aþ 1

c2

qf
qt
¼ 0 ð630Þ

we still have one equation in two unknowns. Making use of the vacuum Coulomb

and Gauss laws in the received view

r 
 E ¼ 0

r 
 B ¼ 0
ð631Þ

we obtain two more equations:

r 

qA

qt
þrf


 �
¼ 0 ð632Þ

r 
r � A ¼ 0 ð633Þ

So there are three equations, (625), (632), and (633), in two unknowns A and f .

These are enough to solve for the components of A and for f for any boundary

condition. For any physical boundary condition, there will be longitudinal as well

as transverse components of A in the vacuum, and f will in general be phase-

dependent and structured. This computational exercise shows that the Lorenz

condition is arbitrary and, if it is discarded, the values of A and f from Eqs.

(625), ( 632), and (633) change.

Under the U(1) gauge transform

Am ! Am þ qmw; Am � ðf; cAÞ; i:e:f! fþ 1

c

qw
qt

; A! A	 1

c
rw


 �
ð634Þ

we see that E and B do not change:

E! Eþ 1

c

q
qt
rw	 1

c
r qw

qt
¼ E

B! B	 1

c
r� ðrwÞ ¼ B

ð635Þ

and Eqs. (625), (632), and (633) do not change. This means that for any given

boundary condition, we can find the solutions

f0 � fþ 1

c

qw
qt

ð636Þ

A0 � A	 1

c
rw ð637Þ
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from Eqs. (625), (632), and (633) numerically. The solutions f0 and A0, however,

are not arbitrary for a given boundary condition, indicating another self-

inconsistency in U(1) gauge theory (Section II). Furthermore, under the same

gauge transform (634), Eq. (625) indicates that w must obey the equation

&w ¼ 0 ð638Þ

whose general solution has been given by Whittaker [27] and is not arbitrary. If

we arbitrarily decouple Eq. (625) into

&A ¼ 0

r 
 Aþ 1

c2

qf
qt
¼ 0

ð639Þ

then Eq. (638) is obtained again, indicating that the Lorenz condition and

d’Alembert equation in vacuo are arbitrary constructs, that is, particular solutions

of Eq. (625). The Lorenz condition has no physical meaning, nor does the

vacuum d’Alembert equation. The function w is not arbitrary, contrary to the

U(1) gauge transform ansatz, Eq. (634). In other words, the gauge transformed f0

and A0 are not arbitrary, as they are solutions of two differential equations, (625)

and (632), in two unknowns, f0 and A0, for a given boundary condition. We

conclude that f0 and A0 are physical, not arbitrary, thus refuting Heaviside’s point

of view and supporting that of Maxwell and Faraday. For a self-consistent picture

of electrodynamics, we have to go to the O(3) level, as discussed earlier in this

section.

The same conclusion regarding the Lorenz gauge is reached by Jackson [5],

who shows that:

qmAm0 ¼ qmAm þ&w ð640Þ

However, Jackson follows the received opinion and forces

&w ¼ 	qmAm ð641Þ

through the arbitrary assumption:

qmAm0 ¼ ? 0 ð642Þ

The latter merely reinforces the conclusion that w is not arbitrary.

By discarding the Lorenz condition, a vacuum current Jvac is introduced. The

vacuum current Jvac is conceptually similar to the one introduced by Lehnert

and Roy [10]. Relativity then indicates the presence of a vacuum charge, so the
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field equations in vacuo become identical with those of Panofsky and Phillips

[86] and those of O(3) electrodynamics [11–20] i.e., [Eqs. (612)]. Phipps [90]

has also derived the same structure and describes it as ‘‘neo-Hertzian.’’ There is

therefore a remarkable degree of agreement in the literature that the structure of

the Heaviside–Maxwell equations in vacuo is such that the overall symmetry is

O(3). This conclusion is consistent with the fact that there is no Lorenz

condition on the O(3) level, necessitating numerical solution as described

earlier in this section.

The source of Eq. (625), however, is the set of vacuum Maxwell–Heaviside

equations

r 
B ¼ 0

r 
E ¼ 0

r� Eþ qB

qt
¼ 0

r� B	 1

c2

qE

qt
¼ 0

ð643Þ

and to identify Eqs. (612) with Eqs. (643), it is necessary to write the vacuum

displacement as

D ¼ e0 Eþ P ð644Þ

and to introduce the vacuum polarization. This result is self-consistent with our

constitutive equations (607)–(609) on the O(3) level. The vacuum polarization

gives rise to a polarization current

JP � 	
qP

qt
ð645Þ

and exists if and only if we discard the Lorenz condition. It therefore becomes

clear that use of the Lorenz condition prohibits the evolution of U(1) into O(3)

electrodynamics and arbitrarily asserts a zero vacuum polarization. The

existence of vacuum charge and currents means the existence of vacuum energy,

as argued already. The experimental challenge is how to tap this energy, which is

theoretically infinite, that is, extends throughout the universe.

The vacuum charge density and current density are

rvac ¼
1

m0

&f

Jvac ¼
1

m0

&A

ð646Þ
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and so it becomes clear that Whittaker’s theory [27] is restricted severely by his

adoption of the Lorenz condition. The received view is similarly restricted. The

new paradigm introduced here is that the vacuum itself is the source of charge–

current, including, of course, Maxwell’s displacement current. The latter has

nothing to do with charged electrons, and similarly, the Noether currents of O(3)

electrodynamics have nothing to do with charged electrons. The received view

asserts that the Maxwell displacement current is the origin of the electromagnetic

field, which carries energy and momentum; the new paradigm asserts that the

vacuum itself is the source of energy and momentum through the intermediary of

entities labeled charge, current, and field. The topology of the vacuum is

described by physical A and f , which, in turn, originate in the gauge principle

and group theory. We have argued that the notion of unphysical A and f is

untenable. It is this idea that leads to the Lorenz condition, which is, in turn,

untenable.

Therefore electric and magnetic fields do not emanate from a point charge, as

in the received view; both charge and field are outcomes of the topology of the

vacuum. In the new paradigm, the energy that is said to be transmitted by the

electromagnetic field in the received opinion is inherent in the vacuum structure;

all is determined by the nature of the connection in gauge theory, and by the

physical nature of the potential, which is more precisely described as potential

energy difference. An intense electromagnetic field in the received view

corresponds in the new paradigm to a warping of space-time by the gauge

connection inherent in the covariant derivative. On the classical level, the

proportionality constant g is j=Að0Þ, and e=�h is not necessary. Curvature or

warping of spacetime determines the process of radiation and of detection of

radiation. Causality implies that the cause precedes the effect in time. This new

view of electromagnetism as being essentially the vacuum itself is similar to

general relativity. The major implication is that the vacuum carries an unknown

amount of electromagnetic energy; the electromagnetic field is far stronger than

the gravitational field, so the amount of electromagnetic energy in the vacuum is

commensurably greater.

The vast paradox inherent in the concept of field is vividly summarized by

Koestler [91, p. 502ff.]: a steel cable of a thickness equaling the diameter of the

earth would not be strong enough to hold the earth in its orbit. Yet the gravitational

force which holds the earth in its orbit is transmitted from the sun across 93

million miles of space without any material medium to carry that force. The

paradox is further illustrated by Newton’s own words, which I have quoted before,

but which bear repeating: It is inconceivable, that inanimate brute matter should,

without the mediation of something else, which is not material, operate upon, and

affect other matter without mutual contact, � � � And this is one reason why I

desired you would not ascribe innate gravity to me. That gravity should be innate,

inherent, and essential to matter, so that one body may act upon another, at a
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distance through a vacuum, without the mediation of anything else, by and through

which their action and force may be conveyed from one to another, is to me so

great an absurdity, that I believe no man who has in philosophical matters a

competent faculty of thinking, can ever fall into it. Gravity must be caused by an

agent acting constantly according to certain laws; but whether this agent be

material or immaterial, I have left to the consideration of my readers.

The paradox is compounded greatly in electrodynamics, where, in the re-

ceived view, the field is superimposed on spacetime. In the new view, both the

gravitational and electromagnetic fields are the results of topology, or vacuum

structure. The enormous amount of energy inherent in the vacuum is meta-

phorically apparent in Koestler’s steel cable. The electromagnetic energy from

the same source is orders of magnitude greater. Thus a few simple computational

trials are needed.

XII. SU(2)� SU(2) ELECTROWEAK THEORY WITH AN O(3)
ELECTROMAGNETIC SECTOR

It has been demonstrated conclusively that classical electrodynamics is not a

U(1) gauge theory; therefore, the continued use of a U(1) sector in unified field

theory is misleading. In this section, a first attempt is made to unify the

electromagnetic and weak fields with an O(3) electromagnetic sector. The theory

has SU(2) � SU(2) symmetry instead of the usual U(1) � SU(2) symmetry. The

change in symmetry has several ramifications, including the appearance of a

novel massive boson that has been detected empirically [92]. The use of an O(3)

electromagnetic sector will also have ramifications in grand unified field theory, a

paradigm shift that extends throughout field and particle physics and challenges

the standard model at a fundamental level. In the new view of grand unified field

theory, all four fields are manifestations of non-Abelian gauge theory. If we go a

step further and drop the word ‘‘field,’’ then all physics becomes a manifestation

of vacuum topology.

The extension of U(1)� SU(2) electroweak theory to SU(2)� SU(2) elec-

troweak theory succeeds in describing the empirically measured masses of the

weakly interacting vector bosons, and predicts a novel massive boson that was

been detected in 1999 [92]. The SU(2)� SU(2) theory is developed initially

with one Higgs field for both parts of the twisted bundle [93], and is further

developed later in this section.

The physical vacuum is assumed to be defined by the Higgs mechanism, and

the SU(2)� SU(2) covariant derivative is

Dm ¼ qm þ ig0r 
 Am þ igs 
 bm ð647Þ

where r and s are the generators for the two SU(2) gauge fields represented as

Pauli matrices, and where A and b are the gauge connections defined on the two
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SU(2) principal bundles. There is an additional Lagrangian for the f4 scalar

field [93]:

Lf ¼
1

2
jDmðfÞ2j 	

1

2
m2jfj2 þ 1

4
jljðjfj2Þ2 ð648Þ

The expectation value for the scalar field is then

hf0i ¼ 0;
vffiffiffi
2
p


 �
ð649Þ

for v ¼ ð	m2=lÞ1=2
. The generators for the theory on the broken vacuum are

hf0is1
¼ vffiffiffi

2
p ; 0


 �

hf0is2
¼ i

vffiffiffi
2
p ; 0


 �

hf0is3
¼ 0;	 vffiffiffi

2
p


 � ð650Þ

These are the same for the other SU(2) sector of the theory. The hypercharge

formula of Nishijima, if applied directly, would lead to an electric charge

Qðf0Þ ¼
1

2
hf0iðr3 þ s1Þ

¼ 0;	 vffiffiffi
2
p


 �
þ 0;

vffiffiffi
2
p


 �
ð651Þ

implying two unphysical oppositely charged photons. The equation for the

hypercharge must therefore be modified to

Qðf0Þ ¼
1

2
hf0iðn2 
 s3 þ n1 
r1Þ ¼ 0 ð652Þ

where n1 and n2 are unit vectors on the doublet defined by the two eigenstates of

the vacuum. This projection on to s1 and t3 is required because we are using a

single Higgs field on both bundles on both SU(2) connections. This requirement

can be relaxed as discussed later in this section. At this stage of the development,

the generators of the theory have a broken symmetry on the physical vacuum.

Therefore, the photon is defined according to the s1 generator in one SU(2)

sector of the theory, while the charged neutral current of the weak interaction is

defined on the t3 generator.
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The fundamental Lagrangian contains the electro-weak Lagrangians and the

f4 scalar field:

L ¼ 	 1

4
Fa
mnF

amn 	 1

4
Ga

mnGamn þ Dmf
�� j2 	 1

2
m2jfj2 þ 1

4
lðjfj2Þ2 ð653Þ

where Ga
mn and Fa

mn are elements of the field strength tensors for the two SU(2)

principal bundles. In order to develop the theory further, it would be necessary to

include the Dirac and Yukawa Lagrangians that couple the Higgs field to the

leptons and quarks. The f4 field may be developed as a small displacement in the

vacuum energy:

f0 ¼ fþ hf0i �
ðvþ xþ iwÞffiffiffi

2
p ð654Þ

The fields x and w are orthogonal components in the complex phase plane for the

oscillations due to the small displacement of the scalar field, which is thereby

characterized completely. The scalar field Lagrangian becomes

Lf ¼
1

2
ðqmx qmx	 2m2x2Þ þ 1

2
v2 g0Am þ gbm þ

1

gv
þ 1

g0v


 �
qmw


 �

� g0Am þ gbm þ
1

gv
þ 1

g0v


 �
qmw


 �
ð655Þ

where Lie algebraic indices are implied. The Higgs field is described by the

harmonic oscillator equation where the field has the mass MH � 1:0 TeV/c2.

On the physical vacuum the gauge fields are:

g0Am þ gbm ! g0A0m þ gb0m ð656Þ

which corresponds to a phase rotation induced by the transition of the vacuum to

the physical vacuum. The Lagrangian is now decomposed into components by

expanding about the minimum of the scalar potential

Lf ¼
1

2
ðqmx qmx	 2m2x2Þ þ 1

8
v2ðg0jbð3Þj3 þ g02ðjWþj2 þ jW	j2Þ

þ g2jAð1Þj2 þ g2jAð3Þ þ iAð2Þj2Þ ð657Þ

where the charged weak fields are identified as

W�m ¼
1ffiffiffi
2
p ðbð1Þm � ibð2Þm Þ ð658Þ
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with mass gn=2. The other parts of the Lagrangian define the fields:

Am ¼
ðgAð3Þm þ g0bð3Þm 	 gAð1Þm Þ

ðg2 þ g02Þ1=2
ð659aÞ

Z0
m ¼
ðg0Að3Þm þ gbð3Þm 	 g0Að1Þm Þ

ðg2 þ g02Þ1=2
ð659bÞ

On scales larger than unification, the requirement A
ð3Þ
m ¼ 0 is needed [94]

because otherwise Z0 would have a mass greater than empirically measured, or

there would be an additional massive boson along with the Z0 neutral boson. A

more complete discussion of A
ð3Þ
m is given later in this chapter. The additional

massive boson predicted by the theory has been observed empirically [92]. The

considerations thus far lead to the standard result that the mass of the photon

vanishes, and that the mass of the Z0 particle is

MZ0
¼ v

2
g2 þ g02
� �1=2

¼ MW 1þ g0

g


 �2
 !1=2

ð660Þ

The weak angles are defined trigonometrically by the terms g=ðg2 þ g
02Þ and

g0=ðg2 þ g
02Þ. This means that the field strength tensor satisfies

Fð3Þmn ¼ qnAð3Þm 	 qmAð3Þn 	 ig½Að1Þn ;Að2Þm �

¼ 	ig½Að1Þn ;Að2Þm � ð661Þ

and that the B(3) field is defined, in this notation, by

B
ð3Þ
j ¼ emnj Fð3Þmn ¼ 	igAð1Þ � Að2Þ ð662Þ

The E(3) field, however, is zero, as we have seen, so that the Lagrangian is

satisfactorily nonzero. The E(3) field vanishes by definition [Eqs. (581)].

Specifically [11–20]

G03ð3Þ� ¼ q0A3ð3Þ� 	 q3A0ð3Þ� 	 igðA0ð1ÞA3ð2Þ 	 A3ð2ÞA0ð1ÞÞ � 0 ð663Þ

a result that is consistent with the B cyclic theorem and with the fact that there

are no magnetic monopoles or currents in O(3) electrodynamics. The E(3) field
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also vanishes if A(3) is a constant, or is structured. Therefore an SU(2) � SU(2)

electroweak theory can be constructed that self-consistently describes the

empirically observed Z0, W� bosons, and the B(3) field in the electromagnetic

sector. The theory of electromagnetism on the physical vacuum that emerges is

L ¼ 	 1

4
FmnFmn 	

1

4
GamnGa

mn 	
1

2
Bð3Þ2

þM0jZ0j2 þMW jW�j2 þ
1

2
ðjqxj2 	 q2

mjxj
2Þ

þDirac LagrangianþYukawa=Fermi=Higgs ð664Þ

where Fmn and Ga
mnare the field tensor components for standard electromagnetism

and the weak interaction, and the cyclic magnetic fields define the Lagrangian in

the third term. The occurrence of the massive Z0 and W� particles breaks the

gauge symmetry of the SU(2) weak interactions.

The longitudinal field B(3) therefore results from the breaking of gauge

invariance. There is no E(3) field by definition [Eq. (663)]. Under the gauge

transform

Að1Þ ! UAð1ÞU	1 þ UqU	1 ð665Þ

the B(3) field is invariant [11–20]:

Bð3Þi ¼ eijkU½Að1Þj ;A
ð2Þ
k �U	1 ð666Þ

The condition A3
m ¼ 0 is, however, restrictive, and can be removed by the

inclusion in the theory of massive fermions. This makes the SU(2) � SU(2)

theory consistent with the fact that A(3) is phase-dependent and structured from

Eqs. (586)–(588) and with the fact that there can be many solutions for Að3Þm in the

vacuum. The condition is therefore a first step in the development of SU(2) �
SU(2) theory. If the condition Að3Þm ¼ 0 is relaxed, the currents will contain vector

and axial components that obey SU(2) � SU(2)C algebra, and on the physical

vacuum, fields acquire masses that violate the current conservation of the axial

vector current.

The theory so far is incomplete, however, because it has two SU(2) algebras

that both act on the same Fermi spinor fields, and only one Higgs mechanism is

used to compute the vacuum expectations for both fields. To improve the theory,

consider that each SU(2) acts on separate spinor field doublets and that there are

two Higgs fields that compute separate physical vacua for each SU(2) sector

independently. The Higgs fields will give 2 � 2 vacuum diagonal expectations.

If two entries in each of these matrices are equal, the resulting massive fermions

in each of the two spinor doublets are identical. If the spin in one doublet
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assumes a very large mass, then at low energies, the doublet will appear as a

singlet and the gauge theory that acts on it will be O(3), with the algebra of

singlets:

ei ¼ eijk ej; ek

� �
ð667Þ

The theory on the physical vacuum will involve transformations on a singlet

according to a broken O(3) gauge theory, and transformations on a doublet

according to a broken SU(2) gauge theory. The broken O(3) theory signals the

existence of a very massive A(3) boson, which has been observed empirically

[92], and massless A(1) and A(2) bosons. This broken O(3) gauge theory reduces

to electromagnetism with the cyclicity condition. The broken SU(2) theory

reflects the occurrence, as usual, of a massive charged and neutral weak bosons.

The theory can be taken further by embedding it into an SU(4) gauge theory

where the gauge potentials are described by 4� 4 traceless Hermitian matrices

and the Dirac spinor has 16-components. The neutrality of the photon is then

given by a sum over charges, a sum that vanishes because the theory is traceless.

The Higgs field is described by a 4� 4 matrix of entries.

By invoking the condition A
ð3Þ
m ¼ 0 in the above development, what is

meant is that the transverse components of A
ð3Þ
m are zero. This is always the

case in pure electromagnetism, because (3) is the longitudinal index. The longi-

tudinal

Að3Þm � f; cAð Þ ð668Þ

is evidently nonzero from the arguments of Section XI. In general, in electroweak

theory, however, the indices (1), (2), and (3) denote isospin, and not the circular

complex space ((1),(2),(3)). So if we take A
ð3Þ
m to denote a 4-vector with isospin

index (3), it may have a transverse component that is nonzero. This would mean

that the current for this gauge boson is not highly conserved with a very large

mass so that the interaction scale is far smaller than that for the electromagnetic

field.

If we take (1), (2), and (3) to denote isospin indices, we have in general

A
0ð1Þ
m ¼ ðgA

ð3Þ
m þ g0b

ð3Þ
m 	 gA

ð1Þ
m Þ

g2 þ g02ð Þ1=2

Z0
m ¼
ðgb
ð3Þ
m þ g0A

ð3Þ
m Þ

ðg2 þ g02Þ1=2

oð3Þm ¼
g0

ðg2 þ g02Þ1=2
Að3Þm

ð669Þ
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The oð3Þm connection has a chiral component that seems to imply that B(3) has a

chiral component, or is mixed with the chiral component of the other SU(2)

chiral field of the electroweak theory. This is what happens to SU(2) electro-

magnetism at very high energies. It becomes very similar in formal structure to

the theory of weak interactions and has implications for the theory of leptons.

The electromagnetic interaction acts on a doublet that can be treated as an

element of a Fermi doublet of charged leptons and their neutrinos in the SU(2)

theory of the weak interaction.

Let c be a doublet that describes an electron according to the (1) field and the

(3) field, where the indices (1) and (3) are isospin indices in general. The free-

particle Dirac Lagrangian is (c ¼ 1; �h ¼ 1)

L ¼ �cðigmDm 	 mÞc ¼ �cðigmqm 	 mÞc	 gAb
m
�cgmsbc

¼Lfree þ Ab
mJ

m
b ð670Þ

where �c ¼ cþg4. We decompose the current Jb
m into vector and chiral

components

Jb
m ¼ cþg4gmð1þ g5Þsð3Þc ¼ Vb

m þ wb
m ð671Þ

a procedure that is analogous to the current algebra for weak and electromagnetic

interactions between fermions. There are two vector current operators

Va
m ¼

i

2
�cgms

ac ð672Þ

and two axial current operators

wb
m ¼

i

2
�cgmg5t

bc ð673Þ

where g5 ¼ ig1g2g3g4 and where tb are Pauli matrices. These define an algebra

of equal time commutators:

½Va
4 ;Vb

m � ¼ itabcVc
m

½Va
4 ; w

b
m� ¼ 	itabcwc

m

ð674Þ

The index l ¼ 4 implies the following algebra:

½Va
4 ;Vb

4 � ¼ itabcVc
4

½Va
4 ; w

b
4� ¼ 	itabcwc

4

ð675Þ
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The definition

Qa
� ¼

1

2
ðVa

4 � wa
4Þ ð676Þ

gives the algebra

½Qa
þ;Qb

þ� ¼ itabcQc
þ

½Qa
	;Qb

	� ¼ itabcQc
	

½Qa
þ;Qb

	� ¼ 0

ð677Þ

which defines the SU(2) � SU(2) algebra. The parity operator P acts as follows:

PVb
4 Pþ ¼ Vb

4

Pwb
4Pþ ¼ 	wb

4

ð678Þ

and one SU(2) group differs from the other. The total group is therefore the chiral

group SU(2) � SU(2)P.

On the physical vacuum, the above theory becomes a vector gauge theory

where the indices (1), (2), and (3) are now defined in the complex circular basis

((1),(2),(3)) described by

eð1Þ � eð2Þ ¼ ieð3Þ�

� � �
ð679Þ

On the physical vacuum, therefore, there are no transverse components of A
ð3Þ
m ,

and its longitudinal components are structured as in Section XI. On the physical

vacuum, there is a mixture of vector and chiral gauge components within both the

electromagnetic and weak-field sectors. This means that any transverse compo-

nent of A(3) will vanish identically at low energies, and any transverse component

of A(3) can exist only if (3) is regarded as an isospin index. If so, any transverse

A(3) will be massive and short-ranged and will quantize to the massive boson

detected in Ref. 92. Clearly, a transverse component of A(3) in the pure electro-

magnetic sector vanishes by definition, and can exist only as a result of the

mixing of the electromagnetic and weak field, and then only if (3) is generalized

to an isospin index from a purely spatial index (3) ¼ k.

If there exists a very high energy massive A(3), as the data in Ref. 92 appear

to indicate, there exists the nonconserved current

qmJð3Þm ¼ imcc
þg4g5s

ð3Þc ð680Þ
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where inhomogeneous terms correspond to quark–antiquark and lepton–

antilepton pairs that are formed from the decay of these particles. This breaks

the chiral symmetry of the theory. The action of this current on the physical

vacuum is such that when projected on a massive eigenstate for any 3-photon

with transverse modes, for instance

h0jqmJð3Þm jXbi ¼
m2

ðoðkÞoðk0ÞÞ1=2
hXk0 jXbieikx ð681Þ

the mass of the chiral bosons will vanish, while the mass of the chiral 3-boson

will be m. Therefore A(3) is a separate chiral gauge field that obeys axial vector

field that does not obey axial vector conservation and occurs only at short ranges.

Therefore A(3) must not be confused with a transverse component of the low-

energy electromagnetic A
ð3Þ
m , which is zero by definition. Furthermore, the

condition Að3Þ ¼ 0 must not be taken to imply that the scalar and longitudinal

vector parts of A(3) are zero.

Therefore the electroweak theory is chiral at high energies, but is vector and

chiral in separate sectors on the physical vacuum of low energies. The high-

energy chiral field combines with the other chiral field in the twisted bundle to

produce a vector field plus a broken chiral field at low energy. There are

independent fields that are decoupled on the physical vacuum at low energies.

Consider two fermion fields, c and w, each consisting of the two component

right- and left-handed fields Rc; Lf iRw; Lw. These Fermi doublets have the

masses m1 and m2. The two gauge potentials Am and Bm interact respectively

with the c and w fields. In general, these Fermi fields are degeneracies that split

into the multiplet of known fermions, so that there are four possible masses for

these fields in the physical vacuum. The masses originate in Yukawa couplings

with the Higgs field on the physical vacuum, which give Lagrangian terms of

the form YfRþcfLw þ H:C: and YZLþcZRw þ H:C: where there are two compo-

nent f4 fields for the Higgs mechanism. (H.C. ¼ higher contributions). These

components assume the minimal expectation values hf0i and hZ0i on the

physical vacuum with the Lagrangian:

L ¼ �cðigmðqm þ igAmÞ 	 m1Þc
þ �wðigmðqm þ igBmÞ 	 m2Þw	 YfRþcLw þ H:C:

	 YZLþcZRw þ H:C: ð682Þ
that can be further broken into the left and right two component spinors

L ¼ Rþc ismðqm þ igAmÞRc þ Lþc ismðqm þ igAmÞLc

þ Rþw ismðqm þ igBmÞRw þ Lþw s
mðqm þ igBmÞLw

	 m1RþcLc 	 m1LþcRc 	 m2Rþw Lw 	 m2Lþw Rw

	 YfRþcfLw þ Y�fLþw f
�Rc 	 YZLþcZRw þ Y�ZRþw Z

�Lc ð683Þ
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The gauge potentials Am and Bm are 2� 2 Hermitian traceless matrices, and the

Higgs fields f and w are also 2� 2 matrices. These expectations are real-valued,

and the nonzero contributions of the Higgs field on the physical vacuum are

given by the diagonal matrix entries [95]:

hfi ¼ hfð1Þi 0

0 hfð2Þi

� �
; hwi ¼ hwð1Þi 0

0 hwð2Þi

� �
ð684Þ

The values of the vacuum expectations are such that, at high energy, the left-

handed fields Rw and the right-handed doublet field Lc couple to the SU(2) vector

boson field Bm, while at low energy, the theory is one with a left-handed SU(2)

doublet Rc that interacts with the right-handed doublet Lw through the massive

gauge fields Am. The mass terms from the Yukawa coupling Lagrangians will

give

m0 ¼ YZhwð1Þi � m00 ¼ YZhwð2Þi � m000 ¼ Yfhfð1Þi � m000 ¼ Yfhfð2Þi ð685Þ

If the SU(2) theory for Bm potentials are right-handed chiral and the SU(2) theory

for Am potentials are left-handed chiral, a chiral theory at high energies can

become a vector theory at low energies.

This is a broken gauge theory at low energy, which can be expressed as in

Eq. (686) as a gauge theory accompanied by a broken gauge symmetry. Assume

a simple Lagrangian that couples the left-handed fields cl to the right-handed

boson Am and the right-handed fields cr to the left-handed boson Bm:

L ¼ �clðigmðqm þ igAmÞ 	 m1Þcl þ �crðigmðqm þ igBmÞ 	 m2Þcr

	 Yfc
þ
l fcr 	 Yfc

þ
r cl ð686Þ

If the coupling constant Yf is comparable with the coupling constant g, then the

Fermi expectation energies of the fermions occur at the mean expectation value

for the Higgs field hf0i. In this case, the vacuum expectation value is proportional

to the identity matrix, meaning that the masses acquired by the right chiral plus

left chiral gauge bosons Am þ Bm are zero, while the right chiral minus left chiral

gauge bosons Am 	 Bm acquire masses approximately equal to Yfhf0i. The

theory at low energies is one with an unbroken vector gauge theory plus a broken

chiral gauge theory [95]. The additive charges Að1Þð2Þ;Bð1Þ;ð2Þ of the two chiral

fields are opposite so that of the resulting vector gauge bosons are chargeless.

Therefore gauge theories can change their vector and chiral character, and so also

can the doublets of the theory. In so doing, this will give rise to the doublets of

leptons and quarks plus doublets of very massive fermions that should be

observable in the multi-TeV range.
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The two parts of the twisted bundle are copies of SU(2) with a doublet

fermion structure. One of the fermions has a very large mass, m0 ¼ YZhwð1Þi,
which is assumed to be unstable and not observed at low energies. So one sector

of the twisted bundle is left with the same Abelian structure, but with a singlet

fermion, meaning that the SU(2) gauge theory becomes defined by the algebra

over the basis elements

½êi; êj� ¼ ieijkêk ð687Þ

To calculate the photon masses, define the Higgs field by a small expansion

around the vacuum expectations

Zð1Þ ¼ xð1Þ þ hZð1Þ0 i

Zð2Þ ¼ xð2Þ þ hZð2Þ0 i
ð688Þ

The contraction of the generators sð1Þ and sð2Þ with the Higgs field matrix and

right and left fields gives

rð1Þ 
ZRþ rð2Þ 
ZL ¼ 0 ð689Þ

so that the charges of the Að1Þ and Að2Þ fields are zero. On the low-energy

vacuum, these fields can be thought of as massless fields composed of two gauge

bosons, with masses ðm0 þ m00Þ1=2 � MZ and with opposite charges. These

electrically charged fields can be thought of as A� ¼ Að1Þ � Að2Þ, giving rise to

particles that cancel each other and massless vector photon gauge fields. The A(3)

field has an unstable mass that decays into particle pairs.

Therefore the more massive Higgs field acts to give the gauge theory

SU(2)�O(3), where the first gauge group acts on singlets. On a lower energy

scale, or longer timescale, A(3) has decayed and vanished. The second gauge

group is then represented by O(3)P, a notation that implies ‘‘partial group.’’ The

latter describes Maxwell’s equations, and the B(3) field is defined through

	igAð1Þ � Að2Þ. Evidently, in this scale, the isospin indices become identified

with the space indices (1), (2), and (3) of the circular basis.

The second Higgs field acts in such a way that if the vacuum expectation

value is zero, hfð2Þi ¼ 0, then the symmetry breaking mechanism effectively

collapses to the Higgs mechanism of the standard SU(2)�U(1) electroweak

theory. The result is a vector electromagnetic gauge theory O(3)P and a broken

chiral SU(2) weak interaction theory. The mass of the vector boson sector is in

the A(3) boson plus the W� and Z0 particles.

The two SU(2) theories can be represented as the block diagonals of the

SU(4) gauge theory. The Lagrangian density for the system is then

L ¼ �cðigmðqm þ igAmÞ 	 m1Þc	 Y �cfc ð690Þ
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and the gauge potentials Am now have 4� 4 traceless representations. The scalar

field theory that describes the vacuum will satisfy field equations that involve all

16 components of the gauge potential. By selectively coupling these fields to the

fermions, it might be possible to construct a theory that recovers a low energy

theory that is the standard model with the O(3)P gauge theory for electro-

magnetism. We arrive at the important conclusion that the electroweak theory

can be constructed with an O(3) electrodynamic sector to provide additional

physical details at high energy.

The prediction of a heavy boson Að3Þ has received preliminary empirical

support [92,96] from an anomaly in Z decay widths that points toward the

existence of Z bosons with a mass of 812 GeVþ339
	152 [92,96] within the SO(1)

grand unified field model, and a Higgs mechanism of 145 GeVþ103
	61 . This

suggests that a new massive neutral boson has been detected. Analysis of the

hadronic peak cross sections obtained at LEP [96] implies a small amount of

missing invisible width in Z decays. The effective number of massless neutrinos

is 2.985� 0.008, which is below the prediction of 3 by the standard model of

electroweak interactions. The weak charge QW in atomic parity violation can be

interpreted as a measurement of the S parameter. This indicates a new

QW ¼ 	72:06� 0:44, which is found to be above the standard model pre-

diction, an effect interpreted as being due to the occurrence of the Z 0 particle,

which is referred to hereinafter as the Zg particle.

SO(10) has the six roots ai; i ¼ 1; . . . ; 6. The angle between the connected

roots are all 120�, where the roots a3; a4 are connected to each other and two

other roots. The Dynkin diagram is

α2

α1

α3 α4

α5

α6

The decomposition of SO(10) to SU(5)�U(1) is performed by removing the

circles representing the roots a1;2;5;6 connected by a single branch. The remaining

connected graph describes the SU(5) group, and the isolated circle is the U(1)

group. However, by removing either of the circles a3;4 connected by three

branches forces SO(10) to decompose into SU(2)� SU(2)� SU(4). Here, we

have an SU(2) and a mirror SU(2) that describe opposite-handed chiral gauge

fields, plus an SU(4) gauge field. The chiral fields are precisely the sort of

electroweak structure proposed in this section and elsewhere [17,94]. Since
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SU(4) can be represented by a 4, that is, 3� 1 and �4 as �3� �1; SU(4) can be

decomposed into SU(3)�U(1). The neutrino short fall is furthermore a signature

of the opposite chiralities of the two ‘‘mirrored’’ gauge fields [17,94].

The mechanism SU(2)� SU(2)! SU(2)�O(3) discussed in this section

predicts the occurrence of a massive Að3Þ, so it is possible that the LEP data could

corroborate the work outlined in this section, with an extended electromagnetic

sector. Quantum chromodynamics (QCD) and the standard model of the electro-

weak theory are understood empirically. There is reasonable empirical corro-

boration in the TeV range and ideas about quantum gravity at 1019 GeV, but

nothing in between. The LEP data therefore give some confidence that O(3) elec-

trodynamics is a valid theory, and the data suggest that at high energy, electro-

dynamics and the weak interactions are dual-field theories in the TeV range of

energy, which is expected to be accessible to the CERN heavy hadron collider.

The LEP data could be the first indication that the universe is dual according

to the Olive Montonen construct [97], which asserts that coupling constants

have inverse relationships. One field is weak, and the other is strong at high

energy. The experimental finding [96] of the massive Að3Þ might bring a basic

change in the foundations of physics. For example, it may be conjectured that

there is a dual field theory to the SU(3) nuclear interaction of QCD with a chiral

SU(2)� SU(2) electroweak theory, implying the existence of an additional

weak field in nature. The problem with such a program is that supergravity and

superstring theories imply that, at very high energies, the universe is one of 10

or 11 dimensions [98]. The minimal grand unified field theory is the SU(5)

theory that breaks into SU(3)� SU(2)�U(1) at lower energy. This is a gauge

theory in six dimensions that fits into the Calabi–Yau construction of compac-

tified manifolds. These spaces leave the four-dimensional spacetime left over

and uncompactified from the 10 dimensions at high energy. A Calabi–Yau

manifold of seven dimensions would accommodate an SU(3)� SU(2)� SU(2)

bundle. The-low energy SU(2)� SU(2) electroweak theory would then suggest

a superstring theory of 11 dimensions, which appears to preclude any SU(3)

field dual to QCD because this would demand a Calabi–Yau space that can

subsume an SU(3)� SU(3)� SU(2)� SU(2) bundle of 10 dimensions, and a

supergravity theory of 14 dimensions.

The theory of gravitation, however, need not involve four dimensions; infor-

mation [99] may exist on a two dimensional surface, such as the event horizon

of a black hole. If the symmetries relevant to gravitation involve the evolution of

a two-dimensional surface, then an SU(2)� SU(2)� SU(3) gauge theory plus

gravity would be 11-dimensional, and duality between the two surfaces that

construct spacetime would reduce this to nine dimensions. However, the issue of

duality with nuclear interactions would still increase the dimensionality re-

quired to 12 or 14, and supergravity requires a total space of 11 dimensions.

Strings exist at 10 dimensions.
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If the nature of spacetime involves the interference of dual wave fronts of

two dimensions, then there are two wave fronts, each of two dimensions, that

constructively and destructively interfere, but that are determined by the same

symmetry space. Gravitation can be described by the set of diffeomorphisms of

a two-dimensional surface and SU(2)� SU(2)� SU(3) plus gravity involving a

space of nine dimensions. The additional dimensions to spacetime are purely

virtual in nature. A field dual to QCD would require a large space of 12 dimen-

sions, and an additional constraint is required in order for this theory to satisfy

current models of supergravity.

Gravitation is described by the Lie group SO(3,1)� SL(2,C)/Z2. It can be

seen that the relevant symmetries are contained in the SL(2,C) component of

two dimensions, and the Lie group has a hyperbolic metric structure. The

Euclidean group for gravity is SO(4)� (SU(2)� SU(2))/Z2. In effect, these two

groups are related by a rotation t! it; which might suggest that the electroweak

interaction and gravitation can be regarded as two states of a single symmetry

that may manifest itself by the action of a U(1) rotation on the Cartan center of

SU(2), s
0

ð3Þ ¼ eiysð3Þ. At low energy, the circle associated with this rotation is

reduced to a point and the direction of the angle y determines the coupling

constant for the electroweak and gravitational fields, implying a superstring

theory in 11 dimensions.

If there is a field dual to the SU(3) QCD field, and if the theory is similar in

form to the electroweak unification scheme outlined in this section, there may

be a right–left chiral SU(3) bundle that, at low energy, combines into a

right	 left chiral and right þ left chiral field. This result would indicate that

QCD is a vector theory but associated with another field that is chiral or that has

a broken chirality. Since QCD is the strongest force in the universe with g ¼ 1,

its putative dual field is one with a very weak coupling constant. For example,

there may be slight chiral couplings between quarks. This would, in turn, imply

the discovery of chirality with gluons, usually regarded as vector bosons.

In the absence of data, it seems best to proceed on the assumption that gauge

theory at low energy is SU(2)� SU(2)� SU(3) and that the inclusion of gravity

gives a space of 11 dimensions at high energy, fitting in with supergravity models.

These thoughts [7,94] indicate the major impact on physics of the Bð3Þ field.

XIII. RELATIVISTIC HELICITY

In this section, we extend consideration from the Lorentz to the Poincaré group

within the structure of O(3) electrodynamics, by introducing the generator

of spacetime translations along the axis of propagation in the normalized (unit

12-vector) form:

em � eð1Þm eð1Þ þ eð2Þm eð2Þ þ eð3Þm eð3Þ ð691Þ
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The relativistic helicity is then the product

~Gn � ~Gð1Þmn e
mð2Þ þ ~Gð2Þmn e

mð1Þ þ ~Gð3Þmn e
mð3Þ ð692Þ

which, for Z ¼ ð3Þ axis propagation, is the Pauli–Lubanski pseudo vector (PL

vector):

~Gn ¼ ~Gð3Þmn e
mð3Þ ¼ 1

2
emnsrGsrð3Þemð3Þ ð693Þ

Evidently, this vanishes on the U(1) level, a basic paradox, because the photon

has helicity after quantization. By using the Poincaré group, a fundamental

geometric proof can be given for the existence of Bð3Þ in the vacuum, and helicity

defined entirely through Bð3Þ. This proof proceeds by constructing the PL vector

from the geometric 3-manifold in 4-space, a 3-manifold that is in general a tensor

of rank 3 in four dimensions, antisymmetric in all 3 indices. The PL vector is dual

to this 3-tensor and has the same magnitude. The 3-tensor Smns is in general the

following product:

Snsm � ~Gnsem ð694Þ

This approach is therefore based in rigorous and general geometric tensor theory.

The PL vector dual to Snsm turns out to be the light-like invariant:

~Bm ¼ ðBð3Þ; 0; 0;Bð3ÞÞ ð695Þ

In the Lorentz group, this concept is missing, and in the Poincaré group, the

relativistic helicity vanishes if Bð3Þ is not zero. Therefore Bð3Þcan be regarded as

the fundamental field component representing spin in the classical electro-

magnetic field. If Bð3Þ were zero, the PL vector would be a null vector, meaning

that the space part of the equivalent hypersurface element is null. This result is a

paradox, because a physical beam of light must always have a finite cross section

or area perpendicular to the propagation axis of the beam, the Z or (3) axis. So if

Bð3Þ vanishes, reduction to absurdity occurs, and the beam of light vanishes. This

result, in turn, is self-consistent with the fact that if Bð3Þ were zero in the B cyclic

theorem, Bð1Þ and Bð2Þ would also vanish, and electromagnetism would vanish.

The unit 12-vector em acts essentially as a normalized spacetime translation

on the classical level. The concept of spacetime translation operator was intro-

duced by Wigner, thus extending [100] the Lorentz group to the Poincaré group.

The PL vector is essential for a self-consistent description of particle spin.

The dual pseudotensor of any antisymmetric tensor in 4-space arises from the

integral over a two-dimensional surface in 4-space [101], in which the infinite-

simal element of surface is given by the antisymmetric tensor:

df mn ¼ dxmdxn
0 	 dxndxm

0 ð696Þ
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The components of this tensor are projections of the element of area on the

coordinate planes. In 3-space, it is always possible to define an axial pseudovector

element d~fi, dual to the antisymmetric tensor dfjk:

d~fi �
1

2
eijkdfjk ð697Þ

The pseudovector element d~fi represents the same surface element as dfjk; and,

geometrically, is a pseudovector normal to the surface element and equal in

magnitude to the area of the element. In 4-space, such a pseudovector cannot be

constructed from an antisymmetric tensor such as dfmn: However, the dual

pseudotensor can be defined by [10]:

d~f mn � 1

2
emnsrdfsr ð698Þ

where emnsr is the totally symmetric unit pseudotensor in four dimensions, with

the property
e0123 ¼ 	e0123 ¼ 1 ð699Þ

in cyclic permutation of indices. In geometric terms, d~f mn is an element of

surface equal and normal to the element dfsr. All segments in it [101] are

orthogonal to all segments in dfsr, leading to the following result:

d~f mndfmn ¼ 0 ð700Þ

In general, therefore, an antisymmetric 4-tensor is an element of surface in

4-space. There are three of these elements of surface in the 12-vector ~Gmn.

Equation (700) means that ~Gmn is orthogonal to Gmn in free space

~GmnGmn ¼ 0 ð701Þ

where

~Gmn ¼ 1

2
emnsrGsr ð702Þ

Gmn ¼
1

2
emnsr ~Gsr ð703Þ

In contravariant covariant notation, the field tensors are defined by [101]

Gsr ¼

0 E1

c
E2

c
E3

c

	E1
c

0 	B3 B2

	E2

c
B3 0 	B1

	E3

c
	B2 B1 0

2
666664

3
777775; Gsr ¼

0 	E1

c
	E2

c
	E3

c

E1

c
0 	B3 B2

E2

c
B3 0 	B1

E3

c
	B2 B1 0

2
666664

3
777775
ð704Þ
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and the dual tensors by

~Gmn ¼

0 	B1 	B2 	B3

B1 0 E3

c
	E2

c

B2 	E2

c
0 E1

c

B3 E2

c
	E1

c
0

2
666664

3
777775; ~Gmn ¼

0 B1 B2 B3

	B1 0 E3

c
	E2

c

	B2
	E3

c
0 E1

c

	B3
E2

c
	E1

c
0

2
66664

3
77775 ð705Þ

It follows that

~Gmnð3ÞGð3Þmn ¼ 0 ¼ 4Bð3Þ 
Eð3Þ ð706Þ

and that Bð3Þ is zero. This result is self-consistent with earlier arguments and with

the fact that the light like products of PL vectors are null:

BmB�m ¼ EmE�m ¼ 0 ð707Þ

The only nonzero components of the PL vectors ~Bm and ~Bm are the longitudinal

and time-like components. It follows that since Bð3Þ is null, its magnitude is zero,

and so ~Em and ~Em are null. This result is, in turn, consistent with the fact that the

PL vector is a pseudovector, whereas ~Em is a null vector whose dual is null.

The dual axial vector in 4-space is constructed geometrically from the

integral over a hypersurface, or manifold, a rank 3-tensor in 4-space antisym-

metric in all three indices [101]. In three-dimensional space, the volume of the

parallelepiped spanned by three vectors is equal to the determinant of the third

rank formed from the components of the vectors. In four dimensions, the

projections can be defined analogously of the volume of the parallelepiped (i.e.,

areas of the hypersurface) spanned by three vector elements: dxm; dx
0m and dx

00m.

They are given by the determinant

dSmns ¼
dxm dx0m dx00m

dxn dx0n dx00n

dxs dx0s dx00s

������
������ ð708Þ

which forms a tensor of rank 3, antisymmetric in all three indices. The axial

4-vector element dSm dual to the tensor element dSmns is the element of

integration over a hypersurface in four dimensions:

d~Sm ¼ 	 1

6
emnsrdSnsr

dSnsr ¼ emnsrd~Sm
ð709Þ

220 m. w. evans



so that d~S0 ¼ dS123; d~S1 ¼ dS023; and so on. The S0 component of Sm is therefore

equivalent to the S123 component of Snsr, normal to it and equal to it in

magnitude. The PL vector is an example of a 4-vector dual to the 3-manifold in

4-space. This is a rigorous geometric result, and if the PL vector were null, it

would represent a null hypersurface in four dimensions. This, as follows, is a

rigorous geometric proof of the fact that Bð3Þ is nonzero within the Poincaré

group. The dual-vector Sm is a 4-vector equal in magnitude to the area of the

hypersurface to which it is dual, and is normal to this hypersurface. It is therefore

perpendicular to all lines drawn in the hypersurface. In particular, the element

dS0 ¼ dXdYdZ is an element of three-dimensional volume, dV , the projection of

the hypersurface on to the hyperplane x0 ¼ constant.

In classical electromagnetic theory, the PL vector is defined through the

3-manifold

Smns �
qm Am em

qn An en

qs As es

������
������ ð710Þ

defining the fully antisymmetric rank 3-tensor

Snsm ¼ ðqnAs 	 qsAnÞem þ � � � ð711Þ

which consists of three terms, the first of which is the product of Em with the

antisymmetric tensor Gns, a component in internal gauge space of Eq. (22). This

product gives the PL vector through

~Sm ¼ 1

2
emnsrSnsr ð712Þ

The second two terms of the sum (711) can be eliminated using a combination of

the free-photon minimal prescription and the quantum hypothesis

qm ¼ 	i
e

�h
Am ð713Þ

and the manifold defined in Eq. (711) reduces precisely to

Snsm ¼ Gnsem ð714Þ

It is now possible to adopt the standard definition [6] of the PL vector to the

problem at hand to give

~Gm ¼ 1

2
emnsrGsren ð715Þ
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where

Gsr ¼ qsAr 	 qrAs ð716Þ

In Eq. (715), ~Gm is dual to the third rank Gsren in four dimensions and normal to

it with the same magnitude. In the received view, there is nothing normal to the

purely transverse Gsr on the U(1) level, and therefore ~Gm cannot be consistently

dual with Gsren. This result is inconsistent with the four-dimensional algebra of

the Poincaré group. If we adopt the notation ~Gn � ~Bn, we obtain

~Bn ¼ ~Gmn 
 em ð717Þ

and the complete PL vector in consequence is

~Bn ¼ ~Gð3Þmn e
mð3Þ

¼ 1

2
emnsrGsrð3Þemð3Þ

¼ ðBð3Þ; 0; 0;	Bð3ÞÞ ð718Þ

Similarly

~Bn ¼ ðBð3Þ;Bð3ÞÞ ð719Þ

which is orthogonal to ~Bn.

The PL vector was originally constructed for particles from the generators of

the Poincaré group. The PL vector corresponding to the photon’s angular

momentum corresponds in free space and in c ¼ 1 units to

~Jm ¼ ðJð3Þ; 0; 0; Jð3ÞÞ ð720Þ

and the light-like momentum in c ¼ 1 units is

pm ¼ ðpð3Þ; 0; 0; pð3ÞÞ ð721Þ

If the mass of the photon is identically zero, its normalized helicity takes the

values þ1 and 	1 because ~Jm is proportional to pm [6]. The 0 component, which

usually appears for a boson, is not considered but reappears if the photon has

identically nonzero mass. In this case, the Wigner little group becomes O(3). The

Bð3Þ field corresponds to ~Jð3Þ for the photon with a tiny but nonzero mass

because, as argued earlier, the structure of the O(3) field equations is identical

with that of the Lehnert equations [Eqs. (612)], which imply photon mass.

Therefore pm and ~Jm in the laboratory are infinitesimally different from light-like,
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but on an astronomical scale, they may become substantially different from light-

like [11–20].

A complete consideration of relativistic helicity in the electromagnetic field

therefore requires consideration of the Poincaré group. It is not sufficient to

consider the Lorentz group. The vector dual to the antisymmetric field tensor

introduced by Lorentz, Poincaré and Einstein could not have been defined prior

to the introduction of the Pauli–Lubanski vector and Wigner’s work of 1939

[100]. This work characterized all particles in terms of two Casimir invariants:

one for mass and one for spin. The photon and electromagnetic field are linked

by quantization, so the Wigner method must also be applied to the field. When

this is done, as in this section, the relativistic helicity in O(3) electrodynamics is

defined entirely by Bð3Þ. U(1) electrodynamics can be described in terms of the

Lorentz group, in which relativistic helicity is incompletely defined. A full

understanding of Bð3Þ therefore requires the Poincaré group [11–20]. Further-

more, Noether’s theorem is reduced to energy-momentum conservation only

with the use of the spacetime translation generator, which within a factor �h; is

the energy-momentum 4-vector itself. In the received view of the classical field

[5], energy momentum is defined only through transverse components, whereas

in O(3) electrodynamics, it is straightforwardly defined through Að3Þ, which is

purely longitudinal at low energies.

The nature of the dual vector ð~BmÞ can be deduced without using any equation

of motion, but the dual 4-vector is a fundamental geometric property in the four

dimensions of spacetime. The complete description of the electromagnetic field

in O(3) electrodynamics must therefore involve boosts, rotations, and spacetime

translations, meaning that ~Bm is a fundamental geometric property of spacetime.

The unit 4-vector em is orthogonal to the unit 4-vector ~Bm:

em~Bm � 0 ð722Þ

and this is a fundamental property of the Poincaré group. The Casimir invariants

of the electromagnetic field are therefore

emem � 0

~Bm~B
m � 0

em~Bm � 0

ð723Þ

The homogeneous O(3) equations in the vacuum are obtained by considering

the helicities:

eð3Þm
~Gmnð3Þ ¼ ðBð3Þ; 0; 0;Bð3ÞÞ

eð3Þm
~Gmnð1Þ ¼ 0

eð3Þm
~Gmnð2Þ ¼ 0

ð724Þ
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The first of these gives the vector ~Bm, and the second and third give terms such as

	B
ð1Þ
X þ

E
ð1Þ
Y

c
¼ 0 ð725Þ

The three relativistic helicities (724) therefore give Eqs. (590)–(592) with the

addition of the following equation:

r 
 Bð3Þ ¼ 0 ð726Þ

In arriving at this conclusion, we have used antisymmetric tensor definitions such

as

~Gmnð1Þ �

0 	B
ð1Þ
X 	B

ð1Þ
Y 0

B
ð1Þ
X 0 0

	E
ð1Þ
Y

c

B
ð1Þ
Y 0 0

E
ð1Þ
X

c

0
E
ð1Þ
Y

c

	E
ð1Þ
X

c

2
6666664

3
7777775

ð727Þ

By considering the conserved quantity ~Bmð3Þ, we arrive at

qm~Bmð3Þ ¼ 0 ð728Þ

a solution of which is

qBð3Þ

qt
¼ 0; r 
 Bð3Þ ¼ 0 ð729Þ

The overall structure of the O(3) equations in the vacuum is therefore

qm ~Gmn � 0 ð730Þ

This is the same structure as the homogenous Maxwell–Heaviside equations in

the vacuum, which can therefore be obtained by a consideration of relativistic

helicity.

We have seen that the overall structure of the inhomogeneous O(3) equations

in the vacuum is [Eqs. (612)]

qmHmn ¼ Jn
vac ð731Þ
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where the vacuum charge density is defined by

rvac ¼ igðAð2Þ 
Dð3Þ 	 Dð2Þ 
Að3Þ þ Að3Þ 
Dð1Þ 	 Dð3Þ 
Að1Þ

þ Að1Þ 
Dð2Þ 	 Dð1Þ 
Að2ÞÞ ð732Þ

and the vacuum current density by

Jvac ¼ 	igðcA
ð2Þ
0 Dð3Þ 	 cA

ð3Þ
0 Dð2Þ þ Að2Þ �Hð3Þ 	 Að3Þ �Hð2Þ

þ cA
ð3Þ
0 Dð1Þ 	 cA

ð1Þ
0 Dð3Þ þ Að3Þ �Hð1Þ 	 Að1Þ �Hð3Þ

þ cA
ð1Þ
0 Dð2Þ 	 cA

ð2Þ
0 Dð1Þ þ Að1Þ �Hð1Þ 	 :Að2Þ �Hð1ÞÞ ð733Þ

Therefore, the vacuum charge and current densities of Panofsky and Phillips

[86], or of Lehnert and Roy [10], are given a topological meaning in O(3)

electrodynamics. In this condensed notation, the vacuum O(3) field tensor is

given by

Hmn ¼

0 	D1 	D2 	D3

D1 0 	H3

c
H2

c

D2 H3

c
0 	H1

c

D3 	H2

c
H1

c
0

2
666664

3
777775 ð734Þ

and the 4-current by

Jn ¼ r;
J

c


 �
ð735Þ

The equations of O(3) electrodynamics can therefore be written in condensed

form as Eqs. (730) and (731) in the vacuum. These equations can be written as a

single conservation law under all conditions (vacuum and field–matter interac-

tion):

qm ~Gm ¼ qmHm ¼ 0 ð736Þ
~Gm � ~Gmn; Hm � Hmn~en ð736aÞ

In general, define the unit generators

em ¼ 1;
v

c
;	 v

c
;
v

c

� �
ð737aÞ

~em ¼ v

c
; 1; 1; 1

� �
ð737bÞ
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where v is linear velocity and c the speed of light. Equation (737a) defines a unit

energy-momentum 4-vector orthogonal to the unit energy momentum 4-vector in

Eq. (737b). The existence of such generators signals that the electromagnetic

field in general has a rotation–translation character, so forward momentum is

always accompanied simultaneously by a transverse momentum. Thus Em~Em ¼ 0;
that is, Em is orthogonal to ~Em. This feature develops Eq. (736) into two field

equations. In the vacuum, v ¼ c, and these field equations become Eqs. (730) and

(731) with vacuum charge and current defined by Eqs. (732) and (733),

respectively. In field–matter interaction, v < c in the charge–current 4-vector of

Eq. (735). If Bð3Þ is zero, the vacuum electromagnetic field is lost. Because of its

simultaneous rotation and translation, the electromagnetic field has left- and

right-handed circular polarization and is chiral. The Pauli–Lubanski construct

can be either a pseudovector or vector.

We first consider the conservation law

qm ~Gm ¼ 0 ð738Þ

where (c ¼ 1 units)

~Gm ¼ ~Gmnen ¼ 	 v

c
B1 þ v

c
B2 	 v

c
B3;B1 	 v

c
E2;B2 þ v

c
E1;B3 þ v

c
E2 þ v

c
E1

� �
ð739Þ

giving the conservation equation:

v

c
ð	q0B1 þ q0B2 	 q0B3Þ þ q1ðB1 	 v

c
E2Þ

þ q2 B2 þ v

c
E1

� �
þ q3 B3 þ v

c
E2 þ v

c
E1

� �
¼ 0 ð740Þ

In vector form, this becomes (in SI units)

v 

qB

qt
þr� E


 �
¼ c2r 
B ð741Þ

which is a balance of the Faraday law of induction and the Gauss law for all v,

including v ¼ c. This result is true for all v, and therefore under all conditions,

and is precisely equivalent to the result (730), the condensed form of Eqs. (95)–

(100) of O(3) electrodynamics. Apparently, magnetic monopole was never

observed and the Faraday law was never violated. This is consistent with O(3)

electrodynamics as argued already.
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Next, we consider the conservation law:

qmHm ¼ 0 ð742Þ

where (c ¼ 1 units)

Hm ¼ Hmn~en ¼ D1 þ D2 þ D3;
v

c
D1 þ H3 	 H2;

v

c
D2 	 H3 þ H1;

�
v

c
D3 þ H2 	 H1

�

Using Eq. (742)

q0ðD1 þ D2 þ D3Þ þ q1
v

c
D1 þ H3 	 H2

� �

þ q2
v

c
D2 	 H3 þ H1

� �
þ q3

v

c
D3 þ H2 	 H1

� �
¼ 0 ð744Þ

which in vector form is (in SI units):

r� H	 qD

qt
¼ vðr 
DÞ ð745Þ

and is a combination of the Ampère–Maxwell law:

r� H	 qD

qt
¼ J ¼ vðr 
DÞ ¼ vr ð746Þ

and the Coulomb law:

r 
D ¼ r ð747Þ

Equation (745) can be written as

r�H ¼ q
qt
þ mr 



 �
D ¼ qD

qt
ð748Þ

where

q
qt
� q

qt
þ mr 
 ð749Þ
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is the convective derivative. The charge–current 4-vector in general is

Jm � r;
J

c


 �
¼ r;

v

c
r

� �
ð750Þ

and in the vacuum is

Jm
vac � rvac;

1

c
Jvac


 �
; v ¼ c ð751Þ

Therefore, charge density and current density in the vacuum and in matter take

the same form, [see Eqs. (732) and (733)]. This is a general result of assuming an

O(3) vacuum configuration as in Section I. Equations (736) are a form of

Noether’s theorem and charge/current enters the scene as the result of

conservation and topology. Similarly, mass is curvature of the gravitational field.

In the vacuum

v ¼ c; em ¼ ð1; 0; 0; 1Þ ð752Þ

and conservation of the PL pseudovector gives the continuity equation

r� Dð3Þ ¼ r � Pð3Þ ¼ 	 qBð3Þ

qt
	 cr 
Bð3Þeð3Þ ¼ 0 ð753Þ

which is a post-Noether-invariant. We have used the vacuum relation:

Dð3Þ ¼ e0Eð3Þ þ Pð3Þ ¼ Pð3Þ ð754Þ

The vacuum polarization component Pð3Þ is equal to the vacuum displace-

ment Dð3Þ and aligned along one axis, so its curl vanishes. If Bð3Þ were zero,

then for a light-like Em; ~Gm would be null and the electromagnetic field would

vanish a reduction to absurdity proof of the existence of Bð3Þ if we adopt the

Poincaré group. The adoption of the latter group leads to the post-Noether-

invariant equations (736), which break out into the field equations of O(3)

electrodynamics. Since U(1) is an O(3) symmetry with one null axis (the Z axis),

U(1) is in a sense a sub symmetry of O(3), and this property leads to the fact

that O(3) equations can be expressed in the form of U(1) equations without

self-contradiction. The following diagram, which outlines the rules for

connecting U(1) and O(3), may help the reader understand how this process

occurs.
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Rules for Connecting U(1) and O(3)

∂µG 
µν ≡ 0~

∂µG 
µν ≡ 0~

∆ · B = 0

∆ × E + 
∂B

∂t
 = 0

B = B(1) + B(2) + B(3)

E = E(1) + E(2)

∂µH 
µν ≡ Jν

DµH 
µν = Jν

∆ · D = ρ

∆ × H = J + 
∂D

∂t

H = H(1) + H(2) + H(3)

D = D(1) + D(2) + D(3)

ρ = ig (A2
 · D(3) − D(2)

 · A(3) + A(3)
 · D(1) − D(3)

 · A(1) + A(1) · D(2) − D(1)
 · A(2))

J = −ig (cA2D(3) − cA(3)D(2) + A(2) × H(3) − A(3) × H(2)
0 0

 + cA(3)D(1) − cA(1)D(3) + A(3) × H(1) − A(1) × H(3)

 + cA(1)D(2) − cA(2)D(1) + A(1) × H(2) − A(2) × H(1))
0 0

0 0

Jν = (        )ρ, J
c

Gµν = F(1) e(1) + F(2) e(2) + F(3) e(3)
µν µν µν 

Aµ = A(1) e(1) + A(2) e(2) + A(3) e(3)
µ µ µ 

Fµν ; Aµ
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In the vacuum limit, we also obtain the following equation for the vacuum

displacement Dð3Þ and vacuum polarization P(3):

qDð3Þ

qt
þ c

qDð3Þ

qZ
¼ 0 ð755Þ

Now use

r� H ¼ qD

qt
þ vðr 
DÞ


 �
ð756Þ

in the limit v! c, and take the (3) component to find that:

r�Hð3Þ ¼ 0 ð757Þ

which gives

r� ðAð1Þ � Að2ÞÞ ¼ 0 ð758Þ

a result that is consistent with the definition of Bð3Þ in the vacuum, Eq. (38),

because the curl of Að1Þ � Að2Þ is zero. The 3-component of Eq. (741) is simply

r 
Bð3Þ ¼ qBð3Þ

qt
¼ 0 ð759Þ

because Eð3Þ is zero as proved already. The fact that Eð3Þ is zero is a direct

consequence of the Jacobi identities (86) or (578). The same identities imply that

there is no magnetic monopole or magnetic current in O(3) electrodynamics

under any circumstances. The Bð3Þ component is topological in origin, and does

not originate in a magnetic monopole as a material particle. These theoretical

results are consistent with empirical data [11–20], which imply the presence of

Bð3Þ and the absence of a magnetic monopole in nature.

In the Poincaré group, therefore, the fundamental spin of the electromagnetic

field is represented ineluctably by the PL vector:

~Bm ¼ ðBð3Þ; 0; 0;Bð3ÞÞ ð760Þ

The integral of ~Bm over a hypersurface in four-dimensions is always zero, a result

of the ordinary Stokes theorem in four dimensions:

þ
~Bm dxm ¼ 1

2

ð
ðqm~Bn 	 qn~BmÞqsmn ¼ 0 ð761Þ
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The equivalent result in 3-space dimensions has been given by Evans and Jeffers

[102]: þ
Bð3Þ 
 dr ¼ 0 ð762Þ

and is simply a consequence of the fact that Bð3Þ is irrotational by definition.

Therefore we obtain from Eq. (761) the results

qm~Bn ¼ qn~Bm ¼ 0 ð763Þ

and

qmHn ¼ qnHm ¼ Jmn ¼ Jnm ð764Þ

These are alternative forms of the Lehnert or Panofsky–Phillips equations (612),

which can be expanded out into the O(3) equations (95)–(106) using the rules in

the above flowchart shown above [after text that followss Eq. (754)].

Conservation of helicity therefore requires the charge current tensor to be

symmetric. Similarly, conservation of angular momentum requires the energy-

momentum tensor to be symmetric in dynamics [6]. Therefore conservation of

helicity generates the field equations and new conservation laws based on

topology. Charge current itself is the result of topology as discussed by Ryder.

[6, p. 93].

The Lie algebra of the PL vector within the Poincaré group is not well known

and is given here for convenience. The PL vector is defined by

~Wm ¼ ~JmnP
n ð765Þ

where

~Jmn ¼

0 J1 J2 J3

	J1 0 K3 	K2

	J2 	K3 0 K1

	J3 K2 	K1 0

2
664

3
775 ð766Þ

is a matrix of Poincaré group generators: the boost (K) and rotation (J) generators

[6,11–20]. Here, Pn is the generator of spacetime translation, which is missing

from the Lorentz group. Therefore the PL vectors written out in full are

~W0 ¼ 	J1P1 þ J2P2 þ J3P3

~W1 ¼ 	J1P0 þ K3P2 	 K2P3

~W2 ¼ 	J2P0 	 K3P1 þ K1P3

~W3 ¼ 	J1P0 þ K2P1 	 K1P2

ð767Þ
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These are linear operator relations implying the property

½P0; ~Wm� ¼ 0 ð768Þ

showing that the Hamiltonian operator H ¼ P0 [6,11–20] commutes with the

complete vector ~Wm under all conditions. Equation (768) implies

qm ~Wm ¼ 0 ð769Þ

as in Eq. (736). Relativistic helicity has no 4-divergence. From Eqs. (767), we

obtain the closed Lie algebra

½ ~W1; ~W2� ¼ iðP0 ~W3 þ P3 ~W0Þ

½ ~W2; ~W3� ¼ iðP0 ~W1 þ P1 ~W0Þ

½ ~W3; ~W1� ¼ iðP0 ~W2 	 P2 ~W0Þ

½ ~W0; ~W1� ¼ iðP3 ~W2 	 P2 ~W3Þ

½ ~W0; ~W2� ¼ iðP1 ~W3 	 P3 ~W1Þ

½ ~W0; ~W3� ¼ iðP2 ~W1 þ P1 ~W2Þ

ð770Þ

and Jacobi identities such as

½ ~W1; ½ ~W2; ~W3�� þ ½ ~W2; ½ ~W3; ~W1�� þ ½ ~W3; ½ ~W1; ~W2�� ¼ 0 ð771Þ

checking that ~Wm is a valid generator of the Poincaré group. The Casimir

invariants PmPm and ~Wm ~W
m are the two fundamental invariants of the Poincaré

group.

In electromagnetic theory, we replace ~Wm by ~Gm the relativistic helicity of the

field. Therefore, Eq. (770) forms a fundamental Lie algebra of classical electro-

dynamics within the Poincaré group. From first principles of the Lie algebra of

the Poincaré group, the field Bð3Þ is nonzero.

If a light beam is considered propagating at c in Z, we obtain from Eqs. (770)

the Lie algebra of the E(2) Euclidean group [6,11–20], which is a mathematical

group with no physical meaning:

½ ~W1; ~W2� ¼ 0 ð772aÞ

½ ~W2; ~W3� ¼ iP0 ~W1 ð772bÞ

½ ~W3; ~W1� ¼ iP0 ~W2 ð772cÞ
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compared with the O(3) Lie algebra

½ ~W1; ~W2� ¼ iP0 ~W3 ð772dÞ
½ ~W2; ~W3� ¼ iP0 ~W1 ð772eÞ
½ ~W3; ~W1� ¼ iP0 ~W2 ð772fÞ

and similarly for ~Gm. The E(2) group is the Wigner little group for a particle

whose mass is identically zero, and so such a particle does not exist in nature.

This proves that the photon and neutrino both have identically nonzero mass. The

Wigner little group for a particle with mass is the physical O(3) group. In terms

of field components, Eq. (772b) gives (in c ¼ 1 units)

½B2 	 E1;B3� ¼ iBð0ÞB1 ð773Þ

which is satisfied by

½B2;B3� ¼ iBð0ÞB1

½B3;E1� ¼ iBð0ÞE2
ð774Þ

The first of these equations is an equation of the B cyclic theorem, which

therefore emerges from the symmetry of the Poincaré group in free space.

Similarly, Eq. (772c) gives:

½B3;B1 þ E2� ¼ iBð0ÞðB2 	 E1Þ ð775Þ

which is satisfied by

½B3;B1� ¼ iBð0ÞB2

½B3;E2� ¼ 	iBð0ÞE1
ð776Þ

The first of this pair of equations is another of the B cyclic equations. Finally,

Eq. (772a) gives

½B1 þ E2;B2 	 E1� ¼ 0 ð777Þ

which is satisfied by

½B1;B2� ¼ ½E1;E2�
½E2;B2� � ½E2;B2�

ð778Þ

where the first of this pair give the third and final equation of the B cyclic

theorem.
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The structure of the O(3) equations in condensed form [i.e., Eqs. (612)]

emerges from the symmetry of the Poincaré group. Consider, for example, the

three equations:

½P2; J3� ¼ iP1

½P3; J2� ¼ 	iP1

½P0;K1� ¼ iP1

ð779Þ

By definition, the generator of space-time translation is

P � iqm ð780Þ

so Eq. (779) becomes

ð½q2; J3� 	 ½q3; J2� 	 ½q0;K1�Þc ¼ P1c ð781Þ

where c is an eigenfunction. Equation (781) can be written as

ðq2J3 	 q3J2 	 q0K1 	 ðJ3q2 	 J2q3 	 K1q0ÞÞc ¼ 0 ð782Þ

which is a relation between operators on c. Now use

J3c ¼ j3c

J2c ¼ j2c

J1c ¼ j1c

ð783Þ

where lowercase letters denote eigenvalues. We have

q2ðj3cÞ ¼ ðq2j3Þcþ j3ðq2cÞ
q3ðj2cÞ ¼ ðq3j2Þcþ j2ðq3cÞ
q0ðk1cÞ ¼ ðq0k1Þcþ k1ðq0cÞ

ð784Þ

Assume that

J3ðq2cÞ þ J2ðq3cÞ þ K1ðq0cÞ ¼ j3ðq2cÞ þ j2ðq3cÞ þ k1ðq0cÞ ð785Þ

an equation that is compatible with:

ðq2 þ q3 þ q0Þc ¼ constant c ð786Þ

Equations (781)–(786) give the eigenvalue relation

q2j3 	 q3j2 	 q0k1 ¼ P1 ð787Þ
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which is one component of

r� J 	 1

c

qK

qt
¼ P ð788Þ

If we write

c � eifc0 ð789Þ

where f is a phase factor, then

J3c ¼ J3ðeifc0Þ ¼ j
ð0Þ
3 eifc0 � j3c ð790Þ

and so on. Therefore the eigenvalues appearing in Eq. (788) are phase-dependent

in general. It is clear that the structure of Eq. (788) is the same as one of Eqs.

(612). The complete set of operator relations leading to this equation is

ð½q1; J2� 	 ½q2; J1� 	 ½q0;K3�Þc ¼ P3c

ð½q2; J3� 	 ½q3; J2� 	 ½q0;K1�Þc ¼ P1c

ð½q3; J1� 	 ½q1; J3� 	 ½q0;K2�Þc ¼ P2c

ð791Þ

Similarly, the Lie algebra

ð½q2;K3� 	 ½q3;K2� þ ½q0; J3�Þc ¼ 0 ð792Þ

and so on leads to the eigenvalue relation

r� kþ 1

c

q j

qt
¼ 0 ð793Þ

as another of Eqs. (612).

The Lie algebra

ð½q1; J1� þ ½q2; J2� þ ½q3; J3�Þc ¼ 0 ð794Þ

gives

ððq1J1 	 J1q1Þ þ ðq2J2 	 J2q2Þ þ ðq3J3 	 J3q3ÞÞc ¼ 0 ð795Þ

Using

J1c ¼ j1c

q1ðj1cÞ ¼ j1ðq1cÞ þ ðq1j1Þc
ð796Þ
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and assuming

J1ðq1cÞ þ J2ðq2cÞ þ J3ðq3cÞ ¼ j1ðq1cÞ þ j2ðq2cÞ þ j3ðq3cÞ ð797Þ

leads to

q1j1 þ q2j2 þ q3j3 ¼ 0

r 
 j ¼ 0
ð798Þ

Therefore the complete set of equations (612) emerges in the form

r 
 k ¼ 3p0

r 
 j ¼ 0

r� kþ 1

c

qj

qt
¼ 0

r� j	 1

c

qk

qt
¼ p

ð799Þ

simply by considering the symmetry of the Poincaré group. The vacuum charge–

current is therefore intrinsic to the structure of the Poincaré group, but not of the

Lorentz group, in which p is undefined. Structure (799) exists under all conditions

because the Poincaré group applies under all conditions. Therefore O(3) electro-

dynamics emerges self-consistently from the symmetry of the Poincaré group,

without a magnetic monopole or magnetic current as material entities, but with

vacuum charge and current. This is a powerful result of symmetry.

Consideration of the symmetry of the Poincaré group also shows that the B

cyclic theorem is independent of Lorentz boosts in any direction, and also reveals

the physical meaning of the E(2) little group of Wigner. This group is unphysi-

cal for a photon without mass, but is physical for a photon with mass. This

proves that Poincaré symmetry leads to a photon with identically nonzero mass.

The proof is as follows. Consider in the particle interpretation the PL vector

Wm ¼ 	 1

2
elmnrPmJnr ð800Þ

Barut [102] shows that this PL vector obeys the cyclic conditions:

½Wl;Wm� ¼ 	iemnsrPsWr ð801Þ

For a particle (including the photon) with mass, the spacetime translation

operator Pm in the rest frame is

Pm ¼ ðP0; 0; 0; 0Þ ð802Þ
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and in the light-like condition

Pm ¼ ðP0; 0; 0;P0Þ ð803Þ

In the rest frame, Eq. (801) becomes [15]

½J1; J2� ¼ iJ3

½J2; J3� ¼ iJ1

½J3; J1� ¼ iJ2

ð804Þ

which is the Lie algebra of the rotation generators of the Lorentz group [6]. In the

light-like condition, Eq. (801) becomes

½JX þ KY ; JY 	 KX � ¼ iðJZ 	 JZÞ
½JY 	 KX ; JZ � ¼ iðKY þ JXÞ
½KY þ JX ; JZ � ¼ iðKX 	 JYÞ

ð805Þ

which has the symmetry of the E(2) group. Equation (805) can be written as

½JX ; JY � þ ½KX ;KY � ¼ iJZ 	 iJZ

½JY ; JZ � þ ½JZ ;KX� ¼ iJX þ iKY

	½JZ ; JX� þ ½KY ; JZ � ¼ 	iJY þ iKX

ð806Þ

If we assume that the Lie algebra (804) is independent of Lorentz boosts in any

direction, we obtain the Lie algebra:

½KX;KY � ¼ 	iJZ

½JZ ;KX � ¼ iKY

½KY ; JZ � ¼ iKX

ð807Þ

This is a Lie algebra of the Poincaré group [15] and of the Lorentz group [6], and

is therefore self-consistently independent of spacetime translation. Therefore the

meaning of the E(2) little group of Wigner is that it is a combination of the Lie

algebra (804), which is independent of Lorentz boosts and spacetime translations;

and of the Lie algebra (807), which is independent of spacetime translations.

Note that the relation

½KX;KY � ¼ 	iJZ ð808Þ

is the Thomas precession [6].
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In the field interpretation [11–20], the Lie algebra (804) becomes [15]

½B̂ð1Þ; B̂ð2Þ� ¼ 	iBð0ÞB̂ð3Þ

� � �
ð809Þ

in the basis ((1),(2),(3)), which in vector notation is the B cyclic theorem:

Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ�

� � �
ð810Þ

The latter is therefore independent of Lorentz boosts of any kind, and indepen-

dent of spacetime translations of any kind. As demonstrated previously in this

chapter, this result can be arrived at independently and self-consistently by

considering the following definition:

Bð3Þ� � 	igAð1Þ � Að2Þ ð811Þ

The B cyclic theorem is therefore a Lie algebra independent of boosts and

spacetime translations and is the same in the rest mass and light-like conditions

for the photon. This result leads to the Lie algebra (807) for a particle with mass.

The E(2) group becomes physical if the photon with mass is boosted to the speed

of light, or, more precisely, infinitesimally close to the speed of light.

This symmetry analysis of the generators of the Poincaré group also shows in

the field interpretation that the E(2) group contains the Bð3Þ field (corresponding

in the particle interpretation to the JZ generator) but does not contain the Eð3Þ

field, corresponding in the particle interpretation to the KZ generator. The

Poincaré group also gives the structure of the O(3) equations of motion, Eqs.

(799). In the field interpretation, the Pm generator of the particle interpretation

corresponds to charge–current. Therefore charge is analogous with energy and

current with linear momentum. The magnetic field is analogous with the rotation

generator, and the electric field is analogous with the boost generator. The

Poincaré group Lie algebra produces the O(3) equations (799), and not the

Maxwell–Heaviside equations. Our analysis throughout this chapter is therefore

shown to be entirely self-consistent on the O(3) level, while there are many self-

inconsistencies on the U(1) level. The normalized helicity of the photon with

mass is 	1, 0, 1, as for any boson with mass. In the rest frame, there is no

helicity, because there is no forward momentum for a particle in its own rest

frame. In the light-like condition (i.e., infinitesimally near the light-like

condition), the three helicities are the space parts of the PL vector in that state:

W1 ¼ J1P0 þ K2P3

W2 ¼ J2P0 	 K1P3

W3 ¼ J3P0

ð812Þ
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The time-like part of the PL vector is

W0 ¼ 	J3P3 ð813Þ

It can be seen that the PL vector is not proportional to Pm in the light-like

condition, thus removing another paradox [6] of the concept of massless photon.

In the U(1) gauge the vacuum field equations are:

ðqn þ igAnÞ~Fmn ¼ 0

ðqn þ igAnÞFmn ¼ 0
ð814Þ

and become the Maxwell equations if and only if

An~Fmn ¼ 0

AnFmn ¼ 00
ð815Þ

which in vector notation correspond to

A 
B ¼ 0

A� E ¼ 0

A 
E ¼ 0

A� B ¼ 0

ð816Þ

Therefore A 
B ¼ 0 in the U(1) gauge in the vacuum. Unfortunately, the helicity

in the U(1) gauge is defined by [103]

h �
ð

A 
B dV ð817Þ

which is the linking number of field lines. This is zero because A 
B ¼ 0, and

helicity cannot be defined in the vacuum in the U(1) gauge. It is necessary to go

to the O(3) level and to define helicity by

hOð3Þ �
ð

Að1Þ 
 Bð2Þ dV ð818Þ

It is only on this level that the link between helicity and topological quantization

[103] can be understood properly. The O(3) group, like the U(1) group, is

multiply connected. The group space of U(1) is a circle [6, p. 105]. As explained

earlier in this review, this is not simply connected because a path that goes twice
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around a circle cannot be continuously deformed while staying on a circle into

one that goes around once. The group space of SU(2) is S3 [6, p. 411]. Every

closed curve S1 on S3 may be shrunk to a point. The group O(3) is not simply

connected but doubly connected, [6, p. 412]. Therefore the Aharonov–Bohm

effect is possible only in O(3), as described in early sections of this review. We

have the relation SO(3)¼SU(2)/Z2. There are only two types of closed path S1 in

the group space of O(3): homotopic to a point and line [6]; therefore it is doubly

connected. The topological theory of classical electromagnetism proposed by

Ranada [103] thus can be extended systematically to the O(3) level. On the U(1)

level used by Ranada, the electromagnetic knot is locally equivalent to the

Maxwell–Heaviside equations. The electromagnetic knot is a field defined by the

condition that their force lines are closed curves, and any pair of magnetic or

electric lines is a link [103]. The linking lines are two integers that are interpreted

as the Hopf indices of two applications from the sphere S3 to the sphere S2 at any

instant. In the vacuum, the knots are such that nm ¼ ne. Since A 
B is identically

zero in the U(1) gauge (Maxwell–Heaviside theory), this elegant theory needs to

be upgraded to the O(3) level.

XIV. GAUGE FREEDOM AND THE LAGRANGIAN

We have just seen that the symmetry of the Poincaré group leads to vacuum

charge and current as proposed by Panofsky and Phillips [86], Lehnert and Roy

[10], and others. We must therefore seek a Lagrangian that gives the structure of

the O(3) equations, a structure that, in condensed form, is identical with the

Panofsky–Phillips and Lehnert–Roy equations. The Lagrangian leading to the

Maxwell–Heaviside equations is deficient. It must also be explained why photon

mass can enter gauge theory without making ten Lagrangian gauge not invariant.

The problem with the Proca equation is that it removes gauge freedom, but at the

expense of rendering the Lagrangian gauge noninvariant [6]. The original Proca

equation is not therefore an entirely satisfactory approach to photon mass. The

origin of photon mass (m0) in O(3) electrodynamics is therefore topological,

because the origin of charge–current is topological. The topology is expressed

through gauge theory and group theory as discussed in Section I. On the U(1)

level in the received view, a Lagrangian that does not contain a photon mass term

is needed, Euler Lagrange equations have to be constructed, and constraints are

needed to reduce the number of field variables so that there are no undetermined

multipliers.

This program is not consistent with the Proca equation on the U(1) level. If

the Proca equation

qmHmn 	 Jn ¼ 	e0
m2

0c2

�h2
An ð819Þ
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is used by ansatz, then it follows, by taking its divergence [6,15], that

m2
0qn An ¼ 0 ð820Þ

and if m0 is not zero, the Lorenz condition is always obtained

qn An ¼ 0 ð821Þ

and the d’Alembert equation becomes

	&Am ¼
m2

0c4

�h2
Am ð822Þ

A condition is imposed on one of the four components of Am so that there are only

three free components. However, the Lagrangian leading to the Proca equation is

not gauge invariant due to the presence of a mass term [15]

Lm0
¼ m2

0

2
Am Am ð823Þ

and the Proca equation always leads to the Lorenz condition, which is arbitrary

and self-inconsistent. These disadvantages offset the advantages of the Proca

equation; for example, it allows a three dimensional particle interpretation of the

photon and it can be quantized without difficulty.

In U(1) gauge theory, the Lagrangian in general [6] contains the mass term

(823), but in order to obtain the inhomogeneous Maxwell equations, this is

discarded. This procedure is outlined, for example, on pp. 89ff. of Ref. 6. The

U(1) Lagrangian in general is, in reduced units

L ¼ DmfDmf
� 	 m2f�f	 1

4
HmnHmn ð824Þ

where f is a scalar complex field and Fmn is the electromagnetic field tensor. The

Euler–Lagrange equation in the U(1) gauge is

qL
qAm
	 qn

qL
qðqnAmÞ


 �
¼ 0 ð825Þ

and Eqs. (824) and (825) give

qmHmn ¼ Jn ¼ 	igðf�Dnf	 fDnf�Þ ð826Þ
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The photon mass term in the Lagrangian

L ¼ 	 1

4
HmnH

mn þ 1

2
m2

0AmAm ð827Þ

leading to the Proca equation in the received view [6] is not invariant under the

gauge transformation

Am ! Am þ qmw ð828Þ

and is discarded in order to obtain the inhomogeneous Maxwell–Heaviside

equation (826). The constant g appears in this theory as a coupling constant; it

couples the f and Am electromagnetic fields.

Therefore the fact that qmw is arbitrary in U(1) theory compels that theory to

assert that photon mass is zero. This is an unphysical result based on the Lorentz

group. When we come to consider the Poincaré group, as in section XIII, we

find that the Wigner little group for a particle with identically zero mass is E(2),

and this is unphysical. Since qmw in the U(1) gauge transform is entirely

arbitrary, it is also unphysical. On the U(1) level, the Euler–Lagrange equation

(825) seems to contain four unknowns, the four components of Am, and the field

tensor Hmn seems to contain six unknowns. This situation is simply the result of

the term Hmn in the initial Lagrangian (824) from which Eq. (826) is obtained.

However, the fundamental field tensor is defined by the 4-curl:

Fmn ¼ qmAn 	 qnAm ð829Þ

and the six components of the field are interrelated automatically by a constraint.

The field tensor therefore contains only the four unknowns of Am by definition,

and this definition is the constraint. The physical nature of the potential has been

reviewed by Barrett [3,4].

It is well known that the Proca equation [6], Eq. (809), for a massive photon

is not gauge-invariant because the Lagrangian (827) corresponding to it is not

gauge-invariant. In SI units, this Lagrangian is

L ¼ 	 e0

4
VRHmnH

mn þ e0VR

2

m2
0c4

�h2
AmAm ð830Þ

where VR is the radiation volume, E0 is the permittivity in vacuo, Hmn is the field

tensor, and m0 is the mass of the photon. It is customary to adopt reduced units,

so the Lagrangian becomes [6] Eq. (827), with:

e0V ¼ 1;
c4

�h2
¼ 1 ð831Þ
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The term m2
0AmAm is not gauge-invariant under a local U(1) transform of Am. This

problem can be circumvented by adopting the notion of the vacuum as the ground

state of a scalar field f:

qV

qf
¼ 0 ð832Þ

where V is potential energy. This definition of the vacuum depends on the

spontaneous symmetry breaking [6] of the Lagrangian:

L ¼ ðqmfÞðqmf�Þ 	 m2f�f	 lðf�fÞ2

¼ ðqmfÞðqmf�Þ 	 Vðf;f�Þ ð833Þ

where l is the self-interaction parameter, and assuming that L is invariant under

the local transformation

f! ei� xmð Þf ð834Þ

the vacuum is the ground state

qV

qf
¼ 0 ¼ m2f� þ 2lf� f�fð Þ ð835Þ

and the parameter m is allowed to become negative. This is the basis of the Higgs

mechanism of introducing mass. If m < 0, there is a minimum at

a2 � fj j2¼ 	m2

2l
; fj j ¼ a ð836Þ

from the equation defining the vacuum [Eq. (835)]. In reduced units, spontaneous

symmetry breaking of this type leads to the Lagrangian (824) and to the

inhomogeneous field equation (826).

The charge–current density

Jm ¼ 	ig f�Dmf	 fDmf�ð Þ ð837Þ

is a vacuum current because g exists in the vacuum and Eq. (837) is obtained

from the definition of the vacuum, Eq. (835), as the ground state of the scalar

field f. The fundamental field Fmn is completely defined in terms of the

commutator of covariant derivatives:

Fmn �
i

g
½Dm;Dn� ð838Þ
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The Lagrangian (824) can be rewritten using Eq. (836) as [6]

L ¼ 	 1

4
HmnH

mn þ 1

2
g2a2AmAm þ 1

2
ðqmf1Þ2 þ

1

2
ðqmf2Þ2

	 2la2f2
1 þ

ffiffiffi
2
p

gaAmqmf2 þ � � � ð839Þ

The two Lagrangians (824) and (839) contain the same physical information, but

in the form (839), the mass of the photon appears as the term 1
2

g2a2AmAm in these

reduced units. In SI units, the mass of the photon is

m0
c

�h
¼ ga ¼ g fj j ð840Þ

and using

g ¼ k
fj j ð841Þ

we recover the de Broglie guidance theorem [15]:

m0c2 ¼ �ho ð842Þ

from the Higgs mechanism. The Proca equation is recovered in gauge-invariant

form from the Lagrangian (839) if it is assumed that f2 vanishes as the result of

spontaneous symmetry breaking. Using the Euler–Lagrange equation

qL
qAm
	 qn

qL
q qnAm
� �

 !
¼ 0 ð843Þ

the gauge-invariant Proca equation is as follows, in SI units:

qmHmn ¼ Jn ¼ 	e0g2 fj j2c2

�h2
An ð844Þ

The Lagrangian (824), which is the same as the Lagrangian (839), gives the

inhomogeneous equation (826) using the same Euler–Lagrange equation (843).

Therefore the photon mass can be identified with the vacuum charge–current

density as follows (in SI units):

Jn ¼ 	e0g2 fj j2c2

�h2
An ¼ 	ige0

c2

h2
ðf�Dmf	 fDmf�Þ ð845Þ

This result, in turn, shows that the O(3) equations in their condensed form,

Eq. (612), indicate the existence of photon mass. This is precisely the result
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obtained by Lehnert and Roy [10]. Canonical quantization of the gauge-invariant

Proca equation proceeds without any problem to give the photon as a boson with

helicities	1, 0, 1. This procedure is described in Ref. 6. In summary, it has been

shown that the vacuum charge–current density and photon mass are the result of

the Higgs mechanism.

Photon mass is shown to be self-consistent with O(3) electrodynamics by

considering the O(3) Lagrangian [6] in reduced units:

L ¼ 1

2
DmfiÞðDmfiÞ 	

m2

2
fifi 	 lðfifiÞ2 	

1

4
Hi

mnHimn ð846Þ

where i is the internal gauge index and Dm is the covariant derivative of O(3)

electrodynamics. The latter gives the usual results

Dmfi ¼ qmfi þ geijk Aj
mfk

Gi
mn ¼ qmAi

n 	 qnAi
m þ geijkAj

mAk
n

ð847Þ

and the potential V has a minimum [6] at

f0j j ¼ a ¼ 	m2

4l


 �1=2

ð848Þ

where

f0 ¼ ae3 � aeð3Þ ð849Þ

The O(3) Lagrangian becomes

L ¼ 1

2
ððqmf1Þ2 þ ðqmf2Þ2 þ ðqm f3 	 að ÞÞ2Þ þ agððqmf1ÞA

m
2 	 ðqmf2ÞA

m
1Þ

þ a2g2

2
ððA1

mÞ
2 þ ðA2

mÞ
2Þ 	 1

4
Hi

mnHimn 	 4a2lw2 ð850Þ

and contains the photon mass term

Lm ¼
a2g2

2
ððA1

mÞ
2 þ ðA2

mÞ
2Þ ð851Þ

in gauge-invariant form. The photon mass in O(3) electrodynamics is therefore

given again by Eq. (840). If it is assumed that

g ¼ k
f0j j

ð852Þ

the de Broglie guidance theorem (842) is again recovered self-consistently.
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The Lagrangian (850) shows that O(3) electrodynamics is consistent with the

Proca equation. The inhomogeneous field equation (32) of O(3) electrody-

namics is a form of the Proca equation where the photon mass is identified with

a vacuum charge-current density. To see this, rewrite the Lagrangian (850) in

vector form as follows:

L ¼ Dm/ 
Dm/	 m2/ 
/	 1

4
Hmn 
H

mn ð853Þ

The inhomogeneous O(3) field equation (32) is obtained through the Euler–

Lagrange equation:

qL
qðAi

mÞ
¼ qn

qL
qðqnAi

mÞ

 !
ð854Þ

which gives Eq. (32) with the current term (in SI units):

DmHmn ¼ Jn ¼ e0c2

�h2
gðDn/Þ � / ð855Þ

In analogy with Eq. (845), the photon mass is defined in SI units by

DmHmn ¼ Jn ¼ 	e0g2 f0j j2
c2

�h2
An ð856Þ

The individual terms of the charge current density (Jn) in the vacuum are Noether

currents of the type (101)–(106) and we have the following identifications under

all conditions:

rð1Þ ¼ igðAð2Þ 
Dð3Þ 	 Dð2Þ 
Að3ÞÞ

rð2Þ ¼ igðAð3Þ 
Dð1Þ 	 Dð3Þ 
Að1ÞÞ

rð3Þ ¼ igðAð1Þ 
Dð2Þ 	 Dð1Þ 
Að2ÞÞ

Jð1Þ� ¼ 	igðcA
ð2Þ
0 Dð3Þ 	 cA

ð3Þ
0 Dð2Þ þ Að2Þ �Hð3Þ 	 Að3Þ �Hð2ÞÞ

Jð2Þ� ¼ 	igðcA
ð3Þ
0 Dð1Þ 	 cA

ð1Þ
0 Dð3Þ þ Að3Þ �Hð1Þ 	 Að1Þ �Hð3ÞÞ

Jð3Þ� ¼ 	igðcA
ð1Þ
0 Dð2Þ 	 cA

ð2Þ
0 Dð1Þ þ Að1Þ �Hð2Þ 	 Að2Þ �Hð1ÞÞ

ð857Þ

The photon with mass has three degrees of freedom, so the O(3) procedure is

again self-consistent. The key advantage of the O(3) procedure is that it produces

a Proca equation that does not indicate the necessity for the Lorenz condition.
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The U(1) Proca equation (819) implies that the Lorenz condition always holds,

because Eq. (819) leads to

qnAn ¼ 0 ð858Þ

The O(3) Proca equation (856) does not have this artificial constraint on the

potentials, which are regarded as physical in this chapter. This overall conclu-

sion is self-consistent with the inference by Barrett [104] that the Aharonov–

Bohm effect is self-consistent only in O(3) electrodynamics, where the

potentials are, accordingly, physical.

Having derived the Proca equation in gauge-invariant form on the U(1) and

O(3) levels, canonical quantization can be attempted. Defining the photon mass

in reduced units as

m0 � gjfj; ðc ¼ 1; �h ¼ 1Þ ð859Þ

canonical quantization of the Proca equation is similar to that of the Klein–

Gordon equation discussed in section X. The difference is that the Klein–Gordon

equation produces a massless photon. With the definition m0 ¼ gjfj, the

canonical momentum from the gauge-invariant Lagrangian (827) is

pm ¼ qL

q _Am
¼ qmA0 	 _Am ð860Þ

from which [6] it follows that

pi ¼ 	 _Ai; p0 ¼ 0 ð861Þ

So on this U(1) level, the scalar photon represented by A0 is set to zero and the

Lorenz condition always applies, meaning no gauge freedom. This is self-

inconsistent because the original Lagrangian from which Eq. (827) is obtained is

a U(1) Lagrangian with gauge freedom. If so, the Lorenz condition cannot

always apply. Leaving these problems aside for the sake of argument, the

commutation relations fundamental to the method of canonical quantization

become [6]

½Aiðx; tÞ; pjðx
0
; tÞ� ¼ idi

jd
3ðx	 x

0 Þ ð862Þ
½ _Aiðx; tÞ;Ajðx0; tÞ� ¼ igijd

3ðx	 x0Þ ð863Þ

and the field can be expanded in the Fourier series

Am kð Þ ¼
ð

q3k

2pð Þ32k0

X3

l¼1

eðlÞm ðkÞðaðlÞ kð Þe	ikx þ aðlÞþeikxÞ ð864Þ

o(3) electrodynamics 247



implying

½aðlÞ kð Þ; aðl
0Þþ k0ð Þ� ¼ dll0qk0 2pð Þ3d3 k	 k0ð Þ ð865Þ

and a Hamiltonian:

H ¼
ð

q3k

2pð Þ32k0

k0

X3

l¼1

aðlÞþ kð ÞaðlÞ kð Þ ð866Þ

This gives a straightforward interpretation of the photon with mass as a particle,

but this interpretation is self-inconsistent on the U(1) level, as argued.

Self-consistent quantization of the photon with mass can occur using the

Higgs mechanism. Symmetry breaking of a U(1) theory gives one massive

photon, Am; and symmetry breaking on the O(3) level gives one massive photon,

A1
m, and one massive photon, A2

m. On the U(1) level, the time-like component of

the photon is canceled by the scalar field, leaving three polarization states for

the space-like part of the photon. On the O(3) level, symmetry breaking leads to

one massive scalar field and two massive vector fields. The massive scalar field

can be interpreted as a physical time-like photon with mass. This massive scalar

field appears in the term 	4a2lw2 in the Lagrangian (850), where w ¼ f3 	 a. It

is also possible to define an effective physical longitudinal photon whose

amplitude is the same as that of the physical scalar photon. This should not

be confused with the superheavy photon that emerges from electroweak theory

with an O(3) electromagnetic sector and observed as described in Section XII.

In summary, physical time-like and longitudinal photons are missing from

symmetry breaking of a U(1) theory, but are present after symmetry breaking of

an O(3) theory. It can be seen from Eq. (826) that electric charge current density

is defined by the scalar field f, and the basic requirement for charge to exist

from Noether’s theorem [6] is that f be complex. It is therefore possible to build

up electromagnetic theory from topological considerations, in particular the

complex scalar field f, whose ground state is the vacuum.

From the foregoing, it becomes clear that fields and potentials are freely

intermingled in the symmetry-broken Lagrangians of the Higgs mechanism. To

close this section, we address the question of whether potentials are physical

(Faraday and Maxwell) or mathematical (Heaviside) using the non-Abelian

Stokes theorem for any gauge symmetry:þ
Dm dxm ¼ 	 1

2

ð
½Dm;Dn�dsmn ð867Þ

On the U(1) level, this becomesþ
Am dxm ¼ 	 1

2

ð
Fmn dsmn ð868Þ
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or in vector notation þ
A 
 dr ¼

ð
B 
 dAr ¼

ð
r� A 
 dAr ð869Þ

The gauge transformation rule on the U(1) level is

A! A	rw ð870Þ

and when applied to Eq. (869), it is found thatþ
rw 
 dr ¼ 0 ð871Þ

which is self-consistent with

r� rwð Þ ¼ 0 ð872Þ

The Dirac phase factor

exp ig

þ
Am dxm


 �
¼ exp 	i

g

2

ð
Fmn dsmn


 �
ð873Þ

is therefore gauge-invariant [3,4] and fully describes the electromagnetic phase

factor on the U(1) level.

On the O(3) level, a gauge transformation applied to the theorem (867)

produces

þ
SAmS	1 	 i

g
qmS
� �

S	1


 �
dxm ¼ 	 1

2

ð
SGmnS

	1 dsmn ð874Þ

where

S ¼ exp iMa�a xmð Þð Þ; Am ¼ MaAa
m ð875Þ

Here, Ma are physical rotation generators of the O(3) group and �a are physical

angles [11–20]. The gauge transform produces

AðiÞm ! AðiÞm þ
1

g
qm�ðiÞ xmð Þ; i ¼ 1; 2; 3 ð876Þ

so that the potential components of:

Am ¼ Að1Þm eð1Þ þ Að2Þm eð2Þ þ Að3Þm eð3Þ ð877Þ
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are also physical. The gauge transform (874) also produces the resultþ
qm�a xmð Þdxm ¼ 0 ð878Þ

which means that

qnqm�a ¼ qmqn�a ð879Þ

This result, however, is an identity of Minkowski spacetime itself, namely, qnqm
operating on a function of xm produces the same result as qnqm operating on a

function of xm. Equation (879) does not mean that �a can take any value. We

reach the important conclusion that the vector identity (872) of U(1) is a property

of three-dimensional space itself and can always be interpreted as such.

Therefore even on the U(1) level, Eq. (872) does not mean that w can take any

value. Even on the U(1) level, therefore, potentials can be interpreted physically,

as was the intent of Faraday and Maxwell. On the O(3) level, potentials are

always physical.

XV. BELTRAMI ELECTRODYNAMICS AND NONZERO Bð3Þ

In this final section, it is shown that the three magnetic field components of

electromagnetic radiation in O(3) electrodynamics are Beltrami vector fields,

illustrating the fact that conventional Maxwell–Heaviside electrodynamics are

incomplete. Therefore Beltrami electrodynamics can be regarded as founda-

tional, structuring the vacuum fields of nature, and extending the point of view of

Heaviside, who reduced the original Maxwell equations to their presently

accepted textbook form. In this section, transverse plane waves are shown to be

solenoidal, complex lamellar, and Beltrami, and to obey the Beltrami equation,

of which Bð3Þ is an identically nonzero solution. In the Beltrami electrodynamics,

therefore, the existence of the transverse Bð1Þ ¼ Bð2Þ� implies that of Bð3Þ, as in

O(3) electrodynamics.

As argued by Reed [4], the Beltrami vector field originated in hydrodynamics

and is force-free. It is one of the three basic types of field: solenoidal, complex

lamellar, and Beltrami. These vector fields originated in hydrodynamics and

describe the properties of the velocity field, flux or streamline, v, and the

vorticity r� v. The Beltrami field is also a Magnus force free fluid flow and is

expressed in hydrodynamics as

v� ðr � vÞ ¼ 0 ð880Þ

The solenoidal vector field is:

r 
 v ¼ 0 ð881Þ
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and the complex lamellar vector field is

vðr � vÞ ¼ 0 ð882Þ

The Beltrami condition can also be represented [4] as:

r� v ¼ kv ð883Þ

where

k ¼ 1

v2
v 
 r � v ð884Þ

for real-valued v.

Beltrami fields have been advanced [4] as theoretical models for astrophy-

sical phenomena such as solar flares and spiral galaxies, plasma vortex filaments

arising from plasma focus experiments, and superconductivity. Beltrami elec-

trodynamic fields probably have major potential significance to theoretical and

empirical science. In plasma vortex filaments, for example, energy anomalies

arise that cannot be described with the Maxwell–Heaviside equations. The three

magnetic components of O(3) electrodynamics are Beltrami fields as well as

being complex lamellar and solenoidal fields. The component Bð3Þ is identically

nonzero in Beltrami electrodynamics if Bð1Þ ¼ Bð2Þ� is so. In the Beltrami

electrodynamics, Bð3Þ is a particular solution of the general solution given by

Chandrasekhar and Kendall [4] of the Beltrami equation:

r� B ¼ kB ð885Þ

This argument shows again that Maxwell–Heaviside electrodynamics is

incomplete, because Bð3Þ is zero. General solutions are given in this section of

the Beltrami equation, which is an equation of O(3) electrodynamics. Therefore

these solutions are also general solutions of O(3) electrodynamics in the vacuum.

The three components of the B cyclic theorem (411) are solenoidal, complex

lamellar, and Beltrami. This is a remarkable property of Beltrami electrody-

namics when recognized as O(3) electrodynamics for the special case when

Bð1Þ ¼ Bð2Þ� are plane waves. Specifically

r 
Bð1Þ ¼ 0; Bð1Þ 
 r � Bð1Þ ¼ 0; Bð1Þ � ðr � Bð1ÞÞ ¼ 0

r 
Eð1Þ ¼ 0; Eð1Þ 
 r � Eð1Þ ¼ 0; Eð1Þ � ðr � Eð1ÞÞ ¼ 0

r 
Að1Þ ¼ 0; Að1Þ 
 r � Að1Þ ¼ 0; Að1Þ � ðr � Að1ÞÞ ¼ 0

ð886Þ

and also for indices (2) and (3). Multiplying the Beltrami equation:

r� Bð1Þ ¼ kBð1Þ ð887Þ

o(3) electrodynamics 251



on both sides by Bð2Þ, it is seen that

Bð2Þ 
 r � Bð1Þ ¼ kBð1Þ 
Bð2Þ ð888Þ

so the constant k is not necessarily zero when dealing with complex fields. To

prove that k can be different from zero, consider the complex transverse magnetic

plane wave

Að1Þ ¼ Að0Þffiffiffi
2
p ðiiþ jÞei ot	kZð Þ ð889Þ

which obeys the B cyclic theorem (411). From Eqs. (883) and (884)

k ¼ 1

Að0Þ2
A� 
r � A ¼ A� 
B

Að0Þ2
¼ k ð890aÞ

r � Að1Þ ¼ kAð1Þ ð890bÞ

and all three components—(1), (2) and (3)—are solutions of the same Beltrami

equation. Similarly, if we define the complete magnetic field vector by

B � Bð1Þ þ Bð2Þ þ Bð3Þ ð891Þ

the complete vector B obeys Eq. (885).

On the U(1) level, if we start with the free-space Maxwell–Heaviside

equations

r� Eþ qB

qt
¼ 0; r� B	 1

c2

qE

qt
¼ 0 ð892Þ

it follows that

r� B ¼ kB ð893aÞ

r � E ¼ kE ð893bÞ

r � A ¼ kA ð893cÞ

where B ¼ r� A as usual, and where k ¼ �j. Here, k is a pseudo scalar that

changes sign between left and right circularly polarized radiation. The Beltrami

equation for Bð3Þ is

r� Bð3Þ ¼ kBð3Þ ð894Þ
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where k ¼ 0. It follows that all components of transverse plane waves are

described by Beltrami equations in vacuo. For left-handed plane waves

E
ð1Þ
L ¼

Eð0Þffiffiffi
2
p ði	 ijÞe	iðot	kZÞ ¼ E

ð2Þ�
L

B
ð1Þ
L ¼

Bð0Þffiffiffi
2
p ðiiþ jÞe	iðot	kZÞ ¼ B

ð2Þ�
L

A
ð1Þ
L ¼

Að0Þffiffiffi
2
p ðiiþ jÞe	iðot	kZÞ ¼ A

ð2Þ�
L

ð895Þ

For right-handed transverse plane waves

E
ð1Þ
R ¼

Eð0Þffiffiffi
2
p ðiþ ijÞe	iðot	kZÞ ¼ E

ð2Þ�
R

B
ð1Þ
R ¼

Bð0Þffiffiffi
2
p ð	iiþ jÞe	iðot	kZÞ ¼ B

ð2Þ�
R

A
ð1Þ
R ¼

Að0Þffiffiffi
2
p ð	iiþ jÞe	iðot	kZÞ ¼ A

ð2Þ�
R

ð896Þ

and for the longitudinal Bð3Þfield

B
ð3Þ
L ¼ 	B

ð3Þ
R ¼ Bð0Þk ð897Þ

Therefore

r� B
ð1Þ
L ¼ 	kB

ð1Þ
L ; r� B

ð1Þ
R ¼ kB

ð1Þ
R

r� E
ð1Þ
L ¼ 	kE

ð1Þ
L ; r� E

ð1Þ
R ¼ kE

ð1Þ
R

r� A
ð1Þ
L ¼ 	kA

ð1Þ
L ; r� A

ð1Þ
R ¼ kA

ð1Þ
R

ð898Þ

and similarly for index (2). For the longitudinal index (3)

r� B
ð3Þ
R ¼ r� B

ð3Þ
L ¼ 0 ð899Þ

and all components are described by Beltrami equations in vacuo. Since E and B
are the fundamental fields of electrodynamics, these equations are valid under all

conditions. In particular, Eq. (893c) for the potential is not gauge-invariant under

the transform:

A! A	rw ð900Þ
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revealing that in Beltrami electrodynamics, A is physical. This result again

supports Maxwell’s postulate of a physical vector potential and does not support

Heaviside’s postulate of an unphysical vector potential. Equation (893c) is self-

consistent, however, on the O(3) level, where potentials are physical. The

covariant form of Eq. (893c) is

Fmn ¼ kAmn ð901Þ

so the field tensor is directly proportional to an axial potential 4-tensor. This

suggests that the vector potential can be polar or axial in nature. The solutions of

Eq. (901) are also solutions of the d’Alembert equation in vacuo. In this view, the

field tensor is directly proportional to the axial potential tensor Amn, and so gauge

freedom is lost because, if Fmn is gauge-invariant, so is Amn. This result is another

internal inconsistency of the Maxwell–Heaviside point of view.

The Faraday law of induction does not distinguish between left and right cir-

cular polarization, that is, the structure of the equation is the same for R and L:

r� E
ð1Þ
L ¼ 	

qB
ð1Þ
L

qt

r� E
ð1Þ
R ¼ 	

qB
ð1Þ
R

qt

ð902Þ

On the other hand, the corresponding Beltrami equations are distinct:

r� E
ð1Þ
L ¼ 	kE

ð1Þ
L

r� E
ð1Þ
R ¼ kE

ð1Þ
R

ð903Þ

The handedness, or chirality, inherent in foundational electrodynamics at the

U(1) level manifests itself clearly in the Beltrami form (903). The chiral nature of

the field is inherent in left- and right-handed circular polarization, and the

distinction between axial and polar vector is lost. This result is seen in Eq. (901),

where Amn is a tensor form that contains axial and polar components of the

potential. This is precisely analogous with the fact that the field tensor Fmn

contains polar (electric) and axial (magnetic) components intermixed. Therefore,

in propagating electromagnetic radiation, there is no distinction between polar

and axial. In the received view, however, it is almost always asserted that E and A
are polar vectors and that B is an axial vector.

The Bð3Þ component [which is nonzero only on the O(3) level] is a solution of

the Beltrami equation (885) with k ¼ 0. Therefore, in Beltrami electrodynamics,

Bð3Þ is a solenoidal, irrotational, complex lamellar and Beltrami field in the

vacuum, and is also a propagating field. The Bð3Þ component in Beltrami
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electrodynamics is part of the general solution of the solenoidal Beltrami

equation given in Ref. 4, and is identically nonzero in the vacuum. This

statement is equivalent to saying that electrodynamics is an O(3) Yang–Mills

theory in the vacuum. The general solution in cylindrical components of

Eq. (885) is

B ¼
X
m;n

Bmnbmnðr; y; zÞ ð904Þ

where m is a nonnegative integer and where bmn depends on f and Z through

f ¼ myþ nZ. The expressions for the modes depend on linear combinations of

Bessel and Neumann functions, Jm and Nm, similar to the solutions of the

Helmholtz equation [5]. When the domain of solution involves the axis r ¼ 0,

and solutions are restricted to axisymmetric wave equations, then

1

r

q
qr

r
qc
qr


 �
¼ 	k2c ð905Þ

The solution of this equation is [4]

c ¼ C J0ðkrÞ ð906Þ

where C is any constant, and the solution specializes to:

B ¼ B0ð0; J1ðkrÞ; J0ðkrÞÞ ð907Þ

for the mode m ¼ n ¼ 0; a ¼ ð0; 0; 1Þ. Therefore the unit vector a ¼ ð0; 0; 1Þ
designates the Z axis. The solution for the Bð3Þ component is

Bð3Þ ¼ B0ð0; J1ð0Þ; J0ð0ÞÞ ð908Þ

and depends on the Bessel functions J1ð0Þ and J0ð0Þ. Therefore

Bð3Þ ¼ Bðk ¼ 0;m ¼ 0; n ¼ 0Þ
¼ B0ð0; 0; 1Þ ¼ Bð0Þk ð909Þ

and Bð3Þ is an identically nonzero, phaseless function directed in the Z axis. This

result is self-consistent with that of O(3) electrodynamics.

In conducting media, the wave number j becomes complex [5], and by

separating real and imaginary parts, we can obtain the Beltrami equations:

r� A ¼ kA; k � ik00 ð910Þ
r � B ¼ kB; k � ik00 ð911Þ
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Taking the curl of Eq. (910) gives

r� ðr � AÞ ¼ kr� A ¼ k2A ð912Þ

which can be rewritten as

r2A ¼ k002A ð913Þ

using the vector identity

r� r� Að Þ ¼ r � r 
Að Þ 	 r2A ð914Þ

The covariant form of Eq. (914) is

&Am ¼ 	k002Am ð915Þ

If we assume

k00 ¼ m0c

�h
ð916Þ

Eq. (915) becomes the Proca equation, and Eq. (916), the de Broglie guidance

theorem.

Similarly, Eq. (911) becomes the equation of the Meissner effect in super-

conductivity:

r2B ¼ k002B ð917Þ

Finally, using

r� B ¼ kB ¼ kr� A ¼ k2A ð918Þ

we obtain the London equation:

J ¼ r� B ¼ 	k002A ð919Þ

It is seen that the acquisition of mass by the photon is the result of an equation of

superconductivity, and this is, of course, the basis of spontaneous symmetry

breaking and the Higgs mechanism (Section XIV). Beltrami equations account

for all these phenomena, and are foundational in nature. Note that the London

equation (919) is not gauge-invariant on the U(1) level because a physical gauge-

invariant current is proportional to the vector potential, which, in the received

view, is gauge-noninvariant. This is another flaw of U(1) electrodynamics in the
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received opinion. The electric field from the London equation is zero because the

current J is time-independent:

E ¼ 	 qA

qt
¼ 0 ð920Þ

By Ohm’s law, the resistance of the conducting medium vanishes, and the

medium becomes a superconductor. The Higgs mechanism and spontaneous

symmetry breaking were derived using the properties of superconductors.

TECHNICAL APPENDIX A: THE NON-ABELIAN
STOKES THEOREM

The non-Abelian Stokes theorem is a relation between covariant derivatives for

any gauge group symmetry:

þ
Dmdxm ¼ 	 1

2

ð
½Dm;Dn�dsmn ðA:1Þ

This expression can be expanded asþ
qm 	 igAm
� �

dxm ¼ 	 1

2

ð
qm 	 igAm; qn 	 igAn
� �

dsmn ðA:2Þ

The terms þ
qm dxm ¼ qm; qn

� �
¼ 0 ðA:3Þ

are zero because by symmetry

qnqm ¼ qmqv ðA:4Þ

so þ
qmdxm ¼ 	 1

2

ð
½qm; qv�dsmn ¼ 0 ðA:5Þ

The half-commutators are evaluated as follows

½Am; qn� ¼ 	qnAm; ½qm;An� ¼ qmAn ðA:6Þ

giving the non-Abelian Stokes theoremþ
Amdxm ¼ 	 1

2

ð
Gmn dsmn ðA:7Þ
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where the field tensor for any gauge group is

Gmn � qmAn 	 qnAm 	 ig½Am;An� ðA:8Þ

On the U(1) level, the 4-potential is

Am ¼ ðf; cAÞ ðA:9Þ

and the field tensor is

Fmn ¼

0 E1

c
E2

c
E3

c

	E1

c
0 B3 	B2

	E2

c
	B3 0 B1

	E3

c
B2 	B1 0

2
666664

3
777775 ðA:10Þ

Summing over repeated indices gives the time-like relationþ
f dt ¼ 1

2c2

ð
EX ds01 þ

ð
EY ds02


 �
ðA:11Þ

where the SI units on either side are those of electric field strength multiplied by

area. Summing over space indices givesþ
A1 dx1 þ A2 dx2 þ A3 dx3 ¼ 	 1

2

ð
Fij dsij ðA:12Þ

which can be rewritten asþ
A1 dx1 ¼ 	 1

2

ð
F23 ds23 þ F32 ds32 ¼ 	

ð
B1 ds23

þ
A2 dx2 ¼ 	 1

2

ð
F31 ds31 þ F13 ds13 ¼ 	

ð
B2 ds31

þ
A3 dx3 ¼ 	 1

2

ð
F12 ds12 þ F21 ds21 ¼ 	

ð
B3 ds12

ðA:13Þ

In Cartesian coordinates, this is

þ
AX dX ¼

ð
Bx dsYZ

þ
AY dY ¼

ð
BY dsZX

þ
AZ dZ ¼

ð
BZ dsXY

ðA:14Þ
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or in condensed notation þ
A 
 dr ¼

ð
B 
 dAr ðA:15Þ

This is the Stokes theorem as usually found in textbooks. For plane waves, A is

always perpendicular to the path, so in free spaceþ
A 
 dr ¼ 0 �

þ
AZ dZ ) r� AZ ¼ 0 ðA:16Þ

On the O(3) level, there is a nonzero commutator and an additional term

þ
A
ð3Þ
3 dx3 ¼ 	i

g

2

ð
½Að1Þ1 ;A

ð2Þ
2 �ds12þ

ð
½Að1Þ2 ;A

ð2Þ
1 �ds21


 �
ðA:17Þ

in the basis ((1),(2),(3)) defined by

eð1Þ � eð2Þ ¼ ieð3Þ�

� � �
ðA:18Þ

In Cartesian form, Eq. (A.17) becomesþ
A
ð3Þ
Z dZ ¼ 	ig

ð
½Að1ÞX ;A

ð2Þ
Y �dAr ¼

ð
B
ð3Þ
Z dAr ðA:19Þ

and explains the Sagnac effect as in the text. There are time-like relations such as

þ
A0 dx0 ¼ 	 1

2

ð
q0An 	 qnA0 	 ig A0;An½ �ds0n ðA:20Þ

which define the scalar potential in O(3) electrodynamics to be nonzero and

structured.

TECHNICAL APPENDIX B: 4-VECTOR MAXWELL–HEAVISIDE
EQUATIONS

In this second technical appendix, it is shown that the Maxwell–Heaviside

equations can be written in terms of a field 4-vector Gm ¼ ð0; cBþ iEÞ rather

than as a tensor. Under Lorentz transformation, Gm transforms as a 4-vector. This

shows that the field in electromagnetic theory is not uniquely defined as a

4-tensor. The Maxwell–Heaviside equations can be written in terms of the

4-vectors:

Gm ¼ 0; cBþ iEð Þ ðB:1Þ
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and

Hm ¼ ð0;H þ icDÞ ðB:2Þ

as

qmGm ¼ 0

qi;Gj

� �
þ i q0;Gk½ � ¼ 0

qmHm ¼ irc

qi;Hj

� �
þ i q0;Hk½ � ¼ Jk

ðB:3Þ

Under Lorentz transformation:

GmGm ¼ G0mGm0

HmHm ¼ H0mHm0
ðB:4Þ

Using the fact that r and J themselves form the components of a 4-vector, the

Maxwell–Heaviside equations for field matter interaction can be combined into

one relation between 4-vectors:

ð	iqmHm; ð½qi;Hj� þ i½q0;Hk�ÞÞ ¼ c r;
1

c
Jk


 �
ðB:5Þ

The free-space equivalent is

ðqmGm; ½qi;Gi� þ i½q0;Gk�Þ ¼ 0 ðB:6Þ

A Lorentz boost in the Z direction of the vector Gm produces

cB0X þ iE0X ¼ cBX þ iEX

cB0Y þ iE0Y ¼ cBY þ iEY

cB0Z þ iE0Z ¼ gðcB0Z þ iE0ZÞ
cB00 þ iE00 ¼ 	gbðcB0Z þ iE0ZÞ

ðB:7Þ

but a Lorentz transform in the Z direction applied to Fmn produces

cB0X ¼ gðcBX þ bEYÞ
cB0Y ¼ gðcBY 	 bEXÞ
cB0Z ¼ cBZ

B00 ¼ 0

ðB8Þ
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The results (B.7) and (B.8) are different, even though both describe a boost of the

same vector equations, the Maxwell–Heaviside equations:

r 
B ¼ 0

r� E þ qB

qt
¼ 0

ðB:9Þ

The only common factor is that the charge–current 4-tensor transforms in the

same way. The vector representation develops a time-like component under

Lorentz transformation, while the tensor representation does not. However, the

underlying equations in both cases are the Maxwell–Heaviside equations, which

transform covariantly in both cases and obviously in the same way for both

vector and tensor representations.

If we define the vectors

a � 1

2
ðcBþ iEÞ

b � 1

2
ðcB	 iEÞ

ðB:10Þ

then

½aX ; aY � ¼ iaZ � � �
½bX ; bY � ¼ ibZ � � �
½ai; ai� ¼ 0 ði; j ¼ X; Y; ZÞ

ðB:11Þ

and a and b both generate a group SU(2). The Lorentz group is then SU(2) !
SU(2) and transforms in a well-defined way labeled by two angular momenta

ðj; j0Þ, the first corresponding to a and the second to b. Thus a and b are

generators of the Lorentz group. The vector Gm also transforms as a rest frame

Pauli–Lubanski vector, suggesting that the vector representation is suitable for

intrinsic photon spin, and the tensor representation for orbital angular

momentum. This is also suggested by O(3) electrodynamics where the

fundamental intrinsic spin of the field is Bð3Þ.

TECHNICAL APPENDIX C: ON THE ABSENCE OF MAGNETIC
MONOPOLES AND CURRENTS IN O(3) ELECTRODYNAMICS

The non-Abelian Stokes theoremþ
Dmdxm þ 1

2

ð
½Dm;Dn�dsmn ¼ 0 ðC:1Þ
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is the integral form of the Jacobi identityX
s;m;n

½Ds; ½Dm;Dn�� ¼ 0 ðC:2Þ

which is an identity between spacetime translation generators of the Poincaré

group. Since

Dm ¼ qm 	 igAm ðC:3Þ

for any gauge group symmetry, it follows that the identity (C.2) holds for the

different components of Dm: In an O(3) gauge, group symmetry identity (C.2)

can be written as the field equation (31) of the text, so it follows that

qm ~Gmn � 0 ðC:4Þ

Am � ~Gmn � 0 ðC:5Þ

Equation (C.5) means that there are no magnetic charge or current densities in

O(3) electrodynamics.

It follows that

Að2Þ 
Bð3Þ 	 Bð2Þ 
Að3Þ ¼ 0 ðC:6Þ

Að3Þ 
Bð1Þ 	 Bð3Þ 
Að1Þ ¼ 0 ðC:7Þ

Að1Þ 
Bð2Þ 	 Bð1Þ 
Að2Þ ¼ 0 ðC:8Þ

The third equation is always true if

Bð1Þ ¼ r � Að1Þ; Bð2Þ ¼ r � Að2Þ ðC:9Þ

because of the vector identity

r 
 F� Gð Þ ¼ G 
 r � Fð Þ 	 F 
 r � Gð Þ ðC:10Þ

and the first two equations are always true because (3) is always orthogonal to (1)

and (2).

It also follows that

cA
ð3Þ
0 Bð2Þ 	 cA

ð2Þ
0 Bð3Þ þ Að2Þ � Eð3Þ 	 Að3Þ � Eð2Þ ¼ 0 ðC:11Þ

cA
ð1Þ
0 Bð3Þ 	 cA

ð3Þ
0 Bð1Þ þ Að3Þ � Eð1Þ 	 Að1Þ � Eð3Þ ¼ 0 ðC:12Þ

cA
ð2Þ
0 Bð1Þ 	 cA

ð1Þ
0 Bð2Þ þ Að1Þ � Eð2Þ 	 Að2Þ � Eð1Þ ¼ 0 ðC:13Þ
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and using

A
ð2Þ
0 ¼ A

ð1Þ
0 � 0; jAð3Þj ¼ A

ð3Þ
0 ðC:14Þ

Eqs. (C.11) and (C.12) give

cBð1Þ ¼ k� Eð1Þ 	 Að1Þ � Eð3Þ

cA
ð3Þ
0

ðC:15Þ

cBð2Þ ¼ k� Eð2Þ 	 Að2Þ � Eð3Þ

cA
ð3Þ
0

ðC:16Þ

However, we know from Eq. (C.4) that

r� Eð1Þ þ qBð1Þ

qt
¼ 0 ðC:17Þ

r � Eð2Þ þ qBð2Þ

qt
¼ 0 ðC:18Þ

so

cBð1Þ ¼ k� Eð1Þ ðC:19Þ
cBð2Þ ¼ k� Eð2Þ ðC:20Þ

and Eð3Þ is identically zero because A
ð3Þ
0 , Að1Þ , and Að2Þare nonzero. It follows

that

qBð3Þ

qt
¼ 0 ðC:21Þ

and there is no Faraday induction due to Bð3Þ. Equation (C.13) gives

Að1Þ � Eð2Þ ¼ Að2Þ � Eð1Þ ðC:22Þ

which is self-consistent with Eqs. (C.9), (C.17), and (C.18).

The B cyclic theorem follows from

cBð1Þ � Bð2Þ ¼ cBð1Þ � ðk� Eð2ÞÞ ðC:23Þ

which becomes

Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ� ðC:24Þ
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using the vector identity

F� G�Hð Þ ¼ G F 
Hð Þ 	H F 
Gð Þ ðC:25Þ

Similarly

cBð1Þ � Bð3Þ ¼ ðk� Eð1ÞÞ � Bð3Þ ðC:26Þ

becomes

Bð3Þ � Bð1Þ ¼ iBð0ÞBð2Þ� ðC:27Þ

using

Eð1Þ ¼ 	icBð1Þ ðC:28Þ

and we obtain the Poincaré invariant B cyclic theorem because Eð3Þ is zero, and

because there are no magnetic charge and current desities:

Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ�

Bð2Þ � Bð3Þ ¼ iBð0ÞBð1Þ�

Bð3Þ � Bð1Þ ¼ iBð0ÞBð2Þ�

ðC:29Þ
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I. INTRODUCTION

The famous paper [1] written by Yang and Mills is a milestone of modern

quantum physics, where the role played by the equations introduced in the paper

(now called the SUð2Þ Yang–Mills equations) can be compared only to that of

the Klein–Gordon–Fock, Schrödinger, Maxwell, and Dirac equations. However,

the real importance of the Yang–Mills equations was first understood only in the

late 1960s, when the concept of the gauge fields as being responsible for all four

fundamental physical interactions (gravitational, electromagnetic, weak, and

strong interactions) became widespread.

The simplest example of gauge theory in ð1 þ 3Þ-dimensional space is the

system of the Maxwell equations for the 4-component vector potential of the

electromagnetic field, whose gauge group is the single-parameter group Uð1Þ.
The simplest example of the non-Abelian gauge group is group SUð2Þ. This

group is realized as the symmetry group admitted by the Yang–Mills equations

describing the triplet of the gauge fields (called in the sequel the Yang–Mills

field) AmðxÞ ¼ ðAa
mðxÞ; a ¼ 1; 2; 3Þ, where m ¼ 1; 2; 3; 4; x ¼ ðx1; x2; x3; x4Þ for

the case of the four-dimensional Euclid space and m ¼ 0; 1; 2; 3,

x ¼ ðx0 ¼ t; x1; x2; x3Þ ¼ ðt; xÞ for the case of the Minkowski space. The matrix

vector field Am ¼ AmðxÞ is defined as follows:

Am ¼ e
sa

2i
Aa
m

Here sa, ða ¼ 1; 2; 3Þ are the Pauli matrices

s1 ¼ 0 1

1 0

� �
; s2 ¼ 0 �i

i 0

� �
; s3 ¼ 1 0

0 �1

� �

and e is the real constant called the gauge coupling constant.

Using the matrix gauge potentials, one constructs the matrix-valued field

Fmn � qmAn � qnAm þ ½Am; An�; m; n ¼ 0; 1; 2; 3

Writing these expressions componentwise yields

Fmn � e
sa

2i
Fa
mn; Fa

mn ¼ qmAa
n � qnAa

m þ e f a
bcAb

mAc
n
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where m; n ¼ 0; 1; 2; 3, a ¼ 1; 2; 3, and the symbols f a
bc ða; b; c ¼ 1; 2; 3Þ stand

for the structure constants determining the Lie algebra of the gauge group [note

that for the case of the group SUð2Þ; f a
bc ¼ eabc, where eabc is the antisymmetric

tensor with e123 ¼ 1; a; b; c ¼ 1; 2; 3].

Hereafter we use the following designations:

qm ¼ qxm ¼
q
qxm

Furthermore, lowering and raising the indices m; n is performed with the help of

the metric tensor of the space of the variables xm, and summation over the

repeated indices is carried out.

The SUð2Þ Yang–Mills equations are obtained from the Lagrangian

L ¼ � 1

4
Fmn F mn

and are of the form

qmFmn þ ½Am;Fmn� ¼ ½Dm;Fmn� ¼ 0 ð1Þ

where Dm ¼ qm þ Am is the covariant derivative, m; n ¼ 0; 1; 2; 3.

One of the most popular and exciting parts of the general theory of the Yang–

Mills equations is that devoted to constructing their exact analytical solutions.

There is a vast literature devoted solely to constructing and analyzing exact

solutions of (1) (see the review by Actor [2] and the monograph by Radjaraman

[3] for an extensive list of references). Most of the results are obtained for the

case of the Yang–Mills equations in Euclidean space. The principal reason for

this is the fact that Eq. (1) in Euclidean space have the monopole and instanton

solutions [3,4], which admit numerous physical interpretations and have highly

nontrivial geometric and algebraic properties. Note that these and some other

classes of exact solutions of system (1) can also be obtained by solving the so-

called self-dual Yang–Mills equations

Fmn ¼ 	Fmn; m; n ¼ 0; 1; 2; 3: ð2Þ

Evidently, each solution of (2) satisfies (1), while the reverse assertion does not

hold.

Provided we consider the Euclidean case, 	Fmn ¼ 1
2
emnlrFlr; ðm; n; l; r ¼

1; 2; 3; 4Þ, where emnlr is the completely antisymmetric tensor, and equations (2)

form the system of four real first-order partial differential equations.

It was the self-duality property of the instanton solutions of (1) in Euclidean

space that had enabled the use of ansatz, suggested by t’Hooft [5], Corrigan and
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Fairlie [6], Wilczek [7], and Witten [8], in order to construct these solutions.

Furthermore, the well-known monopole solution by Prasad and Sommerfield

[9], as well as the solutions obtainable via the Atiyah–Hitchin–Drinfeld–Manin

method [10] exploit explicitly the self-duality condition.

One more important property of the self-dual Yang–Mills equations is that

they are equivalent to the compatibility conditions of some overdetermined

system of linear partial differential equations [11,12]. In other words, the self-

dual Yang–Mills equations admit the Lax representation and, in this sense, are

integrable. For this very reason it is possible to reduce Eq. (2) to the widely

studied solitonic equations, such as the Euler–Arnold, Burgers, and Devy–

Stuardson equations [13,14] and Liouville and sine–Gordon equations [15] by

use of the symmetry reduction method.

For the case, when the Yang–Mills field is defined in the Minkowski space,

we have 	Fmn ¼ i
2
emnlr Flr; ðm; n; l; r ¼ 0; 1; 2; 3Þ. Consequently, Eq. (2) form

the system of complex first-order differential equations. In view of this fact,

exploitation of the abovementioned methods and results for study of the SUð2Þ
Yang–Mills equations (1) in the Minkowski space yields complex-valued

solutions. That is why the abovementioned methods for solving Eq. (1) fail to

be efficient for the case of the Minkowski space. Consequently, there is a need

for developing new methods that do not rely on the self-duality condition. This

problem has been addressed by one of the creators of the inverse scattering

technique, V. E. Zaharov, who wrote, in the foreword to the Russian translation

of the monograph by Calogero and Degasperis [16], that a number of important

problems of nonlinear mathematical physics (including Yang–Mills equations in

Minkowski space) still await new, more efficient solutions.

On the other hand, it is known [17] (see also Ref. 18) that Eq. (1) have rich

symmetry. Specifically, their maximal (in the Lie sense) symmetry group is the

group G 
 SUð2Þ, where G is

* The conformal group Cð1; 3Þ, if the Yang–Mills equations are defined in

Minkowski space

* The conformal group Cð4Þ, if the Yang–Mills equations are defined in

Euclidean space

* The conformal group Cð2; 2Þ, if the Yang–Mills equations are defined in

pseudo-Euclidean space having the metric tensor with the signature

ð�; �; þ; þÞ

Note that the maximal symmetry groups admitted by the self-dual Yang–

Mills equations (2) coincide with the symmetry groups of the corresponding

equations (1).

The rich symmetry of Eqs. (1) and (2) enables efficient exploitation of

the symmetry reduction routine for the sake of dimensional reduction of
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Yang–Mills equations either to ordinary differential equations integrable by

quadratures or to integrable solitonic equations in two or three independent

variables [19–21]. In particular, some subgroups of the generalized Poincaré

group Pð2; 2Þ which is the subgroup of the conformal group Cð2; 2Þ, were used

in order to reduce the self-dual Yang–Mills equations, defined in the pseudo-

Euclidean space having the metric tensor with the signature ð�; �; þ; þÞ, to a

number of known integrable systems, such as the Ernst, cubic Schrödinger, and

Euler–Calogero–Moser equations (see Ref. 22 and references cited therein).

Legaré et al. have carried out systematic investigation of the problem of

symmetry reduction of system (2) in Euclidean space by subgroups of the

Euclid group Eð4Þ 2 Cð4Þ [23,24]. What is more, some of the known analytical

solutions of Eq. (1) in Euclidean space (viz. the non-self-dual meron solution,

obtained by de Alfaro et al. [25], and the instanton solution, constructed by

Belavin, et al. [26]), can also be obtained within the framework of the symmetry

reduction approach [21].

To the best of our knowledge, the first paper devoted to symmetry reduction

of the SUð2Þ Yang–Mills equations in Minkowski space has been published by

Fushchych and Shtelen [27] (see also Ref. 21). They use two conformally

invariant ansatzes in order to perform reduction of Eqs. (1) to systems of

ordinary differential equations. Integrating the latter yields several exact

solutions of Yang–Mills equations (1).

Let us note that the full solution of the problem of symmetry reduction of

fundamental equations of relativistic physics, whose symmetry groups are

subgroups of the conformal group Cð1; 3Þ, has been obtained for the scalar

wave equation only (for further details, see Refs. 21 and 28–30). This fact is

explained by the extreme cumbersomity of the calculations needed to perform

a systematic symmetry reduction of systems of partial differential equations by

all inequivalent subgroups of the conformal group Cð1; 3Þ. The complete

solution of the problem of symmetry reduction to systems of ordinary differ-

ential equations has been obtained for the conformally invariant nonlinear

spinor equations [31–33], which generalize the Dirac equation for an electron.

We have carried out symmetry reduction of the Yang–Mills equations (1) and

(2) by subgroups of the Poincaré group and have constructed a number of their

exact solutions [34–39].

The principal aim of the present chapter is twofold. First, we will review the

already known ideas, methods, and results centered around the solution tech-

niques that are based on the symmetry reduction method for the Yang–Mills

equations (1) in Minkowski space. Second, we will describe the general

reduction routine, developed by us in the 1990s, which enables the unified

treatment of both the classical and nonclassical symmetry reduction approaches

for an arbitrary relativistically invariant system of partial differential equations.

As a byproduct, this approach yields exhaustive solution of the problem of
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symmetry reduction of the vacuum Maxwell equations

rot E ¼ � qH

qt
; div H ¼ 0

rot H ¼ qE

qt
; div E ¼ 0

ð3Þ

The history of the study of symmetry properties of Eq. (3) goes back to the

beginning of the twentieth century. Invariance properties of Maxwell equations

have been studied by Lorentz [40] and Poincaré [41,42]. They have proved that

Eq. (3) are invariant with respect to the transformation group named by the

Poincaré suggestion the Lorentz group. Furthermore, Larmor [43] and Rainich

[44] have found that equations (3) are invariant with respect the single-

parameter transformation group

E ! E cos yþ H sin y; H ! H cos y� E sin y ð4Þ

now known as the Heaviside–Larmor–Rainich group. Later, Bateman [45] and

Cunningham [46] showed that Maxwell equations are invariant with respect to

the conformal group.

Much later, Ibragimov [47] proved that the group Cð1; 3Þ 
 H, where Cð1; 3Þ
is the group of conformal transformations of Minkowski space and H is the

Heaviside–Larmor–Rainich group (4), is maximal in Lie’s sense invariance

group of equations (3). Note that this result coincides with that obtained earlier

without explicit use of the infinitesimal Lie algorithm [19,20]. Further progress

in the study of symmetries of the Maxwell equations became possible when

Fushchych and Nikitin suggested a non-Lie approach to investigating symmetry

properties of linear systems of partial differential equations [48].

The present review is based mainly on our publications [33,35–39,49–53].

In Section II we give a detailed description of the general reduction routine

for an arbitrary relativistically invariant systems of partial differential

equations. The results of Section II are used in Section III to solve the problem

of symmetry reduction of Yang–Mills equations (1) by subgroups of the

Poincaré group Pð1; 3Þ and to construct their exact (non-Abelian) solutions.

In Section IV we review the techniques for nonclassical reductions of the SUð2Þ
Yang–Mills equations, which are based on their conditional symmetry. These

techniques enable us to obtain the principally new classes of exact solutions of

(1), which are not derivable within the framework of the standard symmetry

reduction technique. In Section V we give an overview of the known invariant

solutions of the Maxwell equations and construct multiparameter families of

new ones.
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II. CONFORMALLY INVARIANT ANSATZES FOR AN
ARBITRARY VECTOR FIELD

In this section we describe the general approach to constructing conformally

invariant ansatzes applicable to any (linear or nonlinear) system of partial

differential equations, on whose solution set a linear covariant representation of

the conformal group Cð1; 3Þ is realized. Since the majority of the equations of

the relativistic physics, including the Klein–Gordon–Fock, Maxwell, massless

Dirac, and Yang–Mills equations, respect this requirement, they can be handled

within the framework of this approach.

Note that all our subsequent considerations are local and the functions

involved are supposed to be as many times continuously differentiable, as this is

necessary for performing the corresponding mathematical operations.

A. The Linear Form of Invariant Ansatzes

Consider the system of partial differential equations (which we denote as S)

S : F
A
ðx; u; u

1
; . . . ; u

r
Þ ¼ 0; A ¼ 1; . . . ;m ð5Þ

defined on the open subset M 
 X � U ’ Rp � Rq of the space of p independent

and q dependent variables. In (5) we use the notations x ¼ ðx1; . . . ; xpÞ 2 X;
u¼ðu1; . . . ; uqÞ 2 U, u

l
¼ f qluk

qx
a1
1
qx

a2
2

...qx
ap
p

, 0 � ai � l;
Pp

i¼1 ai ¼ l; k ¼ 1; . . . ; qg,

l ¼ 1; 2; . . . ; r, and FA, which are sufficiently smooth functions of the given

arguments.

Let G be a local transformation group that acts on M and is the symmetry

group of system (5). Next, let the basis operators of the Lie algebra g of the

group G be of the form

Xa ¼ xi
aðx; uÞqxi

þ Za
j ðx; uÞqu j ; a ¼ 1; . . . ; n ð6Þ

where xi
a;Z

a
j are arbitrary smooth functions on M, qu j ¼ q

qu j, i ¼ 1; . . . ; p;
j ¼ 1; . . . ; q. By definition, operators (6) satisfy the commutation relations

½Xa;Xb� � XaXb � XbXa ¼ Cc
abXc; a; b; c ¼ 1; . . . ; n

where Cc
ab are the structure constants, which determine uniquely the type of the

Lie algebra g.

We say that a solution u ¼ fðxÞ ðf ¼ ð f 1; . . . ; f qÞÞ of system (6) is G-

invariant if the manifold u � fðxÞ ¼ 0 is invariant with respect to the action of

the group G. This means that for an arbitrary g 2 G, the functions f and gðfÞ
coincide in the intersection of the domains, where they are defined. More

precisely, we can define a G-invariant solution of system (5) as the solution
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u ¼ fðxÞ, whose graph �f ¼ fðx; fðxÞÞg 
 M is locally G-invariant subset of the

set M.

If G is the symmetry group of system (5), then, under some additional

assumption of regularity of the action of the group G, we can find all its G-

invariant solutions by solving the reduced system of differential equations S=G.

Note that by construction the system S=G has fewer independent variables; that

is, the dimension of the initial system is reduced (hence this procedure is called

the symmetry reduction method).

In the sequel, we will restrict our considerations to the case of the projective

action of the group G in M. This means that all the transformations g from G are

of the form

ð�x; �uÞ ¼ gððx; uÞÞ ¼ ð�gðxÞ;�gðx; uÞÞ:

In other words, the transformation law for the independent variables x does not

involve the dependent variables ½for the Lie algebra g of the group G, this implies

that in formulas (2) xi
a ¼ xi

aðxÞ�. This defines the projective action of the group G
�x ¼ gðxÞ ¼ �gðxÞ in an arbitrary subset � of the set X.

In what follows, we will suppose that the action of the group G in M and its

projective actions in � are regular and the orbits of these actions have the same

dimension s. This dimension is called the rank of the group G (or, alternatively,

the rank of the Lie algebra g). Note that the condition rank G ¼ s is equivalent

to the requirement that the relation

rankkxi
aðx0Þk ¼ rankkxi

aðx0Þ;Za
j ðx0; u0Þk ¼ s ð7Þ

holds in an arbitrary point ðx0; u0Þ 2 M [19]. We will also suppose that s < p (the

case s ¼ p is trivial, and furthermore, G-invariant functions do not exist under

s > p).

If these assumptions hold, then there are p � s fuctionally independent

invariants y1 ¼ o1ðxÞ; y 2 ¼ o2ðxÞ; . . . ; y p�s ¼ o p�sðxÞ (the first set of invar-

iants) of the group G acting projectively in �, and each of them is the invariant

of the group G acting in M. Furthermore, there are q functionally independent

invariants v1 ¼ g1ðx; uÞ; v2 ¼ g2ðx; uÞ; . . . ; vq ¼ gqðx; uÞ of the group G acting

in M (the second set of invariants) [19,20]. Using the shorthand notation, we

represent the full set of invariants of the group G in the following way:

y ¼ wðxÞ; v ¼ gðx; uÞ ð8Þ

Owing to the validity of the relation

rank

����
����qg j

qui

����
���� ¼ q; i; j ¼ 1; . . . ; q

we can solve locally the second system of equations from (8) with respect to u

u ¼ ~rðx; vÞ ð9Þ
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Using the relation

rank

����
����qo j

qxi

����
���� ¼ p � s; j ¼ 1; . . . ; p � s; i ¼ 1; . . . ; p

we choose p � s independent variables ~x ¼ ð~x1; . . . ;~xp�sÞ so that

rank

����
����qo j

q~xi

����
���� ¼ p � s; i; j ¼ 1; . . . ; p � s

We call these variables principal. The remaining s independent variables

x̂ ¼ ðx̂1; . . . ; x̂sÞ are called parametric (they enter all the subsequent formulas as

parameters).

Now we can solve the first system from (8) with respect to the principal

variables

~x ¼ zðx̂; yÞ ð10Þ

Inserting (10) into (9), we get the equality

u ¼ ~rðx̂; z; vÞ

or

u ¼ rðx̂; y; vÞ ð11Þ

Note that in (9)–(11), ~r ¼ ð~r1, . . . ;~rqÞ; r ¼ ðr1; . . . ; rqÞ; z ¼ ðz1; . . . ; zp�sÞ.
The so constructed G-invariant function (11) is called the ansatz. Inserting

ansatz (11) into system (5) yields the system of partial differential equations for

the functions v of the variables y, which do not explicitly involve the parametric

variables [19]. These equations form the reduced (or factor) system S=G having

the fewer number of independent variables y1; . . . ; yp�s, as compared with the

initial system (5). Now, if we are given a solution v ¼ hðyÞ of the reduced

system, then inserting it into (11) yields a G-invariant solution of system (5).

Summing up, we formulate the algorithm of symmetry reduction and constr-

uction of invariant solutions of systems of partial differential equations, that

admit nontrivial Lie symmetry.

1. Using the infinitesimal Lie method, we compute the maximal symmetry

group G admitted by the equation under study.

2. We fix the symmetry degree s of the invariant solutions to be constructed

and find the optimal system of subgroups of the group G having the rank s.

We can do this because the subgroup classification problem reduces to

classifying inequivalent subalgebras of the rank s of the Lie algebra g of
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the group G. This classification is performed within the action of the inner

automorphism group of the algebra g.

3. For each of the so obtained subgroups we construct the full set of

functionally independent invariants, which yields the invariant ansatz.

4. Inserting the abovementioned ansatz into the system of partial differential

equations under study reduces it to the one having p � s independent

variables.

5. We investigate the reduced system and construct its exact solutions. Each

of them corresponds to the invariant solution of the initial system.

Symmetry properties of the overwhelming majority of physically significant

differential equations [including the Maxwell and SUð2Þ Yang–Mills equations]

are well known. The most important symmetry groups are those isomorphic to

the Euclid, Galileo, and Poincaré groups and their natural extensions (the

Schrödinger and conformal groups). This fact motivated Patera et al. to

investigate the subgroup structure of these fundamental groups [54]. They

have suggested the general method for classifying continuous subgroups of Lie

groups and illustrated its efficiency by rederiving the known classification of

inequivalent subgroups of the Poincaré group Pð1; 3Þ. Exploiting this method

has enabled investigators to fully describe the continuous subgroups of a

number of important symmetry groups arising in theoretical and mathematical

physics, including the Euclid, Galileo, Poincaré, Schrödinger, and conformal

groups (see, e.g., Ref. 30 and references cited therein).

Thus, to completely solve the problem of symmetry reduction within the

framework of the formulated algorithm above, we need to be able to perform

steps 3–5 listed above. However, solving these problems for a system of partial

differential equations requires enormous amount of computations; moreover,

these computations cannot be fully automatized with the aid of symbolic

computation routines. On the other hand, it is possible to simplify drastically

the computations, if one notes that for the majority of physically important

realizations of the Euclid, Galileo, and Poincaré groups and their extensions, the

corresponding invariant solutions admit linear representation. It was this very

idea that enabled us to construct broad classes of invariant solutions of a number

of nonlinear spinor equations [31–33].

In the paragraphs that follow, we will concentrate on the case of the 15-

parameter conformal group Cð1; 3Þ, admitted both by the Maxwell and SUð2Þ
Yang–Mills equations. We emphasize that the same reasoning applies directly to

the case of the 11-parameter Schrödinger group Schð1; 3Þ, which is the analog

of the conformal group in nonrelativistic physics. The group Cð1; 3Þ acts in the

open domain M 
 R1;3 � Rq of the four-dimensional Minkowski spacetime of

the independent variables x0; x ¼ ðx1; x2; x3Þ and of the q-dimensional space of

dependent variables u ¼ uðx0; xÞ; u ¼ ðu1; u2; . . . ; uqÞ.
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The Lie algebra cð1; 3Þ of the conformal group Cð1; 3Þ is spanned by the

generators of the translation Pm ðm ¼ 0; 1; 2; 3Þ, rotation Jab ða; b ¼ 1; 2; 3;
a < bÞ, Lorentz rotation J0a ða ¼ 1; 2; 3Þ, dilation D, and conformal Km ðm ¼
0; 1; 2; 3Þ transformations. The basis elements of cð1; 3Þ satisfy the following

commutation relations:

½Pm;Pn� ¼ 0; ½Pm; Jab� ¼ gmaPb � gmbPa

½Jmn; Jab� ¼ gmbJna þ gnaJmb � gmaJnb � gnbJma ð12Þ
½Pm;D� ¼ Pm; ½Jmn;D� ¼ 0 ð13Þ

½Km; Jab� ¼ gmaKb � gmbKa; ½D;Km� ¼ Km

½Km;Kn� ¼ 0; ½Pm;Kn� ¼ 2ðgmnD � JmnÞ ð14Þ

Here m; n; a; b ¼ 0; 1; 2; 3 and gmn is the metric tensor of the Minkowski

spacetime R1;3:

gmn ¼
1; m ¼ n ¼ 0

�1; m ¼ n ¼ 1; 2; 3

0; m 6¼ n

8<
:

The group Cð1; 3Þ contains the following important subgroups:

1. The Poincaré group Pð1; 3Þ, whose Lie algebra pð1; 3Þ is spanned by the

operators Pm; Jmn ðm; n ¼ 0; 1; 2; 3Þ satisfying commutation relations (12);

2. the extended Poincaré group ~Pð1; 3Þ, whose Lie algebra ~pð1; 3Þ is spanned

by the operators Pm; Jmn;D ðm; n ¼ 0; 1; 2; 3Þ satisfying commutation

relations (12) and (13)

Analysis of the symmetry groups of the equations of relativistic physics

shows that for the majority of them the generators of the Poincaré, extended

Poincaré, and conformal groups can be represented in the following form

[19,21,33,48]:
Pm ¼ qxm

Jmn ¼ xmqxn � xnqxm � ðSmnu � quÞ
D ¼ xmqxm � kðEu � quÞ

K0 ¼ 2x0D � ðxnxnÞqx0
� 2xaðS0au � quÞ

K1 ¼ �2x1D � ðxnxnÞqx1
þ 2x0ðS01u � quÞ

� 2x2ðS12u � quÞ � 2x3ðS13u � quÞ
K2 ¼ �2x2D � ðxnxnÞqx2

þ 2x0ðS02u � quÞ
þ 2x1ðS12u � quÞ � 2x3ðS23u � quÞ

K3 ¼ �2x3D � ðxnxnÞqx3
þ 2x0ðS03u � quÞ

þ 2x1ðS13u � quÞ þ 2x2ðS23u � quÞ

ð15Þ
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In these formulas, Smn are constant q � q matrices, which realize a representation

of the Lie algebra oð1; 3Þ of the pseudoorthogonal group Oð1; 3Þ and satisfy the

commutation relations

½Smn; Sab� ¼ gmbSna þ gnaSmb � gmaSnb � gnbSma ð16Þ

m; n; a; b ¼ 0; 1; 2; 3; gmn is the metric tensor of Minkowski space R1;3; E is the

unit q � q matrix, u ¼ ðu1; u2; . . . ; uqÞT
, qu ¼ ðqu1 ; qu2 ; . . . ; qu qÞT

, and the

symbol ð	 � 	Þ stands for the scalar product in the vector space Rq. We remind

the reader that the repeated indices imply summation over the corresponding

interval and raising and lowering the indices is carried out with the help of the

metric gmn. Also, k is some fixed real number called the conformal degree of the

group Cð1; 3Þ.
It follows from relations (15) that the basis elements of the Lie algebra

cð1; 3Þ have the form (6), where the functions xi
a depend on x 2 X ¼ R p only

and the functions Za
j are linear in u. We will prove that owing to these properties

of the basis elements of cð1; 3Þ, the ansatzes invariant under subalgebras of the

algebra (15) admit linear representation.

Let a local transformation group G act projectively in M, and let g ¼
hX1; . . . ;Xni be its Lie algebra spanned by the infinitesimal operators of the

form

Xa ¼ xi
aðxÞqxi

þ ra
jkðxÞukquj ð17Þ

where a ¼ 1; . . . ; n; i ¼ 1; . . . ; p; j; k ¼ 1; . . . ; q.

According to the discussion above, the group G has the two types of

invariants. The first set of invariants is formed by p � s (where s is the rank

of the group G) functionally independent invariants

w ¼ wðxÞ; w ¼ ðo1; . . . ;o p�sÞ ð18Þ

The second set is formed by q invariants

h ¼ hðx; uÞ; h ¼ ðh1; . . . ; hqÞ ð19Þ

The functions w and h are invariants of the group G if and only if they are,

respectively, solutions of the following systems of partial differential equations:

xi
aðxÞ

qob

qxi

¼ 0 ð20Þ

xi
aðxÞ

qhl

qxi

þ ra
jkðxÞuk qhl

qu j
¼ 0 ð21Þ
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where the indices take the following values: a ¼ 1; . . . ; n, b ¼ 1; . . . ; p � s,

i ¼ 1; . . . ; p, j; k; l ¼ 1; . . . ; q.

Generically, a G-invariant ansatz has the form (11), where v � h. However,

provided the infinitesimal operators of the group G are of the form (17),

G-invariant ansatz for the vector field u can be represented in the linear

form [33]

u ¼ �ðxÞhðwÞ ð22Þ

where �ðxÞ is some q � q matrix nonsingular in � 
 M, u ¼ ðu1; . . . ; uqÞT
,

h ¼ ðh1; . . . ; hqÞT
.

The matrix �ðxÞ from (22) is obtained by integrating the system of partial

differential equations to be derived below.

Lemma 1. Let a G-invariant ansatz be of the form (22). Then there is q � q

matrix HðxÞ ¼ ��1ðxÞ nonsingular in � satisfying the matrix partial differen-

tial equation

xi
aðxÞ

qHðxÞ
qxi

þ HðxÞ�aðxÞ ¼ 0 ð23Þ

where �aðxÞ is the q � q matrices, whose ði; jÞth entry reads as ra
ijðxÞ, i; j ¼

1; . . . ; q.

Proof. Provided a G-invariant ansatz is of the form (22), the relation

h ¼ HðxÞu

with HðxÞ ¼ ��1ðxÞ holds. So, the second set of invariants (19) of the group G

consists of the functions, which are linear in u j and, consequently, can be

represented in the form

hb ¼ hblðxÞul; b; l ¼ 1; . . . ; q

The function hb is the invariant of the group G, if and only if it satisfies

Eq. (21)

xi
aðxÞ

qhblðxÞ
qxi

ul þ ra
jlðxÞulhbjðxÞ ¼ 0

Splitting this relation by ul ensures that the system of partial differential equa-

tions

xi
aðxÞ

qhblðxÞ
qxi

þ hbjðxÞra
jlðxÞ ¼ 0 ð24Þ
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holds for all the values of b; l. The indices in (24) take the following values:

a ¼ 1; . . . ; n; i ¼ 1; . . . ; p; b; j; l ¼ 1; . . . ; q.

It is readily seen that the second term of the left-hand side of Eq. (24) is the

ðb; lÞth entry of the matrix HðxÞ�aðxÞ; ða ¼ 1; . . . ; nÞ. Hence it follows that the

matrix HðxÞ satisfies Eq. (13). The lemma is proved.

The forms of the matrices �a for the basis operators of the algebra cð1; 3Þ are

as follows:

* Matrices �a; a ¼ 1; 2; 3; 4 corresponding to the operators Pm; ðm ¼ 0;
1; 2; 3Þ are zero q � q matrices.

* Matrices �a; a ¼ 1; . . . ; 6 corresponding to the operators Jmn; ðm; n ¼
0; 1; 2; 3Þ are equal to �Smn, where Smn are constant q � q matrices

realizing a representation of the algebra oð1; 3Þ and satisfying commu-

tation relations (16).

* Matrix �1 corresponding to the dilation operator D reads as �kE, where k

is the conformal degree of the algebra cð1; 3Þ and E is the unit q � q

matrix.

* Matrices �a; a ¼ 1; 2; 3; 4 corresponding to the operators Km; ðm ¼ 0;
1; 2; 3Þ are given by the following formulas:

�1 ¼ �2x0kE � 2x1S01 � 2x2S02 � 2x3S03

�2 ¼ 2x1kE þ 2x0S01 � 2x2S12 � 2x3S13

�3 ¼ 2x2kE þ 2x0S02 þ 2x1S12 � 2x3S23

�4 ¼ 2x3kE þ 2x0S03 þ 2x1S13 þ 2x2S23

With the explicit forms of the matrices �a in hand, we can determine the

structure of the matrices H ¼ ��1 for ansatz (22) invariant under a subalgebra g

of the conformal algebra cð1; 3Þ.
If g 2 pð1; 3Þ ¼ hPm; Jmnjm; n ¼ 0; 1; 2; 3i, then the corresponding matrices

�a are linear combinations of the matrices Smn. Hence it follows that the matrix

H can be sought in the form

H ¼ ~H ¼
Y
m<n

exp ðymnSmnÞ ð25Þ

where ymn ¼ ymnðx0; xÞ are arbitrary smooth functions defined in ~� 
 R1;3.

Next, if g is a subalgebra of the conformal algebra cð1; 3Þ with a nonzero

projection on the vector space spanned by the operators D;K0;K1;K2;K3, then

the corresponding matrices �a are linear combinations of the matrices E and

Smn. That is why the matrix H should be sought in the more general form

H ¼ exp ðyEÞ~H ð26Þ
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where y ¼ yðx0; xÞ is an arbitrary smooth function defined in ~� and ~H is the

matrix given in (25).

B. Subalgebras of the Conformal Algebra c(1,3) of Rank 3

Now we turn to the problem of constructing conformally invariant ansatzes that

reduce systems of partial differential equations invariant under the group Cð1; 3Þ
to systems of ordinary differential equations.

As a second step of the algorithm of symmetry reduction formulated above,

we have to describe the optimal system of subalgebras of the algebra cð1; 3Þ of

the rank s ¼ 3. Indeed, the initial system has p ¼ 4 independent variables. It has

to be reduced to a system of differential equations in 4 � s ¼ 1 independent

variables, so that s ¼ 3.

Classification of inequivalent subalgebras of the algebras pð1; 3Þ, ~pð1; 3Þ,
cð1; 3Þ within actions of different automorphism groups [including the groups

Pð1; 3Þ, ~Pð1; 3Þ and Cð1; 3Þ] is already available [30]. Since we will concentrate

on conformally invariant systems, it is natural to restrict our disscussion to the

classification of subalgebras of cð1; 3Þ that are inequivalent within the action of

the conformal group Cð1; 3Þ.
In order to get the full lists of the subalgebras in question we have to check

that relation (7) with s ¼ 3 holds for each element of the lists of inequivalent

subalgebras of the algebras pð1; 3Þ; ~pð1; 3Þ; cð1; 3Þ given elsewhere [30]. Evi-

dently, we can restrict our considerations to subalgebras having the dimension

not less than 3.

Let cð1; 3Þ be the conformal algebra having the basis operators (15) and

cð1Þð1; 3Þ be the conformal algebra spanned by the operators

Pð1Þ
m ¼ qxm ; Jð1Þ

mn ¼ xmqxn � xnqxm ; Dð1Þ ¼ xmqxm

Kð1Þ ¼ 2xmDð1Þ � ðxnxnÞqxm

ð27Þ

where m; n ¼ 0; 1; 2; 3.

Note that the conformal group Cð1; 3Þ generated by the infinitesimal

operators (27) acts in the space of independent variables R1;3 only. That is

why the basis operators of the algebra cð1Þð1; 3Þ act in the space of dependent

variables Rq as zero operators.

Lemma 2. Let L be a subalgebra of the algebra cð1; 3Þ of the rank s and let

sð1Þ be the rank of the projection of L on cð1Þð1; 3Þ. Then, from the equality

s ¼ sð1Þ, it follows that dim L ¼ s.

Proof. Suppose that the reverse assertion holds, namely, that dimL 6¼ s. As

dimL � s, it follows that dimL > s. Choose the basis elements X1; . . . ;Xm of the

algebra L so that
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* The rank of the matrix M, whose entries are projections of the operators

X1; . . . ;Xm on cð1Þð1; 3Þ, is equal to s.

* The linear space spanned by the operators X1; . . . ;Xm contains

L \ hP0;P1;P2;P3i.

We denote as S
ð1Þ
0 the point ðx0

0; x0Þ 2 ~� in which the rank of the matrix M

equals to s. Let the vector fields Xi be equal to X0
1 ; . . . ;X0

s , X0
sþ1; . . .X0

m in S
ð1Þ
0 .

Then there are constants a1; . . . ; as, such that the vector field a1X0
1 þ � � � þ

asX
0
s þ X0

sþ1 restricted to the space of dependent variables U ¼ Rq is a nonzero

operator. Indeed, if this operator vanishes identically on Rq for any choice of

a1; . . . ; as, then the vector fields X0
1 ; . . . ;X0

s ;X0
sþ1 belong to the vector space

hP0;P1;P2;P3i, and this fact contradicts to the assumptions that dim L > s;
rank L ¼ s. Consequently, the matrix formed by the coefficients of the vector

fields X1; . . . ;Xs; a1X1 þ � � � þ asXs þ Xsþ1 has a nonzero minor of the order

s þ 1 in some point ðx0
0; x0; u0Þ (the first four coordinates are same as those of

the point S0). This contradicts the assumption that rank L > s. Hence we

conclude that dim L ¼ s. The lemma is proved.

It follows from Lemma 2 that the validity of the relation (7) with s ¼ 3

should be ascertained only for the three-dimensional subalgebras of the algebras

pð1; 3Þ; ~pð1; 3Þ; cð1; 3Þ given elsewhere [30]. Moreover, we need to check the

first condition from (7) only.

Consider the subalgebras of the algebra pð1; 3Þ, whose basis operators are of

the form (15). Among the three-dimensional subalgebras of the algebra pð1; 3Þ
listed elsewhere [30], there are only five subalgebras hG1;P0 þ P3; > P1i; hJ12;
P1;P2i; hJ03;P0;P3i; hJ12; J13; J23i; hJ01; J02; J12i, that do not respect the first

condition, (7). These subalgebras give rise to the so-called partially invariant

solutions [19]. Partially invariant solutions cannot be handled in a generic way;

they should always be considered within the context of a specific system of

partial differential equation to be reduced. We will not consider the partially

invariant solutions further. The remaining inequivalent subalgebras are listed in

the assertion below.

Assertion 1. The list of subalgebras of the algebra pð1; 3Þ of the rank 3, defined

within the action of the inner automorphism group of the algebra cð1; 3Þ, is

exhausted by the following subalgebras:

L1 ¼ hP0;P1;P2i; L2 ¼ hP1;P2;P3i
L3 ¼ hM;P1;P2i; L4 ¼ hJ03 þ aJ12;P1;P2i
L5 ¼ hJ03;M;P1i; L6 ¼ hJ03 þ P1;P0;P3i
L7 ¼ hJ03 þ P1;M;P2i; L8 ¼ hJ12 þ aJ03;P0;P3i
L9 ¼ hJ12 þ P0;P1;P2i; L

j
10 ¼ hJ12 þ ð�1Þ jP3;P1;P2i

L
j
11 ¼ hJ12 þ ð�1Þ j2T;P1;P2i; L12 ¼ hG1;M;P2 þ aP1i
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L
j
13 ¼ hG1 þ ð�1Þ jP2;M;P1i; L14 ¼ hG1 þ 2T;M;P2i

L15 ¼ hG1 þ 2T;M;P1 þ aP2i; L16 ¼ hJ12; J03;Mi
L

j
17 ¼ hGj

1;G
j
2;Mi; L18 ¼ hJ03;G1;P2i

L19 ¼ hG1; J03;Mi; L20 ¼ hG1; J03 þ P2;Mi
L21 ¼ hG1; J03 þ P1 þ aP2;Mi; L22 ¼ hG1;G2; J03 þ aJ12i

Here a 2 R; M ¼ P0 þ P3; T ¼ 1
2
ðP0 � P3Þ; Ga ¼ J0a � Ja3; ða ¼ 1; 2Þ;

G
j
1 ¼ G1 þ ð�1Þ jP2; G

j
2 ¼ G2 � ð�1Þ jP1 þ aP2; j ¼ 1; 2.

In the same way, we handle the three-dimensional subalgebras of the

algebras ~pð1; 3Þ and cð1; 3Þ. We have skipped from the list of subalgebras of

the algebra ~pð1; 3Þ those conjugate to subalgebras of pð1; 3Þ. Furthermore, we

have skipped from the list of subalgebras of the conformal algebra those

conjugate to subalgebras of the algebra ~pð1; 3Þ. The results obtained are

presented in the two assertions below.

Assertion 2. The list of subalgebras of the algebra ~pð1; 3Þ of the rank 3, defined

within the action of the inner automorphism group of the algebra cð1; 3Þ, is ex-

hausted by the subalgebras given in Assertion 1 and by the following subalgebras:

F1 ¼ hD;P0;P3i; F2 ¼ hJ12 þ aD;P0;P3i
F3 ¼ hJ12;D;P0i; F4 ¼ hJ12;D;P3i
F5 ¼ hJ03 þ aD;P0;P3i; F6 ¼ hJ03 þ aD;P1;P2i
F7 ¼ hJ03 þ aD;M;P1i ða 6¼ 0Þ
F8 ¼ hJ03 þ D þ ð�1Þ j2T ;P1;P2i
F9 ¼ hJ03 þ D þ ð�1Þ j2T ;M;P1i; F10 ¼ hJ03;D;P1i

F11 ¼ hJ03;D;Mi; F12 ¼ hJ12 þ aJ03 þ bD;P0;P3i ða 6¼ 0Þ
F13 ¼ hJ12 þ aJ03 þ bD;P1;P2i ða 6¼ 0Þ
F14 ¼ hJ12 þ aðJ03 þ D þ 2TÞ;P1;P2i ða 6¼ 0Þ
F15 ¼ hJ12 þ aJ03;D;Mi ða 6¼ 0Þ
F16 ¼ hJ03 þ aD; J12 þ bD;Mi ð0 � jaj � 1; b � 0; jaj þ jbj 6¼ 0Þ
F17 ¼ hJ03 þ D þ ð�1Þ j2T ; J12 þ 2aT ;Mi ða 2 RÞ
F18 ¼ hJ03 þ D; J12 þ ð�1Þ j2T;Mi; F19 ¼ hJ03; J12;Di
F20 ¼ hG1; J03 þ aD;P2i ð0 < jaj � 1Þ
F21 ¼ hJ03 þ D;G1 þ ð�1Þ jP2;Mi
F22 ¼ hJ03 � D þ ð�1Þ jM;G1;P2i
F23 ¼ hJ03 þ 2D;G1 þ ð�1Þ j2T ;Mi
F24 ¼ hJ03 þ 2D;G1 þ ð�1Þ j2T ;P2i
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Here M ¼ P0 þ P3; G1 ¼ J01 � J13, T ¼ 1
2
ðP0 � P3Þ, the parameters a; b are

positive (if otherwise is not indicated); j ¼ 1; 2.

Assertion 3. The list of subalgebras of the algebra cð1; 3Þ of the rank 3, defined

within the action of the inner automorphism group of the algebra cð1; 3Þ, is

exhausted by the subalgebras of the algebras pð1; 3Þ; ~pð1; 3Þ given in Assertions

1 and 2 and by the following subalgebras:

C1 ¼ hS þ T þ J12;G1 þ P2;Mi
C2 ¼ hS þ T þ J12 þ G1 þ P2;G2 � P1;Mi
C3 ¼ hJ12; S þ T;Mi; C4 ¼ hS þ T; Z;Mi
C5 ¼ hS þ T þ aJ12; Z;Mi ða 6¼ 0Þ
C6 ¼ hS þ T þ J12 þ aZ;G1 þ P2;Mi ða 6¼ 0Þ
C7 ¼ hS þ T þ J12; Z;G1 þ P2i
C8 ¼ hS þ T þ bZ; J12 þ aZ;Mi ða; b 2 R; jaj þ jbj 6¼ 0Þ
C9 ¼ hJ12; S þ T; Zi; C10 ¼ hD � J03; S; Ti

C11 ¼ hP2 þ K2 þ
ffiffiffi
3

p
ðP1 þ K1Þ þ K0 � P0;

� D þ J02 �
ffiffiffi
3

p
J01;P0 þ K0 � 2ðK2 � P2Þi

C12 ¼ hP0 þ K0i � hJ12;K3 � P3i
C13 ¼ h2J12 þ K3 � P3; 2J13 � K2 þ P2; 2J23 þ K1 � P1i
C14 ¼ hP1 þ K1 þ 2J03;P2 þ K2 þ K0 � P0; 2J12 þ K3 � P3i

where M¼P0 þ P3; G0a ¼ J0a � Ja3 ða ¼ 1; 2Þ; Z ¼ J03 þ D; S ¼ 1
2
ðK0 þ K3Þ,

T ¼ 1
2
ðP0 � P3Þ.

Remark 1. While classifying subalgebras of the extended Poincaré algebra

~pð1; 3Þ, the discrete equivalence transformations �1;�2;�3, that leave the

algebra ~pð1; 3Þ invariant, were exploited elsewhere [30]. The result of the action

of these groups on the operators of the algebra ~pð1; 3Þ is given in Table I. That is

why we have completed the list of subalgebras of the algebras pð1; 3Þ; ~pð1; 3Þ
obtained earlier [30] by the subalgebras obtainable by acting on these

subalgebras with the discrete transformation groups �1;�2;�3.

C. Construction of Conformally Invariant Ansatzes

Now we turn to constructing Cð1; 3Þ-invariant ansatzes that reduce conformally

invariant systems of partial differential equations to systems of ordinary

differential equations. To this end, we use the lists of subalgebras of the algebra

cð1; 3Þ given in Assertions 1–3. Note that all the subsequent computations are

286 r. z zhdanov and v. i. lahno



performed under supposition that the basis operators of cð1; 3Þ are of the

form (15).

As shown in Section II.A, the ansatzes in question can be searched for in

linear form (22) and matrices H ¼ ��1, in the form (26). According to

Lemma 1, the matrix H has to satisfy equations (23), whose coefficients are

defined uniquely by the choice of a subalgebra of the conformal algebra of the

rank 3. Thus the problem of complete description of conformally invariant

ansatzes reduces to solving system of partial differential equations (20), (23) for

each subalgebra of the conformal algebra, which requires a vast amount of

computation. The calculations are simplified if we take into account the general

structure of the subalgebras listed in Assertions 1–3.

For further convenience, we will use the following basis of the algebra

oð1; 3Þ: S03; S12;Ha; ~Ha ða ¼ 1; 2Þ, where Ha ¼ S0a � Sa3; ~Ha ¼ S0a þ Sa3

ða ¼ 1; 2Þ. It is not difficult to check that these matrices satisfy the commutation

relations

½S03; S12� ¼ ½H1;H2� ¼ ½~H1; ~H2� ¼ 0

½Ha; S03� ¼ Ha ½~Ha; S03� ¼ �~Ha ða ¼ 1; 2Þ
½H1; S12� ¼ �H2 ½H2; S12� ¼ H1

½~H1; S12� ¼ �~H2 ½~H2; S12� ¼ ~H1

½H1; ~H1� ¼ ½H2; ~H2� ¼ �2S03

½~H2;H1� ¼ ½H2; ~H1� ¼ 2S12

ð28Þ

TABLE I

Effect of Equivalence Transformations on Extended Poincaré Algebra

Action on ~pð1; 3Þ
———————————————————————————

Operators �1 �2 �3

P0 �P0 P0 �P0

P1 �P1 �P1 P1

Pa ða ¼ 2; 3Þ �Pa Pa �Pa

J03 J03 J03 J03

J12 J12 �J12 �J12

G1 G1 �G1 �G1

G2 G2 G2 G2

M �M M �M

T �T T �T

D D D D
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In particular, relations (28) imply that the matrices H1;H2; S12; S03 and
~H1; ~H2; S12; S03 realize two matrix representations of the Euclid algebra ~eð2Þ
(here the matrix S03 is identified with the dilation generator and the matrices

H1;H2 and ~H1; ~H2 are identified with the translation generators). Furthermore, as

E is the unit matrix, it commutes with all the basis elements of oð1; 3Þ, namely

½E; S12� ¼ ½E; S03� ¼ ½E;Ha� ¼ ½E; ~Ha� ¼ 0 ð29Þ

where a ¼ 1; 2.

Analyzing the structure of the basis elements of the subalgebras of the con-

formal algebra given in Assertions 1–3, we see that the corresponding matrices

�a are most conveniently represented in terms of the matrices S03; S12; Ha;
~Ha ða ¼ 1; 2Þ. Hence we conclude that the matrix H ¼ Hðx0; xÞ ¼ ��1ðx0; xÞ
can be searched for in the form

H ¼ expfð� ln yÞEgexpðy0S03Þexpð�y3S12Þexpð�2y1H1Þ
� expð�2y2H2Þexpð�2y4

~H1Þexpð�2y5
~H2Þ ð30Þ

where y ¼ yðx0; xÞ; y0 ¼ y0ðx0; xÞ; ym ¼ ymðx0; xÞ ðm ¼ 1; 2; . . . ; 5Þ are arbi-

trary smooth functions defined in an open domain ~� 
 R1;3 of the Minkowski

space of the independent variables x0; x ¼ ðx1; x2; x3Þ.
Let L ¼ hXaja ¼ 1; 2; 3i be a subalgebra of the algebra cð1; 3Þ of rank 3. By

assumption, the basis operators of L can be written in the following form

Xa ¼ xmaðx0; xÞqxm þ ð~�au � quÞ; ða ¼ 1; 2; 3Þ ð31Þ

and

~�a ¼ f aE þ f a
0S03 þ f a

1H1 þ f a
2H2 þ f a

3S12 þ f a
4
~H1 þ f a

5
~H2; ða ¼ 1; 2; 3Þ

ð32Þ

where f a ¼ f aðx0; xÞ; f a
0 ¼ f a

0 ðx0; xÞ; f a
m ¼ f a

mðx0; xÞ ðm ¼ 1; . . . ; 5Þ are some

fixed smooth functions. In particular, if the operator Xa is a linear combination

of the translation generators, then �a ¼ 0, and therefore, f a ¼ f a
0 ¼ f a

m ¼ 0 in

(32).

Owing to Lemma 1, in order to construct ansatz (22) invariant under the

subalgebra L, we have to solve systems (20), (23), which in the case under

consideration read as

xma
qo
qxm

¼ 0 ð33Þ

xma
qH

qxm
þ H~�a ¼ 0 ð34Þ
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where a ¼ 1; 2; 3; m ¼ 0; 1; 2; 3. The functions xma ¼ xmaðx0; xÞ and the variable

matrices ~�a ¼ ~�ðx0; xÞ are the coefficients of the basis operators of the

subalgebra L [note that ~�a is of the form (32)]. Matrix function H (30) and the

scalar function o ¼ oðx0; xÞ are to be determined while integrating (33) and

(34).

Next, we prove a technical assertion to be used in the sequel for simplifying

the form of system (34).

Lemma 3. Let H be of the form (30). Then the following identity holds true:

xma
qH

qxm
¼ H



� y�1xma

qy
qxm

E þ xma
qy0

qxm
½ð1 þ 8y1y4 þ 8y2y5ÞS03

þ 8ðy1y5 � y2y4ÞS12 þ 2y1H1 þ 2y2H2 � 2ðy4 þ 4y1y
2
4 þ 8y2y4y5

� 4y1y
2
5Þ~H1 � 2ðy5 þ 4y2y

2
5 þ 8y1y4y5 � 4y2y

2
4Þ~H2�

� xma
qy3

qxm
½8ðy2y4 � y1y5ÞS03 þ ð1 þ 8y1y4 þ 8y2y5ÞS12

þ 2y2H1 � 2y1H2 þ 2ðy5 þ 4y2y
2
5 � 4y2y

2
4 þ 8y1y4y5Þ~H1

� 2ðy4 þ 4y1y
2
4 � 4y1y

2
5 þ 8y2y4y5Þ~H2�

� 2xma
qy1

qxm
½4y4S03 þ 4y5S12 þ H1 þ 4ðy2

5 � y2
4Þ~H1 � 8y4y5

~H2�

� 2xma
qy2

qxm
½4y5S03 � 4y4S12 þ H2 � 8y4y5

~H1 þ 4ðy2
4 � y2

5Þ~H2�

� 2xma
qy4

qxm
~H1 � 2xma

qy5

qxm
~H2�
�
;

where a ¼ 1; 2; 3; m ¼ 0; 1; 2; 3.

Proof. Acting by the linear differential operator xmaqxm on matrix H (30)

yields an equality whose right-hand side can be decomposed into the sum of

seven terms having the same structure:

xma
qH

qxm
¼
X7

i¼1

Di ð35Þ

As each term Di is handled in the same way, we give the calculation details for

one of them, say, for

D4 ¼ exp fð� ln yÞEg
Y3

i¼1

�ið�2xma
qy1

qxm
H1Þ

Y6

j¼4

�j ð36Þ
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Note that in (36) we use the following designations:

�1 ¼ expðy0S03Þ; �2 ¼ expð�y3S12Þ
�3 ¼ expð�2y1H1Þ; �4 ¼ expð�2y3H2Þ

�5 ¼ expð�2y4
~H1Þ; �6 ¼ expð�2y5

~H2Þ
ð37Þ

Having multiplied the right-hand side of (36) by the matrix HH�1 on the left, we

arrive at the equality

D4 ¼ H �2xma
qy1

qxm

� �
��1

6 ��1
5 ��1

4 H1�4�5�6 ð38Þ

where the matrices �4;�5;�6 are given in (37).

To simplify the right-hand side of (38), we exploit the Campbell–Hausdorff

formula

exp ðtAÞB exp ð�tAÞ ¼
X1
n¼0

tn

n!
fA;Bgn

fA;Bgn ¼ ½A; fA;Bgn�1�; fA;Bg0 ¼ B

which holds for arbitrary square matrices A;B.

With account of commutation relations (28) and (29), we get

��1
4 H1�1 ¼ exp ð2y2H2ÞH exp ð�2y2H2Þ ¼ H1

whence

��1
5 ��1

4 H�4�5 ¼ ��1
5 H1�5 ¼ exp ð2y4

~H1ÞH1 exp ð�2y4
~H1Þ

¼ H1 þ 4y4S03 � 4y2
4
~H1

Consequently

��1
6 ��1

5 ��1
4 H1�4�5�6 ¼ exp ð2y5

~H2ÞðH1 þ 4y4S03 � 4y2
2
~H1Þexpð�2y5

~H2Þ
¼ H1 þ 4y4S03 þ 4y5S12 þ 4 ðy2

5 � y2
4Þ~H1 � 8y4y5

~H2

Finally, we have

D4 ¼ H �2xma
qy2

qxm

� �
½H1 þ 4y4S03 þ 4y5S12 þ 4ðy2

5 � y2
4Þ~H1 � 8y4y5

~H2�
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The same reasoning, when applied to the remaining terms of the right-hand side

of the equality (35), completes the proof of the lemma.

Assertion 4. System (34) is equivalent to the system of partial differential

equations for the functions y; y0; ym ðm ¼ 1; 2; . . . ; 5Þ:

xma
qy
qxm

¼ f ay

xma
qy0

qxm
¼ 4ðy4 f a

1 þ y5 f a
2 Þ � f a

0

xma
qy1

qxm
¼ 4ðy1y4 þ y2y5Þ f a

1 þ 4ðy1y5 � y2y4Þ f a
2 � y1 f a

0 � y2 f a
3 þ 1

2
f a
1

xma
qy2

qxm
¼ 4ðy2y4 � y1y5Þ f a

1 þ 4ðy2y5 þ y1y4Þ f a
2 � y2 f a

0 þ y1f a
3 þ 1

2
f a
2

xma
qy3

qxm
¼ 4ðy4 f a

2 � y5f a
1 Þ þ f a

3

xma
qy4

qxm
¼ y4 f a

0 � 2ðy2
4 � y2

5Þ f a
1 � 4y4y5 f a

2 � y5 f a
3 þ 1

2
f a
4

xma
qy5

qxm
¼ y5 f a

0 � 4y4y5 f a
1 þ 2ðy2

4 � y2
5Þ f a

2 þ y4 f a
3 þ 1

2
f a
5

ð39Þ

In (39) m ¼ 0; 1; 2; 3; a ¼ 1; 2; 3. The coefficients of linear differential operators

xmaqxm and the functions f a; f a
0 ; f a

m ðm ¼ 1; 2; . . . ; 5Þ are defined by the coefficients

of the basis operators of the subalgebra L of the algebra cð1; 3Þ of the rank 3.

Proof. Inserting the expression for xma
qH
qxm

given in Lemma 3 into the left-

hand side of (34) and multiplying the equation thus obtained by the inverse of

the nonsingular matrix H we arrive at the system of matrix equations, whose

left-hand sides are the linear combinations of the linearly independent matrices

E; S01; S12;Ha; ~Ha ða ¼ 1; 2Þ. Splitting the system obtained by these matrices,

and taking into account the forms of the matrices ~�a, and performing some

simplifications yield system of Eqs. (39). The assertion is proved.

Summarizing we conclude that the problem of constructing conformally

invariant ansatzes reduces to finding the fundamental solution of the system of

linear partial differential equations (33) and particular solutions of first-order

systems of nonlinear partial differential equations (39).

The next subsections are devoted to constructing the ansatzes invariant under

the subalgebras of the Poincaré, extended Poincaré, and conformal algebras

given in Assertions 1–3. The solution procedure is based on the above derived

identities and, essentially, on Assertion 4.

maxwell and su(2) yang–mills equations 291



1. Pð1; 3Þ-Invariant Ansatzes

Subalgebras listed in Assertion 1 give rise to Pð1; 3Þ (Poincaré)-invariant

ansatzes. Analysis of the structure of these subalgebras shows that we can put

y ¼ 1; y4 ¼ y5 ¼ 0 in formula (30) for the matrix H. Moreover, the form of the

basis elements of these subalgebras imply that in formulas (32) and (38)

f a ¼ f a
4 ¼ f a

5 ¼ 0, for all the values of a ¼ 1; 2; 3. Therefore system (39) for the

matrix H takes the form of 12 first-order partial differential equations for the

functions y0; y1; y2; y3

xma
qy0

qxm
¼ �f a

0 ; xma
qy3

qxm
¼ f a

3

xma
qy1

qxm
¼ �y1 f a

0 � y2 f a
3 þ 1

2
f a
1

xma
qy2

qxm
¼ �y2 f a

0 þ y1 f a
3 þ 1

2
f a
2

ð40Þ

where m ¼ 0; 1; 2; 3; a ¼ 1; 2; 3.

We integrate system (33), (40) for the case of the subalgebra L22 ¼ hG1; G2;
J03 þ aJ12i ða 2 RÞ (all other cases are handled in a similar way).

System (33) for finding the function o ¼ oðx0; xÞ reads as

G
ð1Þ
1 o ¼ ½ðx0 � x3Þqx1

þ x1ðqx0
þ qx3

Þ�o ¼ 0

G
ð1Þ
2 o ¼ ½ðx0 � x3Þqx2

þ x2ðqx0
þ qx3

Þ�o ¼ 0

ðJð1Þ03 þ aJ
ð1Þ
12 Þo ¼ ½x0qx3

þ x3qx0
þ aðx2qx1

� x1qx2
Þ�o ¼ 0; a 2 R

ð41Þ

Performing the change of variables

y0 ¼ ðx0 þ x3Þðx0 � x3Þ; y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
y2 ¼ arctan

x2

x1

; y3 ¼ x0 � x3

reduces system (41) to the form

y1
qo
qy1

þ 2y2
1

qo
qy0

� tan y2
qo
qy2

¼ 0

y1
qo
qy1

þ 2y2
1

qo
qy0

� ð tany2Þ�1 qo
qy2

¼ 0

y3
qo
qy3

þ a
qo
qy2

¼ 0
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The fundamental solution of this system reads as o ¼ y0 � y2
1: Returning to the

initial variables, we get the fundamental solution of system (41), o ¼ xmxm

¼ x2
0 � x2

1 � x2
2 � x2

3.

Next, taking into account the forms of the basis elements of the subalgebra

L22, we get the expressions for the functions f a
m ðm ¼ 0; 1; 2; 3; a ¼ 1; 2; 3Þ

G1: f 1
0 ¼ f 1

2 ¼ f 1
3 ¼ 0; f 1

1 ¼ �1

G2: f 2
0 ¼ f 2

1 ¼ f 2
3 ¼ 0; f 2

2 ¼ �1

J03 þ aJ12: f 3
0 ¼ �1; f 3

1 ¼ f 3
2 ¼ 0; f 3

3 ¼ �a ða 2 RÞ

So system (40) takes the form

G
ð1Þ
1 y0 ¼ G

ð1Þ
1 y2 ¼ G

ð1Þ
1 y3 ¼ 0; G

ð1Þ
1 y1 ¼ � 1

2

G
ð1Þ
2 y0 ¼ G

ð1Þ
2 y1 ¼ G

ð1Þ
2 y3 ¼ 0; G

ð1Þ
2 y2 ¼ � 1

2

ðJð1Þ
03 þ aJ

ð1Þ
12 Þy0 ¼ 1; ðJð1Þ

03 þ aJ
ð1Þ
12 Þy3 ¼ �a

ðJð1Þ
03 þ aJ

ð1Þ
12 Þy1 ¼ y1 þ ay2; ðJð1Þ03 þ aJ

ð1Þ
12 Þy2 ¼ y2 � ay1

ð42Þ

As we have already mentioned, to construct the matrix H it suffices to find

particular solutions of system (42). The system for determination of the function

y0 reads as

ðx0 � x3Þ
qy0

qxa

þ xa

qy0

qx0

þ qy0

qx3

� �
¼ 0; ða ¼ 1; 2Þ

x0
qy0

qx3

þ x3
qy0

qx0

þ a x2
qy0

qx1

� x1
qy0

qx2

� �
¼ 1

ð43Þ

We look for its particular solution of the form y0 ¼ f ðx0 � x3Þ. On direct check,

we become convinced of the fact that this function satisfies the first two equations

of system (43) and that, the third one reduces to the ordinary differential equation

�x
df

dx
¼ 1; x ¼ x0 � x3

whose solution reads as f ¼ � ln jxj.
Thus we can choose y0 ¼ � ln jx0 � x3j. The first two equations for the

function y3 coincide with those from (43), and the third equation

x0
qy3

qx3

þ x3
qy3

qx0

þ a x2
qy3

qx1

� x1
qy3

qx2

� �
¼ �a
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differs from the third equation from system (43) by the constant �a in the right-

hand side. Thus we easily get the final form of the particular solution of (43)

y3 ¼ a ln jx0 � x3j:
According to (42) the system for finding the functions y1; y2 has the form

ðx0 � x3Þ
qy1

qx1
þ x1

qy1

qx0
þ qy1

qx3

� �
¼ � 1

2

ðx0 � x3Þ
qy2

qx1

þ x1
qy2

qx0

þ qy2

qx3

� �
¼ 0

ðx0 � x3Þ
qy1

qx2

þ x2
qy1

qx0

þ qy2

qx3

� �
¼ 0

ðx0 � x3Þ
qy2

qx2

þ x2
qy2

qx0

þ qy2

qx3

� �
¼ � 1

2

x0
qy1

qx3

þ x3
qy1

qx0

� a x1
qy1

qx2

� x2
qy1

qx1

� �
¼ y1 þ ay2

x0
qy2

qx3

þ x3
qy2

qx0

� a x1
qy2

qx2

� x2
qy2

qx1

� �
¼ y2 � ay1

ð44Þ

We seek for its solutions of the form

y1 ¼ gðx; x1Þ; y2 ¼ hðx; x2Þ; x ¼ x0 � x3 ð45Þ

Inserting functions (45) into system (44) reduces it to the form

x
qg

qx1

¼ � 1

2
; x

qh

qx2

¼ � 1

2

�x
qg

qx
þ ax2

qg

qx1

¼ g þ ah

�x
qh

qx
� ax1

qh

qx2

¼ h � ag

By direct check we verify that the functions g ¼ �x1ð2xÞ�1; h ¼ �x2ð2xÞ�1

satisfy this system so that we can choose

y1 ¼ � 1

2
x1ðx0 � x3Þ�1; y2 ¼ � 1

2
x2ðx0 � x3Þ�1

Performing the same calculations for the remaining subalgebras listed in

Assertion 1, we arrive at the following statement.

294 r. z zhdanov and v. i. lahno



Assertion 5. Each subalgebra Lj ð j ¼ 1; 2; . . . ; 22Þ from the list given in

Assertion 1 yields invariant ansatz (22) with

��1 ¼ H ¼ exp ðy0S03Þ exp ð�y3S12Þ exp ð�2y1H1Þ exp ð�2y2H2Þ
In addition, the functions ym ¼ ymðx0; xÞ ðm ¼ 0; 1; 2; 3Þ; o ¼ oðx0; xÞ are given

by one of the corresponding formulas below:

L1: ym ¼ 0; ðm ¼ 0; 1; 2; 3Þ; o ¼ x3

L2: ym ¼ 0; ðm ¼ 0; 1; 2; 3Þ; o ¼ x0

L3: ym ¼ 0; ðm ¼ 0; 1; 2; 3Þ; o ¼ x
L4: y0 ¼ � ln jxj; y1 ¼ y2 ¼ 0; y3 ¼ a ln jxj; o ¼ x � Z
L5: y0 ¼ � ln jxj; y1 ¼ y2 ¼ y3 ¼ 0; o ¼ x2

L6: y0 ¼ x1; y1 ¼ y2 ¼ y3 ¼ 0; o ¼ x2

L7: y0 ¼ x1; y1 ¼ y2 ¼ y3 ¼ 0; o ¼ x1 þ ln jxj
L8: y0 ¼ a arctan x1x�1

2 ; y1 ¼ y2 ¼ 0;

y3 ¼ � arctan x1x�1
2 ; o ¼ x2

1 þ x2
2;

L9: y0 ¼ y1 ¼ y2 ¼ 0; y3 ¼ �x0; o ¼ x3

L10: y0 ¼ y1 ¼ y2 ¼ 0; y3 ¼ �ð�1Þi
x3; o ¼ x0

L11: y0 ¼ y1 ¼ y3 ¼ 0; y2 ¼ �ð�1Þi

2
x; o ¼ Z

L12: y0 ¼ y2 ¼ y3 ¼ 0; y1 ¼ � 1

2
ðx1 � ax2Þx�1; o ¼ x

L13: y0 ¼ y2 ¼ y3 ¼ 0; y1 ¼ �ð�1Þi

2
x2; o ¼ x

L14: y0 ¼ y2 ¼ y3 ¼ 0; y1 ¼ � 1

4
x; o ¼ x2 � 4x1

L15: y0 ¼ y2 ¼ y3 ¼ 0; y1 ¼ � 1

4
x; o ¼ ax2 � 4ðax1 � x2Þ

L16: y0 ¼ � ln jxj; y1 ¼ y2 ¼ 0; y3 ¼ � arctan x1x�1
2 ; o ¼ x2

1 þ x2
2

L17: y0 ¼ y3 ¼ 0; y1 ¼ � 1

2
½ð�1Þi

x2 þ ðaþ xÞx1�½1 þ ðaþ xÞx��1;

y2 ¼ 1

2
½ð�1Þi

x1 � x2x�½1 þ ðaþ xÞx��1; o ¼ x

L18: y0 ¼ � ln jxj; y1 ¼ � 1

2
x1x

�1; y2 ¼ y3 ¼ 0; o ¼ xZ� x2
1

L19: y0 ¼ � ln jxj; y1 ¼ � 1

2
x1x

�1; y2 ¼ y3 ¼ 0; o ¼ x2

L20: y0 ¼ � ln jxj; y1 ¼ � 1

2
x1x

�1; y2 ¼ y3 ¼ 0; o ¼ ln jxj þ x2
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L21: y0 ¼ � ln jxj; y1 ¼ � 1

2
ðx1 þ ln jxjÞx�1; y2 ¼ y3 ¼ 0;

o ¼ a ln jxj þ x2

L22: y0 ¼ � ln jxj; y1 ¼ � 1

2
x1x

�1; y2 ¼ � 1

2
x2x

�1; y3 ¼ a ln jxj;

o ¼ xmxm ðm ¼ 0; 1; 2; 3Þ

Here i ¼ 1; 2; a 2 R; x ¼ x0 � x3; Z ¼ x0 þ x3

2. ~Pð1; 3Þ-Invariant Ansatzes

Generically, the list of ~Pð1; 3Þ-invariant ansatzes is exhausted by Pð1; 3Þ-
invariant ansatzes given in Assertion 5 and by ansatzes invariant with respect to

the subalgebras Fj ð j ¼ 1; 2; . . . ; 24Þ listed in Assertion 2. For this reason, to

construct all inequivalent ~Pð1; 3Þ-invariant ansatzes, it suffices to consider the

cases of the subalgebras Fj ðj ¼ 1; 2; . . . 24Þ only.

A preliminary analysis of these algebras shows that for the algebras Fj with j

taking the values 2; 3; 4; 12; 13; . . . ; 19, we can choose y1 ¼ y2 ¼ y4 ¼ y5 ¼ 0

in (30) and, in addition, we can put f a
1 ¼ f a

2 ¼ f a
4 ¼ f a

5 ¼ 0 ða ¼ 1; 2; 3Þ in (39).

As a consequence, system (39) for the subalgebras in question reads as

xma
qy
qxm

¼ f ay; xma
qy0

qxm
¼ �f a

0 ; xma
qy3

qxm
¼ f a

3 ;

where m ¼ 0; 1; 2; 3; a ¼ 1; 2; 3.

For the remaining subalgebras from the list in Assertion 2, the following

equalities hold, yb ¼ 0; f a
b ¼ 0 ðb ¼ 2; 3; 4; 5; a ¼ 1; 2; 3Þ, and system (39)

takes the form

xma
qy
qxm

¼ f ay; xma
qy0

qxm
¼ �f a

0 ; xma
qy1

qxm
¼ �y1f a

0 þ 1

2
f a
1

where m ¼ 0; 1; 2; 3; a ¼ 1; 2; 3.

Summarizing, we conclude that the problem of construction of ~Pð1; 3Þ-
invariant ansatzes reduces to finding solutions of linear systems of first-order

partial differential equations that are integrated by rather standard methods of

the general theory of partial differential equations.

We omit the cumbersome intermediate calculations, which are very similar to

those performed in the previous subsection, and give the final result.

Assertion 6. Each subalgebra Fj ð j ¼ 1; 2; . . . ; 24Þ from the list given in

Assertion 2 yields invariant ansatz (22) with

��1¼H¼ exp fð� ln yÞEg exp ðy0S03Þ exp ð�y3S12Þ exp ð�2y1H1Þ; y1y3 ¼ 0
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Moreover, the functions y ¼ yðx0; xÞ, y0 ¼ y0ðx0; xÞ, y1 ¼ y1ðx1; xÞ, y3 ¼ y3

ðx3; xÞ, o ¼ oðx0; xÞ are given by one of the following corresponding formulas

F1: y ¼ jx1j�k; y0 ¼ y1 ¼ y3 ¼ 0; o ¼ x2x�1
1

F2: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ y1 ¼ 0; y3 ¼ arctan x2x�1

1

o ¼ lnðx2
1 þ x2

2Þ þ 2a arctan x2x�1
1 ; a > 0

F3: y ¼ jx3j�k; y0 ¼ y1 ¼ 0; y3 ¼ arctan x2x�1
1 ; o ¼ ðx2

1 þ x2
2Þx�2

3

F4: y ¼ jx0j�k; y0 ¼ y1 ¼ 0; y3 ¼ arctan x2x�1
1 ; o ¼ ðx2

1 þ x2
2Þx�2

0

F5: y ¼ jx1j�k; y0 ¼ a�1 ln jx1j; y1 ¼ y3 ¼ 0; o ¼ x2x�1
1 ; a > 0

F6: y ¼ jxZj�ðk=2Þ; y0 ¼ 1

2
ln jZx�1j; y1 ¼ y3 ¼ 0

o ¼ ð1 � aÞ ln jZj þ ð1 þ aÞ ln jxj; a > 0

F7: y ¼ jx2j�k; y0 ¼ a�1 ln jx2j; y1 ¼ y3 ¼ 0; o ¼ jxjajx2j1�a; a > 0

F8: y ¼ jZj�ðk=2Þ; y0 ¼ 1

2
ln jZj; y1 ¼ y3 ¼ 0

o ¼ x� ð�1Þ j ln jZj; j ¼ 1; 2

F9: y ¼ jx2j�k; y0 ¼ ln jx2j; y1 ¼ y3 ¼ 0

o ¼ x� 2ð�1Þ j ln jx2j; j ¼ 1; 2

F10: y ¼ jx2j�k; y0 ¼ ln jZx�1
2 j; y1 ¼ y3 ¼ 0; o ¼ xZx�2

2

F11: y ¼ jx2j�1; y0 ¼ � ln jxx�1
2 j; y1 ¼ y3 ¼ 0; o ¼ x2x�1

1

F12: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ �a arctan x2x�1

1 ; y1 ¼ 0

y3 ¼ arctan x2x�1
1 ;o ¼ ln ðx2

1 þ x2
2Þ þ 2b arctan x2x�1

1

a 6¼ 0; b > 0

F13: y ¼ jxZj�k=2; y0 ¼ � 1

2
ln jZx�1j; y1 ¼ 0

y3 ¼ � 1

2a
ln jZx�1j; o ¼ ða� bÞ ln jZj þ ðaþ bÞ ln jxj

a 6¼ 0; b > 0

F14: y ¼ jZj�ðk=2Þ; y0 ¼ 1

2
ln jZj; y1 ¼ 0; y3 ¼ � 1

2
ln jZj; o ¼ x� ln jZj

F15: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ �a arctan x2x�1

1 ; y1 ¼ 0

y3 ¼ arctan x2x�1
1 ; o ¼ ln ðx2

1 þ x2
2Þx

�2 þ 2a arctan x2x�1
1 ; a 6¼ 0
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F16: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ 1

2
ln ðx2

1 þ x2
2Þx

�2; y1 ¼ 0

y3 ¼ arctan x2x�1
1 ; o ¼ ln ðx2

1 þ x2
2Þ

1�ax2a þ 2b arctan x2x�1
1

0 � jaj � 1; b � 0; jaj þ jbj 6¼ 0

F17: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ 1

2
ln ðx2

1 þ x2
2Þ

y1 ¼ 0; y3 ¼ arctan x2x�1
1

o ¼ x� ð�1Þ j ln ðx2
1 þ x2

2Þ þ 2a arctan x2x�1
1 ; a 2 R; j ¼ 1; 2

F18: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ 1

2
ln ðx2

1 þ x2
2Þ; y1 ¼ 0

y3 ¼ arctan x2x�1
1 ; o ¼ xþ 2ð�1Þ j arctan x2x�1

1 ; j ¼ 1; 2

F19: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ � 1

2
ln jxZ�1j; y1 ¼ 0

y3 arctan x2x�1
1 ; o ¼ ðx2

1 þ x2
2ÞðxZÞ

�1

F20: y ¼ jxZ� x2
1j
�ðk=2Þ; y0 ¼ 1

2a
ln jxZ� x2

1j; y1 ¼ � 1

2
x1x

�1

y3 ¼ 0; o ¼ jxj2ajxZ� x2
1j

1�a; 0 � jaj � 1

F21: y ¼ jx1 � ð�1Þ jxx2j�k; y0 ¼ ln jx1 � ð�1Þ jxx2j; y1 ¼ �ð�1Þ j

2
x2

y3 ¼ 0; o ¼ x;¼ 1; 2

F22: y ¼ jxj�k=2; y0 ¼ � 1

2
ln jxj; y1 ¼ � 1

2
x1x

�1

y3 ¼ 0; o ¼ Z� x2
1x

�1 þ ð�1Þ j ln jxj; j ¼ 1; 2

F23: y ¼ jx2j�k; y0 ¼ 1

2
ln jx2j; y1 ¼ �ð�1Þ j

4
x�1

y3 ¼ 0; o ¼ ðx2 � 4ð�1Þ jx1Þx�1
2 ; j ¼ 1; 2

F24: y ¼ jx2 � 4ð�1Þ jx1j�k; y0 ¼ 1

2
ln jx2 � 4ð�1Þ jjx1j; y1 ¼ �ð�1Þ j

4
x

y3 ¼ 0; o ¼ Z� ð�1Þ jx1xþ
1

6
x3

� �2

ðx2 � 4ð�1Þ jx1Þ�3; j ¼ 1; 2

Here k is an arbitrarily fixed constant [the conformal degree of the algebra

cð1; 3Þ], x ¼ x0 � x3; Z ¼ x0 þ x3.

3. Cð1; 3Þ-Invariant Ansatzes

To obtain the full description of conformally invariant ansatzes it suffices to

consider the subalgebras Cj; ðj ¼ 1; 2; . . . ; 14Þ listed in Assertion 3.
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The preliminary analysis of these subalgebras shows that we can put

y4 ¼ y5 ¼ f a
4 ¼ f a

5 ¼ 0 ða ¼ 1; 2; 3Þ for the subalgebras Cj ð j ¼ 1; 2; . . . ; 10Þ.
As a result, system (39) corresponding to these subalgebras takes the following

form:

xma
qy
qxm

¼ f ay; xma
qy0

qxm
¼ �f a

0 ; xma
qy3

qxm
¼ f a

3

xma
qy1

qxm
¼ �y1f a

0 � y2f a
3 þ 1

2
f a
1 ; xma

qy2

qxm
¼ �y2f a

0 þ y1f a
3 þ 1

2
f a
2

where a ¼ 1; 2; 3.

Thus the problem of constructing ansatzes invariant under the subalgebras

Cj ð j ¼ 1; 2; . . . ; 10Þ is again reduced to solving linear first-order partial

differential equations. However, for the remaining subalgebras Cj ðj ¼ 11;
12; 13; 14Þ, system (39) is not linear. It has been solved for the case of the

spinor field elsewhere [33]. The obtained expressions for the functions are so

cumbersome that they prove to be useless within the context of symmetry

reduction of the conformally invariant nonlinear Dirac equation. For this reason,

we do not give here the ansatzes corresponding to the subalgebras Cj ð j ¼ 11;
12; 13; 14Þ.

Assertion 7. Each subalgebra Cj ð j ¼ 1; 2; . . . ; 10Þ from the list in Assertion 3

yields invariant ansatz (22) with

��1 ¼ H ¼ exp fð� ln yÞEg exp ðy0S03Þ exp ð�y3S12Þ exp ð�2y1H1Þ
� exp ð�2y2H2Þ:

Also, the functions y ¼ yðx0; xÞ, ym ¼ ymðx0; xÞ ðm ¼ 0; 1; 2; 3Þ, o ¼ oðx0; xÞ
are given by one of the corresponding formulas below.

C1: y ¼ ð1 þ x2Þ�ðk=2Þ; y0 ¼ � 1

2
ln ð1 þ x2Þ

y1 ¼ � 1

2
ðx2 þ x1xÞð1 þ x2Þ�1; y2 ¼ 1

2
ðx1 � xx2Þð1 þ x2Þ�1

y3 ¼ � arctan x; o ¼ ðx1 � x2xÞð1 þ x2Þ�1

C2: y ¼ ð1 þ x2Þ�ðk=2Þ; y0 ¼ � 1

2
ln ð1 þ x2Þ

y1 ¼ � 1

2
ðx2 þ x1xÞð1 þ x2Þ�1; y2 ¼ 1

2
ðx1 � x2xÞð1 þ x2Þ�1

y3 ¼ � arctan x; o ¼ ðx2 þ x1xÞð1 þ x2Þ�1 � arctan x
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C3: y ¼ ð1 þ x2Þ�k=2; y0 ¼ � 1

2
lnð1 þ x2Þ

y1 ¼ � 1

2
x1xð1 þ x2Þ�1; y2 ¼ � 1

2
x2xð1 þ x2Þ�1

y3 ¼ arctan x2x�1
1 ; o ¼ ð1 þ x2Þðx2

1 þ x2
2Þ

�1

C4: y ¼ jx1j�k; y0 ¼ ln jx1j � lnð1 þ x2Þ

y1 ¼ � 1

2
x1xð1 þ x2Þ�1; y2 ¼ � 1

2
x2xð1 þ x2Þ�1

y3 ¼ 0; o ¼ x2x�1
1

C5: y ¼ ððx2
1 þ x2

2Þð1 þ x2ÞÞ�k=2; y0 ¼ 1

2
ln ðx2

1 þ x2
2Þð1 þ x2Þ�1

y1 ¼ � 1

2
x1xð1 þ x2Þ�1; y2 ¼ � 1

2
x2xð1 þ x2Þ�1

y3 ¼ arctan x2x�1
1 ; o ¼ arctan x2x�1

1 þ a arctan x; a 6¼ 0

C6: y ¼ ½ðx1 � x2xÞ2ð1 þ x2Þ�1��ðk=2Þ; y0 ¼ 1

2
ln½ðx1 � x2xÞ2ð1 þ x2Þ�3�

y1 ¼ � 1

2
ðx2 þ x1xÞð1 þ x2Þ�1; y2 ¼ 1

2
ðx1 � x2xÞð1 þ x2Þ�1

y3 ¼ � arctan x; o ¼ a arctan x� ln ½ðx1 � x2xÞð1 þ x2Þ�1�; a 6¼ 0

C7: y ¼ ½ðx1 � x2xÞ2ð1 þ x2Þ�1��ðk=2Þ; y0 ¼ 1

2
ln ½ðx1 � x2xÞ2ð1 þ x2Þ�3�

y1 ¼ � 1

2
ðx2 þ x1xÞð1 þ x2Þ�1; y2 ¼ 1

2
ðx1 � x2xÞð1 þ x2Þ�1

y3 ¼ � arctan x

o ¼ ½Zð1 þ x2Þ2 � 2x1ðx2 þ x1xÞ � xðx2
1x

2 � x2
2Þ�½x1 � xx2��2 � x

C8: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ 1

2
ln ½ðx2

1 þ x2
2Þð1 þ x2Þ�2�

y1 ¼ � 1

2
x1xð1 þ x2Þ�1; y2 ¼ � 1

2
x2xð1 þ x2Þ�1

y3 ¼ arctan x2 x�1
1

o ¼ ln ðx2
1 þ x2

2Þð1 þ x2Þ�1 þ 2a arctan x2 x�1
1 � 2b arctan x

a; b 2 R; jaj þ jbj 6¼ 0

C9: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ 1

2
ln ðx2

1 þ x2
2Þ � ln ð1 þ x2Þ

y1 ¼ � 1

2
x1xð1 þ x2Þ�1; y2 ¼ � 1

2
x2xð1 þ x2Þ�1

y3 ¼ arctan x2x�1
1 ; o ¼ Zð1 þ x2Þðx2

1 þ x2
2Þ

�1 � x
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C10: y ¼ ðx2
1 þ x2

2Þ
�ðk=2Þ; y0 ¼ � 1

2
ln ðx2

1 þ x2
2Þ

y1 ¼ � 1

2
x1Zðx2

1 þ x2
2Þ

�1; y2 ¼ � 1

2
x2Zðx2

1 þ x2
2Þ

�1

y3 ¼ 0; o ¼ x2x�1
1

Here k is an arbitrarily fixed constant [the conformal degree of the algebra

c(1,3)], x ¼ x0 � x3, Z ¼ x0 þ x3.

III. EXACT SOLUTIONS OF THE YANG–MILLS EQUATIONS

In this section we apply the technique described above in order to perform in-

depth analysis of the problems of symmetry reduction and construction of exact

invariant solutions of the SUð2Þ Yang–Mills equations in the (1+3)-dimensional

Minkowski space of independent variables. Since the general method to be used

relies heavily on symmetry properties of the equations under study, we will

briefly review the group-theoretic properties of the SUð2Þ Yang–Mills equations.

A. Symmetry Properties of the Yang–Mills Equations

The classical Yang–Mills equations of SUð2Þ gauge theory in the Minkowski

spacetime R1;3 form the system of nonlinear second-order partial differential

equations of the form

qnq
nAm � qmqnAn þ e½ðqnAnÞ � Am � 2ðqnAmÞ � An

þ ðqmAnÞ � An� þ e2An � ðAn � AmÞ ¼ 0 ð46Þ

Hereafter in this section, the indices m; n; a; b; g; d;s take the values 0; 1; 2; 3;

qm ¼ qxm ¼ q
qxm

; rising and lowering the indices is performed with the use of the

metric tensor gmn of Minkowski space and the summation convention over the

repeated indices is used. Furthermore, Am ¼ Amðx0; xÞ ¼ ðA1
mðx0; xÞ;A2

mðx0; xÞ;
A3
mðx0; xÞÞT

is the vector potential of the Yang–Mills field (for brevity it is called

the Yang–Mills field hereafter) and e is the gauge coupling constant.

The maximal symmetry group admitted by Eqs. (46) is the group Cð1; 3Þ

SUð2Þ [17], where Cð1; 3Þ is the 15-parameter conformal group generated by

the following vector fields

Pm ¼ qxm

Jmn ¼ xmqxn � xnqxm þ AamqAa
n
� AanqAa

m

D ¼ xmqxm � Aa
mqAa

m

Km ¼ 2xmD � ðxnxnÞqxm þ 2AamxnqAa
n
� 2Aa

nxnqAa
m

ð47Þ
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and SUð2Þ is the infinite-parameter unitary gauge transformation group having

the generator

Q ¼ ðeabcAb
mo

cðx0; xÞ þ e�1qxmo
aðx0; xÞÞqAa

m
ð48Þ

In formulas (47) and (48), qAa
m
¼ q

qAa
m
, ocðx0; xÞ stand for arbitrary real functions,

a; b; c ¼ 1; 2; 3 and eabc is the antisymmetric third-order tensor with e123 ¼ 1.

It is not difficult to check that vector fields (47) can be rewritten in the form

(15) if we put

S01 ¼

0 �I 0 0

�I 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA; S02 ¼

0 0 �I 0

0 0 0 0

�I 0 0 0

0 0 0 0

0
BBB@

1
CCCA

S03 ¼

0 0 0 �I

0 0 0 0

0 0 0 0

�I 0 0 0

0
BBB@

1
CCCA; S12 ¼

0 0 0 0

0 0 �I 0

0 I 0 0

0 0 0 0

0
BBB@

1
CCCA

S13 ¼

0 0 0 0

0 0 0 �I

0 0 0 0

0 I 0 0

0
BBB@

1
CCCA; S23 ¼

0 0 0 0

0 0 0 0

0 0 0 �I

0 0 I 0

0
BBB@

1
CCCA

ð49Þ

where 0 and I are the zero and unit 3 � 3 matrices, correspondingly. Next, we

choose the matrix E to be the 12 � 12 unit matrix and the conformal degree k of

the algebra cð1; 3Þ to be equal to 1.

One important application of the symmetry admitted by Yang–Mills equa-

tions is a possibility of getting new exact solutions with the help of the solution

generation formulas. This method is based on the fact that the symmetry group

maps the set of solutions of an equation admitting this group into itself. We give

the corresponding formulae without proof [20,21,33].

Assertion 8. Let

�xi ¼ fiðx; u; tÞ; i ¼ 1; 2; . . . ; p

�uj ¼ gjðx; u; tÞ; j ¼ 1; 2; . . . ; q

where t ¼ ðt1; t2; . . . ; trÞ, be the r-parameter invariance group admitted by a

system of partial differential equations and UjðxÞ; j ¼ 1; 2; . . . ; q be a particular
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solution of the latter. Then the q-component function uðxÞ ¼ ðu1ðxÞ; . . . ; uqðxÞÞ,
defined in implicit way by the formulas

Ujðfðx; u; tÞÞ ¼ gjðx; u; tÞ

with f ¼ ð f1; . . . ; fpÞ; j ¼ 1; 2; . . . ; q, is also a solution of the system in question.

To take advantage of Assertion 8, we need the following formulas for the

final transformations generated by the basis operators (47) and (48) of the Lie

algebra of the group Cð1; 3Þ 
 SUð2Þ [2,21]:

1. The translation group (the generator is X ¼ tmPmÞ

�xm ¼ xm þ tm; �Ad
m ¼ Ad

m;

2. The Lorentz group Oð1; 3Þ
a. The rotation group (the generator is X ¼ tJabÞ

�x0 ¼ x0; �xc ¼ xc; c 6¼ a; c 6¼ b

�xa ¼ xa cos tþ xb sin t

�xb ¼ xb cos t� xa sin t
�Ad

0 ¼ Ad
0;

�Ad
c ¼ Ad

c ; c 6¼ a; c 6¼ b

�Ad
a ¼ Ad

a cos tþ Ad
b sin t

�Ad
b ¼ Ad

b cos t� Ad
a sin t

b. The Lorentz transformations (the generator is X ¼ tJ0a)

�x0 ¼ x0 cosh tþ xa sinh t

�xa ¼ xa cosh tþ x0 sinh t
�Ad

0 ¼ Ad
0 cosh tþ Ad

a sinh t
�Ad

a ¼ Ad
a cosh tþ Ad

0 sinh t

�xb ¼ xb; �Ad
b ¼ Ad

b; b 6¼ a;

3. The scale transformation group (the generator is X ¼ tD)

�xm ¼ xm et; �Ad
m ¼ Ad

me�t

4. The group of conformal transformations (the generation is X ¼ tmKm)

�xm ¼ ðxm � tmxnx
nÞs�1ðx0; xÞ

�Ad
m ¼ ½gmnsðx0; xÞ þ 2ðxmtn � xntm

þ 2taxatmxn � xaxatmtn � tataxmxn�Adn
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5. The gauge transformation group (the generator is X ¼ Q)

�xm ¼ xm

�Ad
m ¼ Ad

m cos oþ edbc Ab
mnc sin oþ 2ndnbAb

m sin 2 o
2

þ e�1 1

2
ndqxmoþ 1

2
ðqxmndÞ sin oþ edbcðqxmnbÞnc

� �

In these formulas sðx0; xÞ ¼ 1 � tata þ ðtataÞðxbxbÞ; na ¼ naðx0; xÞ are the

components of the unit vector given by the relations oaðx0; xÞ ¼ oðx0; xÞna

ðx0; xÞ with a; b; c; d ¼ 1; 2; 3.

Using Assertion 8, it is not difficult to derive the following formulas for

generating solutions of the Yang–Mills equations by the transformation groups

enumerated above [33]:

1. The translation group

Aa
mðxÞ ¼ ua

mðx þ tÞ

2. The Lorentz group

Ad
mðxÞ ¼ amud

0ðax; bx; cx; dxÞ þ bmud
1ðax; bx; cx; dxÞ

þ cmud
2ðax; bx; cx; dxÞ þ dmud

3ðax; bx; cx; dxÞ

3. The scale transformation group

Ad
mðxÞ ¼ etud

mðxetÞ

4. The group of conformal transformations

Ad
mðxÞ ¼ ½gmns�1ðxÞ þ 2s�2ðxÞðxmtn � xntm þ 2taxatmxn

� xaxatmtn � tataxmxnÞ�udnððx � tðxaxaÞÞs�1ðxÞÞ

5. The gauge transformation group

Ad
mðxÞ ¼ ud

m cos oþ edbcub
mnc sin oþ 2ndnbub

m sin2 o
2

þ e�1 1

2
ndqxmoþ 1

2
ðqxmndÞ sin oþ edbcðqxmnbÞnc

� �

Here ud
mðxÞ is an arbitrary particular solution of the Yang–Mills equations;

x ¼ ðx0; xÞ; t; tm are arbitrary parameters; am; bm; cm; dm are arbitrary constants
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satisfying the relations

amam ¼ �bmbm ¼ �cmcm ¼ �dmdm ¼ 1

ambm ¼ amcm ¼ amdm ¼ bmcm ¼ bmdm ¼ cmdm ¼ 0
ð50Þ

In addition, we use the following notations:

x þ t ¼ fxm þ tm; m ¼ 0; 1; 2; 3g
ax ¼ amxm; bx ¼ bmxm; cx ¼ cmxm; dx ¼ dmxm

Thus, using the solution generation formulae enables extending a single

solution of the Yang–Mills equations to a multiparameter family of exact solu-

tions.

Let us also discuss briefly the discrete symmetries of equations (46). It is

straightforward to check that the Yang–Mills equations admit the following

groups of discrete transformations:

�1: �xm ¼ �xm; �Am ¼ �Am

�2: �x0 ¼ �x0; �x1 ¼ �x1; �x2 ¼ x2; �x3 ¼ x3

�A0 ¼ A0; �A1 ¼ �A1; �A2 ¼ A2; �A3 ¼ A3

�3: �x0 ¼ �x0; �x1 ¼ x1;�x2 ¼ �x2; �x3 ¼ �x3

�A0 ¼ �A0; �A1 ¼ A1; �A2 ¼ A2; �A3 ¼ �A3

Action of these transformation groups on the basis elements (47) of the

symmetry algebra admitted by Eqs. (46) is described in Table II, where

Gm ¼ J0m � Jm3 ðm ¼ 1; 2Þ, M ¼ P0 þ P3, T ¼ 1
2
ðP0 � P3Þ.

While classifying the subalgebras of the algebras pð1; 3Þ and ~pð1; 3Þ of rank 3

we have exploited the discrete symmetries �a given in Table II. Comparing

Tables I and II, we see that the actions of the discrete symmetries �a and �a on

the operators Pm; Jmn;D give identical results, namely

�aPm ¼ �aPm; �aJmn ¼ �aJmn; �aD ¼ �aD

for all a ¼ 1; 2; 3. This fact makes it possible to use the discrete symmetries in

order to simplify the forms of the basis operators of subalgebras of the algebras

pð1; 3Þ ~pð1; 3Þ.

B. Ansatzes for the Yang–Mills Field

Conformally invariant ansatzes for the Yang–Mills field, that reduce equations

(46) to systems of ordinary differential equations, can be represented in the

linear form

Amðx0; xÞ ¼ �mnBnðoÞ ð51Þ
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where �mn ¼ �mnðx0; xÞ are some fixed nonsingular 3 � 3 matrices and

BnðoÞ ¼ ðB1
nðoÞ, B2

nðoÞ;B3
nðoÞÞ

T
are new unknown vector functions of the

new independent variable o ¼ oðx0; xÞ. In the following text, we will denote the

12 � 12 matrix having the matrix entries �mn as �.

Because of space limitations, we restrict our discussion to the ansatzes

invariant under the subalgebras of the Poincaré algebra. For further details on

extended Poincaré algebra, see Ref. 39.

The structure of the matrix � for the case of arbitrary vector field is described

in Assertion 5. Adapting the formula for � to the case in hand, we have

� ¼ exp ð2y1H1Þ exp ð2y2H2Þ exp ð�y0S03Þ exp ðy3S12Þ

where ym ¼ ymðx0; xÞ are some real-valued functions, and H1 ¼ S01 � S13;
H2 ¼ S02 � S23, and Smn are matrices (49), which realize the matrix representa-

tion of the Lie algebra oð1; 3Þ of the Lorentz group Oð1; 3Þ.
Computing the exponents with the help of the Campbell–Hausdorff formula

yields

� ¼

½cosh y0 þ �� �2½�1� 2½�2� ½sinh y0 � ��
½�2y1e�y0 � ½ cos y3� ½�sin y3� ½2y1e�y0 �
½�2y2e�y0 � ½ sin y3� ½ cos y3� ½2y2e�y0 �

½sinh y0 þ �� �2½�1� 2½�2� ½cosh y0 þ ��

0
BB@

1
CCA

where � ¼ 2ðy2
1 þ y2

2Þe�y0 ; �1 ¼ y1 cos y3 þ y2 sin y3; �2 ¼ y1 sin y3 � y2

cos y3 and the symbol ½ f � stands for f I, where I is the unit 3 � 3 matrix.

TABLE II

Discrete Symmetries of Eq. (46)

Action of �a

Generators �1 �2 �3

P0 �P0 P0 �P0

P1 �P1 �P1 P1

Pk ðk ¼ 2; 3Þ �Pk Pk �Pk

J03 J03 J03 J03

J12 J12 �J12 �J12

G1 G1 �G1 �G1

G2 G2 G2 G2

M �M M �M

T �T T �T

D D D D

K0 �K0 K0 �K0

K1 �K1 �K1 K1

Km ðm ¼ 2; 3Þ �Km Km �Km
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Inserting the expression obtained for the matrix � into (51) yields the final

form of the Poincaré-invariant ansatz for the Yang–Mills field

A0 ¼ cosh y0B0 þ sinh y0B3 � 2ðy1 cos y3 þ y2 sin y3ÞB1

þ 2ðy1 sin y3 � y2 cos y3ÞB2 þ 2ðy2
1 þ y2

2Þe�y0ðB0 � B3Þ
A1 ¼ cos y3B1 � sin y3B2 � 2y1e�y0ðB0 � B3Þ
A2 ¼ sin y3B1 þ cos y3B2 � 2y2e�y0ðB0 � B3Þ
A3 ¼ sinh y0B0 þ cosh y0B3 � 2ðy1 cos y3 þ y2 sin y3ÞB1

þ 2ðy1 sin y3 � y2 cos y3ÞB2 þ 2ðy2
1 þ y2

2Þe�y0ðB0 � B3Þ

ð52Þ

where Bm ¼ BmðoÞ and the forms of the functions ym;o are given in Assertion 5.

Inserting (52) into (46) yields a system of ordinary differential equations for

the functions BmðoÞ. If we succeed in constructing its general or particular

solution, then substituting it into (52) gives an exact solution of the Yang–Mills

equations (46). However, the so-constructed solution will have an unpleasant

feature of being asymmetric in the variables xm, while Eqs. (46) are symmetric

in these.

To get exact solutions that are symmetric in all the variables, we exploit the

formulas for generating solutions by Lorentz transformations (see the previous

subsection) and thus come to the following general form of the Poincaré-

invariant ansatz:

AmðxÞ ¼ amnðxÞBnðoÞ ð53Þ

where

amnðxÞ ¼ ðaman � dmdnÞ cosh y0 þ ðdman � dnamÞ sinh y0

þ 2ðam þ dmÞ½ðy1 cos y3 þ y2 sin y3Þbn þ ðy2 cos y3 � y1 sin y3Þcn
þ ðy2

1 þ y2
2Þe�y0ðan þ dnÞ� þ ðbmcn � bncmÞ sin y3

� ðcmcn þ bmbnÞ cos y3 � 2e�y0ðy1bm þ y2cmÞðan þ dnÞ ð54Þ

Here m; n ¼ 0; 1; 2; 3; x ¼ ðx0; xÞ and am; bm; cm; dm are arbitrary parameters that

satisfy relations (50). Thus, we have represented Poincaré-invariant ansatzes (52)

in the explicitly covariant form.

Before giving the corresponding forms of the functions ym;o for the above

mentioned ansatz, we remind the reader that using the discrete symmetries

�a ða ¼ 1; 2; 3Þ enables us to simplify the forms of the subalgebras of the

algebra pð1; 3Þ. Specifically, at the expense of these symmetries, we can put

j ¼ 2 in the subalgebras L
j
i ði ¼ 10; 11; 13; 17Þ. Consequently, for the corre-
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sponding ansatzes we have ð�1Þ j ¼ 1. With this remark the forms of the

functions ym;o, defining ansatzes (53), (54) invariant with respect to sub-

algebras from Assertion 1, read as

L1: ym ¼ 0; o ¼ dx

L2: ym ¼ 0; o ¼ ax

L3: ym ¼ 0; o ¼ kx

L4: y0 ¼ � ln jkxj; y1 ¼ y2 ¼ 0; y3 ¼ a ln jkxj; o ¼ ðaxÞ2 � ðdxÞ2

L5: y0 ¼ � ln jkxj; y1 ¼ y2 ¼ y3 ¼ 0; o ¼ cx

L6: y0 ¼ �bx; y1 ¼ y2 ¼ y3 ¼ 0; o ¼ cx

L7: y0 ¼ �bx; y1 ¼ y2 ¼ y3 ¼ 0; o ¼ bx � ln jkxj
L8: y0 ¼ a arctanðbxðcxÞ�1Þ; y1 ¼ y2 ¼ 0

y3 ¼ � arctanðbxðcxÞ�1Þ; o ¼ ðbxÞ2 þ ðcxÞ2

L9: y0 ¼ y1 ¼ y2 ¼ 0; y3 ¼ �ax; o ¼ dx

L10: y0 ¼ y1 ¼ y2 ¼ 0; y3 ¼ dx; o ¼ ax

L11: y0 ¼ y1 ¼ y3 ¼ 0; y2 ¼ � 1

2
kx; o ¼ ax � dx

L12: y0 ¼ 0; y1 ¼ 1

2
ðbx � acxÞðkxÞ�1; y2 ¼ y3 ¼ 0; o ¼ kx

L13: y0 ¼ y2 ¼ y3 ¼ 0; y1 ¼ 1

2
cx; o ¼ kx

L14: y0 ¼ y2 ¼ y3 ¼ 0; y1 ¼ � 1

4
kx; o ¼ 4bx þ ðkxÞ2

L15: y0 ¼ y2 ¼ y3 ¼ 0; y1 ¼ � 1

4
kx; o ¼ 4ðabx � cxÞ þ aðkxÞ2

L16: y0 ¼ � ln jkxj; y1 ¼ y2 ¼ 0; y3 ¼ � arctanðbxðcxÞ�1Þ
o ¼ ðbxÞ2 þ ðcxÞ2

L17: y0 ¼ y3 ¼ 0; y1 ¼ 1

2
ðcx þ ðaþ kxÞbxÞð1 þ kxðaþ kxÞÞ�1

y2 ¼ � 1

2
ðbx � cx � kxÞð1 þ kxðaþ kxÞÞ�1; o ¼ kx

L18: y0 ¼ � ln jkxj; y1 ¼ 1

2
bxðkxÞ�1

y2 ¼ y3 ¼ 0; o ¼ ðaxÞ2 � ðbxÞ2 � ðdxÞ2

L19: y0 ¼ � ln jkxj; y1 ¼ 1

2
bxðkxÞ�1; y2 ¼ y3 ¼ 0; o ¼ cx
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L20: y0 ¼ � ln jkxj; y1 ¼ 1

2
bxðkxÞ�1

y2 ¼ y3 ¼ 0; o ¼ ln jkxj � cx

L21: y0 ¼ � ln jkxj; y1 ¼ 1

2
ðbx � ln jkxjÞðkxÞ�1

y2 ¼ y3 ¼ 0; o ¼ a ln jkxj � cx

L22: y0 ¼ � ln jkxj; y1 ¼ � 1

2
bxðkxÞ�1; y2 ¼ � 1

2
cxðkxÞ�1

y3 ¼ a ln jkxj; o ¼ ðaxÞ2 � ðbxÞ2 � ðcxÞ2 � ðdxÞ2

As earlier, we use the shorthand notations for the scalar product in Minkowski

space:

ax ¼ amxm; bx ¼ bmxm; cx ¼ cmxm; dx ¼ dmxm

and also kx ¼ ax þ dx.

C. Symmetry Reduction of the Yang–Mills Equations

Ansatzes (53)–(55) are given in explicitly covariant form. This fact enables us to

perform symmetry reduction of Eqs. (46) in a unified way. First, we give

without derivation three important identities for the tensor amn [35]:

ag
magn ¼ gmn ð56Þ

ag
m
qagn

qxd
¼ �ðamdn � andmÞ

qy0

qxd
þ ðbmcn � cmbnÞ

qy3

qxd

þ 2e�y0 ½ðkmbn � knbmÞcosy3 � ðkmcn � kncmÞsiny3�
qy1

qxd

þ 2e�y0 ½ðkmbn � knbmÞsiny3 þ ðkmcn � kncmÞcosy3�
qy2

qxd
ð57Þ

ag
m&agn ¼ ðaman � dmdnÞ

qy0

qxg

qy0

qxg
� ðamdn � andmÞ&y0

þ 2e�y0 kmbn

�
ð&y1Þ cos y3 þ ð&y2Þ sin y3 � 2

qy1

qxg

qy3

qxg
siny3

þ 2
qy2

qxg

qy3

qxg
cos y3

�
þ 2e�y0 kmcn

�
ð&y2Þ cos y3 � ð&y1Þ sin y3

� 2
qy1

qxg

qy3

qxg
cos y3 � 2

qy2

qxg

qy3

qxg
sin y3

�
þ 4e�2y0 kmkn

� qy1

qxg

qy1

qxg
þ qy2

qxg

qy2

qxg

� �
þ ðbmbn þ cmcnÞ

qy3

qxg

qy3

qxg

þ ðbmcn � cmbnÞ&y3 ð58Þ
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Hereafter, we denote the derivatives of the functions in one variable o by the dots

over the symbols of the functions, for example

df

do
¼ _f ;

d2f

do2
¼ �f

Assertion 9. Let ansatz (53) reduce system (46) to a system of second-order

ordinary differential equations. Then the reduced system is necessarily of the

form
kmg�B

g þ lmg _B
g þ mmgB

g þ egmng _B
n � Bg

þ ehmngBn � Bg þ e2Bg � ðBg � BmÞ ¼ 0 ð59Þ
and its coefficients are given by the relations

kmg ¼ gmgF1 � GmGg; lmg ¼ gmgF2 þ 2Smg � GmHg � Gm _Gg

mmg ¼ Rmg � Gm _Hg; gmng ¼ gmgGn þ gngGm � 2gmnGg

hmng ¼
1

2
ðgmgHn � gmnHgÞ � Tmng

ð60Þ

where F1;F2;Gm;Hm; Smn;Rmn; Tmng represent the following functions of o:

F1 ¼ qo
qxm

qo
qxm

; F2 ¼ &o; Gm ¼ agm
qo
qxg

Hm ¼
qagm

qxg
; Smn ¼ ag

m
qagn

qxd

qo
qxd

; Rmn ¼ ag
m&agn

Tmng ¼ ad
m
qadn

qxs
asg þ ad

n
qadg

qxs
asm þ ad

g
qadm

qxs
asn

ð61Þ

Proof. Inserting ansatz (53) into Eq. (46) and performing some simplifications

yield the following identities:

&Am � qmðqnAnÞ ¼
�
&amg �

q2ang

qxmqxn

�
Bg

þ 2
qamg

qxn

qo
qxn

þ amg

�
&o� qang

qxn

qo
qxm

� qang

qxm
qo
qxn

� ang
q2o

qxnqxm

�
_Bg þ amg

qo
qxn

qo
qxn

� ang
qo
qxn

qo
qxm

� �
�Bg ð62Þ

ðqnAnÞ � Am � 2ðqnAmÞ � An þ ðqmAnÞ � An

¼ amg
qana

qxn
� 2

qama

qxn
ang þ

qana

qxm
an
g

� �
Ba � Bg

þ amgana
qo
qxn

� 2amaang
qo
qxn

þ anaan
g
qo
qxm

� �
_Ba � Bg ð63Þ

An � ðAn � AmÞ ¼ anban
aamgBb � ðBa � BgÞ ð64Þ
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Here a; b ¼ 0; 1; 2; 3.

Convoluting the left- and right-hand sides of these expressions with a
m
d and

taking into account (3.11) yield

a
m
dAn � ðAn � AmÞ ¼ a

m
danban

aamgBb � ðBa � BgÞ
¼ gbagdgBb � ðBa � BgÞ ¼ Ba � ðBa � BdÞ

Consequently, convoluting (62) and (63) with a
m
d , we get the equalities such that

their right-hand sides are linear combinations of Bg; _Bg; �Bg, Ba � Bg; _Ba � Bg.

Furthermore, the coefficients of these combinations are the functions of o only.

Consider first equality (62). The coefficients of Bg; _Bg; �Bg read as

Bg: a
m
d&amg � a

m
d
q2ang

qxmqxn
¼ FdgðoÞ ð65Þ

_Bg: 2a
m
d
qamg

qxn

qo
qxn

þ gdg&o� a
m
d
qang

qxn

qo
qxm

� a
m
d
qang

qxm
qo
qxn

� a
m
dang

q2o
qxnqxm

¼ GdgðoÞ ð66Þ

�Bg: gdg
qo
qxn

qo
qxn

� a
m
dang

qo
qxn

qo
qxm

¼ HdgðoÞ ð67Þ

For coefficient (67), convoluting the function HdgðoÞ with the metric tensor

gdg ¼ gdg yields

gdgHdgðoÞ ¼ 4
qo
qxn

qo
qxn

� amda
d
n
qo
qxn

qo
qxm

¼ 4
qo
qxn

qo
qxn

� gmn
qo
qxn

qo
qxm

¼ 4
qo
qxn

qo
qxn

� qo
qxn

qo
qxn

¼ 3
qo
qxn

qo
qxn

Hence qo
qxn

qo
qxn

is a function of o only, as follows:

qo
qxn

qo
qxn

¼ F1ðoÞ ð68Þ

Therefore

a
m
dang

qo
qxn

qo
qxm

¼ amd
qo
qxm

ang
qo
qxn

¼ ~HdgðoÞ

whence

amd
qo
qxm

¼ GdðoÞ ð69Þ
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In view of (68), (69) we get the equality

HdgðoÞ ¼ gdgF1 � GdGg

Thus the function HdgðoÞ coincides with kmg from (60).

Convoluting (66) with the metric tensor gdg gives

gdgGdgðoÞ ¼ 2a
m
d

qad
m

qxn

qo
qxn

þ 4&o

� amd
qo
qxm

qad
n

qxn
� amd

qad
n

qxn

qo
qxm

� amda
d
n

q2o
qxmqxn

ð70Þ

Now using (56), we ensure that the relation

a
m
d

qad
m

qxn
¼ 1

2

q
qxn

ðam
dad

mÞ ¼
1

2

q
qxn

ðgb
bÞ ¼ 0 ð71Þ

as well as the relation

q
qxn

amda
d
n
qo
qxm

� �
¼ qamd

qxn
ad
n
qo
qxm

þ amd
qad

n

qxn

qo
qxm

þ amda
d
n

q2o
qxmqxn

hold true. Because

qamd

qxn
ad
n
qo
qxm

¼
qad

m

qxn
and

qo
qxm

we make sure that the relation

qamd

qxn
ad
n
qo
qxm

¼ amd
qad

n

qxm

qo
qxn

is valid, whence

amd
qo
qxm

qad
n

qxn
þ amd

qad
n

qxn

qo
qxn

¼ q
qxn

amda
d
n
qo
qxm

� �
� amdad

n
q2o

qxmqxn

¼ q
qxn

gmn
qo
qxm

� �
� gmn

q2o
qxmqxn

¼ 0 ð72Þ

Factoring in Eqs. (70)–(72), we obtain

gdgGdgðoÞ ¼ 4ð&oÞ � gmn
q2o

qxmqxn
¼ 3&o
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Consequently, the relation

&o ¼ F2ðoÞ ð73Þ

holds.

Next, making sure that the equalities

amd
qang

qxm

qo
qxn

þ amdang
q2o

qxnqxm
¼ amd

q
qxm

ang
qo
qxn

� �

¼ amd
q
qxn

GgðoÞ ¼ amd _GgðoÞ
qo
qxm

¼ _GgðoÞGdðoÞ

hold and taking into account (66) yield

2a
m
d
qamg

qxn

qo
qxn

� Gd
qang

qxn
¼ ~GdgðoÞ ð74Þ

Now, convoluting (74) with gmn, we have

gmn ~GdgðoÞ ¼ gmnGdðoÞ 2
qamn

qxm
� gmn

qang

qqxn

� �

or, equivalently

qamn

qxm
¼ HnðoÞ; a

m
d
qamg

qxn

qo
qxn

¼ SdgðoÞ ð75Þ

Combining (69), (73), and (75), we find that the coefficient of _Bg in the

reduced system (59) coincides with lmg in Eq. (60).

Finally, from the relation

amd
q2amg

qxmqxn
¼ amd

q
qxn

qang

qxn

� �
¼ amd

q
qxm

ðHgðoÞÞ ¼ GdðoÞ _HgðoÞ

and (65) it follows that

a
m
d&amg ¼ RdgðoÞ

Consequently, the function in the right-hand side of (65) coincides with mmg from

(60).
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Analysis of (63) is carried out in the same way (we do not present the

corresponding calculations here). Assertion 9 is proved.

Thanks to Assertion 9, the problem of symmetry reduction of Yang–Mills

equations by subalgebras of the algebra pð1; 3Þ reduces to routine substitution of

the corresponding expressions for amn;o into (61). We give below the final

forms of the coefficients (60) of the reduced system of ordinary differential

equations (59) for each subalgebras of the algebra pð1; 3Þ:

L1: kmg ¼ �gmg � dmdg; lmg ¼ mmg ¼ 0

gmng ¼ gmgdn þ gngdm � 2gmndg; hmng ¼ 0

L2: kmg ¼ gmg � amag; lmg ¼ mmg ¼ 0

gmng ¼ gmgan þ gngam � 2gmnag; hmng ¼ 0

L3: kmg ¼ kmkg; lmg ¼ mmg ¼ 0

gmng ¼ gmgkn þ gngkm � 2gmnkg; hmng ¼ 0

L4: kmg ¼ 4gmgo� amagðoþ 1Þ2 � dmdgðo� 1Þ2

� ðamdg þ agdmÞðo2 � 1Þ
lmg ¼ 4ðgmg þ aðbmcg � cmbgÞÞ � 2kmðag � dg þ kgoÞ

mmg ¼ 0

gmng ¼ Eðgmgðan � dn þ knoÞ þ gngðam � dm þ kmoÞ
� 2gmnðag � dg þ kgoÞÞ

hmng ¼
E
2
½gmgkn � gmnkg� þ aE½ðbmcn � cmbnÞkg

þ ðbncg � cnbgÞkm þ ðbgcm � cgbmÞkn�
L5: kmg ¼ �gmg � cmcg; lmg ¼ �Ecmkg; mmg ¼ 0

gmng ¼ gmgcn þ gngcm � 2gmncg

hmng ¼
E
2
ðgmgkn � gmnkgÞ

L6: kmg ¼ �gmg � cmcg; lmg ¼ 0

mmg ¼ �ðamag � dmdgÞ; gmng ¼ gmgcn þ gngcm � 2gmncg

hmng ¼ �½ðamdn � andmÞbg þ ðandg � agdnÞbm

þ ðagdm � amdgÞbn�
L7: kmg ¼ �gmg � ðbm � EkmeoÞðbg � Ekge

oÞ
lmg ¼ �2ðamdg � agdmÞ þ Eeoðbm � EkmeoÞkg

mmg ¼ �ðamag � dmdgÞ
gmng ¼ gmgðbn � EkneoÞ þ gngðbm � EkmeoÞ � 2gmnðbg � Ekge

oÞ
hmng ¼ �½ðamdn � andmÞbg þ ðandg � agdnÞbm þ ðagdm � amdgÞbn�
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L8: kmg ¼ �4oðgmg þ cmcgÞ; lmg ¼ �4ðgmg þ cmcgÞ

mmg ¼ � 1

o
ða2ðamag � dmdgÞ þ bmbgÞ

gmng ¼ 2
ffiffiffiffi
o

p
ðgmgcn þ gngcm � 2gmncgÞ

hmng ¼
1

2
ffiffiffiffi
o

p ðgmgcn � gmncgÞ þ
affiffiffiffi
o

p ððamdn � andmÞbg

þ ðandg � dnagÞbm þ ðagdm � amdgÞbnÞ
L9: kmg ¼ �gmg � dmdg; lmg ¼ 0

mmg ¼ bmbg þ cmcg

gmng ¼ gmgdn þ gngdm � 2gmndg

hmng ¼ agðbmcn � cmbnÞ þ amðbncg � cnbgÞ
þ anðbgcm � cgbmÞ

L10: kmg ¼ gmg � amag; lmg ¼ 0

mmg ¼ �ðbmbg þ cmcgÞ
gmng ¼ gmgan þ gngam � 2gmnag

hmng ¼ �½dgðbmcn � cmbnÞ þ dmðbncg � cnbgÞ
þ dnðbgcm � cgbmÞ�

L11: kmg ¼ �ðam � dmÞðag � dgÞ; lmg ¼ 2ðbmcg � cmbgÞ
mmg ¼ 0

gmng ¼ gmgðan � dnÞ þ gngðam � dmÞ � 2gmnðag � dgÞ

hmng ¼
1

2
½ðkgðbmcn � cmbnÞ þ kmðbncg � cnbgÞ þ knðbgcm � cgbmÞ�

L12: kmg ¼ �kmkg; lmg ¼ �o�1kmkg; mmg ¼ �a2o�2kmkg

gmng ¼ gmgkn þ gngkm � 2gmnkg

hmng ¼
1

2
o�1ðgmgkn � gmnkgÞ þ ao�1ððkmbn � knbmÞcg

þ ðknbg � kgbnÞcm þ ðkgbm � kmbgÞcnÞ ð76Þ
L13: kmg ¼ �kmkg; lmg ¼ 0; mmg ¼ �kmkg

gmng ¼ gmgkn þ gngkm � 2gmnkg

hmng ¼ �ððkmbn � knbmÞcg þ ðknbg � kgbnÞcm þ ðkgbm � kmbgÞcnÞ
L14: kmg ¼ �16ðgmg þ bmbgÞ; lmg ¼ mmg ¼ hmng ¼ 0

gmng ¼ 4ðgmgbn þ gngbm � 2gmnbgÞ
L15: kmg ¼ �16½ð1 þ a2Þgmg þ ðcm � abmÞðcg � abgÞ�

lmg ¼ mmg ¼ hmng ¼ 0

gmng ¼ �4½gmgðcn � abnÞ þ gngðcm � abmÞ � 2gmnðcg � abgÞ�

maxwell and su(2) yang–mills equations 315



L16: kmg ¼ �4oðgmg þ cmcgÞ; lmg ¼ �4ðgmg þ cmcgÞ � 2Ekgcm
ffiffiffiffi
o

p

mmg ¼ �o�1bmbg; gmng ¼ 2
ffiffiffiffi
o

p
ðgmgcn þ gngcm � 2gmncgÞ

hmng ¼
1

2
½Eðgmgkn � gmnkgÞ þ

1ffiffiffiffi
o

p ðgmgcn � gmncgÞ�

L17: kmg ¼ �kmkg; lmg ¼ � 2oþ a
oðoþ aÞ þ 1

kmkg

mmg ¼ �4kmkgð1 þ oðaþ oÞÞ�2

gmng ¼ gmgkn þ gngkm � 2gmnkg

hmng ¼
1

2
ðaþ 2oÞðgmgkn � gmnkgÞð1 þ oðaþ oÞÞ�1

� 2ð1 þ oðoþ aÞÞ�1ððkmbn � knbmÞcg
þ ðknbg � kgbnÞcm þ ðkgbm � kmbgÞcnÞ

L18: kmg ¼ 4ogmg � ðkmoþ am � dmÞðkgoþ ag � dgÞ
lmg ¼ 6gmg þ 4ðamdg � agdmÞ � 3kgðkmoþ am � dmÞ

mmg ¼ �kmkg; gmng ¼ Eðgmgðknoþ an � dnÞ
þ gngðkmoþ am � dmÞ � 2gmnðkgoþ ag � dgÞÞ

hmng ¼ Eðgmgkn � gmnkgÞ
L19: kmg ¼ �gmg � cmcg; lmg ¼ 2Ekgcm; mmg ¼ �kmkg

gmng ¼ gmgcn þ gngcm � 2gmncg; hmng ¼ Eðgmgkn � gmnkg

L20: kmg ¼ �gmg � ðcm � EkmÞðcg � EkgÞ
lmg ¼ 2Ekgcm � 2kmkg; mmg ¼ �kmkg

gmng ¼ gmgðEkn � cnÞ þ gngðEkm � cmÞ � 2gmnðEkg � cgÞ
hmng ¼ Eðgmgkn � gmnkgÞ

L21: kmg ¼ �gmg � ðcm � aEkmÞðcg � aEkgÞ
lmg ¼ 2ðEkgcm � akmkgÞ; mmg ¼ �kmkg

gmng ¼ �gmgðcn � aEknÞ � gngðcm � aEkmÞ
þ 2gmnðcg � aEkgÞ; hmng ¼ Eðgmgkn � gmnkgÞ

L22: kmg ¼ �4ogmg � ðam � dm þ kmoÞðag � dg þ kgoÞ
lmg ¼ 4½2gmg þ aðbmcg � cmbgÞ � amag þ dmdg � okmkg�

mmg ¼ �2kmkg; gmng ¼ Eðgmgðan � dn þ knoÞ
þ gngðam � dm þ kmoÞ � 2gmnðag � dg þ kgoÞÞ

hmng ¼
3E
2
ðgmgkn � gmnkgÞ � Ea½kgðbmcn � cmbnÞ

þ ðkmðbncg � cnbgÞ þ knðbgcm � cgbmÞ�
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In these formulas [Eq. (76)] we have E ¼ 1 for kx > 0 and E ¼ �1 for kx < 0.

Furthermore, a is an arbitrary parameter.

D. Exact Solutions

Clearly, efficiency of the symmetry reduction procedure is subject to our ability

to integrate the reduced systems of ordinary differential equations. Since the

reduced equations are nonlinear, it is not at all clear that it will be possible to

construct their particular or general solutions. That it why we devote the first

part of this subsection to describing our technique for integrating the reduced

systems of nonlinear ordinary differential equations (further details can be

found in Ref. 33).

Note that in contrast to the case of the nonlinear Dirac equation, it is not

possible to construct the general solutions of the reduced systems (59)–(61). For

this reason, we give whenever possible their particular solutions, obtained by

reduction of systems of equations in question by the number of components of

the dependent function. Let us emphasize that the miraculous efficiency of the

t’Hooft ansatz [5] for the Yang–Mills equations is a consequence of the fact that

it reduces the system of 12 differential equations to a single conformally

invariant wave equation.

Consider system (59)–(61), which corresponds to the subalgebra L8. We

adopt the following ansatz

Bm ¼ ame1 f ðoÞ þ dme2gðoÞ þ bme3hðoÞ ð77Þ

for the vector function Bm, where f ðoÞ; gðoÞ; hðoÞ are new unknown smooth

functions of o and

e1 ¼ ð1; 0; 0ÞT ; e2 ¼ ð0; 1; 0ÞT ; e3 ¼ ð0; 0; 1ÞT

Now inserting (77) into (59), where the coefficients (60) are listed in (76) for

the case of the subalgebra L8, we arrive at the system of relations

ame1½�4o�f � 4_f � a2

o
f þ 2aeffiffiffiffi

o
p gh þ e2ðh2 þ g2Þf �

þ dme2½�4o�g � 4 _g � a2

o
g � 2aeffiffiffiffi

o
p f h þ e2ðh2 � f 2Þg�

þ bme3½�4o�h � 4 _h þ o�1h � 2aeffiffiffiffi
o

p fg þ e2ðg2 � f 2Þh� ¼ 0
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This is equivalent to the following system of three ordinary differential equa-

tions:

4o�f þ 4_f þ a2

o
f � 2aeffiffiffiffi

o
p gh � e2ðh2 þ g2Þ f ¼ 0

4o�g þ 4 _g þ a2

o
g þ 2aeffiffiffiffi

o
p fh � e2ðh2 � f 2Þg ¼ 0

4o�h þ 4 _h � o�1h þ 2aeffiffiffiffi
o

p fg � e2ðg2 � f 2Þh ¼ 0

ð78Þ

so that we reduce the system of 12 ordinary differential equations (59) to a

system containing three equations only.

Next, choosing

Bm ¼ kme1f ðoÞ þ bme2gðoÞ ð79Þ

and inserting this expression into (59) with coefficients given by formulas (76)

for the case of the subalgebra L8 under a ¼ 0 yield the system of two ordinary

differential equations

4o�f þ 4_f � e2g2f ¼ 0; 4o�g þ 4 _g � o�1g ¼ 0

Note that the second equation of this system is linear.

In a similar way we have reduced some other systems of ordinary differential

equations (59) to systems of two or three equations. Below we list the

substitutions for BmðoÞ and corresponding systems of ordinary differential

equations. Numbering of the systems below reflects numbering of the corre-

sponding subalgebras Lj of the algebra pð1; 3Þ:

1: Bm ¼ ame1f ðoÞ þ bme2gðoÞ þ cme3hðoÞ �f � e2ðg2 þ h2Þf ¼ 0

g þ e2ðf 2 � h2Þg ¼ 0; �h þ e2ðf 2 � g2Þh ¼ 0

2: Bm ¼ bme1f ðoÞ þ cme2gðoÞ þ dme3hðoÞ; �f þ e2ðg2 þ h2Þf ¼ 0

�g þ e2ðf 2 þ h2Þg ¼ 0; �h þ e2ðf 2 þ g2Þh ¼ 0

5: Bm ¼ kme1f ðoÞ þ bme2gðoÞ; �f � e2g2f ¼ 0; �g ¼ 0

8:1: ða ¼ 0Þ Bm ¼ kme1f ðoÞ þ bme2gðoÞ; 4o�f þ 4_f � e2g2f ¼ 0

4o�g þ 4 _g � o�1g ¼ 0

8:2: Bm ¼ ame1f ðoÞ þ dme2gðoÞ þ bme3hðoÞ

4o�f þ 4_f � a2

o
f � 2aeffiffiffiffi

o
p gh � e2ðh2 þ g2Þf ¼ 0
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4o�g þ 4 _g þ a2

o
g þ 2aeffiffiffiffi

o
p f h þ e2ðf 2 � h2Þg ¼ 0

4o�h þ 4 _h � o�1h þ 2aeffiffiffiffi
o

p fg þ e2ðf 2 � g2Þh ¼ 0

14:1: Bm ¼ ame1f ðoÞ þ dme2gðoÞ þ cme3hðoÞ; 16�f � e2ðh2 þ g2Þf ¼ 0

16�g þ e2ðf 2 � h2Þg ¼ 0; 16�h þ e2ðf 2 � g2Þh ¼ 0

14:2: Bm ¼ kme1f ðoÞ þ cme2gðoÞ 16�f � e2g2f ¼ 0; �g ¼ 0

15:1: Bm ¼ ame1f ðoÞ þ dme2gðoÞ þ ð1 þ a2Þ�ð1=2Þðacm þ bmÞe3hðoÞ
16ð1 þ a2Þ�f � e2ðh2 þ g2Þf ¼ 0; 16ð1 þ a2Þ�g þ e2ðf 2 � h2Þg ¼ 0

16ð1 þ a2Þ�h þ e2ðf 2 � g2Þh ¼ 0 ð80Þ
15:2: Bm ¼ kme1f ðoÞ þ ð1 þ a2Þ�ð1=2Þðacm þ bmÞe2gðoÞ

16ð1 þ a2Þ�f � e2fg2 ¼ 0; �g ¼ 0

16: Bm ¼ kme1f ðoÞ þ bme2gðoÞ; 4o�f þ 4_f � e2g2f ¼ 0

4o�g þ 4 _g � o�1g ¼ 0

18: Bm ¼ bme1f ðoÞ þ cme2gðoÞ; 4o�f þ 6_f þ e2g2f ¼ 0

4o�g þ 6 _g þ e2f 2g ¼ 0

19: Bm ¼ kme1 f ðoÞ þ bme2gðoÞ; �f � e2g2f ¼ 0; �g ¼ 0

20: Bm ¼ kme1f ðoÞ þ bme2gðoÞ; �f � e2g2f ¼ 0; �g ¼ 0

21: Bm ¼ kme1f ðoÞ þ bme2gðoÞ; �f � e2g2f ¼ 0; �g ¼ 0

22: ða ¼ 0Þ Bm ¼ bme1f ðoÞ þ cme2gðoÞ
4o�f þ 8_f þ e2g2f ¼ 0; 4o�g þ 8 _g þ e2f 2g ¼ 0

So, combining symmetry reduction by the number of independent variables and

direct reduction by the number of the components of the function to be found, we

have reduced the SUð2Þ Yang–Mills equations (46) to comparatively simple

systems of ordinary differential equations (80).

As a next step, we briefly review the procedure of integration of equations

(80). Choosing f ¼ 0; g ¼ h ¼ uðoÞ reduces system 1 [in Eq. (80)] to the

equation
�u ¼ e2u3 ð81Þ

which is integrated in terms of the elliptic functions. Note that this equation has

solution that is expressed in terms of elementary functions:

u ¼
ffiffiffi
2

p
ðeo� CÞ�1; C 2 R
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System 2 with f ¼ g ¼ h ¼ uðoÞ reduces to the equation

�u þ 2e2u3 ¼ 0

which is also integrated in terms of the elliptic functions.

Integrating the second equation of system 5, we get

g ¼ C1oþ C2; C1;C2 2 R

Provided C1 6¼ 0, the constant C2 is negligible and we may put C2 ¼ 0. With this

condition, the first equation of system 5 reads as

�f � e2C2
1o

2f ¼ 0 ð82Þ

The general solution of Eq. (82), which is equivalent to the Bessel equation, is

given by the formula

f ¼
ffiffiffiffi
o

p
Z1=4

i e

2
C1o2

� �

Here we use the designations ZnðoÞ ¼ C3JnðoÞ þ C4YnðoÞ, where Jn; Yn are the

Bessel functions and C3;C4 are arbitrary constants.

Given the condition C1 ¼ 0; C2 6¼ 0, the general solution of the first

equation of system 5 reads as

f ¼ C3 coshðC2eoÞ þ C4 sinhðC2eoÞ

where C3;C4 are arbitrary real constants.

Finally, if C1 ¼ C2 ¼ 0, then the general solution of the first equation of

system 5 is given by the formula f ¼ C3oþ C4;C3;C4 2 R.

Next, we integrate the second equation of system 8.1 to obtain

g ¼ C1

ffiffiffiffi
o

p
þ C2ð

ffiffiffiffi
o

p
Þ�1

where C1;C2 are arbitrary integration constants. Inserting the function g into the

first equation of system 8.1 yields the linear differential equation

4o2�f þ 4o_f � e2ðC1oþ C2Þ2
f ¼ 0 ð83Þ

For the case C1C2 6¼ 0, Eq. (83) is related to the Whittaker equation. Here we

consider only the case C1C2 ¼ 0, thus getting

ðaÞ C1 6¼ 0; C2 ¼ 0; f ¼ Z0
i e

2
C1o

� �
ðbÞ C1 ¼ 0; C2 6¼ 0; f ¼ C3oeC2=2 þ C4o�ðeC2=2Þ

ðcÞ C1 ¼ C2 ¼ 0; f ¼ C3 lnoþ C4

where C3;C4 are arbitrary integration constants.
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Analyzing systems 14.1 and 14.2 in Eq. (80), we conclude that they reduce to

systems 1 and 5, correspondingly, if we replace e by e
4
. Analogously, replacing in

systems 1 and 5 the parameter e by e
4
ð1 þ a2Þ�ð1=2Þ

yields systems 15.1 and

15.2, respectively.

Finally, system 22 with a ¼ 0 is reduced by the change of the dependent

variable f ¼ g ¼ uðoÞ to the Emden–Fauler equation

o�u þ 2 _u þ e2

4
u3 ¼ 0

which has the following particular solution u ¼ e�1o�ð1=2Þ.
We have not succeeded in integrating systems of ordinary differential

systems 8.2 and 18 [Eq. (80)]. Furthermore, systems 19–21 coincide with

system 5 and system 16 coincides with system 8.1.

Inserting the forms of the functions f ; g; h obtained into (80) with the

subsequent substitution of the latter expression into the corresponding ansatz

(53)–(55) yields invariant solutions of the SUð2Þ Yang–Mills equations (46).

Note that solutions of systems 5, 8.1, 14.2, 15.2, 16, and 19–21, with g ¼ 0, give

rise to Abelian solutions of the Yang–Mills equation, namely, to solutions

satisfying the additional restriction Am � An ¼ 0. Such solutions are of low

interest for physical applications and are not considered here. Below we give the

full list of non-Abelian invariant solutions of Eqs. (46):

1: Am ¼ ðe2bm þ e3cmÞ
ffiffiffi
2

p
ðedx � lÞ�1

2: Am ¼ ðe2bm þ e3cmÞ lsn

ffiffiffi
2

p

2
eldx

� �
dn

ffiffiffi
2

p

2
eldx

� �� �
cn

ffiffiffi
2

p

2
eldxÞ

� ��1

3: Am ¼ ðe2bm þ e3cmÞl½cn ðeldxÞ��1

4: Am ¼ ðe1bm þ e2cm þ e3cmÞlcn ðelaxÞ

5: Am ¼ e1kmjkxj�1 ffiffiffiffiffi
cx

p
Z1=4

i

2
elðcxÞ2

� �
þ e2bmlcx

6: Am ¼ e1kmjkxj�1½l1 coshðelcxÞ þ l2 sinhðelcxÞ� þ e2bml

7: Am ¼ e1kmZ0
i

2
elððbxÞ2 þ ðcxÞ2Þ

� �
þ e2ðbmcx � cmbxÞl

8: Am ¼ e1km½l1ððbxÞ2 þ ðcxÞ2ÞÞel=2 þ l2ððbxÞ2 þ ðcxÞ2Þ�ðel=2Þ

þ e2ðbmcx � cmbxÞlððbxÞ2 þ ðcxÞ2Þ�1

9: Am ¼ e2
1

8
ðdm � kmðkxÞ2Þ þ 1

2
bmkx

� �
þ e3cm

� �
lsn

e
ffiffiffi
2

p

8
lð4bx

�

þ ðkxÞ2Þ
!

dn
e
ffiffiffi
2

p

8
lð4bx þ ðkxÞ2Þ

� �
cn

e
ffiffiffi
2

p

8
lð4bx þ ðkxÞ2Þ

� �� ��1
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10: Am ¼ e2
1

8
ðdm � kmðkxÞ2Þ þ 1

2
bmkx

� �
þ e3cm

� �

� l cn
e
ffiffiffi
2

p
l

8
ð4bx þ ðkxÞ2Þ

� �� ��1

11: Am ¼ e2
1

8
ðdm � kmðkxÞ2

� �
þ 1

2
bmkxÞ þ e3cm

� �
� 4

ffiffiffi
2

p
ðeð4bx þ ðkxÞ2Þ � lÞ�1

12: Am ¼ e1km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bx þ ðkxÞ2

q
Z1=4

iel
8

ð4bx þ ðkxÞ2Þ2

� �
þ e2cmlð4bx þ ðkxÞ2Þ

13: Am ¼ e1km l cosh
el
4
ð4bx þ ðkxÞ2

� �� �

þ l2 sinh
el
4
ð4bx þ ðkxÞ2ÞÞ

� �
þ e2cml

14: Am ¼ e2 dm �
1

8
kmðkxÞ2 � 1

2
bmkx

� �


þ e3 acm þ bm þ
1

2
kmkx

� �
ð1 þ a2Þ�ð1=2Þ

)

� lsn
el

ffiffiffi
2

p

8
ð4ðabx � cxÞ þ aðkxÞ2Þð1 þ a2Þ�ð1=2Þ

� �
ð84Þ

� dn
el

ffiffiffi
2

p

8
ð4ðabx � cxÞ þ aðkxÞ2Þð1 þ a2Þ�ð1=2Þ

� �

� cn
el

ffiffiffi
2

p

8
ðð4abx � cxÞ þ aðkxÞ2Þð1 þ a2Þ�ð1=2Þ

� �
 ��1

15: Am ¼ e2 dm �
1

8
kmðkxÞ2Þ � 1

2
bmkx

� �


þ e3 acm þ bm þ
1

2
kmkx

� �
ð1 þ a2Þ�ð1=2Þ

)

� cn
el
4
ð4abx � cxÞ þ aðkxÞ2ð1 þ a2Þ�ð1=2Þ

� �
 ��1

16: Am ¼ e2 dm �
1

8
kmðkxÞ2 � 1

2
bmkx

� �


þ e3 acm þ bm þ
1

2
kmkx

� �
ð1 þ a2Þ�ð1=2Þ

)

� 4
ffiffiffi
2

p
ð1 þ a2Þ1=2½eð4ðabx � cxÞ þ aðkxÞ2Þ��1
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17: Am ¼ e1km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðabx � cxÞ þ aðkxÞ2

q
Z1=4

iel
8

ð4ðabx � cxÞ
�


þ aðkxÞ2Þ2

!
ð1 þ a2Þ�ð1=2Þ

)

þ e2 acm þ bm þ
1

2
kmkx

� �
lð4ðabx � cxÞ þ aðkxÞ2Þð1 þ a2Þ�ð1=2Þ

18: Am ¼ e1km cn
el
4
ð1 þ a2Þ�ð1=2Þð4ðabx � cxÞ þ aðkxÞ2Þ

� �


þ l2 sinh
el
4
ð1 þ a2Þ�ð1=2Þð4ðabx � cxÞ þ aðkxÞ2

� �)

þ e2 acm þ bm þ
1

2
kmkx

� �
lð1 þ a2Þ�ð1=2Þ

19: Am ¼ e1kmjkxj�1
Z0

iel
2

ððbxÞ2 þ ðcxÞ2Þ
� �

þ e2ðbmcx � cmbxÞl

20: Am ¼ e1kmjkxj�1½l1ððbxÞ2 þ ðcxÞ2Þðel=2Þ þ lððbxÞ2 þ ðcxÞ2Þ�ðel=2Þ�

þ e2ðbmcx � cmbxÞlððbxÞ2 þ ðcxÞ2Þ�1

21: Am ¼ e1kmjkxj�1 ffiffiffiffiffi
cx

p
Z1=4

iel
2

ðcxÞ2

� �
þ e2ðbm � kmbxðkxÞ�1Þlcx

22: Am ¼ e1kmjkxj�1½l1 coshðlecxÞ þ l2 sinhðlecxÞ�

þ e2ðbm � kmbxðkxÞ�1Þl

23: Am ¼ e1kmjkxj�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln jkxj � cx

p
Z1=4

iel
2

ðln jkxj � cxÞ2

� �

þ e2ðbm � kmbxðkxÞ�1Þlðln jkxj � cxÞ

24: Am ¼ e1kmjkxj�1½l1 coshðleðln jkxj � cxÞÞ þ l2 sinhðleðln jkxj � cxÞÞ�

þ e2½bm � kmbxðkxÞ�1�l

25: Am ¼ e1kmjkxj�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a ln jkxj � cx

p
Z1=4

iel
2

ða ln jkxj � cxÞ2

� �

þ e2ðbm � kmbx � ln jkxjÞðkxÞ�1Þlða ln jkxj � cxÞ

26: Am ¼ e1kmjkxj�1½l1 coshðleða ln jkxj � cxÞÞ
þ l2 sinhðleða ln jkxj � cxÞÞ�

þ e2ðbm � kmðbx � ln jkxj�1ÞðkxÞ�1Þl
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27: Am ¼ fe1ðbm � kmbxðkxÞ�1Þ
þ e2ðcm � kmcxðkxÞ�1Þge�1ðxnxnÞ�ð1=2Þ

28: Am ¼ fe1ðbm � kmbxðkxÞ�1Þ þ e2ðcm � kmcxðkxÞ�1Þgf ðxnxnÞ

In these formulas the symbol ZaðoÞ stands for the Bessel function,

sn ðoÞ; dn ðoÞ; cn ðoÞ are the Jacobi elliptic functions having the module
ffiffi
2

p

2
;

f ðxnxnÞ is the general solution of the ordinary differential equation

o2�f þ 2o_f þ e2

4
f 3 ¼ 0

and l; l1; l2 are arbitrary real constants.

IV. CONDITIONAL SYMMETRY AND NEW SOLUTIONS
OF THE YANG–MILLS EQUATIONS

With all the wealth of exact solutions obtainable through Lie symmetries of the

Yang–Mills equations, it is possible to construct solutions that cannot be derived

by the symmetry reduction method. The source of these solutions is conditional

or nonclassical symmetry of the Yang–Mills equations.

The first paper devoted to nonclassical symmetry of partial differential

equations was published by Bluman and Cole [57]. However, the real impor-

tance of these symmetries was understood much later after the explanations

given in several papers [31,32,58–61] where the method of conditional sym-

metries had been used in order to construct new exact solutions of a number of

nonlinear partial differential equations.

The methods for dimensional reduction of partial differential equations based

on their conditional symmetry can be conventionally classified into two prin-

cipal groups. The first group is formed by the direct methods (the ansatz method

by Fushchych and the direct method by Clarkson and Kruskal [60]), relying on a

special ad hoc representation of the solution to be found in the form of the

ansatz containing some arbitrary elements (functions) f1; f2; . . . ; fn and unknown

functions j1;j2; . . . ;jm with fewer dependent variables. Inserting the ansatz

in question into the equation under study and requiring the relation obtained

to be equivalent to a system of partial differential equations for the functions

j1;j2; . . . ;jm yield nonlinear determining equations for the functions

f1; f2; . . . ; fn. Solution of the latter yields a number of ansatzes reducing a given

partial differential equation to an equation with fewer dependent variables. The

second group of methods (the nonclassical method by Bluman and Cole, the

method of conditional symmetries by Fushchych, and the method of side

conditions by Olver and Rosenau [58]) may be regarded as infinitesimal ones.
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They are in line with the traditional Lie approach to the reduction of partial

differential equations, since they exploit symmetry properties of the equation

under study in order to construct its invariant solutions. And again, any deviation

from the standard Lie approach requires solving overdetermined system of

nonlinear determining equations. A more profound analysis of similarities and

differences between these approaches can be found elsewhere [33,56,64].

So the principal idea of the method of ansatzes, as well as of the direct

method of reduction of partial differential equations is a special choice of the

class of functions to which the solution to be found should belong. Within the

framework of the preceding methods, a solution of system (46) is sought in the

form

Am ¼ Hmðx;BnðoðxÞÞÞ; m ¼ 0; 1; 2; 3

where Hm are smooth functions chosen in such a way that substitution of the

above expressions into the Yang–Mills equations yields a system of ordinary

differential equations for new unknown vector functions Bn of one variable o.

However, when posed in this way, the problem of reduction of the Yang–Mills

equations seems to be hopeless. Indeed, even if we restrict ourselves to the case

of a linear dependence of the above ansatz on Bn

AmðxÞ ¼ RmnðxÞBnðoÞ ð85Þ

where BnðoÞ are new unknown vector functions and o ¼ oðxÞ is the new

independent variable, then the requirement of reduction of (46) to a system of

ordinary differential equations by virtue of (85) gives rise to the system of

nonlinear partial differential equations for 17 unknown functions Rmn;o.

Moreover, the system obtained is not at all simpler than the initial Yang–Mills

equations (46). Consequently, some additional information about the structure of

the matrix function Rmn should be input into ansatz (85). This can be done in

various ways, but the most natural one is to use the information about the

structure of solutions provided by the Lie symmetry of the equation under study.

In a previous work [33] we suggest an effective approach to study of

conditional symmetry of the nonlinear Dirac equation based on its Lie

symmetry. We have observed that all the Poincaré-invariant ansatzes for the

Dirac field cðxÞ can be represented in the unified form by introducing several

arbitrary elements (functions) u1ðxÞ; u2ðxÞ; . . . ; uNðxÞ. As a result, we get an

ansatz for the field cðxÞ that reduces the nonlinear Dirac equation to system of

ordinary differential equations, provided functions uiðxÞ satisfy some compa-

tible over-determined system of nonlinear partial differential equations. After

integrating it, we have obtained a number of new ansatzes that cannot in

principle be obtained within the framework of the classical Lie approach.
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Here, following Ref. 49, we will show that the same idea proves to work

efficiently for obtaining new (non-Lie) reductions of the Yang–Mills equations

and for constructing new exact solutions of system (46).

A. Nonclassical Reductions of the Yang–Mills Equations

In the previous section we gave a complete list of P(1,3)-inequivalent ansatzes

for the Yang–Mills field, which are invariant under the three-parameter sub-

groups of the Poincaré group Pð1; 3Þ. These ansatzes can be represented in the

unified form (53), where BnðoÞ are new unknown vector functions, o ¼ oðxÞ is

the new independent variable, and the functions amnðxÞ are given by (54).

In (54), ymðxÞ are some smooth functions, and ya ¼ yaðx; bmxm; cmxmÞ,
a ¼ 1; 2; x ¼ ð1

2
Þkmxm ¼ ð1

2
Þðamxm þ dmxmÞ; am; bm; cm; dm are arbitrary constants

satisfying relations (50).

The choice of the functions oðxÞ; ymðxÞ is determined by the requirement that

substitution of ansatz (53) into the Yang–Mills equations yield a system of

ordinary differential equations for the vector function BmðoÞ. By direct check,

one can prove the validity of the following statement [33,49].

Assertion 10. Ansatz (53),(54) reduces the Yang–Mills equations (46) to a

system of ordinary differential equations, if and only if the functions oðxÞ; ymðxÞ
satisfy the following system of partial differential equations:

1: oxmoxm ¼ F1ðoÞ
2: &o ¼ F2ðoÞ
3: aamoxa ¼ GmðoÞ
4: aamxa ¼ HmðoÞ
5: aa

maanxboxb ¼ QmnðoÞ
6: aa

m&aan ¼ SmnðoÞ
7: aa

maanxbabg þ aa
naagxbabm þ aa

gaamxbabn ¼ TmngðoÞ

ð86Þ

where F1;F2;Gm; . . . ; Tmng are some smooth functions of o; m; n; g ¼ 0; 1; 2; 3

and the reduced system has the form

kmg�B
g þ lmg _B

g þ mmgB
g þ eqmng _B

n � Bg þ ehmngBn � Bg

þ e2Bg � ðBg � BmÞ ¼ 0 ð87Þ

where
kmg ¼ gmgF1 � GmGg

lmg ¼ gmgF2 þ 2Qmg � GmHg � Gm _Gg
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mmg ¼ Smg � Gm _Hg

qmng ¼ gmgGn þ gngGm � 2gmnGg

hmng ¼
1

2
ðgmgHn � gmnHgÞ � Tmng

ð88Þ

Consequently, to describe all the ansatzes of the form (53),(54) reducing the

Yang–Mills equations to a system of ordinary differential equations, one has to

construct the general solution of the overdetermined system of partial differ-

ential equations (54),(86). Let us emphasize that system (54),(86) is compatible

since the ansatzes for the Yang–Mills field AmðxÞ invariant under the three-

parameter subgroups of the Poincaré group satisfy equations (54),(86) with

some specific choice of the functions F1;F2; . . . ; Tmng [35].

Integration of systems of nonlinear partial differential equations (54),(86) has

been performed [33,49]. Here we indicate the principal steps of the integration

procedure. While integrating (54),(86), we essentially apply the fact that the

general solution of system of equations 1,2 from (86) is known [62]. With

already known oðxÞ in hand, we proceed to integrating linear partial differential

equations 3,4 from (86). Next, we insert the results obtained into the remaining

equations and get the final forms of the functions oðxÞ, ymðxÞ.
Before presenting the results of the integration of the system of partial

differential equations (54),(86), we make the following remark. As direct check

shows, the structure of ansatz (53),(54) is not altered by the change of variables

o ! o0 ¼ TðoÞ; y0 ! y00 ¼ y0 þ T0ðoÞ

y1 ! y01 ¼ y1 þ ey0ðT1ðoÞ cos y3 þ T2ðoÞ sin y3Þ

y2 ! y02 ¼ y2 þ ey0ðT2ðoÞ cos y3 � T1ðoÞ sin y3Þ

y3 ! y03 ¼ y3 þ T3ðoÞ

ð89Þ

where TðoÞ; TmðoÞ are arbitrary smooth functions. That is why solutions of

system (54),(86) connected by relations (89) are considered as equivalent.

Integrating the system of partial differential equations under study within the

equivalence relations above, we obtain a set of ansatzes containing those equiva-

lent to the Poincaré-invariant ansatzes obtained in the previous section. That is

why we concentrate on essentially new (non-Lie) ansatzes. It so happens that

our approach gives rise to non-Lie ansatzes, provided the functions oðxÞ; ymðxÞ
within the equivalence relations (89) have the form

ym ¼ ymðx; bx; cxÞ; o ¼ oðx; bx; cxÞ ð90Þ

where, as earlier, bx ¼ bmxm; cx ¼ cmxm.
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The list of inequivalent solutions of the system of partial differential equa-

tions (54),(86) satisfying (90) is completed with the following solutions:

1: y0 ¼ y3 ¼ 0; o ¼ 1

2
kx; y1 ¼ w0ðxÞbx þ w1ðxÞcx

y2 ¼ w2ðxÞbx þ w3ðxÞcx

2: o ¼ bx þ w1ðxÞ; y0 ¼ aðcx þ w2ðxÞÞ

ya ¼ � 1

4

� �
_waðxÞ; a ¼ 1; 2; y3 ¼ 0

3: y0 ¼ TðxÞ; y3 ¼ w1ðxÞ; o ¼ bx cos w1 þ cx sin w1 þ w2ðxÞ

y1 ¼ 1

4

� �
ðeeT þ _TÞðbx sin w1 � cx cos w1Þ þ w3ðxÞ

� �
sin w1

þ 1

4

� �
ð _w1ðbx sin w1 � cx cos w1Þ � _w2Þcos w1

y2 ¼ � 1

4

� �
ðeeT þ _TÞðbx sin w1 � cx cos w1Þ þ w3ðxÞ

� �
cos w1

þ 1

4

� �
ð _w1ðbx sin w1 � cx cos w1Þ � _w2Þ sin w1

4: y0 ¼ 0; y3 ¼ arctan ð½cx þ w2ðxÞ�½bx þ w1ðxÞ��1Þ

ya ¼ � 1

4

� �
_waðxÞ; a ¼ 1; 2

o ¼ ð½bx þ w1ðxÞ�2 þ ½cx þ w2ðxÞ�2Þ1=2

ð91Þ

Here a 6¼ 0 is an arbitrary constant, e ¼ �1; w0;w1;w2;w3 are arbitrary smooth

functions on x ¼ 1
2

kx; and T ¼ TðxÞ is a solution of the nonlinear ordinary

differential equation

ð _T þ eeTÞ2 þ _w2
1 ¼ Ke2T ; K 2 R ð92Þ

a dot over the symbol denotes differentiation with respect to x.

Inserting ansatz (53), where amnðxÞ are given by formulas (54) and (91), into

the Yang–Mills equations yields systems of nonlinear ordinary differential

equations of the form (87), where

1: kmg ¼ � 1

4
kmkg; lmg ¼ �ðw0 þ w3Þkmkg

mmg ¼ �4 ðw2
0 þ w2

1 þ w2
2 þ w2

3Þkmkg � ð _w0 þ _w3Þkmkg
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qmng ¼
1

2
ðgmgkn þ gngkm � 2gmnkgÞ

hmng ¼ ðw0 þ w3Þðgmgkn � gmnkgÞ þ 2ðw1 � w2Þððkmbn � knbmÞcg
þ ðbmcn � bncmÞkg þ ðcmkn � cnkmÞbgÞ

2: kmg ¼ �gmg � bmbg; lmg ¼ 0; mmg ¼ �a2ðamag � dmdgÞ
qmng ¼ gmgbn þ gngbm � 2gmnbg

hmng ¼ aððamdn � andmÞcg þ ðdmcn � dncmÞag þ ðcman � cnamÞdgÞ

3: kmg ¼ �gmg � bmbg; lmg ¼ � e
2

� �
bmkg ð93Þ

mmg ¼ � K
4

� �
kmkg; qmng ¼ gmgbn þ gngbm � 2gmnbg

hmng ¼
e
4

� �
ðgmgkn � gmnkgÞ

4: kmg ¼ �gmg � bmbg; lmg ¼ �o�1ðgmg þ bmbgÞ
mmg ¼ �o�2cmcg; qmng ¼ gmgbn þ gngbm � 2gmnbg

hmng ¼
1

2
o�1ðgmgbn � gmnbgÞ

B. Exact Solutions

Systems (87) and (91) contain 12 nonlinear second-order ordinary differential

equations with variable coefficients. That is why there is little hope for constru-

cting their general solutions. Nevertheless, it is possible to obtain particular

solutions of system (87), whose coefficients are given by formulas 2– 4 from

(91).

Consider, as an example, system of ordinary differential equations (87) with

coefficients given by the formula 2 from (93). We look for its solutions of the

form

Bm ¼ kme1f ðoÞ þ bme2gðoÞ; fg 6¼ 0; ð94Þ

where e1 ¼ ð1; 0; 0Þ; e2 ¼ ð0; 1; 0Þ.
Substituting expression (94) into the abovementioned system, we get

�f þ ða2 � e2g2Þ f ¼ 0; f _g þ 2_f g ¼ 0 ð95Þ

The second ordinary differential equation from (4.11) is easily integrated

g ¼ l f�2; l 2 R; l 6¼ 0 ð96Þ
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Inserting the result obtained into the first ordinary differential equation from (95)

yields the Ermakov-type equation for f ðoÞ
�f þ a2f � e2l2f�3 ¼ 0;

which is integrated in elementary functions [63]

f ¼ ða�2C2 þ a�2ðC4 � a2e2l2Þ1=2
sin2jajoÞ1=2 ð97Þ

Here C 6¼ 0 is an arbitrary constant.

Substituting (94),(96),(97) into the corresponding ansatz for AmðxÞ, we get

the following class of exact solutions of the Yang-Mills equations (46):

Am ¼ e1km exp ð�acx � aw2Þða�2C2 þ a�2ðC4 � a2e2l2Þ1=2

� sin2jajðbx þ w1ÞÞ1=2 þ e2lða�2C2 þ a�2ðC4 � a2e2l2Þ1=2

� sin2jajðbx þ w1ÞÞ�1
bm þ

1

2
km _w1

� �

In a similar way we have obtained the five other classes of exact solutions of

the Yang–Mills equations

Am ¼ e1kme�Tðbx cos w1 þ cx sin w1 þ w2Þ1=2
Z1=4

��
iel
2

�
ðbx cos w1

þ cx sin w1 þ w2Þ2

�
þ e2l ðbx cos w1 þ cx sin w1 þ w2Þ

�
�

cm cos w1 � bm sin w1 þ 2km

�
1

4
ðeeT þ _TÞðbx sin w1

� cxcosw1Þ þ w3

��
Am ¼ e1kme�TðC1 cosh ½elðbx cos w1 þ cxsinw1 þ w2Þ� þ C2 sinh ½el

� ðbx cos w1 þ cx sin w1 þ w2Þ�Þ þ e2l
�

cm cos w1 � bm sin w1

þ 2km

�
1

4
ðeeT þ _TÞðbx sin w1 � cxcosw1Þ þ w3

��

Am ¼ e1kme�TðC2ðbx cos w1 þ cx sin w1 þ w2Þ2 þ l2e2C�2Þ1=2

þ e2lðC2ðbx cos w1 þ cx sin w1 þ w2Þ2 þ l2e2C�2Þ�1

�
�

bm cos w1 þ cm sinw1 �
1

2

� �
km½ _w1ðbx sin w1

� cx cos w1Þ � _w2�
�
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Am ¼ e1kmZ0

��
iel
2

�
½ðbx þ w1Þ2 þ ðcx þ w2Þ2�

�
þ e2l

�
cmðbx þ w1Þ

� bmðcx þ w2Þ �
1

2

� �
km½ _w1ðcx þ w2Þ � _w2ðbx þ w1Þ�

�

Am ¼ e1kmðC1½ðbx þ w1Þ2 þ ðcx þ w2Þ2�el=2 þ C2½ðbx þ w1Þ2

þ ðcx þ w2Þ2��el=2Þ þ e2l½ðbx þ w1Þ2 þ ðcx þ w2Þ2��1

�
�

cmðbx þ w1Þ � bmðcx þ w2Þ �
1

2

� �
km½ _w1ðcx þ w2Þ

� _w2ðbx þ w1Þ�
�

Here C1;C2;C 6¼ 0; l are arbitrary parameters; w1;w2;w3 are arbitrary smooth

functions on x ¼ 1
2

kx; T ¼ TðxÞ is a solution of ordinary differential equation

(92). Besides that, we use the following notations:

kx ¼ kmxm; bx ¼ bmxm; cx ¼ cmxm

ZsðoÞ ¼ C1JsðoÞ þ C2YsðoÞ
e1 ¼ ð1; 0; 0Þ; e2 ¼ ð0; 1; 0Þ

where Js; Ys are the Bessel functions.

Thus, we have obtained the broad families of exact non-Abelian solutions of

the Yang–Mills equations (46). We can verify by direct and rather involved

computation that the solutions obtained are not self-dual, that is, that they do not

satisfy the self-dual Yang–Mills equations.

C. Conditional Symmetry Formalism

Now we briefly discuss the problem of conditional symmetry interpretation of

ansatzes (53), (54), and (91). Consider, as an example, the ansatz determined by

formula 1 from (91). As direct computation shows, generators of a three-

parameter Lie group G leaving it invariant are of the form

Q1 ¼ kaqa

Q2 ¼ baqa � 2½w0ðkmbn � knbmÞ þ w2ðkmcn � kncmÞ�
X3

a¼1

AanqAam

Q3 ¼ caqa � 2½w1ðkmbn � knbmÞ þ w3ðkmcn � kncmÞ�
X3

a¼1

AanqAam

ð98Þ

Evidently, the system of partial differential equations (46) is invariant under the

one-parameter group G1 having the generator Q1. However, it is not invariant
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under the one-parameter groups G2;G3 having the generators Q2;Q3. Consider,

as an example, the generator Q2. Acting by the second prolongation of the

operator Q2 (which is constructed in the standard way; see, e.g., Refs. 19 and 20)

on the system of partial differential equations (46), we see that the resulting

expression does not vanish on the solution set of Eqs. (46). However, if we

consider the constrained Yang–Mills equations

Lm ¼ 0; QaAm ¼ 0; a ¼ 1; 2; 3

then we see that the system obtained is invariant under the group G2. In the

preceding formulas we use the designations

Lm � &Am � qmqnAn þ eððqnAnÞ � Am � 2ðqnAmÞ � An

þ ðqmAnÞ � AnÞ þ e2An � ðAn � AmÞ
Q1Am � kaqaAm

Q2Am � baqaAm þ 2ðw0ðkmbn � knbmÞ þ w2ðkmcn � kncmÞÞAn

Q3Am � caqaAm þ 2ðw1ðkmbn � knbmÞ þ w3ðkmcn � kncmÞÞAn

The same assertion holds for the Lie transformation group G3 having the gene-

rator Q3. Consequently, the Yang–Mills equations are conditionally-invariant

with respect to the three-parameter Lie transformation group G ¼ G1 
 G2
 G3.

This means that solutions of the Yang–Mills equations obtained with the help of

the ansatz invariant under the group with generators (98) cannot be found by

means of the classical symmetry reduction procedure. We refer the reader

interested in further details to two monographs [21,33].

As very cumbersome computations show, the ansatzes determined by

formulas 2–4 from (91) also correspond to the conditional symmetry of

Yang–Mills equations. Hence it follows, in particular, that Yang–Mills equations

should be included in the long list of mathematical and theoretical physics

equations possessing nontrivial conditional symmetry [21].

V. SYMMETRY REDUCTION AND EXACT SOLUTIONS
OF THE MAXWELL EQUATIONS

In this section we exploit symmetry properties of the (vacuum) Maxwell

equations in order to construct their exact solutions.

It is well known that the electromagnetic field for the case of the vanishing

current is described by the Maxwell equations in vacuum

rot E ¼ � qH

qx0

; div H ¼ 0

rot H ¼ qE

qx0

; div E ¼ 0
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for the vector fields E ¼ Eðx0; xÞ and H ¼ Hðx0; xÞ (we shall call them the

Maxwell fields).

First, we give a brief overview of symmetry properties of Eqs. (99) following

[48].

A. Symmetry of the Maxwell Equations

As we have mentioned in the introduction, the maximal symmetry group

admitted by Eqs. (99) is the 16-parameter group Cð1; 3Þ 
 H. This group is the

direct product of the conformal group Cð1; 3Þ generated by the Lie vector fields

Pm ¼ qxm ; J0a ¼ x0qxa
þ xaqx0

þ eabcðEbqHc
� HbqEc

Þ
Jab ¼ xbqxa

� xaqxb
þ EbqEa

� EaqEb
þ HbqHa

� HaqHb

D ¼ xmqxm � 2ðEaqEa
þ HaqHa

Þ
K0 ¼ 2x0D � xmxmqx0

þ 2xaeabcðEbqHc
� HbqEc

Þ
Ka ¼ �2xaD � xmxmqxa

� 2x0eabcðEbqHc
� HbqEc

Þ
� 2HaðxbqHb

Þ � 2EaðxbqEb
Þ þ 2ðxbHbÞqHa

þ 2ðxbEbÞqEa

ð100Þ

and of the one-parameter Heaviside–Larmor–Rainich group H having the

generator

Q ¼ EaqHa
� HaqEa

ð101Þ

where eabc is the third-order antisymmetric tensor with e123 ¼ 1. In this section

the indices denoted by the Latin alphabet letters a; b; c take the values 1; 2; 3, and

the ones denoted by the Greek alphabet letters take the values 0; 1; 2; 3, and the

summation convention is used.

It is readily seen from (100) and (101) that the action of the group

Cð1; 3Þ 
 H in the space R1;3 � R6, where R1;3 is Minkowski space of the

variables x0; x ¼ ðx1; x2; x3Þ and R6 is the six-dimensional space of the

functions E ¼ ðE1;E2;E3Þ; H ¼ ðH1;H2;H3Þ, is projective. Furthermore, the

basis generators of this group can be represented in the form (15).

The matrices Smn read as

S01 ¼ 0 ~S23

�~S23 0

 !
; S02 ¼ 0 �~S13

~S13 0

 !

S03 ¼ 0 ~S12

�~S12 0

 !
; S12 ¼

~S12 0

0 ~S12

 !

S13 ¼
~S13 0

0 ~S13

 !
; S23 ¼

~S23 0

0 ~S23

 !
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where 0 is the zero 3 � 3 matrix and

~S12 ¼
0 �1 0

1 0 0

0 0 0

0
@

1
A; ~S13

0 0 �1

0 0 0

1 0 0

0
@

1
A; ~S23 ¼

0 0 0

0 0 �1

0 1 0

0
@

1
A

E is the unit 6 � 6 matrix. The matrix �A corresponding to operator Q (101) is

given by the formula

A ¼ 0 �I

I 0

� �
ð103Þ

where 0 and I are zero and unit 3 � 3 matrices, correspondingly.

Hence, it follows that Cð1; 3Þ 
 H-invariant ansatzes for the Maxwell fields,

which reduce (99) to systems of ordinary differential equations, can be

represented in the form (22), namely,

V ¼ �ðx0; xÞ~VðoÞ ð104Þ

with

V ¼

E1

E2

E3

H1

H2

H3

0
BBBBBB@

1
CCCCCCA
; ~V ¼

~E1

~E2

~E3

~H1

~H2

~H3

0
BBBBBB@

1
CCCCCCA

Here �ðx0; xÞ is the 6 � 6 matrix, which is nonsingular in some open domain of

the space R1;3 and ~Ea ¼ ~EaðoÞ, ~Ha ¼ ~HaðoÞ are new unknown functions of the

variable o ¼ oðx0; xÞ.
In addition, the Maxwell equations admit the following discrete symmetry

group [48]:

�:�xm ¼ �xm; �E ¼ �E; �H ¼ �H ð105Þ

The transformation properties of operators (100), (101) with respect to the action

of the group � read as

Pm ! �Pm; Jmn ! Jmn; D ! D; Km ! �Km; Q ! Q

so that actions of discrete symmetry groups � (5.7) and �1 from Table I on the

basis operators of the algebra ~pð1; 3Þ coincide. Therefore, we can use Assertions

5 and 6 and choose the parameter j to be equal to 2, namely, ð�1Þj ¼ 1.
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In what follows we exploit invariance of the Maxwell equations under the

conformal group Cð1; 3Þ in order to construct their invariant solutions.

B. Conformally Invariant Ansatzes for the Maxwell Fields

First we will give two assertions that substantially simplify the full description

of invariant solutions of the Maxwell equations.

Assertion 11. If E ¼ Eðx0; x3Þ; H ¼ Hðx0; x3Þ, then it is possible to construct

the general solution of equations (5.1). It has the form

E1 ¼ j1ðxÞ þ c1ðZÞ; H1 ¼ �j2ðxÞ þ c2ðZÞ
E2 ¼ j2ðxÞ þ c2ðZÞ; H2 ¼ j1ðxÞ � c1ðZÞ
E3 ¼ C1; H3 ¼ C2

where j1;j2;c1;c2 are arbitrary smooth functions; x ¼ x0 � x3, Z ¼ x0 þ x3;

C1;C2 2 R.

Assertion 12. If E ¼ Eðx1; x2; xÞ; H ¼ Hðx1; x2; xÞ, where x ¼ 1
2
ðx0 � x3Þ,

then it is possible to construct the general solution of the Maxwell equations

(99). It is given by the following formulas:

E1 ¼ 1

2
ðR þ R	 þ T1 þ T	

1 Þ; H1 ¼ 1

2
ðiR � iR	 � T2 � T	

2 Þ

E2 ¼ 1

2
ðiR � iR	 þ T2 þ T	

2 Þ; H2 ¼ 1

2
ðR þ R	 � T1 � T	

1 Þ

E3 ¼ S þ S	; H3 ¼ iS � iS	

where

Tj ¼
q2yj

qx2
ð j ¼ 1; 2Þ

S ¼ qy1

qx
þ i

qy2

qx
þ lðzÞ

R ¼ �2
qy1

qz
þ i

qy2

qz

� �
þ x

dl
dz

Here yj ¼ yjðz; xÞ; lðzÞ are arbitrary functions analytic by the variable

z ¼ x1 þ ix2; j ¼ 1; 2; i is the imaginary unit, namely, i2 ¼ �1.

Proof of these assertions can be found in Refs. 50–53.

It follows from Assertions 11 and 12 that we have to exclude from further

consideration those subalgebras of the conformal algebra that yield solutions of
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the form covered by these assertions. It is straightforward to check that we have

to skip subalgebras L of rank 3 fulfilling the conditions

hP0 þ P3i 6
 L; hP0 � P3i 6
 L; 1hP0;P3i 6
 L; hP1;P2i 6
 L

Thus, to get the full description of conformally invariant solutions of the

Maxwell equations, it suffices to consider the following subalgebras of the

conformal algebra cð1; 3Þ (note, that we have also made use of the discrete

symmetry group � in order to simplify their basis elements):

M1 ¼ hJ03;G1;P2i
M2 ¼ hG1;G2; J03 þ aJ12i; a 2 R

M3 ¼ hJ12;D;P0i
M4 ¼ hJ12;D;P3i
M5 ¼ hJ03;D;P1i
M6 ¼ hJ03; J12;Di
M7 ¼ hG1; J03 þ aD;P2i ð0 < jaj � 1Þ
M8 ¼ hJ03 � D þ M;G1;P2i
M9 ¼ hJ03 þ 2D;G1 þ 2T ;P2i

M10 ¼ hJ12; S þ T ; Zi
M11 ¼ hS þ T þ J12; Z;G1 þ P2i

M12 ¼ hP2 þ K2 þ
ffiffiffi
3

p
ðP1 þ K1Þ þ K0 � P0; J02 � D �

ffiffiffi
3

p
J01

P0 þ K0 � 2ðK2 � P2Þi
M13 ¼ hP0 þ K0i � hJ12;K3 � P3i
M14 ¼ h2J12 þ K3 � P3; 2J13 � K2 þ P2; 2J23 þ K1 � P1i
M15 ¼ hP1 þ K1 þ 2J03;P2 þ K2 þ K0 � P0; 2J12 þ K3 � P3i

Here we use the following designations:

M ¼ P0 þ P3; G0j ¼ J0j � Jj3 ð j ¼ 1; 2Þ

Z ¼ J03 þ D; S ¼ 1

2
ðK0 þ K3Þ; T ¼ 1

2
ðP0 � P3Þ

Below, we consider the first 10 subalgebras from the preceding list. For these

subalgebras we can represent the matrix � from ansatz (104) as

� ¼ exp fðln yÞEg exp ð2y1H1Þ exp ð2y2H2Þ exp ð�y0S03Þ exp ðy3S12Þ
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where the matrices Smn have the form (102). Thus, we have

� ¼ y
C G

�G C

� �

where

C ¼
cosh y0 cos y3 � r1 � cosh y0 sin y3 þ r2 2y1

cosh y0 sin y3 þ r2 cosh y0 cos y3 þ r1 2y2

�2s1 2s2 1

0
B@

1
CA

G ¼
sinh y0 sin y3 þ r2 sinh y0 cos y3 þ r1 2y2

�sinhy0 cos y3 þ r1 sinh y0 sin y3 � r2 �2y1

2s2 2s1 0

0
B@

1
CA

and

r1 ¼ 2½ðy2
1 � y2

2Þ cos y3 þ 2y1y2 sin y3�e�y0

r2 ¼ 2½ðy2
1 � y2

2Þ sin y3 � 2y1y2 cos y3�e�y0

s1 ¼ 2½y1 cos y3 þ y2 sin y3�e�y0

s2 ¼ 2½y1 sin y3 � y2 cos y3�e�y0

After some algebra, we obtain the following form of the conformally

invariant ansatz for the Maxwell fields:

E1 ¼ yfð~E1 cosy3 � ~E2 siny3Þ cosh y0

þ ð~H1 siny3 þ ~H2 cosy3Þ sinh y0

þ 2y1
~E3 þ 2y2

~H3 þ 4y1y2�1 þ 2ðy2
1 � y2

2Þ�2g
E2 ¼ yfð~E2 cos y3 þ ~E1 sin y3Þ cosh y0

þ ð~H2 sin y3 � ~H1 cos y3Þ sinh y0

� 2y1
~H3 þ 2y2

~E3 þ 4y1y2�2 � 2ðy2
1 � y2

2Þ�1g
E3 ¼ yf~E3 þ 2y1�2 þ 2y2�1g
H1 ¼ yfð~H1 cos y3 � ~H2 sin y3Þ cosh y0

� ð~E1 sin y3 þ ~E2 cos y3Þ sinh y0

þ 2y1
~H3 � 2y2

~E3 � 4y1y2�2 þ 2ðy2
1 � y2

2Þ�1g
H2 ¼ yfð~H2 cos y3 þ ~H1 sin y3Þ cosh y0

þ ð~E1 cos y3 � ~E2 sin y3Þ sinh y0

þ 2y1
~E3 þ 2y2

~H3 þ 4y1y2�1 þ 2ðy2
1 � y2

2Þ�2g
H3 ¼ yf~H3 þ 2y1�1 � 2y2�2g

ð106Þ
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Here

�1 ¼ ½ð~H2 � ~E1Þ sin y3 � ð~E2 þ ~H1Þ cos y3�e�y0

�2 ¼ ½ð~E2 þ ~H1Þ sin y3 þ ð~H2 � ~E1Þ cos y3�e�y0

The form of the functions y; ym;o for each of the subalgebras Mj; ð j ¼ 1;
2; . . . ; 10Þ is obtained from Assertions 5–7 with k ¼ 2:

M1: y ¼ 1; y0 ¼ � ln jx0 � x3j; y1 ¼ � 1

2
x1ðx0 � x3Þ�1

y2 ¼ y3 ¼ 0; o ¼ x2
0 � x2

1 � x2
3

M2: y ¼ 1; y0 ¼ � ln jx0 � x3j; y1 ¼ � 1

2
x1ðx0 � x3Þ�1

y2 ¼ � 1

2
x2ðx0 � x3Þ�1; y3 ¼ a ln jx0 � x3j

o ¼ x2
0 � x2

1 � x2
2 � x2

3; a 2 R

M3: y ¼ ðx3Þ�2; y0 ¼ y1 ¼ y2 ¼ 0

y3 ¼ arctan
x2

x1

; o ¼ ðx2
1 þ x2

2Þx�2
3

M4: y ¼ ðx0Þ�2; y0 ¼ y1 ¼ y2 ¼ 0

y3 ¼ arctan
x2

x1

; o ¼ ðx2
1 þ x2

2Þx�2
0

M5: y ¼ ðx2Þ�2; y0 ¼ ln jðx0 þ x3Þx�1
2 j; y1 ¼ y2 ¼ y3 ¼ 0

o ¼ ðx2
0 � x2

3Þx�2
2

M6: ðx2
1 þ x2

2Þ
�1; y0 ¼ � 1

2
ln jðx0 � x3Þðx0 þ x3Þ�1j

y1 ¼ y2 ¼ 0; y3 ¼ arctan
x2

x1

; o ¼ ðx2
1 þ x2

2Þðx2
0 � x2

3Þ
�1

M7: 1:L a ¼ �1

y ¼ ðx0 � x3Þ�1; y0 ¼ � 1

2
ln jx0 � x3j

y1 ¼ � 1

2
x1ðx0 � x3Þ�1; y2 ¼ y3 ¼ 0

o ¼ x0 þ x3 � x2
1ðx0 � x3Þ�1

2: a 6¼ �1

y ¼ jx2
0 � x2

1 � x2
3j
�1; y0 ¼ 1

2a
ln jx2

0 � x2
1 � x2

3j

y1 ¼ � 1

2
x1ðx0 � x3Þ�1; y2 ¼ y3 ¼ 0

o ¼ 2a ln jx0 � x3j þ ð1 � aÞ ln jx2
0 � x2

1 � x2
3j
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M8: y ¼ jx0 � x3j�1; y0 ¼ � 1

2
ln jx0 � x3j; y1 ¼ � 1

2
x1ðx0 � x3Þ�1

y2 ¼ y3 ¼ 0; o ¼ x0 þ x3 � x2
1ðx0 � x3Þ�1 þ ln jx0 � x3j

M9: y ¼ ½ðx0 � x3Þ2 � 4x1��2; y0 ¼ 1

2
ln jðx0 � x3Þ2 � 4x1j

y1 ¼ � 1

4
ðx0 � x3Þ; y2 ¼ y3 ¼ 0

o ¼ x0 þ x3 � x1ðx0 � x3Þ þ
1

6
ðx0 � x3Þ3

� �2

½ðx0 � x3Þ2 � 4x1��3

M10: y ¼ ½ðx1 � ðx0 � x3Þx2Þ2ð1 þ ðx0 � x3Þ2Þ�1��1

y0 ¼ 1

2
ln ½ðx1 � ðx0 � x3Þx2Þ2ð1 þ ðx0 � x3Þ2Þ�3�

y1 ¼ � 1

2
ðx2 þ ðx0 � x3Þx1Þð1 þ ðx0 � x3Þ2Þ�1

y2 ¼ 1

2
ðx1 � ðx0 � x3Þx2Þð1 þ ðx0 � x3Þ2Þ�1

y3 ¼ � arctanðx0 � x3Þ; o ¼ ½ðx0 þ x3Þð1 þ ðx0 � x3Þ2Þ2

� 2x1ðx2 þ ðx0 � x3Þx1Þ � ðx0 � x3Þðx2
1ðx0 � x3Þ2 � x2

2Þ�

� ½x1 � ðx0 � x3Þx2��2 � x0 þ x3

C. Exact Solutions of the Maxwell Equations

Now we have to insert ansatzes (106) into (99). However, it is more convenient

to rewrite the Maxwell equations (99) in the following equivalent form:

qx1
ðE1 þ H2Þ þ qx2

ðE2 � H1Þ ¼ ðqx0
� qx3

ÞE3

qx1
ðE1 � H2Þ þ qx2

ðE2 þ H1Þ ¼ �ðqx0
þ qx3

ÞE3

qx1
ðE2 � H1Þ � qx2

ðE1 þ H2Þ ¼ �ðqx0
� qx3

ÞH3

qx1
ðE2 þ H1Þ � qx2

ðE1 � H2Þ ¼ �ðqx0
þ qx3

ÞH3

ðqx0
þ qx3

ÞðE1 þ H2Þ ¼ qx1
E3 þ qx2

H3

ðqx0
� qx3

ÞðE1 � H2Þ ¼ �qx1
E3 þ qx2

H3

ðqx0
� qx3

ÞðE2 þ H1Þ ¼ �qx2
E3 � qx1

H3

ðqx0
þ qx3

ÞðE2 � H1Þ ¼ qx2
E3 � qx1

H3

ð107Þ

We will give the calculation details for the case of the subalgebra M1 only,

since the remaining subalgebras are handled in a similar way. For the case in
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hand, ansatz (106) can be written in the form

E1 þ H2 ¼ fey0 þ 4y1
~E3 � 4y2

1e�y0 h

E1 � H2 ¼ he�y0 ; E2 þ H1 ¼ re�y0

E2 � H1 ¼ gey0 � 4y1
~H3 þ 4y2

1e�y0r

E3 ¼ ~E3 � 2y1he�y0 ; H3 ¼ ~H3 � 2y1re�y0

ð108Þ

where y0 ¼ � ln jx0 � x3j; y1 ¼ � 1
2

x1ðx0 � x3Þ�1
. The functions ~E3; ~H3, and

f ¼ f ðoÞ ¼ ~E1 þ ~H2; g ¼ gðoÞ ¼ ~E2 � ~H1

h ¼ hðoÞ ¼ ~E1 � ~H2; r ¼ rðoÞ ¼ ~E2 þ ~H1

ð109Þ

are arbitrary smooth functions of the variable o ¼ x2
0 � x2

1 � x2
3.

Inserting (108) into the second and fourth equations from (107) gives equa-

tions

_~E3 ¼ 0; _~H3 ¼ 0 ð110Þ

We remind the reader that the dot over the symbol stands for the derivative with

respect to the variable o.

Similarly, we get from the sixth and seventh equations of system (107) the

following reduced equations:

2o _h þ 3h ¼ 0; 2o _rþ 3r ¼ 0 ð111Þ

Next, the fifth and eighth equations give rise to ordinary differential equations of

the form

2_f � h ¼ 0; 2 _g þ r ¼ 0 ð112Þ

Finally, substituting ansatz (5.10) into the first and third equations from (107)

yields

4ey1½o _h þ h þ _f � ¼ 2x�1~E3

4ey1½ _g � o _r� r� ¼ �2x�1 ~H3

ð113Þ

where e ¼ 1 for x ¼ x0 � x3 > 0 and e ¼ �1 for x0 � x3 < 0.

Taking into account (111)–(113), we see that ~E3 ¼ 0 and ~H3 ¼ 0.

Summing up, we conclude that the ansatz invariant with respect to the

subalgebra M1 reduces the Maxwell equations to the following system of
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ordinary differential equations:

2o _h þ 3h ¼ 0; 2o _rþ 3r ¼ 0; 2_f � h ¼ 0

2 _g þ r ¼ 0; ~E3 ¼ 0; ~H3 ¼ 0
ð114Þ

Below we give the reduced systems for the ansatzes invariant with respect to the

remaining subalgebras M2–M10: [note that the functions f ; g; h;r are of the form

(109)]:

1: System ð114Þ
2: _f ¼ 0; ~E3 ¼ 0; _g ¼ 0; ~H3 ¼ 0; o _h þ 2h þ ar ¼ 0

o _rþ 2r� ah ¼ 0; a 2 R

3: 2oð1 þ oÞ�~E3 þ ð7oþ 2Þ _~E3 þ 3~E3 ¼ 0

f ¼ h ¼ �2
ffiffiffiffi
o

p
ð~E3 þ ð1 þ oÞ _~E3Þ

2oð1 þ oÞ�~H3 þ ð7oþ 2Þ _~H3 þ 3~H3 ¼ 0

g ¼ �r ¼ 2
ffiffiffiffi
o

p
ð~H3 þ ð1 þ oÞ _~H3Þ

4: 2oðo� 1Þ�~E3 þ ð7o� 2Þ _~E3 þ 3~E3 ¼ 0

f ¼ �h ¼ 2
ffiffiffiffi
o

p
ð~E3 þ ðo� 1Þ _~E3Þ

2oðo� 1Þ�~H3 þ ð7o� 2Þ _~H3 þ 3~H3 ¼ 0

g ¼ r ¼ �2
ffiffiffiffi
o

p
ð~H3 þ ðo� 1Þ _~H3Þ

5: 2oðo� 1Þ�~E3 þ ð7o� 2Þ _~E3 þ 3~E3 ¼ 0

g ¼ �o�1r ¼ 2e½~E3 þ ðo� 1Þ _~E3�

2oðo� 1Þ�~H3 þ ð7o� 2Þ _~H3 þ 3~H3 ¼ 0

f ¼ o�1h ¼ 2e½~H3 þ ðo� 1Þ _~H3�
e ¼ 1 for ðx0 þ x3Þx�1

2 > 0

e ¼ �1 for ðx0 þ x3Þx�1
2 < 0

6: ðo� 1Þ _~E3 þ ~E3 ¼ 0; 2o_f þ f ¼ �2e2

ffiffiffiffiffiffi
joj

p _~E3

2o _h þ h ¼ 2e1

ffiffiffiffiffiffi
joj

p _~E3; ðo� 1Þ _~H3 þ ~H3 ¼ 0

2o _rþ r ¼ 2e1

ffiffiffiffiffiffi
joj

p _~H3 2o _g þ g ¼ 2e2

ffiffiffiffiffiffi
joj

p _~H3

e1 ¼ 1 for x0 þ x3 > 0

e1 ¼ �1 for x0 þ x3 < 0

e2 ¼ 1 for x0 � x3 > 0

e2 ¼ �1 for x0 � x3 < 0
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7: 1: _~E3 ¼ 0; 2_f ¼ eh; _~H3 ¼ 0; 2 _g ¼ �er
e ¼ 1 for x0 � x3 > 0

e ¼ �1 for x0 � x3 < 0

2: ~E3 ¼ 0; 2ð1 þ aÞ _h � 1 þ 1

a

� �
h ¼ 0

1

a
� 2

� �
f þ 2ð1 � aÞ_f ¼ ee�ð1=aÞoh

~H3 ¼ 0; 2ð1 þ aÞ _r� ð1 þ 1

a
Þr ¼ 0

1

a
� 2

� �
g þ 2ð1 � aÞ _g ¼ �ee�

1
aor 0 < jaj � 1; a 6¼ �1

e ¼ 1 for x2
0 � x2

1 � x2
3 > 0

e ¼ �1 for x2
0 � x2

1 � x2
3 < 0

8: _h ¼ 0; _~E3 ¼ 0; _r ¼ 0; _~H3 ¼ 0; 2e_f � h ¼ 0

2e _g þ r ¼ 0

e ¼ 1 for x0 � x3 > 0

e ¼ �1 for x0 � x3 < 0

9: h ¼ 4ef ; r ¼ �4eg; ~E3 ¼ � 9o2 þ e
4

� �
_f � 15of ¼ 0;

ð36o2 þ eÞ�f þ 180o_f þ 140f ¼ 0; ~H3 ¼ 15og þ 9o2 þ e
4

� �
_g

ð36o2 þ eÞ�g þ 180o _g þ 140g ¼ 0

e ¼ 1 for s > 0

e ¼ �1 for s < 0

s ¼ 4x1 � ðx0 � x3Þ2

10: _f ¼ _h; h ¼ ðo2 þ 1Þ _~E3 þ o~E3; ðo2 þ 1Þ�~E3 þ 4o _~E3 þ 2~E3 ¼ 0

_g ¼ � _r; r ¼ ðo2 þ 1Þ _~H3 þ o~H3; ðo2 þ 1Þ�~H3 þ 4o _~H3 þ 2~H3 ¼ 0

These systems are linear and therefore are easily integrated (the integration

details can be found in Refs. 50–53). Below we give the final result; specifically,

we present the families of exact solutions of the Maxwell equations (99)

invariant with respect to the subalgebras M1–M10.

M1: E1 ¼ C2ðx0 � x3Þ�1 � 2x3C1jx2
0 � x2

1 � x2
3j
�ð3=2Þ

E2 ¼ C4ðx0 � x3Þ�1 þ 2x0C3jx2
0 � x2

1 � x2
3j
�ð3=2Þ

E3 ¼ 2x1C1jx2
0 � x2

1 � x2
3j
�ð3=2Þ

H1 ¼ �C4ðx0 � x3Þ�1 � 2x3C3jx2
0 � x2

1 � x2
3j
�ð3=2Þ

H2 ¼ C2ðx0 � x3Þ�1 � 2x0C1jx2
0 � x2

1 � x2
3j
�ð3=2Þ
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H3 ¼ 2x1C3jx2
0 � x2

1 � x2
3j
�ð3=2Þ

M2: E1 ¼ jxj�1



C1 cos ða ln jxjÞ � C2 sin ða ln jxjÞ

� x1x2½h sin ða ln jxjÞ þ r cos ða ln jxjÞ�

þ 1

2
ðx2 � x2

1 þ x2
2Þ½h cos ða ln jxjÞ � r sin ða ln jxjÞ�

�

E2 ¼ jxj�1



C2 cos ða ln jxjÞ þ C1 sin ða ln jxjÞ

þ x1x2½r sin ða ln jxjÞ � h cos ða ln jxjÞ�

þ 1

2
ðx2 þ x2

1 � x2
2Þ½h sin ða ln jxjÞ þ r cos ða ln jxjÞ�

�
E3 ¼ efh½x1 cos ða ln jxjÞ þ x2 sinða ln jxjÞ�

þ r½x2 cosða ln jxjÞ � x1 sin ða ln jxjÞ�g

H1 ¼ jxj�1



� C2 cos ða ln jxjÞ � C1 sinða ln jxjÞ

� x1x2½r sin ða ln jxjÞ � h cos ða ln jxjÞ�

þ 1

2
ðx2 � x2

1 þ x2
2Þ½h sin ða ln jxjÞ þ r cos ða ln jxjÞ�

�

H2 ¼ jxj�1



C1 cos ða ln jxjÞ � C2 sin ða ln jxjÞ

� x1x2½h sin ða ln jxjÞ þ r cos ða ln jxjÞ�

� 1

2
ðx2 þ x2

1 � x2
2Þ½h cos ða ln jxjÞ � r sin ða ln jxjÞ�

�
H3 ¼ efh½x1 sin ða ln jxjÞ � x2 cos ða ln jxjÞ�

þ r½x1 cos ða ln jxjÞ þ x2 sin ða ln jxjÞ�g
where x ¼ x0 � x3; h ¼ o�2½C4 cos ða ln jojÞ � C3 sin ða ln jojÞ�

r ¼ o�2½C3 cos ða ln jojÞ þ C4 sinða ln jojÞ�; o ¼ xmxm

a 2 R; e ¼ 1; for x > 0 and e ¼ �1 for x < 0

M3: Ea ¼ � 2C1xa

x3ðx2
1 þ x2

2Þ
þ xas�ð3=2ÞA12; E3 ¼ x3s�ð3=2ÞA12

Ha ¼ � 2C3xa

x3ðx2
1 þ x2

2Þ
þ xas�ð3=2ÞA34; H3 ¼ x3s�ð3=2ÞA34

where Aij ¼ Ci ln

ffiffiffiffi
s

p
� x3ffiffiffiffi

s
p

þ x3

����
����þ 2x�1

3

ffiffiffiffi
s

p� �
þ Cj

s ¼ x2
1 þ x2

2 þ x2
3; a ¼ 1; 2

M4: 1: Ea ¼ eabxb
2C4

x0ðx2
1 þ x2

2Þ
� s�ð3=2ÞA34


 �
; E3 ¼ x0s�ð3=2ÞA12

Ha ¼ �eabxb

2C2

x0ðx2
1 þ x2

2Þ
� s�ð3=2ÞA12


 �
;H3 ¼ x0s�ð3=2ÞA34
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where Aij ¼ Ci þ C j ln

ffiffiffiffi
s

p
� x0ffiffiffiffi

s
p

þ x0

����
����þ 2x�1

0

ffiffiffiffi
s

p� �
s ¼ x2

0 � x2
1 � x2

2 > 0; a; b ¼ 1; 2

2: Ea ¼ �eabxb

C4

x0ðx2
1 þ x2

2Þ
� s�ð3=2ÞB34


 �
; E3 ¼ x0s�ð3=2ÞB12

Ha ¼ �eabxb

C2

x0ðx2
1 þ x2

2Þ
� s�3=2B12


 �
; H3 ¼ x0s�3=2B34

where Bij ¼ Ci þ Cj x�1
0

ffiffiffiffi
s

p
� arctan

ffiffiffiffi
s

p

x0

� �
; s ¼ x2

1 þ x2
2 � x2

0 > 0

a; b ¼ 1; 2

Here eab; ða; b ¼ 1; 2Þ is the antisymmetric tensor of the second order with

e12 ¼ 1:

M5: 1: E1 ¼ 2x0C4

x2ðx2
0 � x2

3Þ
� x0s�ð3=2ÞA34; E2 ¼ 2x3C2

x2ðx2
0 � x2

3Þ
� x3s�ð3=2ÞA12

H1¼� 2x0C2

x2ðx2
0 � x2

3Þ
þ x0s�ð3=2ÞA12; H2¼

2x3C4

x2ðx2
0 � x2

3Þ
� x3s�ð3=2ÞA34

E3 ¼ x2s�ð3=2ÞA12; H3 ¼ x2s�ð3=2ÞA34

where Aij ¼ Ci þ Cj 2

ffiffiffiffi
s

p

x2

� ln

ffiffiffiffi
s

p
� x2ffiffiffiffi

s
p

þ x2

����
����

� �
; s ¼ x2

2 þ x2
3 � x2

0 > 0

2: E1 ¼ x0C4

x2ðx2
0 � x2

3Þ
� x0s�ð3=2ÞB34; E2 ¼ x3C2

x2ðx2
0 � x2

3Þ
� x3s�ð3=2ÞB12

H1¼� x0C2

x2ðx2
0 � x2

3Þ
þ x0s�ð3=2ÞB12; H2¼

x3C4

x2ðx2
0 � x2

3Þ
� x3s�ð3=2ÞB34

E3 ¼ x2s�ð3=2ÞB12; H3 ¼ x2s�ð3=2ÞB34

where Bij ¼ Ci þ Cj

ffiffiffiffi
s

p

x2

� arctan

ffiffiffiffi
s

p

x2

� �
; s ¼ x2

0 � x2
2 � x2

3 > 0

M6: E1 ¼ 1

2

xðx1C2 � x2C5Þ þ Zðx1C3 � x3C6Þ
xZðx2

1 þ x2
2Þ

�

� e1xðx1C1 þ x2C4Þ � e2Zðx1C1 � x2C4Þ
sðx2

1 þ x2
2Þ

�

E2 ¼ 1

2

xðx1C5 þ x2C2Þ þ Zðx1C6 þ x2C3Þ
xZðx2

1 þ x2
2Þ

�

þ e1xðx1C4 � x2C1Þ þ e2Zðx1C4 þ x2C1Þ
sðx2

1 þ x2
2Þ

�
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H1 ¼ 1

2

Zðx1C6 þ x2C3Þ � xðx1C5 þ x2C2Þ
xZðx2

1 þ x2
2Þ

�

þ e1xðx2C1 � x1C4Þ þ e2Zðx1C4 þ x2C1Þ
sðx2

1 þ x2
2Þ

�

H2 ¼ 1

2

xðx1C2 � x2C5Þ � Zðx1C3 � x2C6Þ
xZðx2

1 þ x2
2Þ

�

� e1xðx1C1 þ x2C4Þ þ e2Zðx1C1 � x2C4Þ
sðx2

1 þ x2
2Þ

�

E3 ¼ C1s�1; H3 ¼ C4s�1

where s ¼ x2
1 þ x2

2 þ x2
3 � x2

0; x ¼ x0 þ x3;Z ¼ x0 � x3 and

e1 ¼
1 if x0 þ x3 > 0

�1 if x0 þ x3 < 0



e2 ¼

1 if x0 � x3 > 0

�1 if x0 � x3 < 0




M7: 1: a ¼ �1

E1 ¼ jZj�ð3=2Þ
C1 þ

1

4
F

� �
� x1Z�2C2 �

1

2
ejZj�ð1=2Þ

f ðx2
1Z

�2 � 1Þ

E2 ¼ jZj�ð3=2Þ
C3 �

1

4
G

� �
þ x1Z�2C4 þ

1

2
ejZj�ð1=2Þ

gðx2
1Z

�2 þ 1Þ

H1 ¼ �jZj�ð3=2Þ
C3 �

1

4
G

� �
� x1Z�2C4 �

1

2
ejZj�ð1=2Þ

gðx2
1Z

�2 � 1Þ

H2 ¼ jZj�ð3=2Þ
C1 þ

1

4
F

� �
� x1Z�2C3 �

1

2
ejZj�ð1=2Þ

f ðx2
1Z

�2 þ 1Þ

E3 ¼ Z�1C2 þ x1jZj�ð3=2Þ
f ; H3 ¼ Z�1C4 þ x1jZj�ð3=2Þ

g

where f ¼ f ðoÞ; g ¼ gðoÞ; F ¼ FðoÞ; G ¼ GðoÞ are arbitrary

smooth functions;
dF

do
¼ f ;

dG

do
¼ g;o ¼ x� x2

1Z
�1; and

x ¼ x0 þ x3; Z ¼ x0 � x3

e ¼
1 if x0 � x3 > 0

�1 if x0 � x3 < 0

(

2: 0 < jaj � 1

E1 ¼ x3jsj�ð3=2Þ
C1 þ C2Zð2a�1Þ=ð1�aÞ; E2 ¼ x0jsj�ð3=2Þ

C3

þ C4Zð2a�1Þ=ð1�aÞ

E3 ¼ �x1jsj�ð3=2Þ
C1
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H1 ¼ �x3jsj�ð3=2Þ
C3 � C4Zð2a�1Þ=ð1�aÞ; H2 ¼ x0jsj�ð3=2Þ

C1

þ C2Zð2a�1Þ=ð1�aÞ

H3 ¼ x1jsj�ð3=2Þ
C3

If a ¼ 1; then C2 ¼ C4 ¼ 0: Here s ¼ x2
0 � x2

1 � x2
3; Z ¼ x0 � x3:

M8: E1 ¼ �x1Z�2C1 þ
1

4
jZj�ð3=2Þ

C2ðxþ 2Z� 3x2
1Z

�1 þ ln jZjÞ

þ jZj�ð3=2Þ
C3

E2 ¼ x1Z�2C4 �
1

4
jZj�ð3=2Þ

C5ðx� 2Z� 3x2
1Z

�1 þ ln jZjÞ

þ jZj�ð3=2Þ
C6

H1 ¼ �x1Z�2C4 þ
1

4
jZj�ð3=2Þ

C5ðxþ 2Z� 3x2
1Z

�1 þ ln jZjÞ

� jZj�ð3=2Þ
C6

H2 ¼ �x1Z�2C1 þ
1

4
jZj�ð3=2Þ

C2ðx� 2Z� 3x2
1Z

�1 þ ln jZjÞ

þ jZj�ð3=2Þ
C3

E3 ¼ Z�1C1 þ x1jZj�ð3=2Þ
C2; H3 ¼ Z�1C4 þ x1jZj�ð3=2Þ

C5

where x ¼ x0 þ x3; Z ¼ x0 � x3

M9: 1: E1 ¼ j�2½A12ðj1=2 � j�ð1=2ÞðZ2 � 4Þ � 12ZoÞ � ZB12�
E2 ¼ j�2½A34ðj1=2 � j�ð1=2ÞðZ2 þ 4Þ � 12ZoÞ � ZB34�
E3 ¼ j�2½4A12ðZj�ð1=2Þ þ 6oÞ þ 2B12�
H1 ¼ �j�2½A34ðj1=2 � j�ð1=2ÞðZ2 � 4Þ � 12ZoÞ � ZB34�
H2 ¼ j�2½A12ðj1=2 � j�ð1=2ÞðZ2 þ 4Þ � 12ZoÞ � ZB12�
H3 ¼ �j�2½4A34ðZj�ð1=2Þ þ 6oÞ þ 2B34�

where Aij ¼ ð1 þ 36o2Þ�ð3=2Þ½Cisð1=3Þð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 36o2

p
� 72oÞ

þ Cjs�ð1=3Þð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 36o2

p
þ 72oÞ�

Bij ¼ 16ð1 þ 36o2Þ�ð1=2ÞðCisð1=3Þ � Cjs�ð1=3ÞÞ

s ¼ 6oþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36o2 þ 1

p
; o ¼ ðx� x1Zþ 1

6
Z3Þj�ð3=2Þ

j ¼ 4x1 � Z2 > 0

x ¼ x0 þ x3; Z ¼ x0 � x3
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2: E1 ¼ j�2½A12ðj1=2 � j�ð1=2ÞðZ2 þ 4Þ þ 42ZoÞ � ZB12�
E2 ¼ j�2½A34ðj1=2 � j�ð1=2ÞðZ2 � 4Þ � 42ZoÞ � ZB34�
E3 ¼ �j�2½4A12ðZj�ð1=2Þ þ 21oÞ � 2B12�
H1 ¼ j�2½A34ðj1=2 � j�ð1=2ÞðZ2 þ 4Þ þ 42ZoÞ � ZB34�
H2 ¼ j�2½A12ðj1=2 � j�ð1=2ÞðZ2 � 4Þ þ 42ZoÞ � ZB12�
H3 ¼ j�2½A34ðZj�ð1=2Þ þ 21oÞ � 2B34�

where Aij ¼ ð1 � 36o2Þ�ð3=2Þfcoss½72oCj � 4Ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 36o2

p
�

� sins½72oCi þ 4Cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 36o2

p
�g

Bij ¼ 16ð1 � 36o2Þ�ð1=2Þ½Ci sins� Cj coss�; s ¼ 1

3
arcsin 6o

j6oj < 1; j ¼ Z2 � 4x1 > 0; o ¼ x� x1Zþ 1

6
Z3

� �
j�ð3=2Þ

x ¼ x0 þ x3; Z ¼ x0 � x3

3: E1 ¼ j�2½A12ðj1=2 � j�ð1=2ÞðZ2 þ 4Þ � 12ZoÞ � ZB12�
E2 ¼ j�2½A34ðj1=2 � j�ð1=2ÞðZ2 � 4Þ � 12ZoÞ � ZB34�
E3 ¼ j�2½�4A12ðZj�ð1=2Þ � 6oÞ þ 2B12�
H1 ¼ �j�2½A34ðj1=2 � j�ð1=2ÞðZ2 þ 4Þ � 12ZoÞ � ZB34�
H2 ¼ j�2½A12ðj1=2 � j�ð1=2ÞðZ2 � 4Þ � 12ZoÞ � ZB12�
H3 ¼ j�2½4A34ðZj�ð1=2Þ � 6oÞ � 2B34�

where Aij ¼ ð36o2 � 1Þ�ð3=2Þ½Cis1=3ð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36o2 � 1

p
� 72oÞ

þ Cjs�ð1=3Þð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36o2 � 1

p
þ 72oÞ�

Bij ¼ 16ð36o2 � 1Þ�ð3=2Þ½Cis1=3 � Cjs�ð1=3Þ�
s ¼ 6oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36o2 � 1

p
; j6oj > 1; j ¼ 4x1 � Z2 > 0

o ¼ x� x1Zþ 1

6
Z3

� �
j�ð3=2Þ; x ¼ x0 þ x3; Z ¼ x0 � x3

M10: E1 ¼ s�1ð1 þ x2Þ�1



x1C5 � x2C6 � ð1 þ o2Þ�1

�
xx1ðC1oþ C2Þ

þ xx2ðC3oþ C4Þ �
1

2
ð1 � x2Þðx1ðC1 � oC2Þ

þ x2ðC3 � oC4ÞÞ
��

þ 1

2
s�2ð1 þ x2Þð1 þ o2Þ�1½x1ðC1 � oC2Þ

� x2ðC3 � oC4Þ�
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E2 ¼ s�1ð1 þ x2Þ�1



x1C6 þ x2C5 þ ð1 þ o2Þ�1

�
xx1ðC3oþ C4Þ

� xx2ðC1oþ C2Þ þ
1

2
ð1 � x2Þðx2ðC1 � oC2Þ � x1ðC3 � oC4ÞÞ

��

þ 1

2
s�2ð1 þ x2Þð1 þ o2Þ�1½x1ðC3 � oC4Þ þ x2ðC1 � oC2Þ�

E3 ¼ s�1ð1 þ o2Þ�1½C1ðoþ xÞ þ C2ð1 � xoÞ�

H1 ¼ �s�1ð1 þ x2Þ�1



x1C6 þ x2C5 þ ð1 þ o2Þ�1

�
xx1ðC3o þ C4Þ

� xx2ðC1oþ C2Þ þ
1

2
ð1 � x2Þðx2ðC1 � oC2Þ � x1ðC3 � oC4ÞÞ

��

þ 1

2
s�2ð1 þ x2Þð1 þ o2Þ�1½x1ðC3 � oC4Þ þ x2ðC1 � oC2Þ�

H2 ¼ s�1ð1 þ x2Þ�1



x1C5 � x2C6 � ð1 þ o2Þ�1

�
xx1ðC1oþ C2Þ

þ xx2ðC3oþ C4Þ �
1

2
ð1 � x2Þðx1ðC1 � oC2Þ þ x2ðC3 � oC4ÞÞ

��

� 1

2
s�2ð1 þ x2Þð1 þ o2Þ�1½x1ðC1 � oC2Þ � x2ðC3 � oC4Þ�

H3 ¼ s�1ð1 þ o2Þ�1½C3ðoþ xÞ þ C4ð1 � xoÞ�

where s ¼ x2
1 þ x2

2; o ¼ Zð1 þ x2Þs�1 � x; Z ¼ x0 þ x3; x ¼ x0 � x3

In these formulas Cj; ðj ¼ 1; 2; . . . ; 6Þ are arbitrary real constants.

Note that the constructed Maxwell fields are, generally speaking, non-

orthogonal. However, provided some additional restrictions on the parameters

C1; . . . ;C6 are imposed, they become orthogonal. Consider, as an example, the

last solution from the preceding list. Imposing the orthogonality condition E � H
¼ 0 yields the following restrictions on the choice of C1; . . . ;C6:

C2C6 ¼ C4C5; C1C6 ¼ C1C3 þ C2C4 þ C3C5

Next, for the solution invariant under the subalgebra M1, the orthogonality

condition leads to the following set of algebraic equations to be satisfied by the

parameters C1; . . . ;C6:

C2C3 ¼ C1C4; C1C3 ¼ 0
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VI. CONCLUDING REMARKS

The range of applications of the Lie group methods for solving systems of linear

and nonlinear partial differential equations is so wide that it is simply

impossible to give a detailed account of all the available techniques, even if we

consider only some fixed group, such as the conformal group Cð1; 3Þ. However,

the basic ideas and methods presented in this review chapter are easily adapted

to the cases of other groups of importance for modern physics. In particular, it is

straightforward to modify the general reduction method suggested here in order

to make it applicable for solving equations of nonrelativistic physics, where the

central role is played by the Galileo and Schrödinger groups.

Furthermore, the general method presented in this chapter applies directly to

solving the full Maxwell equations with currents. It can also be used to construct

exact classical solutions of Yang–Mills equations with Higgs fields and their

generalizations. Generically, the method developed in this chapter can be

efficiently applied to any conformally invariant wave equation, on the solution

set of which a covariant representation of the conformal algebra in Eq. (15) is

realized.

We do not consider here the solution techniques based on the symmetry

reduction of different versions of the self-dual Yang–Mills equations to integr-

able models (we refer the interested reader to several papers [13–15],[22–24,65]

for a detailed exposition of the results in this field available to date).

The results of exact solutions of nonlinear generalizations of the Maxwell

equations are also beyond the scope of the present review. A survey of these

results, as well as an extensive list of references, can be found in Fushchych

et al. [21].
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I. INTRODUCTION

It was assumed that a description of evolution of deterministic systems required

a solution of the equations of motion, starting from some initial conditions.

Although Poincaré [1] knew that it was not always true, this opinion was

common. Since the work of Lorenz [2] in 1963, unpredictability of deterministic

systems described by differential nonlinear equations has been discovered in

many cases. It has been established that given infinitesimally different initial

conditions, the outcomes can be wildly different, even with the simplest

equations of motion. This feature means the occurrence of deterministic chaos.

The literature devoted to this multidisciplinary and rapidly developing disci-

pline of science is huge. There are many excellent textbooks, monographs, and

collections of main papers, and we mention only a few [3–8].

In this overview we focus our attention on some problems of optical chaos.

In many optical effects and devices intrinsic instabilities occur and for over

thirty years they have been extensively investigated. The literature on optical

chaos is widespread and a few excellent reviews and collections of papers

should be recalled [9–13].

After an overview of the main papers devoted to chaos in lasers (Section I.A)

and in nonlinear optical processes (Section I.B), we present a more detailed

analysis of dynamics in a process of second-harmonic generation of light

(Section II) as well as in Kerr oscillators (Section III). The last case we consider

particularly in the context of coupled nonlinear systems. Finally, we present a

cumulant approach to the problem of quantum corrections to the classical

dynamics in second-harmonic generation and Kerr processes (Section IV).

A. Chaos in Lasers

Since the discovery of lasers it has been known that a derivation of time-

dependent equations governing interaction of molecules with electromagnetic

cavity modes leads to the so-called spontaneous instabilities. These laser ins-

tabilities were also observed experimentally — even for the first laser built by

Maiman in 1960. A random, periodic, or quasiperiodic train of spikes in a laser

generation is a fundamental instability due to nonlinearity of laser equations.

A comprehensive review of this specific laser-related topics was published in

1983 [14].

A major development reported in 1964 was the first numerical solution of the

laser equations by Buley and Cummings [15]. They predicted the possibility of

undamped chaotic oscillations far above a gain threshold in lasers. Precisely,

they numerically found ‘‘almost random spikes’’ in systems of equations adop-

ted to a model of a single-mode laser with a bad cavity. Thus optical chaos

became a subject soon after the appearance Lorenz’ paper [2].
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Real development in the field of chaotic properties of laser action began over

10 years later. In 1975 Haken [16] used the model of a single-mode laser with a

homogeneously broadened line (HBL) described by the Maxwell–Bloch equa-

tions and after some approximations showed the equivalence with an appro-

priate Lorenz system of equations. The model was extended to a multimode case

[17]. For a modulated external field, certain laser systems are described by a

driven Van der Pol oscillator, and the existence of chaos was found numerically

for these systems [18]. In the case of HBL lasers, a spatial inhomogeneity of

pump leading to a coupling of different modes, could give rise to an undamped

spiking behavior of lasers. This instability is chaotic and was found numerically

in a two-mode laser case [19]. A detuning was also incorporated in this model

[20], and the exact equivalence between a bad-cavity laser with a modulated

inversion and nonlinear oscillator in the Toda potential driven by an external

modulation was presented a few years later [21]. The parameters in HBL lasers

for which chaos is expected are highly unreal because of big loss in cavity rates.

For a detailed discussion of instabilities in HBL lasers, we refer the reader to a

treatise by Milonni et al. [13] and a paper by Harrison and Biswas [22].

The Haken model can be easily extended to the case of a single-mode

inhomogeneously broadened line (IBL) laser [13]. Numerical investigation of

the Maxwell–Bloch equations has been carried out for the case of a Doppler

broadening and for different parameter ranges, leading to findings of period

doubling and intermittency routes to chaos [23,24]. A phenomenon of meta-

stable chaos was also observed. The Maxwell–Bloch equations with an

inhomogeneously broadened line were also studied in the context of mode

splitting [13,25], bad-cavity instability conditions [26], ring laser configuration

[27], Hopf bifurcations [28], and a period doubling route to chaos [29].

Laser instabilities were experimentally investigated in many kinds of lasers

(see an overview of early papers [14]), but the first experimental observation of

the optical chaos was performed by Arecchi et al. [30] in 1982. They used a

stabilized CO2 laser with modulated cavity loss � ¼ gð1 þ acos�tÞ and by

changing the frequency of modulation �, they found a few period doubling

oscillations of the output intensity, both numerically and experimentally.

A detailed analysis shows that the case of the IBL laser is more convenient in

experimental investigations because the value of the threshold gain coefficient

needed in a laser setup is much smaller. Some spontaneous instability for this

case was first discovered experimentally by Casperson quite early [31] in a low-

pressure, electric discharge HeXe laser at 3.51 mm. For a special choice of

parameters the laser worked in the regime of the so-called self-pulsing

instability. But the first chaotic output from an IBL laser was experimentally

shown in 1982 by Weiss and King [32] in a HeNe laser (3.39 mm). A period

doubling route to chaos was found. In a HeXe laser, Gioggia and Abraham [33]

in 1983 reported a chaotic behavior of a generated signal and confirmed period
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doubling and intermittency routes to chaos. Similarly, chaotic emission was

observed in a ring cavity laser [34]. For an overview of early papers devoted to

IBL laser instabilities and chaos, see the study on self-pulsing and chaos in

continuous-wave (cw)-excited lasers by Abraham et al. [35].

To achieve the instability of homogeneous broadened line lasers, a satisfac-

tion of much more difficult conditions is required: large gain and the so-called

bad-cavity properties. This special regime for damping constants and mode

intensity is fulfilled in the far-infrared lasers [36]. In 1985 Weiss et al. [37,38]

experimentally found a period doubling route to chaos in the NH3 laser. Further

experimental investigation of chaotic dynamics in such lasers was reported

later [39].

The CO2 lasers were also investigated in connection with chaotic behavior,

and here we mention the most important papers in the field. The chaotic be-

havior associated with a transverse mode structure in a cw CO2 laser was obser-

ved in 1985 [40]. In the CO2 laser with elastooptically modulated cavity length,

a period doubling route to chaos was also found [41].

Chaos was also investigated in solid-state lasers, and the important role of a

pump nonuniformity leading to a chaotic lasing was pointed out [42]. A modula-

tion of pump of a solid-state NdP5O14 laser leads to period doubling route to

chaos [43]. The same phenomenon was observed in the case of laser diodes with

modulated currents [44,45]. Also a chaotic dynamics of outputs in Nd:YAG

lasers was also discovered [46–48]. In semiconductor lasers a period doubling

route to chaos was found experimentally and theoretically in 1993 [49].

An important technique of chaos control [50] was introduced in laser

systems in 1992 by Roy et al. [51]. They adopted the so-called occasional

proportional feedback method to stabilize limit cycles in a multimode Nd:YAG

laser with KTP crystal (doubling the basic frequency), pumped by a diode laser.

The CO2 laser with cavity loss modulation was used to implement the control

method of output signals proposed by Pyragas [52] and Bielawski et al. [53].

The experimental investigation of the control scheme based on a ‘‘washout

spectral filter’’ has been performed in the chaotic regimes of the CO2 laser with

modulated loss [54] as well as in the CO2 laser with intensity feedback [55]. In

1998, a control of chaos was demonstrated in Nd-doped laser with modulated

loss and pump and nonfeedback methods were adopted [56]. These important

methods of stabilization of chaotic systems are related to communication

theory. In particular, a synchronization of lasers in chaotic regimes has many

potential applications. In 1994 Roy and Thornburg proved experimentally for

the first time the possibility of synchronization of chaotic lasers [57], with

possible applications in digital communication [58]. The last experiments with

chaotic lasers revealed a possibility of transmitting a desired message in a very

fast way as well as encoding and decoding information in output lasers signals

[59–61].
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B. Chaos in Nonlinear Optics

Nonlinear optics is a very convenient area to investigate the phenomenon of

deterministic chaos both from theoretical and experimental points of view.

The Jaynes–Cummings model describing an ensemble of two-level atoms in

a resonant cavity with a single-mode field is a basic paradigm in quantum

optics. Numerical calculations of the appropriate Maxwell–Bloch equations

have revealed a chaotic behavior of the system in a semiclassical approach when

no rotating wave approximation is used [62,63]. In a full quantum-mechanical

approach, Graham [17] determined the eigenvalues and eigenstates of the

coupled atom-field system by numerical diagonalization, and the basis for a

quantum description of chaos was prepared. Later, different aspects of chaos in

the Jaynes–Cummings model were investigated in a semiclassical or in a full

quantum model [64–68].

A complex dynamical behavior was experimentally and numerically found in

a system of spin-1
2

atoms in an optical resonator with near-resonant cw laser

light and external static magnetic field [69]. Three-dimensional Bloch equations

were solved, and a chaotic motions was found and compared with experiment.

Quite early optical chaos was found in optical bistability. In 1979 Ikeda used

a ring cavity configuration for an optically bistable system with two-level

absorbing atoms [70]. Ikeda constructed an iterated map of a such system and

solving it, found the chaotic output of transmitted field strengths. Moreover, by

changing the input light intensities, he proved a period doubling route to chaos.

Later, chaos was investigated in the case of off-resonant (dispersive) bistability

[71–74]. The first experimental observation of chaos in optical bistability

system was made in 1981 by Gibbs et al. [75] in an optical device with electro-

nically introduced delay time. Nakatsuka et al. [76] in 1983 observed experi-

mentally the first chaotic generation in the phenomenon of dispersive bistability.

Next, experimental and theoretical evidence of chaotic behavior of signals

generated in bistable systems was checked by a few groups [77–82].

Second-harmonic generation of light is a nonlinear phenomenon in which

chaotic behavior was discovered in 1983 [83] (for details, see Secction II). In

the Kerr effect with an external time-dependent pump, a chaotic output may also

occur, which was proved for the first time in 1990 by Milburn [84] (see also

Section III).

Many kinds of molecular systems pumped by a strong laser light show

chaotic dynamics. Indeed, in a semiclassical model of a multiphoton excitation

on molecular vibration, chaos was discovered by Ackerhalt et al. [85] and

theoretically and numerically investigated in detail [86,87]. Moreover, the

equations of motion that describe a rotating molecule in a laser field can exhibit

a chaotic behavior and have been applied in the classical case of a rigid-rotator

approximation [87,88].
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Dynamical instabilities and chaos were discovered in many light scattering

processes. For example Milonni et al. in 1983 [89] found a chaotic strange

attractor in stimulated Raman scattering. They solved numerically the classical

coupled wave equations in the case of perfect phase-matching conditions. Next,

a period doubling route to chaos was found, and a fractal dimension of the

attractor was calculated by Nath and Ray [90]. Chaos in stimulated Brillouin

scattering was found in 1984 by Candall and Albritton [91]. The dynamics of

generated signals in stimulated scattering processes in optical fibers has also

been investigated [92].

Another class of good candidates for a study of chaos in nonlinear optics are

wave-mixing processes in which chaos appears in the propagation of laser light

through passive nonlinear media [93]. A chaotic behavior was observed in

three-wave mixing [94] and in four-wave mixing [95].

Experimental work and theoretical investigation show an important role of

spatial chaos in optical fibers, directional couplers, and generally in all-optical

switching devices [96/97].

The problem of quantum chaos in optics has been studied in a few areas. For

a short review, see Section IV.

II. CHAOS IN SECOND-HARMONIC GENERATION OF LIGHT

A. Introduction

Nonlinear optics deals with physical systems described by Maxwell equations

with an nonlinear polarization vector. One of the best known nonlinear optical

processes is the second-harmonic generation (SHG) of light. In this section we

consider a well-known set of equations describing generation of the second

harmonic of light in a medium with second-order nonlinear susceptibility wð2Þ.
The classical approach of this section is extended to a quantum case in

Section IV.

The first experimental evidence of SHG was reported by Franken et al. [98],

who focused a ruby laser beam (lL ¼ 0:694 nm) on a quartz crystal and

analyzed the two outgoing beams by a standard method (the second-harmonic

beam was observed in the UV region 2lS ¼ 0:347 nm). This experiment was

soon followed by a theoretical analysis by Armstrong et al. [99]. Since then

many articles have appeared on the subject (bibliographies are presented in

Refs. 100 and 101).

To analyze the dynamics of SHG, we use time-dependent ordinary differen-

tial equations. At the beginning, Maxwell’s equations governing SHG were

studied, and a simple analytical time dependent solutions was found [99]. The

classical case of SHG was discussed by Bloembergen [102], and the present-day

state in the dynamics of SHG without damping and pumping was clarified
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[103]. The same equations, albeit with damping and coherent external driving

field, were studied by Drummond et al. [104] as a particular case of sub/second-

harmonic generation. They proved that below a critical pump intensity, the

system can reach a stable state (field of constant amplitude). However, beyond

the critical intensity, the steady state is unstable. They predicted the existence of

various instabilities as well as both first- and second-order phase transition-like

behavior. For certain sets of parameters they found an amplitude self-modula-

tion of the second harmonic and of the fundamental field in the cavity as well as

new bifurcation solutions. Mandel and Erneux [105] constructed explicitly and

analytically new time-periodic solutions and proved their stability in the vicinity

of the transition points.

SHG equations were used also to analyze of deterministic chaos. Savage and

Walls were the first [83] to prove the existence of chaos in the case of nonzero

detuning between laser and cavity modes. They found a period-doubling route

to chaos. Bistability, self-pulsing, and chaos were also studied Lugiato et al.

[106]. The dynamics of SHG in the case of time-dependent external pumping

was investigated by the present authors. Numerical analysis of the equation of

motions was performed for the modulated pump amplitude [107] as well as for

the external pump of rectangular pulses [108]. Alekseeva et al. [109] presented a

detailed study of the spatial evolution of multifrequency fundamental and

second-harmonic radiation and showed that the system may exhibit a spatial

chaos due to multiple competing processes. Also, a hyperchaotic dynamic in

SHG was numerically predicted [110,111].

B. Basic Equations

Let us consider an optical system with two modes at the frequencies o and 2o
interacting through a nonlinear crystal with second-order susceptibility placed

within a Fabry–Pérot interferometer. In a general case, both modes are damped

and driven with external phase-locked driving fields. The input external fields

have the frequencies oL and 2oL. The classical equations describing second-

harmonic generation are [104,105]:

da1

dt
¼ �i�0

1a1 � �1a1 þ ka�1a2 þ F1

da2

dt
¼ �i�0

2a2 � �2a2 �
1

2
ka2

1 þ F2

ð1Þ

Rapid oscillations (at the frequencies o;oL; 2o; 2oL) are removed from Eq. (1)

by frequency-matching conditions in the usual way. The quantities �0
1 ¼ o� oL

and �0
2 ¼ 2o� 2oL are frequency mismatches between the cavity and external

fields. Slowly varying in time, complex variables a1 and a2 are the electric field

amplitudes of the two modes E1ðtÞ ¼ a1ðtÞ expðiotÞ and E2ðtÞ ¼ a2ðtÞ expð2iotÞ
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describing fundamental and second-harmonic modes, respectively. Similarly, F1

and F2 are proportional to the electric field amplitudes of the two external

pumped modes F1ðtÞ ¼ F1ðtÞ expðioLtÞ and F2ðtÞ ¼ F2ðtÞ expð2ioLtÞ. Two

constants, �1 and �2, are the cavity loss rates for the appropriate modes. The

coupling constant k between the two modes is proportional to a nonlinear

susceptibility wð2Þ of the nonlinear medium. With a special choice of the spatial

mode functions, we can assume that k is real, and we exclude from our

investigation of polarization effects — all fields have linear polarization in the

same directions [104].

For numerical investigation, it is convenient to reduce the number of relevant

parameters in Eq. (1). On substituting

t ¼ kt; �1ð2Þ ¼
�0

1ð2Þ
k

; g1ð2Þ ¼
�1ð2Þ
k

; f1ð2ÞðtÞ ¼
F1ð2Þðt=kÞ

k
ð2Þ

into (2), we get the following redefined set of equations:

da1

dt
¼ �i�1a1 � g1a1 þ a�1a2 þ f1ðtÞ

da2

dt
¼ �i�2a2 � g2a2 �

1

2
a2

1 þ f2ðtÞ
ð3Þ

where fi are taken to be real. The above equations can be written in real variables.

On inserting

a1 ¼ Reða1Þ þ i Imða1Þ ¼ y1 þ i y3

a2 ¼ Reða2Þ þ i Imða2Þ ¼ y2 þ i y4

ð4Þ

we obtain four equations of motion:

dy1

dt
¼ �1y3 � g1y1 þ y1y2 þ y3y4 þ f1

dy2

dt
¼ �2y4 � g2y2 � 1

2
ðy2

1 � y2
3Þ þ f2

dy3

dt
¼ ��1y1 � g1y3 þ y1y4 � y2y3

dy4

dt
¼ ��2y2 � g2y4 � y1y3

ð5Þ

These four equations of motion describe the dynamics of SHG in the four-

dimensional phase space (Rea1; Ima1; Rea2; Ima2). In practice, we can observe

the motion only in the reduced phase space (phase surface). For example, with
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the help of two-dimensional phase portraits (Reai; Imaj), (Reai; Reaj) and

(Imai; Imaj), we can qualify the kind of motion of our system, which may be

periodic, quasiperiodic, or chaotic.

To identify chaotic behavior of a dynamical system, it is convenient to use

the Lyapunov exponents [112,113]. In particular, the procedure proposed by

Wolf et al. [114] is a very useful and efficient method that gives such exponents.

In this method we have to linearize the set of equations (5), and next the

linearized equations are solved together with the primary equations. Moreover,

we solve the eigenproblem for the Jacobi matrix of the set of linearized

equations in the so-called tangent space. Then, after Gram–Schmidt reorthonor-

malization, we obtain the set of Lyapunov exponents li as eigenvalues of the

long-time product Jacobi matrix. So, in this method the number of exponents, is

equal to a dimension of phase space [115]. In our case we have a set

fl1l2l3l4g; thus, we get a spectrum of Lyapunov exponents. Such a spectrum

is ordered from maximal to minimal value. The quantity l1 is traditionally

termed the maximal Lyapunov exponent (MLE), and its positive value points to

chaotic motion. If l1 
 0, the dynamical system behaves nonchaotically

(orderly).

A highly unstable system can manifest hyperchaotic behavior [116]. This

means that we have two positive Lyapunov exponents in a spectrum. The

phenomenon of hyperchaos have been investigated in many papers [117–120].

A route to hyperchaos was also investigated [121], and a method of controlling

of hyperchaos was introduced [122].

In next three sections we present a short overview of investigations of chaotic

and hyperchaotic behavior in the process of SHG.

C. Simplest Case: ci ¼ 0, �i ¼ 0, f i ¼ 0

In the simplest case of a free evolution without damping, pumping, and

mismatch, the equations of motion (3) are solved analytically. One easily notes

that the system (3) now belongs to the class of Hamiltonian systems with two

constants of motion:

I1 ¼ a�1a1 þ 2a�2a2

I2 ¼ � 1

2
i ða2

1a
�
2 � a2a�2

1 Þ
ð6Þ

They reduce the set (5) of four equations in real variables to two equations. This

means that we can have only regular, periodic, or quasiperiodic behavior, never

chaos. Chaos in a dynamical system governed by ordinary differential equations

can arise only if the number of equations is equal to or greater than 3. We

remember that we refer to the case of perfect phase matching (�k ¼ k1�
2k2 ¼ 0), and the well-known monotonic evolution of fundamental and
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second-harmonic mode intensities has been found [99,102] and is shown on

Fig. 1. If�k 6¼ 0, we obtain three equations of motion for a1, a2,�k (six equations

in real variables) and well known solutions show an oscillation behavior in such

cases of SHG. Detailed analysies are available in the literature [99,102,103].

Let us focus on the role of initial conditions in this case of SHG. The

equations of motion

da1

dt
¼ a�1a2 ;

da2

dt
¼ � 1

2
a2

1 ð7Þ

were solved with initial conditions a1ð0Þ ¼ a10 and a2ð0Þ ¼ a20. The case of

(a10 6¼ 0; a20 ¼ 0) is often called a second-harmonic generation process (Fig. 1).

For the case of (a10 6¼ 0; a20 6¼ 0), that is, when both fields start from the nonzero

initial conditions, we deal with a mixed process of sub/second-harmonic

generation. Throughout this work the symbol SHG refers to both these cases. In

Fig. 2 we see the evolution of the system from the initial conditions: a10 ¼
0:1 þ i0:1 and a20 ¼ 0:01 þ i0:01. One can observe in Fig. 2a the periodic

oscillation in intensity of both modes. However, in the phase space the motion of

0.00

0.01

0.02

0.03

0 50 100

|α1|2

|α2|2

τ

Figure 1. Monotonic behaviour of the fundamental and second-harmonic modes. Solution of

Eqs. (7) for the initial conditions a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0.
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Figure 2. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).

Solution of Eqs. (7) for the initial conditions a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i 0:01. Quasi-

periodic behavior.
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the system is quasiperiodic, as seen in Fig. 2b. The phase point draws a nonclosed

path within the rosette area. The rosette becomes increasingly denser with time,

and finally we get a blackened area. A similar rosette is obtained for the second-

harmonic mode. For the case of (a10 ¼ 0; a20 6¼ 0), Eq. (7) have constant

solutions, and we do not observe any time changes in the SHG system. There is

no subharmonic generation without an external pumping f2.

To sum up, in nonlinear systems the influence of initial conditions on

dynamics of a system is essential, therefore the three different initial conditions

discribed above lead to different dynamics within the same equations of motion.

D. Coherent External Field

Another clear example of a system generating second harmonics is the one

employing an external coherent pump field fi ¼ constant without dumping

(gi ¼ 0) and frequency mismatch (�i ¼ 0). The system belongs to the class

of Hamiltonian systems. The function (Hamiltonian)

HðtÞ ¼ i f1 ða�1 � a1Þ þ i f2 ða�2 � a2Þ �
1

2
iða2

1a
�
2 � a2a�2

1 Þ ð8Þ

is a constant of motion for Eq. (3). Since we have only pumping, the trajectory

shows an expanding nature [123].

If we now include damping (without mismatch), we get results in compliance

with Ref. 104. As did Mandel and Erneux [105], we introduce the notions of

good (g1 � g2) and bad (g1 ffi g2) frequency conversion limits in our discus-

sions. We denote them as GCL and BCL, respectively. The case of a coherent

pump field was also studied by Drummond et al. [104] with a nonrescaled

version of Eq. (1). To get the compact results we use, in accordance with (3), the

parameters f0 ¼ 2, t ¼ 10t, and g1 ¼ g2 ¼ 0:34 (BCL) or g1 ¼ 0, g2 ¼ 0:34

(GCL). For the intensity of the coherent pump

f1 ¼ ð2g1 þ g2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2ðg1 þ g2Þ

p
ð9Þ

and f2 ¼ 0, we get a transition from monotonic solutions of (3) to a self-

pulsation. As we see in Fig. 3a, after transient effects the system manifests self-

pulsation and an appropriate phase portrait for the fundamental mode is presented

in Fig. 3b. The limit cycle indicates a periodic motion of the system. If the pump

f1 increases some multiperiodic oscillations occur (Fig. 4). If we change the

parameters of pumping f1 and f2, we can find [104] that this system exhibits both

first- and second-order phase transition-like behavior and also has a hard mode

transition. Farther numerical and analytical analysis [105] indicated a new

transition involves an hysteresis cycle.
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Figure 3. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).

Solution of Eqs. (3) for f1 ¼ 2; f2 ¼ 0; g1 ¼ g2 ¼ 0:34 (BCL) and initial conditions a10 ¼ 0:1 þ i 0:1
and a20 ¼ 0. Self-pulsation.

chaos in optical systems 365



10 200
0.0

10.0

20.0

30.0

 τ
(a)

|α1|2

|α2|2

−3.00−6.00
0.00

1.00

2.00

3.00

4.00

5.00

0.00 3.00 6.00

(b)

Im α1

R
e 

α 1

Figure 4. Multiperiodic behaviour in SHG. The same as in Fig. 3 but f1 ¼ 5:
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Figure 5. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).

Solutions of Eqs. (3) with parameters �1 ¼ �2 ¼ 1; f1 ¼ 5:5; f2 ¼ 0; g1 ¼ g2 ¼ 0:34 (BCL). The

initial conditions are a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i 0:01. Chaos.
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We get a very similar time behavior in subharmonic generation where f1 ¼ 0

and f2 6¼ 0. Self-pulsation and multiperiodic evolution of intensities have been

found. However, these findings are not investigated here.

The case of a frequency mismatch between laser pumps and cavity modes

was investigated [83], and for the first time, chaos in SHG was found. When the

pump intensity is increased, we observe a period doubling route to chaos for

�1 ¼ �2 ¼ 1. Now, for f1 ¼ 5:5, Eq. (3) give aperiodic solutions and we have a

chaotic evolution in intensities (Fig. 5a) and a chaotic attractor in phase plane

(Im a1; Re a1) (Fig. 5b).

E. Modulated External Field

A more complicated behavior of the system (3) is manifested if the time-

dependent driving field and damping are taken into account. Let us assume that

the driving amplitude has the form f1ðtÞ ¼ f0ð1 þ sinð�tÞÞ, meaning that the

external pump amplitude is modulated with the frequency � around f0. More-

over, f2 ¼ 0 and �1 ¼ �2 ¼ 0. It is obvious that if we now examine Eq. (3), the

situation in the phase space changes sharply. In our system there are two

competitive oscillations. The first belongs to the multiperiodic evolution

mentioned in Section II.D, and the second is generated by the modulated

external pump field. Consequently, we observe a rich variety of nonlinear

oscillations in the SHG process.

The frequency of modulation � is now the main parameter, and we are able

to switch the system of SHG between different dynamics by changing the value

of �. To find the regions of � where a chaotic motion occurs, we calculate a

Lyapunov spectrum versus the ‘‘knob’’ parameter �. The first Lyapunov

exponent l1 from the spectrum is of the greatest importance; its sign determines

the chaos occurrence. The maximal Lyapunov exponent l1 as a function of � is

presented for GCL in Fig. 6a and for BCL in Fig. 6b. We see that for some

frequencies � the system behaves chaotically (l1 > 0) but orderly (l1 < 0) for

others. The system in the second case is much more damped than in the first

case and consequently much more stable. By way of example, for � ¼ 0:9 the

system of SHG becomes chaotic as illustrated in Fig. 7a, showing the evolution

of second-harmonic and fundamental mode intensities. The phase point of the

fundamental mode draws a chaotic attractor as seen in the phase portrait

(Fig. 7b). However, the phase point loses its chaotic features and settles into

a symmetric limit cycle if we change the frequency to � ¼ 1:1 as shown in

Fig. 8b, while Fig. 8a shows a seven-period oscillation in intensities. To avoid

transient effects, the evolution is plotted for 450 < t < 500.

Let us emphasize that for other values of parameter � we can also observe in

the phase plane intricate symmetric limit cycles [107,123], such as the five-

period oscillations we get for � ¼ 0:78.
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Figure 6. Maximal Lyapunov exponent l1 versus the modulation parameter � for f0 ¼ 2 and

the initial conditions are a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i 0:01. (a) GCL and (b) BCL.
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Figure 7. Time evolution of intensity (a) and phase portrait for the fundamental mode for

0 < t < 300 (b). Parameters are the same as in Fig. 6b (BCL), but with � ¼ 0:9. Chaos.
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t > 450 (b). Parameters are the same as in Fig. 6b (BCL) but with � ¼ 1:1. Limit cycle.
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Highly unstable systems lead to two positive Lyapunov exponents that show

the hyperchaotic behavior [116]. Now, Eq. (3) is numerically examined with

damping constants g1 ¼ g2 ¼ 0:01. In Fig. 9a we see only the two largest Lya-

punov exponents of all the spectrum versus the modulation parameter �. The
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Figure 9. The two largest Lyapunov exponents (a) and the bifurcation diagram (the maxima

of y1) (b) versus the modulation parameter �. Parameters are f0 ¼ 1; g1 ¼ g2 ¼ 0:01 and the initial

conditions are a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i0:01. Hyperchaos.
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Figure 10. The phase portraits Rea2 versus Ima2 for f0 ¼ 1; g1 ¼ g2 ¼ 0:01;a10 ¼ 0:1 þ i 0:1,

and a20 ¼ 0:01 þ i0:01. The hyperchaotic trajectory for � ¼ 0:8 (a) and the limit cycle for

� ¼ 1:55(b). The time is 400 < t < 500.
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damping is so weak that we can state that the system is hyperchaotic. There are

two extensive regions of hyperchaos between 0:45 < � < 0:98 and � > 2:22,

where two Lyapunov exponents are positive. In the region 0:98 < � < 2:22

hyperchaos does not appear at all. Generally, the region 0:98 < � < 2:22 can be

treated as nonchaotic apart from a few values of the parameter � for which only

one Lyapunov exponent is positive. These regions of stability and instability are

best visualized in the bifurcation diagram (Fig. 9b), where we plot the maxima

of Re a1 ¼ y1 versus the parameter of modulation �. It is obvious that a change

in � switches the system among chaos, hyperchaos, or limit cycles. For

� ¼ 0:8, we observe a hyperchaotic orbit in the phase portrait of the second-

harmonic mode (Fig. 10a). The same orbit, except for � ¼ 1:55, becomes a

limit cycle (Fig. 10b).

When the damping in the system is increased, the regions of hyperchaos

disappear. Moreover, it is interesting that the region of order that we obtained in

Fig. 9 is very stable despite changing damping constants, so we can chose the

frequency of modulation of an external field in such a way ð1 < � < 1:8) that

the system remains stable even for a relatively small damping.

F. Pulsed External Field

In this section we consider a case particularly important for experimental

investigation. The external driving field f1ðtÞ applied to Eq. (3) has the form

of a train of pulses that are simulated by a computer. The length of the pulse is

denoted by T1, and the height of the pulse by f0. The distance between two

pulses is denoted by T2. For f0 6¼ 0 and T2 ¼ 0, the train of pulses becomes a

coherent driving field (Section II.D). The second driving field f2 is assumed to

be zero and �1 ¼ �2 ¼ 0. We examine the dynamical system (3) in the same

way as in Section II.E. In Fig. 11 we present the maximal Lyapunov exponent

l1 as a function of the length of the pulse T1 (for T2 ¼ 1). As shown in

Fig. 11a,b, at the beginning l1 is negative, implying the appearance of order in

the range 0 < T1 < 0:085 for GCL and 0 < T1 < 0:55 for BCL. The funda-

mental (j a1 j2Þ) and second-harmonic (j a2 j2) intensities tend to oscillatory

states in the course of time [108]. This is the short-pulse regime, and the

appropriate evolution of both intensities is shown in Fig. 12. Here, one can easy

recognize moments of time where the pulses are switched on and off. The

period of sawtooth-like oscillations is equal to the repetition rate of pulses. The

typical phase portrait for the short-pulse case is presented in Fig. 13. Finally, we

observe a limit cycle where the phase point moves up and down only a segment

of a straight line (shaded dark in Fig. 13b).

For 0:085 < T1 < 0:5 (GCL) and for 0:55 < T1 < 0:97 (BCL), the maximal

Lyapunov exponents l1 are near zero; consequently, we obtained quasiperiodic

trajectories. Typical quasiperiodic trajectories for both cases are shown in
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Fig. 14. The trajectory is a nonclosed path, and for long times we get a black-

ened area.

A more complicated behavior of the MLE is observed for higher values of

T1. Varying the length of the pulse T1, we observe regions of order and chaos.

By way of an example, the phase portrait Rea1 versus Ima1 for a chaotic

attractor is shown in Fig. 15.

Within the region of order ðl1 
 0Þ we see intricate symmetric and non-

symmetric limit cycles in phase diagrams. For example, for T1 ¼ 4:1 we see in
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Figure 11. The maximal Lyapunov exponent l1 versus the pulse duration T1, for

f0 ¼ 2; T2 ¼ 1; a10 ¼ 0:1 þ i 0:1;a20 ¼ 0: (a) the case of GCL g1 ¼ 0; g2 ¼ 0:34; (b) the case of

BCL g1 ¼ 0:34; g2 ¼ 0:34.
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Fig. 16a symmetric limit cycles for the second-harmonic mode (GCL) and in

Fig. 16b, an nonsymmetric phase portrait example for T1 ¼ 0:5 for BCL. In

both cases the phase point settles down into a closed-loop trajectory, although

not earlier than about t > 200. An intricate limit cycle is usually related to

multiperiod oscillations. For example, the cycle in Fig. 16a corresponds to

five-period oscillations of the fundamental and SHG modes intensity, and the

phase portrait in Fig. 16b resembles the four-period oscillations (see Fig. 17).

Generally, for T1 > 0:5, we observe many different multiperiod (even 12-period)

oscillations in intensity and a rich variety of phase portraits.

Some hyperchaotic behavior in SHG with pump of pulses has been shown

[111]. The two largest Lyapunov exponents versus a duration of pulse T1 are

presented in Fig. 18a for the cases of BCL. There are a two regions of

hyperchaos. A Typical hyperchaotic phase portrait is presented in Fig. 18b.

G. Final Remarks

Small changes in the modulated pump parameters �; fo and in the pulse

parameters T1; T2; fo induce dramatic changes the output fields. Therefore

0
0.00

0.03

0.06

10 20 30 40

lα1l2

lα2l2

τ

Figure 12. Intensities in the short-pulse regime for the GCL case. The parameters are the same

as for Fig. 11a but T1 ¼ 0:01.
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Figure 13. (a) A typical phase portrait in the short-pulse regime for GCL case; (b) an

enlargement of the signed region of Fig. 13a. The parameters are the same as for Fig. 11a but

T1 ¼ 0:01.
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SHG can be used as a source of signals with chaotic or even hyperchaotic

amplitudes that can be suddenly switched to the periodic regimes. This kind of

performance can be employed for communications devices. We mention here

the possibility of encoding a message within chaotic dynamics [124].

In order to relate the theory and numerical calculations to the physical

parameters, we followed the estimations of Drummond et al. [104]. For a typical

spherical Fabry–Pérot interferometer of length 10 cm with an appropriate crystal

(e.g., KDP of length 1 cm), one can get approximate values of parameters of the

SHG system. The typical damping constant for the mirror reflectivities 0.995 is

g ’ 106. The coupling constant k was estimated in the interval of 50--500 s�1.

These coupling constant values permit experimental verification of dynamical

behavior of SHG. In preceding, sections the coupling constant k is given by

relation k ¼ t=t, where t and t are the rescaled and real times, respectively.

Therefore the parameter of modulation � can change between 0 and 3500 Hz

(in our calculations 0 < � < 7 in arbitrary units). We also obtained the

appropriate pulse repetition rate in an interval from 10�3 up to 10�2 s. This

rather rough estimation allows experimental verification of our numerical

analysis.

III. CHAOS IN KERR OSCILLATORS

A. Introduction

Since 1990 considerable interest has been devoted to mutually coupled dyna-

mical systems. Different kinds of new dynamical behavior have been revealed

and studied, including synchronization effects [125–128], ON-OFF intermittency

[129], two-state ON-OFF intermittency [130], uncertain destination dynamics

[131], or riddled basins of attractions [132]. Other interesting topics in the field

of coupled nonlinear systems are generation of beats and their properties. The

structure of beats has been intensely studied mainly in quantum and nonlinear

optics. The intricate beats are frequently referred to as ‘‘revivals’’ and ‘‘collapse

phenomena’’ [133]. The revivals and collapses, representing the structure of

complicated modulations, remain quasiperiodic functions [134,135]. It is well

known that beats in linear systems originate from the superposition of periodic

functions with slightly different periods. The question is what are the changes in

the structure of beats in a linear system if the linear system is supplemented by a

nonlinear term and whether it is possible to generate chaotic beats.

One of the best known and most intensively studied optical models is an

oscillator with Kerr nonlinearity. Mutually coupled Kerr oscillators can be

successfully used for a study of couplers; the systems consist of a pair of coupled

Kerr fibers. The first two-mode Kerr coupler was proposed by Jensen [136] and

investigated in depth [136,137]. Kerr couplers affected by quantization can
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exhibit various quantum properties such as squeezing of vacuum fluctuations,

sub-Poissonian statistics, collapses, and revivals [138,139].

In this section we consider a model of interactions between the Kerr oscilla-

tors applied by J. Fiurášek et al. [139] and Peřinová and Karská [140]. Each

Kerr oscillator is externally pumped and damped. If the Kerr nonlinearity is

turned off, the system is linear. This enables us to perform a simple comparison

of the linear and nonlinear dynamics of the system, and we have found a specific

nonlinear version of linear filtering. We study numerically the possibility of

synchronization of chaotic signals generated by the Kerr oscillators by employ-

ing different feedback methods.

B. Basic Equations

The Hamilton function for a single Kerr oscillator is defined by

Hðp; qÞ ¼ p2

2
þ o2

0 q2

2
þ E

p2

2
þ o2

0 q2

2

� �2

ð10Þ

where E is the Kerr parameter. If E ¼ 0, the Hamiltonian expressed here describes

a simple harmonic oscillator with the natural frequency o0. The dynamical

variables p and q denote the momentum and generalized coordinate, respectively.

The Hamilton equations

dq

dt
¼ qH

qp
ð11Þ

dp

dt
¼ � qH

qq
ð12Þ

applied to the Hamiltonian (10) lead to the following coupled equations of

motion:

dq

dt
¼ p½1 þ Eðp2 þ o2

0q2Þ� ð13Þ

dp

dt
¼ �o2

0q½1 þ Eðp2 þ o2
0q2Þ� ð14Þ

If the initial state of the system is determined by the initial conditions qð0Þ ¼ q0

and pð0Þ ¼ p0, the solution of the system (13)–(14) is given by

qðtÞ ¼ q0 coso0½1 þ Eðp2
0 þ o2

0q2
0Þ�t þ

p0

o0

sino0½1 þ Eðp2
0 þ o2

0q2
0Þ�t ð15Þ

pðtÞ ¼ p0 coso0½1 þ Eðp2
0 þ o2

0q2
0Þ�t � q0o0 sino0½1 þ Eðp2

0 þ o2
0q2

0Þ�t ð16Þ
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The system (13)–(14) has two independent constants of motion (first integrals):

the Hamilton function (10) and

fðp; q; tÞ ¼ �o0 1 þ E p2 þ o2
0q2

� �� �
t þ arctan

o0q

p

� �
ð17Þ

For E ¼ 0, the quantities (10) and (17) become first integrals for the harmonic

oscillator [141]. It is obvious from (15)–(16) that a trajectory in phase space

ðp; qÞ for the Kerr oscillator is analytically the same ellipse as for the harmonic

oscillator

p2

p2
0 þ o2

0q2
0

þ o2
0q2

p2
0 þ o2

0q2
0

¼ 1 ð18Þ

The only difference is that for the harmonic oscillator the phase point draws the

ellipse with the frequency o0, whereas for the Kerr oscillator with the frequency,

� ¼ o0½1 þ Eðp2
0 þ o2

0q2
0Þ�. The frequency � depends on the initial conditions,

which is a feature typical of nonlinear conservative systems [143].

The set of equations (13)–(14) describes a conservative system. However, the

effect of linear dissipation can be incorporated phenomenologically. Then, Eqs.

(13)–(14) have the form

dq

dt
¼ p½1 þ Eðp2 þ o2

0q2Þ� � gq ð19Þ
dp

dt
¼ �o2

0q½1 þ Eðp2 þ o2
0q2Þ� � gp ð20Þ

where the terms gq and gp describe a loss mechanism, with the damping constant

g. The solution of the preceding equations is given by [142]

qðtÞ ¼ e�gt q0 cosNðtÞ þ p0

o0
sin NðtÞ

� �
ð21Þ

pðtÞ ¼ e�gtðp0 cosNðtÞ � q0o0 sin NðtÞÞ ð22Þ

where

NðtÞ ¼ o0t þ Eo0

2g
ðp2

0 þ o2
0q2

0Þð1 � e�2gtÞ ð23Þ

If E ¼ 0, the system (19)–(20) describes a damped linear oscillator governed by

the equation

d2q

dt2
þ 2g

dq

dt
þ ðo2

0 þ g2Þq ¼ 0 ð24Þ
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Generally, if Kerr systems are driven by external time-dependent forces, the

equations of motion are nonintegrable and have to be studied numerically.

C. Dynamics of Linearly Coupled Kerr Oscillators

Let us consider a system of two classical oscillators with Kerr nonlinearity. Both

oscillators interact with each other by way of a linear coupling; moreover, they

are pumped by external time-dependent forces. The Hamiltonian for the system

is given by

H ¼
X2

i¼1

½Hi þ EiH
2
i � qiFiðtÞ� � aq1q2 ð25Þ

where the Hamiltonian Hi ¼ 1
2
ðp2

i þ o2
0q2

i Þ describes a simple harmonic

oscillator with the frequency oo. Moreover, FiðtÞ ¼ Ai cosoit is the time-

dependent force, with the amplitude Ai and the frequency oi. The parameter of

Kerr nonlinearity is denoted by Ei. The interaction between the Kerr oscillators is

governed by the term aq1q2, where a plays the role of an interaction parameter.

The equations of motion for the system described by the Hamiltonian (25) are

given by

dq1

dt
¼ p1½1 þ E1ðp2

1 þ o2
0q2

1Þ� � g1q1 ð26Þ
dp1

dt
¼ �o2

0q1½1 þ E1ðp2
1 þ o2

0q2
1Þ� þ aq2 � g1p1 þ A1 coso1t ð27Þ

dq2

dt
¼ p2½1 þ E2ðp2

2 þ o2
0q2

2Þ� � g2q2 ð28Þ
dp2

dt
¼ �o2

0q2½1 þ E2ðp2
2 þ o2

0q2
2Þ� þ aq1 � g2p2 þ A2 coso2t ð29Þ

where the terms giqi and gipi describe a loss mechanism. The loss mechanism has

been incorporated phenomenologically. If the linear coupling parameter a is

equal to zero, both anharmonic oscillators behave independently; that is, they do

not interact with each other. Therefore, for a ¼ 0 the equations of motion (26)–

(29) form two independent sets of equations. The equations of motion (26)–(29)

give a four-dimensional nonautonomous system that can be easily autonomized

[115] if we put t ¼ q3 in the functions cosoit. Then, time becomes a dynamical

variable and the fifth equation is given by

dq3

dt
¼ 1; q3ð0Þ ¼ 0 ð30Þ

In general, the system (26)–(30) is nonintegrable and its dynamics has to be

studied numerically. We examined it with the help of a fourth-order Runge–Kutta
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method. To calculate Lyapunov exponents, we used the procedure proposed by

Wolf et al. [114]. The spectrum of the autonomized system (26)–(30) is denoted

by the symbols fl1; l2; l3; l4; l5g.

1. Noninteracting Oscillators

Let us first consider the case of noninteracting oscillators that takes place when

the interaction parameter a in Eqs. (26)–(29) is equal to zero. Then, the system

(26)–(29) consists of two independent subsystems in the dynamical variables

ðq1; p1Þ and ðq2; p2Þ. The parameters of the subsystems are A1 ¼ A2 ¼ 200,

o0 ¼ 1, E1 ¼ E2 ¼ 0:1, g1 ¼ 0:05, g2 ¼ 0:5. The frequencies o1;2 of the

external driving forces vary in the range 0 < o1;2 < 3:2. The autonomized

spectrum of Lyapunov exponents fl1; l2; l3g for the first oscillator I versus the

frequency o1 is presented in Fig. 19a. We observe three types of spectra:

fþ; 0;�g, f0; 0;�g; and f0;�;�g. The first indicates a chaotic attractor; the

second, a quasiperiodic orbit; and the third, a limit cycle. Therefore a change in

the frequency o1 switches the chaotic oscillations (chaotic attractors) into

nonchaotic oscillations (quasiperiodic orbits, limit cycles) and inversely. The

autonomized spectrum of Lyapunov exponents for the second oscillator II

versus the frequency o2 is shown in Fig. 19b. The difference between the

two figures is essential. The chaotic regions in Fig. 19b do not appear at all

because of the increase in damping in the system. The only attractors are limit

cycles f0;�;�g. By way of an example, for identical frequencies o1 ¼ o2 ¼
0:55, the Lyapunov spectra for the first and second oscillators are f0:08; 0:00;
�0:23gI

and f0:00;�0:55;�0:90gII
, respectively. The topology of the chaotic

attractor in the phase space ðq1; p1Þ is shown in Fig. 20a. The phase point starts

from the initial conditions q10 ¼ 10 and p10 ¼ 10 and moves within the

blackened area, which makes an attractor, after t > 200. In the phase plane

ðq2; p2Þ the phase point draws a limit cycle (Fig. 20b). The intricate structure of

the limit cycle is related to multiperiodic oscillations of the system. The

blackened areas at the top and bottom of the limit cycle have a periodic

structure invisible in the scale of the phase portrait.

The single Kerr anharmonic oscillator has one more interesting feature. It is

obvious that for Ej ¼ 0 and gj ¼ 0, the Kerr oscillator becomes a simple linear

oscillator that in the case of a resonance oi ¼ o0 manifests a primitive

instability; in the phase space the phase point draws an expanding spiral. On

adding the Kerr nonlinearity, the linear unstable system becomes highly chaotic.

For example, putting A1 ¼ 200, o1 ¼ o0 ¼ 1, E1 ¼ 0:1 and g1 ¼ 0, the spec-

trum of Lyapunov exponents for the first oscillator is f0:20; 0;�0:20gI
.

However, the system does not remain chaotic if we add a small damping. For

example, if g1 ¼ 0:05, then the spectrum of Lyapunov exponents has the form

f0:00; �0:03;�0:12gI
, which indicates a limit cycle.
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2. Interacting Oscillators

If the interaction parameter a is switched on, the system of coupled oscillators

(26)–(29) manifests a rich variety of spectacular behavior. Below, we concen-

trate on the most interesting ones. First, we answer the question as to how the

attractors in Fig. 20 change when both oscillators interact with each other.

1. The Case A1 ¼ A2, g1 < g2. The dynamics of the coupled oscillators is

investigated for an interaction parameter a varying in the range 0 < a < 1. The
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Figure 19. Spectra of Lyapunov exponents for the system (26)-(30) with a ¼ 0. The initial

conditions are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10. (a) Spectrum fl1;l2; l3gI
for the first

oscillator (I) versus the frequency o1 for o0 ¼ 1, A1 ¼ 200. g1 ¼ 0:05, and E1 ¼ 0:1. (b) The same

for the second oscillator (II) with the parameters: o0 ¼ 1;A2 ¼ 200; g2 ¼ 0:5, and E2 ¼ 0:1.
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joint autonomized spectrum of Lyapunov exponents fl1; l2; l3; l4; l5g versus

the interaction parameter a is shown in Fig. 21. The value a ¼ 0 is a limit value

related to the dynamics of the uncoupled oscillators. This has already been done

in Section III.C.1 In the region 0 < a < 0:74 the chaotic behavior of the coupled

oscillator system predominates over the nonchaotic one; thus, for most values of

20.00

10.00

0.00
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−10.00 −5.00 0.00 5.00 10.00
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Figure 20. Phase portraits for the system (26)–(30) with a ¼ 0. The initial conditions are

q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10. (a) Phase portrait (q1; p1) of the first oscillator for

A1 ¼ 200;o0 ¼ 1; E1 ¼ 0:1;o1 ¼ 0:55, and g1 ¼ 0:05. (b) Phase portrait (q2; p2) of the second

oscillator for A2 ¼ 200;o0 ¼ 1; E1 ¼ 0:1;o2 ¼ 0:55, and g1 ¼ 0:5.
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the parameter a, the maximal Lyapunov exponent is positive. For

0:68 < a < 0:71 we get the maximum chaos. For a > 0:74 the system does

not show chaotic behavior. Generally, the only spectra of Lyapunov exponents

that appear in Fig. 21 are of types fþ; 0;�;�;�g; f0; 0;�;�;�g, and

f0;�;�;�;�g. These three types of spectra (for a > 0) do not allow us to

ascertain which of the two interacting oscillators is more (or less) chaotic than

the other unless a ¼ 0. However, the dynamics of individual oscillators can be

estimated with the help of the appropriate phase portraits. For example, if the

interaction coupling is equal to a ¼ 0:7, the spectrum of Lyapunov exponents

has the form f0:14; 0:00;�0:39;�0:55;�0:79g, and the appropriate phase

portraits are as shown in Fig. 22. The attractors for the interacting oscillators

shown in Fig. 22 are reminiscent of the attractors for noninteracting oscillators

presented in Fig. 20. Let us note that the maximal Lyapunov exponent for the

system of interacting oscillators, which is equal to l1 ¼ 0:14, is greater than the

maximal Lyapunov exponent for the uncoupled oscillators, which equals

l1 ¼ 0:08. Therefore, for 0:67 < a < 0:72, the coupled oscillators are more

chaotic than their uncoupled version. However, as is seen from Fig. 21, this is not

a rule. In the range 0:2 < a < 0:5 the values of the maximal Lyapunov exponent

are of the rank � 0:08, which corresponds to the value for uncoupled oscillators

(a measure of chaos in the coupled and uncoupled oscillators is in practice the

same). Therefore, the linear coupling here is relatively small in order to
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Figure 21. Spectrum of Lyapunov exponents {l1;l2; l3;l4;l5} for the system (26)–(30)

versus the interaction parameter a. The other parameters are A1 ¼ A2 ¼ 200;o0 ¼ 1;o1 ¼
o2 ¼ 0:55; E1 ¼ E2 ¼ 0:1; g1 ¼ 0:05, and g2 ¼ 0:5. The initial conditions are q10 ¼ 10; p10 ¼ 10;

q20 ¼ 10, and p20 ¼ 10.
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additionally increase the instability of the system. Rather chaos flows from one

oscillator to the other by the coupling term a.

2. The Case A1 ¼ A, A2 ¼ 0, g1 ¼ g2 ¼ g. In what follows, we consider a

simple version of the system (26)–(29), namely: both oscillators are equally
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Figure 22. The same as in Fig. 20 but with the interaction parameter a ¼ 0:7.
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damped (g1 ¼ g2 ¼ g) and only the first oscillator is externally pumped

(A1 ¼ A;A2 ¼ 0). Therefore, the equations of motion are

dq1

dt
¼ p1½1 þ Eðp2

1 þ o2
0q2

1Þ� � gq1 ð31Þ

dp1

dt
¼ �o2

0q1½1 þ Eðp2
1 þ o2

0q2
1Þ� þ aq2 � gp1 þ Acosot ð32Þ

dq2

dt
¼ p2½1 þ Eðp2

2 þ o2
0q2

2�Þ � gq2 ð33Þ

dp2

dt
¼ �o2

0q2½1 þ Eðp2
2 þ o2

0q2
2Þ� þ aq1 � gp2 ð34Þ

This system in its linear version (i.e., when E ¼ 0) is a dynamical filter. Suppose

that the oscillators interact with each other with the interaction parameter

a ¼ 0:9. The frequency o of the external driving field varies in the range

0 < o < 4:2. The other parameters of the system are A ¼ 200, o0 ¼ 1, E ¼ 0:1,

and g ¼ 0:05. The autonomized spectrum of Lyapunov exponents fl1; l2; l3;
l4; l5g versus the frequency o is presented in Fig. 23. In the range 0 < o < 0:2
the system does not exhibit chaotic oscillation. Here, the maximal Lyapunov

exponent l1 ¼ 0 and the spectrum is of the type f0;�;�;�;�g (limit cycles).

For example, for o ¼ 0:05 we have f0:00;�0:07;�0:07;�0:07;�0:07g, and

the limit cycles are shown in Fig. 24. The blackened areas in Fig. 24 have a

periodic structure invisible in the scale applied. In the range 0:21 < o < 3:41,
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Figure 23. Spectrum of Lyapunov exponents {l1;l2; l3;l4;l5} for the system (31–(34)

versus the pump frequency o. The other parameters are A ¼ 200;o0 ¼ 1; g ¼ 0:05; E ¼ 0:1, and

a ¼ 0:9. The initial conditions are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10.
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new types of spectra appear: f0; 0;�;�;�g, fþ; 0;�;�;�g, and fþ;þ; 0;
�;�g. The first indicate a quasiperiodic orbit; the second, a chaotic attractor, the

third, a hyperchaotic attractor. Let us concentrate on the last and the most

interesting case, with two positive Lyapunov exponents. The system reaches the
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Figure 24. Phase portraits (q1; p1) and (q2; p2) for the system (31)-(34) with a ¼ 0:9. The other

parameters are A ¼ 200;o0 ¼ 1; E ¼ 0:1; g ¼ 0:05; and o ¼ 0:05. The initial conditions are the

same as for Fig. 23. Limit cycles.
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highest degree of hyperchaos for o ¼ 2:1. Then, the spectrum is f0:26; 0:
10; 0:00;�0:25;�0:41g, and the behavior of the phase point is presented in the

phase diagrams in Fig. 25. Here, the phase point starts from the initial state

q10 ¼ q20 ¼ p10 ¼ p20 ¼ 10 and moves into the hyperchaotic attractor after

t > 50. For o > 3:41 the system behaves orderly.
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Figure 25. The same as in Fig. 24 but for o ¼ 2:1. Hyperchaos.
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The system (31)–(34) with E ¼ 0 is a linear system with the normal

frequencies �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a
p

and �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 þ a
p

. For o0 ¼ 1 and a ¼ 0:9, we

have �1 ¼ 0:32 and �2 ¼ 1:38. It is known from linear dynamics that if

�1 > o > �2, the steady-state amplitude of the first oscillator is greater than

the steady-state amplitude of the second oscillator. If �1 < o < �2, we observe

the inverse situation — the steady-state amplitude of the second oscillator is

now greater than that of the first oscillator. This behavior is known as dynamical

filtering of the signal FðtÞ ¼ Acosot. The frequency range ð�1;�2Þ is called

the charge-transfer band, whereas �1 and �2 are the lower- and upper-band

frequencies, respectively. The question is whether the filtering is, in a sense, also

maintained in our nonlinear system. A detailed analysis shows that thevibrations

of the first oscillator are always greater than the oscillations of the second

oscillator, irrespective of the value of o. This is also seen from the phase

portraits in Figs. 24 and 25, which show that the volume of the attractor in the

phase space ðp2; q2Þ is always less than the attractors in the phase space ðp1; q1Þ.
The linear version ðE ¼ 0Þ of the system (31) — (34) has one more interest-

ing feature; namely, if g ¼ 0, o ¼ o0 and the following initial conditions are

satisfied ðq10 ¼ 0, p10 ¼ 0, q20 ¼ �A=a , p20 ¼ 0Þ; then the solutions of the

linear equations of motion are q1ðtÞ ¼ 0, p1ðtÞ ¼ 0, q2ðtÞ ¼ ð�A=aÞcoso0t and

p2ðtÞ ¼ ðAo0=aÞsino0t. Therefore, the first oscillator remains in a state of rest

and the second performs harmonic vibrations; such a system is frequently

referred to as a dynamical damper. However, a nonlinear counterpart of the

linear dynamical damper does not exist. For E ¼ 0:1, A ¼ 9, a ¼ 0:9, and

o ¼ oo ¼ 1, the system behaves hyperchaotically. The spectrum of Lyapunov

exponents is f0:68; 0:04; 0:00;�0:04;�0:68g.

Finally, let us briefly consider the dynamical properties of the system (31)–

(34) without damping, that is, when g ¼ 0. The other parameters are o0 ¼ 1,

a ¼ 0:9, and A ¼ 200. The appropriate spectrum of Lyapunov exponents

fl1; l2; l3; l4; l5g versus the frequency 0 < o < 2 is presented in Fig. 26.

As is seen from Fig. 26, the system is completely hyperchaotic. Here, the only

type of spectrum is fþ;þ; 0;�;�g. This type of spectrum is a case of the

symmetric spectrum ( the axis symmetry is the Lyapunov exponent l3 ¼ 0).

3. Synchronization

In chaotic motion trajectories starting from insignificantly different initial

conditions diverge from each other exponentially. The question is whether we

can converge chaotic signals from two identically or slightly different sub-

systems, both starting from different initial conditions. This behavior is possible

by linking them with a common signal and synchronizing both outputs. We

show that two single Kerr oscillators are a convenient system for synchroniza-

tion. According to the continuous feedback method [52,61,125,127], we

consider two Kerr subsystems (oscillators) where one subsystem is called the
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drive and the other the response. Both systems are coupled unidirectionally by a

difference signal. The behavior of the response system depends only on the

drive system, but not vice versa. The dynamics of our system is governed by the

following set of equations:

dq1

dt
¼ p1½þE1ðp2

1 þ o2
0q2

1Þ� � g1q1 ð35Þ
dp1

dt
¼ �o2

0q1½1 þ E1ðp2
1 þ o2

0q2
1Þ� � g1p1 þ A1 coso1t þ S ð36Þ

dq2

dt
¼ p2½1 þ E2ðp2

2 þ o2
0q2

2Þ� � g2q2 ð37Þ
dp2

dt
¼ �o2

0q2½1 þ E2ðp2
2 þ o2

0q2
2Þ� � g2p2 þ A2 coso2t ð38Þ

where S ¼ kðq2 � q1Þ is the difference signal and k is the control parameter. As

is seen, the second oscillator (drive) pumps a signal to the first oscillator

(response) via the term S in Eq. (36) . The synchronization of chaos (for a chosen

parameter k and the initial conditions q10 6¼ q20 and p10 6¼ p20) takes place if the

chaotic trajectory q1 ¼ q1ðtÞ of the response oscillator jumps after some time

into the chaotic trajectory q2 ¼ q2ðtÞ of the drive oscillator. The time needed to

uniform chaotic motions of subsystems is called a synchronization time.

Let us consider the dynamics of synchronization for the system (35)–(38)

with the parameters A1 ¼ A2 ¼ 200 , o0 ¼ 1, o1 ¼ o2 ¼ 0:55, g1 ¼ g2 ¼ 0:05,

and E1 ¼ E2 ¼ 0:1. The initial conditions for the drive and response systems are

ðq10; p10Þ ¼ ð10; 10Þ and ðq20; p20Þ ¼ ð5; 5Þ, respectively. For k ¼ 0 both sys-

tems draw different chaotic orbits. Figure 27 shows the measure of synchroni-

zation �s ¼ q1ðtÞ � q2ðtÞ versus time t for k ¼ 0:33. The appearance of the

0.0
−1.00

−0.50

0.00

0.50

1.00

0.6 1.2 1.8

ω

λ i

Figure 26. The same as in Fig. 23 but for g ¼ 0.
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straight line after Ts ffi 2900 clearly implies that both chaotic orbits have just

been synchronized: q1ðtÞ ¼ q2ðtÞ. The efficiency of the synchronization process

depends on the parameter k. This is illustrated in Fig. 28a, where the synchro-

nization time Ts is presented as a function of the parameter k. We observe four

regions of synchronization: 0:28 < k < 0:35, 0:42 < k < 0:54, 0:77 < k <
0:80, and k > 1:58. In the other regions it is not possible to achieve the

synchronization effect. The synchronization time takes the minimum value

Ts ffi 200 for k > 1:59.

In physical terms the unidirectional synchronization means that the drive

oscillator plays the role of an external source. The situation is different if one

considers the problem of a mutual synchronization of two oscillators, which we

may assume to be identical in all respect except for the initial conditions:

q10 6¼ q20 and p10 6¼ p20. Let us consider the following model of mutual

synchronization

dq1

dt
¼ p1½1 þ E1ðp2

1 þ o2
0q2

1Þ� � g1q1 ð39Þ
dp1

dt
¼ �o2

0q1½1 þ E1ðp2
1 þ o2

0q2
1Þ� � g1p1 þ A1 coso1t þ S ð40Þ

dq2

dt
¼ p2½1 þ E2ðp2

2 þ o2
0q2

2Þ� � g2q2 ð41Þ
dp2

dt
¼ �o2

0q2½1 þ E2ðp2
2 þ o2

0q2
2Þ� � g2p2 þ A2 coso2t � S ð42Þ
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Figure 27. The time evolution of �s ¼ q1 � q2 for k ¼ 0:33. The parameters and the initial

conditions of the system (35)-(38) are o1 ¼ o2 ¼ 0:55;A1 ¼ A2 ¼ 200;o0 ¼ 1; E1 ¼ E2 ¼ 0:1;

g1 ¼ g2 ¼ 0:05; ðp10; q10Þ ¼ ð10; 10Þ, and ðp20; q20Þ ¼ ð5; 5Þ.
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where S ¼ kðq2 � q1Þ. The system is similar to that governed by Eqs. (26)–(29).

The equations of motion (39)–(42) can be derived from the Hamiltonian (25) if,

instead of aq1q2, we put 0:5kðq1 � q2Þ2
. The values of the parameters and the

initial conditions for the model of mutual synchronization are the same as for the

unidirectional model. Synchronization takes place in the ranges 0:22 < k < 0:27,

0:38 < k < 0:41 and k > 0:79, as is shown in Fig. 28b. For k > 0:80 we obtain
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Figure 28. Synchronization time Ts versus k. (a) for Eqs. (35)–(38); (b) for Eqs. (39)–(42). The

parameters and the initial conditions are the same as for Fig. 27.
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It is interesting to note that the regions of unidirectional and mutual syn-

chronization do not overlap. In both cases we have the critical value of k (1.59,

unidirectional synchronization; 0.80, mutual synchronization), after which the

coupling is strong enough to maximize the process of synchronization.

4. Chaotic Beats

Let us now concentrate on the problem of beats generated by the system

(26)–(29) without a loss mechanism ðg1 ¼ g2 ¼ 0Þ. For g1 ¼ g2 ¼ 0, and

a ¼ 0, the dynamics of the system (26)–(29) is reduced to two noninteracting

Kerr subsystems:

dqj

dt
¼ pj½1 þ Ejðp2

j þ o2
0q2

j Þ� ð43Þ

dpj

dt
¼ �o2

0qj½1 þ Ejðp2
j þ o2

0q2
j Þ� þ Aj cosojt ; j ¼ 1; 2 ð44Þ

These Kerr oscillators, with E1 ¼ E2 ¼ 0, are linear subsystems that in the case

of resonance (o ¼ o1 ¼ o2) exhibit a common instability — the solutions of

Eqs. (43) and (44) for t ! 1 grow linearly without bound. This resonance

instability of our linear subsystems vanishes for E1 6¼ 0 and E2 6¼ 0. The

subsystems become stable but only for small values of E1 and E2. For example,

beats generated by the first oscillator for E1 ¼ 10�9, A1 ¼ 200, and o0 ¼ o1 ¼ 1

are illustrated in Fig. 29a, and the appearing beats originate from the Kerr

nonlinearity.

Beats generated by the second oscillator for E2 ¼ 10�9, A2 ¼ 200, o0 ¼ 1,

and o2 ¼ 1:05 are shown in Fig. 29b. The Lyapunov analysis of beats presented

in Fig. 29 leads to the conclusion that the beats have a quasiperiodic nature, or,

as we frequently say, they are almost periodic solutions and our system can be

treated as a nearly linear system [143]. The structure of beats in the coupled

system (26)–(29) is much more intricate than for the individual noninteracting

subsystems (43)–(44), where the beats are quasiperiodic functions. Let us

suppose that the individual noninteracting oscillators ða ¼ 0Þ behave as pre-

sented in Fig. 29 and answer the question as to how the structure of beats in both

figures change when the oscillators interact with each other ða 6¼ 0Þ, that is, how

the occurrence of beats in the coupled oscillators depends on the selected value

of a. Numerical calculations show that the coupled system generates distinct

beats if a < 0:3. Let us now have a look at the Lyapunov analysis of beats. The

autonomized spectrum of Lyapunov exponents for the system (26)–(29) versus

the coupling parameter ð0 < a < 0:16Þ is presented in Fig. 30. As is seen, the

most spectacular behavior of the system is observed for 0:01 < a < 0:13. In this

range our system generates beats and behaves hyperchaotically. The magnitude

of chaos depends on the value of the coupling parameter a. The highest degree
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of hyperchaos is achieved at a ¼ 0:04, and the spectrum of the Lyapunov

exponents is given by the following set f0:013; 0:003; 0:000;�0:003;�0:013g.

The beats with chaotic envelopes in the q1- component are shown in Fig. 31a.

The envelope function is very sensitive to the interaction parameter a. A small

change in a, for example, from a ¼ 0:04 to a ¼ 0:05 drastically changes the

shape of the envelope function (Fig. 31a,b), leaving the basic frequency of

oscillations almost unchanged (Fig. 31, window). As seen in Fig. 31, the
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Figure 29. Evolution of q1 and q2 versus t for Eqs. (26)–(29) with a ¼ 0. The initial conditions

are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10. The other parameters are A1 ¼ A2 ¼ 200; g1 ¼
g2 ¼ 0; E1 ¼ E2 ¼ 10�9, and o0 ¼ o1 ¼ 1 (a), o0 ¼ 1;o2 ¼ 1:05 (b).

400 p. szlachetka and k. grygiel



envelope functions can be drawn as smooth functions, in contradistinction to the

envelopes of beats generated stochastically [144,145]. For a > 0:16 the beats

lose their chaotic behavior and for a > 0:4, the beats vanish completely.

It is interesting that envelope functions can also behave as multiperiod

oscillations. This takes place if we take into account small damping. By way of

an example, for the damping constant g1 ¼ g2 ¼ 0:1, the envelope function has

a feature of two period doubling oscillations.

5. Final Remarks

The dynamics of two linear coupled Kerr oscillators strongly depends on the

value of the interaction parameter a, frequency of pumping fields oj, and the

damping constants gj. If the oscillators are coupled, both undergo a homo-

genization regarding the nature of their motion; either both are chaotic, or both

are ordered, as is obvious from the phase graphs. For some parameters chaotic

signals generated by the Kerr oscillators can be synchronized. Both unidirec-

tional and mutual synchronization have been studied. The phenomenon of beats

appears in linear and nonlinear systems whenever an impressed frequency is

close to a natural frequency of a linear system or whenever two slightly different

frequencies are impressed on a system regardless of what its natural frequencies
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Figure 30. Spectra of Lyapunov exponents {l1;l2; l3;l4;l5} for the system (26)–(29) versus

the coupling constant a. The other parameters are A1 ¼ A2 ¼ 200; g1 ¼ g2 ¼ 0;o0 ¼ 1;

o1 ¼ 1;o2 ¼ 1:05, and E1 ¼ E2 ¼ 10�9. The initial conditions are q10 ¼ 10; q20 ¼ 10; p10 ¼ 10,

and p20 ¼ 10.
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may be. For the small parameters of nonlinearity E ¼ 10�9, the quasiperiodic

beats in uncoupled Kerr oscillators become beats with chaotic envelopes if the

Kerr oscillators are linearly coupled. A small change in the interaction

parameter rapidly changes the shape of the envelopes, whereas the basic

frequencies of vibrations remains practically unchanged. Therefore the coupled

oscillators can be used as a source of signals with chaotic envelopes and stable

fundamental frequency. The appropriate materials useful for the generation of

beats with chaotic envelopes could be optical systems consisting of a pair of
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Figure 31. Evolution of q1ðtÞ versus for Eqs. (26)-(29) from the initial conditions

q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10 for (a) a ¼ 0:04; ðbÞ a ¼ 0:05. The other parameters

are A1 ¼ A2 ¼ 200; g1 ¼ g2 ¼ 0;o0 ¼ 1;o1 ¼ 1;o2 ¼ 1:05, and E1 ¼ E2 ¼ 10�9.
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coupled Kerr fibers [138,139,146]. Since the pioneering work by Jensen [136],

twin-core nonlinear fibers (so-called couplers) have been one of the highest-

priority topics of fiberoptic research. The couplers are expected to find important

applications as all-optical switches [147] in photonics, for example. Another

interesting problem connected with optical application to secure communication

is synchronization of coupled systems [148,149].

D. Dynamics of Nonlinearly Coupled Kerr Oscillators

Let us now consider a system of two nonlinearly coupled Kerr oscillators. Now,

we write the Hamiltonian (25) in the form

H ¼
X2

i¼1

½Hi þ EiH
2
i � qiFiðtÞ� þ 2E12H1H2 ð45Þ

where E12 the intermodal coupling constant. The autonomized equations of

motion for the Hamiltonian (45) have the following form:

dq1

dt
¼ p1½1 þ E11ðp2

1 þ o2
0q2

1Þ þ E12ðp2
2 þ o2

0q2
2Þ� � g1q1 ð46Þ

dp1

dt
¼ �o2

1q1½1 þ E11ðp2
1 þ o2

0q2
1Þ þ E12ðp2

2 þ o2
0q2

2Þ�

� g1p1 þ A1 coso1t ð47Þ
dq2

dt
¼ p2½1 þ E22ðp2

2 þ o2
0q2

2Þ þ E12ðp2
1 þ o2

0q2
1Þ� � g2q2 ð48Þ

dp2

dt
¼ �o2

0q2½1 þ E22ðp2
2 þ o2

0q2
2Þ þ E12ðp2

1 þ o2
0q2

1Þ�

� g2p2 þ A2 coso2t ð49Þ
dq3

dt
¼ 1; q3ð0Þ ¼ 0 ð50Þ

Let us emphasize that if Aj ¼ 0, the set of equations (46)–(50) is integrable and

has a relatively simple analytic solution. If the initial state of the system is deter-

mined by the initial conditions qjð0Þ ¼ qj0 i pjð0Þ ¼ pj0, the analytic solution is

given by [110]

qjðtÞ ¼ e�gj t qj0 cosEjðtÞ þ
pj0

oj

sinEjðtÞ
� �

ð51Þ

pjðtÞ ¼ e�gj t pj0 cosEjðtÞ � ojqj0 sinEjðtÞ
� �

; j ¼ 1; 2 ð52Þ
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where

E1ðtÞ ¼ o0t þ E1o0

g1

H10ð1 � e�2g1tÞ þ E12o0

g2

H20ð1 � e�2g2tÞ ð53Þ

E2ðtÞ ¼ o0t þ E2o0

g2

H20ð1 � e�2g2tÞ þ E12o0

g1

H10ð1 � e�2g1tÞ ð54Þ

Hj0 ¼
p2

j0

2
þ
o2

0q2
j0

2
; j ¼ 1; 2 ð55Þ

The system (46)–(50) is examined numerically with the following parameters:

A1 ¼ A2 ¼ 200, o0 ¼ 1, E1 ¼ E2 ¼ 0:1, g1 ¼ 0:05, g2 ¼ 0:5. The frequencies

o1;2 of the external driving forces and the cross interaction Kerr constant E12 vary

in the range 0 < o1;2 < 3 and 0 < E12 < 1:5, respectively. Therefore we study

the dynamics of two nonlinearly coupled oscillators, I and II, which differ only in

the value of the damping constants g1 and g2.

1. Noninteracting Oscillators

The case of noninteracting oscillators takes place when the coupling constant

E12 is equal to zero. Then, the systems (46)–(50) with E12 ¼ 0 and (26)–(29)

with a ¼ 0 are identical, and their dynamics are considered in Section III.C.1.

2. Interacting Oscillators

Let us now consider the behavior of the system when the Kerr coupling constant

is switched on (E12 6¼ 0). For brevity and clarity, we restrict our discussion to the

question of how the attractors in Fig. 20 change when both oscillators interact

with each other. To answer this question, let us have a look at the joint auto-

nomized spectrum of Lyapunov exponents for the two oscillators fl1; l2; l3;
l4; l5g versus the interaction parameter 0 < E12 < 0:7. The spectrum is seen in

Fig. 32 and describes the dynamical properties of our oscillators in a global

sense. The dynamics of individual oscillators can be glimpsed at the appropriate

phase portraits. Let us now fix our attention on a detailed analysis of Fig. 32. For

the limit value E12 ¼ 0, the dynamics of the uncoupled oscillators has already

been presented in Fig. 20. In the case of very weak interaction 0 < E12 < 0:0005,

the system of coupled oscillators manifests chaotic behavior. For E12 ¼ 0:0005

we obtain the spectrum f0:06; 0:00;�0:21; �0:54;�0:89g. It is interesting to

note that the maximal Lyapunov exponent l1 ¼ 0:08 for the system of

noninteracting oscillators ðE12 ¼ 0Þ is greater than the maximal Lyapunov

exponent l1 ¼ 0:06 for the coupled system with the parameter E12 ¼ 0:0005.

Therefore, in this case, the uncoupled system is more chaotic than the coupled

system. A further increase in the interacting parameter E12 leads to the dis-

appearance of chaos. In the region 0:0005 < E12 < 0:15 the oscillators behave

orderly and nonchaotically. By way of example, for E12 ¼ 0:1, all the values of
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Lyapunov exponents are nonpositive: f0:00; �0:12;�0:26;�0:53; �0:68g. In

this case the appropriate limit cycles are shown in Fig. 33a,b. The intricate

structure of the limit cycles is reminiscent of the structure seen in Fig. 20. The

blackened areas in Fig. 33 contain some pattern structure invisible in the scale

used. As we see from Fig. 32, the situation changes in the region 0:15 < E12 <
0:43. Chaotic behavior of the system predominates over nonchaotic behavior —

for most values of the parameter E12, one Lyapunov exponent is positive. The

most spectacular behavior of the coupled oscillators is observed in the region

0:43 < E12 < 0:49. Here, two positive Lyapunov exponents in the spectrum

indicate hyperchaotic behavior of the system. The highest degree of hyperchaos

is achieved by the system at E12 ¼ 0:46. The spectrum of the Lyapunov

exponents is given by the set f0:87; 0:05; 0:00;�0:83;�1:71g, pointing to the

existence of an hyperchaotic attractor. Its topology in the phase portraits ðq1; p1Þ
and ðq2; p2Þ is shown in Fig. 34a,b. Precisely, in the phase portraits the system

initially manifests a transient behavior but then (for t > 500) settles into a

hyperchaotic attractor.

For E12 � 0:49 we observe a reduction of hyperchaos to chaos. Generally, in

the region 0:49 
 E12 
 0:75 chaos dominates order and is maximal for the

value E12 ¼ 0:63, and the spectrum is f0:67; 0:00;�0:20;�0:90;�1:48g. Spec-

tacular chaotic attractors appear for E12 ¼ 0:7. Their phase portraits are presen-

ted in Fig. 35, where both attractors make impressions of spread limit cycles, as
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Figure 32. Spectrum of Lyapunov exponents {l1;l2; l3;l4; l5} for the system (46)–(50)

versus the Kerr coupling constant E12. The other parameters are o0 ¼ 1;o1 ¼ o2 ¼ 0:55;

A1 ¼ A2 ¼ 200, and E1 ¼ E2 ¼ 0:1. The initial conditions are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and

p20 ¼ 10.
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chaos is relatively small here. The spectrum of Lyapunov exponents is f0:06;
0:00;�0:31;�0:92;�1:01g.

3. Final Remarks

The emergence of order and chaos in the system of two oscillators depends on

the value of the Kerr coupling constant E12. For the fixed parameters of damping
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Figure 33. Phase portraits for the system (46)–(50) for E12 ¼ 0:1 with the initial conditions

q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10: (a) phase portrait ðq1; p1Þ of the first oscillator for

A1 ¼ 200;o0 ¼ 1; E1 ¼ 0:1;o1 ¼ 0:55, and g2 ¼ 0:05; (b) phase portrait ðq2; p2) of the second

oscillator for A2 ¼ 200;o0 ¼ 1; E2 ¼ 0:1;o2 ¼ 0:55, and g2 ¼ 0:5. Order.
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gi, the sum of all exponents in the Lyapunov spectrum is not an invariant of the

parameter E12. For the noninteracting oscillators (E12 ¼ 0), the sum is equal toP5
i¼1 li ¼ �1:60 and tends to the value

P5
i¼1 li ¼ �2:25 if E12 ! 0:7. There-

fore we can say that the coupling term with E12 in the equations of motion has an

attribute of damping. These negative values result from nonconservation of

volume in phase space (for conservative systems, the sum of Lyapunov
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Figure 34. The same as in Fig. 33 but with E12 ¼ 0:46. Hyperchaos.
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exponents equals zero). Obviously, even if the volume of the system is sup-

pressed, this does not mean that its length is equally suppressed in all directions.

Some directions are stretched. In the direction of stretching we observe only an

exponential separation of the trajectories, namely, chaotic or hyperchaotic

behavior of the system. Finally, let us emphasize that the appropriate media

for the experimental studies of chaotic behavior generated by Kerr nonlinea-

rities could be optical fibers. The appearance of chaotic output signals generated

by Kerr media means that the signals are unstable. The instability depends on

−10.00
−20.00

−10.00

0.00

10.00

20.00

−5.00 0.00 5.00 10.00

q 2

p2

−10.00
−20.00

−10.00

0.00

10.00

20.00

−5.00 0.00 5.00 10.00

q 1

p1

(b)

(a)

Figure 35. The same as in Fig. 33 but for with E12 ¼ 0:7. Weak chaos.
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the value of the coupling constant E12. Therefore, by changing the value of the

coupling constant, we can turn the output chaotic signals into the periodic ones

and vice versa. Promising materials for the implementation of nonlinear Kerr

oscillators also seem to be some organic polymers [150].

IV. QUANTUM CHAOS

The modifications introduced by quantum mechanics into the dynamics of

classical systems that manifest deterministic chaotic behavior are frequently

referred to collectively as ‘‘quantum chaos’’ [4,6,13,151– 161]. It is rather

conceded that quantization drastically modifies classically chaotic behavior. For

example, suppression of chaos to quasiperiodicity is observed in the quantum

kicked rotator, whose classical counterpart behaves chaotically [6,151,152]. In

the system of a hydrogen atom in a microwave field, quantum effects suppress

diffusive ionization by the mechanism of quantum localization [153,154].

Certain manifestations of chaos also become apparent in quantum optics [84,

162–167]. It seems that Wigner’s formulation of quantum mechanics offers the

simplest comparison between quantum and classical chaos in contradistinction

to the conventional procedure. The conventional way is to study how a wave-

packet initially fixed around a certain position q and momentum p follows the

appropriate classical trajectory. However, this involves a disadvantage. Speci-

fically, the wavepacket spreads in the course of time and is no longer sharply

fixed around a particular position and momentum, rendering dubious the com-

parison with the respective classical trajectory. To avoid this spreading problem,

we can make use of the so-called Wigner symbols, which are a quantum

generalization of classical variables. For example, we can compare the time

evolution of the Wigner symbols for the position q̂ and momentum p̂ operators

with the classical evolution of the position q and momentum p, respectively.

Generally, Wigner’s formulation of quantum mechanics leads to a c-number

representation of the density matrix, that is, to the quantum analog of a classical

probability density in ðp; qÞ space. In quantum optics three kinds of c-number

functions are the most popular, the P representation, the Q function, and the

Wigner function W [168]. All these three functions are defined in ða ¼ p þ iq,

a� ¼ p � iqÞ space instead of in ðp; qÞ space. This is due to the coherent state

technique. The P representation is related to normal ordering of the creation âþ

and annihilation â operators, the Q function is related to antinormal ordering of

the operators, and the Wigner function W is related to symmetric (Weyl)

ordering. The c-number approach makes it possible to treat quantum systems

in a ‘‘classical way,’’ including all their quantum features and contrasting the

quantum and classical dynamics within the framework of a phase picture. The

equations for the Wigner-like functions P and Q belong to the class of

generalized Fokker–Planck equations whose solutions are known only for some
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simple optical models. The Wigner approach can also be used to study both

‘‘kicked’’ dynamics (i.e., a quantum map) and a continuous flow. Kicked models

are easier to analyze numerically than continuous models but are more difficult

to verify practically. On the other hand, continuous models seem to be

mathematically more cumbersome, resembling the complexity of hydrodyna-

mical systems. In the latter case we usually make some truncations leading to a

set of ordinary differential equations. Historically, for the first time in the

treatment of classical dynamical systems, a truncation method was used by

Lorenz [2]. A similar truncation method can be used for generalized Fokker–

Planck equations if we note that these equations generate a hierarchic and

infinite set of ordinary differential equations for statistical cumulants [169–171].

The first truncation always leads to equations having the form of classical

equations of motion. The second truncation plays the role of the first quantum

correction, and so on. The cumulant method has also been applied to the study

of some aspects of chaos in classical and quantum mechanics [173,174] and in

quantum optics [165,166,171,172]. To identify chaotic behavior of a classical

dynamical system, it suffices to use the maximal Lyapunov exponent. A

quantum analog of the Lyapunov exponent involving the Q function has been

proposed by Toda and Ikeda [175]. However, as we have already mentioned, the

equation for the Q ðP;WÞ function is mathematically cumbersome, and its

analytical solution is unknown for most nonlinear systems. This poses addi-

tional difficulties when it comes to calculate the Lyapunov exponents. However,

this problem can be solved indirectly and approximately by finite cumulant

expansion [165], enabling us to use the classical calculation method of

Lyapunov exponents for equations with statistical cumulants.

A. Chaos in a Kerr Oscillator

We write the Hamiltonian in the form

Ĥ ¼ Ĥ1 þ Ĥ2 þ Ĥ3 ð56Þ

where

Ĥ1 ¼ �hoâyâ þ �hw
2

ây2â2 ð57Þ

Ĥ2 ¼ i�hFðây � âÞ ð58Þ

Ĥ3 ¼ �h
X

j

�j b̂
y
j b̂j þ �h

X
j

ðKj b̂jâ
y þ K�

j b̂
y
j âÞ ð59Þ

In the single-mode Hamiltonian Ĥ1, the quantities â ðâyÞ are the photon

annihilation (creation) operators, respectively; o is the frequency of the
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harmonic oscillator, and w is the anharmonicity parameter. The Hamiltonian Ĥ2

describes the interaction between the classical external driving field F and the

single-mode field. The loss mechanism is described by the coupling to a heat

bath governed by the reservoir Hamiltonian Ĥ3. Here, the ðb̂jÞb̂y
j are the boson

annihilation (creation) operators of the reservoir. The frequencies of the reservoir

modes are denoted by �j. The quantities Kj are the coupling constants between

the optical and reservoir modes. On eliminating the reservoir operators, we

obtain the master equation for the density operator r̂ in the following form:

q r̂
q t

¼ �i

�h
½Ĥ1 þ Ĥ2; r̂ � þ Lir r̂½ � ð60Þ

The irreversible term Lir r̂½ � describes damping and has the following form:

Lir½r̂ � ¼
�

2
ð2âr̂ây � âyâr̂ � r̂âyâ Þ

þ � hni ðâyr̂â þ âr̂ây � âyâr̂ � r̂âây Þ ð61Þ

The parameter � is the damping constant, and hni is the mean number of

reservoir photons. The quantum theory of damping assumes that the reservoir

spectrum is flat, so the mean number of reservoir oscillators hni ¼ hb̂y
j ð0Þb̂jð0Þi

¼ ðexpð�ho=kTÞ � 1Þ�1
in the jth mode is independent of j. Thus the reservoir

oscillators form a thermal system. The case hni ¼ 0 corresponds to vacuum

fluctuations (zero-temperature heat bath). It is convenient to consider the

quantum dynamics of the system (56)–(59) in the interaction picture. Then the

master equation for the density operator r̂ is given by

q r̂
q t

¼ �i
1

2
ây2â2 þ iF ðây � âÞ; r̂

� �
þ g

2
ð2âr̂ây � âyâr̂ � r̂âyâ Þ

þ g hni ðâyr̂â þ âr̂ây � âyâr̂ � r̂âây Þ ð62Þ

where t ¼ tw is the redefined time, g ¼ �=w, and F ¼ F=w. The term oâyâ
does not appear in Eq.(62) as a consequence of the interaction picture.

The master equation (62) can be transformed to a c-number partial differ-

ential equation. Three kinds of equations can be derived from (62): (1) an

equation for the Wigner function �ðSymÞ related to symmetric (Weyl) ordering of

the field operators â; ây, (2) an equation for the Wigner-like function �ðAÞ
related to antinormal ordering of the operators, and (3) an equation for the

Wigner-like function �N related to normal ordering. The statistical properties of

the � functions are discussed fully in the book by Peřina [168]. These are

quasidistribution functions in the complex plane ða; a�Þ, where the quantity a is
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an eigenvalue of the annihilation operator â, i.e. â j ai ¼ a j ai. Here, j ai is a

coherent state.

For convenience we introduce the so-called s ordering of the field operators

â; ây. Then we can write �ðSymÞ ¼ �ð0Þ, �ðAÞ ¼ �ð�1Þ and �ðNÞ ¼ �ð1Þ.
From (62) we get the generalized Fokker–Planck equation for the quasidis-

tribution �ðsÞða�; a; tÞ related to the s ordering [165]:

q�ðsÞ
qt

¼ Lclass þ Lquant ð63Þ

where

Lclass ¼
q
qa

1

2
ga�Fþ iajaj2

� �
�ðsÞ

� �

þ q
qa�

1

2
ga� �F� ia�jaj2

� �
�ðsÞ

� �
þ ghni

q2�ðsÞ
qa qa�

Lquant ¼ �i ð1 � sÞ q
qa

a�ðsÞ � ð1 � sÞ q
qa�

a��ðsÞ

�

þ s

2

q2

qa2
a2�ðsÞ �

s

2

q2

qa�2
a�2�ðsÞ

þ ðs2 � 1Þ
4

q3

qa�2 qa
a��ðsÞ �

ðs2 � 1Þ
4

q3

qa2 qa�
a�ðsÞ

�

þ g
ð1 � sÞ

2

q2�ðsÞ
qa qa�

ð64Þ

Let us emphasize that there is no difference among the equations for �ðsymÞ, �ðAÞ,
and �ðNÞ as long as the system (56)–(59) is classical. This problem has been

studied elsewhere [176,177]. In the classical limit the term Lquant in Eq.(63)

vanishes and �ðsÞ is a classical distribution function. For Lquant ¼ 0 and g ¼ 0,

Eq.(63) reduces to the classical Liouville equation, and for Lquant ¼ 0 and g 6¼ 0,

to the classical Fokker–Planck equation. So, we can say that the Lclass term

governs classical dynamics whereas the Lquant term adds the quantum (operator)

correction. The decision as to whether chaos appears in the system (56)–(59) can

be made by investigating the separation rate of two peaks of a �ðsÞ function

initially close to each other or by the analysis of equations for the statistical

moments originating in Eq. (63). Thus, instead of attempting to solve the partial

differential equation (63), we deal with the problem of solving a set of ordinary

differential equations for the statistical moments.
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The calculation of statistical moments with the help of �ðsÞ is simple. For

example, if we want to calculate the average number of photons hayai, we use

one of the three function �ðNÞ, �ðAÞ or �ðsymÞ. We have

hâyâi ¼
ð
a�a �ðNÞða�; aÞd2a ð65Þ

hâyâi ¼
ð
ða�a� 1Þ �ðAÞða�; aÞd2a ð66Þ

hâyâi ¼
ð

a�a� 1

2

� �
�ðsymÞða�; aÞd2a ð67Þ

The value of hâyâi is always the same, but the averaging procedure differs in each

case. The relations (65)–(67) are a simple consequence of the boson commutation

relation ½â; ây� ¼ 1 and the definition

ha�aiðsÞ ¼
ð
a�a�ðsÞða�; aÞd2a ð68Þ

where ha�aiðNÞ ¼ hâyâi, ha�aiðAÞ ¼ hââyi; and ha�aiðsymÞ ¼ 1
2
hâyâ þ ââyi. It is

obvious that some expectation values do not depend on ordering, for example,

hâyni ¼ ha�niðNÞ ¼ ha�niðAÞ ¼ ha�niðsymÞ. The function�ðsÞ allows us to define the

quantum cumulants. The cumulants of first order are given by

ha�iðsÞ ¼ x� ; haiðsÞ ¼ x ð69Þ

The cumulants of second order have the forms

ha�aiðsÞ � ha�iðsÞhaiðsÞ ¼ BðsÞ ð70Þ

ha�2iðsÞ � ha�i2
ðsÞ ¼ C�

ha2iðsÞ � hai2
ðsÞ ¼ C

ð71Þ

It is easy to note that simple relations hold among BðNÞ, BðAÞ, and BðsymÞ, namely,

BðAÞ ¼ BðNÞ þ 1 and BðsymÞ ¼ 1
2
ð2BðNÞ þ 1Þ. Thus the average number of photons

can be expressed with the help of s ordering as follows: hâyâi ¼ GðsÞ þ x�x,

where GðsÞ ¼ BðsÞ � 1�s
2

.

Analytical solutions of quantum Fokker–Planck equations such as Eq. (63)

are known only in special cases. Thus, some special methods have been deve-

loped to obtain approximate solutions. One of them is the statistical moment

method, based on the fact that the equation for the probability density generates

an infinite hierarchic set of equations for the statistical moments and vice versa.
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However, for numerical reasons the set of equations has to be truncated to a

finite number, which means approximation. In this section we restrict ourselves

to the second truncation (Gaussian approximation), namely, to the equations for

x, C and GðsÞ. We arrive at the following set of equations:

dx
dt

¼ � 1

2
g xþF� i½2GðsÞxþ Cx� þ x2x�� ð72Þ

dC

dt
¼ �gCðsÞ � i½x2ð1 þ 2GðsÞÞ þ Cð1 þ 4jxj2Þ� � 6iGðsÞC ð73Þ

dGðsÞ
dt

¼ �gGðsÞ þ i½Cx�2 � C�x2� þ ghni ð74Þ

We examine the dynamics of this system with the initial conditions xð0Þ ¼ 1 þ i

and GðsÞð0Þ ¼ Cð0Þ ¼ 0. The driving field F is assumed in the form of a train of

rectangular computer simulated pulses. The length of the pulse is denoted by T1,

whereas T2 is the distance between the pulses, and F0 is their height. Moreover,

we put hni ¼ 0, g ¼ 0:5, F0 ¼ 2, T2 ¼ 1 and 0 < T1 < 7:5. The physical sense

of the truncation is clear if we note that the first truncation [Eq. (63) is without

s terms] gives only the classical equation for the anharmonic oscillator:

dx
dt

¼ � 1

2
gxþFðtÞ � ix2x� ð75Þ

Thus hâyâi ¼ jxj2 is a classical intensity. The system (75) is nonautonomous if

the function F is explicitly time-dependent. The autonomized version of Eq.(75)

is given by

dx
dt

¼ � 1

2
gxþFðwÞ � ix2x�

dw

dt
¼ 1; wð0Þ ¼ 0

ð76Þ

It is readily seen that the set of equations (76) consists of three equations of

motion in the real variables Rex, Imx, w. If FðtÞ ¼ constant, chaos in the system

does not appear since the set (76) becomes a two-dimensional autonomous

system. The maximal Lyapunov exponents for the systems (75) and (72)–(74)

plotted versus the pulse duration T1 are presented in Fig. 36. We note that within

the classical system (75) by fluently varying the length of the pulse T1, we turn

order into chaos and chaos into order. For 0 < T1 < 0:84 and 1:08 < T1 < 7:5,

the maximal Lyapunov exponents l1 are negative or equal to zero and,

consequently, lead to limit cycles and quasiperiodic orbits. In the points where

l1 ¼ 0, the system switches its periodicity. The situation changes dramatically if,
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instead of Eq. (75), its quantum version, Eqs. (72)–(74), is taken into account.

For the quantum system the maximal Lyapunov exponent is not positive,

Therefore the chaotic oscillations due to quantum correction vanish (Fig. 37).

The regular oscillations remain regular, but their structures change [165].

B. Chaos in Second-Harmonic Generation of Light

Let us consider a quantum optical system with two interacting modes at the

frequencies o1 and o2 ¼ 2o1, respectively, interacting by way of a nonlinear

crystal with second-order susceptibility. Moreover, let us assume that the

nonlinear crystal is placed within a Fabry–Pérot interferometer. Both modes

are damped via a reservoir. The fundamental mode is driven by an external field

with the frequency oL and amplitude F. The Hamiltonian for our system is

given by [169,178]:

Ĥ ¼ Ĥrev þ Ĥirrev ð77Þ
Ĥrev ¼ �ho1â

y
1â1 þ �ho2â

y
2â2 þ i�hFðây

1e�ioLt � â1eioLtÞ

þ i�h
k
2
ðây2

1 â2 � â2
1â

y
2Þ ð78Þ

Ĥirrev ¼ �h
X

j

X2

i¼1

ð�ðiÞ
j b̂

yðiÞ
j b̂

ðiÞ
j þ K

ðiÞ
j b̂

ðiÞ
j â

y
i þ K

�ðiÞ
j b̂

yðiÞ
j âiÞ ð79Þ

where Ĥrev describes the reversible part of interaction and Ĥirrev is the irreversible

part responsible for the loss mechanism. The quantities â1; ðây
1Þ; â2; ðây

2Þ are the

0.0
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λ1

T1

Figure 36. Maximal Lyapunov exponents for the system before (solid line) and after quantum

correction (dashed line).
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photon annihilation (creation) operators for the fundamental and second-

harmonic modes, respectively. The parameter k is taken to be real and acts as

a nonlinear coupling constant between the two modes. Finally, the operators

b̂
yðiÞ
j ; b̂

ðiÞ
j are the boson annihilation (creation) operators of the reservoir. The

frequencies of the reservoir oscillations are denoted by �
ðiÞ
j and the coupling

constant between the optical and reservoir modes, by K
ðiÞ
j . The dynamics of the

(a)

Im ξ

R
e 

ξ

−2

−1

0

1

2

−2.0 −1.0 0.0 1.0

(b)

Im ξ

R
e 

ξ

−2

−1

0

1

2

−2.0 −1.0 0.0 1.0

Figure 37. Phase portraits Rex versus Imx. (a) the classical case; Eq. (75) with the initial

condition xð0Þ ¼ 1 þ i. The parameters of the pulse are T1 ¼ 0:98;T2 ¼ 1, and F0 ¼ 2. The

damping constant is g ¼ 0:5, and the time is 100 < t < 200. (b) The quantum system; Eqs. (72)–

(74) with the initial conditions xð0Þ ¼ 1 þ i and GðsÞð0Þ ¼ Cð0Þ ¼ 0. The parameters of the pulse

are T1 ¼ 0:98; T2 ¼ 1, and F0 ¼ 2. The damping constant is g ¼ 0:5, and the time 100 < t < 200.
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system (77) on eliminating the reservoir Hamiltonian (79) is governed by the

appropriate master equation for the density operator r̂. The master equation in

the interaction picture leads to the following c-number Fokker–Planck equation

for the quasidistribution function �ðsÞ [168,169,178]

q�ðsÞ
qt

¼ Lclass þ Lquant ð80Þ

where

Lclass ¼
X2

i¼1

gi

q
qai

ðai�ðsÞÞ þ gi

q
qa�i

ða�i �ðsÞÞ
�

þ q
qai

ðDi�ðsÞÞ

þ q
qa�i

ðD�
i �ðsÞÞ þ gihnii

q2�ðsÞ
qa�i qai

#
ð81Þ

Lquant ¼
1 � s

2

� �X2

i¼1

gi

q2�ðsÞ
qa�i qai

� s

2

q2

qa2
1

ðD11�ðsÞÞ �
s

2

q2

qa�2
1

ðD�
11�ðsÞÞ ð82Þ

The quasidistribution function �ðsÞ is defined as follows: �ðs¼1Þ ¼ P and

�ðs¼�1Þ ¼ Q. The function �ðsÞ is determined in the complex plane

(a1; a2; a�1; a
�
2), where ai is an eigenvalue of the annihilation operator âi, namely,

âijaii ¼ aijaii. Here, jaii is a coherent state. The initial condition for the

Fokker–Planck equation is given by

�ðsÞða1ðtÞ;a2ðtÞ; tÞjt¼0 ¼ �ðsÞða1ð0Þ ¼ a10; a2ð0Þ ¼ 0; 0Þ ð83Þ

which means that the amplitude of the fundamental mode initially differs from

zero whereas the amplitude of the second harmonic equals zero. The coefficients

Di and D11 are given by

D1 ¼ �F� a�1a2

D�
1 ¼ �F� a1a�2

D2 ¼ 0:5a2
1

D�
2 ¼ 0:5a�2

1

D11 ¼ qD1

qa�1
¼ �a2

D�
11 ¼ qD�

1

qa1
¼ �a�2

ð84Þ
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The general relations among the coefficients Di and Dij are presented elsewhere

[179]. The quantities g1 and g2 are the damping constants for the fundamental

and second- harmonic modes, respectively. In Eq.(82) we shall restrict ourselves

to the case of zero-frequency mismatch between the cavity and the external

forces (o1 � oL ¼ 0). In this way we exclude the rapidly oscillating terms.

Moreover, the time t and the external amplitude F have been redefined as

follows: t ¼ kt and F ¼ F
k. The s ordering in Eq.(80) which is responsible for

the operator structure of the Hamiltonian allows us to contrast the classical and

quantum dynamics of our system. If the Hamiltonian (77)–(79) is classical (i.e.,

if it is a c number), then the equation for the probability density has the form of

Eq.(80) without the s terms:

� s

2

q2

qa2
1

ðD11�ðsÞÞ �
s

2

q2

qa�2
1

ðD�
11�ðsÞÞ; gi

1 � s

2

� �
q2�ðsÞ
qa�i qai

The s terms distinguish the classical and quantum dynamics quite naturally. If

they do not appear, the difference between P and Q vanishes.

The Fokker–Planck equation (80) generates an infinite and hierarchic set of

equations for the statistical moments (see Section IV.A.1). Below, we restrict

ourselves to a Gaussian approximation. The cumulants are defined by the

following relations:

xi ¼ hâii ð85Þ
Bi ¼ hây

i âii � hây
i ihâii ð86Þ

B12 ¼ hây
1 â2i � hây

1ihâ2i ð87Þ
Ci ¼ hâ2

i i � hâii2 ð88Þ
C12 ¼ hâ1 â2i � hâ1ihâ2i ð89Þ

Integration per partes of the Fokker–Planck equation for the quasidistribution

�ðs¼1Þ ¼ P (the choice of a particular s is a question of taste only) allows us to

write the appropriate equations for the cumulants. In what follows, we assume

that damping is included only by way of coupling to the reservoir at zero

temperature, that is, hnii ¼ 0. The first truncation (the cumulants higher than

first-order vanish) leads to the classical limit. Then, from Eq. (80), we get the

classical Bloembergen equations [102] [see Eqs. (1)]:

dx1

dt
¼ �g1 x1 þFþ x�1 x2 ð90Þ

dx2

dt
¼ �g2 x2 � 0:5x2

1 ð91Þ
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The initial conditions have the following form:

x1ð0Þ ¼ x10; x2ð0Þ ¼ 0 ð92Þ

The s terms in Eq. (80) contribute nothing to the preceding equations. The

second-order truncation (Gaussian approximation) leads to the following set of

equations:

dx1

dt
¼ �g1x1 þFþ x�1x2 þ B12 ð93Þ

dx2

dt
¼ �g2x2 � 0:5ðx2

1 þ C1Þ ð94Þ

dB1

dt
¼ �2g1B1 þ B�

12x1 þ B12x
�
1 þ C�

1x2 þ C1x
�
2 ð95Þ

dB2

dt
¼ �2g2 B2 � B�

12x1 � B12x
�
1 ð96Þ

dC1

dt
¼ �2g1C1 þ 2ðC12x

�
1 þ B1x2Þ þ x2 ð97Þ

dC2

dt
¼ �2g2C2 � 2C12x1 ð98Þ

dC12

dt
¼ �ðg1 þ g2ÞC12 þ B12x2 � C1x1 þ C2x

�
1 ð99Þ

dB12

dt
¼ �ðg1 þ g2ÞB12 þ C12x

�
2 þ x1ðB2 � B1Þ ð100Þ

The set of equations (93)–(100), proposed for the first time by Peřina et al. [169],

is a development of the Bloembergen equations (90)–(91). The initial conditions

with respect to (83) are given by

x1ð0Þ ¼ x10; x2ð0Þ ¼ x20 ¼ 0

B1;2ð0Þ ¼ B12ð0Þ ¼ C1;2ð0Þ ¼ C12ð0Þ ¼ 0
ð101Þ

The s terms in Eq. (80) contribute only the term x2 in Eq. (97). Thus, the term x2

represents the quantum diffusional s-terms in the Fokker–Planck equation. The

other terms in Eqs. (93)–(100) originate in the drift terms of the Fokker–Planck

equation. The terms B12 and C1 in Eqs. (93)–(94) play the role of feedback terms

that pump quantum fluctuations into the classical Bloembergen equations. If the

s terms in Eq. (80) do not appear (the classical case), the term x2 in Eq. (97) does

not appear, either. In this case the subset (95)–(100) with zero initial conditions

has zero solutions and in consequence leads to the first truncation [171].

Let us consider the driving field amplitude in the form F ¼ F0ð1 þ sin �tÞ,
meaning that the external pump amplitude is modulated with a frequency �
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and the appropriate bifurcation maps (b,c) versus the modulated parameter �. The parameters are



around F0. For the time-independent field F ¼ F0 (� ¼ 0), the system does

not manifest chaotic behavior. However, a change of � in the range 0 < � < 7

leads the system from periodic to chaotic motion or vice versa. The dynamical

behavior of our system is reflected by the Lyapunov exponents. The maximal

Lyapunov exponents as a function of the modulation parameter � for the

classical case [Eqs. (90)–(91)] (dashed line) and for the quantum case [Eqs.

(93)–(100)] (solid line) is plotted in Fig. 38a. For the classical case, one observes

several regions where the system behaves chaotically (l1 > 0) whereas else-

where it behaves orderly (l1 < 0). For the quantum case we observe only one

region of chaos 1:3 < � < 1:72, which does not overlap exactly any classical

region of chaos. Generally, as is seen in Fig. 38, the quantum correction reduces

chaos in the system but does not eliminate it completely. For example, for

� ¼ 1:4, both the classical and quantum versions of the system behave

chaotically whereas the classical maximal Lyapunov exponent is greater than

quantum. This means a reduction of chaos in the classical system due to the

quantum correction. The reduction is also reflected by the appropriate bifurca-

tion diagrams (Fig. 38b,c). Another useful way to visualize the reduction of

chaos is to analyze the motion in the phase space. However, in our case, the

classical phase space is four-dimensional (Rex1; Imx1; Rex2; Imx2). This

means that we can compare only the motion in the reduced phase space. For

physical interpretation it is convenient to consider the motion in two-dimen-

sional intensity space ðI1 ¼ jx1j2; I2 ¼ jx2j2Þ. Then, instead of a typical phase

portrait, we deal with an intensity portrait. In the quantum case the intensities

are the average numbers of photons determined by hâþ
i âii ¼ jxij2 þ Bi, where Bi

is the quantum correction to the classical intensity Ii ¼ jxij2.
The reduction of chaos for � ¼ 1:45 is presented in the intensity portraits of

Fig. 39. However, as is seen in Fig. 38a, there is a small region

(1:68 < � < 1:80) where the system behaves orderly in the classical case but

the quantum correction leads to chaos. By way of an example for � ¼ 1:75, the

classical system, after quantum correction, loses its orderly features and the

limit cycle settles into a chaotic trajectory. Generally, Lyapunov analysis shows

that the transition from classical chaos to quantum order is very common. For

example, this kind of transition appears for � ¼ 3:5 where chaos is reduced to

periodic motion on a limit cycle. Therefore a global reduction of chaos can be

said to take place in the whole region of the parameter 0 < � < 7.

As we see in Fig. 38, transitions leading from classical order to quantum

order are also possible. For example, for � ¼ 6:7 the quasiperiodic classical

motion is reduced to periodic motion after the quantum correction.

C. Final Remarks

Using a cumulant expansion, we have shown how to obtain quantum corrections

to purely classical equations of motion. Quantum correction reduces chaos in
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the classical systems. The Lyapunov analysis and bifurcation maps show that

after the first quantum correction, the number of chaotic regions is reduced,

although not eliminated fully. The question is what happens if third-order or

higher-order corrections are taken into account?. Let us note that, for example,

the set (72)–(74) consists of 5 equations in real variables. If third-order

truncation is performed, the set (72)–(74) is additionally modified and supple-

mented with four equations in real variables, thus leading to 9 equations. The

fourth truncation leads to 15 equations in real variables, and so on. From the

formal point of view, the quantum corrections become more and more rigorous

with higher and higher order of the approximation. On the other hand, even if
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Figure 39. Transition from classical chaos (a) to quantum chaos (b). The parameters are those

of Fig. 38 but with � ¼ 1:4.
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the numerical calculations are performed in extended precision, computer errors

can accumulate significantly, leading to spurious high-order quantum correc-

tions due to the increasing numbers of equations and iterations. The quantum

Lyapunov whose classical counterpart is positive has to be calculated with a

finite time, empirically expressed. The time is of the rank ðlÞ�1
, where l is the

classical Lyapunov exponent [158].

References
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3. P. Cvitanović, Universiality in Chaos, Adam Hilger Ltd, Bristol, UK, 1984.

4. G. Casati (ed), Chaotic Behaviour in Quantum Systems, Plenum Press, New York, 1985.

5. H. G. Schuster, Deterministic Chaos. An Introduction, VCH Verlagsgesellschaft, Weinheim,

1988.

6. M. C. Gutzwiller, Chaos in Classical and Quantum Systems, Springer-Verlag, New York, 1990.

7. E. Ott, Chaos in Dynamical Systems, Cambridge Univ. Press, New York, 1993.

8. R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford Univ. Press, New York, 1994.

9. Special Issue, Instabilities in Active Optical Media, J. Opt. Soc. Am. B 2(1) (1985).

10. Special Issue, Spatio-temporal Coherence and Chaos in Physical Sytems, Physica D 23 (1986).

11. R. W. Boyd, M.G. Raymer, and L.M. Narducci (Eds.), Optical Instabilities, Cambridge Univ.

Press, London, 1986.

12. F. T. Arecchi and R. G. Harrison, Instabilities and Chaos in Quantum Optics, in Springer Series

in Synergetics, Vol. 34, Springer-Verlag, Berlin, 1987.

13. P. W. Milonni, M.L. Shih, and J.R. Ackerhalt, Chaos in Laser-Matter Interactions, World

Scientific, Singapore, 1987.

14. L. W. Casperson, Spontaneous pulsations in Lasers, in J. D. Harvey and D. F. Walls (Eds.), Laser

Physics, Lecture Notes in Physics, Vol. 182, Springer-Verlag, Berlin, 1983.

15. E.R. Buley and F.W. Cummings, Phys. Rev. 134, A1454 (1964).

16. H. Haken, Phys. Lett. A 53, 77 (1975).

17. R. Graham, Phys. Lett. A 58, 440 (1976).

18. F. Yamada and R. Graham, Phys. Rev. Lett. 45, 1322 (1980).

19. M.-L. Shih and P.W. Milloni, Opt. Commun. 49, 155 (1984).

20. H. Zeghlache and P. Mandel, J. Opt. Soc. Am. B 2,18 (1985).

21. T. Ogawa, Phys. Rev. A 37, 4286 (1988).

22. R. G. Harrison and D. J. Biswas, Prog. Quantum Electron. 10, 147 (1985).

23. P. W. Milonni, J. R. Ackerhalt, and M.-L. Shih, Opt. Commun. 49, 155 (1984).

24. M.-L. Shih, P.W. Milonni, and J. R. Ackerhalt, J. Opt. Soc. Am. B 2, 130 (1985).

25. L. W. Casperson and A. Yariv, Appl. Phys. Lett. 17, 259 (1970).

26. L. W. Casperson, Phys. Rev. A 21, 911 (1980).

27. M. Mayr, H. Risken, and H.D. Vollmer,, Opt. Commun., 36, 480 (1981).

28. P. Mandel, Opt. Commun. 44, 400 (1983).

29. D. K. Bandy, L. M. Narducci, L.A. Lugiato, and N.B. Abraham, J. Opt. Soc. Am. B 2, 56 (1985).

chaos in optical systems 423



30. F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982).

31. L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).

32. C. O. Weiss and H. King, Opt. Commun. 44, 59 (1982).

33. R. S. Gioggia and N.B. Abraham, Phys. Rev. Lett. 51, 650 (1983).

34. L. M. Hoffer, T.H. Chyba, and N. B. Abraham, J. Opt. Soc. Am. B 2, 102 (1985).

35. N. B. Abraham, T. Chyba, M. Coleman, R. S. Gioggia, N. J. Halas, L. M. Hoffer, S.-N. Liu,

M. Maeda, and J.C. Wesson, in J. D. Harvey and D.F. Walls (Eds.), Laser Physics, Lecture Notes

in Physics Vol. 182, Springer-Verlag, Berlin, 1983.

36. C. O. Weiss and W. Klische, Opt. Commun. 51, 47 (1984).

37. C. O. Weiss, W. Klische, P.S. Ering, and M. Cooper, Opt. Commun. 52, 405 (1985).

38. C. O. Weiss and J. Brock, Phys. Rev. Lett. 57, 2804 (1986).

39. C. O. Weiss, N. B. Abraham, and V. H. Hübner, Phys. Rev. Lett. 61, 1587 (1988).
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I. INTRODUCTION

For many years the (standard, i.e., Abelian) Stokes theorem has been one of

the central points of (multivariable) analysis on manifolds. Lower-dimensional

versions of this theorem, known as the (proper) Stokes theorem, in dimensions 1

and 2, and the Gauss theorem, in dimensions 2 and 3, respectively, are well

known and extremely useful in practice, such as in classical electrodynamics

(Maxwell equations). In fact, it is difficult, if not impossible, to imagine lectures

on classical electrodynamics without intensive use of the Stokes theorem. The

standard Stokes theorem is also called the Abelian Stokes theorem, as it applies

to (ordinary, i.e., Abelian) differential forms. Classical electrodynamics is an

Abelian [i.e., U(1)] gauge field theory (gauge fields are Abelian forms),

therefore its integral formulas are governed by the Abelian Stokes theorem.

But many interesting and physically important phenomena are described by

non-Abelian gauge theories. Hence it would be very desirable to have at our

disposal a non-Abelian version of the Stokes theorem. Since non-Abelian

differential forms need necessitate a somewhat different treatment, one is forced

to use a more sophisticated formalism to deal with this new situation.

The aim of this chapter is to present a short review of the non-Abelian Stokes

theorem. At first, we will give an account of different formulations of the non-

Abelian Stokes theorem and next of various applications of thereof.

A. Abelian Stokes Theorem

Before we engage in the non-Abelian Stokes theorem it seems reasonable to

recall its Abelian version. The (Abelian) Stokes theorem says (see, e.g., Ref. 1

for an excellent introduction to the subject) that we can convert an integral

around a closed curve C bounding some surface S into an integral defined on

this surface. Specifically, in three dimensionsþ
C

~A � d~s ¼
ð

S

curl~A �~n ds ð1Þ

where the curve C is the boundary of the surface S, that is, C ¼ qS (see Fig. 1),~A
is a vector field (e.g., the vector potential of electromagnetic field) and~n is a unit

outward normal at the area element ds.

∂S = C

S

Figure 1. Integration areas for the lowest-dimensional

(nontrivial) version of the Abelian Stokes theorem.
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More generally, in any dimensionð
qN

o ¼
ð

N

do ð2Þ

where now N is a d-dimensional submanifold of the manifold M, qN is its

ðd � 1Þ-dimensional boundary, o is a ðd � 1Þ-form, and do is its differential, a

d form. We can also rewrite Eq. (1) in the spirit of Eq. (2)þ
qS¼C

Ai dxi ¼ 1

2

ð
S

qiAj � qjAi

� �
dxi ^ d x j ð3Þ

where Ai ði ¼ 1; 2; 3Þ are components of the vector ~A, and the Einstein sum-

mation convention after repeating indices is assumed.

In electrodynamics, we define the strength tensor of electromagnetic field

Fij ¼ qiAj � qjAi

and the magnetic induction, its dual, as

Bk ¼
1

2
eijkFij

where eijk is the totally antisymmetric (pseudo) tensor. Thus the right-hand side

(r.h.s.) of Eq. (3) represents the magnetic flux through S, and we can rewrite

Eq. (3) in the form of (1):þ
qS¼C

Ai dxi ¼ 1

2

ð
S

Fij dxi ^ d xj

¼
ð

S

Bin
i ds ð4Þ

In turn, in geometry ~A plays the role of connection (it defines the parallel

transport around C) and F is the curvature of this connection. A ‘‘global version’’

of the Abelian Stokes theorem

exp i

þ
qS¼C

AiðxÞ dxi

� �
¼ exp

i

2

ð
S

FijðxÞ dxi ^ d xj

� �
ð5Þ

which is a rather trivial generalization of Eq. (4) is a very good starting point for

our discussion of the non-Abelian Stokes theorem. The object on the left-hand

side (l.h.s.) of (5) is called the holonomy, and more generally, for open curves C,

global connection.
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B. Historical Remarks

The birth of the ideas related to the (non-)Abelian Stokes theorem dates back to

the ninetenth century, with the emergence of the Abelian Stokes theorem. The

Abelian Stokes theorem can be treated as a prototype of the non-Abelian Stokes

theorem or a version of thereof when we confine our discussion to an Abelian

group.

A work closer to the proper non-Abelian Stokes theorem, by Schlesinger [2],

which generally considered noncommuting matrix value functions, appeared in

1927. In fact, nowork on the genuine non-Abelian Stokes theorem appeared before

the concept of non-Abelian gauge fields emerged in the early 1950s. The first

papers on the non-Abelian Stokes theorem appeared in the late 1970s. At first,

the non-Abelian Stokes theorem emerged in the operator version [3–5] and later

on, in the very end of 1980s, in the path integral one [6,7].

C. Contents

The substantive part of this chapter consists of two sections. Section II is devoted

to the non-Abelian Stokes theorem itself. In the beginning, we introduce the

necessary notions and conventions. The operator version of the non-Abelian

Stokes theorem is formulated in Section II.A. Section II.B concerns the path

integral versions of the non-Abelian Stokes theorem: coherent-state approach

and holomorphic approach. Section II.C describes generalizations of the non-

Abelian Stokes theorem: topologically more general situations (Section II.C.1)

and higher-degree forms (Section II.C.2). Section III is devoted to applications

of the non-Abelian Stokes theorem in mathematical and theoretical physics.

Section III.A presents an approach to the computation of Wilson loops in two-

dimensional Yang–Mills theory. Section III.B deals with the analogous problem

for three-dimensional (topological) Chern–Simons gauge theory. Other possi-

bilities, including higher-dimensional gauge theories and QCD, are mentioned

in Section III.C.

II. NON-ABELIAN STOKES THEOREM

What is the non-Abelian Stokes theorem? To answer this question, we should

first recall the form of the well-known Abelian Stokes theorem [see Eq. (2)]

ð
qM

o ¼
ð

M

do ð6Þ

where the integral of the form o along the boundary qN of the submanifold N is

equated to the integral of the differential do of this form over the submanifold N.

The differential form o is usually an ordinary (i.e., Abelian) differential form,
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but it could also be something more general, such as a connection one-form A.

Thus, the non-Abelian Stokes theorem should be a version of (6) for non-Abelian

(say, Lie-algebra valued) forms. Since it could be risky to directly integrate Lie-

algebra-valued differential forms, the generalization of (6) may be a nontrivial

task. We should not be too ambitious perhaps from the very beginning, and not

try to formulate the non-Abelian Stokes theorem in full generality at once, as this

could be difficult or even impossible. The lowest nontrivial dimensionality of the

objects entering (6) is as follows: dim N ¼ 2 (dim qN ¼ 1) and dego ¼ 1

(deg do ¼ 2). A short reflection leads us to the first candidate for the l.h.s. of the

non-Abelian Stokes theorem, the Wilson loop

P exp i

þ
C

A

� �
ð7Þ

called the holonomy, in mathematical context, where P denotes the, so-called

path ordering, A is a non-Abelian connection one-form, and C is a closed loop, a

boundary of the surface S (qS ¼ C). Correspondingly, the r.h.s. of the non-

Abelian Stokes theorem should contain a kind of integration over S. Therefore,

the actual Abelian prototype of the non-Abelian Stokes theorem is of the form (5)

rather than of (4). More often, the trace of Eq. (7) is called the Wilson loop

WRðCÞ ¼ TrRP exp i

þ
C

A

� �
ð8Þ

or even the ‘‘normalized’’ trace of it

1

dim R
TrRP exp i

þ
C

A

� �
ð9Þ

where the character R means a(n irreducible) representation of the Lie group G

corresponding to the given Lie algebra g. Of course, one can easily pass from (7)

to (8) and finally to (9). In fact, the operator (7) is a particular case of a more

general parallel-transport operator

UL ¼ P exp i

ð
L

A

� �
ð10Þ

where L is a smooth path, which for the L a closed loop (L ¼ C) yields (7).

Eq. (10) could be considered as an ancestor of Eq. (7). As the l.h.s. of the non-

Abelian Stokes theorem, we can assume any of the formulas given above for the

closed-loop C [i.e., Eqs. (7)–(9)], possibly yielding various versions of the non-

Abelian Stokes theorem. For some reason, it is sometimes more convenient to
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use the Wilson loop in the operator version (7) rather than in the version with the

trace (8). Sometimes it does not make any greater difference. The r.h.s. should be

some expression defined on the surface S, and essentially constituting the non-

Abelian Stokes theorem.

A physicist would view the expression (10) as typical in quantum mechanics

and as corresponding to the evolution operator. Equations (8) and (9) are, in-

cidentally, very typical in gauge theory, such as in QCD. Thus, guided by our

intuition, we can reformulate our chief problem as a quantum-mechanical one.

In other words, the approaches to the l.h.s. of the non-Abelian Stokes theorem

are analogous to the approaches to the evolution operator in quantum mechanics.

There are the two main approaches to quantum mechanics, especially to the

construction of the evolution operator: opearator approach and path-integral

approach. Both can be applied to the non-Abelian Stokes theorem successfully,

and both provide two different formulations of the non-Abelian Stokes theorem.

The conventions are as follows. Sometimes, especially in a physical context,

a coupling constant, denoted, for instance, e, appears in front of the integral in

Eqs. (7)–(10). For simplicity, we will omit the coupling constant in our formulas.

The non-Abelian curvature or the strength field on the manifold M is defined

by

FijðAÞ ¼ qiAj � qjAi � i½Ai;Aj�

Here, the connection or the gauge potential A assuming values in a(n irreducible)

representation R of the compact, semisimple Lie algebra g of the Lie group G is

of the form

AiðxÞ ¼ Aa
i ðxÞT a; i ¼ 1; . . . ; dim M

where the Hermitian generators, T ay ¼ T a, T a ¼ T a
kl, k; l ¼ 1; . . . ; dim R, fulfill

the commutation relations

½T a; T b� ¼ if abcT c; a; b; c ¼ 1; . . . ; dim G ð11Þ

The line integral (10) can be rewritten in more detailed (as it is frequently used in

our further analysis) forms, such as

Uðx00; x0Þ ¼ P exp i

ðx00

x0
AiðxÞdxi

" #

or

Ukl ¼ P exp i

ðx00

x0
Aa

i ðxÞTa dxi

" #
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without parametrization, and

Uðt00; t0Þ ¼ P exp i

ðx00

x0
Aa

i ½xðtÞ�Ta dxiðtÞ
dt

dt

( )

with an explicit parametrization, or some variations thereof. Here, the oriented

smooth path L starting at the point x0 and endng at the point x00 is parametrized by

the function xiðtÞ, where t0 � t � t00 and x0i ¼ xiðt0Þ, x00i ¼ xiðt00Þ.

A. Operator Formalism

Unfortunately, it is not possible to automatically generalize the Abelian Stokes

theorem [e.g., Eq. (4)] to the non-Abelian one. In the non-Abelian case one

faces a qualitatively different situation because the integrand on the l.h.s.

assumes values in a Lie algebra g rather than in the field of real or complex

numbers. The picture simplifies significantly if one switches from the ‘‘local’’

language to a global one [see Eq. (5)]. Therefore we should consider the

holonomy (7) around a closed curve C:

Pexp i

þ
C

Aidxi

� �
The holonomy represents a parallel-transport operator around C assuming values

in a non-Abelian Lie group G. (Interestingly, in the Abelian case, the holonomy

has a physical role; it is an object playing the role of the phase that can be

observed in the Aharonov–Bohm experiment, whereas Ai itself does not have

such an interpretation.)

The non-Abelian Stokes theorem is as follows. The non-Abelian general-

ization of Eq. (5) should read as

Pexp i

þ
qS¼C

AiðxÞdxi

� �
¼ P exp

i

2

ð
S

FijðxÞdxi ^ d xj

� �
where the l.h.s. has been already roughly defined. As far as the r.h.s. is concerned,

the symbol P denotes some ‘‘surface ordering,’’ whereas FijðxÞ is a ‘‘path-

dependent curvature’’ given by the formula

FijðxÞ¼¼
def

U�1ðx;OÞFijðxÞUðx;OÞ

where Uðx;OÞ is a parallel-transport operator along the path L in the surface S

joining the base point O of qS with the point x:

Uðx;OÞ ¼ Pexp i

ð
L

AiðyÞdyi

� �

See Fig. 2, and later sections for more details.
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1. Calculus of Paths

As a kind of a short introduction for properly manipulating parallel-transport

operators along oriented curves, we recall a number of standard facts. It is

obvious that we can perform some operations on the parallel-transport opera-

tors. We can superimpose them, we can introduce an identity element, and

finally, we can find an inverse element for each element.

The structure is roughly similar to the structure of the group with the fol-

lowing standard postulates satisfied: (1) associativity, ðU1U2ÞU3 ¼ U1 ðU2U3Þ;
(2) existence of an identity element, IU ¼ UI ¼ U; (3) existence of an inverse

element U�1, U�1U ¼ UU�1 ¼ I. But let us note that not all elements can be

superimposed. Although parallel-transport operators are elements of a Lie group

G, their geometric interpretation has been lost in the notation above. We can

superimpose two elements only when the endpoint of the first element is the

initial point of the second one. Thus U1U2 could be meaningful in the form (Fig. 3)

Uðx1; xÞUðx; x2Þ ¼ Uðx1; x2Þ

x

L S

O

C

Figure 2. Parallel-transport operator along the

path L in the surface S.

x1

x

x2

=

Figure 3. Allowable composition of elements.
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Obviously

I ¼ Uðx; xÞ

and (Fig. 4)

U�1ðx1; x2Þ ¼ Uðx2; x1Þ

These formulas become particularly convincing in graphical form. Perhaps one

of the most useful facts is expressed by Fig. 5.

It appears that this structure fits into the structure of the so-called grouppoid.

2. Ordering

There are a lot of different ordering operators in our formulas which have been

collected in this section.

x1

x2

=

−1

Figure 4. Inverse element.

x1

x

x2

=

Figure 5. Deformation of a path.

non-abelian stokes theorem 437



We know from quantum theory that the path-ordered exponent of an operator

Â can be expressed by the power series called the Dyson series:

P exp i

ðt00

t0
ÂðtÞ dt

" #

¼ P 1 þ
X1
n¼1

in

n!

ðt00

t0
dt1

ðt00

t0
dt2 � � �

ðt00

t0
dtn Âðt1ÞÂðt2Þ � � � ÂðtnÞ

" #

¼ 1 þ
X1
n¼1

in

n!

ðt00

t0
dt1

ðt00

t0
dt2 � � �

ðt00

t0
dtn P Âðt1ÞÂðt2Þ � � � ÂðtnÞ

� 

¼ 1 þ

X1
n¼1

in
ðt00

t0
dt1

ðt1

t0
dt2 � � �

ðtn�1

t0
dtn Âðt1ÞÂðt2Þ � � � ÂðtnÞ

where

P½Â1ðt1Þ � � � ÂnðtnÞ� ¼¼
def

Âsð1Þ tsð1Þ
� �

� � � ÂsðnÞ tsðnÞ
� �

Þ; tsð1Þ � � � � � tsðnÞ

For example, for two operators

P½Â1ðt1ÞÂ2ðt2Þ� � y t1 � t2ð ÞÂ1ðt1ÞÂ2ðt2Þ þ y t2 � t1ð ÞÂ2ðt2ÞÂ1ðt1Þ

where y is the step function.

Since the operators and matrices appearing in our considerations are, in

general, noncommutative, we assume the following conventions:

YN
n¼1

Xn ¼¼
def

XNXN�1 � � �X2X1 ð12Þ

Pt X1X2; . . . ;XN�1XNð Þ¼¼def
XNXN�1 � � �X2X1 ð13Þ

whereas for two parameters

Ps;t

YN
m;n¼1

Xm;n ¼¼
def
YN
n¼1

YN
m¼1

Xm;n

� XN;NXN�1;N � � �X1;NXN;N�1 � � �X1;2XN;1 � � �X2;1X1;1

3. Theorem

The non-Abelian Stokes theorem in its original operator form roughly claims

that the holonomy around a closed curve C ¼ qS equals a surface-ordered
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exponent of the twisted curvature, namely

Pexp i

þ
C

A

� �
¼ P exp i

ð
S

F

� �
ð14Þ

where F is the twisted curvature:

F � U�1FU

A more precise form of the non-Abelian Stokes theorem as well as an exact

meaning of the notions appearing in the theorem will be given in the course of the

proof.

Proof. Following Aref’eva [3] and Menski [8], we will present a short, direct

proof of the non-Abelian Stokes theorem.

In our parametrization, the first step consists of the decomposition of the

initial loop (see Fig. 6) into small lassos according to the rules given in the

Section II.A.1

Pexp i

þ
C

A

� �
¼ lim

N!1
ðPs;tÞ

YN
m;n¼1

U�1
m;nWm;nUm;n

where the objects involved are defined as follows. Parallel-transport operators

from the reference point to the point with coordinates ðm
N
; n

N
Þ consists of two

segments (see Fig. 7)

Um;n ¼¼
def

Pexp i

ððm
N
;n
N
Þ

ð0;n
N
Þ

A

 !
Pexp i

ðð0;n
N
Þ

ð0;0Þ
A

 !

(0,0) (1,0)

(1,1)(0,1)

Figure 6. The parametrized loop C as a boun-

dary of the ‘‘big’’ square S with the coordinates

{(0,0), (1,0), (1,1), (0,1)}.
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parallel-transport operator round a small plaquette Sm;n (see Fig. 8)

Wm;n ¼¼def
Tr Pexp i

þ
Sm;n

A

 !

where Sm;n is a boundary of a (small) square with coordinates

Sm;n ¼ m

N
;

n

N

� �
;

m � 1

N
;

n

N

� �
;

m � 1

N
;
n � 1

N

� �
;

m

N
;
n � 1

N

� �� �

Figure 7. Approaching the ‘‘small’’ plaquette

inside the ‘‘big’’ square.

Figure 8. The small plaquette.
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Now

U�1
m;nWm;nUm;n ¼ U�1

m;n 1 þ i

N2
Fm;n þ O

1

N3

� �� �
Um;n

¼ 1 þ i

N2
U�1

m;nFm;nUm;n þ O
1

N3

� �

¼ 1 þ i

N2
Fm;n þ O

1

N3

� �

¼ Wm;n þ O
1

N3

� �

where Wm;n has been calculated in the next (and last) paragraph of this section

[see Eq. (15)]

Fm;n ¼¼
def

U�1
m;nFm;nUm;n

and

Wm;n ¼¼
def

exp
i

N2
Fm;n

� �

Then

Pexp i

þ
C

A

� �
¼ lim

N!1
ðPs;tÞ

YN
m;n¼1

Wm;n þ O
1

N3

� �� �

¼ lim
N!1

ðPs;tÞ
YN

m;n¼1

exp
i

N2
Fm;n þ O

1

N3

� �� �

¼ lim
N!1

ðPtÞ
YN

m;n¼1

exp
i

N2
Fm;n þ O

1

N3

� �� �
:

The last equality follows from the fact that operations corresponding to the

change of the order of the operators yield the commutator

1

N2
Fm0;n0 ;

1

N2
Fm00;n00

� �
¼ O

1

N4

� �

and there are maximum N � 1 transpositions possible in the framework of

s-ordering, so

ðN � 1ÞO
1

N4

� �
¼ O

1

N3

� �
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Thus, we arive at the final form of the non-Abelian Stokes theorem:

Pexp i

þ
C

A

� �
¼ lim

N!1
ðPtÞ

YN
m;n¼1

exp
i

N2
Fm;n

� �
¼ P exp i

ð
S

F

� �

In this paragraph we will perform a fairly standard calculus and derive the

contribution coming from a small loop Wm;n:

Wm;n ¼ Pexp i

ð m
N
;n
Nð Þ

m
N
;n�1

Nð Þ
A

 !
P exp i

ð m
N
;n�1

Nð Þ
m�1

N
;n�1

Nð Þ
A

 !

Pexp i

ð m�1
N
;n�1

Nð Þ
m
N
;n�1

Nð Þ
A

 !
P exp i

ð m
N
;n�1

Nð Þ
m
N
;n
Nð Þ

A

 !

¼ 1 þ i

N
Ay

m;n þ
1

2

i

N
Ay

m;n

� �2

þO
1

N3

� �" #

� 1 þ i

N
Ax

m;n�1 þ
1

2

i

N
Ax

m;n�1

� �2

þO
1

N3

� �" #

� 1 � i

N
A

y
m�1;n þ

1

2

i

N
A

y
m�1;n

� �2

þO
1

N3

� �" #

� 1 � i

N
Ax

m;n þ
1

2

i

N
Ax

m;n

� �2

þO
1

N3

� �" #

¼ 1 þ i

N
Ay

m;n � A
y
m�1;n

� �
� i

N
Ax

m;n � Ax
m;n�1

� �
þ i

N

� �2

Ay
m;n

� �2

þ i

N

� �2

Ax
m;n

� �2

þ i

N

� �2

Ay
m;n Ax

m;n

� i

N

� �2

Ay
m;n

� �2

� i

N

� �2

Ay
m;n Ax

m;n �
i

N

� �2

Ax
m;nAy

m;n

� i

N

� �2

Ax
m;n

� �2

þ � i

N

� �2

Ay
m;n Ax

m;n þ O
1

N3

� �

¼ 1 þ i

N2
qxAy � qyAx
� �

� i2

N2
AxAy � AyAxð Þ þ O

1

N3

� �

¼ 1 þ i

N2
Fm;n þ O

1

N3

� �
ð15Þ
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where

F ¼ qxAy � qyAx � i ½Ax;Ay�

(occasionally, we put x and y in the upper position), and

A ¼ Am;n þ O
1

N

� �

Then

Wm;n ¼ exp
i

N2
Fm;n þ O

1

N3

� �� �

There are may other approaches to the (operator) non-Abelian Stokes

theorem, which are more or less interrelated, including an analytical approach

advocated by Bralić [4] and Hirayama and Ueno [9]. An approach using product

integration [10], and last, but not least, a (very interesting) coordinate gauge

approach [11,12].

B. Path Integral Formalism

There are two main approaches to the non-Abelian Stokes theorem in the

framework of the path integral formalism: coherent-state approach and holo-

morphic approach. In the literature, both approaches occur in a few, and slightly

different, incarnations. Also, both have found applications in different areas of

mathematical and/or theoretical physics, and therefore both are useful. The first

one is formulated more in the spirit of group theory, whereas the second one

follows from traditional path integral formulation of quantum mechanics or

rather quantum field theory. Similar to the situation in quantum theory, the path

integral formalism is easier in some applications and more intuitive than the

operator formalism, but traditionally it is mathematically less rigorous. In the

same manner as quantum mechanics, initially formulated in the operator

language and next reformulated in the path integral one, we can translate the

operator form of the non-Abelian Stokes theorem into the path integral

language.

In order to formulate the non-Abelian Stokes theorem in the path integral

language, we will perform the following three steps:

1 We will determine a coherent-state/holomorphic path integral representa-

tion for the parallel-transport operator, deriving an appropriate transition

amplitude [a path integral counterpart of the l.h.s. in Eq. (14)].

2 For a closed curve C we will calculate the trace of the path integral form

of the parallel-transport operator in quantum theory in an external gauge

field A.
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3 We will apply the Abelian Stokes theorem to the exponent of the integrand

of the path integral yielding the r.h.s. of the non-Abelian Stokes theorem

[a counterpart of the r.h.s. in Eq (8)].

Preliminary formulas are presented in Eqs. (16) and (17). Since both path

integral derivations of the transition amplitude have a common starting point that

is independent of the particular approach, we present it here:

Pexp i

ðt00

t0
AðtÞdt

" #
¼ lim

N!1

YN
n¼1

ð1 þ iEAnÞ ð16Þ

In this equation

An ¼ AðtnÞ; E ¼ t00 � t0

N
; tn ¼ nEþ t0; tN ¼ t00; t0 ¼ t0 ð17Þ

From this moment on, both approaches differ.

1. Coherent-State Approach

a. Group-Theoretic Coherent States. According to Zhang et al. [13] (see also

Ref. 14) [Per86] the group-theoretic coherent states emerge in the following

construction:

1 For g, a semisimple Lie algebra of a Lie group G, we introduce the stan-

dard Cartan basis fHi;Ea;E�ag:

Hi;Hj

� 

¼ 0

Hi;Ea½ � ¼ aiEa

Ea;E�a½ � ¼ aiHi

Ea;Eb
� 


¼ Na;bEaþb ð18Þ

2 We chose a unitary irreducible representation R of the group G, as well as

a normalized state the, so-called, reference state Rj i. The choice of the

reference state is in principle arbitrary but not unessential. Usually it is an

‘‘extremal state’’ (the highest-weight state), the state anihilated by Ea,

namely, EajRi ¼ 0.

3 A subgroup of G that consists of all the group elements h that will leave

the reference state jRi invariant up to a phase factor is the maximum-

stability subgroup H. Formally, this is

hjRi ¼ jRieifðhÞ; h 2 H
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The phase factor is unimportant here because we shall generally take the

expectation value of any operator in the coherent state.

4 For every element g 2 G, there is a unique decomposition of g into a

product of two group elements, one in H and the other in the quotient

G=H:

g ¼ xh; g 2 G; h 2 H; x 2 G

H

In other words, we can obtain a unique coset space for a given jRi.
5 One can see that the action of an arbitrary group element g 2 G on jRi is

given by gjRi ¼ xhjRi ¼ xjRieifðhÞ: The combination jx;Ri¼¼def xjRi is

the general group definition of the coherent states. For simplicity, we will

denote the coherent states as jg;Ri.

The coherent states jg;Ri are generally nonorthogonal but are normalized to

unity:

hg;R jg;Ri ¼ 1:

Furthermore, for an appropriately normalized measure dmðgÞ, we have a very

important for our furher analysis identity the so-called, resolution of unity:ð
jg;RidmðgÞhg;Rj ¼ I ð19Þ

b. Path Integral. Our first aim is to calculate the ‘‘transition amplitude’’

between the two coherent states jg0;Ri and jg00;Ri

hg00;RjP exp i

ðt00

t0
AðtÞ dt

" #
jg0;Ri

¼ lim
N!1

ð
� � �
ð
hgN ;Rjð1 þ iEANÞjgN�1;RidmðgN�1Þ

hgN�1;Rjð1 þ iEAN�1ÞjgN�2;RidmðgN�2Þ

� � � dmðg1Þhg1;R jð1 þ iEA1Þjg0;Ri ð20Þ

where we have used (16) and (19). To continue, one should evaluate a single

amplitude (i.e., the amplitude for an infinitesimal ‘‘time’’ E):

hgn;Rjð1 þ iEAnÞjgn�1;Ri
¼ hgn;Rjgn�1;Ri þ ihgn;RjAnjgn�1;RiE
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Now

gn;Rjgn�1;Rh i ¼ hgðtnÞ;Rjgðtn�1Þ;Ri

¼ hRjgyðtnÞgðtn�1ÞjRi ¼ hRjgyðtnÞgðtn � EÞjRi

¼ hRjgyðtnÞ½gðtnÞ � _gðtnÞEþ OðE2Þ�jRi

¼ hRjgyðtnÞgðtnÞjRi � hRjgyðtnÞ _gðtnÞjRiEþ OðE2Þ

¼ 1 � hRjgyðtnÞ _gðtnÞjRiEþ OðE2Þ

whereas

ihgn;RjAnjgn�1;RiE ¼ ihgðtnÞ;RjAðtnÞjgðtn�1Þ;RiE

¼ ihRjgyðtnÞAðtnÞgðtn � EÞjRiE

¼ ihRjgyðtnÞAðtnÞgðtnÞjRiEþ OðE2Þ

Then

hgn;Rjð1 þ iEAnÞjgn�1;Ri ¼ 1 � hRjgyðtnÞ _gðtnÞjRiE

þ ihRjgyðtnÞAðtnÞgðtnÞjRiEþ OðE2Þ

¼ exp½hRj � gyðtnÞ _gðtnÞ

þ igyðtnÞAðtnÞgðtnÞjRiEþ OðE2Þ�

Returning to (20), we obtain

hg00;RjPexp i

ðt00

t0
AðtÞ dt

" #
jg0;Ri ¼

ð
½DmðgÞ�exp i

ðt00

t0
L dt

 !

where the ‘‘Lagrangian’’ appearing in the path integral is defined as

L ¼ hRj½igyðtÞ _gðtÞ þ gyðtÞAðtÞgðtÞ�jRi¼¼def
RjAgðtÞjRi ð21Þ

and

½DmðgÞ� ¼
Y

t0<t<t00
dm½gðtÞ�

According to Hirayama and Ueno [15], we can transform L in Eq. (21) to the

form originally proposed by Diakonov and Petrov [16]. Specifically, for any Lie
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algebra element K we have in the Cartan basis (18)

hRjKjRi ¼ hRj
X

i

liHi þ � � � jRi ¼
X

i

lihRjHijRi

where the ellipses represent E�a generators vanishing between jRi states. Since

HijRi ¼ mijRi

then X
i

lihRjHijRi ¼
X

i

lihRjRijRi ¼
X

i

limi

¼ 1

k

X
i

miTrðHiKÞ ¼ 1

k
Trðm � H KÞ

where the normalization

TrðHiHjÞ ¼ kdij

has been assumed. Thus

L ¼ hRjAgðtÞjRi

¼ 1

k

X
i

Tr½miHiA
gðtÞ�

¼ 1

k
Trfm � H ½igyðtÞ _gðtÞ þ gyðtÞAðtÞgðtÞ�g ð22Þ

c. Non-Abelian Stokes Theorem. Finally, the l.h.s. of the non-Abelian Stokes

theorem reads as ð
DmðgÞexp i

þt00

t0
L dt

 !

where

DmðgÞ ¼
Y

t0�t<t00
dm½gðtÞ�

and gðt0Þ ¼ gðt00Þ. Or, in the language of differential formsð
DmðgÞexp i

þ
C

L

� �
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where now

DmðgÞ ¼
Y
x2C

dm½gðxÞ�

and

L ¼ 1

k

X
i

Tr½m � HA
g
i ðxÞ�dxi ¼¼def

Bi dxi

with

A
g
i ðxÞ ¼ igyðxÞqigðxÞ þ gyðxÞAiðxÞgðxÞ

AgðtÞ ¼ A
g
i ½xðtÞ�

dxiðtÞ
dt

Here Bi is an Abelian differential form, so obviouslyð
DmðgÞexp i

þ
C¼qS

B

� �
¼
ð

DmðgÞexp i

ð
S

dB

� �

2. Holomorphic Approach

a. Quantum-Mechanics Background. For further convenience, let us formu-

late an auxiliary ‘‘Schrödinger problem’’ governing the parallel-transport

operator (10) for the Abelian gauge potential A

i
dz

dt
¼ � _xiAiz ð23Þ

which expresses the fact that the ‘‘wavefunction’’ z should be covariantly

constant along the line L

Dtz ¼¼def d

dt
� i _xiAi

� �
z ¼ 0

where Dt is the absolute covariant derivative.

First, let us derive the path integral expression for the parallel-transport

operator U along L. To this end, we should consider the non-Abelian formula

(differential equation) analogous to Eq. (23)

i
dzk

dt
¼ � _xiðtÞAa

i ½xðtÞ�T a
klzl ð24Þ
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or

ðDtzÞk ¼¼
def dkl

d

dt
� i _xiAa

i ½xðtÞ�T a
kl

� �
zl ¼ 0

where z is an auxiliary ‘‘wavefunction’’ in an irreducible representation R of

the gauge Lie group G, which is to be parallelly transported along L parametrized

by x iðtÞ, t 0 � t � t 00. Formally, Eq. (24) can be instantaneously integrated out,

yielding

zkðx00Þ ¼ Uklðx00; x0Þzlðx0Þ

where x00 ¼ xðt00Þ, x0 ¼ xðt0Þ, and

Uðx00; x0Þ � Uðt00; t0Þ ¼ P exp i

ðt00

t0
_xiðtÞAi½xðtÞ� dt

 !

as expected.

Let us now consider the following auxiliary classical mechanics problem

with the classical Lagrangian

Lð�z; zÞ ¼ i�zDtz ð25Þ

The equation of motion for z following from Eq. (25) reproduces Eq. (24) and

yields the classical Hamiltonian:

H ¼ i _xiðtÞAa
i ½xðtÞ�T a

klpkzl ¼ � _xiðtÞAa
i ½xðtÞ�T a

kl�zk zl ð26Þ

The corresponding auxiliary quantum-mechanics problem is given, according to

Eq. (26), by the Schrödinger equation

i
d

dt
j�i ¼ ĤðtÞj�i ð27Þ

with

ĤðtÞ ¼ �ÂðtÞ ¼ � _xiðtÞAa
i ½xðtÞ�T̂ a ¼ � _xiðtÞAa

i ½xðtÞ�T a
kl â

þ
k âl � HklðtÞ âþ

k âl

where the creation and annihilation operators satisfy the standard commutation

(�) or anticommutation (þ) relations:

½âk; âþ
l �� ¼ dkl; ½âþ

k ; âþ
l �� ¼ ½âk; âl�� ¼ 0
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It can be easily checked by direct computation that we have really obtained a

realization of the Lie algebra g in a Hilbert (Fock) space, ½T̂ a; T̂ b�� ¼ i f abcT̂ c; in

accordance with (11), where T̂ a ¼ T a
kl â

þ
k âl. For an irreducible representation R,

the second-order Casimir operator C2 is proportional to the identity operator I,

which, in turn, is equal to the number operator N̂ in our Fock representation, that

is, if T a ! T̂ a, then I ! N̂ ¼ dkl â
þ
k âl. Thus we obtain an important for our

further considerations constant of motion N̂ :

½N̂; Ĥ�� ¼ 0 ð28Þ

It is interesting to note that this approach works equally well for commutation

relations as well as for anticommutation relations.

b. Path Integral. Let us now derive the holomorphic path integral repre-

sentation for the kernel of the parallel-transport operator:

h�z00jP exp i

ðt00

t0
ÂðtÞ dt

" #
jz0i

¼ lim
N!1

ð
. . .

ð
h�zN jð1 þ iEÂNÞjzN�1ie��zN�1zN�1

d�zN�1 dzN�1

2pi

h�zN�1jð1 þ iEÂN�1ÞjzN�2ie��zN�2zN�2
d�zN�2dzN�2

2pi

� � � e��z1z1
d�z1 dz1

2pi
h�z1jð1 þ iEÂ1Þjz0i ð29Þ

Now we should calculate the single expectation value:

h�znjð1 þ iE ÂnÞjzn�1i ¼ h�znjzn�1i þ ih�znjÂnjzn�1iE

Here

h�znjzn�1i ¼ e�znzn�1

whereas

ih�zn j Ân jzn�1iE ¼ ih�zn j�zn Anzn�1 jzn�1iE
¼ iE�zn Anzn�1h�zn jzn�1i

Thus

h�zn j ð1 þ iEÂnÞ jzn�1i ¼ e�znzn�1 þ iE�zn Anzn�1e�znzn�1

¼ e�znzn�1 ½1 þ iE�zn Anzn þ OðE2Þ�
¼ e�znzn�1 eþiE�znAnznþOðE2Þ

450 bogusLaw broda



Combining this expression with the exponent in (29), we obtain

e��znzn e�znzn�1þiE�zn AnznþOðE2Þ ¼ e��znðzn�zn�1ÞþiE�zn AnznþOðE2Þ

¼ exp½ð��zn _zn þ E�zn AnznÞEþ OðE2Þ�
Finally

Uð�z00; z0; t00; t0Þ ¼ h�z00 jP exp �i

ðt00

t0
ĤðtÞdt

" #
jz0i

� h�z00 jP exp i

ðt00

t0
ÂðtÞ dt

" #
jz0i

¼
ð
½D2z�exp �zðt00Þzðt00Þ þ i

ðt00

t0

(
½i�zðtÞ_zðtÞ

þ �zðtÞAðtÞzðtÞ�dt

)

�
ð
½D2z� exp �zðt00Þzðt00Þ þ i

ðt00

t0
L dt

" #

where

½D2z� ¼
Y

t0< t< t00

d�zðtÞ dzðtÞ
2pi

and L is of ‘‘classical’’ form (25).

Let us confine our attention to the one-particle subspace of the Fock space.

As the number operator N̂ is conserved by virtue of Eq. (28), if we start from the

one-particle subspace of the Fock space, we shall remain in this subspace during

all the evolution. The transition amplitude Uklðt00; t0Þ between the one-particle

states j1ki ¼ âþ
k j0i and j1li ¼ âþ

l j0i is given by the following scalar product

in the holomorphic representation

Ukl ¼ h1k jP exp i

ðt00

t0
ÂðtÞ dt

" #
j1li

¼
ð
h1k jz00ih�z00 jP exp i

ðt00

t0
ÂðtÞ dt

" #
jz0ih�z0 j1li

e��z
00z00��z0z0 d�z00 dz00 d�z0 dz0

ð2piÞ2

¼
ð

D2z zkðt00Þ�zlðt0Þexp ��zðt0Þzðt0Þ þ i

ðt00

t0
L dt

" #
ð30Þ
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where now

D2z ¼
Y

t0� t� t00

d�zðtÞ dzðtÞ
2pi

Depending on the statistics, there are two (�) possibilities (fermionic and

bosonic):

zk�zl � �zlzk ¼ �zk�zl � �zl�zk ¼ zkzl � zlzk ¼ 0

Both are equivalent in terms of one-particle subspace of the Fock space which we

will discuss in further detail later.

One can easily check that Eq. (30) represents the object we are looking for.

Namely, from the Schrödinger equation [Eq. (27)] it follows that for the general

one-particle state ak âþ
k j0i (summation after repeating indices) we have

i
d

dt
ðamâþ

m j0iÞ ¼ HklðtÞâþ
k âlamâþ

m j0i ¼ HklðtÞalðâþ
k j0iÞ ð31Þ

Using the property of linear independence of Fock space vectors in Eq. (31), and

comparing Eqs. (31) and (24), we can see that Eq. (30) really represents the

matrix elements of the parallel-transport operator. For closed paths, xðt0Þ ¼ xðt00Þ
¼ x, Eq. (30) gives the holonomy operator UklðxÞ and Ukk is the Wilson loop.

Interestingly, the Wilson loop, which is supposed to describe a quark–antiquark

interaction, is represented by a ‘‘true’’ quark and antiquark field, z and �z,

respectively. So, the mathematical trick can be interpreted ‘‘physically.’’

Obviously, the ‘‘full’’ trace of the kernel in Eq. 3.9 is obtained by imposing

appropriate boundary conditions, and integrating with respect to all the variables

without the boundary term. Analogously, one can also derive the parallel-

transport operator (a generalization of the one just considered) for symmetric

n tensors (bosonic n-particle states) and for n forms (fermionic n-particle

states).

c. The Non-Abelian Stokes Theorem. Let us now define a (bosonic or

fermionic) Euclidean two-dimensional ‘‘topological’’ quantum field theory of

multicomponent fields �z; z transforming in an irreducible representation R of the

Lie algebra g on the compact surface S, dim S ¼ 2; qS ¼ C, S � M, dim M ¼ d,

in an external non-Abelian gauge field A, by the classical action

Scl ¼
ð

S

iDi�zDj z þ
1

2
�zFij z

� �
dxi ^ d x j; i; j ¼ 1; . . . ; d ð32Þ

452 bogusLaw broda



or in a parametrization xiðs1;s2Þ, by the action

Scl ¼
ð

S

Lclð�z; zÞd2s

¼
ð

S

eAB iDA�zDBz þ 1

2
�zFABz

� �
d2s; A;B ¼ 1; 2 ð33Þ

where

DA ¼ qAxiDi; Di ¼¼
def qi � iAi; FAB ¼ qAxiqB x jFij

At present, we are prepared to formulate a holomorphic path-integral version

of the non-Abelian Stokes theoremð
D2z z00k �z

0
kexp ��z 0z0 þ i

þ
C

i�z Dz

� �
¼
ð

D2z z 00k �z
0
k expð��z 0z0 þ iSclÞ ð34Þ

or in the polar parametrization xiðs1;s2Þt0 � s1 � t � t00, 0 � s2 � s � 1ð
D2z zkðt00Þ�zkðt0Þexp ��zðt0Þzðt0Þ þ i

ðt00

t0
L½�zðtÞ; zðtÞ�dt

( )

¼
ð

D2z zkðt00; 1Þ�zkðt0; 1Þexp ��zðt0; 1Þzðt0; 1Þ þ i

ð1

0

ðt00

t0
Lcl dt ds

" #
ð35Þ

where Lðz;�zÞ and Lclð�z; zÞ are defined by Eqs. (25) and (33), respectively. The

measure on both sides of Eqs. (34) and (35) is the same; specifically, it is

concentrated on the boundary qS, and the imposed boundary conditions are free.

It should be noted that the surface integral on the r.h.s. of Eqs. (34) and (35)

depends on the curvature F as well as on the connection A entering the covariant

derivatives, which is reminiscent of the path dependence of the curvature F in

the operator approach.

A quite different formulation of the holomorphic approach to the non-

Abelian Stokes theorem has been proposed in [17].

d. Appendix. For completness of our derivations, we will remind the reader of

a few standard facts being used above. First, we assume the following (non-

quite standard, but convenient) definition

jzi¼¼def
ezaþþ�z aþ1

2
j z j 2 j0i ¼ ezaþe�za j0i

¼ ezaþ j0i ¼
X1
k¼0

ðznaþÞn

n!
j0i ¼

X1
k¼0

znffiffiffiffi
n!

p jni
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where j0i is the Fock vacuum, namely, â j0i ¼ 0, and the Baker–Campbell–

Hausdorff (BRS) formula has been applied in the first line. We could also treat

jzi as a coherent state for the Heisenberg group. We can easily calculate

h�z jzi ¼
X1

m;n¼0

�zmznffiffiffiffiffiffiffiffiffiffi
m! n!

p hm jni ¼
X1
n¼0

ð�zzÞn

n!
¼ e�zz

The identity operator is of the form

I ¼
ð
jzih�z je��zz d�z dz

2pi

Actually

I jz0i ¼
ð
jzih�z jz0ie��zz d�z dz

2pi
¼
ð
jzie�zz0��zz d�z dz

2pi

¼
ð
jzidðz0 � zÞ dz ¼ jz0i

All these formulas for a single pair of creation and annihilation operators

obviously apply to a more general situation of dim R pairs. The matrix elements

are

h�z j Â jzi ¼ h0 je
P

k
�zkâk

X
a

Aa
X

k;l

T a
klâ

þ
k âle

P
k

zkâþ
k j0i

¼ h0 je
P

k
�zkâk
X

a

Aa
X

k;l

T a
kl�zkzle

P
k

zkâþ
k j0i

¼ h�z j
X

a

Aa
X

k;l

T a
kl�zkzl jzi

¼ h�z j�zAz jzi

where we have used the formula

½â; ezâþ �� ¼ zezâþ

Now

h1k j ð1 þ iEÂÞ j1li ¼ dkl þ iEh0 j âk

X
a

Aa
X

i; j

T a
ijâ

þ
i âjâ

þ
l j0i

¼ dkl þ iE
X

a

AaT a
kl ¼ ð1 þ iEAÞkl

454 bogusLaw broda



Also

h1k jzi ¼ zk

3. Measure

The theory described above possesses the following ‘‘topological’’ gauge

symmetry

dzðxÞ ¼ yðxÞ; d�zðxÞ ¼ �yðxÞ ð36Þ

where yðxÞ and �yðxÞ are arbitrary except at the boundary qS, where they vanish.

The origin of the symmetry (36) will become clear when we convert the action

(32) into a line integral. Integrating by parts in Eq. (32) and using the Abelian

Stokes theorem, we obtain

Scl ¼ i

þ
qS

�zDi z dxi

or in a parametrized form

Scl ¼ i

þ
qS

�zDt z dt

To covariantly quantize the theory, we shall introduce the BRS operator s.

According to the form of the topological gauge symmetry (36), the operator s is

easily defined by sz ¼ f; s�z ¼ �w; sf ¼ 0; s�w ¼ 0; s�f ¼ �b; sw ¼ b; s�b ¼ 0; and

sb ¼ 0; where f and �w are ghost fields in the representation R, associated with y
and �y, respectively; �f and w are the corresponding antighosts; and �b, b are

Lagrange multipliers. All the fields possess a suitable Grassmann parity corre-

lated with the parity of �z and z. Obviously s2 ¼ 0, and we can gauge-fix the action

in Eq. (32) in a BRS-invariant manner by simply adding the following s-exact

term:

S0 ¼ s

ð
S

ð�f4z � �z4wÞd 2s
� �

¼
ð

S

ð�b4z � �f4f� �w4wþ �z4bÞd 2s

The upper (resp. lower) sign stands for the fields �z,z of bosonic (fermionic)

statistics. Integration after the ghost fields yields some numerical factor and the

quantum action

S ¼ Scl þ
ð

S

ð�b4z þ �z4bÞd 2s ð37Þ
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If necessary, one can insert
ffiffiffi
g

p
into the second term, which is equivalent to

change of variables. Thus the partition function is given by

Z ¼
ð

eiS D�z Dz D�bDb;

with the following boundary conditions: �b jqS ¼ b jqS ¼ 0.

One can observe that the job that the fields �b and b are supposed to do

consists in eliminating a redundant integration inside S. The gauge-fixing

condition following from Eq. (37) imposes the following constraints:

4z ¼ 0; 4�z ¼ 0

Since values of the fields z and �z are fixed on the boundary qS ¼ C, we deal with

the two well-defined two-dimensional (2D) Dirichlet problems. The solutions of

the Dirichlet problems fix values of z and �z inside S. Another, more singular,

gauge-fixing term has been proposed [18].

The issue of the measure has been also discussed [15].

C. Generalizations

1. Topology

Up to now we have investigated the non-Abelian Stokes theorem for a topo-

logically trivial situation. The term topologically trivial situation means, in this

context, that the loop we are integrating along in the non-Abelian Stokes

theorem is ‘‘unknotted’’ in the sense of theory of ‘‘knots’’ [19]. It appears that in

contradistinction to the Abelian case, the non-Abelian one is qualitatively

different. If the loop C is topologically nontrivial and the bounded surface S

(qS ¼ C) is not simply connected, the parameter space given in the form of a

unit square (as in the proof of the non-Abelian Stokes theorem) is not

appropriate. The non-Abelian Stokes theorem presented in the original form

applies only to a surface S homeomorphic to a disk (square). But still, of course,

the standard (topologically trivial) version of the non-Abelian Stokes theorem

makes sense locally. The meaning of locally in this context will become clear in

due course. The non-Abelian Stokes theorem for knots (and also for links —

multicomponent loops) was formulated by Hirayama et al. in 1998 [20]. Inter-

estingly, it follows from this new version of the non-Abelian Stokes theorem

that the value of the line integral along C can be nontrivial (different from 1)

even for the field strenght FmnðxÞ vanishing everywhere on the surface S. This is

an interesting result that could have some applications in physics. One can

speculate that it could give rise to a new version of the Aharonov–Bohm effect.

To approach the non-Abelian Stokes theorem for knots, we should recall a

necessary portion of the standard lore of theory of knots. Since the first task is to

456 bogusLaw broda



find an oriented surface S whose boundary is C, we should construct the, so-

called Seifert surface, satisfying the abovementioned condition by definition. It

appears that the Seifert surface for any knot assumes a standard form home-

omorphic to a (flat) disk with 2g (‘‘thin’’) strips attached. The number g is called

the genus. The strips may, of course, be horribly twisted and intertwined [19].

Now we should decompose C and next S into pieces that can be put together

to form slices that are topologically trivial and thus subject to the standard non-

Abelian Stokes theorem. Such decomposition is shown in Fig. 9. Explicitly, this

reads as

C ¼ ðC10ðg�1Þþ9 � � �C11ÞðC9C7C4C1ÞC0

¼
Yg�1

k¼0

C10kþ9C10kþ7C10kþ4C10kþ1

 !
C0; for g � 1 ð38Þ

and C ¼ C0 for g ¼ 0: Next

C ¼ ½C10ðg�1Þþ6 ðC�1
10ðg�1Þþ6

C�1
10ðg�1Þþ10|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}C10ðg�1Þþ9C10ðg�1Þþ8

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S4g

C10ðg�1Þþ3

� � �C13

�
C�1

13 C�1
12 C11C10

�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
S5

i
�
h
C6

�
C�1

6 C�1
10 C9C8

�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
S4

C�1
3

�
C3C�1

8 C7C5

�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
S3

C�1
6

�
C6C�1

5 C4C2

�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
S2

C3

�
C�1

3 C�1
2 C1C0

�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
S1

i

¼
Yg�1

k¼0

C10kþ6

�
C�1

10kþ6C�1
10kþ10C10kþ9C10kþ8

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S4kþ4

C�1
10kþ3

�
C10kþ3C�1

10kþ8C10kþ7C10kþ5

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S4kþ3

C�1
10kþ6

�
C10kþ6C�1

10kþ5C10kþ4C10kþ2

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S4kþ2

C10kþ3

�
C�1

10kþ3C�1
10kþ2C10kþ1C10k

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} S4kþ1

¼
Yg�1

k¼0

C10kþ6S4kþ4C�1
10kþ3S4kþ3C�1

10kþ6S4kþ2C10kþ3S4kþ1

where C10kþ10 j k¼g�1 � C10g ¼ 1.

non-abelian stokes theorem 457



S1
0

C0

C8

C10

C9

C4

C6

C3

C1

C7

C4

C9

C7

C1

C11

C13

C10(g−1)+6

C10(g−1)+9

C5

C2

S3

S4

S2

S3

S1
S2

S4

S4g

C

Figure 9. Decomposition of the knotted loop C.
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Further generalization, to multicomponent loops (links) is described in the

original paper [20].

2. Higher-Dimensional Forms

The theorem considered up to now is a very particular, although seemingly

the most important, non-Abelian version of the Stokes theorem. It connects a

non-Abelian differential 1-form in dimension 1 and a 2-form in dimension 2.

The forms are of a very particular shape, namely, the connection 1-form and

the curvature 2-form. Now, we would like to discuss possible generalizations

to arbitrary, higher-dimensional differential forms in arbitrary dimensions.

Since there may be many variants of such generalizations depending on a

particular mathematical and/or physical context; we will start giving a general

recipe.

Our idea is very simple. First, working in the framework of the path integral

formalism, we should construct a topological field theory of auxiliary topolo-

gical fields on qN, the boundary of the d-dimensional submanifold N, in (an)

external (gauge) field(s) in which we are interested. Next, we should quantize

the theory, namely, build the partition function in the form of a path integral,

where auxiliary topological fields are properly integrated out. Thus the LHS of

the non-Abelian Stokes theorem has been constructed. Applying the Abelian

Stokes theorem to the (effective) action (in the exponent of the path-integral

integrand) we obtain the ‘‘r.h.s.’’ of the non-Abelian Stokes theorem. If we also

wish to extend the functional measure to the whole N, we should additionaly

quantize the theory on the r.h.s. to eliminate the redundant functional integration

inside N.

The example candidate for the topological field theory defining the l.h.s. of

the non-Abelian Stokes theorem could be given by the (classical) action

STop ¼ 1

2

þ
qN

ð�zdA� þ dA
��z þ �zBzÞ ð39Þ

where z and �z are 0-forms, � and �� are (d � 2)-forms (all the forms are in an

irreducible representation RðGÞ), and dA is the exterior covariant derivative

dA� � d� þ A�; dA
�� � d�� � AT ��

The non-Abelian B field naturally appears in the context of (topological) gauge

theory [see Eq. (45)]. Now, the Abelian Stokes theorem should suffice.

Generalization of the non-Abelian Stokes theorem to higher-degree forms in

the operator language seems more difficult and practically has not been attemp-

ted (see, however, Ref. 8 for an introductory discussion of this issue).
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III. APPLICATIONS

The number of applications of the non-Abelian Stokes theorem is not as large as

in the case of the Abelian Stokes theorem; nevertheless, it is the main motivation

for formulating the non-Abelian Stokes theorem. It is interesting to note that in

contradistinction to the Abelian Stokes theorem, whose formulation is ‘‘homo-

genous’’ (unique), different formulations of the non-Abelian Stokes theorem are

useful for particular purposes and applications. From a purely techincal point of

view, one can classify applications of the non-Abelian Stokes theorem as exact

and approximate. The term exact applications means that one can perform

successfully an ‘‘exact calculus’’ to obtain an interesting result, whereas the

term approximate application means that a more or less controllable approx-

imation (typically, perturbative) is involved in the calculus. Since exact

applications seem to be more convincing and more illustrative for the subject,

we will basically confine our discussion to presentation few of them.

Since the non-Abelian Stokes theorem applies to non-Abelian gauge the-

ories, and non-Abelian gauge theories are nonlinear, it is not surprising that

exact applications are scarce. In fact they are limited to low-dimensional cases

and/or topological models, which are usually exactly solvable. The first case

that we consider is pure, two-dimensional ordinary (almost topological) Yang–

Mills gauge theory. But a rich source of applications of the non-Abelian Stokes

theorem comes from topological field theory of the Chern–Simons type. The

path integral procedure makes it possible to obtain skein relations for knot and

link polynomial invariants. In particular, it appears that only the path integral

version of the non-Abelian Stokes theorem permits us to nonperturbatively and

covariantly generalize the method of obtaining topological invariants [21].

As a byproduct of our approach, we have computed the parallel-transport

operator U in the holomorphic path integral representation. In this way, we have

solved the problem of saturation of Lie algebra indices in the generators T a.

This issue appears, for example, in the context of equation of motion for Chern–

Simons theory in the presence of Wilson lines (an interesting connection with

the Borel–Weil–Bott theorem and quantum groups has been also suggested).

Our approach enables us to write those equations in terms of �z and z purely

classically. Incidentally, in the presence of Chern–Simons interactions the

auxiliary fields �z and z acquire fractional statistics, which could be detected

by braiding. To determine the braiding matrix, one should, in turn, find the so-

called monodromy matrix, making use, for example, of non-Abelian Stokes

theorem.

A. Two-Dimensional Yang–Mills Theory

There is a vast literature on the subject of the two-dimensional Yang–Mills

theory, approaching it from different points of view. One of the latest papers is
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that by Aroca and Kubyshin [22], who list of references to earlier papers. Two-

dimensional Yang–Mills theory is a specific theory. From the dynamical point of

view it is almost trivial—there are no local degrees of freedom, as a standard

canonical analysis indicates. In fact, it is ‘‘semitopological’’ field theory; that is,

it only roughly describes combinatorial–topological phenomena and surface

areas.

There are many important and interesting aspects in two-dimensional Yang–

Mills theory. One of them is the issue of determination of ‘‘physical’’

observables: Wilson loops [Eq. (8)]. Calculation of the Wilson loops WRðCÞ
in two-dimensional Yang–Mills theory can be facilitated by the use of the non-

Abelian Stokes theorem.

A nice feature of (Euclidean) two-dimensional Yang–Mills gauge theory

defined by the action

S2dYMðAÞ ¼ 1

4

ð
M

Fa
ABðAÞFa ABðAÞ ffiffiffi

g
p

d 2x; A;B ¼ 1; 2 ð40Þ

is the possibility of recasting the action, and next, and more importantly, the

whole partition function in the form

Z ¼
ð

DF e�S2dYMðFÞ ð41Þ

where now F is an independent field, and the action S2dYM is of the same form as

the original Eq. 40 but this time without A dependence (the subscript denotes

two-dimensional Yang–Mills theory).

Let us now consider ‘‘physical’’ observables, namely, Wilson loops. Con-

fronting the partition function (41) with the form of the Wilson loop trans-

formed by the non-Abelian Stokes theorem to a surface expression (14), we can

see that a kind of a Gaussian functional integral emerges. For an Abelian theory,

we would exactly obtain an easy Gaussian functional integral, but in a non-

Abelian case we should be more careful because F is a path-dependent object.

The fact that F is path-dependent can be ignored in the case of a single loop

because of the commutativity of the infinitesimal surface integrals (see below).

Since, according to the non-Abelian Stokes theorem

WRðCÞ ¼ TrRPexp i

ð
S

F
ffiffiffi
g

p
d 2x

� �

where F ¼ F12. For the expectation value

hWRðCÞi ¼ Z�1

ð
DF expð�S2dYMÞWRðCÞ
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we obtain [7]

hWRðCÞi /
ð

DF exp � 1

2

ð
M

F aF a ffiffiffi
g

p
d 2x

� �
TrRP exp i

ð
S

F
ffiffiffi
g

p
d 2x

� �

¼
ð Y

x2MnS

dFðxÞ exp � 1

2

ð
MnS

F aF a ffiffiffi
g

p
d 2x

 !

� TrRP

ðY
x2S

dFðxÞ exp i

ð
S

� 1

2
F aF a þ iF aT a

� � ffiffiffi
g

p
d 2x

� �

/ TrR exp � 1

2
T aT a

ð
S

ffiffiffi
g

p
d 2x

� �

Thus, finally

hWRðCÞi ¼ TrRexp � 1

2
C2ðRÞS

� �
¼ dim R exp � 1

2
C2ðRÞS

� �

where

S ¼
ð

S

ffiffiffi
g

p
d 2x

and

T aT a ¼ C2ðRÞ; TrR I ¼ dim R

In the case of n nonoverlapping regions fSig, i ¼ 1; . . . ; n, Ci ¼ qSi, Si \ Sj ¼ ;
for i 6¼ j, and n irreducible representations Ri of the group G with the generators

Ti, we immediately obtain–literally repeating the last derivation—the formula

for the expectation value of the product of the n Wilson loops:

Yn

i¼1

WRi
ðCiÞ

* +
¼
Yn

i¼1

dim Ri exp � 1

2
C2ðRiÞSi

� �

The case of the overlapping regions fSig is a bit more complicated [7]. First, one

has to decompose the union of all regions fSig, qSi ¼ Ci into a disjoint union of

connected (i.e., not intersected by the loops) regions fSag. Each loop Ci is next

deformed into an equivalent loop C 0
i, which is a product of ‘‘big’’ (not

infinitesimal) lassos independently (a lasso per a region) covering each

connected region Sai
, Sai

¼ Sa \ Si (Sai
2 fSag). The lassos coming from the

different loops C0
i but covering the same connected region Sa should necessarily
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be arranged in such a way to enter the region Sa at the same basepoint Oa.

Consequently, the connected region Sa, Sa � Si1 \ � � � \ Sik , i � k � n, can be

covered with the k identical copies of the net of ‘‘small’’ (infinitesimal) lassos.

Every Gaussian functional integration with respect to the infinitesimal area dS

enclosed by an infinitesimal lasso can be easily performed, yielding

exp � 1

2
dS T 2

a

� �
ð42Þ

where

Ta ¼
X
i2a

Ti; Ti ¼ I ! � � � ! Ti ! � � � ! I

Integration with respect to the consecutive infinitesimal areas gives the terms of

the form (42). Since Ta is a generator of g in a product representation Ra, namely,

Ra ¼ Ri1 ! � � � ! Rik , it follows that T2
a is a Casimir operator. Accordingly, (42)

commutes with the product of the parallel-transport operators acting in the

product representation Ra. Since the products in the pairs connect every

infinitesimal area dS with the basepoint Oa, they cancel each other. This fact

means that the integral with respect to the whole region Sa is given only by the

infinite product of the terms (42) and reads

Ma ¼ exp � 1

2
SaT 2

a

� �
ð43Þ

The full expectation value of the n loops fCig consists of the trace of a product of

Ma blocks (43) joined with the parallel-transport operators, which are remnants

of the primary decomposition of the loops. These joining curves enclose

zero areas, and can be deformed into points (without destroying Ma blocks)

giving some ‘‘linking’’ operators La. An operator La is of a very simple form;

specifically, it is a product of the Kronecker deltas, which contract indices

belonging to the same representation but to different M matrices. Thus L causes

the matrix multiplication of M matrices to be performed in a prescribed order in

each representation sector independently. In other words, M mixes, with some

weights, indices of different representations (braiding), whereas L sets the order

of the matrix multiplications in a representation sector. M depends on the metric

(area of S) and group-theoretic quantities, while the concrete form of L depends

on the topology of the overlaps. Thus the expectation value of the product of the

n Wilson loops is finally given by

Yn

i¼1

WRi
ðCiÞ

* +
¼
Y
a

LaMa
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This analysis is a bit simplified and shortened but gives the flavor of the power of

the non-Abelian Stokes theorem in practical instances.

B. Three-Dimensional Topological Quantum Field Theory

Topological quantum field theory has become a fascinating and fashionable

subject in mathematical physics. At present, the main applications of topolo-

gical field theory are in mathematics (topology of low-dimensional manifolds)

rather than in physics. Its application to the issue of classification of knots and

links is one of the most interesting. To approach this problem, one usually tries

to somehow encode the topology of a knot or link . As was first noted by Witten

[23], the problem can be attacked by means of standard theoretical physics

techniques of quantum field theory. In particular, using three-dimensional

Chern–Simons gauge theory, one can derive not only all the well-known

polynomial invariants of knots and links but also many of their generalizations.

Most authors working in the topological field theory description of polynomial

invariants follow Witten’s original approach, which relies heavily on the

underlying conformal field theory structure. There is also a genuinely three-

dimensional covariant approach advocated in its perturbative version [24,25]

using the non-Abelian Stokes theorem in its operator formulation. We shall

sketch an application of the non-Abelian Stokes theorem to a genuinely three-

dimensional, nonperturbative, covariant path integral approach to polynomial

invariants of knots and links in the framework of (topological) quantum Chern–

Simons gauge field theory.

To begin, we introduce the classical topological Chern–Simons action on the

three-dimensional sphere S3

SCS ¼ k

4p

ð
S3

Tr A ^ dA þ 2

3
A ^ A ^ A

� �

¼ k

4p

ð
S3

d 3x eijk Tr AiqjAk þ
2

3
AiAjAk

� �
ð44Þ

where k 2 Z�. The use of this equation is not obligatory. One could as well

choose the action of the so-called BF theory

SBF ¼ k

4p

ð
S3

d 3x eijkTrðBiFjkÞ ð45Þ

where Bi ¼ Ba
i ðxÞT a is an auxiliary gauge field, and now k 2 R�.

To encode the topology of a link L ¼ fCig into a path integral, we introduce

an auxiliary one-dimensional topological field theory (topological quantum

mechanics) in an external gauge field A, living on the corresponding loop Ci.
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The classical action of this theory is chosen in the form [see Eq. (25)]

SCi
ðAÞ ¼ i

þ
Ci

dt�ziDtzi ð46Þ

where the multiplet of scalar fields �zi,zi transforms into an irreducible

representation Ri. The partition function corresponding to (46) has the following

standard form:

ZiðAÞ ¼
ð

D2zi exp½iSCi
ðAÞ�

It is obvious that the observables SCi
ðAÞ are akin to the Wilson loops.

We define the topological invariant of the link L as the (normalized)

expectation value

Y
i

ZiðAÞ
* +

�
ð

dm exp ðiSÞ
� ��1ð

dm exp ðiSÞ
Y

i

ZiðAÞ ð47Þ

where S consists of SCS plus quantum terms, and the measure should also contain

the auxiliary fields. We can calculate (47) recursively, using the skein relations.

Thus, our present task reduces to the derivation of the corresponding skein

relation. To this end, we consider a pair of loops, say, C1 and C2, where a part of

C1, forming a small loop ‘ (‘ ¼ qN), is wrapped round C2 (see Fig. 10). In other

words, C2 pierces N at a point P. Such an arrangement can be interpreted as a

preliminary step toward finding the corresponding monodromy matrix M.

Having given the loop ‘, we can utilize the non-Abelian Stokes theorem [actually

the Abelian Stokes theorem for (46)] in its holomorphic version, obtaining

Eq. (32). In a general position, N and C2 can intersect in a finite number of points,

C1

N

C2

Figure 10. C1 and C2, where a part of C1, forming a small loop ‘ð‘ ¼
qNÞ, is warpped around C2.
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and the contribution to the path integral coming from these points can be

explicitly calculated. We replace the curvature in (32) by the functional deri-

vative operator

Fa
ijðxÞ ! 4p

ik
eijk

d
dAa

kðxÞ

This substitution yields an equivalent expression, provided the order of terms in

(47) is such that the functional derivative can act on SCS to produce F. Using

formal translational invariance of the product measure DA, and functionally

integrating by parts in (47) with respect to A, we obtain, for each intersection

point P, the monodromy operator

M ¼ exp
4p
ik

ð�z1Ta
1 z1Þð�z2Ta

2 z2ÞðPÞ
� �

ð48Þ

To calculate the matrix elements of (48), one utilizes the following scalar

product:

ðf ; gÞ ¼ 1

2pi

ð
fg exp ð�zzÞd�zdz

This kind of the scalar product is implicit in our derivations of the path integral.

Expanding (48) in a power series, multiplying with respect to this scalar product,

and resumming, we get the monodromy matrix:

M ¼ ð�z1�z2;M z2z1Þ ¼ exp
4p
ik

Ta
1 ! Ta

2

� �

The square root of the monodromy matrix gives rise to the so-called braiding

matrix B responsible for a proper form of skein relations, yielding knot or link

invariants.

C. Other Applications

We could continue to develop the idea of the previous section and try to

generalize it to higher-dimensional (topological) theories. To this end we should

apply a generalization of the non-Abelian Stokes theorem to non-Abelian forms

of higher degree, for example, following the approach proposed in Eq. (39), and

yielding the resluts obtained in an earlier study [26].

Quite a different story is the possibility of applying the non-Abelian Stokes

theorem (in the coherent-state version) to computations in QCD (QCD string,

area low, etc.) [6,27,28] or gravity [29]. Since such calculations are posssible

only perturbatively, their results are not rigorously controllable and thus are

uncertain.
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IV. SUMMARY

In this short review we have addressed the main issues related to the non-

Abelian Stokes theorem. The two principal approaches (operator and path

integral) to the non-Abelian Stokes theorem have been formulated in their

simplest possible forms. A generalization for a knotted loop as well as a sugges-

tion concerning higher-degree forms have also been presented. Only nonper-

turbative applications of the non-Abelian Stokes theorem (to low-dimensional

gauge theories) have been described. The review is not comprehensive; rather, it

is directed toward topological aspects reflecting the author’s interests.
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early stages of development of some of these ideas. The work has been supported by the grant of the

University of Lódź.
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I. INTRODUCTION

In this volume, Sachs [1] has demonstrated, using irreducible representations of

the Einstein group, that the electromagnetic field can propagate only in curved

spacetime, implying that the electromagnetic field tensor can exist only when

there is a nonvanishing curvature tensor kmn. Using this theory, Sachs has shown

that the structure of electromagnetic theory is in general non-Abelian. This is the

same overall conclusion as reached in O(3) electrodynamics [2], developed in the

second chapter of this volume. In this short review, the features common to Sachs

and O(3) electrodynamics are developed. The B(3) field of O(3) electrodynamics

is extracted from the quaternion-valued Bmn equivalent in the Sachs theory; the

most general form of the vector potential is considered in both theories, the

covariant derivatives are compared in both theories, and the possibility of

extracting energy from the vacuum is considered in both theories.
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II. THE NON-ABELIAN STRUCTURE OF THE FIELD TENSOR

The non-Abelian component of the field tensor is defined through a metric qm that

is a set of four quaternion-valued components of a 4-vector, a 4-vector each of

whose components can be represented by a 2 � 2 matrix. In condensed notation:

qm ¼ ðqm0; qm1; qm2; qm3Þ ð1Þ

and the total number of components of qm is 16. The covariant and second

covariant derivatives of qm vanish [1] and the line element is given by

ds ¼ qm xð Þdxm ð2Þ

which, in special relativity (flat spacetime), reduces to

ds ¼ smdxm ð3Þ

where sm is a 4-vector made up of Pauli matrices:

sm ¼ 1 0

0 1

� �
;

0 1

1 0

� �
;

0 �i

i 0

� �
;

1 0

0 �1

� �� �
ð4Þ

In the limit of special relativity

qmqn� � qnqm� ! smsn � snsm ð5Þ

where * denotes reversing the time component of the quaternion-valued qm. The

most general form of the non-Abelian part of the electromagnetic field tensor in

conformally curved spacetime is [1]

Fmn ¼ 1

8
QRðqmqn� � qnqm�Þ ð6Þ

To consider magnetic flux density components of Fmn; Q must have the units of

weber and R, the scalar curvature, must have units of inverse square meters. In

the flat spacetime limit, R ¼ 0; so it is clear that the non-Abelian part of the field

tensor, Eq. (6), vanishes in special relativity. The complete field tensor Fmn

vanishes [1] in flat spacetime because the curvature tensor vanishes. These

considerations refute the Maxwell–Heaviside theory, which is developed in flat

spacetime, and show that O(3) electrodynamics is a theory of conformally curved

spacetime. Most generally, the Sachs theory is a closed field theory that, in

principle, unifies all four fields: gravitational, electromagnetic, weak, and strong.
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There exist generally covariant four-valued 4-vectors that are components of

qm, and these can be used to construct the basic structure of O(3) electro-

dynamics in terms of single-valued components of the quaternion-valued metric

qm. Therefore, the Sachs theory can be reduced to O(3) electrodynamics, which

is a Yang–Mills theory [3,4]. The empirical evidence available for both the

Sachs and O(3) theories is summarized in this review, and discussed more

extensively in the individual reviews by Sachs [1] and Evans [2]. In other words,

empirical evidence is given of the instances where the Maxwell–Heaviside

theory fails and where the Sachs and O(3) electrodynamics succeed in descri-

bing empirical data from various sources. The fusion of the O(3) and Sachs

theories provides proof that the B(3) field [2] is a physical field of curved

spacetime, which vanishes in flat spacetime (Maxwell–Heaviside theory [2]).

In Eq. (5), the product qmqn� is quaternion-valued and non-commutative, but

not antisymmetric in the indices m and n. The B(3) field and structure of O(3)

electrodynamics must be found from a special case of Eq. (5) showing that O(3)

electrodynamics is a Yang–Mills theory and also a theory of general relativity

[1]. The important conclusion reached is that Yang–Mills theories can be

derived from the irreducible representations of the Einstein group. This result is

consistent with the fact that all theories of physics must be theories of general

relativity in principle. From Eq. (1), it is possible to write four-valued, generally

covariant, components such as

qX ¼ q0
X ; q1

X; q2
X ; q3

X

� �
ð7Þ

which, in the limit of special relativity, reduces to

sx ¼ ð0;sx; 0; 0Þ ð8Þ

Similarly, one can write

qY ¼ q0
Y ; q1

Y ; q2
Y ; q3

Y

� �
! 0; 0;sY ; 0ð Þ ð9Þ

and use the property

qXq�
Y � qY q�

X ! sXsY � sYsX ð10Þ

in the limit of special relativity. The only possibility from Eqs. (7) and (9) is that

q1
Xq2�

Y � q2
Y q1�

X ¼ 2iq3
Z

#
sXsY � sYsX ¼ 2isZ

ð11Þ
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where q1
x is single valued. In a 2 � 2 matrix representation, this is

q1
X ¼ 0 q1

X

q1
X 0

� �
! sX ¼ 0 1

1 0

� �
ð12Þ

Similarly

q2�
Y ¼

0 �iq2
Y

iq2
Y 0

" #
! sY ¼

o �i

i 0

� �
ð13Þ

q3
Y ¼

q3
Z 0

0 �q3
Z

" #
! sZ ¼

1 0

0 �1

� �
ð14Þ

Therefore, there exist cyclic relations with O(3) symmetry

q1
Xq2�

Y � q2
Y q1�

X ¼ 2iq3
Z

q2
Y q3�

Z � q3
Zq2�

Y ¼ 2iq1
X

q3
Zq1�

X � q1
Xq3�

Z ¼ 2iq2
Y

ð15Þ

and the structure of O(3) electrodynamics [2] begins to emerge. If the space basis

is represented by the complex circular ((1),(2),(3)) then Eqs. (15) become

q
1ð Þ

X q
2ð Þ�

Y � q
2ð Þ

Y q
1ð Þ�

X ¼ 2iq
3ð Þ

Z

q
2ð Þ

Y q
3ð Þ�

Z � q
3ð Þ

Z q
2ð Þ�

Y ¼ 2iq
1ð Þ

X

q
3ð Þ

Z q
1ð Þ�

X � q
1ð Þ

X q
3ð Þ�

Z ¼ 2iq
2ð Þ

Y

ð16Þ

These are cyclic relations between single-valued metric field components in the

non-Abelian part [Eq. (6)] of the quaternion-valued Fmn. Equation (16) can be put

in vector form

qð1Þ � qð2Þ ¼ iqð3Þ�

qð2Þ � qð3Þ ¼ iqð1Þ�

qð3Þ � qð1Þ ¼ iqð2Þ�

ð17Þ

where the asterisk denotes ordinary complex conjugation in Eq. (17) and

quaternion conjugation in Eq. (16).

Equation (17) contains vector-valued metric fields in the complex basis

((1),(2),(3)) [2]. Specifically, in O(3) electrodynamics, which is based on the
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existence of two circularly polarized components of electromagnetic radiation

[2]

qð1Þ ¼ 1ffiffiffi
2

p ðii þ jÞ exp ðifÞ ð18Þ

qð2Þ ¼ 1ffiffiffi
2

p ð�ii þ jÞ exp ðifÞ ð19Þ

giving

qð3Þ� ¼ k ð20Þ

and

Bð3Þ ¼ 1

8
QRqð3Þ ð21Þ

Therefore, the B(3) field [2] is proved from a particular choice of metric using the

irreducible representations of the Einstein group [1]. It can be seen from Eq. (21)

that the B(3) field is the vector-valued metric field q(3) within a factor 1
8

QR. This

result proves that B(3) vanishes in flat spacetime, because R ¼ 0 in flat spacetime.

If we write

Bð3Þ ¼ 1

8
QR ð22Þ

then Eq. (17) becomes the B cyclic theorem [2] of O(3) electrodynamics:

Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ�

� � �
ð23Þ

Since O(3) electrodynamics is a Yang–Mills theory [3,4], we can write

q ¼ q 1ð Þi þ q 2ð Þj þ qð3Þk ð24Þ

from which it follows [5] that

DmðDmqÞ ¼ 0; Dmq ¼ 0 ð25Þ

Thus the first and second covariant derivatives vanish [1].

The Sachs theory [1] is able to describe parity violation and spin–spin

interactions from first principles [6] on a classical level; it can also explain
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several problems of neutrino physics, and the Pauli exclusion principle can be

derived from it classically. The quaternion form of the theory [1], which is the

basis of this review chapter, predicts small but nonzero masses for the neutrino

and photon; describes the Planck spectrum of blackbody radiation classically;

describes the Lamb shifts in the hydrogen atom with precision equivalent to

quantum electrodynamics, but without renormalization of infinities; proposes

grounds for charge quantization; predicts the lifetime of the muon state;

describes electron–muon mass splitting; predicts physical longitudinal and time-

like photons and fields; and has built-in P, C, and T violation.

To this list can now be added the advantages of O(3) over U(1) electro-

dynamics, advantages that are described in the review by Evans in Part 2 of this

three-volume set and by Evans, Jeffers, and Vigier in Part 3. In summary, by

interlocking the Sachs and O(3) theories, it becomes apparent that the advan-

tages of O(3) over U(1) are symptomatic of the fact that the electromagnetic

field vanishes in flat spacetime (special relativity), if the irreducible represen-

tations of the Einstein group are used.

III. THE COVARIANT DERIVATIVE

The covariant derivative in the Sachs theory [1] is defined by the spin–affine

connection:

Dr ¼ qr þ �r ð26Þ

where

�m ¼ 1

4
ðqmqr þ �r

tmqtÞq�
r ð27Þ

and where �r
tm is the Christoffel symbol. The latter can be defined through the

reducible metrics gmn as follows [1]:

�r
ma ¼ 1

2
grlðqmgla þ qagml � qlgamÞ ð28Þ

In O(3) electrodynamics, the covariant derivative on the classical level is

defined by

Dm ¼ qm � igAm ¼ qm � igMaAa
m ð29Þ

where Ma are rotation generators [2] of the O(3) group, and where a is an internal

index of Yang–Mills theory. The complete vector potential in O(3) electro-

dynamics is defined by

A ¼ Að1Þeð2Þ þ Að2Þeð1Þ þ Að3Þeð3Þ ð30Þ
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where eð1Þ; eð2Þ; eð3Þ are unit vectors of the complex circular basis ((1),(2),(3)) [2].

If we restrict our discussion to plane waves, then the vector potential is

Að1Þ ¼ Að0Þffiffiffi
2

p ðii þ jÞ exp ðifÞ ð31Þ

where f is the electromagnetic phase. Therefore, there are O(3) electrodynamics

components such as

A
ð1Þ
X ¼ iAð0Þffiffiffi

2
p eðifÞ; A

ð1Þ
Y ¼ Að0Þffiffiffi

2
p eðifÞ ð32Þ

In order to reduce the covariant derivative in the Sachs theory to the O(3)

covariant derivative, the following classical equation must hold:

�igAm ¼ 1

4
ðDmqrÞq�

r ð33Þ

This equation can be examined component by component, giving relations such

as

�igA
ð1Þ
X ¼ � 1

4
ðDXq

ð1Þ
Y ÞAð1Þ

Y ð34Þ

where we have used

q
ð1Þ
Y ¼ �iq

ð1Þ
X ð35Þ

Using [2]

g ¼ k
Að0Þ ð36Þ

we obtain

ikq
ð1Þ
X ¼ 1

4
ðDXq

ð1Þ
Y Þqð1Þ

Y ¼ � i

4
ðDXq

ð1Þ
Y Þqð1Þ

X ð37Þ

so that the wave number k is defined by

k ¼ � 1

4
DXq

ð1Þ
Y ð38Þ

Therefore, we can write

DXq
ð1Þ
Y ¼ D1q1ð1Þ ¼ q1q1ð1Þ þ �1

l1qlð1Þ ð39Þ
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and the wave number becomes the following sum:

k ¼ � 1

4
ð�1

11q1ð1Þ þ �1
21q2ð1ÞÞ ð40Þ

Using the identities

q1ð1Þ ¼ qð1Þ
x ¼ iffiffiffi

2
p eif ð41Þ

q2ð1Þ ¼ q
ð1Þ
Y ¼ 1ffiffiffi

2
p eif ð42Þ

the wave number becomes

k ¼ � 1

4

i�1
11ffiffiffi
2

p eif þ �1
21ffiffiffi
2

p eif
� �

ð43Þ

Introducing the definition (28) of the Christoffel symbol, it is possible to write

�1
11 ¼ 1

2
g1lðq1gl1 þ q1g1l � q1g11Þ

¼ 1

2
g13qZg11 þ � � � ð44Þ

so that

k ¼ � i

8
ffiffiffi
2

p g13qZg11eif þ � � � ð45Þ

This equation is satisfied by the following choice of metric:

g11 ¼ 1

2
; g13 ¼ �8

ffiffiffi
2

p
e�if ð46Þ

Similarly

�1
21 ¼ 1

2
g1lðq2gl1 þ q1g2l � qlg12Þ

¼ 1

2
g13qZg12 þ � � � ð47Þ

so that the wave number can be expressed as

k ¼ ik

8
ffiffiffi
2

p g13g12eif ð48Þ
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an equation that is satisfied by the following choice of metric:

g12 ¼ i

2
; g13 ¼ �8

ffiffiffi
2

p
e�if ð49Þ

Therefore, it is always possible to write the covariant derivative of the Sachs

theory as an O(3) covariant derivative of O(3) electrodynamics. Both types of

covariant derivative are considered on the classical level.

IV. ENERGY FROM THE VACUUM

The energy density in curved spacetime is given in the Sachs theory by the

quaternion-valued expression

End ¼ Amj�m ð50Þ

where Am is the quaternion-valued vector potential and J�
m is the quaternion-

valued 4-current as given by Sachs [1]. Equation (50) is an elegant and deeply

meaningful expression of the fact that electromagnetic energy density is

available from curved spacetime under all conditions; the distinction between

field and matter is lost, and the concepts of ‘‘point charge’’ and ‘‘point mass’’ are

not present in the theory, as these two latter concepts represent infinities of the

closed-field theory developed by Sachs [1] from the irreducible representations

of the Einstein group. The accuracy of expression (50) has been tested [1] to the

precision of the Lamb shifts in the hydrogen atom without using renormalization

of infinities. The Lamb shifts can therefore be viewed as the results of

electromagnetic energy from curved spacetime.

Equation (50) is geometrically a scalar and algebraically quaternion-valued

equation [1], and it is convenient to develop it using the identity [1]

qgqk� þ qkq�
g ¼ 2s0d

k
g ð51Þ

with the indices defined as

g ¼ k ¼ m ð52Þ

to obtain

qmq�
m ¼ s0d

m ð53Þ

Using summation over repeated indices on the right-hand side, we obtain the

following result:

qmq�
m ¼ 4s0 ð54Þ
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In the limit of flat spacetime

qmq�
m ! smsm ¼ 4s0 ð55Þ

where the right-hand side is again a scalar invariant geometrically and a

quaternion algebraically.

Therefore, the energy density (50) assumes the simple form

AmJ�
m ¼ 4A0J�

0s0 ð56Þ

A0 and J�0 are magnitudes of Am and J�
m. In flat spacetime, this electromagnetic

energy density vanishes because the curvature tensor vanishes. Therefore, in the

Maxwell–Heaviside theory, there is no electromagnetic energy density from the

vacuum and the field does not propagate through flat spacetime (the vacuum of

the Maxwell–Heaviside theory) because of the absence of curvature. The B(3)

field depends on the scalar curvature R in Eq. (21), and so the B(3) field and O(3)

electrodynamics are theories of conformally curved spacetime. To maximize the

electromagnetic energy density, the curvature has to be maximized, and the

maximization of curvature may be the result of the presence of a gravitating

object. In general, wherever there is curvature, there is electromagnetic energy

that may be extracted from curved spacetime using a suitable device such as a

dipole [7].

Therefore, we conclude that electromagnetic energy density exists in curved

spacetime under all conditions, and devices can be constructed [8] to extract this

energy density.

The quaternion-valued vector potential Am and the 4-current J�
m both depend

directly on the curvature tensor. The electromagnetic field tensor in the Sachs

theory has the form

Fmn ¼ qmA�
n � qnA�

m þ
1

8
QRðqmq�

n � qnq
�
mÞ ð57Þ

where the quaternion-valued vector potential is defined as

Ag ¼
Q

4
q�
g

ð
ðkrlql þ qlkþrlÞ dxr ð58Þ

The most general form of the vector potential is therefore given by Eq. (58), and

if there is no curvature, the vector potential vanishes.

Similarly, the 4-current J�
m depends directly on the curvature tensor krl [1],

and there can exist no 4-current in the Heaviside–Maxwell theory, so the

4-current cannot act as the source of the field. In the closed-field theory,
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represented by the irreducible representations of the Einstein group [1], charge

and current are manifestations of curved spacetime, and can be regarded as the

results of the field. This is the viewpoint of Faraday and Maxwell rather than

that of Lorentz. It follows that there can exist a vacuum 4-current in general

relativity, and the implications of such a current are developed by Lehnert [9].

The vacuum 4-current also exists in O(3) electrodynamics, as demonstrated by

Evans and others [2,9]. The concept of vacuum 4-current is missing from the flat

spacetime of Maxwell–Heaviside theory.

In curved spacetime, both the electromagnetic and curvature 4-tensors may

have longitudinal as well as transverse components in general and the

electromagnetic field is always accompanied by a source, the 4-current J�
m. In

the Maxwell–Heaviside theory, the field is assumed incorrectly to propagate

through flat spacetime without a source, a violation of both causality and

general relativity. As shown in several reviews in this three-volume set,

Maxwell–Heaviside theory and its quantized equivalent appear to work well

only under certain incorrect assumptions, and quantum electrodynamics is not a

physical theory because, as pointed out by Dirac and many others, it contains

infinities. Sachs [1] has also considered and removed the infinite self-energy of

the electron by a consideration of general relativity.

The O(3) electrodynamics developed by Evans [2], and its homomorph, the

SU(2) electrodynamics of Barrett [10], are substructures of the Sachs theory

dependent on a particular choice of metric. Both O(3) and SU(2) electro-

dynamics are Yang–Mills structures with a Wu–Yang phase factor, as discussed

by Evans and others [2,9]. Using the choice of metric (17), the electromagnetic

energy density present in the O(3) curved spacetime is given by the product

End ¼ A � j ð59Þ

where the vector potential and 4-current are defined in the ((1),(2),(3)) basis in

terms of the unit vectors similar to those in Eq. (2), and as described elsewhere in

this three-volume set [2]. The extraction of electromagnetic energy density from

the vacuum is also possible in the Lehnert electrodynamics as described in his

review in the first chapter of this volume (i.e., here, in Part 2 of this three-volume

set). The only case where extraction of such energy is not possible is that of the

Maxwell–Heaviside theory, where there is no curvature.

The most obvious manifestation of energy from curved spacetime is

gravitation, and the unification of gravitation and electromagnetism by Sachs

[1] shows that electromagnetic energy emanates under all circumstances from

spacetime curvature. This principle has been tested to the precision of the Lamb

shifts of H as discussed already. This conclusion means that the electromagnetic

field does not emanate from a ‘‘point charge,’’ which in general relativity can be

present only when the curvature becomes infinite. The concept of ‘‘point
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charge’’ is therefore unphysical, and this is the basic reason for the infinite

electron self-energy in the Maxwell–Heaviside theory and the infinities of

quantum electrodynamics, a theory rejected by Einstein, Dirac, and several

other leading scientists of the twentieth century. The electromagnetic energy

density inherent in curved spacetime depends on curvature as represented by the

curvature tensor discussed in the next section. In the Einstein field equation of

general relativity, which comes from the reducible representations of the

Einstein group [1], the canonical energy momentum tensor of gravitation

depends on the Einstein curvature tensor.

Sachs [1] has succeeded in unifying the gravitational and electromagnetic

fields so that both share attributes. For example, both fields are non-Abelian

under all conditions, and both fields are their own sources. The gravitational

field carries energy that is equivalent to mass [11], and so is itself a source of

gravitation. Similarly, the electromagnetic field carries energy that is equivalent

to a 4-current, and so is itself a source of electromagnetism. These concepts are

missing entirely from the Maxwell–Heaviside theory, but are present in O(3)

electrodynamics, as discussed elsewhere [2,10]. The Sachs theory cannot be

reduced to the Maxwell–Heaviside theory, but can be reduced, as discussed

already, to O(3) electrodynamics. The fundamental reason for this is that special

relativity is an asymptotic limit of general relativity, but one that is never

reached precisely [1]. So the Poincaré group of special relativity is not a

subgroup of the Einstein group of general relativity.

In standard Maxwell–Heaviside theory, the electromagnetic field is thought

of as propagating in a source-free region in flat spacetime where there is no

curvature. If, however, there is no curvature, the electromagnetic field vanishes

in the Sachs theory [1], which is a direct result of using irreducible

representations of the Einstein group of standard general relativity. The

empirical evidence for the Sachs theory has been reviewed in this chapter

already, and this empirical evidence refutes the Maxwell–Heaviside theory. In

general relativity [1], if there is mass or charge anywhere in the universe, then

the whole of spacetime is curved, and all the laws of physics must be written in

curved spacetime, including, of course, the laws of electrodynamics. Seen in

this light, the O(3) electrodynamics of Evans [2] and the homomorphic SU(2)

electrodynamics of Barrett [12] are written correctly in conformally curved

spacetime, and are particular cases of Einstein’s general relativity as developed

by Sachs [1]. Flat spacetime as the description of the vacuum is valid only when

the whole universe is empty.

From everyday experience, it is possible to extract gravitational energy from

curved spacetime on the surface of the earth. The extraction of electromagnetic

energy must be possible if the extraction of gravitational energy is possible, and

the electromagnetic field influences the gravitational field and vice versa. The

field equations derived by Sachs [1] for electromagnetism are complicated, but
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can be reduced to the equations of O(3) electrodynamics by a given choice of

metric. The literature discusses the various ways of solving the equations of

O(3) electrodynamics [2,10], analytically, or using computation. In principle,

the Sachs equations are solvable by computation for any given experiment, and

such a solution would show the reciprocal influence between the electro-

magnetic and gravitational fields, leading to significant findings.

The ability of extracting electromagnetic energy density from the vacuum

depends on the use of a device such as a dipole, and this dipole can be as simple

as battery terminals, as discussed by Bearden [13]. The principle involved in

this device is that electromagnetic energy density Am J�
m exists in general

relativity under all circumstances, and electromagnetic 4-currents and 4-

potentials emanate form spacetime curvature. Therefore, the current in the

battery is not driven by the positive and negative terminals, but is a

manifestation of energy from curved spacetime, just as the hydrogen Lamb

shift is another such manifestation. A battery runs down because the chemical

energy needed to form the dipole dissipates.

In principle, therefore, the electromagnetic energy density in Eq. (50) is

always available whenever there is spacetime curvature; in other words, it is

always available because there is always spacetime curvature.

V. THE CURVATURE TENSOR

The curvature tensor is defined in terms of covariant derivatives of the spin–

affine connections �r, and according to Section (III), has its equivalent in O(3)

electrodynamics.

The curvature tensor is

krl ¼ �klr ¼ �r;l � �l;r

¼ ql�r � qr�l þ �l�r � �r�l ð60Þ

and obeys the Jacobi identity

Dgkrl þ Drklg þ Dlkgr � 0 ð61Þ

which can be written as

Dm~kmn � 0 ð62Þ
where

~kmn ¼ 1

2
emnrskrs ð63Þ

is the dual of krs.
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Equation (4) has the form of the homogeneous field equation of O(3)

electrodynamics [2,10]. If we now define

krl ¼ �r;l � �l;r

¼ ðql þ �lÞ�r � ðqr þ �rÞ�l ð64Þ

then

Drkrl ¼ ðqr þ �rÞððql þ �lÞ�r � ðqr þ �rÞ�lÞ
� Ll 6¼ 0 ð65Þ

has the form of the inhomogeneous field equation of O(3) electrodynamics with a

nonzero source term Ll in curved spacetime.

The curvature tensor can be written as a commutator of covariant derivatives

kmn ¼ �knm ¼ �½Dm;Dn� ¼ �½qm þ �m; qn þ �n�
¼ �m;n � �n;m ð66Þ

and is the result of a closed loop, or holonomy, in curved spacetime. This is the

way in which a curvature tensor is also derived in general gauge field theory on

the classical level [11]. If a field f is introduced such that

f0ðxÞ ¼ SfðxÞ ð67Þ

under a gauge transformation, it follows that

df ¼ �mdxmf ð68Þ

and that

qmf
0 ¼ SðqmfÞ þ ðqmSÞf ð69Þ

The expression equivalent to Eq. (68) in general gauge field theory is [11]

dc ¼ igMaAa
mdxmc ð70Þ

where Ma are group rotation generators and Aa
m are vector potential components

with internal group indices a. Under a gauge transformation

ðqm þ �0
mÞf

0 ¼ Sðqm þ �mÞf ð71Þ

leading to the expression

�0
m ¼ S�mS�1 � ðqmSÞS�1 ð72Þ
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The equivalent equation in general gauge field theory is

A0
m ¼ SAmS�1 � i

g
ðqmSÞS�1 ð73Þ

Equations (72) and (73) show that the spin–affine connection �m and vector

potential Am behave similarly under a gauge transformation. The relation

between covariant derivatives has been developed in Section III.

VI. GENERALLY COVARIANT 4-VECTORS

The most fundamental feature of O(3) electrodynamics is the existence of the

B(3) field [2], which is longitudinally directed along the axis of propagation, and

which is defined in terms of the vector potential plane wave:

Að1Þ ¼ Að2Þ� ð74Þ

From the irreducible representations of the Einstein group, there exist 4-vectors

that are generally covariant and take the following form:

B
m
1 ¼ ðBð0Þ

X ;B
ð1Þ
X ;B

ð2Þ
X ;B

ð3Þ
X Þ

B
m
2 ¼ ðBð0Þ

Y ;B
ð1Þ
Y ;B

ð2Þ
Y ;B

ð3Þ
Y Þ

B
m
3 ¼ ðBð0Þ

Z ;B
ð1Þ
Z ;B

ð2Þ
Z ;B

ð3Þ
Z Þ

ð75Þ

All these components exist in general, and the B(3) field can be identified as the

Bð3Þ
z component. In O(3) electrodynamics, these 4-vectors reduce to

B
m
1 ¼ ð0;B

ð1Þ
X ;B

ð2Þ
X ; 0Þ

B
m
2 ¼ ð0;B

ð1Þ
Y ;B

ð2Þ
Y ; 0Þ

B
m
3 ¼ ðBð0Þ

Z ; 0; 0;B
ð3Þ
Z Þ

ð76Þ

so it can be concluded that O(3) electrodynamics is developed in a curved

spacetime that is defined in such a way that

Bð3Þ ¼ �igAð1Þ � Að2Þ ð77Þ

In O(3) electrodynamics, there exist the cyclic relations (23), and we have seen

that in general relativity, this cyclic relation can be derived using a particular

choice of metric. In the special case of O(3) electrodynamics, the vector

B
m
3 ¼ ðBð0Þ

Z ;B
ð1Þ
Z ;B

ð2Þ
Z ;B

ð3Þ
Z Þ ð78Þ
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reduces to

B
m
3 ¼ ðBð0Þ

Z ; 0; 0;B
ð3Þ
Z Þ ð79Þ

Similarly, there exists, in general, the 4-vector

A
m
3 ¼ ðAð0Þ

Z ;A
ð1Þ
Z ;A

ð2Þ
Z ;A

ð3Þ
Z Þ ð80Þ

which reduces in O(3) electrodynamics to

A
m
3 ¼ ðAð0Þ

Z ; 0; 0;A
ð3Þ
Z Þ ð81Þ

and that corresponds to generally covariant energy–momentum.

The curved spacetime 4-current is also generally covariant and has

components such as

j
m
1 ¼ ð j

ð0Þ
X ; j

ð1Þ
X ; j

ð2Þ
X ; j

ð3Þ
X Þ

j
m
2 ¼ ð j

ð0Þ
Y ; j

ð1Þ
Y ; j

ð2Þ
Y ; j

ð3Þ
Y Þ

j
m
3 ¼ ð j

ð0Þ
Z ; j

ð1Þ
Z ; j

ð2Þ
Z ; j

ð3Þ
Z Þ

ð82Þ

which, in O(3) electrodynamics, reduce to

j
m
1 ¼ ð0; j

ð1Þ
X ; j

ð2Þ
X ; 0Þ

j
m
2 ¼ ð0; j

ð1Þ
Y ; j

ð2Þ
Y ; 0Þ

j
m
3 ¼ ð j

ð0Þ
Z ; 0; 0; j

ð3Þ
Z Þ

ð83Þ

The existence of a vacuum current such as this is indicated in O(3) electro-

dynamics by its inhomogeneous field equation

DmGmn ¼ Jn ð84Þ

which is a Yang–Mills type of equation [2]. The concept of vacuum current was

also introduced by Lehnert and is discussed in his review (first chapter in this

volume; i.e., in Part 2).

The components of the antisymmetric field tensor in the Sachs theory [1] are

B3 ¼ F21 ¼ �F12 ¼ ðBð0Þ
Z ;B

ð1Þ
Z ;B

ð2Þ
Z ;B

ð3Þ
Z Þ

B1 ¼ F32 ¼ �F23 ¼ ðBð0Þ
X ;B

ð1Þ
X ;B

ð2Þ
X ;B

ð3Þ
X Þ

B2 ¼ F13 ¼ �F31 ¼ ðBð0Þ
Y ;B

ð1Þ
Y ;B

ð2Þ
Y ;B

ð3Þ
Y Þ

E1 ¼ F01 ¼ �F10 ¼ ðEð0Þ
X ;E

ð1Þ
X ;E

ð2Þ
X ;E

ð3Þ
X Þ

E2 ¼ F02 ¼ �F20 ¼ ðEð0Þ
Y ;E

ð1Þ
Y ;E

ð2Þ
Y ;E

ð3Þ
Y Þ

E3 ¼ F03 ¼ �F30 ¼ ðEð0Þ
Z ;E

ð1Þ
Z ;E

ð2Þ
Z ;E

ð3Þ
Z Þ

ð85Þ
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each of which is a 4-vector that is generally covariant. For example

B
m
ZBmZ ¼ invariant ð86Þ

So, in general, in curved spacetime, there exist longitudinal and transverse

components under all conditions. In O(3) electrodynamics, the upper indices

((1),(2),(3)) are defined by the unit vectors

eð1Þ ¼ 1ffiffiffi
2

p ði � ijÞ

eð2Þ ¼ 1ffiffiffi
2

p ði þ ijÞ

eð3Þ ¼ k

ð87Þ

which form the cyclically symmetric relation [2]

eð1Þ � eð2Þ ¼ ieð3Þ�

� � �
ð88Þ

where the asterisk in this case denotes complex conjugation. In addition, there is

the time-like index (0). The field tensor components in O(3) electrodynamics are

therefore, in general

F01 ¼ �F10 ¼ ð0;E
ð1Þ
X ;E

ð2Þ
X ; 0Þ

F02 ¼ �F20 ¼ ð0;E
ð1Þ
Y ;E

ð2Þ
Y ; 0Þ

F03 ¼ �F30 ¼ ðEð0Þ
Z ; 0; 0;E

ð3Þ
Z Þ

F21 ¼ �F12 ¼ ðBð3Þ
Z ; 0; 0;B

ð3Þ
Z Þ

F13 ¼ �F31 ¼ ð0;B
ð1Þ
Y ;B

ð2Þ
Y ; 0Þ

F32 ¼ �F23 ¼ ð0;B
ð1Þ
X ;B

ð2Þ
X ; 0Þ

ð89Þ

and the following invariants occur:

B
ð1Þ
Y B

ð2Þ
Y þ B

ð2Þ
Y B

ð1Þ
Y ¼ Bð0Þ2

B
ð1Þ
X B

ð2Þ
X þ B

ð2Þ
X B

ð1Þ
X ¼ Bð0Þ2

E
ð1Þ
Y E

ð2Þ
Y þ E

ð2Þ
Y E

ð1Þ
Y ¼ Eð0Þ2

E
ð1Þ
X E

ð2Þ
X þ E

ð2Þ
X E

ð1Þ
X ¼ Eð0Þ2

B
ð0Þ2
Z � B

ð3Þ2
Z ¼ E

ð0Þ2
Z � E

ð3Þ2
Z ¼ 0

ð90Þ

theories of electrodynamics 485



From general relativity, it can therefore be concluded that the B(3) field must exist

and that it is a physical magnetic flux density defined to the precision of the

Lamb shift. It propagates through the vacuum with other components of the field

tensor.

VII. SACHS THEORY IN THE FORM OF A GAUGE THEORY

The most general form of the vector potential can be obtained by writing the first

two terms of Eq. (57) as

Frg;1 ¼ qrA�
g � qgA�

r ð91Þ

The vector potential is defined as

A�
g ¼

Q

4

ð
ðkrlql þ qlkþrlÞq�

g dxr ð92Þ

and can be written as

A�
g ¼

Q

4
q�
g

ð
ðkrlql þ qlkþrlÞ dxr ð93Þ

In order to prove that

ð
q�
g dxr ¼ q�

g

ð
dxr ð94Þ

we can take examples, giving results such as

q�
Z ¼ ð�q

ð0Þ
Z ; q

ð1Þ
Z ; q

ð2Þ
Z ; q

ð3Þ
Z Þ

¼ ð�q
ð0Þ
Z ; 0; 0; q

ð3Þ
Z Þð

q�
Z dX ¼ q�

Z

ð
dX

ð95Þ

because q�
z has no functional dependence on X. The overall structure of the field

tensor, using irreducible representations of the Einstein group, is therefore

Frg ¼ Cðqrq�
g � qgq�

rÞ þ Dðqrq�
g � qgq�

rÞ ð96Þ

where C and D are coefficients. This equation has the structure of a quaternion

valued non-Abelian gauge field theory. The most general form of the field tensor
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and the vector potential is quaternion-valued. If the following constraint holds

D

C2
� �ig ð97Þ

the structure of Eq. (96) becomes

Frg ¼ qrA�
g � qgA�

r � ig½A�
r;A�

g� ð98Þ

which is identical with that of gauge field theory with quaternion-valued

potentials. However, the use of the irreducible representations of the Einstein

group leads to a structure that is more general than that of Eq. (98). The rules of

gauge field theory can be applied to the substructure (98) and to electromagnet-

ism in curved spacetime.

VIII. ANTIGRAVITY EFFECTS IN THE SACHS THEORY

Sachs’ equations (4.16) (in Ref. 1)

1

4
ðkrgql þ qlkþrlÞ þ

1

8
Rqr ¼ kTr

� 1

4
ðkþrgql� þ ql�krgÞ þ

1

8
Rq�

r ¼ kT�
r

ð99Þ

are 16 equations in 16 unknowns, as these are the 16 components of the

quaternion-valued metric. The canonical energy-momentum Tr is also quater-

nion-valued, and the equations are factorizations of the Einstein field equation. If

there is no linear momentum and a static electromagnetic field (no Poynting

vector), then

Tr ¼ ðT0
r; 0; 0; 0Þ ð100Þ

so we have the four components T0
0;T0

1;T0
2; and T0

3: The T0
0 component is a

component of the canonical energy due to the gravitoelectromagnetic field

represented by q0
0. The scalar curvature R is the same with and without

electromagnetism, and so is the Einstein constant k.

Considering T0
0 In Eq. (99), we obtain

kT0
0 ¼ 1

8
Rq0

0 þ
1

4
ðk0lql þ qlkþ0lÞ ð101Þ

and if we choose a metric such that all components go to zero except q0
0; then

kT0
0 ! 1

8
Rq0

0 ð102Þ
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However, R also vanishes in this limit, so

T0
0 ! 0 ð103Þ

So, in order to produce antigravity effects, the gravito-electromagnetic field must

be chosen so that only q0
0 exists in a static situation. Therefore, antigravity is

produced by q0
1; q0

2, and q0
3 all going to zero asymptotically, or by

q0
0 � ðq0

1 � q0
2 � q0

3Þ ð104Þ

This result is consistent with the fact that the curvature tensor k0l must be

minimized, which is a consistent result. The curvature is

krl ¼ �klr ¼ �r;l � �l;r ð105Þ

and is minimized if

�r;l � �l;r ð106Þ

If r ¼ 0; then �0;l � �l;0. This minimization can occur if the spin–affine

connection is minimized. We must now investigate the effect of minimizing k0l

on the electromagnetic field

Frg ¼ Q
1

4
ðkrlqlq�

g þ qgq
l�krl þ qlkþrlq�

g þ qgkþrlql�Þ þ 1

8
ðqrq�

g � qgq
�
rÞR

� �
ð107Þ

We know that R ! 0 and r ¼ 0; so

F0g ¼ Q
1

4
ðk0lqlq�

g þ � � �Þ
� �

ð108Þ

and the F0g component must be minimized. This is the gravito-electric component.

Therefore, the gravito-magnetic component must be very large in comparison

with the gravito-electric component.

IX. SOME NOTES ON QUATERNION-VALUED METRICS

In the flat spacetime limit, the following relation holds:

qmqn� � qnqm� ! smsn � snsm ð109Þ
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where

sm ¼ 1 0

0 1

� �
;

0 1

1 0

� �
;

0 �i

i 0

� �
;

1 0

0 �1

� �� �
ð110Þ

Therefore, the quaternion-valued metric can be written as

qm ¼ qm0 0

0 qm0

� �
;

0 qm1

qm1 0

� �
;

0 �iqm2

iqm2 0

� �
;

qm3 0

0 �qm3

� �� �
ð111Þ

with components

q0 ¼
q0

0 0

0 q0
0

" #
;

0 q1
0

q1
0 0

" #
;

0 �iq2
0

iq2
0 0

" #
;

q3
0 0

0 �q3
0

" # !

qX ¼
q0

X 0

0 q0
X

" #
;

0 q1
X

q1
X 0

" #
;

0 �iq2
X

iq2
X 0

" #
;

q3
X 0

0 �q3
X

" # !

qY ¼
q0

Y 0

0 q0
Y

" #
;

0 q1
Y

q1
Y 0

" #
;

0 �iq2
Y

iq2
Y 0

" #
;

q3
Y 0

0 �q3
Y

" # !

qz ¼
q0

Z 0

0 q0
Z

" #
;

0 q1
Z

q1
Z 0

" #
;

0 �iq2
Z

iq2
Z 0

" #
;

q3
Z 0

0 �q3
Z

" # !

ð112Þ

In the flat spacetime limit

q0 ! s0 ¼
1 0

0 1

" #
; 0; 0; 0

 !

qX ! sX ¼ 0;
0 1

1 0

" #
; 0; 0

 !

qY ! sY ¼ 0; 0;
0 �i

i 0

" #
; 0

 !

qZ ! sZ ¼ 0; 0; 0;
1 0

0 �1

" # !

ð113Þ
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This means that in the flat spacetime limit

q0
0 ! 1; q1

0 ! 0; q2
0 ! 0; q3

0 ! 0

q0
X ! 0; q1

X ! 1; q2
X ! 0; q3

X ! 0

q0
Y ! 0; q1

Y ! 0; q2
Y ! 1; q3

Y ! 0

q0
Z ! 1; q1

Z ! 0; q2
Z ! 0; q3

Z ! 1

ð114Þ

Checking with the identity:

qgq
k� þ qkq�

g ¼ 2s0d
k
g ð115Þ

then

qXqX� þ qXq�
X ¼ 2s0d

X
X ¼ 2s0

ðq0
XÞ

2 þ ðq1
XÞ

2 þ ðq2
XÞ

2 þ ðq3
XÞ

2 ¼ s0

ð116Þ

which is a property of quaternion indices in curved spacetime. In flat spacetime:

ðq1
XÞ

2 ¼ s0 ð117Þ

that is

1 0

0 1

� �
¼ 1 0

0 1

� �
ð118Þ

The reduction to O(3) electrodynamics takes place using products such as

qXq�
Y � qYq�

X ¼
0 q1

X

q1
X 0

" #
0 �iq2

Y

iq2
Y 0

" #
�

0 �iq2
Y

iq2
Y 0

" #
0 q1

X

q1
X 0

" #

¼
iq1

Xq2
Y 0

0 �iq2
Y q1

X

" #

¼ i
q3

Z 0

0 q3
Z

" #
ð119Þ

that is

q3
Z ¼ q1

Xq2
Y ð120Þ
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In flat spacetime, this becomes

1 ¼ 1 ð121Þ

If the phases are defined as

q1
X ¼ eif; q2�

Y ¼ e�if ð122Þ

then the B(3) field is recovered as

Bð3Þ ¼ 1

8
QR ð123Þ

Applying Eq. (99), it is seen that Tm has the same structure as qm:

Tm ¼ Tm0 o

0 Tm0

� �
;

0 Tm1

Tm1 0

� �
;

0 �i Tm2

i Tm2 0

� �
;

Tm3 0

0 �Tm3

� �� �
ð124Þ

Therefore, the energy momentum is quaternion-valued. The vacuum current is

jg ¼
Qk0

4p
ðT;r

r q�
g � qgT

;r�
r Þ ð125Þ

where Q and k0=4p are constants. We may investigate the structure of the

4-current jg by working out the covariant derivative:

T;r
r ¼ q0T0 þ q1T1 þ q2T2 þ q3T3 þ �r

0rT0 þ �r
1rT1 þ �r

2rT2 þ �r
3rT3 ð126Þ

The partial derivatives and Christoffel symbols are not quaternion-valued, so we

may write

T;r
r ¼ ðq0 þ �r

0rÞT0 � ðq1 þ �r
1rÞT1 � ðq2 þ �r

2rÞT2 � ðq3 þ �r
3rÞT3 ð127Þ

Therefore the vacuum current in general relativity is defined by

jg ¼
Qk0

4p
ðððq0 þ �r

0rÞT0 � ðq1 þ �r
1rÞT1 � ðq2 þ �r

2rÞT2 � ðq3 þ �r
3rÞT3Þq�

g

þ qgððq0 þ �r
0rÞT0 þ ðq1 þ �r

1rÞT1 þ ðq2 þ �r
2rÞT2 þ ðq3 þ �r

3rÞT3ÞÞ
ð128Þ

This current exists under all conditions and is the most general form of the

Lehnert vacuum current described elsewhere in this volume, and the vacuum
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current in O(3) electrodynamics. In the Sachs theory, the existence of the

electromagnetic field tensor depends on curvature, so energy is extracted from

curved spacetime. The 4-current jm contains terms such as

jg;0 ¼ Qk0

4p
ððq0 þ �r

0rÞT0q�
g þ qgðq0 þ �r

0rÞT0Þ

¼ Qk0

4p
ðq0 þ �r

0rÞ
T0

0 0

0 T0
0

" #
q�
g þ qg

T0
0 0

0 T0
0

" # !
ð129Þ

We may now choose g ¼ 0; 1; 2; 3 to obtain terms such as

j0;0 ¼ ðq0 þ �r
0rÞ � T0

0 0

0 T0
0

" #
q0

0 0

0 q0
0

" #
þ

q0
0 0

0 q0
0

" #
T0

0 0

0 T0
0

" # !
¼ 0

j1;0 ¼ �ðq0 þ �r
0rÞ

T0
0 0

0 T0
0

" #
0 q1

1

q1
1 0

" #
þ

0 q1
1

q1
1 0

" #
T0

0 0

0 T0
0

" # !
ð130Þ

¼ �ðq0 þ �r
0rÞðq1

1T0
0ðsX þ s0ÞÞ

6¼ 0

There are numerous other components of the 4-current density jg that are

nonzero under all conditions. These act as sources for the electromagnetic field

under all conditions. In flat spacetime, the electromagnetic field vanishes, and so

does the 4-current density jg:
A check can be made on the interpretation of the quaternion-valued metric if

we take the quaternion conjugate:

qm� ¼ � qm0 0

0 qm0

� �
;

0 qm1

qm1 0

� �
;

0 iqm2

iqm2 0

� �
;

qm3 0

0 �qm3

� �� �
ð131Þ

which must reduce, in the flat space-time limit, to:

sm ¼ 1 0

0 1

� �
;

0 1

1 0

� �
;

0 �i

i 0

� �
;

1 0

0 �1

� �� �
ð132Þ

This means that the flat spacetime metric is

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775 ¼ �gmn ð133Þ
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which is the negative of the metric gmn of flat spacetime, that is, Minkowski

spacetime.

If we define

qm� ¼ qm0 0

0 qm0

� �
; � 0 qm1

qm1 0

� �
; � 0 �iqm2

iqm2 0

� �
; � qm3 0

0 �qm3

� �� �
ð134Þ

then we obtain

gmn ¼ gmn ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

2
664

3
775 ð135Þ

in the flat spacetime limit. This is the usual Minkowski metric.

To check on the interpretation given in the text of the reduction of Sachs to

O(3) electrodynamics, we can consider generally covariant components such as

qX ¼ ðq0
X; q1

X; q2
X; q3

XÞ ! ðs0;s1;s2;s3Þ

qY ¼ ðq0
Y ; q1

Y ; q2
Y ; q3

YÞ ! ðs0;s1;s2;s3Þ

q�
Y ¼ ð�q0

Y ; q1
Y ; q2

Y ; q
3
YÞ ! ð�s0;s1;s2;s3Þ

ð136Þ

It follows that

qXq�
Y � qY q�

X ! sXsY � sYsX ¼ 2isZ ð137Þ

and that:
sX ¼ ð0;sX; 0; 0Þ
sY ¼ ð0; 0;sY ; 0Þ

ð138Þ

Note that products such as sXsY must be interpreted as single-valued, because

products such as

½0 sx 0 0�

0

0

sy

0

2
664

3
775 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775 ð139Þ

give a null matrix. Therefore, the quaternion-valued product qXq�
Y must also be

interpreted as

qXq�
Y � qY q�

X ! sXsY � sYsX ¼ 2isZ ð140Þ

as in the text.
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THE LINK BETWEEN THE TOPOLOGICAL

THEORY OF RAÑADA AND TRUEBA, THE SACHS

THEORY, AND O(3) ELECTRODYNAMICS
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II. Summary
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I. REVIEW OF THE LITERATURE AND GENERAL CONCEPTS

The topological approach of Rañada and Trueba, the general relativistic

approach of Sachs, and the O(3) electrodynamics are interlinked and shown to

be based on the concept of Faraday’s lines of force.

In the review by Rañada and Trueba [1], electric and magnetic lines of force

were discussed as real, physical entities, based on the original concepts of

Faraday. These authors discussed Kelvin’s suggestion of 1868 that atoms are

knots of links of vortex lines of the ether, a topological concept, and that Kelvin

found the concept of point particle to be extremely unsatisfactory. Point

particles are eliminated from consideration in the Sachs [2] theory of

electrodynamics, and are replaced by curvature of spacetime. The O(3)

electrodynamics of Evans [3] has been demonstrated [4] to be a subtheory of the

Sachs theory. Rañada and Trueba discuss the fact that, in contemporary

topology, invariant numbers characterize configurations that can deform, distort,

or warp. These concepts are similar to the curving of spacetime in general

relativity [2], of which O(3) electrodynamics [3] is a subtheory, and also a gauge

theory. Topology [1] shows that the variety of chemical elements is due to the

way in which curves can be knotted and linked, transmutability of the elements
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is due to the breaking and reconnection of lines, and the quantum character of

the spectrum is due to the natural topological configurations of the vector field.

Rañada and Trueba [1] reinstated lines of force, which they describe as having

been relegated in importance in Maxwell’s treatise and replaced by the concepts

of field and vector potential. Lines of force are integral lines of the magnetic and

electric fields, and so exist also in the Sachs [2] and Evans [3] theories.

The Aharonov–Bohm effect requires topological consideration [1], (i.e., a

structured vacuum), and there exist conservation laws of topological origin, the

simplest one is given by the sine–Gordon equation, which also appears in the

discussion of O(3) electrodynamics by Evans and Crowell [5].

All topological theories are nonlinear, a feature of both the Sachs and Evans

theories, and the whole of quantum theory can be replaced by topology [1],

which reduces in some circumstances to the Yang–Mills theory [1], of which

O(3) electrodynamics [3] is an example. O(3) electrodynamics has been

developed into an O(3) symmetry quantum field theory by Evans and Crowell

[5], and Witten [1] has developed a topological quantum field theory. In the

theory of Rañada and Trueba [1], the Maxwell equations are linearized by

change of variables of a set of nonlinear equations, and are compatible with

topological constants of motion nonlinear in Am and Fmn. One of these is B(3)

[3], whose rigorous form in general relativity is the quaternion-valued

equivalent [6] of the Sachs theory. One of these constants of motion is the

electromagnetic helicity of a knot, which has been discussed elsewhere [7] in

terms of B(3). However, helicity is not conserved in the Sachs theory [2] because

the latter contains parity violation as an intrinsic feature. The electromagnetic

helicity of a knot is defined by Rañada and Trueba [1] as

H ¼ 1

2
ðA � B þ C � EÞd3r ð1Þ

where, in the Maxwell–Heaviside theory, the magnetic and electric fields are

defined as

B ¼ r� A; E ¼ r� C ð2Þ

The helicity H of a knot can, however, be defined as the B(3) field as follows:

H ¼ �ig

ð
r � ðAð1Þ � Að2ÞÞ dZ

����
���� ¼ �ig

ð
q
qZ

Að1Þ � Að2Þ dZ

����
����

¼ j� igAð1Þ � Að2Þj ¼ jBð3Þj ð3Þ

This definition can be rewritten in the form (1) using:

r � ðAð1Þ � Að2ÞÞ ¼ Að2Þ � ðr � Að1ÞÞ � Að1Þ � ðr � Að2ÞÞ ð4Þ
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This definition is related to the difference between left- and right-handed photons

because B(3) switches sign between left and right circularly polarized electro-

magnetic radiation. Therefore, H and B(3) constitute electromagnetic helicities of

a knot, and there is also a link between B(3) and the Sachs theory [1], as shown in

the review [6] by Evans, linking O(3) electrodynamics and the Sachs theory.

As discussed by Rañada and Trueba [1], Faraday thought of lines of force as

real and physical, and these authors represent magnetic lines of force by a

complex function fðt;X; Y; ZÞ of time and Cartesian coordinates. Any magnetic

field [1] is therefore defined by

B ¼ gðf;f
Þrf
 � rf ð5Þ

and any electric field by

E ¼ �gðf;f
Þðq0f

rf� q0frf
Þ ð6Þ

so that the product

E � B ¼ 0 ð7Þ

vanishes. Electromagnetism by evolution of magnetic lines is discussed by

Rañada and Trueba [1] in terms of level curves of a complex function, and leads

to the appearance of a rich topological structure.

The B(3) field [3] of O(3) electrodynamics is defined in terms of the cross-

product of plane wave potentials A(1) ¼ A(2)

Bð3Þ ¼ �igAð1Þ � Að2Þ ð8Þ

where the parameter g is

g ¼ k

jAð1Þj
� k

Að0Þ ð9Þ

and where k is the wave number. The modulus of the B(3) field is therefore

defined as

jBð3Þj � �igðAð1Þ
X A

ð2Þ
Y � A

ð2Þ
X A

ð1Þ
Y Þ ð10Þ

which can be written in terms of lines of force as

jBð3Þj ¼ g0
qfð1Þ

X

qZ

qfð2Þ
Y

qZ
� qfð2Þ

X

qZ

qfð1Þ
Y

qZ

 !
ð11Þ
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where the phi functions are

fð1Þ
Y ¼ i expð�iðot � kZÞÞ; fð2Þ

Y ¼ �i expðiðot � kZÞÞ
fð1Þ

X ¼ expð�iðot � kZÞÞ; fð2Þ
X ¼ expðiðot � kZÞÞ

ð12Þ

and where

g � ot � kZ ð13Þ

is the electromagnetic phase. Using the results:

qfð2Þ
X

qZ
¼ �ikfð2Þ

x ;
qfð1Þ

Y

qZ
¼ �kfð1Þ

Y ð14Þ

the modulus of the B(3) field becomes

jBð3Þj ¼ �2ig0k2 ð15Þ

and the constant g0

g0 ¼ i
Að0Þ

2k2
ð16Þ

is a function of f and f
 as required.

Therefore, the B(3) field can be defined in terms of lines of force, and the

topological considerations of Rañada and Trueba [1] can be extended to O(3)

electrodynamics, and thence to the Sachs theory.

It is also shown straightforwardly that the electric equivalent of B(3), the

putative E(3) field, vanishes, as discussed elsewhere [8]. The demonstration uses

the definition:

Eð3Þ ¼ �gðfð1Þ;fð2ÞÞ 1

c

qfð1Þ

qt

qfð2Þ

qZ
� 1

c

qfð2Þ

qt

qfð1Þ

qZ

 !
k ð17Þ

and considers a component such as the X component of the phi field. The result is

Eð3Þ ¼ �gðf;f
Þ 1

c

qfð1Þ
X

qt

qfð2Þ
X

qZ
� 1

c

qfð2Þ
X

qt

qfð1Þ
X

qZ

 !
k ð18Þ

and the same result is obtained by considering the Y component of the phi field.
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II. SUMMARY

In this short review, we have extended the topological considerations of Rañada

and Trueba [1] to O(3) electrodynamics [3] and therefore also linked these

concepts to the Sachs theory reviewed elsewhere in this three-volume

compilation [2]. In the same way that topology and knot theory applied to the

Maxwell–Heaviside theory produce a rich structure, so does topology applied to

the higher-symmetry forms of electrodynamics such as the Sachs theory and

O(3) electrodynamics.
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I. INTRODUCTION

The purpose of this work is to review the evidence produced thus far demon-

strating that there are sound theoretical and experimental reasons to believe that

it is now possible for anybody familiar with science to choose a causal

epistemology to interpret natural phenomena. It is true that the noncausal

interpretation, where space and time play no significative role, which was

developed in the 1920s by Niels Bohr and his school, has been accepted by the

scientific community as the last word, as the perfect final theory to explain the

experimental data at atomic and molecular levels. However, if one asks people

who use quantum mechanics in their daily work as the basic tool, just as a

structural engineer uses classical mechanics, whether they believe that external

reality is, ultimately, a creation of our minds, what could the answer be? Most of

them, for sure, would neither believe in nor acknowledge the basic underlying

statement. That the (earth’s) moon or any other material entities exist only

because we, the observers, ‘‘created’’ these entities out of a bunch of probabi-

lities without physical meaning is far from being easy to accept. Since the

advent of Greek science, we have been familiar with and accustomed to

causality. This means that we believe that every natural phenomenon can, in

principle, be explained as a sequence of effects evolving in space and time. This

assumption has proved to be very useful to explain and predict empirical

evidence for more than two millennia.

II. NONCAUSAL INTERPRETATIONS

It is not easy to follow the deep reasons that led to the noncausal paradigm, also

known as the ‘‘Copenhagen interpretation of quantum physics.’’ Some tenuous

links can be established, but, of course, they are no more than that. On the other

hand, it is still a hard unsolved question to know why the scientific community

adopted, apparently so enthusiastically, a noncausal way of thinking even

without fully understanding it. Plenty of learned works deal with these problems.

In a general way, each work mainly reflects the views of its writer and so far, no

agreement has been found. Although very interesting, this delicate question it is

of no importance for our own purposes; we shall therefore skip it.

In the late nineteenth century, a whole set of experiments progressively lead

to the conclusion that classical physics, namely, Newtonian mechanics, thermo-

dynamics, and nascent electromagnetism, were unable to explain empirical

evidence gathered by experimentalists. Scientists of that time were unable to

conciliate two apparent contradictory aspects exhibited by radiation and matter.

Some experiments demonstrated that light behaved like a wave, while others

showed a rather corpuscular nature. On the other hand, electrons, protons, and

the other massive particles would manifest wave-like properties in certain

experimental conditions.
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In order to fully grasp the magnitude of the problem then faced by the

creators of quantum physics, let us consider the now classic double-slit

experiment. It is common knowledge that if a wave coming from a nearly

point source passes through a screen with two holes, two waves are generated.

These two waves overlap in their course, giving birth to an interference pattern.

Interferometric properties, shown in this experiment, constitute the basic proof

for the undulatory properties of any entity. Now suppose that the source emits

massive particles, such as electrons, neutrons, protons, and atoms. The source

emits quantum particles one by one in such a way that we deal with only one

single particle at a time in the experimental apparatus.

If two detectors are placed after the screen, one in front of each slit S1 and S2,

what results from the experiment are to be expected? Since the source emits

quantum particles, one by one, at any particular time there is only one particle in

the apparatus; therefore one can say that sometimes one detector ‘‘sees’’ the

particle while at other times it is the other that is activated. In either case, the

two detectors are never activated at the same time; therefore no coincidences are

to be expected from this experiment. In such circumstances it seems reasonable

to say that sometimes the particle goes across slit 1; other times, throughout slit

2. Everybody agrees with this description, which does not seem to generate any

particular trouble. Problems begin to arise when we remove the two detectors

and place an array of detectors far away from the slits. After a certain elapsed

time, which is necessary to detect a sufficient number of particles on the array of

detectors, what shall the distribution of those quantum particles coming from

the two slits be? If the former statement were true, that is, if the particles

sometimes went through one slit, and another time through the other slit, a

continuous distribution should be expected. Nevertheless, what experiments

clearly show is an interferometric pattern distribution. This observable inter-

ferometric pattern seems to imply that the entity we call a photon, an electron, a

neutron, or similar, has somehow gone through the two slits at the same time.

S S1

S2

Figure 1. Double-slit experiment.
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Therefore, we are facing two contradictory statements. On one hand, the entity

called a ‘‘quantum particle’’ has gone through one slit or the other, exhibiting

corpuscular properties. On the other hand, the entity called a quantum particle

has gone through the two slits at the same time, exhibiting its undulatory nature.

This problem was, and is even now, so important for the development of

quantum physics that its solution gave birth to two main schools of thought.

Before the Solvay Congress of October 1927, basic quantum research (both

theoretical and experimental) had already being done: Heisenberg had already

elaborated his matrix mechanics, emphasizing the corpuscular aspect of

quantum entities, and had derived the inequalities that were later publicized

under his name, the so-called Heisenberg uncertainty relations. Schrödinger,

inspired by the work of de Broglie on the duality particle wave, developed his

wave mechanics. In his papers, he derived the evolution equation for quantum

systems that, as due, got his name: the Schrödinger equation. At the Solvay

Conference, it was Niels Bohr who, maybe inspired by the Heisenberg

uncertainty relations and by the nonlocal Fourier analysis, was able to present

a consistent global picture capable of integrating into a coherent whole the

apparent contradictory behavior and properties of quantum entities. It is true

that Bohr was able to make a consistent general synthesis to resolve the

contradictions, but it is no less true that the vision he proposed was very far

from the causal way of thinking that we were used to, from the golden Greek

times. In his proposal, he denied the existence of an objective reality and stated

that the usual concepts of space and time were mere auxiliary tools, therefore

loosing the relevance they have played in the causal paradigm where every

phenomenon had a past history and a future. In this sense, the Copenhagen

interpretation of quantum physics radically breaks away from causality. We

must insist that this attitude was in deep contradiction with the relativity

paradigm developed by Einstein, where spacetime played the primordial role.

III. CAUSAL MODELS

Even if the great majority of the scientific community accepted the Copenhagen

interpretation of quantum physics, some of the most important physicists of the

twentieth century, such as Einstein, de Broglie, Max Planck, Schrödinger, and

many others, never adhered to ‘‘indeterminism.’’ Throughout their lifetimes,

they always fought one way or another the Copenhagen paradigm. In the

beginning, they limited themselves to the so-called quantum paradoxes from

which the well-known Schrödinger cat is probably the most famous. The

construction of a causal model able to give a good account of quantum

phenomena was theoretically blocked by von Newman’s theorem. Only after

the important work of David Bohm [1], who proved in 1952 that this

mathematical theorem was, in fact, no so general as usually claimed, was the

504 j. r. croca



path for building causal theories finally cleared. The proof was obtained in a

very interesting way: David Bohm built a causal model precisely achieving

what the theorem of von Newman forbade!

From that time on, many causal theories were developed. In this work, we

shall only refer to the causal theory proposed by de Broglie [2] and known as

the ‘‘double-solution theory.’’ This theory, as well as Bohm’s theory, are the

most developed of all causal theories; they are both able to explain and predict,

practically all quantum phenomena.

A. de Broglie Causal Theory

The starting point of de Broglie’s theory is the belief that the reality is observer-

independent even if the observer interacts and therefore modifies in greater or

lesser degree the external reality. Therefore in this model it is assumed that the

matter waves f are real physical waves different from the common statistical

wave �, fictive and arbitrarily normalized. This real wave f is composed of an

extended, yet finite wave y, plus a singularity x, such that

f ¼ yþ x ð1Þ

is solution of a nonlinear equation. This singularity represents a relatively large

concentration of energy, is very well localized in space, and is responsible for

the usual detection process. Since the accompanying wave y has very small

amplitude, it turns out to be unable, by itself alone, to trigger a normal quadratic

detector. The singularity x is coupled to the extended wave y, by a nonlinear

chaotic process such that even if its presence on the wave cannot be predicted

precisely, it nevertheless has the tendency to be localized on the points where

the intensity of accompanying y is greater. The particle is graphically repre-

sented by the sketch in Fig. 2.

Figure 2. Graphic representation of a causal quantum particle.
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In the linear approximation, which was the version presented by de Broglie,

equation (1) reads as

f ¼ v þ x ð2Þ

where f is the solution of a nonlinear equation and v is also a real physical

wave, but now, in this linear approximation, is the solution of the usual

Schrödinger equation. Since v represents a real wave, it cannot be normalized

at will just like the usual statistical wave � that can be, arbitrarily normalized.

Nevertheless, the two waves are solutions of the same linear evolution equation;

therefore they must be somehow related. This relationship is given by a constant

C such that

� ¼ Cv ð3Þ

The physical extended wave is related to the localized singularity by the guiding

principle

~p ¼ �rj ð4Þ

where j represents the phase of the wave. This principle states that the wave,

practically devoid of energy, guides preferentially the singularity, through a

nonlinear process, to the points of higher wave intensity.

Let us now see how this causal model explains the double-slit experiment. In

this model, since any quantum particle is composed by a wave with the

singularity, it follows that when the particle encounters the screen with the

two slits, the physical real wave, being widespread, is able to cross the two slits

simultaneously, while the singularity passes through one slit only. The two real

partial waves, coming from the two slits, one with the singularity, and the other

without it, superimpose themselves in their natural course, giving birth to an

interferometric pattern. The singularity according to the guiding principle goes

preferentially to the points where the intensity of the wave is higher. So after a

sufficient number of particle hits, an interference pattern progressively appears

in the detection region. This situation is shown in Fig. 3.

Therefore, in this way, by devising a more ingenious model of the quantum

particle, the double-slit experiments can be explained in a very simple and

elegant manner with no need to reject the objective reality of quantum beings.

The apparent contradiction resulting from the requirement, for one particle to

cross the two slits at the same time, while also being able to cross either one or

the other, is easily surpassed by the causal model. The wave crosses the two slits

at the same time while the singularity goes through either one or the other.

As discussed previously, Bohr and his followers chose to reject objective

reality to explain the same experiment, instead of looking for a subtler model of
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the particle. In their picture, the particle having no real existence crosses

potentially the two slits and also interferes potentially at the overlapping region.

If two detectors are each placed in front of each slit, then one of the

potentialities or probabilities materializes itself at one of the detectors.

Since, in this causal model, the extended wave y represents a real physical

finite wave with well-defined energy, it seems natural to represent it by a

suitable mathematical form. At the time when de Broglie put forth his causal

interpretation of quantum mechanics, it was necessary for him to construct a

finite wave using the Fourier analysis, namely, the multiplicity of harmonic

plane waves, infinite in space and time, summing up and giving origin to a

wavepacket.

cðxÞ ¼
ðþ1

�1
gðZÞeiZx dZ ð5Þ

This means that the localized entity, the wavepacket, resulting from the infinite

sum of waves also has an infinite number of energies or velocities. Each infinite

harmonic plane wave composing the packet has a proper energy and therefore

its own velocity. With this mathematical description, which implies basically a

nonlocal character in both time and space (since the wavepacket in reality is

composed of on infinitude of waves), what shall be the energy of the single

particle? To answer this question, the Copenhagen School assumed that the

particle had no real energy at all. The particle does not even exist prior to the

measurement; it is only an ensemble of potentialities or probabilities that could

eventually be put into existence. Everything we can say, using this paradigm, is

that when a measurement is performed, one out of this infinite number of

possible energies materializes, or collapses, into one single energy. In a causal

picture it is possible to say that the wavepacket represents only a statistical

S
S1

S2

Figure 3. Double-slit experiment in de Broglie causal picture.
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distribution of probabilities of real particles. But in such case each particle

needs to be represented mathematically by a wave, infinite in time and space.

This solution is, of course, not a good one, since we know that the real physical

particles are not infinite. Indeed, we know, on the contrary, that they are finite,

with a precisely definite energy, and localized in both space and time.

Now, thanks to the development of the local wavelet analysis [3], it is

possible to represent mathematically, according to the observations, finite waves

with a well-defined energy. Therefore it is possible to represent the y wave, the

extended yet localized part of the particle, with a defined energy by a wavelet.

The wavelets, or finite waves, were developed in geophysics by Morlet in the

early 1980s, to avoid some shortcomings of the nonlocal Fourier analysis.

It seems quite natural to describe the extended part of a quantum particle not

by wavepackets composed of infinite harmonic plane waves but instead by finite

waves of a well-defined frequency. To a person used to the Fourier analysis, this

assumption—that it is possible to have a finite wave with a well-defined

frequency—may seem absurd. We are so familiar with the Fourier analysis

that when we think about a finite pulse, we immediately try to decompose, to

analyze it into the so-called pure frequencies of the harmonic plane waves. Still,

in nature no one has ever seen a device able to produce harmonic plane waves.

Indeed, this concept would imply real physical devices existing forever with no

beginning or end. In this case it would be necessary to have a perfect circle with

an endless constant motion whose projection of a point on the centered axis

gives origin to the sine or cosine harmonic function. This would mean that we

should return to the Ptolemaic model for the Havens, where the heavenly bodies

localized on the perfect crystal balls turning in constant circular motion existed

from continuously playing the eternal and ethereal harmonic music of the

spheres.

These harmonic plane waves, which supposedly existed over the full

spectrum of time, whether past, present, or future, and also in the whole gamut

of infinite space, have, of course, no real physical existence. They are mere

abstract entities, existing only in our minds. It would be necessary to dispose of

the whole infinity of space and time in order to produce them. This logical

requirement certainly appears impossible to achieve as a goal since practical

real physical devices are always finite in space and time. Now, the time is ripe

for improving our description of nature with more appropriate tools.

As common observation tells us, in nature we have devices that produce, in

finite time and finite space, waves with a fairly well-defined frequency. For

instance, when the hammer strikes the piano chord, a wave of fairly well-

defined frequency is produced. Furthermore, this real physical sound wave has,

as we very well know, a beginning and also an end. So why not describe this

sound, produced by the piano, by a wave, with a beginning and an end, a finite

wave, with a well-defined frequency. For what physical reason one has to say
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that this finite wave, of a well-defined frequency, is composed of a infinity of

frequencies, each corresponding to harmonic plane waves having no real

physical existence? Even if it is true that, in both the past and the present, these

abstract entities have been quite helpful, mainly because of their conceptual and

practical simplicity, the time has come to improve our description of nature with

more appropriate tools. Before the development of the wavelet local analysis,

we had to describe mathematically these finite physical waves, as a sum of

infinite waves deprived of physical reality. Now, since we handle a more appro-

priately tuned mathematical tool enabling us to avoid the nonlocal epistemo-

logical problems arising from the Fourier analysis, we are free to use finite

waves, with a well-definite frequency, to represent the real physical waves.

From the basic concept of finite localized waves, inspired by the ideas

originating from de Broglie, one concludes that a good way to represent the

quantum particle would be to use wavelets. Under these conditions, it seems

quite natural to describe the single wave not by a sum of infinite harmonic plane

waves, without physical reality, as done in nonlocal Fourier analysis, but instead

with the help of local finite wavelets. One nonminor advantage of this choice is

that it allows one to get rid of certain inconveniences arising in the usual

quantum mechanics, such as instantaneous actions at a distance, retroaction in

time, and other strange effects, delighting, for sure, all those enamored with

wilderness and weirdness.

Under such conditions it seems reasonable to describe the extended part of a

quantum particle by a generalized Gaussian Morlet wavelet [4]

yðx; tÞ ¼ Ae�b2ðx1�e0
1
Þ2þiðx2�e0

2
Þ ð6Þ

which, as we shall see, is solution to a nonlinear Schrödinger equation. The

symbols in the formula have the following meaning:

x1 ¼ 1

�h
ðpx � 2EtÞ; x2 ¼ 1

�h
ðpx � EtÞ; e01 ¼ e1

�h
; e02 ¼ e2

�h
ð7Þ

B. Nonlinear Quantum Mechanics

The usual quantum mechanics, just like the most important physical theories of

our time, is a linear theory. Still, we have the feeling that these linear theories,

even if they have helped us to understand and predict an astonishing quantity of

phenomena, must correspond in reality to some sort of statistical approximation

of deeper and more general nonlinear theories. It would be logical to assume

that these nonlinear theories must generate the usual linear theories as a

particular case. Natural phenomena are certainly very complex. Therefore, the

deeper one goes in the level of description of nature, the farther one stands from
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linear behavior. The well-known rule that the whole is equal to the sum of the

individual parts is indeed a very good rule; above all, it is relatively easy to

apply. Nevertheless, it has some shortcomings; for example, it holds true for

only a very limited number of single real situations or when large statistical

simplifications and assumptions are made. In everyday life, in the majority of

situations we face, this simplistic linear rule fails to apply because we know too

much about the problems to accept oversimplistic linear approximations. This

necessity was pointed out by Einstein, de Broglie, and many others in their

works. They always believed that a more complete theory, for describing the

quantum phenomena, must be a nonlinear theory that should, of course, have as

a linear approximation the usual linear quantum theory.

Even if de Broglie never proposed a nonlinear master equation for the

quantum mechanics, he always thought that quantum mechanics needs, for a

more complete description, a nonlinear approach, and his double solution theory

is, as we have seen, a good example of it. Here we shall propose a possible way

to tackle this problem by means of an example. Let us select

� �h2

2m
r2cþ �h2

2m

r2jcj
jcj cþ Vc ¼ i�h

qc
qt

ð8Þ

for the master nonlinear wave equation, for the case of spinless particle and in

the nonrelativistic approximation [5]. Versions of this equation have already

been presented in the scientific literature by some authors, including Gueret

and Vigier [6]. It is easy to see that this equation corresponds to the usual

Schrödinger equation plus the so-called quantum potential

QðcÞ ¼ �h2

2m

r2jcj
jcj ð9Þ

Writing the solution of the nonlinear master equation in the general form

cð~r; tÞ ¼ að~r; tÞeði=�hÞjð~r;tÞ ð10Þ

one gets, after some calculations and separating the real and the imaginary parts

1

2m
ðrjÞ2 þ V ¼ � qj

qt

1

m
rða2rjÞ þ qa2

qt
¼ 0

8>><
>>: ð11Þ

where, if we identify the classical action S with the phase j of the wave, the first

equation represents the classical Hamilton–Jacobi equation and the second, the
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continuity equation. Using the usual known relations

rj ¼~p;
qj
qt

; r ¼ a2; ~J ¼ r~v; ~v ¼ rj
m

it is possible to write

T þ V ¼ E

r~J þ qr
q t

¼ 0

8<
: ð12Þ

which shows that the nonlinear equation corresponds, in a certain sense, to two

classical equations: the equation of conservation of energy plus the fluid

continuity equation. This choice of (8) for the non-linear master equation, for

describing the quantum phenomena, seems quite natural since it has the

corresponding classical analog in the two fundamental balance equations of

the classical physics: one for the particles and the other for the fluids. By a

symmetric procedure we can also say that the proposed nonlinear equation for

describing the quantum reality results from the fusion of the two fundamental

equations of the classical mechanics: again, one for the particles the other for

the fluids. In this perspective, it is worth mentioning here that the usual linear

Schrödinger equation corresponds to adding the nonlocal quantum potential to

the Hamilton–Jacobi equation.

One basic difficulty with the nonlinear equation arises from the following.

Consider a physical situation where a source of particles is composed of many

emitters, each emitting a particle at a time. If considered alone, each particle

would be described by a localized wave ci solution of the master equation.

Now, what happens if, instead of emitting the particles one by one, the source

emits many particles at the same time? If the master equation were a linear

equation, like the usual Schrödinger equation, the answer would be trivial. The

general solution would be simply the sum of all particular solutions.

c ¼ c1 þ c2 þ 
 
 
 þ cn

In a nonlinear framework, the general solution must factor in the relative

interactions among the different particles, and, consequently, the composition

rule, which is generally unknown:

c ¼ cðc1;c2; . . . ;cnÞ

Attempts have been made to find a general composition rule for this equation,

and some interesting results have even be derived by Rica da Silva. It is

relatively easy to show that in some particular cases, for some solutions, this
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composition rule for a large number of solutions transforms into the linear sum

rule. For the one-dimensional case and in free space, V ¼ 0, a particular solution

of the nonlinear equation can be written in the form

c ¼ Ae�b2ðx1�e0
1
Þ2þiðx2�e0

2
Þ ð13Þ

which, as we have already seen, is the Gaussian Morlet wavelet. Recalling the

meaning of the symbols

x ¼ 1

�h
ðpx � 2EtÞ; x2 ¼ 1

�h
ðpx � EtÞ; e01 ¼ e1

�h
; e02 ¼ e2

�h
ð14Þ

one gets, by substitution, the following generic solution

cðx; tÞ ¼ A exp � b2

�h2
ðpx � 2Et � e1Þ2 þ i

�h
ðpx � Et � e2Þ

� �
ð15Þ

For e2 ¼ 0, and remembering that for null potential E ¼ T ¼ p2=2m, a con-

tinuous sum of these solutions can be written as

c ¼
ð ð

D

gðp; eÞ exp � b2

�h2
px � p2

m
t � e

� 	2

þ i

�h
px � p2

2m
t

� 	" #
dpde ð16Þ

where D is the domain of the integration variables. In order to proceed with the

integration, it is necessary give an explicit form for the coefficient function.

Assuming that the beam is practically monochromatic, and that the translation

parameter follows a Gaussian variation

gðp; eÞ ¼ dðpÞe�a2e2 ð17Þ

where d(p) stands for the Dirac delta function, extending the integration domain

to plus and minus infinity, one gets

cðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

a2 þ b2

r
exp � a2

a2 þ b2

b2

�h2
ðpx � 2EtÞ2 þ i

�h
ðpx � EtÞ

� �
ð18Þ

This final formula, resulting from the coherent infinite sum of solutions, represe-

nting the undulatory part of a finite wave of de Broglie, is also a solution of the

master nonlinear equation.

In order to investigate the solutions of the nonlinear wave equation (8) in a

more extensive manner, it is useful to look at the nonlinear term. The quantum
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potential for the solution expressed in terms of its amplitude and phase, Eq. (10),

assumes the form

QðcÞ ¼ �h2

2m

r2a

a

from which we gather that if the amplitude of the wave is such that

r2a ¼ fa ð19Þ

Then the nonlinear term becomes proportional to a constant f. In such situations

the nonlinear equation transforms into a linear equation:

� �h2

2m
r2cþ �h

2m
f þ V

� 	
c ¼ i�h

qc
qt

ð20Þ

Looking at this equation, one sees that in free space, where V ¼ 0, the nonlinear

master equation transforms into the usual linear Schrödinger equation with a

nonnull potential:

� �h2

2m
r2cþ �h2

2m
fc ¼ i�h

qc
qt

ð21Þ

Another possible approach to obtain some information on the solutions of the

nonlinear equation, for a free particle, consists in rewriting Eqs. (11) for the

one-dimensional case:

1

2m
j2

x ¼ �jt

1

2m
2

ax

a
jx þ jxx

h i
¼ � at

a

8>><
>>: ð22Þ

Assuming that the phase of the wave is of the form

j ¼ px � Et � e2 ð23Þ

one gets by substitution in (22)

qa

qx
þ 1

vg

qa

qt
¼ 0 ð24Þ

where we have made. vg ¼ p=m. The general solution of this equation is

a ¼ aðx � vgt þ e1Þ ð25Þ
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Under such conditions, for that particular form of the phase, given by (23), it is

possible to write a set of solutions for the nonlinear master equation

cðx; tÞ ¼ a x � p

m
t � e1

� �
eði=�hÞðpx�Et�e2Þ ð26Þ

IV. EXPERIMENTS TO TEST THE NATURE OF THE
QUANTUM WAVES

Since the advent of quantum physics, the very nature of quantum waves has

been source and subject of controversy. As we have seen, two major interpreta-

tions fuelled this debate. The Copenhagen indeterministic school claims that

quantum waves are mere probability waves devoid of any physical correspon-

dence. On the contrary, the causal current of de Broglie sustains that quantum

waves are real waves. Since both interpretations are able, to a greater or lesser

extent, to explain quantum observations, how should we decide which of these

is the ‘‘good’’ interpretation to follow? Situations of this kind are not new in the

history of science. It is well known that when, Boltzmann, Gibbs, Maxwell, and

others were developing statistical physics, the standard accepted theory was

thermodynamics. Even if the statistical physics were able to explain practically

all heat experiments in terms of interactions among atoms or molecules, many

prominent scientists of that time insisted that such a theory was totally useless

and devoid of any meaning since it assumed as a basic premise the real

existence of the atoms. Only after the experiments of Perrin, which were related

to Brownian motion, and after the subsequent development of a newborn

‘‘quantum’’ physics, could statistical physics apply for a the right of citizenship

in the family of other, accepted theories. Therefore, what we need, to make the

choice between causality and indeterminism, is crucial feasible experiments.

For a long period of time, this necessity could not be satisfied. Nevertheless,

since the mid-1980s, thanks to the school of Lisbon, and under the influence of

Andrade e Silva, former student of de Broglie, and the school of Bari under the

direction of Selleri, the first experimental proposals were made [7]. These early

proposals were only conceptual; nevertheless, they soon gave origin to propo-

sals of concrete feasible experiments [8]. These experiments can be grouped in

to two main families: those based on the collapse of the wavefunction in a

measurement, and the ones using the so-called autoreduction of the wavefunc-

tion.

A. Experiments Based on Collapse of the Wavefunction

The fundamental idea behind this series of experiments is related to the collapse

of the wavefunction when the measurement is performed. The orthodox
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interpretation of quantum mechanics assumes that the wavefunction is a

probability wave devoid of any physical meaning. As a consequence, the

quantum measurement implies the collapse of the multiple probabilities into a

single one. In the causal interpretation of quantum mechanics, there cannot be a

collapse because we always deal with a function representing a real entity.

In order to fully understand the meaning and physical implications of these

different assumptions, let us consider the experimental setup depicted in Fig. 4,

where S represents a source of particles emitting quantum particles, one at a

time. This requirement is of primary concern; without sources of this kind, real

experiments would be meaningless. Still, this requirement poses no problem

today. For neutrons, electrons, and atoms, it is relatively easy to design and

build such sources. However, for photons, this requirement generates many

problems since photons are bosons and thus tend to join together, with bunching

effect. Monophotonic sources were designed and built mainly to satisfy the

requirements of experiments related to the EPR (Einstein, Podolsky, and Rosen)

paradox. A lot of work was devoted to the design and construction of such

sources [9]. Probably the simplest and most reliable are those of the type

developed by Mandel.

The single particle, emitted by the source, is directed toward a beamsplitter.

This quantum system is described, in the orthodox theory, by probability wave

c containing all the available information on the system.

On reaching the beamsplitter, the wave c is divided into two wavepackets:

one is reflected (cr) and the other is transmitted (ct), and the two trajectories are

independent. If a detector placed in the path of the wavepacket cr is triggered, it

switches on a light that is seen by the observer. Then, what can be concluded

about the other wavepacket ct that has been transmitted?

The answer to this question depends on the chosen, underlying theory.

According to the Copenhagen interpretation of quantum physics, the wavefunc-

Ψr

Ψt

Ψt

DR

Obs.

S

Figure. 4. A single quantum system emitted by the monoparticle source is split into two at the

beamsplitter. When the detector is triggered, the observer sees the light.
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tion is no more than a mere mathematical probability whose sole function is to

help predict the results of the measurements. Therefore, if the particle is seen at

the detector, since the light is on, the probability of being at the other path turns

instantly to zero, that is, ct ¼ 0. This is the well-known reduction postulate of

the usual quantum mechanics, also called ‘‘collapse’’ of the initial wavefunction

into one of the multiple possible states. Briefly stated, and according to the usual

interpretation, after the particle has been detected at the detector, the probability

of being in the transmitted path turns to zero and consequently, nothing remains

up there.

The answer to this question put forth by proponents of the causal model is

fairly different. The source emits a quantum particle one at a time, meaning that

a wave plus a singularity f ¼ c, move in the direction of the beamsplitter. Here

the physical wave is divided into two, while the singularity is reflected or

transmitted. When reflected, the case shown in Fig. 4, in its way the singularity

interacts with the detector and triggers it, turning the light on. In the meantime

the real wave ct ¼ y continus on its path and remains on unaffected because no

physical action is taking place on it.

As could be expected, both models give different answers to the question.

The orthodox model claims that, after the measurement is performed, nothing

remains in the transmission path. The other, the causal approach, predicts that

along that way follows a real physical wave carrying a very small amount of

energy. In such circumstances, it looks as if we had obtained the situation we

were looking for, namely, a practical feasible experiment capable of testing the

two competing models for the quantum physics, and chose between them.

This situation can be fully developed by slightly improving the previous

experiment. Consider that instead of being connected to the lightbulb, the

detector is linked to a fast shutter, as shown in Fig. 5.

When activated by the reflected singularity, the detector sends a pulse

opening the fast gate G for a short time necessary enough to let the theta

wave pass. If it happens that instead of being reflected, at the beamsplitter, the

singularity is transmitted, then at the detector arrives only a wave without

singularity unable to trigger the detector. Since this wave, devoid of singularity,

has not enough energy to trigger the detector, no pulse is sent to open the gate.

So, in this case, the gate remains closed and as a consequence nothing leaves the

device. If the preceding causal assumptions hold, this device is no more than a

generator of real physical y waves carrying a very small amount of energy. This

energy is so small that it is not sufficient to trigger the usual quadratic sensors

and detectors.

Naturally, in terms of the Copenhagen paradigm, nothing at all comes from

such a device. In this model the theta waves do not even exist.

The problem now is to find some kind of ‘‘special detector’’ capable of

revealing waves having a small amount of energy. Two techniques have been
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discussed in the scientific literature to test the very existence of these waves

carrying almost no energy at all. The first one is related to de Broglie guiding

principle; the other is based on some different possible properties of theta

waves.

1. Direct Detection

As already stated, the energy of the waves theta devoid of singularity does not

reach the threshold to trigger usual quadratic detectors. Therefore direct dete-

ction is impossible with them. In 1983 [10], Selleri proposed a very promising

possibility for the case of photonic waves. The method for detection of the theta

waves is based on the idea that these waves modify the decay probability of

unstable systems. These waves, devoid of singularity and practically without

energy, emitted by the generator, are injected into a laser gain tube, as (shown in

Fig. 6), where they have the possibility of revealing their real existence by

generating a zero energy-transfer stimulated emission. A positive answer from

this experiment would prove the existence of some real physical entity emerging

from the generator of theta waves. The principal inconvenience of this

φt

θ θφ

DR

S

G

Figure 5. Generator of theta waves.

S

θ wave
generator

θ
Laser gain tube

Detector

Figure 6. Selleri’s experiment.
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experiment is that if the answer is no, that is, if no photons are revealed (besides

the usual noise), no conclusion can be drawn concerning the existence or

nonexistence of waves devoid of singularity.

2. Experiments Based on de Broglie Guiding Principle

According to the guiding principle of de Broglie, the single singularity is

coupled to the wave theta through a nonlinear process such that its probability

distribution is given by the intensity of the accompanying wave. Naturally this

wave, in the linear approximation, is the sum of all theta waves that happen to

be in the same region of space at that particular time:

f ¼ y1 þ y2 þ 
 
 
 þ yn ð27Þ

It must be pointed out that this formula holds true even when the waves come

from independent sources, as shown either by photonic interference with

independent sources, or by fourth-order interference. As known, fourth-order

interference is observed with incoherent wave overlapping resulting from

independent sources. Under these conditions the probability distribution for

the detection of singularities, in a long run of similar procedures, is given by the

guiding principle

P ¼ ajfj2 ð28Þ

where the multiplicative constant alpha depends on the detection process.

From expression (28) and recalling the generator of theta waves, a conce-

ptually simple process for detecting such waves (which are not seen directly by

a common detector) can be easily devised. Consider a monoparticle source of

photons, or any other particle, where this principle is valid for any quantum

particle, emitting photons on a single basis, that is, one by one. This particle in

its way reaches an array of detectors giving origin to a Gaussian continuous

distribution of arrivals. Suppose now that at the same region of space, the wave

with the particle is joined by a theta wave, emitted by the special generator, as

shown in Fig. 7.

The two waves—one f, from the common source S the other, y from the

generator of theta waves S0—overlap at the detection region. The expected

intensity at the array of detectors DR, after n arrivals of particles, is given by the

squared modulus of the superposition of two waves at each instant of time,

summed for all n arrivals:

I ¼
Xn

i¼1

jfti
þ yti j

2 ð29Þ
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Developing, one gets

I ¼ jft1
j2 þ jyt1 j

2 þ 2jft1
jjyt1 jcosdt1 þ jft2

j2 þ jyt2 j
2 þ 2jft2

jjyt2 jcosdt2

þ 
 
 
 þ jftn
j2 þ jytn j

2 þ 2jftn
jjytn jcosdtn

or, assuming that the intensity of the individual waves are equal

I0 ¼ jfti
j2 ¼ jyti j

2 ð30Þ

one gets by substitution

I ¼ 2I0ðn þ cosdt1 þ cosdt2 þ 
 
 
 þ cosdtnÞ ð31Þ

If the two independent sources S and S0 are coherent, the relative phase

difference is constant in time

d ¼ dti ð32Þ

the expected intensity is given by

I ¼ 2nI0ð1 þ cosdÞ ð33Þ

This result indicates that the existence theta wave is made evident by the

presence of the interference pattern. In the usual Copenhagen interpretation,

the waves theta do not exist and therefore the expected result would be simple

the one produced by the single source

I ¼ nI0 ð34Þ

which shows no interference pattern.

S′

DRS

θ wave
generator

θ

φ

Figure 7. Principle for detection of the waves theta practically without energy.
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Calculations were performed assuming that the two independent sources are

coherent, and emit the pulses at the same time precisely (this synchronicity

requirement is, of course, extremely important). These experimental require-

ments are very difficult to put into practice. Indeed, two independent sources are

rarely coherent, even if the emission is at the same time. In such conditions, the

relative phase differences are randomly distributed and so their sum cancels out.

As a consequence, no interference is to be expected at the detection region. In

this case the experiment is not conclusive, either.

Garrucio, et al. [11] devised an experimental proposal to meet the coherence

requirements. Their idea was based on the hypothesis that it is the singularity

that stimulates the laser emission. This hypothesis is opposite that of Selleri.

Nevertheless, because of noise and related problems, the experiment may be not

entirely conceptually conclusive, either.

Since the direct and the coherent processes are not truly conclusive, it is

necessary to look for another conceptually clear method that could, in principle,

avoid the stated experimental difficulties. A conclusive experiment to decide on

such important issue as the true nature of the quantum waves, regardless of

whether they are real, must be conceptually very simple and, above all

considerations, conclusive in principle. This process is known as ‘‘incoherent

interferometric detection of the theta waves.’’

In fact, incoherent detection was the first conceptual process developed by

J. and M. Andrade e Silva [7] in the early 1980s. The basic idea relates to a

variant of the Young double-slit experiment where a y wave produced by an

independent incoherent source is mixed to the usual two coherent waves,

producing a blurring of the interference pattern. A sketch of this conceptual

three-slit experiment is shown in Fig. 8.

Those early conceptual proposals were developed later [12] into concrete

feasible experiments extended to all quantum particles. These experiments are

θ wave
generator

θ

S

D

φ

Figure 8. Three-slit experiment for to test the reality of the quantum waves.
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conceptually variants of the same idea, namely, mixing the y waves, produced

by the special generator, coherent or not, with the usual waves.

For the case indicated in Fig. 8 the expected intensity predicted at the

detector, assuming that the quantum waves are real, is

Ic / jf1 þ f2 þ yj2 ð35Þ

since the waves f are coherent between themselves and incoherent with the

wave y, the last expression gives

Ic / jf1 þ f2j2 þ jyj2 ð36Þ

Assuming, for sake of simplification of the final formula, that the waves have

the same amplitude, one has

Ic / 1 þ 2

3
cosd

� 	
ð37Þ

where d stands for the relative phase shift between the two coherent waves f1

and f2. The fringe visibility calculated by the known formula

V ¼ IM � Im

IM þ Im

ð38Þ

gives V ¼ 2
3
.

If it is assumed, as the usual paradigm does, that the quantum waves have no

real existence, then the predicted intensity at the detection zone is

Iu / jf1 þ f2j2 ð39Þ

or

Iu / ð1 þ cosdÞ ð40Þ

which corresponds to a visibility of one V ¼ 1.

These results indicate that the presence of the wave theta is revealed by the

value of the expected visibility. If the visibility is one, the y waves do not exist,

meaning that the quantum waves are mere mathematical probability waves

devoid of any physical meaning. If the fringe pattern is blurred and the visibility

decreased by a factor of 2
3
, then it would imply that quantum waves, just like any

ordinary wave, are real.

Another possibility, a variant of the previous experiment, is shown in Fig. 9,

where the wave y from the generator is halved at the beamsplitter and the two
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coherent waves y1 and y2 devoid of singularity overlap with the common wave

f at the array of detectors. Since the sources are independent, the full wave is

incoherent with the waves y1 and y2 devoid of singularity. In such a scenario in

the region of detection, three waves overlap, giving birth to a resulting wave

fT ¼ y1 þ y2 þ f ð41Þ

guiding the single singularity according to the guiding principle. The expected

intensity is given by

Ic / jy1 þ y2 þ fj2 ð42Þ

or

Ic / jy1 þ y2j2 þ jfj2 ð43Þ

because the two theta waves are coherent and incoherent, respectively, to the

full wave. Assuming, as before, the same amplitude for the three overlapping

waves, one gets the same expression (37) for the expected intensity correspond-

ing to the same visibility, V ¼ 2
3
.

A different result is predicted by the Copenhagen school for this specific

experiment. Since the theta waves do not exist, the expected intensity is given

simply by

Ic / jfj2 ð44Þ

which means that in this case, since there is no interference term, no

interference pattern is to be either expected or observed, V ¼ 0.

S

S′

θ1

θ
θ2

φ

φ
D

θ wave
generator

Figure 9. Incoherent detection of y waves.
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This experiment is, to a certain extent, the ‘‘symmetric’’ counterpart of the

one we discussed earlier. In the first experiment, the theta waves were supposed

to show their presence by blurring a clear interference pattern, while in this last

experiment, the waves produce an interference pattern where no waves were

expected.

Here is the possibility of a concrete, feasible experiment. This experiment

acknowledges that in an ideal experiment, all waves must completely overlap in

the detection zone. Of course, in a real experiment, things are slightly different

[13]. Since the sources are independent, perfect synchronization is difficult to

obtain because the relative length, the coherence length, of the waves is small.

In general, complete and permanent overlapping is impossible to achieve. The

experiment proposed in Fig. 10 is designed to address those problems.

As shown in Fig. 10, two sources, one a common source and the other

consisting of y waves, feed the input ports of a Mach–Zehnder interferometer.

The intensity predicted by the usual theory for the two output ports results only

from the input source S, and is given by

I1
u / jfTR þ fRT j2

I2
u / jfRR þ fTT j2

(
ð45Þ

where fTR represents the wave reflected at the first beamsplitter and transmitted

at the second. If the relative phase shift of the two coherent waves is df and for

the ideal case of no absorption and 50% beamsplitters

jfTRj2 ¼ jfRT j2 ¼ jfRRj2 ¼ jfTT j2 ¼ 1

4
jfj2; I0 ¼ bjfj2 ð46Þ

θ

φ

S

S′ D2

D1

θ wave
generator

Figure 10. Incoherent detection of y waves with correction for synchronization.
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where b is a proportionality constant, one gets, after the usual calculations

I1
u ¼ I0ð1 þ cosdfÞ

I2
u ¼ I0ð1 � cosdfÞ

(
ð47Þ

In the causal approach of de Broglie one must also consider the y waves coming

from the special generator. If in a first step it is assumed that the two

independent sources S and S0 emit finite waves at the same time, the predicted

intensity shall be given by the expression

I1
u / jfTR þ fRT þ yTT þ yRRj2

I2
c / jfRR þ fTT þ yRT þ yTRj2

(
ð48Þ

and since the relative phase difference of the two independent varies randomly

in time, incoherent sources, one is allowed to write

I1
c / jfTR þ fRT j2 þ jyTT þ yRRj2

I2
c / jfRR þ fTT j

2 þ jyRT þ yTRj2

(
ð49Þ

Developing these relations with the usual simplifying assumptions of equal

wave intensity

jyTRj2 ¼ jyRT j2 ¼ jyRRj2 ¼ jyTT j2 ¼ 1

4
jfj2 ð50Þ

and for a constant phase shift dy between the two coherent y waves, one gets

I1
c ¼ 1

2
I0ð1 þ cosdf � cosdyÞ

I2
c ¼ 1

2
I0ð1 � cosdf þ cosdyÞ

(
ð51Þ

Recalling that the experimental conditions were set such that

df ¼ dy ¼ 0 ð52Þ

which correspond to an equal optical path for all the waves, the usual

expressions (47) become

I1
u ¼ I0

I2
u ¼ 0

(
ð53Þ
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and, for the same token, the causal formula (51) gives

I1
c ¼ 1

2
I0

I2
c ¼ 1

2
I0

(
ð54Þ

For the particular choice of experimental conditions, given by expression (52),

and according to the usual interpretation, the interferometer behaves like a pure

transmissible medium. This is a consequence of the fact that at output port 1 the

f waves are in phase, while at port 2, the waves are in phase opposition. In the

causal interpretation, where the real nature of quantum waves is assumed,

predictions are completely different; the Mach–Zehnder interferometer behaves

like a 50% beamsplitter.

These predictions, as stated, are valid whenever the two sources emit at the

same time. This is en extremely tough experimental requirement to achieve.

Usually, the two independent sources emit particles in a random way. This

means that sometimes, the two independent waves arrive precisely at the same

time, corresponding to a complete overlapping, while they don’t even partially

mix at other times. If the independent waves do not overlap at the mixing

region, no inference about the reality of the quantum waves can be drawn.

Between these two extreme cases there are, of course, all the intermediate cases

of partial superposition.

A simplified model for factoring in the true emission nature of the two

independent sources can be easily developed. Let nf be the total output coming

from common source S registered per second at the output ports, and let nc be

the coincidence rate. The number per second of f waves arriving at the

detection zone without the corresponding y waves is (nf � nc). The total

counting rate, assuming the reality of the quantum waves, is given in two

parts: (1) For cases when the f waves arrive alone at the beamsplitter without

the corresponding y waves—here all particles hit detector D1; (2) For cases

when the waves from independent sources arrive at the mixing region at the

same time, resulting in the same counting rate at the detectors. Symbolically,

this is

I1
c ¼ 1

2
nc þ ðnf � ncÞ

I2
c ¼ 1

2
nc

(
ð55Þ

Let g be a factor characterizing the mean overlapping coincidence rate of the

two independent emitting sources, such that

nc ¼ gnf; 0 � g � 1 ð56Þ
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By substitution into (55), one has

I1
c ¼ 1 � 1

2
g

� 	
nf

I2
c ¼ 1

2
gnf

8>><
>>: ð57Þ

Representing � as the difference between the counts per second of the two

detectors

� ¼ I1 � I2 ð58Þ

one gets

�u ¼ I1
u � I2

u ¼ nf ð59Þ

�c ¼ I1
c � I2

c ¼ ð1 � gÞnf ð60Þ

These different previsions of the two interpretations are shown in Fig. 11 for the

particular case of g ¼ 1
2
.

In the most unfavorable case when there is no overlapping between the waves

emitted by the two independent sources g ¼ 0, the predictions are the same for

the two theories �c ¼ �u. For different values of the mean overlapping factor

0 � g � 1, all intermediary cases are obtained. Considering the best over-

lapping situation g ¼ 1, the difference in the predictions of the two theories is

maximal: �u ¼ 0 and �c ¼ nf.

The great advantage of these experiments results from the fact that for one

side they are inherently conclusive, while for the other they can be put into

practice with today’s available technology. In the following, we shall briefly

present one concrete practical execution of one of these proposals.

Mandel and his group at the University of Rochester performed a concrete

experiment [14] to test the nature of quantum waves. Their experiment was

based on a proposal presented by Croca et al. [15], and is sketched in Fig. 12.

∆
∆u

∆c

nφ

nφ /2

t

Figure 11. Predictions for the two theories for the particular case of g ¼ 1
2

(dotted line—usual

theory; solid line—causal theory.
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As shown in Fig. 12, an UV laser beam of frequency o0 impinges on a

nonlinear crystal given origin to a parametric downconversion, producing for

each arriving photon two photons o1 and o2 such that o0 ¼ o1 þ o2. To

calculate the joint probability detection at the two detectors for loose less

beamsplitters, it is worthwhile to recall that the transmission and reflection

coefficients satisfy the usual relation

jr j2 þ jtj2 ¼ 1

rt
 þ r
t ¼ 0
ð61Þ

Therefore the waves incoming at the detectors can be written in terms of input

waves from the nonlinear crystal

c1 ¼ t2f1 þ r2tf2 þ tr2f2eid

f2 ¼ t2f2eid
ð62Þ

where d represents the phase shift introduced by the phase shifting device. If

detector D2 is triggered, then, at the other detector, D1, only the other photon

can be detected. Recalling the guiding principle, expressed in formula (28), the

conditional probability of detection at D1 is proportional to jc1j
2

PðD1jD2Þ ¼ a1jc1j
2 ð63Þ

and the coincidence probability becomes

PðD1;D2Þ ¼ PðD1jD2ÞPðD2Þ ¼ a1a2jc1j2jc2j2 ð64Þ

which gives, by substitution

PðD1;D2Þ ¼ a1a2jtj4jf2j2½jtj4jf1j2 þ 2jrj4jtj2jf2j2ð1 þ cos dÞ� ð65Þ

Parametric
down-converter

Coincidence
counter

D1

uv

ψ1

ψ2

φ1

φ2

D2

Figure 12. Schematic representation of the experiment done at Rochester University to test the

nature of the quantum waves.
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Assuming that the two waves have the same amplitude and for 50% beam-

splitters, this gives simply

PðD1;D2Þ / 1 þ 1

2
cos d ð66Þ

This expression shows that if the quantum waves are real and the stated assum-

ption is valid, the joint probability detection depends, as expected, on the phase

shift.

For the usual interpretation, once the photon is detected at D2, nothing more

from f2 remains in the interferometer because of the collapse of the wave-

function. Therefore at detector D1 only the wave f2 from the usual source

arrives. Since the path of this wave does not cross the phase shifting device and,

even more, is only one wave, the coincidence count does not depend on the

phase.

A version of this experiment was done by Mandel and his group at Rochester

University. The experimental apparatus was slightly different from the one

shown in Fig. 11, but the principle was essentially the same. The experi-

mentalists concluded that the results do not confirm the existence of the y waves,

because the visibility obtained was not 50%. The statistics of the experiment

was very poor; the mean coincidence rate was about six counts per second, but

even so it was possible to fit the results with a visibility of 10%. This indicates

that the experiment was not conclusive and therefore should have been

performed again under better conditions, with more significant statistics, and

with a larger coherence length for the overlapping pulses.

B. Experiments Based on Autoreduction of the Wavepacket

Another possibility [16,17] for testing the reality of the quantum waves derives

directly from de Broglie causal theory. As we have seen, in this approach, the

quantum particle is composed of a wave plus a singularity. These two

composing entities have different properties when interacting with matter or

with the surrounding subquantum medium.

When the real wave devoid of singularity impinges on a beamsplitter, part of

it is reflected and part of it transmitted. The ratio depends on the particularities

of the beamsplitter. Consider the incidence of the y wave on a perfect 50%

beamsplitter. Since we are dealing with a real physical wave, half of it is

reflected and half is transmitted. Suppose that next we place a succession of

equal beamsplitter in the direction of transmission as shown in Fig. 13.

As the wave devoid of singularity crosses the successive beamsplitters it

progressively looses its amplitude until it totally vanishes. This natural redu-

ction of amplitude can be represented by

y ¼ y0 e�mn ð67Þ
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where n represents the number of beamsplitters and m is the attenuation factor

related to the transmission coefficient t by the relation m ¼ �ln t. The expression

(67) essentially remains valid when the wave crosses the void, that is, the

subquantum medium, only in this case the attenuation factor changes, and the

number n of beamsplitters is changed by the path x traveled by the photon.

Things happen to be rather different with a full wave. Suppose that the full

wave hits the beamsplitter and the singularity is transmitted. Next, it impinges

on a similar beamsplitter, and the singularity is also transmitted, and this process

is repeated endlessly. How can we describe the entire process? Since the

singularity is either reflected or transmitted, and the wave is halved in equal

parts, after a certain number of beamsplitters the wave completely disappears,

mixed with the surrounding subquantum medium. Should this statement be true,

we would then have to deal only with the singularity without the accompanying

wave, and the wave–particle dualism would be broken. In order to preserve the

wave–particle dualism contained in de Broglie’s basic affirmation, stating that

any quantum particle is composed of a wave and the singularity, it is necessary

to make some different assumptions for the behavior of the wave with the

singularity. Let us consider the following situation.

When the full wave strikes the first, lossless, 50% beamsplitter, the

transmitted amplitude of the wave is halved and one considers only the case

when the singularity is transmitted, and the occurs, as a chain reaction, in the

remaining beamsplitters. This process keeps continues until a certain beam-

splitter number k is reached. After this point the accompanying wave y, having

reached the minimum level of energy compatible with the existence of the

quantum particle, starts regenerating itself at the expenses of the energy of

the singularity. This situation corresponds to the simplest fundamental state for

the free particle having the minimum possible size in which it can manifest

interferometric properties. From this point on, the amplitude of the accompany-

ing wave remains essentially constant, no matter the number of beamsplitters it

crosses. The process continues as long as the singularity has enough energy to

keep feeding the accompanying wave. This situation is illustrated in Fig. 14.

Figure 13. The theta wave, devoid of singularity, looses amplitude as it crosses the successive

beamsplitters until nothing of it remains.
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Analytically the amplitude of the associated wave can be represented as

follows:

y ¼ y0 e�mn n < k

y ¼ y0 e�mn ¼ y0 e�mk ¼ constant; n � k

�
ð68Þ

Here it is possible to see that after a number of n ¼ k beamsplitters is reached,

having attained the minimum possible intensity, while still compatible with its

existence, the amplitude of the accompanying wave remains constant for all

practical purposes.

For the case of particles of light, after crossing the necessary number of

beamsplitters to reach the threshold, the energy of the photon singularity begins

to decrease.

1. Experiment to Test de Broglie Tired-Light Model for the Photon

and Its Implications for the Cosmological Expanding

Model of the Big Bang in the Universe

Since the energy is related to the frequency by the usual formula, the very small

progressive energy loss of the photon singularity, resulting from the feeding of

the associated wave, relates to a correlated frequency shift toward the red. If,

instead of beamsplitters, one uses a very long astronomical optical path, the

photon as it crosses the space looses energy. This space, as is well known, is

not void but filled up with what is usually called the ‘‘zero-point field,’’ which

de Broglie more appropriately termed the ‘‘subquantum medium.’’ In this

model, it is possible to interpret, as de Broglie did, the cosmological redshift,

not as a Doppler effect, but as a consequence of a decrease of energy resulting

from to the interaction of the photon with an all-pervading subquantum

medium. This model, sometimes referred to as the ‘‘de Broglie tired-light

model,’’ is capable of explaining the cosmological redshift phenomenon without

any reference to the ordinary Doppler effect. In this situation, there is no logical

necessity for invoking or assuming, as if it were unavoidable, the cosmic big

bang model of the universe since it is possible to build up a sound causal model

where the observable redshift does not imply an expanding universe.

Figure 14. The amplitude of the associated wave decreases till a certain point. From this point

on the amplitude of the wave remains constant.
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Even if it were possible to explain the cosmological redshift phenomenon by

de Broglie’s aging photon model, the practical feasible direct test of the model

is not easy to perform because the minimum necessary distance for the aging

effect to be noted is considerable. Let us make a rough estimate of this distance,

assuming that the cosmological redshift is due only to the interaction of the

photon with the subquantum medium.

Recalling the previous characteristics of the photon in de Broglie model, it is

reasonable to write

E ¼ E0 e�ax ð69Þ

for the progressive loss of energy of the singularity due to feeding of the

accompanying wave so that it could keep the minimum value compatible with

its existence. The mean attenuating factor is given by a, and x is the distance

traveled by the photon in cosmic space. Or, equivalently

n ¼ n0 e�ax ð70Þ

using the linear approximation and for ax � 111, one gets

�n
n0

� �ax; �n ¼ n� n0 ð71Þ

or

�l
l0

� ax ð72Þ

where l represents the wavelength. The fractional increase in the wavelength

[18], namely, the redshift, of the photon can be expressed in such way that

a ffi k

c
ð73Þ

where k is the Hubble constant, which has an estimate value of about

k ¼ 1:6 � 10�18 s�1. By substitution of the values of the constants, one gets

a � 10�26 and by replacing in (70), one gets

n ¼ n0 e�10�26x ð74Þ

From this approximate expression it is possible to estimate the traveling

distance through the ‘‘empty space’’ necessary for a relative decrease in the

frequency of 10�5, �n=n0 � 10�5. For this small change in frequency, one gets

a distance of x � 1021 m for the path that the photon has to travel. This figure
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corresponds to about the diameter of our galaxy. This means that even for this

very small change in frequency, and assuming that the cosmological redshift is

due only to the aging of the photon, the required distance reaches a galactic (i.e.,

astronomical) scale.

Jeffers et al. [19] performed an experiment to test the reduction in amplitude

of the y wave devoid of singularity, as it travels in the ‘‘empty space.’’ The

results of this experiment were not conclusive for two basic reasons:

1. The experiment was performed using a laser source, instead of a tested

monoparticle source. It is known that even at low laser beam intensity, the

probability of having only one single photon at a time is extremely weak

because of to the bunching effect.

2. The second reason is related to the minimum necessary distance for the

effect to be noticeable, that is, the reduction in amplitude of the wave to

be of any experimental significance. The photon in the abovementioned

experiment traveled along a path of 258.1 cm, which is a little more 2.5 m.

Clearly, this is figure is negligible when compared to the astronomical

value we have obtained. Even in the case of an optical path, whose

magnitude would be in the kilometer range, the amplitude damping of the

wave would be hardly noticeable.

Nevertheless, a laboratory scale experiment is possible if instead of the

subquantum medium one uses beamsplitters or other similar absorbers to

reduce, in a significant way, the amplitude of the accompanying wave. In this

case, it is possible to rely on the equations derived from the assumed properties

for de Broglie’s causal particles. For a transmission factor of 1% and according

to the formula (67), for 10 equal beamsplitters, the final transmitted wave

amplitude would be reduced by 20 orders of magnitude, or a factor of about

10�20. It is reasonable to expect that for such a significant overall damping

factor, the threshold level k could be achieved. Thus, in such a situation, the size

of the experimental apparatus could be small enough to be put in a laboratory of

fairly acceptable dimensions.

The concrete experiment consists of using a modified Mach–Zehnder

interferometer. In each arm of the interferometer we place the same number

of similar beamsplitters, as shown in Fig. 15. The monophotonic source S emits

Bs

Bs

S

D

Figure 15. Laboratory-scale experiment for studying the behavior of de Broglie waves.
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photons one at a time. This quantum particle enters the input port of the Mach–

Zehnder interferometer. Since the two independent arms of the interferometer

have the same number of similar beamsplitters, the total amplitude reduction is

the same in each arm.

Let us now see the prediction for the results of this experiment.

a. Orthodox Interpretation. According to the usual interpretation of quantum

mechanics, the expected intensity at the detection region is given by

Iu ¼ jc1 þ c2j2 ð75Þ

with

c1 ¼ rtAc; c1 ¼ tr Aceid ð76Þ

where r and t are respectively the reflection and transmission factors at the

Mach–Zehnder interferometer beamsplitters Bs, A ¼ e�mn represents the overall

absorbing factor due to the presence of the attenuating beamsplitters, and d is

the relative phase difference of the two overlapping waves.

Developing (75), one gets the usual formula

Iu / 1 þ cos d ð77Þ

Since the two probability waves c undergo the same attenuation along the arms

of the interferometer, the predicted visibility for this experiment is one: V ¼ 1.

b. Causal Interpretation. Needless to say, predictions assuming the validity of

de Broglie’s causal model of the photon are completely different. These pre-

dictions can be halved in two classes of results. The first one relates to the first

expression of (68), which means that the threshold k was not yet attained. In this

case the predictions of the two approaches are the same because both waves are

attenuated in the same proportions. After this point, the predictions are given,

recalling (68), and taking into consideration the cases in which the singularity

goes along path 2

y1 ¼ y0e�mn; n � k

y2 ¼ y0e�mk ¼ constant; n � k

�
ð78Þ

by

Ic ¼ jy1 þ y2j2 ¼ jy0j2ðe�2mk þ e�2mnÞð1 � gcosdÞ ð79Þ
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where the expected visibility g is given by

g ¼ sech mðn � kÞ; n � k ð80Þ

The predictions are precisely the same if the singularity goes through the other

path. Obviously, in order to carry out the concrete experiment, some practical

precautions indicated in previous works [16] must be taken.

The results of the predictions of the two approaches are presented in the next

plot, shown in Fig. 16.

V. THE UNCERTAINTY RELATIONS

The uncertainty relations have played a central role since the field of quantum

mechanics has been created. Prior to the existence of this theory, experimen-

talist knew, from their work, that every concrete measurement would necessarily

carry an associated error. Yet, it was generally believed that this error was of no

fundamental nature, and that one could, in principle, approach the ‘‘true’’ value

by filtering out from a huge amount of measurements. Errors were part of the

experimental process. With the advent of quantum physics, the error of

measurements assumes a new, ontological status, rooted in the very heart of

the theory. The theory itself would be built on this unavoidable ‘‘error’’ process.

In order to make any direct measurement, one has to interact with the object;

the smaller the interacting particle, the smaller the uncertainty in the final

measurement. In any case there is always some degree of error or uncertainty

associated with any real concrete measurement, and the best we can do is trying

to minimize it.

A. The Usual Heisenberg–Bohr Indeterminacy Relations

The usual incertainty relations were first derived by Heisenberg, in a paper

presented in March 1927. Nevertheless, Bohr was the one who fully understood

their significance. He presented his views in the fall of the same year in a now-

famous lecture delivered at Lake Di Como, Italy. In this lecture, Bohr derived

the uncertainty relations as an epistemological consequence of his principle of

k n

1

γ

Figure 16. Visibility predicted by the two theories: dashed line, usual model; continuous line,

causal model.
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complementarity, and mathematically as a direct result of the nonlocal Fourier

analysis.

It is well known that any reasonable function can be Fourier-represented as a

sum of infinite, in space and time, harmonic plane waves (i.e, sinus and

cosinus). The more localized the function representing the particle, the more

waves the needed to reconstruct it. In the limiting case, when the particle is

precisely localized, �x ¼ 0, corresponding to a Dirac delta function, the

number of waves necessary to build it up reaches infinite values. Since each

wave is associated with one velocity, this means that a precisely localized

particle has an associated infinitude of velocities, that is, an infinite error for the

velocity �v ¼ 1. If, instead of a well-defined position, one wishes to have a

particle with a precise velocity �v ¼ 0, only one single wave is to be used.

Since the harmonic wave with a well-defined velocity is infinite in either space

or time, this means that the particle is somehow spread over all space, implying

that is its position is completely unknown, �x ¼ 1.

Summarizing these two extreme cases, it is possible to establish an inverse

relationship, for these situations between the two conjugated observables:

position and velocity:

�x ¼ 0 , �v ¼ 1
�x ¼ 1 , �v ¼ 0

The following statement is one form of enunciating Bohr’s principle of

complementarity: The better the position of a particle is known, the lesser its

velocity is known, and vice versa.

This descriptive reasoning can be made more precise using mathematical

formalism and following Niels Bohr, practically step by step. From Fourier

analysis, we know that it is possible to represent a well-behaved function as an

infinite sum of infinite monochromatic plane waves, that is

f ðxÞ ¼
ðþ1

�1
gðkÞe�ikx dk ð81Þ

where k ¼ 1=l represents the wavenumber. Choosing, as Bohr did, for the

coefficient function a Gaussian form

gðkÞ ¼ e�½k2=2ð�kÞ2� ð82Þ

by substitution into (81)

f ðxÞ ¼
ðþ1

�1
e�½k2=2ð�kÞ2�eikxdk ð83Þ
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and by integration one gets

f ðxÞ ¼
ffiffiffiffiffiffi
2p

p
�ke�ðx2=f2½1=ð�kÞ2�gÞ ð84Þ

which implies that

�x�k ¼ 1 ð85Þ

If, instead of the spatial information on the quantum system, one considers the

temporal dependence, and follows a similar line of reasoning, the time frequency

relation will be obtained:

�t�v ¼ 1 ð86Þ

Recalling the fundamental relations of quantum mechanics, Planck–Einstein,

and de Broglie

E ¼ hn; p ¼ h

l
¼ hk

and by substitution in (85) and (86), only finally gets

�x�px ¼ h

� t�E ¼ h
ð87Þ

This was, in essence, how Niels Bohr obtained his uncertainty relations. The

derivation clearly points out the deep connection between Bohr’s principle of

complementarity and the Fourier nonlocal analysis. Instead of being simple dual

Fourier relations, they got the ontological meaning of representing the duality

character manifested by the quantum entities. To do justice to these fundamental

contributions, they should be called Heisenberg–Bohr uncertainty relations.

While Heisenberg can be remembered as the person who derived them for the

very first time, one must also acknowledge the fact that it was Bohr who grasped

their full importance, establishing them as a cornerstone of the measurement

theory in quantum physics.

The Heisenberg–Bohr uncertainty relations given by (87) relate to the ideal

case of Gaussian distributions with minimum uncertainty in the conjugated

variables. In most cases and the equality turns into the habitual inequalities

�x�px � h

�t�E � h
ð88Þ
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These relations, �x�px � h, define a measurement uncertainty space, the

Heisenberg space, shown in Fig. 17.

The Heisenberg space defines the available uncertainty space where, in

quantum mechanics, it is possible to perform, direct or indirect, measurements.

Outside this space, in the forbidden region, according to the orthodox quantum

paradigm, it is impossible to make any measurement prediction. We shall insist

that this impossibility does not result from the fact that measuring devices are

inherently imperfect and therefore modify, due to the interaction, in an unpre-

dictable way what is supposed to be measured. This results from the fact that,

prior to the measurement process, the system does not really possess this

property. In this model for describing nature, it is the measurement process itself

that, out of a large number of possibilities, creates the physical observable

properties of a quantum system.

B. A More General Form of the Uncertainty Relations

The usual uncertainty relations are a direct mathematical consequence of the

nonlocal Fourier analysis; therefore, because of this fact, they have necessarily

nonlocal physical nature. In this picture, in order to have a particle with a well-

defined velocity, it is necessary that the particle somehow occupy equally all

space and time, meaning that the particle is potentially everywhere without

beginning nor end. If, on the contrary, the particle is perfectly localized, all

infinite harmonic plane waves interfere in such way that the interference is

constructive in only one single region that is mathematically represented by a

Dirac delta function. This implies that it is necessary to use all waves with

velocities varying from minus infinity to plus infinity. Therefore it follows that a

well-localized particle has all possible velocities.

If, instead of the nonlocal Fourier analysis, one uses the local wavelet

analysis to represent a quantum particle, the uncertainty relationships may

change in form. On the other hand, this process has the advantage of containing

the usual uncertainty relations when the size of the basic gaussian wavelet

increases indefinitely.

Heisenberg
,
s

space

∆x

∆px

Figure 17. Plot of the Heisenberg’s measurement prediction space.
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To make the process of derivation of the new uncertainty relations more

comprehensible, it is convenient to do it in parallel and step wise fashion with

the usual derivation presented before. This process is shown in Fig. 18.

From Fig. 18 it is seen that the new the uncertainty relations derived with the

local wavelet analysis exhibit the form

�x2 ¼ 1

�k2 þ 1=�x2
0

ð89Þ

Derivation of the uncertainty relations

Non-local de Fourier analysis Wavelet local analysis

Kernel--Sinus and cosinus Kernel--Gaussian wavelet

f0ðxÞ ¼ eikx f0ðxÞ ¼ eðx
2=2�x2

0
Þþikx

Representation of the particle

f ðxÞ ¼
ðþ1

�1
gðkÞeikx dk f ðxÞ ¼

ðþ1

�1
gðkÞeðx2=2�x2

0
Þþikx dk

Coefficient function

gðkÞ ¼ eðk
2=2�k2Þ

by substitution and integration

f ðxÞ / e�ðx2=2�x2Þ

or

�x ¼ 1

�k
�x2 ¼ 1

�k2 þ 1=�x2
0

by substitution for the quantum value: p ¼ hk

�x�px ¼ h �x�px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ��x2

�x2
0

s
h

Figure 18. Derivation of the new form for the uncertainty relations presented with respect to

with the usual ones.
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which can also be written as

�x2 ¼ h2

�p2 þ h2=�x2
0

ð90Þ

As already stated, by using local finite wavelets instead of infinite plane waves

of the nonlocal Fourier analysis, a new form for the uncertainty relations was

obtained. In the derivation process, leading to the new uncertainty relations, we

used the reduced Morlet Gaussian wavelet as the basic wavelet. The same

analysis could, in principle, be performed with other mother wavelets. The

Gaussian wavelet was selected from among the other possibilities, because of its

interesting properties. Indeed, from a mathematical point of view, it exhibits a

very simple form. As a consequence, the necessary calculations can be fully

carried out without approximations. Other very interesting properties of this

wavelet result from the fact that, when its size increases indefinitely, it trans-

forms itself into the kernel of the Fourier transform. In this sense, this local

analysis contains the nonlocal Fourier analysis as a particular case. On the other

hand, and as already pointed out before, they enforce the possibility of repre-

senting a reasonable localized particle with a well-defined velocity.

It is easily seen from (90) that when the size of the basic wavelet �x0 is large

enough, the new relation turns itself into the old, usual Heisenberg relations,

which is a very satisfactory result. This situation corresponds to the limiting

case when the wavelet analysis transforms into the nonlocal Fourier analysis.

In Fig. 19 the new more general uncertainty relations are represented in a

solid line for three finite values of the size of the basic wavelet. The same

picture also shows the plot of the usual Heisenberg uncertainty relations

∆x

∆px

Figure 19. Plot for the new more general uncertainty relations (solid lines) for three different

values of size the basic wavelet. The usual Heisenberg uncertainty relations are also represented

(dashed line).
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represented by a dashed line, which corresponds to an infinite size for the width

of the mother wavelet.

From the plot in Fig. 19, it is easily seen that in only a small region, near the

origin, the two relations lead to different results. This means that in the great

majority of the cases the two relations predict exactly the same results.

The derivation presented above was performed using the basic wavelet with

constant size. The same derivation is possible [20] using wavelets where the size

depends on the wavelength

s ¼ Ml ð91Þ

where M is a universal constant relating the size of the particle with its

wavelength. The size of the particle means, in this context, the longitudinal

region of space in which a free single particle exhibits interferometric proper-

ties. The derivation, though more complex mathematically, leads to the same

final result.

C. Beyond Heisenberg’s Uncertainty Relations

The new, more general uncertainty relations (90) were derived in a causal

framework assuming that the physical properties of a quantum system are

observer-independent, and even more, that they exist before the measurement

process occurs. Naturally, because of the unavoidable physical interaction

taking place during the measurement process, when the other conjugated

observable is to be measured, the quantum system may not remain in the

same state. In any case, in the last instance, the precision of a direct concrete

measurement for a nonprepared system depends on the relative size between the

measurement basic apparatus and the system on which the measurement is

being performed.

Until now, the most sensible basic interacting quantum device known to us is

the photon. Nevertheless, if the photon possesses an inner structure, as assumed

in de Broglie’s model, it would imply measurements beyond the photon limit.

Since it was assumed that the quantum systems are to be described by local

finite wavelets in the derivation of the new uncertainty relations, the measure-

ment space resulting from those general relations must depend on the size of the

basic wavelet used. As the width of the analyzing wavelet changes, the

measurement scale also changes. This can be seen in the plot in Fig. 20.

From Fig. 20 one sees that as the width of the basic wavelet �x0 changes, all

the measurement-accessible space is browsed. This space is limited only by

Heisenberg’s space. The smaller is �x0, the greater is the precision of the

measurement of the position, that is, the smaller is the uncertainty �x, for any

value of the error in the momentum. Given that the new relation contains the

usual as a particular case, it implies that the measurement space available to the
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general uncertainty relations is the whole space, as showon in Fig. 21. In this

causal local interpretation, the precision of any measurement only depends, as

expected, on the smallest available interacting basic device with which we make

our concrete measurement.

In the Copenhagen interpretation of quantum theory, this standard (see

Fig. 21) for the measurement cannot be changed at will since it is composed

of sinus waves infinite in length.

The results presented above are rather satisfactory because in this new paradigm

the quantum measurement process depends, in the last instance, on the standard

used. We are, in principle, free to choose the size, or the scale, of the mother

wavelet �x0 more suitable for the measurement precision that we want to attain.

In the previous derivation of the new uncertainty relations, we were con-

cerned only with conjugate observables: space and momentum. The same

process can be used step by step to derived the relations for the conjugate

observables energy and time. It is sufficient to change the variables

x ! t

k ! o

∆px

∆x

Figure 20. Wavelet measurement space.

Local wavelet
Space

∆px

∆x

Figure 21. Uncertainty measurement space available to the general uncertainty relation.
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to make the usual quantum transformations, and get the general time–energy

uncertainty relation:

�t2 ¼ h2

�E 2 þ h2

�t2
0

ð92Þ

D. Experiments to Test the General Validity of the Usual
Uncertainty Relations

Starting from the local causal conceptual framework originated by de Broglie

and using finite wavelets to represent a quantum particle, rather than infinite

harmonic plane waves, it was possible to derive a more general form for the

uncertainty relations containing the ordinary Heisenberg relations as a particular

case. The problem we now face is to understand the meaning of these new

uncertainty relations.

Since the theoretical conclusion drawn from the nonlinear theory of de

Broglie [2] allow the anticipation that, in certain very special cases, the usual

Heisenberg uncertainty relations are not as general as claimed, the hunting for

these experimental conditions began some time ago. Scheer and his group [21]

presented some interesting proposals of experiments to test those relations.

Here, due to the lack of space, I shall not consider those early proposals; instead

I shall discuss two proposals: one the photon ring experiment and the other

based on the spreading of matter wavepackets [22].

1. Photon Ring Experiment

The idea for this experiment was presented, for the first time, in 1990 at the

International Congress on Quantum Measurements in Optics, at Cortina

d’Apezzo, Italy. The basic idea is as follows. It is well known that, unlike the

electrons, photons have not been passively stored in a kind of photonic

condenser. Nevertheless, it is possible to realize the feasibility of building

such a device. Consider, for instance, the continuous pumping of a light beam in

a transparent nonabsorbing medium with the property of bending the beam so

that it follows a closed path converging to a limit circle (see Fig. 22).

Figure 22. The incident beam converges to a closed orbit.
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If such a geometric configuration (Fig. 22) for the medium could be found,

the accumulation of light would be infinite for a constant pump beam.

Nevertheless, nonlinear effects, which would unavoidably arise at such levels of

intensity, would prevent this from happening. On the other hand, even at the

linear level, each medium is characterized by some degree of absorption. As a

consequence, the number of turns the light pulse can actually achieve in the

medium until complete absorption is limited. Therefore, as expected, the

amount of light stored in the light condenser is finite.

There seem to be many different ways to manufacture such a ‘‘light

condenser,’’ such as a ring made of an optical fiber having a large section as

well as a variable refractive index, as shown in Fig. 23. The light entering the

ring cannot leave it except as a strong short pulse when the gate G touches the

ring at the exit region.

Consider the experimental setup sketched in Fig. 23. A beam of light with

frequency dispersion �n0 feeds the light condenser where the light is trapped

untill it reaches equilibrium. Suppose, then, that the shutter is closed and blocks

incoming light. After this, the gate contacts the light condenser, thus breaking

the condition of total internal reflection. As a direct consequence, and almost

instantaneously, a pulse of light is released. This chain of events generates a

puzzling question: For these light pulses, what shall be the expected values for

�n and �t?

The temporal length �t of the pulse depends on the specific geometry of the

ring and on the working time of the gate. In any case, it appears that �t depends

only on the characteristics of the light condenser.

G

Light
condenser

Shutter

la
se

r

t = I/c

light pulse

Figure 23. Outline of a new kind of pulsed light source with the optical ring condenser.
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The value of the variable �n, which can be determined on an experimental

basis, does not seem to depend on the properties of the light condenser. The

light condenser always behaves as a passive medium; that is, color changes of

the incident light are neither expected nor observed. Therefore, at least in

principle, it looks as if we were allowed to make �n ffi �n0.

If these statements were correct, we would then be in trouble. When the

frequency dispersion �n0 is large, no problem is to be expected. But what

happens if the pump laser exhibits a high stability with a very short �n0? In this

situation, and for certain geometries of light condensers, it would also be

possible to have �t short, since they are independent quantities. Therefore, it

looks as if it were possible, in such situation, to have �n�t ffi �n0�t � 1. This

conclusion contradicts the common uncertainty relations.

2. Limitless Expansion of Matter Wavepackets

The problem of the limitless spreading of matter wavepackets leading to a

continuous increase in size as the wavepacket travels in space has always been a

source of discomfort. The mathematical expression describing this spread–

increase as a function of time can be found in any textbook of quantum

mechanics [23]. It has the form

�xðtÞ ¼ �x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ �ht2

m2ð�x0Þ4

s
ð93Þ

or approximately

�xðtÞ � �h

m�x0
t ð94Þ

Working within the framework of orthodox theory, and assuming that this

relation holds true in all cases, an electron ejected by the sun, described by a

wavepacket of about the size of an atom, �x0 � 10�8 cm, would exhibit a

dimension greater than the earth’s diameter itself when impacting the earth!

On the other hand, it is known that experiments performed with electrons

[24] and neutrons [25] demonstrated that the spreading of matter wavepackets

has no influence on the interference properties for all practical situations.

However surprising, this result had been originally predicted by de Broglie

himself. It means that, if two matter wavepackets having an initial size of about

�x0 � 10�8 cm, are separated by 10�8 cm, they do not overlap at the initial

time. Later on, when their size reaches a magnitude of about one kilometer,

their overlapping is practically complete (i.e., except by a small piece of

10�8 cm, in a distance of one lilometer. But even in this case, no interference is

observed. This lack of interference is, of course, explained by some authors [26]
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in the framework of the orthodox theory. Nevertheless, it is my belief that if

experiments had shown an interference pattern, the supporters of the orthodox

interpretation of quantum mechanics would have demonstrated, with the same

theory, that there must be interference. By the habitual use of introducing ad hoc

parameters and supplementary hypothesis, it is possible a posteriori to fit almost

any experimental result.

The explanation for the absence of interference comes naturally from the

causal model of a particle whose undulatory part is described by a finite

localized wavelet. In this situation, the limitless spreading of matter

wavepackets originates from the fact that in the initial burst, coming from the

source, each individual localized quantum particle travels at a different velocity.

Therefore, as the time increases the distance among them also increases, as

shown in Fig. 24.

In this situation (Fig. 24) two wavepackets of macroscopic size overlapping

almost completely except by a small region, of angstrom order, do not interfere

because the small wavelets corresponding to each particle do not superimpose

on each other. This means that the spreading of matter wavepackets has no true

meaning for the individual particles, as it represents only a mathematical

description for the time of increasing separation between particles with different

velocities. A possible way to test the general validity of the usual uncertainty

relations comes directly from this causal interpretation for the infinite spreading

of the matter wavepackets.

Consider the following experiment. An electron source emits, at fixed known

time t0, electrons with an uncertainty in position �x0 � 100Å, which, according

to Heisenberg uncertainty relations, corresponds to a minimum velocity

dispersion �v0 � 10�6 cm. A millisecond later, the initial wavepacket will

have spread to a size of about 10 m. Let us now suppose that from each electron

wavepacket one cuts a piece of size dx0 �100 Å (see Fig. 25).

∆x1 ] x (t)

t = 0

vvm v vM vMvm

r > 0

Figure 24. At initial time t ¼ 0, particles with different velocities are localized in the burst of

small length �x0; as time passes, they will be spread continuously as a function of time �xðtÞ.

t = 0

∆x0 = 100 Å ∆x = 100 Å

∆v0 = 10−6 cm/s ∆v = ?

t

Figure 25. The uncertainty in position for the electrons is �x0 �100 Å at the time of emission.

A certain time t later, a piece of size dx0 �100 Å is chopped from the extended packet.
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This slice, as can be seen in Fig. 26, can be made with an electrostatic field

triggered by the emission of the electrons from the source.

The following question now arises: If one measures the dispersion in velocity

dv of those slices from the expanded wavepacket of size dx ¼ �x0, what shall

expect? There are two possible answers, given below.

a. Usual Theory. As Heisenberg uncertainty relations hold true in every

circumstance, we must have at least dxv ¼ �h=2m. Within the framework of this

paradigm this conclusion is perfectly natural, because when the cut, is

performed in the extended wavepacket, one interacts with all the Fourier

components of the packet. The shorter the slice dx, the larger dv, Fourier

relations. Afterward, the usual uncertainty relations always hold. Since

dx ¼ �x0, it means that one must have dv � dv0, because �x0�v0 ¼ �h=2 m.

b. Causal Approach. Assuming that a real quantum particle is to be described

by a finite localized wavelet, the spreading of matter ‘‘wavepackets’’ has no

intrinsic meaning for the quantum particles. Nonlocal Fourier analysis

represents only a statistical description for the average separation among

particles having different velocities. In the experiment, one really slices nothing.

What really happens is a selection, from the expanded ‘‘packet,’’ of a small

group of particles having a smaller range of velocities. Only those particles

falling into that small range of velocities have the chance to be detected.

Therefore the dispersion dv of the selected particles must be smaller than the

initial one �v0, that is, dv � �n0 as shown in Fig. 27.

The experimental conditions were set such that

�x0�n0 ¼ �h

2m
and also that

dx ¼ �x0; dn � �n0

Source

∆x0

∆v0 ∆v

∆x δx

δv

+

−

Knife
Stop

Detector

Figure 26. Experiment for testing the general validity of the usual uncertainty relations based

in the limitless spreading of matter wavepackets.
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and therefore

dxdv � �h

2m

In conclusion, if the measured velocity dispersion dv, of the electron from the

slices, is less than the initial one �v0, the usual uncertainty relations are not

appropriate for describing this experiment, which would precisely be a special

case where they do not apply!

E. A New Generation of Microscopes

Till the mid-1990s [27], there were some hints that the usual uncertainty

relations were unlikely to have the general validity that they were claimed to

exhibit and be endowed with. Experiments designed to test these usual relations

were proposed, but regrettably, none of them were performed, as far as we know

today. This surprising lack of experimentation did not result from the impos-

sibility to put into practice the principles at work to perform the experiments

themselves, since some of them are relatively easy to perform using presently

available technology. We suggest that this situation could be explained as the

fear of some players of the experimentalist community, to oppose Heisenberg’s

uncertainty relations, which have become institutionalized, and almost ‘‘sacred,’’

with the passing of time.

Causal quantum theories have been developed to handle the empirical

quantum evidence, and some of these theories, such as de Broglie’s theory in its

linear approximation, are almost as good as the usual orthodox quantum theory.

A relative large number of experiments were even developed to test de Broglie’s

causal theory and other alternative theories as well, but only a few limited

number of these proposed experiments were carried out effectively. And even so

they were not carried out thoroughly. As a consequence, the results obtained

were not conclusive, and no solid conclusion in favor or against the

completeness of the usual orthodox interpretation of the Copenhagen School

v

I

Figure 27. Expected results for the velocity distribution of the electrons. The dashed line refers

to the usual theory; the solid line, to causal theory.
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could be drawn from them. In other words, until the mid-1990s whose who

believed in causality could only hope that the near future would bring some

experimental evidence showing that the orthodox quantum theory would indeed

demonstrate its limits of applicability.

Now, it is my belief that for the first time ever in nearly century, we have

clear, consistent, empirical evidence showing that there is every reason to search

for a better and more general quantum theory. After all, usual quantum

mechanics, just like any other human construction, was built up from empirical

evidence and mathematical tools available at the time, and must have inherent

limitations. These limitations came mainly from the explosive technological

development of our times, which has greatly enlarged our empirical universe.

Experimental available evidence is now much different from the picture

physicists could draw of nature when the usual quantum mechanics originated.

This empirical evidence comes from the new generation of microscopes

developed since the early 1980s. This generation of microscopes has a concrete

practical resolution going well beyond Abbe’s usual criteria for the theoretical

resolution limit of half wavelength.

Until the advent of superresolution microscopes the only way to observe the

minute world was based on the common Fourier-type microscopes. The

maximum theoretical resolution limit for these apparatuses was established by

Abbe, applying the Rayleigh–Fourier diffraction resolution rule [28]. The basic

principle underlying the operational working of these ordinary microscopes is,

in the eyes of Niels Bohr, a textbook example of Heisenberg uncertainty

relations.

The new generation of these superresolution microscopes was initiated by

the scanning tunneling electron microscope. This new imaging device was

developed by Benning and Roher [29] technicians working at IBM in Zurich.

They won the Nobel prize in 1986 precisely for this discovery. The superre-

solution electronic microscopic was immediately followed by the forcefield

scanning apertureless microscope, opening a whole new world for the imaging

techniques. Soon, the same principles were applied to the optical domain as

well, so that in 1984 Pohl et al. [30], also working for IBM, developed a

superresolution optical microscope with a spatial resolution of about l=20. Ten

years of progressive refinement [31] lead them to resolutions of l=50 or even

better.

There are different types of scanning optical microscopes; here one is

interested only in the most common type. In these microscopes the light emitted

by the sample is simply collected by the probe as can be seen in Fig. 28.

The superresolution optical microscope shown in Fig. 28 is basically made

up of a sensor or light detector, a scanning system, (not shown in the sketch),

designed to control the position of the probe over the sample, and a computer

with a display device. Naturally it also has, as does any conventional
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microscope, a source of light to illuminate the sample. In some of these new

microscopes the source of light consists practically of a point source and plays

another role, more important than simply illuminating the sample. Nevertheless,

in this simple type microscope, the role of the source is only to illuminate the

sample.

The light detector is usually made of an extremely thin optical fiber, whose

tip is much smaller than the diameter of a human hair. The light diffused by the

sample is collected by the tip of the needle and next conduced to an electronic

detector. The detector converts the incoming light intensity into an electrical

pulse feeding the computer. In some cases, instead of the optical fiber, the

sensor extremity can be just a simple very small solid-state detector directly

converting directly the light into an electric pulse.

The scanning system is a very important part of these microscopes, and is

commonly composed of a cantilever whose arms are usually made of

piezoelectric quartz crystal. The electric field applied by the computer to the

arms of the scanning device controls the position of the tip of the sensor to

within a great spatial precision. The right variation of the electric field allows

the complete scanning of the sample.

The information received by the computer in the form of an electric signal of

varying intensity gives birth, after a suitable processing of the information

collected, to a final amplified image of the sample shown on the display device.

This final image results from the following process. The sample is illuminated,

and its points diffuse light in all directions. The tip of the sensor, positioned over

one point of the sample, collects some of the diffused light, and transforms it

into an electric pulse proportional to the light intensity. The light intensity

captured depends on the distance between the sensor tip and the surface of the

sample, and also on the collecting area of the sensor tip. Therefore, during the

scanning process, the computer records the variation of light intensity in a

scanning line. By scanning successive lines over the whole sample and after an

C
om

pu
te

r

Figure 28. Superresolution optical microscope.
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adequate treatment of the information the desired amplified image of the sample

is seen on the display device. Suppose, for instance, that only one point object of

the sample diffuses light, or equivalently, that the sample consists of only one

point; the image shown on the display device, would exhibit a continuous

uniform background surface with a single discontinuity. This discontinuity

represents, precisely, the image of that single point object.

The experimental resolution of the apparatus depends on the dimensions of

the sensor tip, the spatial accuracy of the scanning device (which is obviously

better for smaller steps), and the minimum possible distance between the sample

to be observed and the sensor’s extremity (the smaller, the better).

For this type of superresolution optical microscope, experiments have shown

that it is possible to have spatial resolutions of the order of l=50. It is believed

that the technique can be improved so to allow spatial resolutions of over l=100.

F. A Measurement Process that Goes beyond Heisenberg’s
Uncertainty Relations

Let us now consider the well-known Heisenberg microscope experiment, with

both the common Fourier microscope and the new-generation superresolution

optical microscope.

If we want to show that there are physical concrete situations not described

by Heisenberg’s uncertainty relations, it is necessary to predict the uncertainties,

for the two conjugate noncommutative observables, for example, position, �x,

and the uncertainty in momentum, �p, for the microparticle M, after the

interaction with the photon, and then make their product and see whether they

are contained in Heisenberg uncertainty measurement space.

The uncertainty for the momentum of the particle M, after interaction with

the photon, can be predicted in many different ways, as can bee seen in a variety

of textbooks on quantum mechanics. Each author tries a slightly different

approach, taking into account more or fewer factors, but at the end, of course,

all of them unavoidably find the same formula. The main reason why all of

these authors find the same final formula, even when they follow different

approaches, results from the known fact that the uncertainty for the position is

fixed and given by the microscope theoretical resolution. Therefore, since the

uncertainty for the position is fixed, there is no liberty for the expression of the

uncertainty in momentum if one whishes, as is always the case, to stay in

agreement with Heisenberg’s uncertainty relations.

In any case, just for the sake of exemplification, we shall derive here the

formula for the uncertainty in momentum, following de Broglie’s demonstration

[32] almost step by step. In order to clarify the process, in Fig. 29 shows the

detection region of the two types microscopes facing each other, for the case of

the an horizontal incidence of light. (The same derivation could be obtained, of

course, for any other incidence angle.) We must keep in mind that the reasoning
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leading to the prediction of the final uncertainty for the momentum, for the

small microparticle particle M after interaction with the impinging photon, is

identical for both these microscopes. This result arises because the physical

situation, in both cases, is precisely the same—the incident photon strikes the

microparticle and is diffused by it.

In the following, it is assumed that before the interaction the particle M is at

rest and that during the photon–particle interaction, conservation of momentum

is respected. Before the interaction the total momentum is the one due to the

traveling photon only

~p0 ! j~p0j ¼ p0 ¼ p0
x ¼

h

l
ð95Þ

After the interaction we get

p0
x ¼ p00

x þ px ð96Þ

The x component of the momentum of the particle M is

px ¼ p0
x � p00

x ¼ p0 � p00 sin E ffi h

l
ð1 � sin EÞ ð97Þ

Therefore the value of the momentum of the particle M along the x-axis lies

between

h

l
ð1 � sin EÞ � px �

h

l
ð1 þ sin EÞ ð98Þ

and the uncertainty for the momentum along the x axis is given by

dpx ¼ 2
h

l
sin E ð99Þ

M
x

ε

M
x

ε

Usual Fourier microscope Super-resolution microscope

Figure 29. Detection region of the two microscopes: (a) usual Fourier microscope; (b)

superresolution microscope.
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which maximum corresponds a diffusion angle of p=2;

dpx ¼ 2
h

l
ð100Þ

This value, as expected, relates to the maximum possible momentum transferred

from the photon to the microparticle, even if some values of the diffusion angle

obviously have a very low or even zero probability. As stated before, this

formula for the uncertainty in the momentum of the small particle M after the

measurement is precisely the same for both microscopes. In either case, it is

necessary to keep in mind that, in this step of the measuring process of the error

of the two conjugated observables, the interacting photon behaves like a

corpuscle.

The uncertainty for the position, after the interaction, for the common

Fourier microscope is given by the maximum theoretical resolution limit

derived by Abbe for these imaging systems, which is

dx ¼ l
2

ð101Þ

Naturally, as expected, the practical resolution of the real classical Fourier

microscopes is always worst.

The product of the two uncertainties (100) and (101) gives

dxdpx ¼ h ð102Þ

which are the current mathematical form for Heisenberg uncertainty relations.

These results correspond to the theoretical ideal case lying in the boundary of

Heisenberg’s uncertainty measurement space. The real measurements achieved

with these common Fourier microscopes, in which the experimental realistic

resolution is always worst, is related to the values described by

dxdpx � h

lying well inside Heisenberg’s measurement space.

For the case of the non-Fourier microscope there is no mathematical formula

available, derived from first principles, to calculate its resolution limit. Never-

theless, one knows the practical experimental resolution, which will certainly be

smaller than the theoretical limit. For the microscope under consideration,

experiments have demonstrated that the resolution is of the order of

dx ¼ l
50

ð103Þ
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In such circumstances the product of the uncertainties in momentum (100) and

for the position (103) is

dxdpx ¼
1

25
h ð104Þ

which leads to a discrepancy with the usual Heisenberg relations by a significant

factor of 1=25. While result lies outside Heisenberg’s space, in the forbidden

region, it still belongs to the more general wavelet measurement space, as can

be seen in Fig. 21.

These results are summarized in Fig. 30, where the predictions for the two

types of microscopes are shown side by side.

Some may argued that these superresolution optical microscopes work only

with a large number of photons and, consequently, are no good, that is, appro-

priate, when only a single photon is diffused. If this claim had any grounds, then

it should also be applied to the common Fourier microscope. Nevertheless, it

can easily be shown that, in principle, these two types of microscopes can

M
x

ε

M
x

ε

δx δpx = h δx δpx =

δpx =

δx  =

λ

λ

2

2

h

δx  = λ
50

25

1 h

Common Fourier microscope Super-resolution microscope

Figure 30. Predictions for the two kinds of microscopes: (a) common Fourier microscope;

(b) superresolution microscope.
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operate with intensities of light so low that in the limit, one only has a single

diffused photon in the apparatus.

The superresolution microscope, in essence, just like the common micro-

scope, is no more than a device for measurement of position, for the mapping of

material points. Essentially both types work in the following way. The point

forming the object are illuminated, generating diffused light that is eventually

captured by the microscope. In this conceptual analysis, the microscope must be

treated like a blackbox, since there is no need to go into the particulars of its

working.

What is true is that, in any case, whether with the common microscope, or

with the superresolution microscope, in order to be observed, the object points

must be submitted to some kind of interaction. Since we are dealing with optical

microscopes, the interaction occurs with photons. In such circumstances the

photon, on interacting with the microparticle, is diffused by it. As a result of this

interaction, which is fundamental in all direct concrete quantum measurements,

a certain amount of momentum is transferred from the photon to the micro-

particle, leading to an uncertainty in the momentum of the microparticle.

On the other hand, since the real microscope is not a ‘‘perfect’’ apparatus, the

measurement of the position of the small particle inevitably exhibits an

associated error.

The product of these uncertainties in momentum and in position, lies in the

case of the common Fourier microscopes in the Heisenberg uncertainty measure-

ment space, while for the superresolution optical microscope, the same product

lies in the more general wavelet uncertainty measurement space.

CONCLUSION

In this chapter it has been shown, in a manner as close as possible to the method

initially presented by Bohr—and since then followed by most authors of

textbooks on quantum mechanics—that the uncertainty relations are not as

general as claimed. The modus operandi of superresolution optical non-Fourier-

type microscopes is not described by Bohr’s complementarity principle since,

the photon always behaves like a corpuscle all along the measurement process,

both when it strikes the microparticle and is diffused by it, and when it is caught

by the small probe detector giving origin to an electric pulse. Therefore it is

only natural to expect that Heisenberg’s uncertainty relations, which are a direct

consequence of this photon behavior do not also apply, either. The experimental

discrepancy by a significant factor (1=25) is perfectly natural. This means that,

in certain very unusual experimental setups, it is possible to predict, before an

actual measurement (interaction) takes place, the future uncertainties of con-

jugate observables position and momentum of a particle in such a way that their

product is less than h.
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The facts reported indicate that, finally, after such a long struggle, experi-

mental evidence clearly shows that the orthodox interpretation of quantum

mechanics is not indeed a complete theory as claimed, and therefore has reached

its limits of applicability. In these circumstances it must be replaced by a new,

more general quantum theory. Of course, this new theory, aimed at describing

quantum phenomena, must be capable of handling on a formal basis—and

containing as a particular case—the old theory, nonetheless empowering a new

meaning to the mathematical formalism.
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Ondulatoire, Gauthier-Villars, Paris, 1988.

556 j. r. croca



ELECTRODYNAMICS AND TOPOLOGY

PATRICK CORNILLE

Advanced Electromagnetic Systems, S.A., 4 Rue de la Pommeraie,
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I. INTRODUCTION

Topology is the discipline within mathematical science dealing with the intuitive

concepts of continuity and limits. This discipline is itself composed of several

distinct fields of interest. Within the scope of this particular chapter, we shall

investigate differential topology, with the understanding that this discipline aims
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at studying both the classification of surfaces and the problems usually associated

with knots. The theory of knots is now reaching the general public interest, as

illustrated by an ever-growing list of cover stories, special issues, and reports

published in popular science literature on this particularly ‘‘knotty’’ subject

[1–4]. Of course, this chapter does not explore every aspect of knot physics, but

parts of it only.

More specifically, we shall first investigate topology in classical physics (i.e.,

classical electromagnetism, quantum mechanics, and plasma physics) before

introducing the concept of helicity and extending it to the study of Beltrami

fields. Beltrami fields are more often dealt with in hydrodynamics [5] and in so-

called ‘‘force-free’’ magnetic fields [6,7]. Beltrami fields have become a key

issue in contemporary physics. Among others, they are being employed to study

‘‘pinch’’ stability [8, p. 137] using the energy method.

Magnetic helicity is also a fundamental concept to investigate how vortices

are generated, spring up and grow in magnetohydrodynamic systems. Several

series of experiments [9] have been performed in order to demonstrate the

existence of these vortices and measure their related helicity, thus enabling us to

measure how entangled electromagnetic field lines actually are.

Topology also plays a key role in classical electromagnetism. Take, for

example, the voltage measured around a solenoid. The outcome of this seem-

ingly very basic experiment has been demonstrated to depend on the relative

position of the measuring device with respect to the solenoid in the surrounding

space. This surprising effect is well handled and well explained, provided the

topological configuration of the experimental setup is properly taken into

account.

This chapter, while reviewing topological effects in classical physics, also

introduces the reader to new elements of reasoning. For instance, and to the best

of our knowledge, the very fact that rotational fields, as a generic family of

fields, was composed of ordinary fields, Beltrami fields, and helicoidal fields,

has never been acknowledged before in the available literature. Additionally, we

shall insist on the role played by Newton’s third principle in a wide range of

phenomena, and how this principle can be employed for a better understanding

of the Aharonov–Bohm effect.

II. HELMHOLTZ THEOREM

Any vectorial field B can be split into a sum of two different kinds of vectorial

fields known respectively as the longitudinal field Bk and the transverse field B?.

These fields satisfy, anywhere in space, the following conditions:

r^ Bk ¼ 0 r � Bk 6¼ 0 ð1Þ
r^ B? 6¼ 0 r � B? ¼ 0 ð2Þ

558 patrick cornille



This set of conditions implies that the Bk field is intrinsically irrotational

(without vortex) and derives from a scalar potential �, while the B? field is a

solenoidal field (without divergence) defined on the basis of the rotational of a

vector potential A:

Bk þ B? ¼ r�þr^ A ð3Þ

Therefore the B field results from the addition of two distinct fields: a polar field

Bk and an axial field B?. In the available literature, the expressions ‘‘long-

itudinal’’ and ‘‘transverse,’’ which respectively refer to the Bk and B? vectors, do

not necessarily imply that these vectors are projections of B on orthogonal

directions. Indeed (if we leave Beltrami fields apart that fulfill the condition

A � r^ A 6¼ 0), for A � r^ A ¼ 0, the vector B? ¼ r^ A is normal to Bk if A is

parallel to Bk. If not, that is, when A ? Bk, both Bk and B? have the same

direction. This analysis demonstrates the r^ r̂ operator, as applied to the

vector A, is itself a vector having either the same direction as A or having

components in directions parallel to A and perpendicular to the plan originating

from vectors A and r^ A.

For time derivative operators, the time derivative of A is known to have a

direction different from A. However, in some cases, and as observed in space-

like derivations, we may expect that second-order derivations of A with respect

to time lead to a vector having the same direction as A. This, obviously, is the

case of A vectors, which are time-harmonic functions. These remarks can be

extended, and therefore applied, to the case of the electromagnetic field, whose

calculation is based on the following set of relations:

r^r^ E þ 1

c2

q2E

qt2
¼ � 4p

c2

qJ

qt
ð4Þ

r^r^ B þ 1

c2

q2B

qt2
¼ 4p

c
r^ J ð5Þ

On study of the equation related to the magnetic field, and taking into

account all the previous remarks, both current density lines and magnetic field

lines appear to be orthogonal with one another.

Here, � and A potentials satisfy the following equations:

�� ¼ r � B r^r^ A ¼ r^ B ð6Þ

The vector potential A is defined only up to the gradient of a scalar function; this

additional degree of freedom can be used to turn A into a solenoidal potential
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r � A ¼ 0 based on the application of relation (3). We therefore obtain the

following relations:

�� ¼ r � B �A ¼ �r^ B ð7Þ

The decomposition expressed here is not unique. Indeed, it is always possible to

define new sets of functions such as

�1 ¼ �þ �0 A1 ¼ A þ A0 ð8Þ

in order to replace the B field by B1 ¼ B þr�0 þr^ A0. The B1 vector would

bear the same physical significance as B if functions �0 and A0 fulfill an

additional set of requirements:

��0 ¼ 0 r^r^ A0 ¼ 0 ð9Þ

Transforms (8) are shown to respect the partition of B and B1 fields into their

respective longitudinal and transverse components.

A. Integral Spatial Solution

In order to solve the preceding set of equations, Poisson’s method is applied to

the integral formulation of the F vector

FðrÞ ¼ 1

4p

ð
Vs

Bs

R
dr3

s ð10Þ

where Bs and R are respectively defined as Bs ¼ BðrsÞ and R ¼ r � rs.

The divergence and rotational of the F vector are respectively

r � F ¼ � 1

4p

ð
Vs

Bs � rs

�
1

R

�
dr3

s ð11Þ

r^ F ¼ 1

4p

ð
Vs

Bs ^rs

�
1

R

�
dr3

s ð12Þ

Using the following set of identifies

rs �
�

Bs

R

�
¼ 1

R
rs � Bs þ Bs � rs

�
1

R

�
ð13Þ

rs ^
�

Bs

R

�
¼ 1

R
rs ^ Bs þrs

�
1

R

�
^ Bs ð14Þ
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integral relations (11) and (12) can be rewritten as

4pr � F ¼
ð

Vs

1

R
rs � Bs dr3

s �
ð

Ss

1

R
Bs � dr2

s ð15Þ

4pr^ F ¼
ð

Vs

1

R
rs ^ Bs dr3

s þ
ð

Ss

1

R
Bs ^ dr2

s ð16Þ

The uniqueness of the solution is guaranteed if the value of the Bs field is zero

over the surface Ss surrounding the volume Vs. If � and A are respectively

defined as � ¼ �r � F and A ¼ r^ F, integral relations spring up readily:

�ðrÞ ¼ � 1

4p

ð
Vs

1

R
rs � Bs dr3

s ð17Þ

AðrÞ ¼ 1

4p

ð
Vs

1

R
rs ^ Bs dr3

s ð18Þ

This results in a new identity, B ¼ Bk þ B? ¼ r�þr^ A ¼ ��F, enabling

us to determine the integral relation:

4pBðrÞ ¼ �r
ð

Vs

1

R
rs � Bs dr3

s þr^
ð

Vs

1

R
rs ^ Bs dr3

s ð19Þ

The equation given above can also be rewritten as

�4pBðrÞ ¼
ð

Vs

ðrs � BsÞr
�

1

R

�
þ ðrs ^ BsÞ ^ r

�
1

R

�� �
dr3

s ð20Þ

Using the same process, Eq. (19) can also be rewritten as follows:

�4pBðrÞ ¼
ð

Vs

1

R
�sBs dr3

s ð21Þ

B. Fourier Analysis

Helmholtz’ theorem is a direct consequence of Fourier’s formalism. In order to

demonstrate this claim, we shall first consider the direct and inverse transforms

of the BðrÞ function, respectively known as

BðrÞ ¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
e�jk�r BðkÞ dk3 ð22Þ

BðkÞ ¼
ðþ1

�1

ðþ1

�1

ðþ1

�1
e jk�r BðrÞ dr3 ð23Þ
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The following identity is given by definition:

BðkÞ ¼ BkðkÞ þ B?ðkÞ ¼
ðk � BÞk � k ^ ðk ^ BÞ

k2
ð24Þ

This identity results in a new set of relations:

BkðrÞ ¼
j

ð2pÞ3
r
ðþ1

�1

ðþ1

�1

ðþ1

�1
e�jk�r ðk � BÞ dk3

k2
ð25Þ

B?ðrÞ ¼ � j

ð2pÞ3
r^

ðþ1

�1

ðþ1

�1

ðþ1

�1
e�jk�r ðk ^ BÞ dk3

k2
ð26Þ

By definition, we also have the following relations:

�jk � BðkÞ ¼
ðþ1

�1

ðþ1

�1

ðþ1

�1
e jk�rs rs � Bs dr3

s ð27Þ

�jk ^ BðkÞ ¼
ðþ1

�1

ðþ1

�1

ðþ1

�1
e jk�rs rs ^ Bs dr3

s ð28Þ

Thus enabling us to recover relation (19)

4pBðrÞ ¼ �r
ð

Vs

1

R
rs � Bs dr3

s þr^
ð

Vs

1

R
rs ^ Bs dr3

s ð29Þ

provided the following spectral decomposition is used:

1

4pR
¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
e�jk�R dk3

k2
ð30Þ

Helmholtz’ theorem can also be applied to Dirac’s dyadic distribution, written as

dðRÞ I
$
¼ ddkðRÞ þ dd?ðRÞ ð31Þ

For a function � ¼ 1=4pR verifying

�
1

4pR

� �
¼ �dðRÞ ð32Þ
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the identity �� I
$
¼ rr��r^r^ ð� I

$
Þ, allows us to obtain the following

couple of relations:

rr 1

4pR

� �
¼ �ddkðRÞ r^ r^ 1

4pR
I
$

� �
¼ dd?ðRÞ ð33Þ

The spectral decomposition given above for the function �, enables us to obtain

the following equations:

rr 1

4pR

� �
¼ � 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
e�jk�R kk

k2
dk3 ð34Þ

r^ r^ 1

4pR
I
$

� �
¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
e�jk�R

�
I
$
� kk

k2

�
dk3 ð35Þ

After calculation, Dirac’s dyadic distributions are expressed as

ddkðRÞ ¼ 1

3
dðRÞ I

$
þ 1

4pR3
I
$
� 3

R2
RR

� �
ð36Þ

dd?ðRÞ ¼ 2

3
dðRÞ I

$
� 1

4pR3
I
$
� 3

R2
RR

� �
ð37Þ

These dyadic distributions do not exhibit a null value for R 6¼ 0. However, these

distributions satisfy the following properties:

BkðrÞ ¼
ðþ1

�1

ðþ1

�1

ðþ1

�1
BðrsÞ � ddkðr � rsÞ dr3

s ð38Þ

B?ðrÞ ¼
ðþ1

�1

ðþ1

�1

ðþ1

�1
BðrsÞ � dd?ðr � rsÞ dr3

s ð39Þ

C. Integral Solution in Spacetime

Helmholtz theorem for a function Bsðrs; tsÞ that depends on space and on

retarded time ts ¼ t � R=c can be generalized as follows:

4pBðr; tÞ ¼ �r
ð

Vs

1

R
rs � Bs dr3

s þr^
ð

Vs

1

R
rs ^ Bs dr3

s þ
1

c2

q
qt

ð
Vs

1

R

qBs

qts
dr3

s

ð40Þ

Heras [10] has shown how to use the relation written above to recover

Jefimenko’s formulas [11,12]. Helmholtz’ relation generalized to spacetime can
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be demonstrated by the following relation:

�4pBðr; tÞ ¼ �� 1

c2

q2

qt2

� �ð
Vs

1

R
Bs dr3

s ð41Þ

Equation (41) is verified after a series of lengthy calculations, provided the

following identities are used:

r � R

R3

� �
¼ 4pdðRÞ rr 1

R

� �
¼ �4pddkðRÞ ð42Þ

This results in the following equalities:

�F ¼ �Bðr; tÞ þ 1

4pc2

ð
Vs

1

R

q2Bs

qt2
s

dr3
s ð43Þ

1

c2

q2F

qt2
¼ 1

4pc2

ð
Vs

1

R

q2Bs

qt2
s

dr3
s ð44Þ

Another identity, which is the generalization to spacetime of Eq. (21), is also

demonstrated:

�4pBðr; tÞ ¼
ð

Vs

1

R
�s �

1

c2

q2

qt2
s

� �
Bs dr3

s ð45Þ

We must underline the fact that the condition Bðr; tÞ ¼ 0 does not necessarily

imply the condition

�s �
1

c2

q2

qt2
s

� �
Bsðrs; tsÞ ¼ 0 ð46Þ

in the integral formulation written above. Indeed, the preceding equality is

known to be generally verified by the electromagnetic field localized outside the

sources. On the other hand, if the equality (46) is verified everywhere in space,

then the integral formulation written above necessarily implies the condition

Bðr; tÞ ¼ 0. However, the condition written above is fulfilled in the whole space

for plane waves of a nonnull amplitude. This results in a contradiction with the

integral formulation asserting that the B field must be null. The contradiction can

be solved if a relevant point is underlined; the integral formulation written above

was obtained with the condition

�
ð

Ss

1

R
rs � Bs dSs þ

ð
Ss

1

R
dSs � ðrs ^ BsÞ ! 0 pour S ! 1 ð47Þ
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satisfied for a field B decreasing faster than 1=R toward infinity. Such a condition

is obviously not verified for a plane wave. This problem is far from being trivial,

particularly if we assume that the vacuum is a wave-like continuum represented

by plane wave whose respective amplitudes are non null at an infinite distance.

Once again, Heras [13] gave another formulation of Helmholtz’ theorem now

based on Green’s retarded function G ¼ dðt � ts � R=cÞ=R for a value Bsðrs; tsÞ
function of space and retarded time ts ¼ t � R=c. Heras obtained the following

equation:

4pBðr; tÞ ¼
ð

V

ð
T

�
ðrs � BsÞrsG þ ðrs^BsÞ^rsG þ G

c2

q2Bs

qt2
s

�
dr3

sdts ð48Þ

D. Application to Maxwell–Ferrier Equations

Helmholtz’ decomposition, defined by Eq. (40), can be readily applied to

Maxwell’s set of equations with magnetic monopoles, provided these equations

are written as

4p
c

Je ¼ rPe þr^ B � 1

c

qE

qt
ð49Þ

4p
c

Jm ¼ rPm �r^ E � 1

c

qB

qt
ð50Þ

where Pe and Pm are, respectively, the electric and magnetic polarizations

proposed by an ever-growing list of authors [14–23]. However, the presence

of these polarization terms appears to be a natural consequence of the Helmholtz

theorem. Indeed, if the electromagnetic field, defined on the basis of the

potentials

E ¼ �r�� 1

c

qA

qt
B ¼ r^ A ð51Þ

is introduced in the preceding set of equations, the wave equation for the vector

potential with source term becomes

�A � 1

c2

q2A

qt2
¼ � 4p

c
Je rPm ¼ 4p

c
Jm ð52Þ

provided Ferrier’s gauge is employed:

1

c

q�
qt

þr � A ¼ �Pe ð53Þ
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On the other hand, an additional set of equations, namely

r � E � 1

c

qPe

qt
¼ 4pre r � B � 1

c

qPm

qt
¼ 4prm ð54Þ

leads us to the equations:

��� 1

c2

q2�

qt2
¼ �4pre

1

c

qPm

qt
¼ �4prm ð55Þ

Jackson demonstrated [24, p. 252] that an appropriate set of transforms could

always be found so as to get rid of magnetic terms rm and Pm.

III. STUDY OF ROTATIONAL FIELDS

The rotational of an A field expresses the vortical feature of the A field in the

neighborhood of the region placed under close scrutiny. More generally speak-

ing, the A field for r^ A 6¼ 0 verifies the following identity:

A2ðr^ AÞ2 ¼ ðA � r^ AÞ2 þ ðA ^r^ AÞ2 ð56Þ

This identity enables us to distinguish between three different kinds of fields

behind the usual, generic A field. These newly fields are:

1. Ordinary Fields. Ordinary fields obey the relations

A � r^ A ¼ 0 ) r^ A ¼ K ^ A ) A ^r^ A 6¼ 0 ð57Þ

where the vector K is a function of both space and time in the general case.

Hence, for a velocity field Uðr; tÞ ¼ oðtÞrny, the rotational of U, namely,

r^ U ¼ 2oðtÞnz, defines the rotation of the field. The equalities written above

imply the condition U � r^ U ¼ 0, which correctly describes an ordinary field

U. In fluid mechanics, this family of fields is known as a ‘‘complex laminar

flow,’’ where the velocity function is laid down under the form U ¼ �r�, which

implies the condition U � r^ U ¼ 0. We remind our readers here that laminar

flows are known to verify the condition r^ U ¼ 0. Another example might be

helpful. Consider now the case of the vector potential Aðz; tÞ which has a single

component along the x axis:

A ¼ nx cosðot � kzÞ ) r^ A ¼ ny k sinðot � kzÞ ð58Þ

For this particular situation, the A field is best described as rectilinearly

polarized. But the A field is also an ordinary-type field because it fulfills the

set of relations given above.
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2. Beltrami Fields. Beltrami fields are defined on the basis of the following

conditions:

A ^r^ A ¼ 0 ) r^ A ¼ kA ) A � r^ A 6¼ 0 ð59Þ

where the scalar function kðr; tÞ depends on space and time in the general case.

Now, let us consider a vector potential Aðz; tÞ admitting two components

A ¼ nx cosðot � kzÞ þ Eny sinðot � kzÞ ð60Þ
r^ A ¼ nx Ekcosðot � kzÞ þ ny k sinðot � kzÞ ð61Þ

The A potential is a Beltrami field r^ A ¼ EkA describing a left-handed circular

polarization for E ¼ þ1 and a right-handed circular polarization for E ¼ �1.

3. Helicoidal Fields. Helicoidal fields verify the following set of inequal-

ities:

A � r^ A 6¼ 0 A ^r^ A 6¼ 0 ð62Þ

For instance, a velocity field U will be of an helicoidal field if the motion is,

itself, helicoidal, too. Indeed, point coordinates of the trajectory have the value

x ¼ r cosy y ¼ r siny z ¼ by ð63Þ

where the helicoidal motion as a function of time is determined by the function

yðtÞ. Knowing that r and b are constants, we can write Cartesian components of

velocity as

Ux ¼ �or siny Uy ¼ or cosy Uz ¼ ob ð64Þ

where o½yðtÞ; t� ¼ dy=dt. Cylindrical components of velocity have the following

values:

Ur ¼ Ux cosyþ Uy siny ¼ 0 Uy ¼ �Ux sinyþ Uy cosy ¼ or Uz ¼ ob

ð65Þ

As a consequence, rotational components are defined by the following set of

relations:

ðr^ UÞr ¼
b

r

do
dy

ðr^ UÞy ¼ 0 ðr^ UÞz ¼ 2o ð66Þ

from which the following set of inequalities can be determined:

U � r^ U ¼ 2o2b 6¼ 0 U ^r^ U 6¼ 0 ð67Þ
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Helicoidal motions mix ordinary fields with Beltrami fields. Indeed, the U field

can always be split into a longitudinal field Uk along a given direction (in the

present case, direction z), and a transverse field U? along a direction normal to

the previous one (in the present case, a direction normal to z), thus ensuring the

following set of identities:

U � r^ U ¼ Uk � ðr^ UÞk þ U? � ðr^ UÞ? ð68Þ
U ^r^ U ¼ Uk ^ ðr^ UÞ? þ U? ^ ðr^ UÞk ð69Þ

As a consequence of the definitions given above the U field, both the longitudinal

and transverse fields satisfy the following set of conditions

ðr^ UÞk ¼ kUk ðr^ UÞ? ¼ K ^ U? ð70Þ

which implies another series of relations:

Uk � ðr^ UÞk ¼ 2o2b 6¼ 0 U? � ðr^ UÞ? ¼ 0 ð71Þ
U ^r^ U ¼ kðU? ^ UkÞ � ðUk � KÞU? 6¼ 0 ð72Þ

The preceding inequality will be verified if the condition K 6¼ k is satisfied.

We remind our readers that vortical lines are curves whose points are

tangential to the r^ A field vectors at a any given instant. These curves will

change in time. In the same spirit, the expressions ‘‘current lines’’ or ‘‘field

lines’’ refer to the class of curves that are tangential in any of their points to the

A field vectors at a given instant. Vortical lines usually differ from current lines.

However, these lines sometimes match with each other and merge. This is the

case when r^ A ¼ kA, where the A field defines the so-called Beltrami field,

most often dealt with in hydrodynamics and in plasma physics.

The classification of rotational fields identified here is not universally

acknowledged in the available literature, even when the subject of topology,

as applied to electromagnetism, is completely investigated. Among others,

Evans, who pioneered the Bð3Þ field theory, defines the magnetic field as the

rotational of the A vector potential (see Ref. 25, formula 11, p. 6), here intended

as a Beltrami field, as opposed to the conventional definition of the magnetic

field encountered in most classical electromagnetism textbooks.

The classification of fields that we have identified can also be related to the

concepts of curvature and torsion of a curve [6,26]. Indeed, time derivatives of

unitary vectors s; t; b of a Frénet trihedron whose origins are set onto a point r in

a curve, are expressed by the following relations:

ds

ds
¼ t

R

dt

ds
¼ � s

R
� b

T

db

ds
¼ t

T
ð73Þ
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where R and T are respectively the curvature radius and the torsion radius of the

curve defined at the point r. These values can be calculated from the following

set of equations

1

R2
¼ a2

A6

1

T2
¼ 1

a4

�
A �

�
dA

dt
^ d2A

dt2

��2

ð74Þ

where

A ¼ As a2 ¼
�

A ^ dA

dt

�2

ð75Þ

The following set of equations

ds

ds
¼ ðs � rÞs 1

2
rðs2Þ ¼ s ^r^ s þ ðs � rÞs ¼ 0 ð76Þ

lead us to a first identity:

t

R
¼ �s ^r^ s ) ðs ^ r^ sÞ2 ¼ 1

R2
ð77Þ

The second identity in Eq. (74) is related to the torsion of the curve. Take, for

example, the case of the helicoidal motion, as defined above. After proper

calculation, The following expression is obtained for o ¼ constant:

ðs � r^ sÞ2 ¼ 4

T2
ð78Þ

As a consequence, the identity ðr^ sÞ2 ¼ ðs � r^ sÞ2 þ ðs ^r^ sÞ2
associates

the module of the rotational r^ s both to the curvature and to the torsion of the

curve associated with this field. Of course, another line of reasoning can be

explored if we now chose to investigate directly the A field, starting from the

following identity:

r^ A ¼ ðs � r^ AÞs þ ðs ^r^ AÞ ^ s ð79Þ

Knowing that s � r^ A ¼ As � r^ s, we find that the preceding equation be-

comes:

r^ A ¼ Aðs � r^ sÞs þ ðs ^r^ AÞ ^ s ð80Þ

In order to calculate the last term of this equation, the following couple of

equalities will be employed:

r^ A ¼ Ar^ s þrA ^ s ð81Þ
s ^r^ A ¼ Aðs ^r^ sÞ þ rA � ðs � rAÞs ð82Þ
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By definition, we have

rA ¼ ðs � rAÞs þ ðt � rAÞt þ ðb � rAÞb ð83Þ

thus resulting in the relation

s ^r^ A ¼ �A

R
t þ ðt � rAÞt þ ðb � rAÞb ð84Þ

which gives us

ðs ^r^ AÞ ^ s ¼ A

R
b � ðt � rAÞb þ ðb � rAÞt ð85Þ

Finally, we obtain

r^ A ¼ Aðs � r^ sÞs þ ðb � rAÞt þ A

R
� t � rA

� �
b ð86Þ

This results in the relations

A � r^ A ¼ A2 ðs � r^ sÞs ð87Þ

A ^r^ A ¼ �
�

A2

R
� t � r

�
A2

2

��
t � b � r

�
A2

2

�
b ð88Þ

The preceding set of relations demonstrates that the classification of rotational

fields can result from the ‘‘coupling’’ of unitary vectors s; t; b in Frénet’s

trihedron, to the concepts of curvature and torsion of a curve.

A. Study of Beltrami and Trkal Fields

The relation r^ A ¼ kA implies that a Beltrami field [27,28] satisfies the

conditions

A � r^ A ¼ kA2 6¼ 0 rðA2Þ ¼ 2ðA � rÞA ð89Þ

where the identity rðA2Þ=2 ¼ ðA � rÞA þ A ^r^ A has been used to define

the preceding equality.

Starting with the condition r^ A ¼ kA, the rotational of a Beltrami

field B ¼ r^ A is shown to be also a Beltrami field satisfying the following

relations:

B ^r^ B ¼ 0 ) B � r^ B 6¼ 0 ð90Þ
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The inequality in this equation results from the following identity:

ðr^ AÞ � r^r^ A ¼ kðr^ AÞ2 ð91Þ

Indeed, the condition r^ A ¼ kA implies three different relations:

r^r^ A ¼ k2A þrk ^ A ð92Þ
r � ðr^ AÞ ¼ kr � A þ A � rk ¼ 0 ð93Þ

A � ðr^r^ AÞ ¼ k2A2 ¼ ðr^ AÞ2 6¼ 0 ð94Þ

The last equation here implies that the directions of a Beltrami field and the

direction of its double rotational counterpart form an acute angle. If the A field is

solenoidal, r � A ¼ 0, then Eq. (93) implies the condition A � rk ¼ 0 for any

kind of kðr; tÞ function. This results in the fact that current lines and vortex lines

are located on surfaces kðr; tÞ ¼ Ct for any given t.

Equation (93) illustrates the fact that Coulomb gauge r � A ¼ 0 is necessa-

rily verified when the value k does not depend on space. In this specific case,

Beltrami fields turn into fields of the Trkalian type, which are solutions of

Helmholtz equations in Coulomb’s gauge:

�A þ k2
0A ¼ 0 ð95Þ

A decomposition of a Trkalian field into Fourier modes

AðrÞ ¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
e�jk�r AðkÞdk3 ð96Þ

is a solution of Helmholtz equation if jkj ¼ k0 ¼ o=c, hence the loss of a degree

of freedom. Moreover, conditions r^ A ¼ k0A and r � A ¼ 0 imply that

spectral component of the AðrÞ field verify the following equalities:

�jk ^ AðkÞ ¼ k0AðkÞ k � AðkÞ ¼ 0 ð97Þ

Both real and imaginary parts of the spectral component AðkÞ ¼ ArðkÞþ
jAiðkÞ for a real AðrÞ field fulfill the couple of conditions ArðkÞ ¼ Arð�kÞ and

AiðkÞ ¼ �Aið�kÞ, thus giving birth to the following solutions:

k � ArðkÞ ¼ 0 k � AiðkÞ ¼ 0 ð98Þ
k ^ ArðkÞ ¼ �k0AiðkÞ k ^ AiðkÞ ¼ k0ArðkÞ ð99Þ
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Vectors Ar;Ai; k form an orthogonal trihedron. Henceforth, for a real vector

A1ðkÞ noncollinear to k, the solution of the set of equations written above is

ArðkÞ ¼ A1ðkÞ ^ k � kAiðkÞ ¼ k ^ ½A1ðkÞ ^ k� ð100Þ

The equality A2
r ðkÞ ¼ A2

i ðkÞ can be easily demonstrated. As a consequence of

this demonstration, Fourier’s integral written above represents the addition of

scalar waves associated with the vector AðkÞe jðot�k�rÞ, whose polarization is

circular.

Let us start with the Trkalian field A as defined above, with its time-like

component:

Aðr; tÞ ¼ A0ðrÞcosðotÞ ð101Þ

where the A field is a vector potential representing a stationary transverse wave

with respect to a given direction. The electromagnetic field is also transverse,

since we have

E ¼ � 1

c

qA

qt
¼ k0A0 sinðotÞ B ¼ r^ A ¼ k0A ¼ k0A0 cosðotÞ ð102Þ

These relations imply that the electromagnetic field is itself Trkalian in origin.

Indeed, the scalar product E � B verifies the condition E � B 6¼ 0 [29–31], which

is different from the classical case of a stationary wave associated with an

ordinary electromagnetic field:

E ¼ � 1

c

qA

qt
¼ k0A0 sinðotÞ B ¼ r^ A ¼ K0 ^ A0 cosðotÞ ð103Þ

where E � B ¼ 0.

Both ordinary and Trkalian electromagnetic fields are solutions to Maxwell’s

equations outside the sources:

r^ E ¼ � 1

c

qB

qt
r � B ¼ 0 ð104Þ

r^ B ¼ 1

c

qE

qt
r � E ¼ 0 ð105Þ

The production and study of stationary waves for E � B ¼ 0 and E � B 6¼ 0

were subject to a series of experiments [32] where a gas of atoms confined in a

cavity was crossed by different types of stationary waves originating from a

laser.
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B. Force-Free Field and Virial Theorem

When AðrÞ, as defined above, represents the BðrÞ magnetostatic field and when

the relation r^ B ¼ 4pJ=c ¼ kB is verified, the magnetic force density is null

since fb ¼ J ^ B=c ¼ 0. Hence the origin of the expression ‘‘force-free field’’

sometimes attributed to Beltrami fields in the literature [7,33-36]. The conserva-

tion of density of electrical current 4pr � J ¼ cB � rk ¼ 0 is naturally verified as

a consequence of the relations given above. The concept of force-free field is

employed to a greater extent in the virial theorem. Indeed, the virial on a volume

V is defined by the following integral relation:

ð
V

f � r dV ¼
ð

V

r � r � T
$
dV ð106Þ

where f ¼ r � T
$

is a magnetic force density. If we now substitute the identities:

ð
V

r � ðT
$
� rÞ dV ¼

ð
S

r � ðdS � T
$
Þ ð107Þ

ð
V

f � r � T
$
dV ¼

ð
V

½r � ðT
$
� rÞ � T

$
� � I

$
�dV ð108Þ

in relation (106), this integral relation can be rewritten asð
V

f � r dV ¼
ð

S

r � ðdS � T
$
Þ �

ð
V

T
$
� � I

$
dV ð109Þ

For a force density magnetic in origin, the magnetic stress tensor is written as

T
$
¼ 1

8p
B2 I

$
� 1

4p
BB ð110Þ

thus the relations

T
$
� � I

$
¼ 1

8p
B2 r � T

$
¼ 1

4p
B ^r^ B ð111Þ

from which the virial relation follows:

8p
ð

V

f � r dV ¼
ð

S

B2ðr � dSÞ � 2

ð
S

ðr � BÞðB � dSÞ �
ð

V

B2 dV ð112Þ

If the magnetic field B is a Beltrami field, the left-handed part of the equation

above is equal to zero, thus resulting into the following equality:

ð
V

B2 dV ¼
ð

S

B2ðr � dSÞ � 2

ð
S

ðr � BÞðB � dSÞ ð113Þ
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The left-handed side of this equation represents a magnetic energy included in

the volume V , which is a positively defined quantity. As a consequence, the

magnetic field cannot have a null value on the surface S.

C. Ordinary Fields and the Superposition Principle

Ordinary fields fulfill the relation r^ A ¼ K ^ A, where vector K is a function

of space and time. This results in the following identity:

P ¼ A ^r^ A ¼ A ^ ðK ^ AÞ ¼ A2 K � ðA � KÞA ð114Þ

The vector P satisfies the condition P 66¼ 0. In order to demonstrate this claim, we

must only prove that this vector cannot be null-valued. Indeed, if it were null, the

equality A2K ¼ ðA � KÞA would be verified, or A2K2 ¼ ðA � KÞ2
, specifically,

cos2y ¼ ðA � KÞ2=ðAKÞ2 ¼ 1, which contradicts the very fact that K ^ A 66¼ 0.

As already illustrated with Beltrami fields, the rotational of an ordinary field

B ¼ r^ A is also demonstrated to be an ordinary field satisfying the following

relations:

B � r^ B ¼ 0 ) B ^r^ B 66¼ 0 ð115Þ

To demonstrate the condition B � r^ B ¼ 0, knowing that B ¼ K ^ A, the

following set of identities is employed:

B � r^ B ¼ B � r � ðAK � KAÞ ð116Þ
D ¼ ðAK � KAÞ � B ¼ B ^ B ¼ 0 ð117Þ

r � D ¼ B � r � ðAK � KAÞ þ ðAK � KAÞ � �rB ð118Þ

But the equality AK � � � rB ¼ KA � �rB implies the condition B � r^ B ¼ 0.

Beltrami fields can also result from the superposition of ordinary vectorial

fields. Indeed, a field A ¼ A1 þ A2, which results from the addition of two

ordinary scalar fields, is not necessarily an ordinary field:

A � r^ A ¼ A1 � r^ A2 þ A2 � r^ A1 6¼ 0 ð119Þ

Figure 1 illustrates the different possibilities resulting from the superposition

of A1 and A2 vectors. We remark that Beltrami fields do not follow the principle

of field superposition. Indeed, if A1 and A2 vectors were Beltrami fields, the

following relations would immediately follow:

r^ ðA1 þ A2Þ ¼ k1A1 þ k2A2 6¼ ðk1 þ k2ÞðA1 þ A2Þ ð120Þ

However, the principle of field superposition is verified if the condition k1 ¼ k2 is

imposed. On the other hand, the superposition of two Trkalian fields generates a
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Trkalian field. For example, the field B ¼ A þ k�1r^ A is Trkalian if the A field

also belongs to this category.

Let us now consider the Trkalian field B ¼ r^ A þ k�1r^r^ A and try to

determine whether the A field is also a Trkalian field. The rotational of B is

written as

r^ B ¼ r^r^ A þ k�1r^r^r^ A ð121Þ

With the condition r^ B ¼ kB ¼ kr^ A þr^r^ A, the following identity is

found:

r^r^r^ A � k2r^ A ¼ 0 ð122Þ

which can be rewritten as

r^ ½rðr � AÞ ��A � k2A� ¼ 0 ð123Þ

The solution of the preceding equation has the following expression:

�A þ k2A ¼ r� ð124Þ

The A field will be a Trkalian field for � ¼ 0 if the condition r � A ¼ 0 is

verified. If this condition is not verified, when � 66¼ 0, we can carry out a gauge

transform A ¼ A0 þr� with the condition r � A0 ¼ 0. The preceding equation

is now verified, provided each of the following equations is verified as well:

��þ k2� ¼ � �A0 þ k2A0 ¼ 0 ð125Þ

x

y

z

A2

∇∧A2

∇∧A1

A1

Ordinary field x

y

z

A2

∇∧A2

∇∧A1

A1

Beltrami field

Figure 1. Beltrami field as the sum of ordinary fields.
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As a consequence, the gauge transform written above have the property to

turn an ordinary field A into a Trkalian field A0.

D. Hansen Decomposition and Beltrami Field

In Helmholtz theorem, both � and A potentials form a group composed of four

scalar components in order to describe a vectorial field having three scalar

components. As a consequence, the four scalar components are not independent.

Their dependence can be expressed in several ways:

The first one aims at defining a potential A ¼ �r� relying on two scalar

functions � and � known as ‘‘Euler potentials’’ or ‘‘Clebsch parameters.’’ In

this case, the B field depends on a set of three potentials known as Monge

potentials:

B ¼ r�þr^ A ¼ r�þr� ^r� ð126Þ

The A field is an ordinary field verifying the condition A � r^ A ¼ 0, which is

also a necessary and sufficient condition for the differential form d� ¼ r��
dr ¼ ðA=�Þ � dr to be a total differential relation. Interestingly, we must

underline the fact that B?-field lines are the intersections of � ¼ Ct and

� ¼ Ct surfaces since r� and r� gradients are normal both to B? and to

these surfaces. Indeed, the definition of the B? field implies the equalities

r� � B? ¼ 0 and r� � B? ¼ 0.

When the B? field is an ordinary field, the B field admits the so-called

Clebsch decomposition, written as

B ¼ r�þr^ A ¼ r�þ�r� ð127Þ

Clebsch’s decomposition allows us to identify the B field either as an ordinary

field or as a Beltrami field if its calculated density of helicity

B � r^ B ¼ r� � ðr� ^ r�Þ is respectively equal to or different from zero.

Interestingly, two authors [37,38] recently proposed a dual Clebsch decomposi-

tion along the following lines of reasoning

Br ¼ r�þ�r� Bi ¼ r�� �r� ð128Þ

where the Br and Bi fields were Trkalian fields fulfilling the conditions:

r^ Br ¼ kBr r^ Bi ¼ kBi ð129Þ

From the preceding relations, one obtains the following set of identities:

Br � r^ Br ¼ kB2
r ¼ Bi � r^ Bi ¼ kB2

i ¼ r� � ðr�^r�Þ 66¼ 0 ð130Þ
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Starting from the dual decomposition given above, a complex field Bc ¼ Br þjBi

can be found to verify the conditions:

r^ Bc ¼ kBc ) Bc � r^ Bc ¼ kB2
c ð131Þ

However, the preceding conditions, as opposed to what usually happens in the

real case, are not sufficient conditions to define a complex Trkalian field. Indeed,

the couple of authors we referred to, demonstrated that for B2
r 6¼ 0 and B2

i 6¼ 0,

the complex field Bc is an ordinary field if we chose Bc ¼ e j�rF, where F is a

complex quantity having the expression F ¼ ð�þ j�Þe�j�. This results from the

equality r^ Bc ¼ jr�^Bc which implies Bc � r^ Bc ¼ kB2
c ¼ 0 where k is a

constant different from zero. In this case, the definition of the Bc field implies the

following relations:

r�^rF ¼ �jkrF ðrFÞ2 ¼ 0 ð132Þ

The second way to proceed is to decompose the A vector potential as the

addition of two terms having the form:

A ¼ �r þr^ ð�rÞ ð133Þ

As a consequence, the vectorial field B is defined on the basis of three inde-

pendent scalar fields:

B ¼ r�þr^ ð�rÞ þ r^r^ ð�rÞ ð134Þ

Vectorial fields M ¼ r^ ð�rÞ and N ¼ r^r^ ð�rÞ are respectively known as

toroidal and poloidal fields. The scalar potentials � and � are called Debye

potentials, while the vector potentials F ¼ �r and G ¼ �r are known as

Whittaker potentials.

Another decomposition of the vectorial field B can be found in the literature.

This decomposition is formally identical to the previous one, with a notable

difference, though, the vector r is now replaced by a constant unitary vector n.

Still another decomposition of the B field was proposed by Rowe [39]. This

decomposition is written as

B ¼ Bk þ B? ¼ r�þ �r þr^ ð�rÞ ð135Þ

The choice of scalar potentials �;�;� is unique if we demand that the mean

values of functions �ðrÞ;�ðrÞ over a sphere centered on the origin fulfill the

conditions: ð4p

0

�ðrnÞd� ¼ 0

ð4p

0

�ðrnÞd� ¼ 0 ð136Þ
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If we force the condition r^ Bk ¼ 0, the condition r� ^ r ¼ 0 must result.

This latter condition is fulfilled for a function having the form �ðrÞ. In this

specific case, Eq. (135) can be rewritten as

B ¼ Bk þ B? ¼ r�0 þr^ ð�rÞ ð137Þ

where the potential �0 is defined as

�0ðrÞ ¼ �ðrÞ þ
ðr

0

�ðr0Þr0dr0 ð138Þ

This potential is decomposed into a potential �, the mean value of which, on a

spherical surface of radius r, is reduced to zero by means of condition (136) and

an integral term that represents the contribution of � inside the sphere.

In the case when � ¼ � and k� ¼ �, knowing k is a parameter that does not

depend on space, we obtain the decomposition of the B field introduced by

Hansen [40]:

B ¼ L þ M þ N ¼ r�þr^ ð�rÞ þ k�1 r^r^ ð�rÞ ð139Þ

If the scalar field � verifies Helmholtz equation

��þ k2� ¼ 0 ð140Þ

then in this specific case, the vectors L;M;N are solutions of Helmholtz vectorial

equation:

�Q þ k2Q ¼ 0 ð141Þ

As a consequence of the preceding definitions, the following set of equalities can

be found:

M ¼ L ^ r r^ M ¼ kN r^ N ¼ kM ð142Þ

Fields �r and r^ ð�rÞ are ordinary fields but one cannot conclude anything

concerning the field A ¼ �r þr^ ð�rÞ=k. This field is not Trkalian, even

though it fulfills the condition A � r^ A 66¼ 0 since r � A 6¼ 0. This confirms the

claim above concerning the superposition principle of ordinary or Beltrami

fields. On the other hand, the solenoidal field B? ¼ r^ A ¼ M þ N is a

Trkalian field because it can be shown that r^ B? ¼ kB? by using the equalities

given above. We shall also notice that a toroidal field M ¼ r^ ð�rÞ can be

formulated as a function of two Eulerian potentials:

M ¼ r^ ð�rÞ ¼ r�^ r ¼ r�^r r2

2
ð143Þ
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E. Hansen Decomposition in Different Coordinate Systems

1. Case of Cartesian Coordinates

Hansen’s decomposition for a constant unitary vector n is written as

L þ M þ N ¼ r�þr^ ð�nÞ þ k�1 r^r^ ð�nÞ ð144Þ

For a scalar potential having the form � ¼ eEjk�r, vectorial functions L;M;N
have the expression

Lðk; rÞ ¼ Ejk� Mðk; rÞ ¼ Ejk ^ n� kNðk; rÞ ¼ �k ^ ðk ^ nÞ�
ð145Þ

This results in the fact that the L;M;N vectors are orthogonal to one another:

L � M ¼ M � N ¼ N � L ¼ 0 ð146Þ

An arbitrary field EðrÞ can be represented by a linear combination of vectorial

functions given above, namely

EðrÞ ¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
ðaL þ bM þ cNÞdk3 ð147Þ

where the quantities a; b; c are unknown functions of k.

In the same spirit, a Green dyadic function can be rewritten in the following

form:

GGðr; r0Þ ¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
ðAL þ BM þ CNÞdk3 ð148Þ

We shall stress the fact that the scalar function � fulfills the condition of

orthogonality: ðþ1

�1

ðþ1

�1

ðþ1

�1
�ðk; rÞ�ð�k0; rÞdr3 ¼ dðk � k0Þ ð149Þ

In the same spirit, vectorial functions L;M;N respect the relations of normality:

ðþ1

�1

ðþ1

�1

ðþ1

�1
Lðk; rÞ � Lð�k0; rÞdr3 ¼ k2 dðk � k0Þ ð150Þ

ðþ1

�1

ðþ1

�1

ðþ1

�1
Mðk; rÞ � Mð�k0; rÞdr3 ¼ k2

t dðk � k0Þ ð151Þ
ðþ1

�1

ðþ1

�1

ðþ1

�1
Nðk; rÞ � Nð�k0; rÞdr3 ¼ k2

t dðk � k0Þ ð152Þ
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with the definition k2
t ¼ k2

x þ k2
y for a vector n directed along the z direction.

Moreover, the vectorial functions L,M,N are orthogonal to each other:

ðþ1

�1

ðþ1

�1

ðþ1

�1
Lðk; rÞ � Mð�k0; rÞdr3 ¼ 0 ð153Þ

with two other relations obtained while performing a circular permutation of the

L;M;N vectors. The orthogonal relations written above are obtained by applying

the Gauss theorem to calculate these integrals, a procedure that is demonstrated

in detail by Chew [41]. These relations of orthogonality enable us to determine

the unknown functions A0;B0;C0 associated with Dirac’s dyadic distribution

over space written as

dðr � r0Þ I
$
¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
ðA0L þ B0M þ C0NÞdk3 ð154Þ

The calculation of the A0ðk; r0Þ vector results from the following sequence:

ðþ1

�1

ðþ1

�1

ðþ1

�1
dðr � r0Þ I

$
� Lð�k0; rÞdr3

¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
A0ðk; r0Þdk3

ðþ1

�1

ðþ1

�1

ðþ1

�1
Lðk; rÞ � Lð�k0; rÞdr3

ð155Þ

The preceding equation can also be rewritten as

Lð�k0; r0Þ ¼ 1

ð2pÞ3

ðþ1

�1

ðþ1

�1

ðþ1

�1
k2dðk � k0ÞA0ðk; r0Þdk3 ð156Þ

Thus resulting in the equality Lð�k0; r0Þ ¼ k2A0ðk0; r0Þ. After a similar calcula-

tion for B0 and C0 functions, the spectral component of Dirac’s dyadic

distribution is finally found to have the following expression:

A0L þ B0M þ C0N ¼ 1

k2
Lðk; rÞLð�k; r0Þ þ 1

k2
t

½Mðk; rÞMð�k; r0Þ

þ Nðk; rÞNð�k; r0Þ� ð157Þ

The Green dyadic function is a solution of the following equation:

r^r^ GG � k2
0 GG ¼ dðr � r0Þ I

$
ð158Þ
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In order to calculate the unknown functions A;B;C, which are part of the

integral expression of Green’s dyadic function, this function is substituted in the

left-hand side of the preceding equation, and supplemented with the definitions

written above to obtain, after proper calculations:

AL þ BM þ CN ¼ � 1

k2
0k2

Lðk; rÞLð�k; r0Þ þ 1

k2
t ðk2 � k2

0Þ
½Mðk; rÞMð�k; r0Þ

þ Nðk; rÞNð�k; r0Þ� ð159Þ

We notice that the integration of the preceding term with an L, over any

component of k cannot be performed using the residual method since the term

in L does not satisfy Jordan’s lemma. As a consequence, the term in L must be

modified by successively subtracting from it and adding to it, a term that has the

form k2X
$
ðr0ÞeEjk�ðr�r0Þ. This operation enables us to withdraw the singularity

from the integral, now calculated as the principal value, and to use it again in

order to calculate the integral:

� 1

k2
0

X
$
ðr0Þ

ðþ1

�1

ðþ1

�1

ðþ1

�1
eEjk�ðr�r0Þ dk3 ¼ � 1

k2
0

dðr � r0ÞX
$
ðr0Þ ð160Þ

2. Case of Cylindrical Coordinates

In cylindrical coordinates, the scalar field � admits a Fourier–Bessel mode

decomposition under the form

�nðk; rÞ ¼ eEjkzzþjny JnðkrrÞ ð161Þ

with the definition k2 ¼ k2
r þ k2

z .

An arbitrary field EðrÞ can be represented as a linear combination of

vectorial functions Ln;Mn;Nn written as

EðrÞ ¼ 1

ð2pÞ3

Xþ1

n¼�1

ðþ1

�1

ðþ1

0

ðanLn þ bnMn þ cnNnÞkr dkz dkr ð162Þ

where the vectorial functions Ln;Mn;Nn depend on variables kr; kz; r while

factors an; bn; cn are unknown functions of kr and kz.

In the same spirit, a dyadic Green function in a cylindrical coordinate system

is written as

GGðr; r0Þ ¼ 1

ð2pÞ3

Xþ1

n¼�1

ðþ1

�1

ðþ1

0

ðAnLn þ BnMn þ CnNnÞkr dkz dkr ð163Þ
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where unknown vectors An;Bn;Cn are now functions of variables kr; kz; r0.
The relations of orthogonality in a cylindrical coordinate system are now

given by the following relations:

ðþ1

�1

ðþ1

0

ð2p

0

�nðkr; kz; rÞ��n0 ð�k0r;�k0z; rÞr dzdr dy¼ 1

kr

dnn0dðkr � k0rÞdðkz � k0zÞ

ð164Þðþ1

�1

ðþ1

0

ð2p

0

Lnðkr; kz; rÞL�n0 ð�k0r;�k0z; rÞr dzdr dy¼k2

kr

dnn0dðkr � k0rÞdðkz � k0zÞ

ð165Þðþ1

�1

ðþ1

0

ð2p

0

Mnðkr; kz; rÞM�n0 ð�k0r;�k0z; rÞr dzdr dy¼kr dnn0dðkr � k0rÞdðkz � k0zÞ

ð166Þðþ1

�1

ðþ1

0

ð2p

0

Nnðkr; kz; rÞN�n0 ð�k0r;�k0z; rÞr dzdr dy¼kr dnn0dðkr � k0rÞdðkz � k0zÞ

ð167Þ

Dirac’s dyadic distribution represented in a cylindrical coordinate system is

written as

dðr � r0Þ I
$
¼ 1

ð2pÞ3

Xþ1

n¼�1

ðþ1

�1

ðþ1

0

ðAnLn þ BnMn þ CnNnÞkr dkz dkr ð168Þ

After performing a series of calculations quite similar to the one already

employed in the Cartesian case, the unknown function An is expressed as

An0 ðk0r; k0z; r0Þ ¼ 2p
k2

Ln0 ðk0r;�k0z; r0Þ ð169Þ

where the identity Ln0 ðk0r;�k0z; r0Þ ¼ L�n0 ð�k0r;�k0z; r0Þ has been used.

Once completed, this calculation results in the following equation:

AnLn þ BnMn þ CnNn ¼ 2p
k2

Lnðkr; kz; rÞLnðkr;�kz; r0Þ

þ 2p
k2

r

½Mnðkr; kz; rÞMnðkr;�kz; r0Þ

þ Nnðkr; kz; rÞNnðkr;�kz; r0Þ� ð170Þ

The Green’s dyadic function is a solution of

r^r^ GG � k2
0 GG ¼ dðr � r0Þ I

$
ð171Þ
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In accordance with the methodology employed while working with Cartesian

coordinates, the spectral decomposition of Green’s function and Dirac’s

distributions are both exchanged with their cylindrical coordinates in Eq. (171)

written above in order to obtain the spectral component of Green’s function:

AnLn þ BnMn þ CnNn ¼ � 2p
k2

0k2
Lnðkr; kz; rÞLnðkr;�kz; r0Þ

þ 2p
k2

r ðk2 � k2
0Þ
½Mnðkr; kz; rÞMnðkr;�kz; r0Þ

þ Nnðkr; kz; rÞNnðkr;�kz; r0Þ� ð172Þ

The term in L exhibits a singularity identical to the one we already dealt with in

the Cartesian case. Therefore, we can employ the same process to extract the

singularity. We shall find in Chew’s treatise [41] a detailed study concerning the

extraction of singularity in the cylindrical case.

IV. INVESTIGATION OF TOPOLOGICAL EFFECTS
IN PHYSICS

Topology is the discipline within mathematical science in charge of studying the

seemingly intuitive concepts of continuity and limit. This discipline is itself

composed of several fields of investigation. Within the scope of this particular

section, we shall now focus on differential topology, with the understanding that

this discipline is tasked with classifying surfaces and dealing with problems

usually connected with knots. We shall first remind our readers of some basic

definitions that might be helpful, if not necessary, for following the course of this

discussion:

Connected Region. A region of space enclosed within the boundaries of a

closed surface is described as a ‘‘connected region’’ if it is possible to skip

from one point to an other using an infinite number of paths, all of them

located within this specific region of space. For example, each region

located inside and outside a closed surface is, individually, a connected

region.

Reconcilable Circuits. Whether closed or open, two circuits are mutually

reconcilable if they can be brought to match one another by continuous

distortion, without leaving the connected region of space. If not, these

circuits are described as irreconcilable.

Loops or Reducible Surfaces. Any loop or closed surface located within a

connected region of space is described as ‘‘reducible’’ if it can be

continuously contracted into a point without leaving the aforementioned

region of space, as illustrated by loop C1 in Fig. 2. In the opposite case,
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the loop or surface is termed ‘‘irreducible,’’ as illustrated by loop C2 in

Fig. 2. As a consequence, reconcilable paths form a reducible loop when

they are combined. Conversely, two irreconcilable paths form an

irreducible loop.

Simply Connected Region. A region of space is described as ‘‘simply con-

nected’’ when all circuits joining any two points are reconcilable or any

loop drawn within the region is reducible. For instance, regions located

inside or outside a finite surface are individually, simply connected spaces.

Doubly Connected Region. A region of space is called ‘‘doubly connected’’

when there exists only two irreconcilable paths in this region. In this case,

a single irreducible loop can be identified in this region.

Multiply Connected Region. A region of space is described as ‘‘multiply

connected’’ if there are n irreconcilable paths or n � 1 irreducible loops in

this aforementioned region of space. A multiply connected region can be

forced into a simply connected region by introducing an appropriate cut

capable of preventing any loop to close its path along a contour crossing

this cut.

A. Study of Helicity

Helicity [26,42-45] is a pseudoscalar K whose definition is based on the

following integral relation:

K ¼
ð

V

A � ðr^AÞ dV ð173Þ

Helicity is defined as a qualitative measurement of how a topological configu-

ration is linked, knotted, or twisted. If A is the vector potential of electroma-

gnetism, the quantity K then defines ‘‘magnetic helicity.’’ In order to obtain a

nonnull value for K, the condition A � ðr^AÞ 6¼ 0 must be verified in the volume

V . As a consequence, the A field is necessarily a Beltrami field.

C1
C2

S

Figure 2. Topological definitions.
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For a simply connected medium, K is invariant in the gauge transform

A0 ¼ A þrf if the integral term given below is equal to zero:

ð
V

rf � ðr^A0Þ dV ¼
ð

S

fðr^A0Þ � dS ¼ 0 ð174Þ

For a finite surface S, the equation given above is verified for the condition

B � dS ¼ 0, that is, if the normal component of the field B ¼ B0 ¼ r^A0

vanishes on the surface S. On the other hand, for a spherical surface S whose

radius tends toward infinity, the equation will be satisfied provided the quantity

fjB0j ! 0 faster than 1=R2.

For a multiply connected medium, such as the volume V of a torus bounded

by the surface S is a magnetic surface, the preceding integral becomes

ð
V

r � ðfBÞ dV ¼
ð

S

fB � dS þ
ð

S1

½f�B � dS1 ð175Þ

where the surface S1, a cross section of the torus bounded by a loop C1 re-

presented in Fig. 3, is used as a cut to make the scalar potential f single-valued.

The quantity ½f� defines the ‘‘jump’’ of the potential function through the

surface S1.

Since the bounding surface S of the torus is a magnetic surface, the first term

on the right-hand side of Eq. (175) vanishes.

For a loop C2 located on the torus crossing the surface S1, we have

½f� ¼
ð

C2

rf � dr ¼
ð

S2

B � dS2 ¼ F2 ð176Þ

The value of ½f� does not depend on the choice of the loop C2 provided this loop

is situated on the torus. In this case, the value of ½f� is shown to be constant over

S2

S1

C1

C2

Figure 3. The cross-sectional surface S1 of the torus is the cut needed to make the function f
single-valued.
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S1. We can therefore chose the loop C2 bounding the surface S2 inside of the

torus. In this case, the value F2 can now be interpreted as the flux of magnetic

field passing through the hole of the torus.

In other words, the gauge transform in a multiply connected medium can be

represented by a modification of the helicity that denotes how loops C1 and C2

are linked, since we have

ð
V

r � ðfBÞ dV ¼ ½f�
ð

S1

B � dS1 ¼ F1F2 ð177Þ

We will now demonstrate the relation between helicity and the Gauss linking

number.

Let us frist consider the vector potential A defined by the equation:

AjðriÞ ¼
1

4p

ð
Cj

drj

R
ð178Þ

where R ¼ ri � rj. The rotational of the potential A defines a B field:

BjðriÞ ¼
1

4p

ð
Cj

ri

1

R

� �
^ drj ð179Þ

The field B fulfills the condition r � B ¼ 0. This result is consistent with the

fact that the curve Cj is a closed loop. The integral written above is identical to

Biot–Savart law used to calculate the magnetic field generated by a current loop,

provided this integral is multiplied by 4pI=c.

The Gauss integral is an integer number Nij that can be calculated by

considering the field Bj along the curve Ci:

Nij ¼
ð

Ci

Bj � dri ¼
1

4p

ð
Ci

ð
Cj

½ri

1

R

� �
^ drj� � dri ð180Þ

where curves Ci and Cj are closed loops endowed with the following features:

1. They are oriented in the counterclockwise direction.

2. Open surfaces Si and Sj respectively lean on them.

This relation can also be rewritten under another form in order to explain

why Nij is an integer number:

Nij ¼
1

4p

ð
Ci

ð
Cj

rj

1

R

� �
� ðdri ^ drjÞ ð181Þ
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Indeed, the integrand in the previous integral has the dimension of a solid angle

d� ¼ ðdri ^ drjÞ � R=R3. It follows that the double integral must give a multiple

of 4p. The number Nij ¼ Nji represents the way in which loop Cj is wrapped

around the Ci loop and is defined as the total number of piercing of surface Si by

loop Cj. Each piercing contributes to the total number for a quantity þ1 if

intersection of loop Cj is performed in the direction parallel to dSi or �1 in the

opposite case. The number Nij, associated to wrapping, will be null if no piercing

is practiced, or when the algebraic sum of piercing gives a null result too. Figure 4

gives a few examples of wrappings for different types of topological configu-

rations.

If the Gauss integral is multiplied by 4pI=c, Ampère’s theorem is recovered.

Therefore, the Gauss integral allows us to understand why a conducting wire

wound as a solenoid, in which a current I flows, originates a magnetic field

whose intensity is proportional to the number n ¼ N=L of turns by units of

length. Therefore, the topological effect of winding has the following consequ-

ence: a significant rise of amplitude of the magnetic field with respect to a

rectilinear wire in which the same current flows. Indeed, the amplitude of the

magnetic field at a distance R of a rectilinear wire is B ¼ 2I=cR while the

magnetic field at the extremity of a solenoid is written as B ¼ 2pnI=c.

In order to introduce the notion of mutual helicity matching Moffatt’s

approach [42], the vector potential A is now defined on the basis of a volumic

N12 = −2

N12 = 0 N12 = −1

N12 = N23 = N31 = 0

C1

C2 C1

C1

C1

C2

C2

C2

C3

Figure 4. Examples of linking numbers Nij as defined by Eq. (181).
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distribution:

AjðriÞ ¼
1

4p

ð
Vj

JðrjÞ
R

dVj ð182Þ

If the definition J ¼ r^ B is included in the integral written above, it becomes,

after transformation:

AjðriÞ ¼
1

4p

ð
Vj

BjðrjÞ ^rj

1

R

� �
dVj ð183Þ

Mutual helicity Kij is defined on the basis of the following relationship:

Kij ¼
1

4p

ð
Vi

BiðriÞ � AjðriÞ dVi ð184Þ

After substituting the Aj potential in the preceding relation, mutual helicity Kij

between volumes Vi and Vj is written as follows:

Kij ¼
1

4p

ð
Vi

ð
Vj

½BiðriÞ ^ BjðrjÞ� � rj
1

R

� �
dVidVj ð185Þ

Each curve Ci is associated to a tube, whose volume is Vi, coaxial with the curve

Ci. In addition, we suppose that Bi field lines are parallel to Ci. As a consequence,

the general integral term

Fi ¼
ð

Si

BiðriÞ � dSi ð186Þ

represents the axial flux of Bi field throughout a cross section of the tube of

surface Si. Knowing that dVi ¼ dSi � dri, for each field Bi, we find the equality:

BiðriÞdVi ¼ ½BiðriÞ � dSi�dri ð187Þ

Starting with the equalities given above and the definitions of Kij and Nij, we

obtain a relation Kij ¼ NijFiFj relating mutual helicity to the linking of Bi and

Bj field lines and to their respective fluxes.

B. Temporal Derivation of Helicity

Let us now consider the following couple of equations:

1

c

qA

qt
þr� ¼ �E

1

c

qB

qt
þr^ E ¼ 0 ð188Þ
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and multiply the first equation by B and the second equation by A. We then merge

these two equations by adding them together. Each term of the resulting equation

is supplemented with the quantity �r � B � E � B. We get

1

c

q
qt

ðA � BÞ þ r � T ¼ �2E � B ð189Þ

knowing that T ¼ �B þ E ^A is the torsion density and A � B is the helicity

density of the magnetic field.

In the same spirit, using the following couple of relations

1

c

qA

qt
þr� ¼ �E

1

c

qE

qt
�r^ B ¼ � 4p

c
J ð190Þ

let us multiply the first equation by E and the second equation by A. Let us then

add them up and add the quantity �r � E þ B2 to each part of this equation. We

then obtain the relation

1

c

q
qt

ðA � EÞ þ r � S ¼ B2 � E2 þ 4p r�� 1

c
J � A

� �
ð191Þ

knowing that S ¼ �E þ A ^ B is the spin density and A � E the helicity density

of the electric field.

Since Stratton’s work [46, p. 28], it has been known that Maxwell’s equations

be can be supplemented with any particular solution of homogeneous equations:

E0 ¼ r ^ C B0 ¼ 1

c

qC

qt
þr� ð192Þ

These new potentials are solutions of wave equations including inside the

sources. To obtain the general solution, one must add a particular solution of

the inhomogenous potential equations. Usually, the electromagnetic fields E0;E0

and the potentials �;C are discarded for the following reasons. Either (1), they

represent transient solutions of Maxwell’s equations that decay rapidly to zero or

(2) the new potentials and the fields vanish at infinity and therefore their values

must be zero.

We may contest such claims, especially if vacuum is a fluctuating wave

medium. In that case, ordinary plane waves that are solutions of wave equations

do not vanish at infinity and therefore can be associated with the so-called zero-

point energy. We can also assume that helicoidal fields are associated with zero-

point energy. This question is not trivial since many authors consider that the

inertia of bodies might be a consequence of the existence of the zero-point
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energy. However, one can use the Helmholtz theorem Eq. (40), in order to

obtain a general solution for the definition of the electromagnetic field:

E ¼ �rfþr ^ C � 1

c

qA

qt
ð193Þ

B ¼ r�þr ^ A þ 1

c

qC

qt
ð194Þ

The electromagnetic field defined above is a solution of Maxwell’s equations,

provided the new potentials �;C are solutions of wave equations and satisfy the

Lorenz gauge.

The electromagnetic field E0;E0, which was studied by Afanasiev and

Stepanovsky [45], Rañada [43,44] and Kiehn [47] admits definitions similar

to the ones given above

T0 ¼ �E0 þ C ^ B0 S0 ¼ �B0 þ E ^ C ð195Þ

together with the two continuity relations:

1

c

q
qt

ðC � E0Þ þ r � T0 ¼ 2E0 � B0 ð196Þ

1

c

q
qt

ðC � B0Þ þ r � S0 ¼ B2
0 � E2

0 ð197Þ

In classical electromagnetism, the condition E � B ¼ 0 and the condition

E2 ¼ B2 in the radiation zone are satisfied; therefore the electric and magnetic

helicity densities are conserved. However, the preceding equations are used

when the electromagnetic field is endowed with a topological structure far more

sophisticated than what is usually acknowledged within the framework of

classical electromagnetic theory. The interested reader is referred to a series

of interesting theoretical works by Barrett [48], Kiehn [47], and Evans and

Vigier [25].

We now recall the identity ðE2 � B2Þ2 þ 4ðE � BÞ2 ¼ ðE2 þ B2Þ2�
4ðE ^ BÞ2

. This identity is important for reading through the following discu-

ssion:

1. When we are far from sources in the ‘‘radiation zone,’’ the amplitudes of

electric and magnetic fields verify the equality E2 ¼ B2.

2. The identity E � B ¼ 0 is observed within the framework of classical

electromagnetism.

In this case, for a volume V0ðtÞ limitated by the surface S0ðtÞ moving at a speed

Uðr; tÞ in a given frame of reference, equation 189 can be rewritten in a form
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often dealt with in plasma physics [9,49]:

1

c

d

dt

ð
V0

A � B dV0 þ
ð

S0

T � 1

c
ðA � BÞU

� �
� dS0 ¼ 0 ð198Þ

The identity A^ðU^BÞ ¼ ðA � BÞU � ðA � UÞB can be utilized to rewrite the

preceding equation under the form

1

c

dK

dt
þ
ð

S0

E þ 1

c
U ^ B

� �
^A þ �� 1

c
U � A

� �� �
� dS0 ¼ 0 ð199Þ

This relation can be simplified in the case of an infinitely conducting plasma

where the condition E þ U^B=c ¼ 0 is observed. This simplification, which

differs from the demonstration given below, can either apply to the case when

U ¼ Ue or U ¼ Ui.

The evolution in time of helicity can be directly calculated if we start with

the following definition of K

K ¼
ð

VðtÞ
F dV ð200Þ

where F ¼ A � B. This results in the following relation:

dK

dt
¼

ð
VðtÞ

�
dF

dt
þ F r � U

�
dV ð201Þ

Using the relation of continuity associated with mass density

1

rm

drm

dt
¼ �r � U ð202Þ

the term r � U is suppressed from the integral given in Eq. [201]. Therefore the

evolution in time of helicity is written as

dK

dt
¼

ð
VðtÞ

rm

d

dt

�
F

rm

�
dV ð203Þ

The formulation given above is particularly useful in the case of an infinitely

conducting plasma when Faraday’s law verifies the following condition:

1

c

d

dt

ð
SðtÞ

B � dS ¼ 0 ð204Þ
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In this specific case, the following series of conditions is found:

E0 ¼ E þ 1

c
U^B ¼ 0

qB

qt
þr^ ðB ^ UÞ ¼ 0 r^ B ¼ 4p

c
J ð205Þ

For an infinitely conducting plasma, the current density has the value of

J ¼ reUe þ riUi ¼ reV þ rUi � reV. As a result, one must take

U � Ui 6¼ Ue in the following demonstration.

The particle derivative of the magnetic field has the following expression:

dB

dt
¼ qB

qt
þ ðU � rÞB ¼ �r^ ðB ^UÞ þ ðU � rÞB ¼ �Bðr � UÞ þ ðB � rÞU

ð206Þ

The equation of continuity given in Eq. (202) allows us to suppress r � U in the

preceding equation. As a result, we obtain the relation:

d

dt

�
B

rm

�
¼

�
B

rm

� r
�

U ð207Þ

If the preceding equation is multiplied by vector potential A, we obtain

A � d

dt

�
B

rm

�
¼ B

rm

� ½ðA � rÞU þ B^r^U� ð208Þ

The particle derivative of the vector potential is:

dA

dt
¼ qA

qt
þ ðU � rÞA ¼ ðU � rÞA þ U^r^A � cr� ð209Þ

where the condition E ¼ �U^ B=c has been used in order to suppress the partial

time derivative of the vector potential in the second member of the equation

given above. If we now multiply the preceding equation by B=rm, we get

B

rm

� dA

dt
¼ B

rm

� ½ðU � rÞA þ U^r^A � cr�� ð210Þ

Adding Eqs. (207) and (210) together and merging them into a single equation

gives us the following relation:

d

dt

�
F

rm

�
¼ B

rm

� rðU � A � c�Þ ð211Þ
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The equation of continuity for helicity then becomes

dK

dt
¼

ð
VðtÞ

rm

d

dt

�
F

rm

�
dV ¼

ð
VðtÞ

B � rðU � A � c�Þ dV ð212Þ

Finally, we recover the time derivative of helicity previously demonstrated in the

case of an infinitely conducting plasma:

dK

dt
¼

ð
SðtÞ
ðU � A � c�ÞB � dS ð213Þ

Helicity K is an invariant if the condition B � dS ¼ 0 is verified over the surface S

surrounding the volume V . Helicity K is different from zero if the A field is a

Beltrami field. As a consequence, the B field is also a Beltrami field. Therefore,

we must conclude that the B field is also a force-free field since

ðr^ BÞ^B ¼ 4p
c

J^B ¼ 0 ð214Þ

We have previously demonstrated, using the virial theorem, that the B field

cannot be equal to zero over the surface S if this field is a force-free field. As a

consequence, the condition B � dS ¼ 0 is verified only if the magnetic field is

normal to the surface S. Less restrictive and more physical conditions can be

chosen if the E0 field exhibits a nonnull irrotational component verifying the

condition r^E0k ¼ 0. In this case, the magnetic field is not force-free anymore:

ðr^BÞ^B ¼ 4p
c

J^B þ 1

c

qE0k
qt

^B ¼ 0 ð215Þ

C. Topological Effect Associated with Voltage Measurement

A lengthy solenoid in which circulates a variable current IsðtÞ as a function of

time, generates a variable magnetic field and induces an electric field satisfying

Faraday’s law: ð
C

E � dr ¼ � 1

c

d

dt

ð
S

B � dS ð216Þ

In the case of an infinitely long solenoid, space is halved and dissociated into two

distinct regions: (1) a simply connected region inside the solenoid and (2) a

doubly connected region outside the solenoid.

Faraday’s law, written under its differential form

r^ E ¼ � 1

c

qB

qt
ð217Þ
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is applied to each of these regions of space, with the following conditions:

Inside region: B 6¼ 0 ) E 6¼ 0

Outside region: B ¼ 0 ) r^ E ¼ 0

The fact that the solenoid halves space into two regions has observable and

measurable consequences. Indeed, let us now consider two resistances R1 and

R2 connected in a ring and forming a conducting loop C around the solenoid, as

illustrated in Fig. 5.

Let us now connect the leads of two voltmeters to two points, say, point a and

point b, placed on either side of the loop C as indicated in Fig. 5. We shall now

suppose that the voltmeters are characterized by a high internal resistance that

enables us to ignore the current taken during the process. We can also expect

that the two voltmeters connected to the same points measure the same voltage

V1 ¼ V2. This seemingly logical statement is not verified, i.e. observed, when

the experiment is performed [50–52]. Why?

At first glance, the difference may be expected to be a consequence of the

fact that R1 6¼ R2 and that, if R1 ¼ R2, we should measure V1 ¼ V2. But this is

not the case. The differential formulation of Faraday’s law cannot be helpful in

any manner to get rid of the paradoxes given above while the integral

formulation, as we shall now see, can be used to understand the difference of

measurements performed by each of our two voltmeters.

Since r^ E ¼ 0 in the region outside the solenoid, the electric field may be

derived from a scalar potential E ¼ �r�. As a consequence, the measurement

of a voltage V given by the formula

V ¼ �a � �b ¼ �
ða

b

E � dr ð218Þ

CV1

V1

CV2

V2

R1

CR1

b

a +

−

CR2

R2

l l

Figure 5. Voltage measurement around a solenoid.
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would be independent from the path taken by the wires of the voltmeters. This, of

course, is not representative of reality since the region located outside the

solenoid is doubly connected. It follows that the potential function � is a

multiform function and the integral given above depends on the adopted path,

since we have ð
C

E � dr ¼ �m

c

dF

dt
ð219Þ

where the magnetic flux F flowing throughout the open surface S leaning on the

curve C is written as:

F ¼
ð

S

B � dS ¼
ð

C

A � dr ð220Þ

In the course of this discussion, m is an integer number whose value is m ¼ 0

for a reducible loop C not encircling the solenoid, or �m if the loop C encircles

m times the solenoid. The sign þ is defined as such when winding is performed

in a counterclockwise direction.

By definition, the voltage measured by a voltmeter between point a and point

b can be represented by the following expression

V1 ¼
ð

Cv1

E � dr V2 ¼
ð

Cv2

E � dr ð221Þ

where voltages have positive values if paths Cv1ða; bÞ and Cv2ða; bÞ, passing

through voltmeters and their associated wires, start from point a to reach point b

in the counterclockwise direction. It results from these definitions two different

possibilities only:

1. For two reconcilable circuits Cv1 and Cv2 forming a reducible loop C,

voltages that are measured not only have the same sign but are equal

V1 ¼ V2. This is the classic case when voltmeters measure the same

voltage between point a and point b. In this case, we must chose the value

m ¼ 0 in the integral relation 219.

2. Conversely, for two irreconcilable circuits encircling the solenoid,

namely, when m ¼ 1, voltages that are measured, are opposite in signs

and can be unequal in absolute values.

A further explanation is needed. Using Ohm’s law, we can calculate the

current IrðtÞ flowing in counterclockwise direction, along circuits Cr1 and Cr2

passing through resistances R1 and R2:

Ir ¼
1

R1

ð
Cr1

E � dr ¼ � 1

R2

ð
Cr2

E � dr ð222Þ
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Circuits Cv1 and Cr1, as well as circuits Cv2 and Cr2, form reducible loops. These

loops do not encircle the solenoid. This situation is illustrated in the following set

of equalities:

ð
Cv1

E � dr ¼
ð

Cr1

E � dr ) V1 ¼ R1Ir ð223Þ
ð

Cv2

E � dr ¼
ð

Cr2

E � dr ) V2 ¼ �R2Ir ð224Þ

Voltage at the source becomes

Vs ¼ V1 � V2 ¼ ðR1 þ R2ÞIr ¼
ð

C

E � dr ¼ 2pEy 6¼ 0 ð225Þ

If d is the diameter of the solenoid infinite in length, the Aðr; tÞ vector potential is

characterized by a single component only

Ayðr; tÞ ¼ d2

8r
BsðtÞ ¼

pd2

4cr
nIsðtÞ ð226Þ

knowing that the magnetic field is given by the formula BsðtÞ ¼ 2pnIsðtÞ=c,

where n is the number of turns by unit of length. The flux of the magnetic field

therefore has the value FðtÞ ¼ p2d2nIsðtÞ=2c. These remarks enable us to

determine the value of source-induced voltage:

Vs ¼ ðR1 þ R2ÞIr ¼ �np2 d2

2c2

dIs

dt
ð227Þ

Romer [52] performed an experiment where the current Is was a linear

function in time. This experiment indicates that, after the calculation given

above, voltages V1;V2;Vs are constants. Furthermore, the experiment (52)

confirms perfectly the explanations given above.

D. The Aharonov–Bohm Effect

The famous experiment proposed by Aharonov and Bohm [53,54] is schema-

tically represented in Fig. 6. In such an experiment, a source emits an electron

beam directed toward a wall in which two slits, located on each side of the beam

axis, are located. A photographic plate (film) placed behind the slits ‘‘records’’

impacting electrons. After the emission of a large number of electrons by the

source, the aforementioned film exhibits neat, clear, and dark fringes that are

parallel to the slits. This result is interpreted as a manifestation of the wave nature

of electrons.
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If electrons were particles only, they should cross the slits and impact the

film in such a way that a recorded ‘‘peak’’ of impacts lines up with the source

and the slits, with very few impacts on either side of these peaks. There is

another possible interpretation where we can imagine that particles behave as

waves and are guided by them. Indeed, de Broglie waves associated with these

electrons are subdivided in partial waves when they cross the slits before

superimposing on each other, impacting on film, and producing an obvious

interference pattern (where shining fringes relate to electron impacts).

The so-called Aharonov–Bohm effect is observed with another experimental

setup. A solenoid is placed immediately after the plate, between the slits, and its

axis is parallel to the slits, and therefore normal to the beam trajectory beam. If

the solenoid is long enough, the magnetic field remains confined in it; as a

consequence, the magnetic field is shown to have a null value in the region

crossed by electrons beamed on either sides of the solenoid. The Lorentz force

exerted on the electrons is expected to be null in the absence of any external

electrical field.

But observation does not match with this conclusion. Indeed, we observe that

the interference pattern is slightly shifted when compared to the interference

pattern recorded without a solenoid. If we suppress the magnetic field in the

solenoid, the interference pattern recovers its original position. The decision to

Solenoide

ShieldShield

Source

Γ

Figure 6. Experimental setup to observe the quantum interference of electrons passing ouside

a solenoid.
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generate a magnetic field inside the solenoid or to cancel it should not generate

a shift of the fringes, since electrons are not acted on by any force from the

solenoid, at least any force capable of justifying a phase shift of matter waves

associated to electrons.

In search for an explanation, Aharonov and Bohm worked out quantum

mechanics equations based on the measurable physical effect of the vector

potential, which is nonnull in a region outside the solenoid. Like many other

paradoxes in physics, including the twin paradox, the interpretation of this

experiment proposed in 1959 was the subject of an intense controversy among

researchers. This controversy is well summarized in a review article [55] and in

other references of interest [56–67].

The interpretation of the original Aharonov–Bohm experiment implies

mathematical considerations to be taken into account concerning:

1. Initial and boundary conditions associated with wavefunctions

2. The existence of topological effects affecting the validity of Stokes’

theorem

Needless to say, these mathematical considerations are particularly delicate to

handle. However, an experiment performed by Möllenstedt and Bayh [58] with

ordinary solenoids, led to an following observation in which the interference

pattern moves at a continual pace in perfect synchronization with the evolution in

time of the magnetic field in the solenoid. This experiment indicated that the

magnetic flux F ¼ �jc�h=q was not quantified, while it was in the case of

magnetic flux observed with supraconducting magnets.

Many physicists opposed both the interpretation of this effect attributed to

the vector potential, and the experimental conditions of Chambers [57] and

Möllenstedt [58] experiments. Criticisms insisted the solenoid was not infinite

in length. As a consequence, they claimed, the magnetic field leaks out in a

region too close to the area crossed by the electrons, to have no effect. This leak

was even employed to quantify the F flux. In addition, electron beams can

interfere, as we shall soon demonstrate below, with the magnetic field created

inside the solenoid.

These are the reasons why Tonomura [60] reproduced a cleansed experiment

in 1982 using, this time, a toroidal magnet so as to get rid—or, more accurately

almost completely rid—of the leaking magnetic flux. Tonomura demonstrated

the effect would persist in this case. Subsequently, Tonomura et al. [61]

reproduced the experiment to determine the flux imprisoned in the magnet

was quantified. The answer was negative. But the experiment [62] exhibited a

flux quantification when the magnet was a superconductor one.

Physicists have proposed several mechanisms to interpret the Aharonov–

Bohm effect. We shall focus here on the most interesting of them. We shall first

examine the case of the classical solenoid so as to define the problem on a sound
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basis. Inside a solenoid, infinite in length, in which a constant current circulates,

the magnetic field B0 is also constant and is directed toward the symmetry axis.

If r0 is the radius of the solenoid section, we observe that for r < r0, the A
vector potential can be written as:

AðrÞ ¼ 1

2
B0 ^ r ¼ �r^ r2

4
B0

� �
ð228Þ

Thus originating the following relations:

r � A ¼ 0 B ¼ r^ A ¼ B0 ð229Þ

Outside the solenoid, the magnetic field has a null value B ¼ 0. Therefore, it

would be very tempting to chose A ¼ 0. Unfortunately, this choice is not

possible. The reason is simple. Stokes theorem, when applied to an open surface

S leaning on a closed contour C encircling the solenoid, gives us

F ¼ pr2
0B0 ¼

ð
S

B � dS ¼
ð

C

A � dr 6¼ 0 ) A 6¼ 0 ð230Þ

As a consequence, the vector potential A inside the solenoid must be written as

AðrÞ ¼ 1

2

r2
0

r2
B0 ^ r ¼ �r^ r2

0

2
lnðrÞB0

� �
ð231Þ

This gives us the following equation:

r � A ¼ 0 B ¼ r^ A ¼ 0 ð232Þ

We must insist that internal and external vector potentials reconnect with each

other in a continuous manner on the solenoid boundary for r ¼ r0.

The gauge transform A0 ¼ A þrf does not modify the value of the

magnetic flux F calculated on the basis of Stokes theorem, as defined above.

However, this gauge transform does not allow us to cancel the external vector

potential. This statement is in sharp contrast with, and even contradicts, what is

usually claimed in the available literature. Indeed, Helmholtz decomposition of

the vector potential A ¼ Ak þ A? shows that only the longitudinal component

Ak is modified in this process:

A0k ¼ rf Ak ¼ 0 A0? ¼ A? ¼ �r^ r2
0

2
lnðrÞB0

� �
ð233Þ
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As a result, the condition B? ¼ r^ A? ¼ 0 does not necessarily imply that the

vector potential A? derives from a scalar potential, as proved by the definitions

given above. Indeed, one can always define a longitudinal field Ak ¼ rf where

Ak ¼ A?. This potential is written as f ¼ r2
0B0y=2, knowing that

�py ¼ arctanðy=xÞp when B0 is directed toward the z axis. However, the scalar

potential f is not a true potential since the circulation of Ak on a close curve C

encircling the origin is not null. This results in the fact that the f function possess

a singularity on the negative part of the x axis. As a consequence, a gauge

transform using this potential is not possible since it would imply a change in the

value of the magnetic field.

The absence of magnetic monopole implies the conditions r � B ¼ 0 and

Bk ¼ �rw ¼ 0, which are consistent with the relations given above, since

Bk ¼ r^ Ak ¼ 0. However, as with the A vector potential, the equality

B? ¼ Bk ¼ �rw 6¼ 0 enables us to define a scalar potential w that can be

calculated on the basis of Biot–Savart law for a filiform (filament-shaped)

circuit

B?ðrÞ ¼
I

c
r^

ð
C

dr0

R
¼ I

c

ð
C

1

R3
dr0 ^ R ð234Þ

knowing that dw ¼ rw � dr ¼ �Bk � dr, we obtain

dw ¼ I

c

ð
C

R

R3
� ðdr0 ^ drÞ ¼ I

c
d� ð235Þ

where the variation of solid angle d� ¼ r� � dr observed by an observer at the

point r moving along the distance dr is:

d� ¼
ð

dS0

R

R3
� dS ð236Þ

If the observer, located at point r, observes the curve C as a solid angle �, the

variation of solid angle d�, as illustrated in Fig. 7, can be calculated by

assuming this variation to be sustained by the lateral surface dS0 resulting from a

translation dr00 ¼ �dr of the curve C where the surface element dS0 has the

value dS ¼ dr00^ dr0.
The problem of gauge transform also surfaces when Schrödinger’s equation

is employed to study the Aharonov–Bohm effect. If the transform � ¼ �0e jj is

performed within Schrödinger’s equation:

Ej�h
q�
qt

¼ 1

2m0

�Ej�hr� q

c
A

� �2

�þ q�� ð237Þ
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knowing that F ¼ jc�h=q is an arbitrary function and E ¼ �1, we obtain an

identical equation

Ej�h
q�0

qt
¼ 1

2m0

�Ej�hr� q

c
A0

� �2

�0 þ q�0�0 ð238Þ

provided we define two new potentials satisfying the aforementioned gauge

transform:

�0 ¼ �� E
c

qF

qt
A0 ¼ A þ ErF ð239Þ

However, the F function is no longer arbitrary anymore if the gauge

transform defined above is employed outside the solenoid to associate potentials

before �0ðr; 0Þ ¼ 0;A0ðr; 0Þ ¼ 0 and after having connected the magnetic field

source �ðr; tÞ 6¼ 0;Aðr; tÞ 6¼ 0. Indeed, the conditions

� ¼ E
c

qF

qt
A ¼ �ErF ð240Þ

and the gauge transform written above, leaving invariant the electromagnetic

field

E ¼ �r�� 1

c

qA

qt
¼ 0 B ¼ r^ A ¼ 0 ð241Þ

imply the following integral relation:

EFðr; tÞ ¼
ðt

t0

c�ðr; t0Þdt0 �
ðr

r0

Aðr0; t0Þ � dr0 ð242Þ

r

dΩ

dr ′′

δr′

δr

δS′

C

Figure 7. Variation of solid angle viewed at point r for a translation dr00 ¼ �dr of the curve C.
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We observe that the gauge transform is unique and cannot allow us to

eliminate the vector potential outside the solenoid. In addition, the vector

potential A derives from a multiform scalar potential F. This result contradicts

the solenoidal characteristic of the A? ¼ �r^ ½r2
0 ln ðrÞB0=2� vector potential.

Henceforth, the gauge transform given above represents nonobservable sta-

tionary waves in vacuum since the Lorentz gauge:

1

c

q�
qt

þr � A ¼ 0 ð243Þ

together with definitions (238), imply the following wave equation

�F � 1

c2

q2F

qt2
¼ 0 ð244Þ

which indeed admits standing wave solutions in vacuum.

The first interpretation of the Aharonov–Bohm effect is based on the system

of equations given by Olariu and Popescu [55, p. 423] where charge density and

current density are suppressed:

r � E ¼ 1

c2

q2�

qt2
��� ð245Þ

1

c

qE

qt
�r^ B ¼ �A � 1

c2

q2A

qt2
ð246Þ

In order to obtain these equations, Olariu relies on Noerdlinger’s works [68],

which explained the Aharonov–Bohm effect as a nonlocal effect in time, rather

than a nonlocal effect in space, of the electrical field generated by electrons

belonging to the solenoid. In the presence of an electric field, the j phase defined

in Eq. (240) over a C loop encircling the solenoid, is not a total differential

anymore. Indeed, using Faraday’s law, we can calculate the work performed by

the electric field on beamed electrons circulating along the fixed loop C at a given

instant:

EðtÞ ¼ q

ð
C

E � dr ¼ � q

c

d

dt

ð
C

A � dr ð247Þ

The work performed by the electric field between two different instants would

produce a phase shift having the following value:

�j ¼ 1

�h

ðt1

t0

EðtÞ dt ð248Þ
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which can be rewritten as

�j ¼ � q

c�h

ð
C

½Aðr; t1Þ � Aðr; t0Þ� � dr ð249Þ

However, we must cast some doubts on the pertinence of an Aharonov–

Bohm effect explained as a nonlocal action in time of the electric field applied

to beamed electrons. Indeed, in an experiment performed by Bayh [58],

electrons propagate from source to film, where they impact along a distance

of the order of 1 m in about 10 ns. About 1000 electrons arrived at the detector

each second; therefore, at any given moment during the experiment, there is

likely to be only electron traversing the apparatus. This implies that each

electron is influenced by the action of the electric field for a very short period of

time only with no possible coherent relationship with another electron. More-

over, the shift of the interference pattern in time generated by the entire

population of electrons in Bayh’s experiment, happens in a much longer

timeframe than the time taken by a single electron to travel from the source

to the film. Therefore, the preceding calculation, which applies for at least two

electrons, each one passing one side of the loop C, must be calculated on a time

lapse of T ¼ t1 � t0, which is far from greater than the time taken by an

electron to traverse the zone where the solenoid is located.

In an interferometry experiment, electron beams incident through the

medium’s stationary scalar waves, interact with electrons located in the

photographic plate itself. This ‘‘original’’ interference process is observed by

the interference pattern recorded on the plate. The same situation occurs for

electrons contained in the solenoid (whether supraconducting or not). The j
phase of a wave on a loop C is defined at a given instant for a given path

direction in space. As a consequence, the phase of the waves associated with

wavepackets of electrons circulating through the solenoid (or on its surface for a

supraconducting solenoid), is modified when a current appears in the solenoid.

By virtue of the superposition principle, this must result in a shift of the

interference pattern, as illustrated by Bayh’s experiment, and in the appearance

of an electric field that can be null locally in space at a given instant, but cannot

be permanently null because the potentials are time-dependent. The electric

field we alluded to above can also be interpreted as resulting from a Sagnac-like

effect [69, p. 482] for waves circulating in opposite directions over the loop C.

In addition, we can underline that there also exists an analogy between the

phase and Feynman’s propagator as far as the interpretation of the Aharonov–

Bohm effect is concerned.

In a wave theory of matter and fields, completely isolated systems or ‘‘free’’

particles shall never be considered. Indeed, two kinds of forces are known to

exist in a medium: external forces and internal forces [70]. Therefore, if we
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modify locally in spacetime the equilibrium of stationary waves in the solenoid,

the resulting imbalance will be redistributed through the entire spacetime

continuum because of the propagation of waves, and as such, will influence

the behavior of waves associated to the two electron beams.

Therefore, questioning the physical significance of potential is not relevant

here. The new formulation of Maxwell’s equations [20–23], where potentials

are directly coupled to fields clearly indicates that potentials, play a key role in

particle behavior. To make a long story short, the difference in nature between

potentials and fields stems from the fact that potentials relate to a state of

equilibrium of stationary waves in the medium usually nonaccessible to an

observer (except when potentials are used in a measurement process of the

interferometric kind, at a given instant in time). Conversely, fields illustrate a

nonequilibrium state of the medium as an observable progressive electromag-

netic wave, since this wave induces the motion of material particles.

A second interpretation of the Aharonov–Bohm effect was devised by Boyer

[65,66], who used matter waves associated to moving electrons. Waves coming

from each slit interfere with a phase shift �j ¼ 2pd siny=l, where d is the

distance between two slits. If P is the impulse of an electron in the beam, the

de Broglie relation gives us P ¼ 2p�h=l. This results in the fact that the phase

difference can be written in the form �j ¼ Pd siny=�h and must be equal to the

phase difference associated with the magnetic flow F:

�j ¼ P

�h
d siny ¼ q

c�h
F ð250Þ

We notice that the deflexion angle y associated with the motion of the

interference pattern does not depend on Planck’s constant, and that this angle

depends on classical values, particularly on the magnetic field of the solenoid

through the expression of the flow.

Finally, some authors [71–75] proposed an interpretation of the Aharonov–

Bohm effect based on the interaction between the electrons of the beam and

electrons of the solenoid. The Aharonov–Bohm effect looses its mystery if we

acknowledge that Newton’s third principle is transgressed here. Indeed, if

electrons within the solenoid cannot act on electron of the beams, electron

beams can act on the electrons of the solenoid, by means of the momentum

equations [70]

d

dt

ð
Vf ðtÞ

ðrmf Uf þ PfsÞdV ¼ �
ð

Vf ðtÞ
r � ðT

$
fs � Uf PfsÞdV ¼ 0 ð251Þ

d

dt

ð
VsðtÞ

ðrmsUs þ Psf ÞdV ¼ �
ð

VsðtÞ
r � ðT

$
sf � UsPsf ÞdV ¼ 0 ð252Þ
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where indices f and s, respectively, refer to electrons from the beam and electrons

from the solenoid. In addition, we use the following definitions:

Pij ¼
1

4pc
ðEi ^ BjÞ f ij ¼ riEj þ

1

c
Ji ^ Bj ð253Þ

T
$

ij ¼
1

4p
1

2
ðEi � Ej þ Bi � BjÞ I

$
� ðEiEj þ BiBjÞ

� �
ð254Þ

Since the electromagnetic field generated by electrons within the solenoid is null

outside the solenoid, a new set of conditions follows:

f fs ¼ 0 Pfs ¼ 0 T
$

fs ¼ 0 ð255Þ

while the corresponding values inside the solenoid all differ from zero. This

results in the violation of Newton’s third principle, since we have

f fs ¼ 0 6¼ �fsf 6¼ 0. As a consequence, the magnetic field generated by electrons

located outside the solenoid must modify the velocity Ues of electrons inside the

solenoid. However, for a good conductor, current density Js inside the solenoid is

given by the relation Js ¼ resUes þ risUis ¼ resV þ rUis � resV. Since the

current density Js must remain constant if electrons outside the solenoid are

acted on by a null Lorentz force, we must infer that the relative velocity

V ¼ Uis � Ues must remain constant. This implies that the motion of the

solenoid in the opposite direction, as underlined by Herman [73]. This results

in a phase modification of matter waves in the medium if the wavefunction

associated to electrons inside the solenoid can penetrate the region where the

electromagnetic field is null. Even in the case when this penetration is excluded,

initial and boundary conditions on the boundary of the solenoid must be taken

into account.

However, an objection against this line of reasoning, quite similar to the one

already mentioned concerning the nonlocal theory of electric field, can be

formulated. More specifically, electrons from the beam act on electrons from the

solenoid for a very short period of time only. In addition, the shift of the

interference pattern is not modified during the period of time during which

measurement is performed but rather is fixed by initial constant current

circulating in the solenoid. The fact that the interference pattern is ‘‘locked’’

in the case of a constant magnetic field and recovers its initial position when the

current feeding the solenoid is turned off, confirms the preceding claim. As a

consequence, it may be assumed that the displacement of the interference

pattern is induced by the mutual interaction of electrons from the solenoid and

electrons from the photographic plate, since the presence of a magnetic field

inside the solenoid modifies the topology of space. Therefore, we observe a
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modification of initial conditions in the medium that can be calculated by means

of an hydrodynamical model related to Schrödinger’s equation.

We recall here that, in quantum mechanics, each dynamic variable used in

classical mechanics is associated with a linear hermitian operator. As a

consequence, energy and momentum of a particle placed in an external potential

A;� ¼ EP=q, will respectively be associated to the following operators:

E ) jE�h
q
qt

P ) �jE�hr� q

c
A ð256Þ

This association allows us to recover Schrödinger’s equation on the basis of

the following dispersion law

�E�ho ¼ 1

2m0

ð�hkÞ2 þ EP ð257Þ

by replacing the values by corresponding operators applied to the � function:

jE�h
q�
qt

¼ 1

2m0

�jE�hr� q

c
A

� �2

�þ q�� ð258Þ

We emphasize that no physical nor mathematical justifications are given

concerning the meaning of the complex operators depending on Planck’s

constant. The equation given above becomes after development of the operator:

jE�h
q�
qt

¼ � �h2

2m0

��þ jE�hq

m0c
A � r�þ jE�hq

2m0c
r � A þ q2

2m0c2
A2 þ q�

� �
�

ð259Þ

A hydrodynamical representation of the preceding equation can be found along

the same lines as those defined by Madelung, stating � ¼ �e jj where the

quantities �ðr; tÞ and jðr; tÞ are real functions. This results in the following

relations:

q�
qt

¼ q�
qt

þ j�
qj
qt

� �
e jj ð260Þ

�� ¼ ½��� ðrjÞ2�þ jð2r� � rjþ��jÞ� e jj ð261Þ

After having substituted the preceding relations into the Schrödinger’s

equation (259), we split this equation into its real and imaginary parts, so as
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to obtain a nonlinear coupled system of equations:

q�2

qt
þr � �2

m0

E�hrj� q

c
A

� �� �
¼ 0 ð262Þ

E�h
qj
qt

þ 1

2m0

E�hrj� q

c
A

� �2

� 1

2

�h2

m0

��

�
þ q� ¼ 0 ð263Þ

We also know that the equations given above can be interpreted as being those of

a fluid whose density is r ¼ �2, whose local momentum is written as

P ¼ m0U ¼ E�hrj� qA=c. Knowing that J ¼ rU, the first equation turns into

an equation of electrical continuity:

qr
qt

þr � J ¼ 0 ð264Þ

Using the definition J ¼ ���U, the current density J can also be written as

J ¼ E�h
2m0

jð�r�� ���r�Þ � q

m0c
���A ð265Þ

If we take the gradient of the phase equation (263), we obtain

qP

qt
¼ qE þr �h2

2m0

��

�
� 1

2m0

P2

� �
ð266Þ

This results in the equation of motion

dP

dt
¼ qE þ q

c
U ^ B �rEQ ð267Þ

where the classic potential EP ¼ q� is completed by another quantum potential

whose expression is EQ ¼ ��h2��=2m0�.

For a wavefunction of the form � ¼ �e jj, the approach chosen above leads

us to define the following values:

E�hrj ¼ m0U þ q

c
A ¼ b ð268Þ

E�h
qj
qt

¼ � 1

2m0

U2 � q�þ 1

2

�h2

m0

��

�
¼ a ð269Þ

where the potential functions � and A in the preceding relations are associated

with electrons from the solenoid. For the wavefunction � to recover the same
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value after a complete rotation around the solenoid r ¼ r0, we must have

E�hjðr; tÞ ¼
ðt

t0

aðr; t0Þdt0 þ
ðr

r0

bðr0; t0Þ � dr0 ¼ n2p�h ð270Þ

where n is an integer number.

By substituting the b definition (268) into Eq. (270), we get the following

integral relation:

ðt

t0

a dt0 þ
ðr

r0

m0U � dr0 þ q

c

ð
S

B � dS ¼ n2p�h ð271Þ

If the velocity U of an electron within the beam is constant outside the

solenoid, the variation of the vector potential A as a function of time in the

medium, and thus also in the solenoid, will induce a modification of the phase,

as indicated by the equations written above. This will produce a modification of

the boundary conditions on the boundary of the solenoid for the quantities a and

b. We must also stress that the modification of the vector potential outside the

solenoid is generated by either an external or an internal source feeding the

solenoid. This can explain the existence of the Aharonov–Bohm effect for

toroidal, permanent magnets. The interpretation of the Aharonov–Bohm effect

is therefore classic, but the observation of this effect requires the principle of

interference of quantum mechanics, which enables a phase effect to be

measured.
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I. INTRODUCTION

As is well known in classical electromagnetics, the fields described by the

Maxwell equations can be derived from a vector potential and a scalar potential.

However, there are various forms that are possible, all giving the same fields.

This is referred to as gauge invariance. In making measurements at some point
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it is the fields and perhaps current and charge densities that one considers.

Potentials are quantities inferred (within the ambiguity of gauge invariance) by

integration of the fields along appropriate paths.

In quantum electrodynamics (QED) the potentials asume a more important

role in the formulation, as they are related to a phase shift in the wavefunction.

This is still an integral effect over the path of interest. This manifests itself in the

phase shift of an electron around a closed path enclosing a magnetic field, even

though there are no fields (approximately) on the path itself (static conditions).

As can be shown the result of such an experiment is gauge-invariant, allowing

the use of various choices of the vector potential (all giving the same result).

Generalizing this question somewhat, one can explore the degree to which

one can measure vector and scalar potentials, including the implications of

gauge invariance [6]. Assuming that there are sources (current and/or charge) in

some region of space away from the observer, in what sense can the potentials

be distinguished? In particular, one can compare static and dynamic conditions.

Under static conditions, it is possible to have zero fields in the vicinity of the

observer (away from the source region), while having nonzero potentials. Two

different antennas, one emphasizing the vector potential and the other the scalar

potential (Lorenz gauge), are discussed in which the same fields are away from

the source region.

Then we go on to consider an alternate way of viewing the role of the vector

potential in quantum electrodynamics (QED) [7]. The closed-path line integral

of the vector potential can be related to the same integral of the time integral of

the electric field. Alternately, by looking at a perfectly conducting loop on this

path, we can have a static current proportional to the vector potential or asso-

ciated magnetic flux (i.e., no additional time integral).

II. ELECTROMAGNETIC FIELDS AND POTENTIALS

In standard form we have the Maxwell equations

r�~E ¼ � q~B
qt

; r� ~H ¼~J þ q~D
qt

ð1Þ

and constitutive relations ðfor linear mediaÞ
~D ¼ e

$ 	~E; ~B ¼ m$ 	~H ð2Þ

where e
$ ¼ permittivity ¼ e0 1

$
for free space

m$ ¼ permeability ¼ m0 1
$

for free space

Z0 ¼ ½m0=e0� ¼ wave impedance of free space

c ¼ ½m0e0�1=2 � speed of light

1
$

¼~1x
~1x þ~1y

~1y þ~1z
~1z � dyadic identity
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The divergence equations are not independent but can be derived from (2.1)

under zero initial conditions

r 	 ðr�Þ � 0; r 	~B ¼ 0 ðno magnetic chargeÞ

r ¼~J ¼ � q
qt
r 	 D � � qr

qt
ðequation of continuityÞ

ð3Þ

The fields can be derived from the well-known scalar and vector potentials in free

space [8,14,16,17,23,24,26] as

~E ¼ � q~A
qt

�r�; ~H ¼ 1

m0

r�~A ð4Þ

As is well known, these potentials are not unique since one can add a potential w
as

~A0 � ~A �rw; �0 � �þ qw
qt

ð5Þ

giving the same result in (4). Different choices of w correspond to different gauge

conditions.

The most common form taken uses the Lorenz potentials that satisfy the

Lorenz gauge:

r 	~A þ c�2 q�
qt

¼ 0 ð6Þ

These are taken as retarded potentials (outgoing waves for zero initial con-

ditions) with explicit forms

~Að~r; tÞ ¼ m0

ð
V

~J ~r 0; t � j~r �~r 0j
c

� �

4pj~r �~r 0j dV 0; �ð~r; tÞ ¼ 1

e0

ð
V

r ~r 0; t � j~r �~r 0j
c

� �

4pj~r �~r 0j dV 0

ð7Þ

This form has both potentials propagating away from the source at speed c and is

relativistically invariant, and for this reason is often preferred.

A related potential is the Hertz potential

~�ð~r; tÞ � c2

ðt

�1
~Að~r; t 0Þdt 0 ð8Þ
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for which we have

~E ¼ �c�2 q2

qt 2
~�þrðr 	 ~�Þ; ~H ¼ e0r� q

qt
~�

� �
ð9Þ

However, this is basically the same as ~A, since in complex frequency domain

~~�ð~r; sÞ ¼ c2

s

~~Að~r; sÞ; �� Laplace transform ðtwo-sidedÞ ð10Þ

s � �þ jo � Laplace transform variable or complex frequency

Note that the retarded potentials can be expressed as a single vector potential via

(6) as

�ð~r; tÞ ¼ �c2

ðt

�1
r 	 ~~Að~r; t 0Þdt 0 ð11Þ

with zero initial conditions. Thus we can define what we might call the electric

gauge condition for which

�eð~r; tÞ ¼ 0

~Aeð~r; sÞ¼ ~Að~r; sÞþ
ðt

�1
r�ð~r; t 0Þdt 0 ¼ ~Að~r; tÞ � c2

ðt

�1

ðt 0

�1
rðr 	~Að~r; t 00ÞÞdt 00dt 0

~E ¼ � q~Ae

qt
; ~H ¼ 1

m0

r�~Ae ð12Þ

Note that this is also a retarded potential propagating outward at speed c.

Another convenient choice is the Coulomb gauge for which we have

[14,17,23]

r 	~Ac ¼ 0; �cð~r; tÞ ¼ 1

e0

ð
V

rð~r; tÞ
4pj~r �~r 0j dV 0

~Acð~r; tÞ ¼ ~Að~r; tÞ þ
ðt

�1
½r�ð~r; t 0Þ � r�cð~r; t 0Þ�dt 0 ð13Þ

~E ¼ q
qt
~Ac �r�c; ~H ¼ 1

m0

r�~Ac

However, note that �c (and hence ~Ac) now ‘‘propagates’’ with infinite speed, but

that the fields still propagate with the speed of light c.
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III. POTENTIALS AND QUANTUM MECHANICS

In formulating quantum electrodynamics (QED), it has been found convenient to

introduce the electromagnetic interaction with charged particles via the potentials

instead of the fields. Consider a particle of charge q traveling on some path P

from ~r1 to ~r2. Then the magnetic change in phase of the wavefunction is just

[12,15]

fh ¼ q

�h

ð
P

~Að~r; tÞ 	 d~l ð14Þ

where �h ¼ h

2p
¼ 1:05443 � 10�34 joule-seconds

qe � electron charge ’ �1:60206 � 10�19 ðCoulombsÞ
h � Planck’s constant

and the electric change in phase is only

fe ¼
�q

�h

ðt

�1

ð
P

r�ð~r; t 0Þ 	 d~l dt 0 ¼ �q

�h

ðt

�1
½�ð~r 2; t 0Þ � �ð~r 1; t 0Þ�dt 0 ð15Þ

where the total change in phase is only

f ¼ fh þ fe ð16Þ

Combining these expressions, we have

f ¼ q

�h

ð
P

½~Að~r; tÞ �
ðt

�1
r�ð~r; tÞdt 0� 	 d~l ð17Þ

This is interpreted in the sense of changing a quantum wavefunction c in the

form

c ! e jfc ð18Þ

Note that if the path is closed, we have

~r 2 ¼~r 1

f ¼ q

�h P

~Að~r; tÞ 	 d~l ¼ q

�h

ð
S

½r �~Að~r; tÞ� 	 d~S ¼ q

�h

ð
S

~Bð~r; tÞ 	 d~s ð19Þ
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with P the boundary of S and the unit normal~1S taken in the usual right-handed

sense. Note that this is independent of the scalar potential and of the gauge

chosen since ~A enters via the curl. This phase shift is the basis of the shifting of

the diffraction pattern of electrons from a common source going through two slits

with a confined magnetic field between the slits (Aharonov–Bohm experiment).

For later use, as indicated in Fig. 1, if we have two paths P1 and P2 from~ra to

~rb, there are in general two different phase changes given by (17). For the same

wavefunction c at ~ra for particles traversing both paths we have at ~rb wave-

functions

cn ¼ e jfnc for path Pn ð20Þ

The difference in phase is the closed-path integral

f1 � f2 ¼ q

�h

ð
C

~Að~r; tÞ 	 d~l ¼ q

�h

ð
S

½r �~Að~r; tÞ� 	 d~lS dS

¼ q

�h

ð
S

~Bð~r; tÞ 	~lS dS ¼ q

�h
�mðtÞ

�mðtÞ � magnetic flux through S (with boundary CÞ
~1S � unit normal to S ð21Þ

Note that quantum phase is not a physical observable (at least in current

formulations). The observable is cc� or jcj2. If, however, we have two (or more)

r a

E =  − ∇Φ −

r b

1S

B = ∇ × A P1P2

C = P1U (−P2)
= boundary of S

∂ A
∂t

→ →
→ →

→

→

→

Figure 1. Paths for charged particle.
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quantum wavefunctions, such as c1 and c2 at ~rb, we obtain interference at ~rb

from the relative phase with appropriate normalization via

jc1 þ c2j2 ¼ je jf1 þ e jf2 j2jcj2 ¼ 4 cos2ðf1 � f2Þjcj2 ð22Þ

where the phase difference, as in (21), is the operative parameter. Note that if P1

and P2 become the same, then �m ¼ 0, and there is no phase difference. The

absolute phase at~rb can be made whatever one wishes by a gauge transformation

involving an arbitrary scalar potential, but this has no effect on the phase diffe-

rence.

It is also possible to have this phase difference with negligible electric and

magnetic fields on C. It is essential that there be a magnetic field and associated

flux �m passing through S. A solenoid (with current) or magnetic materials

(permanent magnet) can be used to confine the magnetic fields away from C.

However, as we shall later see (Section V), in setting up such a field, we have

�mðtÞ ¼ �
C

ðt

�1
~Eð~r; t 0Þdt0

� �
d~l ¼

C

~Að~r; tÞd~l;

�mð�1Þ ¼ 0 ðinitial conditionÞ
ð23Þ

Thus, the phase difference is related to the time integral of the electric field (the

electric impulse) on the contour. At some time t the electric field (or its contour

integral) can be zero, while the corresponding impulse (time integral) is non

zero. What some might term action at a distance (from the magnetic field away

from C) is mathematically equivalent to action from a previous time (when the

electric field was present on C), assuming zero initial conditions.

Electron motion is more generally formulated in a form of the Schrödinger

equation, including the spin in the presence of external fields known as the Pauli

equation. This equation is gauge invariant in the sense that a transformation as

in (5) also changes the quantum wavefunction c as

c0 ¼ e�ðq=�hÞwc ð24Þ

leaving the Pauli equation unchanged [11]. Noting that cc� or jcj2 is the

physical observable, this phase change is not important. In particular, one can

choose

w ¼ �
ðt

�1
�ð~r; t 0Þdt 0 ð25Þ

and we have the electric gauge in (12) in which only the vector potential ~Ae

appears. This can be readily computed from the usual Lorenz vector and scalar
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potentials from (7) and (12). Other choices, such as the Coulomb gauge, can also

be used where convenient.

Another derivation of gauge invariance concerns the time-independent

Schrödinger equation [19]. Here it is shown that a zero-curl vector potential can

be absorbed into the scalar potential with no change in the observables, that is

only a phase change c in of the form (24). This is consistent with the previous

discussion in that it is only the divergence-free part (nonzero curl) of the vector

potential that is associated with the measurable effect of an electron path

enclosing a magnetic flux. Note that r�~A is gauge-invariant, and this is the

part producing the measurable effect.

In formulating QED a least-action principle involving a Lagrangian is often

used [9,18,20]. This involves the potentials in various forms. Not only is

relativistic invariance (Lorenz potentials) desired, but also gauge invariance. At

least in the current state of QED, gauge invariance is included as a fundamental

part [21,22].

IV. IMPLICATIONS OF ZERO ELECTRIC AND MAGNETIC
FIELDS AWAY FROM SOURCES

Consider a volume (simply connected) Vs with surface Ss of finite dimensions

containing the sources as indicated in Fig. 2. The observer at~r is assumed away

from the sources:

~r =2Vs

[
Ss ð26Þ

Suppose that ~E and ~H are zero for all times at the observer. Then, from (12), we

have

~Aeð~r; tÞ ¼ ~Aeð~r;�1Þ ¼ constant vector; r�~Aeð~r; tÞ ¼ r �~Aeð~r;�1Þ ¼~0

ð27Þ

Source
coordinates

Observer
coordinates

Source volume

Vs

r ′

r

Ss

J,ρ

→

→

→

Figure 2. Sources confined to a simply connected volume of finite linear dimensions.
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as the only solution, a zero-curl constant vector for all time. Setting ~J and r
initial conditions to zero, we have

~Aeð~r; tÞ ¼~0 for all t ð28Þ

as the only solution. In terms of the Lorenz form of the potentials, this gives

~Að~r; tÞ þ
ðt

�1
r�ð~r; tÞdt 0 ¼~0 ð29Þ

Since the initial conditions on ~J and r are zero, then

~Að~r;�1Þ ¼ 0; �ð~r;�1Þ ¼ 0 ð30Þ

and constant potentials in this form are also excluded.

This can also be considered in complex-frequency form for which we find

~~Aeð~r; sÞ ¼~0 for all s;
~~Að~r; sÞ þ 1

s
r�ð~r; sÞ ¼ 0 for all s ð31Þ

and an appropriate limit for s ! 0.

V. CHANGE FROM ONE STATIC POTENTIAL TO A SECOND
STATIC POTENTIAL

Let us now consider an initial set of static potentials (subscript 1) followed by a

second set (subscript 2) with sufficient time between to allow static conditions to

be achieved (at least approximately). Then, without loss of generality, consider

zero initial conditions

~Ae1
ð~rÞ ¼~0; ~A1ð~rÞ ¼~0; �1ð~rÞ ¼ 0 ð32Þ

Actually, for these potentials, this can be taken in a retarded time sense, that is,

zero for

t < t1 þ
r

c
ð33Þ

since they are formulated in retarded in retarded time via (7). Note that the finite

linear dimensions of Vs allow t1 to be adjusted for propagation through Vs.

Next, turn on the sources~J and r, have them reach constant values~J2 and r2

after some time t2 less transit times across Vs. Then, in a retarded time sense for

t > t2 þ
r

c
ð34Þ
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we have ~A2 and �2 constant with

~Ae2
ð~rÞ ¼ ~A2ð~rÞ þ

ðt2

t1

r�ð~r; t 0Þdt 0 ð35Þ

From (7) we have constant ~A2 and �2. However, if we constrain that the electric

field be zero at this time, then we have

~E2ð~rÞ ¼ �r�ð~rÞ ¼ 0 ð36Þ

allowing only a uniform �2 (independent of ~r). This is inconsistent with (7)

unless

�2 ¼ 0 ð37Þ

which, in turn, implies that r2ð~rÞ is constrained to a distribution with no exterior

potential. A set of charges inside a constant potential surface (zero potential)

such as a conducting cavity with requisite resulting surface charge density on the

interior of the surface is an example of such a charge distribution. Furthermore,

we have, after t2

r�~Ae2
ð~rÞ ¼~0 ¼ r�~A2ð~rÞ ð38Þ

since we also assume that

~H2ð~rÞ ¼~0 ð39Þ

Then, for both Lorenz and electric gauges (and others such as Coulomb as well),

the change from initial (1) to final (2) conditions is characterized by (35).

Referring to (4), we can see that this change is characterized by the electric

impulse

ðt2

t1

~Eð~r; t 0Þdt 0 ¼ �~Ae2
ð~rÞ ¼ �~A2ð~rÞ �

ðt2

t1

r�ð~r; t 0Þdt 0 ð40Þ

subject to (36) and (38) as conditions on the potentials. So, while the fields are

zero before t1 and after t2, they are not in general zero in between these two

times. The electric impulse is characterized by ~Ae2
(i.e., the change in ~Ae from

initial to final conditions). As indicated by (35), this can be expressed in various

gauges, as the electric impulse is gauge-invariant.
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VI. POTENTIALS FROM AN ELECTRIC DIPOLE

Now, consider how one might realize the conditions set forth in Section V.

Consider first an elementary z-directed electric dipole at the coordinate origin in

the source region as

~pðtÞ ¼ pðtÞ~1z ð41Þ

This can be regarded as elementary charges �QðtÞ placed at z ¼ �d=2 with the

limit taken as d ! 0 with the product

pðtÞ ¼ QðtÞd ð42Þ

constant.

The usual cylindrical and spherical coordinates are related to the cartesian

coordinates via

x ¼ �cosðfÞ; y ¼ �sinðfÞ; z ¼ r cosðyÞ; � ¼ r sinðyÞ ð43Þ

The relevant dyadics are

~1 �~1x
~1x þ~1y

~1y þ~1z
~1z � identity

1
$

r � 1
$
�~1r

~1r ¼~1y~1y þ~1f~1f � transverse identity ð44Þ

The Lorenz potentials for this case are from Ref. 3

~~Að~r; sÞ ¼ e�gr m0

4pr
s ~~pðsÞ; g � s

c

~�ð~r; sÞ ¼ e�gr s

4pcr
þ 1

4pr 2

� �
~1r 	 ~~pðsÞ

g ¼ s

c
� propagation constant

ð45Þ

and the fields are

~~Eð~r; sÞ ¼ e�gr �m0

4pr
s2 1

$
r þ Z0

4pr2
s 3~1r

~1r � 1
$h i

þ 1

4pe0r3
3~1r

~1r � 1
$h i� �

	 ~~pðsÞ

~~Hð~r; sÞ ¼ e�gr �1

4pcr
s2 � 1

4pcr2
s

� �
~1r � ~~pðsÞ ð46Þ
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as these are related by (4). Including the electric gauge as in (12), we have

~~Eð~r; sÞ ¼ �s
~~Að~r; sÞ � r�ð~r; sÞ ¼ �s

~~Aeð~r; sÞ

~~Hð~r; sÞ ¼ 1

m0

r� ~~Að~r; sÞ ¼ 1

m0

r� ~~Aeð~r; sÞ
ð47Þ

So the electric gauge vector potential is readily expressed in terms of the electric

field as in (46).

In changing from one static potential to a second, Section V gives this in

terms of the electric impulse

ðt2

t1

~Eð~r; t 0Þdt 0 ¼ �~A2ðrÞ �
ðt2

t1

r�ð~r; t 0Þdt 0 ¼ �~Ae2
ð~rÞ ð48Þ

where zero initial conditions are assumed, and hence zero initial electric dipole

moment. From (46) and (47) we have

�~Ae2
ð~rÞ ¼

ðt2

t1

~Eð~r; tÞdt 0 ¼ 1

4pe0r3
3~1r

~1r � 1
$h i

	
ðt2

t1

~pðt 0Þdt 0 ð49Þ

now with

lim
t!1

~pðtÞ ¼~0 ð50Þ

or zero final condition for the electric dipole moment, with nonzero complete

time integral.

In terms of the Lorenz potentials, since there is zero current and charge at

late time, we have

~A2ð~rÞ ¼~0; �2ð~rÞ ¼ 0

ðt2

t1

r�ð~r; t 0Þdt 0 ¼ ~~Ae2
ð~rÞ ¼ 1

4pe0r3
½3~1r

~1r � 1
$
� 	
ðt2

t1

~pðt 0Þdt 0
ð51Þ

So both Lorenz potentials are zero for late time (as well as initially), but

are, of course, nonzero for intermediate times. The electric gauge vector

potential is, however, nonzero at late times and is the negative of the electric

impulse.
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VII. LORENZ VECTOR POTENTIAL WITHOUT SCALAR
POTENTIAL: EQUIVALENT ELECTRIC DIPOLE

Now consider the case of no scalar potential (Lorenz gauge) for all time. This

implies that outside Vs

�ð~r; tÞ ¼ 0; ~Að~r; tÞ ¼ ~Aeð~r; tÞ

r 	~Að~r; tÞ ¼ 0 ¼ r 	~Aeð~r; tÞðt2

t1

~Eð~r; tÞdt 0 ¼ r 	~Ae2
ð~rÞ ¼ ~A2ð~rÞ

ð52Þ

For simplicity, one can take

rð~r; tÞ ¼ 0 ð53Þ

consistent with the preceding equations, although as discussed before, there are

special cases of nonzero r which produce no fields outside Vs.

There are various forms that ~J can take with

r 	~Jð~r; tÞ ¼ 0 ð54Þ

One way to synthesize such divergenceless current distributions is to think of the

various ways to make closed conducting loops. In a DC (direct-current, i.e., low-

frequency) sense there is a static current distribution with no (macroscopic)

charge density. Then take this same current distribution to nonzero frequencies,

either in an approximate sense if the loop is electrically small, or in a more exact

sense by distributing current sources around the loop, all producing the same

current (both magnitude and phase), thereby suppressing more and more exactly

(in the limit of a large number of current sources) any buildup of charge. As the

integrals in (7) make quite clear, a divergenceless current distribution can pro-

duce a vector potential with no scalar potential and hence fields (including

radiated or e�gr=r fields) via (4). One can also say this directly with the dyadic

Green function of free space [25].

An important class of such loops can be referred to as ‘‘field containing

inductors’’ [10]. In this type of structure, the loop is constructed as a solenoid,

which is closed on itself to form a toroid-like structure. Such a doubly connected

surface and higher-order connectedness is also possible. At DC, the structure is

designed to produce no external magnetic field. One can synthesize such

geometries by considering a closed, perfectly conducting, multiply connected

surface with magnetic field inside, but not through the surface. Solving for the

resulting surface current density via the inside tangential magnetic field, one

quantum electrodynamics 623



then constructs this current density (at least approximately) via appropriate

spacing of wires on the selected surface with one or more sources to drive the

resulting loop(s). Note that there are no exterior fields at zero frequency.

As indicaated in Fig. 3, consider the simplest case of such a field-containing

inductor, a body of revolution as a toroid. The cross section of the toroid need

not be circular. It lies on ST and contains the volume VT . With surface current

density ~Jsð~rs; tÞ on ST as indicated, we have the following for zero frequency:

~~Bð~r; 0Þ ¼ m0
~~Hð~r; 0Þ ¼ m0

I

�
for ~r 2 VT

0 for ~r =2 VT

S
ST

8<
:

~~Jð~rs; 0Þ ¼~1Tð~rsÞ � ~~Hð~rs; 0Þ; ðrs on inside of STÞ
~1Tð~rsÞ � outward-pointing normal to ST

ð55Þ

Now we constrain

~~Jsð~rs; sÞ ¼ ~f ðsÞ ~~Jsð~rs; 0Þ ð56Þ

where ~f ðsÞ is some frequency function to be chosen for convenience. This assures

a divergenceless current distribution

rs 	 ~~Jsð~rs; 0Þ ¼ 0 ¼ s~rsð~rs; sÞ ð57Þ

Appendix A considers the response of such a toroidal antenna in reception and

transmission. In reception, we have the open-circuit (OC) voltage from (A.14)

for the electrically small case as

~VOCðsÞ ¼ ~~hVðsÞ 	 ~~E
ðincÞðsÞ; ~~hVðsÞ ¼ �s2~1z� ¼ �2

2 ��2
1

4

wN

c2
ð58Þ

E
B

VT

B

VT

ST

y x

Ce
Se

Js

peq

1T

J s

CL

z

→

→
→ →

→
→

→

Figure 3. Ideal toroidal divergenceless current distribution.
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where the last parameter represents the specific geometry of the antenna as

derived in (A.7) [with N turns and dimensions �2 (outer radius), �1 (inner

radius), and w (height)] for a rectangular cross section. Other cross sections can

be similarly calculated.

In transmission, this type of antenna is described in the electrically small

regime by an equivalent electric dipole moment

~~peqðsÞ ¼
1

2
~hVðsÞ~IðsÞ ¼ �s~1z

~IðsÞ ð59Þ

(where I being the current driving the antenna port) that produces fields

~~Eð~r; sÞ ¼ e�gr � m0

4pr
s2~1r þ

Z0

4pr2
s½3~1r

~1r � 1
$
� þ 1

4pe0r3
s½3~1r

~1r � 1
$
�

� �
	 ~~peqðsÞ

~~Hð~r; sÞ ¼ e�gr � 1

4pcr
s2 � 1

4pr2

� �
~1r � ~~peqðsÞ ð60Þ

provided r is large compared to antenna dimensions.

An interpretation of this equivalent electric dipole is indicated in Fig. 3.

Consider a contour, Ce, say, on a plane of constant f, enclosing a surface Se on

this plane. Define

S 0
T � Se

\
VT ð61Þ

Note that Ce cannot be shrunk to zero without passing through VT since ST is a

multiply connected surface. From the integral form of the first of (1), we have

Ce

~E 	 d~l ¼ � q
qt

ð
Se

~B 	~1Se
ds ð62Þ

where on a plane of constant f

~1Se
¼~1f ð63Þ

By design, ~B is relatively large in VT , but note that ~E can be zero everywhere

outside VT only if there is no time variation, that is, only for a static situation.

This is consistent with (48) due to the factor of s included.

Having the fields from this equivalent dipole, we are in a position to calculate

the potentials from the electric impulse for static initial and final conditions as

defined in Section V. Again we have

�~Ae2
ð~rÞ ¼

ðt2

t1

~Eð~r; t 0Þdt 0 ¼ 1

4pe0r3
½3~1r

~1r �~1� 	
ðt2

t1

~~peqðt 0Þdt 0 ð64Þ
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So we require zero initial and final conditions for~peq just as for~p in Section VI.

From (59) this means that we have the following for the current driving the

toroidal antenna:

I1 ¼ 0 ðinitial conditionÞ; I2 ¼ 1

�
~12 	

ðt2

t1

~peqðt 0Þdt 0 ðfinal conditionÞ ð65Þ

In another form, we have

ðt2

t1

~peqðt 0Þdt 0 ¼ �~1z I2

�~Ae2
ð~rÞ ¼ 1

4pe0r3
½3~1r

~1r � 1
$
� 	~1z� I2

ð66Þ

Now, from (52), we have the following for the Lorenz potentials:

�2ð~rÞ ¼ �1ð~rÞ ¼ 0; ~A1ð~rÞ ¼~0

~A2ð~rÞ ¼ ~Ae2
ð~rÞ ¼ � 1

4pe0r3
3~1r

~1r � 1
$h i

	~1z� I2

¼ � 1

4pe0r3
3~1r

~1r � 1
$h i

	
ðt2

t1

~peqðt 0Þdt 0

ð67Þ

VIII. COMPARISON OF POTENTIALS FOR ELECTRIC
DIPOLE AND TOROIDAL ANTENNA EQUIVALENT

ELECTRIC DIPOLE

Comparing the two cases in Sections VI and VII, let the two cases be the same in

initial and final senses; that is set

ðt2

t1

~pðt 0Þdt 0 ¼
ðt2

t1

~peqðt 0Þdt 0 ð68Þ

Then we have the same electric impulse in both cases. This gives the same

electric gauge vector potential ~Ae2. However, the Lorenz gauge potentials are

quite different. For the electric dipole in Section VI, both~A2 and �2 are zero. For

the toroidal antenna equivalent electric dipole in Section VII, while �2 is zero,~A2

is non zero. How then are these two cases different? Within the gauge condition

(6) they are the same.

As long as we stay in the electrically small region for both antennas and

equate~pðtÞ and~peqðtÞ for all time, we also have the same fields. How, now, can

we, away from the source regions, tell the two cases apart? Is there anything
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inherent in the Lorenz potentials, as distinguished from other potentials, such as

derived from the electric gauge that can be measured to make this distinction?

IX. MAGNETIC FIELD MEASUREMENT BY INTEGRATION
OF ELECTRIC FIELD AROUND A CLOSED PATH

Now we look at an analogy to classical electrodynamics [7]. The basic way to

measure a magnetic field is a loop as indicated in Fig. 4. For simplicity, let this be

a thin conductor on the contour C as indicated with a port (at the loop gap) where

we can define voltage and current with some load taken as a resistance R. The

basic performance for wavelengths large compared to the loop (electrically small

loop) is [10]

VOCðtÞ ¼ ~Aheq
	 q
~BðincÞðtÞ
qt

ðopen-circuit voltageÞ

ISCðtÞ ¼ ~‘heq
	 ~HðincÞðtÞ ðshort-circuit currentÞ

~BðincÞðtÞ ¼ m0
~HðincÞðtÞ (incident magnetic field)

m0
~Aheq

¼ L~‘heq
; L � loop inductance

~Aheq
� equivalent area; ~‘heq

� equivalent length

ð69Þ

1S

A heq,  l heq

I

R

V
− +

C

B
(inc)→

→→

→

→

Figure 4. Basic magnetic-field sensor.
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If the loop is approximately planar, encompassing an area Ah with ~1S perpen-

dicular to this plane, then we have

~Aheq
¼ ~Ah

~‘s; ~‘h ¼ ‘h
~1s ð70Þ

For general complex frequencies (still electrically small), we have

~VðsÞ ¼ R~IðsÞ ¼ sR

R þ sL
~Aheq

	~BðincÞðsÞ ð71Þ

Looking at the open-circuit voltage, we have

VOCðtÞ ¼
d

dt
�ðincÞ

m ðtÞ ¼ �
C

~EðincÞðtÞ 	 d~‘;�ðincÞ
m ðtÞ ¼ Ah

~1S 	~BðincÞðtÞ ð72Þ

So the open-circuit voltage here resembles the phase difference in (21) except for

a time derivative. The short-circuit current takes the form

ISCðtÞ ¼
1

L
~Aheq

	~BðincÞðtÞ ¼ �
ðincÞ
m ðtÞ

L
ð73Þ

Now we have a loop parameter, the short-circuit current, which is proportional to

a magnetic flux without a time derivative, like the phase difference in (21). Of

course, this is now an incident flux that has been excluded by the closed

(perfectly conducting) loop.

The discussion above is in terms of a shorted loop excluding a magnetic flux.

Remaining in a classical context, it is also possible to have such a flux in a loop

(passing through S) in the absence of an incident field by impressing the current

from some source and then short-circuiting the loop gap. For a perfectly con-

ducting loop, the resulting fields on the contour C in Fig. 4 can be zero in such a

steady-state condition; the loop current flows on the surface of the conductor.

Suppose we take a long solenoid (with current flowing) or a permanent

magnet and place it inside the loop in Fig. 4. The resulting magnetic field on C

(after placement) due to the solenoid can be made quite small if the solenoid is

long compared to the loop diameter. This is what one does in a QED sense to

establish the flux between the two paths in Fig. 1. In so doing, one establishes a

current in the perfectly conducting loop. So, phase shift around C in a quantum

sense is like establishing a current in a perfectly conducting loop on C.

X. QUANTIZATION OF MAGNETIC FLUX ENCLOSED
BY A SUPERCONDUCTING PATH

Returning to a quantum view, the short-circuit current in a loop needs to be

quantized in the normal form for a superconducting loop [13]. Basically, one just
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makes the phase difference in (1.5) around a superconducting loop as in Fig. 5

take the form

f1 � f2 ¼ q

�h
�m ¼ 2pn ¼ integer ð74Þ

so that the wavefunction is continuous around the loop. It has also been observed

that the appropriate charge is

q ¼ 2qe ð75Þ

since the superconducting electrons (which are ordinarily Fermi particles)

apparently form bound pairs that act as Bose particles. Noting the negative

electron charge, we have [15].

r�m ¼ � p�h
qe

¼ � h

2qe

’ 2:0677 � 10�15 webers ð76Þ

as the separation of the quantized flux levels. For typical areas, this can represent

a rather small magnetic field, for instance

Ah ¼ 10�4m2

�B ’ 2 � 10�11 ðteslasÞ ð’ 2 � 10�7of earth’s magnetic field)
ð77Þ

Larger areas correspond to even smaller magnetic-field increments.

B

C

I

Φm

→

Figure 5. Flux in superconducting loop.
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XI. CONCLUDING REMARKS

So now we have the question poased in an interesting form. There are two quite

different kinds of antennas, both of which produce electric dipole fields, but

different Lorenz potentials, one emphasizing the vector potential and the other,

the scalar potential. In a classical electromagnetic sense, one cannot distinguish

these two cases by measurements of the fields (the measurable quantities) at

distances away from the source region. The gauge invariance of QED implies the

same in quantum sense.

Note that as discussed in previous sections, under static conditions, these two

antennas give no fields. In going between two static conditions, one can have the

same fields at intermediate times, but a change in the electric impulse, this being

related to a change in the Lorenz vector potential or to a nonzero time integral

of the gradient of the Lorenz scalar potential. However, with no fields, the vector

potential has zero curl, which in a QED sense is not measurable.

One can modify the two-antenna experiment in various ways, if one wishes,

to give other kinds of antennas. For example, one could enclose each antenna in

a conducting shield, perhaps with high permeability as well. One merely

redefines the antenna to include the shield as part of it. Under initial and final

static conditions, the ideal toroidal coil has no external fields and its shield has

no currents, and any residual magnetization is assumed negligible (assumed

linear materials). The static Lorenz vector potential is then the same, although it

may take more time to achieve static conditions due to the required time for the

shield currents and magnetization to decay to zero. The electric dipole inside a

shield has its excitation modified, so that the electric dipole-moment time

history, including the charges induced on the shield have the previously

specified form giving the desired electric impulse. Note that the return of the

exterior charges on the conducting shield, even with charges allowed to remain

on the interior antenna (and shield interior surface as well).

So our choices of the two antennas is not unique for separately emphasizing

the Lorenz vector and scalar potentials. All that is required is for the two to have

the same exterior fields (say, electric dipole fields, or more general multipole

fields) with different potentials (related by the gauge condition). In a classical

electromagnetic sense, these antennas cannot be distinguished by exterior mea-

surements. This is a classical nonuniqueness of sources. In a QED sense, the

same is the case due to gauge invariance in its currently accepted form.

There is also another way to think about how the vector potential, specifically

its curl part, operates in QED. One can envision, on one hand, a static condition

where the phase change of c around a closed path, with no electromagnetic

fields on the path, can be related to ~A. However, to establish this static condition,

there is required a net time integral of ~E along the path (from previous times),

that is, the electric impulse, to establish these new static conditions. An alter-
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native view can have the electric field always zero on the path if a current is

allowed to flow on the path, such as by a perfectly conducting loop. The scatte-

red magnetic field and scattered flux serves to cancel the incident magnetic flux,

and a constant current flows under the new static conditions. This constant

induced current can be likened to the constant quantum phase shift induced and

the resulting shift in the diffraction patterns for, say, electrons, traversing the

two paths in Fig. 1. Current in a perfectly conducting loop is then a classical

analog of this quantum effect.

Going a step further, a perfectly conducting loop can be replaced by a

superconducting loop, a quantum device. This refines the result by introducing a

quantization of the flux enclosed by the loop. This, of course, is not the same as

an incident flux interacting with a loop that has been superconducting from

t ¼ �1, but assumes an initial magnetic field present before the loop is made

superconducting.

APPENDIX A: THE TOROIDAL ANTENNA

To analyze the properties of the toroidal antenna, consider it first as a receiver. As

in Fig. 6, let the antenna be a body of revolution with respect to the z axis with the

usual cordinates. With the incident electric field ~EðincÞ taken initially parallel to

the z axis, let the antenna be electrically small. Neglect the field distortion due to

the antenna conductors, or equivalently consider the antenna (as in Section VII)

as a set of distributed sources in space specified by a surface current density ~Js

with

~Jsð~rs; tÞ 	~1f ¼ 0 ðA:1Þ

From

C

~H 	 d~‘ ¼ q
qt

ð
S

~D 	 d~S ðA:2Þ

w Ψ2

Ψ1

Js

E

CL

(inc)

x

Js

~→
~→

~→

Figure 6. Toroidal antenna as a receiver.
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take the contour on constant �; z (a circle), giving

�

ð2p

0

H
ðincÞ
f ð~r; tÞdf ¼ p�2e0

q
qt

EðincÞ
z ðA:3Þ

where~EðincÞ is taken as uniform over the antenna. The average (over f) magnetic

flux density is

B
ðavgÞ
f ¼ m0 H

ðavgÞ
f ¼ �

2
m0 e0

q
qt

EðincÞ
z ðA:4Þ

The magnetic flux in the toroid is just the integral of B
ðavgÞ
f over the toroidal cross

section at constant f, giving a flux (per turn) as

	 ¼ w

ð�2

�1

B
ðavgÞ
f d� ¼ �2

2 ��2
1

4
wm0 e0

q
qt

EðincÞ
z ðA:5Þ

giving a total flux for an N-turn toroidal antennas as N	.

The actual design of such an antenna has many possibilities ranging from the

typical Rogowski coil (large N) to other forms (such as the CPM (circular

parallel mutual-inductance) type) involving various parallel arrangements for

high-frequency performance [2,4]. This antenna has some similarity to the

FMM (flush moebius mutual-inductance) type of sensor for measuring vertical

current density (displacement and, if present, conduction) [1,4]. In any event,

the geometry of the various turns is made to assure an accurate averaging over

the incident magnetic field so that (A.5) applies.

Such toroidal antennas are also used to measure current, say, I positive along

the z axis. In this case the magnetic field falls off as ��1 and the open-circuit

voltage is [2,4]

VOC ¼ M
dI

dt
; M ¼ m0 Nw

2p
ln

�2

�1

� �
¼ mutual inductance ðA:6Þ

Note there is a question of sign convention at the antenna port. By comparison,

(A.5) gives

VOC ¼ d

dt
ðN	Þ ¼ �2

2 ��2
1

4
wNm0 e0

q2EðincÞ
z

qt 2
¼ �2

2 ��2
1

4
wNm0

q2EðincÞ
z

qt 2
ðA:7Þ

The difference is associated with the fact that displacement current density

qDðincÞ
z =qt is allowed in the region �1 < � < �2. For �1 near �2, one can assign

an area p�2
1 or p�2

2 to multiply by the displacement current density to give a

current so that we can write

VOC ¼ M
q
qt

~Ae 	
q
qt

DðincÞ
� �

ðA:8Þ
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where now

M~Ae ¼
�2

2 ��2
1

4
wm0N~1z ðA:9Þ

If desired, we can separate these as

~Ae ¼ p�2
e
~1z � equivalent area

�e � equivalent radius ¼ average of �1 and �2 in some

chosen sense ðA:10Þ

M ¼ �2
2 ��2

1

4p�2
e

wm0 N

In another form, we can write

VOC ¼ �2
2 ��2

1

4
wN

1

c2

q2

qt 2
~E
ðincÞ
2 ðA:11Þ

so that this is a second time derivative electric field sensor. However, in the usual

electric field sensor the open-circuit voltage is proportional to the incident

electric field (no time derivatives). So, except for the second time derivative (or

factor of s2), this can be regarded as an electric dipole, except that it does not

have any electric dipole moment [14]

~p ¼
ð

V

rð~rÞ~r dV ¼ Q~he ðA:12Þ

where

~he � equivalent height

Q ¼ charge delivered to antenna port (in transmission)

since (57) gives zero charge density. One way to look at this is to consider the

free-space wave equation for the incident electric field as

r� ½r �~EðincÞ� ¼ �r2~EðincÞ ¼ 1

c2

q2~EðincÞ

qt 2
ðA:13Þ

So we have an equivalent electric dipole to which we can assign the

equivalent area ~Ae as discussed above. We can also think of this as an electric

dipole of equivalent area ~Ae coupled to the output via a transformer of mutual
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inductance M. In terms of the usual antenna reception properties [5], we have

VOCðsÞ ¼ ~~hVðsÞ 	 ~~E
ðincÞðsÞ; ~hVðsÞ ¼ �d2~1z ; � ¼ �2

2 ��1
2

4

wN

c2
ðA:14Þ

This last term is an effective sensitivity parameter for the toroidal antenna in

reception.

Now consider such an antenna in transmission by reciprocity. An electric

dipole produces fields [3]

~~Eð~r; sÞ ¼ e�gr � m0

4pr
s2 þ Z0

4pr2
s½3~1r

~1r � 1
$
� þ 1

4pe0r3
½3~1r

~1r ¼ 1
$
�

� �
	 ~~pðsÞ

ðA:15Þ

For our case, let us restrict

6l ¼ c

o
� �1; ‘; r � �1; ‘ ðA:16Þ

and assign an equivalent electric dipole moment~peq to go in (A.16) and describe

the radiation properties of the antenna. Clearly by symmetry

~peqðtÞ ¼ peqðtÞ~1z ðA:17Þ

that is, parallel to ~Ae.

The far field from such an equivalent electric dipole is

~~Ef ð~r; sÞ ¼ �e�gr mo

4pr
s2 1

$
r 	~1z ~peqðsÞ �

e�gr

r
~~FVð~1r; sÞ~VðsÞ � e�gr

r
~~FIð~1r; sÞ~IðsÞ

ðA:18Þ

where

VðtÞ ¼ voltage at antenna port

IðtÞ ¼ current out of antenna port

and

~ZinðsÞ ¼
1

~YinðsÞ
¼

~VðsÞ
~IðsÞ

(in transmission) � antenna input impedance
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This follows the conventions discussed in [5]. Then we have the transmission

functions for the far field as

~~FVð~1r; sÞ ¼ � m0

4p
s2

~VðsÞ
~1r 	~1z ~peqðsÞ; ~~FIð~1r; sÞ ¼ � m0

4p
s2

~IðsÞ
~1r 	~1z ~peqðsÞ

~~FIð~1r; sÞ ¼ ~ZinðsÞ ~~FVð~1r; sÞ ðA:19Þ

In reception antennas can be characterized by effective height for voltage and

a related parameter for current [5] with wave incident in direction ~1i as

~VOCðsÞ � ~~hVð~1i; sÞ 	 ~~E
ðincÞðsÞ ¼ open-circuit voltage

~ISCðsÞ � ~~hI ð~1i; sÞ 	 ~~EðincÞðsÞ � short-circuit current

~~hIð~1i; sÞ ¼ �~YinðsÞ ~~hVð~1i; sÞ ðA:20Þ

where as before the incident field is evaluated at ~r ¼~0. Since the antenna is

electrically small, then only the z component is relevant and

~VOCðsÞ � ~hVðsÞ~EðincÞ
z ðsÞ; ~ISCðsÞ � ~hIðsÞ~EðincÞ

z ðsÞ ðA:21Þ
~~hVð~1i; sÞ ¼ ~hVðsÞ~1z;

~~hIð~1i; sÞ ¼ ~hIðsÞ~1z

The reciprocity between transmission and reception now establishes [5]

~~FIð~1r; sÞ ¼ �s
m0

4p
1
$

r 	 ~hVð�~1r; sÞ ¼ �s
m0

4p
1
$

r 	~1z
~hVðsÞ

~~FVð~1r; sÞ ¼ s
m0

4p
1
$

r 	 ~hIð�~1s; sÞ ¼ s
m0

4p
1
$

r 	~1z
~hIðsÞ ðA:22Þ

1
$

r � 1
$
�~1r

~1r � transverse (to r) dyadic

Combining with (A.18) this gives

~peðsÞ ¼
1

s
~hVðsÞ~IðsÞ ¼ � 1

s
~hIðsÞ~VðsÞ ðA:23Þ

and various other combinations.

The equivalent dipole moment in transmission is then as follows, using

(A.14):

~peqðsÞ ¼ �s~IðsÞ ¼ �
s

~ZinðsÞ
~VðsÞ ðA:24Þ
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Such an antenna is clearly inductive, and for low frequencies has

~ZinðsÞ ¼ sLin; Lin ’ NM ½fromðA:6Þ� ¼ m0 N 2 w

2p
ln

�2

�1

� �
ðA:25Þ

Actually the inductance is slightly larger than this since the N discrete windings

only approximate a continuous f-independent surface current density.

In terms of a low-frequency voltage drive, we then have

~peqðsÞ ¼
�

Lin

~VðsÞ ðA:26Þ

This is like the usual electric dipole except that the current does not go to zero as

s ! 0, but rather diverges as 1/s. On the other hand consider a current drive.

Then at low frequencies (A.24) indicates that ~peq ! 0 (as well as ~VðsÞ ! 0).

In resolving the apparent paradox of how an antenna with no charge (in free

space) can have an electric-dipole moment, one can go back to definitions. In

Ref. 14 the fields from a current distribution are evaluated by expanding

~~Að~r; sÞ ¼ m0

ð
V

e�gj~r �~rj
4pj~r �~rj

~~Jð~r 0; sÞdV 0 ’ m0

e�gr

4pr

ð
V

~~Jð~r 0; sÞdV 0 ðA:27Þ

Then, evaluating the volume integral of the current density (with no current

crossing S, the boundary of V ), we have [3,14]

ð
V

~~Jð~r 0; sÞdV 0 ¼ s

ð
V

~r 0~rð~r 0; sÞdV 0 ¼ s~~pðsÞ ðA:28Þ

This shows that a divergenceless current distribution gives a zero electric dipole

moment in this sense.

However, the expansion in (A.27) as a leading term at low frequencies is only

an approximation. Since, with an assumed divergenceless current distribution,

this is zero, we need to include higher-order terms. This involves higher-order

terms in the expansion of egj~r�~r
0 jþgr around s¼ 0 (for an electrically small

antenna). By the previous derivation such higher-order terms can give nonzero

electric-dipole-like fields. See the factor of s2 that enters in the results, clearly a

higher-order term.

In the usual texts a multipole expansion involving spherical Bessel functions

and spherical vector harmonics is also introduced [16,23,23,26]. The fields from

electric and magnetic dipoles correspond to the lowest-order terms (n =1) in the

expansion. If we define dipole by this expansion then our toroidal antenna is an

electric dipole. In any event, the fields away from the source are the same. This

is perhaps a matter of consistency in definitions.
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The first principles of things will never be adequately known. Science is an open-

ended endeavor, it can never be closed. We do science without knowing the first

principles. It does in fact not start from first principles, nor from the end principles,

but from the middle. We not only change theories, but also the concepts and entities

themselves, and what questions to ask. The foundations of science must be contin-

uously examined and modified; it will always be full of mysteries and surprises [1].

I. INTRODUCTION

In this chapter we present new concepts that provide usable extraction of electro-

magnetic energy from the vacuum, and appear to be present but previously

unrecognized in all electrical power systems.

We argue that generators and batteries do not use their available internal

energy to power their external circuits, but dissipate it to separate their internal

charges to produce source dipoles as negative resistors. Once formed, the source

dipole receives and transduces electromagnetic (EM) energy flow from the

vacuum (in particle physics the dipole is a particle–antiparticle broken symmetry

in its fierce energy exchange with the active vacuum; see Lee’s definition [2]),

and pours it out along the attached circuit, filling all surrounding space [3]. EM

circuits and loads have always been powered by vacuum-provided EM energy.

They are not powered by the energy the operator inputs to the generator shaft,

nor by the chemical energy available in the battery.

A tiny fraction—the Poynting [4] component (Poynting considered only that

part of the energy flow that enters the circuit)—of the huge energy flow

transduced from the vacuum is intercepted and diverged into the circuit to power

it. The huge remainder of the transduced vacuum energy flow—which we call

the Heaviside [5,6] component—misses the circuit entirely. It is not intercepted

and is not diverged into the circuit. It is just wasted.

No one in the 1880s could explain the source of the startlingly large

Heaviside energy flow component. (There was no known special or general

relativity, quantum mechanics, electron, atom, atomic nucleus, etc. available at

the time. There was no theory of the active vacuum, and broken symmetry of the

dipole with such an entity was unknown.) Faced with such a giant quandary,

Lorentz arbitrarily discarded the Heaviside component as being ‘‘physically

insignificant’’1 because it does not contribute to powering the circuit of interest.

To the contrary, it is highly significant. In this chapter we give its source and

mechanism, its significance, and its practical use.

The common dipole breaks 3-symmetry in EM energy flow [2], resulting in a

novel and more fundamental negentropic Whittaker [8] 4-symmetry EM energy

flow completely freed from 3-symmetry and 3-space EM energy conservation

[9a]. We explain that special 4-symmetry and its giant negentropy in this chapter.

1That erroneous notion, expressed in pharaseology such as‘‘can have no physical consequences,’’ is

often used by electrodynamicists to this day. [7]
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Without the additional 3-symmetry condition, the resulting Whittaker

4-symmetry EM energy flow mechanism resolves the nagging problem of the

‘‘source charge’’ concept in classical electrodynamics theory. Quoting Sen [10]:

‘‘The connection between the field and its source has always been and still is the

most difficult problem in classical and quantum mechanics.’’ We give the

solution to the problem of the source charge in classical electrodynamics.

The giant negentropy mechanism also explains the heretofore unknown source

of the enormous ‘‘dark2 (unaccounted) EM energy flow’’ component that was

(1) discovered by Heaviside [5,6], (2) never considered by Poynting [4], and (3)

arbitrarily discarded by Lorentz [11].3 Lorentz’ discard of the Heaviside dark

energy flow component has continued to be applied by electrodynamicists [12].4

This huge nondiverged EM energy flow is a dynamic ordering of the vacuum

surrounding every EM circuit and EM field reaction. We present several

mechanisms where the dark energy flow can be intercepted to provide excess

energy from the locally reordered vacuum. The Bohren [13]5 experiment—

along lines pioneered by Letokhov [14]—is cited as proof that excess energy

has been experimentally intercepted from the Heaviside energy flow compo-

nent. We present more than a dozen candidate processes and mechanisms

for extracting this available Heaviside EM energy from the vacuum, where

asymmetric self-regauging (ASR) [15,16] is the gauge freedom key to

breaking the Lorentz symmetrical regauging condition first accomplished by

L .V. Lorenz [17].6

2By ‘‘dark’’ we mean nonobserved and nonintercepted, but physically present in space as a real EM

energy flow. Obviously we have used the phraseology of the dark-matter problem. We have, in fact,

nominated the Heaviside dark energy as the solution to the dark-matter problem, and as responsible

for producing the excess gravity in the spiral arms of spiral galaxies that must be present to hold

them together. [See T. E. Bearden, J. New Energy 4(4), 4–11. (2000).]
3Figure 25 on p. 185 of Ref. 11 shows the Lorentz concept of integrating the energy flow vector

around a closed cylindrical surface surrounding any volumetric element of interest. This discarded

the Heaviside nondiverged component, leaving only the Poynting diverged component. I have not

yet discovered the original earlier paper where Lorentz first did this procedure circa 1886, and would

welcome a citation to it.
4Panofsky and Phillips [12] show this Lorentz exercise, as do W. Gough and J. P. G. Richards, Eur. J.

Phys. 7, 195 (1986).
5H. Paul and R. Fischer, commenting on how a particle can absorb more than the light incident on it,

in Ref. 13(b), p. 327, verify the Bohren experiment and results of Ref. 13(a).
6 Ludwig Valentin Lorenz first effectively regauged the Heaviside–Maxwell equations symmetrically

in his paper on the identity of the vibrations of light with electrical currents [17a] not long after

Maxwell’s seminal 1864 oral presentation of his paper on a dynamical theory of the electromagnetic

field [17b]. When the prestigious H. A. Lorentz later adopted the symmetric regauging because it

provided simpler equations that were easier to solve, electrodynamicists adopted it quickly. No one

seemed to notice that physically this constituted the arbitrary and total discard of all Heaviside–

Maxwell systems not in thermodynamic equilibrium with their active vacuum. Even Jackson [7]

erroneously states that the Lorentz-regauged equations are identical in every respect.
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ASR provides an open EM system far from thermodynamic equilibrium in

its violent energy exchange with the active vacuum. As is well known, an

open dissipative system in disequilibrium with an active environment is

permitted to

1. Self-order

2. Self-rotate or self-oscillate

3. Output more energy than is input by the operator (the excess is taken from

the active environment, in this case the active vacuum)

4. Power itself and its load simultaneously (all the energy is taken from the

active environment, in this case the active vacuum)

5. Exhibit negentropy

The common dipole exhibits all five functions, as we discuss later.

Finally, we explain why ordinary electrodynamic systems do not exhibit such

negentropic functions, and we state the principles necessary to correct the

shortcomings in those systems that prevent it.

It appears that a permanent solution to the world energy problem, dramatic

reduction of biospheric hydrocarbon combustion pollution, and eliminating the

need for nuclear power plants (whose nuclear component is used only as a

heater) could be readily accomplished by the scientific community [18].

However, to solve the energy problem, we must (1) update the century-old

false notions in electrodynamic theory of how an electrical circuit is powered

and (2) correct the classical electrodynamics model for numerous foundations

flaws.

We reconsider both items 1 and 2 on the basis of more modern developments

in particle physics and gauge field theory well after the foundations of

electrodynamics were set by Maxwell. Self-powering systems readily extracting

electrical energy from the vacuum to power themselves and their loads can be

quickly developed whenever the scientific community will permit their research

and development to be funded.

II. LORENTZ SYMMETRIC REGAUGING

A. Two Equal and Opposite Regaugings

For energy flow through space around the circuit, we must use Maxwell’s

equations as we would for radiating energy, rather than employ only the jf
circuit analysis conventionally utilized.

In Gaussian units, Jackson [Ref. 7, pp. 220–223] shows that Maxwell’s four

equations (vacuum form) can first be reduced to a set of two coupled equations
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in the (A,�) representation as follows:

r2�þ 1

c

q
qt
ðr � AÞ ¼ �4pr ð1Þ

r2A � 1

c2

q2A

qt2
�r r � A þ 1

c

q�
qt

� �
¼ � 4p

c
J ð2Þ

The result is two coupled Maxwell–Heaviside equations. Jackson shows that

potentials A and � in these two equations are ‘‘arbitrary’’ (i.e., yield the same

force fields) [19,20]7 in a specific sense, since the A vector can be replaced with

A0 ¼Aþr�, where � is a scalar function and r� is its gradient. The B field is

given by B¼r	A, so that the new B0 field becomes

B0 ¼ r 	 ðA þr�Þ ¼ r 	 A þ 0 ¼ r	 A ¼ B ð3Þ

The B field due to the vector potential has remained entirely unchanged, even

though the magnetic vector potential has been asymmetrically changed. How-

ever, if no other change were made, then the electric field E would have still

been changed because of the gradient r�. In that case the net change would be

asymmetric, because one obtained a ‘‘free’’ E-field and excess regauging

energy, which could then do work on the system—either beneficially or

detrimentally, depending on the specific conditions, geometry, and timing. In

order to prevent this excess ‘‘free’’ E field from appearing, electrodynamicists

simultaneously and asymmetrically regauge (transform) the scalar potential �
so as to precisely offset the E-field change due to the regauging of Eqs. (3) and

(4). In short, they also change � to �0, where

�0 ¼ �� 1

c

q�
qt

ð4Þ

7 Nahin [19] states: ‘‘In an 1893 letter to Oliver Lodge, Heaviside said of his own work that it

represented the ‘real and true Maxwell’ as Maxwell would have done it if he had not been

humbugged by his vector and scalar potentials.’’ The false notion that changing the potentials has no

physical significance if the force fields are not changed is due largely to Heaviside. Heaviside

considered potentials ‘‘mystical’’ and ‘‘not real,’’ and stated they should be ‘‘murdered from the

theory.’’ Along with Hertz and others, he reduced Maxwell’s 20 quaternion equations in 20

unknowns to four equations, getting rid of many potentials in so doing. We point out that an EM

potential is a change to the energy density of the vacuum, and hence produces spacetime curvature,

which is a gravitational effect. Heaviside’s position predated relativity by decades, and is one of the

reasons that electrodynamics and general relativity have not been successfully combined in an

engineering theory. Also according to Josephs [20], ironically, well after Heaviside’s death, his

handwritten notes containing a theory of electrogravitation, based on his theory of energy flow, were

found beneath the floor boards in his little garret apartment. His trapped EM energy flow loops were

gravitational. Possible effects of such loops were found by Sweet and Bearden [21].
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With that additional change, now both the net E and B fields remain un-

changed8 even though—in terms of a physical system rather than abstract

mathematical models—the fundamental stored (potential) energy of the system

has changed twice, and two free excess forces have appeared in the system.

‘‘Unchanged net force fields’’ just mean that all excess new forces vectorially

sum to a zero resultant; it does not address the effects of the additive energies of

the ‘‘zero-summing’’ field components. This is what has been assumed by elec-

trodynamicists when they state that the net summation of the two asymmetric

regaugings has been entirely symmetric. It is symmetrical with respect to

translation, not spacetime curvature, gravitation, and system stress.

After Lorentz, electrodynamicists assumed that the system designer can

arbitrarily create and change forcefields and potentials. The designer can freely

change the potential energy of the system at will, theoretically without any input

energy cost whatsoever. However, electrodynamicists also assumed that the

system designer will be a ‘‘gentleman,’’ and cooperate with their resulting

intention. In short, the received view assumes that the designer will freely

change the excess free energy and the excess free forces in the system only in a

highly restrictive manner where all excess forces fight themselves to a draw and

the excess energy cannot be used to perform useful work. In other words, they

assume that the designer will play the ‘‘Lorentz condition’’ game—for a game

is all that it is. The designer is, of course, free to violate that ‘‘gentleman’s

agreement’’ at will, and the results have significant implication [16,22].

Here’s how the electrodynamicists do it, as Jackson points out. Convention-

ally, a set of potentials (A, �) is habitually and arbitrarily chosen such that

r � A þ 1

c

q�
qt

¼ 0 ð5Þ

This net symmetric regauging operation successfully separates the variables, so

that two inhomogeneous wave equations result to yield the new Maxwell

8However, so-called ‘‘canceling’’ appositive EM fields are actually produced, which sum to a vector

zero, which the electrodynamicists then discard by assumption. We point out, but do not further

pursue, the fact that the locally produced field energies of the appositive fields remain and add, even

though the fields offset each other translationally, since the energy of the field is proportional to its

square, and that is always positive regardless of field orientation. Thus ‘‘trapped’’ EM energy has

been localized in spacetime in the symmetric regauging of CEM, and this is a local curvature of

spacetime a priori. Thus any substantial EM gauge symmetry transformations are accompanied by

local gravitational changes in the regauged system. This, in fact, may prove to be the road to

practical antigravity processes and devices, achieved by EM means. At least one system—Sweet’s

vacuum triode device—seems to have accomplished antigravity effects [21].
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equations:

r2�� 1

c2

q2�

qt2
¼ �4pr ð6Þ

r2A � 1

c2

q2A

qt2
¼ � 4p

c
J ð7Þ

Thus the two previously coupled Maxwell equations (1) and (2) (potential

form) have been changed to the form given by Eqs. (6) and (7), to leave two

much simpler inhomogeneous wave equations, one for � and one for A.

Of course, the equations are simpler, since they arbitrarily discard that very

large class of Maxwellian systems in local thermodynamic disequilibrium with

the active vacuum! They arbitrarily discard all those Maxwellian systems that

are capable of producing electrical circuits and power systems with a coefficient

of performance (COP) > 1.0.

B. Breaking the Lorentz Symmetric Regauging Condition

For COP > 1.0, three functions are required in the system:

1. We must first asymmetrically regauge the system, or have it asymme-

trically self-regauge itself, in order to freely change its collected energy

and obtain a net force to utilize. By gauge freedom, in theory this is cost-

free to the system operator.

2. Then we must adroitly utilize the excess force created by the asymmetrical

regauging, along with its associated excess potential energy, to perform

useful work.

3. Finally, we must dissipate this collected potential energy to do work, but

without using half of it to more rapidly kill the source dipole of the system

itself.

In short, we must violate the Lorentz symmetric regauging condition during the

excitation discharge represented by operation 2 of an open system far from

thermodynamic equilibrium.

The condition for violating Lorentz symmetric regauging is

r � A þ 1

c

q�
qt

6¼ 0 ð8Þ

Any regauging of the potentials that complies with Eq. [8] will a priori pro-

duce one or more excess forces in the system and freely change the energy of

the system as well. By controlling the regauging to keep it asymmetric, the engine

designer may then control where, how, and when these excess forces appear,

and how much excess energy appears in the system with them. Every system

already performs this asymmetric regauging function in its excitation phase.

During the excitation discharge phase, however, use of the closed current

loop circuit results in a ‘‘back emf’’ (electromotive force) across the source
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dipole interior, precisely equal to the ‘‘forward emf’’ around the external circuit

across the external loads and losses. Since ‘‘emf’’ is just a forcefield, this gives

symmetric discharge of the free excitation energy of the circuit—half in

powering the external loads and losses, and half in destroying the dipole itself.

Hence it destroys the source dipole faster than it powers the load alone.

Since the closed current loop circuit is used ubiquitously, present circuits and

electrical power systems a priori cannot exhibit COP > 1.0, since they violate

Eq. (8) during their excitation discharge. Hence they violate condition 3

required for COP > 1.0.

III. REEXAMINING THE COMMON DIPOLE

A. Whittaker Decomposition of the Potential between the End Charges

Any dipole has a scalar potential between its ends, as is well known. Extending

earlier work by Stoney [23], in 1903 Whittaker [8] showed that the scalar

potential decomposes into—and identically is—a harmonic set of bidirectional

longitudinal EM wavepairs. Each wavepair is comprised of a longitudinal EM

wave (LEMW) and its phase conjugate LEMW replica. Hence the formation of

the dipole actually initiates the ongoing production of a harmonic set of such

biwaves in 4-space (see Section III.A.1).

We separate the Whittaker waves into two sets: (1) the convergent phase

conjugate set, in the imaginary plane; and (2) the divergent real wave set, in

3-space. In 4-space, the fourth dimension may be taken as -ict. The only

variable in -ict is t. Hence the phase conjugate waveset in the scalar potential’s

decomposition is a set of harmonic EM waves converging on the dipole in the

time dimension, as a time-reversed EM energy flow structure inside the structure

of time [24].9 Or, one can just think of the waveset as converging upon the

dipole in the imaginary plane [25]10—a concept similar to the notion of

‘‘reactive power’’ in electrical engineering.

9 Time-like currents and flows do appear in the vacuum energy, if extended electrodynamic theory is

utilized. For instance, in the received view, the Gupta–Bleuler method removes time-like photons

and longitudinal photons. For disproof of the Gupta–Bleuler method, proof of the independent

existence of such photons, and a short description of their characteristics, see Evans’ AIAS group

papers on Whittaker’s F and G fluxes and analysis of the EM entity in Ref. 24a; to see how such

entities produce ordinary EM fields and energy in vacuo, see Ref. 24b.
10 Jones [25] gives a short treatise on the complex Poynting vector. In a sense our present use is

similar to the complex Poynting energy flow vector, but in our usage the absolute value of the

imaginary energy flow is equal to the absolute value of the real energy flow, and there is a

transformation process in between. So we are working in only four dimensions (Minkowski space).

This usage is possible because the imaginary flow is into a transducer, which takes care of

transforming the received imaginary EM energy into the output real EM energy. We stress that the

word ‘‘imaginary’’ is not at all synonymous with fictitious, but merely refers to the ‘‘dimension’’ or

state in which the EM energy flow actually exists. We also point out that ultimately the concept of

‘‘dimension’’ refers simply to a fundamental mathematical degree of freedom.
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The divergent real EM waveset in the scalar potential’s decomposition is

thus a harmonic set of EM longitudinal waves radiating out from the dipole in

all directions in 3-space at the speed of light (see Section III.A.2). As can be

seen, there is perfect 4-symmetry in the resulting EM energy flow, but there is

broken 3-symmetry since there is no observable 3-flow EM energy input to the

dipole but there is observable 3-flow of EM energy output.

Further, there is perfect 1:1 correlation between the convergent waveset in

the imaginary plane and the divergent waveset in 3-space. This perfect

correlation between the two sets of waves and their dynamics represents a

deterministic reordering of a fraction of the 4-vacuum energy. This reordering is

initiated by the formation of the dipole, and spreads radially outward at the

speed of light so long as the dipole remains intact.

1. Existence of EM Waves in 4-Space

We emphasize the fact that the waves exist in 4-space. The incoming EM

longitudinal waves are in the imaginary plane, and hence are incoming from the

time domain -ict. Evans has pointed out that Whittaker’s method depends on

assuming the Lorentz gauge. If the latter is not used, the Whittaker method is

inadequate, because the scalar potential becomes even more richly structured, as

captured by Sachs’ generalization, which removes the necessity for the Lorentz

gauge. For the negentropic vacuum-reordering mechanism involving only the

dipole or the charge as a composite dipole, it appears that the Whittaker method

can be applied without problem, at least to generate the minimum negentropic

process itself. However, this still leaves the capability for additional structuring,

so that the actual negentropic reordering of the vacuum energy (and the

structure of the outpouring of the EM energy 3-flow from the charge or dipole)

may be made much richer than given by the simple Whittaker structure alone.

Specifically, 4-flow symmetry may be broken while n-flow symmetry is maintai-

ned, where the integer n > 4. The Whittaker structure used in this chapter

should be regarded as the simplest structuring of the negentropic process that

can be produced, and hence a lower boundary condition on the process.

2. Existence of EM Waves in 3-Space

We mention in passing that this dramatically alters the conception of how the

EM field is thought to exist in spacetime. Take the E field as an example. In

3-space the E-field E exists as an outgoing longitudinal EM wave. At any 3-space

point, E exists as an ongoing energy flow process in 4-space, where a convergent

inflow of longitudinal EM wave energy from the time domain (imaginary plane)

enters the point, and the outgoing EM longitudinal wave in 3-space comes from

the point.

Maxwell in fact simply assumed the transverse EM wave in space, based on

the notion of Faraday’s ‘‘taut string’’ field lines (lines of force). When Maxwell
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wrote his theory, the electron, nucleus, atom, and molecular structure were

unknown. He wrote a purely material fluid theory, since the material ether was

ubiquitously assumed and nowhere in all the universe was there thought to be

any ‘‘total absence of matter.’’ Consequently, in applications to currents in wires

and to circuits, Maxwell ignored the simultaneous recoil of the positive nuclei,

which were not even known. He used only a ‘‘unitary electrical material fluid’’

flowing (from positive to negative) down the wire like water through a pipe.

Further, electron drift velocity was unknown since the electron was unknown,

and the fluid was thought to move at signal velocity.

Actually, the Drude electrons, during their 360� spin in 3-space, act as gyros

and are constrained longitudinally by repulsion of other charges beyond. Hence

the gyroelectrons precess laterally to their longitudinal disturbing force, yield-

ing the well-known measured transverse wave. Almost all our instruments still

are electron-precession detectors.

In any field applied to the wire, the simultaneous appositive recoil of the

nuclei—with equal energy to the electron gyroprecession but highly damped in

amplitude because of the much greater m=q ratio of the positive nuclei—was

ignored (and still is, even though it is known to occur).

In a transmitting wire antenna, the surrounding spacetime is perturbed by

two perturbations: (1) the Drude electrons (which are confined to the wire) and

(2) the recoiling nuclei. There is a very tiny phase deviation from 180� between

the two perturbations. So the total ‘‘disturbance’’ of the surrounding spacetime

medium by the two equal energy and nearly opposite direction charge

perturbations is very nearly a 3-spatial longitudinal EM wave—in agreement

with the Whittaker decomposition of the source dipole potentials between any

two separated perturbed charges in the wire.

The ready reaction of the resulting ‘‘quasilongitudinal’’ EM wave with a

distant wire antenna results in the leading half (from the electrons) reacting with

the distant Drude electrons, stripping off that leading half of the incoming

quasilongitudinal wave. The remaining half enters the nuclei, interacting with

them and producing the well-known Newtonian third-law recoil. Electrodyna-

micists accept the third-law recoil but consider it as an effect without an EM

cause—which is erroneous.

If that phase conjugate half of the wave does not interact with the nucleus—

such as in multiwave interactions before the phase conjugate wave reaches the

nucleus, as occurs in a pumped phase conjugate mirror—then the Newtonian

third-law recoil does not occur in that pumped mirror material because its

electromagnetic causative interaction did not occur with the nuclei. The results

of that phenomenon are experimentally verified and well known. As shown by

Sweet and Bearden [21], the results can include an tigravity. However, see

reference [98]. Antigravity is associated with extreme COP—e.g., 1.5	106—

and curved spacetime together with Dirac Sea hole current is involved.
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Much of electrodynamic 136-year-old foundations fundamentals are either

erroneous or flawed, and a serious reconstruction of the model from the ground

up is warranted.

B. Interpreting the 4-Symmetry in Electrical Engineering Terms

The EM energy flow in the imaginary plane is a kind of incoming ‘‘reactive

power’’ in the language of electrical engineering, but in the time domain prior to

interaction with the observing charge. The outgoing EM energy flow in the real

plane (3-space) is ‘‘real power.’’ So the dipole is continuously receiving a steady

stream of unobserved reactive power, transducing it into real power, and

outputting it as a continuous outflow of real EM power.

To initiate the hypothesized giant negentropy process, all one has to do is first

expend a little energy to form the dipole. Once the dipole is formed, the process

is automatically initiated and sustained by the broken 3-symmetry of the dipole

[2]. The process continues indefinitely and freely, so long as the dipole remains

intact [9a].11

Actually, this giant negentropy is to be expected from the further broken

symmetry findings in particle physics. The various major symmetries can be

individually broken, or multiples can be broken, so long as CPT itself is not

broken. Quoting Lee [Ref. 2, pp. 187–188]:

At present, it appears that physical laws are not symmetrical with respect to C, P,

T, CP, PT and C. Nevertheless, all indications are that the joint action of CPT (i.e.,

particle $ antiparticle, right $ left and past $ future) remains a good symmetry.

Indeed, that quotation reveals that one is free to violate PT (parity and time)

symmetries simultaneously, so long as C symmetry is not violated. A little

reflection reveals that time can be converted to spatial energy, under such

condition. I.e., with PT broken but CPT conserved, a fraction of ‘‘time’’ flow is

being converted to ‘‘spatial EM energy’’ flow or vice versa. It follows that, since

the source charge (or source dipole) does not violate C symmetry, it is free to

violate parity symmetry and time symmetry—which yields the giant negentropy

of the common dipole (and, as will be seen, of the common charge as well).

C. How the Reactive Power Is Transduced into Real Power

We suggest a mechanism that accomplishes the transduction or at least models

it. The charges constituting the ends of the dipole have a very special

11 Thus the significance of the closed current loop circuit, ubiquitously utilized in all electrical power

systems. Such a circuit utilizes half its collected Poynting energy to destroy the dipole, while using

less than the other half to power the load. In short, it shuts off the giant negentropy and free 3-flow of

energy, faster than it can freely collect and discharge energy to power the load. Such a circuit

exhibits COP < 1.0 a priori. More than a dozen processes and mechanisms for approaching

COP > 1.0 systems are given in Ref. 16.
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characteristic: Simply modeled, a charge may be said to spin 720� in making

one complete rotation, not just 360�. We may say that it spins 360� in the

imaginary plane, and spins 360� in the real plane (3-space). Let us examine a

dipole charge spinning 720� per rotation in that manner. During its 360� spin in

the imaginary plane, it absorbs the converging reactive power. During its 360�

spin in the real plane (in 3-space), it reradiates the EM energy it has absorbed

from the imaginary plane, as real power in a steady, divergent, radial 3-flow of

EM energy at the speed of light in all directions.

If one does not press it too far, this simple analogy is useful for visualization

of the transduction process.

1. Interpreting What This Means

If the hypothesis holds, we have arrived at some interesting findings:

1. As is well-known in particle physics, a dipole is a broken 3-space sym-

metry in the violent flux exchange between the active vacuum and the

dipole.

2. This dipole’s broken 3-space symmetry in EM energy flow, provides a

relaxation to a more fundamental EM energy flow symmetry in 4-space

where P and T symmetries are broken but CPT symmetry is maintained.

3. This means that time (or ‘‘time-like EM energy flow’’) is transduced to

3-spatial EM energy flow. Hence we must understand ‘‘time as energy’’

and time-like energy flow as well as 3-spatial EM energy flow.

4. There is no law of nature or physics that requires 3-symmetry of EM energy

flow as an additional condition applied to 4-symmetry of EM energy flow.

5. The dipole is a practical and very simple means of ‘‘breaking’’ the addi-

tional 3-flow symmetry condition in EM energy flow, and of relaxing to

the fundamental 4-flow symmetry without 3-flow symmetry.

6. So long as the dipole statically exists (e.g., imagine an electret suddenly

formed, or a charged capacitor with no leakage), real usable EM energy

will continuously pour from the dipole at light speed in all directions. At

the same time, reactive EM power (actually, energy) will continuously

flow into the dipole from the time domain (the complex plane), and be

transduced into real EM power output in 3-space by the dipole.

7. A dipole and its scalar potential thus represent a true negative

resistor system of the most fundamental kind. The dipole continually re-

ceives EM energy in unusable form (reactive power, which cannot perform

real work), converts it to usable form (real power, which can perform real

work), and outputs it as usable, real EM energy flow (real power) in 3-space.

8. Simultaneously, at its formation the dipole initiates a continuing giant

negentropy—a progressive reordering of a substantial and usable portion
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of the vacuum energy [9a].12 Further, this reordering of vacuum energy

continuously spreads in all directions from the initiation point, at the speed

of light. In original atoms formed shortly after the beginning of the uni-

verse, dipoles—and, as we shall also see, charges—have been pouring

out real EM energy in 3-space for some 15 billion years or so. Each has

reordered a fraction of the entire vacuum’s energy, where the magnitude

of the reordering varies inversely as the radial distance from the dipole.

9. If the dipole is destroyed, the ordering of the vacuum energy ceases,

leaving a ‘‘separated chunk’’ of reordered vacuum energy that continues

to expand and propagate radially at the speed of light in all directions,

steadily reducing in local intensity as it expands.

10. At any very small volume in spacetime, from the dipole dynamics of the

universe it follows that a great conglomerate of reordered vacuum flows

and fluxes—some continuous, some chopped—is continually passing

through that 4-volume. Further, the situation is totally nonlinear, so that

direct wave-to-wave interactions occur continuously amongst these

energy flows and waves. We hypothesize that this is the actual mecha-

nism constituting Puthoff’s cosmological feedback mechanism [26,27].13

11. Further, in 1904 Whittaker [28] showed that any EM field or wave

pattern can be decomposed into two scalar potential functions. Each of

these two potential functions, of course, decomposes into the same kind

of harmonic longitudinal EM wavepairs as shown in Whittaker [8], plus

superposed dynamics. In other words, the interference of scalar14

12 Unfortunately, entropy is one of those concepts in physics for which there are several differing

major views. For our work in energy from the vacuum, we take the very simple view that a

negentropic process is like a negative resistor—it receives energy in a form unusable to us,

transforms it, and outputs it into a form that is usable. We completely avoid the various notions of

‘‘information’’ and attempts to equate information and energy. We do point out, however, that a time

reversal process in one form or another is involved. In that sense, for instance, Newton’s third law is

a negentropic process and involves time reversal. Its cause in electrodynamic interactions is the

interaction with mass of that missing half of the EM wave in vacuum, unwittingly omitted by

Maxwell.
13 In Sachs’ great generalization of a combined general relativity and electrodynamics, we are also

speaking of spacetime curvature functions, and a unified field theory. See also Sachs’ chapter on

symmetry in electrodynamics: from special to general relativity, macro to quantum domains in this

series of volumes on modern nonlinear optics (Part 1, 11th chapter).
14 As Whittaker showed in 1903 [8], the scalar potential is actually a harmonic set of bidirectional

EM longitudinal EM wavepairs, where each pair is composed of a longitudinal EM wave and its

phase conjugate replica. Only because classical electrodynamicists have erroneously defined the

field and potential as their own reaction cross sections with a unit point static charge, has the

‘‘static’’ potential been misidentified as a scalar entity, which it is not. The energy diverged from a

uniform potential, around a fixed static point unit charge, is actually the set of divergences around

the intercepting charge of the energy flows of all those EM waves constituting the potential. The sum

total of all these individual wave divergences indeed has a scalar magnitude, but the magnitude of

the total energy divergence from the potential is not the potential itself nor its magnitude.
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potentials—each of which is actually a set of longitudinal EM waves,

and not a scalar entity15 at all, but a multivectorial entity—produces EM

fields and waves and their dynamics. Hence we hypothesize that the

Whittaker interference of the propagating reordered EM energy entities,

continuously occurring at any point in space, generates the zero-point

EM field energy fluctuations of the vacuum itself. Indeed, an AIAS

group paper by Evans et al. [29] has already shown that just such ‘‘scalar

interferometry’’ produces transverse EM fields and waves in the vacuum.

IV. MECHANISM GENERATING THE FLOW OF TIME

A. Background: Observation as an Operator

Since the nature of time is itself an unresolved question, we take a simple

approach in order to arrive at a mechanism generating the ‘‘flow of an object

through time.’’

First, it is well known in physics that the choice of fundamental units one

chooses for one’s model is arbitrary. While most often mass, length, time, and

charge are used, a perfectly valid model can be generated using only a single

fundamental unit.

Suppose we use the joule as the single fundamental unit. Then each of the

entities we conventionally call ‘‘mass,’’ ‘‘length,’’ ‘‘time,’’ and ‘‘charge’’ will

become totally a function of energy. So we can legitimately state that ‘‘mass is

energy,’’ and we are already comfortable with that statement since the dawn of

relativity and the nuclear age. But we can also legitimately state that ‘‘time is

energy,’’ and be rigorously accurate. We have previously postulated that one

second is equal to spatial EM energy compressed by the factor c2. So time is just

extremely compressed EM spatial energy [30]. In that case, time has the same

energy density, so to speak, as does mass.

We also point out that any observable is an instantaneous 3-spatial snapshot

of a four-dimensional event. ‘‘Observation’’ itself may be taken as a process

where a q=qt operator is invoked on 4-space (spacetime), leaving a purely

3-spatial output. However, no observable ‘‘exists in time,’’ since rigorously it is

15 We point out the obvious—a ‘‘scalar’’ mass in 3-space actually has a time vector since it moves

through time continually, just to continue to exist. Further, it is a special form of energy (energy

compressed by c2) moving through time. Since we may choose any form of energy we wish by

simple transduction, we may take it as compressed EM energy. So the mere continued existence of

any mass proves conclusively that EM energy can and does ubiquitously flow through the time

dimension. The combined continued existences of numerous masses proves conclusively that the

flow of time can have a myriad of internal electromagnetic energy flows. An equilibrium between (1)

an inflow of EM energy to a transducer from the time dimension, and (2) an outflow of EM energy in

3-space from the transducer, will be seen as a discrete excitation (potential energy) associated with

the transducer. Hence the notion of the charge.
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only a single, frozen ‘‘3-slice’’ at one single instant, forever fixed. So mass does

not exist in time, but masstime does.

B. The Relationship of Observation to Cause and Effect

We define the 4-entity prior to the invocation of the q=qt operator (observation)

as the causal side of the observation process. The most significant concept

embedded in the concept of causality would appear to be that an entity exists

and acts during time. The most significant content of the concept of the effect is

that it was ‘‘caused’’ by an entity existing in and acting in time, but it (the

effect) itself does not exist in time. We define the 3-entity that is the

output of observation (after the application of the q=qt operator) as the effect

side of the observation process. As is well known, all observation is 3-spatial, so

an observed entity does not exist or act in time. We also speak of the

intermediary as the entity—usually a mass that is itself an effect, or masstime,

which is a causal entity—with which the causal entity interacts and to which the

q=qt operator is applied.

We completely accept the Sachs [27] unification approach to a combined

general relativity and electrodynamics, generalized from a topological stand-

point.

C. Polarizations of Photons and EM Waves

As is known in quantum field theory, there are four polarizations of a photon

[31]. These are the x, y, z, and t polarizations, where x, y, z, and t refer to the four

dimensions in a 4-space. Thus—at least in theory—there must also be four

polarizations of electromagnetic waves, even though not all these waves are yet

experimentally known.

The x and y polarizations (or any combination) are the familiar transverse

photon and the transverse wave. The z polarization along the line of propagation

gives the longitudinal photon and the longitudinal EM wave.

Without further elaboration, we speak of a mass in which a small portion

exists as masstime rather than mass, as having been ‘‘time-charged’’ or ‘‘time-

excited.’’

D. Imperfect Longitudinal EM Waves

In attempting to produce longitudinal EM waves (LWs) from transverse EM

waves (TWs) that are input to a polarization transduction process, it is reason-

able that only imperfect LWs are produced, and that a residue of TW content

remains. The resulting imperfect LW might be referred to as an undistorted

progressive wave (UPW). Some work has been done on UPWs [32]. Such waves

are theorized to have remarkable characteristics including wave velocities either

slower or faster than standard light velocity [33].
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The t-polarization wave in the time dimension is quite unique: The spatial

energy of the wave is in equilibrium and not vibrating at all; instead, the photons

comprising the wave are vibrating in their time components. That is called a

‘‘time-polarized’’ photon or a ‘‘scalar photon.’’ Its wave version does not yet

seem to be known in the literature.

E. EM Waves and Photons Carry Both Spatial
Energy and Time Energy

On the other hand, the entire question of ‘‘EM waves in spacetime’’ may be in

need of a thorough overhaul. A photon is a ‘‘piece of angular momentum’’ in

the form of (�E)(�t). Hence the photon carries an increment of spatial energy

�E and also an increment of time–energy �t. The time–energy component (�t)

may be regarded as ordinary spatial energy that has been compressed by the

factor c2.

So the photon transports two types of energy: (1) a ‘‘weak spring’’ spatial

energy �E, so to speak and (2) a ‘‘very stout spring’’ time-energy �t, so to

speak. [Note: Since waves consist of photons composed of both spatial energy

and time-energy, the wave propagation must transport not only spatial energy

but time energy. The ‘‘spatial energy only’’ EM transverse wave, composed of

oscillating E and H fields, cannot exist in spacetime prior to interaction with

charged mass. Instead, what exists in spacetime prior to interaction must be Et

and Ht dimensionally—in short, impulse field waves. After interaction (obser-

vation), the q=qt operator has been applied, converting the impulse fields (the

causes) into force fields (the effects). Present electrodynamics seems subs-

tantially confused between the effect entity side of the observation process and

the causal entity side. The causative side (input) entities must occupy LLLT,

while the effects side entities are restricted to LLL. No LLL entity can be a

cause a priori.]

When a mass m absorbs a photon (�E)(�t), the (�E) component is

compressed spatially by the factor c2, turning it into an extra amount of mass

�m, so that the mass becomes ðm þ�mÞ. At the same time, the (�t) com-

ponent is joined, so that what results is (m þ�m)�t. In short, mass m is

changed to masstime mt by photon absorption. So in the absorption of a photon

g by a mass m, we have

gþ m ! ð�EÞð�tÞ þ m ! ðm þ�mÞ�t ð9Þ

In short, the mass turns into masstime, and masstime mt is as different from

mass m as impulse Ft is from force F. We point out that ‘‘mass’’ m alone does

not even exist in time; masstime mt does exist in time. This is proposed as a

simple but fundamental correction to much of present physics.
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In the simplest case, in the next instant a photon is reemitted, and so we have

ðm þ�mÞ�t ! ð�EÞð�tÞ þ m ! gþ m ð10Þ

So emission of a photon changes masstime back to mass, in the simplest

case.

In passing, what we call ‘‘observable’’ change must involve

ð�EÞð�tÞ � h

4p
ð11Þ

F. Photon Interaction as the Mechanism Generating
Time Flow and Duality

From the foregoing, mass cannot continuously exist as mass; mass rigorously

exists only at a single point in time, and never again. It only appears to exist in

time because of the reactions in Eqs. (9) and (10) above. Rigorously, a mass

does not really ‘‘travel through time’’ continuously per se, but proceeds with an

overall serial change mechanism, driven by its total virtual and observable

photon interactions, as

m ! mt ! m ! mt ! m ! � � � ð12Þ

We propose that this may account for the duality of particle and wave. When a

mass is observed, time has been stripped away, leaving a frozen 3-spatial

snapshot, which we will see as (having been) a particle (simplest case). That

occurs just after major (observable) photon emission from the masstime state.

Immediately another observable photon is absorbed, and so state mt occurs. The

particle of mass actually oscillates at a very high rate between the m and mt

states—so high a rate that by arranging the interaction conditions one may

interact with it either as a wave (react predominantly in the mt state) or as a

corpuscle (react predominately in the m state). ‘‘Mass’’ as it exists is actually an

oscillation or wave between m and mt states. Every differential piece of the

mass is also in oscillation between (dm) and (dm)(dt) states.

G. The Overall Flow of Time Is Internally and
Dynamically Structured

During the transition in any mass to masstime state by reaction of the mass with

an ‘‘observable’’ photon, a myriad of tiny virtual photon interactions involving

very tiny ð�EÞð�tÞ components of size

ð�EÞð�tÞ � h

4p
ð13Þ
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occurs with the mass m. These tinier increments of time and their increments of

energy, constitute internal structures in the overall time flow process. Therefore

they are ‘‘energy currents’’ or ‘‘time-like energy currents’’ and dynamic struc-

tures inside the flow of time.

So the �t component of masstime has a myriad of energy–time dynamics

infolded within it. Hence the mt state is very dynamic in time, particularly for

fundamental particles. The mt state is in fact a ‘‘collection of time–energy

dynamics’’ and therefore ‘‘wave-like.’’

The major point is that mass does not emit photons; masstime does. Mass

‘‘travels through time’’ by an extremely high oscillation between corpuscle-like

state m and wave-like state mt.

The concept can be extended, but this suffices for our concept of energy

currents in time, and the interaction of such energy currents with mass in a mass

system.

V. CONNECTION BETWEEN FIELD AND SOURCE

A. The Problem of the Charge as a Source

We use the foregoing hypothesis to propose a solution to a previously unsolved

major foundations problem in electrodynamics. Quoting Sen [10]:

The connection between the field and its source has always been and still is the

most difficult problem in classical and quantum electrodynamics.

The problem really lies in how we approach the notion of the ‘‘source

charge,’’ since the usual classical electrodynamics does not model the interac-

tion of the vacuum and the charge.16 With no active vacuum input to the charge,

16 For example, the notion of charge is much more complicated in gauge field theory than is usually

assumed in more classical EM theory. In gauge-theoretic electrodynamics, the field is a curvature in

spacetime and so is charge, so that the field intrinsically possesses charge. Further, the charge is a

curvature in spacetime, it is inextricably connected to both the time coordinate and the 3-space

coordinates. A priori, field changes thus may involve changes in the very nature of charge as we

observe it, and correspondingly charge changes may involve changes in the very nature of the field

effects we observe. As a crude example, changes in the ‘‘time’’ portion of the charge-as-spacetime-

curvature can readily affect changes in the ‘‘spatial energy’’ aspect. It is not too difficult, then, to

visualize that an inflow of EM energy into the time portion of the charge-as-spacetime-curvature

alters the time aspects—which, in turn, causes a corresponding canonical alteration of the 3-space

aspects of the charge, producing an outflow of 3-space EM energy from the charge. Indeed,

conservation of 4-energy would require such. A joint paper by Evans and Bearden is being prepared

in this symmetry area, and Sachs’ magnificent paper on symmetry in electrodynamics (cited in

footnote 13, above) is included in these volumes.
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the received crippled and fragmentary model of electrodynamics implies that

the charge not only creates the fields and potentials that surround it but also

creates out of nothing all that EM energy comprising those associated fields and

potentials. Since energy can be neither created nor destroyed, but only changed

in form, the conventional notion that the source charge produces its associated

fields and potentials and EM energy, in the absence of any interaction with the

vacuum, is a nonsequitur. This is the vexing and hitherto unresolved problem

referred to by Sen.

The real difficulty is that the conventional model eliminates the vacuum

interaction. Conservation of energy flow is an expression of symmetry, and there

can be no symmetry without the vacuum interaction. Hence by not modeling the

vacuum interaction, the conventional EM model must grossly violate the

conservation of energy law. Its view of the charge as the source of fields and

potentials and their energy, with no input of energy, essentially reduces the

notion of source charge to a perpetuum mobile. In short, it simply posits an

output of EM energy without any energy input at all and thus the creation of

energy from nothing.

1. What Experiment Shows

Experimentally, of course, it is easily shown that 3-spatial EM energy does

continuously diverge out of that charge, creating all its associated fields and

potentials that do appear around it. Just create a charge (e.g., as in pair

production), and measure the resulting outflow of the fields and potentials

and EM energy from it, at the speed of light in all directions.

Experiment also shows that there is no detectable (observable) 3-space EM

energy flow that converges into the charge. Hence we are left with a quandary—

experiment shows that there is a broken symmetry in the conservation of EM

energy 3-flow, directly associated with the source charge.

So the dilemma is: Where does the energy come from that is pouring out of

the charge continuously?

The charge alone cannot be a true source, since rigorously there can be no

such thing. As Semiz [34] puts it:

The very expression ‘energy source’ is actually a misnomer. As is known since the

early days of thermodynamics, and formulated as the first law, energy is conserved

in any physical process. Since energy cannot be created or destroyed, nothing can

be an energy source, or sink. Devices we call energy sources do not create energy,

they convert it from a form not suitable for our needs to a form that is suitable, a

form we can do work with.

We really do not have energy sources as such in nature, even though we

sloppily use that term. Instead, we actually have energy transducers. Else we

must discard the conservation of energy law itself: Energy can neither be

created nor destroyed, but only changed in form.
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A priori, since we can measure no real 3-space input of EM energy to the

unchanging charge but can measure real 3-space EM energy pouring from it,

energy must be input to it from the active vacuum in a nonobservable (other

than 3-space) form, and converted by it into an observable (3-space) form that is

reemitted, is usable, and produces what we call the ‘‘fields and potentials’’ and

their energy, associated with that ‘‘source charge.’’

Since it is common usage, we will continue to use the sloppy term ‘‘source

charge’’ or ‘‘source dipole,’’ but with the understanding that we refer to a

special kind of energy transducer. Our problem is in showing where the energy

comes from. So far, we know that (1) it does not come from 3-space, and hence

must come from the imaginary plane or the time dimension; and (2) it must

converge on the source charge (transducer) in a flow whose magnitude is

precisely equal to that of the emitted divergent 3-space EM energy flow.

2. The Charge as a Composite Dipole

To solve the source charge problem, we first point out that there exists no

such thing as an isolated charge. As is well known in quantum electrodyna-

mics, clustered around any ‘‘isolated charge’’ in the vacuum are virtual

charges of opposite sign. We take one of the separated virtual charges, and

a correspondingly small piece of the observable charge of opposite sign, and

call the pair a composite dipole. So the so-called ‘‘isolated charge’’ is actually a

set of composite dipoles. Any of the clustering virtual charges and any of the

pieces of the observable charge thus comprise such a composite dipole. The

‘‘isolated’’ observable charge is thus seen as a great entanglement of composite

dipoles.

Further, each composite dipole has its own scalar potential between its end

charges. With the previously stated reservation (see Section III.A.1), this scalar

potential decomposes per Whittaker [8] and thus initiates a giant negentropic

reordering of the vacuum energy as previously discussed. So any charge is really

an entire set of composite dipoles, composite negative resistors, and broken

3-symmetries in the vacuum flux exchange. Energy flow 4-symmetry must

rigorously apply.

The charge is a dipolar system (actually it is a great set of dipoles). It pours

out a continuous flowset of real EM power in 3-space, radially at the speed of

light in all directions. The composite dipoles making up the charge system are

being fed by a continuous converging flowset of reactive power from the

imaginary plane, as we mentioned previously.

The real EM wave energy flow pouring out radially in all directions in

3-space from the charge system forms the well-known fields and potentials

associated with that ‘‘source charge.’’ The actual source of the EM energy flow

from the charge is the hypothesized negentropic reordering of the 4-vacuum

energy into a giant 4-circulation of EM energy flow.
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The 4-symmetry in EM energy flow is conserved at all times. Energy is not

created by the charge—which creation has been implied in classical EM theory

without the vacuum interaction, without the charge as a composite dipole, and

without the Whittaker [8] decomposition of the scalar potential between the

poles of every dipole. Instead of the present ‘‘creation of energy’’ nonsequitur in

the conventional model, the charge’s received EM energy flow in unusable form

is transduced by the charge’s spin into usable form and output continuously. We

note but do not further pursue the fact that ‘‘charge’’ transduces the normal

3-symmetry energy flow into a 4-symmetry energy flow without concomitant

3-symmetry energy flow. This may eventually form the basis for a more

vigorous definition of charge.

In short, as a dipolar entity, the charge is an open system far from thermo-

dynamic equilibrium in 3-space EM energy flow. Indeed, it has no input energy

flow in 3-space, but instead has an input energy flow from the imaginary plane

(from the time dimension). Hence classical 3-equilibrium thermodynamics does

not apply.

The charge is simultaneously in perfect energy flow equilibrium in 4-flow. It

continuously receives EM energy from the time dimension (imaginary plane),

transduces the energy into real 3-space, and radiates it radially outward in

3-space as a real EM energy flow, producing the fields and potentials associated

with that ‘‘source charge.’’

As a dipolar system, the charge’s broken 3-symmetry in EM energy flow has

allowed the system to relax to a more fundamental 4-symmetry energy flow

without the arbitrary additional condition of 3-symmetry energy flow. The

charge (composite dipole set) and the dipole are thus the ultimate and universal

negative 4-resistors. [Note: The conventional notion of the negative 3-resistor is

that 3-spatial energy is received in unusable form, converted to usable form, and

output as usable 3-spatial energy flow. The negative 4-resistor receives energy

from the time dimension (the imaginary plane), and not from 3-space. The

output of the negative 4-resistor is real 3-spatial EM energy flow.]

As we shall see, the source dipole furnishes the energy to power every

electrical system and circuit, since all EM systems and circuits must involve

charge that is merely a set of composite dipoles receiving reactive power and

pouring out real power (real EM 3-energy flow).

B. Entropic Engineering

When we ‘‘make entropy,’’ we must do work. We wrestle nature fiercely to the

mat, so to speak, by brute force. All the while, nature protests our entropic

brutality by providing the Newtonian third-law reaction force (see Section V.B.1)

back on our causative wrestler performing the ‘‘forcing.’’ To do entropic

engineering, we have to continually input energy to the wrestling mechanism

or engine, losing a bit of the input energy in the inefficiencies, and fighting the
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‘‘back emf,’’ ‘‘back mmf’’ (magnetomotive force), or Newtonian third-law

reaction that is nature’s protest all the while. Those are nature’s penalties for

imposing 3-space EM energy flow symmetry on her as—to nature—an addi-

tional and highly undesired condition.

In short, with 3-symmetry we have to provide the continual input energy to

our entropic processes by burning fuel, damming rivers, erecting windmills,

building waterwheels, erecting solar cell arrays, building nuclear power plants,

building and charging chemical batteries, and so on. In the process, we destroy

and pollute the biosphere on a giant scale as we rip down forests, strip-mine and

drill the earth, and spill pollutants into the atmosphere, the rivers, the oceans,

and so on. We do all that biospheric destruction because we inexplicably insist

on 3-space energy flow symmetry, and thus adamantly require nature’s adher-

ence to classical equilibrium thermodynamics.17

We have to pay and pay continuously, for insisting on doing such atrocious

entropic work. In so doing, we ‘‘tie nature’s feet down’’ with that added

arbitrary requirement for 3-symmetry in energy flow. We ourselves prohibit

nature from performing the giant negentropy she so dearly loves and very much

prefers. We also arbitrarily and meanly discard the bountiful electromagnetic

energy 3-flow that nature loves to furnish us so freely when we indulge her vast

preference for negentropy.

1. Newton’s Third Law

Newton’s third-law reaction in mechanics is usually ‘‘demonstrated’’ in ele-

mentary fashion by colliding balls. Note that time must be continuously

interacting with the balls, in the mass/masstime/mass. . . . manner, if the balls

are even to exist. Taking one ball to observe, the incoming ball’s momentum is

the ‘‘cause’’ and the resulting momentum acquired by the struck ball is the

‘‘effect,’’ so to speak. Note that by ‘‘cause’’ and ‘‘effect’’ we are speaking of the

input and output of the observation process itself. So there exists a backreaction

from the change in the ‘‘struck’’ ball (the change in the effect side of obser-

vation) on the ‘‘causal’’ side, altering the momentum of the incoming ball.

The point is that, with respect to the observation process, cause interacts on

an intermediary to produce a change on the effect (output) side, and the

effect acts back through the intermediary to produce a change in the cause

(input) side.

17 Equilibrium thermodynamics is usually interpreted in terms of 3-spatial energy symmetry anyway,

to begin with, and then one ‘‘loses some control’’ steadily and hence loses some ordering. Actually,

the thermodynamics of systems far from equilibrium in 3-spatial energy flow, must always be in

symmetry in energy 4-flow; ‘‘3-space disequilibrium’’ thermodynamics and 4-space equilibrium

thermodynamics are postulated as different views of the same thing.
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Newton’s third law is a description of what happens, but does not contain

the mechanism producing what it describes. In mechanics and electrodynamics

the Newtonian third law is assumed, while in general relativity its causal

mechanism exists in the theory. Simply put, any change in the curvature of

spacetime (the change in the causal input to the observation process) causes a

change in the mass energy (to the effects side or to the output of the observation

process). Also, any change in the effects side of observation (any change in

mass-energy) produces a simultaneous change in the causal (spacetime curva-

ture) side.

C. Negentropic Engineering

A far better way is to cooperate with nature and ‘‘let nature make copious

negentropy.’’ To do that, we now can see the startlingly simple mechanism.

We simply make a little dipole, entropically. So we have to pay for making

the dipole, once, and we have to do a little gentle violence to nature, once. Then

we need do no more violence, if we just leave the dipole intact and do not

destroy it.

When we make the dipole, we make a little bit of ‘‘broken 3-symmetry’’ in

the universe’s energy flow. Voilá! Nature sings for joy at finally having her feet

freed a little from the shackles of 3-symmetry energy flow. In great glee, she

instantly sets to reordering a substantial and usable portion of the vacuum

energy, in all directions at the speed of light. As long as we do not destroy the

dipole (the broken 3-symmetry) that breaks the shackles, nature’s feet remain

freed from the 3-space symmetry, and she delightedly continues to reorganize a

portion of the vacuum energy, with the reordering spreading radially outward at

the speed of light.

Simultaneously, in great gratitude, nature pours out an immense real EM

energy 3-flow from that little dipole. She will continue to pour it out forever, if

we do not destroy the dipole.

D. Entropic versus Negentropic Engineering

To summarize: If we make entropy, we tie nature’s feet and she forces us to pay

for it, and pay continually.

If we make negentropy, we only pay a very tiny ‘‘one-time initiation fee.’’

From then on a delighted nature pays us for our thoughtfulness, and pays us

copiously, continuously, and freely.

The smart thing to do is make just a little bit of entropy wisely, using it to

break 3-space energy flow symmetry (basically, to make a dipole). Then we

should—adapting a phrase— leave that mother of all negative resistors and free

energy generators alone! We should concentrate on intercepting, extracting, and

using the free energy copiously flowing forth from the ongoing giant negen-

tropy, without destroying the dipole that is freely providing it.
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VI. HOW THE EXTERNAL CIRCUIT OF A BATTERY OR
GENERATOR IS POWERED

A. EM Energy from the Vacuum Powers Every Circuit

Neither the shaft energy introduced into a generator nor the chemical energy

present in a battery is used to power the external circuit. The internal energy in a

generator or battery is dissipated only to perform work on the internal charges,

to separate them and form a source dipole between the terminals, with some of

the energy dissipated in other internal losses. A battery also uses its internal

chemical energy to separate its charges, forming (or reforming) the source dipole.

Once formed, the source dipole is a broken symmetry [2] in the vacuum’s

energy flux along the lines experimentally shown by Wu et al. in 1957 [35]. As

Lee points out, the asymmetry between opposite signs of electric charge is

called C violation, or charge conjugation violation, or sometimes particle–

antiparticle asymmetry. As Nobelist Lee [2] further states, ‘‘Since non-obser-

vables imply symmetry, these discoveries of asymmetry must imply observables.’’

The broken symmetry of a dipole in its vacuum flux exchange has been

known in particle physics since the late 1950s. In classical electrodynamics

(CEM) the active vacuum and its exchange are omitted altogether, even though

experimentally established for many years. As Lee also pointed out, there can

be no symmetry of any observable system anyway, unless the vacuum interac-

tion is included.

Further, by the definition of broken symmetry, the proven asymmetry of the

source dipole in the vacuum flux must receive virtual energy and output observable

energy. Since we see only the 3-spatial output, to us it appears that the source

dipole somehow ‘‘extracts’’ from the vacuum some unobservable energy, trans-

duces it, and then pours it out as the observable EM energy that we do observe.

Since the term ‘‘source charge’’ and ‘‘source dipole’’ are widely used, we

will continue to use them, but with the clear understanding that in each case we

are really speaking of 4-space energy transduction of received virtual energy

into output observable energy.

B. Negative Resistor Function of the Source Dipole

To summarize the total energy flow in space surrounding the conductors has two

components as follows:

1. A tiny Poynting component [3,4] of the energy flow directly along the

surface of the conductors strikes the surface charges [36]18 and is diverged

(deviated) into the conductors to power the circuit.

The interacting surface charges are forced to move axially (mostly),

since they can move longitudinally down the conductor only with a small

drift velocity, which nominally may be a few inches per hour. As the

18 In Ref. 36, Jackson points out the decisive role played by the surface charges in the circuit. His

earlier book [7], did not cover circuits except for some minor capacitive and inductive effects.
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struck surface charges are forced inward, the withdrawal of their

interacting field energy (Poynting energy) follows them from surrounding

space into the wire, as shown by Kraus [3], in terms of the numbers on his

energy flow contours in a plane perpendicular to the conductors.

2. The huge nondiverted Heaviside component [5,6] filling all space around

the circuit, misses the circuit entirely and is wasted in all those circuits

using only a single pass of the energy flow. After having passed the

circuit, the Heaviside energy flow can still furnish additional energy to the

circuit if retroreflected to again pass back over the surface charges.

However, conventional power systems use only a single pass of the energy

flow, and completely ignore this enormous ‘‘dark’’ (unaccounted for)

energy accompanying every circuit. Other methods of extracting energy

from the neglected Heaviside component are discussed later.

The perspicacious reader will note that we have also completely replaced

‘‘statics’’ in electrodynamics with ‘‘steady-state dynamics.’’

VII. WHY LORENTZ ELIMINATED THE HEAVISIDE
FLOW COMPONENT

A. The Nondiverged Heaviside Component

The Heaviside component is enormous, and often some 1013 times as great in

magnitude as the Poynting component [15]. The Heaviside nondiverged energy

flow component was arbitrarily discarded by H. A. Lorentz [11], who integrated

the energy flow vector itself around a closed surface enclosing any volumetric

element of interest. This discards any nondiverted (nondiverged) energy flow

components, regardless of how large, and retains only the diverted (diverged)

component, regardless of how small.

Effectively Lorentz arbitrarily changed the energy flow vector into its

diverted flow component vector—a fundamental nonsequitur. In one stroke he

discarded the bothersome Heaviside component, reasoning that it was ‘‘physi-

cally insignificant’’ because—in single-pass circuits—it does not enter the

circuit and power it.

This is rather like arguing that all the wind on the ocean that does not strike the

sails of a single sailboat is ‘‘physically insignificant.’’ A moment’s reflection shows

that the ‘‘insignificant’’ remaining wind can power a large number of additional

sailing vessels. A very large amount of energy can be extracted and used to do

work, if that ‘‘physically insignificant’’ wind is intercepted by additional sails.19

19 The Heaviside component represents a huge region of dynamic organization of the vacuum

energy. There is no limit to such vacuum organization, as shown by the giant negentropy operation

initiated by the broken 3-symmetry of the dipole. We stress again that, prior to its interaction with

charge, the Heaviside energy flow is in the complex plane.
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B. No Apparent Source of the Enormous Heaviside
Energy Flow Component

Suppose that Lorentz had not arbitrarily discarded the huge Heaviside energy

flow component surrounding the circuit and not contributing to its power. In that

case, electrodynamicists in the 1880s would have been confronted with the

dilemma of explaining where such an enormous flow of energy—pouring forth

out of the terminals of every generator and battery—could possibly have come

from. There was then no conceivable source for such a startling profusion of

energy flow. Obviously the operator does not input such enormous energy, since

the Heaviside flow is often some 1013 times as large in magnitude [37,38]20–21.

(see also Section VII.B.1) as the retained Poynting flow. Neither does a battery

contain such enormous chemical energy to provide such a flow for even one

second by chemical-to-electrical energy conversion.

To avoid strong attack and suppression from the scientific community on

grounds of advocating perpetual motion and violation of energy conservation, in

the 1880s there was no other choice but to discard the Heaviside component on

some pretext. So Lorentz simply discarded the vexing component. He could not

solve the problem, so he got rid of it.

1. Reordering of Vacuum Energy

In simple language, to see that reordering of vacuum energy (negentropy) does

not require work; the organization of the vacuum represents a change to the

‘‘primal cause’’ or ‘‘primal energy.’’ Organization of virtual state energy without

the involvement of mass effects does not require observable work, because force

is not involved and observable work ultimately involves the forcible translation

of a resisting mass. So one can organize the ‘‘potential for doing work’’ without

having to perform work in doing so. This is in fact what ‘‘regauging’’ or ‘‘gauge

freedom’’ actually involves.

20 But see Hibert [37]. It may surprise or even shock the reader that in general relativity there are

really no conservation of energy laws as we know them, as was pointed out by Hilbert shortly after

Einstein published his general theory. Hilbert wrote: ‘‘I assert. . .that for the general theory of

relativity, i.e., in the case of general invariance of the Hamiltonian function, energy

equations. . .corresponding to the energy equations in orthogonally invariant theories do not exist

at all. I could even take this circumstance as the characteristic feature of the general theory of

relativity.’’
21 Commenting on Hilbert’s remarkable assessment, Logunov and Loskutov [38] made the following

statement: ‘‘Unfortunately, this remark of Hilbert was evidently not understood by his

contemporaries, since neither Einstein himself nor other physicists recognized the fact that in

general relativity conservation laws for energy, momentum, and angular momentum are in principle

impossible.’’ It remains largely unrecognized to date. We hypothesize that we may recover the

conservation laws in 4-space if we extend them to include time-energy, time momentum, time

potential, time force, and the giant negentropy induced by broken 3-symmetry.
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Any local region of the vacuum is, after all, an open system microscopically

fluctuating far from equilibrium with the surrounding rest of the vacuum, as

shown by quantum fluctuations. So that local region can exhibit (1) self-

ordering; (2) self-oscillation, self-spinning, and so on; and (3) negentropy.

To use this principle in practice, the trick is to ‘‘tickle’’ the local vacuum into

performing the exact type of reordering and self-structuring that one wishes.

One does this by adroitly changing the effect side of the observation process,

thereby altering the interacting causative side as well—and changing the effect

side precisely so that the desired set of changes occurs on the causal side. A

discussion of this process is well beyond the extent of this chapter. In mechanics

and electrodynamics, the interaction of the effect back on the cause has been

erroneously omitted, but is included as Newton’s third-law reaction—an effect

conventionally posited without a cause. But its cause is present in general

relativity since curvature of spacetime (cause) acts on mass energy (effect) to

change it, and a change in mass energy (effect) interacts back on spacetime

curvature (cause) to change it accordingly. That backreaction—missing from

classical electrodynamics—is the cause of the Newton third-law reaction.

A logical mess exists in electrodynamics, where the effect has been rather

universally confused with the cause. All illustrations continue to show the E–H

planar (X–Y ) wave in 3-space, which is an effect existing after the interaction

with charge. What exists in spacetime before interaction must be Et–Ht, since

observation itself is a q=qt operator imposed upon the LLLT entity and

producing an LLL entity—in this case, E–H. The integration of E–H along z

does not add the missing time dimension, but merely represents a ‘‘3-spatial

composite’’ of many frozen X–Y slices. It is thus the spatial spread of the serial

effects. In Am. J. Phys. 69(2), 107–109 (2001), in endnote 24, editor Romer

finally points out that the standrd plane wave diagram is horrible and wrong.

Consideration of the Et–Ht ‘‘impulse’’ or causal wave in spacetime prior to the

interaction with matter, particularly in phase conjugation pairs, leads to many

very interesting new EM phenomena not covered in this paper.

VIII. SOME CHARACTERISTICS OF POWER SYSTEMS

A. The Deadly Closed Current Loop Circuit

In conventional systems, a closed current22 loop contains the generator or

battery source dipole as well as the external circuit’s loads and losses. This

22 In the generator this current is unitary, consisting of charges having the same m/q ratio. In the

battery this is not true, since the internal lead ion current between the plates has an m/q ratio far

greater than that of the electrons in the current between the external surfaces of the plates and the

external circuit. Accordingly, in the storage battery it is possible to adroitly dephase the massive ion

currents in charge mode, from the much less massive external electron currents that can be in load-

powering mode. The result is the Bedini overunity battery switching process, with a negative resistor

created right on the surface of the plates between the two dephased currents. (See Ref. 9b.)
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arrangement requires that half the collected energy in the circuit forcibly pump

spent electrons in the ground return line back through the back emf of the source

dipole. Specifically, for every electron passing through the voltage drop across

the loads and losses in the external circuit, an electron—so to speak—must be

forcibly rammed back up through the source dipole against the same voltage.

Forcing the spent electrons through the source dipole’s back emf performs

work on the end charges of the dipole to forcibly scatter them. This destroys the

dipole and cuts off its free extraction of energy from the vacuum. In a charged

battery, this ‘‘back emf work’’ chemically scatters the dipole charges, whose

restoration as a source dipole again is performed by dissipation of some of the

chemical energy. This dissipation of part of the chemical energy causes a partial

reversal of the normal chemistry [39] of the electrolyte–plate system, which

reduces the chemical energy available by the battery to reestablish the source

dipole. The battery’s remaining chemical energy is expended to continually

restore the source dipole as it is continually destroyed, until the chemical

energy is exhausted. Then one must introduce additional energy into the battery

to ‘‘recharge’’ it by forcing the chemistry back to its initial fully charged

condition.

Electrical loads are—and always have been—powered by energy extracted

and converted from the vacuum by the source dipole, not by shaft energy

furnished to the generator or by the chemical energy in the battery. For unitary

current (i.e., a current whose basic flowing charges all possess the same m=q

ratio) closed-loop circuits, half the Poynting energy collected in the external

circuit is expended in the circuit loads and losses (forward emf direction), and

half is expended against the back emf of the source dipole (in the back emf

direction), destroying the dipole.

Another way of seeing this is to simply examine the scalar potential existing

between the two charges of a dipole, as we mentioned previously. A ‘‘scalar’’

potential is not really a scalar entity, although it has a scalar reaction cross

section for reaction with a static charge (see footnote 14, above). Instead, it is a

harmonic set of bidirectional phase conjugate longitudinal EM wavepairs, as

shown by Whittaker [8] in 1903. Thus any dipole (negative 4-resistor) or charge

(composite dipole set) has an enormous set of longitudinal EM wave energy that

flows into it from the time domain as we discussed above, and a corresponding

enormous set of longitudinal EM wave energy flows out from it in 3-space, in all

directions. Once the source dipole is formed in the generator or battery, this

energy flow exchange between source dipole and the universal active vacuum is

established and ongoing, as is the broken symmetry of the dipole in that energy

flux exchange with the active vacuum. At any point in the universe where the

negentropic reordering has reached at its light speed, a charge will interact with

the flow and extract energy from it. We emphasize that any scalar potential

itself is such a negative 4-resistor, and the negative 4-resistor process is induced

upon any charge or dipole placed in that potential.
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B. Present Power System Design Forcibly Applies Lorentz Regauging

A conventional (unitary closed current loop) circuit’s energy dissipation

potential is separated into two equal halves, each in opposite direction. One

that provides the force for discharge through the external circuit of the source

dipole uses what is called the ‘‘forward emf.’’ The other, which represents a

resistance force back through the internal dipole, provides what is called the

‘‘back emf.’’ The purely forward emf discharge represents energy dissipation in

the load and losses. The forward emf discharge proceeds, however, only by

simultaneously—so to speak—ramming the spent charge carriers in the ground

return line back through the dipole, scattering the charges and destroying the

dipole. Precisely as much energy is used in destroying the source dipole as is

dissipated in the external loads and losses combined. Hence the circuit destroys

its source dipole—and the negentropic reordering of the vacuum energy from

which the circuit’s excitation energy is extracted. And it does this faster than it

powers the load itself.

The closed current loop circuit thus enforces a special sort of dynamic

Lorentz symmetric self-regauging during discharge of the circuit’s excitation

energy. The energy rate being destructively returned to the vacuum in destroying

the source dipole, is equal to the energy rate being constructively returned to the

vacuum from the external loads and losses. The excited system forcibly kills its

free input of energy from the vacuum as fast as it powers the combined loads

and losses—and thus faster than it powers its loads.

To restore the destroyed dipole, the operator must input as much energy as

was required to destroy it. But with the closed current loop circuit, this operator

input a priori is greater than the useful output of work in the load. Hence the

coefficient of performance (COP) of this closed current loop system (with

unitary m=q of the charge carriers) is self-limited to COP < 1.0.

Classical thermodynamics, with its infamous second law, rigorously applies

during the excitation discharge phase of the closed current loop system, since

the system itself is diabolically designed to continuously and forcibly restore

itself into equilibrium with its active environment by killing its own source

dipole gusher of vacuum energy flow as fast as it powers its loads and losses.

In a generator-powered system, continual input of energy to the generator

shaft is required to continually add energy to perform work on the scattered

charges, in order to restore the source dipole that the closed current loop

continually destroys. Thus our present self-crippling vacuum-powered generator

circuits and systems exhibit COP < 1.0 a priori, as do our self-crippling battery-

powered circuits and systems.

We must pay for the initial energy input to the generator to establish the

source dipole. Once formed, the dipole continuously extracts and pours out

enormous observable EM energy flow from the vacuum—if we do not foolishly
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destroy the dipole. However, all our conventional circuits are deliberately

designed to do just that: destroy their source dipoles faster than they power

their loads. They are deliberately—although unwittingly—designed specifi-

cally as systems that self-enforce COP < 1.0.

The typical closed current loop circuit receives only a single pass of the

energy flow, and therefore intercepts, collects, and utilizes only the very small

Poynting component, simply wasting the enormous Heaviside component that

misses the circuit altogether. Our present single-pass power systems nominally

waste some 1013 times as much energy as they catch and utilize. Scientists can

easily do better than this if they (1) remove Lorentz’ arbitrary and erroneous

discarding of the Heaviside energy flow, (2) develop circuits and circuit

functions to catch and use much of that available but presently neglected

huge energy flow, and (3) develop and utilize circuits that destroy their source

dipole slower than they power their loads.

Those are, in fact, the requirements for electrical power systems exhibiting

COP > 1.0. Such open systems in disequilibrium with their active vacuum are

permitted; indeed, every dipolar circuit already is in such disequilibrium. Such a

system can also be ‘‘close-looped’’ to power itself and its load. For instance, an

open dissipative system with COP¼ 2.0, can use 1.0 of its COP to power itself,

and the other 1.0 to power the loads and losses [98]. This is no different from the

operation of a windmill, except that the electrical system operates in an EM

energy wind initiated from the vacuum by the source dipole. We point out that

‘‘powering a system’’ actually need only be ‘‘powering its internal losses’’ if the

source dipole is maintained.

C. What We Pay the Power Company to Do

Essentially we pay the power company to engage in a giant Sumo wrestling

match inside its generators and to lose by killing the free extraction of energy

from the vacuum faster than the wrestling process powers the loads.

We pay the power company to use only a ‘‘single pass’’ of the energy flow

along its transmission lines and the consumer power circuits, and thereby to just

‘‘waste’’ some 1013 times as much available EM energy as the company allows

us to ‘‘use.’’

Present electrical power systems simply repeat this travesty over and over, so

that we are continually inputting external energy to the generator to restore the

source dipole, and having to input more than we get back out as work in the

load. That is why all conventional EM power systems exhibit COP < 1.0

a priori. The system is specifically designed to force itself to do precisely

that, by killing itself faster than it powers its load.

Such an inane power system continually forms a marvelous extractor of

vacuum energy, then attacks itself suicidally. In an oil derrick analogy, the

system continually destroys its own energy flow ‘‘wellhead’’ (source dipole) and
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does not capitalize on it. That is rather like drilling an oil well, bringing in a

great gusher, catching a little oil in barrels, burning half of the barreled oil to

deliberately cap the well, then drilling another well beside the first one, forcibly

recapping the second one, and so on.

This is what keeps those coal trains running, the fleets of oil tankers

steaming, the natural-gas lines flowing with gas and the oil pipelines flowing

with oil, and gasoline and diesel engines powering our transport. It keeps

enormously expensive nuclear power plants being built so that their nuclear

reactors can produce heat to boil water to make steam to run turbines to input

shaft power to the electrical generators for the generators to restore their

continually killed source dipoles [18].

This insanity keeps our energy costs high, economically burdens every

citizen and every nation, impoverishes many undeveloped and developing

nations along with their peoples, and pollutes the planet to the limit of its

tolerance and beyond. On our present course, we are embarked on destroying

our biosphere and ourselves along with it.

Eerily, our scientific community ignores the terrible >135-year-old founda-

tion errors in classical electromagnetics and assures us that this is the best that

electrodynamics can do. In fact, the scientific community has not yet even

recognized the problem, much less the solution. As Bunge [40] so poignantly

stated in 1967: ‘‘it is not usually acknowledged that electrodynamics, both

classical and quantal, are in a sad state.’’

Since that statement, not very much has been done to alleviate the problem,

particularly in the electrodynamics model utilized to design and build electrical

power systems. Heartbreakingly, the community itself seems predominately

bent on defending nonsequiturs and the status quo, rather than correcting a

remarkable but aged electrodynamics discipline that is seriously flawed and in

great need of revision from the foundations up.

IX. REQUIREMENTS FOR MAXWELLIAN EM POWER
SYSTEMS EXHIBITING COP > 1.0

Along with some suggestions, the characteristics for permissible electrical

power systems that exhibit COP > 1.0 are listed and discussed in the following

paragraphs.
A. Open Thermodynamic System

Particularly during its excitation discharge, the system must be an open

thermodynamic system far from equilibrium in its energetic exchange with

the active vacuum. In that case classical equilibrium thermodynamics does not

apply, and such a system is permitted to

1. Self-order

2. Self-oscillate or self-rotate
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3. Output more energy than the operator inputs (the excess energy is

received from the vacuum

4. Power itself and its loads simultaneously (all the input energy is received

from the vacuum)

5. Exhibit negentropy

B. Circuit Energy Loads and Losses

The external circuit’s loads and losses must not be completely coupled into the

same closed unitary current loop with the source dipole in the generator. One

suggestion is to develop and use proven energy shuttling in circuits. This

discovery by Tesla [41]23 can only be seen (and designed) by electrodynamics

theory embedded in an algebra of higher topology than tensors. (Barrett later

improved Tesla’s mechanism for use in communication systems and obtained

patents [42].)

C. Additional Energy Collection

The system must iteratively collect additional energy from the available but

normally wasted enormous Heaviside energy flow component.

1. A primary way to do this is to iteratively retroreflect the nondiverted

Heaviside energy flow component after each pass, reflecting it back and

forth across the surface charges in the circuit’s conductors, collecting

additional EM energy in the circuit on each repass.

2. A second avenue is to intensively reinvestigate and develop Kron’s [43]

discovery of the ‘‘open path’’ for EM networks as a dual of the

conventional closed path.

3. A third suggestion is to further investigate and develop (in higher-

topology algebra) Tesla’s energy shuttling in EM circuits as shown and

improved by Barrett [41,42].

4. A fourth suggestion is to utilize intensely scattering optically active

media (ISOAM) and develop self-excitation processes in the medium.

With output in the infrared region, such a process could use the excess

heat to provide the heater portion of conventional power plants, allowing

relatively straightforward phasein of clean vacuum energy powering of

most present major power systems. Previous experiments with such

ISOAM have utilized external excitation of the medium and thus have

COP < 1.0. However, self-excitation looms in the mechanisms being

23 Several of Tesla’s patented circuits exhibit this effect, as analyzed and rigorously shown by Barrett

[41]. However, this can only be seen when the circuits are examined in a higher-topology electro-

dynamics. Barrett’s analysis is in quaternionic electrodynamics. Tensor analysis will not show it.

extracting and using electromagnetic energy 671



uncovered in the most recent experiments [44], which have shown

positive-feedback loops, trapping of light flow energy in large random

walks of over 1000 individual interactions, weak Anderson-type locali-

zation, and constructive interference of forward-time and reversed-time

light paths. These experiments point toward a potential ‘‘vacuum-energy-

powered heater.’’ With additional research, such a heater can become

self-powering by the presence of sufficient positive feedback (which will

allow excess collection from the Heaviside energy flow component). We

have pointed out [16] that this ISOAM process—with the self-excitation

occurring spontaneously as a ‘‘kick-in’’ process in an exploding gas—

probably accounts for the phenomena observed in the gamma-ray

burster. Reignition, afterglow, and similar effects are observed in both

the gamma-ray burster and also in the latest ISOAM experiments.

Similar phenomena occur in X-ray bursters as well, and perhaps even in

the confirmed gamma ray emissions from intense storm clouds.

5. A fifth suggestion is to reopen the intensive investigation of true negative

resistors such as those by Kron [43] and Chung [45]—and the potential

and the dipole as negative 4-resistors as given in this chapter—adding

the consideration of vacuum energy interaction into the electrodynamics

utilized for the investigation. (Chung and colleagues found that the

carbon fiber composite can be produced as either a negative or a positive

resistance by controlling the production process [45]. Chung’s experi-

ment has been replicated by Naudin (htt://jnaudin.free.fr/cnr/

enrevp1.html/. Naudin has also derived a much simpler version easily

replicated.) Indeed, the original point-contact transistor often behaved in

true negative resistor fashion, but was never understood. As Burford and

Verner [46] state:

The theory underlying their function is imperfectly understood even after

almost a century. . . although the very nature of these units limits them to

small power capabilities, the concept of small-signal behavior, in the sense

of the term when applied to junction devices, is meaningless, since there is

no region of operation wherein equilibrium or theoretical performance is

observed. Point-contact devices may therefore be described as sharply

nonlinear under all operating conditions.

(This quote is from p. 281 of Ref. 46. We comment that point-contact

transistors can be easily developed into true negative resistors enabling

COP > 1.0 circuits.) The point-contact transistor was simply bypassed by

advancing to other transistor types more easily manufactured and with less

manufacturing variances.

6. As a sixth suggestion, we point out that all semiconductor materials are

also optically active materials, and that a point discharge into such
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materials represents a very sharp regauging discharge due to the increase

in potential at the tip. This means that the junction includes asymmetric

self-regauging, iterative time-reversal retroreflection, increased Poynting

and Heaviside energy flow components, and optical scattering processes

inside the junction materials. The Fogal semiconductor [47] is expected

to be in production shortly. This semiconductor exhibits the desired

characteristics for proper negative-resistor work. Fogal has rigorously

demonstrated to several large communications companies—now funding

him—and is filing patents upon the use of his unique semiconductor to

‘‘infold’’ and ‘‘outfold’’ EM signals of extremely wide bandwidths into

and out of a DC potential via a proprietary process. This is believed to be

a direct application of the Sachs [27] unified general relativity and

electrodynamics approach, along lines indicated by Evans [48], whereby

the internal structure of a DC potential may be very much richer than is

given by Whittaker [8] decomposition. Ziolkowski [49] has previously

added the product waveset in addition to Whittaker’s sum set. Since wave

products are modulations, this has direct signal infolding implications.

Mathematically, specialized semiconductors and their circuits should be

able to perform Whittaker–Ziolkowski infolding of EM signals inside a

DC potential, as the Fogal chip and circuits have now experimentally

demonstrated.

7. As a seventh suggestion, intense sudden discharges in ionized gases are

especially of interest because of the presence of optical frequency

components and the involvement of iterative optical retroreflection and

other processes. These processes seem to be involved in several

investigations and inventions [50–52].24

8. As an eighth possibility, the present author [53,54]25 has advanced an

engineerable mechanism—still largely proprietary—for altering the rate

of flow of a mass particle (or a set of them, constituting a mass) through

time, including time-reversing the particle back to a previous state. The

mechanism provides for exciting and discharging a charge with a time–

charge excitation that is pumping in the time domain—imaginary

plane—where the absolute value of the time–charge (time–energy) is

ordinary spatial energy compressed by the factor c2. Hence absolute

24 For instance, the anomalous quenching of the Hall effect generates a negative resistance effect.

The Hall voltage across a narrow current-carrying channel in the presence of a perpendicular

magnetic field B behaves anomalously around B ¼ 0. The Hall resistance fluctuates about zero and is

‘‘quenched,’’ and then rises to a plateau at higher fields and eventually recovers and exhibits normal

behavior beyond that region. For further details, see patents by Correa and Correa [50], Mills [51],

and Shoulders [52].
25 Although Ref. 53 is proprietary, some details have been given; see Ref. 54.
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value of time–charge (time–energy excitation) has equal energy density

to mass. Because it is in the time domain, however, this highly

compressed EM energy exists in the complex plane. In a small time-

reversal zone (TRZ) created by the time pumping process, like electrical

charges attract and unlike electrical charges repel. This phenomenon

thus allows like charges to attract in even numbers, without violation of

the Pauli exclusion principle. We believe this process or a similar one26

may be involved in the intense clusters of like charges demonstrated by

Shoulders [52,55] (see also Ref. 56)27 and in cold fusion reactions. The

law of attraction and repulsion of charges is reversed in a TRZ, so that

even numbers of fermions there may act as quasibosons and thus be

time-reversed. The TRZ then decays away, providing new and different

excitation decay reactions of the quasibosons by quark flipping; these

decay reactions do not exist in normal forward-time particle physics. An

entirely new class of ‘‘inside–outside’’ nuclear interactions is available

at low spatial energy (but high time–energy) that are not achievable by

present ‘‘outside–inside’’ collision physics. As the TRZ decays,

energetic decay changes are initiated which start from every point in

spacetime inside the TRZ—including inside nucleons located in the

zone—and move outward, interacting first with the nearly time-reversed

quarks and gluons so that quark flipping—and change of proton to

neutron and vice versa—become favored reactions and not formid-

able.28 In the highly localized TRZ the quarks are nearly unglued by the

time reversal anyway, so that alteration of quarks is not formidable. We

have proposed novel new time–energy reactions [53,54] that are

consistent with most of the observed low spatial energy transmutations

of the electrolyte experiments. The mechanisms involved in these

reactions are also consistent with the anomalous phenomena experienced

in the instruments occurring for several years in electrolyte experiments

at China Lake [57]. In addition to a vast new set of highly localized

nuclear reactions of extremely high time–energy but extremely low

26 For example, one might extend our notion of the isolated fermion (such as an electron) as a

composite dipole. Each dipole would thus be acted on in a TRZ, such that like virtual charges would

now cluster around the observable fermion while the former unlike virtual charges would be

repelled. Since the energy density of time is so great, sufficient energy is readily available for lifting

whole fermions of like sign out of the Dirac Sea. If valid, this approach would indeed yield intense

clusters of like observable charges, perhaps explainable in no other way. One thing is certain—

Shoulders has experimentally shown that the clusters do indeed exist, in discharge situations strongly

suggestive of intense phase conjugate actions and thus TRZ formations. The actual mechanism

responsible for these demonstrated clusters is as yet purely speculative.
27 See patents and paper by Shoulders. A theory has been proposed by Jin and Fox [56].
28We note that Sachs’ epochal unification of general relativity and electrodynamics [27] does cover

the quarks and gluons causally, as well as fermions and bosons. We point out that curvature of

spacetime involves both positive and negative curvatures—with time involved as well as space.

Certainly the theory is compatible with the consideration of time as a special form of EM energy.
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spatial energy, the TRZ mechanism would seem to allow the production

of true negative resistors—for instance, to be used as an external circuit

bypass shunt around the source dipole in the generator, transformer, or

battery. If so, once the process is developed and shown to be valid, EM

circuits exhibiting COP > 1.0 will hopefully become a standard

development, as will direct engineering of the atomic nucleus and

nucleons in that nucleus.

9. As a ninth mechanism, application by Kawai [58] of adroit self-switching

of the magnetic path in magnetic motors results in approximately

doubling the COP. Modification of an ordinary magnetic engine of

COP < 0.5 will not produce COP > 1.0. However, modification of avai-

lable high efficiency COP¼ 0.6–0.8 magnetic engines to use the Kawai

process does result in engines exhibiting COP¼ 1.2–1.6. Two Kawai-

modified Hitachi engines were rigorously tested by Hitachi engineers

and produced COP¼ 1.4 and COP¼ 1.6, respectively. The Kawai

process and several other Japanese overunity systems have been blocked

by the Yakuza from further development and marketing.

10. As a 10th suggestion, the magnetic Wankel engine (for details, see an

article by this author on the master principle of EM overunity and the

Japanese overunity engines [59]) should also be capable of COP > 1.0

and closed-loop self-powering, but apparently it has also been

suppressed, as have all present Japanese COP > 1.0 EM systems. The

Wankel engine simply wraps a linear magnetic motor around most of a

circular path, with only a few degrees open between the ends. The back

mmf upon a rotating rotor magnet is thus confined to that few degrees of

the rotation. A small external coil with a continuous small trickle current

has its current sharply interrupted just as the rotor enters the back mmf

region. The resulting sharp Lenz law effect temporarily overrides the

back mmf magnetic field, reversing the net magnetic field in the region

and converting it to a forward mmf region. This boosts the rotor through

the critical region, so that it continues to drive forward, and requires only

the minute expenditures in the coil and the switching costs. This

produces a magnetic rotary motor with no net back mmf, with less

energy input by the operator in comparison to the work produced by the

engine. The dipolarity’s extraction of energy from the vacuum is what

actually powers the engine anyway, as we have discussed.

11. As an 11th suggestion, multivalued magnetic potentials arise naturally in

magnetics theory [60,61] as well as in other potential theory. This is

particularly true during phase transitions, where multivalued potentials

seem to be the rule rather than the exception [62]. Theoreticians do all in

their power to minimize or eliminate their consideration [61]. However,

if deliberately used and optimized, the multivalued magnetic potential
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can provide a nonconservative field, where
Ð

F � ds 6¼ 0 around a rotary

permanent magnet loop. In theory, this can enable a ‘‘self-powering’’

permanent magnet rotary engine [63]. Nonlinear effects (e.g., the

magnetic Wankel external use of Lenz law and Johnson’s internal use of

deliberately initiated and controlled exchange forces) may be evoked to

provide the multivalued potentials and net nonconservative fields.

12. As a 12th suggestion, certain passive nonlinear circuit components such

as ferroelectric capacitors [64,65]29 have multiple nonlinear current

processes ongoing inside. In principle it is possible to utilize such

components only during the time they pass the current against the

applied voltage. By adroit switching, in theory one can intermittently

connect and utilize such passive components as true negative resistors.

13. As a 13th suggestion, feedback systems with a multipower open loop

chain can produce COP > 1.0 performance [66]. Indeed, a frequency

converter using 64 transistor stages and similar sophisticated feedfor-

ward and feedback mechanisms was placed in the original Minuteman

missile,30 then deliberately modified to stop its demonstrated COP > 1.0

performance. Very quietly, Westinghouse engineers then obtained

several patents [67] surrounding the technology, but no further mention

of it appears in the literature. The particular germanium transistor

involved, was later removed from production.

14. As a 14th approach, Johnson [68] has built many novel linear and rotary

motors and at least one self-powering magnetic rotary device—later

stolen in a mysterious break-in at his laboratory—personally tested by

the present author. Johnson uses a bidirectional ‘‘two particle’’ theory of

magnetic flux lines that can be justified by Whittaker’s earlier work

showing the internal bidirectional energy flows in all potentials and

fields. He also utilizes controlled spin waves and self-initiated precise

exchange forces, which are known to momentarily produce bursts of

very strong forcefields [69]. His approach is to use highly nonlinear

assemblies of magnets that initiate the foregoing phenomena at very

precise points in the rotation cycle. In short, he seeks to produce

precisely located and directed sudden additional magnetic forces, using

self-initiated nonlinear magnetic phenomena. This is analogous to what

the Wankel engine did using the Lenz law effect by sharply interrupting

a weak current in a external coil. We point out that the Lenz law effect

and other very abrupt field changes momentarily produce not only an

29 See Diestelhorst et al. [64]. In particular, multivalued conjugate reflectivities may become

involved in some ferroelectric capacitors; see also Itoh et al. [65].
30 This information was obtained in private conversations with engineers directly involved with the

project and involved with the frequency converter both before and after its modification. The

converter exhibited COP ¼ 1.05–1.15, prior to modification to prevent it.
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amplified Poynting energy flow component, but also an amplified

Heaviside energy flow component as well.

15. As a 15th approach, we previously proposed a patent-pending mecha-

nism whereby a degenerate semiconductor alloy (say, of a bit of iron in

aluminum wire) is utilized for the conductors of the external circuit. By

obtaining an electron relaxation time of, say, a millisecond, one can

excite the circuit with potential alone, then switch away the excitation

source prior to decay of the excitation potential (i.e., prior to the flow of

any appreciable current). In this way, almost pure asymmetric regauging

is used to excite the circuit, without requiring work (except for switching,

which can be made very efficient). The excited circuit then discharges in

Lorentz symmetrical fashion, but all the work in the load is ‘‘free.’’ If LE

is load energy and SE is switch energy utilized, this approach yields

COP¼LE � SE and COP > 1.0 is possible.

16. As a 16th approach, at Magnetics Energy Ltd. we are presently working

on a patent-pending process whereby a permanent magnet is given a

‘‘memory’’ at will. By adroitly manipulating the memory, most of the

magnetic flux from the magnet can be made to prefer and take a desired

magnetic path among several available. Then the memory (and pre-

ference) is adroitly switched. Once one controls what path the flux

‘‘prefers’’ and when it prefers it, obviously COP > 1.0 is possible. This

in fact is a special kind of ‘‘Maxwell Demon’’ [99]. A Maxwell Demon

is indeed possible, if switching (actually, directed asymmetrical

regauging) can be accomplished at a level deeper than the energy

process utilized. The reader will recall that gauge freedom guarantees

the ability to change the potential energy of the system at will. If one

does that deterministically, then also regauges so as to asymmetrically

discharge the excess potential energy deterministically in the load, a

priori one has built a permissible Maxwell Demon [70].31 Our work has

culminated in the motionless electromagnetic generator (MEG) [99]

which extracts EM energy from the vacuum [see Chap. 12].

31 For typical objections see Ref. 70a; For a list of numerous references on the 120-year debate, see

Ref. 70b. The most extant arguments against Maxwell’s Demon invoke ad hoc assumptions requiring

either classical thermodynamics, information ‘‘costs,’’ or both. There is nothing in gauge freedom

that requires expenditure of energy as work, and there is nothing prohibiting it from being invoked

deterministically at will and without cost. Simply moving energy from one place to another is not

work. If we can do this sufficiently accurately and cheaply in the real world, then we can permissibly

build a Maxwell’s Demon in the real world. The regauging process (change of potential) is actually a

change in the local vacuum potential, so that in the regauged systems a priori one creates an open

system not in equilibrium with its environment—the active vacuum. Such open disequilibrium

systems [71,72] are permitted to exhibit COP > 1.0. Perpetual-motion critics already recognize that

one, but call it ‘‘fictitious perpetual motion.’’ This ‘‘fictitious perpetual motion’’ energy production

from a simple dipole, has been going for some 15 billion years in those extant dipoles formed in the

original creation of the universe. That is quite a persistent Maxwell’s Demon indeed!
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17. As a 17th approach, Bedini [9b] has perfected a remarkable process for

dephasing—and freely overpotentializing—the ion currents inside a

storage battery between its plates, from the electron currents circulating

between the outside of the plates and the external circuit including the

load. He takes advantage of the fact that the loop current is nonunitary,

and that the internally confined ion currents have an m=q ratio several

hundred times greater than that of the external electron currents.

Consequently a significant hysteresis (relatively speaking) between ion

current response and electron current response can be obtained by adroit

sharp switching. He also creates an overpotential (a true negative

resistor) on the interface of the plates between the two currents. This

excess dipolarity thus extracts reactive power from the active vacuum (as

we explained previously for a dipolarity), and blasts it out in both

directions, onto the ion currents in charge mode internal to the battery

and also onto the electrons in the external circuit in load powering mode.

Hence the battery is simultaneously blast-charged with excess energy

(the ions collect greater than normal energy) while the load is powered

with excess energy (the Drude electrons are also overpotentialized and

thus excited with excess energy). Bedini has produced working models

(several personally tested, e.g., by this author) and is moving toward the

market with his patent-pending process.

D. Energy Dissipation

The system must dissipate its excess collected energy (its asymmetrically

regauged excitation energy) in the load (and in the external circuit losses)

without dissipating the source dipole—or at least so that the discharge is

asymmetric and dissipates the source dipole much slower than it powers the

load. For a two-wire circuit, one method might be to utilize a true negative-

resistor shunt32 in parallel with the primary source dipole but in its external

circuit. This splits the return current in the secondary into two parts: (1) one part

passes back through the secondary, causing back-field coupling into the primary

for that component; and (2) one part which does not pass back through the

secondary, so that this component does not cause back-field coupling into the

primary. In that way, the net back-field coupling into the primary is reduced, and

the primary does not have to dissipate as much energy as does the secondary. It

of course has to pass the energy flow to the secondary, but that need not be

dissipated in the primary. With that arrangement, the primary will furnish all

energy dissipated in the secondary circuit, but will not dissipate in itself as much

32 Negative-resistor candidates for such a shunt may arise from point-contact transistors, from the

Fogal transistor, and from the work of Wang and Chung [45].
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energy as is dissipated in the secondary circuit. Hence a transformer-coupled

system using such a nonlinear transformer permissibly exhibits COP > 1.0. We

point out that the negative resistor represents excess energy input into the

secondary circuit from the surrounding organized Heaviside dark energy flow

component.

E. Self-Powering

For self-powering of Maxwellian COP > 1.0 systems once developed, clamped

positive energy flow feedback [98] from output side to input side and excess

collection from the Heaviside component can be used to power a motor turning

the generator shaft, with the remainder of the output dissipated in a load. We

stress that no laws of physics, electrodynamics, or thermodynamics are violated.

Nor are the Maxwell–Heaviside equations violated, before their arbitrary

Lorentz regauging. The conservation of energy law is obeyed at all times. Such

an open dissipative Maxwellian system—which is what is being described—

rigorously is permitted to self-power itself in that fashion, as shown by

Prigogine [71]33 and others [72] in the study of nonlinear systems far from

thermodynamic equilibrium. But following Lorentz, electrodynamicists have

arbitrarily discarded all such permissible Maxwellian systems merely because it

greatly simplifies the mathematics!

X. PROOF OF THE AVAILABLE, NEGLECTED HEAVISIDE
ENERGY FLOW COMPONENT

A. Bohren’s Experiment

To prove the ubiquitous existence of the Heaviside energy flow component, and

to demonstrate that it can easily be tapped, one can refer to Bohren’s [13a]

demonstration that a resonant particle collects and emits up to 18 times as much

energy as is input to it by conventional accounting (i.e., in the Poynting

component of the true energy input). Resonant particle absorption and emission

is a COP > 1.0 process already proven and standard in the literature for

decades; For example see the pioneering work by Letokhov [14]. The effect

reported by Bohren was confirmed and verified, for instance, by Paul and

Fischer (see Ref. 13(b) and footnote 5, above). Bohren, Paul, Fischer, and other

electrodynamicists are unaware that their energy input actually included the

huge unaccounted for Heaviside energy flow component as well as the

accounted Poynting flow defined by reaction with a static unit point charge.

33 In 1977, Russian-born Belgian chemist Ilya Prigogine received the Nobel Prize for chemistry for

contributions to nonequilibrium thermodynamics, especially the theory of dissipative structures.
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B. Explanation for Bohren’s COP¼ 18

The reason for the COP > 1.0 in this process is that the resonant particle sweeps

out a greater geometrical reaction cross section in the total energy flow than is

included in Poynting’s theory for a standard static particle’s interception. In

short, it proves that the neglected Heaviside component is present and can be

readily intercepted to obtain real expendable energy. We did a back-of-the-

envelope calculation for the relative magnitude in a simple DC circuit of the

Heaviside component compared to the Poynting component. The neglected

Heaviside component for a nominal simple circuit was on the order of 1013

times as great in magnitude as the feeble Poynting component. A more exact

calculation and a functional theoretical model would be welcomed, but we

could not locate such in the literature (see Section III.A.1).

C. The Heaviside Energy Flow Component Was
Arbitrarily Discarded

Practical EM power systems exhibiting COP > 1.0 are included in the Maxwell–

Heaviside equations prior to Lorentz symmetric regauging (see footnote 6,

above), which changed the equations to a small subset of the Maxwell–

Heaviside theory. Specifically, the Lorentz procedure arbitrarily discards that

entire class of Maxwellian systems that are not in equilibrium with their active

vacuum environment. It is precisely that discarded class of Maxwellian systems

that contains all Maxwellian EM power systems exhibiting COP > 1.0, by

functioning as open dissipative systems freely receiving and using excess

energy from the active vacuum.

XI. PROPOSED SOLUTION FOR THE ‘‘DARK MATTER’’
GRAVITATIONAL ENERGY

A. Background of the Problem

As is well known, the observable or accountable matter in distant spiral galaxies

is insufficient for generation of sufficient gravity in the spiral arms to keep the

matter in the arms from flying away [73,74]. It has been conjectured for some

time that various types of exotic new ‘‘matter’’ never observed (and therefore

‘‘dark’’), must be responsible for the excess gravity.

In general relativity, it is not mass per se, but mass–energy that is assumed to

be responsible for gravitation, by the energy acting upon spacetime to curve it.

In short, if appreciable ‘‘dark energy’’ can be discovered that has been

previously unaccounted for, that could well explain the extra gravity.

So, one is rigorously seeking excess, unaccounted-for ‘‘dark energy’’ in some

form—which may or may not be in the form of ‘‘exotic new matter.’’
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B. A Proposed ‘‘Dark Energy’’ Candidate

We have found what may be the perfect candidate.

Lorentz arbitrarily discarded the vast Heaviside energy flow component

accompanying every EM field or potential reacting with charge. (Here we are

specifically considering the ‘‘charge’’ as a set of composite dipoles, since there

really is no such thing as an ‘‘isolated charge,’’ anyway.) The previous

calculations of the fields, potentials, and energy radiations for all such reactions

in the universe—including in those distant spiral galaxies—have grossly

underestimated the actual EM energy involved, using only the reaction cross

section of the field or potential to a unit point static charge rather than the field

or potential itself.

It follows that throughout the observed universe a myriad of negative

4-resistor interactions are pouring forth very large amounts of unaccounted

Heaviside EM field energy flow, across the universe in all directions. Conse-

quently, at any location in space, there exists a vast flux of these Heaviside

‘‘dark radiation’’ energy flow components. Indeed, in our view the nonlinear

wave and field interactions of these unaccounted-for dark energy flows may be

taken as what is ‘‘driving’’ the EM vacuum fluctuation of ‘‘zero-point’’ energy,

essentially what is included in Puthoff’s cosmological feedback principle [75].

C. Some Observations of Interest

Three facts [73] are of interest: (1) the local gravitational potential from the

distribution of stars perpendicular to the galactic plane seems greater than can

be provided by the masses of known types of stars; (2) because of the decrease

in luminosity to mass (or energy) in the outward direction from the center of

galaxies, there must be some form of missing ‘‘dark’’ (non-Poynting radiant)

matter (or alternatively, unaccounted and therefore ‘‘dark’’ energy flow) in the

outer galactic regions that contributes to the gravity; and (3) in clusters of

galaxies it is known that there must be more mass (or dark energy) present than

is contained in the visible (by Poynting detection) parts of galaxies.

D. The Dark Energy Is Present at Every EM Field
Interaction with Matter

We point out that the Heaviside component of radiation does, in fact, represent a

‘‘dark’’ and massive form of radiated EM energy that is physically always

present, is missed by standard detectors, is arbitrarily excluded from the EM

theory, and has been completely unaccounted for in astrophysics as well as

elsewhere. Certainly the EM dark-energy radiation is gravitational, so one may

hypothesize it as a candidate or major contributor to resolving the dark-matter

problem. In short, the dark-matter problem may arise not because of missing

matter, but because of unaccounted for, undetected, and theoretically discarded

dark EM radiation of Heaviside form.
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As with any other hypothesis, of course, this one requires falsification or

validation by future experimental and theoretical investigations. We hope to see

such definitive experiments in the future.

XII. THE ‘‘SCALAR’’ POTENTIAL IS A MULTIVECTORIAL,
MULTIWAVE ENTITY

There is, of course, a scalar potential established between the two end charges

of a source dipole. Let us examine what kind of energy flows actually comprise

a ‘‘scalar’’ potential, and whether it is a scalar entity or actually a set of

multiwave multivector EM energy flows.

When a ‘‘scalar’’ potential is set upon a transmission line, it speeds down the

line at nearly light speed, revealing its vector nature. When it is set onto the

middle of the transmission line, it speeds off in both directions simultaneously,

revealing its bidirectional vector nature. In addition to this observation, there is

rigorous mathematical proof as well.

In 1903 Whittaker [8] (see also Ref. 76)34 showed that the scalar potential

identically is a harmonic set of longitudinal EM bidirectional wavepairs, where

each wavepair is comprised of a coupled longitudinal EM wave and its phase

conjugate replica. Hence the potential is a bidirectional, multiwave, multi-

vectorial entity and an equilibrium condition in a myriad bidirectional flows of

longitudinal EM wave energy. There is thus a vast, bidirectional, longitudinal

electromagnetic wave ‘‘infolded electrodynamics’’ inside every potential and

comprising it.

In 1904 Whittaker [28] showed that any EM field or wave consists of two

scalar potential functions, initiating what is known as superpotential theory [77].

By Whittaker’s [8] 1903 paper, each of the scalar potential functions is derived

from internally structured scalar potentials. Hence all EM fields, potentials, and

waves may be expressed in terms of sets of more primary ‘‘interior’’ or

‘‘infolded’’ longitudinal EM waves and their impressed dynamics.35 This is

indeed a far more fundamental electrodynamics than is presently utilized, and

one that provides for a vast set of new phenomenology presently unknown to

conventional theorists.

34In addition to Whittaker’s sum set of waves comprising the ‘‘scalar’’ potential, Ziolkowski [49]

added the product set. See also Refs. 76a and 76b.
35 One might appropriate the Russian term ‘‘information content of the field’’ for this more

fundamental interior EM, from which all other EM is made. The ‘‘infolded’’ electrodynamics is

largely ignored in the Western scientific community, which heretofore has erroneously equated

‘‘information content of the field’’ as mere spectral analysis. In so doing, it has dismissed an

engineerable unified field theory of great power. The Sachs combined GR/EM theory allows this

information content of the field to be rigorously dealt with. Evans’ melding of O(3) electrodynamics

into a special subset of the Sachs unified field theory allows direct engineering to be developed.
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XIII. DEEPER NEGENTROPY OF THE ‘‘ISOLATED CHARGE’’
IN SPACE

A. A Charge Is a Set of Composite Dipoles

From quantum electrodynamics and particle physics, it is known that ‘‘empty

space’’ is filled with intense virtual particle activity. An ‘‘isolated charge in

space’’ must interact with the fleeting virtual charges that appear and disappear

in accordance with the uncertainty principle of quantum mechanics. Conse-

quently, virtual charges of opposite sign will be drawn toward the observable

charge, before they disappear. The result is a formation of denser virtual charges

of opposite sign, surrounding the observable charge, and a polarization of the

local vacuum.

We may take a tiny ‘‘piece’’ of the observable charge, coupled with a nearby

virtual charge of opposite sign during its existence, and consider the pair to be a

dipole in a special ‘‘composite’’ (coherent virtual and observable) sense. So the

‘‘unit point charge’’ often used in electrodynamics to interact with the fields and

potentials—and erroneously ‘‘define’’ them as their own reaction cross sec-

tions—is not really a point charge at all but is a set of composite dipoles.

Further, it occupies the ‘‘neighborhood of a point’’ rather than a point.

B. Decomposing the Dipole’s Potential

Each little composite dipole also has a ‘‘scalar potential’’ between its ends.

We may decompose that potential into a harmonic set of bidirectional EM

longitudinal wave (LW) pairs [8], where each pair consists of an outgoing LW

and an incoming LW. Now, however, the incoming (convergent) LWs are

virtual; i.e., comprised of organization and dynamics in the virtual flux of the

vacuum [9(a)].

We may repeat this analysis for each of the composite dipoles constituting

the so-called ‘‘isolated observable charge.’’

So any ‘‘isolated charge’’ in fact organizes and dynamicizes a fraction of the

entire vacuum potential of the universe. The simple charge imposes a fraction of

negentropy and organization on the vacuum, spreading at light speed across the

universe. A vast set of ‘‘energy circulations’’ in the form of LWs and virtual

LWs is established by charge–vacuum interaction, where a set of convergent

virtual LWs feeds virtual energy continuously into the ‘‘charge,’’ and the charge

organizes some of its received energy into observable LW energy radiated out to

the ends of the universe.

The charge, scalar potential, and dipole are all true negative 4-resistors of

extraordinary magnitude. They order the virtual state energy flux of the vacuum,

and bridge the gap between virtual and observable state, extending into the

entire macroscopic universe level.
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C. Deepening the Structure and Dynamics

Each of the virtual particles (virtual charges) contained in the composite end of

the dipole, for instance, will also be accompanied by an organization of much

finer, localized virtual particles of opposite sign. Hence another set of even finer

composite dipoles is formed, each of which can again be decomposed into finer

harmonic composite bidirectional LW wavesets. Thus there is ‘‘structuring

within structuring’’ to as deep a level as we care to examine. The organization

of the vacuum potential continues at ever finer levels without limit.

So even a single electron organizes a fraction of the vacuum energy of the

universe, to a very surprising depth and degree. The vast, ever-changing inter-

actions of the vacuum organization and dynamics, with particle dynamics,

simply stretches one’s imagination. But it is real, and the total energy content

affected by each ‘‘reorganization’’ is enormous. This is an indication of the vast

extent and dynamics of the ‘‘self-ordering’’ that the entire energetic vacuum

performs, in response to the slightest stimulation by a charge. It also illustrates

that the vacuum is a special kind of scalar potential, with internal Whittaker [8]

structuring and dynamics [28]. [An even more primary vacuum (spacetime

curvature) electrodynamics, not limited by the Lorentz regauging, is given by

Mendel Sachs in the chapter on symmetry dynamics in this three-volume series

(see 11th chapter in Part 1).] In essence this favors an already chaotic statistics,

resolving the quantum mechanics problem of the missing chaos. It also means

that spacetime itself—and each of its curvatures—possesses remarkable inter-

nal structuring.

D. Vacuum Engines as Deterministic Spacetime Curvature Sets

We argue that now we have uncovered in what manner the concepts of vacuum,

spacetime, and potential are just different names for the same entity.

Once the internal structuring of a potential is formed, that internal structuring

consists of patterned sets of spacetime curvatures with impressed deterministic

dynamics. This is the spacetime curvature engine concept—or ‘‘engine’’ or

‘‘vacuum engine,’’ for short. The engine and its dynamics will then work freely,

both externally and internally at any and all levels, on any matter placed in it

and exposed to it. It will work indefinitely, without any additional input of

energy by the operator once the engine is made.

Virtual energy that appears and disappears in the dynamics of the engine’s

actions, need exhibit no inertia in this reordering, since the reordering occurs

‘‘between’’ the extinction of one virtual particle and the appearance of another.

There is no ‘‘change of an ordering’’ in the classical sense, but only the ‘‘emer-

gence of a new ordering.’’ In short, in the causal domain (such as the active

vacuum) prior to the invocation of the q=qt observation operator, negentropy is

readily and freely obtained on a massive scale.
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We point out that such engines also may be considered to consist of sets of

bidirectional longitudinal EM waves with impressed dynamics.

E. Causal System Robots (CSRs)

We provide an example of some of the startling implications of the Sachs–Evans

approach.

In theory it is possible to form complete functioning causal systems of such

spacetime curvature engines, to include almost any set of functions that will deter-

ministically act on matter, energy, fields, and other entities. In other work we

have referred to such a system as a causal system robot (CSR). In theory, such a

functioning robot system in the 4-space causal domain can be designed and

produced to perform most conceivable functions on matter, regardless of level

or complexity. The reason is simple: any physical system already identically is a

dynamic mass assembly in mutual interaction with a resident set of spacetime

curvature engines and their dynamics. Any system proves that a causal system

robot performing the engines functions already exists and is therefore possible.

Further, ordinary EM fields, potentials, and waves appear to be ‘‘superhigh-

ways’’ for such systems to travel in. The conventional EM fields, potentials, and

waves consist of nothing but bundles of such longitudinal EM waves and their

dynamics, anyway. So the ‘‘propagation’’ of a CSR ‘‘inside’’ ordinary electro-

dynamics, is simply the propagation of a set of LW wave dynamics of special

kind, in the ‘‘inner LW medium’’ of the electrodynamic fields, waves, and

potentials.

According to general relativity, for any observed function of an observable

system, there must correspond such a precise functioning ‘‘engine set’’ of

spacetime curvatures (see Section XIII.E.1). It follows that a CSR can be

structured to perform the spacetime curvature analog of any physical function.

This includes communications and signal processing. Eerily, if one has devel-

oped longitudinal EM wave technology, one could even communicate with such

systems via LW communication, if the necessary communication and signal

processing functions are built into the CSR system.

It would be very difficult to make and ‘‘debug’’ such a functioning CSR system

the first time. However, once one is made and debugged until it is sufficiently

accurate, any number of copies could be replicated with ease and very cheaply.

Merely insert the CSR inside an ordinary EM signal and record the resulting

‘‘internally structured’’ signal on a diskette or CD-ROM. Then replicate the

diskette or CD-ROM, and the replicated signal will also have an internal replica

of the CSR. So clones could be made for pennies per copy, without limit.36

36At least two nations appear to have weapons programs in this area, but that is beyond the scope of

this chapter. Nevertheless, a good theoretical basis for such systems can be taken from the Sachs

unified field theory approach presented by Sachs in this series and other places.
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1. A corresponding ‘‘Engine Set’’ of Spacetime Curvatures Is Needed for

Any Observed Function of an Observable System

The cellular regeneration system, for example, uses this fact plus an extension

of phase conjugate mirror theory to heal damaged cells and restore them back to

normal. Weak longitudinal EM waves are used to ‘‘pump’’ the damaged cell and

all its internal components at every level. The cellular nonlinearities add a

coupled phase conjugate and extend the pumping to include pumping in the

time domain, since the coupled phase conjugate, per Whittaker [8], is incoming

from the time dimension (the complex plane). The resident ‘‘engine’’ for that

damaged cell consists of the engine for a normal cell and a ‘‘delta’’ engine

representing the exact damage. The resident engine serves as the input or

‘‘signal wave’’ analog (in standard NLO pumping). Every part of the pumped

cell is highly nonlinear and acts as a pumped phase conjugate mirror to any and

all time-domain frequencies. An amplified antiengine precisely specific for that

cellular disease or damage or genetic change (as in AIDS) is formed in the

pumped cell and every part of it. The action of the antiengine produces a time-

reversed propagation of the cell and all its parts in the time domain rather than

the spatial domain. The cell and its parts ‘‘dedifferentiate’’ (biology term) or

‘‘time-reverse’’ (physics term) back to a previous physical state, healing the cell.

The body does this within its capabilities, and that is the long-sought mechan-

ism for healing.

The Prioré effort in France demonstrated an amplification of this exact action

in cells, in thousands of successful lab animal tests in the 1960s and early 1970s,

but no one could understand the mechanism. At the time, phase conjugate optics

as we know it today had not been developed—much less its extension into NLO

pumping in the time dimension. Nonetheless, revolutionary cures of terminal

tumors, infectious trypanosomiasis, and atherosclerosis were rigorously

demonstrated by the scientists working with the Prioré method.

Suppressed immune systems were also restored if the treated animal was

sufficiently mature to have possessed a developed immune system at the time of

its suppression. The immune system of a very young animal with an immature

immune system at the time of suppression could only be restored back to the

immature state that it had at the time prior to immune suppression. This strongly

exhibited the direct time-reversal effect that was occurring.

The work was suppressed when the French government changed in the early

1970s. The revolutionary results of the Priore experiments were presented to the

assembled French Academy by Robert Courrier, head of the biology section of

the Academy and also its Secretaire Perpetuel [78]. Many of the results of the

lab animal tests are contained in Prioré’s doctoral thesis [79]. The thesis was

then rejected by the university during the intense suppression of the project after

the government changed. The original thesis is in the files of the present author.
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Eleven years later, after Prioré was dead, the university did finally approve a

doctoral thesis on the subject [80]. Historical popular coverage of the entire

affair is given by Graille [81].

U.S. scientists who examined the work and the scientific reports in the

French literature also could not comprehend the mechanism. For instance,

Bateman [82] reports on the Prioré device and its use in treating and curing

cancer and leukemia, including terminal cases in numerous laboratory animals.

Bateman is not particularly sympathetic, but realizes that somehow, something

extraordinary has been uncovered. He comes very close when he states that

‘‘The possibility that some hitherto unrecognized feature of the radiation from a

rotating plasma may be responsible for the Prioré effects should not be

dismissed out of hand.’’ That ‘‘unrecognized feature’’ is in fact the emission

of longitudinal EM waves, which were impressed inside ordinary but very

strong pulsed magnetic fields. The magnetic fields guaranteed the interaction of

all the cells of the animal’s body, and all the parts of the cells down to and

including the atomic nuclei in the atoms. In this way the transported LWs

pumped every part of every cell in the treated animal’s body. Normal cells just

got a little younger. The damaged and diseased cells were time-reversed back to

an earlier, healthy state. The immune system’s ability to recognize the pathogen

was also restored, so that the revitalized immune system destroyed the

pathogen. A cancerous cell was just time-reversed back into a normal cell.

We strongly point out the implications for such a methodology for the treatment

and prompt cure of AIDS even in its early stages, metastasized cancer,

leukemia, and similar disorders. In principle, any detrimental condition of the

body is marked by the presence in that body’s resident engine of a specific

engine delta for that condition. And an amplified antiengine, acting upon that

body at all levels, is in theory capable of directly reversing the condition. We

also suggest the possibility of rejuvenation of the aged.

F. Remarks on Vacuum Engineering

It is therefore not surprising that the ‘‘self-organization action’’ of a small

source dipole in a generator or battery should produce such an enormous

reorganization of vacuum energy and such great negentropy as is demonstrated

in the Heaviside component. It should also not be surprising that, with no

available theory dealing with or even touching such matters, Lorentz simply

chose to resolve the ‘‘Heaviside energy flow component’’ problem by eliminat-

ing it altogether.

One result of the Lorentz integration of the energy flow vector around

a closed surface [11] was to eliminate all that intense negentropic self-reor-

ganization of the local vacuum that did not interact immediately with the circuit.

In today’s terminology, he effectively eliminated vacuum energy engineering

from electrodynamics.
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Decades later, the vision of vacuum engineering was glimpsed by modern

physicists such as Lee.37 But vacuum engineering by electrodynamic means,

although theoretically straightforward in extended electrodynamics based on the

Sachs approach, is still missing from conventional electrodynamics by arbitrary

exclusion.

XIV. AIAS CONTRIBUTIONS TO A NEW ELECTRODYNAMICS

A. The Institute and Its Noted Director

The Alpha Foundation’s Institute for Advanced Study (AIAS) is a novel

scientific organization directed by Dr. Myron W. Evans, a noted scientist who

has published nearly 600 papers in the refereed literature. Other noted scientists

such as Dr. Lehnert of the Alfven Laboratory in Sweden and Dr. Vigier in the

Laboratoire de Gravitation et Cosmologie Relativistes, Université Pierre et

Marie Curie, Paris, France, and Dr. Mendel Sachs constitute the Fellows of the

AIAS.

A major effort has been under way by AIAS theorists (and a few other

scientists as well) to extend electrodynamics into a non-Abelian electrody-

namics in O(3) symmetry using gauge field theory (e.g., see the AIAS group

paper Evans et al. on a general non-Abelian electrodynamics theory [83]).

Numerous failings of the present U(1) electrodynamics have been pointed out

by the AIAS in a series of papers published in the literature and others presently

in the referee process. Some 100 AIAS extended electrodynamics papers are

presently carried on a controlled Department of Energy (DOE) website for

reference by DOE scientists. The papers are being published in leading journals

as rapidly as possible.

In a 1999 AIAS group paper [84] on inconsistencies of the U(1) theory of

electrodynamics, specifically, the stress energy momentum tensor, it is shown

that the Poynting vector in the received view is identically zero: reductio ad

absurdum (M. W. Evans, AIAS correspondence). In the new method, based on

equating f with A, the Poynting flow in vacuo is unlimited, simply because the

Am drawn from the vacuum defines the Lehnert charge current density in the

vacuum. A new paper in this area of vacuum energy, treating the subject in

greater depth, has been completed [85] at this writing. The results appear

directly from local gauge invariance. In the new method, it is only assumed that

there is an A present in the internal gauge space, and that A can be subjected in

vacuo to a local gauge transform. Several other papers dealing with extraction of

electrical energy from the vacuum are in preparation or published.

37See Lee [2], p. 380–381. Also on p. 383 Lee points out that the microstructure of the scalar

vacuum field (i.e., of vacuum charge and polarization structuring) is not utilized. Lee indicates the

possibility of using vacuum engineering in ‘Chap. 25, ‘‘Outlook: Possibility of vacuum engineering’’

[2], pp. 824–828.
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B. O(3) EM Is a Subset of Sachs’ Generalized Unified Field Theory

The O(3) electrodynamics is now being further extended as a very important

subset of Sachs’ [27] generalization of unified general relativity and electro-

dynamics.

Thus the vacuum is indeed a very active and engineerable medium, filled

with many kinds of real EM energy currents, and these energy currents may and

do interact with EM circuits in such a manner that the circuits extract usable EM

energy from the vacuum. As we have argued, conventional circuits receive all

their EM energy from the vacuum interaction with the source dipole and not

from the generator or battery. As is slowly being developed and published, there

is a rigorous theoretical basis for extracting and using electrical energy directly

from the vacuum. It is a concept whose time has come.

C. Other Scientists and Inventors Are Recognized Also

We also recognize the enormous contributions made by other advanced theorists

outside the AIAS such as Barrett [42,86], Cornille [87],38 Ziolkowski [49,89],

Letokhov [14], Cole [90], and Puthoff [26,90] as well as many others. Happily,

Sachs [27] is now a Fellow Emeritus of AIAS. We also specifically recognize

inventors, including Mills [51,91],39 Shoulders [52,55], Johnson [68],

Kawai [58], Patterson [92], Lawandy [44b,93],40 Mead and Nachamkin [94],

Sweet [21,95]41 (now deceased), Bedini [9b], Fogal [47],42 Chung [45], Paula

38 Quoting Cornille [87, p. 168]: ‘‘The calculation concerning the electromagnetic conservation laws

given in most textbooks, for example, in Jackson [7, p. 239] is not correct, as noted by Selak et al.

[88], because it is not permissible to substitute a convective time derivative for an Eulerian time

derivative even when we have a constant volume of integration.’’
39 Because of outside pressure, the U.S. Patent and Trademark Office abruptly canceled a patent

being awarded to Mills, stating that it was reviewing his granted patents again. Mills’ corporation

subsequently sued the U.S. PTO for such unparalleled discriminatory action.
40 Lawandy’s epochal experiment is described in his 1994 paper [44b].
41 Sweet’s solid-state vacuum triode used specially conditioned barium ferrite magnetics whose H

field was in self-oscillation. The device produced COP ¼ 1.2	 106, outputing some 500 W for an

input of only 33 mW. Sweet never revealed his complete ELF self-oscillation conditioning procedure

for the magnets. However, in ferromagnets, self-oscillations of (1) magnetization, (2) spin waves

above spin-wave instability threshold, and (3) magnons are known at frequencies from �1 kHz to

�1 MHz. For an entry into this technical area with detailed reference citations, see Ref. 95.
42 Fogal has also invented and demonstrated to several major communications corporations a process

and mechanism for ‘‘infolding’’ EM signals as longitudinal EM waves inside DC potentials, so that

essentially unlimited bandwidth can be transmitted through the ‘‘interior’’ of a DC potential. He has

also invented the process of ‘‘outfolding’’ the signals again, into an ordinary video signal. Presently a

patent has been filed on the process by Fogal, and this revolutionary new communication process

will be heading for the commercial market. By the time this chapter is published, the new Fogal

communication process should be going into production. As of this writing, it also appears that,

being longitudinal EM waves and thus able to propagate ‘‘inside’’ the intense scalar potential, the

signals can be transmitted at superluminal speed, often nearly instantly.
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and Alexandra Correa [50], Mandel’shtam et al. [96],43 and many others

[41,97].44

XV. CONCLUSION

A. Nonsequiturs in Conventional Electrodynamics

There are many foundations non sequiturs in classical electrodynamics that are

sorely in need of correction; we have pointed out only a few.45 The present

energy crisis has occurred largely as a result of continuing to perpetuate these

major flaws in electrodynamics theory, and continuing to build our electrical

power systems in accord with the flawed theory.

B. Extracting Copious EM Energy from the Vacuum Is Easy

Most electrodynamicists hold the opinion that extracting usable electrical

energy from the vacuum is extraordinarily difficult. To the contrary, it is a very

simple thing to do and has always been done by our conventional power systems

anyway. Just collect some charge (a composite dipole) or form a dipole, and the

‘‘scalar’’ potential between its end charges represents an organized, enormous,

bidirectional 4-flow of EM energy, being established over the entire vacuum at

the speed of light. Real EM 3-space energy flows outward in all directions from

the dipole, and reactive power (i.e., EM energy in the imaginary plane) flows

into the dipole continuously from the imaginary plane, as shown by reinterpret-

ing Whittaker [8]. Since the beginning, every electrical load has been powered

by energy extracted directly from the vacuum, and not by the heat energy

43 In the 1930s Russian scientists at the University of Moscow and supporting agencies developed

and tested parametric oscillator generators exhibiting COP > 1.0. The theory, results, pictures, and

other material are presented in both the Russian and French literature, with many references cited in

the particular translation in Ref. 96a. Apparently the work was never resurrected after World War II.

Other pertinent references are listed in Ref. 96b.
44These include Nikola Tesla, whose patented circuits exhibit energy shuttling (regauging at will) in

a fashion similar to a negative resistor, if the circuits are analyzed in an algebra of higher topology

than tensor algebra (see Ref. 41 and footnote 23, above), and T. H. Moray, whose work with special

multicontact transistors preceded that of the classical discoverers of the transistor. Moray exhibited a

self-powering 50-kW device weighing only 55 lb, and extracting its energy directly from the

vacuum, prior to World War II [97a]. He also sintered his semiconductors while under pressure in

giant presses, reminiscent of the production methods found by Chung to allow production of a true

negative resistor. A related medical equipment patent is described in Ref. 97b. Some details of the

‘‘Moray valve’’ may be seen in that patent. There does not appear to be an adequate technical

discussion of the Moray device in the literature, since all such discussions have utilized ordinary

U(1) electrodynamics at essentially sophomore or junior level.
45 Indeed, classical U(1) electrodynamics is modeled as a field theory on a flat spacetime. In the

more rigorous and general Sachs–Evans unified field approach, this is falsified. In that more

fundamental model, EM waves and fields can propagate only through curved spacetime.
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produced from all the hydrocarbons burned and nuclear fuel rods consumed, or

by the energy from the hydroturbines and waterwheels turned by dams across

streams, by windmill-powered generators, by solar cells, or by the chemical

energy in batteries, and so on.

C. Collecting and Utilizing the Dark Energy Is the
Long-Ignored Problem

The problem is in collecting and using the enormous energy easily extracted

from the vacuum, not in simply producing the direct Heaviside EM dark-energy

flows. In short, the problem is how to obtain much more Poynting (intercepted)

energy from the easily available and enormous Heaviside (nonintercepted)

energy. And then the problem is to not use half of the collected energy to

destroy the dipole negative 4-resistor furnishing the energy from the vacuum.

One can build a ‘‘vacuum energy extractor’’ for less than a dollar. Simply

place a charged capacitor (or electret) upon a permanent magnet, so that the E
field of the capacitor is at right angles to the H field of the magnet, and the

energy flow from the magnet (a function of E	H) is maximized.46 The system

will extract energy from the vacuum and steadily output it indefinitely as a

Heaviside energy flow. It does, however, sharply focus attention on the real

problem of how to collect and use some of the energy from the balanced vacuum

energy 4-circulations set up by the system between the local vacuum and the

distant, nonlocal vacuum. Again, the problem is how to convert Heaviside dark-

energy-flow to Poynting (intercepted) energy flow.

Once the vacuum energy transducer (generator’s source dipole) is in place, it

is another matter to intercept, collect, and use the ‘‘modified local vacuum

circulation energy’’ pouring from the transducer to power loads, and to do so

without destroying the source dipole created in the collecting generator.

Unfortunately, our power scientists and engineers have been focusing on the

wrong end of the problem for more than a century. They have focused enormous

efforts on getting additional energy into the shaft of the generator, and reducing

its internal losses. They have not focused on what happens once the source

dipole is formed inside the generator, and the giant negentropy 4-resistor and

vacuum energy extraction emerge.

D. Burning Fuel Does Not Add a Single Watt to the Power Line

This has lead to one of the greatest ironies in the history of science: All the

hydrocarbons ever burned, all the steam turbines that ever turned the shaft of a

46 For that matter, the charged capacitor, the electret, and the permanent magnet are dipoles.

Individually, each extracts and outputs enormous energy flow from the local vacuum, continuously

pouring out the extracted energy toward the ends of the universe and thus establishing its fields and

potentials by altering the entire ambient vacuum potential of the universe.
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generator, all the rivers ever dammed, all the nuclear fuel rods ever consumed,

all the windmills and waterwheels, all the solar cells, and all the chemistry in all

the batteries ever produced, have not directly delivered a single watt into the

external circuit’s load. All that incredible fuel consumption and energy

extracted from the environment has only been used to continually restore the

source dipole that our own closed current loop circuits are deliberately designed

to destroy faster than the load is powered.

We strongly urge the rapid, high priority development of permissible

COP > 1.0 EM power systems that violate the Lorentz symmetric regauging

condition in their discharge of free excitation energy received from the vacuum

via the source dipole. We will gladly contribute our own findings to the effort,

including citing COP > 1.0 power systems (see Ref. 96 and footnote 43, above)

and negative resistors47 (see Ref. 45 and footnote 32, above) produced by

known scientists and documented in the literature, but usually suppressed by

scientific resistance to any dramatic change in U(1) electrodynamics and the

Lorentz condition.

E. Classical Electrodynamics for Energy Systems Is in Woeful Shape

It is known in particle physics that there can be no symmetry of a mass system

without the incorporation of the active vacuum interaction. Yet the vacuum

interaction is still missing from the classical electrodynamics model. Symmetry

implies nonobservables, and asymmetry implies observables. So every obser-

vable mass system that is asymmetric a priori, must be accompanied by non-

observables interacting with it, or else it can have no symmetry (or equilibrium).

Yet, classical electrodynamics continues to assume equilibrium and symmetry

in observable systems without incorporating the active vacuum.

Wherever we examine classical U(1) electrodynamics, we find nonsequiturs

of first magnitude. This alone should be a compelling reason for the scientific

community to assign the highest priority, ample funding, and the best theore-

ticians to the sorely-needed revision of electrodynamics from the foundations

level up.

47Apparently a true negative resistor was developed by the renowned Gabriel Kron [43a], who was

never permitted to reveal its construction or specifically reveal its development. For an oblique

statement of Kron’s negative-resistor success, we quote: ‘‘When only positive and negative real

numbers exist, it is customary to replace a positive resistance by an inductance and a negative

resistance by a capacitor (since none or only a few negative resistances exist on practical network

analyzers).’’ Apparently Kron was required to insert the words ‘‘none or’’ in that statement. See also

Kron [43b, p. 39]: ‘‘Although negative resistances are available for use with a network analyzer’’

Here the introductory clause states in rather certain terms that negative resistors were available for

use on the network analyzer, and Kron slipped this one through the censors. It may be of interest that

Kron was a mentor of Sweet, who was his protégé. Sweet worked for the same company, but not on

the Network Analyzer project. However, he almost certainly knew the secret of Kron’s ‘‘open path’’

discovery and the secret of Kron’s negative resistor.
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F. Vigorous Corrective Action Is Warranted and Imperative

With vigorous and refocused attention by the scientific community to develop-

ment of the electrodynamics of COP > 1.0 energy systems and circuits, self-

powering electrical power systems fueled by vacuum energy can be developed

and deployed in a rather straightforward manner. The problem is nowhere near

as complex as hot fusion or developing a large new accelerator.48 The cost of

one large hydrocarbon-burning power plant will allow the development to be

done. The energy crisis can be solved forever. The present enormous pollution of

the earth’s environment by hydrocarbon combustion and nuclear wastes can be

dramatically lowered. Global warming can be slowed and eventually even reversed.

Our children, the biosphere, and the slowly strangling species on earth will

benefit enormously from that sorely needed scientific effort. We desperately

need to do it, and we need to do it now.
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79. A. Prioré, Guérison de la Trypanosomiase Expérimentale Aiguë et Chronique par L’action
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I. INTRODUCTION

This chapter explains the operational principles of a motionless electromagnetic

generator (MEG)1 experiment and invention where the generator is a system far

from equilibrium in its energetic exchange with its active vacuum environment.

The broken symmetry of a permanent magnet dipole is used as a transducer of

vacuum energy, receiving longitudinal EM wave energy from the time domain

(complex plane) and emitting it as real 3-space EM energy, by a process first

shown by Whittaker [1]2 in 1903. As is well known, a system in energy

exchange disequilibrium with its active environment is permitted to (1) self-

order (2) self-oscillate, (3) output more energy than the operator inputs (the

excess energy is received from the environment), (4) power itself and its load

simultaneously (all the energy is received from the environment), and (5)

exhibit negentropy. My colleagues and I achieved coefficient of performance

(COP) of 5.0 in one experimental buildup and 10.0 in another. The MEG is in

1Covered by formal patent application by coinventors Thomas E. Bearden, James C. Hayes, James

L. Kenny, Kenneth D. Moore, and Stephen L. Patrick. Intellectual property rights to the invention are

assigned to Magnetic Energy Ltd., Huntsville, Alabama (USA), with Dr. James L. Kenny as

Managing Partner. Several additional patent applications are in preparation.
2 In this paper on the partial differential equations of mathematical physics, Whittaker decomposes

any scalar potential into a harmonic set of bidirectional EM longitudinal EM wavepairs, where each

wavepair is composed of a longitudinal EM wave and its phase conjugate replica wave. Dividing the

overall waveset into two half-sets, we have one half-set consisting of incoming longitudinal EM

waves in the complex plane (the time domain) and a second half-set composed of outgoing

longitudinal EM waves in real 3-space. Hence the scalar potential represents a giant circulation of

EM energy automatically established and maintained from the time domain (complex plane) into the

source dipole establishing the potential, with the absorbed complex energy being transduced and

reemitted by the dipole in all directions in 3-space as real longitudinal EM wave energy establishing

the EM fields and potentials (and their energy) associated with the dipole.
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patent-pending status. As of this writing, a variant of the MEG experiment has

been independently replicated by Jean-Louis Naudin in France, and other

independent replications are planned. Naudin’s version produced a COP of

1.76. His results are posted on his Website: http://jnaudin.free.fr/html/

megv2.htm. Arrangements were attempted for a team of skilled university

scientists to independently test the MEG under U.S. Department of Defense

auspices. Once COP> 1.0 was validated by the university team, a full

proprietary disclosure was to be made to them under nondisclosure and

noncompete agreement, and they would independently replicate the MEG

themselves and test the buildup, again under DoD auspices the attempt failed.3

We especially wish to thank Jean-Louis Naudin for his prompt replication of

the MEG experiment and for his kind permission to include his replication

results and two of his illustrations.

II. BACKGROUND

A. Developmental History

For about 10 years the five researchers who invented the motionless magnetic

generator (MEG) have been working together as a team, exploring many

avenues whereby electromagnetic energy might be extracted from various

sources of potential and eventually from the active vacuum itself. This has

been arduous and difficult work, since there were no guidelines for such a

process whereby the electrical power system becomes an open dissipative

system in the manner of Prigogine’s theoretical models [2– 4] (see also the

following paragraph) but using determinism and classical electromagnetics

instead of chaos and statistics. There was also no apparent precedent in the

patent database or in the scientific database.

Quoting, Prigogine, from p. 70 of his article on irreversibility as a symmetry-

breaking process: ‘‘Entropy . . . cannot in general be expressed in terms of

observables such as temperature and density. This is only possible in the

neighborhood of equilibrium. . . . It is only then that both entropy and entropy

production acquire a macroscopic meaning.’’ Prigogine received a Nobel Prize

in 1977 for his contributions to the thermodynamics of open systems, parti-

cularly with respect to open dissipative systems. What he is pointing out here is

that, where equilibrium (and hence symmetry) is broken, the usual presumption

of entropy and entropic production have no macroscopic meaning. For such

systems, the often encountered challenge on classical equilibrium thermody-

namics grounds is a nonsequitur, and merely reveals the scientific ignorance of

3The team of university scientists observed the MEG in operation and were quite interested in

performing full, independent replication and testing. However, the university’s administration

refused to sign a noncircumvention agreement. Consequently we stopped the process.
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the challenger. In short, such a challenger would decry the windmill in the wind,

denying that it can turn without the operator cranking it, because classical

equilibrium thermodynamics forbids it. However, the windmill turns happily in

the wind, without operator input at all, and in total violation of equilibrium

thermodynamics because the windmill is not in equilibrium with its active

environment, the active atmosphere. At the same time the windmill completely

complies with the thermodynamics of open systems far from equilibrium, and

energy conservation is rigorously obeyed. The windmill can ‘‘power itself and

its load’’ since all the energy needed to power the windmill and power the load

comes from the energy freely input by the wind.

It is generally realized that Maxwell’s equations are purely hydrodynamic

equations and fluid mechanics rigorously applies [5]. Anything a fluid system

can do, a Maxwellian system is permitted to do, a priori. So ‘‘electrical energy

winds’’ and ‘‘electrical windmills’’ are indeed permitted in the Maxwell–

Heaviside model, prior to Lorentz’ regauging of the equations to select only

that subset of systems that can have no net ‘‘electrical energy wind’’ from the

vacuum. Specifically, this arbitrary Lorentz symmetric regauging—while indeed

simplifying the resulting equations and making them much easier to solve—also

arbitrarily discards all Maxwellian systems not in equilibrium with their active

environment (the active vacuum). In short, it chooses only those Maxwellian

systems that never use any net ‘‘electrical energy wind from the vacuum.’’

Putting it simply, it discards that entire set of Maxwellian systems that interact

with energy winds in their surrounding active vacuum environment.

Since the present ‘‘standard’’ U(1) electrodynamics model forbids electrical

power systems with COP> 1.0, my colleagues and I also studied the derivation

of that model, which is recognized to contain flaws due to its >136-year-old

basis. We particularly examined how it developed, how it was changed, and how

we came to have the Lorentz-regauged Maxwell–Heaviside equations model

ubiquitously used today, particularly with respect to the design, manufacture,

and use of electrical power systems.

The Maxwell theory is well known to be a material fluid flow theory [6],4

since the equations are hydrodynamic equations. In principle, anything that can

be done with fluid theory can be done with electrodynamics, since the funda-

mental equations are the same mathematics and must describe consistent

analogous functional behavior and phenomena [5]. This means that EM systems

with ‘‘electromagnetic energy winds’’ from their active external ‘‘atmosphere’’

4 Quoting Sir Horace Lamb [6], p. 210: ‘‘There is an exact correspondence between the analytical

relations above developed and certain formulae in Electro-magnetism . . . . Hence, the vortex-

filaments correspond to electric circuits, the strengths of the vortices to the strengths of the currents

in these circuits, sources and sinks to positive and negative poles, and finally, fluid velocity to

magnetic force.’’
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(the active vacuum) are in theory quite possible, analogous to a windmill in a

wind. In such a case, symmetry is broken in the exchange of energy between the

environment (the atmosphere) and the windmill. However, the present EM

models used to design and build an electrical power system do not even include

the vacuum interaction with the system, much less a broken symmetry in that

interaction.

So the major problem was that the present classical EM model excluded such

EM systems. We gradually worked out the exact reason for their arbitrary

exclusion that resulted in the present restricted EM model, where and when it

was done, and how it was done. It turned out that Ludvig Valentin Lorenz [7]

symmetrically regauged Maxwell’s equations in 1867, only two years after

Maxwell’s [8] seminal publication in 1865. So Lorenz first made arbitrary

changes that limited the model to only those Maxwellian systems in equilibrium

in their energy exchange with their external environment (specifically, in their

exchange with the active vacuum). This arbitrary curtailment is not a law of

nature and it is not the case for the Maxwell–Heaviside theory prior to Lorenz’

(and later H. A. Lorentz’) alteration of it. Thus, for electrical power systems

capable of COP> 1.0, removing this symmetric regauging condition [9–14] is

required—particularly during the discharge of the system’s excess potential

energy (i.e., during discharge of the excitation) in the load.

Later H. A. Lorentz [15],5 apparently unaware of Lorenz’ 1867 work,

independently regauged the Maxwell–Heaviside equations so that they repre-

sented a system that was in equilibrium with its active environment. This indeed

simplified the mathematics, thus minimizing numerical methods. However, it

also discarded all ‘‘electrical windmills in a free wind’’—so to speak—and left

only those electrical windmills ‘‘in a large sealed room’’ where there was never

any net free wind.

B. Implications of the Arbitrarily Curtailed Electrodynamics Model

Initially an electrical power system is asymmetrically regauged by simply

applying potential (voltage), so that the system’s potential energy is nearly

instantly changed. The well-known gauge freedom principle in gauge field

theory assures us that any system’s potential—and hence potential energy—can

be freely changed in such fashion. In principle, this excess potential energy can

then be freely discharged in loads to power them, without any further input from

the operator. In short, there is absolutely no theoretical law or law of nature that

prohibits COP> 1.0 electrical power systems—or else we have to abandon the

highly successful modern gauge field theory and deny the gauge freedom principle.

5Such was H. A. Lorentz’s prestige that, once he advanced symmetrical regauging of the Maxwell–

Heaviside equations, it was rather universally adopted by electrodynamicists, who still use it today;

see, for example, Jackson [15].
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Although the present electrical power systems do not exhibit COP> 1.0, all

of them do accomplish the initial asymmetric regauging by applying potential.

So all of them do freely regauge their potential energy, and the only thing that

the additional energy input to the shaft of a generator (or the chemical energy

available to a battery) accomplishes is the physical creation of the potentializing

entity: the source dipole [16]. [Note: The key is to apply Whittaker’s 1903

decomposition of the scalar potential existing between the poles of a dipole.

Whittaker showed that any EM scalar potential dipolarity continually receives

longitudinal EM wave energy from the time domain (complex plane) and

outputs real EM energy in 3-space. Thus the potential’s dipolarity (voltage)

placed on a circuit by a generator or battery actually represents free regauging

energy coming from the time domain of the 4-vacuum, and therefore having

nothing to do with the 3-space energy input to the shaft of the generator or with

the 3-space chemical energy available in a battery.]

It follows that something the present systems or circuits perform in their

discharge of their nearly free6 regauging energy must prevent the subsequent

simple discharge of the energy to power the loads unless further work is done on

the input section. In short, some ubiquitous feature in present systems must self-

enforce the Lorentz symmetry condition (or a version of it) whenever the system

discharges its free or nearly free excitation energy.

Lorentz’ [15] (see also footnote 5, above) curtailment of the Maxwell–

Heaviside equations greatly simplified the mathematics and eased the solution

of the resulting equations, of course. But applied to the design of circuits,

particularly during their excitation discharge, it also discarded the most

interesting and useful class of Maxwellian systems, those exhibiting COP> 1.0.

Consequently, Lorentz [15] (see also footnote 5, above) unwittingly discarded

all Maxwellian systems with ‘‘net usable EM energy winds’’ during their dis-

charge into their loads to power them. Thus present electrical power systems—

which have all been designed in accord with the Lorentz condition—cannot

freely use the EM energy winds that arise in them by simple regauging, as a

result of some universal feature in the design of every power system that

prevents such action.

We eventually identified the ubiquitous closed current loop circuit [17]7 as

the culprit that enforces a special kind of Lorentz symmetry during discharge of

6 In real systems, for regauging we have to pay for a little switching costs, for example, but this may

be minimal compared to the potential energy actually directed or gated upon the system to

potentialize it.
7 More rigorously, this is any closed current loop circuit where the charge carriers in all portions of

the loop have the same m=q ratio. For example, battery-powered circuits do not meet that condition,

since the internal ionic currents between the battery plates may have m=q ratios several hundred

times the m=q ratio of the electrons that pass between the outsides of the two plates and through the

external circuit containing the load. With Bedini’s process, a battery-powered system can be made to

charge its batteries at the same time that it powers its load; see Bearden [17].
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the system’s excitation energy. With this circuit, the excitation-discharging

system must destroy the source of its EM energy winds as fast as it powers its

loads and losses, and thus faster than it actually powers its loads.

Also, as we stated earlier, and contrary to conventional notions, batteries and

generators do not dissipate their available internal energy (shaft energy furni-

shed to the generator, or chemical energy in the battery) to power their external

circuits and loads, but only to restore the separation of their internal charges,

thereby forming the source dipole connected to their terminals. Once formed,

the source dipole’s giant negentropy [16] then powers the circuit via its broken

symmetry [18,19] [see the following subsection (Section II.B.1) also].

1. Particle Physics, Including Dipole Symmetry

A discussion by Nobelist Lee of particle physics and its findings, includes

broken symmetry, which includes the broken symmetry of a dipole. Quoting

from Lee [18], p. 184: ‘‘. . . the discoveries made in 1957 established not only

right-left asymmetry, but also the asymmetry of the positive and negative signs

of electric charge. In the standard nomenclature, right-left asymmetry is referred

to as P violation, or parity nonconservation. The asymmetry between opposite

signs of electric charge is called C violation, or charge conjugation violation, or

sometimes particle-antiparticle asymmetry.’’ ‘‘Since non-observables imply

symmetry, these discoveries of asymmetry must imply observables.’’

Simply put, Lee has pointed out the rigorous basis for asserting that the

arbitrarily assumed Lorentz 3-symmetry of the Maxwellian system is broken by

the source dipole—and in fact by any dipole. Such broken 3-symmetry in the

dipole’s energetic exchange with the active vacuum is well known in particle

physics, but still is not included at all in classical electrodynamics, particularly

in the models used to design and build EM power systems. The proven dipole

broken 3-symmetry rigorously means that part of the dipole’s received virtual

energy—continuously absorbed by the dipole charges from the active

vacuum—is transduced into observable 3-space energy and reemitted in real

(observable) energy form. That this has been well known in particle physics for

nearly a half-century, but is still missing from the classical EM model, is

scientifically inexplicable and a foundations error of monumental magnitude.

Once made, it is the source dipole that powers the circuit.

C. Some Overlooked Principles in Electrodynamics

We recovered a major fundamental principle from Whittaker’s [1] profound but

much-ignored work in 1903. Any scalar potential is a priori a set of EM energy

flows, hence a set of ‘‘electromagnetic energy winds,’’ so to speak. As shown by

Whittaker, these EM energy winds pour in from the complex plane (the time

domain) to any x,y,z point in the potential, and pour out of that point in all

directions in real 3-space [1,16,20].
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Further, in conventional EM theory, electrodynamicists do not actually

calculate or even use the potential itself as the unending set of EM energy

winds or flows that it actually is. Instead, they calculate and use its reaction

cross section with a unit point static charge only at a specific point. How much

energy is diverged around a single standard unit point static coulomb is then

said to be the ‘‘magnitude of the potential’’ at that point. This is a nonsequitur of

first magnitude.8

For example, the small ‘‘swirl’’ of water flow diverged to stream around an

intercepting rock in a river bottom is not the river’s own flow magnitude. It

certainly is not the ‘‘magnitude of the river.’’ Neither is the standard reaction

cross section of the potential a measure of the potential’s actual ‘‘magnitude,’’

but is representative only of the local intensity of the potential’s composite

energy flows. Indeed, the potential’s ‘‘magnitude’’ with respect to any local

interception and extraction of energy from it is limited only by one’s ability to

(1) intercept the flow and (2) diverge it into a circuit to power the circuit. The

energy flows identically constituting the potential [1,16,20] replenish the with-

drawn energy as fast as it can be diverged in practical processes, since the

vacuum energy flows themselves move at the speed of light.

D. Work–Energy Theorem in a Replenishing Potential Environment

We also came to better understand the conservation of energy law itself.

Particularly, the present work–energy theorem assumes only a ‘‘single conver-

sion’’ of energy into a different form, where such ‘‘conversion in form’’ due to a

converting agent is what is considered ‘‘work’’ on that agent. No ‘‘replenishing

of the dissipated or converted energy by a freely flowing energy river or

process’’ is considered. Instead of the ongoing divergence from a flowing stream

of energy that it is, a collection of energy is erroneously treated as if it were a

‘‘pile of bricks’’ called joules.

On the other hand, in a system operating in a replenishing potential environ-

ment, a conversion in the form of the energy may increase the system energy

(e.g., the kinetic energy of an electron gas) of the converting agent, since all the

field energy and potential energy input to that converting agent may be

replenished (from the time domain). If so, a free regauging occurs (Indeed,

we would hesitantly nominate this process as the fundamental process under-

lying the gauge freedom principle itself, but will leave to more qualified

theoreticians the affirmation or refutation of that speculation.). In that case,

8 For example, simply replace the assumed unit point static charge assumed at each point with n unit

point static charges, and the collected energy around the new point charge will be n times the former

collection. If the former calculation had yielded the actual magnitude of the potential at that point,

its magnitude could not be increased by increasing the interception. But since the potential is

actually a flow process, increasing the reaction cross section of the interception increases the energy

collection accordingly.
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the original energy can change (e.g., into field energy form, which is not the

kinetic energy of the electron gas), and yet a joule of work can have been done

on the electron gas to alter its potential energy by as much work as was done on

it. Thus the work performed by this change in energy form with simultaneous

replenishment of the original form, may increase the energy of the medium

while retaining as much field energy and potential energy as was input, just in

different form.

This is a profound change to the implicit assumptions used in applying the

work–energy theorem. In short, the present work–energy theorem (without

replenishment) was found to be a special case of a much more general and

extended ‘‘replenished energy conversion of form with intermediate work freely

performed upon the converter’’ process. Conversion of the form of energy is

rigorously what we call work. The energy is not consumed in the work process,

and the replenished ‘‘energy collection’’ in its original form is also maintained

so that it is not ‘‘lost’’ in doing work on the converter. So to speak, the well-

established principle of gauge freedom as an energy replenishing mechanism

has been arbitrarily excluded in the conventional view of the work–energy

theorem. The conventional form of the work–energy theorem applies only when

there is no simultaneous regauging/replenishment from the vacuum (time

domain) involved. With replenishment, the more general work–energy theorem

yields system energy amplification by free system regauging.

This extension of the work–energy theorem to a more general case, including

the invocation of gauge freedom, has profound implications in physics. With the

energy replenishing environment involved, the work–energy theorem becomes

an energy amplifying process. Electrical energy can be freely amplified at

will—anywhere, anytime—by invoking the extended energy–work process, if

regauging accompanies the process simultaneously. Indeed, one joule of field

energy or potential energy can do joule after joule of work on intermediary

converters, increasing the kinetic energy and other forces. upon the converter

medium, while the system retains replenished joule for joule of the input energy

in differing field or potential forms. In this extended process, always after each

joule of work on the converting agent there still remains a joule of field energy

or potential energy of altered form, and the original joule of energy was freely

replenished as well.

E. The Extended Principles Permit COP> 1.0 Electrical Power Systems

Gradually we realized that (1) electrodynamics without the arbitrary Lorentz

regauging did permit asymmetrically self-regauging electrical power systems,

freely receiving and converting electrical energy from their vacuum environ-

ment; (2) present systems are designed unwittingly to guarantee their reimposi-

tion of symmetry during their excitation discharge; (3) this excitation discharge

symmetry is what can and must be broken by proper system design; and (4) a
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magnetic system ‘‘powered’’ by a permanent magnet dipole’s ongoing active

negentropy processes [16,20] could readily be adapted since the source dipole

of the permanent magnet was not destroyed by the circulating magnetic flux. We

experimented on various buildups and prototypes, in this vein, for some years.

F. Patenting and Discovery Activity

After several years of experimental work, in 1997 we filed a provisional patent

application on the first MEG prototype of real interest. We filed another formal

patent application in 2000 after several years of experimentation in which we

used multiple extraction of energy from a magnetic dipole. Fundamentally, we

sought to extract electromagnetic energy from the magnetic vector potential that

pours from a magnetic dipole due to the giant negentropy mechanism [1,16,20].

Originally we suspected that we would deplete the magnetic dipole, and our

experiments sometimes seemed to indicate that a very slow depletion might

indeed be happening. These indications were eventually found to be due to

normal small measurement errors within the measurement tolerance of our

instruments.

Since our last formal patent application filing in 2000, additional buildups

and experiments have led us to the firm conclusion that one does not deplete the

magnetic dipole. Instead, if one draws the energy directly from the potentials

(primarily from the magnetic vector potential) furnished by the magnetic dipole

of the permanent magnets, one can essentially draw as much energy as desired,

without affecting the dipole itself.9 We found that any amount of energy can be

freely withdrawn from the vector potential without diminishing the vector

potential itself, as long as the withdrawn energy is changed in form in the

withdrawal. A giant negentropy mechanism—reinterpreted by Bearden [16]

from Whittaker’s work [1] and further investigated by Evans and Bearden

[20]—is associated with the magnet dipole, and in fact with any dipole, since a

scalar potential exists between its poles and the scalar potential decomposes via

the Whittaker decomposition [1]. This negentropy mechanism [1,16,20] will

replenish the magnetic vector potential energy as fast as energy is withdrawn

from it and conducted aside in the circuit.

We hit on the stratagem of using a highly specialized magnetic core material,

nanocrystalline in nature and in special tape-wound layered structure, to try to

9Indeed, from any nonzero potential, any amount of energy can be diverged and withdrawn. This is

easily seen for the electrostatic scalar potential by the simple equation W ¼ fq, where W is the

energy diverged or collected in joules, f is the reaction cross section of the potential in joules per

interacting coulomb, and q is the number of interacting static point coulombs. As can be seen from

the equation, from a potential of given nonzero reaction cross section, the energy that can be

collected is limited only by the number of coulombs of interacting charges—or considering

repetition, from how many additional times a given amount of collecting charge is ‘‘dipped’’ into the

potential to diverge and collect additional energy flow.
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extract the energy from the magnetic vector potential (A potential) as a

magnetic B field (curl of the A potential) that is locally restricted to the special

nanocrystalline material that forms a closed magnetic flux path closed on both

poles of the permanent magnet dipole. Because of its nature and also its tape-

wound layered construction, the nanocrystalline material (obtained off the

shelf as a commerical product from Honeywell) will perform this separation

of B-field and A-potential energy that is heretofore unheard of in such a simple

magnetic core mechanism and flux path material.

We point out that a tightly wound, very long coil does a similar thing, as does

a good toroid, and the separation of A potential from B field is known. This forms

the basis for the Aharonov–Bohm [21] effect, for example.10 In such cases, it is

not so well known that the curl-free A potential remains fully replenished, even

though ‘‘all’’ the magnetic field (curled A potential) has been diverted. To our

knowledge, such effects have not previously been utilized in magnetic core

materials themselves, where the B-field energy is extracted and moved into a

separate flux path through space. Our experimental measurements showed the

magnetic field was indeed missing in the space surrounding the closed flux path

material, but the A potential was still present outside the core and its changes

interacted with coils in a dA/dt manner. The B-field and associated magnetic

flux were rigorously confined internally to the nanocrystalline material flux

path.

Now we had two streams of EM energy, each in different form, and each

equal in energy (determined by the Poynting-type calculation approach, which

only accounts for diversion from and not for the river) to the original stream! In

short, we had exercised gauge freedom and asymmetric self-regauging to freely

achieve energy amplification in the system.

10Quoting Aharonov and Bohm in their paper on the significance of electromagnetic potentials in the

quantum theory, on p. 485: ‘‘contrary to the conclusions of classical mechanics, there exist effects of

potentials on charged particles, even in the region where all the fields (and therefore the forces on the

particles) vanish.’’ Our comment is this: Indeed, since the field is usually defined as the force per unit

charge in classical electrodynamics, then the field as defined does not exist until after the causative

‘‘field as a separate entity’’ interacts with a charged mass. Hence the field as defined is an effect of

the interaction, not the cause of it. Further, being an effect and an observable as defined, it does not

exist in spacetime as such, since no observable does. A priori, any observable is the output (effect) of

a q=qt operation upon LLLT, yielding an LLL ‘‘frozen snapshot’’ at an instant in time, which

snapshot itself does not exist in time but was only a 3-space fragment of what was existing in the

ongoing 4-space interaction at that point in time. The field-free 4-potential, together with its

structure and its dynamics, provides the causes existing in spacetime before they interact with

intermediaries to produce effects. One major problem with the present classical electrodynamics is

that much of it still hopelessly confuses cause and effect. This is a residue of the original assumption

(including that by Maxwell in his equations) of the material ether. When the material ether was

destroyed by the Michelson–Morley experiments in the 1880s, not a single Maxwell–Heaviside

equation was changed. Hence the field concept as defined still assumes a material ether, and still is

an effect confused as a cause.
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This then led to very novel ramifications and phenomenology, which we have

been intensely exploring since filing the previous patent when—to be conser-

vative—we assumed possible slow depletion of the magnetic dipole of the

permanent magnet. Now we clearly have no depletion of the magnetic dipole,

and also we can now explain where the continuous ‘‘magnetic energy wind’’

comes from, what triggers and establishes it, and how to apply the resulting

principles.

Consequently, rapid progress in nondepleting versions of our previous

invention, as a full extension to both the previous invention and also to the

previous process utilized (possible depletion of stored potential energy), has

been accomplished. A second patent application has been filed.

Because of the importance of this furiously progressing work and the urgency

of the escalating electrical energy crisis worldwide, a paper [22] describing our

results was placed on a Department of Energy Website, (see Ref. 22). The paper

was later moved to a restricted DOE site reserved for scientists, until such time

as independent testing verification and independent replication is obtained, to

assure a fully valid scientific experiment.

Happily, independent replication by Naudin has just been accomplished at

the time of this writing (Nov. 2000).

G. Results of the Research

It is now clear—by fluid flow analogy and actual experiment—that we have

found the perfect magnetic mechanism for (1) producing ‘‘magnetic energy

winds’’ at will, furnished freely by nature in natural dipole processes only

recently recognized [16] and clarified [20] in the literature; (2) producing a

magnetic ‘‘windmill’’ that freely extracts energy from these free winds provided

by nature from these newly understood processes; and (3) creating positive

energy feedforward and feedback iterative interactions in a coil around a core,

resulting from dual energy inputs to the coil from actions (1) in the core inside

the coil and (2) in the surrounding altered vacuum containing a continuously

replenished field-free magnetic potential A, and hence representing a separate

source of energy that will react with a coil.

Iterative mutual interactions, occurring between the two interactions in the

coil itself, add a third small increase of energy from the resulting convergent

energy gain (asymmetric self-regauging) series. The additional amplification of

the energy is given by the limit of the resulting convergent series for energy

collection in the coil. In this novel new usage, the net result is that the coil is an

energy amplifying coil, or negative resistor, freely and continuously fed by

excess input energy from an external active source. As can be seen, this is a

startling extension to conventional generator and transformer theory.

A multiplicity of such positive energy feedforward and feedback loops occur

and exist between all components of the new process. The system becomes a
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true open system receiving excess energy from the free flow of energy

established in its vacuum environment by the subprocesses of this invention’s

system process.

Consequently, we have experimentally established this totally new process

and field of technology, and also have experimentally established that it is not

necessary to deplete the permanent-magnet dipole after all. With the new techni-

ques, direct replenishment energy from the active vacuum is readily furnished to

the permanent magnet and utilized by the system.

Extraction of usable EM energy from the vacuum is not some tremendously

difficult technical feat that can only come a century or so from now. Instead, it is

a readily obtainable capability right now, once the fundamental principles are

understood and applied.

III. THREE IMPORTANT PRINCIPLES AND MECHANISMS

We explain three very important principles and mechanisms necessary

to comprehend the new energy amplifying (regauging) process in a replenishing

potential environment:

A. Conservation of Energy

The conservation of energy law states that energy cannot be created or des-

troyed. What is seldom realized is that energy can be and is reused (changed in

form) to do work, over and over, while being replenished (regauged) each time.

If one has one joule of energy collected in one form, then in a replenishing

potential environment, one can change all that joule into a different form of

energy, thereby performing one joule of work. However, one still has a repleni-

shed joule of energy remaining, by the conservation of energy law in such an

environment, even though the first joule was removed in different form. Note

that present engineering practice has not considered that the input joule in its

original form is replenished. If one extracts and holds that converted joule in its

new form, and then changes the form of it yet again in the replenishing enviro-

nment, one does yet another joule of work—and still has a joule of energy left,

just in a yet different form. The process is infinitely repeatable, limited only by

the ability to hold the changed form of the energy each time it is changed. In a

replenishing potential environment, not only will we do joule after joule of work,

but we will still have a joule of ‘‘input’’ energy to use, as well as accomplishing

the joule of work, as well as having a new joule of energy leaving the work site

in different form. This follows without violation of energy conservation, as a

result of the continual free regauging and energy amplification.

Further, only two energy forms are needed for endless iterative shifting of

form—say, form A and form B, since A changed totally into B performs
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work on the transforming medium equal to A energy dissipation, but yields

A-equivalent amount of energy still remaining because of replenishment. The

B-form energy can then be changed back from B to A yet again, wherein the

same amount of work is done on the transforming medium for the second time,

and one still has a joule of B energy remaining because of replenishment. This

process can be iterated. We call this the pingpong principle and use the iterative

work done by each replenished change of energy form to continually increase

the excitation energy of a receiving entity, the Drude electron gas in the coil and

its attached circuit. We emphasize that this is also a novel way to directly

generate and utilize free regauging energy.

To do work, one does it at a certain rate (power level), and so the rate of

change of the energy form becomes the important factor that must be manipula-

ted quite precisely.

Cyclic transform of the energy by ‘‘pingpong’’ between two different forms

of energy or energy states with replenishment—and where meticulous care is

observed with rates of change of the energy form in each case—is all that is

required to produce as much work as one wishes in the intermediary, from a

single joule of operator-input energy. This regauging energy amplifying process

is limited only by one’s ability to hold the new form of energy after each

transformation and not lose it (or not lose all of it). By letting this iterative

pingpong work be done on the Drude electron gas, the energy of that gas is

excited much more than by the energy we originally input, if the input energy

had been used only once [meaning that it was dissipated (escaped from system

control) in the conversion (work) process] to perform work (if its form were

only changed once) and there was no replenishment.

We stress that present electrical power systems deliberately use their col-

lected energy only once, and do not take advantage of energy regauging by free

replenishment from the potential environment. So engineers are totally un-

familiar with the pingpong mechanism and do not apply it, and they are totally

unfamiliar with the energy amplifying process and do not apply it. In short, they

simply do not use the extended (replenishing) energy–work theorem and the

pingpong effect to dramatically increase the energy in the Drude electron gas in

the external circuits connected to the generator or battery.

B. ‘‘Pingpong’’ Iterative Change of Energy Form

The A potential and the B field are extraordinarily useful for just such

‘‘pingpong’’ iterative change of energy form, from B-field energy to A-potential

energy and vice versa, back and forth, repeatedly. That is precisely what

happens in each coil of the process of the invention, and this results in dual

inputs of energy—one in curl-free A form and one in B form—simultaneously

to the coil. Quite simply, one can extract the energy from a volume of A
potential, in B-field form where the B-field energy is removed from the volume,
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and the A potential beyond will instantly (at least at the speed of light) simply

refill the volume, but with curl-free A potential.

The time rate of change dA=dt of the resulting curl-free A potential is an E
field that will react—in electric field fashion—directly with the charge of the

electrons in the Drude electron gas in the output coil, entering from the

surrounding space outside the core. The entering dA/dt electric field energy

interacts in the ideal case with the ‘‘full’’ energy of the original vector potential

A. The magnetic field B in the core in the center of the coil simultaneously

interacts with the spin of the same Drude electrons in the same coil, and with the

‘‘full’’ energy of the original vector potential A. Consequently, the electrons

receive an interaction energy gain of 2.0, and the pingpong between the two

processes adds about another 0.5 gain, for an overall gain per output coil of 2.5.

With two output coils, the energy amplification is about 2.5, and hence the

generator exhibits COP ¼ 5.0.

A similar effect is also demonstrated by the well-known Aharonov–Bohm

effect [21,23],11 but usually in only very small effects, without the pingpong

effect, and not used in power systems. By analogy, we may compare this

iterative process to ‘‘dipping several buckets of water in succession’’ from a

mighty rushing river; the river refills the ‘‘hole’’ immediately after each dipping.

We can continue to extract bucket after bucket of water from the same spatial

volume in the river, because of the continual replenishment of the extracted

water by the river’s flow.

Any change of B-field energy in the center of the coil, interacts with the coil

magnetically since the coil’s magnetic field is at its greatest strength in its

precise center, and the center of the coil is in the center of the core flux path

material. This magnetic interaction between core and coil produces voltage and

current in the coil (and therefore in a closed loop containing the coil and the

external load). The interaction also simultaneously produces an additional equal

energy outside the coil in the form of field-free A potential. This latter

interaction is absolutely permitted since the magnetic energy in B form was

‘‘dissipated’’ (transformed) into A-potential energy, thereby causing the elec-

trons in the wires to flow by doing work that built voltage and current, which

then was a change of form of the B-field energy. Simultaneously, the electron

current produces the A-potential energy around the coil and outside it, which is

absolutely permissible since a change in form of the energy is again involved.

11 Full discussion of the Aharonov–Bohm effect and hundreds of references can be found in Ref. 23.

According to Nobelist Feynman, it required 25 years for quantum physicists to clearly face the

Aharonov–Bohm issue of the primacy and separate action of the force-field-free potential. Another

long period passed before physicists finally accepted it, even though it was experimentally

demonstrated as early as 1960.
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Since these changes in energy form occur nearly at the speed of light, in a

local coil they appear ‘‘instantaneous,’’although in reality they are not quite instant,

just very rapid. However, the work produced by each change of form of the

energy in that rapid ‘‘pingpong’’ between the several energy states, continually

produces work on the Drude electrons, producing momentum and motion in the

Drude gas, thus resulting in voltage and current. In this way, the increased

momentum and motion—involved in the currents flowing in the voltage drop of

the coil and external loop—result in increased stored kinetic energy in the

moving Drude gas, which is electromagnetic energy of a different form.

As can be seen, the speed of the pingpong energy-state transformations

results in each transformation doing cumulating work in the Drude electron gas

of the output coil, to increase that gas’s excitation and energy. A continuous

‘‘collection’’ of excess energy—caused purely by the change of form of the

energy and not by ‘‘loss’’ or ‘‘disordering’’ of the energy—occurs in the Drude

electron gas, resulting in increased voltage and current in the circuit containing

the coil. This is simply a mechanism for a ‘‘regauging’’ or increase of potential

energy of the Drude electron gas system. The Drude electron gas system’s

increased excitation energy can then be dissipated ‘‘all at once’’ in conventional

fashion in the external load, providing more energy dissipated as work in the

load than was input to the coil originally by the operator.

Hence an energy amplifying action of the coil and its multiplicity of processes

is generated. There is no violation of the energy conservation laws, of the laws

of physics, or of the laws of thermodynamics since this is an open system far

from equilibrium with its source of potential energy (the magnetic dipole of the

permanent magnet), which, in turn, continuously receives replenishment energy

from the vacuum by a giant negentropy process reinterpreted by Bearden [16]

from Whittaker’s work [1] and clarified by Evans and Bearden [20].

C. Dissipation of Energy

The dissipation of the final collected regauging energy within the load can

permissibly be greater than what we ourselves initially input,12 because of the

iterative change of form of the energy with replenishment. Therefore the

iterative interactive work done on the Drude electron gas provides more than

one joule of work done on the gas—thereby increasing its potential energy by

more than one joule—for each joule of energy input by the operator to the

12See Refs. 9–14,16,17,73–75. We comment that the standard calculation of the Poynting energy

flow is not the calculation of the total EM energy flow at all, but only a calculation of how much of

the total energy flow is intercepted by the surface charges of the circuit and thereby diverged into the

conductors to power the Drude electrons. The energy input to the system by the operator has nothing

to do with the energy dissipated by the system in the load—only with the energy expended in

continually re-forming the source dipole that the conventional system is designed to destroy faster

than it powers the load.
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system process. The cumulated potential energy in the Drude electron gas is

then discharged in loads in normal fashion. Note that, even here, the energy is

not lost when dissipated from the load and outside the system, but just flows out

of the load in a different form (e.g., as heat radiated from a resistor load). Again,

this process involves an open system not in equilibrium with its active vacuum

environment; it is comparable to a windmill in a wind, where we input a little

wind and find a way to cause the environment to freely add some additional

wind to our own input.

The various asymmetric regaugings violate Lorentz’ arbitrary symmetric

condition, specifically in the discharge or change of form of the energy. Hence,

this process restores to electrodynamics one group of those missing Maxwellian

systems arbitrarily discarded by first Lorenz and later Lorentz, more than a

century ago. A rigorous rebuttal of objections to COP> 1.0 EM systems has

been given [75].

IV. THE PROCESS IS THEORETICALLY SUPPORTED

Several rigorous scientific papers [24–37] by the Alpha Foundation’s Institute

for Advanced Study (AIAS) have been published or are in the publication

process, fully justifying the fact that energy currents (energy winds) can readily

be established in the vacuum, and that such energy winds do allow the

extraction of EM energy from the vacuum. Two rigorous theoretical papers

explaining the motionless electromagnetic generator have been published

[73,74].

Also, Cole and Puthoff [38] have shown that there is no prohibition in

thermodynamics that prevents EM energy being extracted from the vacuum and

utilized to power practical systems.

In electrochemistry it has long been known [39]13 that there can be no

current or movement in electrodes without the appearance of excess potential

(regauging) called the overpotential.

Further, in the most advanced model in physics—gauge field theory—the

freedom to change gauge (in electrodynamics, to change the potential) at will, is

an axiom of the theory. If we freely change the potential of a physical electrical

power system, we freely change its potential energy (in a real system, we may

have to pay for a little switching energy losses).

13 Essentially, the overpotential is a shift in the Fermi level necessary to allow the electron in the

electrode metal to have energies overlapping with vacant acceptor levels in molecules adjacent to

the electrode in the solution. It enables the transfer of electrons via quantum transfer (tunneling).

Quoting from Ref. 39, p. 356: ‘‘Unless a system exhibits an overpotential, there can be no net

reaction [emphasis in original].’’ We point out that an overpotential is an advantageous regauging

(free change) of the potential energy of the local region where the overpotential appears.
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It follows that we can also freely change (regauge) the excess potential of

that system yet again, by any means we choose, including discharging that

excess potential energy in a load to do work. Thus gauge field theory has for

decades already axiomized the rigorous basis for COP> 1.0 electrical power

systems—but such systems have remained neglected because of their arbitrary

discard by the ubiquitous use of Lorentz symmetrical regauging.

That such COP> 1.0 electrical power systems have not been previously

designed or built is therefore not due to a prohibition of nature or a prohibition

of the laws physics at all, but to a characteristic used to design and build the

systems themselves. Because of their ubiquitous closed current loop circuits,

conventional power systems use half their collected energy to destroy their own

source dipoles, which destroys any further use of energy from ‘‘the potential

between the ends of the dipole’’ since both dipole and potential vanish, as do the

negentropy process and the broken 3-symmetry. The potential of the source

dipole, after all, is what potentializes the external circuit with additional exci-

tation energy, to be utilized to power the system. In present systems, half that

excitation energy is dissipated to destroy the dipole along with the source

potential, and less than the remaining half is used to power the load. This

rigorously limits such systems to COP< 1.0.

In the MEG, we do not destroy the potentializing source dipole, which is the

magnetic dipole of the permanent magnet. We include the vacuum interaction

with the system, and we also include the broken symmetry of the source dipole

in that vacuum exchange—a broken symmetry proved and used in particle

physics for nearly a half century, but still inexplicably neglected in the

conventional Lorentz-regauged subset of the Maxwell–Heaviside model. We

also use the extended work–energy theorem, as discussed.

Consequently, our work and this novel process are rigorously justified in both

theory and experiment, but the principles and phenomenology are still not

incorporated in the classical electrodynamics theory utilized to design and

produce electrical power systems. These principles are indeed included in the

new O(3) electrodynamics being developed by AIAS (Alpha Institute for

Advanced Study)14 that extends the present U(1) electrodynamics model, as

shown by some 100 scientific papers carried by the U.S. Department of Energy

on one of its private scientific Websites in Advanced Electrodynamics, and by

an increasing number of publications in leading journals such as Foundations of

Physics, Physica Scripta, and Optik.

14 A private communication from Dr. Myron Evans, Sept. 30, 2000, rigorously confirms that the

magnitudes of the vector potential and the 4-current do in fact provide EM energy from the vacuum,

and determine its magnitude as well.
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We thus have invented a process that indeed is well-founded and justified, but

the basis for it is not yet explained in the texts and university courses. It is our

belief that this absence will be rapidly rectified in the universities, in both the

physics and electrical engineering departments, on the advent of practical self-

powering electrical power systems freely regauging themselves and extracting

energy from the magnetic dipole of a permanent magnet, and that the energy

will be continuously replenished to the dipole from the active vacuum via the

new giant negentropy process [1,16,20].

V. CONSIDERING THE PROCESS

A. A Potential and Field-Free A Potential

This invention relates generally to the field of electromagnetic power genera-

tion. Specifically it relates to a totally new field of extracting additional

electromagnetic energy in usable form from a permanent-magnet dipole’s

magnetic vector potential energy, in addition to the electromagnetic energy

extracted from its magnetic field energy, wherein the excess magnetic vector

potential energy taken from the magnet dipole is continuously replenished to the

permanent-magnet dipole from the active vacuum that is a curved spacetime

with an ongoing giant negentropy flow process [1,16,20].

With respect to the electrostatic scalar potential, electrodynamicists are

familiar with the fact that unlimited energy can be extracted from a potential.

The very simple equation

W ¼ fq ð1Þ

gives the amount of energy W in joules, which is collected at any given point

x,y,z from the electrostatic scalar potential—whose reaction cross section is

given by f, in joules collected per point coulomb—by charges q in coulombs

and located at point x,y,z. Note that as much intercepting charge q as desired can

be used at any point to increase the energy collection at the point, and collection

can be accomplished at as many points x,y,z as is desired.

So any amount of energy can be collected from any nonzero scalar potential,

no matter how small the potential’s reaction cross section, if sufficient intercept-

ing charge q and collecting points x,y,z are utilized. In short, one can intercept

and collect energy from a potential indefinitely and in any amount, and in any

form taken by the collecting interaction, because the potential is actually a

set of EM energy flows in the form of longitudinal EM waves, as shown by

Whittaker [1] in 1903 and further expounded by Bearden [16,40]. Subsequently,

Evans and Bearden [20] have more rigorously interpreted Whittaker’s [1] work
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and extended the principle into power systems. Thus any energy diverged and

‘‘withdrawn’’ from the potential in a given local region of it is immediately

replenished to the potential and to that region from the complex plane (the time

domain) by the potential’s flowing EM energy streams [1,16,20], as rapidly as

the energy is deviated and withdrawn.

For the magnetic vector potential, some preliminary comments are necessary.

First, for over a hundred years it has been erroneously advanced that the

magnetic vector potential A is ‘‘defined’’ by the equation

B ¼ r� A ð2Þ

This is easily seen not to be a definition at all, since an equation says nothing

about the nature of anything on its right or on its left, but merely states that the

entire right side has the same magnitude as does the entire left side. For an ex-

pression to be a definition, it must contain an identity (�) sign rather than an

equal (¼ ) sign. Hence in seeing what is attempted to be defined, we rewrite

equation (2) as

B � r� A ð3Þ

Now it is seen that it is the magnetic field B that is being defined as the curl of a

swirling A-potential, which swirling component we will call AC for the ‘‘A
circulating’’ component of A. Rigorously, this is correct because all fields as

defined in classical electrodynamics are effects and the observable results of

interactions. The potentials and their structural dynamics are the primary causes

[21]. The curl of the circulating A is a magnetic field B, by identity (3). There

may, of course, be present additional A potential that has zero curl, but that

additional longitudinal AL potential or AL current does not produce a magnetic

field B per se. However, its change dA/dt does interact with charges as an E-

field.

In 3-space, the field-free AL potential may be moving longitudinally,

in which case it is identically an electrical potential f that is moving longi-

tudinally and hence no longer really a scalar potential f but a vector

potential /. If / translates without changing magnitude, there is no E-field

and hence / is a field-free vector potential. Identity (3) still does not define A,

but defines B in terms of A and the curl operator. Note particularly that, in

identity (3), we may have additional / present as a curl-free, longitudinal

magnetic vector potential AL, and we shall refer to this additional curl-free

magnetic vector potential as AL (for longitudinally translating A component

without swirl).
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B. General Relativistic Considerations

We are rigorously using the Sachs [41]15 unified field theory view that energy of

whatever form represents a curvature in spacetime (ST). We argue that how we

then observe or ‘‘see’’ the energy effects and label them, depends on the factors of

physical interaction with that ST curvature. Thus interaction with magnetic charge

produces magnetic energy aspects, while interaction with electrical charge pro-

duces electrical energy aspects, and so on. Motion of either of the interactions

lets us also ‘‘see’’ some of the magnetic energy as electrical energy, and some of

the electrical energy as magnetic energy, and so on. Quoting from Evans [42]:

With respect to O(3): In 1992 it was shown that there exists a longitudinal compo-

nent of free space electromagnetism, a component which is phaseless and propa-

gates with the transverse components. Later this was developed into a Yang-Mills

theory of electromagnetism with O(3) Lagrangian symmetry. This theory is homo-

morphic with Barrett’s SU(2) electrodynamics and has far reaching implications in

field theory in general. Recently it has been recognized to be a sub theory of the

Sachs theory of electromagnetism, based on the irreducible representations of the

Einstein group of general relativity. The Sachs theory produces a non-Abelian

structure for the electromagnetic field tensor. The O(3) electromagnetism also has

implications for the potential ability of extracting energy from the vacuum, and its

topological implications are currently being investigated by Ranada. The O(3)

electromagnetism has been tested extensively against empirical data, and succeeds

in describing interferometric effects and physical optical effects where the con-

ventional Maxwell Heaviside theory fails. Implicit in both the O(3) and Sachs

theories of electromagnetism is the ability to extract electromagnetic energy from

curved space-time.

However, when AL interacts with electrical charge, the charge may swirl, in

which case the swirling component of the f moving with the charge is an AC

component, and this AC swirling component will produce a magnetic field B by

identity (3).

In the unified field theory approach being used [41– 45] in spacetime all

energy is simply a special curvature of that spacetime, regardless of the form of

the energy. (This is believed to resolve the foundations issue pointed out by

Feynman [46]: ‘‘It is important to realize that in physics today, we have no

15 Sach provides a great generalization of general relativity and electrodynamics reaching from the

quarks and gluons to the entire universe. O(3) electrodynamics forms a very important subset of

Sachs’ theory, which means that general relativistic effects such as curved spacetime and EM energy

from the curved spacetime vacuum can be engineered electromagnetically. The present invention

does engineer curved spacetime to obtain excess energy from the active vacuum.
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knowledge of what energy is.’’ In Feynman’s view, energy is a curvature of

spacetime, and the ‘‘form’’ of the energy observed is determined by the type of

material interaction that occurs with ST curvature.) Hence one can readily

visualize the energy being changed from a vector potential to a scalar potential

and vice versa, depending simply on whether the potential is moving or

stationary with respect to the frame of the observer (the laboratory frame).

It is also a well-known facet of general relativity that any change of energy

density in spacetime a priori is associated with a curvature of spacetime (i.e., in

Einstein’s theory with the single exception or gravitational field energy, and

even that exclusion has been challenged [47]; more recent experiments tend to

support Yilmaz’ predictions over those of the unaltered Einstein Theory). What

has been neglected in general relativity (and arbitrarily discarded in electromag-

netic theory long before general relativity was born) is the enormous un-

accounted nondiverged EM energy flow filling the space around every EM

circuit [40] — and in fact around every field and charge interaction16—with

almost all of it missing the circuit entirely, and not being intercepted and

diverged into the circuit to power it.

This nonintercepted huge energy flow was recognized by Heaviside [48–

50],17 not even considered by Poynting [51],18 and arbitrarily discarded by

Lorentz [52]19 as having ‘‘no physical significance’’ because it did not strike the

16 Consider carefully the implication that the so-called ‘‘magnitude of the field’’ at a point has been

defined as the magnitude of the result of the interaction of the field with a unit static point charge. In

other words, the effect of the field has been erroneously defined as the causative field itself, a

nonsequitur. The effect cannot be the cause.
17 Heaviside’s paper on the forces, stresses, and fluxes of energy in the EM field [48] followed

previous publications several years earlier by Heaviside, including papers in The Electrician,

beginning in 1885. Here Heaviside also credits Poynting with first discovering EM energy flow in

space. On the other hand, Poynting credited Heaviside with being first; for instance, see editorial on

energy transfer [49] in The Electrician.
18 Poynting, in his paper on energy transfer in the EM field, got the direction of the flow wrong,

which was later corrected by Heaviside. Further, Poynting considered only that very minor

component of energy flow surrounding the circuit that actually strikes the circuit and enters it to

power it. The enormous additional energy flow which is present but misses the circuit entirely and is

usually wasted, was not considered by Poynting at all.
19 Figure 25 on p. 185 of Ref. 52 (on EM field energy) shows the Lorentz concept of integrating the

energy flow vector around a closed cylindrical surface surrounding a volumetric element. This is the

procedure that arbitrarily selects only a small component of the energy flow associated with a

circuit—specifically, the small Poynting component striking the surface charges and being diverged

into the circuit to power it—and then treats that tiny component as the ‘‘entire’’ energy flow.

Thereby Lorentz arbitrarily discarded all the vast Heaviside energy transport component, which does

not strike the circuit at all, and is merely wasted.
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circuit and power any part of it.20 It is still arbitrarily discarded today, using

Lorentz’s discard method. We quote from Heaviside [50, p. 94]:

It [the energy transfer flow] takes place, in the vicinity of the wire, very nearly

parallel to it, with a slight slope towards the wire . . .. Prof. Poynting, on the other

hand, holds a different view, representing the transfer as nearly perpendicular to a

wire, i.e., with a slight departure from the vertical. This difference of a quadrant

can, I think, only arise from what seems to be a misconception on his part as to the

nature of the electric field in the vicinity of a wire supporting electric current. The

lines of electric force are nearly perpendicular to the wire. The departure from per-

pendicularity is usually so small that I have sometimes spoken of them as being

perpendicular to it, as they practically are, before I recognized the great physical

importance of the slight departure. It causes the convergence of energy into the wire.

Also, it is still largely unrecognized in Western science that pure general

relativity contains no energy conservation equations [53,54]21 of the kind

encountered in electrodynamics and mechanics. This is easily seen by consi-

dering the impact of gauge freedom, which allows the potential energy of any

region of spacetime to be freely changed at will. But this is also a form of

freedom of spacetime curvature, hence the notion of fixed accountability of

energy replenishment and dissipation is completely voided by gauge freedom.

Hilbert [54] first pointed out this remarkable absence of energy conservation

laws from general relativity, not long after Einstein published his theory.

It also appears that the ultimate energy interaction is the transduction of

energy form between the time domain (complex plane) and 3-space. In fact, all

3-spatial EM energy actually comes from time-like EM energy currents after

3-symmetry breaking [1,16,20].

C. Indefiniteness Is Associated with the A Potential

A magnetic vector potential A produced by a current-carrying coil not tightly

wound or closed (or very long), must possess both a swirl component AC (from

20 This is rather like discarding all the wind on the ocean except for that tiny component of it that

strikes the sails of one’s own sailboat. It is true that the wind missing one’s own boat has no further

significance for that one boat, but it may, of course, be captured in the sails of an entire fleet of

additional sailing vessels to power them quite nicely. Hence the statement of ‘‘no physical

significance’’ is a nonsequitur; ‘‘no physical significance to that one specific circuit’’ is better—but

even then is incorrect if additional ‘‘sails’’ (interceptors) are added to catch more of the available

energy wind and diverge more of it into the circuit.
21 Quoting from Hilbert [54]: ‘‘I assert . . . that for the general theory of relativity, i.e., in the case of

general invariance of the Hamiltonian function, energy equations . . . corresponding to the energy

equations in orthogonally invariant theories do not exist at all. I could even take this circumstance as

the characteristic feature of the general theory of relativity.’’ As Logunov and Loskutov [53] pointed

out, unfortunately this remark of Hilbert was evidently not understood by his contemporaries, since

neither Einstein himself nor other physicists recognized the fact that in general relativity

conservation laws for energy, momentum, and angular momentum are, in principle, impossible.
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the circling of the coil in each turn of the coil) and a longitudinal component AL

from the longitudinal advance of the current between coils, since a coil is

actually a helix and not a set of circles. It will also possess a magnetic field, both

inside the coil and outside it.

Hence, considering both curled and curl-free types, the actual magnitude of

A is always indefinite—and, in fact, the indefinite nature of the potential

together with the freedom to change it at will is universally recognized by

electrodynamicists [55] (see also Section V.C.1).22 However, the prevailing

argument that change of potential does not affect the system is a nonsequitur.

Further, in 1904 Whittaker [56] (see also Section V.C.2) showed that any

electromagnetic field, wave, etc. can be replaced by two scalar potential

functions, thus initiating that branch of electrodynamics called superpotential

theory [58]. Whittaker’s two scalar potentials were then extended by electro-

dynamicists such as Bromwich [59], Debye [60], Nisbet [61], and McCrea [62]

and shown to be part of vector superpotentials [58], and hence connected with A.

1. Jackson’s Studies on EM Potential

In symmetrically regauging the Heaviside–Maxwell equations, electrodynami-

cists and gauge field theorists assume that the potential energy of any EM

system can be freely changed at will (i.e., that the system can first be

asymmetrically regauged, due to the principle of gauge freedom). The sym-

metric regauging actually consists in two asymmetric regaugings carefully

chosen so that the net forcefield [electromotive force (EMF)]—available for

excitation discharge of the excited system—is zero. In circuits, this means that

the back EMF (across the source dipole) is precisely equal and antiphased to the

forward emf (across the external circuit with its loads and losses). Jackson’s

book does not even address circuits.

For operating EM systems, their initial potentialization (application of poten-

tial to the system to increase its potential energy available for further discharge)

is asymmetric a priori and universally used. Gauge field theory and its assump-

tion of gauge freedom assures us of the validity of this theoretically work-free

process of increasing the energy of the system. In real systems, a little switching

cost or other expenditure may be required, but is minuscule in relation to the

amount of extra potential energy that can be generated in the system at will.

22 On p. 67 of their paper on Lorentz-invariant potentials and the nonrelativistic limit, Bloch and

Crater [57] state: ‘‘[It is usually] . . . assumed that the magnitude of potential energy is irrelevant,

being arbitrary to the extent of an additive constant.’’ We comment: by noting that this ‘‘standard’’

assumption in classical electrodynamics is totally wrong, particularly when one considers (1)

conservation of energy and (2) gravitational effects. We have previously nominated this arbitrarily

discarded extra potential energy as a solution to the ‘‘dark matter’’ problem in astrophysics, and as

being responsible for the extra gravity holding together the arms of the distant spiral galaxies; see

Ref. 40.
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As shown by Jackson [55], for the conventional EM model electrodynami-

cists actually select only a subset of the Maxwellian systems and deliberately

discard the remaining Maxwellian subset. Following Lorentz, the electrodyna-

micists arbitrarily select two asymmetric regaugings but precisely such that

none of the initial excess regauging energy—freely received in the system by its

potentialization—can subsequently be dissipated to power loads without

equally destroying the system potentialization represented by the source dipole.

This inanity occurs because the net force is deliberately brought to zero, thus

consisting of equal forward and backward EMFs—or MMFs in a magnetic

circuit. This custom produces much simpler equations for that remaining

simpler subset of Maxwellian systems that are in equilibrium in their exchange

with the active vacuum during their dissipation of the free regauging energy.

Hence, for more than a century it has been ‘‘customary’’ to arbitrarily

discard all Maxwellian systems and subsystems that would asymmetrically

regauge themselves during the discharge of their initial free excitation energy.

This arbitrary, self-imposed condition is neither a law of nature nor a law of

electrodynamics or thermodynamics. It is purely arbitrary and imposed by

system design. It assumes that half the gauge freedom’s excess potential energy

be dissipated internally (against the source dipole’s back EMF) to destroy any

further energetic activity of the system by destroying the source dipolarity (any

excess potential on the system, and hence any excess potential energy).

The remaining half of the initial free gauge excitation energy is dissipated

usefully in the system’s external loads and losses. This means that this remain-

ing half of the excitation energy is dissipated detrimentally by the system to

destroy its own energetic operation. Since any real system has losses, the net

result is that half the gauge freedom potential energy of the excited system is

used to destroy the source dipole itself and all potentialization of the system,

and less than half is used to power the loads. Since it requires as much

additional energy to restore the source dipole as it required to destroy it, the

operator then must furnish more energy to provide for continually restoring the

dipole than the system permits to be dissipated in the external loads.

The set of Maxwellian systems arbitrarily discarded by the ubiquitous

Lorentz regauging are precisely those open dissipative Maxwellian systems

not in thermodynamic equilibrium in their vacuum exchange. Those are

precisely the Maxwellian systems that do not forcibly and symmetrically

regauge themselves in accord with the Lorentz condition during their excitation

discharge. Those arbitrarily discarded Maxwellian systems are thereby free to

dissipate their gauge freedom initial ‘‘free excitation’’ energy primarily in the

external loads and losses, with much less being dissipated in the source dipole to

destroy it.

The performance of the arbitrarily discarded asymmetrically regauging

Maxwellian systems is described by the thermodynamics of an open dissipative
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system not in equilibrium with its active environment, rather than by classical

equilibrium thermodynamics. As is well known in the thermodynamics of such

systems (for which Prigogine received a Nobel Prize in 1977), such an open

dissipative system is permitted to (1) self-order, (2) self-oscillate or self-rotate,

(3) output more energy (e.g., to do useful work) than the operator must input

(the excess energy is freely received from the external environment, in this case

the active vacuum), (4) power itself and its load(s) simultaneously (all the

energy is freely received from the external environment, in this case the active

vacuum), and (5) exhibit negentropy.

That our normal EM power systems do not exhibit COP> 1.0 is purely a

matter of the arbitrary design of the systems. They are all designed with closed

current loop circuits, which can readily be shown to apply the Lorentz sym-

metric regauging condition during their excitation discharge in the load. Hence

all such systems — so long as the current in the loop is unitary (its charge

carriers have the same m=q ratio) — can exhibit only COP< 1.0 for a system

with internal losses, or COP¼ 1.0 for a superconductive system with no internal

losses.

2. Whittaker’s Studies on EM Potential

Whittaker’s groundbreaking paper [56] was published in 1904 and orally

delivered in 1903. Whittaker shows that all EM fields, potentials, and waves

consist of two scalar EM potential functions. Whittaker’s method is well known

in the treatment of transverse electric and transverse magnetic modes of a

cylindrical cavity or a waveguide. The Debye potentials and the Bromwich

potentials are essentially radial components of the vector potentials of which

Whittaker potentials are the real parts. Our further comment is that, since each

of the scalar potentials used for the Whittaker functions has an internal

Whittaker 1903 giant negentropic substructure and dynamics, then all present

EM waves, fields, and potentials have—and are composed of—vast internal

longitudinal EM wave structures and dynamics, and these have been almost

entirely neglected in Western electrodynamics. The ‘‘internal’’ or ‘‘infolded’’

structures and dynamics inside normal EM fields, waves, and potentials can be

engineered, and this area has startling implications to all of science, particularly

to medical science. Discussion of this ‘‘infolded’’ electrodynamics is beyond the

scope of this chapter.

D. Applying the Giant Negentropy Mechanism

So let us consider the A-potential most simply as being replaced with such a

Whittaker [1,56] decomposition. Then each of these scalar potentials—from

which the A potential function is made—is decomposable into a set of

harmonic phase conjugate wavepairs (of longitudinal EM waves). If one takes

all the phase conjugate half-set, those phase conjugate waves are converging on
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each point in the magnetic vector potential A from the imaginary plane (from

the time domain). At that same point in A, the other waveset—composed

of the harmonic set of longitudinal EM waves in 3-space—is outgoing. The

4-conservation of EM energy requires that the incoming energy to the point

from the complex plane is being transformed at the point (by the assumed unit

point charge at that point) into real EM 3-space energy, and radiating outward

from that point as real EM energy, in this case in the form of the magnetic

vector potential A without curl since the curl operator is absent.

We have previously pointed out [16,20] that this energy flow input from the

complex plane to every point in the potential, with its output in real 3-space, is a

more fundamental symmetry than is the usually assumed 3-symmetry in EM

energy flow in 3-space. Further, it is a giant negentropy and a continuous,

sustained reordering of a fraction of the vacuum energy, and the reordering

continues to expand in space at light speed so long as the source dipole for the

potential exists.

So the A potential—in either of its components AL or AC—is not to be

thought of as having ‘‘fixed energy’’ since it consists of and identically is a

myriad energy flow processes ongoing between the time–energy domain (the

complex plane) and the real energy domain (real 3-space).

As is any potential including the electrostatic scalar potential f between the

poles of an electric dipole and the magnetostatic scalar potential � between the

poles of a permanent magnet, the A potential is an ongoing set of longitudinal

EM energy flows between the time domain (imaginary plane) and real 3-space

[1,16,20].

We stress that the EM energy flows constituting the so-called scalar potential

and all vector potentials violate 3-flow symmetry in energy conservation, but

rigorously obey 4-flow symmetry. There is no law of nature that requires that

energy be conserved in 3-space! If we work in 4-space as is normal, then the

laws of nature require that energy be conserved in 4-space, as is done by the

potential. Imposing the arbitrary additional requirement of 3-flow energy

conservation imposes a 3-symmetry restoring operation that destroys or nullifies

the giant negentropy 4-process23 of the dipole [16] and results in system 3-

equilibrium with the active vacuum. It results in design and production of

electrical power systems exhibiting only COP< 1.0. The ubiquitous closed

current loop circuit design produces a circuit that deliberately (albeit un-

wittingly) reimposes the 3-flow symmetry, kills the dipole and the giant

23 Which, in turn, destroys the ability of any observable to exist (in time). An observable is a priori a

3-space fragment of an ongoing 4-space interaction, torn out at one frozen moment of time. The fact

that observables do not persist in time has a profound impact on the foundations of physics, but its

implications remain to be explored. A major impact is that physicists have missed the mechanism

that generates the ‘‘flow of a mass through time.’’ Discussion of that mechanism is beyond the scope

of this chapter.
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negentropy process, requires at least as much continuous input energy by the

operator as was utilized to kill the dipole, and has generated the gigantic

burning of hydrocarbons and the pollution of the biosphere.

E. A Negative-Resistance Process

Because of its giant negentropy process [1,16,20], any potential—and even any

vanishingly small but finite region of it—is an open EM energy flow system,

freely receiving energy from the complex plane in its active vacuum environ-

ment, transducing that received reactive power (in electrical engineering terms)

into real power, and outputting real EM energy flow in space in all directions at

the speed of light [16,20]. An ordering of the local vacuum results from that

action.

The vacuum–dipole energy exchange process is negentropic, since there

exists total 1 : 1 correlation between the inflowing longitudinal EM waves in the

complex plane and the outflowing EM waves in real 3-space [1,16,20]. The

potential then may rigorously be regarded as a novel kind of negative resistor,24

constituting an automatic ongoing negative-resistance process. By negative

resistance process we mean that each spatial point (and its mathematical neigh-

borhood of immediately surrounding points) occupied by the potential conti-

nuously

1. Receives EM energy in unusable form (in the form of longitudinal EM

waves input from the complex plane, which is the continuous receipt of

reactive power)

2. Transduces the absorbed or received energy into usable form (real energy

in 3-space)

3. Outputs the received and transduced EM energy as usable EM energy flow

in 3-space

Thus, associated with and contained in any potential and any dipolarity—

including the dipolarity of a permanent magnet—we have a novel, free source

of EM energy from the vacuum’s complex plane (reactive power input, in

electrical engineering terms, with real power output). That is true whenever we

have a potential of any kind, either A or f, or a dipole of any kind, either elec-

trical or magnetic, or a polarization. Further, any energy that we divert (collect)

24 We define a negative resistor as any component or function or process that receives energy in

unusable or disordered form and outputs that energy in usable, ordered form, where that is the net

function performed. We specifically do not include ‘‘differential’’ negative resistors such as the

tunnel diode, thyristor, and magnetron, which dissipate and disorder more energy overall than they

reorder in their ‘‘negative resistance’’ regimes. Also, we extend the definition to 4-space, to include

input of energy from the time domain to the negative resistor entity, and output of the energy in

3-space.
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from this potential by and on intercepting charges, and hold in the localized

vicinity of the charge, is an energetic excitation of the perturbing charges.

F. Modeling the Transduction Mechanism

Charges can be thought of as rotating 720� in one ‘‘full rotation,’’ that is, 360�

rotation in the complex plane followed by 360� rotation in real 3-space. The

charges in the source dipole thus absorb the incoming reactive power while

rotating in complex space and are excited therein, then reradiate this absorbed

EM excitation energy in real 3-space during their subsequent 360� rotation in

that 3-space. Further, all the energy diverted from the energy flows representing

the potential, is immediately replenished by the vacuum to the source dipole,

by the stated giant negentropy mechanism [16,20].

G. Replenishment via Giant Negentropy

It follows that we may collect energy from an A potential of a permanent

magnet by applying the curl operator to A, then withdrawing and holding the

resulting B ¼ r� A magnetic field energy in a localized material flux path.

That is the withdrawal of AC energy from the overall A potential in space, which

is the withdrawal of AC energy from the magnetostatic potential outflow

dynamics between the poles of the magnetic dipole of the permanent magnet.

This withdrawal and sharp path localization of the AC energy from the

permanent-magnet dipole’s outpouring A-potential energy will be continuously

replaced at light speed by the giant negentropy process [1,16,20] engendered in

4-space by the magnetic dipole of the permanent magnet. Hence an unlimited

amount of energy may be withdrawn from the A potential in space around the

magnet in this fashion, and the withdrawn energy will be continuously replaced

at light speed from the active vacuum via the giant negentropy process. In real

systems, the materials and components will impose physical limits so that only a

finite amount of excess energy flow can be accomplished, but in real materials

these limits still permit system COP� 1.0 [40].

The foregoing discussion shows that, in a magnetic apparatus or process

functioning as part of an overall electromagnetic power system, we may have

one subprocess that continuously withdraws energy from the curled portion of A
(i.e., holds and localizes the magnetic field B and confines it to a given path),

and in that case the source (in this case the permanent magnet) of the A
potential will simply replenish—at light speed—all the A energy that was

withdrawn and localized. The replenished A energy will not be localized, since

under a given set of conditions only so much energy is withdrawn and held in

the localized condition.

The principle is that, as energy is drawn from the vector potential and then

contained and circulated in field form in a localized material region or path, the

withdrawn A-potential energy in space outside that localized path is continually
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replenished from the permanent magnet dipolarity to the space surrounding the

localized B-field energy path as the real EM energy flow output of the giant

negentropy process [16,20] engendered by the magnet dipole. Further, the

energy drawn from the permanent-magnet dipolarity is continually replenished

from the surrounding vacuum by the input EM energy flow to the magnet

dipolarity from the vacuum’s complex plane in the ongoing giant negentropy

process [1,16,20].

H. Regauging Can Be Negentropic or Entropic

Any increase or decrease of energy in the apparatus and process in the local

spacetime constitutes (1) self-regauging by the process, whereby the process

freely increases the potential energy of the system utilizing the process; and (2)

concomitant curvature of spacetime and increase in that spacetime curvature

because of the increase of local energy in the system process.

From the standpoint of gauge field theory, free asymmetric regauging is

permitted by gauge freedom and is rigorously allowed, in effect allowing the

violation of classical equilibrium thermodynamics because the regauged system

freely receives EM energy from an external active source, the active vacuum’s

complex plane in the evoked giant negentropy process.25 From the standpoint of

general relativity, the excess energy from spacetime is freely allowed, since all

EM energy moves in curved spacetime [33,36,37,41– 43,45,63] a priori, and

simple conservation of EM energy as usually stated in classical equilibrium

electrodynamics need not apply in a general relativistic situation [53,54].

I. Use of a Nanocrystalline ‘‘Energy-Converting’’ Material

A nanocrystalline material recently available on the commercial market was

found and utilized in this process. When utilized as a closed flux path external to

and closed on the two poles of a permanent magnet, the special nanocrystalline

25 It may be that we are defining the causative mechanism for gauge freedom itself as being pure

entropy (energy dissipation by disordering) or pure negentropy (energy increase by reordering), but

we defer to the advanced theoreticians to determine the truth or falsity of such a question. If one

considers Whittaker’s process [1] in either direction (i.e., energy freely entering 3-space by exiting

from the time domain, and energy freely entering the time domain by exiting from 3-space), the

conjecture may have merit. At any rate, it appears that all 3-spatial EM energy comes from the time

domain (from ict) in the first place. It would appear that a more rigorous reexamination of the

fundamental concept of energy propagation ‘‘in 3-space’’ should be accomplished. To first order, it

appears that what propagates from the source charge (or source dipole) is the process whereby time

energy converted into EM energy in 3-space. Apparently both the time energy cause and the 3-space

EM energy effect are propagating in iterative quantum form. If so, this perfectly corresponds to F.

Mandl and G. Shaw, Quantum Field Thory, Wiley, 1984, ‘‘Convariant Quantization of the Photon

Propagator’’ in Chapter 5. Mandl and Shaw argue that the longitudinal and scalar polarizations of the

photon are not directly observable, but only in combination, where they manifest as the

‘‘instantaneous’’ Coulomb (i.e., electrostatic) potential. Their argument, translated from particle

terminology to wave terminology, directly fits my re-interpretation of Whittaker’s 1903

decomposition of the scalar potential.
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material will contain all the B ¼ r� A field energy (curled potential energy) in

the closed flux path containing the magnet itself, while the magnetic dipole of

the permanent magnet continuously replenishes and maintains the external

circulation of field-free A-potential energy filling the space around the nano-

crystalline closed flux path containing the withdrawn magnetic field energy.

This performance can, in fact, be measured, since magnetic field detectors

detect little or no magnetic field surrounding the flux path (or even around the

magnet in the flux path at an inch or two away from it), and yet coils placed in

the spatial flux path outside the core interact with the field-free A potential that

is still there. A coil placed around the flux path so that the flux path constitutes

its core, interacts with both the field-free A potential outside the material flux

path core, and simultaneously—via the magnetic field inside the coil—with the

magnetic field flux energy inside the core.

J. Dual Interactions with Pingponging between Them

Further, the two simultaneous interactions also iteratively interact with each

other, in a kind of iterative retroreflection and interception of additional energy,

so that a net amplification of the electrical energy output by the dually

interacting coil results. The fact that iterative retroreflection processes can

increase the energy collection from a given potential and enable COP> 1.0 has

been previously pointed out [28]. In addition, multiple coils placed around the

closed material flux path, forming a common core of each and all of them, all

exhibit such gains and also mutual interaction with each other, leading to further

gain in the energy output by the coils and their interaction processes.

In short, the novel process of this invention takes advantage of the previously

unrecognized giant negentropy process [1,16,20] ongoing to and from the

permanent magnet’s dipole and between the complex plane of the vacuum

energy and real 3-space energy flows constituting the magnetic vector potential

and the magnetostatic scalar potential, to provide a gain in the total amount of

electromagnetic energy being diverted from (drawn from) the permanent

magnet by the attached circuit, components, and their processes.

The total collectable energy now drawn from the magnet is the sum of (1) the

magnetic field energy (curled A-potential energy) flowing in the flux path, (2)

the magnetic energy in the uncurled A-potential energy flowing in the surround-

ing space, (3) a further iterative ‘‘pingpong’’ gain component of energy caused

by mutual and iterative interactions [28] of the multiple coils and their multiply

interacting processes, and (4) additional energy that can be intercepted and di-

verged (collected) from the flowing uncurled A-potential energy flowing in the

surrounding space, and converted into output electrical energy as the outputs of

coils, by simply adding additional interceptors (separate receiving circuits with

loads.).

We have thus discovered a process for amplifying the circuit’s available

output energy extracted from a permanent magnet dipole’s energy outflow,
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where the dipolarity is an open system and a negative resistor, freely receiving

excess energy from the surrounding active vacuum, transducing the received

energy into usable form, and outputting the energy as a continuous flow of usable

excess electromagnetic energy. Thereby, additional energy may be intercepted

in a system employing this process, and the process can be used in practical EM

power systems and EM power system processes having COP> 1.0 when used in

open-loop mode, and self-powering when used in closed-loop mode.

Further, we may utilize a collector or interceptor (such as a common coil

wound around the flux path through it so that said flux path constitutes a core)

that interacts with both available components of energy flow and with iterative

interactions mutually between the two basic interactions. Each turn of the coil

constitutes a r� operator, bathed by the flowing uncurled A potential outside

the line material. Hence the charges in the coil intercept the uncurled A flow,

and curl the energy intercepted to produce a curled A flow, thus producing

additional magnetic field B ¼ r� A. This magnetic field is at its maximum in

the exact center of the coil, which is in the exact center of the nanocrystalline

core material with its retained B ¼ r� A field energy. Hence the coil interacts

with two components of energy flow, because (1) the internal B ¼ r� A field

energy is retained in the nanocrystalline material in the coil’s core, (2) the

external uncurled A-potential energy flow striking its outside surface charges

and changed into additional magnetic field energy and into additional electrical

current flowing in the coil and out of it, and (3) in addition, iterative mutual

interaction between the two basic interactions also occurs, increasing the energy

gain and the coefficient of performance.

Any additional EM energy input into the core material and flux path increases

the B ¼ r� A field energy flowing in the flux path, hence withdrawn from the

vector potential A around the flux path, hence replenished from the permanent

magnet dipole, and hence replenished to the magnet dipole from the complex

plane, via the giant negentropy process [16,20]. This increased energy collec-

tion in the magnetic flux in the core material passes back through the permanent

magnet (which is in the path loop and completes it), momentarily altering the

effective pole strength of the magnet and thereby increasing the magnitude of

the giant negentropy process associated with said dipole of the permanent

magnet. In turn, this increases the outflow of A energy from the magnetic

dipole, increasing both its output B ¼ r� A field energy in the flux path and its

output uncurled A-flow energy in space outside the flux path. This further

increases the spacetime curvature of the local space surrounding the flux path

material, since the energy density of said local spacetime has increased.

K. Varying the Pole Strength of a Permanent Magnet

Hence the process is the first known process that deliberately and interactively

alters the pole strengths of the poles of a permanent magnet, utilizing
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the momentary alteration to vary and increase the pole strength and hence the

magnitude of the energy density flowing in the giant negentropy mechanism

[16,20]. From the general relativity view, it is the first known process that

deliberately increases and structures the local curvature of spacetime, by electro-

magnetic means, so as to momentarily alter and increase the pole strength of a

permanent magnet, using the pole strength alteration to increase the flow of

energy into and out of the local spacetime, thereby increasing the curvature of

the local spacetime and the resulting EM energy extracted therefrom.

Any extra uncurled A-flow energy increase outside the nanocrystalline flux

path material increases the interaction with this field-free A-flow energy of any

coil around the flux path, thereby increasing the magnetic B-field flux inside the

flux path, and so on.

L. Regenerative Energy Gain

In short, the mutual iterative interaction of each coil wound on the flux path of

the special nanocrystalline material, with and between the two energy flows,

results in special kinds of regenerative energy feedback and energy feedforward,

and regauging of the energy of the system and the energy of the system process.

This excess energy in the system and in the system process is thus a form of free

and asymmetric self-regauging, permitted by the well-known gauge freedom of

quantum field theory. Further, the excess energy drawn from the permanent-

magnet dipole is continually replenished from the active vacuum by the stated

giant negentropy process [1,16,20] associated with the permanent magnet’s

magnetic dipole due to its broken 3-symmetry [18] in its energetic exchange

with the vacuum.

As a result, each coil utilized is an amplifying coil containing an amplifying

regenerative process, compared to a normal coil in a normal flux path that does

not hold localized the B ¼ r� A field energy within its core material, and does

not simultaneously interact with both internal B-field flux energy and external

excess field-free A-potential.

M. Open System far from Equilibrium, Multiple Subprocesses,
and Curved Spacetime

The entire system process is thus a self-regauging regenerative system process

and an energy-amplifying system process, where the excess energy is freely

furnished from the local curved spacetime as energy flows from the magnetic

dipole of the permanent magnet and, in turn, is freely replenished to the

permanent-magnet dipole by the giant negentropy process established in the

active vacuum environment by the broken 3-symmetry of said magnetic dipole

[18] and the concomitant locally curved spacetime.

The system process is thus an open electromagnetic process far from

thermodynamic equilibrium [2– 4] in its active environment (the active
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vacuum), freely receiving excess energy from said active environment via the

broken 3-equilibrium of the permanent-magnet dipole. Each coil is an open

system freely receiving excess energy from its active environment (the active

field-free A potential flowing through the space occupied by the coil and

surrounding it), and creating a local curved spacetime by its extra energy

density, while also receiving energy from its internal environment, the B-field

magnetic flux in the material flux path through the center of the coil and making

up its core, and also curving the local spacetime by means of the extra energy

density of the local spacetime.

The system process is also a general relativistic process [33,36,37,41,45,63]

whereby electromagnetic energy is utilized to curve local spacetime, and then

the locally curved spacetime continuously acts back on the system and process

by furnishing excess energy to the system and process directly from the curved

spacetime; the excess energy is continually input to the system from the imagi-

nary plane (time domain) [1,16,20].

VI. SUMMARY OF THE PROCESS FROM VARIOUS ASPECTS

We summarize the many aspects of the overall process as follows, taking

advantage of the following facts:

1. The magnetic flux and magnetic vector potential A are freely and conti-

nuously furnished by a permanent magnet to a material flux path, where the

material flux path holds all curled vector potential A and thus all magnetic field

inside the flux path, and where the permanent magnet freely furnishes additional

field-free magnetic vector potential A to replenish the B-field (curled magnetic

vector potential A) energy that was confined to the interior of the material flux

path, and where multiple intercepting coils and processes are utilized with

mutual iterative positive feedforward and positive feedback between the

collectors and subprocesses to increase the energy collected and hence increase

the COP of the system and system process.

2. A previously unrecognized giant negentropy mechanism is used as shown

unwittingly by Whittaker [1] in 1903, recognized by Bearden [16] and further

clarified by Evans and Bearden [20], and the active vacuum continuously

replenishes all magnetic vector potential A (both curled and field-free) that is

continuously output by the permanent magnet into the material flux path and

into space surrounding the material flux path. Further, the replenishment energy

flow from the active vacuum is from the time domain [1,16,20] and thus from

the complex plane, constituting the continuous input of reactive power by the

active vacuum environment via time-like energy flows. These time-like poten-

tials and energy flows are known in extended electrodynamics [26,27,29,32,33,

36,37,63–65] but were not previously deliberately utilized in electromagnetic
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systems, particularly in EM power systems, even though shown by Whittaker [1]

as early as 1903.

3. The field-free magnetic vector potential A is continually replenished and

remains (with replenishment by the vacuum to the permanent-magnet dipole

and thence replenishment from the magnet dipole to the space surrounding the

material flux path) when a material flux path is utilized wherein the magnetic

field associated with a permanent magnet’s flux, through the flux path, is held

internally and entirely in the material flux path, with the field-free magnetic

vector potential A remaining in space surrounding the flux path.

4. A coil will interact with either a magnetic field (i.e., the curl of the

A potential) or a changing A potential where no magnetic field (no curl) is

present, or simultaneously with a combination of both a curled A potential (with

magnetic field B) and a field-free A potential (without magnetic field B) if the

two are separated. Indeed, there is a ‘‘pingpong’’ reiterative interaction between

the two processes in the coil, constituting positive feedforward from each to the

others, and positive feedback from each to the others.

5. A simultaneous interaction of a coil with both a magnetic field (curl of A)

and a field-free A potential produces electromagnetic energy in the form of

voltage and current in an external circuit connected to the coil, and the net

voltage and amperage (power) produced by the coil is a result of the summation

of both simultaneous but separated interactions with the coil and its Drude

electrons and of the iterative ‘‘pingpong’’ interactions between the two simul-

taneous interactions, and therefore the summation provides a greater coil output

energy than is produced by the coil from either the magnetic field (curled A)

separately, or the field-free A potential separately, or from both when unsepa-

rated. Further, the ‘‘pingpong’’ iterative interaction adds additional energy

collection and gain to the electrical power output of the coil.

6. Multiple coils are wound on the material flux path, where magnetic flux is

input to the material flux path from a permanent magnet, and where the material

flux path holds internally all curl of A (magnetic field) from the permanent

magnet’s flux, so that (a) magnetic field and magnetic flux from the permanent

magnet are inside the closed material flux path, (b) no magnetic field is outside

the closed material flux path, and (c) a field-free magnetic vector potential A
replenishes the curled A potential held in the material flux path, and where the

replenished field-free magnetic vector potential A occupies the space outside

the material flux path and flows through the surrounding space.

7. A broken 3-space symmetry exists of a magnetic dipole [18] of a

permanent magnet, well known in particle physics since 1957 but inexplicably

not yet added into classical electrodynamics theory, wherein the broken

symmetry of the magnetic dipole rigorously requires that the dipole continually

absorb magnetic energy from the active vacuum in unusable form, and that the
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broken symmetry output (reemit) the magnetic energy in usable form as real

magnetic field energy in 3-space and real magnetic vector potential in 3-space.

The receipt of unusable EM energy, transduction into usable form, and output of

the usable EM energy, constitutes a true negative resistance process [16,20]

resulting from the ongoing giant negentropy process engendered by the broken

3-symmetry of the magnetic dipole of the permanent magnet.

8. Whittaker’s 1903 mathematical decomposition [1] of any scalar potential

applies Whittaker decomposition to the magnetostatic scalar potential existing

between the poles of the permanent magnet, revealing that the magnetostatic

scalar potential of the permanent magnet is composed of a set of harmonic

longitudinal EM wavepairs, where each wavepair consists of a longitudinal EM

wave and its phase conjugate replica wave.

9. The incoming half-set of Whittaker decomposition waves consists of the

phase conjugate waves, which are all in the imaginary plane [16,20] prior to

interaction and continuously converging upon the magnetic charges of the

permanent-magnet dipole at the speed of light. The incoming, converging

longitudinal EM waves are continuously absorbed from the imaginary plane by

the magnetic charges (magnetic poles), so that the permanent magnet dipole is

continuously replenished with time-like energy flow from the active vacuum

environment, while continuously transducing the received time-like energy into

3-spatial energy, and outpouring real EM energy flow in the form of the

longitudinal EM Whittaker waves [1] emitted in 3-space in all directions.

10. The other half-set of the Whittaker decomposition waves, consisting of

outgoing real EM Whittaker longitudinal waves [1] in 3-space, is continuously

and freely emitted from the permanent-magnet dipole charges (poles) and

continuously diverges outward in space in all directions from the permanent-

magnet dipole at the speed of light. Thus there is revealed and used a process for

a natural, continuous source of magnetic energy from the vacuum: a continuous

EM wave energy flow convergence of electromagnetic energy from the vacuum

to the magnetic dipole, but in the imaginary plane and hence constituting a

continuous energy input in the form of imaginary power [16,20], In this process

the absorbed magnetic energy is transduced into real power and reemitted in

real 3-space in all directions, whereby the absorption of energy from the vacuum

from the imaginary plane (time domain) is in 4-flow equilibrium with the re-

emission of the absorbed energy in 3-space, but not in 3-flow equilibrium, and

where the outgoing real magnetic energy provides the surrounding magnetic field

and the surrounding magnetic vector potential of the permanent magnetic dipole.

11. In this manner the broken 3-symmetry of the magnetic dipole (perma-

nent magnet) allows the dipole to continuously receive reactive power from the

vacuum’s time domain, transduce the reactive power into real EM power in 3-

space, and reemit the absorbed energy as real magnetic energy pouring into
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space and consisting of both a magnetic field and a magnetic vector potential.

Thus the permanent magnet, together with its Whittaker-decomposed [1]

magnetostatic scalar potential between its poles, represents a dynamo and an

energy transducer, continuously and freely receiving energy from an external

source (the active vacuum) in the complex plane and transducing the received

complex plane EM energy into real EM energy [16,20], and radiating the real

EM energy into real space as real EM power. EM energy flow conservation in 3-

space is permissibly violated because of the broken 3-symmetry of the magnetic

dipole, but EM energy flow in 4-space is not violated and is rigorously

conserved. There is no law of nature requiring energy conservation in three

dimensions and 3-space; instead, energy conservation is required by the laws of

nature and physics in 4-space. The additional condition usually assumed—that

energy conservation is also always conserved in 3-space — is not required by

nature, physics, or thermodynamics, and the additional 3-conservation

requirement is removed by this process in any dipole, by the broken 3-

symmetry of the dipole. It is this newly recognized giant negentropy process

advanced by Bearden [16] and extended by Evans and Bearden [20] that is

directly utilized by this new power system process, in conjunction with directing

and interacting material flux paths, intercepting coils, separation of curl of the A
potential (i.e., the B field), and the field-free A-potential (replenished from the

vacuum), and interaction of a coil with a magnetic field and magnetic flux

running through a material core through the coil, and with an external field-free

magnetic potential reacting with the coil. The foregoing actions provide a

magnetic system that receives—via the permanent-magnet dipole—replenish-

ment EM energy from the active vacuum to the dipole, and from the dipole to

the circuit and the space surrounding it, to enable the permanent magnet to

continuously furnish magnetic field and flux to a flux path in the process, and

continuously furnish both the curl energy of the A potential and the field-free

energy of the A—potential replenished from the vacuum. This system should

also have multiple coils interacting simultaneously with both curled A potential

and magnetic flux inside the coils, while also interacting simultaneously with

field-free magnetic A-potential from the space in which the coil is embedded,

such that excess energy is added to the interacting coils by dA/dt from the

changing field-free A-potential in space, and where the field-free A-potential in

space is continuously furnished by the permanent magnet dipole and the extra

energy for the furnished field-free A-potential is continuously received by the

permanent magnet dipole from the active vacuum exchange, via the process

shown by Whittaker’s decomposition [1] and elaborated by Bearden [16].

12. The difficulty heretofore experienced by designers, engineers, and scien-

tists with using the magnetic energy continuously emitted to form the static field

and magnetic scalar potential of a permanent magnet dipole is that all schemes

for using the magnetic energy have relied on physical motion, energy input to
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overcome the field of the permanent magnet, or other brute-force methods. This

invention provides a new process for a coil to extract excess EM energy from

the magnetic vector potential energy in space from the permanent magnet, while

simultaneously interacting with the magnetic field energy of the permanent

magnet flowing through a flux path through the center of the coil but not in

space surrounding the flux path. The Whittaker decomposition shows that when

the system extracts EM energy from the magnetic vector potential A and

magnetostatic scalar potential �, the energy to continuously form and maintain

the magnetic vector potential’s vector current is continuously replenished from

the vacuum by the convergent reactive EM power being input from the

imaginary plane (time domain). Evans and Bearden [20] have also shown that,

in the most general form of the vector potential deduced from the Sachs unified

field theory [41], EM energy from the vacuum is given by the quaternion-valued

canonical energy–momentum. Further, the most general form of the vector

potential (i.e., flowing EM energy in vector potential form) has been shown by

Evans and Bearden [20] to contain longitudinal and time-like components

(energy currents), in agreement with the simpler Whittaker decomposition

[1] as a special case, but much richer in available structure than Whittaker’s

decomposition. Evans and Bearden [20] have also shown that the scalar

potential is in general a part of the quaternion-valued vector potential, and can

be defined only through suitable choice of metric for a given experimental

setup. They have shown the energy current in vacuum in this more advanced

treatment in O(3) electrodynamics, and it is this demonstrated vacuum EM

energy current that continuously replenishes any excess energy drawn from the

permanent magnet dipole’s magnetostatic scalar potential to replenish the curl

of the A potential (the magnetic B-field energy) held inside the material flux

path powered by the magnet and also to replenish the field-free A-potential

filling space around the material flux path.

13. A special nanocrystalline material is contained in the closed flux path

powered by the permanent magnet, where the nanocrystalline material performs

the highly special function of separating and retaining the curl energy of the A
potential (i.e., retaining the magnetic field energy) inside the material flux path

along with the magnetic flux. The nanocrystalline material consists of coiled flat

‘‘tape’’ layers of material, with the layers acting in the fashion of a perfect toroid

to retain all magnetic field (curled A potential) inside the material, while having

the curl-free A-potential filling all space outside the nanocrystalline material.

14. This special nanocrystalline material may be further considered in the

manner of a ‘‘layered’’ magnetic flux path material, wherein (a) the ‘‘layers’’ are

a molecule in thickness; (b) essentially all eddy currents are eliminated or

reduced to completely negligible magnitude; (c) as a result, the nanocrystalline

material does not dissipate magnetic energy from the flux path; (d) as a result,
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the nanocrystalline material does not produce eddy currents; (e) as a result, the

nanocrystalline material does not exhibit heating since heat consists of scattered

and dissipated energy; and (f) no such scattering or dissipating of the magnetic

flux energy occurs in the nanocrystalline material. Thus the system process is

able to process significant power and energy without heating of the core flux

path material at all, and without requiring cooling of the core material, as these

characteristics have a remarkable advantage over other core materials subject to

eddy currents, substantial heating, and the need for cooling.

15. The magnetic flux from a permanent magnet provides a source of magnetic

flux energy to and within the nanocrystalline material in a flux path, such that the

nanocrystalline material holds the magnetic field component (curl energy of the

vector potential A) in the flux path while the flux path material itself is not further

interacting with the field-free magnetic vector potential and its energy that fill

the space around the closed material flux path, and where the field-free magnetic

vector potential—in space external to the material flux path—geometrically

follows the directions and turns of the material flux path but outside it.

16. Any coil immersed in the nanocrystalline material’s magnetic vector

potential in space, but not wound around a portion of said nanocrystalline flux

path, will react to the magnetic vector potential and its energy. Each turn of a

coil acts as a curl operator, producing a magnetic field due to the received

energy current from the magnetic vector potential. If an electrical current is

passed through the coil, and if the magnetic flux produced by the electrical

current in the coil is aligned with the magnetic flux that is produced by the coil’s

interaction with the magnetic vector potential from the nanocrystalline flux path

material, then the two magnetic vector potentials will vectorially add, so that the

magnetic field produced by the current through the coil will be augmented by

the curl operation of the coil now acting on an increased magnetic vector

potential summation consisting of the vector sum of the curled magnetic vector

potential and the field-free magnetic vector potential.

17. Any time rate of change of a magnetic vector potential, either curled or

curl-free, constitutes an electric field, which, in an interacting pulsed coil,

produces pulsed voltage across the coil and pulsed current through the coil and

produces current and power in a closed circuit loop consisting of the interacting

coil and a connected external circuit. The excess magnetic energy is received by

the circuit from the magnetic dipole of the permanent magnet (and replenished

to the dipole from the time-like Whittaker energy currents from the active

vacuum). The process transduces the excess magnetic energy into excess

electrical energy, and outputs the excess electrical energy into electrical loads to

power them, whereby the excess energy received and replenished from the

active vacuum environment via the giant negentropy process of the permanent

magnet dipole [16,20] allows system COP> 1.0.
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18. Further, with COP> 1.0, a fraction of the output electrical energy from

the process and system can be extracted and positively fed back to the operator

input of the system and process (such as the electrical energy fed to a driver

coil), with governing and clamping control of the positive-feedback energy

magnitude, so that the system process becomes self-powering, freely powering

itself and its loads, receiving all the energy from an external energy source due

to its broken symmetry in its vacuum exchange and the resulting giant

negentropy process [16,20] thereof, and thus constituting an open system far

from thermodynamic equilibrium with its active environment, easily self-

regauging and powering itself and its load simultaneously by dissipation of

energy freely received from its active environment.

19. The dual-action effect is increased in an interacting coil if the coil is

wound around a portion of the nanocrystalline flux path, due to the permeability

of the flux path as a magnetic core and the input of flux from the permanent

magnet. In this case, the increased magnetic field produced inside the coil also

interacts with the magnetic flux path core in its center, producing an increased

change in the magnetic flux in the nanocrystalline material itself. The coil

interacting in such dual fashion thus has iterative ‘‘energy feedforward and

feedback’’ between the two simultaneous processes, one process proceeding

outward from inside, and the other proceeding inward from outside. A

convergent series of summing energy additions (regaugings) thereby occurs in

the coil, thus producing energy amplification in the coil.

20. As a result of the combined actions listed above, the coil’s energy output

increases on receiving and transducing extra energy from the magnetic flux of

the permanent magnet, the magnetic field of the permanent magnet, and an extra

field-free magnetic potential A surrounding the flux path and continuously

furnished by the permanent magnet. The production of one or more potentials is

also the production of one or more regaugings. As is well known from

electrodynamics and gauge field theory, gauge freedom is permitted freely and

at will. In electrodynamics, regauging to change the potential of a system

simultaneously changes (freely) the potential energy of the system. In the

present process, this regauging is physically applied by (a) holding the curl of

the A potential inside the special nanocrystalline flux path material, (b)

furnishing additional field-free magnetic vector potential A from the permanent

magnet dipole, and (c) continuously replenishing the potential and energy from

the vacuum.

21. This process provides for a permissible gain in the magnetic energy

output of the interacting coil(s) for a given amount of energy input by the (a)

operator to the active coil (used similar to a ‘‘primary’’ coil in a transmitter) or

(b) a clamped, governed positive energy feedback of a fraction of the energy

output from one output coil back to the input coil. This additional magnetic field
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energy output is retained in the nanocrystalline flux path, and the additional

magnetic vector potential energy output moves through space surrounding the

coil. The system process of the invention thus is a new process for energy

amplification, with the excess output energy freely received from the vacuum

and thence to the permanent-magnet dipole, and thence from the permanent

magnet dipole to the other parts of the system, via the giant negentropy process

associated with the magnet dipole as shown by Evans and Bearden [20] and

Whittaker [1].

22. Every multiple coil wound around the special nanocrystalline material

flux path will exhibit regauging energy gain by the processes described above,

with the energy continuously replenished from the vacuum to the source dipole

and from the source dipole to process, via the process illustrated by Whittaker

decomposition.

23. Any scalar potential such as the magnetostatic scalar potential between

the poles of a permanent magnet, and the magnetic vector potential considered

as two scalar potential functions in the manner shown by Whittaker [56], are

continually replenished energy flow processes [1,16], so that any system utiliz-

ing the output flow from the permanent-magnet dipole and containing such

dipole, is an open system far from equilibrium in the replenishing vacuum flux,

as shown by the Whittaker decomposition [1] and more precisely expanded by

Evans and Bearden [20].

24. The entropy of any open system in disequilibrium with its vacuum

environment is a priori less than the entropy of the same system in equilibrium,

and, in fact, the entropy of such an open system cannot even be computed, as

pointed out by Lindsay and Margenau [66]26 and as well known in physics.

25. This process, producing an open system in disequilibrium with a recog-

nized continuous source of energy [2–4,16,20], is permitted to perform any of

five functions: (a) self-order, (b) self-oscillate, (c) output more energy than the

operator inputs (the excess energy is freely received from the active

environment), (d) power itself and its loads and losses (all the energy is freely

received from the active environment), and (e) exhibit negentropy. The process

specified by this invention permits all five functions. For example, by extracting

some of the output energy from an output section (coil) used in a system

employing the process, and feeding the extracted energy back to the input

section (coil), the energy gain of the system permits it to become self-oscillating

26 When a system departs from equilibrium conditions, its entropy must decrease. Thus the energy of

an open system not in equilibrium must always be greater than the energy of the same system when

it is closed or in equilibrium, since the equilibrium state is the state of maximum entropy. Thus,

broken 3-equilibrium is a broken 3-symmetry between the active vacuum and material systems, and

it is a negentropic operation.
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and hence self-powering, while obeying energy conservation, the laws of

physics, and the laws of thermodynamics.

26. Multiple feedforward and feedback subloops exist between the various

parts of a complete flux path loop and A-potential flow loop, so that regenerative

energy collection gains are developed in the various subprocesses of the overall

process. The result is an overall feedback summation and overall feedforward

summation, whereby the system process regauges itself with A-potential flow

energy from the magnetic dipole, and the regauged energy is continuously

replenished and received from the active vacuum via the stated giant negentropy

process. Increasing the number of interacting coils and/or increasing the

magnetic flux results in an increase in the COP, limited only by the saturation

limit of the core material.

27. The system process consists of a magnetic negative-resistor process,

where energy is received freely in unusable form (pure reactive power from the

time domain of the spacetime vacuum), transduced into usable form, and output

in usable form as real EM energy flow in 3-space [1,16,20].

28. The system process is a permissible local energy gain process and a self-

regauging process, freely increasing the process’s and system’s potential energy

and receiving the regauging energy from the active vacuum via the giant

negentropy process [16,20], and freely collecting and dissipating the excess

regauging potential energy in loads.

29. The system process may be open-loop where the operator inputs some

electrical energy and the system outputs more electrical energy than input by the

operator; the excess energy is freely received from the permanent-magnet dipole

and from the vacuum to it via the giant negentropy process [16,20], with process

transductions of the various energy forms between magnetic form and electrical

form.

30. The system process may be closed-loop and ‘‘self-powering,’’ where a

portion of the amplified energy output is extracted, rigidly clamped in magni-

tude, and positively fed back to the input. This replaces the operator input entirely,

and all energy input to the system process is received from the vacuum through

the permanent magnet dipolarity’s Whittaker decomposition and constituting

direct system application of the stated giant negentropy process [16,20].

31. The system process is a magnetic regenerative gain process, outputting

more energy than the operator personally inputs, with the excess energy

received from the active vacuum via the broken 3-symmetry of the dipole which

initiates and sustains the giant negentropy process [16,20], whereby EM energy

continuously flows into the system from the complex plane (time domain), is

transduced into usable magnetic energy in real 3-space, and is then transduced

into ordinary electrical energy by the system process, thereby powering both the

system and the loads.
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32. In an embodiment using the process, all coils exhibit energy gain and

increased performance, as does the overall system. All coils are energy

amplifying coils, each with gain in energy output greater than 1.0 compared to

the same coil without simultaneous but separate exposure to and interaction

with separate inputs of field-free magnetic potential and magnetic field, and

without iterative positive feedback between the two simultaneous interactions.

33. For power system processes, the combined process requires using at

least one primary (active) coil in dual interaction with iterative feedback

between the duals, and one secondary (passive) coil in dual interaction with

iterative feedback between the duals, both on a common nanocrystalline flux

path. The resulting ‘‘minimum configuration’’ embodiment produces a power

system that is an open thermodynamic system, not in equilibrium with its

external environmental energy source: to wit, the continuous inflow of EM

energy from the complex plane of the active vacuum into the permanent magnet

dipole, and the continuous outflow of real magnetic energy from the permanent

magnet dipole, with the holding of the magnetic field energy and magnetic flux

energy inside the nanocrystalline material in the closed magnetic flux path, and

with excess field-free magnetic vector potential filling the surrounding space, as

continuously furnished by the permanent-magnet dipole and continuously

replenished to the dipole by the active vacuum as a result of the dipole’s broken

3-symmetry in its vacuum energy exchange and the giant negentropy 4-space

energy flow operation [16,20] initiated thereby.

34. This process permissibly violates 3-symmetry energy conservation, but

rigorously obeys 4-symmetry energy conservation and thus it has not been

applied in electrical power systems. The basic excess energy input is received

from an unusual source: the complex plane (time domain) of the locally curved

and active spacetime (vacuum), as shown by the Whittaker decomposition [1] of

the permanent magnet’s magnetostatic scalar potential between its poles, and as

further demonstrated in several AIAS papers [20,36,37,64,65], and as

recognized by Bearden [16] and investigated more deeply by Evans and

Bearden [20]. The energy into the nanocrystalline flux path material is input

directly from the permanent magnet as magnet flux energy. From its dual

interaction with two magnetic energy components, the active (driving) coil

produces increased magnetic field flux in its center and thus in its interaction

with the magnetic flux path and the magnetic flux in the flux path, and also

produces increased magnetic flux back through the permanent magnet dipole,

thereby momentarily altering the pole strength of the permanent magnet, and

also produces increased field-free A potential in space surrounding both the

permanent magnet and the nanocrystalline flux path, and flowing geometrically

in the direction taken by the nanocrystalline flux path. From its dual interaction

with two magnetic vector potentials as well as two magnetic field components
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superimposed, the passive (driven) coil produces increased EM field energy in

the form of current and voltage out of the coil and into any conveniently

attached external load for dissipation in the load by conventional means.

35. The process in this invention uses and applies an open system process for

receiving excess energy from an external source (the permanent-magnet flux

and A potentials), and since the permanent-magnet flux and A potentials are

continuously replenished from the vacuum via the broken 3-symmetry of the

magnet dipolarity via its Whittaker decomposition [1], the process is allowed to

(a) be adapted in systems to produce COP> 1.0 and (b) be close-looped with

clamped positive feedback from load output to input, so that the system powers

itself and its load simultaneously.

36. The open system far from equilibrium process of this invention thus

allows electromagnetic power systems to be developed that permissibly exhibit

a coefficient of performance (COP) of COP> 1.0. It allows electromagnetic

power systems to be developed that permissibly (a) power themselves and their

loads and losses, (b) self-oscillate, and (c) exhibit negentropy.

37. No laws of physics or thermodynamics are violated in such open

dissipative systems exhibiting increased COP and energy conservation laws are

rigorously obeyed. Classical equilibrium thermodynamics does not apply and is

permissibly violated. Instead, the thermodynamics of open systems far from

thermodynamic equilibrium with their active environment—in this case the

active environment-rigorously applies [2–4].

38. This appears to be the first magnetic process deliberately utilizing and

separating special energy flow processes—associated in a curved spacetime

with the permanent-magnet’s dipolarity—to provide true magnetic energy

amplification, receiving the excess energy freely from the permanent-magnet

dipole, with said energy continually replenished to the dipole from the imaginary

plane in spacetime by the giant negentropy process [16,20].

39. This appears to be the first power system process that in open-loop mode

receives electrical energy input by the operator or outside normal source,

wherein (a) the electrical energy input is transduced into magnetic energy flows,

(b) curled A-potential flow (magnetic field energy flow) is separated from field-

free A-potential flow, (c) dual and iterative ‘‘pingpong’’ interactions of energy

feedforward and feedback occur in each active component, (d) the feedforward

and feedback pingpong interactions create local energy gain in each active

component, (e) the magnetic potential energy of the system is self-regauged and

increased (receiving the excess by giant negentropy replenishment from the

active vacuum), (f) the increased magnetic energy flow is then re-transduced

into electrical energy and output to power loads, (g) the output energy powering

the loads is greater than the input energy provided by the operator.
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40. The foregoing system functions as described, where the system process

positively feeds back a clamped fraction of its electrical output to its electrical

input, result in a regenerative, energy amplifying, self-regauging open system

process that powers itself and its loads, where the powering energy is freely

received from the active vacuum curved spacetime via the giant negentropy

process [1,16,20].

41. The process therefore appears to be the first process for an electrical

power system that permissibly violates EM energy conservation in 3-space, due

to the use of the recognized and proven broken 3-symmetry of the dipole [18],

but while rigorously conserving electromagnetic energy in 4-space [16,20]. It

therefore appears to be the first electrical power system process that enables the

use of a clamped positive feedback from output to input in an electrical power

system having COP> 1.0 so that the system continuously receives all the

energy—to power its loads and losses—from the magnetic energy flow of a

permanent magnet, where the energy flow is continually replenished to the

permanent magnet by the energy circulation from the imaginary plane (as

absorbed reactive power) and transduced into real power output by the magnet’s

dipole, and where the freely received magnetic flux energy from the dipole is

separated into field energy and magnetic vector potential energy.

42. This appears to be the first COP> 1.0 electrical power system process

that deliberately takes useful advantage of the fact that any amount of energy

can be intercepted and collected from a potential, regardless of its magnitude, if

sufficient intercepting charges (in this case, magnetic charges, or pole strengths)

are utilized. In this case, coils utilized around the special nanocrystalline core

material interact with the field-free magnetic vector potential filling the space

occupied by the electron spins in the Drude electron gas in the coils, while

simultaneously the produced magnetic field in the coil due to its curl operation

interacts with the localized magnetic field flux in the nanocrystalline flux path

and core, and vice versa. In this way, the energy interception and collection is

effectively multiplied beyond what is obtained by a coil with a core operating in

normal magnetic field coupled to its magnetic vector potential in space.

43. This appears to be the first magnetic process that is a proven true negative

resistance process, where ‘‘negative resistance process’’ is defined as a process

whereby electromagnetic energy is continuously and freely received in unusable

form, converted into usable form, and continuously output in usable form.

44. This appears to be the first power system process that deliberately uses

energy to perform more than one joule of work per joule of original input

energy, by transforming a given amount of replenished energy into a different

form, thereby performing work in the same amount on a receiving medium

while retaining the energy in its new form, then transforming that energy back
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into the first form again, thereby again performing work in the same amount on

the receiving medium again while retaining the energy back in its original form,

and so on in ‘‘pingpong’’ iterative fashion. The fraction of the energy that is

retained from one transformation to the other determines the increase in energy

of the medium receiving the work and thus being excited with kinetic energy,

and thereby determines the energy gain of the power system in the multiplicity

of such regenerative processes used in the system.

45. This appears to be the first magnetic process for EM power systems that

deliberately creates and uses curved local spacetime to provide continuous

energy and action on the process’s active components and subprocesses. Sachs’

unified field model [41–45] as implemented by one of its important subsets—

O(3) electrodynamics per Evans [63] and Vigier—is implemented in the system

to provide several specific local curvatures of spacetime, and excess energy is

thereby regauged into the system and used to power loads, including a self-

powering system that powers itself and its loads simultaneously, and also

including an open-loop system wherein the operator inputs a little EM energy

and obtains more EM energy being dissipated as work in the load.

VII. RELATED ART

There is believed to be no prior art in such true magnetic negative resistor

processes for

1. Utilizing curvatures of local spacetime to provide excess energy from

spacetime input into the various active components of the system process

2. Receiving EM energy from the spacetime vacuum in unusable reactive

power form

3. Having the permanent-magnet dipole convert the received unusable EM

energy into usable magnetic energy form

4. Splitting the magnetic energy output of the permanent magnet into

separate magnetic field flux and both curled and uncurled magnetic

vector potential current, each traveling in a different spatial pathway

5. Producing energy amplification by dual interaction of multiple simulta-

neous processes in a coil, with iterative feedforward and feedback

between the simultaneous interactions

6. Producing driving and driven coils both in curved spacetime and with

their magnetic flux inside a nanocrystalline core inside said coils and

with a field-free magnetic vector potential in the space in which the coil

is embedded

7. Transducing the excess magnetic energy available for output, into elec-

trical energy
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8. Outputting the excess energy as ordinary electrical energy—consisting

of voltage and current—to power circuits and loads

9. Permissibly exhibiting COP> 1.0 while rigorously obeying energy

conservation, the laws of physics, and the laws of thermodynamics

10. Being operated in either open-loop or closed-loop fashion. In open loop

the operator inputs a lesser EM energy than is dissipated in the load; in

closed loop a fraction of the output energy is positively fed back into the

input to power the system and system process, while the remainder of

the energy is dissipated in the load to power it

11. Using and applying the extended work-energy theorem for a replenish-

ing potential environment

This appears to be the first process to take advantage of the above listings of

operations, functions, and processes, in which no heating or eddy-current

dissipation is produced in the cores of coils utilized in embodiments of the

process, and where said process and embodiments output electrical power in

loads without the need to cool the process components.

The closest somewhat related work would appear to be several patents of

Raymond C. Gelinas [67]27 in that these patents use the curl-free magnetic

vector potential. All the Gelinas patents deal with communications and receivers

and transmitters, have no application to electrical power systems, do not use

additional EM energy extracted from a permanent magnet and replenished by

the vacuum, do not use curved local spacetime, do not use the giant negentropy

process, do not function as open systems far from equilibrium in their vacuum

exchange, do not use iterative pingpong feedforward and feedback in their

various components to achieve gain, do symmetrically regauge themselves so

that their excitation discharge is symmetric and not asymmetric, do not function

as negative resistors, are not self-powering, cannot produce COP> 1.0, cannot

self-operate in closed-loop form, and can and do produce only COP< 1.0. They

therefore have no application to the field of the present invention.

A. Description of the Figures and System Operation

The process in this invention is described below and in the process gain block

diagrams cited below, which are intended to be read in conjunction with the

following set of drawings, which include (1) the background Lenz reactions,

Poynting and Heaviside energy flow operations, Heaviside energy flow

27All these Gelinas patents are assigned to Honeywell. All deal with communications, have no

application to electrical power systems, do not use additional EM energy extracted from a permanent

magnet and replenished by the vacuum, do not use curved local spacetime, do not use the giant

negentropy process, do not function as open systems far from equilibrium in their vacuum exchange,

symmetrically regauge themselves so that their excitation discharge is symmetric and not

asymmetric, and produce only COP < 1.0.
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component, giant negentropy operation, Whittaker’s decomposition of the scalar

potential, and creation and use of curved local spacetime utilized in the

invention; (2) the principles, the functional block diagram, a physical laboratory

test and phenomenology device; and the process operation of the invention as

well as typical measurements of a laboratory proof-of-principle device; and (3)

the replication of the MEG by Jean-Louis Naudin (see footnote 10, above).

Figure 1 graphically shows Whittaker’s decomposition [1] of the scalar

potential into a harmonic set of phase conjugate longitudinal EM wavepairs.

The 3-symmetry of EM energy flow is broken [16,20] by the dipolarity of the

potential, and 4-symmetry in energy flow without 3-flow symmetry is imple-

mented [1,16].

Figure 2 expresses this previously unexpected functioning of the scalar

potential—or any dipolarity, including the magnetic dipole of a permanent

magnet—as a true negative resistor [see footnote 24, above), receiving energy

in unusable form, transducing it into usable form, and outputting it in usable

form. Any EM potential is itself a true negative resistor process.

DISTANCE

Scalar Potential φGALLOPING
VELOCITY

Vavg

Vavg

Vavg

HARMONICS
Wavepair #3

Wavepair #2

Wavepair #1

...ETC.

...ETC.

...ETC.

...ETC.

SUBHARMONICS

The Structure Is :
• A harmonic set of longitudinal wavepairs.
• In each wavepair the two waves superpose spatially, but travel in

opposite directions. The two are phase conjugates and time-reversed
replicas of each other.

• The convergent wave set in the imaginary plane, and hence is not                        
observable.

• The charge's spin is 720 degrees, 320 in the real plane and 320 in the
imaginary plane.

• Hence the charge receives the complex convergent EM energy,    
transduces it into real EM energy, and emits enormous energy at the  
speed of light in all directions.

• This produces the fields and potentials from the "source charge."

Figure 1. The scalar potential is a harmonic set of phase conjugate longitudinal EM waves.
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Figure 3 shows the startling ramifications of this previously unsuspected

process. An ongoing, free, negentropic reordering of a fraction of the local

vacuum energy [16] is initiated, spreads at the speed of light in all directions

from the moment of formation of the dipole, and continues as long as the dipole

and its broken 3-symmetry exists. We have previously stated [19,68,69] that the

energy input to the shaft of a generator, and the chemical energy of the battery,

have nothing to do with powering the external circuit connected to the battery or

the generator. The available internal energy dissipated by the generator or

battery does not add a single joule per second of energy flow to the external

circuit. Instead, the available internal energy is dissipated internally and only to

power its own losses and to force the internal charges apart, forming the internal

source dipole connected to the terminals. The energy input to a generator and

expended by it, and the chemical energy available by a battery and expended by

it, thus are expended only to continuously re-form the source dipole that the

closed current loop circuit continuously destroys.

Once established, the source dipole applies the giant negentropy process

[16,20] shown in Figs. 1–3. Energy is continuously received by the dipole

charges from the surrounding active and negentropically reordered vacuum

(curved spacetime), transduced into usable form, and output as real EM energy

flow in 3-space. The dipole’s receipt of this energy as reactive power freely

absorbed from the vacuum, does not yet appear in present classical electrody-

namics texts. The texts do not include the vacuum interaction, much less the

+

−

Legend

Outgoing real EM energy

Ingoing complex EM energy

 • Receives enormous EM
energy in complex plane
(similar to reactive power)

 • Transduces it into real EM
energy and emits it in all
directions at the speed of     
light 

 • The emitted EM energy forms
the fields and potentials and
their energy, across space,
from this "source dipole"

Note: Decompose the potential
between the end charges of the dipole

* Basis established by E.T. Whittaker,
  "On the Partial Differential Equations
   of Mathematical Physics," Math.Ann.
   57, 333 (1903). Ignored since then.

φ

Figure 2. The dipole is a true negative resistor.
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broken symmetry of the source dipole in that vacuum exchange, even though

such has been proved in particle physics since the 1950s. The present invention

is believed to be the first applied process using this previously omitted procedure

of easily extracting energy from the vacuum and outputting it in usable trans-

duced form as real EM energy flow, via the giant negentropy process [16,20].

The transduced EM energy received from the vacuum by the source dipole,

pours out of the terminals of the battery or generator and out through space

surrounding the transmission lines and circuits connected to the terminals

(Fig. 4) as shown by Kraus [70]28 As is well known, the energy flow (Fig. 4)

fills all space surrounding the external circuit conductors out to an infinite

lateral radius away [70]. This is an enormous EM energy flow—when one

includes the space-filling nondiverged component discovered by Heaviside [48–

50]. This neglected vast nonintercepted, nondiverged energy flow component

was never even considered by Poynting [51], and was arbitrarily discarded by

Lorentz [52] as ‘‘of no physical significance.’’

Figure 5 shows that almost all that great EM energy flow—pouring out of the

terminals of the generator or battery and out through the surrounding space

0
0 ∞

φ

 Energy
 Flow
 Density

DIPOLE
LOCATION

RADIAL DISTANCE IN ANY DIRECTION

Re-ordering
spreading
at light speed

r = ct

Reordering is into form of whittaker* harmonic
set of bidirectional EM longitudinal wavepairs.
Reordering is totally deterministic.

EM energy flow converging on dipole
in the complex plane (nonobservable)

EM energy flow diverging from dipole
in real 3-space (observable)

Radius of negentropically
re-ordering vacuum
energy at time t in seconds,
after dipole formation

Broken 3-space symmetry initiates jump to 4-space symmetry
between complex plane and real plane. Energy flow is now
conserved in 4-space, but not in 3-space. This is the true negative
resistor effect, and a negentropic reordering of the vacuum.

Figure 3. The dipole’s broken 3-symmetry initiates a spreading giant negentropic reordering of

a fraction of the vacuum’s energy.

28 Figure 12-59 on p. 576 shows a good drawing of the Poynting flow component that is withdrawn

from that huge energy flow filling all space around the conductors, with almost all of it not

intercepted, not diverged into the circuit, but just wasted. The amount of Poynting energy being

withdrawn into the conductors is given by the numbers Kraus assigns to his contours. As can be

seen, the Poynting effect is relatively localized.
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surrounding the transmission line conductors—misses the circuit entirely and is

simply wasted in conventional circuits having no iterative feedback and feed-

forward additional collection components and processes. In a simple circuit, for

example, the arbitrarily discarded Heaviside nondiverged energy flow

70
100 150

50

30

20

10

5
2

10.50.5

NONLOCAL
(Nondivergent)

Contours are in watts/sq meter.Tiny "sheath" Poynting
component strikes surface
charges and is diverged
into conductors to power
the circuit. Axial movement
of the electrons draws in
the energy density indicated
by the numbered contours.

NONLOCAL FLOW.
The numbers represent
the intensity of the 
Poynting component
that is being withdrawn
into the conductors.

Figure 4. Poynting (caught) energy flow contours surrounding a transmission line.

Heaviside component (nondiverged)

CONDUCTOR

Drude electron gas

Poynting component (diverged)

© T.E. Bearden 2000

Figure 5. Heaviside and Poynting energy flow components. The Heaviside component is often

10 trillion times the Poynting component, but is simply wasted in ordinary single-pass energy flow

circuits.
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component may be some 10 trillion times [71]29 in total rate of energy flow as

the feeble Poynting component that is intercepted by the surface charges in

the circuit conductors and components, and diverged into the wires to power the

Drude electrons and the loads and losses.

Figure 6 illustrates the negative-resistor process diagrammatically. The

source dipole and the associated scalar potential between its poles act as a

true negative resistor, receiving enormous EM energy from the surrounding

vacuum in unusable form (via the giant negentropy process shown in Fig. 3).

The charges of the dipole absorb this unusable energy and transduce it into

usable EM energy form, then reradiate it as usable EM energy. This, of course,

is precisely a negative resistor process.

Figure 7 shows the integration trick that Lorentz [52] originated to discard

the perplexing and enormous Heaviside nondiverged energy flow component,

while retaining the diverged (Poynting) energy flow component. In short,

Lorentz’ procedure—still utilized by electrodynamicists [72] to discard the

embarrassing richness of EM energy poured out of every dipole and not inter-

cepted and used by the attached external circuit—for over a century has

specifically and ubiquitously diverted electrodynamicists’ attention away from

the process described in this invention.

NORMAL
RESISTOR

NORMAL
RESISTOR

BATTERY

NEGATIVE
RESISTOR

(Acts as a battery)

+

+ −

−

i i

i ii

Figure 6. Negative resistance process versus positive resistance process. A negative resistor

receives energy in unusable form, transduces it, and outputs it in usable form. A positive resistor

receives energy in usable form and scatters it into unusable form.

29 In Fig. 5 on p. 16 of Ref. 71, the fraction of the energy flow that is intercepted and collected by a

nominal circuit (i.e., the Poynting component) is roughly shown to be on the order of 10	13 of the

entire energy flow available. Thus the Heaviside component that misses the circuit and is

nondiverged and wasted is about 1013 times as great in magnitude as is the Poynting component that

is intercepted and diverged into the circuit to power it.
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We strongly iterate the following point. We have designed the process of this

invention and its embodiments by and in accord with Sachs’ unified field theory

[41– 43,45] and the Evans–Vigier O(3) electrodynamics subset thereof [63].

Consequently, all energy in mass-free spacetime is general relativistic in nature,

modeling, and interpretation. The general relativity interpretation applies at all

times, including that for the electrodynamics. Hence any local change of energy

in spacetime is precisely of one and only one nature: a curvature of that local

spacetime. A traveling EM wave thus becomes identically a traveling oscillating

curving of spacetime. Further, wherever the wave exists, its energy a priori

curves that part of the spacetime. So EM waves, fields, potentials, and energy

flows always involve and identically are spacetime curvatures, structures, and

dynamics. We also accent that time is always part of it, since what exists prior to

observation is spacetime, not space.30 Hence ‘‘energy currents in time’’ [16,20]

and ‘‘electromagnetic longitudinal waves in the time domain’’ [29,33,36] are

SIN

STR STR

SOUT

STR

STR = S − SR

S

STR

SR
SR

I2R I2R

1b. Actual S in and S out.1a. Lorentz surface integration.

   Note: If the S vector is integrated over the closed surface, then all      
nondiverged energy flow is zeroed, leaving only the very small 
component of the input S-flow that is powering the joule heating 
of the resistor. In short, only the small component of the S-flow 
that is equal in magnitude to the Poynting vector remains. This 
measures only the tiny portion of the S-flow that is intercepted 
and diverged into the conductors by their surface charges, 
powering the electrons and then dissipated out of the resistor 
as joule heating.

The Lorentz procedure arbitrarily discards the enormous 
Heaviside component that misses the circuit entirely and is 
wasted. This results in a non sequitur of first magnitude in 
energy flow theory.

See Panofsky & Phillips,
Classical Electricity and
Magnetism, 2nd. edn.,
Addison Wesley,1962,
p. 178−181.

Figure 7. Lorentz’ integration trick to discard the enormous Heaviside nondiverged energy

flow component: (a) Lorentz surface integration; (b) actual Sin and Sout.

30 The present notion in EM theory that EM energy travels through a flat spacetime is in fact an

oxymoron, since to have had an energy density change in spacetime at all is a priori to curve

spacetime.
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perfectly rational expressions and facts, albeit strange to the >136-year old

classical electrodynamics stripped of its integration with general relativity.

Figure 8 shows the relationship between a linearly moving magnetic vector

potential AL, a swirling or circulating AC, the implementation of the r� operator

by the interacting coil and its moving charges, and the resulting magnetic field

B. AL can also be defined as the vector potential fL if desired, where fL is a

vector potential and no longer the familiar scalar potential f since f is in

motion. If the coil is wound very tight and is very long (or closed such as in a

very tight toroid), then the magnetic field B will be retained entirely inside the

coil, while the field-free (curl-free) AC will remain outside the coil. This

illustrates one of the major unrecognized principles of the potential (such as

A) as a flow process; specifically, what is usually considered to be the energy in

the potential in a given volume of space is actually the ‘‘reaction cross section’’

of the potential in that volume. Conventional electrodynamicists and electrical

engineers do not calculate magnitudes of either fields or potentials per se, but

only their reaction cross sections, usually for a unit point static charge assumed

fixed at each point. We point out that this procedure calculates the divergence of

energy from the potential, and hence the reaction cross section of the potential,

but not the potential itself.

The energy so calculated—in this case, the curl of the A flow, which is the

magnetic field B—can in fact be diverted from the A potential flow through a

volume of space into another different volume of space. The magnitude of the A
potential flow will continue undiminished through the original volume of space,

as long as the source dipole performing the giant negentropy process and thus

providing the continuous EM energy flow represented by A remain unchanged.

∇ × A = B

V, i, E to external circuit

AC (each turn)

AL

Figure 8. The AL and AC vector potentials, B field, and r� operator. The r� operator

operates on the AC potential energy current, to produce normal B field.
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In the case used in the process of this invention, we diverge the magnetic field

energy from the A flow, while simultaneously retaining all the A-potential

energy flowing through the space outside the tightly wound coil. This is in fact

an ‘‘energy collecting amplification’’ subprocess, and is no more mysterious

than diverting a tiny flow of water from a nearly infinite river of flowing water,

and having the river flow on apparently undiminished. In short, we may

deliberately use the energy flow nature of the potential A in order to simulta-

neously separate it into two flows of different energy form: curled and uncurled.

If we place a square pulse in the current of the coil in Fig. 8, we also invoke

the Lenz law reaction (Fig. 9) to momentarily increase the current and hence the

AC and the action of r� A ¼ B, so that additional AC energy and additional B
energy are obtained. In this way, the energy gain is increased by the Lenz law

effect—which is a regauging effect deliberately induced in the invention

process by utilizing square pulse inputs. Then when the trailing edge of the

pulse appears and sharply cuts off the pulse, a second Lenz law gain effect

(Fig. 9) is also produced, further increasing the energy gain in both AC and in B.

We use these two serial Lenz law effects to increase the potential energy of the

system twice and also the collected field energy, thus allowing COP> 1.0 since

during the regauging process the potential and the potential energy of the

system are both increased freely, and so is the diversion of the increased

potential energy into B-field energy inside the coil. Both the changes increase

When a small current through the coil is suddenly broken,
momentarily a surge of increased current and voltage ensues.

1a. Lenz' reaction is a suddenly increased effect which
      momentarily opposes a sudden change.

1b. Two successive Lenz' reactions to two interruptions by
      leading and trailing edges of a rectangular pulse.

Rectangular input pulse Lenz' voltage-opposing pulse

Lenz' current- and
voltage-increasing
pulse

Initial current
in closed circuit

Momentary current when
circuit is sharply broken

i2i1
+

−

V1

V2

0

V

Figure 9. Lenz’ law reaction momentarily opposes a sudden change and increases the ongoing

action which is to be changed: (a) Lenz’ reaction is a sudden effect that momentarily opposes a

sudden change; (b) two successive Lenz reactions to two interruptions by leading and trailing edges

of a rectangular pulse.
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the voltage drop across the coil and the current through it, translating the

increased magnetic energy into usable electrical energy to power loads and

losses.

Figure 10 shows the cross section of an input coil, one form of input device.

The input can be from a separate signal generator, in which case the system runs

‘‘open loop’’ and requires continuous input power, but still provides COP> 1.0.

Or, a portion of the output power can be extracted, clamped in magnitude, and

positively fed back to the input, in which case the system runs ‘‘closed loop’’

and the operator need furnish no external power input once the unit is in

operation. In either case, the system is an open system far from thermodynamic

equilibrium with its active vacuum environment, freely receiving energy from

the active environment to the dipole in the permanent magnet, and from the

dipole out into the nanocrystalline material core in the form of magnetic field

energy B, and in the space outside the core in the form of field-free A potential.

As can be seen, the B-field energy is confined to the core material inside the

coil, and the A potential outside the core is field-free A. Any change in the B-

field inside the core is also a change in the B field inside the coil and the coil

interacts with it to produce current and voltage. Any change in the A potential

outside the core, also interacts with the coil as dA/dt, which is an E-field

interaction. The movement of the Drude electrons also applies the r� operator,

V, i, E from
external signal
generator or from
a clamped positive
feedback fraction
of the output

B

NOTE:  One input coil required.
Additional input coils may be
used, to increase feedforward
and feedback intensity and
thus increase gain.

Magnetic field
retained inside
core material

Input coil
(input energy)

Microcrystalline
core material

Coil
A (field-free)

B
B

B B

B

B

B
B

B

Figure 10. Input coil for either open-loop or closed-loop operation.
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thereby producing voltage and current in the coil and also producing additional

B-field in the core material. In turn, this changes the B field in the core, which

produces more voltage and current in the coil and additional A potential outside

the coil, and so on. Hence there are dual iterative retroreflective interactions

between the two simultaneous interactions with the coil. The dual interaction

increases the performance of the coil, rendering it an energy amplifying coil,

and also increases the COP of the system process. The output of the input coil is

thus due to the alteration and increase of the B-field flux and energy in the core

material, and an increase and alteration in the field-free A potential surrounding

the coil and moving around the circuit in the space surrounding the nanocrystal-

line core material flux path, and interacting simultaneously with the coil in dA/

dt fashion (E-field fashion).

Figure 11 shows a cross section of a typical output coil for either open-loop

or closed-loop operation. The operation is identical to the operation of the input

coil, except this coil outputs energy in the form of voltage and current to an

external circuit, external load, and so on, and also outputs energy from its

reaction with the A potential (i.e., with dA/dt) coming in from outside the flux

path. It outputs both an E-field energy reaction with the Drude electrons, and

also a change in B-field energy to the nanocrystalline flux path material in its

B

NOTE:  One output coil required.
Additional input coils may be
used, to increase feedforward
and feedback intensity and thus
 increase gain and power output.

Magnetic field
retained inside
core material

Input coil
(input energy)

Microcrystalline
core material

Coil
A (field-free)

B
B

B B

B

B

B
B

B

V, i, E to external 
loads in open loop
operation, and also with
a fraction fed to input for
closed loop operation
and "self-powering."

Figure 11. Output coil for either open-loop or closed-loop operation. Multiple output coils

may be used in a variety of configurations.
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core due to the movement of the electron currents in the coil. The output coil

receives its energy input from the field-free A-potential outside the nanocrystal-

line material flux path as well as from the B-field energy and magnetic flux

inside the nanocrystalline flux path through its core. In short, we ‘‘dip’’ the full

Poynting energy flow component from the A potential as B-field energy,

separate this B-field energy, and pipe it to the center of the output coil to

interact magnetically with the Drude electrons in the coil. The A potential is

instantly and fully replenished as a curl-free A-potential. The time rate of

change of this A potential thus can be adapted so that a full Poynting energy

flow component also interacts with the Drude electrons from outside as a large

E-field energy reaction. We thus multiply the EM energy flow available for

interacting with the output coil, compared to conventional ‘‘single dipping’’ and

‘‘single Poynting component interacting’’ systems in a transformer–generator.

This ‘‘double dipping’’ provides an energy gain, since it constitutes a free

regauging of the potential energy of the system, and an application of the gauge

freedom principle of gauge field theory. The lesser additional mutual interaction

between those primary interactions adds the extra 0.5 gain, so that each output

coil now gives a gain of 2.5. With two output coils, the COP of the system is

COP¼ 5.0.

Further, all coils on the core material serve somewhat as both output and

input coils, and also have mutual iterative interactions with each other around

the loop, coupled by the field-free external A potential and the B-field and

magnetic flux in the nanocrystalline material flux path acting as the cores of the

coils. These interactions also provide gain in the kinetic energy produced in

the Drude electron gas, due to the iterative summation work performed on the

electrons to increase their energy. When more coils are utilized, the gain is

affected correspondingly.

Further, these mutual iterative feedback and feedforward energy gains also

change the flux back through the permanent magnet, alternating it, so that the

pole strength of the magnet alternates and increases. This, in turn, increases the

dipolarity of the permanent magnet, which, in turn, increases the magnitude of

the associated giant negentropy process [16,20]. This results in more energy

received from the active vacuum by the permanent magnet, and also more

energy output by said permanent magnet dipole to the core material and to the

coils.

Thus we have described a system and process having a multiplicity of

iterative feedbacks and feedforwards from each component and subprocess, to

every other component and subprocess, all increasing the energy collected in the

system and furnished to the load. In open-loop operation, this results in

COP> 1.0 permissibly, since the excess energy is freely received from an

external source. In closed-loop operation, the COP concept does not apply

except with respect to operational efficiency. In that case, the operational
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efficiency is increased because more energy is obtained from the broken

symmetry of the permanent dipole, and therefore additional energy is provided

to the loads, compared to what the same permanent magnet can deliver when

such iterative feedback and feedforward actions in such multiplicity are not

utilized. In closed-loop operation, the system powers itself and its loads and

losses simultaneously, and all the energy is freely supplied from the active

vacuum by the giant negentropy process of the permanent magnet dipole and the

iterative asymmetric self-regauging processes performed in the system pro-

cesses.

Figure 12 is another view showing the major energy flows in an output coil

section and subprocess, and the iterative dual inputs and interactions, of the

basic scheme of operation of the process and its active component subprocesses.

Figure 13 is another view showing the dual energy flows in an input coil

section and subprocess.

Figure 14 is a block diagram illustration of the components and processes in

the system and system process, with the dual feedforward and feedbacks shown.

It accents the overall system process gain due to the multiplicity of interactions

and iterative interactions between the various system components and subpro-

cesses, and further interactions with the dual local interactions and iterative

feedforwards and feedbacks, thus providing a multiplicity of individual energy

gain processes and an overall energy gain process.

Field free A
associated with B inside core
plus field-free A from
magnetic dipole of magnet

Time-
varying

Each turn of
the coil is a
∇× operator

Microcrystalline
core material
holds all ∇ x A = B
inside so no ∇ x A = B
outside

Field-free A
associated with B inside core
plus field-free A from
magnetic dipole of magnet

V, i, E to
external circuit

∇ × A = B B

Figure 12. Basic scheme showing dual energy inputs and interactions with the coil. The output

of each of these two interactions also ‘‘feeds forward’’ to the other interaction as an additional input

to it, resulting in interative ‘‘pingpong’’ of additional energy collection in the circuit, providing

energy gain.
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Time-
varying

Each turn of
the coil is a
∇× operator

Microcrystalline
core material
holds all ∇ x A = B
inside so no ∇ x A = B
outside

Coil interacts with curl-free
A to produce additional B
in core plus B in core from
current through coil. Thus
coil amplifies compared to
ordinary coil.

Field-free A
associated with B inside core
plus field-free A from
magnetic dipole of magnet

V, i, E from
signal generator
or feedback from
output coils

∇ × A = B B

Field free A
associated with B inside core
plus field-free A from magnetic
dipole of magnet

Figure 13. Dual energy inputs to the coil result in amplifying coil–core interaction. Not shown

are the other feed loops providing extra curl-free A input from the surrounding space and extra B

input in the core.
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(curved spacetime)
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(curved spacetime)
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ordered curved
 spacetime)
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from curved spacetime)
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interacted with
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(curved spacetime)

INPUT
COIL

Curl-free
A-potential
outside coil

(curved spacetime)
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control

Time-varying
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(elec)
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COILS

EXTERNAL
ELECTRICAL

LOADS
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loop
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SW

Closed
loop
operation
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BLOCK A'

Figure 14. Energy gain process using feedforward and feedback subprocesses providing

individual energy gain operations.
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Figure 15 shows a type embodiment of the system and system process,

perhaps at a home and powering a variety of home appliances and loads. The

system as shown is ‘‘jump-started’’ initially in open-loop mode, and once in

stable operation is disconnected from the jump starter (such as a battery) to run

in closed-loop operational mode.

Figure 16 shows one of the former laboratory test buildups embodying the

process of the invention. This test prototype was used for proof-of-principle and

N S

Output Output

Output
Output

Input if open
loop operation
desired

Clamped
feedback
control SW

Figure 15. Typical embodiment system and application.

Figure 16. Motionless electromagnetic generator (laboratory experiment).
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phenomenology testing. This experimental buildup has been substantially

replicated by French researcher Naudin, who achieved COP¼ 1.76 with a

less optimized core material (see footnote 10, above). Naudin is the first

experimenter to replicate our MEG experimental apparatus. His key illustrations

are used in our Figs. 26 and 28 (below) with his permission.

Figure 17 shows a simplified block diagram of a basic embodiment demon-

strating the process. Many of these buildups were undertaken to test various

core materials, observe phenomenology, and perform other tasks. The ‘‘square

C’s’’ of the flux path halves right and left, as shown in this Fig. 17, were actually

made as ‘‘half-circle C-shaped flux path halves’’ right and left in Fig. 16 above.

Figure 18 shows the measurement of the input to the actuator coil of the test

unit of Fig. 16 operated in open-loop mode.

Figure 19 shows the measurement of the output of one of the output coils of

the test unit of Fig. 16 operated in open-loop mode.

Figure 20 shows the output power in watts as a function of the input potential

in volts, thus indicating the output versus potentialization sensitivity. The circles

indicate actual measurements, and the curve has been curve-fitted to them.

Figure 21 shows the COP of a single output coil’s power divided by the input

power, as a function of input potentialization. The circles indicate actual

measurements, and the curve has been fitted to them. The second coil had the

same power output and COP simultaneously, so the net unit COP of the unit is

double what is shown in the figure.

Figure 22 shows the projected unit output power sensitivity versus voltage

input, expected for the next prototype buildup now in progress.

ACTUATOR
(INPUT) COIL

COLLECTOR
COIL

COLLECTOR
COIL

PERMANENT
MAGNET

NANOCRYSTALLINE FLUX
PATH AND CORE MATERIAL

Figure 17. Diagram of laboratory test prototype.
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Figure 23 shows the projected unit COP versus input potentialization

expected for the next prototype buildup now in progress. We eventually expect

this type of unit to easily operate at the COP¼ 30 or COP¼ 40 level, with

multiple kilowatt output power.

Figure 24 shows the true operation of a typical coal-fired power plant and

generator, and the associated power line. As can be seen, all that burning the

coal accomplishes is to force the internal charges in the generator apart and form

the source dipole. None of that adds a single watt to the power line. Instead, once

Figure 18. MEG input measurements.

Figure 19. MEG output measurements.
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the dipole is formed, its broken 3-symmetry produces an inflow of energy from

the complex plane (time domain) from the active vacuum. The dipole transduces

the absorbed reactive power (in electrical engineering terms) and outputs it as

real, observable EM energy flow. Note particularly the enormous amount of the
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Figure 22. MEG projected sensitivity (test buildup in progress).
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Figure 23. MEG projected COP versus input voltage (test buildup in process).
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energy flow pouring out of the terminals, most of which misses the power line

entirely and is just wasted. Only a very tiny component of that giant Heaviside

flow is intercepted by the power line and circuits, and diverged into the

conductors to power the Drude electrons. In addition, half the Poynting energy

collected in the circuit is dissipated in the dipole’s back emf, scattering the

charges and continually destroying the dipole—which is restored continually by

additional shaft input energy that is continually input. This inane way of

building power systems is what has required all the burning of hydrocarbons,

use of nuclear fuel rods and dams, and so on. None of that powers the power

grid, and we have been damaging and polluting our environment for no good

reason at all. Every electrical power system is now and always has been

powered by EM energy extracted directly from the active vacuum by the broken

3-symmetry of the source dipole in the generator or battery.

Figure 25 shows a waterwheel ‘‘material fluid flow analogy’’ of the ‘‘double-

dipping’’ principle used by the MEG. In a fast-flowing stream with appreciable

drop in elevation along the flow, we insert a waterwheel in the river past the

bottom of a small waterfall. The ‘‘reaction cross section’’ of the bottom of the

waterwheel immersed in the rushing stream is a certain amount, which

determines the amount of energy diversion and hence the work done on the

wheel if used in normal waterwheel fashion. However, we have inserted a pipe

at the top of the waterfall, and ‘‘piped’’ a large flow of water down to the top of

the waterwheel, turning its direction so that, when it flows out on the left side of

the waterwheel, it strikes the same reaction cross section of the left side of the

giant energy flo
w wasted

_

+

BOILER

STEAM
TURBINE

SOURCE
DIPOLE IN

GENERATOR

GENERATOR

FLOW OF TIME-
ENERGY

(in vacuum)

"Make dipole" function

(Entropic)

"True negative resistor" function

(Giant negentropy)

φ

Figure 24. Generators do not power circuits and power lines; they make the source dipole.
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wheel. Hence a ‘‘couple’’ exists so that twice the energetic interaction occurs

with the double-dipping waterwheel, as is normal for single-dipping water-

wheels. In short, we get twice the energetic interaction on the waterwheel to

power it, because the wheel interacts twice rather than once. If we do not press

this simple analogy very far, it suffices to demonstrate that, in flowing stream of

energy, we can divert part of the stream and then interact twice with the energy

flow rather than just once. The difference is that, in the case of diversion of the

energy flow in the magnetic vector potential as a magnetic field flux, the

magnetic vector potential is replenished instantly and freely, so that the two

streams are equal in flow, and hence equal in interaction. In the water analogy,

of course, the two streams are not necessarily equal in flow magnitude.31

Figure 26 shows Naudin’s second MEG variant buildup, in November 2000.

His core material is less optimal than is the core material utilized by Magnetic

Energy Ltd. Hence he achieved COP¼ 1.76 with this unit, instead of the full

COP¼ 2.5 or 5.0. We are pleased that Naudin is the first researcher to have

successfully replicated our MEG unit, including achieving COP> 1.0.

Figure 27 shows a simplified diagram of the double-dipping principle,

applied by the MEG. From the permanent magnet’s magnetic dipole, there

pours forth an ‘‘energy stream’’ called the magnetic vector potential. We

intercept this stream right at the poles of the magnetic dipole, with the special

nanocrystalline core material. This material extracts and curls magnetic energy

Piped water path for
diverted water current

Ye olde
waterwheel

Standard
torque

Additional
torque

Figure 25. Double-dipping waterwheel analogy of MEG operation.

31 In the MEG, the interception of energy from the uncurled A-potential in space outside the core

may be made much larger than energy intercepted from magnetic flux switched in the core. This is

accomplished by adjusting the rise and decay times of the edges of rectangular pulses in the primary

coil. The E-fields produced by dA/dt may be made very large, increasing the energy collected in a

given set of external receiving circuits with loads.
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from the magnetic vector potential, and magnetic field energy is then separated

from the curl-free magnetic vector potential river, which is instantly reple-

nished. Thus the material acts as a ‘‘diverger’’ so that we conduct the extracted

magnetic field energy through the core path and through the center of the input

and output coils, in a closed path with the permanent magnet. Magnetic field

measurements will show little or no magnetic field outside the core path, but of

course the replenished A potential is there, but without curl. We use the input

coil to perturb the magnetic flux and simultaneously perturb the A potential. So

two equal energy perturbations—one a perturbation of the magnetic field flux in

the core and the other a perturbation of the A potential in space outside the core

material—are propagated. The A-potential perturbation propagates outside the

core, and the B-field perturbation propagates inside the core. Both equal-energy

perturbations strike the output coil simultaneously, where the rate of change

of the A potential interacts with the coil’s Drude electrons in E-field fashion,

Figure 26. Naudin’s replication of a MEG variant in Nov. 2000.

A
N Replenished

Flowing
energy
steam

energy steam

energy steam

Diverger

Diverged

Interaction/
Transducer Sum of both

energy interaction
outputs

Replenished
Nondiverged

S

Figure 27. MEG ‘‘double dipping’’ from a replenished manetic vector potential energy stream.
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while the magnetic field perturbation in the core in the center of the coil

interacts with the Drude electrons in magnetic field fashion. A slight interaction

within the coil occurs there between the two interactions, resulting in slight

increase of the energy of the coil’s interaction. Hence this double-acting coil is

actually interacted with some 2.5 times the energy that normal magnetic field

interaction would provide; that is, the output coil interacts and outputs 2.5 times

as much EM energy as we input into the input coil (with two output coils, the

COP ¼ 5.0). No laws of physics or thermodynamics are violated, because the

magnetic vector potential from the permanent magnet is freely and continuously

replenished, regardless of how much energy we draw from it by ‘‘double-

dipping,’’ ‘‘triple-dipping,’’ and so on. In theory, the COP is unlimited. In

practice, a COP¼ 10 or even 20 can be achieved with some difficulty.

Figure 28 shows Naudin’s actual measurements as he varied his input condi-

tions to his MEG 2 variant. As can be seen, the COP varies as the efficiency of

the separation process varies, and that varies as the conditions of the input vary

MEG v2.0 Tests

Rload (ohms) = 100000
Time (sec) VTG OUT (V) VTG INP (V) CUR INP (A) PWR INP (W) Efficiency (%) COPPWR OUT (W)

Email: JNaudin509@aol.com

Email: JNaudin509@aol.com - http://go.to/jlnlabs/

by JL Naudin on 11-07-00
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Figure 28. Naudin’s Nov. 2000 results, reaching COP¼ 1.76.
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for a given design. These results were obtained by Naudin shortly before the

cutoff deadline of this paper, increasing his previous results of COP¼ 1.5. The

point is that rigorous, independent replication has indeed been achieved.

VIII. RAMIFICATIONS

A. Importance of the Process and Its Subprocesses

A process has been provided whereby useful electromagnetic energy may be

extracted from the dipole of a permanent magnet, via the giant negentropy

process [16,20] associated with the magnetic dipole. In that process, an outflow

of EM energy is continuously furnished by the magnet dipole in all directions in

3-space, and the energy to the dipole is freely furnished from the time domain of

the active vacuum [1,16,20]. Whittaker [1] demonstrated this giant negentropy

mechanism in 1903, but apparently failed to recognize its implications for

electrical power systems. Recent recognition of the mechanism and its implica-

tions for electrical power systems was accomplished by one of the inventors,

Bearden [16], and then more deeply examined by Evans and Bearden [20].

By using the principle that essentially unlimited energy can be withdrawn

from (collected from) a potential, and the withdrawn energy will be replaced by

the potential’s negative-resistor action using the giant negentropy mechanism

[1,16,20], a practical approach to free-energy sources for self-powering and

COP> 1.0 electrical power systems anywhere in the universe is provided.

By using the principle that iterative transformation of its form energy in a

replenishing potential environment can be repeatedly reused to do work, so long

as the form of the energy resulting at the completion of each work phase is

retained and reprocessed, one joule of energy can be utilized to do many joules

of work, as precisely permitted by the energy conservation law with regauging.

This is a major change to the work–energy theorem of electrodynamics, which

implicitly has assumed only a single change of form of the energy, followed by

loss (escape from the system) of all the energy in the new form. In short, the

present work–energy theorem is only a special case valid under those assumed

special conditions. The invented process takes advantage of the extended work–

energy theorem where one joule of energy—accompanied by retention of the

new form of energy resulting from work—can evoke multiple joules of work in

a replenishing potential environment.

By using the principle that one joule in ‘‘iterative form changing mode with

retention’’ can do many joules of work on a component of a system—to wit, on

the Drude electron gas in an electrical circuit, where the potential energy is

increased by the increased kinetic energy of the electrons having the work done

on them—the extended work–energy theorem can be utilized to overpotentia-

lize the receiving Drude electron gas, thereby regauging the system to add
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excess energy by gauge freedom and outputting more electrical energy to the

load than is input to the system by the operator.

By then dissipating in loads this excess energy collected in the Drude

electron gas in the output circuit, the invented process provides greater energy

to be dissipated in the load than is input by the operator. The combination of

processes thus allows an EM system freely functioning as an open system not in

equilibrium with its active vacuum (due to the giant negentropy mechanism

[1,16,20]), hence permitted to exhibit COP> 1.0. In this way, more work output

can be accomplished by the system process than the work that the operator must

perform on the system to operate it.

By using the principle of governed, clamped positive feedback32 of a portion

of the increased output back to the input, the system can be close-looped and

can power itself and its load, with all the energy furnished by self-regauging

from the active vacuum as an external energy source, furnishing excess energy

to the magnetic dipole’s magnetostatic potential and associated magnetic vector

potential, thereby replenishing energy withdrawn from the magnetic vector

potential by the subprocesses in the overall system process.

One system operating in closed-loop mode can also have one fraction of its

output devoted to jump-starting another such system in tandem, then switching

the second system into self-powering closed-loop mode, then jump-starting

another such system, which is then switched to self-powering, and so on. In that

way, multiple systems can be ‘‘piggybacked’’ so that an exceptionally large

power system consisting of a group of such ‘‘piggy-backing‘‘ systems can be

produced. In case of system failure, all can be started again in the same series,

by furnishing only the initial small input required to jump-start the first system

of the group. In this way, very large power systems such as necessary to power

automobiles, trucks, ships, trains, and other vehicles can be produced, and yet

the backup jump-starting source—such as a storage battery—can be very small,

such as a simple flashlight battery.

B. Implications for the Crisis in Oil Supplies versus Energy Demands

The emerging overunity electrical power systems—including ‘‘self-powered’’

systems freely taking all their energy from the local vacuum—will produce a

total revolution in transportation, electrical power systems, backup power

systems, and so on [68,69]. In the process, the electrical power is obtained

freely and cleanly from the vacuum, from permanent-magnet dipoles continu-

ously replenished from the active vacuum via the giant negentropy process.

32We state, however, that at about COP
 2:0 Special Dirac sea hole current phenomena are

encountered in close-looping, as a new kind of decay mechanism from the disequilibrium state back

to the Lorentz equilibrium. Bedini and Bearden have filed a patent application for energy

transduction processes to overcome this effect and allow close-looping.
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A more significant fraction of the electrical power system can thus be

decentralized, and degradation in case of system failure will be graceful and

local. Yet full use can still be made of the existing power grids and power

systems. As an example, arrays of self-powering electrical heater systems can

be developed and used to heat the boilers in many standard power systems,

thereby stopping the burning of hydrocarbons in those plants, and drastically

reducing the pollution of the biosphere and the lungs of living creature

including humans. This would allow a graceful phase-in of new, clean, self-

powering electrical power systems; reduction of hydrocarbon combustion for

commercial electricity production; and ready increase in electrical power to

meet increasing world demands, even in poor nations and developing countries,

while capitalizing and using much of the very large ‘‘sunk costs’’ investment in

present large power systems. The core material fabrication is labor-intensive, so

it is made in developing nations where such jobs are sorely needed and greatly

benefit both the individual people and the nation. The dramatically increased

use of and demand for these materials would thus stimulate substantial

economic growth in those nations by providing many more jobs.

The conversion of power systems and replacement of a fraction of them, can

proceed vigorously, since production and scaleup of systems utilizing this

process can be very rapid. Except for the cores, all fabrication, parts, techniques,

tooling, and other procedures are simple and standard and very economical—

and are already on hand and used by a great many manufacturing companies

worldwide.

At this time of an escalating world oil crisis and particularly a shortage of

refining facilities, a very rapid and permanent solution to the oil crisis and the

rapidly increasing demand for electricity—and also much of the problem of the

present pollution of the biosphere by combustion byproducts, and of the present

global warming enhancement by the emitted CO2 from the hydrocarbon

combustion—can be provided cheaply, widely, and expeditiously.

The steady reduction and eventual near-elimination of hydrocarbon combus-

tion in commercial power systems and transport, the dramatic reduction in

nuclear fuel rod consumption, and other improvements will result in cleaner,

cheaper, more easily maintained power systems and a reduction in the acreage

required for these power systems.

The gradual decentralization and localization of a substantial fraction of the

presently centralized power grid will eliminate a significant fraction of power

transmission costs, thereby lowering the price of electrical energy to the consu-

mers.

The scaleup weight-per-kilowatt of systems using this system process will be

sufficiently low to enable rapid development of electrically powered transport

media such as automobiles. These will have weight about the same as now, carry

a small battery as a backup jump-starter, and have very agile performance
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suitable for modern driving in heavy traffic. With fuel costs zeroed, the cost to

the citizens of owning and operating vehicles will be reduced. Costs to the

trucking industry, for instance, will be dramatically reduced, since fuel is a

major cost item. In turn, since most goods are moved via the trucking industry,

the lower transport costs will mean more economical sales prices of the goods.

These are very powerful and beneficial economic advantages of the new pro-

cess.

C. Some Specific Advantages

The process ensures the following advantages for electrical power systems:

� The systems can have a high output power : weight ratio. Second- and

third-generation equipment will have a very high output power : weight

ratio.

� The systems can be highly portable for mobile applications.

� The size and output of the systems are easily scalable, and piggybacking

is simple.

� The logistics burden for remote operation of MEG power systems such as

on manned space capsules and satellites in orbit will be dramatically

reduced.

� The systems will be rugged and reliable for use in hostile environments

where conventional generators would fail or be extremely difficult to

sustain. The systems can easily be environmentally shielded.

� The systems can function effectively in very wide operating temperature

ranges and can be used where conventional batteries and fuel cells cannot

function. As an example, a system can power a resistance heater to keep

its own immediate environment continuously warm. It can also power

electrostatic or magnetic cooling devices to keep the unit and its imme-

diate environment cool in higher-temperature environments.

� The system will have an extremely long life cycle and high reliability,

allowing it to be placed where frequent maintenance is not possible.

� The system uses no fuel or fuel transport, packaging, storage, and disposal

systems and needs no intermediate refining facilities and operations. The

resulting overhead and financial savings are vast and significant.

� Use of the systems in a combined centralized and decentralized electrical

power system provides survival of electric power and graceful degrada-

tion, rather than catastrophic collapse, of electrical power in the presence

of damage and destruction. This is particularly important since the greatest

threat to the United States and many other nations is terrorist attacks

against our cities, or against our fuel supplies, electrical power grids, and

other structures and systems.

energy from the active vacuum 771



� The systems produce no harmful emission, harmful or radioactive bypro-

ducts, hazardous wastes, or biospheric pollutants. As usage is phased in

worldwide, a significant reduction of environmental pollutants and hazar-

dous wastes will result, as will a cleaner biosphere.

� The systems can produce AC or DC power directly by simple electrical

additions, and provide shaft power simultaneously. Frequency can be

changed by frequency conversion.

� Coupled with normal electric motors, the systems can provide attractive

power system alternatives for automobiles, tractors, trucks, aircraft, boats,

ships, submarines, trains, and other vehicles, again without exhaust

emissions, pollutants, or harmful waste products and without fuel costs.

� The systems can be developed in small-system sizes, rugged and efficient,

to replace the motors of hosts of small engine devices such as garden

tractors, lawnmowers, power saws, and leaf blowers, which are presently

recognized to be very significant biospheric polluters.

These descriptions provide illustrations of some of the presently envisioned

preferred embodiments and applications of this invention.

D. Extension and Adaptation of the Process

For example, we have mentioned piggybacking arrays of such systems for easily

assembled large power plants.

As another example, conversion to furnish either DC or AC, or combinations

of either, at whatever frequencies are required, is easily accomplished by

standard conversion techniques and add-on systems.

As another, less obvious, example, the process uses a multiplicity of positive

energy feedforwards and feedbacks, and iterative change of the form of the

energy between multiple states in a replenishing environment, to provide

iterative gain by ‘‘pingpong.’’ As the number of feedback and feedforward

operations is increased, it is possible to advance the system process into a region

where the regenerative feeds produce an exponentially increasing curve of

regauging energy and potential energy increase, with concomitant exponentially

increasing curve of output energy. Material characteristics, saturation levels of

cores, and other variables provide ‘‘plateaus’’ where the exponentially rising output

curve is damped, leveled off, and stabilized. By using spoiling and damping,

such exponential increase in energy density of the system can be leveled off at

specifically desired plateau regions, which can be easily adjusted at will, either

manually or automatically in response to sensor inputs. By this means, these

systems enable automatically self-regulating, self-adapting power grids and

power systems, which automatically adjust their state and operation according

to the exact needs and conditions, changes of these needs and conditions, and

other requirements without impact on supporting fuel, transport, refining,
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storage, and other activities. These ‘‘exponential but plateau-curtailed’’ systems

are capable of producing very large power-per-pound levels, and sustaining

them without overheating, limited only by the saturation level of the core

materials. Such new adaptations of the fundamental system process of this

invention can be developed in a straightforward manner in the third generation.

The adaptations and alterations of the process are limited only by the

ingenuity of the scientists and engineers and by the particular needs of a given

application. The process uses the laws of nature in a novel and extended manner,

such as using one joule of input energy together with automatic replenishing to

cause many joules of output work to be done in the load. Many alternative

subprocesses, embodiments, modifications, and variations will be apparent to

those skilled in the art of conventional electrical power systems and magneto-

electric generators.
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Dämmig, M., 357(69), 425

Dangoisse, D., 356(41), 424

Dawson, S. P., 361(118), 426

de Alfaro, V., 273(25), 350

De Broglie, L., 505(2), 542(2), 550(32),

555–556

de Broglie, L., 4(25), 13(43), 44(44), 45(25),

46(44), 60(25), 75–76

Debye, P., 722(60), 775

Degasperis, A., 272(16), 350

Denk, W., 548(30), 556

Dennis, T. L., 676(67), 696

Derozier, D., 356(53), 424

DeSantis, R. M., 676(66), 696

Deschamps, J., 145-146(75), 266

DeWitt-Morette, C., 85-86(30), 265

Diakonov, D. I., 432(6), 446(16), 466(6), 467

Diestelhorst, M., 676(64), 696

Dillard-Bleink, M., 85-86(30), 265
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(COP), 676

Feynman diagrams, O(3) electrodynamics,

quantum electrodynamics (QED)

corrections, 146–160

Feynman slash notation, O(3) electrodynamics,

magneto-optic effects, 135–146

Feynman’s universal influence, electromagnetic

theory, gauge theory, 12

Fiber bundle theory, O(3) electrodynamics,

85–92

Field-containing inductors, quantum

electrodynamics (QED), Lorenz vector

potential, 623–626

Field lines, topology and electrodynamics,

helicoidal fields, 568–570

Field-matter interaction, O(3) electrodynamics:

complex circular basis, 106–109

computational preparations, 196–204

relativistic helicity, 225–240

Fock space estimates:

non-Abelian Stokes theorem, holomorphic

approach, 451–454

O(3) electrodynamics, quantum

electrodynamics (QED) corrections,

152–160

Fogal semiconductor, vacuum energy extraction,

coefficient of performance (COP), 673

Fokker-Planck equations, quantum chaos,

409–410

Kerr oscillators, 412–415

second-harmonic generation (SHG),

417–421

Force-free fields, topology and electrodynamics,

573–574

4-component vector element:

gauge field theory, Maxwell’s equations,

270–274

Maxwell-Heaviside equations, 259–261

O(3) electrodynamics, 259–261

Noether charges, vacuum energy, 168–172

Whittaker scalar potential, 178–189

Sachs/O(3) electrodynamics:

covariant vectors, 483–486

non-Abelian field tensors, 470–474

vacuum energy, 477–481

4-current values, O(3) electrodynamics, Noether

charges, vacuum current, 163–172

Fourier analysis:

causal model of quantum physics, de Broglie

theory, 507–509

Heisenberg-Bohr indeterminacy and,

535–537

noncausal quantum physics, 504

topology and electrodynamics:

Beltrami and Trkalian fields, 571–572

Helmholtz theorem, 561–563

uncertainty relations:
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Fourier analysis: (Continued)

limitless expansion, matter wavepackets,

546–547

nonlocality, 537–538

superresolution microscopy and, 550–554

Fourier-Bessel decomposition, topology and

electrodynamics, Hansen decomposition,

cylindrical coordinates, 581–583

4-space electromagnetic waves, vacuum energy

extraction:

applications and future issues, 690–693

dipole reexamination, 648

electrical engineering interpretation, 650

motionless electromagnetic generator (MEG):

giant negentropy mechanism, 725–726

symmetry conservation, 741–742

source charge concept, 659–660

Free evolution, chaos analysis, second-harmonic

generation chaos, 361–364

Free space potentials, O(3) electrodynamics,

magneto-optic effects, 131–146

Free system regauging, vacuum energy,

motionless electromagnetic generator

(MEG), 738

work-energy theorem, 706–707

Frénet trihedron vectors, topology and

electrodynamics, helicoidal fields,

568–570

Frequency shift, O(3) electrodynamics,

interferometry and optical effects,

122–125

Fresnel laws, electromagnetic theory, 4

Functional derivatives, non-Abelian Stokes

theorem, topological quantum field

theory, 466

Galileo group, Yang-Mills equations, linear

invariant ansatzes, 278–283

Gamma matrices:

O(3) electrodynamics, magneto-optic effects,

136–146

Yang-Mills equations, linear invariant

ansatzes, 282–283

Gauge field theory:

electromagnetic theory derivation, 12

higher-symmetry electrodynamics, topology,

79–85

non-Abelian Stokes theorem and, 430

O(3) electrodynamics:

complex circular basis, 105–109

electrostatic laws, 112–113

fiber bundle theory, 85–92

gauge freedom and Lagrangian, 240–250

interferometry and optical effects, 114–125

magneto-optic effects, 126–146

Noether charges, vacuum current, 163–172

quantum electrodynamics (QED)

corrections, 154–160

SU(2) � SU(2) electroweak theory,

209–217

Whittaker scalar potential, 176–189

Sachs electrodynamics and, 486–487

source charge concept, 657

U(1) electrodynamics refutation, 94–102

Gauge invariance, quantum electrodynamics

(QED):

electric dipole potentials, 621–622

toroidal antenna equivalent dipole,

626–627

electromagnetic fields and potentials,

612–614

integrated closed path magnetic field

measurement, 627–628

Lorenz vector potential, 623–626

magnetic flux quantization, superconducting

path, 628–629

quantum mechanics and potentials, 614–618

toroidal antenna:

electric dipole equivalence, 626–627

properties, 631–636

two-antenna experiments, future applications,

630–631

zero electric and magnetic fields, 618–619

Gaussian approximation, quantum chaos:

Kerr oscillators, 414–415

second-harmonic generation (SHG), 418–421

Gaussian equations:

causal models:

de Broglie theory, 509

nonlinear quantum physics, 512–514

Heisenberg-Bohr indeterminacy and,

535–537

O(3) electrodynamics:

complex circular basis, 105–109

computational preparations, 200–204

electrostatic laws, 112–113

relativistic helicity, 226–240

topology and electrodynamics, helicity,

586–588

uncertainty relations, 539–540
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Gaussian functional integral, non-Abelian

Stokes theorem, two-dimensional Yang-

Mills theory, 461–464

Generating function:

axisymmetric wave modes, nonzero EMS

field divergence, 32–33

electromagnetic theory, steady equilibria,

17–19

Geometric tensor theory, O(3) electrodynamics,

relativistic helicity, 218–240

Giant negentropy mechanism, vacuum energy

extraction:

dipole reexamination, 647–653

isolated space charge, 683–688

motionless electromagnetic generator (MEG):

application of, 724–726

curtailed electrodynamics, 705

dual pingponging interactions, 729–730

figures and system operation, 746–767

regauging with, 728

replenishment through, 727–728

summary of applications, 732

time flow mechanism, 737–738

vector potential energy, 708–710

source charge concept, 662

theoretical background, 642

G-invariant ansatz, Yang-Mills equations, linear

invariant ansatzes, 281–283

Goos-Hänchen effect:

electromagnetic theory, 4

nonzero rest mass, photon models, 46

Gram-Schmidt reorthonormalization, chaos

analysis, second-harmonic generation

chaos, 361

Grand unified field theory, O(3)

electrodynamics, SU(2) � SU(2)

electroweak theory, 216–217

Grassmann parity, non-Abelian Stokes theorem,

holomorphic approach, 455–456

Gravitational theory:

instantaneous long-range interaction, 52

O(3) electrodynamics:

Noether charges, vacuum energy,

171–172

SU(2) � SU(2) electroweak theory,

216–217

Sachs/O(3) electrodynamics, vacuum energy,

480–481

vacuum energy extraction, dark matter

gravitational energy, 680–682

Green’s function, topology and electrodynamics:

Hansen decomposition:

Cartesian coordinates, 579–581

cylindrical coordinates, 581–583

Helmholtz theorem, spacetime integral

solution, 565

Group theory:

higher-symmetry electrodynamics, topology,

79–85

non-Abelian Stokes theorem, coherent-state

approach, 443–445

Gupta-Bleuler technique, vacuum energy,

electromagnetic extraction, dipole

reexamination, 647–649

G waves, O(3) electrodynamics, Whittaker

scalar potential, 184–189

Haken laser model, chaos and instability,

355–356

Half-integral spin, O(3) electrodynamics,

magneto-optic effects, 137–146

Hamilton-Jacobi equation:

causal models, nonlinear quantum mechanics,

510–514

O(3) electrodynamics, magneto-optic effects,

128–146

Hansen decomposition, topology and

electrodynamics:

Beltrami field, 576–578

Cartesian coordinates, 579–581

cylindrical coordinates, 581–583

Harmonic oscillator, Kerr oscillator chaos,

385–386

Harmonic plane waves, causal model of

quantum physics, de Broglie theory,

508–509

Harmuth equations, O(3) electrodynamics,

computational preparations, 196–204

Heaviside component, vacuum energy

extraction:

Bohren’s experiment, 679–680

coefficient of performance (COP), 671–678

dark matter gravitational energy, 681–682

motionless electromagnetic generator (MEG),

720–721

figures and system operation, 745–768

negative resistor function, source dipole, 664

nondiverged Heaviside component, 664

source research, 665–666

theoretical background, 641–643
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Heaviside-Larmor-Rainich group:

Maxwell’s equations, symmetry reduction,

333–335

Yang-Mills equations, symmetry research,

274

Heisenberg uncertainty principle:

light beams, individual photons, 56–61

limitless expansion, matter wavepackets, 546

noncausal quantum physics, 504

O(3) electrodynamics, quantum

electrodynamics (QED) corrections,

155–160

quantum physics, research background,

534–537

Helicity:

O(3) electrodynamics, 217–240

Sachs/O(3) electrodynamics, Rañada-Trueba

topology linked to, 496–498

topology and electrodynamics, 584–588

temporal derivation, 588–593

topology in electrodynamics, research

background, 558

Helicoidal fields, topology and electrodynamics,

research background, 567–570

Helmholtz theorem:

O(3) electrodynamics, Beltrami vector fields,

255–257

topology and electrodynamics, 558–566

Aharonov-Bohm effect, 599–608

Fourier analysis, 561–563

Hansen decomposition, Beltrami fields,

578

helicity, temporal derivation, 590–593

integral spatial solution, 560–561

Maxwell-Ferrier equations, 565–566

spacetime integral solution, 563–565

Hertz potential:

quantum electrodynamics (QED), 613–614

single-charge electromagnetic theory, 15

Higgs mechanism:

O(3) electrodynamics:

Beltrami vector fields, 256–257

gauge freedom, 243–250

SU(2) � SU(2) electroweak theory, O(3)

electrodynamics, 204–217

Higher-dimensional forms, non-Abelian Stokes

theorem, 459

Higher-symmetry electrodynamics:

O(3) electrodynamics:

Noether charges, vacuum energy, 171–172

quantum electrodynamics (QED)

corrections, 156–160

topology of, 79–85

U(1) electrodynamics refutation, 94–102

Hilbert’s theorem, vacuum energy extraction,

Heaviside component, 665–666

Hodge dual-star operator, O(3) electrodynamics,

quantum electrodynamics (QED)

corrections, 147–160

Holomorphic approach, non-Abelian Stokes

theorem, 448–455

path integral, 450–452

quantum mechanics, 448–449

Holonomy difference:

non-Abelian Stokes theorem:

operator formalism, 435–443

Wilson loop and, 433–435

O(3) electrodynamics, interferometry and

optical effects, 120–125

Homogeneous EMS waves, vacuum interface,

27–28

Homogeneous field equation, O(3)

electrodynamics, complex circular basis,

103–109

Homogeneously broadened line (HBL), laser

chaos, 355–356

Hubble constant, wavepacket autoreduction,

tired-light model, 531–534

Hyperchaotic behavior:

Kerr oscillator chaos:

linear dynamic coupling, beat structure,

399–401

nonlinear dynamic coupling, 405–406

second-harmonic generation chaos:

modulated external field, 372–374

pulsed external field, 375–382

Hypercharge formula, O(3) electrodynamics,

SU(2) � SU(2) electroweak theory, 205–

217

Hypersurface integration, O(3) electrodynamics,

relativistic helicity, 220–240

Hysteresis cycle, second-harmonic generation

chaos, 364–368

Incoherent detection, quantum wave testing,

de Broglie wavefunction experiments,

520–528

Indefiniteness, vacuum energy extraction,

motionless electromagnetic generator

(MEG), 721–724
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Inhomogeneous EM waves:

O(3) electrodynamics, Cartesian indices,

111–113

vacuum interface, 27–28

Inhomogeneously broadened line (IBL), laser

chaos and instability, 355–356

Initial conditions, wave/particle representation,

60–61

Integrable systems, Yang-Mills equations,

research background, 273–274

Integral spatial solution, topology and

electrodynamics:

helicity, 586–588

Helmholtz theorem, 560–561

spacetime continuum, 563–565

Integrated field quantities:

axisymmetric wave modes, 37–44

angular momentum, 42–43

charge and magnetic moment,

38–39

mass, 39–41

momentum and energy balance,

41–42

quantum conditions, 43–44

electron models, charged-particle state,

68–69

Integrated mass, axisymmetric wave modes,

39–41

Intensely scattering optically active media

(ISOAM), vacuum energy extraction,

coefficient of performance (COP),

671–672

Intensity portraits, quantum chaos, second-

harmonic generation (SHG), 421

Interacting Kerr oscillators, chaos analysis:

linearly coupled dynamics, 388–396

nonlinear coupled dynamics, 404–406

Interferometry:

O(3) electrodynamics:

related optical effects, 113–125

Whittaker scalar potential, 172–189,

184–189

topology and electrodynamics, Aharonov-

Bohm effect, 603–608

Internal gauge space, O(3) electrodynamics:

Cartesian indices, 110–113

complex circular basis, 103–109

In vacuo field equations:

axisymmetric wave modes, vanishing field

divergence, 31

electromagnetic theory, space-charge current

density, 6–8

Invariance properties:

Maxwell’s equation ansatzes, 335–339

Yang-Mills equations:

ansatz exact solutions, 305–309

conformally invariant ansatzes:

C(1,3)-invariant ansatzes, 298–301

construction principles, 286–301

linear form, 275–283

Poincaré-invariant ansatzes,

292–298

subalgebras of c(1,3) of rank 3,

283–286

symmetry research, 274

Inverse Faraday effect (IFE), O(3)

electrodynamics, magneto-optic effects,

125–146

Irreducible surfaces, topology and

electrodynamics, 584

Isolated charge, vacuum energy extraction,

negentropy, 683–688

Isospin indices, O(3) electrodynamics, SU(2) �
SU(2) electroweak theory, 209–217

Iterative mutual interactions:

vacuum energy extraction, motionless

electromagnetic generator (MEG),

710–711

applications, 768–773

figures and system operation, 756–768

pingpong iterative change, 712–714

Jackson’s notation, O(3) electrodynamics,

quantum electrodynamics (QED)

corrections, 157–160

Jacobi elliptic functions, Yang-Mills equations,

exact solutions, 323–324

Jacobi identity:

O(3) electrodynamics:

complex circular basis, 103–109

computational preparations, 189–204

fiber bundle theory, 85–92

magnetic monopole absence, 262–264

quantum electrodynamics (QED)

corrections, 159–160

relativistic helicity, 230–240

Sachs/O(3) electrodynamics, curvature tensor,

481–483

Jacobi matrices, chaos analysis, second-

harmonic generation chaos, 361
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Jaynes-Cummings model, chaos in,

357–358

Kerr oscillators:

chaos analysis, 383–409

basic equations, 384–386

linearly coupled dynamics, 386–403

chaotic beats, 399–401

frequency parameters, 401–403

interacting oscillators, 388–395

noninteracting oscillators, 387–389

synchronization, 395–399

nonlinearly coupled dynamics, 403–409

coupling constants and damping

parameters, 406–409

interacting oscillators, 404–406

noninteracting oscillators, 404

nonlinear optics, 357–358

quantum chaos, 410–415

research background, 383–384

quantum chaos in, 410–415

‘‘Kicked’’ dynamics, quantum chaos, 410

Klein-Gordon equation, O(3) electrodynamics,

Whittaker scalar potential, 177–189

Knot theory:

non-Abelian Stokes theorem:

three-dimensional topological quantum

field theory, 464–466

topology, 456–459

O(3) electrodynamics, relativistic helicity,

240

Rañada-Trueba topology, Sachs/O(3)

electrodynamics linked to, 495–498

topology in electrodynamics, research

background, 558

Kronecker deltas, non-Abelian Stokes theorem,

two-dimensional Yang-Mills theory,

463–464

Laboratory frame, axisymmetric wave modes,

nonzero EMS field divergence, 31–33

Lagrangian equation:

electron models, quantized charge

equilibrium, 73–74

O(3) electrodynamics:

gauge freedom and, 240–250

quantum electrodynamics (QED)

corrections, 152–160

SU(2) � SU(2) electroweak theory,

205–217

Whittaker scalar potential, 179–189

quantum electrodynamics (QED), potentials

and quantum mechanics, 618

Yang-Mills equations, research background,

271–274

Lamb shift:

O(3) electrodynamics:

magneto-optic effects, 145–146

quantum electrodynamics (QED)

corrections, 147–160

Sachs/O(3) electrodynamics, vacuum energy,

477–481

Laplace equations, O(3) electrodynamics,

Whittaker scalar potential, 172–189

Laplace transform, quantum electrodynamics

(QED), electromagnetic fields and

potentials, 614–614

Lasers, chaos in, 354–356

Lax representation, Yang-Mills equations,

research background, 272–274

Least-action principle, quantum

electrodynamics (QED), potentials and

quantum mechanics, 618

Lehnert equations:

O(3) electrodynamics:

complex circular basis, 105–109

computational preparations, 193–204

Noether charges, vacuum current, 162–172

relativistic helicity, 222–240

Sachs/O(3) electrodynamics:

quaternion metrics, 491–493

vacuum energy, 479–481

Lenz law effect, vacuum energy extraction:

coefficient of performance (COP), 675–676

motionless electromagnetic generator (MEG),

745

figures and system operation, 753–768

LEP data, O(3) electrodynamics, SU(2) � SU(2)

electroweak theory, 216–217

Lepton models:

electromagnetic theory, particle-shaped states,

18–19

O(3) electrodynamics, SU(2) � SU(2)

electroweak theory, 210–217

Lie algebra:

Maxwell’s equations, symmetry reduction,

333–335

non-Abelian Stokes theorem, 433–435

coherent-state approach, 444–448

operator formalism, 435–443
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paths calculus, 436–437

O(3) electrodynamics:

relativistic helicity, 231–240

SU(2) � SU(2) electroweak theory, 217

Yang-Mills equations:

ansatz exact solutions, 306–309

conditional symmetry, 325–332

linear invariant ansatzes, 275–283

research background, 271–274

symmetry properties, 303–305

Lienard-Wiechert potentials:

electromagnetic theory, 4–5

superluminosity, 53–54

instantaneous long-range interaction,

electromagnetic case, 51–52

Light beam wave and particle concepts,

electromagnetic theory, 55–61

beam representation conditions, 60–61

energy flux preservation, 59–60

individual photon, 55–56

wavepacket broad beam density, 57–59

longitudinal field overlap, 58

transverse field overlap, 58–59

Light condenser, uncertainty relations

validation, photon ring model,

542–544

Light scattering, chaos in, 358

Limit cycle, noninteracting Kerr oscillator

chaos, linearly coupled dynamics,

387–389

Limitless expansion, uncertainty relations

validation, matter wavepackets,

544–547

Linear invariant ansatzes, Yang-Mills equations,

275–283

Linearly coupled dynamics, Kerr oscillator

chaos analysis, 386–403

chaotic beats, 399–401

frequency parameters, 401–403

interacting oscillators, 388–395

noninteracting oscillators, 387–389

synchronization, 395–399

Liouville equation, quantum chaos, Kerr

oscillators, 412–415

Local energy density, electromagnetic theory,

basic equations, 10–11

Local gauge transformation, O(3)

electrodynamics, quantum

electrodynamics (QED) corrections,

153–160

London equation, O(3) electrodynamics,

Beltrami vector fields, 256–257

Longitudinal electromagnetic wave (LEMW),

vacuum energy extraction:

causal system robots (CSRs), 685–687

decomposition waves, 734

dipole reexamination, 647–649

imperfect waves, 654–655

motionless electromagnetic generator (MEG),

700

Longitudinal field:

light beam wavepackets, 58

O(3) electrodynamics:

SU(2) � SU(2) electroweak theory, 209–

217

Whittaker scalar potential, 174–189

photon models, 47–48

topology and electrodynamics, Helmholtz

theorem, 558–560

Long-range interaction:

electromagnetic theory, instantaneous

interaction, 50–52

gravitational case, 52

Loop circuits:

quantum electrodynamics (QED):

Lorenz vector potential, 623–626

superconducting path, magnetic flux

quantization, 628–629

topology and electrodynamics, 583

helicity, 585–588

vacuum energy extraction:

closed current loop, 666–667

motionless electromagnetic generator

(MEG), 740

multipower open loop chain, 676

Lorentz equations:

laser chaos and, 355–356

Maxwell-Heaviside equation, 4-vector

elements, 259–261

Sachs/O(3) electrodynamics, vacuum energy,

479–481

topology and electrodynamics, Aharonov-

Bohm effect, 602–608

vacuum energy extraction:

motionless electromagnetic generator

(MEG), 720–721

figures and system operation, 750–768

nondiverged Heaviside component,

664–666

Yang-Mills equation:
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Lorentz equations: (Continued)

ansatz exact solutions, 306–309

linear invariant ansatzes, 279–283

symmetry properties, 303–305

Lorentz symmetric regauging:

vacuum energy extraction, 643–647

equal and opposite regauging, 643–646

motionless electromagnetic generator

(MEG):

curtailed electrodynamics model,

704–705

developmental history, 702–703

power system design, 668–669

theoretical background, 642–643

violation of, 646–647

Lorenz equations:

axisymmetric wave modes:

nonzero EMS field divergence, 32–34

wavepackets, 36–37

electromagnetic theory:

basic equations, 6–8, 62–63

research background, 3

higher-symmetry electrodynamics, 85

O(3) electrodynamics:

computational preparations, 197–204

fiber bundle theory, 87–92

gauge freedom and, 241–250

interferometry and optical effects, 119–125

quantum electrodynamics (QED)

corrections, 157–160

relativistic helicity, 218–240

Whittaker scalar potential, 174–189

quantum electrodynamics (QED):

electrical dipole potentials, 621–622

static potentials, 620

zero electromagnetic fields, 619

vacuum energy, motionless electromagnetic

generator (MEG), 703

Lorenz gauge, quantum electrodynamics (QED):

electric dipole potential/toroidal antenna

potential comparisons, 626–627

vector potential without scalar potential,

623–626

Lorenz potentials, quantum electrodynamics

(QED), electromagnetic fields and

potentials, 613–614

Loss mechanisms, Kerr oscillator chaos analysis,

linearly coupled dynamics, 386–387

Lyapunov exponents:

chaos analysis:

Kerr oscillators:

beat structure, 399–401

linearly coupled dynamics:

interacting oscillators, 388–396

noninteracting oscillators, 387–390

nonlinearly coupled dynamics, 404–409

second-harmonic generation chaos, 361

modulated external field, 368–374

quantum chaos, second-harmonic generation

(SHG), 417–421

Mach-Zehnder interferometer:

theta waves, tired-light model, 532–534

wavefunction collapse, 523–528

Macroscopic quantum effects, nonzero rest

mass, photon models, 45–46

Magnetic dipole moment:

O(3) electrodynamics, magneto-optic effects,

131–146

vacuum energy extraction, motionless

electromagnetic generator (MEG),

708–710

Magnetic energy wind, vacuum energy

extraction, motionless electromagnetic

generator (MEG), 709–711

Magnetic field measurement, quantum

electrodynamics (QED), closed path

integration, 627–628

Magnetic flux quantization:

electromagnetic theory, quantum mechanics,

11–12

electron models:

extremum of electric charge, 72–73

quantized charge equilibrium, 70–71

O(3) electrodynamics:

magneto-optic effects, 127–146

Whittaker scalar potential, 172–189

quantum electrodynamics (QED),

superconducting path, 628–629

vacuum energy extraction, motionless

electromagnetic generator (MEG),

732–733

Magnetic moment:

axisymmetric wave modes, integrated field

quantities, 38–39

electromagnetic theory, quantum mechanics,

11–12

electron models, quantized charge

equilibrium, 69–70

Magnetic monopole:
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electromagnetic theory, 8

O(3) electrodynamics:

absence in, 261–264

complex circular basis, 105–109

interferometry and optical effects, 122–125

relativistic helicity, 230–240

Magnetic resonance imaging (MRI), O(3)

electrodynamics, magneto-optic effects,

130–146

Magnetic vector potential, vacuum energy

extraction, motionless electromagnetic

generator (MEG), 765–767

Magneto-optic effects, O(3) electrodynamics,

125–146

Magnus force, O(3) electrodynamics, Beltrami

vector fields, 250–257

Massless photons, O(3) electrodynamics,

Whittaker scalar potential, 187–189

Matter waves:

O(3) electrodynamics, interferometry and

optical effects, 117–125

uncertainty relations validation, limitless

expansion, 544–547

Maximal Lyapunov exponent (MLE):

chaos analysis:

Kerr oscillators:

linearly coupled dynamics, interacting

oscillators, 390–396

nonlinearly coupled dynamics, 404–406

second-harmonic generation chaos, 361

modulated external field, 368–374

pulsed external field, 374–376, 382

quantum chaos:

Kerr oscillators, 414–415

research background, 410

second-harmonic generation (SHG),

418–421

Maxwell-Bloch equations, chaos:

in lasers, 355–356

nonlinear optics, 357–358

Maxwell Demon system, vacuum energy

extraction, coefficient of performance

(COP), 677

Maxwell-Ferrier equations, topology and

electrodynamics, Helmholtz theorem,

565–566

Maxwell-Heaviside equations:

4-vector elements, 259–261

higher-symmetry electrodynamics, 80–85

O(3) electrodynamics:

Beltrami vector fields, 250–257

complex circular basis, 103–109

computational preparations, 200–204

fiber bundle theory, 86–92

gauge freedom, 242–250

interferometry and optical effects, 115–125

Lagrangian gauge noninvariant, 240–250

magneto-optic effects, 128–146

Noether charges, vacuum current, 161–172

quantum electrodynamics (QED)

corrections, 157–160

relativistic helicity, 224–240

Sachs/O(3) electrodynamics:

non-Abelian field tensors, 470–474

Rañada-Trueba topology linked to,

496–498

vacuum energy, 478–481

U(1) electrodynamics refutation, 92–103

vacuum energy:

Bohren energy experiment, 679–680

Lorentz symmetric regauging, 644–647

motionless electromagnetic generator

(MEG), developmental history, 702–703

Maxwell’s equations:

chaos, second-harmonic generation (SHG),

358–359

conformally invariant ansatzes, 335–339

electromagnetic theory:

basic equations, 5–8

energy density, 9–11

momentum and energy balance, 8–9

nonzero conductivity, 14–15

research background, 3

single-charge theory, 15

unsolved problems, 3–5

exact solutions, 339–348

gauge field theory, 270–274

O(3) electrodynamics:

gauge freedom, 248–250

Noether charges, vacuum energy, 160–172

relativistic helicity, 239–240

Whittaker scalar potential, 172–189

quantum electrodynamics (QED),

electromagnetic fields and potentials,
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