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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.
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PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the
series, Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume
119 is largely a dialogue between two schools of thought, one school concerned
with quantum optics and Abelian electrodynamics, the other with the emerging
subject of non-Abelian electrodynamics and unified field theory. In one of the
review articles in the third part of this volume, the Royal Swedish Academy
endorses the complete works of Jean-Pierre Vigier, works that represent a view
of quantum mechanics opposite that proposed by the Copenhagen School. The
formal structure of quantum mechanics is derived as a linear approximation for
a generally covariant field theory of inertia by Sachs, as reviewed in his article.
This also opposes the Copenhagen interpretation. Another review provides
reproducible and repeatable empirical evidence to show that the Heisenberg
uncertainty principle can be violated. Several of the reviews in Part 1 contain
developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories
distinct from the Maxwell-Heaviside theory, the predominant paradigm at this
stage in the development of science. Other review articles develop electro-
dynamics from a topological basis, and other articles develop conventional or
U(1) electrodynamics in the fields of antenna theory and holography. There are
also articles on the possibility of extracting electromagnetic energy from
Riemannian spacetime, on superluminal effects in electrodynamics, and on
unified field theory based on an SU(2) sector for electrodynamics rather than a
U(1) sector, which is based on the Maxwell-Heaviside theory. Several effects
that cannot be explained by the Maxwell-Heaviside theory are developed using
various proposals for a higher-symmetry electrodynamical theory. The volume
is therefore typical of the second stage of a paradigm shift, where the prevailing
paradigm has been challenged and various new theories are being proposed. In
this case the prevailing paradigm is the great Maxwell-Heaviside theory and its
quantization. Both schools of thought are represented approximately to the same
extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of
opinion is represented so that a consensus will eventually emerge. The
prevailing paradigm (Maxwell-Heaviside theory) is ably developed by several
groups in the field of quantum optics, antenna theory, holography, and so on, but
the paradigm is also challenged in several ways: for example, using general
relativity, using O(3) electrodynamics, using superluminal effects, using an
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X PREFACE

extended electrodynamics based on a vacuum current, using the fact that
longitudinal waves may appear in vacuo on the U(1) level, using a reproducible
and repeatable device, known as the motionless electromagnetic generator,
which extracts electromagnetic energy from Riemannian spacetime, and in
several other ways. There is also a review on new energy sources. Unlike
Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and
many thousands of papers are reviewed by both schools of thought. Much of the
evidence for challenging the prevailing paradigm is based on empirical data,
data that are reproducible and repeatable and cannot be explained by the Max-
well-Heaviside theory. Perhaps the simplest, and therefore the most powerful,
challenge to the prevailing paradigm is that it cannot explain interferometric and
simple optical effects. A non-Abelian theory with a Yang-Mills structure is
proposed in Part 2 to explain these effects. This theory is known as O(3)
electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous
logistical support and to the Fellows and Emeriti of the Alpha Foundation’s
Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at
the U.S. Department of Energy is thanked for a Website reserved for some of
this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MyRrRoN W. EvaNs

Ithaca, New York
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I. INTRODUCTION

Conventional electromagnetic field theory based on Maxwell’s equations and
quantum mechanics has been very successful in its application to numerous
problems in physics, and has sometimes manifested itself in an extremely good
agreement with experimental results. Nevertheless, in certain areas these joint
theories do not seem to provide fully adequate descriptions of physical reality.
Thus there are unsolved problems leading to difficulties with Maxwell’s
equations that are not removed by and not directly associated with quantum
mechanics [1,2].

Because of these circumstances, a number of modified and new approaches
have been elaborated since the late twentieth century. Among the reviews and
conference proceedings describing this development, those by Lakhtakia [3],
Barrett and Grimes [4], Evans and Vigier [5], Evans et al. [6,7], Hunter et al. [§],
and Dvoeglazov [9] can be mentioned here. The purpose of these approaches
can be considered as twofold:

e To contribute to the understanding of so far unsolved problems
e To predict new features of the electromagnetic field

The present chapter is devoted mainly to one of these new theories, in
particular to its possible applications to photon physics and optics. This theory
is based on the hypothesis of a nonzero divergence of the electric field in vacuo,
in combination with the condition of Lorentz invariance. The nonzero electric
field divergence, with an associated “‘space-charge current density,” introduces
an extra degree of freedom that leads to new possible states of the electro-
magnetic field. This concept originated from some ideas by the author in the late
1960s, the first of which was published in a series of separate papers [10,12],
and later in more complete forms and in reviews [13-20].

As a first step, the treatment in this chapter is limited to electromagnetic field
theory in orthogonal coordinate systems. Subsequent steps would include more
advanced tensor representations and a complete quantization of the extended
field equations.

II. UNSOLVED PROBLEMS IN CONVENTIONAL
ELECTROMAGNETIC THEORY

The failure of standard electromagnetic theory based on Maxwell’s equations
is illustrated in numerous cases. Here the following examples can be given.
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. Light appears to be made of waves and simultaneously of particles. In
conventional theory the individual photon is on one hand conceived to be
a massless particle, still having an angular momentum, and is on the
other hand regarded as a wave having the frequency v and the energy hv,
whereas the angular momentum is independent of the frequency. This
dualism of the wave and particle concepts is so far not fully
understandable in terms of conventional theory [5].

. The photon can sometimes be considered as a plane wave, but some
experiments also indicate that it can behave like a bullet. In
investigations on interference patterns created by individual photons
on a screen [21], the impinging photons produce dot-like marks on the
latter, such as those made by needle-shaped objects.

. In attempts to develop conventional electrodynamic models of the
individual photon, it is difficult to finding axisymmetric solutions that
both converge at the photon center and vanish at infinity. This was
already realized by Thomson [22] and later by other investigators [23].

. During the process of total reflection at a vacuum boundary, the reflected
beam has been observed to be subject to a parallel displacement with
respect to the incident beam. For this so-called Goos—Hinchen effect,
the displacement was further found to have a maximum for parallel
polarization of the incident electric field, and a minimum for perpen-
dicular polarization [24,25]. At an arbitrary polarization angle, however,
the displacement does not acquire an intermediate value, but splits into
the two values for parallel and perpendicular polarization. This
behaviour cannot be explained by conventional electromagnetic theory.
. The Fresnel laws of reflection and refraction of light in nondissipative
media have been known for over 180 years. However, these laws do not
apply to the total reflection of an incident wave at the boundary between
a dissipative medium and a vacuum region [26].

. In a rotating interferometer, fringe shifts have been observed be-
tween light beams that propagate parallel and antiparallel with the
direction of rotation [4]. This Sagnac effect requires an unconventional
explanation.

. Electromagnetic wave phenomena and the related photon concept
remain somewhat of an enigma in more than one respect. Thus, the latter
concept should in principle apply to wavelengths ranging from about
10~ m of gamma radiation to about 10> m of long radiowaves. This
leads to an as yet not fully conceivable transition from a beam of
individual photons to a nearly plane electromagnetic wave.

. As the only explicit time-dependent solution of Cauchy’s problem, the
Lienard—Wiechert potentials are claimed be inadequate for describing
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the entire electromagnetic field [2]. With these potentials only, the
implicitly time-independent part of the field is then missing, namely, the
part that is responsible for the interparticle long-range Coulomb
interaction. This question may need further analysis.

9. There are a number of observations which seem to indicate that
superluminal phenomena are likely to exist [27]. Examples are given by
the concept of negative square-mass neutrinos, fast galactic miniquasar
expansion, photons tunneling through a barrier at speeds greater than c,
and the propagation of so called X-shaped waves. These phenomena
cannot be explained in terms of the purely transverse waves resulting
from Maxwell’s equations, and they require a longitudinal wave
component to be present in the vacuum [28].

10. A photon gas cannot have changes of state that are adiabatic and isother-
mal at the same time, according to certain studies on the distribution
laws for this gas. To eliminate such a discrepancy, longitudinal modes,
which do not exist in conventional theory, must be present [29,30].

11. Itis not possible for conventional electromagnetic models of the electron
to explain the observed property of a ‘“point charge’” with an excessively
small radial dimension [20]. Nor does the divergence in self-energy of a
point charge vanish in quantum field theory where the process of
renormalization has been applied to solve the problem.

III. BASIS OF PRESENT APPROACH

The present modified form of Maxwell’s equations in vacuo is based on two
mutually independent hypotheses:

e The divergence of the electric field may differ from zero, and a
corresponding ‘‘space-charge current” may exist in vacuo. This concept
should not become less conceivable than the earlier one regarding
introduction of the displacement current, which implies that a nonvanish-
ing curl of the magnetic field and a corresponding current density can exist
in vacuo. Both these concepts can be regarded as intrinsic properties of the
electromagnetic field. The nonzero electric field divergence can thereby be
interpreted as a polarization of the vacuum ground state [13] which has a
nonzero energy as predicted by quantum physics [5], as confirmed by the
existence of the Casimir effect. That electric polarization can occur out of
a neutral state is also illustrated by electron—positron pair formation from a
photon [18].

e This extended form of the field equations should remain Lorentz-invariant.
Physical experience supports such a statement, as long as there are no
results that conflict with it.
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A. Formulation in Terms of Electromagnetic Field Theory

1. Basic Equations

On the basis of these two hypotheses the extended field equations in vacuo
become

B . san
1= = 1
cur ™ j+ 2 (1)
—0B
1E = —— 2
cur o (2)
i=pC 3)

in SI units. Here B and E are the magnetic and electric fields, j is the current
density, and p the charge density arising from a nonzero electric field divergence
in vacuo. As a consequence of the divergence of equations (1) and (2),

p

divE = — (4)
€0
divB=0 B =curl A (5)
and
0A
E=-Vé— o 6
Vo (©

The space-charge current density in vacuo expressed by Egs. (3) and (4)
constitutes the essential part of the present extended theory. To specify the thus
far undetermined velocity C, we follow the classical method of recasting
Maxwell’s equations into a four-dimensional representation. The divergence
of Eq. (1) can, in combination with Eq. (4), be expressed in terms of a four-
dimensional operator, where (j, icp) thus becomes a 4-vector. The potentials A
and ¢ are derived from the sources j and p, which yield

REEIE
(8. %) = o icp) = woplC. i) = ()

when being combined with the condition of the Lorentz gauge. The Lorentz
condition is further discussed in Appendix A.
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It should be observed that Eq. (7) is of a “Proca type,” here being due to
generation of a space-charge density p in vacuo (free space). Such an equation
can describe a particle with the spin value unity [31].

Returning to the form (3) of the space-charge current density, and observing
that (j, icp) is a 4-vector, the Lorentz invariance thus leads to

7 —c*pt =p*(C* = c?) = const =0 Cct=¢2 (8)

where j> = j* and C? = C2. The constant in this relation has to vanish because it
should be universal to any inertial frame, and because the charge density varies
from frame to frame. This result is further reconcilable with the relevant
condition that the current density j of Eq. (3) should vanish in absence of the
space-charge density p. In this way Eqgs. (1)—(6) and (8) provide an extended
Lorentz invariant form of Maxwell’s equations that includes all earlier treated
electromagnetic phenomena but also contains new classes of time-dependent
and steady solutions, as illustrated later.

Concerning the velocity field C, the following general features can now be
specified:

e The vector C is time-independent.

e The direction of the unit vector of C depends on the geometry of the
particular configuration to be analyzed, as is also the case for the unit
vector of the current density j in any configuration treated in terms of
conventional electromagnetic theory. As will be shown later, the direction
of C thus depends on the necessary boundary conditions.

e Both curlC and divC can differ form zero, but here we restrict
ourselves to

divC =0 9)

We finally observe that a combination of Egs. (1) and (4) leads to the classical
relation
divie _ 2P 10
ivj=-2 (10)
of the 4-vector (j, icp).

The introduction of the current density (3) in 3-space is, in fact, less intuitive
than what could appear at first glance. As soon as the charge density (4) is
permitted to exist as the result of a nonzero electric field divergence, the Lorentz
invariance of a 4-current (7) with the time part icp namely requires the
associated space part to adopt the form (3), that is, by necessity.

The degree of freedom introduced by a nonzero electric field divergence

leads both to new features of the electromagnetic field and to the possibility of
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satisfying boundary conditions in cases where this would not become possible
in conventional theory.

In connection with the basic ideas of the present approach, the question may
be raised as to why only div E, and not also divB, is permitted to be nonzero.
This issue can be considered to be both physical and somewhat philosophical.
Here we should remember that the electric field is associated with an equivalent
“charge density” p considered as a source, whereas the magnetic field has its
source in the current density j. The electric field lines can thereby be “‘cut off™
by ending at a corresponding ‘“charge,” whereas the magnetic field lines
generated by a line element of the current density are circulating around the
same element. From the conceptual point of view it thus appears more difficult
to imagine how these circulating magnetic field lines could be cut off to form
magnetic poles by assuming div B to be nonzero, than to have electric field lines
ending on charges with a nonzero div E.

Some investigators have included magnetic monopoles in extended theories
[32,33], also from the quantum-theoretic point of view [20]. According to Dirac
[34], the magnetic monopole concept is an open question. In this connection it
should finally be mentioned that attempts have been made to construct theories
based on general relativity where gravitation and electromagnetism are derived
from geometry, as well as theories including both a massive photon and a Dirac
monopole [20].

2. The Momentum and Energy Balance

We now turn to the momentum and energy balance of the electromagnetic field.
In analogy with conventional deductions, Eq. (1) is multiplied vectorially by B
and Eq. (2), by gE. The sum of the resulting equations is then rearranged into
the local momentum balance equation

0
div2S:()(E+C><B)+soa(E><B) (11)

where 2S is the electromagnetic stress tensor [35] and Eq. (3) has been
employed. The integral form of Eq. (11) becomes

0
JZS-ndS:Fe+Fm+&Jng (12)

where dS and dV are surface and volume elements, respectively,

FE:J()EdV Fm:J()CdeV (13)



OPTICAL EFFECTS OF AN EXTENDED ELECTROMAGNETIC THEORY 9

are the electric and magnetic volume forces, and
B 1
g_aoExB_c—ZS (14)

can be interpreted as an electromagnetic momentum with S denoting the
Poynting vector. Here the component Sj of the tensor 28 is the momentum
that in unit time crosses in the j- direction for a unit element of surface whose
normal is oriented along the k axis [35]. The difference in the present results
(11) and (12) as compared to conventional theory is in the appearance of the
terms, which include the nonzero charge density p in vacuo.

In a similar way scalar multiplications of Eq. (1) by E and Eq. (2) by B/p,
yields, after subtraction of the resulting equations, the local energy balance
equation

—divS = —(i)div(E xB) = pE.c+1go 9 (E? + *B?) (15)

Ho 2 0t
This equation differs from that of the conventional Poynting theorem, due to the
existence of the term pE - C in vacuo. That there should arise a difference has
also been emphasized by Evans et al. [6] as well as by Chubykalo and Smirnov-
Rueda [2]. These investigators note that the Poynting vector in vacuo is only
defined in terms of transverse plane waves, that the case of a longitudinal
magnetic field B®) leads to a new form of the Poynting theorem, and that the
Poynting vector can be associated only with the free magnetic field. We shall
return to this question later, when considering axisymmetric wavepackets and
the photon interpreted as a particle with an associated pilot wave. It will also be
seen later in this context that F,, F,,, and the integral of pE - C can disappear in
the special case of axisymmetric wavepackets, and that pE - C disappears for
plane waves.

3. The Energy Density
The last term in Eq. (15) includes the local ““field energy density”

1 ) B2)
wr == | egE“ +— 16
) < Ho (16)

interpreted in terms of the electromagnetic field strengths E and B. An
alternative form [35], which at least holds for steady states and for waves
where the field quantities vary as exp (—io?) and have the same phases, is given
by the local “source energy density’’

1

wo=3 (00+JA) =5 p(6+CA) (1)

|
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interpreted in terms of the sources p and j, which generate the electromagnetic
field, and where the form (17) is a direct measure of the local work performed
on the electric charges and currents. The total field energy becomes

W:wadejwst (18)

provided it leads to surface integrals that vanish at infinity, and at the origin.
Thus, Eq. (18) does not hold when the field quantities become divergent at the
origin or at infinity.

In the present approach a physically relevant expression for the local energy
density is sometimes needed. In such a case we shall prefer the form (17) to that
of Eq. (16). Thus there are situations where the moment has to be taken of the
local energy density, with some space-dependent function f. Since wy and w;
represent entirely different spatial distributions of energy, it is then observed
that

fowdV £ |fowoav (19)
Jsomav#|

A further feature of physical interest is that the local energy density (17) can
become positive as well as negative in some regions of space, even if the total
energy W becomes positive as long as relation (18) holds. It is, however, not
clear at this stage whether the form (17) could open up a possibility of finding
negative energy states.

When considering the energy density of the form (17), it is sometimes
convenient to divide the electromagnetic field into two parts when dealing with
charge and current distributions that are limited to a region in space near the
origin. This implies that the potentials are written as

A:A3+Av d):(bs:(bv (20)

Here curl> A, # 0 and V2o, # 0 refer to the “source part” of the field that is
nonzero within such a limited region, whereas curl® A, = 0 and V3¢, = 0 refer
to the ‘““vacuum part” outside the same region [13,20], and the notation
curl> = curl curl is used henceforth. For a model of a charged particle such
as the electron, the potentials A, and ¢, would thus be connected with its long-
distance magnetic dipole field and electrostatic Coulomb field, respectively
[20]. The total energy becomes

1 1
W = 3 €0 J (A - curl? A, — $,V2d,) dV + 3 Jn - [*(A; x curl A,

— A, x curl Ay) + ¢, Vo, — b, V] dS (21)
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where S now stands for the bounding surfaces to be taken into account. There
are, in principle, two possibilities:

e When there is a single bounding surface S that can be extended to infinity
where the electromagnetic field vanishes, only the space-charge parts A;
and ¢, will contribute to the energy (21). This possibility is of special
interest in this context, which concentrates mainly on photon physics.

o When there is also an inner surface S; enclosing the origin and at which the
field diverges, special conditions have to be imposed for A; and ¢, to
represent a total energy, and for convergent integrated expressions still to
result from the analysis [13,20]. These conditions will apply to a model of
charged particle equilibrium states, such as those representing charged
leptons discussed in Section V.A and Appendix B.

B. Formulation in Terms of Quantum Mechanics

An adaptation of quantum mechanics implies that a number of constraints are
imposed on the system as follows.

e The energy is given in terms of the quantum Av, where v is the frequency.

e The angular momentum (spin) of a particle-like state becomes h/2x for a
boson and i /4r for a fermion.

e The magnetic moment of a charged particle, such as the electron, is
quantized according to the Dirac theory of the electron [36], including a
small modification according to Feynman [37], which results in an
excellent agreement with experiments. As based on a tentative model of
“self-confined” (bound) circulating radiation [11,13,20], the quantization
of energy and its alternative form mc? can also be shown to result in an
angular momentum equal to about //4mw, and a magnetic moment of the
magnitude obtained in the theory by Dirac. One way to obtain exact
agreement with the results by Dirac and Feynman is provided by different
spatial distributions of electric charge and energy density. This is possible
within the frame of the present theory [13,20]. However, it has also to be
observed that these results apply to an electron in an electromagnetic field,
and they could therefore differ from the result obtained for a free electron.

e With e as a given elementary electric charge, there is also a condition on
the quantization of magnetic flux. This could be reinterpreted as a subsi-
diary condition in an effort to quantize the electron charge and deduce its
absolute value by means of the present theory [13,18,20], but the details of
such an analysis are not yet available. Magnetic flux quantization is
discussed in further detail in Appendix B.

In a first step, these conditions can be imposed on the general solutions of the
present electromagnetic field equations. At a later stage the same equations
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should be quantized by the same procedure as that applied earlier in quantum
electrodynamics to Maxwell’s equations [39].

C. Derivation from Gauge Theory

It should finally be mentioned that the basic equations (1)—(8) have been derived
from gauge theory in the vacuum, using the concept of covariant derivative and
Feynman’s universal influence [38]. These equations and the Proca field
equations are shown to be interrelated to the well-known de Broglie theorem,
in which the photon rest mass mg can be interpreted as nonzero and be related to
a frequency V' = moc?/h. A gauge-invariant Proca equation is suggested by this
analysis and relations (1)—(8). It is also consistent with the earlier conclusion
that gauge invariance does not require the photon rest mass to be zero [20,38].

IV. MAIN CHARACTERISTICS OF MODIFIED
FIELD THEORIES

Before turning to the details of the present analysis, we describe and compare
the main features of some of the modified and extended theories that have been
proposed and elaborated on with the purpose of replacing Maxwell’s equations.
This description includes a Proca-type equation as a starting point. Introducing
the 4-potential A, = (A, i¢p/c) and the 4-current J,,, the latter equation can be
written as

OAL = 1oy (22)

A. Electron Theory by Dirac

According to the Dirac [36] electron theory, the relativistic wavefunction W
has four components in spin-space. With the Hermitian adjoint wave function
W, the quantum mechanical forms of the charge and current densities become
[31,40]

p=el V¥ (23)
and
j=ce(Voy¥)  i=1,2,3 (24)
where o; are the Dirac matrices of the three spatial directions (x,y,z). There is
more than one set of choices of these matrices [41].

Expressions (23) and (24) could be interpreted as the result of the electronic
charge being “‘smeared out” over the volume of an electron with a very small
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but nonzero radius. The 4-current of the right-hand side of equation (22) thus
becomes

Jy = ce(Woy 0, i0W) (25)
in this case.

B. Photon Theory by de Broglie, Vigier, and Evans

At an early stage Einstein [42] as well as Bass and Schrédinger [43] considered
the possibility for the photon to have a very small but nonzero rest mass my.
Later de Broglie and Vigier [44] and Evans and Vigier [5] derived a corre-
sponding form of the 4-current in the Proca-type equation (22) as given by

Qe e

As a consequence, the solutions of the field equations were also found to include
longitudinal fields. Thereby Evans [45] was the first to give attention to a
longitudinal magnetic field part, B®), of the photon in the direction of pro-
pagation.

C. Present Nonzero Electric Field Divergence Theory

The present approach of Eqs. (1)—(8) includes the four-current
Ju = p(C,ic) = g(divE)(C, ic) (27)

The solutions of the corresponding field equations have a wide area of appli-
cation. They can be integrated to yield such quantities as the electric charge of a
steady particle-like state, as well as a nonzero rest mass in a dynamic state
representing an individual photon that also includes longitudinal field compo-
nents in the direction of propagation. Thereby application of de Broglie’s
theorem for the photon rest mass links the concepts of expressions (26) and (27)
together, as well as those of the longitudinal magnetic fields. This point is
illuminated further in the following sections.

The present theory should be interpreted as microscopic in nature, in the
sense that it is based only on the electromagnetic field itself. This applies to both
free states of propagating wavefronts and the possible existence of bound steady
axisymmetric states in the form of self-confined circulating radiation. Con-
sequently, the extended theory does not need to include the concept of an initial
particle rest mass. The latter concept does not enter into the differential
equations of the electromagnetic field, simply because a rest mass should first
originate from a spatial integration of the electromagnetic energy density, such
as in a bound state [11-13].
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When further relating the present approach to Eqs. (23) and (24) of the Dirac
theory, we therefore have to consider wavefunctions that only represent states
without a rest mass. One functions of this special class is given by [40]

U

U = u(x,y,z) (28)

+U
0

where u is an arbitrary function and U a constant. This form yields a charge
density

p =2eUUuu (29)
and the corresponding current density components
Jo=cp; jx=0 and  j, =0 (30)

where a bar over U and u indicates the complex conjugate value. Other forms
analogous to the wavefunction (28) can be chosen to correspond to the cases

jy::tcl_): J:=jx=0 (31)
Jx= :EC[S; j_v =Jj.= 0 (32)

This result, as well as the form of expressions (23) and (24), shows that the
charge and current density relations (3), (4), and (8) of the present extended
theory become consistent with and related to the Dirac theory. It also implies
that this extended theory can be developed in harmony with the basis of
quantum electrodynamics.

The introduced current density j = g(divE)C is thus consistent with the
corresponding formulation in the Dirac theory of the electron, but this
introduction also applies to electromagnetic field phenomena in a wider sense.

D. Nonzero Conductivity Theory by Bartlett,
Harmuth, Vigier, and Roy

Bartlett and Corle [46] proposed modification of Maxwell’s equations in the va-
cuum by assigning a small nonzero electric condictivity to the formalism. As
pointed out by Harmuth [47], there was never a satisfactory concept of propa-
gation velocity of signals within the framework of Maxwell’s theory. Thus, the
equations of the latter fail for waves with nonnegligible relative frequency
bandwidth when propagating in a dissipative medium. To resolve this problem,
a nonzero electric conductivity ¢ and a corresponding current density

Jo = oE (33)
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were thus introduced into a modified form of Maxwell’s equations in vacuo. In
the same system of equations, a magnetic current density given by a nonzero
magnetic field divergence was introduced as well [47].

This electric conductivity concept was later reconsidered by Vigier [48], who
showed that the introduction of the current density (33) is equivalent to adding a
related nonzero photon rest mass to the system, such as in the Proca-type
equation represented by expressions (22) and (26). The dissipative “‘tired light”
mechanism underlying this conductivity can be related to a nonzero energy of
the vacuum ground state, as predicted by quantum physics [5,49]. That the
current (33) is related to the form (26) of a 4-current can be understood from the
conventional field equations for homogeneous conducting media [35].

The effects of the nonzero electric conductivity were further investigated by
Roy et al. [20,50-52]. They have shown that the introduction of a nonzero con-
ductivity yields a dispersion relation that results in phase and group velocities
depending on a corresponding nonzero photon rest mass, due to a tired-light
effect.

In principle, this nonzero conductivity effect could also be included in the
present theory of a nonzero electric field divergence.

E. Single-Charge Theory by Hertz, Chubykalo, and Smirnov-Rueda

A set of first-order field equations was proposed by Hertz [53-55], who subs-
tituted the partial time derivatives in Maxwell’s equations by total time
derivatives

d 0
E—&"‘rvd'v (34)

Here v; denotes a constant velocity parameter that was interpreted as the
velocity of the ether. Hertz’ theory was discarded and forgotten at that time,
because it spoiled the spacetime symmetry of Maxwell’s equations.

Chubykalo and Smirnov-Rueda [2,56] have presented a renovated version of
Hertz’ theory, that is in accordance with Einstein’s relativity principle. For a
single point-shaped charged particle moving at the velocity v, the displacement
current in Maxwell’s equation is modified into a ‘“convection displacement
current”

. OE
Jaisp = €0 - +¢o(v-V)E (35)

The approach by Chubykalo and Smirnov-Rueda further includes long-
itudinal modes and Coulomb long-range electromagnetic fields that cannot be
described by the Lienard—Wiechert potentials [2,57].
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V. NEW FEATURES OF PRESENT APPROACH

The extra degree of freedom introduced into the present theory by the nonzero
electric field divergence gives rise to new classes of phenomena such as
“bound” steady electromagnetic equilibria and “free” dynamic states, includ-
ing wave phenomena. These possibilities are demonstrated by Fig. 1.

A. Steady Equilibria

The form of the current density term in Eq. (1), as given by expressions (3) and
(8), predicts steady electromagnetic equilibria to exist in vacuo. For such
equilibria, Eq. (1)—(6) and (8) combine to

Cp

eurl?A = —C(qu)) -
€0

(36)

Detailed analyses of these equilibria and their applications are given elsewhere
[13,15,18,20]. Here we only summarize those parts of the theory that are of
interest in connection with wave phenomena, photon physics, and long-range
interaction. We later return to Eqs. (36) when discussing the concepts of

Electromagnetic theory with
nonzero electric field divergence

[Steady equilibria| [ wave modes |

Particle-shaped String-shaped Plane wave Axisymmetric
states states modes wave modes
Divergent Convergent
generating generating
function function
A Y A
Charged leptons;| |Neutral leptons; | | String model; Total reflection; Photon physics;
basic data, point basic data, no of hadron at vacuum zero charge, zero
charge, nonzero magnetic color field interface; magnetic moment,
particle radius moment, small structure damped incident nonzero angular
mass waves momentum,

small rest mass;
possible unification
of particle and
wave concepts

Figure 1. New features introduced by the concept of nonzero electric field divergence in
vacuum space. The arrows point to possible areas of application.
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instantaneous interaction and long-range forces. A more detailed description of
the theory on the equilibrium state is given in Appendix B.

Among the steady states, axisymmetric equilibria are of special interest.
These states can be subdivided into two classes: (1) those of ““particle-shaped”
geometry, where the geometric configuration varies in the axial direction and
becomes bounded in both this and the radial directions; and (2) those of “‘string-
shaped” geometry, where the geometric configuration is uniform in the axial
direction.

For both these classes the general solution of the electromagnetic field is
given in terms of differential operators acting on a generating function CA — ¢,
where the particle-shaped equilibria are treated in a frame (r, 0, @) of spherical
coordinates, with a current density j = (0,0, Cp), a magnetic vector potential
A =(0,0,A4), and C = £c. Analogously, the string-shaped equilibria are treated
in a frame (r, @, z) of cylindrical coordinates, with j = (0, Cp,0), A = (0,4, 0),
and no dependence on z. The analysis has been limited to separable generating
functions

F=CA-—$=G,G G=R(p) T(0) (37)

where Gy is a characteristic amplitude, p = r/ry with ry as a characteristic
radius, R and T as parts of the dimensionless normalized generating function G,
and 7(0) = 1 in the case of string-shaped geometry.

1. Farticle-Shaped States

From the general solutions for particle-shaped states, integrated field quantities

qo = 21138()]"()G()Jq (38)

My = neoCryGodu (39)

nmgy = ﬂ(i—g)VQG%Jm (40)
C

S0 :Tl',(822>r(2)GéJx (41)

are obtained where g is the net electric charge, M, the magnetic moment, 1
the mass, sy the angular momentum (spin), and (Jq, Jy, I, J5) the correspond-
ing integrals with respect to p and 6. These integrals include the charge and
mass densities; the latter are given by Einstein’s relation for the energy divided
by c¢?. Here the source energy density w; of expression (17), and not the field
energy density wy of expression (16), is used when forming the integrals of the
mass myp and the angular momentum sj.
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Imposition of the quantum condition

h
N an (42)
on a model for leptons can in a simple physical picture be regarded as an
application of a corresponding periodicity condition for ‘‘self-confined”
(bound) electromagnetic radiation that circulates around the axis of symmetry.
Depending on the form of the radial part R(p) of the generating function,
there are two subclasses of particle-shaped axisymmetric equilibria as follows.

a. Convergent Case. A part R that converges at the origin p = 0 leads to zero
net charge gy and magnetic moment M. Such a result can provide a model for
the neutrinos. The solution that is obtained after imposing the spin condition
(42) leads to a very small but nonzero value of the quantity mgry, thus allowing
for a small mass. Concerning such a model, it has to be pointed out that
neutrinos in the laboratory frame move nearly at the speed of light, and that
their interaction with the surroundings is weak. The neutrino is neutral and has
no color charge.

b. Divergent Case. A part R that diverges at the origin p = 0 leads to nonzero
values of all integrated quantities (38)—(41). These can still become finite when
permitting the radius ry to shrink to the value of a “point charge,” thereby
outbalancing the divergence in the integrals (J,, Jy, Jm, Js). This applies also to
a very small but nonzero radius ry. One further has to impose the spin condition
(42) and a condition on the magnetic moment. In presence of an electro-
magnetic field the latter becomes

Hy = Momyg _ Iudm

=143 43
4050 2Jq-]s tor ( )

as being related to the Bohr magneton and Feynman’s [37] small correction
8r = €*/4ngohc = 0.00115965246. The experimental values of Jr are
0.00115965221 for the electron and about 0.00116 for the muon. An alternative
is to relate the magnetic moment to a free electron, thereby corresponding to
half the value given by Dirac.

The present configuration could become a model for charged leptons. With
these conditions imposed, the integrated charge g has been given by [20]

1/2
2e9chJ?
W_‘)':( 0 q) (44)

e e%J;

and is determined by a rather restricted range in parameter space. Thus, detailed
analysis shows that there are choices of the generating function by which the



OPTICAL EFFECTS OF AN EXTENDED ELECTROMAGNETIC THEORY 19

value |go| = e is covered within such a limited range. To investigate whether it
is possible to obtain the exact result |go| = e, an additional condition has to be
imposed. The flux quantization mentioned in Section III.B may provide a
candidate for this, combined with variational analysis [13,18,20]. A correspond-
ing electron model is described in Appendix B.

If the result |go| = e would come out of a pure theoretical deduction, then the
electronic charge would no longer be an independent constant of nature, but
would become a quantized charge determined by Planck’s constant and the
velocity constant ¢ of light, as indicated by Eq. (44). According to relation (43),
this would then also apply to the product Moymy, whereas all quatitities My and
myg have thus far not been deduced theoretically for the electron, but have been
determined by measurements.

On purely physical grounds it appears to be unacceptable to have a charged
particle whose characteristic radius 7y is strictly equal to zero, and where the
particle has no internal structure. Even if experiments as well as the present
theory are reconcilable with an extremely small radius, this does not exclude ry
from being nonzero. In the present model of a steady equilibrium one can
conceive electromagnetic radiation to be forced to propagate in circular orbits
around the axis of symmetry. This leads to the question of whether such a model
has to be modified to include a correction due to general relativity. When
passing by a gravitational mass, light is known to be deflected. This effect is
proposed here to be “inverted,” in the sense that the circular orbit is assumed to
give rise to an additional kind of centrifugal force that modifies the steady
balance of the bound state represented by Eq. (36). Using the expression for the
deflection of a light ray given by Weber [58], this extra force has been
introduced into the same equations as a small correction [15,20]. As a result,
an equilibrium can be established for a very small but nonzero radius ry, with a
small shift of the equilibrium parameters.

2. String-Shaped States

The string-shaped equilibria that result from Egs. (36) can serve as an analogous
model that reproduces several desirable features of the earlier proposed string
configuration of the hadron color field structure. These equilibria have a
constant longitudinal stress that tends to pull the ends of the configuration
toward each other. The magnetic field is thereby located to a narrow channel,
and the system has no net electric charge. Since the divergence of the magnetic
field is zero, no model based on magnetic poles is needed.

B. Wave Phenomena

The basic equations (1)—(8) also predict the existence of free time-dependent
states, in the form of nontransverse wave phenomena in vacuo. Combination of
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the same equations yields

o? e ) 0 .
(@—CV>E+<CV+C§>(dIVE)_O (45)

for the electric field. The magnetic field can be determined from the electric
field by means of Eq. (2). A divergence operation on Eq. (1) further gives

(%+C~V)(divE):O (46)

In some cases this equation will become useful for the analysis, but it does not
introduce more information than that already contained in Eq. (45). As will be
shown later, Eq. (46) leads to the same dispersion relation for divE # 0 as
Eq. (45) for the wave as a whole.

Three limiting cases can be identified on the basis of Eq. (45):

e When divE =0 and curl E # 0, the result is a conventional transverse
electromagnetic wave, henceforth denoted as an “EM wave.”

e When divE # 0 and curlE =0, a purely longitudinal electric space-
charge wave arises, denoted here as an “‘S wave.”

e When both divE # 0 and curlE # 0, a hybrid nontransverse electro-
magnetic space-charge wave appears, denoted here as an “EMS wave.”
The S wave can be considered as a special degenerate form of the EMS
wave.

A general form of the electromagnetic field can be obtained from a super-
position of various EM, S, and EMS modes. Thereby it should be observed that
the EMS modes can have different velocity field vectors C. These wave
concepts provide new possibilities in the study of problems in optics and
photon physics, both when considering plane waves and axisymetric modes
with associated wavepackets.

It should finally be noted that many authors use the term ‘“longitudinal
waves”’ for all modes having at least one field component in the direction of
propagation. This would then apply as a common term to both the S and EMS
waves.

VI. PLANE WAVES

Because of their relative simplicity, plane waves provide a convenient first
demonstration of the wave types defined in the previous section.
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A. General Features

The nontransverse plane waves that arise from the present approach are treated
in the case of a constant velocity vector C and where any field component Q is
assumed to have the form

O(x,y,z,t) = Qopexp (iO) ©O=-or+k-r (47)

and o and k = (k,, k,, k;) are the frequency and wavenumbers in a rectangular
frame with r = (x,y, z). Equations (1)—(8) then yield
’k x B=(k-E)C — oE (48)
oB =k xE (49)
There are three types of modes as demonstrated by Fig. 2, with k chosen in the z
direction and the velocity vector C located in the plane perpendicular to B.

1. The Conventional Electromagnetic Mode

When k-E =0 and k x E # 0, there is a conventional EM wave with a
magnetic field according to Eq. (49), and a dispersion relation

o = tke (50)
Plane Waves
EM wave S wave EMS wave
divE=0 divE=0 divE=0
curlE#0 curlE=0 curlE#0
B=kx E/® B=0 B=kx E/®
kxE=0 kxE=0 kxE#0 kxC=0
o ==*kc o=tk o=k -C C=xc E-C=0
Vg=Ck Vg=Ck Vg=C
E
E
k —»Ek k
B B
Cc

Figure 2. The three fundamental wave types of an extended electromagnetic theory with
nonzero electric field divergence in the vacuum, as demonstrated by the simple case of plane waves.
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The phase and group velocities are

. .k
vp = *c v, = *ck k:%

(51)

where k stands for the modulus of the wavenumber and k for its unit vector. All
components of the electric and magnetic fields are perpendicular to the direction
of propagation that is along the wave normal.

2. The Pure Electric Space-Charge Mode

When k - E # 0 and k x E = 0, there is a purely longitudinal S wave without a
magnetic field. Thus C x E = 0 and k x C = 0 due to Eq. (48). The dispersion
relation and the phase and group velocities are the same as (51) for the EM
wave. The field vectors E and C are parallel with the wave normal. Possibly this
mode may form a basis for telecommunication without induced magnetic fields.

3. The Electromagnetic Space-Charge Mode

When both k - E # 0, and k x E # 0, there is a nontransverse EMS wave with a
magnetic field due to Eq. (49). This is the mode of most interest to this context.
Here k x C differs from zero, and Egs. (48) and (49) combine to

(0> —K?)E+ (k-E)F=0 (B#0) (52)
and
F =’k — oC (53)

which corresponds to Eq. (45). Scalar multiplication of Eq. (52) by Kk, combined
with the condition ® # 0, leads to the dispersion relation

o=k-C (kxC=#0) (54)

This relation could as well have been obtained directly from Eq. (46). Since k
and C are not parallel in a general case, the phase velocity becomes

%:%:RC (55)

and the group velocity becomes

_ % _

Ve = A C (56)
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Thus the phase and group velocities of the EMS wave differ from each other and
also from those of the EM and S waves. The field vectors E and C have
components that are both perpendicular and parallel to the wave normal.

From Eq. (49) we have k-B =0 and E - B = 0. Scalar multiplication of
Eq. (53) by C in combination with relation (54) further yields C-F = 0.
Combining this result with the scalar product of Eq. (52) with C, we obtain
E - C = 0. Finally scalar multiplication of Eq. (48) by E results in E*> = ¢’B>
when combined with Eq. (49).

4. Relations between the Plane-Wave Modes

For the EMS mode it is thus seen that k and E are localized to a plane per-
pendicular to B, and that E and C form a right angle. We can introduce the
general relation

k-E = kE(cosy) (57)

Conventional theory is then represented by the angle y = 7/2 and leads to a
single EM mode. Here the same angle stands for the extra degree of freedom
introduced by the nonzero electric field divergence, as a result of which a set of
possible plane wave solutions is being generated. The set thus ranges for
decreasing y, from the EM mode given by y = 1/2, via the EMS modes for
/2 > % > 0, to the S mode where y = 0. Thus the choice of y, wave type, and
the velocity vector C will depend on the boundary conditions and the geometry
of the special problem to be considered. An example of this is given later in the
discussion of total reflection in Section VI.B.

We finally turn to the momentum and energy balance equation (11)—(15) of
Section III.A.2. Since p is nonzero for the S and EMS modes, these equations
will differ from those of the conventional EM mode in vacuo:

e For the S mode both balance equations contain a contribution from pE but
have no magnetic terms.

e For the EMS mode the momentum balance equation includes the addi-
tional forces F, and F,,. Because of the result E - C = 0 the energy balance
equation (15) of a plane EMS wave will on the other hand be the same as
for the EM wave.

Poynting’s theorem for the energy flow of plane waves in vacuo thus applies
to the EM and EMS modes, but not to the S mode. Vector multiplication of
Egs. (52) and (53) by k, and combination with Eq. (49) and the result E - C = 0,
is easily shown [16,20] to result in a Poynting vector that is parallel with the
group velocity C of Eq. (56). Later in Section VIL.C.3 we shall return to
Poynting’s theorem in the case of axisymmetric photon wavepackets.
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B. Total Reflection at a Vacuum Interface

The process of total reflection of an incident wave in an optically dense medium
against the interface of an optically less dense medium turns out to be of
particular and renewed interest with respect to the concepts of nontransverse
and longitudinal waves. In certain cases this leads to questions not being fully
understood in terms of classical electromagnetic field theory [26]. Two crucial
problems that arise at a vacuum interface can be specified as follows:

1. Because of the classical theory of total reflection, the excited electro-
magnetic field within the less dense medium consists of a nontransverse
wave confined to the immediate neighborhood of the bounding surface
[35]. When the less dense medium becomes a vacuum region, this may be
expected to cause complications. At first glance, matching at a vacuum
interface then appears to become impossible by a transmitted electro-
magnetic (EM) wave with a vanishing electric field divergence. Analysis
has shown, however, that such a matching is possible, but only in a
dissipation-free case [16,19,20].

2. Additional complications arise when the EM wave in a dissipative medium
approaches a vacuum interface at an oblique angle [26]. The incident and
reflected wave fields then become inhomogeneous (damped) in the direc-
tion of propagation. As a consequence the matching at the interface to a
conventional undamped electromagnetic wave in vacuo becomes
impossible.

Case 2 of a dissipative medium is now considered where x = O defines the
vacuum interface in a frame (x,y,z). The orientation of the xy plane is chosen
such as to coincide with the plane of wave propagation, and all field quantities
are then independent on z as shown in Fig. 3. In the denser medium (region I)
with the refractive index ny = n > 1 and defined by x < 0, an incident (i) EM
wave is assumed to give rise to a reflected (r) EM wave. Here ¢ is the angle
between the normal direction of the vacuum boundary and the wave normals of
the incident and reflected waves. Vacuum region (II) is defined by x > 0 and has
a refractive index of njy = 1. The wavenumber [35] and the phase (47) of the
weakly damped EM waves then yield

(O} . VAL .
0,, = (—) [—ct £ n(cos@)x + n(sin@)y + lé(z)n[i(coscp)x + (sin@)y]

c

(58)

with the upper and lower signs corresponding to (i) and (r), and where the
damping factor 6 = 1/2mng < 1 with € denoting the electric permittivity and n
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electromagnetic (EM) waves space-charge (EMS) waves

Figure 3. Total reflection of a plane incident damped (inhomogeneous) conventional EM wave
at the boundary x = 0 between a dissipative medium (I) and a vacuum region (II). The incident and
reflected EM waves can be matched at x = 0 to undamped transmitted EMS waves in the limit /2
of the angle W, but not by an undamped transmitted EM wave in vacuo.

the electric resistivity of medium I. For the phase of a transmitted wave we
further adopt the notation

® /o
O, = ;(_Ct +px + "ty) + l(?)(%x"' StY) (59)

where (p;, #1, ¢y, 5;) are real.

The possibility of matching a transmitted EM wave to the incident and
reflected waves is first investigated. This requires the phases (58) to be matched
at every point of the interface x = 0 to the phase (59). This condition becomes

rn=ny,>0 s5=0n,>0  ny,=n(sing) (60)

where total reflection corresponds to n, > 1. For the transmitted EM wave
in vacuo, combination of Egs. (45) and (59) results in

L=p;+r7— (g +5) (61)
q: Iy

£@©_ _ 1t 62
St Pt ( )

The transmitted wave should further travel in the positive x direction, into
region I, and this also applies in the limit where the angle of its wave normal
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with the vacuum interface approaches the zero value of total reflection. Thus
p: > 0. Equations (62) and (60) then yield the condition

235
g =—"<0 (63)
Pt

For total reflection, however, there should be no flow of energy into medium II,
and the transmitted wave then must represent an energy flow directed parallel to
the interface, thereby limited in amplitude to a narrow layer at the vacuum side
of the interface [35]. This excludes the negative value of g, given by Eq. (63)
and the form (59). It does therefore become impossible to match the inhomo-
geneous (damped) EM waves in region I by a homogeneous (undamped) EM
wave in region II. This agrees with an earlier statement by Hiitt [26].

Turning instead to the possibility of matching the incident and reflected
waves to EMS waves in the vacuum region, we consider the two cases of
parallel and perpendicular polarization of the electric field of the incident wave.
For an EMS wave the velocity C is now expressed by

C = ¢(cosPcosa, cosPsina, sinf) (64)

In combination with the definitions (47) and (59), the dispersion relation (54) of
this wave type yields

1
cosp picoso + rysina (65)
grcosoL = —s,sina. (66)

For the factor g, in Eq. (66) matching of the phases by a transmitted EMS wave
then becomes possible when

q; = —Si1g0 = —nq,Stgoc (67)

When there is total reflection, the velocity vector C of Eq. (64) and the corres-
ponding current density (3) can then be directed almost parallel with the
interface x =0, that is, when |cosa| < 1, [sina| =1, fga < 0. The EMS
wave can then be matched to the slightly decreasing amplitudes of the EMS
waves in the positive y direction of the interface. This also implies that g, in Eq.
(67) can be made positive and large for weakly damped EM waves in medium L.
Even a moderately large g, > 0 provides the possibility of having a transmitted
energy flow along the interface, within a narrow boundary layer, and for an
EMS wave amplitude to drop steeply with increasing distance x from the
interface. This possibility becomes consistent with the observed physical
behavior during total reflection.
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As a next step the electric and magnetic fields have to be matched at the
interface. This raises three questions that must be faced, in common with those
of conventional theory [35]:

1. The first issue is due to the expectation that the transmitted and reflected
waves are no longer in phase at the surface x = 0 with the incident wave.

2. The second question concerns the amplitude ratios between the reflected
and incident waves. For both homogeneous and inhomogeneous incident
waves these ratios must have a modulus equal to unity, because no energy
loss through the instantaneous reflection process at x = 0 is expected.

3. Question 2 leads to a third issue that concerns the energy flow of the
transmitted wave in medium II. This flow should be directed along the
surface x = 0, and be localized to a narrow region near the same surface.

To meet these requirements we first observe that the wavenumber and the
phase are coupled to the angles of the velocity C given by expression (64). In
this way the angle of any transmitted EMS wave in medium II can be expressed
in terms of the angles o and PB. In analogy with the classical analysis on total
reflection, which includes phase differences [35], we introduce a complex form
of the angle o of an EMS wave. The definitions

cosa = goexp (iy) = gocosy + igosiny = (1 — sin2a)'/? (68)
sino=1— g(z) cos2y — ig(z, sin2y (69)
are therefore adopted where gy and ¥ are real and gy > 0.

The details of the deductions are given elsewhere [16,19,20]; the results can
be summarized and discussed as follows:

e For inhomogeneous (damped) incident EM waves the necessary matching
of the phases at the vacuum interface can be provided by the nontransverse
EMS waves, but not by conventional EM waves in the vacuum region.

o The reflected EM wave arising from an incident inhomogeneous EM wave
of plane polarization at an arbitrary angle has a nearly plane polarization
when being associated with transmitted EMS waves.

e In the cases of both homogeneous (undamped) and inhomogeneous
(damped) incident waves, the transmitted nontransverse EMS waves
become confined to a narrow layer at the vacuum side of the interface, and
no energy is extracted from the reflection process. The inclusion of EMS
waves in a dissipation-free case is, of course, unnecessary and
questionable.

e A far-from-simple question concerns the value of the damping factor J,
which in physical reality forms the limit between the analysis of
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homogeneous and inhomogeneous incident waves. In most experimental
situations there is a very large ratio 1/8 between the damping length and
the wavelength of the incident wave, and this makes it difficult to decide
which results on the homogeneous and inhomogeneous cases would be
physically relevant. The results on inhomogeneous waves should first
become applicable at large enough values of the damping factor 5, but this
would require large initial amplitudes of the incident wave to give rise to a
detectable reflected wave.

VII. AXISYMMETRIC WAVE MODES

As discussed for several decades by a number of authors, the nature of light and
photon physics is related not only to the propagation of plane wavefronts but
also to axisymmetric wavepackets, the concepts of a rest mass, a magnetic field
in the direction of propagation, and an associated angular momentum (spin).

The analysis of plane waves is straightforward in several respects. As soon as
we begin to consider waves varying in more than one space dimension,
however, we will encounter new phenomena that further complicate the
analysis. This also applies to the superposition of elementary modes to form
wavepackets. In this section an attempt is made to investigate dissipation-free
axially symmetric modes in presence of a nonzero electric field divergence
[16,20]. Such a wavepacket configuration could provide a model for the
individual photon [19].

In analogy with the treatment of axisymmetric equilibria, we will also seek a
model where the entire vacuum space is treated as one entity, without internal
boundaries and boundary conditions, thereby also avoiding divergent solutions.

A. Elementary Normal Modes

A cylindrical frame of reference (r, @, z) is introduced where © is an ignorable
coordinate. In this frame the velocity vector is now assumed to have the form

C = ¢(0, cosu, sina) (70)
with a constant o. We further define the operators

? 10 & 1@

D=t e 2w 1)
0 . 0

D, :a—i-c(smoc) o (72)
2 1

D; = (73)

o2 2o
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The basic equations then reduce to

(D1 - %)E . % (divE) (74)
(Dl — r12>E¢) :é (cosa) % (divE) (75)
D\E, = Li+i (sino) aat} (divE) (76)
and
D,(divE) =0 (77)

for the vector field E.
Using the operator (73) we have from Eq. (74)

2
9
Since D, commutes with 0/0r, combination of Egs. (76) and (78) yields
Dy (Dl _12)3 ~0 (79)
r
and
D,DE, =0 (80)

when steady states defined by 0/0t = 0 are excluded. Equation (75) is further
combined with Eq. (78) to yield

1 1 Gh
D3 Dl - r_2 E(P = Z (COS&) ﬁ D]EZ (81)

The set (77) and (79)—(81) of equations corresponds to two branches of
solutions:

1. When D,E, and D,E, differ from zero, Eqgs. (77)—-(80) can be satisfied
only when divE = 0. This, in turn, implies that the right-hand members
of Eqgs. (74)-(76) all disappear. Consequently, this branch represents a
classical electromagnetic (EM) mode with vanishing electric field
divergence.
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2. When D,E, = D,E, = 0, Egs. (77) and (79)—(81) can all be satisfied when
div E # 0. This branch represents an electromagnetic space-charge (EMS)
mode with nonzero electric field divergence in vacuo.

These branches are now discussed for propagating modes depending on z and ¢
as exp[i(—ot + kz)]. In fact, there are a number of choices with respect to the
form (70) as represented by £cosa and *sina, and that satisfy the condition
C? = ¢? of Eq. (8), thereby corresponding to the two directions along z and .
From now on we also introduce the normalized radial coordinate p = r/ry,
where rq stands for a characteristic radial dimension.

1. Conventional Case of a Vanishing Electric Field Divergence

For branch 1 of a vanishing electric field divergence, the corresponding
axisymmetric EM mode is obtained from Egs. (45) and (74)—(76). Since no
dispersion relation for such a mode is available at this point of the deductions,
we first introduce the notation

¢ = [ - (2)]% (52

c

with 8% > 0 for phase velocities ®/k that at least do not exceed the limit c. The
general solution of the electric field would then become

(ErEg) = [(Cchpl)Il(ép) + (cr2, co2)Ki (6p)] x expli(—wr+kz)]  (83)
E. = [calo(Bp) + c2Ko(Bp)] x exp [i(—or + kz)] (84)

where ¢, ¢;2, Co1, Cg2, €21, € are arbitrary constants and Iy, Ky, Iy, Ko are
Bessel functions with imaginary argument. At the origin p = 0 it is known that
I, vanishes, I, becomes finite, and both K| and K, become infinite. For large p,
both I; and I tend to infinity, whereas K| and Kj tend to zero. Consequently, a
nonzero form of the solutions (83) and (84) becomes infinite either at p = 0 or
at large values of p.

As a next step we assume the value 6> = 0 corresponding to a phase velocity
where |®/k| = c. Then Egs. (74)—(76) reduce to

[Dp - <p12ﬂ (E.E;)=0 DyE.—0 (85)

where

? 120
D.=——4+_-
=502 pop
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The solutions then have the form
k
(EV,E(p)ocklp—kﬁ E, o kylnp + ks (87)

where ki, k», k3, k4 are constants. This result agrees with that of Egs. (83) and
(84) in the limit > = 0. We then recover the result that the nonzero form of the
electric field becomes infinite either at the origin or at infinity, and this also
applies to the magnetic field through Eq. (2). This divergent behavior of the EM
field in vacuo was realized by Thomson [22] and further by Heitler [59] as well
as by Hunter and Wadlinger [23].

Conventional theory thus results in axisymmetric modes in vacuo having the
following properties:

e The electric and magnetic fields have components in all three spatial
directions, and thus also in the longitudinal direction of propagation.

e The nonzero solutions of these field components either diverge at the
origin or become divergent at large distances from the axis of symmetry.
Such solutions are therefore not physically relevant to configurations that
are extended over the entire vacuum space. The introduction of artificial
internal boundaries within the vacuum region would also become
irrelevant from the physical point of view, nor would it remove the
difficulties with the boundary conditions.

2. Present Case of a Nonzero Electrical Field Divergence

From now on we therefore consider branch 2 of the axisymmetric EMS mode.

a. Field Components in the Laboratory Frame. The dispersion relation is
obtained from Eqs. (77) and (78), which yield

® = ke(sina) v = ¢(sina) (88)

where the phase and group velocities w/k and Ow/0k are both equal to v.
Equation (81) then takes the form

? 19 1, 5 ? 19 5
@+;aﬁk(cosa)}&p(tgoc)[a7+;ak(cosoc) E,

(89)

We introduce the function

Go-G =E; + (cota)E, G = R(p)exp[i(—ot + kz)] (90)
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where Gy is an amplitude factor and R(p) is a dimensionless function of p. The
operator

D =D, — 6*(cosa)’ D *a—z—l-lg 0 = kr (91)
S "o Tpdp

is further defined, and the parameter 6 of this last equation should not be
confused with the polar coordinate of the spherical frame of reference used in
Section V.A and Appendix B. Using Eqgs. (89), (90) and (78), the electric and
magnetic field components become

ey 21 O 5 109,
E, = —iGy[0(cosa)] 3 [(1-p°D)G] = o + ioA, (92)
E, = Gy(tga)p*DG = iwA,, (93)
E. = Go(1 — p’D)G = —ik¢ + ioA, (94)

and

B, = —Golc(cosa)] ' p* DG = —ikA, (95)
B, = —iGo(sina)[0c(cosa)?] ™" % [(1 - p?’D)G]

, 1 0A,

= ikA, — r_o % (96)

B. = —iGo[0e(cosa)] ! (% + %) (0*DG) = % %a% (PA) (97

Consequently, the function G can be considered as a generating function
from which the entire electromagnetic field of an elementary axisymmetric
EMS mode can be determined, in analogy with the generating function (37) of a
steady equilibrium state. It should also be observed that G and its derivatives
can be chosen to become finite at p = 0 and zero at p = oo. Such a choice then
makes it possible for the EMS modes to remain finite and physically acceptable
within the entire range of p. Insertion into the basic equations confirms the
result (92)-(97).

Expressions for the charge density p and the potentials A and ¢ are readily
obtained from relations (92)—(97) as shown in detail elsewhere [19]. These
relations are thus given in the laboratory frame, and they can be considered to
correspond to the Lorentz gauge, which is discussed further in Appendix A.

As seen from Egs. (90)-(97), the elementary axisymmetric EMS mode
consists of a three-dimensional propagating configuration that periodically
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repeats itself along the z axis with the wavelength 2mc(sina) /o, and where each
of the fields E and B has three nonzero components. This mode can be
considered as the axisymmetric correspondence to the plane-wave mode in
rectangular geometry.

The result (92)—(97) is reconcilable with that of Evans and Vigier [5-7], in
the sense that all field components are nonzero, and thereby also the axial
magnetic field B,. A vanishing component B, of an axisymmetric field would
also be in contradiction with the basic equations. The three axisymmetric
magnetic and electric field components of Egs. (92)-(97) form a helical
structure similar to that by Evans and Vigier [5-7] with its cyclic field relations.
The present result is, however, not identical with that of Evans and Vigier,
because it originates from equations leading to a Proca-type relation (7), which
differs from the forms (22) and (26) used by de Broglie, Vigier, and Evans.

b. Field Components in the Rest Frame. The intrinsic properties of a photon,
such as a possibly existing rest mass, should be related to a rest frame K’, which
follows the phase and group velocity v of Eq. (88). In the present case where
v =c(sina) < ¢, such a “rest frame” becomes physically relevant, but not in
the case where v = c¢. For this purpose we make a transformation from the
laboratory frame K to the rest frame K’. Introducing

e= [1 - (3)2] U s ve [0,0, ¢(sine)] (98)

c

the Lorentz transformation yields

_ elsing)r 3
/ 1/2%52 (99)

where a prime refers to the rest frame henceforth. Thus

a% - g(a%) K=ek 0 =~Kr=ed (100)

The normalized generating function then becomes
G = R(p)expli(—wt + kz)] = R(p)exp (ik'?) = G (101)
which is time-independent in the rest frame. Further
D=D,—0%(cosa)* =D, — (0)’ =D  DG=DGC (102)

holds for the operator D’ in K'.



34 B. LEHNERT

The Lorentz transformation is further applied to the electric and magnetic
fields, which become

1 1 1
E’:—E—(——l)(i-E)i+—va (103)

€ € €

1 1 . .1 E

where z = (0,0, 1). This results in the components

0
E| = —iGo(0')! 3 [(1 - p*D)G] (105)
E, =0 (106)
E. = Gy(1 - p*’D)G (107)
and
B. = —Goc 'p’D'G (108)
B, =0 (109)
B = —iGO(ce’)1<3+l>(pzD’G’) (110)
‘ o p

Here we observe that the axial components E; = E’ and B, = B_ are invariant
during the Lorentz transformation, as given by Egs. (103) and (104).

The result obtained can also be interpreted in the way that the field
components in K’ are obtained from those in K by replacing the angle o by
o' = 0, specifically, by replacing the velocity vector C in expression (70), which
refers to the frame K by the vector

C =c(0,1,0) (o =0) (111)

which refers to the rest frame K’. This further supports the adopted form for the
velocity vector C. In the frame K’ the current density (3) has a component in the
¢ direction only, and it circulates around the axis of symmetry, thereby
generating purely poloidal fields E" and B, that is, where E|, = 0 and B{, = 0.
This situation is similar to that of the “bound” steady equilibrium state
described in Section V.A.

From relations (105)-(110) expressions are also obtained for the charge
density p’ and the potentials A’ and ¢’, as given elsewhere [19]. These ex-
pressions in the rest frame K’ can be considered to correspond to the Coulomb

gauge.
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B. Wavepackets

To form a photon-like particle, the elementary normal EMS modes now have to
be superimposed to create a wavepacket of finite axial extensions and of finite
linewidth in wavelength space. Here we are free to choose an amplitude factor
Gy of the generating function (90) having the form

Go = go(cosa)? (112)

where g( is constant.
The normal modes are further superimposed to form a wavepacket having the
amplitude

Ay = (kﬁ) exp (2 (k — ko)) (113)

within the wavenumber interval dk and centered around the wavenumber k.
Integration of the modes given by Eqs. (92)—(97) is then represented by the
integrals

+00
P, = J kMAgexp [ik(z — vi)] dk v = c(sina) (114)

—00

Introducing the variable

PZZo(k—ko)-i-i Z=z—vt (115)
220

the integral (114) can be written as

p 7\ 2 z
e (5l (&) ] o) e

where f is a polynomial in terms of the quantities Z/zo and 1/kozo. The case
kozo > 1 is of most physical interest, because it represents a small linewidth and
will be adopted in the following deductions. Then the contribution from f in Eq
(116) can be dropped with good approximation. The case of small linewidth is
demonstrated by the form (113), where the amplitude in k space drops to 1/e of
its maximum value for Ak = k — kg = 1/z9. Then the linewidth Ak/ky = 1/kozo
becomes small for kyzg > 1.

Applying Eqgs. (114) and (116) to the field quantities (92)—(97) and introdu-
cing the notation

Eo = Ey(z) = (f—(?) (K@) exp l— (Ziz()) 2+ikoZ

(117)
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the wavepacket field components now become

E, = —iEo[Rs + (0))°R,] (118)
E, = EgBo(sina)(cosa)[Rs — (6p)°Ry] (119)
E. = EpBo(cosa)’[Ry + (8))°R] (120)
B, = —G (sino)) ' E, (121)
B, = (%) (sina)E, (122)
B, = —'(%)Eo(cosoc) [Rs — (6))°R7] (123)
and
p= —i(i—:j) Eo[Rs + (8))*Ry — (6)*R1] (124)
U =d+C-A=irE2Rs — R(cosa)” +2(6)°Ry] (125)
where
90 = kor() 98 = eo(COSO() (126)
and
2 d 2
Ry =p°R Rzzd—p(P R) (127)
R; = p’D,R Ry = (1—p’D,)R (128)
Rs = o (1= p*DR] R = Dy[(1 = DR (129)
= ()R k= (Ee)eR 030
Ry = Dy(p’R) — (1 = p’Dy)R (131)

In the rest frame K’ analogous deductions can be made for small linewidths
because

k626 =kozo > 1 (132)



OPTICAL EFFECTS OF AN EXTENDED ELECTROMAGNETIC THEORY 37

according to the Lorentz transformation of Egs. (99) and (100). Likewise, we

introduce
2
g (VT 4 ;
E6 E/( ) = ( ) (k6z6> exp [— (Z_Zo) +i 6Z/ (133)
and obtain the field quantities E{, = B, = 0 and
E. = —iEj(cosa) [Rs + (6)*R,] (134)
E. = Ey0(cos )[Ry + (6()°R1] (135)
B. = ( E)8)(cosa)[Rs — (8)*Ry] (136)
/ 1 /\2
B, = <C>E cosa)[Rg — (8;)"R7] (137)
p = _l<r >E6(COSOL) [Rs + (8))°Ro — (8)*Ry] (138)
0
U =¢' +C A =irnE)(cosa)[2Rs — R +2(0))°R] (139)

We recall that these results are approximate, valid for small linewidths, where
(2 /220)* varies much more slowly with z’ than k7' in expression (133). In this
case conditions such as div'B’ = divB = 0 will be satisfied only approximately
by expressions (136) and (137).

In the limit of zero linewidth of a needle-shaped axisymmetric wavepacket,
having infinite length zp in the direction of propagation, the present deduction
would reduce “backward” to the elementary normal mode investigated in
Section VIL.A.2.

Here we also notice that, for a photon with nonzero rest mass, the intrinsic
properties of the wavepacket are expected to be clearly visible in the rest frame
K’. Among other things, this applies to the components (134)—(137), which then
represent steady electric and magnetic fields being entirely localized to the 'z’
plane, thereby also having strong components in the axial direction of propaga-
tion. This property clearly supports the photon model with a static magnetic
field part B! 3) as deduced by Evans and Vigier [5-7,45], and where the axial
electric and magnetic field components of Eqgs. (107), (110), (135), and (137)
are invariant to the Lorentz transformation.

C. Integrated Field Quantities

Considered as a particle, the photon constitutes a unique concept, because it
may never be seen at rest in the laboratory frame. Nevertheless, integrated field
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quantities such as the total charge g, magnetic moment M, rest mass my, and
angular momentum (spin) s are properties that could be attributed to the photon
wavepacket model and the “rest frame” K’ as shown by the present and
following deductions.

To proceed with the analysis, we first observe that the wavepacket compo-
nents (E,,E,,B,) in the laboratory frame are in phase with the generating
function G, whereas the components (E,, By, B;) are 90° out of phase with G
according to Eqs. (118)—(123). Similarly, (E., B,) in the rest frame are in phase
with G', whereas (E, B,) are 90° out of phase with G" as shown by Egs. (134)-
(137). In the analysis that follows we choose the normalized generating func-
tions (90) and (101) to be symmetric with respect to the axial centra z = 0 and
7' = 0 of the wavepackets. With Z = z — c¢(sina)z, we thus have

G =R(p)coskz G =R(p)cos(k'?) (140)

where the real parts of expressions (90) and (101) have been adopted.
1. Charge and Magnetic Moment

In the laboratory frame the integrated electric charge is given by
qzsojdivEdV:?,oJmEdS:O (141)

where dV and dS are volume and surface elements, respectively, and the inte-

gration is extended over entire space. Here the surface integral vanishes because

of the choice of the generating function, which should vanish at infinity as well

as all its derivatives. The analogous result ¢’ = 0 is obtained in the rest frame.
The integrated magnetic moment in the laboratory frame becomes

1
M= 5 €0¢ J r(divE) dv

=" JMJ g(E)+ZEE drdz
= 0C o rarr, raz z|araz

—00

00 ) —+00
= nsocj {ra {rj E,dz] +r2[EZ]+§}dr= 0 (142)
0 ‘

—00

because E, vanishes at 7 = £o00, and E, of Eq. (118) has an antisymmetric form
due to the factor sinkz when the choice (140) is made for the generating
function G. The analogous result M’ = 0 is obtained in the rest frame. Observe
that the local magnetic fields B and B’ of Egs. (121)—(123) and (136)—(137) are
nonzero even when the total magnetic moments M and M’ vanish. For
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M = M' = 0, the fields B and B’ will only decrease more rapidly toward zero at
an increasing distance from the origin than in cases where M and M’ would
become nonzero.

As in the case of the neutrino model of Section V.A.L.a, the photon could
have a structure with both positive and negative local contributions to the charge
and magnetic moment that add up to zero when integrated over the total volume.

2. Mass

To deduce expressions for the integrated mass and angular momentum, the
radial part R(p) of the generating function (140) has to be specified. Here we
make the choice

1
R=p Texp (——) pZL y>1 (143)
P o

which is convergent both at the axis p = 0 and at infinity. We further consider
integrals of the form

0 2
J, = J F.dp F,=p*"exp (—5> (144)
0

The integrand F), increases from zero at p =0 to a maximum at p = p,
where

=h_z (145)

and it then drops very steeply toward zero for increasing values of p beyond
p = p, when p>> 1. Here

o p—l

——=——-1  (u>1) (146)
Tu-1 3

The integral (144) is evaluated by making the substitution p = 2/p, and then
becomes

Jy=2"0Dp -2y (147)
which yields

Ju _H=2

=

T 2

(h> 1) (148)
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The integrated total mass in the laboratory frame K is now given by
m=— (149)

where expressions (17), (124), and (125) are used to perform the integration of
Eq. (18). For a volume element dV = 2nr dr dz we first carry out the integration
with respect to z. With Ey(z) given by Eq. (117) this leads to the integrals

e[ ) [l a3 0

for a small line width. Introducing the notation

5/2.2
ag = —=_80%0 (151)
c?(kozo)* V2

the mass becomes
m=agdy  Jn= JOC Wos dp (152)
where
Wons = p[Rs + (05)°Ro — (05)*R1] - [2R4 — R(cosa)” +2(6,)°R]  (153)

In the rest frame K’ the corresponding results are

1/2
I =1 (E) (154)
< 2
and
5/2 52,
’ €0 "8 /o
ay = ————— 70 = koz, 155
0 Cz(k6Z6)2\/§ 0<0 0<0 ( )

The integrated mass in this frame becomes
S A J W' dp (156)
0

where

W), = p[Rs + (0))*Ro — (0))*R1] - [2R4 — R + 2(6))°R] (157)
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From expressions (128) and (143) combined with relations (144) and (148),
we can easily see that the integrals (152) and (156) of W,,s and W) become
equal in the limit of large y. The same result comes out if we use the alternative
form wy of Eq. (16) for the energy density in combination with the field
components (118)—(123) and (134)—(137). According to Egs. (151), (152),
(155), and (156) and the Lorentz transformation (99), we now have

m =em &= cosa (158)
On the other hand, when introducing the phase and group velocities v of

expressions (88), the energy relations due to Planck, Einstein, and de Broglie
result in

h )7-1/2 2
hv = o _ me* = myc? [l - (X) } _ e (159)
21 c cosa

where my is the rest mass. Consequently, the mass m’ in the rest frame K’ of the
present theory becomes identical with the conventional form for the rest mass
myp. This can be taken as an additional confirmation of the performed deduc-
tions.

3. Momentum and Energy Balance in an Axisymmetric Case

The momentum balance of the electromagnetic field is governed by Eqgs. (11)-
(15). Here the local forces

f,=pE f,=jxB=pCxB (160)

and the Poynting vector S are considered in the laboratory frame K. Because of
the axial symmetry of the present configuration, all integrated components in
the r and ¢ directions of the cylindrical frame (r,¢,z) will vanish. To
investigate the contributions to the volume integrals of Eqgs. (12) and (13), we
can thus restrict ourselves in studying the symmetry properties with respect to
the axial direction, that is, to the center z = O of the propagating wavepacket.
With the chosen symmetric form (140) for G, it is then seen from Eqs. (118)—
(124) that (p,E,,By,B;) become antisymmetric with respect to zZ, whereas
(Eg,E;, B,) become symmetric.

In addition, Eqgs. (118)—(124) show that (p, E,, By) are of zero order in the
smallness parameter € of the definition (98), (E, By, B;) are of first order in &,
and E, of second order.

Because of the symmetry conditions integration of the local forces (160)
results in vanishing electric and magnetic volume forces F, and F,, as given by
Eqgs. (13). Of the Poynting vector S and the electromagnetic momentum vector g
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of the propagating wavepacket, only the component due to E,B, — E,.B; is of
interest in forming the integral of expression (12), that is, in the z direction of
propagation.

Concerning the local energy balance of Eq. (15), it is finally seen that the
term

pE-C=p(E,Cy +E.C) (161)

is antisymmetric and has a vanishing volume integral. Therefore Poynting’s
conventional energy theorem holds for the integrated work of the electromag-
netic forces in the present axisymmetric configuration.

4. Angular Momentum

As a consequence of the results just obtained, it is now possible to use the
conventional form

s=rXx (162)

c2?

for the density of the angular momentum as given by Schiff [39] and Morse and
Feshbach [31], where r represents the radius vector from the origin.

In the laboratory frame E,B; is of first order in €; and E_B, of third order.
Further, ¢B, 2 —E,, for small € according to Eq. (121). Therefore the density of
angular momentum can be written as

s = i(£>wf (cosa)z (163)
¢
where z = (0,0, 1),
wy = g E? (164)
and the two spin directions in equation (163) correspond to the two alternative
choices of C as given by Eq. (8). This is analogous to the two spin directions in

a steady particle-shaped state as given by expression (41). The modulus of the
integrated angular momentum now becomes

5= (%) (cos) erf av (165)

For the integrated mass the alternative expression

m= (%) wadV (166)
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can then be used as given by Eq. (18), and will be equivalent to expression
(152).

5. Quantum Conditions

According to Egs. (165), (166), (118), and (122) and the quantum conditions for
the photon to behave as a boson, the mass and angular momentum now become

_ h _ 0

m=agly == szj Wos dp (167)
C 0 X

_ h _ o

s = agrocts = — J = J p(cosa) W, dp (168)
2n 0 '
where

W = p[Rs + (6))°Ra] (169)

Combination of Egs. (167) and (168) results in

® =21V =— (170)

Insertion of the radial function (143) into expressions (129) and (127) for Rs
and R, yields a corresponding form for W,,,, of Eq. (169), which then consists of
10 terms. Integration of each of these terms by means of Eqs. (144) and (147)
yields expressions for J,, and J;, which in the limit of large y give rise to the
relation

(cosa) =y (y>1) (171)

H\“E :

The radii 7, of Eq. (145), which define the maximum of each term in W,
thus converge for increasing y values toward a common value 7, as given by Eq.
(146). Consequently

" (cosa) = 4 = % (172)

in the limit of large p, that is, where | = 2y > 1. Combination of relations
(172) and (170) finally yields

A
2ni(cosa) = % = si—r?oc ~ Ao (173)

with very good approximation for (cos ot)2 < 1, and where Ay = 2mn/ky is the
mean wavelength of the wavepacket that has a small linewidth, namely,



44 B. LEHNERT

kozo > 1 and v ¢ v = cko/2n. This result thus applies to large y values of the
generating function, where the integrands W,,; and pW,,s of the mass (167) and
angular momentum (168) have sharply peaked maxima located at the radius 7.

The result (173) applies to a photon model with the angular momentum /21
of a boson, whereas the photon radius 7# would become half as large for the
angular momentum %/4n of a fermion. Moreover, the present analysis on
superposition of EMS normal modes is applicable not only to narrow linewidth
wavepackets but also to a structure of short pulses and soliton-like waves. In
these latter cases the radius in Eq. (173) is expected to be replaced by an
average value resulting from a spectrum of broader linewidth.

VIII. FEATURES OF PRESENT INDIVIDUAL PHOTON MODEL

The present axisymmetric model of the individual photon becomes associated
with a number of important questions discussed in the current literature.

A. The Nonzero Rest Mass

The question of the possible existence of a nonzero photon rest mass was raised
by Einstein [42], Bass and Schrodinger [43], de Broglie and Vigier [44], and
further by Evans and Vigier [5], among others. It includes such crucial points as
the relation to the Michelson—-Morley experiment, and the so far undetermined
value of such a mass and its experimental determination.

1. Comparison with the Michelson—Morley Experiment

The velocity of the earth in its orbit around the sun is about 10~*c. If this would
also turn out to be the velocity with respect to a stationary ether, and massive
photons would move at the velocity v = ¢(sina) in the same ether, then the
velocity u of photons recorded at the earth’s surface would become

V+w

“TTr w/d) (174)
with w = § - ¢ and § = £10~*. Introducing
. 1 » 1 4
smcle—i(cosoc) —g(coscx) —e=1-f (175)
the departure from c of the recorded photon velocity would be given by
|8 80 )
c 1= &(1—f)
1
= (cosa)?(1 + 28) (176)
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From Eq. (176) the following conclusions can be drawn regarding recorded
velocities:

e For cosa < 107, corresponding to a photon rest mass my < 0.74x
107¥ kg =2 10~°m,, a change in the eighth decimal of the recorded
velocity of light can hardly be detected.

e With the same assumption of cosa < 107#, and when turning from a
direction where 8 = +10~* to the opposite direction where § = —1074,
the change in 1 — (u/c) would even become much less; 1072, Also such a
value hardly becomes detectable.

Consequently, there should be no noticeable departure in recorded velocity from
the Michelson—Morley experiments when the photon rest mass is changed from
zero to about 1073 kg =2 10~%m, or less. For a photon rest mass in the range
107%% < my < 10~ kg as considered by Evans and Vigier [5], this departure
would become extremely small and very hard to detect. Still the physics with
such a nonzero mass becomes fundamentally different from that being based on
a photon mass, which is exactly equal to zero. This is also clearly demonstrated
by the present analysis and its results in the laboratory and “‘rest” frames, as
given by the Lorentz transformation.

In all approaches with a nonzero photon rest mass the velocity ¢ should be
considered as an asymptotic limit at infinite energy that can never be fully
approached in physical reality by a single photon in vacuo.

2. The Undetermined Value of the Rest Mass

In the case of the EMS mode of Eq. (45), the limit of zero rest mass corresponds
to cosa = 0. In this limit where cosa and mg are exactly equal to zero, the
result is like that of a conventional axisymmetric EM mode that either diverges
at the axis or at infinity, and must be discarded as pointed out in Section VIL.A.1
on branch 1 of solutions. Therefore the present results hold only for a nonzero
rest mass, but this mass can be allowed to become very small. This implies that
the quantum conditions mc? = hv for the total energy and s = h/2x for the
angular momentum are satisfied for a whole class of small values of coso and
the corresponding rest mass.

As pointed out by de Broglie and Vigier [25], this indeterminableness of the
photon rest mass appears to be a serious objection to the underlying theory. The
problem is that the derivations depend simply on the existence of the nonzero
rest mass, but not on its magnitude. To this mass in their analysis, de Broglie
and Vigier use examples of other ‘“‘macroscopic quantum effects” that have
been considered in theoretical physics, such as ferromagnetism and the possibi-
lity of indefinite precision in measuring Planck’s constant. Additional examples
are given in this context, such as those of the electron and neutrino masses and
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of the electric charge discussed in Section V.A.1, and where independent theo-
retical deductions of their absolute values have not been possible to make so far.
Thus, the uncertainty in the absolute value of the nonzero photon rest mass
does not necessarily imply that the corresponding theory is questionable, but
rather could be due simply to some so far “hidden” extra condition or
refinement that may have to be added at a later stage to obtain such a value.

3. Possible Methods for Determination of the Photon Rest Mass

For the determination of the photon rest mass, the following considerations can
be of importance:

e From the hypothesis of a nonzero electrical conductivity in the vacuum
and the corresponding dispersion relation [20,48, 50-52], the concepts of
“tired light” and the observed cosmical redshift could be interpreted and
associated with a nonzero photon mass of about 107% kg. The related
frequency dependence can also become a measure of the mass.

e Anisotropic effects of the recorded frequency of cosmic microwave
background radiation have been proposed for photon rest mass deter-
mination [20].

e The Vigier mass of the photon being associated with the de Broglie
wavelength Ap is

h

my = —
)uBC

(177)

where Az = 102 m is put equal to the radius of the universe [48,60].

e Possibly a deeper understanding of the details in certain interference
phenomena, such as the Goos-Hinchen effect and the Sagnac effect
mentioned in Section II, list items 4 and 6 could provide estimates of the
photon rest mass. As shown by de Broglie and Vigier [44] and Vigier [61],
these effects can have explanations in terms of such a mass.

B. The Photon as a Particle with an Associated Wave

An essential feature of de Broglie’s picture of the wave-particle duality consists
of regarding the particle and the associated wave as simultaneously existing
physically real entities. Relations (70), (111), (118)-(123), (134)—(137), (158),
(159), and (170) of the present wavepacket model in the frames K and K’ are
consistent with such a picture, which could be considered as a “hybrid” system
of unified wave and particle nature.

In the laboratory frame K this electromagnetic field configuration has the
total energy hv = mc?. Thereby the fraction (m — mg)c? can be regarded as the
energy of a “free” pilot wave of radiation, and the fraction mgc? as the energy
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of a “bound” particle state of “‘self-confined” radiation. The rest mass m thus
represents an integrating part of the total field energy. In the ¢ direction the
“bound” radiation ‘“moves” around the z axis of symmetry at the velocity
Céo = ¢ according to Eq. (111). With the sharply defined radius 7 of Eq. (146),
this part of the radiation field becomes associated with a frequency

c

- 1
2nr (178)

Vo

of revolution around the z axis in the rest frame K’. In combination with
relations (173) and (159), and for sina = 1, this yields

vo = v(cosa) = v(@) (179)
m
as also being supported by the idea that all parts of the EM field energy should
be included in the same way in the total energy hv. The relation

hvy = moc? (180)

by de Broglie is then recovered through Eq. (179). In K the pilot wave thus
becomes associated with the component C, = c(sina), and the rest mass with
the component Cy, = c(cosa).

Provided that mg/m is independent of the frequency v, the results (178)—
(180) and (88) thus permit the angle o also to be independent of v. This would
have two important consequences:

e For a constant angle o the phase and group velocities and the velocity
vector C of Egs. (88) and (70) become independent of frequency. Then
there are no dispersion effects that would cause signals of different wave-
lengths to have different propagation times over large cosmical distances.
Even if there would arise a frequency dependence of o, the extremely
small rest mass mentioned in Section VIIL.LA.1 would lead to small
dispersion effects, even at large cosmical distances.

e The two-frequency paradox [6] by de Broglie can be resolved, in the sense
that the frequency vy = V' is coupled to the frequency v by relation (179).

If Eqgs. (178)—(180) would not become fully satisfied, thereby leading to a
frequency dependence for o, then Eq. (159) would result in a dispersion relation
that depends on the rest mass my as discussed in Section VIIL.A.3.

C. The Electric Charge, Angular Momentum, and Longitudinal Field

The local electric charge density of the present theory can have either sign. In
the photon model, however, the boundary conditions on the electric field cause
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the total integrated charge to vanish as given by Eq. (141). A way out of the
discussed problem earlier of zero net charge of the photon is to assert that the
photon is its own antiphoton [5]. The result of Eq. (141) provides an alternative
to this.

At this point a question arises as to the possibility of having an expression for
the angular momentum also in the rest frame K’. However, such a question is
not simple, because the definition of a Poynting vector in the rest frame of the
wavepacket is not straightforward.

As in the case of the electric charge, there are local contributions of various
signs to the total integrated magnetic moment. The latter vanishes in the present
analysis where these contributions outbalance each other. In spite of this, there
is a nonzero local magnetic field that has a nonzero component in the axial
direction that is invariant to Lorentz transformations in the same direction, and
is associated with a nonzero photon rest mass. This intrinsic axial magnetic field
is reconcilable but not identical with that of Evans and Vigier [5,6,45], who
have based their approach on a different form of 4-current (26) in the Proca-type
equation (22). As expected, the intrinsic current system and magnetic field are
purely poloidal in the rest frame, whereas the magnetic field in the laboratory
system is helical. The helicity of the photon field has also been considered in an
analysis by Evans [28] and Dvoeglazov [62].

In this connection it should finally be mentioned that Comay [63] and Hunter
[64] have discussed the B®® field concept by Evans and Vigier on the basis of
conventional electromagnetic theory where the 4-current of Eq. (22) vanishes in
the vacuum. Their analysis leads to the obvious conclusion that the B® field
vanishes in such a case. This does, however, not rule out the existence of B®
when there is a nonzero 4-current of the type (26) introduced by de Broglie,
Vigier and Evans. Thus, without a Proca-type equation (22), no steady-state
magnetic “‘spin field”” can exist in a rest frame K’.

D. The Photon Radius

The present photon model is partly supported by experiments performed. Thus
far in earlier investigations on two-slit interference phenomena of individual
photons in the ultraviolet range [21], dot-shaped marks were observed at a
screen, as in a similar case with electrons. Such a concentrated local energy
behavior is hard to reconcile with a plane wave, even when the distribution of
photon impacts exhibits a probability character given by quantum theory. In
the case of impinging individual photons, these marks seem to be consistent
with a limited radial extension of the wavepacket as given by Eq. (173), at least
when coso > 107>, Apart from the factor cosa, Eq. (173) agrees with a form
by Hunter and Wadlinger [23] which appears to be consistent with micro-
wave transmission experiments. Even if both these forms sometimes lead to a



OPTICAL EFFECTS OF AN EXTENDED ELECTROMAGNETIC THEORY 49

rather limited photon diameter, however, there remains the question how a
photon can release a single electron at atomic dimensions, such as in the
phtoelectric effect.

E. The Thermodynamics of a Photon Gas

With a nonzero rest mass one would at a first glance expect a photon gas to have
three degrees of freedom: two transverse and one longitudinal. This would alter
Planck’s radiation law by a factor of 2, in contradiction with experience [20]. A
detailed analysis based on the Proca equation shows, however, that the B®) spin
field cannot be involved in a process of light absorbtion [5]. This is also made
plausible by the present model of Sections VII and VIII, where the spin field is
“carried away” by the pilot field. As a result, Planck’s law is recovered in all
practical cases [20]. In this connection it has also to be observed that transverse
photons cannot penetrate the walls of a cavity, whereas this is the case for longi-
tudinal photons which would then not contribute to the thermal equilibrium [43].

The equations of state of a photon gas have been considered by Mézaros
[29] and Molnar et al. [30]. It has thereby been found that Planck’s distribution
and the Wien and Rayleigh—Jeans laws cannot be invariant to an adiabatic
change of state occurring in an ensemble of photons. The dilemma that arises is
due to the fact that the changes of state cannot be adiabatic and isothermal at the
same time. It is probable that the cause of this contradiction can be the lack of a
longitudinal magnetic flux density, such as the field B®) by Evans and Vigier, in
the original and standard treatments. Thus, in an adiabatically deformed photon
gas the intensity will change in time, and so will the field B®). These important
questions may require further investigation.

F. Tests of the Present Model

The results achieved so far that support the present individual photon model can
be summarized as follows:

e The total reflection of an incident wave in a dissipative medium that is
bounded by a vacuum region

e The convergence of the axisymmetric solutions, which has no counterpart
in conventional theory

e The needle-shaped wavepacket solutions of the individual photon model,
which agree at least sometimes with the dot-shaped marks on a screen in
interference experiments

e The nonzero angular momentum which does not exist for circularly and
plane polarized conventional electromagnetic waves

e The contradictions that arise in the thermodynamics of a photon gas, and
that are likely to be clarified by having a longitudinal magnetic field part
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At this stage there is an open question as to whether other radial parts of the
generating function, exist being similar to that of Eq. (143) and giving results
same as or similar to those just mentioned. Thus the photon model and its
internal structure could also be tested in observations of various scattering
processes.

IX. NONLOCALITY AND SUPERLUMINOSITY

Another class of electromagnetic phenomena beyond the concepts of conven-
tional theory, has generated an increasing interest, namely, when considering
instantaneous long-range interaction as well as signals propagating at velocities
greater than c. Investigations within this new field are still at a preliminary stage,
also including questionable concepts and interpretations. Suggestions are made
here as to how the present approach could be included in the analysis.

A. General Questions

It was pointed out by Dirac [34] that, as long as we are dealing only with
transverse waves, we cannot bring in the Coulomb interactions. There must then
also arise longitudinal interactions between pairs. In fact, as already argued by
Faraday and Newton and further stressed by Chubykalo and Smirnov-Rueda [2],
among others, instantaneous long-range interaction takes place not instead of
but along with the short-range interaction in classical field theory. This point of
view has also been expressed by Pope [65] in stating that instantaneous ‘“‘action
at a distance” and the finite speed of light are generally considered as
antithetical, but it is well known that in relativistic physics light has both finite
and infinite speed. Thus c is not a velocity but is a spacetime constant having the
dimensions of velocity. In this connection Argyris and Ciubotariu [66] point out
that the unquantized longitudinal-scalar part of the field yields the Coulomb
potential, and that transverse photons transport energy whereas longitudinal
(virtual) photons do not carry energy away. Thus, there is direct interaction
between a transverse photon and the gravitation field of a black hole, but not
with a longitudinal photon. The Coulomb field is therefore able to cross the
event horizon of a black hole. The B®) field concept should also be understood
to be related to this nonlocalized action at a distance [28].

In addition to the long-range interaction, there is also the phenomenon of
superluminosity, defined by signals that can propagate and possibly carry energy
at a finite speed but that exceeds the value c. There are a number of observations
reviewed by Recami [27] indicating that such motions could exist and can be
associated with tachyon particles.

B. Instantaneous Long-Range Interaction

The problem of nonlocality due to instantaneous long-range interaction is now
considered both in electromagnetic and in gravitational theory.
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1. The Electromagnetic Case

In their considerations on the field generated by a single moving charged
particle, Chubykalo and Smirnov-Rueda [2,56,57] have claimed the Lienard—
Wiechert potentials to be incomplete. These potentials are then not able to
describe long-range instantaneous Coulomb interaction. However, in a modified
theory by Chubykalo and Smirnov-Rueda such interaction is included. The
applicability of these potentials is, however, still under discussion [9].

A further analysis of the concept of long-range instantaneous interaction has
been presented [2,56,57] in which the Proca field equation is divided into two
pairs. The first of these manifests the instantaneous and longitudinal aspect of
electromagnetic nature, as represented by functions f[R(#)] of an implicit time
dependence. For a single charge system this would then lead to the form
R(f) =r —r,(t), where r is a fixed vector from the point of observation to the
origin, and r,(¢) is the position of the moving charge. The implicit time
dependence then implies that all explicit time derivatives disappear from the
basic equations of the first part of the divided pairs. The second part is
responsible for transverse wave phenomena, as represented by functions
g(r,t) of an explicit time dependence.

The basic equations (1)—(8) of the present extended formulation also include
Coulomb interaction. Likewise, these equations can be split into one
part representing long-range instantaneous interaction having an implicit time
dependence, and another part that represents signals having a nonzero propaga-
tion time and an explicit time dependence. The first part is then given by Eqgs.
(1)—(8) without partial time derivatives, thereby reducing to a form being
analogous to the general equations (36) of a steady state. The second part
defined by Eqgs. (1)—(8) with an explicit time dependence includes propagating
transverse EM waves, as well as S and EMS waves.

The subdivision of the solutions into parts of implicit and explicit time
dependence could in fact be interpreted in two ways:

1. For sufficiently slow time variations, the explicit time derivatives can be
neglected and the solutions of a quasisteady equilibrium are then obtained with
good approximation. Such a situation arises when the sources of the EM field, as
given by the charges and currents, vary slowly as compared to the time required
for a wave to pass from its source to the field point in question. Then a
corresponding interpretation of an implicit time dependence would not be
reconcilable with the absolute concept of instantaneous long-range interaction.
It would merely be due to the fact that the time variations of the sources have
been chosen slow enough for the propagation time of the wave to appear
infinitely short, somewhat in analogy with the situation of Achilles and the
turtle.

2. There are, however, a number of arguments that could support the exis-
tence of long-range instantaneous interaction. Thus, superluminal phenomena
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cannot be explained from Maxwell’s equations without longitudinal wave
concepts [28]. The energy of “‘longitudinal modes” cannot be stored locally in
space but can be spread by an arbitrary velocity [62]. Moreover, nonlocality
behaviour is supported by observations as a fundamental property of the
universe [67]. There are also several quantum-mechanical arguments in favor of
long-range interaction, such as that of the Aharonov—Bohm effect [68] and those
raised in connection with the Einstein—Podolsky—Rosen thought experiment.
With these arguments, and with the similarity between EM and gravitational
long-range interaction described in the next subsection (IX.B.2), it should be
justified to use the part of implicit time dependence in the basic equations as a
theoretical model for instantaneous long-range interaction.

Instantaneous action at a distance, represented here by longitudinal compo-
nents, can thus be interpreted as a classical equivalent of nonlocal quantum
interactions [2].

2. The Gravitational Case

There are some similarities between electromagnetism and gravitation that
could be important to the investigation of long-range interaction. Thus, there is a
resemblance between the Coulomb and Newton potentials [66]. A holistic view
of electromagnetism and gravitation would imply that action at a distance
occurs in a similar way in gravitation [28], and vice versa. This is supported by
the general principle that there exists no screen against gravitational forces
acting between distant massive sources [48]. In other words, the position,
velocity, and acceleration of a source of gravity would then be felt by the target
body in much less than the light-time between them.

C. Superluminosity

In addition to the long-range interaction at infinite speed, there are proposals for
the existence of superluminal phenomena that should manifest themselves in
propagation at a finite speed, but being larger than c. There now seems to be
observational evidence for such phenomena, as well as indications thereof in the
theoretical analysis, but further investigation is needed.

1. Observational Evidence

The longstanding idea of superluminal motion has become subject to renewed
interest, due to a number of recent discoveries and observations, as described in
a survey by Recami [27]. Thus the squared mass of muon—neutrinos is found to
be negative. There are further observations that can be interpreted as super-
luminal expansions inside quasars, in some galaxies and in galactic objects.
Also, so called “X-shaped waves” have been observed [69] to propagate at a
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velocity larger than c. Finally Nimtz et al. [70] have performed an experiment
where a wavepacket was used to transmit Mozart’s Symphony No. 40 at a speed
of 4.7c through a tunnel formed by a barrier of 114 mm length. There is a
difficulty in the interpretation of tunneling experiments, because no group
velocity can be defined in the barrier traversal that is associated with evanescent
waves.

2. Theoretical Analysis

Reviews on the theoretical analysis of superluminal phenomena have been
presented by Barut et al. [71] on tachyons and by Olkovsky and Recami [72] on
tunneling processes. A special study has been conducted by Walker [73] on the
propagation speed of a longitudinally oscillating electric field, generated along
the axis of vibration of an electric charge and based on Lienard—Wiechert
potentials. It was shown that both the phase and group velocities of the field
were infinite next to the charge, and then decayed rapidly to the speed of light in
one wavelength. In the zero-frequency limit this analysis gave results of a
nonlocal character, and their relation to or contradiction with the theory by
Chubykalo and Smirnov-Rueda [2,56,57] is not clear at this stage.

The central assumption underlying the standard approach to tachyon theory
is that the usual Lorentz transformation also applies to the superluminal case.
One therefore simply takes the Lorentz factor [1 — (v/ c)z)]l/ * and substitutes
v > c into it [27,74]. This leads directly to an imaginary rest mass and
propagation time for tachyons, with many difficulties of interpretation [74].

These central concepts of tachyon theory also come out of the present
approach. An alternative way to satisfy the condition (8) of Lorentz invariance
is thus to replace the form (70) of the velocity vector C by

C = ¢(0,isinha,cosha) = ¢(0,Cy, C;) (181)

in an axisymmetric case. For propagating normal modes of the form
exp [i(—ot + kz)], Eq. (46) for an EMS-like tachyon mode then yields the dis-
persion relation

o =kC, = kv v = c(cosh o) (182)

which replaces relation (88). Thus the phase and group velocities are both equal
to v > ¢ for a given value of a.

If we further assume that relations (159) for a photon can be adopted and
modified to apply to the tachyon case, the result in combination with Eq. (182)
would become

—1/2 2

2
hv:mczzmocz[l—(K> } = e (183)
c
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or
=i(sinhoa)ym  m} <0 (184)

Consequently, this leads to what could be considered as an imaginary rest mass,
as is also obtained in current tachyon theory.

The introduction of the form (181) for C into the basic equation would lead
to formal solutions analogous to those of Section VII for the axisymmetric EMS
mode and wavepacket. Physical interpretations of such solutions are assumed to
be difficult and have not been attempted at this stage. Here we shall only end the
discussion with some preliminary and speculative points related to the imagin-
ary rest mass. It is first noticed that an ansatz

moc* = hv' (185)

analogous to that by de Broglie for the photon would lead to an imaginary
frequency

v moc? ic(sinho)(coshor)

Lo

= iv(sinha) = (186)

with A as the average wavelength of a propagating tachyon wavepacket. This
frequency and rest mass are related to the component C,, of the velocity vector
C, and can be associated with a balance condition in the ¢ direction. Second,
when returning to expression (173) for the photon wave packet, and by
comparing the forms (70) and (181), an analogous expression

— ko
~ cosha

2nr

(187)

could be attempted for the tachyon radius. With the imaginary velocity C, of
“revolution” in the ¢ direction, the corresponding imaginary frequency would
then become

C, ic(sinho)(coshar)
=t 188
v 2nr >\.() ( )

which is the same result as that of Eq. (186). The interpretation of this imaginary
frequency is difficult, and it is not clear that it could become associated with a
damping factor and a limited tachyon life time.
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X. THE WAVE AND PARTICLE CONCEPTS OF A LIGHT BEAM

At this point it is appropriate to return to the general wave and particle concepts
of light. To be more specific, we can ask whether an individual photon can be
treated both as a plane wave and as a particle, and whether a broad light beam
can be considered both as a stream of individual photon particles and as a plane
wave. For a closer examination of these questions it becomes necessary to
investigate every particular case with respect to the following points:

e The choice of theoretical representation has to be reconcilable with the
geometric configuration to be studied.

e The boundary conditions impose certain constraints.

e The initial conditions by which light is being generated will influence the
choice of representation.

The analysis that follows is based partly on a preliminary and tentative
approach [75].

A. The Individual Photon

In many cases the photon can be represented by the two alternative models of a
plane wave and a particle-like wavepacket. This should also apply to inter-
ference phenomena with individual photons [21]. For a given point at the screen
of an experiment with two apertures, the resulting interference pattern obtained
from individual photon impacts could thus be interpreted in two alternative
ways:

e The photon is as a plane wave divided into two parts that pass through
either of the apertures, and then interfere at the screen.

e The photon is as an axisymmetric wavepacket divided into two parts that
pass the apertures and interfere with each other when ending up at the
screen to form a common dot-shaped mark.

Irrespective of whether the photon is considered as a plane wave or a
wavepacket of narrow radial extension, it must thus be divided into two parts
that pass each aperture. In both cases interference occurs at a particular point on
the screen. When leading to total cancellation by interference at such a point,
for both models one would be faced with the apparently paradoxical result that
the photon then destroys itself and its energy sv. A way out of this contradiction
is to interpret the dark parts of the interference pattern as regions of forbidden
transitions, as determined by the conservation of energy and related to zero
probability of the quantum-mechanical wavefunction.

The photon has the energy /v both at its source and at the screen. The
division into two parts of the photon during its flight would at first sight be in
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conflict with the quantization of energy. A possible solution of this problem can,
however, be found in terms of the Heisenberg uncertainty principle. A
randomness in phase can be assumed to arise when the plane wave parts are
transferred into dot-shaped geometry when hitting the screen, or when the
axisymmetric wavepacket parts are formed and reunited during their flight.
Since both photon models include long wavetrains in the direction of propaga-
tion, the average uncertainty in phase of the interference process is expected to
be of the order of half a wavelength A. At the surface of the screen this can in its
turn be interpreted as an uncertainty Ar =2 A/2¢ = 1/(2v) in time. This finally
leads to an uncertainty AE = h/(2nAr) = hv/7 in energy. The latter would
then become of the order of half the energy hv, thus being carried by each
photon part that passes through the apertures.

These questions appear to be understandable in terms of both photon models.
The wavepacket axisymmetric model has, however, an advantage of being more
reconcilable with the dot-shaped marks finally formed by an individual photon
impact on the screen of an interference experiment. If the photon would have
been a plane wave just before the impact, it would then have to convert itself
during the flight into a wavepacket of small radial dimensions, and this becomes
a less understandable behavior from a simple physical point of view. Then it is
also difficult to conceive how a single photon with angular momentum (spin)
could be a plane wave, without spin and with the energy hv spread over an
infinite volume. Moreover, with the plane-wave concept, each individual photon
would be expected to create a continuous but weak interference pattern that is
spread all over the screen, and not a pattern of dot-shaped impacts.

An individual axisymmetric photon wavepacket that propagates in vacuo and
meets a mirror surface, should be reflected in the same way as a plane wave, on
account of the matching of the electromagnetic field components at the surface.
Inside a material with a refraction index greater than that in vacuo, the
transmission of the wavepacket is affected by interaction with atoms and
molecules, in a way that is outside the scope of the discussion here.

Whenever applicable, the present wavepacket model of Section VII can be
regarded as a unification of the wave and particle concepts of an individual
photon. It propagates as a wave, and at the same time has a static part that is
associated with the intrinsic properties of spin, a nonzero rest mass, and a static
magnetic and electric field part. Although it is never at rest, the photon thus has
many features in common with other particles such as leptons, which, in turn,
also can behave as waves according to de Broglie. The geometric structure of
the individual “localized” photon wavepacket of the present simplified theore-
tical model is thereby not in conflict with the quantum-theoretical wavefunction
that represents the probability distribution of a photon before its position has
been localized through a measurement.
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B. Density Parameters of a Broad Beam of Wavepackets

A light beam is now being considered that consists of a stream of individual
axisymmetric photon wavepackets of narrow linewidth and where the macro-
scopic breadth of the beam is much larger than the individual photon radius 7 of
Eq. (173). The volume density of the wavepackets is assumed to be uniform in
space. Then the mean distance between the centra of the wavepackets becomes

d= S " 189
() )

With the energy hv = hc/Ag of each photon, the energy flux per unit area is
given by

¥ _npthanhCZ 3 _27:
P ko " ko

(190)

according to Eq. (88) when (cosoc)2 < 1. Combination of relations (189), (190),
and (173) then yields a ratio

J e \ 2
0, =—==m LA‘ (cosar) (191)
2r v,

of the mean transverse separation distance between the photons and the
diameter 27 of a single photon. Multiphoton states [23] are not considered
here, but could somewhat modify the analysis.

Since 7 represents a sharply defined radius according to the theory described
earlier, there is a critical value 0. =2 1 of the ratio (191). It corresponds to

(W,29) | (coso) ™ = mhe? = 1.85 x 107 [W - m?)] (192)

Equation (191) is related to an earlier analysis of multiphoton phenomena [23]
for which its left-hand member would have to be replaced by the value
0, = (n/2)*°.

In analogy with Eq. (191) there is also a ratio of the mean longitudinal
separation distance between two photon wavepackets situated on a common
axis and the individual wavepacket length 2z, as given by

d .
OH :2—20<<9L (zo>7) (193)
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for small linewidths. Here 0. = 1 is the corresponding critical value of 0.
The regimes of the parameters (191) and (193) are now subdivided with
respect to overlapping of the individual photon fields:

(I) 6, > 0,.: There is no transverse overlapping, and there exist two
subregimes.

(Ta) 01 > 0 > O).: There is no longitudinal overlapping.
(Ib) 01 > 6 < 0.: There is longitudinal overlapping.

(I 6, < 0,.: There is both transverse and longitudinal overlapping.

1. Longitudinal Field Overlapping

When 0 < 0 the photon wavepackets that are lined up after each other on the
same axis can match their phases and combine into more elongated packets. As
a result the linewidth of a single photon is expected to become larger than that
of a dense photon beam. The local energy flux density , should at the same
time be given by the number of photons passing a cross-sectional area,
regardless of the value of the ratio 0.

2. Transverse Field Overlapping

The case of transverse field overlapping is far more complicated than that of
longitudinal overlapping. According to the previous analysis, the field energy is
limited mainly within a well-defined radius 7. As long as the ratio 0, exceeds
the critical value 6, ., the photon wavepackets of the beam will not overlap and
will have hardly any mutual interaction. The beam then behaves as a stream
of individual photon particles, that is, when representing each photon as an
axisymmetric wavepacket.

When 6, decreases beyond 0 ., however, a rapidly increasing overlapping of
the individual photon fields would take place. An extensive analysis of modera-
tely large overlapping in the range near 0 . is expected to become complicated,
and will not be undertaken here, where we limit the discussion to the range
0, < 0, of strong overlapping. For this latter range the following points apply:

e If the individual wavepacket solutions of the present theory could be
superimposed, this would imply that the field vectors become multivalued
at every point inside the photon beam. The individual photon fields would
then have to cancel each other. This implies that the axisymmetric small-
scale wavepacket solution of Section VII does not apply and cannot satisfy
the basic Egs. (1)—(8) in the case of a nearly plane (one-dimensional) and
broad photon-dense beam configuration.

e From this mutual cancellation of the individual photon fields an apparently
paradoxical conclusion would follow, namely, that the beam energy
gradually vanishes as 0, decreases beyond 0,.. To preserve the energy
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flux, such a conclusion then must be combined with an additional
hypothesis, as will be shown in the following section.

When considering the model of a beam that consists of axisymmetric photon
wavepackets, it can finally be seen from relation (191) that transverse over-
lapping would not occur for visible light at very small energy fluxes, whereas
such overlapping should arise at the energy fluxes of strong laser light in the
visible regime as well as for electromagnetic waves in the radiofrequency
regime.

C. Energy Flux Preservation

Within any parameter regime, the quantization and preservation of the beam
energy flux has to be imposed as a necessity. Thus, to preserve this flux we
propose a tentative approach by assuming that the increasing deficit of beam
energy due to overlapping and cancellation of the axisymmetric EMS wave-
packet fields is compensated by the energy contribution due to a simultaneously
appearing and increasing plane wave of the EM or EMS type as being defined
earlier. This assumption is also supported by the requirement of having a wave
system with phase and group velocities in the direction of the beam, and with
wavefronts perpendicular to the direction of propagation. Consequently we
make the ansatz

v, = Vpms + Ve (194)

where gy and Ypp, are the contributions to the total energy flux from the
individual EMS fields and from the plane wave, respectively. This proposed
scenario can thus be described as follows:

e In the regime 0, > 0. of negligible field overlapping the beam consists
of a stream of individual EMS wavepackets, each with an energy hv and
rest mass my, propagating at the velocity v = ¢(sino) and giving rise to the
energy flux , = Vpys-

e When 0, decreases to values 0, = 0,., field overlapping begins to
influence the beam and a rather complex hybrid state is established. In the
case of a plane EM wave, EMS and EM fields are then superimposed and
coupled, with a reduced rest mass, and propagating at a velocity v in the
range between c(sina) and ¢, thereby giving rise to a combined energy
flux (194). The coupling of these two wave fields has been discussed to
some detail elsewhere [75].

e When finally reaching the regime 0, < 0,., the EMS wave fields of
axisymmetric wavepackets would be canceled by overlapping, and only
the plane wave therefore remains as a possible solution of the basic
equations in the present macroscopic beam geometry. A plane EM wave
propagates at the velocity v = ¢, thereby giving rise to an energy flux
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V,, = Vpy, for a beam consisting of photons, each having the energy hv. In
this regime we are thus back to the plane-wave representation, here
applying to the collective behavior of photons in a beam. Plane EMS
waves could also be involved under these conditions, such as in the special
process of total reflection described in Section VI.B.

A question that can be raised in this tentative approach concerns the angular
momentum. In the case of a low-density beam of negligible EMS field over-
lapping, all the individual axisymmetric photon wavepackets will carry their
own spin. For a high-density beam that has been converted into a plane EM
wave, however, there are two reasons why it is difficult to see how there could
exist a total nonzero spin related to the beam energy flux ,: (1) the plane
geometry makes it hard to picture how an angular momentum could arise for a
wave system of ‘““flat” appearance and infinite spatial extension; and (2) the
extended approaches that are based on a nonzero 4-current in the Proca-type
equation (22) lead to photon models with intrinsic spin, whereas this does not
result from the transverse wave solutions of conventional electromagnetic
theory [5,20,25]. Such a conclusion is also consistent with that by Heitler
[59], who points out that a plane wave of infinite extension in the transverse
direction cannot have any angular momentum about an axis in the direction of
propagation. Further, for an axisymmetric circularly polarized beam of finite
circular cross section, there arises an angular momentum that can have
contributions from individual photons at its periphery, somewhat like the
contributions from the gyro motion of charged particles at the boundary of a
magnetized plasma body. In any case, these questions require further analysis in
which quantum-mechanical aspects may also have to be included.

D. Beam Conditions for Wave or Particle Representation

The preceding discussion thus indicates that the basic equations, with their
initial and boundary conditions, will determine whether a ray of comparatively
large transverse dimensions is to be represented by a plane wave or by a beam of
particle-like photon wavepackets. Thus two general cases should be observed:

e The condition 0, < 0,, of strong transverse overlapping is both
necessary and sufficient for the ray to be represented by a plane wave,
because the basic equations do not permit axisymmetric individual photon
wavepacket solutions to exist in such a case.

e The condition 6, > 0. of negligible transverse overlapping is necessary
but not sufficient for the ray to be represented by a beam of axisymmetric
wavepackets, because the basic equations can then in principle be satisfied
both in plane wave and axisymmetric wavepacket geometry.

Energy flux preservation in the sense of the ansatz of Section X.C and
Eq. (194) should hold in both these cases, that is, irrespective of the value of 6 .
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1. Initial Conditions

The initial conditions of the source can contribute to the character of the emitted
electromagnetic radiation. Thus emission from excited atoms occurs in the form
of individual photon wavepackets and can give rise to particle-like photon
beams under appropriate conditions. Electromagnetic radiation that is excited
by the current system of a macroscopic antenna is, on the other hand, expected
to produce nearly plane waves at large distances from the source.

2. Boundary Conditions

The boundary conditions can also have a decisive influence on the type of
representation. A first example is given by the transmitted wave at a vacuum
boundary, as discussed in Section VI.B. Here the incident and reflected plane
waves can be matched at the interface by a plane transmitted wave, but hardly
by a transmitted beam of axisymmetric photon wavepackets.

A second example is given by the microwave transmission experiments [23]
mentioned at the end of Section VIIL.D. These were performed in presence of an
adjustable aperture. A cutoff of the transmitted power was observed at a certain
aperture size, in agreement with theory [23]. The question then arises how the
earlier discussed overlapping effects become reconcilable with such a result.
The answer is that microwave transmission in a device of limited size differs in
many respects from the behavior of a broad beam. An important feature of the
former case is due to the boundary conditions imposed by the aperture, in which
an essential part of the overlapping fields is being “scraped off.” As a result of
this, the single photon picture could still be relevant to the experimentally
observed behavior. But it should then also be remembered that light transmis-
sion through a circular hole becomes strongly reduced according to conven-
tional thory when the wavelength exceeds the hole diameter [76].

Large wavelengths and low energies hv favour transverse overlapping
according to Eq. (191). To avoid such overlapping, and thereby satisfy the
boundary conditions of an axisymmetric individual photon, the energy flux s,
has to be chosen at an extremely low level. Thus, to observe a “‘giant” axisym-
metric photon wavepacket in the radiofrequency regime, the energy flux of
equation (192) would have to become extremely small.

XI. CONCLUDING REMARKS

The present theory has been developed in terms of an extended Lorentz
invariant form of the electromagnetic field equations, in combination with an
addendum of necessary basic quantum conditions. From the results of such a
simplified approach, theoretical models have been obtained for a number of
physical systems. These models could thus provide some hints and first



62 B. LEHNERT

approximations to the properties of the individual photon, light beams, and
charged and neutral leptons. However, at least certain parts of the same models
must, in a future and more rigorous approach, be substituted by a quantization
of the extended field equations from the beginning. Possibly the present models
may still represent the ‘“‘most probable states” of a corresponding rigorous
quantum-theoretical approach.

Last but not least, it must be further investigated whether light manifests
itself differently under different conditions. One of these manifestations is
represented by an axisymmetric solution of the present theory, which has the
nonzero angular momentum of a boson particle. Another is represented by a
plane-polarized wave having zero angular momentum.

As pointed out by Sarfatti [77], the basic form (7) of the four-current is
related to the result of anholonomic electrodynamics.

APPENDIX A: THE LORENTZ CONDITION

With the introduction of the two potentials A and ¢, the basic equations (1)—(6)
can be recast into the system

A + VL = —pj (A.1)
o, p
Dd)—&L——% (A.2)
where
A L2 [o (1) 2] [, i
R N 3 B I

In terms of O(3) covariant derivatives, Evans et al. [78] have shown that the
Proca-type equation represented by the form (22) can be derived without
imposing the conventional Lorentz condition L = 0. This result is supported
by the following two considerations.

When the two square brackets in the right-hand member of Eq. (A.3) both
transform as 4-vectors, their ““‘scalar’ product becomes invariant in spacetime.
The quantity L is then equal to an arbitrary constant. Consequently the terms
containing L in Eqgs. (A.1) and (A.2) vanish regardless whether the Lorentz
condition L = 0 is being satisfied.

A second confirmation is obtained from a gauge transformation

0
Nearv wme (aa)
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with an arbitrary scalar function y = x(x,y,z,¢). From Eq. (A.3) we then have

/ 2
L:divA'+é%—(Vz—%%)x:ﬂ(x,y,z,t)—[]x (A.5)
A choice of y is now made where
1=t % (A.6)
with
Oy =L (A7)
2%, = coct? — (clx2 + ey + C322) (A.8)

From equation (A.5) it is further seen that L' is canceled by the choice of y, as
in conventional theory. We then have

L= —[y, = co +c1 + ¢z + c3 = const (A9)

This also confirms that the Proca-type equation does not require L to vanish.
Moreover, Anastasovski et al. [79] have interpreted the basic EM field

equations in a new and different way. Thereby the Lorentz condition L = 0 has

been discarded, and Eqs. (A.1) and (A.2) have been modified to the form

OA =—=VL =i, (A.10)
0. Pa
Dd)—atL— % (A.11)

where the new 4-current thus becomes

(JaricPa) = — (u%) (V, - (é) %)L (A.12)

which is Lorentz-invariant, as expected. This can be interpreted as a vacuum
current and charge. It further raises the question of a possible extraction of
electromagnetic energy from the vacuum [79].

APPENDIX B: ELECTRON MODEL OF PRESENT THEORY
The present model of charged particle states is connected with two fundamental

questions in EM field theory. The first of these concerns the electric charge
quantization, partly through its relation with the magnetic flux in non-Abelian
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electrodynamics [5]. Such a quantization has been discussed in terms of the
magnetic monopole theories by Dirac [34] and t’Hooft and Polyakov [80]. A
second question of fundamental importance concerns quantum field theory in
general. It has been stated by Ryder [80] that, despite the numerous success of
the latter theory, the question of how to describe the basic matter fields of nature
has remained unanswered, except through the introduction of quantum numbers
and symmetry groups. Thus, as far as field theory goes, the matter fields are
treated as point objects. Even in classical field theory these present us with
unpleasant problems, in the shape of the infinite self-energy of a point charge. In
the comparative success of renormalization theory the feeling remains that there
ought to be a more satisfactory way of doing things [80].

B.1. General Equations of the Equilibrium State

Turning now to a more detailed description of the theory on steady equilibria
described in Section V.A, the basic equations (36) in spherical coordinates with
the adopted axisymmetrix geometry can be written as

(rop)’p _
€0

D = [D + (sin8) *](CA) (B.1)
where the operator is given by
2
D=py4Di D= (P )i o=y (B2

Combination of Egs. (B.1) and (37) yields

CA = —(sin0)’DF

—[1 + (sin0)*D |F
p=—(eo/rgp*)D[1 + (sine)zD]F

According to Eq. (17), the source energy density now becomes

1, . 1_
wy =5 (Po +ij-A) =2p(¢+CA) (B.6)
Introducing the functions
f(p,8) = —(sinB)D[1 + (sin6)*D]G (B.7)

g(p,0) = —[1 +2(sin0)*D]G (B.8)
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and the normalized integrals

JV:J J I,d8dp (v=g,M,m,s) (B.9)
)

gy J(

the integrated charge go, magnetic moment M, mass my, and angular momen-
tum sy of expressions (38)—(41) become

qo — 21‘580}’0GOJq Iq :f (BIO)

My = negCriGoJy Iy = p(sin@)f (B.11)

my = n(%)roG(Z)Jm In = fo (B.12)
c

50 = n(io—z)rgGéJs I, = p(sin®)fg (B.13)

Here ¢, are small dimensionless radii of circles centered at the origin p = 0 in
the case when the radial part R of the generating function (37) is divergent at
p =0, and &, =0 when R is convergent at p = (0. The former case will be
shown to correspond to an electrically charged particle state, whereas the latter
leads to a neutral particle state. The former state will be mainly considered here.
For the same state we notice that gy and M, depend on the sign of Gy but not my
and so. The sign of C = *c affects M and sy but not gy and my. The two spin
directions are related to the two signs of C. The integrals J,, and J; include the
energy density and should be positive in this analysis, which excludes negative
energy states.

With the separable normalized generating function G of Eq. (37), the
integrands I, of the normalized expressions (B.9) become

I, =R+ T](DpR) + ‘Esz(DpR) (B.14)
Iy = p(sin®), (B.15)
I, = ’C()’E3R2 + (’E()’E4 + Tng)R(DpR) + ’C1T4(DPR)2

+ ’Cz‘C3RDp(DpR) + TzT4(DpR) . [Dp (DPR)] (B.16)
I, = p(sin0)1,, (B.17)

where
19 = —(sin0)(DpT) — (sin0)Dp[(sin0)*(DeT)] (B.18)
1, = —(sin®)T — (sin0)Dyg|(sin0)*T] — (sin0)*(DeT) (B.19)
T, = —(sin0)’T (B.20)
13 = —T — 2(sin0)*(DyT) ( )
14 = —2(sin0)*T ( )
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To demonstrate the principal difference between the charged and neutral
particle states, we now consider the case of a convergent radial part R at p = 0,
and where we can put g, = 0. For the integral J, of the electric charge (B.10)
integration by parts with respect to p then yields

oo (T m dR1™ d? dR\ 1
J:J Jerp+J -1 {pz} +r[2<p2)} do
I o Jo 0 0 1 dp |, 2 dp? dp /],

(B.23)

When R and its derivatives vanish at infinity and are finite at p = 0, and when
the integrals of 1 and 1, given by Egs. (B.19) and (B.20) are finite, Eq. (B.23)
reduces to

o0 1
J, = L Rdp - L T0d0 = Jyp - 0 (B.24)

For convergent integrals J,, we thus have to analyze the integral J,. Partial
integration with respect to 0 yields

T = {(sine) d% [(sin®)*(DeT)] + (5in0) % }O (B.25)

For all finite functions T with finite derivatives at 6 = (0, ), it is then seen that
J, and gqo vanish in general.

Turning next to the magnetic moment (A.l11) and its integral, partial
integration with respect to p yields

Imp = J pRdp = — (—) J p(DpR)dp = —J pDy(DpR)dp  (B.26)
0 2) Jo 4 Jo
Combining expressions (B.26) with Egs. (B.15) and (B.18)—(B.20), partial
integration with respect to 0 finally results in

i

Iy = JMP{(sin6)3 % [(sin®)(DeT — 2T)]}0 (B.27)

where it is seen that finite functions 7 with finite derivatives at 8 = (0, ) lead to
Jy =0, and to a vanishing magnetic moment M,.

Concerning the mass and angular momentum given by expressions (A.12),
(A.13), (A.16), and (A.17), the convergent normalized integrals J, and J;
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cannot vanish in general. A simple test with R = ¢™P and T = 1 can be used to
illustrate this.

It is thus seen that radial functions R that are convergent at the origin lead to
a class of neutral particle states where go and M, both vanish, whereas m and s
are nonzero.

For the present theory to result in electrically charged particle states it
therefore becomes necessary to look into radial functions R that are divergent at
the origin. This leads to the subsequent question whether the corresponding
integrals (B.9) would then be able to form the basis of an equilibrium having
finite and nonzero values of all the quantities go, My, mo, and sg. In the next
section we will shown how this question can be answered.

B.2. The Charged-Particle State

The questions just being raised can be settled by studying a generating function
F = GoR(p) - T(0) of the form [13,50]

R=pexp(—p) (B.28)
T=1+ Z{an_l sin[(2v — 1)0] + ayy cos[2v0]}
v=1
=1+ a;sin® + a>cos20 + a3sin30 + - - - (B.29)

where 7y is a positive constant. A neutral particle state [20], as mentioned in
Section V.A.La, can instead be represented by y < 0 in the form (B.28). In the
same expression a change to a variable p* = const p only results in a change of
the amplitude Gy in expression (37). The form (B.28) diverges at p = 0 and
tends strongly to zero as p tends to infinity. The part T of (B.29) is chosen to
have top-bottom symmetry with respect to the “equatorial” plane 6 = nt/2.

In the radial integration with the form (B.28), expressions (B.9) have
dominating contributions from the largest negative powers of p. Therefore a
single term is chosen in (B.28), and not a negative power series. Consequently
we can write [13,20]

U
JV = va -]Ve ]Ve = J I\,e do (V = q,M, m, S) (B.30)
0
where
1 e 1 —(y—2
Jap :Y_ilgq(y Vo T =3 e (B.31)
1 1
Ty = —(2y-1) Jpp=— =2(y=1) B.32
p Zy—lgm P 2(y_1) 8s ( )
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and
Lo=1t—v(y— 1)t + Y (y — 1)212 (B.33)
IMQ = (Sine)lqe (B34)
Lo = Tt — (v — D(tota + 113) 4+ 72y — DX (1114 + T2T3)
—Py -1’y (B.35)
159 = (sin@)[me (B36)

For all the integrands (B.31)—(B.32) to diverge at small values of all g,, the
condition y > 2 has to be satisfied.

Finite and nonzero values of the integrated quantities (B.31)—(B.32) can now
be obtained by shrinking the characteristic radius ry to very small values, as
represented by

rn=co-e'  (0<e<1 and y>2) (B.37)

where ¢ is a positive constant having the dimension of length. Then it is further
necessary to make the choice

£, = & ey = 8[2(7—1)/0/—2)]; &y = g[(""')/<2‘/‘”]; g, =¢ (B.38)
which converts the radial integrals (B.31)—(B.32) into

}»2 g2 (B.39)

g~ (r=1) Iyp =

1

g 1
"2y -1

-(y=1) _ —2(y—1)
€ Jgg=——"—2¢ B.40

In connection with expressions (B.38) we also notice that a choice gy = ¢, = ¢
would lead to a form for Jy,J,, due to equations (B.31) and (B.32), which
makes the product Mymy finite and nonzero [18].

The integrated quantities (B.10)—(B.13) now become

2negcoGol,
go = 207040 (B.41)
y—1
2
My = negCeyGodpo (B.42)
y—2
n(ao/cz)coG%Jme
=" /0T B.43
m = HELEJS (B.43)
2\ 2072
5 = n(e0C/c*) Gyt (B.44)

2(v—1)
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For the integrated charge gy combination of equations (B.10), (B.13), and
(42) finally yields

2e0cht?, 17 J
@:[—( 0 ‘19] ~11.71 a9

B.45
e v — 1)e2Jg ( )

1/2
for C = +c and where the charge is normalized in respect to the measured value
e. In equation (B.45) the coefficient 2ggch/e? is equal to the inverted value of
the fine structure constant. For y = 2 the result of Eq. (44) is recovered.

B.3. The Point Charge Concept and the Related Divergence

It has thus been shown that the present theory of charged particle equilibria
necessarily leads to point-like configurations with an excessively small char-
acteristic radius ry, permitted, in principle, even to approach the limit ry = 0. In
this way the integrated field quantities can be rendered finite and nonzero. As
pointed out in Section V.A.l.b, a strictly vanishing radius would not become
physically acceptable, whereas a nonzero but very small radius is reconcilable
both with experiments and with the present analysis. It would leave space for
some form of internal particle structure. A small but lower limit of the radius
would also be supported by considerations based on general relativity [15,20].

In this connection there is an important question concerning the infinite self-
energy of a point charge in classical as well as in quantum field theory. The
latter uses a renormalization process to solve the problem, namely, by subtract-
ing two ““infinities” to end up with a finite result. Despite the success of such a
procedure, a more physically satisfactory way is needed [80]. Possibly the
present theory may provide such an alternative, by tackling the divergence
problem in a more surveyable manner. The finite result of a difference between
two ““infinities” due to renormalization theory would then be replaced by a
finite result obtained from the product of an “infinity” and a ‘zero,” as
demonstrated by the present analysis.

B.4. Quantized Charged Equilibrium

To specify the equilibrium state more in detail, the quantum conditions of
Section III.B now have to be imposed.

B.4.1. Conditions on Spin and Magnetic Moment

The imposed spin condition is represented by Eq. (42), which has to be
combined with expression (B.13) for the angular momentum.

Concerning the magnetic moment, relation (43) is combined with Egs.
(B.41)—(B.44) to result in the form

T = ('Y_ 1)2
qujse ' ('}/—2)(2')/— 1)

= Juodm
Hy — T 2u0/mo.

(B.46)
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In presence of an imposed external magnetic field, the quantity Hy = 1 + dp
stands for the right-hand member of Eq. (43), where e has been replaced by ¢
in the Feynman correction dr. On the other hand, if the influence of the
magnetic field has a decisive effect on the internal balance of the equilibrium
state, the value for a free electron may instead have to be written as Hy = % + 9%,
where 8" would become a corresponding as yet undeduced small correction.
This point is, however, an open question.

As a simple example, and to illustrate the ranges and orders of magnitude of
involved parameters, a polar part of the generating function

T =1— N(sin0)" (B.47)

was earlier chosen in the case where y approaches the value 2 from above and N
and @ are the independent variables [13,20]. Since (sin6)* can be expanded into
a series of sinpf and cosp0 terms with an integer p, the form (B.47) becomes a
special case of the general symmetric form (B.29). The result obtained from
(B.47) shows that the value |go| = e then obtained from Eq. (B.45) is included
within a relatively limited parameter range of the variables N and a.

B.4.2. Condition on Magnetic Flux

According to Eq. (B.3), the magnetic flux function becomes

' = 21rA (sin) = —2mry (%) p(sin0)’DG (B.48)
where
DG = T(D,R) + R(DoT) (B.49)
and
DyR=—[y(y—1)+2(y — Dp+p’IR (B.50)

after insertion of the radial part (B.28) and with the operators (B.2). The
magnitude of the flux I' increases strongly as p approaches small values from
above. For such values relations (B.48)—(B.50) and (B.37) combine to

~ _2n <@) (sin0)’ [DoT — y(y — DT)e""-p~ D (p< 1) (B.51)

We now choose the limiting radius gr for this flux in analogy with the radii €, of
Eq. (B.9), that is, where €, = ¢ for qg, so and Mymy according to Section B.2.
With p = gr = ¢, it is then seen from expression (B.51) that there is a resulting
finite and nonzero magnetic flux I'.
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From the general expression (B.48) and the result (B.51), there is thus a
magnetic flux that vanishes at large radial distances p, and that for a decreasing
p grows in magnitude, to reach a steeply pronounced maximum at p = gp. Such
a configuration resembles that of a thin current loop with almost all current at
p = ¢&. For such a loop the magnetic field lines cut the equatorial plane 6 = /2
at right angles, and there is a positive “upward” flux within an inner region
0 < p < ¢ that is equal to a negative ‘““‘downward” flux within the outer region
€ < p. The upward flux in the equatorial plane thus becomes

B coG
FO:F(8,6§> 2n< 0C0>Ap (B.52)

where
Ar = =[v(v = )T — DoT]jg_r sy (B.53)

It has, however, to be stressed that expressions (B.52) and (B.53) are the result
of a first and preliminary deduction of the relevant magnetic flux. Thus,
magnetic island formation could somewhat increase its total value.

The quantization of the magnetic flux is based on the following line of
thought. The quantized value sy of the angular momentum depends on the type
of configuration being considered. Thus it becomes sy = h/4m for fermions and
so = h/2x for bosons. The electron, which is a fermion, can be considered as a
system that also has the quantized charge go. If the total magnetic flux '
associated with such a system should be quantized as well, it is likely to be
given by the two quantized concepts sy and ¢, in a relation having the
dimension of a magnetic flux:

h
= B.54
4m|qo (B.54)

S0
q0

tot

Using the spin condition (42) in combination with expressions (B.41), (B.44),
and (B.54), the condition for magnetic flux quantization is reduced to

81 fnArdge = Jso (B.55)

where f,, > 1 when there is magnetic island formation, and f;,, = 1 in absence of
such formation. With the definition (B.53), the quantities Ar and J,o will have
the same signs.

B.4.3. Available Parameters of the Equilibrium State

With the adopted form (B.28)—(B.29) of the generating function, the indepen-
dent variables consist of the exponential factor v in the radial part (B.28) and 2n
amplitudes a, in the polar part (B.29) with p =2v — 1 or 2v. There are two
resulting quantum conditions: (1) the combined spin and magnetic moment



72 B. LEHNERT

condition (B.46) with a given value of Hy, the choice of which could have two
possible options; and (2) the magnetic flux condition (B.55). As the present
theory stands, there is thus a considerable degree of freedom for the resulting
charged particle equilibria, and this freedom could be even greater with the
possible existence of forms of the generating function other than (B.28)-(B.29)
that satisfy the basic conditions of a physically relevant charged equilibrium
state.

B.5. The Possible Extremum of the Electric Charge

In Section V.A.1.b the question was raised as to whether the magnitude of the
elementary electric charge e could be due to a unique quantized value that ought
to emerge from a variational analysis [13,20]. Here we shall outline a correspo-
nding analysis to some detail. The notation

Ay = Jyo (v=g,M,m,s) (B.56)

is introduced for polar integrals that are obtained from Egs. (B.30) and (B.33)—
(B.36). Relation (B.45) can then be written as

(%)ZZ 2(8‘;—211)5 S = («/—A;%)AS (B.57)

The combined condition (B.46) for spin and magnetic moment has the further
form

1
Q=Hy—58—d =0 (B.58)

with the notation

(v = 1)*AyAn
(v —2)(2y — DA

Here the Landé factor g, =2 corresponds to the electron with an imposed
magnetic field according to Dirac and Feynman, and g; = 1 may represent a
possible option for a free electron. Further
_ % _S
F dneghe 2w
is the correction by Feynman in terms of expressions (B.41), (B.44), and (B.57),
whereas 6y may have a modified value in the case of a free electron. In Eq.
(B.59) for values of 7y that approach 2 from above, it has been shown [13,20]
that Ay /(v — 2) still has a finite value, earlier [20] denoted by the symbol Ay,.
The condition (B.55) on magnetic flux quantization finally becomes
N SﬂfmAFAq
= o

Hy = (B.59)

(B.60)

14 —1=0 (B.61)
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The proposed variational analysis now implies that an extremum of the
normalized square (B.57) of the electric charge is being searched for, under the
subsidiary constraints (B.58) and (B.61). With 2n terms in the expansion (B.29),
the quantities S, O, and V will all depend on 2n+ 1 variables (y,ai,
ap,...,an,). Defining the function

P=S+Ly-Q+Ly-V (B.62)

where Ly and Ly are Lagrange multipliers, the variational analysis then has the
form of a system with 2n 4 1 equations

=L, =4Ly—=0 B.6

oy~ + Lo oy + Ly oy (B.63)
oP 0§ 00 ov

Il e R § _

Oa,  Oay, ¢ Oay v Oay, 0

(W=1,2,--,2n) (B.64)

opP opP
o0 L _y_p B.65
OLg Q OLy v ( )

One way of eliminating Ly and Ly is to use the first two equations (B.64), which
yield

LQ — Bal 6a2 aaz ﬁal (B66)

LV — aaz aul aU] a(lz (B67)

This results in a system of 2n + 1 equations for the 2n 4 1 unknown indepen-
dent variables (y,ay,as,...,az,) as given by

<6_Q.6_V_6_Q.6_V>GS (as v oS av)aQ

oy " \8ar 34, 4y oar ) Oy

+<6_5.6_Q_§.6_Q>2_‘;:o (B.68)

<6_Q av 20 av) as <as av oS av) 20

da, ' \da; da, da, da; ) day,

da; Qay 6a2'@6l1
d
+<§.6_Q_§._Q) V0 (w=34..21) (B9

0=0 V=0 (B.70)
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As seen from expressions (B.30), (B.33)-(B.36), (B.18)-(B.22), and (B.56)—
(B.61), the system (B.68)—(B.70) leads to highly nonlinear relations between the
independent variables.

Since a high degree of accuracy requires the inclusion of a large number 2n
of amplitudes a, in the expansion (B.29), a numerical analysis is not expected
to become trivial. The objective is thus to determine whether S and gy of
Eq. (B.57) will converge at large n toward an asymptotic value, and how this
value will be related to the experimentally determined elementary charge e.
Results of such an analysis are not available at this stage, and parts of it include
open questions such as those concerning the detailed spatial distribution of
the magnetic flux near the origin p = 0 and its influence on the values of Ar and
fm in Eq. (B.55).

Without using the detailed variational equations, a first hint can be obtained
by applying the special polar part (B.47) of the generating function. A simple
numerical analysis in the case y=2 and f,, =1 then yields the result
|go/e| = 1.6 according to conditions (B.70), the form (B.55), and expression
(B.45). The corresponding extremum value should at least become somewhat
lower, because the special function (B.47) is not likely to be that function that in
a variational analysis should result in the lowest possible value of S and g.
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I. TOPOLOGICAL BASIS FOR HIGHER-SYMMETRY
ELECTRODYNAMICS

Topology is the study of geometrical configurations invariant under transforma-
tion by continuous mappings. It provides what is probably the most fundamental
known framework for the description of physical models using the mathematical
techniques of group theory [1] and gauge theory [2]. A study of the topology of a
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given experiment can be used to decide whether that experiment is possible
or not, and the decision is made in the language of group theory. Topological
considerations can be applied to the vacuum itself, so that the vacuum becomes
structured, or has a given configuration. On the basis of the fact that topology is a
fundamental description, then it is also a fundamental description of the vacuum
itself, and decides the structure of physical objects such as electrodynamic field
equations [3,4] in the vacuum. The group-theoretic description of the received
equations of classical electrodynamics, the Maxwell-Heaviside equations [5], is
U(1), homomorphic with O(2) (U(1)~ O(2)). The latter is the group of rotations
in two dimensions, and the former is the group of all numbers of the form et =
cos ¢ + isin @, whose group space is a circle. The two groups are homomorphic
or similar in form. Each element of O(2) is given uniquely [6] by an angle a, the
angle of rotation in a plane. The group space of both O(2) and U(1) is therefore a
circle. The received view [5,6] asserts that the classical electromagnetic field is a
gauge field invariant under local U(1) gauge transformations. In other words,
Maxwell-Heaviside theory is a U(1) symmetry Yang—Mills gauge field theory.
Unified field theory proceeds on this assertion, specifically, that the electro-
magnetic sector has U(1) symmetry. The topological basis for this conclusion in
the received view is given by such phenomena as the Aharonov—Bohm effect [6],
where the classical vacuum is deduced to have a nontrivial topology [6]. This is
combined with the view that electrodynamics is a U(1) gauge theory to give the
received explanation of the Aharonov—Bohm effect [3,4,6]. In gauge theory in
general, however, the vacuum has a rich topological structure, and this structure
is not confined to U(1). Other groups may be used, and each has physical, or
measurable, gauge-invariant, consequences. Therefore, the most fundamental
basis for the development of field equations, such as those of classical
electrodynamics, is the topology of the vacuum itself. In order to understand
this further, some topological concepts must be introduced and defined.

Basic to the understanding of topology are simply and non-simply connected
spaces. The relevant topological space is the vacuum itself. A simply connected
space is one in which all closed curves may be shrunk to a point; and in a
non-simply connected space, this is not true in general. In a non-simply
connected space, a function may be many-valued, for example cos (¢ + 27mn).
In this view therefore, the Aharonov—-Bohm effect can exist physically if and
only if the vacuum itself is not simply connected. The group theoretic
description of the Aharonov—Bohm effect follows from these considerations.
The U(1)~O(2) group is not simply connected because its group space
(denoted S') is a circle. The group space S' itself is not simply connected
[6]. In the received view, this argument is used to show that the Aharonov—
Bohm effect is supported by a vacuum topology described by the group U(1).

In the 1990s, however, there have been several attempts to extend the
received view of classical electrodynamics, for example, the work of Barrett
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[3,4], Lehnert et al. [7-10], Evans et al. [11-20] and Harmuth et al. [21,22].
These attempts stem from anomalies and self-inconsistencies in classical elec-
trodynamics viewed as a U(1) gauge field theory. Some of these are reviewed in
Section III of this chapter. The basis for these developments resides, as it must,
in vacuum topology and its subsidiary languages of group and gauge theory. In
other words, it may be possible to describe classical electrodynamics with
groups other than U(1) in a non-simply connected vacuum, the relevant topolo-
gical space. Once a particular group is chosen, general gauge field theory [3,4,6]
may be used to write down the physical field equations of electrodynamics and
the field tensor [3,4,11-20]. The results of the hypothesis are compared with
empirical data as usual, and cross compared with the U(1) description. This
method is developed and reviewed in this chapter. The basis of our develop-
ment, therefore, is the topology of the vacuum, which ultimately decides which
set of field equations is the more accurate in its description of data. The basis for
gauge theory is fiber bundle theory, which is briefly reviewed in Section II.

We will be concerned in this article with the non-simply connected vacuum
described by the group O(3), the rotation group. The latter is defined [6] as
follows. Consider a spatial rotation in three dimensions of the form

X
Y|=R)|Y or ' =Rr (1)
Z

where R is a rotation matrix. Rotations have the property
X4 Y?+ 727 =X+ Y+ 77 (2)

which can be written

where T denotes “transpose.” Therefore

r"RTRr = rTr

RTR=1

(4)

where R is an orthogonal 3 x 3 matrix. These matrices form a group. If R and R,
are orthogonal, then so is R|R»:

(RiR2)"RiR; = RIRTR R, = 1 (5)

This group is denoted O(3) in three dimensions, and O(n) in n dimensions.
The rotation group O(3) is a Lie group (i.e., is a continuous group), and is



82 M. W. EVANS

non-Abelian (i.e., its rotation matrices do not commute) [6]. A simple example of
an O(3) group is the one formed by the unit vectors of a Cartesian frame in three-
dimensional space:

ixj=k
Jxk=i (6)
kxi=j

Therefore, we can adopt as our fundamental hypothesis that the topological
space under consideration (i.e., the vacuum) is described by O(3) rather than
U(1) and work out the consequences [11-20]. Some of the latter are reviewed in
this chapter. An O(3) group can also be formed by the complex unit vectors
defined by

so that

o) 5 0@ _ ;)"
= jelV* (8)

e® x ) — g

2) 3)

e< xe(

forms an O(3) group suitable for the description of circularly polarized radiation,
and therefore of radiation in general [11-20]. Here, an asterisk (*) denotes
complex conjugate. There are several other ways of defining the O(3) group, one
of which is that it is the little group of the Poincaré group of special relativity [6].
A little group with structure O(3) is the group of a particle with mass. So if O(3)
is adopted as the group describing classical electrodynamics, the photon, on
quantization, may have a tiny mass (empirically estimated [23] as less than
107% kg). The little group for the massless photon in the received view is
unphysical, it is the Euclidean E(2) [6,11-20]. This means that a particle without
mass is an unphysical object. The photon without mass is obtained by quantizing
a classical U(1) theory, suggesting that the received view is also unphysical.
We do not have to search far to find some unphysical properties of the U(1)
Yang-Mills gauge field theory of classical electromagnetism. For example, the
electromagnetic phase is random, the 4-potential A" is unphysical as the result of
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Heaviside’s development of Maxwell’s original concept of a physical vector
potential, which was based, in turn, on Faraday’s electrotonic state. Barrett [2]
has reviewed extensive empirical evidence for a physical classical A*, in
contradiction to U(1) theory, hereinafter described as “U(1) electrodynamics.”
The vacuum for the Aharonov—Bohm effect is non-simply connected, and
therefore supports a physical A" [3,6]. The potential A* has no physically
discernible effect if and only if the space is simply connected. Since U(1) is non-
simply connected, there is a self-contradiction in the received view, [3,6] and
since A", by definition, is unphysical in U(1) electrodynamics, we must search
for a new type of classical electrodynamics. In this chapter, we base this search
on the group O(3), and hereinafter describe it as “O(3) electrodynamics.” The
basic topological space is that of the vacuum, and is described by the O(3) group
and gauge theory based on this group. One consequence is that the potential is
physical as required, another is that the unphysical random phase of U(1)
electrodynamics is replaced by a gauge-invariant physical phase factor of O(3)
electrodynamics. These changes are shown to have foundational consequences in
interferometry and aspects of physical optics, for example. Furthermore, several
of the well-developed techniques of non-Abelian gauge field theory [3.4,6] may
be brought to bear on classical electrodynamics, because the group O(3) is a non-
Abelian group, as argued already. This enriches and develops the subjects of
classical and quantum electrodynamics and unified field theory.

The group space of O(3) is doubly connected (i.e., non-simply connected) and
can therefore support an Aharonov—Bohm effect (Section V), which is described
by a physical inhomogeneous term produced by a rotation in the internal gauge
space of O(3) [24]. The existence of the Aharonov—Bohm effect is therefore
clear evidence for an extended electrodynamics such as O(3) electrodynamics,
as argued already. A great deal more evidence is reviewed in this article in favor
of O(3) over U(1). For example, it is shown that the Sagnac effect [25] can be
described accurately with O(3), while U(1) fails completely to describe it.

The O(3) group is homomorphic with the SU(2) group, that of 2 x 2 unitary
matrices with unit determinant [6]. It is well known that there is a two to one
mapping of the elements of SU(2) onto those of O(3). However, the group space
of SU(2) is simply connected in the vacuum, and so it cannot support an
Aharonov-Bohm effect or physical potentials. It has to be modified [26] to
SU(2)/Z2 =~ SO(3).

Therefore, this is a statement of our fundamental hypothesis, specifically, that
the topology of the vacuum defines the field equations through group and gauge
field theory. Prior to the inference and empirical verification of the Aharonov—
Bohm effect, there was no such concept in classical electrodynamics, the ether
having been denied by Lorentz, Poincaré, Einstein, and others. Our develop-
ment of O(3) electrodynamics in this chapter, therefore, has a well-defined basis
in fundamental topology and empirical data. In the course of the development of
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this chapter, several misconceptions and inconsistencies of U(1) electrody-
namics are brought to light, and these are remedied straightforwardly by
changing the gauge group from U(1) to O(3). The implications are briefly
reviewed for quantum electrodynamics and unified field theory, starting with
electroweak theory. One major result of the latter is the existence of a novel
massive boson, the existence of which is consistent with novel empirical data as
discussed in Section XII. The gradual and consistent accumulation of evidence
leads in this chapter to the conclusion that an O(3) gauge group is to be
preferred over a U(1) gauge group in classical electrodynamics.

Some by-products of the development emerge, such as the fact that the
acceptance of a structured vacuum described by an O(3) gauge group leads
directly to the existence of novel charges and currents in the vacuum. These are
conserved, or Noether, currents and charges and are clearly topological in
origin. They spring from the fact that the vacuum is a topological space. Four
such entities emerge:

1. A topological vacuum electric charge, also proposed empirically by
Lehnert et al. [7-10]

2. A topological vacuum electric current, also proposed empirically by
Lehnert et al. [7-10]

3. A topological vacuum magnetic charge, proposed also by Barrett [3,4]
and Harmuth [21,22]

4. A vacuum topological magnetic current, proposed also by Barrett [3,4]
and Harmuth [21,22].

Each of these four objects can provide energy, which can be loosely termed
“vacuum energy:” energy coming from the topology of the vacuum.

In well-defined limits, the field equations of O(3) electrodynamics can
collapse to a set of two complex conjugate equations that resemble those of
U(1) electrodynamics (Maxwell-Heaviside equations), and a third equation for a
novel fundamental spin component of O(3) electrodynamics, the B® compo-
nent [11-20] in the basis ((1),(2),(3)). This component also springs from the
topology of the vacuum, described by an O(3) gauge group and is therefore a
magnetic flux density that exists in the vacuum because of this choice of gauge
group. Clearly, the B® component is fundamental to O(3) electrodynamics and
is not a static magnetic field of U(1) electrodynamics. The B> component is an
observable of the third Stokes parameter, topological phases, interferometry,
and magneto-optics and is a radiated field that propagates with the radiation. In
the laboratory, it propagates for all practical purposes at the speed of light, c, as
does the third Stokes parameter to which it is proportional [11-20]. It is a
fundamental property of the O(3) electromagnetic field that emanates from the
topology of the vacuum. It forms an O(3) group with the plane wave B = B®"
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of magnetic flux density in the vacuum in O(3) electrodynamics, giving the B
cyclic theorem [11-20]

B « B@ — ;O BB~

B® x B® — ;O g+

B® x BY — ;O g2)+
B — |B(3>’

which is Lorentz-invariant, as it is, within a common factor on both sides, simply
a relation between rotation generators of the O(3) group.

An important by-product of the development in this chapter (Section X) is
the possible existence of scalar interferometry, which is interferometry between
structured scalar potentials, first introduced by Whittaker [27,28] and that can
be defined in terms of B®. This is a type of interferometry that depends on
physically meaningful potentials that can exist self-consistently, as we have
argued, only in a non-singly connected O(3) vacuum, because potentials in the
nonsingly connected U(1) vacuum are assumed to be unphysical.

In summary of this introduction therefore, we develop a novel theory of
electrodynamics based on vacuum topology that gives self-consistent descrip-
tions of empirical data where an electrodynamics based on a U(1) vacuum fails.
It turns out that O(3) electrodynamics does not incorporate a monopole, as a
material point particle, because it is a theory based on the topology of the
vacuum. The next section provides foundational justification for gauge field
theory using fiber bundle theory.

II. BASIS IN FIBER BUNDLE THEORY

The gauge concept [3] was introduced by Weyl in 1918. In consequence of gauge
theory, the absolute magnitude or norm of a physical vector depends on its
location in spacetime. This notion is the basis of all contemporary gauge theory,
which is expressed in the language [6] of group theory and has been highly
developed mathematically [29-32]. For our purposes, it is sufficient to give a
brief account of the elements of gauge theory as used in optics and electrody-
namics, including O(3) electrodynamics. A gauge theory is a theory of special
relativity in O(3) and U(1) electrodynamics, and in electroweak theory, and
borrows concepts [6] from general relativity. For example, the homogeneous
field equation of both U(1) and O(3) electrodynamics are Jacobi identities akin to
the Bianchi identity in general relativity. Several reviews of contemporary gauge
theory are given in Ref. 4, and the theory is firmly rooted in rigorous mathe-
matical concepts such as fiber bundle theory. The latter leads to the field
equations of O(3) electrodynamics through concepts [29-32] such as principal
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bundle, associated vector bundle, connections on principal bundles, covariant
derivatives of sections of a vector bundle, exterior covariant derivative, and the
curvature of a connection. In optics and electrodynamics however, these
mathematical concepts reduce to those of gauge potentials. It is sufficient to
know, therefore, that the theory of O(3) electrodynamics is rigorously founded in
fiber bundle theory and in the theory of extended Lie algebra [4,15]. The
interested reader is referred elsewhere for mathematical details [29-32] because,
in natural philosophy, a theory stands or falls by comparison with empirical data,
not by mathematical rigor alone. The latter is necessary but not sufficient for a
theory in optics and electrodynamics.

A simple example in classical electrodynamics of what is now known as
‘“‘gauge invariance” was introduced by Heaviside [3,4], who reduced the original
electrodynamical equations of Maxwell to their present form. Therefore, these
equations are more properly known as the Maxwell-Heaviside equations and, in
the terminology of contemporary gauge field theory, are identifiable as U(1)
Yang—Mills equations [15]. The subject of this chapter is O(3) Yang—Mills gauge
theory applied to electrodynamics and electroweak theory.

The Maxwell-Heaviside field equations are, in SI units

V-E=0; V.B=0

OB
VXE—FE:O (10)
1 0E
B———:
V x 2% 0

where D is the electric displacement, p is the electric charge density, B is
magnetic flux density, E is the electric field strength, H is the magnetic field
strength, and J is the current density. The received view is to assert that in the
vacuum:

D=gE  B=pH (11)

where € and p, are permittivity and permeability in vacuo. Equations (12) then
reduce to

V-D=p;: V.-B=0

OB

va:J+6£
ot
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The notion of gauge invariance is illustrated on this level by denoting

B=VxA (13)
E=-VxS§ (14)

where A is the vector potential of Maxwell and S the vector potential of Stratton.
Using the identity

VxVy=0 (15)
B=VXxA=Vx(A+Vy) (16)

it is seen that any gradient Vy can be added to A or S, leaving B and E
unchanged. Therefore, in the received view, B and E are gauge-invariant,
measurable, and physical, whereas A and S are defined only up to an arbitrary
gradient function and are therefore mathematical in nature, are not measurable,
and have no physical effect. However, this can be true as argued in Section I only
if the vacuum is simply connected, whereas the group spaces of U(1) and O(3)
are not simply connected. We find empirically [3,4] several experimental
verifications of the fact that A and § are in fact physical quantities, and that A and
S cannot be changed arbitrarily by adding a gradient of a scalar. However
elaborate the mathematical justification for U(1) electrodynamics becomes, this
paradox remains.

During the course of this review chapter, we shall unearth several flaws in
U(1) electrodynamics, some of which are discussed in Section III. One con-
sequence of the gauge and metric invariance of the free space Maxwell—
Heaviside equations is that they are also invariant under the general Lorentz
transformation, consisting of boosts, rotations, and spacetime translations [6].
They are invariant also under the fundamental symmetry operations of motion
reversal (T) and parity inversion (P). These properties mean that they are unable
to describe interferometry and simple optical properties such as normal reflec-
tion without self-contradiction. The Maxwell-Heaviside theory and its gauge
invariance is rigidly adhered to in the received view, but nevertheless, these
basic flaws are there and are discussed systematically in this chapter. In the
course of development of O(3) electrodynamics, a more general form of gauge
theory is needed, and this more general form is based on vacuum topology and
group theory. Therefore, in our view, O(3) electrodynamical equations apply in
the vacuum as well as in field matter interaction [11-20]. In general, they must
be solved without approximation using numerical techniques, but with well-
defined assumptions, analytical solutions emerge. These include the B cyclic
theorem [11-20].

The systematic development of gauge theory relies on a rotation of a n
dimensional function \/ of the spacetime coordinate x* in special relativity. The
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rotation is expressed as
V' = exp (iMA" (X)) = S(x* )\ (17)

where M“ are group generators, and where A“ is an angle that is a function of x*
through special relativity [6]. In general, M“ are n X n matrices or tensors. In
0O(3) electrodynamics, the indices a can be (1), (2), and (3) of the complex basis
(7), or Cartesian indices as in the basis (6). From Eq. (17), it is found that

au‘l’/ = S(au‘l’) + (aus)‘lf (18)

that is, that O,y does not transform covariantly. It is well known that this problem
is addressed through the introduction of the covariant derivative:

Dyl = (3, — igM“A2)Y (19)

where g is in general a proportionality constant giving the right units, and where
Aﬁ is the vector potential, sometimes referred to as the ‘“‘connection.” In U(1)
electrodynamics, Ajj reduces to the familiar 4-potential A} of the Maxwell-
Heaviside theory, a 4-vector. This means that in U(1) electrodynamics, the
internal gauge space is a scalar space in which M = —1 and in which the
covariant derivative reduces to

Dy(U(1)) = 0y + igAy (20)

which, in momentum space, is the familiar minimal prescription. In O(3)
electrodynamics however, Aﬁ is a 12-vector, and can be expressed as

Ay =ADel) + AP 1 4B (21)

in the basis ((1),(2),(3)). Similarly, the familiar field tensor F,, of U(1) electro-
dynamics becomes

Gy = GllleV 1 GRle 4 Gl (22)

in O(3) electrodynamics. Since ((1),(2),(3)) is a physical space, each of the
tensors fog;i = 1,2,3 is well defined in Minkowski spacetime [11-20].
General gauge field theory emerges when the covariant derivative is applied

to \ [6]:

Dy = SD, (23)
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It is useful to go through this derivation in detail because it produces the
inhomogeneous term responsible for the Aharonov-Bohm effect in O(3)
electrodynamics. The effect of the rotation may be written as

(O — igAL)‘V = S(0y — igA )V (24)
which means that

au‘l// = S(au\w + (auSN/
(OuS)V — igALS\l/ = —igSA,
igA’HS = igSA, + 0,8
' (25)
_ - l -
A SSTh =5A,57" —é—)(aps)s !
IR _
Al =SAS™! —g(a”S)s !
The end result is that the inhomogeneous term —(i/g)(9,S)S~! appears in the
vacuum. This term originates in the topology of the vacuum, and it is different for
U(1) electrodynamics and O(3) electrodynamics. In U(1) electrodynamics, the
gauge transformation (25) reduces to

1
A= Aut Bl (26)

which is the covariant form of Eq. (15). In O(3) electrodynamics however, the
inhomogeneous term and the vector potential are both physical quantities, as
originally envisaged by Maxwell and Faraday. The 12-vector A, is the equivalent
of Faraday’s electrotonic state and of Maxwell’s physical vector potential [3,4].
It follows that the effect (25) on the vector potential in O(3) electrodynamics is
produced by a physical rotation, and later in this review, it is shown that this
physical rotation is the rotation of the platform in the Sagnac effect [20]. More
generally, a rotation in the internal gauge space of O(3) electrodynamics produces
a phase difference that is also physical and measurable [3,4]. O(3) electro-
dynamics is therefore able to describe the Sagnac effect precisely, whereas U(1)
electrodynamics has no explanation for the Sagnac effect because of its gauge
invariance. Quantities such as the 12-vector potential of O(3) electrodynamics
are gauge-covariant, not gauge-invariant, because the inhomogeneous term in
O(3) electrodynamics is a physical term, not a random mathematical construct as
in U(1) electrodynamics.

In general gauge field theory [6], the field tensor is proportional to the
commutator of covariant derivatives. This is the result of a round trip or closed



90 M. W. EVANS

loop with covariant derivatives in Minkowski spacetime, and in condensed
notation, the result can be written as

i
Guv = g [D}MDV] (27)
G = 0,A, —0,A, — ig[AL, A (27a)

In U(1) electrodynamics, we recover the familiar 4-curl of Maxwell-Heaviside
theory because the commutator [Ay,A,] is zero. In O(3) electrodynamics,
Eq. (22) applies and each component GEW), GEW>, and Guv) is defined as

in the complex circular basis ((1),(2),(3)), [11-20]. Whereas F,, of U(1)
electrodynamics is gauge- and Lorentz-invariant, G, of O(3) electrodynamics
transforms covariantly under rotation in the internal space ((1),(2),(3)), a
representation of the physical space of three dimensions:

G, = SGuS™! (29)

The homogeneous field equation of O(3) electrodynamics is inferred from
the Jacobi identity of covariant derivatives

Z [D{M [DHaDvH =0 (30)

cyclic
and can be written as the identity [11-20]
D,G" =0 (31)
The inhomogeneous field equation is not an identity, but an equation of the
Yang-Mills type [6]
D,H" =]’ (32)

where H" is a generalization of G*" to include polarization and magnetization,
and where JV is the charge current 12-vector, defined as

, )
JV<'>:<p<'>,J—> i=1,2,3 (33)

c

where c is the speed of light in vacuo for all practical purposes in the laboratory.
Equations (31) and (32) are developed fully in Section (IV) and are compared
with the Lehnert, Barrett, and Harmuth equations cited in Section I. These
equations extend the symmetry of the electromagnetic sector of unified field



O(3) ELECTRODYNAMICS 91

theory with many consequences, some of which are discussed in Section (XI)
for electroweak theory, and in Part 3 of this three-volume series for grand unified
theory.

The development just given illustrates the fact that the topology of the
vacuum determines the nature of the gauge transformation, field tensor, and field
equations, as inferred in Section (I). The covariant derivative plays a central role
in each case; for example, the homogeneous field equation of O(3) electro-
dynamics is a Jacobi identity made up of covariant derivatives in an internal
O(3) symmetry gauge group. The equivalent of the Jacobi identity in general
relativity is the Bianchi identity.

Finally, in this section, we develop the concept of electromagnetic phase
from U(1) to O(3). This is a nontrivial development [4] that has foundational
consequences for interferometry and physical optics for example. In U(1)
electrodynamics, the electromagnetic phase is defined up to an arbitrary factor
[4] because of gauge invariance. The U(1) phase is therefore

Y=t —Ker+a (34)

where o is the angular frequency at instant f; k is the wave-vector at coordinate
r, and o is random. In other words, the U(1) electromagnetic phase factor
exp (i(wt — k-r)) can be multiplied by the factor e because gauge transfor-
mation in U(1) is a random rotation in the (scalar) internal gauge space. The
random rotation is represented by the operator ¢* where o is random. This
operation leads to Eq. (26), where the gradient function is random as usual in
U(1) electrodynamics. Therefore the U(1) electromagnetic phase is unphysical.
This is true despite the fact that the theory of U(1) electrodynamics is the
received view, adhered to rigidly. Therefore [4], the field tensor in U(1) electro-
dynamics, is underdetermined because the phase is arbitrary; and the potential
4-vector of U(1) electrodynamics is overdetermined because it is also arbitrary—
an infinite number of A" corresponds, in the received view, to one physical
condition. Dirac attempted to remedy these flaws by introducing a phase factor

B(C) = exp (i%}c A”dx“) (35)

where e is electric charge, and 7 is the Dirac constant. The Dirac phase factor
completely defines [4] the system on the U(1) level. The phase factor in O(3)
electrodynamics is obtained by generalizing this concept, as first accomplished
by Wu and Yang [33]. The phase factor in O(3) electrodynamics can be written as

®*(C) = Pexp (ig f{)c Ay dx”) (36)

*(C) = Pexp <i§{>c K“dx“> = Pexp <ig J JB<3) dAr) (36a)
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where a magnetic flux of topological origin appears on the right hand side, an
area integral over the B® (Evans—Vigier) field [11-20]. Here, ®*(C) specifies
parallel transport over any loop C in rotation, g is the same factor that appears in
the definition of the covariant derivative, [Eq. (20)], and P specifies path depen-
dence in the integral [4]. On the left-hand side appears the line integral corres-
ponding to the dynamical phase factor, which is equal through a non-Abelian
Stokes theorem to the topological phase defined by the surface integral over B
This result is a clear illustration of the topological origin of B, and the phase
factor is not a random quantity as in U(1) electrodynamics, but a gauge-covariant
quantity. It is the holonomy of the connection A, in O(3) electrodynamics and
plays a central role in interferometry, including the Aharonov—-Bohm effect.
Consideration of interferometry leads to the conclusion that O(3) electrody-
namics provides a self-consistent description of several situations where U(1)
electrodynamics either fails (e.g., the Sagnac effect) or is self-inconsistent (e.g.,
Michelson interferometry).

III. REFUTATION OF U(1) ELECTRODYNAMICS

From the foregoing, U(l) electrodynamics was never a complete theory,
although it is rigidly adhered to in the received view. It has been argued already
that the Maxwell-Heaviside theory is a U(1) Yang—Mills gauge theory that
discards the basic commutator A" x A®. However, this commutator appears in
the fundamental definition of circular polarity in the Maxwell-Heaviside theory
through the third Stokes parameter

S5 = |—i*A) x A?)| = 2402 (37)

so there is an internal inconsistency. In O(3) electrodynamics, on the other hand,
the fundamental definition of the B’ field ensures that circular polarity is
consistently defined

BB = —jga) »x A?) (38)

so that circular polarity in O(3) electrodynamics is due to the B® field, which is
therefore a foundational physical observable. This argument is a simple and
straightforward refutation of U(1) electrodynamics, specifically, of Maxwell—
Heaviside theory considered as a U(1) symmetry gauge field theory. The third
Stokes parameter is a fundamental signature of circular polarization and was first
recognized as such by Stokes in 1852 before the development of Maxwell’s
original equations in the 1860s [3]. Circular polarization was discovered empi-
rically by Arago in 1811.

There is in effect no circular polarization in U(1) electrodynamics if we
choose to define circular polarization in terms of the third Stokes parameter.
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This result is inconsistent with the fact that the differential equation developed
by Heaviside from Maxwell’s original equations describe circular polarization.
The root of the inconsistency is that U(1) gauge field theory is made to corres-
pond with Maxwell-Heaviside theory by discarding the commutator A" x A®.
The neglect of the latter results in a reduction to absurdity, because if S;
vanishes, so does the zero order Stokes parameter:

So = +8; (39)

and Sy describes the intensity of radiation. This result is another self incon-
sistency of U(1) electrodynamics.

In O(3) electrodynamics, on the other hand, Eq. (38), defining the B® field,
is consistent with the O(3) field Eq. (31) and (32) because Eq. (38) is part of the
definition of the field tensor in O(3) electrodynamics [11-20].

A second simple refutation of U(l) electrodynamics is perfect normal
reflection. The explanation of this foundational effect in Maxwell-Heaviside
electrodynamics relies on the phase in U(1) electrodynamics, which, as argued
already, is a random quantity. If we choose o in Eq. (34) to be zero for simplicity
and without loss of generality, then the received view of perfect normal
reflection (Fig. 1) is as follows:

exp (i(k+r — ot)) N exp (i(—k+r — o)) (40)

However, normal reflection, in, for example, the Z axis, is equivalent to the parity
inversion operation P. The effect of this operation on the U(1) phase factor is as
follows:

exp (i(k+r — ot)) N exp (i(k+r — wt)) (41)
P P(ry —> -r
Yr - r P(x) > —x
r =-r,k
|1 |1
r,=rcos®
r, =rcos 6k

P(r)) =-rcos®k=-r,

Figure 1. Equivalence of reflection and parity inversion.



94 M. W. EVANS

Thus the received view of normal reflection (1) in U(1) electrodynamics violates
parity. This violation is not allowed in classical physics. For off-normal reflection
(Fig. 1), projections on to the normal result in the same paradox using the
empirical fact that the angle of reflection is equal to the angle of incidence. In the
received view, Eq. (40) is held to rigidly, but is nevertheless in violation of parity.
This is true if and only if Snell’s law is true. In conclusion, P(wt — k+r =
(ot — k+r), which is Snell’s law in Maxwell-Heaviside theory.

It is highly significant that this paradox disappears in O(3) electrodynamics
through the use of the physical phase factor:

d =exp (i%x-dZ) = exp (ig JB(3) -dS) (42)

On the left-hand side appears a line integral, and on the right-hand side, there is
an area integral over B®. If a beam of light originates at an origin O and is
normally reflected from a perfectly reflecting mirror at point Z, the line integral is
as follows:

z 0
%K-dZ = J KdZ — J KdZ = 2«xZ (43)
0 z
Note that this gives, fortuitously, the same change, 2kZ, as in the U(1) description
of normal reflection, which therefore fortuitously describes the empirical result.

The area integral on the right-hand side of Eq. (42) is a topological phase [4],
because the origin of B is topological as argued already, that is, B® springs
from the vacuum configuration. Using the relation [11-20]

8= 30 (44)
the right-hand-side exponent becomes kS, where S is an area
K
S=2—- 45
: (45)
If the distance OZ is n wavelengths, A, then the area becomes
n\?
S=— 46
. (46)

The outcome of these two very simple examples is that all electrodynamics
(classical and quantum) must be upgraded to a gauge theory of higher symmetry,
such as O(3). Equation (42) is self-consistent, because under P, both sides are
negative. The left-hand side is negative because the line integral changes sign
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under P, and the right-hand side is negative because the integral is negative under
P (product of an axial vector B and a polar vector ).

Michelson interferometry is dependent on normal reflection from two
mirrors at right angles, and so the same foundational argument as just given
can be used to show that U(1) electrodynamics does not describe Michelson
interferometry self-consistently. Without loss of generality, we can write
Eq. (38) as

nRkAVk - Rk = B®) . Ark (47)

which can be integrated straightforwardly to give the non-Abelian Stokes
theorem [11-20]

21kA©) {)R-dR = “B<3> -dAr (48)
where R is given by
I A
R=—=— 49
K 2n (49)

and where A is the wavelength. Multiplying both sides by g = k/A® defines the
required non-Abelian phase factor in terms of a non-Abelian Stokes theorem

b = exp(ZTtifi;K-dR) = exp <il%JJB(3) -dAr) (50)

which is closely related to Eq. (42). The line integrals must be evaluated over a
closed curve [11-20] and have the foundational property

i; K°dR:—{> K+dR (51)
A0 04

which is the root cause [34] of Michelson interferometry, and interferometry in
general. In U(1) electrodynamics, the change in phase of a light beam originating
at the beamsplitter [35] and arriving back at the beamsplitter after normal
reflection from either mirror is zero because of the property (41). This is contrary
to the empirical observation [35] of the Michelson interferogram, the basis of
Fourier transform infrared spectroscopy. In the usual U(1) theory, therefore, the
path-dependent part of the electromagnetic phase is the familiar k-r, and the
complete electromagnetic phase is W — K +r + o, where o is random and can be
set to zero for simplicity of argument. The phase ot — K« r is invariant under both
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P and T because it is a dimensionless number, and we shall show that the
complete failure of U(1) electrodynamics to describe the Sagnac effect is due to
the T invariance of U(1) phase. In Michelson interferometry, as described by
0O(3) electrodynamics, there is a change in the measurable phase factor after
reflection because of the property of line integrals. The phase factors arriving
back at the beamsplitter from either mirror are different, and an interferogram
appears as observed [35] empirically by changing the length of one arm of the
interferometer. The Fourier transformation of this interferogram gives a
spectrum.

The inverse Faraday effect depends on the third Stokes parameter empirically
in the received view [36], and is the archetypical magneto-optical effect in
conventional Maxwell-Heaviside theory. This type of phenomenology directly
contradicts U(1) gauge theory in the same way as argued already for the third
Stokes parameter. In O(3) electrodynamics, the paradox is circumvented by
using the field equations (31) and (32). A self-consistent description [11-20] of
the inverse Faraday effect is achieved by expanding Eq. (32):

@uHuV(l)* = v 4 igAEf) % g3 (52)
éuH“"(z)* = '@ 4 igAEf) w g1 (53)
aquv(3)* :JV(3)* + igAELl) ~ Hpv(2) (54)

Using the constitutive relation

HO: = 1o (55)
U

gives the magnetic field strength induced in the inverse Faraday effect from first
principles of O(3) gauge field theory as

/

HO* = i85 A1 % 4@ (56)
Lo
where
’ Ho
g=—zg 57
" (57)

Here, p is the magnetic permeability of the material in which the inverse Faraday
effect is observed. We can write Eq. (52) as

aun(l)* ORI O8 (58)



O(3) ELECTRODYNAMICS 97

so that the transverse current detected [37] in the inverse Faraday effect is
given by

AJ' = igeA(?) x GO (59)

and causes a signal in an induction coil due to the vacuum B® field appearing in
the O(3) field tensor G*V©).

The explanation of the inverse Faraday effect in U(1) electrodynamics relies
on the clearly self-inconsistent introduction of AWM xA® phenomenologically:
“self-inconsistent” because U(1) gauge field theory sets A" x AP to zero
identically. As argued already, the conjugate product AW x AP s proportional
to the third Stokes parameter in the vacuum and so is a fundamental property of
circularly polarized light. As such, it must be considered as a fundamental
object in gauge field theory applied to electrodynamics. In U(1) gauge field
theory, this is not possible, but it is possible self-consistently in O(3) gauge field
theory.

In Maxwell-Heaviside electrodynamics, the field energy, Poynting vector,
and Maxwell stress tensor are incorporated in the stress energy momentum
tensor [38]. In order to obtain a non-null energy and field momentum (Poynting
vector), the method of averaging is used. The conventionally defined Poynting
vector, for example, becomes proportional to E x B* = E"Y x B® . This
method is inconsistent with electrodynamics considered as a U(1) gauge field
theory, but consistent with O(3) electrodynamics.

Recall that in general gauge field theory, for any gauge group, the field tensor
is defined through the commutator of covariant derivatives. In condensed
notation [6]

Guv = apAV - avAp - ig[AuaAV] (60)

where the commutator is nonzero in general. The connection or generalized
potential A, is defined in general through the gauge group symmetry. The field
tensor Gy, is covariant for all gauge groups, and is always compatible with
special relativity for all gauge group symmetries. In this general theory therefore,
the homogeneous and inhomogeneous Maxwell equations in the vacuum are the
U(1) gauge field equations

D'G, =0 (61)
D'Gyy =0 (62)
where DV denotes the covariant derivative pertinent to U(1) and where G" is the

dual of G,y as usual. In the U(1) gauge theory, the commutator in Eq. (60)
vanishes because the U(1) group has only one structure constant and the internal
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symmetry of the gauge theory is a scalar symmetry. The covariant derivative in
uQ) is

DY =0 +igAY (63)
Therefore Egs. (61) and (62) reduce to

(0" +igA")F
(0¥ +igA%)F,y

0 (64)

I
—~

AN

W
~~

which become the free-space homogeneous and inhomogeneous Maxwell—
Heaviside equations if and only if

AYF,, =0 (66)
A'F,, =0 (67)
or in vector notation

A-B=0 AXE=0

A-E=0 AxB=0 (68)
For plane waves, and using the usual U(1) relation
B=V xA (69)
the vector potential is proportional to B and so
BxE=0 (70)

If we attempt to define the free-space field energy and momentum in terms of the
products B+ B and B x E, the results are zero in U(1) gauge field theory. In order
to obtain the conventional field energy and Poynting vector of the free
electromagnetic field, products such as B x B and B(") x E® have to be
used. This procedure, although common place, and referred to in the literature as
“time averaging”’ [38], introduces phenomenology extraneous to U(1), because
it introduces the complex internal gauge space ((1),(2),(3)). These inconsisten-
cies in U(l) gauge field theory applied to electrodynamics are therefore
summarized as follows: (1) if the U(1) covariant derivative is used, the field
energy, momentum, and third Stokes parameter vanish; and (2) if the pheno-
menological “time averaging” procedure is used, the resultant Poynting vector is
proportional to BY x E® and is perpendicular to the plane of definition of
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U(1), whose group space is a circle. This result is another internal inconsistency,
because the group space of a gauge theory is a circle, there can be no physical
quantity in free space perpendicular to that plane. It is necessary but not
sufficient, in this view, that the Lagrangian in U(1) field theory be invariant [6]
under U(1) gauge transformation.

In O(3) electrodynamics, the stress energy momentum tensor is defined [11-
20] as

1
Tl-\l/ =&y (G”p'Gpp — ZGPV'Gpv> (71)
giving the field energy self-consistently as

U=e(E'WEP + POEPY + FOEY 4 2O 4 BPOEP  (72)

The Poynting vector is self-consistently defined as

T) = £(G”+ Gy + G - Gy)) (73)
Tg = SQ(GOI <Gy + G*» 'G32) (74)
T = £(G" G153 + G- Gp3) (75)

and is finite. The B® component is defined through Eq. (38), giving, self-
consistently, the result (39).

The root cause of these further problems with electrodynamics considered as
a U(1) gauge field theory is that parallel transport [6] must be used when an
internal gauge space is present. The internal gauge space of U(1) is a scalar, and
parallel transport results in a covariant derivative whose momentum represen-
tation is the minimal prescription [6]. This covariant derivative, however, leads
self-inconsistently to a null energy density and Poynting vector as just argued.
Therefore, in U(1), the Maxwell-Heaviside equations are obtained if and only if
the field energy and Poynting vector are identically zero. A null Poynting vector
means null energy and a null third Stokes parameter. The root cause of this is
the neglect of AWM x A® and we have come full circle. The only way out is to
adopt a gauge field theory of higher symmetry than U(1).

A related problem is that the linear momentum of radiation in U(1) is defined
by

(p) = socJE « BdV (76)

which is again zero. The linear momentum of a photon, however, is nonzero in
quantum theory and is fx, leading to the Compton effect and Compton



100 M. W. EVANS

scattering. It is well known that there is no classical equivalent of the Compton
effect [39], so the correspondence principle is lost in the received view based on
U(1) gauge field theory. In O(3) electrodynamics, however [11-20], there exists,
in general, the longitudinally directed potential A®) as part of the definition of
the field tensor. The classical quantum equivalence in the Compton effect is then
given simply as

P =eA® =k (77)

where e is regarded as the coupling constant in the definition of the constant
g = e/h, which appears in free space in both U(1) and O(3) electrodynamics.
This is another characteristic of gauge field theory applied to electrodynamics,
that charge e can act as a coupling constant in the covariant derivative. This is
true for all internal gauge symmetries, so e need not be defined solely by the
charge on the electron. These concepts are discussed further in Ref. 6. Therefore
0O(3) electrodynamics saves the quantum classical correspondence principle in
Planck-Einstein quantization. Equation (77) has the following manifestly
covariant form:

pu(3> = eAM3) = et

a0 =10 40
C

(78)

These concepts of O(3) electrodynamics also completely resolve the problem
that, in Maxwell-Heaviside electrodynamics, the energy momentum of radiation
is defined through an integral over the conventional tensor 7"V, and for this
reason is not manifestly covariant. To make it so requires the use of special
hypersurfaces as attempted, for example, by Fermi and Rohrlich [40]. The O(3)
energy momentum (78), in contrast, is generally covariant in O(3) electro-
dynamics [11-20].

The Maxwell-Heaviside theory seen as a U(1) symmetry gauge field theory
has no explanation for the photoelectric effect, which is the emission of electrons
from metals on ultraviolet irradiation [39]. Above a threshold frequency, the
emission is instantaneous and independent of radiation intensity. Below the
threshold, there is no emission, however intense the radiation. In U(1), electro-
dynamics energy is proportional to intensity and there is, consequently, no
possible explanation for the photoelectric effect, which is conventionally
regarded as an archetypical quantum effect. In classical O(3) electrodynamics,
the effect is simply

En = ecA® = constant x frequency (79)

and in Planck-Einstein quantization, the constant of proportionality is %, which
turns out to be a universal constant of physics. The concomitant momentum
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relation, Eq. (77), is shown empirically by the Compton effect as argued already.
Equation (77) means that above a given threshold frequency, there is enough
energy in the photon to cause electron emission in the photoelectric effect. All
the energy and momentum of the photon are transferred to the electron in a
collision above a certain threshold frequency because at this point, the potential
energy responsible for keeping the electron in place is exceeded. If we attempt to
apply this logic to (p) in Eq. (76), there is no threshold frequency possible on the
classical level because (p) cannot be proportional to frequency, only to beam
intensity. The momentum p©®) = eA®) of classical O(3) electrodynamics is not
proportional to intensity; it is proportional to frequency through the gauge
equation (77), which also leads to the B cyclic theorem [11-20], the fundamental
Lorentz invariant angular momentum relation of O(3) electrodynamics.

In the O(3) Compton effect, the observable change of wavelength is

eA®) . ,0
Ak:Z(mc )kosmzi (80)

where A is the wavelength of the incident beam, m is the electron mass, and 6 is
the scattering angle. If Eq. (77) is applied to this result, we recover the usual
quantum description of the Compton effect.

The concept of A®) can also be used to suggest a way out of the Dirac
paradox [41] of U(1) electrodynamics, in which Dirac maintains that so long as
we are dealing with transverse waves, we cannot bring in the Coulomb
interaction between charged particles. In O(3) electrodynamics, there is a force
given by

QARB)
FHO) = ¢ =~ (81)

whenever the beam interacts with an electron. This interaction results in a
longitudinal force with a change of wavelength as just described for the
Compton effect. This is not a Coulomb force since E® is zero in vacuo
[11-20].

Similarly, A® can be used to suggest a way out of the de Broglie paradox
[42], which points out that momentum and energy transform differently under
Lorentz transformation from frequency. This paradox led de Broglie to postulate
the existence of empty waves, which, however, have never been observed
empirically. It can therefore be suggested that the Lorentz frequency transform
must always be applied to

oA ’%‘%(3) (82)
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because this momentum is proportional to frequency empirically. If this
momentum is interpreted as that of a particle traveling at the speed of light, the
momentum becomes indeterminate (massless particle) or infinite (massive
particle) unless it is always interpreted as being a constant (%) multiplied by
®/c, which always exists empirically as the speed of light. The energy must
evidently be interpreted in the same way, namely, as a constant multiplied by
frequency. The Lorentz transform applied to frequency produces the aberration
of light as usual [39] in special relativity. In this interpretation, there is no
de Broglie paradox and no need to postulate the existence of empty waves [42].

The Sagnac effect cannot be described by U(1) electrodynamics [4,43]
because of the invariance of the U(1) phase factor under motion reversal
symmetry (7):

® = exp (i(of — K+r)) — exp (i(of — k-r)) (83)

The T operator generates the counterclockwise (A) loop from the clockwise (C)
loop in the Sagnac effect, with the result that there is no difference in phase factor
for journeys around the A and C loops, and no interferogram. This is contrary to
observation when the Sagnac platform is at rest [43]. When the platform of the
Sagnac interferometer [3] is rotated, there is the well-known Sagnac phase shift,
which was first detected in 1913. This defies description by U(1) electro-
dynamics because the Maxwell-Heaviside field equations in the vacuum are
invariant to rotation, which is part of the most general type of Lorentz transform
[6]. The Maxwell-Heaviside equations in vacuo are also gauge- and metric-
invariant, and are not capable of describing the Sagnac effect at all. The O(3)
electrodynamics, in contrast, are completely successful in describing the
interferogram with platform at rest and with a rotating platform. The details of
this important advantage of O(3) electrodynamics are discussed in Section (VI),
where a kinematic explanation of the Sagnac effect is also given using O(3)
gauge theory. More details of magneto-optical effects are given in Section (VII).
The Aharonov—Bohm effect is self-inconsistent in U(1) electrodynamics
because [44] the effect depends on the interaction of a vector potential A with an
electron, but the magnetic field defined by B = V X A is zero at the point of
interaction [44]. This argument can always be used in U(1) electrodynamics to
counter the view that the classical potential A is physical, and adherents of the
received view can always assert in U(1) electrodynamics that the potential must
be unphysical by gauge freedom. If, however, the Aharonov—Bohm effect is
seen as an effect of O(3) electrodynamics, or of SU(2) electrodynamics [44], it
is easily demonstrated that the effect is due to the physical inhomogeneous term
appearing in Eq. (25). This argument is developed further in Section VI.
Barrett has argued convincingly that there are several effects in classical
electrodynamics [3,4] where the potential must be physical, and Ref. 3 lists
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empirically observed effects where this is the case. The arguments in this
section point to the fact that U(1) electrodynamics, defined as U(1) gauge field
theory applied to electrodynamics, is self-inconsistent in the vacuum, as well as
in field—matter interaction. In the next section, the field equations of electro-
dynamics seen as an O(3) gauge field theory applied to electrodynamics are
given in full, revealing the presence in free space of conserved topological
charges and currents that do not appear in U(1l) electrodynamics and that in
general are not zero.

IV. FIELD EQUATIONS OF O(3) ELECTRODYNAMICS
IN THE COMPLEX CIRCULAR BASIS

In their most condensed form, the field equations are Egs. (31) and (32), respecti-
vely, and, in general, must be solved without approximation on a computer with
constitutive relations, as usual in classical electrodynamics. The familiar field
tensors G* and H"of the homogeneous and inhomogeneous Heaviside—
Maxwell equations [U(1) Yang-Mills gauge field theory] become vectors in
the O(3) symmetry internal gauge space of Eqs. (31) and (32), which are
equations of O(3) symmetry Yang—Mills gauge field theory. Therefore an object
such as G* is a vector in the internal gauge space and a tensor in Minkowski
spacetime, and an object such as J* is a 3-vector in the internal O(3) space and a
4-vector in Minkowski spacetime. The ordinary derivatives of the Maxwell—
Heaviside equations are replaced in Eqs. (31) and (32) by covariant derivatives in
an internal gauge space, with three rotation generators [11-20]. Egs. (31) and
(32) are gauge-covariant, and not gauge-invariant, under all conditions, including
the vacuum. As argued already, the homogeneous Eq. (31) is a Jacobi identity of
the O(3) group, and the tilde denotes dual tensor as usual. The homogeneous field
equation, Eq. (31), originates in the cyclic identity between O(3) covariant
derivatives, Eq. (30), and can be developed by writing out the covariant
derivative in terms of the coupling constant g, which has the classical units
K /A(O) [11-20]. The coupling constant, as usual in gauge theory [6], couples the
dynamical field to its source, so in Egs. (31) and (32), the dynamical field is never
free of its source, and there is no source-free region. This is also true in U(1)
electrodynamics on a rigorous level because g also appears in the U(1) covariant
derivative as argued already. A field propagating without a source is a violation
of causality. On Planck quantization, the coupling constant g has the units e /% in
both O(3) and U(1) gauge theory, and for one photon in free space

eA®) = (84)

signaling that the photon is always coupled to its source. The quantity e has the
dual role [6] of coupling constant and charge on the electron. The presence of g
in the theory does not mean that the gauge bosons are charged after quantization,
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anymore than it means that the U(1) gauge bosons are charged after quantization.
The role of g is to measure the ““strength” with which the dynamical electro-
magnetic field couples to its source. This aspect of g [6] is a consequence of the
gauge principle, and g originates in parallel transport—it is a coefficient needed
to ensure that units are balanced [6].

The homogeneous field equation (31) can be expanded in terns of the O(3)
covariant derivative [6,11-20]:

(0, + g4, x)G" =0 (85)

A particular solution is
9,G" =0 (86)

the first equation of which gives

A, x GV=0 (87)
0,G" =0, i=1,2,3 (88)

that is, Heaviside-Maxwell-type equations and an equation for B®), which in
vector form is
oB®)
ot

=0 (89)

The latter equation can be interpreted to mean that the third Stokes parameter
does not vary with time in a circularly polarized beam of light. The particular
solution (87) gives the B cyclic theorem (9) self-consistently [11-20].

In the vacuum (in the absence of matter), the inhomogeneous O(3) field
equation (32) can be interpreted as

3G =0 (90)
J' = geoA, x G* (91)

where JV is a conserved vacuum current. Equation (90) gives the component
equations:

wG =0, =123 (92)

The first two are Maxwell-Heaviside-type equations, and the third, in vector
form, is

V xB® =0 (93)
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which can be interpreted to mean that the third Stokes parameter is irrotational in
the vacuum. It can be shown [17] that the current JV self-consistently gives the
vacuum energy

En® = — JB<3> -B®ay (94)

due to the B® field.

In the presence of matter (electrons and protons), the inhomogeneous field
equation (32) can be expanded as given in Eqgs. (52)—(54) and interprets the
inverse Faraday effect self-consistently as argued already. Constitutive relations
such as Eq. (55) must be used as in U(1) electrodynamics.

The fundamental field equations (31) and (32) can be expanded out fully in
the (1),(2),(3) basis defined by Eqgs. (8) to give four field equations: the O(3)
equivalents of the Coulomb, Gauss, Ampere-Maxwell, and Faraday laws. This
expansion shows clearly that the adoption of an O(3) configuration for the
vacuum produces conserved vacuum charges and currents from the first
principles of gauge field theory. The vacuum electric charge and vacuum
electric current were introduced empirically and developed by Lehnert [7—
10]; and the magnetic equivalents were introduced and developed empirically
by Harmuth [21,22] and later developed from gauge theory by Barrett [3,4],
whose field equations in SU(2) gauge group symmetry are isomorphic with the
field equations in O(3) gauge group symmetry given here.

The Gauss law in O(3) electrodynamics is

V.BW* = ig(A?.BB) — B .AB) (95)
VB =ig(A® . B — B .A) (96)
V.BO* = ig(A(l)-B<2) _B(l).A(2)) (97)

and allows for the possibility of a topological magnetic monopole originating in
the vacuum configuration defined by the O(3) gauge group. Empirical evidence
for such a monopole has been reviewed by Mikhailov [4] and interpreted by
Barrett [45]. However, the right-hand side of Egs. (95) to (97) can also be zero
for particular solutions [11-20], in which case no magnetic monopole exists. In
general, Egs. (95)—(97) must be solved numerically and simultaneously with the
other three equations [Egs. (98)—(100)] given next. This is not a trivial task, but
would give a variety of solutions not present in U(1) electrodynamics, solutions
can be compared with empirical data.
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The Faraday law on the O(3) level is

(1)«
vV x ED* 4 aBa —= —ig(cAYVB® — cAPB®) + A®) x E®) — A0) x E@))
(98)
@ OB _ B ADBM 1 A®) x B A0 x EO
V x EP* ¢+ A = —ig(cAy'BY — cAy’B"Y + AV x EVY —AY x EVY)
(99)
@ OB @p) (R0 A1) O A2« )
V X E —&—Tz—lg(cAOB —cAy B +AY x EY) —AY x EY)
(100)

and contains on the right-hand sides terms proportional to a conserved
topological vacuum magnetic current, which was introduced empirically by
Harmuth [21,22] and developed by Barrett [3,4] using SU(2) gauge field theory.
This vacuum magnetic current provides energy, in the same way as the current J*
leads to the energy in Eq. (94), and this energy emanates from the vacuum
configuration. In principle, therefore, it can be used as a source of mechanical
energy provided devices are available to convert the vacuum topological
magnetic current into mechanical energy. The same is true of the topological
magnetic charge in Eqs. (95)—(97). These charges and currents vanish only in
very special cases [11-20], and in general are nonzero. They originate from
fundamental topological considerations as argued in Section I.
The O(3) Coulomb law in field—matter interaction is

v.pWr = p(l)* + ig(A(z) .D® _p® .A(3)) (101)
VD" = p@* 4 ig(A®.p") —pB.40) (102)
VDO = p 4 ie(41).p® — p).4?) (103)

In the vacuum, the quantities p'),i =1,2,3, disappear, but the topological
Noether charges proportional to the remaining right-hand-side terms do not
disappear, leaving one of the Lehnert equations [7—10]. Lehnert introduced the
vacuum charge empirically. Lehnert and Roy [10] have given clear empirical
evidence for the existence of vacuum charge and current. The latter appears in
the O(3) Ampere—-Maxwell law, which in field-matter interaction is

1)*
Vv x HO* — gOx _ op!"
ot
= —ig(cAPD®) — cAD® + A®) 5 H®) — A®) x H?)) (104)
2)%
V x H?* — j@r —aDa( )
t

= —ig(cAP'DV — cAlVD®) + AG) 5 HD — A1) x HO)) (105)
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aD(3)*
o
= —ig(cAl"'D® — cA’DM 1 AN x H? — AD 5 HD)  (106)

VvV x H®* — j@)x

In the vacuum, the terms J,i =1,2,3 disappear, but the topological Noether
electric vacuum currents on the right-hand sides of these equations do not.
These are the equivalents of the vacuum current introduced empirically by
Lehnert [7-10]. These vacuum charges and currents originate in the vacuum
configuration and provide energy as argued already. This can loosely be called
“vacuum energy.” In principle, it can be converted to useful form, and this type
of energy does not originate in point electric charge; it originates in the topology
of the vacuum itself.

The Lehnert field equations in the vacuum also exist in U(1) form, and were
originally postulated [7-10] in U(1) gauge field theory. It can be demonstrated
as follows, that they originate from the U(1) gauge field equations when matter
is not present:

(0" — gAY )Fy =0 (107)
This equation can also be written as
0'Fy = igAV'F,, g =1x/A (108)
giving the first Lehnert equation in the form
V.D=—-igA"-D=p (109)

Similarly, Eq. (107) shows that the second Lehnert equation is

VxH—aa—?zJZig(cAo*D—i—A*xH) (110)
and vacuum charge and current emanate directly from U(1) gauge field theory
as well as from O(3) gauge field theory as just argued. The constant e/% must be
regarded as a coupling constant in both cases [6], because it arises from the
gauge principle. Similarly, the vacuum magnetic monopole and charge can be
obtained from the U(1) gauge equation:

(0" —igAV)Fu =0 (111)

and in vector form are
V:B=igA"-B (112)
—+VXE=ig(cA”"B+A* XE) (113)

ot



108 M. W. EVANS

In both U(1) and O(3), the existence of vacuum charges and currents depends on
the existence of the coupling constant g, which is due fundamentally to the
notion of covariant derivative, and can be traced, therefore, to the original gauge
principle of Weyl, as discussed in Section II. The coupling constant g must be
introduced in vacuo if we accept special relativity and the gauge principle. The
existence of vacuum charges and currents follows. The arguments in Section III
lead us to reject the U(1) gauge theory of electrodynamics in favor of another
theory such as O(3) electrodynamics. These vacuum charges and currents are
conserved in the sense that they are Noether currents, and therefore do not
violate the Noether theorem [6], specifically, conservation of charge/current,
energy, and momentum.

It is seen that as the gauge group is changed from U(1) to a higher symmetry,
more solutions are allowed for the field equations, and therefore for the vacuum
charges and currents. Mikhailov has detected a magnetic monopole in six inde-
pendent experiments [4], interpreted as a topological magnetic monopole by
Barrett [4,5], and a magnetic monopole means the presence of magnetic current.
This has also been detected empirically [46]. Both the magnetic charge and the
current are topological in origin. In the case of U(1) gauge field theory applied
to electrodynamics, the vacuum configuration is described by a U(1) group
symmetry, and in O(3) electrodynamics by an O(3) gauge group symmetry.

All gauge theory depends on the rotation of an n-component vector whose
4-derivative does not transform covariantly as shown in Eq. (18). The reason is
that \(x) and y/(x + dx) are measured in different coordinate systems; the field
\ has different values at different points, but \y(x) and \(x) + d\ are measured
with respect to different coordinate axes. The quantity d\s carries information
about the nature of the field V itself, but also about the rotation of the axes in the
internal gauge space on moving from x + dx. This leads to the concept of
parallel transport in the internal gauge space and the resulting vector [6] is
denoted (x) + d\. The notion of parallel transport is at the root of all gauge
theory and implies the introduction of g, defined by

SV = igM Ay dxs (114)
where dx* is the distance over which the vector is carried, M are group rotation
generators, and Ajj are generalized vector potentials for the given internal gauge
symmetry [e.g., U(1) or O(3)]. The covariant derivative is therefore

D, =9, — igM"A" (115)

and is defined in this way under all conditions, in the presence and absence of
matter (electrons and protons). It follows that the electromagnetic field tensor
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under all conditions for all gauge groups is
i
Guw = g[D”, D,] (116)

and if g is zero, the field tensor becomes infinite for any gauge group, including
U(1). Here, [,] denotes commutator as usual. The constant g interpreted in this
way is neither a property of the source (an electron) nor of the field, but a
constant that couples source and field. Note that gauge theory is a necessary
condition for the existence of vacuum charges and currents, but not sufficient.
The actual existence of these entities must be determined empirically, as in the
experiments by Mikhailov [4] and in the work of Lehnert and Roy [10]. The
gauge equations on both the U(1) and O(3) levels allow for the fact that vacuum
charges and currents may be zero [11-20]. The B field of O(3) electro-
dynamics, however, is always nonzero in the vacuum, as it is the direct result of a
vacuum configuration described by O(3) symmetry. If vacuum charges and
currents do exist, however, they provide the possibility of extracting energy from
the vacuum as developed in Section XI.

V. FIELD EQUATIONS OF O(3) ELECTRODYNAMICS IN THE
CARTESIAN BASIS: REDUCTION TO THE LAWS OF
ELECTROSTATICS

In this section, it is shown that the field equations of O(3) electrodynamics
written in the Cartesian basis have a substantially different meaning from those
written in the complex circular basis of Section IV. The latter basis essentially
introduces motion and dynamics, while Eqgs. (31) and (32), written in the
Cartesian basis, produce the laws of electrostatics self-consistently. This is
confirmation of the mathematical and physical correctness of Egs. (31) and (32).
In the Cartesian basis, the O(3) field tensor is
Gy = Gy,i+ G j+Ghk (117)

v v
and the O(3) potential is
Ay =ANi+Alj+ ATk (118)

where the upper indices (X, Y,Z) denote an O(3) internal space defined by the
Cartesian unit vectors in Eq. (6). The components of the field tensor are

Gy’ = 0kay — 0°AY — igla}, AY) (119)
Gl = %Ay — 0'A) — iglAl, AY] (120)

Gy = 0"y — 0°A% — iglaf, A} (121)
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where the potentials are real quantities. Therefore the commutators vanish:
A%, AY] = [A%,AY] = [A%,A}] = 0 (122)
The covariant derivative of O(3) electrodynamics in the Cartesian basis is
Dy =0, — igM“A = 0, — ig(A} + A} + A7) (123)
and a rotation in the internal gauge space is denoted by

\I/ _ ei(M“A"(x“)\lj
_ eiAx(x“)eiAy(x“)eiAZ(x“)\lj (124)

For a rotation about the Z axis
V= M0y = sy (125)
producing the gauge transformation:

8

This is, self-consistently, the same result as for O(3) electrodynamics in the
complex circular basis [11-20] because of the relation k = e°.

The use of Cartesian indices for the internal O(3) gauge space produces the
laws of electrostatics as follows. For clarity, the derivation is given in detail.
First, the components of the magnetic field disappear:

By = G = 0°AL — %A} — ig[A},A2] =0 (127)
By = Gy =0'A} — 0’A} — ig[A},A}] =0 (128)
B, = G2} =0%AL —0'A% —ig[A2 A} =0 (129)

This means that a magnetic field is always a quantity that depends on motion, or a
current. If there is no magnetic field, there is no electric current, that is, no
motion of charge. The use of Cartesian indices for the internal O(3) gauge space
therefore corresponds to an electrostatic situation where there is no movement of
charge. The use of complex circular indices corresponds to electrodynamics.
The nonzero static electric field components are given by equations such as:

G())(l _ aOA)l( — alA())( — ig[A(l)/aAlZ] (130)
G)I(O — alA?( — aoA)l( — ig[Ai’vAOZ] (131)
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which correspond to

10 0

—Exy =——AL +—AY 132
X = T axAx (132)
10 d
E,=———AL ——A° 1
* cot X ox' (133)

The static electric field is therefore given self-consistently by

E=-VA® - %%A (134)

The vector potential A is zero, however, because the magnetic field is zero, and
we arrive at the familiar law of electrostatics:

E=-VA° (135)
Using the vector identity (16), it is found that E is irrotational:
VXE=0 (136)

In the Cartesian basis, the homogeneous field equation of O(3) electrody-
namics can be written out as three component equations:

0,GY’ = ig(A} Gy’ — AZGY) (137)
0,GY = ig(ALGY — AYGY) (138)
0,GY’ = ig(AYGY — ATGY) (139)

Forv=10
0,Gy = ALGY — AZGY (140)

and using
G =By (141)

this gives the result

OxBx =0 (142)

The complete result for v = 0 is therefore

V:B=0 (143)
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which is self-consistent with Eqgs. (127)—(129), indicating the absence of a
magnetic field because of the absence of moving charges.
For v = 1, we obtain

605}9(1 + 626)2(1 + agéil
= ig(AYGY + AYGE + AYGY — ALGY — ASGE — AZGY) (144)

that is, 0B} = 0. Repeating this procedure gives

OB
—=0 145
> (145)

which is self-consistent with B = 0.
The inhomogeneous field equation (32) in the Cartesian basis must be written
in the static limit where

J' = (p,0) (146)
The component equations look like
O HY + ig(Af:H;V — A§H¢V) =Jy (147)
For v = 0, we obtain

O\ HY + 0oHy + 0:Hy + ig(AVH)’ — ATH® + ATH®

148
B+ ATHD — ATH) = 1Y = p 4

and this results in the equation

VD=p (149)

which is the Coulomb law of electrostatics. The Coulomb law is well known to
be self-consistent with Eqs. (135) and (136). For v =1 and other indices, we
obtain the self-consistent result
oD
—=0 150
o (150)

which is true for an electrostatic displacement D.
In summary, the laws of O(3) electrodynamics in the Cartesian basis reduce
to the laws of electrostatics:

E=-VA°
VXxE=0 (151)
VoD: p
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and this is an indication of the correctness and self-consistency of Eqgs. (31) and
(32). The need for the complex circular basis now becomes clear: this basis
introduces dynamics into the O(3) laws. The Cartesian representation of the
gauge space describes a static situation where there is charge but no current
(movement of charge). A magnetic field always requires the movement of
charge. It has therefore been shown that the laws of electrostatics are laws of a
gauge field theory of O(3) internal symmetry. This is another refutation of the
received view, that the laws of electrostatics are laws of a gauge field theory of
U(1) internal symmetry.

The Gauss and Ampere laws of magnetism are obtained mathematically, and
somewhat artificially, from the fact that using a Cartesian basis gives Eq. (143)
(the Gauss law); and from the fact that there is no current and no B, so we have

J=VxB=0 (152)

and the Ampere law follows. However, there is a more satisfactory way of
obtaining the Gauss and Ampere laws by using the complex circular basis. The
latter is needed because magnetism is not a static phenomenon, as evidenced by
the both the Ampere and Faraday laws. Magnetism is always a dynamic pheno-
menon, so we always need complex circular indices. Therefore the Gauss and
Ampere laws are obtained from the particular solutions (87) and (91) leading to
Eqgs. (88) and (92). The phenomenon of radiation is then removed by removing
the Maxwell displacement current in Eqs. (88) and (92). This removes the
radiated B field and leaves the Gauss, Ampere, Coulomb, and Faraday laws of
the received view at the expense of generality. This procedure is a method of
obtaining the old laws from O(3) electrodynamics, which is, however, more
general and self-consistent. In forcing a reduction of O(3) electrodynamics to the
received view, we lose the vacuum charges and currents and a great deal of
information.

Information is also lost if we replace the ((1),(2),(3)) basis by the (X,Y,Z)
basis for the internal gauge space. The reason is that the former basis is
essentially dynamical and the latter is essentially static. This is again a self-
consistent result, because electrodynamics, by definition, requires the movement
of charge. The misnamed subject of ‘“‘magnetostatics’ also requires the move-
ment of charge, and so is not static.

VI. EXPLANATION OF INTERFEROMETRY AND RELATED
PHYSICAL OPTICAL EFFECTS USING O(3)
ELECTRODYNAMICS

The explanation of interferometric effects in U(1) electrodynamics is in general
self-inconsistent, and sometimes, as in the Sagnac effect, nonexistent. In this
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section, the theory of interferometry and related physical optical effects is deve-
loped with O(3) electrodynamics, which is found to give an accurate and self-
consistent explanation, for example, of the Sagnac effect in terms of the
fundamental component B®. The latter is therefore a physical observable in all
interferometry.

In order to understand interferometry at a fundamental level in gauge field
theory, the starting point must be the non-Abelian Stokes theorem [4]. The
theorem is generated by a round trip or closed loop in Minkowski spacetime
using covariant derivatives, and in its most general form is given [17] by

exp G;Dudxu) = exp (- %J [DH,DV]dG“V> (153)

where the integral over the closed loop on the left-hand side is related to an
integral over the hypersurface o* of the commutator of covariant derivatives.
The electromagnetic phase factor in O(3) electrodynamics is developed as an
exponential from Eq. (153) and is given most generally by

exp (g}D”dx”) = exp <— %gj [DH,DV]dG“V) (154)

The observable phase is the real part of this exponential, specifically, the cosine.
Recall that in ordinary U(1) electrodynamics, the phase factor is given by the
exponent

b =exp (i(of — k+r+a)) (155)
where o is random.

To reduce Eq. (153) to the ordinary Stokes theorem, the U(1) covariant
derivative is used

D, =8, + igA, (156)

to give the result
n 1 nv
A, dx =3 Fydo (157)
The space part of this expression is the ordinary, or Abelian, Stokes theorem

fFA-dr:JB-dAr:JV x A - dAr (158)
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with the following fundamental property:

% A-dr:—{s A.dr (159)
0A Ye)

In U(1) electrodynamics in free space, there are only transverse components of
the vector potential, so the integral (158) vanishes. It follows that the area
integral in Eq. (157) also vanishes, and so the U(1) phase factor cannot be used to
describe interferometry. For example, it cannot be used to describe the Sagnac
effect. The latter result is consistent with the fact that the Maxwell-Heaviside
and d’Alembert equations are invariant under 7, which generates the clockwise
(C) Sagnac loop from the counterclockwise (A) loop [17]. It follows that the
phase difference observed with platform at rest in the Sagnac effect [47] cannot
be described by U(1) electrodynamics. This result is also consistent with the fact
that the traditional phase of U(1) electrodynamics is invariant under T as
discussed already in Section (III). The same result applies for the Michelson—
Gale experiment [48], which is a Sagnac effect.
From Eqgs. (157) and (158) the integral

1
Int = —EJFwdcuv =0 (160)

vanishes in interferometry as described by U(1) electrodynamics. Therefore, in
order to explain interferometry and related optical effects by gauge theory, a non-
Abelian Stokes theorem and a non-Abelian phase factor are required. This means
that O(3) electrodynamics is capable of describing interferometry but U(1)
electrodynamics is not. An area integral is needed that does not vanish, as in
Eq. (160), and equated through the theorem (157) to a line integral. It is
straightforward to show that the only possible solution for the O(3) phase factor
is

Pexp (ig fi;A("” -dr) = Plexp (igJB(3> -dAr) (161)

and since g = K/A(0> classically the phase factor reduces to

Pexp (i?flcm -dr) = Pexp <ig JB<3> -dAr) (162)

for all interferometry and physical optics. Equation (162) is nonzero if and only
if the Evans—Vigier field B®is nonzero, and the latter is therefore responsible for
all interferometry and related physical optical effects.
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The P on the left-hand side of Eq. (162) denotes path ordering and the P’
denotes area ordering [4]. Equation (162) is the result of a round trip or closed
loop in Minkowski spacetime with O(3) covariant derivatives. Equation (161) is
a direct result of our basic assumption that the configuration of the vacuum can
be described by gauge theory with an internal O(3) symmetry (Section I).
Henceforth, we shall omit the P and P’ from the left- and right-hand sides,
respectively, and give a few illustrative examples of the use of Eq. (162) in
interferometry and physical optics.

The Sagnac effect with a platform at rest [47] is explained as the phase

factor:
exp (zﬁ; K -dr) = exp (21’{)1((3) -dr) (163)
A—C

which is nonzero and gives an observable interferogram, a cosine function:

Y = cos (2§;K<3) dr + 2nn> (164)

Using the relation:
BO — |B(3>| = gA02 (165)

the right-hand side of Eq. (162) may be written as

P = exp(ik’Ar) (166)
and so Eq. (164) becomes
2
v = cos (2 2 Ar+ ZTm) (167)
C

This is an expression for the observed phase difference with the platform at rest
in the Sagnac experiment [47]; it is a rotation in the internal gauge space. In U(1)
electrodynamics, there is no phase difference when the platform is at rest, as
discussed already.

When the platform is rotated in the Sagnac effect, there is an additional
rotation in the internal gauge space described by

V' = exp(ifzou(x") )\ (168)

where o(x") is an angle in the plane of the Sagnac platform [48]. The effect on
the gauge potential A: is as follows:

1
AP — A + gaua (169)
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The angular frequency of rotation of the platform is

ool
Q=— 170
o (170)

and so Eq. (169) implies that the additional rotation of the platform has the effect
o — ot (171)

on frequency, depending on the sense of rotation of the platform, which therefore
produces the phase factor difference

Ay = exp (i(*c‘—zr (04 Q) — (0 — 9)2))) (172)

and an interferogram

QAr
2

Re (Ay) = cos (4 @
c

+ 27m) (173)

as observed [49] to very high accuracy. This formula was first given by Sagnac
[50] using kinematic methods. There is no explanation for it in U(1) electro-
dynamics [4].

The calculation can be repeated using matter waves, because the Sagnac
effect exists in electrons [51] as well as in photons. The starting point is the
same, namely, the assumption that the vacuum configuration is described by an
O(3) gauge group symmetry. The same structured vacuum applies to both
electrodynamics and dynamics, wherein the energy momentum tensor is also a
vector in the internal gauge space:

pt = pHle(D) 4 p2)e(2) 4 HrB)e(3)

- h(Ku(l)eU) + k@@ Ku(3>e(3)) (174)
where
m2C4
o’ =chd + # (175)

Here, o is the angular frequency of a matter wave, such as that of an electron, k is
its wave number magnitude, and my is the rest mass of the particle corresponding
to the matter wave. The rest mass could be the photon’s rest mass, estimated to be
less than 10798 kg.
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Both p, and k, are governed by a gauge transformation
Pu— SpuS~t —i(0,8)S™! (176)

and similarly for k. The rotation of the Sagnac platform is governed by Eq.
(168), from which we obtain

K’ - k%3 4 % (177)

which is the same as Eq. (171). This is a topological result given by the structure
of the vacuum and is valid for all matter waves, including the electromagnetic
wave as argued already. The holonomy difference with platform at rest for A and
C loops [round trips in Minkowski spacetime with O(3) covariant derivatives] for
matter waves is

Ay = exp(2ik’Ar) (178)
where, from Eq. (175)
2 2 4
, O mgc

The extra holonomy difference due to the rotating platform is the same as for
electromagnetic waves:

4zcoQAr> (180)

AAy = exp( >
c

This result is true for all matter waves and also in the Michelson—Gale
experiment, where it has been measured to a precision of one part in 105 [49].
Hasselbach et al. [51] have demonstrated it in electron waves. We have therefore
shown that the electrodynamic and kinematic explanation of the Sagnac effect
gives the same result in a structured vacuum described by O(3) gauge group
symmetry.

The preceding is a result of special relativity precise to one part in 1073 [49].
Its explanation in standard special relativity is as follows. Let the tangential
velocity of the disk be v; and the velocity of the particle be v, in the laboratory
frame [52]. When the particle and disk are moving in the same direction, the
velocity of the particle is v, — v; = v3 relative to an observer on the periphery
of the disk. Vice-versa, the relative velocity is v, 4+ v = v4. The special theory
of relativity states that time for the two particles will be dilated to different
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extents, so the time dilation difference relative to the observer on the periphery

of the disk is
2\ 1/2 2\ —1/2
B V3 vy
s (1-8) " (1-9) s

using the binomial theorem. When the disk is stationary [53]:

2
1= (182)
V2

where r is its radius. So the observable time difference of the Sagnac effect is

dntrvy  4QAr
AAr = 2 :7 (183)

as deduced already as a rotation in the O(3) gauge space of a structured vacuum.

The Maxwell-Heaviside theory of electrodynamics has no explanation for
the Sagnac effect [4] because its phase is invariant under 7, as argued already,
and because the equations are invariant to rotation in the vacuum. The
d’Alembert wave equation of U(1) electrodynamics is also 7-invariant. One
of the most telling pieces of evidence against the validity of the U(1)
electrodynamics was given experimentally by Pegram [54] who discovered a
little known [4] cross-relation between magnetic and electric fields in the
vacuum that is denied by Lorentz transformation.

It can be shown straightforwardly, as follows, that there is no holonomy
difference if the phase factor (154) is applied to the problem of the Sagnac
effect with U(1) covariant derivatives. In other words, the Dirac phase factor [4]
of U(1) electrodynamics does not describe the Sagnac effect. For C and A loops,
consider the boundary

X+ri=1 (184)

of the assumed circular paths of the two light beams of the Sagnac effect. The
line integral vanishes around the boundary

21 21
j;dr J dX+J dy

0 0

&}

21

—Ln sind)d(lH—J cos ddod

0

Il
o
Il

—Jdr (185)
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and so

{)K-dr:—%lc-dr:O (186)

in U(1) electrodynamics and the relevant holonomy in this symmetry of
electrodynamics is the same

exp<i§§cx.dr) = exp(iix-dr) =1 (187)

for both beams. There is no interferogram with the platform at rest, contrary to
observation.

Furthermore, the only electromagnetic vector present in free space in the
Maxwell-Heaviside theory is the plane wave [11-20]:

AW = AR =T (jj 4 j)el@xer) (188)

which is always perpendicular to r, so we obtain Eq. (187) self-consistently.
Owing to the gauge invariance of the Maxwell-Heaviside theory, there is no
extra effect of a moving platform, again contrary to observation. The principle of
gauge invariance, and U(1) electrodynamics in general, fail to describe the
Sagnac effect.

On the O(3) level, it can be shown that if we write out the commutator of
covariant derivatives in Eq. (153) the phase factor becomes [6]

Y = exp (J[Du, D,] dc’”) (189)
Y = exp (—iij(@uAv —0A,)dc" — g* J[AwAV] dc“v) (190)

ut as just argued, integrals such as
I(UQ1)) = J(auAv —0,A,)dc" (191)

vanish for both A and C loops, leaving the only source of nonzero holonomy,
Eq. (162), leading to the observable interferogram in Eq. (167). This derivation
can be self-checked using a closed loop with O(3) covariant derivatives in
Minkowski spacetime [6] whereupon the holonomy in one direction is

Ya = €xp (—i g J Gy dS““) (192)
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and in the other direction is

Yo = exp (i%JGwdS“V> (193)

where S" is the area enclosed by the loop. The holonomy represents a rotation in
the internal O(3) gauge space and is a general result for all gauge group
symmetries. If the internal basis of the space of O(3) is (a, b, ¢), the holonomy
can be expressed as

.8 a a ; c
Y = exp <¢15J (0uA¢ — 0,Al — zgsabcAﬁAv)dS”") (194)
If the internal symmetry is U(1), the holonomy in either direction is
1U(0) = exp i [ 0,4, 0 )as

= exp (ﬂgfi;Audx”) =1 (195)

and the ordinary Stokes theorem can be used to show that there is no holonomy
difference.
If the internal group symmetry is O(3) in the basis ((1),(2),(3)), we obtain:

exp <:Fi§ (0,40 avAf}))dS“V) =1
exp (q:ig (0,42 —avAff))dS“V) =1 (196)
exp (q:i% (8,4 —avAff))dS“V) —1

and the only source of holonomy difference is the commutator term, which is
written in general as [17]

2
¥ = exp <:F % J EancAAS dS“V> (197)

Considering the special case

2

r=exp( 75 [APAP - aPA a5 ) (19
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and using Eqgs. (165) and (188), it is found that the holonomy is
v = exp (Fix*Ar) (199)
The difference in holonomy is Eq. (178), and the interferogram can be written as
Y = cos (2k*Ar 4 2mn) (200)

with the platform at rest.

The Sagnac effect caused by the rotating platform is therefore due to a
rotation in the internal gauge space ((1),(2),(3)), which results in the frequency
shift in Eq. (171). The frequency shift is experimentally the same to an observer
on and off the platform and is independent of the shape of the area Ar. The
holonomy difference (172) derived theoretically depends only on the magni-
tudes ® and 2, and these scalars are frame-invariant, as observed experi-
mentally. There is no shape specified for the area Ar in the theory, and only its
scalar magnitude enters into Eq. (172), again in agreement with experiment.

In the one photon limit, O(3) electrodynamics [11-20] produces the result:

eA”) = nix (201)

Substituting this into
Y = exp (:Fi%B<3)Ar) (202)

for a beam made up of one photon, the flux B® Ar becomes /i /e and so, in the one
photon limit

v =exp (£i) (203)

The observable phase difference is therefore nonzero for one photon in O(3)
electrodynamics. The effect with platform in motion is the same as Eq. (172) for
one photon.

Equations leading to Eq. (162) apply in general in O(3) electrodynamics and
to interferometry and physical optics in general. They imply the existence of the
quantity

1
o=y JB<3>dAr (204)
in which the units of a topological magnetic monopole are directly dependent on

the vacuum configuration. We therefore have the relation

® = gguV (205)
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and the observation of phase ® implies the existence of both B(3) and g,,. The
latter must not be confused with the Dirac point magnetic monopole or with the
quantities on the right-hand sides of Egs. (95) to (97).

In the Maxwell-Heaviside theory of electrodynamics, the electromagnetic
phase is a product of two 4-vectors together with a random quantity o:

=kt +o=0f —Kr+a (206)

Let oo = 0 without loss of generality, because it is a random number. Then the
remaining part of the phase in Eq. (206) is invariant under parity inversion, which
is the same as perfect normal reflection as argued in Section III. Therefore the
phase arriving back at the beam splitter [55] in one arm of the Michelson
interferometer is unchanged for all r, the length of the arm. The same is true for
the other arm, and so there is no interferogram, because the phases arriving back
from either arm are always the same as the phase in the beam that initially
entered the beam splitter. This result is clearly contrary to observation, and U(1)
electrodynamics is unable to explain Michelson interferometry, the basis of
Fourier transform infrared spectral techniques and instruments.
In O(3) electrodynamics, the interferogram is described by the holonomy

exp (1{) k) -dr) =exp (21’ J B® dAr) (207)
1-2

where 1-2 represents a path traversal from beam splitter to mirror and back to
beamsplitter. Using the property

i; k@ edr = 7% k) ar (208)
1 2

this is nonzero, and the interferogram is the cosine function [17]
Re(y) = cos(2k® «r + 21tn) (209)

which is nonzero and depends on r. By varying r, an interferogram is generated as
observed empirically [55]. Its Fourier transform is a spectral function, and in
general the beam is polychromatic.

The principle of interferometry in O(3) electrodynamics follows from the
fact that it is caused by a rotation in the internal gauge space

exp <i jI}H Kudx“> — exp(iJzA (")) exp (i fﬁl Kpdxu) (210)
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or more succinctly

iJzA(x“),Y (211)

v =e
In Michelson interferometry, for example, the left-hand-side of Eq. (210)
becomes

v = exp (2i,x") (212)

whose real part is Eq. (209), the interferogram. This result follows from the fact
that the rotation (211) in the O(3) internal gauge space results in

O —O+— (213)

and if ® = 0A/0t, Eq. (212) follows. We have already applied Eq. (210) to the
Sagnac effect.

In U(1) electrodynamics, the equivalent of Eq. (210) is the rotation in the
U(1) internal gauge space:

gilor—ker+A) _ il ji(or—ker) (214)

in other words

V= ey (214a)

where A is random. The electromagnetic phase in U(1) electrodynamics is
defined only up to a random number A, whereas the phase in O(3) electro-
dynamics is fully defined and gives rise to physical effects in interferometry. The
details of the effect depend on the geometry of the interferometer.

Another example of a physical effect of this type is the Aharonov—Bohm
effect, which is supported by a multiply connected vacuum configuration such
as that described by the O(3) gauge group [6]. The Aharonov—Bohm effect is a
gauge transform of the true vacuum, where there are no potentials. In our
notation, therefore the Aharonov-Bohm effect is due to terms such as (1/g)0,A,
depending on the geometry chosen for the experiment. It is essential for the
Aharonov-Bohm effect to exist such that (1/g)0,A be physical, and not
random. It follows therefore that the vacuum configuration defined by the
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U(1) group does not support the Aharonov—Bohm effect [26]. The vacuum
configuration defined by the SU(2) group cannot support the effect because
SU(2) is singly connected [6], leaving O(3) as the only possibility. This is
another strong indication of the need for O(3) electrodynamics. Barrett [26] has
also reasoned that the U(1) vacuum configuration cannot support the Aharonov—
Bohm effect. First, there is a fundamental topological flaw in Heaviside’s
reduction of the potential to a mathematical convenience because this can apply
only in singly connected spaces, whereas U(1) itself is not singly connected, and
Maxwell-Heaviside theory is asserted to be a U(1) Yang—Mills gauge field
theory. This is another self-inconsistency of the received view. In fact, any
polarized classical wave such as a circularly polarized wave has two vectorial
components that form the O(3) symmetry basis ((1),(2),(3)) [3]. Another
inconsistency of the received view of the Aharonov-Bohm effect is that it
depends on the interaction of an assumed physical vector potential A with an
electron. However [26], the magnetic field B =V x A is always zero at the
point of interaction, and the effect is described self-inconsistently [6] as an
integral over the flux due to B. At the point of interaction this flux is always
zero. The effect actually depends on the inhomogeneous term generated by the
gauge transform of the vacuum [6] into regions where both the magnetic field
and the potential are zero. So the effect is an interferometric effect determined
by gauge transformed terms such as

A= —Las)st =toan;  i=1,23 (215)

8 8

in O(3) electrodynamics, where these terms are physical. The Aharonov—Bohm
effect is therefore a rotation in the internal gauge space of a vacuum
configuration described by the O(3) group, and not the U(1) group, where terms
such as (215) are random.

VII. EXPLANATION OF MAGNETO-OPTICS AND OTHER
EFFECTS USING O(3) ELECTRODYNAMICS

The subject of O(3) electrodynamics was initiated through the inference of the
B field [11] from the inverse Faraday effect (IFE), which is the magnetization
of matter using circularly polarized radiation [11-20]. The phenomenon of
radiatively induced fermion resonance (RFR) was first inferred [15] as the
resonance equivalent of the IFE. In this section, these two interrelated effects are
reviewed and developed using O(3) electrodynamics. The IFE has been observed
several times empirically [15], and the term responsible for RFR was first
observed empirically as a magnetization by van der Ziel et al. [37] as being
proportional to the conjugate product AD xA® multiplied by the Pauli matrix
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G in europium-ion-doped glasses. Good agreement was obtained [37] between
theory and experiment, implying that the resonance equivalent of this term is
present in nature. In other words, resonance can be induced between the states of
the Pauli matrix by circularly polarized radiation. This resonance phenomenon is
potentially of widespread utility as argued in this section because (1) it has a
much higher resolution than ESR or NMR, (2) it has its own spectral fingerprint
or chemical shift pattern, and (3) RFR can be observed without the use of
superconducting magnets. In O(3) electrodynamics, it is essentially due to the
product of the Pauli matrix with the B® field and also exists [20] in O(3)
quantum electrodynamics.

The IFE was inferred phenomenologically by Pershan [56] in terms of the
conjugate product of circularly polarized electric fields, E x E* = EY x E®),
In O(3) electrodynamics, it is described from the first principles of gauge field
theory by the inhomogeneous field equation (32), which can be expanded as

a”HuV(l)* E OLE igAf) x HWO) (216)
OuHMW " = @ +igA() x H™) (217)
OuHMW" = 'O +igA() x M) (218)

that is, as three cyclically symmetric equations in the O(3) symmetry basis
((1),(2),(3)) without empiricism. In order to make further progress, a constitutive
relation must be used, as follows, but there is no need to assume the existence of
E x E* empirically. This is proportional to A" x A®) which is part of the
fundamental definition of the O(3) field tensor [11-20]. The constitutive relation
used is [20]

HWOx — g0+ (2]9)

so that

HO — —iﬁA“) <A (220)

where € and p are the electric permittivity and magnetic permeability of the

sample being magnetized by a circularly polarized electromagnetic field whose

signature, the third Stokes parameter, is proportional to AWM x A® and therefore

to B® (Section III). If the vacuum configuration is assumed to be described by an

O(3) group, it follows that the inverse Faraday effect is due to B, and is

empirical evidence for B, leading to the development of O(3) electrodynamics.
The magnetization in the IFE is now defined as

aquv(l)* :JV(l)* + AJV(I)* (221)
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where
AJ'W* = igeAl?) x G0 (222)

It can be worked out precisely [15] in an electron gas for a visible frequency laser
such as that used by van der Ziel et al. [37]. The magnetic flux density set up in

the electron gas is
3 2p(0)
@ N pec’B 3)
Bsample - V ( 2m2®3 )Bfree space (223)

where there are N electrons in a volume V, and where m is the mass of the
electron. It is inversely proportional to the cube of the angular frequency of the
circularly polarized laser. The free-space value of B® is

12
3 Hol
Bgrge space = <2> (224)

in terms of the intensity / (W/m?) of the laser and so

3 N (piee\ I
Bial)nple = V ( ;mz ) @6(3) (225)

For example, for a pulsed Nd-YaG laser [57] where I = 5.5 X 1012 W/mz, and
® = 1.77 x 10'° rad/s, we obtain

N
B ampre| = 1.06 % 1077

sample

~10°T=10"°G (226)

which for N/V = 10 m~3 (Avogadro’s number) is the same order of magnitude
as that observed experimentally by van der Ziel et al. [37] in the first inverse
Faraday effect experiment. More generally, g/ is a frequency dependent hyper
polarizability [58], giving the possibility of the as yet undeveloped IFE
spectroscopy with its characteristic [58] spectral fingerprint. IFE spectroscopy
is magnetization near optical resonance caused by the B field in O(3)
electrodynamics and is potentially as useful as infrared or Raman spectroscopy.
We can write Eq. (216) as

aquv(l)* — Jv(l)* + AJV(I)* (227)
where the transverse current can be developed as

AJY D — 58214;(12) x (A x 4¥@)) (228)
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causes a signal in an induction coil due to the vacuum B® field, a component of
G"®) This transverse current causes the inverse Faraday effect as observed
experimentally in an induction coil [37].

The explanation of the IFE in the Maxwell-Heaviside theory relies on
phenomenology that is self-inconsistent. The reason is that AY x A? is intro-
duced phenomenologically [56] but the same quantity (Section III) is discarded
in U(1) gauge field theory, which is asserted in the received view to be the
Maxwell-Heaviside theory. In O(3) electrodynamics, the IFE and third Stokes
parameter are both manifestations of the B®) field proportional to the conjugate
product that emerges from first principles [11-20] of gauge field theory,
provided the internal gauge space is described in the basis ((1),(2),(3)).

Equation (228) can be developed further using the following result:

Fx(GxH)=G(F-H)—HF-G) (229)
This vector relation shows that

2) (1) 5 4Y2)) — AR (A2)  4¥2)) _ A2 (4(2), gu()
A 5 (A x AY2)) = AMD (4. 4¥@)) — A¥) (A2 A1)

— _A024v(2) (230)
Using
g= f% - % (231)
it is found that
AJ@ = ;szv@) (232)

On the one-electron level, the 4-current can be written in terms of the energy
momentum:

v2) — & ) 233
AJ P (233)

defined through the minimal prescription. From Eqgs. (232) and (233), we obtain

x e

E=— = —
c2v mon?V

(234)

where ¥ is the one-electron susceptibility.
This result is self-consistent with the demonstration [15] that the IFE can be
described through % by using the Hamilton—Jacobi equation for one electron in
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the classical electromagnetic field, but the O(3) derivation is far simpler. The
current AJ® is due to the field-induced transverse electronic linear momentum
[20].

Consider now the development of Eq. (218). From Eq. (219)

0 H"* =0 (235)

and so
T = —igAll) x g®) (236)

Equation (235) follows from the theoretical and experimental finding that
[11-20]
oB®)

5=V~ B® =0 (237)

in the vacuum. In Eq. (236), J'O* is induced self-consistently in the IFE as
follows.
Use the constitutive relation

HY?) = G (238)
and the definition
G2 — C(auAV(Z) — VAR _ igA”(3) % AV(U) (239)
with
A x (A x A"y =0 (240)

Set v =3 in Eq. (236) to obtain
JPO = 2ig8A(1) « B? (241)
which is the current induced by the nonlinear cross-product A" x B?. Using
B =V xA? (242)
this current is equal to that of the orbital IFE [36]
JO = igeexAM x A?)
e

= av®” 243)
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and so J>3)* is the magnetization current due to B for one electron. There is no
longitudinal source current in Eq. (218) because the source current of circularly
polarized radiation is necessarily transverse, the charge in the source goes around
in a circle whose plane is perpendicular to the (3) axis and the source does not
move forward along the (3) axis. There is therefore no current in the (3) axis, that
is, no source current in the (3) axis as argued.

The technique of RFR is simply the resonance equivalent of the IFE as argued
already, but is potentially of major utility. The techniques of nuclear magnetic
resonance (NMR), electron spin resonance (ESR), and magnetic resonance imag-
ing (MRI), are widely used in contemporary analytical science and medicine,
and all rely on the principle of fermion resonance induced between states of the
Pauli spinor. The resonance pattern is distinct for each sample, and in MRI, an
image can be built up. Optical methods have been used to enhance the subject
considerably [59-65] using laser frequencies. In conventional ESR and NMR,
the resonance is induced by a circularly polarized radio frequency (RF) or
microwave frequency coil, and the population of the energy states of the Pauli
matrices of electron or proton are separated by a very tiny amount by a powerful
and homogeneous magnet, usually a superconducting magnet. The resolving
power of these techniques is limited by the magnetic flux density of the magnet.
This limitation can be removed by replacing the magnet with a circularly
polarized electromagnetic field, resulting in RFR. In theory, the latter technique
has a much greater resolving capability than does NMR or ESR and can be
developed into an MRI technique based on the same principle, the induction of
resonance between the states of the Pauli matrix by a circularly polarized RF
field. The multi-million-dollar superconducting magnet of a conventional ESR
or NMR spectrometer could be replaced in principle by an ordinary RF field.

This result emerges self-consistently at all levels of physics, from the
classical nonrelativistic to the quantum electrodynamic. On the nonrelativistic
classical level, the technique of RFR is due to the interaction of B® with the
Pauli matrix. One way of demonstrating this result, which has been observed
empirically [37], is to extend the minimal prescription to complex A, starting
[66] with the Newtonian kinetic energy of the classical electron

1
Hxg =—p- 244
KE 2mP p (244)
where p is its linear momentum and m is its mass. The electron interacts with the
classical electromagnetic field through the O(3) covariant derivative written in
momentum space, in other words, with the minimal prescription with complex A,
with A = A®*_ The interaction kinetic energy is therefore the real part of:

1
Hye :E(p—eA(”)-(p—eA(z)) (245)
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where A" and A® are complex conjugate transverse plane waves for simplicity
of argument. The energy in Eq. (245) can be written out as

e e

2
AV.AR(246)

Re (A
e(A-p) .

1 e
Hxg =—pp — 7 Re (p-A?) +

2m 2m 2m

a well-known result of numerous textbooks [67]. The only difference is one of
notation. In the textbooks, A = AWM and A* = A® . In order to derive the RFR
term, we use Pauli matrices as a basis for three-dimensional space following
Sakurai [68] in his Eq. (3.18). The interaction between the classical electron and
the classical electromagnetic field in this basis is described on the classical level
by

1
Hyg = —2—0-(p—eA<‘>)c-(p—eA<2>) (247)
m

and consists of four terms: (1) the magnetic dipole term

—pe (A +4%) = g ReB (248)
n

H, =
! 2m

where m is the magnetic dipole moment of the electron or proton and Re B is the
real part of the magnetic component of the electromagnetic field, (2) the spin—flip
term

e
Hy = —i>—6-p X (A® —aM) (249)

which, for an electron or proton moving in the Z axis, can be expressed as

AL : o
H, = —e %pzoz «(jcos d +isind) (250)
where
VA
d):mt—KZ:(o<t——> (251)
¢

[it can be seen that if ¢ = 0, the Pauli matrix (or “spin’’) points in the Y axis;
when ¢ = 1t/2, in the X axis; when ¢ = =, in the —Y axis; when ¢ = 31/2, in
the —X axis; and when ¢ = 2m, back in the Y axis].

Thirdly, the polarizability term which appears in the textbooks [67], is given
by

2 2

e e
Hy=—AW.A® = __402 252
T om 2m (252)
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and is the basis [69] of susceptibility theory, and (4) the RFR term, which is
missing from the textbooks, is given by the real-valued expression

2 2

Hy = ize—ms-A“) x A® = f;—mA“))zc-k (253)

All four terms have been observed empirically. Terms 1-3 are well known, and
term 4 has been observed as a magnetization in europium ion doped glasses by
van der Ziel et al. [37] as argued already. The RFR term therefore emerges self-
consistently with three other well-known and well-observed terms from what is
effectively the O(3) covariant derivative.

This analysis of the classical non-relativistic level can be confirmed by
writing the four Stokes parameters [70] in terms of potentials in free space:

So = AYAY + AV AP
) =AY AY —AYAY

(1) 4(2) (1) 4(2) (254)
S2 = —(Ay'Ay" + Ay Ax")
3= —iAL AP — APAP)
For elliptically polarized electromagnetic radiation
=81 +5+83=5; (255)
and for circularly polarized radiation
So ==+ (256)

Therefore, the existence of AW, A(z), which is proportional to Sy and to field
intensity, implies the existence of =+ iAl) x A<2), which is an observable
proportional to Ss. If the light intensity tensor [70] is defined as

Af(xl)Aéz)
Pap = 102

(257)

then from Egs. (254) and (256), in circular polarization:

_ 1 So i3
p“ﬁ_zA(Oﬂ[—ng So] (258)
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Now define the Pauli matrices [6,68]

A A e

which are interrelated by the following cyclic relation:

Ox Oy .0z
53] (260)
The intensity tensor becomes
1 .
Pap =z (S0~ ioz A x AY) (261)

showing that the RFR term occurs in the fundamental definition of this tensor for
circularly polarized radiation. The RFR term is as fundamental as the intensity
itself, through Eq. (256).

For practical purposes, the critically important feature of the RFR term is its
dependence for a given beam intensity on the inverse of frequency squared of
the beam. This means that the spectral resolution [15] in RFR has the same
dependence. This critically important feature is shown straightforwardly from
the O(3) relations

BY =vxA®,  BY=vxaA® (262)

so from Eq. (188), the magnetic transverse plane waves are

B .
B = B = 7 (ii +j)e' =<7 (263)
and the electric transverse plane waves are
E© )
EY = % = 75 (i — ij)e’ %) (264)

an analysis that results in the relation between conjugate products [15]

2

AW x 4@ = %B“) x B® = éE“) x E® (265)

Expressing B « B?) in terms of beam power density (I in W/m?) results in

B x B® = 10,0+ (266)
&

where p is the vacuum permeability in SI units.
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The basis of the RFR technique is that a probe photon at a resonance angular
frequency s can be absorbed under the resonance condition

2202

H®ges = I

(I=(=1) (267)
defined by the transition from the negative to the positive states of the Pauli

matrix oz. This is precisely analogous to the basic mechanism of ESR and NMR
and is a spectral absorption. The RFR resonance frequency is therefore

2
I
fros = 22— (e = °c> (268)

o 2nhm ) o2

and is inversely proportional to the square of the angular frequency o of the
circularly polarized pump electromagnetic field replacing the superconducting
magnet of ESR, NMR, and MRI [69].

For 'H proton resonance, the result (268) is adjusted empirically for the
different experimentally observed g factors of the electron (2.002) and proton
(5.5857). A more complete theory must rest on the internal structure of the
proton or other nuclei. The basic theory of RFR is straightforward, however, and
a term emerges with three other well-known terms. In principle, RFR can
investigate nuclear properties using microwave or RF generators instead of
multi-million superconducting magnets.

For proton resonance therefore, the RFR equation [15] is

5.5857¢*pyc\ 1 25 1
o = (22220C MY Ty 530 5 107 26
@ ( 2.002im ) o2 s (269)

and some data from this equation are shown in Table I, where it is seen that RFR
proton resonances can be far higher than those in conventional NMR. The

TABLE I
RFR Frequencies from Eq. (27) for the Proton for I = 10 W/cm?

Pump Frequency Resonance Frequency
5000 cm™! (visible) 0.28 Hz

500 cm™! (infrared) 28.0 Hz

1.8 GHz 1.8 GHz (autoresonance)
1.0 GHz (microwave) 6.18 GHz

0.1 GHz (RF) 20.6 cm™! (far infrared)
10.0 MHz (RF) 2,060 cm™! (infrared)

1.0 MHz (RF) 206,000 cm™! (ultraviolet)
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concomitant resolution in RFR is also far higher than in NMR, and as will be
shown, the RFR technique has its own spectral fingerprint or chemical shift
pattern. The spinup—spindown population difference in RFR is also orders of
magnitude greater [15] than in NMR, and because of this, the homogeneity of the
pump electromagnetic field is not critical theoretically. This is another advantage
of the RFR technique. Any remaining objection to the existence of RFR is re-
moved by the empirical fact that the term (253) has been observed experimentally
as a magnetization [37]. The only remaining experimental challenge is to induce
resonance between the states of ¢ in term (253).

If RFR is applied to the electron, the same overall advantage is obtained; the
equivalent of Eq. (269) is

I
Ores = 1.007 x 10% = (270)

These conclusions can be obtained on the nonrelativistic level, and it is possible
in theory to practice proton and electron spin resonance without permanent
magnets, at much higher resolution, without the need for very high homogeneity,
and with a novel chemical shift pattern, or spectral fingerprint, determined by a
site-specific molecular property tensor, to be described later in this section.

On the classical relativistic level, the starting point is the Einstein equation

P'py = e (271)

where p* and p,, are energy/momentum 4-vectors. In order to demonstrate RFR,
Eq. (271) is rewritten in the basis (260) using the gamma matrices [68]

Ppuvipy = m’e? (272)

and the classical electromagnetic field is introduced through the O(3) minimal
prescription:

Py — AV )Y (py — eAD) = m*c? (273)
In the compact Feynman slash notation [68], Eq. (272) becomes
o =m*c (274)
and Eq. (273) becomes

(B—e AP —e AD) =m*? (275)
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This is the classical relativistic expression for the interaction of an electron
or proton with the classical electromagnetic field. The quantized version of
Eq. (275) is the van der Waerden equation [1] as described by Sakurai [68] in his
Eq. (3.24). The RFR term in relativistic classical physics is contained within the
term e2A(M A, a result that can be demonstrated by expanding this term as
follows

62/((1)/((2) — €2Y“A£l]) y”Af)
= (A —y-AO) (AT —y-4?) (276)

Using the well-known relation between the gamma and Pauli matrices [68]

L I [ I

_ {(o-p)(c-p) o]

0 (6-p)(c-p) @7

it is found that
A AV 4@ = 2(AVAP — AW . AP _ig.A) x AD)  (278)
an expression that includes the RFR term
Treir = —ie’6-A) x A (279)

On the nonrelativistic quantum level, both the time-independent and time-
dependent Schrodinger equations can be used to demonstrate the existence of
RFR. As shown by Sakurai [68], the time-independent Schrodinger—Pauli
equation can be used to demonstrate ordinary ESR and NMR in the nonrela-
tivistic quantum limit. This method is adopted here to demonstrate RFR in
nonrelativistic quantum mechanics with the time-independent Schrodinger—
Pauli equation [68]:

HY = En\ (280)

where the Hamiltonian operator is

f =2 (@p)(owp) + Vo (281)

Here, V) is the potential energy, which, however, does not affect the RFR term.
This method is first checked for its self-consistency using a real-valued potential
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function A corresponding to a static magnetic field, then the same equation is
used to demonstrate the existence of the RFR term.

In a static magnetic field, the minimal prescription shows that the time-
independent Schrodinger—Pauli equation of a fermion in a classical field is

1
He%(c-(p—keA))(c-(p—keA))—FV (282)
The usual ESR or NMR term is obtained from
ﬁwzii(c-p XA+6-AXp+---
2m

:%O”(VX(AQJ)—FAXV\P)—&—u-

:%G-((V XA)\JJ+(V\|I) xA+AX (V\P))ﬂL

h
:e—G'B\|J+
2m

(283)

and is the famous “half-integral spin” first derived by Dirac in relativistic
quantum mechanics. However, it also exists in nonrelativistic quantum
mechanics as just shown [68], but is a purely quantum term with no classical
equivalent because it depends on the operator relation:

p — —ihV (284)

This is the spin Zeeman effect and in perturbation theory [69] gives the nonzero
ground-state energy:

En = % (0]c-B|0) #£ 0 (285)

It is the basis for all ESR and NMR.

To obtain the RFR term on this level, the same method is used for complex-
valued A. This gives an extra classical term, or expectation value, which can be
written as

2
En Z%G-AU) x A® (286)
Perturbation theory gives the ground-state term

: 52
e 1 2
En:%<0|o'-A< ) x AP)0) (287)
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which is again classical and real-valued. It has the inverse square frequency
dependence described already and exists on the nonrelativistic quantum level
according to the correspondence principle. Therefore the RFR term is unlike the
ESR or NMR terms in that the RFR term is classical while the other two are
quantum.

The time-dependent Schrodinger equations

ov

HY = ih— (288)
H=HY+Hr) (289)
U(t) = U e (290)

can also be applied to the RFR phenomenon. A two-level system can be
considered to consist of the fermion in its spinup and spindown states (states of
the Pauli matrix). The unperturbed two-level system has energies E; and E, and
eigenfunctions \; and \s,. These are solutions of [69]:

HON, = E, ¥, (291)

In the presence of a time-dependent perturbation H) (1), the state of the system
is described by a linear combination of basis functions:

U(t) = a1 (1)W; (1) + ax ()W, (2) (292)

and the system evolves under the influence of the perturbation, so a; and a, are
also time-dependent. If it starts as state 1, it may evolve to state 2. The
probability at any instant that the system is in state 2 is a()a5(¢), and the
probability that it remains in state 1 is.

ai(t)aj(t) =1 —ax(t)ay (1) (293)
Therefore
HY = alH(O)\Ill + CllH(l)(t)\I/l + azH(O)\I/z + a2H<l>(l)\I/2

., 0
= lha(al‘lll +Cl2\112)

., oYy 0a .. 0¥, . Oar
= zhalF—HhE\Iﬁ —|—1hazw+lh§\ﬂz (294)

Each basis function satisfies

ov,

HOW, = in
! ot

(295)
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and therefore
atHY ()0 + ayHY (1) W, = ik, V| + ifia, ¥, (296)
This equation is

a]H(l)(t)¢1€7[Elt/h 4 azH(l)(t)\llzefiEzt/ﬁ — ihal\lllefiE]f/h + ihazlllzefiEzt/h
(297)

and can be multiplied through by ] and integrated over all space. Since {/; and
s, are orthonormal

arHyy (1Ne B 4 ayHYY) (1)e B = igay e~/ (298)
Similarly, multiply through by \5:

a ) (e B 4 gy HY) (H)e /0 = iy E (299)

Here
H (1) = J YEHO (0, (300)

and \; and s, are time-dependent parts of the wavefunction of states 1 and 2 of
the unperturbed fermion. Thus

HI0) = [wiE 0w de = a0 o)
and so on.
At this point, the RFR Hamiltonian is inputted:
2

HY (1) = iz"—mc.A“) x A® (302)

so the existence of H ﬂ) (f) and H f;) (¢) and so on depends on the properties of G
between fermion states.
Define

v
Il

ho (303)

N —
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and
o= LI\ tate 1
=|y3) = state
11 (304)
=z, —=) = 2
B > 2> state
then
1 1
SzO( = —hoc; Szﬁ = ——hB (305)
2 2
and
1 1 .
(o] Sz|a]y = Eh = EhJoc adt
| (306)
(0I52IB) = 0= 31 [ o pae
Now define
B = ;S A « 4@
i X (307)
and
e e 3
HO(5) = ——5-BY = —ESZB(Z) (308)
So Egs. (252) and (253) become
aH) (1) = ihay (309)
aHSY) (1) = iha (310)
because
W)y _ _ el p0). (1)) —
Hll(t)___mBZ ; Hyy (1) =0
" (311)
2 € 3 1
HY (1) =28y Hy(1) =0

Equations (309) and (310) are decoupled differential equations of the form

) G)
B B
a = iezé a; = 462’721 a (312)
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where
A2 (313)

with the constraint:
ajay + axay =1 (314)

A particular solution of Egs. (312) and (313) is

() ()
1 etBY, 1 etB,
- . ay=—exp| — 315
a) \/§CXP (l 3 > 5 as \/QCXP ( 1 3 ) ( )

The perturbed wave function is therefore:

U, eBY\ W, etBY)
U 22 exp( - 316
\/Eexp (z - + \/jexp i (316)
and
pi=aa; =05

317
P2 = way = 0.5 (317)

The probability of finding the system in one state or the other remains constant at
50%, and:

LG . v )
U = ﬁ exp (i®pst) + ﬁexp(—lwrest) (318)
where
(3)
eB
Oyes = 251 (319)

is the radiatively induced resonance frequency defined by
hoes = HY (1) (320)
The final result is:

v, . v .
U = 7%6’“’"3” + 72567“”“” (321)
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where
ov
HY = jh— 322
ih— (322)

which is a combination of states with energies £7m,.s. The RFR term prepares or
dresses the fermion in a combination of o and B spin states analogously with ESR
or NMR.

On the relativistic quantum level, the Einstein equation becomes the van der
Waerden equation [1,68] with the usual operator rules

pt — iho*
Pu — ih0y (323)
to give
. ' m2c2
(" 0u) ("0 = — 3~ Vw (324)

where sy, is a two component wave function as described by Sakurai [68] in his
Eq. (3.24). The classical electromagnetic field is introduced into eq. (324) using
O(3) covariant derivatives to give the term ¢ A()) A?) on the quantum relativistic
level. The Dirac equation is obtained from the van der Waerden equation [68]
using standard methods, and the two equations are equivalent. The RFR term was
indeed first derived [15] using the Dirac equation.

On the level of quantum electrodynamics [17], a classical expression such as

62

H=2—(o cAV)(6.42) (325)

becomes the interaction Hamiltonian

&2
4mh80VZ ( aja; + Z (a, ar—q — aqa,f_q)> (326)

describing the exchange of a photon that results in the change of the spin of the
electron. This process is equivalent [17] to the absorption of a photon in the
atomic transition i — j and the absorption of a photon in the atomic transition
j— i

The free Hamiltonian term quadratic in B®) must also be considered and is

e

Z (@, anals_ an) (327)

kK \q

Hy =
20480V

This term appears only in O(3) quantum electrodynamics and describes the
interaction between four photons [17]: the absorption of photons with modes
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k+gandk’ — g and the emission of photons with modes k and k’. This is a
physical process where two photons interact and mutually exchange momenta,
and is a process that is observable only in O(3) quantum electrodynamics. The
effect has been observed empirically by Tam and Happer [71] in two interacting
circularly polarized lasers and was explained using the concept of long range
spins by Naik and Pradhan [72]. If the direction of the rotation of the polarization
is the same, the two beams attract and vice versa. In O(3) quantum electro-
dynamics [17], the effect is a form of self-focusing or photon bunching that
would result if the spins of the photons were aligned in the same direction, as
observed empirically [71]. This result also suggests that O(3) quantum
electrodynamics could account for light-squeezing effects and also photon
anti-bunching if the photon spins were opposite.

The O(3) quantum electrodynamic equivalent of the RFR effect has been
numerically analyzed by Crowell [17] using the Hamiltonian (327). Numeri-
cally, it is possible to consider only a finite number of photon modes, and the
difference in energy between these modes is set equal to the difference between
the two spin states of the fermion. More complex situations were also analyzed
[17]. Crowell discovered a variety of effects numerically, including modified
Rabi flopping, which has an inverse frequency dependence similar to that obser-
ved in the solid state in reciprocal noise [73]. The latter is also explained by
Crowell [17] using a non-Abelian model. A variety of other effects of RFR on
the quantum electrodynamical level was also reported numerically [17]. The
overall result is that the occurrence, classically, of the B® field means that there
is a quantum electrodynamical Hamiltonian generated by the classical term
proportional to %8(3)2. This induces transitional behavior because it contributes
to the dynamics of probability amplitudes [17]. The Hamiltonian is a quartic
potential where the value of B®) determines the value of the potential. The latter
has two minima: one where B®) = 0 and the other for a finite value of the B®)
field, corresponding to states that are invariants of the Lagrangian but not of the
vacuum.

Another potentially useful feature of RFR is that its site specificity is different
from that of NMR or ESR, because RFR relies on a different molecular property
tensor [74]. In a precursor to RFR, called optical NMR (ONMR) [59-65], site
specificity has been demonstrated at a spatial resolution corresponding to
quantum dots, a dramatic demonstration of the enhancement possible with the
use of circularly polarized lasers or circularly polarized microwave fields such
as in RFR.

The calculation of the chemical shift in RFR is straightforward [74] and
relies on a calculation of the second-order perturbation energy (SI units)

= 3 O 1) 528)

P thn
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with the perturbation Hamiltonian

1
H=5-(p+eA +AN) 4V (329)
where
Ho
AN = mmN Xr (330)

is the vector potential [69] due to the nuclear dipole moment my. The
perturbation term relevant to the RFR chemical shift is the one photon oft-
resonance population term [74], which is by far the dominant chemical shift term
(where c.c. = complex conjugates):

el

En =

- ’mzthnZ(O{P°A|n><n|AN.A*|O> +c.c. (331)

n

The transition electric dipole moment is defined by [74]

(Olu|n) = (Olp|n) (332)

e
mMoy
and the vector relations:

i(px (my xr))- (A" x A?)
= i(n-A)((my xr)-AP) —i(n-A®)((my xr)-A)  (333)

and
pX (my X1) = (per)my — (p-my)r (334)

demonstrate that Eq. (331) may be written as

2
E— C(i;no'-A(l) X A<2)) (335)

where

¢ =5E0% (oluln) (n] 7 [0) (336)

Here, my = gn(e/4m)he and Eq. (335) defines the RFR chemical shift factor
or shielding constant. This depends on the novel molecular property tensor in
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Eq. (336), which is not the tensor that defines the well-known NMR chemical
shift through the Lamb shift formula of NMR [69]. The order of magnitude of ¢
is about 107, roughly the same as in NMR. The complete RFR spectrum from
the protons in atoms and molecules is therefore

2
N4
Ein = i5-(1+ Oo-AD x A (337)

and is site-specific because of the site specificity of (.

The experimental or empirical demonstration of RFR is a logical conse-
quence of the detection of a term proportional to oA x A by van der Ziel
et al. [37], and some experimental details are suggested here. It would be
necessary to work initially on the interaction of a fermion beam with an
electromagnetic beam. All levels of one fermion theory given in this section
could then be tested under conditions that most closely approximate the theory.
A successful demonstration of RFR would require careful engineering in the
matter of beam interaction. The IFE has been demonstrated at 3.0 GHz by
Deschamps et al. [75], and this experiment provides clues as to how to go about
detecting RFR. It seems that the simplest demonstration is autoresonance,
where the circularly polarized pump frequency () is adjusted to be the same as
the RFR frequency (oyes):

Dpes = O (338)

Under this condition, the pump beam is absorbed at resonance because the pump
frequency matches the resonance frequency exactly. Equation (270) simplifies to

o), = 1.007 x 10%] (339)
Therefore, we can tune oy for a given I, or vice versa, using interacting fermion
and electromagnetic beams. Since autoresonance must appear in the gigahertz
range if the pump frequency is in this microwave range, the setup in Ref. 75 can
be used as a starting point for the RFR design. Essentially, the magnetization 75
must be converted into a resonance. In Ref. 75, a pulsed microwave signal at 3.0
GHz was detected from a klystron delivering megawatts of power over 12 ps with
a repetition rate of 10 Hz. The TE;; mode was circularly polarized inside a
circular waveguide of 7.5 cm diameter. A plasma was created by the very intense
microwave pulse. To detect RFR experimentally, the same standard of
engineering would have to be reached with an electromagnetic beam interacting
with an electron beam, rather than a plasma, which contains positive ions [15].
To detect resonance, the intensity of the microwave radiation would be much
lower, and governed by the autoresonance equation (339). As in the design used
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by Deschamps et al. [75], the section of the waveguide surrounding the tube
would perhaps be made of nylon coated with a micrometer-range layer of copper.
The incoming electron beam would have to be guided carefully into the circular
waveguide used to circularly polarize the microwave radiation. The engineering
design for RFR probably has to be at least as accurate as in the experiment [75] in
which magnetization was detected in the IFE at 3.0 GHz in a plasma. Cross-
referencing with the detection of the term ¢ -AWM x A in Ref. 37, at least part
of the signal detected by Deschamps et al. must be due to the RFR term, which is
the interaction of B®) with the Pauli spinor. Contemporary IFE experiments [76]
in plasma routinely detect this term and so routinely detect the B® field.
Equation (339) predicts that the resonance occurs at 3.0 GHz if [ is tuned to
0.0665 W/cm? for an electron beam. For a circular waveguide of 7.0 cm
diameter, this requires only 2.94 W of power.

The preceding estimate is based on one-fermion theory, so the observed
resonance frequency in a fermion beam may be different as a result of fermion—
fermion interaction. Therefore, it is strongly advisable that I be tunable over a
wide range to search for the actual resonance pattern. The same experiment can
then be repeated in a proton, atomic or molecular beam and the RFR effect
should be I/wm*-dependent with a pattern of resonance determined by the novel
chemical shift factor (. Spin—spin interaction between fermions would split the
spectrum as in ordinary NMR, but the RFR fingerprint would be unique.

It is to be emphasized finally that the RFR technique is simply the resonance
equivalent of a magnetization term proportional to oA x A that has now
been observed on numerous occasions [76] in the IFE in paramagnetic materials
and plasma. The experimental challenge is to convert this magnetization to
resonance.

VIII. CORRECTIONS TO QUANTUM ELECTRODYNAMICS IN
0O(3) ELECTRODYNAMICS

As discussed by Crowell [17], quantized electric and magnetic fields exist in a
vacuum that is composed of virtual photons that are the result of the Heisenberg
uncertainty fluctuations in the electric and magnetic fields. These fluctuations
can be considered as first-order terms, and second-order terms involve
fluctuations with electrons and positrons. These virtual pairs [17] are randomly
distributed in the vacuum, but an electric field will preferentially align, or
polarize, the virtual charge separation. Therefore a photon, with its oscillating
electric field, will be associated with these virtual pairs of electrons and positrons
that are polarized with the photon electric field. In the formal language of
quantum electrodynamics, this is represented by Feynman diagrams [6,17].
The magnetic field is oriented perpendicular to the plane inscribed by a
completely polarized electron—positron pair [17]. The virtual electron—positron
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is accompanied by a virtual electromagnetic field, and as discussed by Crowell
[17], the charges of the virtual pair will separate under the influence of the
photon electric field. The magnetic field lines of the virtual electron—positron
pair will preferentially align with the magnetic field of the photon. Therefore
quantum theory is the action of the vacuum on particles and fields, so there are
terms such as E("?) + 3E(1:?) and B + B2 where the variational terms are
quantum fluctuations. Now, following the argument by Crowell [17], consider
the differential form F = dA, which can be written in spacetime as

F = F,,dx" A\ dx" (340)

The Yang—Mills functional [17] is defined by the integration of the wedge
product F A* F, where * denotes the Hodge dual-star operator

1

k=—
8n?

J FuyFoypdi A dx¥ A dx* A dxP (341)
(m.g)

and where k is the instanton number. The electric and magnetic fields on the
manifold of three dimensions are

Ei = SjSFOj; Bi = gkjiij (342)
and the Yang—Mills functional is

b= g | (BB + 081 88 ' (343)

leading to the equal time commutator [17]
[OE!(r,1), SBJI-’(r’7 1)) = hBijS“bB(r —r)d(—1) (344)

where the O(3) indices are included. Quantum-mechanically, the electric and
magnetic fields are conjugate variables, and the uncertainty relationship is
dictated by the fluctuations in these fields in the vacuum.

These field fluctuations in the vacuum will interact with the photon’s electric
and magnetic fields. The fluctuation in the interaction energy due to the
magnetic field is given by [17]

BE:JS(]'-A) :JH-SBd3r (345)

and can be estimated from the quantized flux 2n/i/e. This term is responsible for
the Lamb shift in the energy levels of atoms such as the hydrogen atom. The
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magnetic field fluctuation is defined as the magnetic flux quanta multiplied by the
small area enclosed by the electron-positron pair, an area that is determined by
the coordinate fluctuations of the electron and positron, and that can be estimated
by using the energy fluctuation SE = § mc?, the uncertainty relation between the
energy and the time 6ES¢ = & and the uncertainty in the position dx = ¢d1.

The magnetic field fluctuation is approximately 5.6 x 10* T over a range of
about 1015 m, and lasts for about 10~2? s. Fluctuations on this scale occur at
about the classical radius of the electron.

O(3) electrodynamics predicts the existence of the B field, which must also
have an effect on the stochastic motion of an electron on a fine scale [17]. There
exists in theory [17] the commutator

BES (r,1), 8B (1)) = 18;8(r —r')8(t — 1) (346)
and the uncertainty fluctuations:

SB®) = %(SA(” <A —|—A(l) X SA(Z)) (347)

The magnetic vector potentials will have the magnitude [B™|/k, so the
magnitude of the B® fluctuation is expected to be [17]

2e
G —
88| = - (18 B||B]) (348)

The fluctuation in the ordinary magnetic field in this expression is

m (8m)?

OB ==
2 eh

(349)

which is about 5.6 x 10* T. The magnetic field associated with the photon,
without quantum fluctuations, is about 3 x 10~ T, so the fluctuation in B® is
approximately 6 x 1077 T. These result from virtual electron—positron pairs and
are expected to be 10 orders of magnitude smaller than the standard magnetic
field, giving measurable contributions to quantum electrodynamics in the
10-GeV range [17].

Crowell [17] argues that the vacuum contribution to the virtual B® field is a
very small effect, about a millionth of the Lamb shift.

The nonrelativistic estimate of the contribution of B® to the Lamb shift was
first carried out by Crowell [17] as follows. The interaction of the radiation field
with the electron is given by

H= de3r j(r)« A(r) (350)
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The Ampere law is next used with a covariant definition of the curl operator

.€ i
V — Dx = Vx +tﬁZi:A>< (351)

implying
J(r)-A(r) = D(r) x H(r)-A(r)
=H(r)-D xA(r) +D-H(r) x A(r) (352)
The last term is a boundary operator and is discarded, leaving a B® contribution

2
H-= —i;—Jd3rHoA<l) x A® (353)
C

which leads to the Lamb shift due to B®. The interaction Hamiltonian (353) will
induce the spontaneous emission of a photon with wave number ® = ck and an
atomic state transition |n) — |n’), which gives the second-order perturbation
shift in energy

B (', k, & Hin|m, 0) |
AE, = ZZ ( o (354)

n ke

where € is the polarization state of the emitted photon. First, consider the term
B =V x A with A = A e. The matrix elements of the interaction Hamiltonian
are

4
(', k, &|Hingln, 0) = #AS@ X g8 X &) (355)

and if the sum over the photon numbers goes to the continuum, the energy shift is

4 3 l * 2
_ € 3 ﬁ |<nak|p'8 |I’l,0>|
AE, = = 554 J 3 Z . — o (356)

where the factor (27‘(?1)73 is absorbed into A®’. Now Crowell [17] sums over the
polarization states and puts the integral in spherical coordinate form:

& % dk x— |(n|p - ")
AE, = ———A3| =y 2 =170 357
p2c? L k “~<E, — Ey — ck (357)

The integration of this result leads to

4 / * 2 !
_ ¢ g E, —E,
AE, = ———A § FEEE S tim (142" (358)
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which is divergent. This divergence is dealt with by recognizing that the
probability of emitting a photon depends on the electron current as a function of
wave number, so that the dipole approximation becomes

(', kelpln, 0)] = |(n'|pln. 0)[*|j(k)I* (359)

where j(k) is a current for each wave number & divided by the total current, a ratio
that reflects the percentage of photons that are emitted with a given k. For a finite
number of photons, this will be a Poisson distribution. If the sample size of
photons is very large, but if the number of photons emitted is far less, then
|j(k)| ~ k, and the following result is obtained

o0
_ e A3 [(n'|p - € |n))? ~ hke
AE, Z E, —E, n<1 E, —E

7o

(360)

an integral that is logarithmically divergent in the ultraviolet range [17].

In U(1) quantum electrodynamics, the ultraviolet divergence is removed [17]
by countering it with a similar term. For the free electron, there is the infinite
term

262 2
AE, =——— g 1
e 32 - {qlp|p) JO dk (361)

leading to the mass renormalization of the electron from the energy shift:

E. =E +AE, = })<m> (b))’ J (362)

3Tcm2 2

An analogous process in O(3) quantum electrodynamics involves, following
Crowell [17], the coupling of the electron with a nonlinear photon coupling
corresponding to the energy shift:

AEPY Z|<n,k,s\p2|A|2A|O,O>\2

8 net
T3 mEapt %Z '|pln)| Jdk

This correction is added to the energy shift due to the B field to give

(363)

o 8m W 1 (Ev — E)
AES = 3 m2pt he 3Z| pln)| J E, — E, — hkc (364)
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which is logarithmically divergent, a divergence that is countered by the fact that
the amplitudes drop off sharply for processes with frequencies & > 2mc?,

where m is the mass of the virtual electron and positron. The integral (364) can be
cut off at this value, giving the final result:

BO) 87I he 3 2
Art = A Y bl =

The calculation of the Lamb shift due to B> is completed by using the equations

H|n) = E,|n) (366)
and
[ lplm)* _, p
Z (E,/1/ _E ) - <I’l I(HO _ En) -p|}’l> (367)

The momentum operator acts on (Hy — E,l)f1 as

P P
(Ho—E.)  (Ho— E,l)zHO (368)

and the action of the two momentum operators on the free Hamiltonian is

—(Ho’j gy P = p-Ho.pl (369)

In the Lamb shift, the Coulomb potential between proton and electron contributes
to the commutator in the hydrogen atom, and the commutator with the free
Hamiltonian becomes (i%e?/2)V?(1/r), which gives a delta function that is
evaluated in the matrix element when written out by completeness as an integral
over space:

ezhz

2
O (uIV* 1) = 2” jdw (P28 () (r) (370)

For an atom in the s state, we have [{|* = [1/m(nag)’], where n is the principle
atomic number and a is the Bohr radius. The Lamb shift due to B® is therefore

1 (e 2me?
Lamb(B?) = - (e) 51n(E ’"CE> (371)
ap m — Ln
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which is 5.33 x 107 of the standard Lamb shift. This answer is about five times
the quantum fluctuation estimate made already.

On the relativistic level in O(3) quantum electrodynamics [O(3) QED], the
Lagrangian density is

1
= - FL P (372)

with the gauge covariant field:
Fi, = 0,A% — 0,A% + ige™ AL, A¢] (373)
Variational calculus with this Lagrangian density leads [17] to the field equation:
OuF™ + ige™ AN FH = 0 (374)
with electric and magnetic components:
E! = Fi = —AY — VA8 + ige™ AbAC (375)

In O(3) QED, the components of the vector potentials are expanded [17] in a
Fourier series of

eiBy = ViAY — VAY + ige ™ AVAS (376)

modes, with creation and annihilation operators that act on the Fock space of
states, with box normalization within a quantization volume V that has periodic
boundary conditions, thus giving:

Af(r,1) = ;m (eja® (k)™ + e;a® (k)e™™°T) (377)

The electric and magnetic components within O(3) QED are then

1 |K‘ ik * |K‘ + —ik e >
El‘.’_ E —— [ —eat (k)™ "+ —eja” (k)e ™" 378

1 . . .
k pa a iker a —iker
€;:B :E ————— (kjjega” (k)e™ " + kije eia” (k)e
ijk - (20)‘/)1/2( [jei] ( ) [jei] ( ) )
+ igec E elje) (a” (k)™ " + a” (k)e ) (@ (K)e® T + a¢" (K)e )
kk'
(379)
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and the Hamiltonian for this non-Abelian field theory [17] contains novel quartic
terms.

If A; ®) s phase-free, as discussed in Section III, and in Ref. 15, there are no
10ng1tudmal electric field components. This also occurs if A( ) is zero [17]. The
B field is then a Fourier sum over modes with operators a;_,aq and is
perpendicular to the plane defined by A" and A®). The four- dlmenslonal dual
to this term is defined on a time-like surface, following Crowell [17], which can
be interpreted as E® under dyad vector duality in three dimensions. The E®
field vanishes because of the nonexistence of the raising and lowering operators
a®,a®* . The B® is nonzero because of the occurrence of raising and lowering
operators in the expansion of A" and A®. These facts imply that B® is
phaseless and longitudinal, but they do not necessarily represent a breakdown of
duality because [15] ¢B®® can be dual to an imaginary valued iE®).

The effect of a local gauge transformation (Sction II) on the classical B
field is described as

B®) = igA) x 4@ ¢! (380)

where the group element g is an algebraic generator g = . Soin h =c = 1
units the effect on B®) is generated as

dA' = g(dA+ANA)g™! (381)

where g is the group element for the O(3) theory. In the case of quantum field
theory, a gauge transformation

Aﬁ — Aﬁ + SA‘:l (382)
is associated [17] with a unitary transform of the fermion field:
 — 4 oY (383)

In quantum field theory, the gauge field is determined by its Lagrangian density,
and the fermion field, by the Dirac Lagrangian density:

Lp = —Y(y"0, +m)Y (384)

In order to describe the interaction between the gauge and fermion fields, the
following equation is used:

OuF ™ + ige ™ AVFW = j¥ (385)
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Here

. 07
=5 (386)

and the addition of an interaction Lagrangian density .%; = j'A, is implied. The
current term is determined by the Dirac field and is

7= (387)

Mass renormalization requires [15] that an additional term ry"\y&m be added
where dm is the difference between the physical and bare masses [77].
The total Lagrangian is then

L= Lo+ Lo+ & (388)

and describes the interaction between the fermions and the gauge field. The Dirac
field is the electron field and the gauge field is the non-Abelian electromagnetic
field. The theory describes the interaction between quantized electrons and
quantized photons on the O(3) level. Because it is a gauge theory, it conveys
momentum from one electron to another by the virtual creation and destruction
of a vector boson (the photon). There is no creation of any averaged momentum
from the virtual quantum fluctuation [17].

In order to upgrade these well-known methods [6,17] of U(1) quantum field
theory to involve the classical B® field, the following prescription is used:

Ay — 1°A} (389)
Here #* is a group structure constant defined by
[t 17] = 267t (390)

The amplitude contribution from the B® field occurs in a second-order process
using the sum over all possible fluctuations of B in the virtual photon that
causes electron—electron interaction. The amplitude due to B® has an ultraviolet
divergence [17] described by Crowell. This may be removed by regularization
techniques.

This type of process is missing from U(1) quantum field theory [6]; the B
field produces quantum vortices [17] that interact with electrons and other
charged particles. The vortices are quantized states and exist as fluctuations in
the QED vacuum, fluctuations that are associated, not with an E® field, but with
the EV) = E®)* fields:

1
SB®) — i%&(wm x E? + EW x SE@) (391)
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Therefore quantum fluctuations in B> are accompanied by fluctuations in the
transverse electric field. The ultraviolet divergence is probably unimportant [17]
because of the 2 dependence of the fluctuation. The infrared divergence is also
damped statistically. The divergences in U(1) electrodynamics [6] can exist as a
subset of O(3) electrodynamics and can be absorbed into integrals that involve
photon loop processes associated with quantum fluctuations in B,

Crowell [17] has argued that O(3) QED is fully renormalizable. Renorma-
lization is necessary as in any quantum field theory because the potential and
propagator become divergent as the electrons approach each other. The
Heisenberg uncertainty principle ApAx > i means that the momentum ex-
changed by the electrons becomes divergent [17]. The vacuum is filled with
virtual quanta, as argued by Crowell [17], with enormously high momentum
fluctuations: virtual quanta that may interact with systems to contribute
divergences in the short wavelength limit, the ultraviolet divergences. These
divergences affect the self-energy of the electron, vacuum polarization, and
vertex functions [6,15,17].

In O(3) QED, there is an additional effect from the effective photon bunching
or photon interaction that emerges essentially from the photon loop generated
from the A" on one photon interacting with the A” on the other photon. The
loop is associated with quanta of the B field with intensity e/ as in Eq. (347).
It will be argued, following Crowell [17], that these novel fluctuations are fully
renormalizable. The virtual fluctuation of a B’ field does not lead to an
ultraviolet divergence, and so O(3) QED is renormalizable by dimensional
regularization.

The renormalization problem generated by O(3) is similar to the interaction
of the free electron with the vacuum through the Dirac equation [6,15,17] in
c=1,h =1 units:

(7(0u — iedy) — m)y =0 (392)

If there is no electromagnetic field present, the quantized vector potential
fluctuates according to

Ay = (A) + 84, (393)

and the fluctuation is present in the vacuum. This phenomenon manifests itself
through the zero point energy of the harmonic oscillator expansion of the fields
[17]; the electron will interact with the virtual photons, an interaction which is
expanded in terms of the order oo = (2 /fic).The divergence [17] in the first term
of this series is countered by a mass term, introducing a difference between the
mass and the bare mass of the electron. Similar methods can be used
straightforwardly [17] to show that the loop fluctuations of photon, correlated
to the virtual quanta of the B® field, can be calculated to be finite without
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divergence. The end result of this standard but complicated calculation [17] is
that O(3) QED is free of intractable ultraviolet divergences. The Lamb shift
calculation given already shows that O(3) QED is free of intractable infrared
divergences.

In Section I, it was argued that O(3) electrodynamics on the classical level
emerges from a vacuum configuration that can be described with an O(3)
symmetry gauge group. On the QED level, this concept is developed by
considering higher-order terms in the Hamiltonian

1 2
H=—(p—eA 394
S (p—ed) (394)
and evolution operator U = e~ Ho! [17], where:

U = ¢ it AV +A% (395)

Here, Hj is the Hamiltonian without the quadratic term. The vector potentials are
expanded as

A0)
D) =" (ex + iey)(are

V2

iker—iot

al-{ke—ik'r+imr) (396)
giving

A . 4@ — 402 (a+a + % _ % (a+2e—2i(k~r—mt> + a262i(k'r—mt))) (397)

The first two terms on the right-hand side [17] are precisely those obtained from
the standard harmonic oscillator Hamiltonian (H,y,) for the electromagnetic field.
The evolution operator can then be written as

U = ¢ (HotHen)t (22 2°7) (398)
2i(k*r—ot)

where Z = te™ .
The operator

S(Z) = exp(Za™* + Z*ad?) (399)

is a squeezed-state operator [17] that involves symmetries that are not precisely
defined by the Hamiltonian. The quantized B field may correspond to such
symmetries of the vacuum, coming full circle with Section I. The reason is that
the B® field is generated by writing Eq. (394) in the basis of the Pauli matrices,
as discussed in Section VII.
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The absence of an E® field does not affect Lorentz symmetry, because in
free space, the field equations of both O(3) electrodynamics are Lorentz-
invariant, so their solutions are also Lorentz-invariant. This conclusion follows
from the Jacobi identity (30), which is an identity for all group symmetries. The
right-hand side is zero, and so the left-hand side is zero and invariant under the
general Lorentz transformation [6], consisting of boosts, rotations, and space-
time translations. It follows that the B® field in free space Lorentz-invariant,
and also that the definition (38) is invariant. The E® field is zero and is also
invariant; thus, B® is the same for all observers and E® is zero for all observers.

To prove the invariance of the B cyclic theorem [11-20], it is necessary only
to prove the invariance of the free-space Maxwell-Heaviside equations:

0,6 = 0; i=1,2,3 (400)

Consider, for example, a Lorentz boost in the Z direction using Jackson’s
notation [5], and start with the 4-derivative

2 o
1 0 0 0 oX x
01 o0 o]l|2 &
ro_ _
O = 00 vy #B||2| |yo_1B2 (401)
00 —ivB v ]| B 12
o —i(vBz —L%)
where
v\ /2 v
—(1-= ; =2 402
r=(1-%) p (402)

Ey = v(Ex — BBy) By = Bx + BEy

Ey =v(Ey +BBx) By =By —BEx (403)
E, = E B, =B,
o)
(V-E) =V'-E' =yV-E=0=V-E
, . (404)
(V.B) =V'-B =yV:-B=0=V-B
Considering the i component of the Faraday law in frame K:
OEy OE; OB
T2 X (405)

oz oy o
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the same component in frame K’ is

0 B0 OE; 0 ,yo _
’y(’y&—?§>(Ey+BBx)—“{W+Y<_YB&+25>(BX+BEY)_0

(406)

On the U(1) level, we can consider Ey and By to be plane waves and Ez = 0. The
following result is obtained in frame K':

OF 10B 2[32 10B OFE
) Y X Y X Y
— - — )| - [ ===+ =) = 407
y(GZ c@t) c <cat 6Z> 0 (407)

This is true for all ¥ and B because

aEy 1 aBX : 3
~ T = 0 (Gaussian units) (408)

The result is obtained that Faraday’s law of induction is invariant under a Z boost.
Similarly, it can be shown to be invariant under the general Lorentz
transformation, and all solutions are invariant. In general, on the U(1) level

@ F") = 0,F* =0 (409)

(0, F"™) =0, F" =0 (410)

It follows that the transverse field B(") = B®* is Lorentz-invariant in free space,
and so is the B cyclic theorem:

B x B® — ;g0 g+

in cyclic permutation

(411)

The general principle being followed is that, if equations of motion are the same
in any Lorentz frame, that is, to any observer, then so are the solutions.

The invariance of the definition of B can again be illustrated on the
siz'?)plest level by considering Lorentz boosts in the Z, X and Y directions of the
B field:

BY = BY (412)
BY =B} +BEY =By (413)

BY =yB]) — yBEY) =B (414)
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In Jackson’s notation, a Z boost of A(l), for example, leaves it unchanged:

(1)
10 0 07]%
)
AN = 0 10 014y =AW (415)
00 vy B 0
0 0 —i
wg oy 0

and since A is the complex conjugate of A", a Z boost in free space results in

(BB = —igdM) x AQ)Y (416)

(¢

and leaves B® invariant. The effect of a ¥ boost on A" is as follows:

(1) 1
1 0 0 07|% Ay
0 v 0 iyp||all AlD
Al = I e (417)
0 0 1 0 0 0
0 b 0 vl —ivpAy’
and using
By = —ige)3)Ak Ay (418)
it is found that
yB®) = —iygA) x A (419)

and the definition of B® is again invariant. Using B(*) = kA% [11-20] converts
Eq. (416) into the B cyclic theorem, and both are self-consistently invariant.
Therefore B® is a fundamental field [11-20].

The E® field is zero in frame K, and a Z boost means [from Eq. (403)] that it
is zero in frame K’. This is consistent with the fact that E® is a solution of an
invariant equation, the Jacobi identity (30) of O(3) electrodynamics. Finally, we
can consider two further illustrative example boosts of E® in the X and Y
directions, which both produce the following result:

EY = yEY (420)
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Therefore if E is null in frame K, it is null in frame K’. There is a symmetry
between the Lorentz transforms of B> and the hypothetical E**:

3) 3 3) 3
x: By =yB:  E =vE]

BY =yBY);  EY) =4E) (421)
7 B(Z3)’ _ 3(23); E(Zs)’ _ Eg)

This is self-consistent with the fact that B> may be regarded [11-20] as dual to
[—iE®) /c], so that B®)? + E®)? contributes to a nonzero Lagrangian and so that
B is a real physical field.

These are mathematically valid results, but physically, the Lorentz transform
of B and the null E® are governed by the equation

D,G" = 0" (422)
where:
0" = 0"We) 10" 1 0vC)e (423)

is a null 12-vector, whose components are null 4-vectors. The general Lorentz
transform of the null 4-vector is given by

OILL — A!\»}lOP- = QM (424)

and a null 4-vector is a null 4-vector in all Lorentz frames. This means that the
left-hand side of Eq. (422) is null in all Lorentz frames and is Lorentz-invariant.
Therefore its field solutions are also all Lorentz invariant, including, of course,
B® and E®. This is self-consistent with the fact that Eq. (422) is equivalent to
the Jacobi identity (30) for the group O(3). Finally, when there is field—matter
interaction, all field components are Lorentz covariant, and no longer invariant,
on both the U(1) and O(3) levels.

In conclusion, the homogeneous field equation of O(3) electrodynamics is
Lorentz-invariant, and all its classical solutions must be also Lorentz-invariant.
The same result is obtained therefore in QED.

IX. NOETHER CHARGES AND CURRENTS OF O(3)
ELECTRODYNAMICS IN THE VACUUM

The first example of a vacuum current was introduced by Maxwell in order
to make the equations of electrostatics and magnetostatics self-consistent.
The second examples were introduced in 1979 [7] by Lehnert, and O(3)
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electrodynamics offers four vacuum charges and currents of topological origin as
discussed already. Maxwell was led to the displacement current because the
received view at the time was self-inconsistent [5]. The received view consisted
of four equations

OB
V-D:p; VOBZO; VXH:J; VXE—FE:O (425)

together with the continuity equation:

0
v-1+6—‘;:0 (426)

Maxwell used the continuity equation in the Coulomb law to give
oD
V. (J + 5) =0 (427)

and replaced J by J + (0D/0t). The final result is the Ampere-Maxwell law

oD
VxH=J+2 (428)

which produced electromagnetic waves and is, of course, a standard part of U(1)
electrodynamics. The latter asserts, in the received view [5] currently prevailing,
that in the vacuum, there is a displacement current

)
Ip=rog (429)

using the vacuum constitutive equation D = epE. The existence of Maxwell’s
vacuum displacement current is all-important for the theory of electromagnetic
radiation. The displacement current originates in the continuity equation, which
is a conservation law, similar to the laws of conservation of energy and
momentum summarized in Noether’s theorem [6]. The Maxwell displacement
current can therefore be referred to as a “Noether current.”

More than a century later, Lehnert [7] introduced and developed [7-10] the
concept of vacuum charge on the classical level, and showed [7-10] that this
concept leads to advantages over the Maxwell-Heaviside equations in the
description of empirical data, for example, the problem of an interface with a
vacuum [7-10,15]. The introduction of a vacuum charge leads to axisymmetric
vacuum solutions akin to the B’ vacuum component of O(3) electrodynamics
[10,15], and also leads to the Proca equation and the concept of photon mass.
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The latter is therefore related to the concept of the B® field through the Lehnert
equations, which in the vacuum are

oD oB

- VXE+—=0

or’ "
(430)

It can be seen that these are U(1) equations, but with the addition of the vacuum

charge density p,,. and the vacuum current density Jy,.. On the O(3) level, the

Lehnert charge density becomes

V'D:pvac; V'B:O, VXH:Jvac+

pllr — jo(A? -D®) —p?.A0) (431)

1
ac

in cyclic permutation
and the Lehnert current density becomes

TV = —ig(cAD® — cAP'D? + A® x HO) — A x H?))  (432)
in cyclic permutation

and O(3) electrodynamics self-consistently produces longitudinal solutions in
the vacuum typified by the phaseless B component. However, the magnetic
charge and current allowed for by O(3) electrodynamics do not appear in the
Lehnert equations (430).

The Lehnert equations are consistent [10] with the continuity equation (428)
of U(1) electrodynamics. Using the vacuum continuity equation in Lehnert’s
vacuum Coulomb law, we find

J J+a—D=J
or !
oD

VxH=J+75 (433)
op,
AV 219
Ji+ or
Repeating this procedure gives
oD
Jl - J + 5
434)
oD (
Jn - J + n E; n— oo
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and theoretically, there are two infinitely large densities in the vacuum given by

pn:Jv'Jndt; n— oo
(435)
pn:—JV-J,,dt; n— oo

because charge density can either be negative or positive. In this process, B and E
are unchanged, so the vector and scalar potentials defined by

A
B=V xA; E:—%—t—Vd) (436)

remain unchanged.
Therefore the vacuum potential energy difference is given by

AV ==+ [J,-Ad’x (437)

and the rate of doing work is

aal:/: +|J,-Ed’x (438)

In thermodynamic equilibrium, the net result is zero in both cases, but locally,
there may be a non-zero rate of doing work by these vacuum charges and currents
on a device, creating thermal or mechanical energy. This process is unknown
in the received view but conserves energy and is consistent with Noether’s
theorem [6].

The existence of charge density and current density in the vacuum is not
consistent with the Maxwell-Heaviside equations, but leads to a description of
empirical data [10,15] superior to that of the received view. Vacuum charge and
current density on the classical level are therefore postulates on the same
philosophical level as the existence of displacement current in the vacuum. The
latter emerges from the continuity equation (426) as argued already. If a
postulate leads to an improved description of empirical data, then the postulate
is valid in natural philosophy, irrespective of the received view. The role of the
coefficient g on the O(3) level may be discussed in a similar philosophical vein.
As argued already, the existence of g is a direct consequence of the gauge
principle, and it exists in the classical vacuum (or free space), on both the U(1)
and O(3) levels, in the respective covariant derivatives. It follows that e /7 exists
in the vacuum in the Maxwell-Heaviside point of view itself, if this be regarded
as a U(1) Yang-Mills gauge theory as is the current practice [6]. If /7 exists in
the vacuum on the classical level, then charge density may exist in the vacuum
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as argued by Lehnert, and so current density may also exist. The Lehnert
equations were derived from U(1) gauge theory in Section IV. The existence of
e/l in the vacuum on the O(3) level is therefore conceptually no different from
its existence in the vacuum on the U(1) level.

As argued in Section III, the form of the received Maxwell-Heaviside
equations in free space or classical vacuum is obtained for finite g. The factor
g is a direct consequence of gauge theory [6] and is in general, a proportionality
constant without which there is no gauge theory, and without which special
relativity is violated. The coefficient g is present for all gauge groups in the
vacuum, including U(1). The superiority of the O(3) gauge group over the U(1)
gauge group in electrodynamics in no way depends on the introduction of g in
O(@3): g is also present in U(1l). The gauge principle and special relativity
therefore force the conclusion that e is itself topological in origin, and is not
localized on the electron, a conclusion first reached by Frenkel [15]. The bosons
(photons) obtained from a quantization of electrodynamics in any gauge group
are not charged bosons, as discussed in Section VIII. The physical nature of g
may be roughly summarized by noting the fact that g is a coupling constant that
is a property of neither the source (electron) nor the field. As demonstrated in
Section VIII, the classical O(3) electrodynamics may be extended without
conceptual difficulty to quantum electrodynamics on both the nonrelativistic
and relativistic levels. Similarly, the constant g exists in the vacuum in U(1)
electrodynamics as a consequence of the gauge principle and special relativity,
and U(l) electrodynamics quantizes to quantum electrodynamics without
charged photons.

In field theory, electric charge [6] is a symmetry of action, because it is a
conserved quantity. This requirement leads to the consideration of a complex
scalar field ¢. The simplest possibility [U(1)] is that ¢ have two components,
but in general it may have more than two as in the internal space of O(3)
electrodynamics which consists of the complex basis ((1),(2),(3)). The first two
indices denote complex conjugate pairs, and the third is real-valued. These
indices superimposed on the 4-vector A, give a 12-vector. In U(1) theory, the
indices (1) and (2) are superimposed on the 4-vector A, in free space, so A, in
U(l) electrodynamics in free space is considered as transverse, that is,
determined by (1) and (2) only. These considerations lead to the conclusion
that charge is not a point localized on an electron; rather, it is a symmetry of
action dictated ultimately by the Noether theorem [6].

By way of introduction to the Noether currents and charges that exist in O(3)
electrodynamics, the inhomogeneous field of Eq. (32) can be considered in the
vacuum (source-free space) and split into two particular solutions:

0,G" =0 (439)
J' = geoA, x G" (440)
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The first of these has been discussed in Section IV. The second is a vacuum
charge—current 12-vector in SI units. On the O(3) level, it is a physical charge—
current that gives rise to the energy

En® = — JJV A, dV (441)
where V is the radiation volume. The energy term can be developed as follows

1

En® = — — | gA, x G*-A,dV

n 84y
0

==(G"-A, xA,dV
) (442)
== [A" XAV A, x A, dV

= —|B®.BO® gy

and is the energy due to the B®’ component of O(3) electrodynamics. This is a
concise way of demonstrating that the Noether charge—currents of O(3)
electrodynamics give energy that in principle can be utilized for working
devices. In analogy, the Maxwell displacement current of the vacuum gives rise
to the electromagnetic field, which carries energy. The same principle is involved
on the U(1) and O(3) levels, and the ultimate source of the energy is the topology
of the vacuum, which manifests itself through the gauge principle and group
theory (Section I). If g were zero in Eq. (440), there would be no energy due to
B®, revealing the latter’s topological origin. This energy can be thought of as
originating in a covariant derivative with O(3) symmetry, and a covariant
derivative is necessitated by special relativity and topology. So in this sense, the
energy due to B® can be thought of as energy from the vacuum, manifesting
itself as part of the electromagnetic field. It is probable that devices can be
constructed to take advantage of this property of the vacuum and convert energy
of this nature efficiently into usable form.

The principle of taking energy from the vacuum is the gauge principle, and
this is illustrated as follows on the U(1) level. The U(1) gauge equations in the
vacuum are [6]

(8, +igA, )G =0 (443)
(0p +igA)GM =0 (444)

where the vacuum 4-current is defined as

T = —igepA, G (445)
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If we set the index p = 0 in Eq. (445), for example, the following relations are
obtained:

i
The average energy from this vacuum current can be defined as
En = CJJV*AVdV (447)
which is
En = —ixcgg J (ExAx + EjAy)dV = g JKCE(O)A(O) dv (448)
Using
E® — 1A (449)
Eq. (448) becomes the familiar U(1) electromagnetic field energy:
En =g JE<°>ZdV = %J (goE<°>2 + piOB<°>2>dV (450)

The same result is obtained from Eq. (443) using the same proportionality factor
g = x/A) Note carefully that without the gauge term igAp, this energy would
vanish, and so the energy is due to the vacuum configuration and topology, in this
case assumed to be described by the U(1) group.

Similarly, the magnitude of the linear momentum of the electromagnetic field
can be obtained by using the proportionality g = e/% in either Egs. (443) or
(444), giving

AL -
(ap + ie %) G"'=0
(451)
. AH v
Oy +ie— |G" =0
h
Using the standard operator transformation of quantum mechanics

py = —ihdy (452)
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Egs. (451) both become

.G =0

453
aMGMV — O ( )

and so we retrieve the familiar Maxwell-Heaviside equations in the vacuum. The
momentum is obtained from the equivalence

K

e
giving the magnitude of the linear momentum as
p=hx =eA” (455)

which is again a topological or vacuum property. Using En = o, the energy is
given from Eq. (455) by

En = ecA"” (456)

and is again topological in origin; that is, it originates from energy inherent in a
vacuum configuration described by the non-singly connected group U(1).

The principle behind this derivation is the gauge principle, and so is the same
for all gauge groups. The equivalence (456) was first demonstrated on the O(3)
level [15], but evidently exists for all gauge group symmetries. The gauge
principle in electrodynamics therefore leads to the energy and momentum of the
photon and classical field. The 4-current J,, appears in both Eqs. (443) and (444)
and is self-dual, a result that is echoed in the self-duality of the vacuum field
equations:

9,G" = 0,G" (457)

Another advantage of this principle is that the coupling constant g is always
present implicitly in the calculation, meaning that the energy and momentum
have a cause, or source. This source is not the charge on the electron, but rather
the structure or configuration of the vacuum itself, obtained as a direct result of
the gauge principle taken to its logical conclusion.

If the procedure is repeated for the rate of doing work by the vacuum
4-current JV

aw

= cJJ EdV (458)
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it is found that

aw

which is zero if E is a transverse plane wave. This result means that the energy
corresponding to JV is conserved in the vacuum because the rate of doing work is
energy per unit time. Therefore the field momentum is also conserved in the
vacuum. And therefore J¥ is a Noether current in the vacuum.

On the O(3) level, several new sources of energy from the vacuum emerge as
follows. First, define the charge and potential 12-vectors:

_ ()
JH0) = ("JT> (460)
AM) = (¢, cA) (461)

so that the energy from a vacuum configuration considered to have O(3) gauge
group symmetry is

En=— J W@ 4 @AW 3L AB) gy (462)

\Y

(En is used here to denote energy, not to be confuse with E as an electrical field).
The 12-vector is a spinor in which the Greek indices in covariant contravariant
notation are 0,1,2, and 3 and the numerical index (i) runs from 1 to 3,
representing the circular basis ((1),(2),(3)). For example [11-20]), A*1) is the
4-vector, (d'V,cAM), AR is the 4-vector, (¢'¥), cA?), and A*®) is the 4-vector
((I)(3 ), CA<3>). Each of the three 4-vectors has four components, making a
12-vector. This must not be confused with a vector of 12 components. The field
12-vector is defined as

G =Gle) + GRle® + Gle (463)

where each component in indices (1), (2), and (3) have the structure:

E] E2 E3
T —T % o T 7 2
ETI 0 -B B -4 0 -B B
GV=|" ; G = -
E g0 -B -2 By 0 -B
E _BZ Bl 0 — & —B2 Bl 0
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The field equations in the vacuum are (31) and (32), and there are two possible
vacuum charge current 12-vectors:

Ty = —ge0A, x GV (465)
J' = —geody x G (466)

which, from Eq. (462), are sources of energy from energy inherent in a vacuum
configuration as a direct result of the gauge principle. These two 12-vectors
provide several more sources of energy, a result that can be illustrated with
Eq. (466) by developing it as follows in the ((1),(2),(3)) basis:

T = —igegd® x GO
T = —igegAd) x g0 (467)

T = —igeoAl) x G

This result follows because of the negative sign in Egs. (465) and (466). Equation
(462) for the energy is therefore

En = —igey (JA“ x GMW AP dV+J @) % g2 . AP gy
+ JAfl” x GV . AP dV) (468)

Now use the 3-vector identity:
F-GxH=G-HXxF (469)

to obtain

En = —igey (J G . AP x AP av + JG“V@) A x AP av

+ JG“V<2) AP x AV dV) (470)

The definition (461) implies that we can write

CZBgL)* - cngfQ = —igA? x Af) (471)
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The energy terms in Eq. (470) can therefore be developed as follows:

1.
En; = goc” JG“V(I) . Bgl) dav
1
=—|B"W.BY gy
Ho N
1 2)
= u_oJ B>W. B av
1
_ M_OJ le(l)B(l? —|—B32<‘>Bg> dv
1
- ~BMBY — BB av
1
- BBy + BYBY av
2.
Eny = gyc? JGW) - B dv
= goc? J G"2BY + G*'OBY) av
1
= M—OJB(ZS)B(;) +BYBY av
3,

El’l3 = 8()62 JG”VQ) . BE,L) av

= goc? J 6" . B av

1
— —JBgf)Bg,l) +BPBY av
Ho

(472)

(473)

(474)

These derivations are given in full detail to show that the O(3) gauge principle
leads to several more terms than in U(1), where the same gauge principle leads

to Eq. (450).
The overall result for the vacuum energy in U(1) is

En = —JB(O)ZdV

(475)
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and the corresponding result in O(3) is
En = En| + Eny + Eny (476)

If we adopt a gauge group of higher symmetry than O(3), there will be more
terms and so on, and this is a general principle. Electromagnetic charge current
and electromagnetic energy depend on the configuration of the vacuum, and
ultimately on the topology of the vacuum as represented in the language of gauge
and group theory (Section I). Charge current is a property of the vacuum, and
charge is not localized to a point as in the conventional view. On both U(1) and
O(3) levels, the field equations can be expressed in terms solely of potentials that,
in the language of general relativity, are connections. The constant e becomes a
scaling factor and both ¢ = £ = 1 and all field potentials are consequences of
the gauge principle for all gauge groups, including U(1).

We can begin to think of the electromagnetic field in the same terms as the
gravitational field, and the former is not an entity superimposed on the vacuum
irrespective of the vacuum structure. This conclusion is reminiscent of
Faraday’s concept, as adopted by Maxwell [4], of charge as being the result
of the field. In gauge theory, g is a property of neither electron nor field, but a
property of the structure of the vacuum itself. The energy and charge current
also come from the vacuum. These concepts are further developed in Section
XII. Finally, the energy momentum of the field on the O(3) level is a 12-vector:

Py = pS)e(l) +p§l2)e(2) —I—pS)e(3> (477)
giving a new view of field momentum. This view is quite different from the
problematic [4] view of electromagnetic energy proposed by Poynting.
Electromagnetic theory in the vacuum at the O(3) level begins to look like
the theory of gravitation, the electromagnetic field can be replaced by physical
potential differences, and these are primary. Analogously, mass in general
relativity is a curvature of spacetime, and the gravitational field is the coordinate
system itself. On the O(3) level, the potentials are connection coefficients, and
charge is the result of topology expressed through gauge theory and group
theory. It has been shown that the topology of the vacuum can produce energy,
and that charge—current emanates from the same source. If the potential is a
connection, then the field can be expressed in terms of the potential and
therefore wholly in terms of the connection, and therefore in terms of topology.
The view presented here of the field particle dualism of de Broglie is that all
particles are pseudo particles and the vacuum electromagnetic field is the
topology of the vacuum itself. This point of view rejects action at a distance,
as did Newton himself. It is clear that particles result from the gauge principle,
for example, photons and quarks, as the result of quantization of the potential.
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The potential is again primary in canonical quantization, and it has been shown
in Section IX that quantization of O(3) electrodynamics does not lead to
charged photons.

X. SCALAR INTERFEROMETRY AND CANONICAL
QUANTIZATION FROM WHITTAKER’S POTENTIALS

Whittaker’s early work [27,28] is the precursor [4] to twistor theory and is well
developed. Whittaker showed that a scalar potential satisfying the Laplace and
d’ Alembert equations is structured in the vacuum, and can be expanded in terms
of plane waves. This means that in the vacuum, there are both propagating and
standing waves, and electromagnetic waves are not necessarily transverse. In this
section, a straightforward application of Whittaker’s work is reviewed, leading to
the feasibility of interferometry between scalar potentials in the vacuum, and to a
trouble-free method of canonical quantization.

Whittaker [27,28] derived equations defining the electromagnetic field in the
vacuum in terms of functions f and g with the units of magnetic flux directed
longitudinally in the axis of propagation (Z)

f =Fk;  g=Gk (478)

and defined all field components in terms of f and g. The electric and magnetic
field vectors in the vacuum, in SI units, are defined by

E=cVx(Vxf)+Vxg (479a)
B:%fo'—Vx(ng) (479b)

If we use the Stratton potential defined by

B* = (cP,S) (480)
where
E=-VxS§; B:—%—VP (481)
and the 4-potential defined by
A* = (d,cA) (482)
where
B = -V xA; E:fa—Ade) (483)

ot
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it is deduced that
1.
A=-V ><g+;f (484)
S=—-cVxf—g (485)

in the vacuum. So, in general, the Maxwell potential A and the Stratton potential
S both have longitudinal components in the vacuum. Both A and S are generated
from the more fundamental f and g, and their longitudinal components in the
vacuum are

1

Az = EF; S, =—-G (486)

The longitudinal magnetic and electric field components are [27,28]:

G G

LG _OF 13°F
0x?  or?’ B

B —
z 072 2o

E; (487)

It is now known that these equations correspond to twistor contour integral
solutions for a particle with zero rest mass, and lead to an O(3) symmetry gauge
group for electromagnetism in the vacuum because the Whittaker solution is a
spinor formalism. Electrodynamics on the O(3) level is also a spinor, and
ultimately a twistor, formalism. Using the Penrose transform [4], the full
significance of the Whittaker solution becomes apparent. Later in this section,
the B® field is expressed in terms of f and g, which are therefore physical. It is
this property that leads to the possibility of interferometry between scalar
potentials. In the received view [U(1) level], the scalar potential in the vacuum is
zero or unphysical, and so the received view loses a great deal of information.
The work of Whittaker therefore anticipates much of contemporary non-Abelian
gauge theory applied to electrodynamics in the vacuum. In the original equations
of J. C. Maxwell [78], Faraday’s electrotonic state is a physical vector potential,
a term that was introduced by Maxwell himself [79]. It is the later interpretation
of Maxwell’s original intent by Heaviside [80] that relegates the U(1) vector
potential to a mathematical subsidiary with no physical meaning. Several
refutations of Heaviside’s opinion have been given in this chapter already. It is
also incompatible with electromagnetism as a twistor theory, where Maxwell’s
original intent is realized, and vector potentials are physical on the classical
level. To be precise, vector and scalar potential differences can be measured
experimentally on the classical level.

Without loss of generality, it can be assumed that plane waves can be used
for the transverse parts of S and A, resulting in

S =icA (488)
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We obtain, self-consistently

f=ig f=ig (489)

The following scalar magnetic flux gives transverse plane waves for A and S

A .
G= 7 (X — iY)el@—*2) (490)
so that

A )
A=-Vxg= %(ii +j)e =2

0 (491)
B= -V x A =——(ii +j)e' %

7 (i +J)

Importantly, there also exists a longitudinal propagating part of the vector
potential

AL = -Gk = —k—= (X — i)'k (492)
C

that is not present in the received view [6]. For example, A; is zero in the
radiation and Coulomb gauges, and is considered in the received view to be
unphysical in the Lorenz gauge [6]. The longitudinal vector potential gives rise
to the transverse magnetic plane wave

BO) )
B=VxAL=——= i+ 493
and to the electric field:
aAL K2A<O> ;
E,=——— =i (X —iY)e D 494
T o Vo lC\/E( i¥)e Vo (494)

In general, therefore, there is a longitudinal propagating component of the
electric field in the vacuum. However, in the plane-wave approximation used
here, there occurs the relation

A
v¢:va—aa—t (495)
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and the longitudinal part of V¢ is

(Vo) =~ (496)

so the net longitudinal propagating electric field vanishes. Similarly, the
longitudinal magnetic field is

0A A0

B, = —ica—tL — VP =0’ 7 (X —iY)e' @) _ P (497)
and using
GA)

VP:VXA+§ (498)

the longitudinal part of VP is

GA)

VP), = — 499
(VP)= 3 (499)

and the longitudinal magnetic field vanishes. These results are consistent with
Whittaker’s

O°F 10°F
2= 55T aAn

0z c? ot (500)
5, 3G TG _
27 ax2 Torr

when F and G correspond to plane waves. The presence of a longitudinal vector
potential and longitudinal f and g potentials in Whittaker’s theory demonstrate
that it is not a U(l) theory of electromagnetism. On the simplest level,
Whittaker’s theory defines the B field as

G — _; * *
BY = T (Vxg)x(Vxgh (501)

so g is a physical and measurable quantity, a result that is consistent with
Whittaker’s own result that G and F can be expanded in terms of plane waves and
are structured and physical quantities, and with the fact that Whittaker reduces
the U(1) equations in the vacuum to two d’Alembert equations

OF =G =0 (502)
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which are Lorentz- and gauge-invariant. Canonical quantization can therefore
proceed through consideration of F and G, giving the photon straightforwardly as
demonstrated later in this section. This type of canonical quantization is free of
the difficulties associated with canonical quantization [6] in the Coulomb and
Lorenz gauges.

In the plane-wave approximation, all electromagnetic effects are derived
from the structured time-like potential difference

A
V2

which is thereby a physical observable in effects such as those observed
reproducibly and repeatedly by Priore and others [§1-85]. These effects have no
explanation in the received view, but may be highly beneficial if properly
developed. The entities known as electric and magnetic fields are double
differentials of ¢ in the plane-wave approximation in the vacuum, a result that is
consistent with the ontology developed in Section IX, that the topology of the
vacuum is primary, and that potential differences are the result of the vacuum
topology. Whittaker uses the usual Lorenz condition, and it is easily verified that

d=F=iG=—-0—— (X —iY)e (503)

10,
VeAL+ 52 E=0 (504)

If gauge freedom is lost, however, the Lorenz condition is no longer valid, and a
far more comprehensive view of the electromagnetic entity would be obtained by
solving the O(3) equations numerically. On the O(3) level, there is no gauge
freedom, and no Lorenz condition.

As discussed by Frauendiener and Tsun in Ref. 4, gauge field theory is a
form of twistor theory, and as discussed in Section IX, the covariant derivative
must always be used in a gauge field theory, even on the U(1) level. The
covariant derivative must be used in curved spacetime, and in gauge theory
when used with ordinary flat spacetime. These authors also point out that the
phase on the U(1) level has no physical significance: it can be redefined by an
arbitrary rotation at any point in spacetime. The role of the covariant derivative,
or connection, is to compare phases at two neighboring points [4]. This property
leads directly to the conclusion that electromagnetism in the vacuum is not a
U(1) theory, but a Yang—Mills theory of higher symmetry. We have seen, for
example, that the U(1) covariant derivative does not describe the Sagnac effect,
whereas O(3) theory describes it accurately because of the nontrivial self
interaction [4] resulting in the B®) field concept. Since O(3) electrodynamics
is a Yang—Mills theory, it is also a spinor theory and also a twistor theory [4],
which takes us full circle to the fact that Whittaker’s theory is a twistor theory.
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Potential differences are primary in gauge theory, because they define both
the covariant derivative and the field tensor. In Whittaker’s theory [27,28],
potentials can exist without the presence of fields, but the converse is not true.
This conclusion can be demonstrated as follows. Equation (479b) is invariant
under

g — 8+ Va; Vxg—=Vxg+Vb (505a)
where @ and b are arbitrary. This invariance implies that:

Vxg—Vxg (505b)

The transverse part of the vector potential is therefore invariant under the
transformations (505), because of the definition

Ar=-Vxg (506)

and this is a clear sign of the fact that Whittaker’s theory contains something
contrary to the received view that the transverse Az is always unphysical. The
gauge invariance of A7 does not occur at the U(1) level, but on the O(3) level, the
vector potential is gauge covariant and physical, as in the Sagnac effect with
rotating platform.

The magnetic fluxes F and G obey the Klein—Gordon equation for a massless
particle in the vacuum:

OF=0G6=0 (507)
and if we apply Eq. (505), we obtain
O(Va) = O(Ve) =0 (508)

indicating that @ and ¢ are not arbitrary. Therefore f and g are physical and
observable, Ay is physical and observable, and the transverse part of A" is
physical. These conclusions refute U(1) electrodynamics.

This result is consistent with Whittaker’s main conclusion [27,28], that
the scalar potential ¢ is structured and physical in the vacuum, leading to the
possibility of interferometry between different scalar potentials, without the
presence of fields. To reinforce this conclusion, we can differentiate Eq. (484)

. 1.
A=-Vxgt_f (509)

and use the Lorenz condition (also used by Whittaker)

1 3¢
-A —_— 1
Vedt55-=0 (510)
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to give the following expression for the scalar potential:
d>:c2V-(V xg)—cV-f (511)
This results in the following expression for the potential 4-vector
A = (d,cA)

= <c2JV~(V x g)dt —cV+f,—cV xg+f>

= <_c2JV-Adt—cV-f, —cV Xg+f)

= (¢ —cV-ficA+])
= (b7, A7) + (¢p, cAL) (512)

where it is split into its transverse and longitudinal components in the vacuum.
The longitudinal component is

Al = (¢, cAL) = (—cV +f. f) (513)

and is physical because f is physical. On canonical quantization, therefore, there
exist physical longitudinal photons and time-like photons. By definition

w_ | _.-" 7 4
AL = < Ca y at k> (51 )

and in the special case where the transverse A} consists of plane waves, F = iG
and

A0

Al = — %m(X —iY)e' 2 (1, k) (515)
The vacuum longitudinal potential is light-like
ALAY =0 (516)
and may be written as
A} = (p, cd k) (517)

The potential ¢; obeys the massless Klein—-Gordon equation

O, =0 (518)
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and it is well known that canonical quantization of this equation is straightfor-
ward [6]. This result is consistent with Whittaker’s main result that ¢; is physical
and made up of a sum of plane waves and standing waves in the vacuum [27,28].

The Lagrangian for Eq. (518) is well known [6] to be

% = L (0c00)(0:6)

from which is obtained the energy momentum tensor

0 —0—Z a4 — ot
=0— 0,0} — ¥
YT0(0ud,) T

and the Hamiltonian
HL _ Je()() d3 X

In ST units, the Hamiltonian is the positive definite

1

H, =
HoR?

J (o B0bs + Vb, - V) dV

where the beam radius is R? = X? + Y2. Using the relations

¢, = —%m(x — iY)el(*2)
Ood, = — %ico2 (X — iy)gi(wf—KZ)‘%
Vo, =i % KO (X + iY)e ()
Vo, = —i‘%mp(x — iY)el®x2)

the Hamiltonian reduces to

1
H, = —JB(O)ZdV
Ho

(519)

(520)

(521)

(522)

(523)

(524)

which is identical with Eq. (450) of Section IX. This result proves that ¢; is
physical because the result (524) is a physical vacuum electromagnetic energy.
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Whittaker theory refutes U(1) theory in several ways, so it may be more
appropriate to describe the result (524) as a component at the O(3) level:

1
Hy = H—JB@ -B®ay (525)
0

It may also be argued as follows that f and g are physical. If an attempt is
made to apply the usual U(1) gauge transform rule to A}

Af = Af+%; AL —AL -V b= b+ (526)

X
ot

it follows that

. . 10
Fob-eVi Vef Ve (527)
and
1 (dy
=—|“%az 2
Jdet CZJdtd (528)

It follows from Eq. (528) that the quantity y is not random, contrary to the U(1)
rule that ¥ must be random. Euation (528) implies solutions of the type

X = xpe" " (529)
so that
Al Ak Al (530)
where
A} = ioyee®(1,k) = (¢],cA}) (531)
and
Ay =0, ¢, =0 (532)

The net result is

&L — &y + ioxee'”

533
b =owr—«xZ (533)
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If, for example

A0
o=~ (X = i0) (534)
then
¢ —2¢,; F—2F  G—26 (535)
and a field such as [27,28]
O’F 193G

Ey (536)

~oxoz T covar
doubles in magnitude. The field is not invariant, contrary to the requirements of
U(l) theory. The only possibility is that y =0, and that is physical and
observable.

Physical potentials are present in Whittaker’s theory without fields. This is
demonstrated as follows in the special case of a plane wave for the transverse
parts of E and B. In this special case

f=ig (537)
and from Eqgs. (479a) and (479b)
E=icVx(Vxg)+aVxg (538a)
B:é.ngfo(ng) (538b)
Under the condition
V x (V xg):ég(v X g) (539)

all the components of E and B vanish. The condition (539) is satisfied by

i 0AT

V xAr = o (540)
whose solution is
A0 ,
Ar = 7 (ii 4 j)e~(©1=x2) (541)
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The overall result is

E=B=0
A0 )
AL = —k—— (X — iY)e D)k
L \/i ( )
A0) , (542)
= —0——= (X — iY)e (%)
d)L \/E ( )

_= (X _ iy)efi(mthZ)

so there can be both transverse and longitudinal physical potentials, or
connections. Electromagnetism can be described entirely without fields, and in
terms of the vacuum topology.

Whittaker also argued [27,28] that longitudinal standing waves occur in the
vacuum. These can be illustrated by the choice of flux

A0)
V2

a choice that obeys the d’ Alembert equation:

G (X _ lY) (ei(u)thZ) + efi(u)thZ)) (543)

0G=0 (544)

The real part of Eq. (543) is

2
Re(G) = —=AY (X cos wr cos kKZ + Y cos of sin KZ) (545)

V2

which is a standing wave in the vacuum, directed along the propagation axis.
Such waves do not exist in the received U(1) theory. The magnetic flux

g= iA(O) (X cos ot cos KZ + Y cos ot sin kZ)k (546)
V2

is a solution to the vibrating-string problem, and the idea that electromagnetism
must be described in the vacuum by transverse plane waves of E and B is clearly
erroneous. Fluxes of the type (546) give rise to scalar potential interferometry
where there are no detectible fields.

It has been shown that the electromagnetic field in Whittaker’s view
originates in the vacuum, and in the plane wave approximation, in the equation

. . A0) .
%:F:Khrwvgﬂ—ﬂww*a (547)
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under conditions of circular polarization. The scalar potential ¢, is time-like,
physical, and structured, and it propagates. An experimental design can be used
to test experimentally whether f and g are physical. The principle of the design is
very simple. Two dipole antennae are set up in close proximity so that the vector
potentials from each antenna cancel:

iKr

. Ke
Alz—l

548
41‘56‘80}’1)1 ( )

Here p, and p, are the dipole moments of each antenna and r is the magnitude of
the radius vector

ixr

Ke
Ay =i 549
2 l4rccs0rp2 (549)
in spherical coordinates [86]. It follows that
E=0; B =0; A=A +A,=0 (550)

so there are no vector potentials or fields radiated into the vacuum by this antenna
arrangement. Whittaker’s f and g magnetic flux vectors are defined as follows by
this arrangement:

81 = —82 fi=-/2 (551)

However, the scalar magnitudes of g and f from both antennas (G and F) are the
same, because the scalar magnitude of a vector is the square root of the vector
squared. Thus the following quantity is radiated into the vacuum:

26 = —AO(X — iv)el @2 (552)

S

and the scalar potential
$, =2G (553)

is also present in the vacuum. On canonical quantization, this scalar potential
gives an ensemble of massless photons from the Klein—-Gordon equation. This
property will be proved later in this section. These are physical time-like photons
each with the Planck energy Zm. The energy from these photons is therefore
Eq. (524), and is phase-free. For a large number of frequencies, the photons are
distributed according to the Planck distribution for blackbody radiation [69],
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which is radiated heat detectible by a bolometer. There are no vector potentials or
fields present, so the heat is due entirely to the physical F and G. In the received
view, such photons are unphysical and no heat should be detected. An improve-
ment on this design, due to Labounsky [87], is shown in Fig. 2, which illustrates

M. W. EVANS

how fieldless G waves can be generated.

Scalar G waves Output

Waveguide
Directional Coupler

f

Closed end of waveguide

Open end of waveguide

2 oppositely-polarized TE ;o modes
waves, excited and mutually
cancelled in the main waveguide
section, resulting in the production
of Whittaker scalar G waves

Waveguide
Directional Coupler

Waveguide T-Junction
Power Splitter

-

waveguide flange

Gyrotron

Gyrotrons produce high-power
microwaves up to megawatt range

Figure 2. Practical conception for a source of scalar G waves.

RF Output in form of
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Scalar interferometry is possible in this view if F and G are physical in the
vacuum. When two scalar beams of the type

A0 )
Gi = —= (X — i¥)e/ A

V2

O (554)
Gy =—= (X — i¥)e/ %)

V2

interfere, an interferogram is generated, as usual, and their combined energy
density in the zone of interference is
En ol
V  Re?

(14 cos (k(Z) — Z2))) (555)

where [ is the combined power density of the two beams in watts per square
meter. Here, Z;, — Z, is the path difference as usual, that is, the difference in
distance traversed by each beam from source (the design in Fig. 2) to interference
zone. If we now define
— 1 * *
G =5 (G + G)(G] + G3) (556)
then

[0Gs =B #0 (557)

and a fluctuating magnetic flux density B appears in the zone of interference even
though no field is radiated by either source. The presence of a magnetic field
indicates the presence of an electric field. There are magnetic and electric fields
in the zone of interference but none outside. Equation (557) is a gauge-invariant
construct, and the E and B fields in the zone of interference are real and physical,
and so interact with matter in the zone of interference. The energy density within
this zone is also gauge-invariant and physical

0)2 *
En & - GG (558)
Viooom Ry
where R? is the beam area, assumed to be the same for each beam. The lateral
extent of the radiated beams from the device in Fig. 2 is constrained by the
inverse fourth-power dependence on R.
It has been proved that F and G of Whittaker are physical and gauge-
invariant, and it follows, as shown next, that there exist physical time-like and
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longitudinal photons. These have an independent existence and appear from
canonical quantization of the classical, physical, and time-like scalar potential
difference in vacuo [Eq. (547)]. Canonical quantization follows straightfor-
wardly from the massless Klein—Gordon equation:

O¢, =0 (559)

The potential ¢; is treated as usual [6] as an operator subject to the commutator
relation of quantum mechanics. This procedure gives the positive definite
Hamiltonian (521) and vacuum energy (524) self-consistently. The scalar
potential ¢; is Fourier expanded as

63]( —ioZ + T0YA
¢szm<a<x>e +a* (k)7 (560)

a procedure that is self-consistent with Whittaker’s original demonstration
[27,28] that ¢; can be expanded in a Fourier series in the argument denoted by
Whittaker in his general solution for ¢, . Equation (560) has frequencies o, = k¢
generated by the Fourier expansion. So many different photons emerge, each
corresponding to a different frequency; quantization results in an ensemble [6] of
physical time-like photons, each of energy 7. This is consistent with the Planck
quantization of energy momentum

P = fict (561)

where the time-like component has energy ho.
The coefficients @ and a™ in the expansion (560) are operators defined by the
commutators [6]:

la(x), a(x)] = [a"(x),a" (k)] = 0
(562)
[a(x),at (k)] = (21) 20,8’ (k — &)
The operator:

N(x) = a*t(x)a(k) (563)

represents the number of particles with energy /o and longitudinal momentum
hix. The Hamiltonian, after quantization, takes the form

H= %PZ(K) + %iQZ(K) (564)
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where
P09 = (5) a0+ ()
X . (565)
O(x) = 2o (a(x) —a™(x))

and ¢, , after quantization, is an infinite sum of oscillators, that is, an ensemble of
time-like photons with energy 7im. The operators a and a® respectively are
therefore the annihilation and creation operators for the quanta of ¢, and the
energy of the quantized ¢; is rigorously positive. The photons obtained after this
type of quantization obey Bose—FEinstein statistics [6], and any number of
particles (photons) can exist in the same quantization state. These photons are
spin zero and massless and, because they are spin zero, are not absorbed by an
atom or molecule, in contrast to physical space-like photons carrying angular
momentum. The received view of canonical quantization asserts [6] that these
photons are unphysical. Paradoxically, the received view also asserts that the
vector (561) is physical. This paradox is seen in the Compton and photoelectric
effects as argued already in Section III. There are insurmountable difficulties [6]
in the received methods of canonical quantization. In the radiation gauge, for
example, the scalar and longitudinal parts of the 4-vector A" are missing, so A" is
not fully covariant at the outset. In the Lorenz gauge, there are several difficulties
well summarized by Ryder [6]. For example, there is an indefinite metric where
the Lorenz condition has to be used and then discarded, then a gauge fixing term
has to be used, and the final result is paradoxical in that an admixture of time-like
and longitudinal photons are physical [6], but each component is unphysical. The
procedure of canonical quantization in the Lorenz gauge gives photons with spin,
and these are asserted to be physical transverse photons.

It is far simpler to introduce spin into the assumed massless photon by
following the little group method of Wigner [6], that is, by examining the most
general type of Lorentz transform possible for a particle without mass. This
produces the normalized helicities —1 and 1 through parity considerations.
These correspond, in the received view, to physical right and left circularly
polarized photons. If the photon is massive, as implied by O(3) electrodynamics,
there occurs in addition the helicity zero, corresponding to a physical long-
itudinal space-like photon without spin and corresponding to a physical O(3)
symmetry little group. [The little group of the massless photon is the unphysical
[6,15] E(2), another paradox of the received view.] As argued already, there also
occurs a time-like photon that is a scalar and that is purely energetic in nature.

These various considerations point toward the O(3) definition of the energy-
momentum 4-vector:

pt = pHle(l) 4 p2)e(2) 4 HrB)(3) (566)
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There are therefore three energy-momentum 4-vectors present:
PO = (En,p®);  p = (En,p®);  pM) = (En,p)  (567)

Energy is a scalar and so does not carry an internal gauge index. There are three
momenta; p® is longitudinal, and p and p® are circularly polarized
conjugates. Applying Planck quantization gives immediately a time-like photon
ho without spin, a longitudinal photon 7k without spin and with energy o,
and right and left circularly polarized photons kM- ?) | each of energy ho.

Therefore Whittaker’s theory points toward the existence of O(3) electro-
dynamics. This conclusion is reinforced by the fact that Eqs. (479a) and (479b)
are invariant under the duality transform:

-
f—-s (568)
g—f
and Eqgs. (484) and (485) can be written as
10g 1
\Y% ——=—-S 569
S c ot c (569)
1of
———=-A 570
Vxg-——o (570)
These equations are invariant under the transform:
f—-& g8—-fi S—o-c (571)
Special relativity then dictates that there exists the set of equations
\V4 g = ?
c
1of
Vxg=-—-A
& c ot (572)
Vef=-P
10g 1
B ___§
VxS c ot
which can be written as
0,8 =AY
W (573)
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where
[0 0 0 -g°
- 0 0o f o
gV = 0 _f3 0 0 (574)
g2 0 0 0
0 O 0o —f
0 0 —g o0
e P (575)
g 0 0
L0 0 0

Equations (573) have overall O(3) symmetry, and have the same structure as the
Maxwell-Heaviside equations with magnetic charge and current [3,4]. From
Egs. (573), we obtain the wave equation

1
08" =3 F" =0 (576)

which is consistent with Whittaker’s starting point:
OG=0F=0 (577)

The received view asserts that A" is always random, but in this section, several
counter arguments have been given. Several more counterarguments appear
throughout this chapter and elsewhere in the literature [3].

XI. PREPARING FOR COMPUTATION

In this section, the field equations (31) and (32) are considered in free space and
reduced to a form suitable for computation to give the most general solutions for
the vector potentials in the vacuum in O(3) electrodynamics. This procedure
shows that Eqgs. (86) and (87) are true in general, and are not just particular
solutions. On the O(3) level, therefore, there exist no topological monopoles or
magnetic charges. This is consistent with empirical data—no magnetic
monopoles of any kind have been observed in nature.

If consideration is restricted to the vacuum, the field equations (86) and (90)
apply. The Jacobi identity (86) is first considered and written in the following
form [6]:

D, Gy + DyGyy, + DyGyy = 0 (578)
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This reduces in general to the form
0.Gy + 0,6y +0,Gy, =0 (579)

because
Ay x GV =0 (580)

is identically zero. The proof of this latter result proceeds by using the definitions

(3)

v

G\ =0,4" —0,A)" —igA(?) x

A
Gy =0,A7" —0,A" —igAl) x A
A

) (581)
G =0,A0" — 0,407 —igA() x Al

2)
\%

and Jacobi identities such as:

AP x (A xA®P) + 4D x (AN xAP) + 4P x (A xAP) =0 (582)

v i

The terms

X v H (583)
AY x 0,40 — 2,4 =
vanish individually as follows:
1 1 1
A x 0,40 —8,40)) = 510 5)AL 0, AP — 51)0)3)A1 0, ALY
= A PR - A7)
= AxBx(e® eV —eVe?) =0
(584)
Equation (584) implies that the topological magnetic charge—current
T, <Ay x GV =0 (585)

vanishes in the vacuum, while B® is nonzero in the vacuum, a result that is
consistent with empirical data, which show the existence of B® and the
nonexistence of a magnetic monopole and magnetic current.
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The computational problem reduces therefore to a numerical solution of
three differential equations:

%G +0,G) +8,G}) =0 (586)
362 +0,GY) +8,Gy) =0 (587)
2GS +0,G) +8,Gy) =0 (588)

using the definitions (581). There are three equations in three unknowns, so the
problem can be solved for given boundary conditions.

The work of Whittaker described in the previous section can be summarized
by the potential

AD = (A),cA®) (589)
where the magnitude of A is A(()3> /c. The O(3) theory allows A(<)3) and A to be
structured, constant or zero. The B® field exists in all three cases. If, however,
A® is zero, so is Agf) and there is no scalar potential. The conclusion reached is
that there can be an infinite number of components of the 4-vector AS) for a
given phaseless B®. In other words, the scalar potential can be expanded in a
Fourier series, or some other suitable series that includes the terms A= 0 and
A% = constant.

The disappearance of the magnetic charge—current (585) means that the
topological terms on the right-hand sides of Egs. (95)—(100) vanish identically
in the vacuum. The only topological charges and currents present are therefore
those introduced by Lehnert [7-10]. There is no empirical evidence for the
existence of an E® field, so we are left with

B(D
vxED By (590)
ot
B
VXE(2)+aat =0 (591)
oB®
= 2
5 =0 (592)

as first proposed some time ago [11-20]. Equation (592) has been verified
empirically by Raja et al. [88] and Compton et al. [§9]. The most general type of
solution must be found, however, by solving Egs. (586)—(588) numerically, so
that potentials are primary and fields are derived from potentials. The
mathematical structure of O(3) Yang—Mills theory applied to electrodynamics
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allows for A) = 0 as one of many possible solutions. However, if A®’ = 0, then
the scalar potential is also zero, while the B® field remains nonzero.

The vanishing of the topological magnetic current in Egs. (98)—(100) leads to
two components of the B cyclic theorem as follows. In Eq. (98)

A? =0, E® -9 (593)
and so

—cADB — E) 5 4®) (594)

B — %k < B (595)

for any AJ = cA®). This result is self-consistent with the left-hand side of
Eq. (98), because Eq. (595) is a solution of Eq. (596):

oBM
V x EM + 5 =0 (596)

The B cyclic component emerges as follows:

B x B® =L x BV x B® — ;5OBO
c (597)

Therefore all is self-consistent.

These calculations show that B is not dependent on the existence of a
vacuum magnetic monopole [11-20]. Therefore the explanation of phenomena
based on B® is not dependent on a topological magnetic charge or monopole.
The fundamental reason for this is that B is defined in terms of quantities that
are not dependent on a magnetic monopole, namely, g, A", and A®.
Furthermore, the structure of O(3) Yang-Mills theory forces us to conclude
that E® is zero through the structure of Eqs. (98)—(100) [11-20]. The existence
of a phaseless E® has never been observed empirically. Action at a distance in
electrodynamics is obviously denied by the fact that we are working with a
gauge theory, and there is no convincing evidence for superluminal phenomena
in electrodynamics. It should also be clear that B is not a static magnetic field;
rather, it is a radiated field, propagating with the third Stokes parameter.

The three equations (586)—(588) can be written in condensed form

0,G") = 0; i=1,2,3 (598)
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which is self-dual to another set of three simultaneous equations suitable for
computation and derivable from Eq. (90):

DH"W = 0; i=1,2,3 (599)

where G*¥ of Eq. (90) has been replaced by H"" for greater clarity and to indicate
the presence of vacuum polarization Therefore

GHG“V(i) _ DuHuV(i) -0 (600)

represents the O(3) wave equation, which has a much richer structure than its
U(1) counterpart, and many more solutions. The charge current 12-vector in
vacuo, Eq. (91), is nonzero. This can be demonstrated by writing it out in
component form:

Jr — —igAflz) « gVO
JV(Z)* _ _l-gAS) % g1 (601)

JV(3)* — —igA&U % HV?)
Terms such as
J'@ = —igALZ) « (auAv(S) —vArG) _ igA“m % AV(2>) (602)
are obtained. The first part can be expanded as

A 3 0AY — AR X 0YAMY) = g5y () ATIDUAY) — 1) ATDYAMY
- ,AELZ)FHVG) —AS)F”V(Z) (603)

which is nonzero in general. The second part can be expanded as

) (1 2)y _ AR (4Q2), AV _ AV@)(4(2), gn(1)
A x (A x AYP) =AM (AR . AYE)) — A (AR . AR

— _AY®@ (A”2) .Au(l)) (604)
which is also nonzero in general.

Therefore we reach the important overall conclusion that the structure of the
O(3) equations is a development into O(3) symmetry of the Lehnert field
equations [7-10], which are written in U(1) form. The Lehnert field equations
have been extensively developed and tested empirically and theoretically
[7-10].
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The O(3) Coulomb and Ampere—-Maxwell laws in the vacuum are therefore
written in terms of displacement and magnetic field strength, and are as follows.
The Coulomb Law in the vacuum is

V.DV* = ig(D?.pB) —p?.A0)
VD" = ig(A®) . p) — pB) . AM) (605)
v.D®* — ig(A<1> .D?@ _ pM .A(Z))

and the Ampére-Maxwell law in the vacuum is

vV x HV* — a’;(tl)* = —ig(cAPD®) — cAPD® + A® x H® — A0 x HD)
V x HO" — aDa(;)* = —ig(cA'DW — cAlVD®) £ A®) x HD — AW » HO))
V x HO" — aDZ;:)* = —ig(cAV'D® — cAPDM 1 AN x H? — A®) x )
(606)

The displacement D> for example can be developed as
D®) =g E®) 4 pB) (607)

and since E® is zero, we obtain
DB = p®

indicating the presence of classical vacuum polarization P® due to the topology
of the vacuum as represented by a gauge field theory with an assumed O(3) gauge
group symmetry. Therefore the energy inherent in the vacuum is obtained
entirely from the electric charge current (91), as discussed in Section IV. The
magnetic charge-current (585) vanishes, and so there is no energy inherent in the
vacuum from the magnetic charge—current for an internal O(3) gauge group
symmetry. On the O(3) level, there can therefore be classical vacuum
polarization, whose analog in quantum electrodynamics is the photon self-
energy [6].

The constitutive equations in the vacuum in O(3) electrodynamics are not the
same as those of U(1) electrodynamics, and in general

DO = goED 4 PO, =123 (609)

where P are vacuum polarizations.
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To summarize, there are three equations [Eqs. (586)—(588)] in three un-
knowns (indices of the vector potential appropriate to G") and another three
equations [Eq. (599)] in three unknowns (indices of the vector potential
appropriate to H"¥ in the vacuum). Simple vacuum constitutive relations such as

1
D = gE; H=—B (610)
Ho

of U(1) electrodynamics no longer apply, because of the existence of classical
vacuum polarization. The latter also occurs in the Lehnert equations [7-10],
which are known to give axisymmetric solutions similar to B, to indicate
photon mass, and to be superior in ability to the Maxwell-Heaviside equations.

To put the O(3) equations into the form of the Lehnert equations, we use the
definitions

D=p" +Dp? + DV

H=H"Y +H? + H®

E—EV L E® | gO (611)
B=B"Y +B?® + BO

to obtain
V:B=0
OB
! (612)
VB = Pvac
v XH_aBZJvac
ot

which are mathematically identical to the Lehnert equations. The O(3) gauge
theory, however, shows that the origin of the vacuum charge and current
postulated phenomenologically by Lehnert [7—10] is the topology of the vacuum
described by an O(3) gauge group. The O(3) theory also shows, self-consistently,
that there is a vacuum polarization, so that the simple constitutive relations (610)
used by Lehnert do not hold. The O(3) gauge theory also reveals that the
presence of the B* component, through its definition, is proportional to the
conjugate product of potentials, A?” x A®. However, the mathematical form of
the O(3) equations (612) is identical with that of the Lehnert equations.
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Formally, the O(3) equations are written most generally as

V-H= Prm,vac
OH
VXD+6_:JWLV30
! (613)
V-D= Pvac
oD
\Y% XH_EZJvac

which are identical in mathematical structure with the Harmuth equations
[21,22] and Barrett equations [3,4]. However, in O(3) electrodynamics, there is
no magnetic monopole or magnetic current as argued already. The structure
(612) in the vacuum is identical with the structure of the Maxwell-Heaviside
equations as used for field-matter interaction.

The complete computational problem in the vacuum is therefore as follows:

1. Use egs. (586) to (588) to obtain A AP AY:n=0,..,3 with the
simplifying definitions
A=Al =0, i=1,2
A = (), cA) = (4, ek
A= AP =0
3 3
AV =4y =0

(614)

2. Use Egs. (101)~(103) to obtain D, D®, and D,

. Use Egs. (104)~(106) to obtain H", H®, and H®.

. The complete displacement and magnetic field strength vectors in the
vacuum are then

A~ oW

D=p" +Dp? + DV

= Dxi + Dyj + Dzk (615)
H=H" + H? { H®) (616)
5. Use
BY =v x AW
B =V xA® (617)

B® = —igd) x A?

to obtain B(l), B(z), and B®,
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6. Use Egs. (590)—(592) to obtain EV and E®.
7. Simplify the code with

B(D — p@+
EV — E@*
A — A2 (618)

8. Finally, find P, P, and P® and, if they exist, M, M®, and M*® in
the vacuum.

The computational problem for the vacuum involves the definition of vacuum
boundary conditions, which, for example, may be a volume of radiation or a
beam radius. The computational method assumes no Lorenz condition, and
gives a vast number of solutions. Having obtained these solutions, we can next
check whether the non-Abelian Stokes theorem (153) is obeyed numerically.
Essentially, everything is obtained from potentials in the vacuum, and every-
thing is expressible in terms of these potentials, including the charge and the
current. In evaluating the coupling constant k/A®), the denominator is the
magnitude of A = A®*, defined by

1/2
A0) (A(l) .A(2>) (619)

This is then a computational solution of a classical problem in the vacuum. If g is
defined as k/A”), then e is never used.

In field—matter interaction, the fields B and E remain unchanged. The fields
D and H change because P and M change. Equations (612) have precisely the
same structure as Eqs. (9-7) of Panofsky and Phillips [86] with the following
identifications:

Pvac = Prrue) Jvac = Jirue (620)

The py. and Jine of Ref. 86 are therefore identified as being due to the topology
of the vacuum, a topology that gives rise to potential energy inherent in the
vacuum. The potential energy appears in O(3) electrodynamics through the
connections AEP, and so the connections are regarded as physical entities. Fields,
currents, and charges are obtained from the potentials, or more precisely,
potential energy differences that are dictated by the topology of the vacuum
itself. On the classical level, g = k /A<°> so the constant e does not appear in the
vacuum. As demonstrated already in this review, the equivalent of the Poynting
theorem can be obtained by considering the energy inherent in the vacuum, on
both the U(1) and on the O(3) levels.



198 M. W. EVANS

In dealing with Egs. (612), the vacuum is treated as if it were a material, and
the equations are solved with stipulated boundary conditions and constitutive
relations. The ontology behind Eqgs. (612) is that charge—current is the result of
spacetime. Similarly, in general relativity, matter is the result of spacetime. A
complete theory would obviate the need for constitutive relations and be based
on grand unified field theory with an O(3) electromagnetic sector. Equations
(612) deal only with the electromagnetic sector on a classical level and still
utilize the concept of field as a matter of convenience. So we still write in terms
of field—matter interaction, although the ontology dictates that field—matter
interaction is dictated solely by the topology of spacetime.

The computational problem in the vacuum has to be solved first, to obtain the
vacuum polarizations. To simulate the interaction with matter, the polarization
changes in the medium must be modeled using constitutive relations, and
boundary conditions defined according to the problem being solved. Integral
forms of Egs. (612) may be useful, and integral forms must be obtained through
the non-Abelian Stokes theorem using O(3) covariant derivatives. For example,
the integral form of Egs. (590)—(592) is

o
fi;E(l)'dH& BY . dAr =0 (621)
@) 0 [ o)
E).dr+—¢B? - dAr =0 (622)
0 [ n0)
=B dr =0 (623)

and the integral form of V.BY =0;i=1,2,3is
%B(” edr =0; i=1,2,3 (624)
A simple example of a computational problem on the U(1) level is the

numerical solution of the equation

10 19°A
‘A) = VA + == S5, =0 62
V(V:A) -V +c26tv¢+c2 2 (625)

which is equivalent to solving the following equations simultaneously:
OB

! (626)
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In the received opinion [5], these are the vacuum Faraday law and Ampéere—
Maxwell law, respectively. The vacuum charges and currents are missing in the
received opinion. Nevertheless, solving Eq. (625) numerically is a useful
computational problem with boundary conditions stipulated in the vacuum. The
potentials and fields are related as usual by

B=V xA
24 (627)
E——E—V¢

In the received view, it is customary to simplify the problem of solving Eq. (625)
with the Lorenz condition

10

A+——=0 628
VoAt c2 ot (628)
to give the d’ Alembert equation in vacuo
1 °A
VA-——5=0 629
c? or? (629)

an equation that has analytical solutions such as plane waves. The Lorenz
condition (628) is asserted to be the result of gauge freedom. The computational
problem therefore consists in solving Eq. (625) with and without Eq. (628) for
different boundary conditions.

Regardless of whether the Lorenz gauge is used, the equation [y = 0 is
obtained. So % is not random after being assumed to be random (a reduction to
absurdity) proof of the self-consistency of the U(1) gauge ansatz. Ludwig V.
Lorenz introduced the idea of the Lorenz gauge or condition (often misattrib-
uted to Henrik Anton Lorentz) in 1867, so we can write the structured scalar
potential as ¢ = d,e"), where (7) is the retarded time. So in this sense, we can
have pure time-like potentials (something that apparently was discussed between
Bearden and Wigner) in the context of a pure time-like photon. Whittaker’s
work depends on the Lorenz condition on the U(1) level.

Plane waves have infinite lateral extent and, for this reason, cannot be
simulated on a computer because of floating-point overflow. If the lateral extent
is constrained, as in Problem 6.11 of Jackson [5], longitudinal solutions appear
in the vacuum, even on the U(1) level without vacuum charges and currents.
This property can be simulated on the computer using boundary conditions,
for example, a cylindrical beam of light. It can be seen from a comparison of
Eqgs. (625) and (629) that if the Lorenz condition is not used, there is no increase
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in the number of variables. Therefore Eq. (625) is one equation in two
unknowns, ¢ and A. If we use the Lorenz condition

1 0
cA+—=—=0 630
VoA c* ot (630)
we still have one equation in two unknowns. Making use of the vacuum Coulomb

and Gauss laws in the received view

V-E=0
(631)
V:B=0
we obtain two more equations:
0A
Ve (a + V(])) =0 (632)
V:VxA=0 (633)

So there are three equations, (625), (632), and (633), in two unknowns A and ¢ .
These are enough to solve for the components of A and for ¢ for any boundary
condition. For any physical boundary condition, there will be longitudinal as well
as transverse components of A in the vacuum, and ¢ will in general be phase-
dependent and structured. This computational exercise shows that the Lorenz
condition is arbitrary and, if it is discarded, the values of A and ¢ from Egs.
(625), ( 632), and (633) change.
Under the U(1) gauge transform

10 1
AY — AM + Oy AM = (,cA); (i.e.d) — <]>+—a—7;; A—A ——Vx)
c c
(634)
we see that E and B do not change:
1 1

1

and Eqgs. (625), (632), and (633) do not change. This means that for any given
boundary condition, we can find the solutions
10

O =¢+-F (636)

c ot
A'=A—- 1V)( (637)
c
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from Eqs. (625), (632), and (633) numerically. The solutions ¢’ and A’, however,
are not arbitrary for a given boundary condition, indicating another self-
inconsistency in U(1) gauge theory (Section II). Furthermore, under the same
gauge transform (634), Eq. (625) indicates that y must obey the equation

Ox=0 (638)

whose general solution has been given by Whittaker [27] and is not arbitrary. If
we arbitrarily decouple Eq. (625) into

OA =0
(639)
SR
ot

then Eq. (638) is obtained again, indicating that the Lorenz condition and
d’ Alembert equation in vacuo are arbitrary constructs, that is, particular solutions
of Eq. (625). The Lorenz condition has no physical meaning, nor does the
vacuum d’Alembert equation. The function y is not arbitrary, contrary to the
U(1) gauge transform ansatz, Eq. (634). In other words, the gauge transformed ¢’
and A’ are not arbitrary, as they are solutions of two differential equations, (625)
and (632), in two unknowns, ¢’ and A’, for a given boundary condition. We
conclude that ¢’ and A’ are physical, not arbitrary, thus refuting Heaviside’s point
of view and supporting that of Maxwell and Faraday. For a self-consistent picture
of electrodynamics, we have to go to the O(3) level, as discussed earlier in this
section.

The same conclusion regarding the Lorenz gauge is reached by Jackson [5],
who shows that:

QA =0,4" + Oy, (640)
However, Jackson follows the received opinion and forces
Oyx = —0,A" (641)
through the arbitrary assumption:
0,A" =7 0 (642)
The latter merely reinforces the conclusion that % is not arbitrary.
By discarding the Lorenz condition, a vacuum current Jy, is introduced. The

vacuum current J,. is conceptually similar to the one introduced by Lehnert
and Roy [10]. Relativity then indicates the presence of a vacuum charge, so the
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field equations in vacuo become identical with those of Panofsky and Phillips
[86] and those of O(3) electrodynamics [11-20] i.e., [Eqgs. (612)]. Phipps [90]
has also derived the same structure and describes it as “neo-Hertzian.” There is
therefore a remarkable degree of agreement in the literature that the structure of
the Heaviside—Maxwell equations in vacuo is such that the overall symmetry is
O(3). This conclusion is consistent with the fact that there is no Lorenz
condition on the O(3) level, necessitating numerical solution as described
earlier in this section.

The source of Eq. (625), however, is the set of vacuum Maxwell-Heaviside
equations

V.-B=0
V.-E=0
vxE+ By (643)
ot
| 0F

and to identify Eqs. (612) with Egs. (643), it is necessary to write the vacuum
displacement as

D=¢gE+P (644)

and to introduce the vacuum polarization. This result is self-consistent with our
constitutive equations (607)—(609) on the O(3) level. The vacuum polarization
gives rise to a polarization current

oP

JPE_E

(645)

and exists if and only if we discard the Lorenz condition. It therefore becomes
clear that use of the Lorenz condition prohibits the evolution of U(1) into O(3)
electrodynamics and arbitrarily asserts a zero vacuum polarization. The
existence of vacuum charge and currents means the existence of vacuum energy,
as argued already. The experimental challenge is how to tap this energy, which is
theoretically infinite, that is, extends throughout the universe.

The vacuum charge density and current density are

1
Pvac = — Dd)
Ho

| (646)
Jvac - DA
Ho
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and so it becomes clear that Whittaker’s theory [27] is restricted severely by his
adoption of the Lorenz condition. The received view is similarly restricted. The
new paradigm introduced here is that the vacuum itself is the source of charge—
current, including, of course, Maxwell’s displacement current. The latter has
nothing to do with charged electrons, and similarly, the Noether currents of O(3)
electrodynamics have nothing to do with charged electrons. The received view
asserts that the Maxwell displacement current is the origin of the electromagnetic
field, which carries energy and momentum; the new paradigm asserts that the
vacuum itself is the source of energy and momentum through the intermediary of
entities labeled charge, current, and field. The topology of the vacuum is
described by physical A and ¢ , which, in turn, originate in the gauge principle
and group theory. We have argued that the notion of unphysical A and ¢ is
untenable. It is this idea that leads to the Lorenz condition, which is, in turn,
untenable.

Therefore electric and magnetic fields do not emanate from a point charge, as
in the received view; both charge and field are outcomes of the topology of the
vacuum. In the new paradigm, the energy that is said to be transmitted by the
electromagnetic field in the received opinion is inherent in the vacuum structure;
all is determined by the nature of the connection in gauge theory, and by the
physical nature of the potential, which is more precisely described as potential
energy difference. An intense electromagnetic field in the received view
corresponds in the new paradigm to a warping of space-time by the gauge
connection inherent in the covariant derivative. On the classical level, the
proportionality constant g is k/A®), and e/l is not necessary. Curvature or
warping of spacetime determines the process of radiation and of detection of
radiation. Causality implies that the cause precedes the effect in time. This new
view of electromagnetism as being essentially the vacuum itself is similar to
general relativity. The major implication is that the vacuum carries an unknown
amount of electromagnetic energy; the electromagnetic field is far stronger than
the gravitational field, so the amount of electromagnetic energy in the vacuum is
commensurably greater.

The vast paradox inherent in the concept of field is vividly summarized by
Koestler [91, p. 502ff.]: a steel cable of a thickness equaling the diameter of the
earth would not be strong enough to hold the earth in its orbit. Yet the gravitational
force which holds the earth in its orbit is transmitted from the sun across 93
million miles of space without any material medium to carry that force. The
paradox is further illustrated by Newton’s own words, which I have quoted before,
but which bear repeating: It is inconceivable, that inanimate brute matter should,
without the mediation of something else, which is not material, operate upon, and
affect other matter without mutual contact, --- And this is one reason why I
desired you would not ascribe innate gravity to me. That gravity should be innate,
inherent, and essential to matter, so that one body may act upon another, at a
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distance through a vacuum, without the mediation of anything else, by and through
which their action and force may be conveyed from one to another, is to me so
great an absurdity, that I believe no man who has in philosophical matters a
competent faculty of thinking, can ever fall into it. Gravity must be caused by an
agent acting constantly according to certain laws; but whether this agent be
material or immaterial, I have left to the consideration of my readers.

The paradox is compounded greatly in electrodynamics, where, in the re-
ceived view, the field is superimposed on spacetime. In the new view, both the
gravitational and electromagnetic fields are the results of topology, or vacuum
structure. The enormous amount of energy inherent in the vacuum is meta-
phorically apparent in Koestler’s steel cable. The electromagnetic energy from
the same source is orders of magnitude greater. Thus a few simple computational
trials are needed.

XII. SU(2) x SU(2) ELECTROWEAK THEORY WITH AN O(3)
ELECTROMAGNETIC SECTOR

It has been demonstrated conclusively that classical electrodynamics is not a
U(1) gauge theory; therefore, the continued use of a U(1) sector in unified field
theory is misleading. In this section, a first attempt is made to unify the
electromagnetic and weak fields with an O(3) electromagnetic sector. The theory
has SU(2) x SU(2) symmetry instead of the usual U(1) x SU(2) symmetry. The
change in symmetry has several ramifications, including the appearance of a
novel massive boson that has been detected empirically [92]. The use of an O(3)
electromagnetic sector will also have ramifications in grand unified field theory, a
paradigm shift that extends throughout field and particle physics and challenges
the standard model at a fundamental level. In the new view of grand unified field
theory, all four fields are manifestations of non-Abelian gauge theory. If we go a
step further and drop the word ““field,” then all physics becomes a manifestation
of vacuum topology.

The extension of U(1) x SU(2) electroweak theory to SU(2) x SU(2) elec-
troweak theory succeeds in describing the empirically measured masses of the
weakly interacting vector bosons, and predicts a novel massive boson that was
been detected in 1999 [92]. The SU(2) x SU(2) theory is developed initially
with one Higgs field for both parts of the twisted bundle [93], and is further
developed later in this section.

The physical vacuum is assumed to be defined by the Higgs mechanism, and
the SU(2) x SU(2) covariant derivative is

D,=0,+igc+A, +igt-b, (647)

where ¢ and 1 are the generators for the two SU(2) gauge fields represented as
Pauli matrices, and where A and b are the gauge connections defined on the two
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SU(2) principal bundles. There is an additional Lagrangian for the ¢* scalar
field [93]:

1

Ly = 3 IDu(0P] 31216 + 3 H(SPY (643)

The expectation value for the scalar field is then

@) = (075) (649)

for v = (—p?/ X)l/ >, The generators for the theory on the broken vacuum are

(@nle, = (75:0)
(@0le, = (125.0) (650)

These are the same for the other SU(2) sector of the theory. The hypercharge
formula of Nishijima, if applied directly, would lead to an electric charge

0do) = 5 (do)(es + )

R N

implying two unphysical oppositely charged photons. The equation for the
hypercharge must therefore be modified to

O(dg) = 5 (Pg)(n2+13 +m1-01) =0 (652)

N —

where n and n, are unit vectors on the doublet defined by the two eigenstates of
the vacuum. This projection on to & and 13 is required because we are using a
single Higgs field on both bundles on both SU(2) connections. This requirement
can be relaxed as discussed later in this section. At this stage of the development,
the generators of the theory have a broken symmetry on the physical vacuum.
Therefore, the photon is defined according to the o generator in one SU(2)
sector of the theory, while the charged neutral current of the weak interaction is
defined on the 1 generator.
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The fundamental Lagrangian contains the electro-weak Lagrangians and the
¢* scalar field:

1 1 1 1
& = = PP = 2GLG™ 1 Do — 26l + (10 (653)
where Gy, and F}, are elements of the field strength tensors for the two SU(2)
principal bundles. In order to develop the theory further, it would be necessary to
include the Dirac and Yukawa Lagrangians that couple the Higgs field to the
leptons and quarks. The d>4 field may be developed as a small displacement in the
vacuum energy:

(v+&+iy)
V2

The fields & and y are orthogonal components in the complex phase plane for the
oscillations due to the small displacement of the scalar field, which is thereby
characterized completely. The scalar field Lagrangian becomes

¢ =+ (dy) (654)

1 1 1 1
Ly = D) (aué Mg — 2H2§2> + EVZ <8/Au + 8bu + <5 + E) auX)

1 1
X <g'Au +gb, + (g_v + —) 6,0() (655)

gv

where Lie algebraic indices are implied. The Higgs field is described by the
harmonic oscillator equation where the field has the mass My ~ 1.0 TeV/c?.
On the physical vacuum the gauge fields are:

§Ay +gby — g,AL + gblp (656)
which corresponds to a phase rotation induced by the transition of the vacuum to

the physical vacuum. The Lagrangian is now decomposed into components by
expanding about the minimum of the scalar potential

1 1
Lo =50 =248 + (@] + (WP + W)
+ A0 + g%AB) 1 ia)%) (657)
where the charged weak fields are identified as

+ 1 7 (2
Wi =—@®) i) (658)

Nia
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with mass gv/2. The other parts of the Lagrangian define the fields:

3 3) 1
(A + b)) —eall)

= T (659a)
'AB) 4 gpB) _ /4 (D)
zﬁ:(g o by —g'AL) (659)

(& +8%)""

On scales larger than unification, the requirement AS) =0 is needed [94]
because otherwise Z; would have a mass greater than empirically measured, or
there would be an additional massive boson along with the Z; neutral boson. A
more complete discussion of A{f) is given later in this chapter. The additional
massive boson predicted by the theory has been observed empirically [92]. The
considerations thus far lead to the standard result that the mass of the photon
vanishes, and that the mass of the Z, particle is

My, :g(gz_’_g/z)l/z

S (&)) oo

The weak angles are defined trigonometrically by the terms g/(g> + glz) and
¢/ + g/z). This means that the field strength tensor satisfies

F) =0,AY) — 0,4 — ig[al), A)]

nv i

= —iglAV, A}Y)] (661)

and that the B® field is defined, in this notation, by

(B) _ w3 1 2
B = &"F() = —igA) x A® (662)

The E® field, however, is zero, as we have seen, so that the Lagrangian is

satisfactorily nonzero. The E® field vanishes by definition [Eqgs. (581)].
Specifically [11-20]

G03(3)* — 60A3(3)* _ a3A0(3)* _ lg(AO(l)A3(2) _A3(2)A0(1)) =0 (663)

a result that is consistent with the B cyclic theorem and with the fact that there
are no magnetic monopoles or currents in O(3) electrodynamics. The E® field
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also vanishes if A® is a constant, or is structured. Therefore an SU(2) x SU(2)
electroweak theory can be constructed that self-consistently describes the
empirically observed Z,, W* bosons, and the B® field in the electromagnetic
sector. The theory of electromagnetism on the physical vacuum that emerges is

1 1 a a 1 3)2
L =—1F"F,, —7G"G,, - §B< )

1
+ MolZol” + Mw|W*[* + 5 (0 — &)

-+ Dirac Lagrangian + Yukawa,/Fermi/Higgs (664)

where F\, and G}, are the field tensor components for standard electromagnetism
and the weak interaction, and the cyclic magnetic fields define the Lagrangian in
the third term. The occurrence of the massive Z, and W™ particles breaks the
gauge symmetry of the SU(2) weak interactions.

The longitudinal field B therefore results from the breaking of gauge
invariance. There is no E® field by definition [Eq. (663)]. Under the gauge
transform

A — AWyt 4 yau! (665)

the B® field is invariant [11-20]:

B = i y[al) AU (666)
The condition Ai = 0 is, however, restrictive, and can be removed by the
inclusion in the theory of massive fermions. This makes the SU(2) x SU(2)
theory consistent with the fact that A is phase-dependent and structured from
Egs. (586)—(588) and with the fact that there can be many solutions forAff) in the
vacuum. The condition is therefore a first step in the development of SU(2) X
SU(2) theory. If the condition AS) = 0 is relaxed, the currents will contain vector
and axial components that obey SU(2) x SU(2)¢ algebra, and on the physical
vacuum, fields acquire masses that violate the current conservation of the axial
vector current.

The theory so far is incomplete, however, because it has two SU(2) algebras
that both act on the same Fermi spinor fields, and only one Higgs mechanism is
used to compute the vacuum expectations for both fields. To improve the theory,
consider that each SU(2) acts on separate spinor field doublets and that there are
two Higgs fields that compute separate physical vacua for each SU(2) sector
independently. The Higgs fields will give 2 x 2 vacuum diagonal expectations.
If two entries in each of these matrices are equal, the resulting massive fermions
in each of the two spinor doublets are identical. If the spin in one doublet
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assumes a very large mass, then at low energies, the doublet will appear as a
singlet and the gauge theory that acts on it will be O(3), with the algebra of
singlets:

e; = Sijk [ej,ek} (667)

The theory on the physical vacuum will involve transformations on a singlet
according to a broken O(3) gauge theory, and transformations on a doublet
according to a broken SU(2) gauge theory. The broken O(3) theory signals the
existence of a very massive A®’ boson, which has been observed empirically
[92], and massless A" and A® bosons. This broken O(3) gauge theory reduces
to electromagnetism with the cyclicity condition. The broken SU(2) theory
reflects the occurrence, as usual, of a massive charged and neutral weak bosons.
The theory can be taken further by embedding it into an SU(4) gauge theory
where the gauge potentials are described by 4 x 4 traceless Hermitian matrices
and the Dirac spinor has 16-components. The neutrality of the photon is then
given by a sum over charges, a sum that vanishes because the theory is traceless.
The Higgs field is described by a 4 x 4 matrix of entries.

By invoking the condition A{f) =0 in the above development, what is
meant is that the fransverse components of A@ are zero. This is always the
case in pure electromagnetism, because (3) is the longitudinal index. The longi-
tudinal

Af§> = (d,cA) (668)

is evidently nonzero from the arguments of Section XI. In general, in electroweak
theory, however, the indices (1), (2), and (3) denote isospin, and not the circular
complex space ((1),(2),(3)). So if we take A,? to denote a 4-vector with isospin
index (3), it may have a transverse component that is nonzero. This would mean
that the current for this gauge boson is not highly conserved with a very large
mass so that the interaction scale is far smaller than that for the electromagnetic
field.
If we take (1), (2), and (3) to denote isospin indices, we have in general

A (Al +g'b) — gAl)

' (8 +8%)'"
3 3
70 — (gbft> + g/AEt >) (669)
@)
/
ol =8 40

@+ g
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The m{l}) connection has a chiral component that seems to imply that B® has a
chiral component, or is mixed with the chiral component of the other SU(2)
chiral field of the electroweak theory. This is what happens to SU(2) electro-
magnetism at very high energies. It becomes very similar in formal structure to
the theory of weak interactions and has implications for the theory of leptons.
The electromagnetic interaction acts on a doublet that can be treated as an
element of a Fermi doublet of charged leptons and their neutrinos in the SU(2)
theory of the weak interaction.

Let \y be a doublet that describes an electron according to the (1) field and the
(3) field, where the indices (1) and (3) are isospin indices in general. The free-
particle Dirac Lagrangian is (c =1; = 1)

L= \TJ(iVMDu —m)y = ‘I—’(iyuap —m)y — gAﬁ‘I"Y“Gb‘I/
= gfrec + AﬁJ;L)L (670)

where |y = \"y,. We decompose the current Jﬁ into vector and chiral
components

= Va7, (14 v5)sD = V0 + ) (671)

a procedure that is analogous to the current algebra for weak and electromagnetic
interactions between fermions. There are two vector current operators

a i a
Vp = E\IJYpG \l] (672)
and two axial current operators
i-
X =5 W rsTV (673)

where Y5 = iy,7,v3Y4 and where t° are Pauli matrices. These define an algebra
of equal time commutators:

Vi, Vi) = it™ v

a [l C n,C (674)
Vi, xp) = =ity
The index p = 4 implies the following algebra:
Va’ Vb — abc Vc
Vi, Vil (675)

abc c

Vi xs) = o
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The definition

—_

0% =3 (Vi £15) (676)
gives the algebra
[0, 0% = ™0,
[0, 0] =it Q" (677)
[ 17 Qli] =0

which defines the SU(2) x SU(2) algebra. The parity operator P acts as follows:

PViPT =V

PyLiP" =~y o)
and one SU(2) group differs from the other. The total group is therefore the chiral
group SU(2) x SU2)p.

On the physical vacuum, the above theory becomes a vector gauge theory
where the indices (1), (2), and (3) are now defined in the complex circular basis
((1),(2),(3)) described by

(679)

On the physical vacuum, therefore, there are no transverse components of AE?),

and its longitudinal components are structured as in Section XI. On the physical
vacuum, there is a mixture of vector and chiral gauge components within both the
electromagnetic and weak-field sectors. This means that any transverse compo-
nent of A® will vanish identically at low energies, and any transverse component
of A® can exist only if (3) is regarded as an isospin index. If so, any transverse
A will be massive and short-ranged and will quantize to the massive boson
detected in Ref. 92. Clearly, a transverse component of A in the pure electro-
magnetic sector vanishes by definition, and can exist only as a result of the
mixing of the electromagnetic and weak field, and then only if (3) is generalized
to an isospin index from a purely spatial index (3) = k.

If there exists a very high energy massive A, as the data in Ref. 92 appear
to indicate, there exists the nonconserved current

M) = imy T yyv560N (680)
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where inhomogeneous terms correspond to quark—antiquark and lepton—
antilepton pairs that are formed from the decay of these particles. This breaks
the chiral symmetry of the theory. The action of this current on the physical
vacuum is such that when projected on a massive eigenstate for any 3-photon

with transverse modes, for instance

m2

(ko k)"

the mass of the chiral bosons will vanish, while the mass of the chiral 3-boson
will be m. Therefore A® is a separate chiral gauge field that obeys axial vector
field that does not obey axial vector conservation and occurs only at short ranges.
Therefore A®” must not be confused with a transverse component of the low-
energy electromagnetic Afl >, which is zero by definition. Furthermore, the
condition A®) = 0 must not be taken to imply that the scalar and longitudinal
vector parts of A are zero.

Therefore the electroweak theory is chiral at high energies, but is vector and
chiral in separate sectors on the physical vacuum of low energies. The high-
energy chiral field combines with the other chiral field in the twisted bundle to
produce a vector field plus a broken chiral field at low energy. There are
independent fields that are decoupled on the physical vacuum at low energies.

Consider two fermion fields, |y and ¥, each consisting of the two component
right- and left-handed fields Ry, Ly ;R,,L,. These Fermi doublets have the
masses m; and my. The two gauge potentials A, and B, interact respectively
with the \y and y fields. In general, these Fermi fields are degeneracies that split
into the multiplet of known fermions, so that there are four possible masses for
these fields in the physical vacuum. The masses originate in Yukawa couplings
with the Higgs field on the physical vacuum, which give Lagrangian terms of
the form Y¢RW ¢L, +H.C. and Y, L+nR + H.C. where there are two compo-
nent ¢* fields for the Higgs mechamsm (H.C. = higher contributions). These
components assume the minimal expectation values (¢,) and (n,) on the
physical vacuum with the Lagrangian:

L =iy (O, + igAy) — mi)V
+ 7(iv" (0, + igBy) — ma)y — YoR} Ly + H.C.
— YnLynRy; +H.C. (682)

(0[0"J1x,) = (Xp | Xp)e™ (681)

that can be further broken into the left and right two component spinors
& = Ryic" (0 +igAu)Ry + Ly ic" (O +igA,)Ly
+ R ic" (0 + igBy)R, + L c* (3, + igBy, )Ly
— mlRlT,l«p — m1L$RW — mzR;LX — mzL;RX
— YoRy &Ly + Yo L&' Ry — YoLynR, + YiRIM'Ly  (683)
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The gauge potentials A, and B, are 2 x 2 Hermitian traceless matrices, and the
Higgs fields ¢ and y are also 2 x 2 matrices. These expectations are real-valued,
and the nonzero contributions of the Higgs field on the physical vacuum are
given by the diagonal matrix entries [95]:

T 0 1 a0
e AN R R

The values of the vacuum expectations are such that, at high energy, the left-
handed fields R, and the right-handed doublet field Ly, couple to the SU(2) vector
boson field B,,, while at low energy, the theory is one with a left-handed SU(2)
doublet Ry, that interacts with the right-handed doublet L, through the massive
gauge fields A,. The mass terms from the Yukawa coupling Lagrangians will
give

m =YDy > m" = Y, () > m" = Ye (o) > m" = Yy (6P)  (685)

If the SU(2) theory for B, potentials are right-handed chiral and the SU(2) theory
for A, potentials are left-handed chiral, a chiral theory at high energies can
become a vector theory at low energies.

This is a broken gauge theory at low energy, which can be expressed as in
Eq. (686) as a gauge theory accompanied by a broken gauge symmetry. Assume
a simple Lagrangian that couples the left-handed fields \; to the right-handed
boson A, and the right-handed fields Vs, to the left-handed boson B,:

L =, (iy" @y + igAy) — m)V, + V, (iv" By + igBy) — ma)V,

— YoV OV, — Yo, | (686)

If the coupling constant Yy, is comparable with the coupling constant g, then the
Fermi expectation energies of the fermions occur at the mean expectation value
for the Higgs field (d,). In this case, the vacuum expectation value is proportional
to the identity matrix, meaning that the masses acquired by the right chiral plus
left chiral gauge bosons A, + By, are zero, while the right chiral minus left chiral
gauge bosons A, — B, acquire masses approximately equal to Y4(d,). The
theory at low energies is one with an unbroken vector gauge theory plus a broken
chiral gauge theory [95]. The additive charges A()(), B(:(2) of the two chiral
fields are opposite so that of the resulting vector gauge bosons are chargeless.
Therefore gauge theories can change their vector and chiral character, and so also
can the doublets of the theory. In so doing, this will give rise to the doublets of
leptons and quarks plus doublets of very massive fermions that should be
observable in the multi-TeV range.
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The two parts of the twisted bundle are copies of SU(2) with a doublet
fermion structure. One of the fermions has a very large mass, m' = ¥, (x("),
which is assumed to be unstable and not observed at low energies. So one sector
of the twisted bundle is left with the same Abelian structure, but with a singlet
fermion, meaning that the SU(2) gauge theory becomes defined by the algebra
over the basis elements

[éi, éj} = iSiJ‘kék (687)

To calculate the photon masses, define the Higgs field by a small expansion
around the vacuum expectations

n(1) — g(l) + <T]E)l)>
n® =e® 4+ ()

The contraction of the generators 6'!) and ¢(® with the Higgs field matrix and
right and left fields gives

(688)

oVenR+6?.nL=0 (689)

so that the charges of the AW and A? fields are zero. On the low-energy
vacuum, these fields can be thought of as massless fields composed of two gauge
bosons, with masses (m’ +m")"/> > M, and with opposite charges. These
electrically charged fields can be thought of as A = A +A@) giving rise to
particles that cancel each other and massless vector photon gauge fields. The A®
field has an unstable mass that decays into particle pairs.

Therefore the more massive Higgs field acts to give the gauge theory
SU(2) x O(3), where the first gauge group acts on singlets. On a lower energy
scale, or longer timescale, A®’ has decayed and vanished. The second gauge
group is then represented by O(3)p, a notation that implies “partial group.” The
latter describes Maxwell’s equations, and the B field is defined through
figA(l) x A?). Evidently, in this scale, the isospin indices become identified
with the space indices (1), (2), and (3) of the circular basis.

The second Higgs field acts in such a way that if the vacuum expectation
value is zero, ($®)) = 0, then the symmetry breaking mechanism effectively
collapses to the Higgs mechanism of the standard SU(2) x U(1) electroweak
theory. The result is a vector electromagnetic gauge theory O(3)p and a broken
chiral SU(2) weak interaction theory. The mass of the vector boson sector is in
the A® boson plus the W+ and Z° particles.

The two SU(2) theories can be represented as the block diagonals of the
SU(4) gauge theory. The Lagrangian density for the system is then

L =iy @y + igAy) — m)V — Yy (690)
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and the gauge potentials A, now have 4 x 4 traceless representations. The scalar
field theory that describes the vacuum will satisfy field equations that involve all
16 components of the gauge potential. By selectively coupling these fields to the
fermions, it might be possible to construct a theory that recovers a low energy
theory that is the standard model with the O(3)p gauge theory for electro-
magnetism. We arrive at the important conclusion that the electroweak theory
can be constructed with an O(3) electrodynamic sector to provide additional
physical details at high energy.

The prediction of a heavy boson A® has received preliminary empirical
support [92,96] from an anomaly in Z decay widths that points toward the
existence of Z bosons with a mass of 812 GeV'33) [92,96] within the SO(1)
grand unified field model, and a Higgs mechanism of 145 GeréﬁB. This
suggests that a new massive neutral boson has been detected. Analysis of the
hadronic peak cross sections obtained at LEP [96] implies a small amount of
missing invisible width in Z decays. The effective number of massless neutrinos
is 2.985 £ 0.008, which is below the prediction of 3 by the standard model of
electroweak interactions. The weak charge Qyw in atomic parity violation can be
interpreted as a measurement of the § parameter. This indicates a new
Ow = —72.06 & 0.44, which is found to be above the standard model pre-
diction, an effect interpreted as being due to the occurrence of the Z’ particle,
which is referred to hereinafter as the Z, particle.

SO(10) has the six roots of,i = 1,...,6. The angle between the connected
roots are all 120°, where the roots oc3, o are connected to each other and two
other roots. The Dynkin diagram is

2

1 6

o o

The decomposition of SO(10) to SU(5) x U(1) is performed by removing the
circles representing the roots o.!'>3 connected by a single branch. The remaining
connected graph describes the SU(5) group, and the isolated circle is the U(1)
group. However, by removing either of the circles o** connected by three
branches forces SO(10) to decompose into SU(2) x SU(2) x SU(4). Here, we
have an SU(2) and a mirror SU(2) that describe opposite-handed chiral gauge
fields, plus an SU(4) gauge field. The chiral fields are precisely the sort of
electroweak structure proposed in this section and elsewhere [17,94]. Since
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SU(4) can be represented by a 4, that is, 3@ 1 and 4 as 3 @ 1, SU(4) can be
decomposed into SU(3) x U(1). The neutrino short fall is furthermore a signature
of the opposite chiralities of the two “mirrored” gauge fields [17,94].

The mechanism SU(2) x SU(2) — SU(2) x O(3) discussed in this section
predicts the occurrence of a massive A(3>, so it is possible that the LEP data could
corroborate the work outlined in this section, with an extended electromagnetic
sector. Quantum chromodynamics (QCD) and the standard model of the electro-
weak theory are understood empirically. There is reasonable empirical corro-
boration in the TeV range and ideas about quantum gravity at 10'° GeV, but
nothing in between. The LEP data therefore give some confidence that O(3) elec-
trodynamics is a valid theory, and the data suggest that at high energy, electro-
dynamics and the weak interactions are dual-field theories in the TeV range of
energy, which is expected to be accessible to the CERN heavy hadron collider.

The LEP data could be the first indication that the universe is dual according
to the Olive Montonen construct [97], which asserts that coupling constants
have inverse relationships. One field is weak, and the other is strong at high
energy. The experimental finding [96] of the massive A®) might bring a basic
change in the foundations of physics. For example, it may be conjectured that
there is a dual field theory to the SU(3) nuclear interaction of QCD with a chiral
SU2) x SU(2) electroweak theory, implying the existence of an additional
weak field in nature. The problem with such a program is that supergravity and
superstring theories imply that, at very high energies, the universe is one of 10
or 11 dimensions [98]. The minimal grand unified field theory is the SU(5)
theory that breaks into SU(3) x SU(2) x U(1) at lower energy. This is a gauge
theory in six dimensions that fits into the Calabi—Yau construction of compac-
tified manifolds. These spaces leave the four-dimensional spacetime left over
and uncompactified from the 10 dimensions at high energy. A Calabi—Yau
manifold of seven dimensions would accommodate an SU(3) x SU(2) x SU(2)
bundle. The-low energy SU(2) x SU(2) electroweak theory would then suggest
a superstring theory of 11 dimensions, which appears to preclude any SU(3)
field dual to QCD because this would demand a Calabi—Yau space that can
subsume an SU(3) x SU(3) x SU(2) x SU(2) bundle of 10 dimensions, and a
supergravity theory of 14 dimensions.

The theory of gravitation, however, need not involve four dimensions; infor-
mation [99] may exist on a two dimensional surface, such as the event horizon
of a black hole. If the symmetries relevant to gravitation involve the evolution of
a two-dimensional surface, then an SU(2) x SU(2) x SU(3) gauge theory plus
gravity would be 11-dimensional, and duality between the two surfaces that
construct spacetime would reduce this to nine dimensions. However, the issue of
duality with nuclear interactions would still increase the dimensionality re-
quired to 12 or 14, and supergravity requires a total space of 11 dimensions.
Strings exist at 10 dimensions.
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If the nature of spacetime involves the interference of dual wave fronts of
two dimensions, then there are two wave fronts, each of two dimensions, that
constructively and destructively interfere, but that are determined by the same
symmetry space. Gravitation can be described by the set of diffeomorphisms of
a two-dimensional surface and SU(2) x SU(2) x SU(3) plus gravity involving a
space of nine dimensions. The additional dimensions to spacetime are purely
virtual in nature. A field dual to QCD would require a large space of 12 dimen-
sions, and an additional constraint is required in order for this theory to satisfy
current models of supergravity.

Gravitation is described by the Lie group SO(3,1) ~ SL(2,C)/Z,. It can be
seen that the relevant symmetries are contained in the SL(2,C) component of
two dimensions, and the Lie group has a hyperbolic metric structure. The
Euclidean group for gravity is SO(4) ~ (SU(2) x SU(2))/Z,. In effect, these two
groups are related by a rotation r — if, which might suggest that the electroweak
interaction and gravitation can be regarded as two states of a single symmetry
that may manifest itself by the action of a U(1) rotation on the Cartan center of
SUQ2), 6;3) = ¢%50), At low energy, the circle associated with this rotation is
reduced to a point and the direction of the angle 0 determines the coupling
constant for the electroweak and gravitational fields, implying a superstring
theory in 11 dimensions.

If there is a field dual to the SU(3) QCD field, and if the theory is similar in
form to the electroweak unification scheme outlined in this section, there may
be a right-left chiral SU(3) bundle that, at low energy, combines into a
right —left chiral and right + left chiral field. This result would indicate that
QCD is a vector theory but associated with another field that is chiral or that has
a broken chirality. Since QCD is the strongest force in the universe with g = 1,
its putative dual field is one with a very weak coupling constant. For example,
there may be slight chiral couplings between quarks. This would, in turn, imply
the discovery of chirality with gluons, usually regarded as vector bosons.

In the absence of data, it seems best to proceed on the assumption that gauge
theory at low energy is SU(2) x SU(2) x SU(3) and that the inclusion of gravity
gives a space of 11 dimensions at high energy, fitting in with supergravity models.
These thoughts [7,94] indicate the major impact on physics of the B® field.

XIII. RELATIVISTIC HELICITY

In this section, we extend consideration from the Lorentz to the Poincaré group
within the structure of O(3) electrodynamics, by introducing the generator
of spacetime translations along the axis of propagation in the normalized (unit
12-vector) form:

g = sﬁ])e(l) + Sﬁz)e(z) + SS)EB) (691)
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The relativistic helicity is then the product
G, = Gfllv)gu(z) + GEEV)SH(U + Gl(fv)gu(:” (692)

which, for Z = (3) axis propagation, is the Pauli-Lubanski pseudo vector (PL
vector):

~ 1
G, = GS\/)SHB) = EspvchGpmsum (693)

Evidently, this vanishes on the U(1) level, a basic paradox, because the photon
has helicity after quantization. By using the Poincaré group, a fundamental
geometric proof can be given for the existence of B® in the vacuum, and helicity
defined entirely through B®). This proof proceeds by constructing the PL vector
from the geometric 3-manifold in 4-space, a 3-manifold that is in general a tensor
of rank 3 in four dimensions, antisymmetric in all 3 indices. The PL vector is dual
to this 3-tensor and has the same magnitude. The 3-tensor S*' is in general the
following product:

§om = Grog (694)

This approach is therefore based in rigorous and general geometric tensor theory.
The PL vector dual to S¥°* turns out to be the light-like invariant:

B* = (B®,0,0,B%) (695)

In the Lorentz group, this concept is missing, and in the Poincaré group, the
relativistic helicity vanishes if B is not zero. Therefore B® can be regarded as
the fundamental field component representing spin in the classical electro-
magnetic field. If B® were zero, the PL vector would be a null vector, meaning
that the space part of the equivalent hypersurface element is null. This result is a
paradox, because a physical beam of light must always have a finite cross section
or area perpendicular to the propagation axis of the beam, the Z or (3) axis. So if
B®) vanishes, reduction to absurdity occurs, and the beam of light vanishes. This
result, in turn, is self-consistent with the fact that if B® were zero in the B cyclic
theorem, B and B® would also vanish, and electromagnetism would vanish.

The unit 12-vector g, acts essentially as a normalized spacetime translation
on the classical level. The concept of spacetime translation operator was intro-
duced by Wigner, thus extending [100] the Lorentz group to the Poincaré group.
The PL vector is essential for a self-consistent description of particle spin.

The dual pseudotensor of any antisymmetric tensor in 4-space arises from the
integral over a two-dimensional surface in 4-space [101], in which the infinite-
simal element of surface is given by the antisymmetric tensor:

df* = dxtdx" — dx"dx* (696)
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The components of this tensor are projections of the element of area on the
coordinate planes. In 3-space, it is always possible to define an axial pseudovector
element df;, dual to the antisymmetric tensor dfj:

~ 1
df; = Esijkdﬁk (697)

The pseudovector element df; represents the same surface element as dfix, and,
geometrically, is a pseudovector normal to the surface element and equal in
magnitude to the area of the element. In 4-space, such a pseudovector cannot be
constructed from an antisymmetric tensor such as df,,. However, the dual
pseudotensor can be defined by [10]:

~ 1 -
A = 2 e dfy (698)

where €"V°P is the totally symmetric unit pseudotensor in four dimensions, with
the property

e = —go3 =1 (699)

in cyclic permutation of indices. In geometric terms, df*” is an element of
surface equal and normal to the element dfs,. All segments in it [101] are
orthogonal to all segments in dfs,, leading to the following result:

df*df,, =0 (700)

In general, therefore, an antisymmetric 4-tensor is an element of surface in
4-space. There are three of these elements of surface in the 12-vector G*".
Equation (700) means that G"" is orthogonal to G, in free space

G”VGW -0 (701)
where
~ 1
G" = 3 e"VoPGg, (702)
1 G
Guv = Eguvch P (703)
In contravariant covariant notation, the field tensors are defined by [101]
E E E —E' =2 =B
o 2 2 0 = = =
£l 0 —-B; B B 0 -B B
GGP = E ) ch = 2
£ By 0 -B £ B 0 -B
£ -B, B 0 E _pg B 0

(704)
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and the dual tensors by

o —-B' —B? _pB3 0 By B, B3
e B0 B E g0 BB
B _ ; =
G 2o o B | G = B, B o B (705)
BE SE 0 —By 2 =20
It follows that
GMIGE) =0 = 4% .EY) (706)

and that B®) is zero. This result is self-consistent with earlier arguments and with
the fact that the light like products of PL vectors are null:

B'B, = E'E;, =0 (707)

The only nonzero components of the PL vectors B and B” are the longitudinal
and time-like components. It follows that since B®) is null, its magnitude is zero,
and so E* and Eu are null. This result is, in turn, consistent with the fact that the
PL vector is a pseudovector, whereas E* is a null vector whose dual is null.

The dual axial vector in 4-space is constructed geometrically from the
integral over a hypersurface, or manifold, a rank 3-tensor in 4-space antisym-
metric in all three indices [101]. In three-dimensional space, the volume of the
parallelepiped spanned by three vectors is equal to the determinant of the third
rank formed from the components of the vectors. In four dimensions, the
projections can be defined analogously of the volume of the parallelepiped (i.e.,
areas of the hypersurface) spanned by three vector elements: dx*, dx* and dx .
They are given by the determinant

dx dxM dxd™
ds*V° = |dx¥  dxV dx"V (708)
de dx/f)' dx//o_

which forms a tensor of rank 3, antisymmetric in all three indices. The axial
4-vector element dS* dual to the tensor element dS*V° is the element of
integration over a hypersurface in four dimensions:

. 1
dS" = — —ghvords
6 Yor (709)

dSyop = EgvopdS*
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so that dS° = dS'23, dS' = dS°®, and so on. The S° component of S* is therefore
equivalent to the S'?* component of $Y°?, normal to it and equal to it in
magnitude. The PL vector is an example of a 4-vector dual to the 3-manifold in
4-space. This is a rigorous geometric result, and if the PL vector were null, it
would represent a null hypersurface in four dimensions. This, as follows, is a
rigorous geometric proof of the fact that BY) is nonzero within the Poincaré
group. The dual-vector S* is a 4-vector equal in magnitude to the area of the
hypersurface to which it is dual, and is normal to this hypersurface. It is therefore
perpendicular to all lines drawn in the hypersurface. In particular, the element
dS® = dXdYdZ is an element of three-dimensional volume, dV, the projection of
the hypersurface on to the hyperplane x° = constant.

In classical electromagnetic theory, the PL vector is defined through the
3-manifold

ot AW gk
e =[9Y AV g (710)
0° A° ¢£°

defining the fully antisymmetric rank 3-tensor
SYOr = (0YA° — 0°AY)el + - - (711)

which consists of three terms, the first of which is the product of €" with the
antisymmetric tensor G¥°, a component in internal gauge space of Eq. (22). This
product gives the PL vector through

-1
§ = 5" PSuap (712)

The second two terms of the sum (711) can be eliminated using a combination of
the free-photon minimal prescription and the quantum hypothesis

d, = —i%AH (713)

and the manifold defined in Eq. (711) reduces precisely to
SYOr = GVO¢! (714)

It is now possible to adopt the standard definition [6] of the PL vector to the
problem at hand to give

o1
G = 7" P Gapey (715)
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where

Gop = 0oAp — DpAs (716)

In Eq. (715), G" is dual to the third rank Gopey in four dimensions and normal to
it with the same magnitude. In the received view, there is nothing normal to the
purely transverse G, on the U(1) level, and therefore G* cannot be consistently
dual with Gg,¢,. This result is inconsistent WiEh the ~four—dimensional algebra of
the Poincaré group. If we adopt the notation G, = By, we obtain

By, = G,y - " (717)

and the complete PL vector in consequence is

= (3(3)70a Ov _B(3)) (718)
Similarly
,BY) (719)

which is orthogonal to B,.

The PL vector was originally constructed for particles from the generators of
the Poincaré group. The PL vector corresponding to the photon’s angular
momentum corresponds in free space and in ¢ = 1 units to

JF=(1%.0,0,9) (720)
and the light-like momentum in ¢ = 1 units is

P = (p¥,0,0,p¥) (721)

If the mass of the photon is identically zero, its normalized helicity takes the
values +1 and —1 because J* is proportional to p* [6]. The 0 component, which
usually appears for a boson, is not considered but reappears if the photon has
identically nonzero mass. In this case, the Wigner little group becomes O(3). The
B® field corresponds to J® for the photon with a tiny but nonzero mass
because, as argued earlier, the structure of the O(3) field equations is identical
with that of the Lehnert equations [Eqs. (612)], which imply photon mass.
Therefore p* and J* in the laboratory are infinitesimally different from light-like,
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but on an astronomical scale, they may become substantially different from light-
like [11-20].

A complete consideration of relativistic helicity in the electromagnetic field
therefore requires consideration of the Poincaré group. It is not sufficient to
consider the Lorentz group. The vector dual to the antisymmetric field tensor
introduced by Lorentz, Poincaré and Einstein could not have been defined prior
to the introduction of the Pauli-Lubanski vector and Wigner’s work of 1939
[100]. This work characterized all particles in terms of two Casimir invariants:
one for mass and one for spin. The photon and electromagnetic field are linked
by quantization, so the Wigner method must also be applied to the field. When
this is done, as in this section, the relativistic helicity in O(3) electrodynamics is
defined entirely by B®. U) electrodynamics can be described in terms of the
Lorentz group, in which relativistic helicity is incompletely defined. A full
understanding of B®) therefore requires the Poincaré group [11-20]. Further-
more, Noether’s theorem is reduced to energy-momentum conservation only
with the use of the spacetime translation generator, which within a factor %, is
the energy-momentum 4-vector itself. In the received view of the classical field
[5], energy momentum is defined only through transverse components, whereas
in O(3) electrodynamics, it is straightforwardly defined through A®) | which is
purely longitudinal at low energies.

The nature of the dual vector (B*) can be deduced without using any equation
of motion, but the dual 4-vector is a fundamental geometric property in the four
dimensions of spacetime. The complete description of the electromagnetic field
in O(3) electrodynamics must therefore involve boosts, rotations, and spacetime
translations, meaning that B* is a fundamental geometric property of spacetime.
The unit 4-vector &, is orthogonal to the unit 4-vector B*:

eB* =0 (722)

and this is a fundamental property of the Poincaré group. The Casimir invariants
of the electromagnetic field are therefore

g =0
BB =0 (723)
eB* =0

The homogeneous O(3) equations in the vacuum are obtained by considering
the helicities:

8L3)GHV(3) - (B(3>,0, 0, B(3))
(

=)

u)E;ILW(I) 0
SS)GMZ) 0

m

(724)
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The first of these gives the vector l§’”, and the second and third give terms such as

1
(1) E})

By +-L =0 (725)

The three relativistic helicities (724) therefore give Egs. (590)-(592) with the
addition of the following equation:

V-B® =0 (726)

In arriving at this conclusion, we have used antisymmetric tensor definitions such
as

s
i BY 0 0o I
G = " (727)
(1) Ey
By 0 0 -
By considering the conserved quantity B*(®), we arrive at
0,B"%) =0 (728)
a solution of which is
oB®)
=0; V.B®Y=0 (729)
ot
The overall structure of the O(3) equations in the vacuum is therefore
9,G" =0 (730)

This is the same structure as the homogenous Maxwell-Heaviside equations in
the vacuum, which can therefore be obtained by a consideration of relativistic
helicity.
We have seen that the overall structure of the inhomogeneous O(3) equations
in the vacuum is [Egs. (612)]
OH"Y =T, (731)

vac
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where the vacuum charge density is defined by
Prac = ig(A(2> DB DD .40 L oG . p) _pB) .40
+ADW.p® —DW.A?) (732)
and the vacuum current density by
Tuae = —ig(cAPD® — cAVD® 4 A® x H®) — A®) x H?
+cAPDY — cAVD®) + A% x HO — A1) x HO)
+cA'D? — cAPDY + AV x HY — A® x HV)  (733)

Therefore, the vacuum charge and current densities of Panofsky and Phillips
[86], or of Lehnert and Roy [10], are given a topological meaning in O(3)
electrodynamics. In this condensed notation, the vacuum O(3) field tensor is
given by

0 -p' -p* -D?

D! —H>  H
oY — I 8 7;] (734)
D} *;2 e (C)
and the 4-current by
r= (o) s

The equations of O(3) electrodynamics can therefore be written in condensed
form as Egs. (730) and (731) in the vacuum. These equations can be written as a
single conservation law under all conditions (vacuum and field—matter interac-
tion):

0,G* =, H" =0 (736)
G" = G"; H" = H"'g, (736a)

In general, define the unit generators
g“:(l,x,l,f) (737a)

g — (5,1,1,1) (737b)
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where v is linear velocity and c the speed of light. Equation (737a) defines a unit
energy-momentum 4-vector orthogonal to the unit energy momentum 4-vector in
Eq. (737b). The existence of such generators signals that the electromagnetic
field in general has a rotation—translation character, so forward momentum is
always accompanied simultaneously by a transverse momentum. Thus €,e* = 0,
that is, €, is orthogonal to €,. This feature develops Eq. (736) into two field
equations. In the vacuum, v = ¢, and these field equations become Eqs. (730) and
(731) with vacuum charge and current defined by Egs. (732) and (733),
respectively. In field—-matter interaction, v < ¢ in the charge—current 4-vector of
Eq. (735). If B® is zero, the vacuum electromagnetic field is lost. Because of its
simultaneous rotation and translation, the electromagnetic field has left- and
right-handed circular polarization and is chiral. The Pauli-Lubanski construct
can be either a pseudovector or vector.
We first consider the conservation law

8,6 = 0 (738)
where (¢ = 1 units)

G = ey = (~2B' + B~ 2B B BB 4 EL B DB R
C C C C C C C

(739)
giving the conservation equation:
E(—aoBl +00B® — 00B) +0:(B" — EEZ)
2,V 3,V Vi
+62(B +—E)+63<B +iE +—E>:0 (740)
c c ¢
In vector form, this becomes (in SI units)
oB
v~<E+VxE> =c*V-B (741)

which is a balance of the Faraday law of induction and the Gauss law for all v,
including v = c¢. This result is true for all v, and therefore under all conditions,
and is precisely equivalent to the result (730), the condensed form of Egs. (95)—
(100) of O(3) electrodynamics. Apparently, magnetic monopole was never
observed and the Faraday law was never violated. This is consistent with O(3)
electrodynamics as argued already.
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Next, we consider the conservation law:
0H"=0 (742)
where (¢ = 1 units)
HY = HWE, = (D1 +D+ DD 1 -2 D - B+ H,
c c
Vo3 2 1
‘D +H2—H )
c
Using Eq. (742)
(D' + D? + D*) + 9, (KDl Y H - H2)
c
+ 0 (31)2 — B +H1) + 85 (KD3 YH - Hl) -0 (744)
c c

which in vector form is (in SI units):

v xH—aa—?:v(V-D) (745)

and is a combination of the Ampere—-Maxwell law:

VXH—%—?:J:v(V-D):vp (746)

and the Coulomb law:

V-D=p (747)

Equation (745) can be written as

0 oD
VXH_<§+VV'>D_6_1 (748)

where

—=_—+WW. (749)
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is the convective derivative. The charge—current 4-vector in general is

= <p,%) = (p,gp) (750)

and in the vacuum is
1
J\}/J'ac = pvacv_‘]vac 3 vV==¢C (751)
c

Therefore, charge density and current density in the vacuum and in matter take

the same form, [see Eqgs. (732) and (733)]. This is a general result of assuming an

O(3) vacuum configuration as in Section 1. Equations (736) are a form of

Noether’s theorem and charge/current enters the scene as the result of

conservation and topology. Similarly, mass is curvature of the gravitational field.
In the vacuum

v=c; & =(1,0,0,1) (752)

and conservation of the PL pseudovector gives the continuity equation

VxD® =vxPd =L v.B¥eB =9 (753)

which is a post-Noether-invariant. We have used the vacuum relation:
DV® = gEC) 4 pB¥ = pO (754)

The vacuum polarization component PY) s equal to the vacuum displace-
ment D) and aligned along one axis, so its curl vanishes. If B®) were zero,
then for a light-like €*, G* would be null and the electromagnetic field would
vanish a reduction to absurdity proof of the existence of BY) if we adopt the
Poincaré group. The adoption of the latter group leads to the post-Noether-
invariant equations (736), which break out into the field equations of O(3)
electrodynamics. Since U(1) is an O(3) symmetry with one null axis (the Z axis),
U(1) is in a sense a sub symmetry of O(3), and this property leads to the fact
that O(3) equations can be expressed in the form of U(1) equations without
self-contradiction. The following diagram, which outlines the rules for
connecting U(1) and O(3), may help the reader understand how this process
occurs.
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Rules for Connecting U(1) and O(3)

auél»lVE 0 aquvEJv
A-B:OaB A-D=p
_ oD
AxE+—-=0 AxH=J+—-
B=B"+B? " H=H"+H® + H®
E=EV+E® p=p"+p?®,p®
Gy _ W _
9,6"'=0 DH" =]
J
r=(p.L)

p=ig (A42-DP - p®@.40) 4 A@).p()_pB). 4N ;1 oM. p@) _ p(1). 4@))
J =—ig (cA2D® — cA®D® 4 4@ 5 5O _ A®) x )

+ CA((f)i)D(1)_CA(3)D(3)+A(3) <« HD Z 4Dy g®

+ cADD@ _ cABD L AN @ _ 4@ 1)

uv > Ay

1 1 2) (2 3) (3
Gy = F) eV 4 1)o@ (0 o

A=A M1 4B @ 4D @
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In the vacuum limit, we also obtain the following equation for the vacuum
displacement D®) and vacuum polarization P®:

ap® aDp®

Now use
oD
V xH= (E + v(V-D)) (756)
in the limit v — ¢, and take the (3) component to find that:
VxH® =0 (757)
which gives
Vx(ADxA®)=0 (758)

a result that is consistent with the definition of B®) in the vacuum, Eq. (38),
because the curl of A" x A?) is zero. The 3-component of Eq. (741) is simply

v.B0 — —0 (759)

because E® is zero as proved already. The fact that E® is zero is a direct
consequence of the Jacobi identities (86) or (578). The same identities imply that
there is no magnetic monopole or magnetic current in O(3) electrodynamics
under any circumstances. The B® component is topological in origin, and does
not originate in a magnetic monopole as a material particle. These theoretical
results are consistent with empirical data [11-20], which imply the presence of
B® and the absence of a magnetic monopole in nature.

In the Poincaré group, therefore, the fundamental spin of the electromagnetic
field is represented ineluctably by the PL vector:

B* = (B%),0,0,B%) (760)

The integral of B* over a hypersurface in four-dimensions is always zero, a result
of the ordinary Stokes theorem in four dimensions:

- 1 - -
jEBudx“ _ EJ (0B, — 0,B,)06" = 0 (761)
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The equivalent result in 3-space dimensions has been given by Evans and Jeffers
[102]:

j£3<3> «dr=0 (762)

and is simply a consequence of the fact that B® is irrotational by definition.
Therefore we obtain from Eq. (761) the results

0uB, =0,B, =0 (763)

and
aqu = ava = Juv = va (764)

These are alternative forms of the Lehnert or Panofsky—Phillips equations (612),
which can be expanded out into the O(3) equations (95)—(106) using the rules in
the above flowchart shown above [after text that followss Eq. (754)].
Conservation of helicity therefore requires the charge current tensor to be
symmetric. Similarly, conservation of angular momentum requires the energy-
momentum tensor to be symmetric in dynamics [6]. Therefore conservation of
helicity generates the field equations and new conservation laws based on
topology. Charge current itself is the result of topology as discussed by Ryder.
[6, p. 93].

The Lie algebra of the PL vector within the Poincaré group is not well known
and is given here for convenience. The PL vector is defined by

W, = TP (765)

where

-3 K, —K; 0

is a matrix of Poincaré group generators: the boost (K) and rotation (J) generators
[6,11-20]. Here, PV is the generator of spacetime translation, which is missing
from the Lorentz group. Therefore the PL vectors written out in full are

Wo = —\P' + LLP* + J5P°

Wi = —J1P° + K3P? — K, P°
Wy = —P° — K3P' + K P
Ws = —J1P° + K,P' — K P?

(767)
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These are linear operator relations implying the property
PO, WH] =0 (768)

showing that the Hamiltonian operator H = P [6,11-20] commutes with the
complete vector WH under all conditions. Equation (768) implies

oWH =0 (769)

as in Eq. (736). Relativistic helicity has no 4-divergence. From Egs. (767), we
obtain the closed Lie algebra

(W' W2 = i(PPW® + PW°)
W2, W3] = i(P°W!' + P'W?)
W2, W] = i(PPW? — P2W0) .
WO, W] = i(PPW2 — P2
WO, W] = i(P'W* — PYW)
WO, W3] = i(PPW! + P'W?)
and Jacobi identities such as
(W W2, W2+ W2, W2, W)+ (W2, (W, W2 =0 (771)

checking that W* is a valid generator of the Poincaré group. The Casimir
invariants P,P* and W,W* are the two fundamental invariants of the Poincaré
group.

In electromagnetic theory, we replace W* by G" the relativistic helicity of the
field. Therefore, Eq. (770) forms a fundamental Lie algebra of classical electro-
dynamics within the Poincaré group. From first principles of the Lie algebra of
the Poincaré group, the field B® is nonzero.

If a light beam is considered propagating at c in Z, we obtain from Eqgs. (770)
the Lie algebra of the E(2) Euclidean group [6,11-20], which is a mathematical
group with no physical meaning:

W w2 = (772a)
W2, W3] = iPPW! (772b)
W3, W' = iPPW? (772¢)
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compared with the O(3) Lie algebra

W' W2 = iP"W? (7724d)
(W2, W3] = iP°W! (772e)
W3, W' = iP"'W? (772f)

and similarly for G*. The E(2) group is the Wigner little group for a particle
whose mass is identically zero, and so such a particle does not exist in nature.
This proves that the photon and neutrino both have identically nonzero mass. The
Wigner little group for a particle with mass is the physical O(3) group. In terms
of field components, Eq. (772b) gives (in ¢ = 1 units)

B> — E',B’] = iB"B! (773)
which is satisfied by
[B27B3] — iB(())Bl
[B°,E'] = iB"E? 77

The first of these equations is an equation of the B cyclic theorem, which
therefore emerges from the symmetry of the Poincaré group in free space.
Similarly, Eq. (772c) gives:

[B*,B' + E?| = iB" (B> — E') (775)
which is satisfied by

776
[B*,E?] = —iBVE' (776)

The first of this pair of equations is another of the B cyclic equations. Finally,
Eq. (772a) gives
[B'+E*B*—E'1=0 (777)
which is satisfied by
[BI,BZ] — [El,Ez]
£ 5 = [ B e

where the first of this pair give the third and final equation of the B cyclic
theorem.
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The structure of the O(3) equations in condensed form [i.e., Eqgs. (612)]
emerges from the symmetry of the Poincaré group. Consider, for example, the
three equations:

[P2313] =iP
[P3,J2] = —iP, (779)
[Po, K] = iPy

By definition, the generator of space-time translation is
P=i0, (780)
so Eq. (779) becomes
([02, 73] = [03,J2] — [Q0, Ki])¥ = P1 ¥ (781)
where \ is an eigenfunction. Equation (781) can be written as
(02J3 — 03J2 — 0Ky — (J30, — J203 — K10p)) ¥ =0 (782)

which is a relation between operators on \y. Now use

3 = jav
Do = o (783)
Sl =i

where lowercase letters denote eigenvalues. We have

02(j3V) = (02)3)V +j3(021)
03(j2V) = (03j2)V +j2(031) (784)
Qo (k1) = (Boki )W + k1 (Qor)

Assume that
J3(02Vr) + J2(03V) + K1 (o) = j3(02¥) +j2(03¥) + ki (Qo) (785)
an equation that is compatible with:
(02 + 03 + Op)r = constant s (786)

Equations (781)—(786) give the eigenvalue relation
0af3 — O3j2 — Ooky = Py (787)
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which is one component of
10K

v ———=P 788
xJ c Ot (788)
If we write
V= ey, (789)
where ¢ is a phase factor, then
Il = Ja(eV) = 13 e = st (790)

and so on. Therefore the eigenvalues appearing in Eq. (788) are phase-dependent
in general. It is clear that the structure of Eq. (788) is the same as one of Eqgs.
(612). The complete set of operator relations leading to this equation is

([01,72] = [02,J1] — [00, K3])¥ = P53V
([02,45] = [03,J2] = [Q0, Ki])¥ = P1 ¥ (791)
([03,71] = [01,J3] — [0, K2 )W = Po\s

Similarly, the Lie algebra
([02, K3] — [03, K2 + [00, J3])¥ = 0 (792)

and so on leads to the eigenvalue relation

ka+%%:0 (793)
as another of Egs. (612).
The Lie algebra
([01, 1] + [02, /2] + [03, J3])¥ = 0 (794)
gives
((01J1 — J101) 4 (02J2 — J207) + (0303 — J303) )y =0 (795)
Using

Jy = j1p

81 (1Y) =1 (B1¥) + (O ) (796)
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and assuming

J1(01V) +2(02¥) + J3(03V) = j1 (1Y) +j2(02¥) +j3(03\) (797)

leads to
01j1 + 02jo +03j3 =0
J1 2/2 3]3. (798)
V=0
Therefore the complete set of equations (612) emerges in the form
Vk = 3p0
V=0
Vxk+ Ty (799)
cot
. 1ok
VIS e TP

simply by considering the symmetry of the Poincaré group. The vacuum charge—
current is therefore intrinsic to the structure of the Poincaré group, but not of the
Lorentz group, in which p is undefined. Structure (799) exists under all conditions
because the Poincaré group applies under all conditions. Therefore O(3) electro-
dynamics emerges self-consistently from the symmetry of the Poincaré group,
without a magnetic monopole or magnetic current as material entities, but with
vacuum charge and current. This is a powerful result of symmetry.
Consideration of the symmetry of the Poincaré group also shows that the B
cyclic theorem is independent of Lorentz boosts in any direction, and also reveals
the physical meaning of the E(2) little group of Wigner. This group is unphysi-
cal for a photon without mass, but is physical for a photon with mass. This
proves that Poincaré symmetry leads to a photon with identically nonzero mass.
The proof is as follows. Consider in the particle interpretation the PL vector

1
WH = — ESK“VPPHJVP (800)

Barut [102] shows that this PL vector obeys the cyclic conditions:
(W, WH] = —ig""°PP W, (801)

For a particle (including the photon) with mass, the spacetime translation
operator P! in the rest frame is

P* = (P’,0,0,0) (802)
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and in the light-like condition
P* = (P°,0,0,P°) (803)

In the rest frame, Eq. (801) becomes [15]

[J1,J2] = iJ3
AR (804)
3, 1] = iJa

which is the Lie algebra of the rotation generators of the Lorentz group [6]. In the
light-like condition, Eq. (801) becomes
Ux + Ky, Jy — Kx] = i(Jz — Jz)
[JY—Kx,Jz] = i(Ky+Jx) (805)
[Ky + Jx,Jz] = i(Kx — Jy)

which has the symmetry of the E(2) group. Equation (805) can be written as

[-’Xv‘IY] + [KX,KY] = lJZ — lJZ
Uy,Jz] + [Jz,Kx] = iJx + iKy (806)
—[Jz,Jx]) + [Ky,Jz] = —ily + iKx

If we assume that the Lie algebra (804) is independent of Lorentz boosts in any
direction, we obtain the Lie algebra:

[Kx,Ky| = —iJz
[Jz,Kx] = iKy (807)
[Ky,Jz] = iKx

This is a Lie algebra of the Poincaré group [15] and of the Lorentz group [6], and
is therefore self-consistently independent of spacetime translation. Therefore the
meaning of the E(2) little group of Wigner is that it is a combination of the Lie
algebra (804), which is independent of Lorentz boosts and spacetime translations;
and of the Lie algebra (807), which is independent of spacetime translations.
Note that the relation

Ky, Ky] = —il, (808)

is the Thomas precession [6].
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In the field interpretation [11-20], the Lie algebra (804) becomes [15]

[B(l) B(2>] — _iBO A

)

(809)

in the basis ((1),(2),(3)), which in vector notation is the B cyclic theorem:

B « B — ;g0 gB)
(810)

The latter is therefore independent of Lorentz boosts of any kind, and indepen-
dent of spacetime translations of any kind. As demonstrated previously in this
chapter, this result can be arrived at independently and self-consistently by
considering the following definition:

BB = —jga™ x A®) (811)

The B cyclic theorem is therefore a Lie algebra independent of boosts and
spacetime translations and is the same in the rest mass and light-like conditions
for the photon. This result leads to the Lie algebra (807) for a particle with mass.
The E(2) group becomes physical if the photon with mass is boosted to the speed
of light, or, more precisely, infinitesimally close to the speed of light.

This symmetry analysis of the generators of the Poincaré group also shows in
the field interpretation that the E(2) group contains the BY field (corresponding
in the particle interpretation to the J; generator) but does not contain the E 3)
field, corresponding in the particle interpretation to the K, generator. The
Poincaré group also gives the structure of the O(3) equations of motion, Egs.
(799). In the field interpretation, the P* generator of the particle interpretation
corresponds to charge—current. Therefore charge is analogous with energy and
current with linear momentum. The magnetic field is analogous with the rotation
generator, and the electric field is analogous with the boost generator. The
Poincaré group Lie algebra produces the O(3) equations (799), and not the
Maxwell-Heaviside equations. Our analysis throughout this chapter is therefore
shown to be entirely self-consistent on the O(3) level, while there are many self-
inconsistencies on the U(1) level. The normalized helicity of the photon with
mass is —1, 0, 1, as for any boson with mass. In the rest frame, there is no
helicity, because there is no forward momentum for a particle in its own rest
frame. In the light-like condition (i.e., infinitesimally near the light-like
condition), the three helicities are the space parts of the PL vector in that state:

Wi =J1Py + K> Ps
W, = J,Py — K, Py (812)
W3 = J5Py
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The time-like part of the PL vector is
Wo = —J3P3 (813)
It can be seen that the PL vector is not proportional to P" in the light-like

condition, thus removing another paradox [6] of the concept of massless photon.
In the U(1) gauge the vacuum field equations are:

(@ +igA")Fu =0

(814)
(0¥ +igA")Fuw =0
and become the Maxwell equations if and only if
AFy =0
e (815)
A'F, =0
which in vector notation correspond to
A-B=0
AXE=0
(816)
A-E=0
AxB=0

Therefore A - B = 0 in the U(1) gauge in the vacuum. Unfortunately, the helicity
in the U(1) gauge is defined by [103]

h= JA-BdV (817)

which is the linking number of field lines. This is zero because A +B = 0, and
helicity cannot be defined in the vacuum in the U(1) gauge. It is necessary to go
to the O(3) level and to define helicity by

hog) = JA<1> -B%av (818)

It is only on this level that the link between helicity and topological quantization
[103] can be understood properly. The O(3) group, like the U(1) group, is
multiply connected. The group space of U(1) is a circle [6, p. 105]. As explained
earlier in this review, this is not simply connected because a path that goes twice
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around a circle cannot be continuously deformed while staying on a circle into
one that goes around once. The group space of SU(2) is S° [6, p. 411]. Every
closed curve S' on S® may be shrunk to a point. The group O(3) is not simply
connected but doubly connected, [6, p. 412]. Therefore the Aharonov—Bohm
effect is possible only in O(3), as described in early sections of this review. We
have the relation SO(3) =SU(2)/Z2. There are only two types of closed path S' in
the group space of O(3): homotopic to a point and line [6]; therefore it is doubly
connected. The topological theory of classical electromagnetism proposed by
Ranada [103] thus can be extended systematically to the O(3) level. On the U(1)
level used by Ranada, the electromagnetic knot is locally equivalent to the
Maxwell-Heaviside equations. The electromagnetic knot is a field defined by the
condition that their force lines are closed curves, and any pair of magnetic or
electric lines is a link [103]. The linking lines are two integers that are interpreted
as the Hopf indices of two applications from the sphere S° to the sphere S? at any
instant. In the vacuum, the knots are such that n,, = n,. Since A - B is identically
zero in the U(1) gauge (Maxwell-Heaviside theory), this elegant theory needs to
be upgraded to the O(3) level.

XIV. GAUGE FREEDOM AND THE LAGRANGIAN

We have just seen that the symmetry of the Poincaré group leads to vacuum
charge and current as proposed by Panofsky and Phillips [86], Lehnert and Roy
[10], and others. We must therefore seek a Lagrangian that gives the structure of
the O(3) equations, a structure that, in condensed form, is identical with the
Panofsky—Phillips and Lehnert-Roy equations. The Lagrangian leading to the
Maxwell-Heaviside equations is deficient. It must also be explained why photon
mass can enter gauge theory without making ten Lagrangian gauge not invariant.
The problem with the Proca equation is that it removes gauge freedom, but at the
expense of rendering the Lagrangian gauge noninvariant [6]. The original Proca
equation is not therefore an entirely satisfactory approach to photon mass. The
origin of photon mass (1) in O(3) electrodynamics is therefore topological,
because the origin of charge—current is topological. The topology is expressed
through gauge theory and group theory as discussed in Section I. On the U(1)
level in the received view, a Lagrangian that does not contain a photon mass term
is needed, Euler Lagrange equations have to be constructed, and constraints are
needed to reduce the number of field variables so that there are no undetermined
multipliers.

This program is not consistent with the Proca equation on the U(1) level. If
the Proca equation

2.2
mgc

h2

OuH" —JV = —gp—2—A" (819)
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is used by ansatz, then it follows, by taking its divergence [6,15], that
mi,AY =0 (820)
and if my is not zero, the Lorenz condition is always obtained
0,AY =0 (821)

and the d’Alembert equation becomes

2.4
myc

A condition is imposed on one of the four components of A, so that there are only
three free components. However, the Lagrangian leading to the Proca equation is
not gauge invariant due to the presence of a mass term [15]

mj

Loy =7

AL A (823)

and the Proca equation always leads to the Lorenz condition, which is arbitrary
and self-inconsistent. These disadvantages offset the advantages of the Proca
equation; for example, it allows a three dimensional particle interpretation of the
photon and it can be quantized without difficulty.

In U(1) gauge theory, the Lagrangian in general [6] contains the mass term
(823), but in order to obtain the inhomogeneous Maxwell equations, this is
discarded. This procedure is outlined, for example, on pp. 89ff. of Ref. 6. The
U(1) Lagrangian in general is, in reduced units

1
& = DudD" —mPoh— L H Hy (824)

where ¢ is a scalar complex field and F,, is the electromagnetic field tensor. The
Euler-Lagrange equation in the U(1) gauge is

07 0
(o) = #)

and Eqgs. (824) and (825) give

QuHM =1 = —ig(¢"D"$ — $D¢") (826)
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The photon mass term in the Lagrangian

1 1
L = = HuH" + Em(z)ApA“ (827)

leading to the Proca equation in the received view [6] is not invariant under the
gauge transformation

A AR 4 oty (828)

and is discarded in order to obtain the inhomogeneous Maxwell-Heaviside
equation (826). The constant g appears in this theory as a coupling constant; it
couples the ¢ and A" electromagnetic fields.

Therefore the fact that Oy is arbitrary in U(1) theory compels that theory to
assert that photon mass is zero. This is an unphysical result based on the Lorentz
group. When we come to consider the Poincaré group, as in section XIII, we
find that the Wigner little group for a particle with identically zero mass is E(2),
and this is unphysical. Since o'y in the U(1) gauge transform is entirely
arbitrary, it is also unphysical. On the U(1) level, the Euler-Lagrange equation
(825) seems to contain four unknowns, the four components of A*, and the field
tensor H* seems to contain six unknowns. This situation is simply the result of
the term H"V in the initial Lagrangian (824) from which Eq. (826) is obtained.
However, the fundamental field tensor is defined by the 4-curl:

Fyy = 0,A, — 0\A, (829)

and the six components of the field are interrelated automatically by a constraint.
The field tensor therefore contains only the four unknowns of A" by definition,
and this definition is the constraint. The physical nature of the potential has been
reviewed by Barrett [3,4].

It is well known that the Proca equation [6], Eq. (809), for a massive photon
is not gauge-invariant because the Lagrangian (827) corresponding to it is not
gauge-invariant. In SI units, this Lagrangian is

4

V. 2
S0VR MoC 4 A (830)

2 K

&
7 ZO VeH o H" +

where Vy is the radiation volume, € is the permittivity in vacuo, H"" is the field
tensor, and my is the mass of the photon. It is customary to adopt reduced units,
so the Lagrangian becomes [6] Eq. (827), with:

A

V=1 ;=1 (831)
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The term m(z)AHA“ is not gauge-invariant under a local U(1) transform of A*. This
problem can be circumvented by adopting the notion of the vacuum as the ground

state of a scalar field ¢:
oV
—=0 832
% (332)

where V is potential energy. This definition of the vacuum depends on the
spontaneous symmetry breaking [6] of the Lagrangian:

L = (0,0) (") — m2d" — M)
= (0,9)(@"0") = V(d, ¢) (833)

where A is the self-interaction parameter, and assuming that . is invariant under
the local transformation

b — g (834)
the vacuum is the ground state
ov
2g =0 =Y 20°(070) (835)

and the parameter m is allowed to become negative. This is the basis of the Higgs
mechanism of introducing mass. If m < 0, there is a minimum at

m2

2 p2 M
@ = o=~

6] = a (836)

from the equation defining the vacuum [Eq. (835)]. In reduced units, spontaneous
symmetry breaking of this type leads to the Lagrangian (824) and to the
inhomogeneous field equation (826).

The charge—current density

J* = —ig(¢"D"$ — ¢D*¢") (837)

is a vacuum current because g exists in the vacuum and Eq. (837) is obtained
from the definition of the vacuum, Eq. (835), as the ground state of the scalar
field ¢. The fundamental field F,, is completely defined in terms of the
commutator of covariant derivatives:

(D, D) (838)

i
F,=-
W=
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The Lagrangian (824) can be rewritten using Eq. (836) as [6]

1 1 1 1
L == ZHHVH”V + EgzazAuAM + 2 (Oud: )2 + B (aud)z)z
— 2’ dF + V28aAM D, by + - - (839)
The two Lagrangians (824) and (839) contain the same physical information, but

in the form (839), the mass of the photon appears as the term 1 g?a?A, A" in these
reduced units. In ST units, the mass of the photon is

c
my—- =

£ = ga=gl4l (840)

and using
. (841)
8§=17
[
we recover the de Broglie guidance theorem [15]:
moc? = o (842)

from the Higgs mechanism. The Proca equation is recovered in gauge-invariant
form from the Lagrangian (839) if it is assumed that ¢, vanishes as the result of
spontaneous symmetry breaking. Using the Euler—Lagrange equation

0.7 07
SN Y S ) 843
oA, (a (aVA,L)> (843)

the gauge-invariant Proca equation is as follows, in SI units:
v v 2 262 v
O H" =J" = —gog”| | ?A (844)

The Lagrangian (824), which is the same as the Lagrangian (839), gives the
inhomogeneous equation (826) using the same Euler-Lagrange equation (843).
Therefore the photon mass can be identified with the vacuum charge—current
density as follows (in SI units):

C2 . C2 * *
I = —eog?|B" 5 A = —igeo 15 (0°D"¢ — DY) (845)

This result, in turn, shows that the O(3) equations in their condensed form,
Eq. (612), indicate the existence of photon mass. This is precisely the result
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obtained by Lehnert and Roy [10]. Canonical quantization of the gauge-invariant
Proca equation proceeds without any problem to give the photon as a boson with
helicities —1, 0, 1. This procedure is described in Ref. 6. In summary, it has been
shown that the vacuum charge—current density and photon mass are the result of
the Higgs mechanism.

Photon mass is shown to be self-consistent with O(3) electrodynamics by
considering the O(3) Lagrangian [6] in reduced units:

2
L = %Dud?i)(D”d)i) - m?d)id)i - x(d)id)i)z - %HLVHiHV (846)

where i is the internal gauge index and D* is the covariant derivative of O(3)
electrodynamics. The latter gives the usual results

Dyd; = 0,; + geiu A, by

G, = 0,A) — 0,Al + ge* Al AX (847)
(Y (Y il [Tl
and the potential V has a minimum [6] at
2 1/2
lpol =a={——1 (848)
4
where
dp = aez = ae® 849
0

The O(3) Lagrangian becomes

7= %«au(bl)z + (0u$2)” + (0u(d3 — @))?) + ag((0,1)A5 — (3,,)AY)
azgz 1\2 212 1 inv 24 .2
+ 5 () + (D)) = JHL H™ — da’hy (850)

and contains the photon mass term

a’g’ 1,2 232
P =T () + (42 (851)
in gauge-invariant form. The photon mass in O(3) electrodynamics is therefore
given again by Eq. (840). If it is assumed that

K

ST (852)

the de Broglie guidance theorem (842) is again recovered self-consistently.
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The Lagrangian (850) shows that O(3) electrodynamics is consistent with the
Proca equation. The inhomogeneous field equation (32) of O(3) electrody-
namics is a form of the Proca equation where the photon mass is identified with

a vacuum charge-current density. To see this, rewrite the Lagrangian (850) in
vector form as follows:

1
L =Dyo-D"d—m*d-d — 2 Hw “HW (853)

The inhomogeneous O(3) field equation (32) is obtained through the Euler—

Lagrange equation:
0¥ 0¥
3(AL) <a<avA;>> (834

which gives Eq. (32) with the current term (in SI units):

8() 6‘2

DH" =]’ =
" H?

g(D"P) x (855)
In analogy with Eq. (845), the photon mass is defined in SI units by
ny % 2 262 Y
D H" = J' = —&08” |y ?A (856)

The individual terms of the charge current density (J") in the vacuum are Noether
currents of the type (101)—(106) and we have the following identifications under
all conditions:

p(1> _ lg(A(z) DB _p?. )

p(2> = ig(A(3) p _ pB A(l )

p<3> = ig(A".p® —p1.4?) o
zg(cA cA( Ip(2) + A x O _740) « H<2>) (857)
lg(c cA( DB £ AB) « gD — 4D » H(s))
—ig(cA "D — cAPDW + 4D x B — 4@ x )

The photon with mass has three degrees of freedom, so the O(3) procedure is
again self-consistent. The key advantage of the O(3) procedure is that it produces
a Proca equation that does not indicate the necessity for the Lorenz condition.
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The U(1) Proca equation (819) implies that the Lorenz condition always holds,
because Eq. (819) leads to

3,AY =0 (858)

The O(3) Proca equation (856) does not have this artificial constraint on the
potentials, which are regarded as physical in this chapter. This overall conclu-
sion is self-consistent with the inference by Barrett [104] that the Aharonov—
Bohm effect is self-consistent only in O(3) electrodynamics, where the
potentials are, accordingly, physical.

Having derived the Proca equation in gauge-invariant form on the U(1) and
O(3) levels, canonical quantization can be attempted. Defining the photon mass
in reduced units as

mo =g|¢|, (c=1,A=1) (859)

canonical quantization of the Proca equation is similar to that of the Klein—
Gordon equation discussed in section X. The difference is that the Klein—-Gordon
equation produces a massless photon. With the definition my = g|d|, the
canonical momentum from the gauge-invariant Lagrangian (827) is

0¥ ,
= =0"A% — A¥ (860)
0A,
from which [6] it follows that
n=-A =0 (861)

So on this U(1) level, the scalar photon represented by A° is set to zero and the
Lorenz condition always applies, meaning no gauge freedom. This is self-
inconsistent because the original Lagrangian from which Eq. (827) is obtained is
a U(1) Lagrangian with gauge freedom. If so, the Lorenz condition cannot
always apply. Leaving these problems aside for the sake of argument, the
commutation relations fundamental to the method of canonical quantization
become [6]

Al(x, 1), m(x 1)) = i8;83(x —x) (862)
[Ai(x, 1), A5(x',1)] = igy& (x — x) (863)

and the field can be expanded in the Fourier series

3

o’k o) O) (g —ike | (M4 ik
Au(k) = szgu ()@ (k)e ™ + a® ey (864)
T =1
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implying
[a® (k), a™)* (k)] = 8,,,0k° (2m)*8° (k — I (865)

and a Hamiltonian:
H= J—k aM T (k)a"™ (k 866
(2n)32k0 0; (k)™ (k) (866)

This gives a straightforward interpretation of the photon with mass as a particle,
but this interpretation is self-inconsistent on the U(1) level, as argued.

Self-consistent quantization of the photon with mass can occur using the
Higgs mechanism. Symmetry breaking of a U(l) theory gives one massive
photon, A,;; and symmetry breaking on the O(3) level gives one massive photon,
A:l, and one massive photon, Aﬁ. On the U(1) level, the time-like component of
the photon is canceled by the scalar field, leaving three polarization states for
the space-like part of the photon. On the O(3) level, symmetry breaking leads to
one massive scalar field and two massive vector fields. The massive scalar field
can be interpreted as a physical time-like photon with mass. This massive scalar
field appears in the term —4a®Ay? in the Lagrangian (850), where y = ¢ — a. It
is also possible to define an effective physical longitudinal photon whose
amplitude is the same as that of the physical scalar photon. This should not
be confused with the superheavy photon that emerges from electroweak theory
with an O(3) electromagnetic sector and observed as described in Section XII.
In summary, physical time-like and longitudinal photons are missing from
symmetry breaking of a U(1) theory, but are present after symmetry breaking of
an O(3) theory. It can be seen from Eq. (826) that electric charge current density
is defined by the scalar field ¢, and the basic requirement for charge to exist
from Noether’s theorem [6] is that ¢ be complex. It is therefore possible to build
up electromagnetic theory from topological considerations, in particular the
complex scalar field ¢, whose ground state is the vacuum.

From the foregoing, it becomes clear that fields and potentials are freely
intermingled in the symmetry-broken Lagrangians of the Higgs mechanism. To
close this section, we address the question of whether potentials are physical
(Faraday and Maxwell) or mathematical (Heaviside) using the non-Abelian
Stokes theorem for any gauge symmetry:

%DH At = — %J D, D,]do*” (867)

On the U(1) level, this becomes

1
{sAu it = —2 J Fyydot (868)
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or in vector notation

jEA-dr:JB-dAr:Jv x A -dAr (869)

The gauge transformation rule on the U(1) level is
A—A-Vy (870)

and when applied to Eq. (869), it is found that
{)Vx-drzo (871)
which is self-consistent with

Vx(Vy)=0 (872)

The Dirac phase factor

exp (ig }Audx“> = exp <—i§JFde”V) (873)

is therefore gauge-invariant [3,4] and fully describes the electromagnetic phase
factor on the U(1) level.

On the O(3) level, a gauge transformation applied to the theorem (867)
produces

' 1
} (SAMSI - é (0u8)s™! ) ' = —2 J SGS'do™ (874)

where

S =exp (iIM*A%(x")); A" = M“A] (875)
Here, M are physical rotation generators of the O(3) group and A* are physical
angles [11-20]. The gauge transform produces

i i 1 i .
Al — Al +§@HA(>(XH); i=1,2,3 (876)

so that the potential components of:

Ay =AleV) + AR + A0 (877)
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are also physical. The gauge transform (874) also produces the result
jﬁaHAa(xu)dxH —0 (878)

which means that

0,0, A = 0,0,A° (879)

This result, however, is an identity of Minkowski spacetime itself, namely, 0,0,
operating on a function of x* produces the same result as 0,0, operating on a
function of x*. Equation (879) does not mean that A can take any value. We
reach the important conclusion that the vector identity (872) of U(1) is a property
of three-dimensional space itself and can always be interpreted as such.
Therefore even on the U(1) level, Eq. (872) does not mean that x can take any
value. Even on the U(1) level, therefore, potentials can be interpreted physically,
as was the intent of Faraday and Maxwell. On the O(3) level, potentials are
always physical.

XV. BELTRAMI ELECTRODYNAMICS AND NONZERO B®)

In this final section, it is shown that the three magnetic field components of
electromagnetic radiation in O(3) electrodynamics are Beltrami vector fields,
illustrating the fact that conventional Maxwell-Heaviside electrodynamics are
incomplete. Therefore Beltrami electrodynamics can be regarded as founda-
tional, structuring the vacuum fields of nature, and extending the point of view of
Heaviside, who reduced the original Maxwell equations to their presently
accepted textbook form. In this section, transverse plane waves are shown to be
solenoidal, complex lamellar, and Beltrami, and to obey the Beltrami equation,
of which B®® is an identically nonzero solution. In the Beltrami electrodynamics,
therefore, the existence of the transverse B = g+ implies that of B<3), as in
0(3) electrodynamics.

As argued by Reed [4], the Beltrami vector field originated in hydrodynamics
and is force-free. It is one of the three basic types of field: solenoidal, complex
lamellar, and Beltrami. These vector fields originated in hydrodynamics and
describe the properties of the velocity field, flux or streamline, v, and the
vorticity V x v. The Beltrami field is also a Magnus force free fluid flow and is
expressed in hydrodynamics as

vx (Vxv)=0 (880)
The solenoidal vector field is:

Ver=0 (881)
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and the complex lamellar vector field is
v(Vxv)=0 (882)
The Beltrami condition can also be represented [4] as:

V xv=kv (883)

where

k=—=v:V xvp (884)

for real-valued v.

Beltrami fields have been advanced [4] as theoretical models for astrophy-
sical phenomena such as solar flares and spiral galaxies, plasma vortex filaments
arising from plasma focus experiments, and superconductivity. Beltrami elec-
trodynamic fields probably have major potential significance to theoretical and
empirical science. In plasma vortex filaments, for example, energy anomalies
arise that cannot be described with the Maxwell-Heaviside equations. The three
magnetic components of O(3) electrodynamics are Beltrami fields as well as
being complex lamellar and solenoidal fields. The component BY is identically
nonzero in Beltrami electrodynamics if B = B®* is so. In the Beltrami
electrodynamics, B®) is a particular solution of the general solution given by
Chandrasekhar and Kendall [4] of the Beltrami equation:

V x B =kB (885)

This argument shows again that Maxwell-Heaviside electrodynamics is
incomplete, because B®® is zero. General solutions are given in this section of
the Beltrami equation, which is an equation of O(3) electrodynamics. Therefore
these solutions are also general solutions of O(3) electrodynamics in the vacuum.

The three components of the B cyclic theorem (411) are solenoidal, complex
lamellar, and Beltrami. This is a remarkable property of Beltrami electrody-
namics when recognized as O(3) electrodynamics for the special case when
B = B®* are plane waves. Specifically

v.BY =0, BD.VvxBY =0, BYx(VxBY)=0
V-ED =0; EV.VxEY =0; EYx(VxEY)=0 (886)
V.AD =0; AWV xAD =0; AW x (VxAD)=0

and also for indices (2) and (3). Multiplying the Beltrami equation:

V x BY = kB (887)
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on both sides by B(2), it is seen that

B%.v x BY = kB .B®? (888)

so the constant & is not necessarily zero when dealing with complex fields. To
prove that k can be different from zero, consider the complex transverse magnetic
plane wave

(1) — ‘ﬂ (ii _|_J-)ei(o)t71<Z) (889)
V2

which obeys the B cyclic theorem (411). From Egs. (883) and (884)

A*+B
A0)2

1
k:WA*-V XA: =K (8903)
V x AW =AM (890b)

and all three components—(1), (2) and (3)—are solutions of the same Beltrami
equation. Similarly, if we define the complete magnetic field vector by

B=B" +B? 1 B® (891)
the complete vector B obeys Eq. (885).

On the U(1) level, if we start with the free-space Maxwell-Heaviside
equations

OB 1 0E
it follows that
V x B =kB (893a)
V xE =kE (893b)
V xA=FkA (893c¢)

where B = V X A as usual, and where k = k. Here, k is a pseudo scalar that
changes sign between left and right circularly polarized radiation. The Beltrami
equation for B®) is

V x B® = kB®) (894)
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where k = 0. It follows that all components of transverse plane waves are
described by Beltrami equations in vacuo. For left-handed plane waves

(0)
) _ET o ierxz) _ (s
E;,’ = i—if)e =E
L V2 =) L
1 B(O) .. o —i(or— 2)%
B = 2 i) 1 — B (895)
(0)
1 _ A oo —i(or—KZ) 4 (2)%
A =——=(ii+j)e =A
L /2 (ii +J) L
For right-handed transverse plane waves
E© .
EV == _ (i + j)e o2 = g
R /2 (i + ) R
0)
1 .. o —i(of— 2)x%
Bl(e) 2%(—11 +j)e (0t—xZ) :B;) (896)
A0 )
A(l) _ i efz(cothZ) :A(z)*
R NG ( J) R
and for the longitudinal B®field
B = —B) = Bk (897)
Therefore
VxB) =—«B;  VxBY =«xBY
VxEY =B,  VxEY =«EY (898)
VxAY = —xAl);  vxay =xay)

and similarly for index (2). For the longitudinal index (3)
VxBY =vxBY=0 (899)

and all components are described by Beltrami equations in vacuo. Since E and B
are the fundamental fields of electrodynamics, these equations are valid under all
conditions. In particular, Eq. (893c) for the potential is not gauge-invariant under
the transform:

A—A-Vy (900)
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revealing that in Beltrami electrodynamics, A is physical. This result again
supports Maxwell’s postulate of a physical vector potential and does not support
Heaviside’s postulate of an unphysical vector potential. Equation (893c) is self-
consistent, however, on the O(3) level, where potentials are physical. The
covariant form of Eq. (893c) is

Fv = KAy (901)

so the field tensor is directly proportional to an axial potential 4-tensor. This
suggests that the vector potential can be polar or axial in nature. The solutions of
Eq. (901) are also solutions of the d’ Alembert equation in vacuo. In this view, the
field tensor is directly proportional to the axial potential tensor A, and so gauge
freedom is lost because, if F,, is gauge-invariant, so is A,,,. This result is another
internal inconsistency of the Maxwell-Heaviside point of view.

The Faraday law of induction does not distinguish between left and right cir-
cular polarization, that is, the structure of the equation is the same for R and L:

(1)
B
V x E(L1> =— OB,
af ; (902)
oB
V xEY) = - =&
R ot
On the other hand, the corresponding Beltrami equations are distinct:
V x BV = —«E}"
5 - (903)

V x Ey) = kEY)

The handedness, or chirality, inherent in foundational electrodynamics at the
U(1) level manifests itself clearly in the Beltrami form (903). The chiral nature of
the field is inherent in left- and right-handed circular polarization, and the
distinction between axial and polar vector is lost. This result is seen in Eq. (901),
where A, is a tensor form that contains axial and polar components of the
potential. This is precisely analogous with the fact that the field tensor F,
contains polar (electric) and axial (magnetic) components intermixed. Therefore,
in propagating electromagnetic radiation, there is no distinction between polar
and axial. In the received view, however, it is almost always asserted that E and A
are polar vectors and that B is an axial vector.

The B®) component [which is nonzero only on the O(3) level] is a solution of
the Beltrami equation (885) with k = 0. Therefore, in Beltrami electrodynamics,
B® is a solenoidal, irrotational, complex lamellar and Beltrami field in the
vacuum, and is also a propagating field. The B® component in Beltrami
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electrodynamics is part of the general solution of the solenoidal Beltrami
equation given in Ref. 4, and is identically nonzero in the vacuum. This
statement is equivalent to saying that electrodynamics is an O(3) Yang—Mills
theory in the vacuum. The general solution in cylindrical components of
Eq. (885) is

B=Y Bub™(r,0,2) (904)

m,n

where m is a nonnegative integer and where ™" depends on ¢ and Z through
¢ = m0O + nZ. The expressions for the modes depend on linear combinations of
Bessel and Neumann functions, J,, and N,,, similar to the solutions of the
Helmbholtz equation [5]. When the domain of solution involves the axis r = 0,
and solutions are restricted to axisymmetric wave equations, then

12 (2_"’) = Ry (905)
The solution of this equation is [4]
U = CJo(kr) (906)
where C is any constant, and the solution specializes to:
B = By(0, J,(kr),Jo(kr)) (907)

for the mode m =n = 0;a = (0,0, 1). Therefore the unit vector a = (0,0, 1)
designates the Z axis. The solution for the B® component is

B = By(0,J,(0), J(0)) (908)
and depends on the Bessel functions J;(0) and Jy(0). Therefore
B®) =B(k=0,m=0,n=0)
= By(0,0,1) = Bk (909)

and B® is an identically nonzero, phaseless function directed in the Z axis. This
result is self-consistent with that of O(3) electrodynamics.

In conducting media, the wave number k becomes complex [5], and by
separating real and imaginary parts, we can obtain the Beltrami equations:

VxA=kA; k=iK" (910)
VxB=kB; k=ix" (911)
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Taking the curl of Eq. (910) gives
Vx(VxA)=kV xA=KkA (912)
which can be rewritten as
VA = kA (913)
using the vector identity
Vx(VxA)=Vx(V-A) - VA (914)

The covariant form of Eq. (914) is

(DAY = —k2A" (915)
If we assume
K =T (916)

Eq. (915) becomes the Proca equation, and Eq. (916), the de Broglie guidance
theorem.

Similarly, Eq. (911) becomes the equation of the Meissner effect in super-
conductivity:

V’B =«"’B (917)
Finally, using
VxB=kB=kVxA=kKA (918)
we obtain the London equation:
J=VxB=—-x"A (919)

It is seen that the acquisition of mass by the photon is the result of an equation of
superconductivity, and this is, of course, the basis of spontaneous symmetry
breaking and the Higgs mechanism (Section XIV). Beltrami equations account
for all these phenomena, and are foundational in nature. Note that the London
equation (919) is not gauge-invariant on the U(1) level because a physical gauge-
invariant current is proportional to the vector potential, which, in the received
view, is gauge-noninvariant. This is another flaw of U(1) electrodynamics in the
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received opinion. The electric field from the London equation is zero because the
current J is time-independent:

A

E:—a_

0 (920)

By Ohm’s law, the resistance of the conducting medium vanishes, and the
medium becomes a superconductor. The Higgs mechanism and spontaneous
symmetry breaking were derived using the properties of superconductors.

TECHNICAL APPENDIX A: THE NON-ABELIAN
STOKES THEOREM

The non-Abelian Stokes theorem is a relation between covariant derivatives for
any gauge group symmetry:

}Dudxu . %J Dy, Dy d™ (A1)
This expression can be expanded as
4@(6H — igAy)dxt = — %J [0, — igAy, Oy — igAy|dct (A2)
The terms
{)apdx“ = [6,, 0] =0 (A3)

are zero because by symmetry
0,0, = 0,0v (A4)
o)

O, dx* = 71 0., ov|ldo™ =0 A5
[ 2 K

The half-commutators are evaluated as follows
[AuaGV] = —0Ay; [auvAv} = 0uAy (A.6)
giving the non-Abelian Stokes theorem

1
%Au dxt = — 3 J Gy do" (A7)
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where the field tensor for any gauge group is
G = 0,A, — 0,4, — ig[A,A)] (A.8)

On the U(1) level, the 4-potential is

Ay = (,cA) (A9)
and the field tensor is
Ey Ey E;
£ 0 B -B
Fuv = (A.10)

= B -B 0

c

Summing over repeated indices gives the time-like relation

ffd)dt:%(JExdcm —i—JEdeOZ) (A.11)

where the SI units on either side are those of electric field strength multiplied by
area. Summing over space indices gives

1 .
ff)A‘ dx' + Ardi® + Azdd® = — EJF,-jdGU (A.12)

which can be rewritten as

1

Ald)«f1 = —E F23d023 +F32d032 = — Bld623
1

Azdxz = _E F31d(531 —|—F13d(7]3 = — Bzd03l (Al?))
1

A3dx3 = 75 F12d012 +F21d621 = — B3d612

In Cartesian coordinates, this is

AxdX = JBxdcYZ

By dc™Y

jEAde = JBdeZX (A.14)
AzdZ = J
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or in condensed notation

%A-dr:JB-dAr (A.15)

This is the Stokes theorem as usually found in textbooks. For plane waves, A is
always perpendicular to the path, so in free space

jﬂA-dr:OEjﬂAzdz:stAzzo (A.16)

On the O(3) level, there is a nonzero commutator and an additional term

fa0 v =i (J [AEI),Aéz)]dG'ZJrJ[Ag)»Aﬁz)]dG”) (A17)

in the basis ((1),(2),(3)) defined by

o) x o — jo)
(A.18)
In Cartesian form, Eq. (A.17) becomes
jLA(Z3> dz = —igJ AP, AP dAr = JBQ) dAr (A.19)

and explains the Sagnac effect as in the text. There are time-like relations such as
1
%AO dxo = — EJaOAV - avA() — lg[AQ,AV} dGOV (AZO)

which define the scalar potential in O(3) electrodynamics to be nonzero and
structured.

TECHNICAL APPENDIX B: 4-VECTOR MAXWELL-HEAVISIDE
EQUATIONS

In this second technical appendix, it is shown that the Maxwell-Heaviside
equations can be written in terms of a field 4-vector G* = (0, cB + iE) rather
than as a tensor. Under Lorentz transformation, G* transforms as a 4-vector. This
shows that the field in electromagnetic theory is not uniquely defined as a
4-tensor. The Maxwell-Heaviside equations can be written in terms of the
4-vectors:

G" = (0,cB + iE) (B.1)
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and
H" = (0,H + icD) (B.2)
as
0,G* =0
0i,G;| +i[00,Gr] =0
[ . 3] + %, G (B.3)
o.H" = ipc

[0, H;] + i[00, Hi] = Ji
Under Lorentz transformation:

G,G" = G,G"

X o (B.4)
H.H* = HH

Using the fact that p and J themselves form the components of a 4-vector, the
Maxwell-Heaviside equations for field matter interaction can be combined into
one relation between 4-vectors:

A : 1
(—zépH‘ , ([al,H]] + l[ao,HkD) = C(p,;]k> (BS)
The free-space equivalent is
(aLlGua [ai7 Gl} + i[ao, GkD =0 (B6)
A Lorentz boost in the Z direction of the vector G* produces

cBy +iEy = cBx + iEx
¢B) +iEy = cBy + iEy

cB, +iE, = y(cB, + iE}) (B.7)
cBjy +iEy = —yB(cB}, + iE},)
but a Lorentz transform in the Z direction applied to F*V produces
cBy = y(cBx + BEy)
cBy = y(cBy — BEx) (B8)

CB/Z = CBZ

By, =0
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The results (B.7) and (B.8) are different, even though both describe a boost of the
same vector equations, the Maxwell-Heaviside equations:

V.B=0
OB B.9

The only common factor is that the charge—current 4-tensor transforms in the
same way. The vector representation develops a time-like component under
Lorentz transformation, while the tensor representation does not. However, the
underlying equations in both cases are the Maxwell-Heaviside equations, which
transform covariantly in both cases and obviously in the same way for both
vector and tensor representations.

If we define the vectors

a

N = N =

(¢cB +iE)
(B.10)

>
Il

(¢cB — iE)

then

[ax,ay} = iaz e
lbx, by] = ibz - - (B.11)
[Cl,’,a,‘} =0 (ivj =X, Y,Z)

and a and b both generate a group SU(2). The Lorentz group is then SU2) ®
SU(2) and transforms in a well-defined way labeled by two angular momenta
(j, j'), the first corresponding to @ and the second to b. Thus @ and b are
generators of the Lorentz group. The vector G* also transforms as a rest frame
Pauli-Lubanski vector, suggesting that the vector representation is suitable for
intrinsic photon spin, and the tensor representation for orbital angular
momentum. This is also suggested by O(3) electrodynamics where the
fundamental intrinsic spin of the field is B®).

TECHNICAL APPENDIX C: ON THE ABSENCE OF MAGNETIC
MONOPOLES AND CURRENTS IN O(3) ELECTRODYNAMICS

The non-Abelian Stokes theorem

1
#Dudx‘l JrEJ [Dy,Dy]ldc*Y =0 (C.1)
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is the integral form of the Jacobi identity

Z [DGa [DI»J-’DV]] =0 (C.Z)

[SNTRY

which is an identity between spacetime translation generators of the Poincaré
group. Since

D, =0, — igA, (C.3)

for any gauge group symmetry, it follows that the identity (C.2) holds for the
different components of D,. In an O(3) gauge, group symmetry identity (C.2)
can be written as the field equation (31) of the text, so it follows that

9,G" =0 (C.4)
Ay x GV =0 (C.5)
Equation (C.5) means that there are no magnetic charge or current densities in

0(3) electrodynamics.
It follows that

AD .5 _ .40 (C.6)
A®.gO _ BB .40 _ g (C.7)
AD.BD _ g4 ¢ (C.8)

The third equation is always true if
BY =vxA";,  B?Y=vxaA® (C.9)
because of the vector identity
V«(FxG)=G+(VxF)—F+«(V xG) (C.10)
and the first two equations are always true because (3) is always orthogonal to (1)

and (2).
It also follows that

AP B® — cAl'B® +A® x E®) — A0 x E® = ¢ (C.11)
cAVB®) — cAVBM 4 A®) x EN — A1) x E®) =0 (C.12)

cAPBM — cAVB® 4 A1) x E? — A®) x EV) = (C.13)
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and using
AY =alV =0, A0 =4 (C.14)

Egs. (C.11) and (C.12) give

E®
B =k x EV — A1) (C.15)
(3)
cA;
E®
cB? =k x E® —A®) x (C.16)
cAd)
0
However, we know from Eq. (C.4) that
oBM
oB®
V x E® + 5 =0 (C.18)
SO
cBY =k x EV (C.19)
cB? =k x E® (C.20)

and E®) is identically zero because A(<)3), AWM , and A@are nonzero. It follows

that
oB®
ot

=0 (c.21)

and there is no Faraday induction due to B®). Equation (C.13) gives
AW x E® = A®) « ED (C.22)

which is self-consistent with Egs. (C.9), (C.17), and (C.18).
The B cyclic theorem follows from

cBY x BY = cBY x (k x E?) (C.23)
which becomes

B x B = B0 (C.24)
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using the vector identity

Fx (G xH)=G(F-H)—H(F-G) (C.25)
Similarly
cBY x B® = (k x EV) x B® (C.26)
becomes
B®) x B = BB~ (C.27)
using
EY = —icBY (C.28)

and we obtain the Poincaré invariant B cyclic theorem because E ) is zero, and
because there are no magnetic charge and current desities:

B « B® — ;g0 g3+
B? x B®) = BB~ (C.29)
B® x BV — ;g0 g2)
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I. INTRODUCTION

The famous paper [1] written by Yang and Mills is a milestone of modern
quantum physics, where the role played by the equations introduced in the paper
(now called the SU(2) Yang—Mills equations) can be compared only to that of
the Klein—Gordon—Fock, Schrodinger, Maxwell, and Dirac equations. However,
the real importance of the Yang—Mills equations was first understood only in the
late 1960s, when the concept of the gauge fields as being responsible for all four
fundamental physical interactions (gravitational, electromagnetic, weak, and
strong interactions) became widespread.

The simplest example of gauge theory in (1 + 3)-dimensional space is the
system of the Maxwell equations for the 4-component vector potential of the
electromagnetic field, whose gauge group is the single-parameter group U(1).
The simplest example of the non-Abelian gauge group is group SU(2). This
group is realized as the symmetry group admitted by the Yang—Mills equations
describing the triplet of the gauge fields (called in the sequel the Yang—Mills
field) Ay (x) = (A5 (x),a =1,2,3), where p=1,2,3,4, x = (x1,x2,%3,%4) for
the case of the four-dimensional Euclid space and pn=0,1,2,3,
x = (xo = t,x1,x2,x3) = (¢,X) for the case of the Minkowski space. The matrix
vector field A, = A, (x) is defined as follows:

Cu 4
2

A:
B 62

Here o, (a = 1,2,3) are the Pauli matrices

(01 (0 —i (1 0
=1 o) 27\ o) 27 o -1

and e is the real constant called the gauge coupling constant.
Using the matrix gauge potentials, one constructs the matrix-valued field

Fu.=0"A, —0"A + Ay, A, p,v=0,1,2,3
Writing these expressions componentwise yields

(o)
Fy = ez—l?ng, Fi, = 0MAS — 0VAS + eff ADAS
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where p,v=0,1,2,3, a = 1,2,3, and the symbols f. (a,b,c = 1,2,3) stand
for the structure constants determining the Lie algebra of the gauge group [note
that for the case of the group SU(2), f%. = €apc, Where €4 is the antisymmetric
tensor with €3 = 1, a,b,c = 1,2,3].

Hereafter we use the following designations:

0
0y, =0y, =—
: toOxy
Furthermore, lowering and raising the indices , v is performed with the help of
the metric tensor of the space of the variables x,, and summation over the
repeated indices is carried out.
The SU(2) Yang-Mills equations are obtained from the Lagrangian

1
g == 75FHVFHV

and are of the form

@uF”V—i—[A”,FW] = [DwFuv} =0 (1)

where Dy, = 0, + A* is the covariant derivative, u,v =0,1,2,3.

One of the most popular and exciting parts of the general theory of the Yang—
Mills equations is that devoted to constructing their exact analytical solutions.
There is a vast literature devoted solely to constructing and analyzing exact
solutions of (1) (see the review by Actor [2] and the monograph by Radjaraman
[3] for an extensive list of references). Most of the results are obtained for the
case of the Yang-Mills equations in Euclidean space. The principal reason for
this is the fact that Eq. (1) in Euclidean space have the monopole and instanton
solutions [3,4], which admit numerous physical interpretations and have highly
nontrivial geometric and algebraic properties. Note that these and some other
classes of exact solutions of system (1) can also be obtained by solving the so-
called self-dual Yang—Mills equations

Fy=*F,, wnv=0,1273. (2)

Evidently, each solution of (2) satisfies (1), while the reverse assertion does not
hold.

Provided we consider the Euclidean case, *Fy, = %SMPFXP, (1, v, A, p =
1,2,3,4), where g, is the completely antisymmetric tensor, and equations (2)
form the system of four real first-order partial differential equations.

It was the self-duality property of the instanton solutions of (1) in Euclidean
space that had enabled the use of ansatz, suggested by t’"Hooft [5], Corrigan and
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Fairlie [6], Wilczek [7], and Witten [8], in order to construct these solutions.
Furthermore, the well-known monopole solution by Prasad and Sommerfield
[9], as well as the solutions obtainable via the Atiyah—Hitchin—Drinfeld—Manin
method [10] exploit explicitly the self-duality condition.

One more important property of the self-dual Yang—Mills equations is that
they are equivalent to the compatibility conditions of some overdetermined
system of linear partial differential equations [11,12]. In other words, the self-
dual Yang—Mills equations admit the Lax representation and, in this sense, are
integrable. For this very reason it is possible to reduce Eq. (2) to the widely
studied solitonic equations, such as the Euler—Arnold, Burgers, and Devy—
Stuardson equations [13,14] and Liouville and sine—Gordon equations [15] by
use of the symmetry reduction method.

For the case, when the Yang—Mills field is defined in the Minkowski space,
we have xF,, = % Euip F*_ (u,v, A, p =0,1,2,3). Consequently, Eq. (2) form
the system of complex first-order differential equations. In view of this fact,
exploitation of the abovementioned methods and results for study of the SU(2)
Yang—Mills equations (1) in the Minkowski space yields complex-valued
solutions. That is why the abovementioned methods for solving Eq. (1) fail to
be efficient for the case of the Minkowski space. Consequently, there is a need
for developing new methods that do not rely on the self-duality condition. This
problem has been addressed by one of the creators of the inverse scattering
technique, V. E. Zaharov, who wrote, in the foreword to the Russian translation
of the monograph by Calogero and Degasperis [16], that a number of important
problems of nonlinear mathematical physics (including Yang-Mills equations in
Minkowski space) still await new, more efficient solutions.

On the other hand, it is known [17] (see also Ref. 18) that Eq. (1) have rich
symmetry. Specifically, their maximal (in the Lie sense) symmetry group is the
group G ® SU(2), where G is

e The conformal group C(1,3), if the Yang—Mills equations are defined in
Minkowski space

e The conformal group C(4), if the Yang-Mills equations are defined in
Euclidean space

e The conformal group C(2,2), if the Yang—Mills equations are defined in
pseudo-Euclidean space having the metric tensor with the signature
(75 -+, +)

Note that the maximal symmetry groups admitted by the self-dual Yang—
Mills equations (2) coincide with the symmetry groups of the corresponding
equations (1).

The rich symmetry of Egs. (1) and (2) enables efficient exploitation of
the symmetry reduction routine for the sake of dimensional reduction of
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Yang—Mills equations either to ordinary differential equations integrable by
quadratures or to integrable solitonic equations in two or three independent
variables [19-21]. In particular, some subgroups of the generalized Poincaré
group P(2,2) which is the subgroup of the conformal group C(2,2), were used
in order to reduce the self-dual Yang—Mills equations, defined in the pseudo-
Euclidean space having the metric tensor with the signature (—, —, 4+, +), to a
number of known integrable systems, such as the Ernst, cubic Schrédinger, and
Euler—Calogero—Moser equations (see Ref. 22 and references cited therein).
Legaré et al. have carried out systematic investigation of the problem of
symmetry reduction of system (2) in Euclidean space by subgroups of the
Euclid group E(4) € C(4) [23,24]. What is more, some of the known analytical
solutions of Eq. (1) in Euclidean space (viz. the non-self-dual meron solution,
obtained by de Alfaro et al. [25], and the instanton solution, constructed by
Belavin, et al. [26]), can also be obtained within the framework of the symmetry
reduction approach [21].

To the best of our knowledge, the first paper devoted to symmetry reduction
of the SU(2) Yang-Mills equations in Minkowski space has been published by
Fushchych and Shtelen [27] (see also Ref. 21). They use two conformally
invariant ansatzes in order to perform reduction of Egs. (1) to systems of
ordinary differential equations. Integrating the latter yields several exact
solutions of Yang—Mills equations (1).

Let us note that the full solution of the problem of symmetry reduction of
fundamental equations of relativistic physics, whose symmetry groups are
subgroups of the conformal group C(1,3), has been obtained for the scalar
wave equation only (for further details, see Refs. 21 and 28-30). This fact is
explained by the extreme cumbersomity of the calculations needed to perform
a systematic symmetry reduction of systems of partial differential equations by
all inequivalent subgroups of the conformal group C(1,3). The complete
solution of the problem of symmetry reduction to systems of ordinary differ-
ential equations has been obtained for the conformally invariant nonlinear
spinor equations [31-33], which generalize the Dirac equation for an electron.
We have carried out symmetry reduction of the Yang—Mills equations (1) and
(2) by subgroups of the Poincaré group and have constructed a number of their
exact solutions [34-39].

The principal aim of the present chapter is twofold. First, we will review the
already known ideas, methods, and results centered around the solution tech-
niques that are based on the symmetry reduction method for the Yang—Mills
equations (1) in Minkowski space. Second, we will describe the general
reduction routine, developed by us in the 1990s, which enables the unified
treatment of both the classical and nonclassical symmetry reduction approaches
for an arbitrary relativistically invariant system of partial differential equations.
As a byproduct, this approach yields exhaustive solution of the problem of
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symmetry reduction of the vacuum Maxwell equations

rotE = _66_1;1, divH=0
(3)

rotH:a—E, divE =0
ot

The history of the study of symmetry properties of Eq. (3) goes back to the
beginning of the twentieth century. Invariance properties of Maxwell equations
have been studied by Lorentz [40] and Poincaré [41,42]. They have proved that
Eq. (3) are invariant with respect to the transformation group named by the
Poincaré suggestion the Lorentz group. Furthermore, Larmor [43] and Rainich
[44] have found that equations (3) are invariant with respect the single-
parameter transformation group

E—Ecos0+Hsin6, H—Hcos0—Esin6 4)

now known as the Heaviside-Larmor—Rainich group. Later, Bateman [45] and
Cunningham [46] showed that Maxwell equations are invariant with respect to
the conformal group.

Much later, Ibragimov [47] proved that the group C(1,3) ® H, where C(1,3)
is the group of conformal transformations of Minkowski space and H is the
Heaviside-Larmor—Rainich group (4), is maximal in Lie’s sense invariance
group of equations (3). Note that this result coincides with that obtained earlier
without explicit use of the infinitesimal Lie algorithm [19,20]. Further progress
in the study of symmetries of the Maxwell equations became possible when
Fushchych and Nikitin suggested a non-Lie approach to investigating symmetry
properties of linear systems of partial differential equations [48].

The present review is based mainly on our publications [33,35-39,49-53].
In Section II we give a detailed description of the general reduction routine
for an arbitrary relativistically invariant systems of partial differential
equations. The results of Section II are used in Section III to solve the problem
of symmetry reduction of Yang-Mills equations (1) by subgroups of the
Poincaré group P(1,3) and to construct their exact (non-Abelian) solutions.
In Section IV we review the techniques for nonclassical reductions of the SU(2)
Yang-Mills equations, which are based on their conditional symmetry. These
techniques enable us to obtain the principally new classes of exact solutions of
(1), which are not derivable within the framework of the standard symmetry
reduction technique. In Section V we give an overview of the known invariant
solutions of the Maxwell equations and construct multiparameter families of
new ones.
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II. CONFORMALLY INVARIANT ANSATZES FOR AN
ARBITRARY VECTOR FIELD

In this section we describe the general approach to constructing conformally
invariant ansatzes applicable to any (linear or nonlinear) system of partial
differential equations, on whose solution set a linear covariant representation of
the conformal group C(1,3) is realized. Since the majority of the equations of
the relativistic physics, including the Klein—-Gordon—-Fock, Maxwell, massless
Dirac, and Yang—Mills equations, respect this requirement, they can be handled
within the framework of this approach.

Note that all our subsequent considerations are local and the functions
involved are supposed to be as many times continuously differentiable, as this is
necessary for performing the corresponding mathematical operations.

A. The Linear Form of Invariant Ansatzes

Consider the system of partial differential equations (which we denote as )

S:PA‘(x,u,lll7...,u):O, A=1,....m (5)

defined on the open subset M C X x U ~ R” x R of the space of p independent

and ¢ dependent variables. In (15) we use the notations X = (xy,...,x,) € X,
k

u=(u',...,u9) € Usu= {%,0 <o <L YP u=Lk=1,...,q},

a2 ..
[=1,2,...,r, and Fy, whic]h ;re sufficiently smooth functions of the given
arguments.
Let G be a local transformation group that acts on M and is the symmetry
group of system (5). Next, let the basis operators of the Lie algebra g of the
group G be of the form

X, = & (x,u)d,, + n/(x,u)d,, a=1,...,n (6)
where &;, nj’ are arbitrary smooth functions on M, 0, = %, i=1,...,p,
j=1,...,q. By definition, operators (6) satisfy the commutation relations

abEab_ba:‘ca Cc = B
X, Xp) = XXy — XpXo = C5, X, a,byc=1, ...,

where C¢, are the structure constants, which determine uniquely the type of the
Lie algebra g.

We say that a solution u=f(x) (f=(f!,...,f%) of system (6) is G-
invariant if the manifold u — f(x) = 0 is invariant with respect to the action of
the group G. This means that for an arbitrary y € G, the functions f and vy(f)
coincide in the intersection of the domains, where they are defined. More
precisely, we can define a G-invariant solution of system (5) as the solution
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u = f(x), whose graph I't = {(x,f(x))} C M is locally G-invariant subset of the
set M.

If G is the symmetry group of system (5), then, under some additional
assumption of regularity of the action of the group G, we can find all its G-
invariant solutions by solving the reduced system of differential equations S/G.
Note that by construction the system S/G has fewer independent variables; that
is, the dimension of the initial system is reduced (hence this procedure is called
the symmetry reduction method).

In the sequel, we will restrict our considerations to the case of the projective
action of the group G in M. This means that all the transformations y from G are
of the form

(ia ﬁ) = 'Y((Xa u)) = (\IIV(X)7 (I)Y(Xv ll))

In other words, the transformation law for the independent variables x does not
involve the dependent variables [for the Lie algebra g of the group G, this implies
that in formulas (2) E_,’a = é’a (x)]. This defines the projective action of the group G
X = y(x) = ¥,(x) in an arbitrary subset {2 of the set X.

In what follows, we will suppose that the action of the group G in M and its
projective actions in € are regular and the orbits of these actions have the same
dimension s. This dimension is called the rank of the group G (or, alternatively,
the rank of the Lie algebra g). Note that the condition rank G = s is equivalent
to the requirement that the relation

rank ||, (%o)|| = rank||&; (xo), n (X0, wo)|| = s (7)

holds in an arbitrary point (Xo,uy) € M [19]. We will also suppose that s < p (the
case s = p is trivial, and furthermore, G-invariant functions do not exist under

s > p).
If these assumptions hold, then there are p — s fuctionally independent
invariants y! = 0'(x),y? = ©*(x),...,y?" = ©”%(x) (the first set of invar-

iants) of the group G acting projectively in €2, and each of them is the invariant
of the group G acting in M. Furthermore, there are g functionally independent
invariants v' = g'(x,u), v* = g*(x,u),...,v? = g4(x,u) of the group G acting
in M (the second set of invariants) [19,20]. Using the shorthand notation, we
represent the full set of invariants of the group G in the following way:

Y= W(X)v V= g(Xa ll) (8)
Owing to the validity of the relation

rank

g/
’aui

=4, Z,J:qu

we can solve locally the second system of equations from (8) with respect to u

u="r(x,v) 9)
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Using the relation

(D.}
rank =p—ys, j=1...,p—s, i=1,...,p

ax,-

we choose p — s independent variables X = (Xi,. .., X,—s) so that
rank ||—1||=p—s, i,j=1,....p—s
axi

We call these variables principal. The remaining s independent variables
X = (X1,...,X,) are called parametric (they enter all the subsequent formulas as
parameters).

Now we can solve the first system from (8) with respect to the principal
variables

% = 2(%,y) (10)
Inserting (10) into (9), we get the equality

u=r(x,zv)
or

u=r(X,y,v) (11)

Note that in (9)-(11), ¥ = (7', ...,7#),r=(r',...,r),z=(',...,27°).
The so constructed G-invariant function (11) is called the ansatz. Inserting
ansatz (11) into system (5) yields the system of partial differential equations for
the functions v of the variables y, which do not explicitly involve the parametric
variables [19]. These equations form the reduced (or factor) system S/G having
the fewer number of independent variables y',... y?~, as compared with the
initial system (5). Now, if we are given a solution v = h(y) of the reduced
system, then inserting it into (11) yields a G-invariant solution of system (5).

Summing up, we formulate the algorithm of symmetry reduction and constr-
uction of invariant solutions of systems of partial differential equations, that
admit nontrivial Lie symmetry.

1. Using the infinitesimal Lie method, we compute the maximal symmetry
group G admitted by the equation under study.

2. We fix the symmetry degree s of the invariant solutions to be constructed
and find the optimal system of subgroups of the group G having the rank s.
We can do this because the subgroup classification problem reduces to
classifying inequivalent subalgebras of the rank s of the Lie algebra g of
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the group G. This classification is performed within the action of the inner
automorphism group of the algebra g.

3. For each of the so obtained subgroups we construct the full set of
functionally independent invariants, which yields the invariant ansatz.

4. Inserting the abovementioned ansatz into the system of partial differential
equations under study reduces it to the one having p — s independent
variables.

5. We investigate the reduced system and construct its exact solutions. Each
of them corresponds to the invariant solution of the initial system.

Symmetry properties of the overwhelming majority of physically significant
differential equations [including the Maxwell and SU(2) Yang-Mills equations]
are well known. The most important symmetry groups are those isomorphic to
the Euclid, Galileo, and Poincaré groups and their natural extensions (the
Schrodinger and conformal groups). This fact motivated Patera et al. to
investigate the subgroup structure of these fundamental groups [54]. They
have suggested the general method for classifying continuous subgroups of Lie
groups and illustrated its efficiency by rederiving the known classification of
inequivalent subgroups of the Poincaré group P(1,3). Exploiting this method
has enabled investigators to fully describe the continuous subgroups of a
number of important symmetry groups arising in theoretical and mathematical
physics, including the Euclid, Galileo, Poincaré, Schrodinger, and conformal
groups (see, e.g., Ref. 30 and references cited therein).

Thus, to completely solve the problem of symmetry reduction within the
framework of the formulated algorithm above, we need to be able to perform
steps 3-5 listed above. However, solving these problems for a system of partial
differential equations requires enormous amount of computations; moreover,
these computations cannot be fully automatized with the aid of symbolic
computation routines. On the other hand, it is possible to simplify drastically
the computations, if one notes that for the majority of physically important
realizations of the Euclid, Galileo, and Poincaré groups and their extensions, the
corresponding invariant solutions admit linear representation. It was this very
idea that enabled us to construct broad classes of invariant solutions of a number
of nonlinear spinor equations [31-33].

In the paragraphs that follow, we will concentrate on the case of the 15-
parameter conformal group C(1,3), admitted both by the Maxwell and SU(2)
Yang—Mills equations. We emphasize that the same reasoning applies directly to
the case of the 11-parameter Schrédinger group Sch(1,3), which is the analog
of the conformal group in nonrelativistic physics. The group C(1,3) acts in the
open domain M C R!? x RY of the four-dimensional Minkowski spacetime of
the independent variables x, X = (x1,x2,x3) and of the g-dimensional space of
dependent variables u = u(xop,x), u = (u',u?, ... u9).



MAXWELL AND SU(2) YANG—MILLS EQUATIONS 279

The Lie algebra ¢(1,3) of the conformal group C(1,3) is spanned by the
generators of the translation P, (n=0,1,2,3), rotation J, (a,b=1,2,3,
a < b), Lorentz rotation Jo, (a = 1,2,3), dilation D, and conformal K, (pn =
0,1,2,3) transformations. The basis elements of ¢(1,3) satisfy the following
commutation relations:

[Py P

0, [Py, Jop] = guuPp — 8upPo

[Juwj 8l = gupJva + &vadup — Suadvp — gvpJpa (12)
[Py, D] = Py, [Ju, D] =0 (13)
(K, Jap] = guoKp — 818Ks, [D, K| = Ky

[ K] =0, [ Ky = 2(guvD - Juv) (14)

Here p,v,0,B=0,1,2,3 and g,, is the metric tensor of the Minkowski
spacetime R':

1, p=v=0
gw=4 -1, p=v=1273
0, p#v

The group C(1,3) contains the following important subgroups:
1. The Poincaré group P(1,3), whose Lie algebra p(1,3) is spanned by the
operators P, Juy (1, v =0,1,2,3) satisfying commutation relations (12);
2. the extended Poincaré group P(1,3), whose Lie algebra p(1,3) is spanned
by the operators Py,Ju,D (1,v=0,1,2,3) satisfying commutation
relations (12) and (13)

Analysis of the symmetry groups of the equations of relativistic physics
shows that for the majority of them the generators of the Poincaré, extended
Poincaré, and conformal groups can be represented in the following form
[19,21,33,48]:

P, =0y,
Juw =240y, — xvaxu — (Syvu - Oy)
D = x,0,, — k(Eu - 0y)
K() = ZXOD — (xvxv)6x0 — 2xa (S()all . au)
K, = —-2xD— (xvxv)axl + 2X0(S()1ll : 6.,)
— 2)62(51211 -0 ) 2)63(51311 0 )
K>, = —2x,D — (vav)axZ + 2x0(S02u 0 )
+2x1(S12u-6 ) 2x (52311-6 )
Kz = —2x3D — (xvxv)an + 2)(?0(50311 0 )
u)

+ 2)61 (51311 -0 + 2)62(52311 0 )
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In these formulas, S|, are constant g x g matrices, which realize a representation
of the Lie algebra o(1,3) of the pseudoorthogonal group O(1,3) and satisfy the
commutation relations

[Spw SOLB] = guBSvu + gv:xSpB - guaSvB - gvﬁSpa (16)

w,v,o,B=0,1,2,3; g, is the metric tensor of Minkowski space R'?, Eisthe
unit ¢ x ¢ matrix, u= (u',u?,... u?)’, 0y = (0,1,0,,...,0,)", and the
symbol (x - x) stands for the scalar product in the vector space R?. We remind
the reader that the repeated indices imply summation over the corresponding
interval and raising and lowering the indices is carried out with the help of the
metric g,,y. Also, k is some fixed real number called the conformal degree of the
group C(1,3).

It follows from relations (15) that the basis elements of the Lie algebra
¢(1,3) have the form (6), where the functions E_,; depend on x € X = R? only
and the functions n} are linear in u. We will prove that owing to these properties
of the basis elements of ¢(1, 3), the ansatzes invariant under subalgebras of the
algebra (15) admit linear representation.

Let a local transformation group G act projectively in M, and let g =
(Xy,...,X,) be its Lie algebra spanned by the infinitesimal operators of the
form

Xa = &, (X)0y + i (x)ud, (17)

wherea=1,...,n, i=1,...,p,jk=1,...,q.

According to the discussion above, the group G has the two types of
invariants. The first set of invariants is formed by p — s (where s is the rank
of the group G) functionally independent invariants

w=wkx), w=(o,. . . o (18)
The second set is formed by ¢ invariants
h=h(x,u), h= (' ... 1) (19)

The functions w and h are invariants of the group G if and only if they are,
respectively, solutions of the following systems of partial differential equations:

b
e =0 (20)

N Y
&u(x) P ij(x)uk@ =0 (21)
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where the indices take the following values: a=1,...,n, b=1,...,p—s,
i=1,...,p, ,kiI=1,...,4.

Generically, a G-invariant ansatz has the form (11), where v = h. However,
provided the infinitesimal operators of the group G are of the form (17),
G-invariant ansatz for the vector field u can be represented in the linear
form [33]

u = A(x)h(w) (22)

where A(x) is some ¢ X ¢ matrix nonsingular in Q@ C M, u= (u',... u?)",
h=(h',.. . h)".

The matrix A(x) from (22) is obtained by integrating the system of partial
differential equations to be derived below.

Lemma 1. Let a G-invariant ansatz be of the form (22). Then there is q X q

matrix H(x) = A~'(x) nonsingular in ) satisfying the matrix partial differen-

tial equation

0H (x)
6x,~

gl (x) +H(X)T,(x) =0 (23)

where T',(X) is the q X q matrices, whose (i,j)th entry reads as pi(x), i,j =
1,...,q.
Proof. Provided a G-invariant ansatz is of the form (22), the relation

h = H(x)u

with H(x) = A~!(x) holds. So, the second set of invariants (19) of the group G
consists of the functions, which are linear in u/ and, consequently, can be
represented in the form

h’ = hy(x)u', bl=1,...,q

The function A’ is the invariant of the group G, if and only if it satisfies
Eq. 21)
Ohpi(x)
6xi

&, (x) u' + p§(X)u'hy(x) = 0

Splitting this relation by u’ ensures that the system of partial differential equa-
tions

6hb,(x)

Gl )

+ ]’lbj(X) p;ll(X) =0 (24)
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holds for all the values of b,l. The indices in (24) take the following values:
a=1,....nji=1,...,p,b,j,l=1,....q.

It is readily seen that the second term of the left-hand side of Eq. (24) is the
(b, )th entry of the matrix H(x)[,(x), (a =1,...,n). Hence it follows that the
matrix H(x) satisfies Eq. (13). The lemma is proved.

The forms of the matrices T, for the basis operators of the algebra ¢(1,3) are
as follows:

e Matrices I'y, a =1,2,3,4 corresponding to the operators Py, (1 =0,
1,2,3) are zero g X g matrices.

e Matrices I';, a=1,...,6 corresponding to the operators Jy,, (1,v =
0,1,2,3) are equal to —S,,, where S,, are constant g x ¢ matrices
realizing a representation of the algebra o(1,3) and satisfying commu-
tation relations (16).

e Matrix I'; corresponding to the dilation operator D reads as —kE, where k
is the conformal degree of the algebra ¢(1,3) and E is the unit ¢ X ¢
matrix.

e Matrices I';, a =1,2,3,4 corresponding to the operators K, (n=0,
1,2,3) are given by the following formulas:

I'y = —2x0kE — 2x1S01 — 2x2802 — 2x3503
'y = 2x1kE + 2x0S01 — 2x2812 — 2x3813
'3 = 2xkE + 2x0S02 + 2x1812 — 2x3823
'y = 2x3kE 4 2x0S03 + 2x1S13 + 2x2523

With the explicit forms of the matrices I', in hand, we can determine the
structure of the matrices H = A~! for ansatz (22) invariant under a subalgebra g
of the conformal algebra c(1,3).

If g €p(1,3) = (Pu,Juw|p,v=0,1,2,3), then the corresponding matrices
I, are linear combinations of the matrices S,,. Hence it follows that the matrix
H can be sought in the form

H=H= H exp (0uSyv) (25)

p<v

where 0, = 0,,,(x0, X) are arbitrary smooth functions defined in QcR'"7.

Next, if g is a subalgebra of the conformal algebra c(1,3) with a nonzero
projection on the vector space spanned by the operators D, Ky, K;, K>, K3, then
the corresponding matrices I', are linear combinations of the matrices E and
S,v. That is why the matrix H should be sought in the more general form

H = exp (0E)H (26)



MAXWELL AND SU(2) YANG—MILLS EQUATIONS 283

where 0 = 0(xo,x) is an arbitrary smooth function defined in Q and H is the
matrix given in (25).

B. Subalgebras of the Conformal Algebra c(1,3) of Rank 3

Now we turn to the problem of constructing conformally invariant ansatzes that
reduce systems of partial differential equations invariant under the group C(1, 3)
to systems of ordinary differential equations.

As a second step of the algorithm of symmetry reduction formulated above,
we have to describe the optimal system of subalgebras of the algebra c¢(1,3) of
the rank s = 3. Indeed, the initial system has p = 4 independent variables. It has
to be reduced to a system of differential equations in 4 — s = 1 independent
variables, so that s = 3.

Classification of inequivalent subalgebras of the algebras p(1,3), p(L,3),
¢(1,3) within actions of different automorphism groups [including the groups
P(1,3), P(1,3) and C(1,3)] is already available [30]. Since we will concentrate
on conformally invariant systems, it is natural to restrict our disscussion to the
classification of subalgebras of ¢(1,3) that are inequivalent within the action of
the conformal group C(1,3).

In order to get the full lists of the subalgebras in question we have to check
that relation (7) with s = 3 holds for each element of the lists of inequivalent
subalgebras of the algebras p(1,3),p(1,3),c(1,3) given elsewhere [30]. Evi-
dently, we can restrict our considerations to subalgebras having the dimension
not less than 3.

Let ¢(1,3) be the conformal algebra having the basis operators (15) and
¢ (1,3) be the conformal algebra spanned by the operators

P&l) =0, Jﬁ{,) = X', — "0, p — X0y, o
KV = 2xtpM) — (x0x") 0y,

where p,v=20,1,2,3.

Note that the conformal group C(1,3) generated by the infinitesimal
operators (27) acts in the space of independent variables R!* only. That is
why the basis operators of the algebra c(!)(1,3) act in the space of dependent
variables R? as zero operators.

Lemma 2. Let L be a subalgebra of the algebra c(1,3) of the rank s and let
s be the rank of the projection of L on c(l)(1,3). Then, from the equality
s = s, it follows that dimL = s.

Proof.  Suppose that the reverse assertion holds, namely, that dimL # 5. As
dimL > s, it follows that dim L > s. Choose the basis elements X, ..., X,, of the
algebra L so that
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e The rank of the matrix M, whose entries are projections of the operators
Xi,...,X, on c(V(1,3), is equal to s.

e The linear space spanned by the operators Xj,...,X, contains
LN <P0,P1,P2,P3>.

We denote as S\ the point (xJ,x°) € Q in which the rank of the matrix M
equals to s. Let the vector fields X; be equal to X}, ..., X%, X? | ... X0 in st
Then there are constants a,...,d,, such that the vector field och‘l) + -+
Ol X0 + X0 11 Testricted to the space of dependent variables U = R? is a nonzero
operator. Indeed, if this operator vanishes 1dentlcally on R? for any choice of
oi,...,0, then the vector fields X7,...,X% X | belong to the vector space
(Py, Py, P, P3), and this fact contradicts to the assumptions that dimL > s,
rank L = s. Consequently, the matrix formed by the coefficients of the vector
fields X',..., X,,ouX) + - - + o, X, + X;+1 has a nonzero minor of the order
s+ 1 in some point (xJ,x°, u®) (the first four coordinates are same as those of
the point Sp). This contradicts the assumption that rank L > s. Hence we
conclude that dim L = s. The lemma is proved.

It follows from Lemma 2 that the validity of the relation (7) with s =3
should be ascertained only for the three-dimensional subalgebras of the algebras
p(1,3),p(1,3),c(1,3) given elsewhere [30]. Moreover, we need to check the
first condition from (7) only.

Consider the subalgebras of the algebra p(1, 3), whose basis operators are of
the form (15). Among the three-dimensional subalgebras of the algebra p(1, 3)
listed elsewhere [30], there are only five subalgebras (G, Py + P3,> P1), (J12,
Py, P3), {(Joz, Po, P3), {(J12,J13,J23), {Jo1,J02,J12), that do not respect the first
condition, (7). These subalgebras give rise to the so-called partially invariant
solutions [19]. Partially invariant solutions cannot be handled in a generic way;
they should always be considered within the context of a specific system of
partial differential equation to be reduced. We will not consider the partially
invariant solutions further. The remaining inequivalent subalgebras are listed in
the assertion below.

Assertion 1. The list of subalgebras of the algebra p(1,3) of the rank 3, defined
within the action of the inner automorphism group of the algebra c(1,3), is
exhausted by the following subalgebras:

L1 = (Po, Py, P); Ly = (P1,P,,P3)

= (M, Py, Py); Ly = (Jo3 + 12, Py, P2)

= (Jo3, M, P1); Lo = (Jo3 + P1, Py, P3)

= (Jo3 + P1, M, P3); Lg = (Ji2 + oJo3, Po, P3)
L9 (J12 + Po, P1, P2); g = (Jia + (=1)/P3, Py, Py)
LJH i+ (= )jZT,Pl,P2>; Ly, = (G,M,P; + oPy)
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L3 = (G + (=1)/Py, M, Py); L14 = (G, + 2T, M, P,)
Lis = (G + 2T, M, Py + aP); = (J12,J03, M)
Ljﬁ <G1 szv M); = (Jo3, G1, P2)
Ly = (G1,Jo3,M); = (G1,Jo3 + P2, M)

Ly = {(Gy,Jo3 + P + oPy, M); L22 = (G, G2, Jo3 + aJ12)

Here a€R; M =Py+P;, T=5(Po—P3), Ga= Jou—Ja3, (a=1,2);
G\ =G+ (=1)Py, G, = Gy — (—1)/P) + aPy; j = 1,2.

In the same way, we handle the three-dimensional subalgebras of the
algebras p(1,3) and c¢(1,3). We have skipped from the list of subalgebras of
the algebra p(1,3) those conjugate to subalgebras of p(1,3). Furthermore, we
have skipped from the list of subalgebras of the conformal algebra those
conjugate to subalgebras of the algebra p(1,3). The results obtained are
presented in the two assertions below.

Assertion 2. The list of subalgebras of the algebra p(1,3) of the rank 3, defined
within the action of the inner automorphism group of the algebra c(1,3), is ex-
hausted by the subalgebras given in Assertion 1 and by the following subalgebras:

F1:<D PQ,P3>' 2:<J12+0LD5P07P3>
Ji2,D,Py); Fy= <1127D,P3)

Fr1 = (Jo3s + D, G1 + (=1)/Py, M)
Fy = (Jo3 — D+ (—1)’M, Gy, Py)
Fy = (Jo3 +2D,Gy + (— )jZT M)

Fry = J()3 +2D Gl ( )JZT P2>

=
F5 (Jo3 + oD, Py, P3); = (Jo3 + oD, Py, P;)
F; = {Jps +aD,M,P;) (a 7§O)
Fy = (Jo3 + D + (—1)'2T, Py, P2)
Fo = (Jo3 + D+ (—=1)/2T, M, P1); Fio = (Jo3, D, P))
Fii = (Jo3,D,M); Fip = (Jia + ooz + BD, Py, P3) (o # 0)
Fi3 = (Ji2 + ooz + BD, Py, P2) (o # 0)
Fiy = (J1o + oa(Jo3s + D +2T), Py, P2) (o0 # 0)
Fi5s = (Ji2 + oJo3, D, M) (o0 # 0)
Fis = (Jo3 +aD,Ji2 + BD,M) (0 < o] < 1, B >0, [af +[B] # 0)
Fi7 = Uos + D + (—1)2T, J1» + 20T, M) (o € R)
Fig = (Jos + D, Jip + (—1)72T,M); Fi9 = (Jo3,J12, D)
Fao = (G1,Jos + 4D, P) (0 < | < 1)

(

(

(

(
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Here M = Py +P3, Gy =Jo —Ji3, T = %(Po — P3), the parameters o, are
1,2.

positive (if otherwise is not indicated); j = 1,2

Assertion 3. The list of subalgebras of the algebra c(1,3) of the rank 3, defined
within the action of the inner automorphism group of the algebra c(1,3), is
exhausted by the subalgebras of the algebras p(1,3),p(1,3) given in Assertions
1 and 2 and by the following subalgebras:

Cy
C

J12,S+T,Z); Cio=(D—Jyp,S,T)
Py + K> +V3(Py + Ky) + Ko — Py,
— D+ Jo, —\3Jo1, Py + Ko — 2(K> — P,))
Cia = (Py + Ko) & (J12,K3 — P3)
Ci3 = (2012 + K3 — P3,2J13 — K» + P2, 2J53 + Ky — Py)
Ciy = (P1 + Ky + 2J03, P> + K» + Ko — Py, 2J12 + K3 — P3)

Ci=(+T+Ji2,Gi + P, M)
CQ=<S+T+J12+G1+P2,G2—P1,M>
Cy={J1,S+T,M); Cy=(S+T,Z,M)
Cs=(S+T+aJ12,Z,M) (o #0)
Co=(S+T+Jin+0oZ, G+ P, M) (o #0)
C1=(8+T+J1,Z,G, + P)
Cs=(S+T+BZ,Jip +aZ,M) (a,p€R, o+ |B| #0)
=
=

—_

1

—_

where M=Po + P3, Goa = Joa —Ju3 (a=1,2), Z =Joz + D, S = 1(Ko + K3),
T =1(Py— P3).

Remark 1. While classifying subalgebras of the extended Poincaré algebra
p(1,3), the discrete equivalence transformations ®;,®,,®3, that leave the
algebra p(1, 3) invariant, were exploited elsewhere [30]. The result of the action
of these groups on the operators of the algebra p(1, 3) is given in Table I. That is
why we have completed the list of subalgebras of the algebras p(1,3),5(1,3)
obtained earlier [30] by the subalgebras obtainable by acting on these
subalgebras with the discrete transformation groups @, ®,, $;.

C. Construction of Conformally Invariant Ansatzes

Now we turn to constructing C(1, 3)-invariant ansatzes that reduce conformally
invariant systems of partial differential equations to systems of ordinary
differential equations. To this end, we use the lists of subalgebras of the algebra
¢(1,3) given in Assertions 1-3. Note that all the subsequent computations are
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TABLE I
Effect of Equivalence Transformations on Extended Poincaré Algebra

Action on p(1,3)

Operators D, ) @3
Py —Py Py —Py
P —P —P) P

P,(a=2,3) —P, P, —P,
Joz Jos Joz Jos
Ji2 Jia —Ji2 —Ji2
Gy G -Gy -Gy
Gy G, Gy Gy
M -M M -M
T -T T -T
D D D D

performed under supposition that the basis operators of c¢(1,3) are of the
form (15).

As shown in Section II.A, the ansatzes in question can be searched for in
linear form (22) and matrices H = A~!, in the form (26). According to
Lemma 1, the matrix H has to satisfy equations (23), whose coefficients are
defined uniquely by the choice of a subalgebra of the conformal algebra of the
rank 3. Thus the problem of complete description of conformally invariant
ansatzes reduces to solving system of partial differential equations (20), (23) for
each subalgebra of the conformal algebra, which requires a vast amount of
computation. The calculations are simplified if we take into account the general
structure of the subalgebras listed in Assertions 1-3.

For further convenience, we will use the following basis of the algebra

(1 3) 5037512,1‘1”71‘1 (Cl =1 2) where H = S()a — Sa3, Ha = S()a + Sa3
(a = 1,2). It is not difficult to check that these matrices satisfy the commutation
relations

03, S12] = [Hi, Hy) = [Hy, Hy] =0
[Hy,So3) = Hy [Hy, Sos) = —H,  (a=1,2)
[Hi,S12] = —H» [H,, S12] = H,
(28)
[Hy,S12] = —H, [Hy,S12) = H,
[Hy, H\] = [Ha, Hy] = —2503
[Hy, H\] = [Hy, Hy] = 25,
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In particular, relations (28) imply that the matrices H;,H», Si2,S03 and
fll,fiz,S 12,803 realize two matrix representations of the Euclid algebra &(2)
(here the matrix Sp; is identified with the dilation generator and the matrices
H,,H> and H,, H, are identified with the translation generators). Furthermore, as
E is the unit matrix, it commutes with all the basis elements of o(1, 3), namely

[E,S12] = [E,So3] = [E,H,) = [E,H,) =0 (29)

where a = 1, 2.

Analyzing the structure of the basis elements of the subalgebras of the con-
formal algebra given in Assertions 1-3, we see that the corresponding matrices
Fa are most conveniently represented in terms of the matrices Sps, S12, s
H, (a=1,2). Hence we conclude that the matrix H = H(xo,x) = A~ (x0,X)
can be searched for in the form

H = exp{(—In0)E}exp(00So3)exp (—03S12) exp (—20,H;)
x exp (—20,H,)exp (—20,4H,)exp (—205H,) (30)

where 6 = 0(xo,x), 0y = 09(x0,X), 0, = 0,,(x0,x) (m=1,2,...,5) are arbi-
trary smooth functions defined in an open domain 2 C R" 3 of the Minkowski
space of the independent variables xo, X = (x1,x2,x3).

Let L = (X,la = 1,2,3) be a subalgebra of the algebra c(1,3) of rank 3. By
assumption, the basis operators of L can be written in the following form

Xa *é (x07 )ax““i’(f‘au'au)a (a: 17273) (31)
and

Ty =fE+f4Sos +f{H) +f5Hy +fS2 + f4H, +f¢H>, (a=1,2,3)
(32)

where f¢ = f%(xo,X), f§ = f§(x0,X),f¢ = f%(xp,x) (m=1,...,5) are some
fixed smooth functions. In particular, if the operator X, is a linear combination
of the translation generators, then I'; = 0, and therefore, f* = f§ = f = 0 in
(32).

Owing to Lemma 1, in order to construct ansatz (22) invariant under the
subalgebra L, we have to solve systems (20), (23), which in the case under
consideration read as

[0
W__ =
“3x, 0 (33)
OH
M L HT, =0 (34)

@ Oxy
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where a = 1,2,3, n =0, 1,2, 3. The functions & = &"(x,x) and the variable
matrices T, = f‘(xo, x) are the coefficients of the basis operators of the
subalgebra L [note that T, is of the form (32)]. Matrix function H (30) and the
scalar function ® = ®(xy,x) are to be determined while integrating (33) and
(34).

Next, we prove a technical assertion to be used in the sequel for simplifying
the form of system (34).

Lemma 3. Let H be of the form (30). Then the following identity holds true:

OH 00 00
g__H{ —0 e —E4 gt O[(1 + 80,04 + 80,05)S03
axp a Xp

+ 8(0,05 — 9294)512 + 291H1 +20,H, — 2(04 + 40,05 + 80,0405
— 40 92)[:11 — 2(95 + 4929% + 86,0465 — 46293)?]2]

00
g i} [ (0204 — 0105)S03 + (1 + 86,04 + 860,05)S)>

+ 262H1 — 201 H, + 2(05 + 40,02 — 40,05 + 80,0,05)H,
—2(0, + 40,07 — 40,02 4 80,0,05)H,]

00 N N
~ 283 L [494503 + 40581y + Hy + 4(62 — 02)H, — 80,05H,]

_ 2&# 692

— 2l ae“ Ry ]},

where a =1,2,3, n=0,1,2,3.

[495503 40481, + Hy — 89495?]1 + 4(95 - 6?)?12]

Proof.  Acting by the linear differential operator £}0,, on matrix H (30)
yields an equality whose right-hand side can be decomposed into the sum of
seven terms having the same structure:

o _ 5, (39)
i=1

As each term D; is handled in the same way, we give the calculation details for
one of them, say, for

3 L0, 6
Dy = exp {(—In0)E} HAi(— —Hl HAj (36)

j=4
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Note that in (36) we use the following designations:

Al = exp (60503), A2 = exp(—93512)
A3 exp(—291H1), A4 = exp(—293H2) (37)

As = exp(—204H,), Ag = exp(—20sH>)

Having multiplied the right-hand side of (36) by the matrix HH ! on the left, we
arrive at the equality

20,
a axu

Dy = H(Z& >A61A51A41H1A4A5A6 (38)

where the matrices A4, As, Ag are given in (37).
To simplify the right-hand side of (38), we exploit the Campbell-Hausdorff
formula

exp (TA)B exp (—1A) = i;—}:{A,B}"
n=0 """
{A,B}" =[A,{A,B}"""], {A,B}" =B

which holds for arbitrary square matrices A, B.
With account of commutation relations (28) and (29), we get

AZIHlAl = exp (262H2)H6Xp (—262[‘]2) = H1
whence

A;IAZIHA4A5 = A;1H1A5 = exp (2941:11 )H] exXp (—264H1)
= H; +40,4S0; — 403H,

Consequently

AG_IAS_IAZIHlA4A5A6 = exp (2651:12)(1‘11 + 464303 — 49%;11)6)([)(—2951:12)
= H) + 40,503 + 40551, + 4 (02 — 03)H, — 80,05H,

Finally, we have

00 8 N
Dy = H(—zag 6—;) [Hy + 40,4803 + 40551, +4(03 — 03)H, — 80,05H,]
0
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The same reasoning, when applied to the remaining terms of the right-hand side
of the equality (35), completes the proof of the lemma.

Assertion 4. System (34) is equivalent to the system of partial differential
equations for the functions 0,09,0,, (m=1,2,...,5).

a0
R pa
@ Oy U
00 a a a
Za—x“ = 40417 + 05 f5) — f;
, 90, . o a a1
a7y = 4(0104+0205) fi' +4(0:05 — 0:00) /5 — 01 /5 — 02/ +5 fi
n
00 :
= 4(020, — 0105) ' + 4(0205 + 010) /5 — o fff + Ouff +5 /5 (39)
n
l663 a a a
Zﬁ:4(e4f2 —0s() + /3
1 004 a 2 2y ga a oy L
a7y, = 0afo = 2005 — 05)fi' — 40405 — Osfi' + 5
Xu 2
Hae5 a a 2 2\ ra a 1 a
= 0s /5 — 40405 f}' +2(0F — 03) /5 + 05 + 215

In(39)n=0,1,2,3; a=1,2,3. The coefficients of linear differential operators
€40, and the functions f*,f§.fo (m = 1,2,...,5) are defined by the coefficients
of the basis operators of the subalgebra L of the algebra c(1,3) of the rank 3.

Proof. Inserting the expression for ‘ingh: given in Lemma 3 into the left-
hand side of (34) and multiplying the equation thus obtained by the inverse of
the nonsingular matrix H we arrive at the system of matrix equations, whose
left-hand sides are the linear combinations of the linearly independent matrices
E, SOI,SIZ,HQ,I:IL, (a = 1,2). Splitting the system obtained by these matrices,
and taking into account the forms of the matrices I',, and performing some
simplifications yield system of Egs. (39). The assertion is proved.

Summarizing we conclude that the problem of constructing conformally
invariant ansatzes reduces to finding the fundamental solution of the system of
linear partial differential equations (33) and particular solutions of first-order
systems of nonlinear partial differential equations (39).

The next subsections are devoted to constructing the ansatzes invariant under
the subalgebras of the Poincaré, extended Poincaré, and conformal algebras
given in Assertions 1-3. The solution procedure is based on the above derived
identities and, essentially, on Assertion 4.
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1. P(1,3)-Invariant Ansatzes

Subalgebras listed in Assertion 1 give rise to P(1,3) (Poincaré)-invariant
ansatzes. Analysis of the structure of these subalgebras shows that we can put
0 = 1,04 = 65 = 0 in formula (30) for the matrix H. Moreover, the form of the
basis elements of these subalgebras imply that in formulas (32) and (38)
[ =fi =/ =0, for all the values of a = 1,2, 3. Therefore system (39) for the
matrix H takes the form of 12 first-order partial differential equations for the
functions 6y, 01, 6,, 03

B . .00
Ea: —fo Zla*xp:f,z
00, 1
pdl a a 2 ra
“ Bx 01 /5 — 6213 +2f1 (40)
00, " P B
Ea—xp =—0xfy + 0113 +§f2

where ©n =0,1,2,3;a=1,2,3.
We integrate system (33), (40) for the case of the subalgebra Ly, = (G, G2,
Jo3 + aJi2) (o € R) (all other cases are handled in a similar way).
System (33) for finding the function ® = o(xy, X) reads as
GV o = [(xo — x3)8y, +x1(0y +0y)J0 =0
GV o = [(xo — x3)0x, + x2(By, + O)J@ =0 (41)
Y + oMo = [xody, + 130y, + (120, — x10,)]0 =0, a€R

Performing the change of variables

yo = (%0 +x3)(x0 —x3), y1 =1/x] +x3

X2
yp = arctan —, y3 = Xxg — X3
X1

reduces system (41) to the form

oo 1[0 oo
— 42— —t —=0
ylayl+ yla anyzayz
oo [0 oo
- 2 2" t -1 _— = O
M5, + 2y % (tany,) s
([0} oo
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The fundamental solution of this system reads as ® = yg — y%. Returning to the

initial variables, we get the fundamental solution of system (41), ® = x,x"

— 2222
=X§5— X{ —X; — X3.

Next, taking into account the forms of the basis elements of the subalgebra
Ly, we get the expressions for the functions f (r=0,1,2,3; a=1,2,3)

Gi: fy=f=f=0, fl=-1
G fy=fi=f=0 f;=-1
Js+oi: fo=—1, ff=£=0, f;=-u (¢ €R)

So system (40) takes the form
1
Ve, =G0, =G\"e; =0, G\, = -3

My, — Wg, — Wp. _ M 1
62 90—G2 91—G2 0; =0, G2 627_5 (42)
U+l =1, (I +ally)es = —o
(U5 +0di))0r = 0; + o6y, (U3 + )0, = 8, — b

As we have already mentioned, to construct the matrix H it suffices to find
particular solutions of system (42). The system for determination of the function

0y reads as
00 00y 06
(xo—X3)—0+xa< 0+—0):O, (a=1,2)

Ox, a_xo Ox3 (43)
690 I 690 4 690 ae() -1
o 6)@ s a)C() H axl o 6x2 -

We look for its particular solution of the form 8y = f(xo — x3). On direct check,
we become convinced of the fact that this function satisfies the first two equations
of system (43) and that, the third one reduces to the ordinary differential equation

d
- é = 17 E.: =X0 — X3
whose solution reads as f = —1In |§]|.
Thus we can choose 08y = —1In|xp — x3|. The first two equations for the

function 03 coincide with those from (43), and the third equation

003 063 ( 003 693) _

Xp— — X| =—
Oxq Oxy
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differs from the third equation from system (43) by the constant —a in the right-
hand side. Thus we easily get the final form of the particular solution of (43)
63 =aln |)C() —X3|.

According to (42) the system for finding the functions 0, 0, has the form

(- x) 00y (B0 20) _ L
o 3 61 6XO 6)(3 2

00, 00, 00, B
()C()—)C3)ﬁ+x <ax0 ax3) =0
00, 00; 00, B
(XQ7X3)&+X <ax0 axS) =0
(44)
(xo — )%Jr 692+662 771
o 3 axg 2 axo GX3 - 2
00 00 00 00
X()af;Jr)Qafx;* O((xla;)ani) =0, + ab,
00, 08 (00 08\ . o4
o 6x3 s aX() o 6x2 2 6x1 -2 !
‘We seek for its solutions of the form
0 =g(&x1), 02=h(x2), E=x0—x3 (45)

Inserting functions (45) into system (44) reduces it to the form

% 1 _dh 1

0g
_§6§+w26 . =g+ah

oh oh
_é&_ 13 h—og

By direct check we verify that the functions g = —x;(28) ™", h = —x(28)""
satisfy this system so that we can choose

1 1
0, = 5% (xo—x3)"", 0= —Exz(xo —x3)"!

Performing the same calculations for the remaining subalgebras listed in
Assertion 1, we arrive at the following statement.
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Assertion 5. Each subalgebra L; (j=1,2,...,22) from the list given in
Assertion 1 yields invariant ansatz (22) with

A" = H = exp (0pS03) exp (—03512) exp (—20,H,) exp (—20,H,)

In addition, the functions 0, = 0,(xo,x) (0 =0,1,2,3), © = ©(xo,X) are given
by one of the corresponding formulas below:

Lli 9H207 (u:O,1,2,3), O =Xx3

L: 6“:0, (p:O,1,2,3), O = X

Ly: 6,=0, (u=0,1,2,3), o=¢

Ly: 90:—1H|§|, 91:9220, 93:th’l|§|, (D:a-n

L5: 90:—1n|€|, 91192193:07 W =Xxp

L62 eole, 91:62293:0, O =Xy

Ly: GO:xl, 91:62:9320, m:x1+ln\§|

Lg: 09 = ocarctanxlxz_l, 0, =0,=0,

1 2 2.
, O =X]+Xx3;

03 = —arctanx;x;,
Lg: 60:91 262:0, 63 = —Xp, O =x3
Ll(): 90291 292:0, 63 :—(—1)iX3, O = X9

—1)
Lii: 0p=0,=03;=0, 922—%@ 0="mn

Lip: 0p=0,=03=0, 912—%()61—0“2)@_]7 o=E
Liy: 0p=0,=0;=0, 91:—(_21)1}% o=Et

L 0p=0,=0;=0, 91:—}1@, o =& — 4x

Liss G=6=0=0, 6=t o=of 4 —0)

Lis: 0p=—Inlg, 6, =0,=0, 93:—arctanx1x2_1, co:xf—i—x%

Lt G=0=0, 0= [~ + (ot ulll + (@ +8)g ",

0 == [(—1)x — ][l + (@ + 8¢, 0=¢

2
1
Lig: 6p=—1In[g|, Olz—ixlﬁ_, L 0,=0:=0, o=E&n—x
1
L192 60 = —111|&|7 6] = —E.X]F; 1, 62 = 93 = O7 O =X
1
Ly: 6p=—-Infg, 6,=—-x&"', 0,=0=0, o= +x

2
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1 _
L 6o =—Infg], 0r=—2(x+InE))E 10, =0;=0,

o =oalnlg| +x;

1 1
Ly: 0y =—1Inlg|, Glz—ixli t ezz—zng 103 =aln|g|,

o=xx" (n=0,1,2,3)

Herei=1,2; a €R; E=xp —x3, N=x0+ X3
2. P(1,3)-Invariant Ansatzes

Generically, the list of P(1,3)-invariant ansatzes is exhausted by P(1,3)-
invariant ansatzes given in Assertion 5 and by ansatzes invariant with respect to
the subalgebras F; (j =1,2,...,24) listed in Assertion 2. For this reason, to
construct all inequivalent P(1,3)-invariant ansatzes, it suffices to consider the
cases of the subalgebras F; (j = 1,2,...24) only.

A preliminary analysis of these algebras shows that for the algebras F; with j
taking the values 2,3,4,12,13,...,19, we can choose 8; =0, =0, =05 =0
in (30) and, in addition, we can put f{ = fy = ff =f¢ =0 (a = 1,2,3) in (39).
As a consequence, system (39) for the subalgebras in question reads as

e T -
X

Ox, 4 Oxy

:f’fa

where p =0,1,2,3; a=1,2,3.

For the remaining subalgebras from the list in Assertion 2, the following
equalities hold, 8, =0,/ =0 (b=2,3,4,5; a=1,2,3), and system (39)
takes the form

W00 w00 p 001 P
&aax}lL _f 97 aaxu_ fO’ aaxu_ eLfO +2f1
where n =0,1,2,3; a=1,2,3.

Summarizing, we conclude that the problem of construction of P(1,3)-
invariant ansatzes reduces to finding solutions of linear systems of first-order
partial differential equations that are integrated by rather standard methods of
the general theory of partial differential equations.

We omit the cumbersome intermediate calculations, which are very similar to
those performed in the previous subsection, and give the final result.

Assertion 6. Each subalgebra F; (j=1,2,...,24) from the list given in
Assertion 2 yields invariant ansatz (22) with

A_I =H= exXp {(— In G)E} exXp (60503) exXp (—63512) exXp (—261H1), 9163 =0
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Moreover, the functions 6 = 0(xg,x), 8y = 0p(x0,x), 0; = 0;(x1,x), 03 = 03
(x3,X), ® = o(xg,X) are given by one of the following corresponding formulas

F1:
Fz:

F3Z

F4Z
F5Z

F6:

F7Z

Fg:

F9:

F13I

F14Z

F152

0= |X1|7k, 0p=0,=06;=0, o= xzxfl

0= (x% er%)_(k/z), 0p=06, =0, 06;= arctanxle’1
o = In(x] + x3) + 20carctanxox; ', @ >0

—k _ _
0=|;|™, 6=0 =0, 0;=arctanxox;', o= (] +x3)x5°

9:|x0|_k7 0p =0, =0, 93:arctanx2xfl7 m:(x%—&—x%)xaz
9:|x1|_k7 0p=o 'lnlx|, 6, =0;=0, cz):xle_l, a>0
0 = |gn|"“?, eozélnmzﬁ;w, 0, =0;=0
o=1-o)lnn|+(1+a)In|g|, >0
0=1|al™, G=a'lnp|, 6,=0=0, o= /"™ >0
O=[n["“?, 6 =3, 0/=6;=0

o=E—(=1)In|n|, j=1,2
0=|x|" 0y=Inlx|, 6,=05=0

o=;t-2(=1)YIn|x|, j=1,2
0=1|ol™" 6=Inng', 6,=0=0 o=:&nx>
0=|x|", 8p=—Inl&x'], 0, =0;=0, o=x]"
0= (x? —|—x%)_<k/2), 0p = —oarctanxx; ', 0; =0
03 = arctan x,x; ', @ = In (x3 + x3) + 2P arctan xpx; !

a#0, >0

0=len ™2, Gy=—3tnng |, 6 =0

0= —5 Mg, ©=(x—B)inln|+ (-t BIne]

a#0, >0

0 =|n""?, Gozéln nl, 8. =0, 63:—%1n|n|, ®o=§&—Inn|

0=(2+x2) %2 0= —aarctanxox;!, 0, =0

0; = arctanxox; ', © = In (3 +13)& 7% 4+ 2oarctan xpx; ', A #0
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_ 1 _
Fig: 0=} +x3) “2, eoziln(x%+x%)a % 0,=0

0; = arctanxpx;!, @ = In (6% +x3)' &% + 2B arctan xpx] !
0<laf<1, B=0,of+[B]#0
— 1
Fi: 0= (x1+x3) /2 gy = 5 In (x? +x3)
0,=0, 63= arctanxle’l
o==&— (=1) In(x} +x3) + 2uarctanxpx; !, o €R, j=1,2
_ 1
Fig: 0= (xf—}—x%) (k/2)7 09 :Eln(X%‘f'x%)» 0,=0
0; = arctanxzxfl, o==;+2(-1) arctanxpcfl, j=1,2

_ 1 _
Fio: 0= (x] +x) ), 9o=—51n|én ", 6,=0

s arctan o', © = (2 +22)(En) "
_ 1 |
Fao: 0= -2 6 =o-Injgn—xl, 0r=—7ng"
0: =0, o=[Een—x[" 0<|o<1

it x|k j (1)
F21: 9=|x1—(—]) §x2| B 90=]n|x1—(—1)'§x2|7 91:— X
0;=0, ow=E&=1.2
) k2 1 I
Fp: 6= ,90——§ln|&|, 91—*5961&
0:=0, ow=m-x& "' +(-1)In[g|, j=1,2
- 1 -1y
Fu: 0= o™, O =5 In x|, 0, :_%& !
0; =0, o=(-4(-1x)x", j=12

= 1 . —1)/
Fa: 0=18 = 4(=D/n|™, 0= In|g —4(=1)'|u], o, =~

, 1..\? o
03 =0, o= (n - <—1>fx1a+ga3) (& —4(-1Ym)7, j=12
Here k is an arbitrarily fixed constant [the conformal degree of the algebra
c(1,3)], &£ = xo —x3, M = X0 + x3.

3. C(1,3)-Invariant Ansatzes

To obtain the full description of conformally invariant ansatzes it suffices to
consider the subalgebras C;, (j =1,2,...,14) listed in Assertion 3.



MAXWELL AND SU(2) YANG—MILLS EQUATIONS 299

The preliminary analysis of these subalgebras shows that we can put
0, =0s=f5=f¢=0 (a=1,2,3) for the subalgebras C; (j =1,2,...,10).
As a result, system (39) corresponding to these subalgebras takes the following
form:

00 009 003
K _ fa U _ _ga n _ fa
a ax“ f 67 a 6xu fO ’ a a 3
90, 1 aez

= _e,fg—ezf3“+§f1“, =—0ofy + 0.5 + fz

Oy o 6
where a = 1,2,3.

Thus the problem of constructing ansatzes invariant under the subalgebras
Ci(j=1,2,...,10) is again reduced to solving linear first-order partial
differential equations. However, for the remaining subalgebras C; (j = 11,
12,13, 14), system (39) is not linear. It has been solved for the case of the
spinor field elsewhere [33]. The obtained expressions for the functions are so
cumbersome that they prove to be useless within the context of symmetry
reduction of the conformally invariant nonlinear Dirac equation. For this reason,
we do not give here the ansatzes corresponding to the subalgebras C; (j = 11,
12,13, 14).

Assertion 7.  Each subalgebra C; (j = 1,2,...,10) from the list in Assertion 3
yields invariant ansatz (22) with

A" =H = exp {(—In0)E} exp (00S03) exp (—03512) exp (—20,H;)
X exp (—2621‘12).

Also, the functions 6 = 0(xo,X), 0, = 0,(x0,x) (L =0,1,2,3), ® = ©(xo,X)

are given by one of the corresponding formulas below.
k/2 1 2
Cp: 0=(1+8)" GQ:—Eln(l—i—E_,)

0= —3 (e + a1+ )7 0 =3 (n L)1 +8)
0; = —arctan&, ® = (x; —x8)(1 + &>

Cr 0= (148, 0y= L in(1+)

0, = _%(Xz +x18)(1 + §2)71; 0, :%(xl —xg)(1+ E-’z)q

0; = —arctan&, ® = (x; +x8)(1 + &3 —arctan &
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) 1
Cy: 0= (1+8)7*2 0 = =3 In(1 + &%)

el = 7%){'1&(1 + &2)*1, 62 = *%XZE..(I + &'2)71

0; = arctanxx; ', © = (1 4 &2) (2% + x2)
Cy: 0=1|x|", 0 =1In|x|—In(1+E&?)

el = —%X]é(l + &2)71, e2 - _%XZZ;(I + &'2)71

-1

-1
93 = 07 ® = XX

%m(x% +15)(1+8)7"

0, = —Qxli(l +E)7, 0= ‘%“i(l He

0; = arctan xzxfl, ® = arctan xzxfl 4 aarctan§, o # 0

Co: 0=][(x; —x26)?(1+E)7' W2 g, = %ln[(xl —x8) (14877

Cs: 0= ((C+22) 1+ 0=

(61 — x8) (1 + %)
X —x0E)(1+8)7", a#0
Cr: =[x —x8)*(1+8)7 W2, 902%111[(361—x2§)2(1+§2)_3]

NI'—‘

0= 3 (u )1 +E), 6=

0; = —arctanf, ® = oarctan& — In|

—~

(e —x8)(1+87)

Nl'—‘

0 =~ (e +xE)(1+2)7, 0=
0; = —arctan§
o =N +E)" =201 (0 +x8) - E(xE — )] —&x] 7 - ¢

- 1 _
Co 0= (af +23)"", 00 =2 In[(xf +23)(1+8)7

0 = —%xliu +8)7 0= ‘%xzi(l +&7)™!

0; = arctan xzxfl
o= In(x?+22)(1 4+ &) 4 20arctan x, x; ' — 2B arctan &
o, B eR,[of + B[ #0

1
Cor 0=(xi +x3) Y, By =51n(x+23) — In(1+&)

0, = —%xla(l +8)7, 0= —%Xzi(l +&)™

0; = arctanxox;!, o =n(1+ )3 +x3) ' —¢&
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Cio: 0= +23)*?, 0 =-—

1 _
01 =—§xm(ﬁ+X§) L=

—1
93 = 0, O = XX

Here k is an arbitrarily fixed constant [the conformal degree of the algebra
c(1,3)], & = xo — x3, | = xp + x3.

III. EXACT SOLUTIONS OF THE YANG-MILLS EQUATIONS

In this section we apply the technique described above in order to perform in-
depth analysis of the problems of symmetry reduction and construction of exact
invariant solutions of the SU(2) Yang-Mills equations in the (1+3)-dimensional
Minkowski space of independent variables. Since the general method to be used
relies heavily on symmetry properties of the equations under study, we will
briefly review the group-theoretic properties of the SU(2) Yang-Mills equations.

A. Symmetry Properties of the Yang—Mills Equations

The classical Yang—-Mills equations of SU(2) gauge theory in the Minkowski
spacetime R form the system of nonlinear second-order partial differential
equations of the form

0,0"A, — 3"3\A, + e[(BvA)) x A, — 2(3,A,) X A,
+ ("Ay) x AV + €*A, x (AY x A,) =0 (46)

Hereafter in this section, the indices p, v, a, B, 7, 0, ¢ take the values 0, 1,2, 3;
Op =0y, = ax ; rising and lowering the indices is performed with the use of the
metnc tensor g,, of Minkowski space and the summation convention over the
repeated indices is used. Furthermore, A, = A, (xo,%) = (A} (x0,X), A} (x0,X),
A o (X0, x))" is the vector potential of the Yang—Mills field (for brev1ty it is called
the Yang—Mills field hereafter) and e is the gauge coupling constant.

The maximal symmetry group admitted by Egs. (46) is the group C(1,3)®
SU(2) [17], where C(1,3) is the 15-parameter conformal group generated by
the following vector fields

P, =0,
Jp = 240, — X0, + AWy — AV,
D = Xuaxp — AﬁaAﬁ
Ku =2"D — (vav)axu + ZA“”xV6A3 — 2A3XV6AS

(47)
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and SU(2) is the infinite-parameter unitary gauge transformation group having
the generator

0 = (EarcAL 0" (x0,X) + €0, 0" (xo, X)) (48)
In formulas (47) and (48), 6Aﬁ = a%, ®°(xo, X) stand for arbitrary real functions,
a,b,c =1,2,3 and g, is the antis“ymmetric third-order tensor with €153 = 1.

It is not difficult to check that vector fields (47) can be rewritten in the form
(15) if we put

0 -1 0 0 0 0 -1 0

1 0 0 0 0 0 0 0
=10 0 0ol T 0 0 o

0 0 00 0 0 0 0

0 0 0 —I 00 0 0

0 00 0 00 -1 0
S5=169 00 o 2 |o1 0o o (49)

100 0 00 0 0

000 0 000 0

000 —I 000 0
=10 0 o =g 0 0 1

01 0 001 0

where 0 and [ are the zero and unit 3 x 3 matrices, correspondingly. Next, we
choose the matrix E to be the 12 x 12 unit matrix and the conformal degree k of
the algebra c(1,3) to be equal to 1.

One important application of the symmetry admitted by Yang—Mills equa-
tions is a possibility of getting new exact solutions with the help of the solution
generation formulas. This method is based on the fact that the symmetry group
maps the set of solutions of an equation admitting this group into itself. We give
the corresponding formulae without proof [20,21,33].

Assertion 8. Let
xi:ﬁ(xvuat)a i:1727"'7p
ﬁj:gj(X,u,T)7 j:1a2a"'7q

where 1 = (11, 12,...,T,), be the r-parameter invariance group admitted by a
system of partial differential equations and U;(X), j=1,2,...,q be a particular
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solution of the latter. Then the g-component function u(x) = (u'(x),...,u?(x)),
defined in implicit way by the formulas

Uj(f(x, u, T)) = gj<xv u, T)
withf = (fi,....f,), ] =1,2,...,q, is also a solution of the system in question.

To take advantage of Assertion 8, we need the following formulas for the
final transformations generated by the basis operators (47) and (48) of the Lie
algebra of the group C(1,3) ® SU(2) [2,21]:

1. The translation group (the generator is X = 1,P,)
- ad d
Xy =X+ T, A=A

2. The Lorentz group O(1,3)
a. The rotation group (the generator is X = tJ,)

X0 =X0, Xe=X; CHa, c#Db
Xy, = X4 COST+XpsinT
Xp =X, COST — X, SIN T
Al =A8 AT=A? c#a, c#b
Ad = A cos T+ A sin T
Ad = Ad cos 1 — A sin 1
b. The Lorentz transformations (the generator is X = tJy,)
Xo = x9 cosh T + x, sinh ©
X, = x4 cosh T + xo sinh T
A8 = Ad cosh T + A? sinh ©
A? = A? cosh T+ AJ sinh
Xp = Xp, A,‘f :AZ, b # a;
3. The scale transformation group (the generator is X = 1t D)
Xy =xy¢€, Aﬁ = Aﬁefr
4. The group of conformal transformations (the generation is X = t,K*)
¥ = (¥, — 1e0x")o ! (x0,X)
Aﬁ = [guwo (X0, X) + 2(xu Ty — Xy Ty

+ 2T X% Ty — XX T, Ty — tmr“xMxV]Ad"
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5. The gauge transformation group (the generator is X = Q)
Xy = Xy

— . . 2@
Aﬁ = Aﬁ cos ® + adbcAﬁnc sin ® + annbAfl sin 2 5

a1 1 . c
+e! Endﬁxum + 3 (prnd) sin ® + Sd;,c(@x“nb)n

In these formulas o(xg,X) = 1 — 1,7 + (147%) (xpxP), n% = n%(xo,x) are the
components of the unit vector given by the relations ®*(xg,x) = ®(xq,X)n

(x0,x) with a,b,c,d =1,2,3.

Using Assertion 8, it is not difficult to derive the following formulas for
generating solutions of the Yang—Mills equations by the transformation groups

enumerated above [33]:
1. The translation group

Al (x) = uy (x + 1)

2. The Lorentz group

Aﬁ(x) = ayud(ax, bx, cx, dx) + byuf (ax, bx, cx, dx)

+ cu§ (ax, bx, cx, dx) + d,us (ax, bx, cx, dx)
3. The scale transformation group
d _ t,,d T
Aj(x) = euy (xe")
4. The group of conformal transformations

Aﬁ(x) = [guo ' (x) + 2072 (x) (X Ty — 2Ty + 2T X T,y

- xuxa’tp’tv - Tottuxuxv)]ud\/((x - T(xuxu))cil(x))

5. The gauge transformation group

[0}
d _d b c d b b 2W
Au(x) =1u, cosoa—&—sdbcu”n sin® + 2nn u, sin >

1 1 :
+ et |3n100,0 + 5 (3g,n) sin @ + £ape (31"

d

Here uy

(x) is an arbitrary particular solution of the Yang-Mills equations;

x = (x0,X); 7,7, are arbitrary parameters; ay, by, cy,d, are arbitrary constants
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satisfying the relations

aya" = —bb* = —cyc! = —dyd" =1

abt = ayct = aqyd" = byt =bd" =cd" =0
In addition, we use the following notations:

x+1={x+1,0=0,1,23}

T —p M R — g M
ax = apx", bx =bx", cx=cx", dx=dx

Thus, using the solution generation formulae enables extending a single
solution of the Yang—Mills equations to a multiparameter family of exact solu-
tions.

Let us also discuss briefly the discrete symmetries of equations (46). It is
straightforward to check that the Yang—Mills equations admit the following
groups of discrete transformations:

Ui X=—x, Ai=-A,

Wy:  Xo = —Xo, X1 = —X1, X2 =2X2, X3=X3
Ay=Ay, A=A, A=A A=A;
Us: Xo = —Xo, X| =X[,X=—X2, X3 = —X3

Ag=—A), A=A, A=A Ayj=-A;

Action of these transformation groups on the basis elements (47) of the
symmetry algebra admitted by Eqgs. (46) is described in Table II, where
G =Jom — I3 (m=1,2), M =Py + P3, T =5 (Po — P3).

While classifying the subalgebras of the algebras p(1,3) and p(1, 3) of rank 3
we have exploited the discrete symmetries ®, given in Table II. Comparing
Tables I and II, we see that the actions of the discrete symmetries ®, and ¥, on
the operators Py, J,,y, D give identical results, namely

O.P,=V,Py, Py =Yy, ®.D=Y,D

for all a = 1,2, 3. This fact makes it possible to use the discrete symmetries in
order to simplify the forms of the basis operators of subalgebras of the algebras

p(1,3) p(1,3).
B. Ansatzes for the Yang-Mills Field

Conformally invariant ansatzes for the Yang—Mills field, that reduce equations
(46) to systems of ordinary differential equations, can be represented in the
linear form

Ay (x0,%) = A By () (51)
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TABLE II
Discrete Symmetries of Eq. (46)

Action of ¥,

Generators U, v, Uy
Py —Py Py —Py
P —P —P P
Py (k = 2,3) —Py Py —Py
Joz Jos Jos Jos
Jin Ji —Ji2 —Ji2
Gy Gy -Gy -Gy
G, G, Gy G,
M -M M -M
T -T T -T
D D D D
Ky —Ky Ky —Ky
K —K; —K; K
Kn (m=2,3) —Kn Ko K,

where Ay = A,y(x0,X) are some fixed nonsingular 3 x 3 matrices and
B,(0) = (B!(0), B*(®),B3(®))" are new unknown vector functions of the
new independent variable ® = ®(xg, X). In the following text, we will denote the
12 x 12 matrix having the matrix entries A, as A.

Because of space limitations, we restrict our discussion to the ansatzes
invariant under the subalgebras of the Poincaré algebra. For further details on
extended Poincaré algebra, see Ref. 39.

The structure of the matrix A for the case of arbitrary vector field is described
in Assertion 5. Adapting the formula for A to the case in hand, we have

A = exp (20,H,) exp (20:.H,) exp (—00S03) exp (03512)

where 6, = 0,(x,Xx) are some real-valued functions, and H; = So; — Si3,
H, = Sg» — S»3, and Sy, are matrices (49), which realize the matrix representa-
tion of the Lie algebra o(1,3) of the Lorentz group O(1,3).

Computing the exponents with the help of the Campbell-Hausdorff formula
yields

[cosh O + @] —2[F,]  2[T,] [sinh 6y — P]
[-201e=%]  [cos03] [—sin 03] [20,e %]
[-20,e %]  [sin03] [cos 03] [20,¢7%]

[sinh 6p + ®] —2[¥;]  2[¥,]  [cosh 6y + D]

A=

where ® =2(07 +03)e %, U, =0, cos0; + 0,sin0;, ¥, =0;sin0; — 6,
cos 03 and the symbol [f] stands for f1, where [ is the unit 3 x 3 matrix.
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Inserting the expression obtained for the matrix A into (51) yields the final
form of the Poincaré-invariant ansatz for the Yang-Mills field

Ao = cosh 8yBg + sinh 6)B3 — 2(6; cos 83 + 0, sin 65)B,
+2(0; sin B3 — 0, cos 03)By + 2(07 4 03)e"*(By — B3)

A, = cos 0;B; — sin 03B, — 20, % (Bo — B3)

A, = sin 03B, + cos 03B, — 20,¢ % (Bo — B3)

Az = sinh 6oBg + cosh 0pB3 — 2(0; cos 03 + 0, sin 03)B;
+2(0; sin 03 — 0, cos 03)By +2(07 4 03)e *(By — B3)

where B, = B, (®) and the forms of the functions 6, ® are given in Assertion 5.

Inserting (52) into (46) yields a system of ordinary differential equations for
the functions By (). If we succeed in constructing its general or particular
solution, then substituting it into (52) gives an exact solution of the Yang—Mills
equations (46). However, the so-constructed solution will have an unpleasant
feature of being asymmetric in the variables x,, while Eqs. (46) are symmetric
in these.

To get exact solutions that are symmetric in all the variables, we exploit the
formulas for generating solutions by Lorentz transformations (see the previous
subsection) and thus come to the following general form of the Poincaré-
invariant ansatz:

Au(x) = auy(x)B"(0) (53)
where

ay(x) = (apay — dud,) cosh 6y + (dyay — dya,) sinh 6
+ 2(ay +d,)[(8; cos B3 + 6, sin 03)b, + (0, cos 83 — B sin B3)c,
+ (07 + 03)e ™ (ay +d)] + (bucy — bycy) sin 0
— (cucy + byuby) cos 03 — 2¢7%(0,b, + 0,¢,)(ay + dy) (54)

Here n,v=0,1,2,3; x = (x,X) and a,, by, ¢, d, are arbitrary parameters that
satisfy relations (50). Thus, we have represented Poincaré-invariant ansatzes (52)
in the explicitly covariant form.

Before giving the corresponding forms of the functions 0,  for the above
mentioned ansatz, we remind the reader that using the discrete symmetries
®, (a=1,2,3) enables us to simplify the forms of the subalgebras of the
algebra p(1,3). Specifically, at the expense of these symmetries, we can put
j =2 in the subalgebras L] (i = 10,11,13,17). Consequently, for the corre-
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sponding ansatzes we have (—1)/ = 1. With this remark the forms of the
functions 0, ®, defining ansatzes (53), (54) invariant with respect to sub-
algebras from Assertion 1, read as

Ly:
Ly:
Ls:
Ly:
Ls:
Lg:
Ly:
Lg:

L92
L]()I

L11:

0,=0, ©=dx
0,=0, o0=ax
0, =0, o=k
Bp=—Inlkx|, 0, =0,=0, 0;=oalnlkx|, ©= (ax)>— (dx)
0p=—Inlkx|, 0, =0,=0;=0, ©=cx
0p=—-bx, 0,=0,=0;=0, ©=cx
0o=—-bx, 0,=0,=0;=0, ©=bx—Inkx|
1, 8,=6,=0
03 = —arctan (bx(cx)™"), © = (bx)* + (cx)
0p=0,=06,=0, 03=—ax, o©=dx
0p=0,=06,=0, 0;3=dx, ©=ax

0o = o arctan (bx(cx)
2

90291293:0, 92:—5106, ®=ax —dx
1

0y =0, Glzi(bx—ozcx)(kx)_l, 0,=0;=0, o=kx
90:92:9320, 91:%6‘)6, o = kx

1 2
0p =0, =05 =0, Olz—zkx, 0):4bx+(kx)

1
O =0,=05=0, 0 =— kv, o = 4(abx — cx) + a(kx)?

0= —Inlkx|, 06, =0,=0, 0;=—arctan(bx(cx) ")
o = (bx)* + (cx)*

0= 05 =0, 0= %(chr (o + ko)) (1 + k(o + kx)) !
0, — —%(bx— ex ko)1 +hx(a+ k), o = ke

0o = —Inlkx|, 0, = %bx(kx)_l

0,=0;=0, o= (ax)2 - (bx)2 — (dx)2

0o = — In |kx|, Glzébx(kx)fl, 0,=0;=0, ©=cx
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Ly: 0= —In|kx], elzébx(kx)*‘
0,=0;=0, o=Inlkx| —cx

Lyi: 09 = —In|kx|, Olzé(bx—ln|kx|)(kx)_l
0,=0;=0, o=oalnlkx|]—cx

Ly: 0= —Inlkx]|, 91:—1bx(kx)-‘, 922—%cx(kx)_l
0 = alnlkx|, ©=(ax)’ - (bx)* = (cx)’ — (dx)’

As earlier, we use the shorthand notations for the scalar product in Minkowski
space:
— M — M _ i _ in
ax = apx", bx =bx", cx=cux", dx=dx

and also kx = ax + dx.
C. Symmetry Reduction of the Yang—Mills Equations

Ansatzes (53)—(55) are given in explicitly covariant form. This fact enables us to
perform symmetry reduction of Eqgs. (46) in a unified way. First, we give
without derivation three important identities for the tensor ay, [35]:

ajay = g (56)
Oa 00 003
v — - _ s
a\ s (andy — aydy) s + (buey — cuby) s
+ 26‘9”[(1@19\, — kyby)cos03 — (kucy — kycy) sin 03] 29
X5
_0 . 00,
+2e " [(kuby — kyby) sin 03 + (kyey — kyey) cos 03] — = (57)
X5
00y 00,
azDayv = (auay — dyd,) 6_)67@ — (aydy — aydy,)[6
0 100100
+2e7" kuby [(D@ ) cos 03 + ([16,) sin 03 — ax{ Y] sin 03
006, 06 .
2 ax2 ax; 0s 93] +2¢ Mk,cy {(DOZ) cos 03 — ([J6;) sin 03
00, 305 00,0, 0
— 2512 o803 — 222 2 sin 03| + de Pk k
ax, axt ] R

00,00, 00,00, 005 005
-2 b.b, V)
(axy ox?  Oxy axy> + (buby +cucy) Ox, Ox¥

+ (buey — cuby) 0105 (58)
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Hereafter, we denote the derivatives of the functions in one variable ® by the dots
over the symbols of the functions, for example

df af .
2 =f

*fy Tl

Assertion 9. Let ansatz (53) reduce system (46) to a system of second-order
ordinary differential equations. Then the reduced system is necessarily of the

Jorm i} . .
kyB" + 1, BY + m, B + eg,,BY x BY

+ ehy,BY x BY +¢’B, x (B" x B,) =0 (59)
and its coefficients are given by the relations
ki = 8urF1 = GGy, iy = 8uyFa + 28y — GuHy — GG,
Myy = Ry — Gtu, 8uvy = 8uyGv + 8w Gy — 280Gy (60)
by = %(gw/Hv — guwHy) — Tuwy

where Fy,F>, G, Hy, Sy, R, Ty represent the following functions of o:

oo 0m )
Fy =

Fr,=[0Do, G,= —
@xu o 2 Do, n= ox,
0ay, 0a,, 0o )
Hu = aixy’ pv = Zl oxs ax57 va = aﬁ[‘a«/v (61)
Oa Oa Oa
& bv & Ylsy 3 bu
THVV u a a, a . Yon ta y a

Proof. Inserting ansatz (53) into Eq. (46) and performing some simplifications
yield the following identities:

d%a,
DAH — @“(@VAV) = (Daw — W@;V)By
Oay, 0w da,y, 0w  Oa,y 0®

( B, o T T e T o o,
o \ . o 0w 0w 0w
— Gy —— |BY — = _aq, B (62
i ax\,ax“) * (aw ax,ox’ 7 dx, ax“> (62)
(@A) X Ay — 2(0,A,) X A, + ("A,) x AY

Odyy, Gaw Ga\m
— (a, L a* ) B* x BY
<“““’ o Com T o X

0w 0w , 0
+ (awaw e 20,50y, o + away = u) B* x BY (63)

A, % (AY x A,) = apata,,BP x (B* x BY) (64)
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Here o, =0,1,2,3.
Convoluting the left- and right-hand sides of these expressions with ag and
taking into account (3.11) yield

aiA, x (AY x A,) = diaypala,BP x (B* x BY)
= gﬁagSN/BB x (B* x BY) =B, x (B* x Bj)

Consequently, convoluting (62) and (63) with af, we get the equalities such that
their right-hand sides are linear combinations of B’,B",B”, B* x B',B* x B".
Furthermore, the coefficients of these combinations are the functions of ® only.
Consider first equality (62). The coefficients of B, BY, BY read as

d%ay,
B": afay —al @x“@vx(\, = F5y(o) (65)
. Oayy 0w u Oayy 0o
B": 2a} awa v e 0o —aj awax”
wav 00, GRO)
a oxt dx, Ao vy Ox, Ox* = Gs(0) (66)
.. 0w 0w 0w 0w
. u —
BY. gSy a—x\/@ — ClBClVY a_x\,@ = Hgy((l)) (67)
For coefficient (67), convoluting the function Hs,(®) with the metric tensor
g = gsy yields
0o 0o Jm 0w 0m 0w 0m 0w
SYH 4 — ad — e — 8w
8" Hsy(®) = dx, Ox" Gusdy ox, GxM Ox, Ox” Buv Ox, Ox,

0w 0w 6&6@7367@60)
axv axY Ox, 0x¥  ~ Ox, OxV

Hence gm g(’) is a function of ® only, as follows:
0n 0»
=F 68
axv ox¥ 1(©) (68)
Therefore
dlay, 2200, 00, 20 g (o)
OV Bxy OxM h Oxy Y ox, o
whence
o
aws »— = Gs(0) (69)
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In view of (68), (69) we get the equality
Hyy(0) = g&yF1 — G5Gy

Thus the function Hs,(w) coincides with &, from (60).
Convoluting (66) with the metric tensor g%' gives

dad oM
YGS,’( ) = 2agax:a—xv+4|:|03
0o da’ dad 0o 3 o
—apy— = — 70
o ax,  Moxar, N ardx, (70)
Now using (56), we ensure that the relation
da® 10 19
[ o U ﬁzo 71
“ Ox, 20x, (a5d) 2 Oxy (gﬁ) (71)
as well as the relation
0 5 00] _daw ;5 00 dad 0w s 0o
o { Wy 5 } o Vox, T N B oy
hold true. Because
Bays 500 _ 04 3o
xy Vox, Oxy < Ox,
we make sure that the relation
s p 20 2 Eo
Ox, v 6x uo 0Ox,, Oxy
is valid, whence
. amai+ daydw _ O [ ;00 . » Jo
Mo, ox,  Maxoxn,  oxy | Mo, “ B0
0 0 G0}
=_— —| —gwvz——= 72
Ox, {g“ v axJ Euv 0x,0xy (72)
Factoring in Egs. (70)—(72), we obtain
2
%Gy (0) = H0) — guv mem = 300
Y . 0x,0xy
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Consequently, the relation

o = F() (73)
holds.
Next, making sure that the equalities
aaw do o’ ) [0
~ =dady— | Ayy —
M By Oy RO, a7 Oy
0 . Jdo .
=y 5 Gy(0) = a6y (o) P G, (0)Gs(o)
hold and taking into account (66) yield
day, 0® da ~
205 axwa s~ Go g = Gol0) (74)
Now, convoluting (74) with g, we have
~ Oa Oa
gqu&/(m) = ngG.S((D) (2 ax}:} — 8uv aa;::)
or, equivalently
Oayy Gauy Rl0)
f = o), T = S(o) )

Combining (69), (73), and (75), we find that the coefficient of B? in the
reduced system (59) coincides with [, in Eq. (60).
Finally, from the relation

s 82aw 4 ,gi (aavy> _ awﬂ([—[y((g)) = G5((x))[:1y((l))

Ox,,Oxy o 0x, \ oxy
and (65) it follows that
agOayy = Ryy ()

Consequently, the function in the right-hand side of (65) coincides with m,,, from
(60).
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Analysis of (63) is carried out in the same way (we do not present the
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corresponding calculations here). Assertion 9 is proved.

Thanks to Assertion 9, the problem of symmetry reduction of Yang—Mills
equations by subalgebras of the algebra p(1, 3) reduces to routine substitution of
the corresponding expressions for a,,,® into (61). We give below the final
forms of the coefficients (60) of the reduced system of ordinary differential

equations (59) for each subalgebras of the algebra p(1,3):

L]Z

L22

L3Z

L4:

L62

L72

kyy = =8 —dudy, Iy =my, =0
8uvy = &uydyv + gvyd, — 28wdy,  huy =0
kyy = guy — apay, lyy =my =0
vy = 8uylv + &way — 28way, hyy =0
kyy = kyky, Ly = myy =0
Guvy = Gurky + gurky — 2guwky, My =0
kuy = 48,0 — ayay (o + 1)° — dydy (0 — 1)
— (aydy + aydy ) (0 — 1)
ley = 4(8uy + a(byuey — cuby)) — 2ky(ay — dy + k)
myy =0
8uvy = €(guy(ay — dv + ko) + gvy(ay — dy + ko)
—2g(ay — dy + k)

€
by = 3 [guvky — guvky] + a€[(buey — cuby )k,
+ (bvey — cvby)ky + (byey — cyby)ky]
ki = —8uy — cuCy, Ly = —€cuky, myy =0

Buvy = BuyCv + 8vyCu — 28 Cy
€
huvy = E (guykv - guvky)

kuyy = —8uy —cucy, Ly =0

myy, = —(apay —dydy),  guvy = guyCv + &uyCy — 28 Cy

hyvy = —[(audy — ayd,)by + (avdy — aydy)by
+ (aydy — ayd))b,]
kyy = —guy — (by — €kue®)(by — ekye®)
Ly = —2(apdy — ayd,) + €e®(b, — ek, e®)k,

myy = —(ayay — dydy)

Suvy = Guy(by — €kve®) + vy (by — €kye®) — 2y (by — €kye”)
hyvy = —[(aydy — avdy)by + (avdy — aydy)by, + (aydy — audy)by]



Lg:

L13Z

L14Z

Ky =
Myy =
8uvy =

by =

kw =
Myy =

kyy =
Myy =

hyyy =

kyy =
Myy =

8uvy

Pyvy

8uvy =

hyyy =

kyy =
8uvy

hyyy =
kyy

uvy
kyy =
by =
8uvy =

MAXWELL AND SU(2) YANG—MILLS EQUATIONS

—40(guy + cucy),  lyy = —4(guy + cucy)

- é (ocz(auay —dudy) + byby)

2V0(guyey + ey — 28m¢y)

7 e = gey) + =l — ad )by
+ (avdy — dvay)by + (ayd, — audy)by)

—8uy —dudy, Ly =0

b,b, + cycy

Buydv + gvydy — 28uvdy

ay(byey — cuby) + ay(byey — cvby)

+ ay(bycy — cyby)

Suy — uay, Ly =0

= (buby + cyucy)

Buyav + gvyay — 28uvay

—ldy(bucy — cuby) + dy(byey — cyby)

+ dy(bycy — cyby)]

—(ay — dy)(ay — dy), Ly = 2(bucy — cuby)

0

Swy(ay — dv) + gw(ay — dy) — 28 (ay — dy)

2

Burky + gvrky — 28uvky

1 _ -
50 "(guyky — guvky) + 00! ((kuby — kyby)cy
+ (kvby — kyby)ey + (kyby — kuby)cy)

—huky, Ly =0, myy = —kuky

= Buykv + vk — 28uvky
—((kuby = kvby)cy + (kvby — kyby)ey + (kyby — kyby)cy)

—16(guy +buby), Ly = myy = hyy =0

= 4(gwbv + gvyby — Zguvbv)

—16[(1 + o) gy + (cu — aby) (cy — aby)]
Myy = hyyy =0
—4[gw(cv - Oﬂbv) + gw(cu - “bu) - 2gpv(cv

1
=5 [(ky(bucy — cuby) + ku(byey — cyby) + ky(bycy — cyby)]

= —kuky, Ly =—0 kky, my = —oto 2kk

— aby)]

315
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Lie: Ky = —40(guy +cucy), Ly = —4(gyy + cucy) — 2ekycuv/o

My = =0 'buby,  guwy = 2V0(guyCv + 8w €y — 28uCy)
1 1
by = ) [e(gurky — guvky) + ﬁ (guyev — &uvey)]
20 + o

S o(o+a)+1
2

L7 ky = —kuky, Ly = kyk,

myy = =4kl (1 + oo+ )
Buvy = &urky + gk — 28k,

1 —
By = = (00 + 20) (guykv — guvky) (1 + 0(0 + @)~
2

—2(1 + o(o + o)~ ((kuby — kyby)c,
+ (kvby = kyby)ey + (kyby — kyby)ey)
Lig:  ky = 40guy — (ko + ay — dy)(kyo + ay — dy)
Ly = 681y + 4(andy — aydy,) — 3ky(kyo + ay — dy,)
My = —kukys 8oy = €(uy (kv +ay — dy)
+ gv (ko + ay — dy) = 28,0 (k0 + ay — dy))
vy = €(8uyky — guvky)
Lio:  kyy = —8uy — cuCy, Ly = 2ekycy,  myy = —kyky
Buvy = 8uyCv + 8wyCu — 28w €y vy = €(guky — guvky
Lot kyy = —8uy — (cu — €ky)(cy — €ky)
Ly = 2€kycy — 2kyky, my, = —k.ky,
8uvy = Guy(eky — cv) + gvy(eky — cu) — 28 (€ky — ¢y)
vy = €(guvky — guvky)

Loz kyy = =8y — (cu — 0€ky)(cy — oeky)
ly = 2(ekyep — akyky),  myy = —kky
uvy = —8uy(cv — 0eky) — gvy(cy — aieky)

+ 28u(cy —aeky), vy = €(gurky — guvky)
Ly ky = —40g,, — (ay — dy + k,o)(ay, — dy + k,»)
Ly = 428y + a(bycy — cuby) — apay + dyd, — Okyk, |
my = —2kuky, gy = €(guy(av — dv + ko)
+ 8wy(ay — dy + ko) — 2,0 (ay — dy + ko))

3e
hyvy = > (8uyky — guvky) — €oky(bucy — cuby)

+ (ku(bvey — cvby) + ky(byey — cyby)]
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In these formulas [Eq. (76)] we have € = 1 for kx > 0 and € = —1 for kx < 0.
Furthermore, o is an arbitrary parameter.

D. Exact Solutions

Clearly, efficiency of the symmetry reduction procedure is subject to our ability
to integrate the reduced systems of ordinary differential equations. Since the
reduced equations are nonlinear, it is not at all clear that it will be possible to
construct their particular or general solutions. That it why we devote the first
part of this subsection to describing our technique for integrating the reduced
systems of nonlinear ordinary differential equations (further details can be
found in Ref. 33).

Note that in contrast to the case of the nonlinear Dirac equation, it is not
possible to construct the general solutions of the reduced systems (59)—(61). For
this reason, we give whenever possible their particular solutions, obtained by
reduction of systems of equations in question by the number of components of
the dependent function. Let us emphasize that the miraculous efficiency of the
t’Hooft ansatz [5] for the Yang—Mills equations is a consequence of the fact that
it reduces the system of 12 differential equations to a single conformally
invariant wave equation.

Consider system (59)—(61), which corresponds to the subalgebra Lg. We
adopt the following ansatz

Bp = aye f((D) + dpezg(co) + bpe3h(0)) (77)

for the vector function B, where f(®), g(®), h(®) are new unknown smooth
functions of ® and

e; =(1,0,0)", e, =(0,1,00", e =(0,0,1)"

Now inserting (77) into (59), where the coefficients (60) are listed in (76) for
the case of the subalgebra Lg, we arrive at the system of relations

o®  2ae

aye [—4of — 4f — 6f + %gh + &2(h* + g*)f]

. .ol 201
+ dyes[—40g — 4 — g — —:;fh + 2 (h* — f)g]

Vo

%fg +e*(g" —f)h =0

+ byes[—4wh — 4h+ o 'h —
1»13[ \/5
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This is equivalent to the following system of three ordinary differential equa-
tions:

4mf+4f+°;f—2%fgh— P +¢)f=0

2

o
4 46 4+ — — 2 _ o =0 78
og + g+wg+\/6fh e —f)g (78)
. 2
4mh+4h—m’1h+%fg—ez(g2—fz)hzo

so that we reduce the system of 12 ordinary differential equations (59) to a
system containing three equations only.
Next, choosing

B, = k.eif (o) + byerg(w) (79)

and inserting this expression into (59) with coefficients given by formulas (76)
for the case of the subalgebra Lg under o = 0 yield the system of two ordinary
differential equations

dof +4f —e*¢*f =0, 4og+4g—0'g=0

Note that the second equation of this system is linear.

In a similar way we have reduced some other systems of ordinary differential
equations (59) to systems of two or three equations. Below we list the
substitutions for By () and corresponding systems of ordinary differential
equations. Numbering of the systems below reflects numbering of the corre-
sponding subalgebras L; of the algebra p(1,3):

1. B, =ayef(o)+ buerg(m) + cpesh(w) f— (g +rn)f=0
g+e(fP—h)g=0, h+ E(fP—gHh=0
2. B, =beif(0) +cuerg(0) +desh(o), f+e*(g*+h)f =0
g+EfP g =0, h+e(fP+g)h=0
B, = keeif(0) + byerg(w), f—eg*f =0, §=0
8.1. (x=0) B, = ke f(0)+berg(w), 4of +4f —eg*f =0
4o +4g -0 'g=0
8.2. B, =aqeif(0)+ dierg(®) + byesh(w)
a2 . 2ae

4o)f+4f——f—7gh—e 2+ g)f =0

9,1
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. Lol 20e
4o +4¢ +—g +Tfh +e (P —h)g=0

4ooh + 4h — o)‘lh+ fg+e2(fz—g Yh=0
NG

14.1. B, = q.eif(0) + dyerg(o) + cpesh(o), 16f — (W +g*)f =0
168 + *(f2 —h*)g =0, 16h+e(f> —g*)h=0
142. B, = ke f(0) +cuerg(o) 16f —eg*f =0, =0
15.1. B, = aue,f(0) + dyesg(®) + (14 o2) "2 (oe, + by, )esh(o)
16(14+02)f — (W +g*)f =0, 16(14+a*)g+e*(f> —h*)g=0
16(1 + o®)h+ €*(f> — g )h =0 (80)
152. B, = kyef(o0) + (1 + ocz)f(lm(cxc“ + by)erg(o)
16(1 4+ o2)f —e*fg> =0, =0
16. B, = kyeif(0) + buerg(0), 4af +4f — e’g*f =0
dog+4g—0 'g=0
18. B, = bhuef(0) + cuerg(®), 4af +6f +e’g*f =0
4og + 6% + *f>g =0
19. B, = kye f(0) + byerg(w), f — g’ f =0,
20. B, = ke f(0) +berg(w), f—e’g*f =0,
21. B, = ke f(0) +buerg(w), f—e’g*f =0,
22. (x=0) By =buef(0)+ cperg(o)
4of 4+ 8f + ¢’ f =0, 4og+ 83+ *f’g=0

0Q: 00 oo:
Il
oS O o

So, combining symmetry reduction by the number of independent variables and
direct reduction by the number of the components of the function to be found, we
have reduced the SU(2) Yang-Mills equations (46) to comparatively simple
systems of ordinary differential equations (80).

As a next step, we briefly review the procedure of integration of equations
(80). Choosing f =0, g =h = u(®) reduces system 1 [in Eq. (80)] to the
equation

it = e*u’ (81)

which is integrated in terms of the elliptic functions. Note that this equation has
solution that is expressed in terms of elementary functions:

u=v2(ew—C)"', CeR
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System 2 with f = g = h = u(®) reduces to the equation
i +2¢*u’ =0

which is also integrated in terms of the elliptic functions.
Integrating the second equation of system 5, we get

g:C1m+C27 C],CQGR

Provided C; # 0, the constant C; is negligible and we may put C, = 0. With this
condition, the first equation of system 5 reads as

f—eCla’f =0 (82)

The general solution of Eq. (82), which is equivalent to the Bessel equation, is
given by the formula

ie
f= \/O_JZ1/4 (? Cl(DZ)

Here we use the designations Z,(®) = C3Jy(®) + C4Y,(®), where J,, Y, are the
Bessel functions and C3, Cy4 are arbitrary constants.

Given the condition C; =0, C; # 0, the general solution of the first
equation of system 5 reads as

f = Cscosh(Crew) + Cy4 sinh (Crem)

where Cs, Cy are arbitrary real constants.

Finally, if C; = C, = 0, then the general solution of the first equation of
system 5 is given by the formula f = C30 + Cy4, C3,C4 € R.

Next, we integrate the second equation of system 8.1 to obtain

g=CivVo + C(Vo)™!

where C;, C, are arbitrary integration constants. Inserting the function g into the
first equation of system 8.1 yields the linear differential equation

40%f + dof — E(Cro+ C)*f =0 (83)

For the case C,C, # 0, Eq. (83) is related to the Whittaker equation. Here we
consider only the case C;C, = 0, thus getting

(a) C]#O, CzZO, f:ZQ[iEecl(D:|

(b) C1 =0, C#0, f=CoC?+Cuo 2
(C) C1 = C2 :0, f:C31H(1)+C4

where Cs3, C, are arbitrary integration constants.
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Analyzing systems 14.1 and 14.2 in Eq. (80), we conclude that they reduce to
systems 1 and 5, correspondingly, if we replace e by £. Analogously, replacing in

systems 1 and 5 the parameter e by (1 + az)f(l/z) yields systems 15.1 and
15.2, respectively.
Finally, system 22 with oo = 0 is reduced by the change of the dependent
variable f = ¢ = u(®) to the Emden—Fauler equation
)
it + 20 + T =0
which has the following particular solution u = e~ '~ /2.

We have not succeeded in integrating systems of ordinary differential
systems 8.2 and 18 [Eq. (80)]. Furthermore, systems 19-21 coincide with
system 5 and system 16 coincides with system 8.1.

Inserting the forms of the functions f, g,k obtained into (80) with the
subsequent substitution of the latter expression into the corresponding ansatz
(53)—(55) yields invariant solutions of the SU(2) Yang-Mills equations (46).
Note that solutions of systems 5, 8.1, 14.2, 15.2, 16, and 19-21, with g = 0, give
rise to Abelian solutions of the Yang—Mills equation, namely, to solutions
satisfying the additional restriction A, X A, = 0. Such solutions are of low
interest for physical applications and are not considered here. Below we give the
full list of non-Abelian invariant solutions of Eqs. (46):

1. Ay = (e2by + esc,)V2(edx — 1)~
— (esby + e3,) [xsn (@m) dn (f gmﬂ [ fem)}

A
3. Ay, = (exb, + e3¢, )h[en (ehdx)] ™
A, = (e1b, + eyc, + e3¢y )hen (ehax)

-1

5. A= elku|kx|_1\/5Z1/4 Eek(cx)z} + exbyhex
6. A, = ejkylkx|'[A; cosh (ehex) + Ay sinh (ehex)] + exbh

7. Ay =ekZ [i eM((bx)* + (cx)z)} + ex(bucx — cybx)h

8. Ay =-ek[M((b ) (cx) ))ex/z + 7»2((1?)6)2 + (cx)z)f(”‘m
+ ex(bucx — cybx)h ((bx)2 + (ex)))7!
9. H |: 1 _ ) —|— b kx) —+ e3C“:| Asn <£)\‘(

-1

+ (kx) ))d (“fx@b + (kx) )><cn<efx(4bx+(kx)2)>>
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10.

11.

12.

13.

14.

15.

16.
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= (g -y s 0
Ao (eﬂ s 7))

A= [ez (g (dy — u (K¥) ) + %bukx) + e3c4
X 4v/2(e(4bx + (kx)*) = 1)~

ieh
Ay = eiky\/4bx + (kx)Zy 4 (8 (4bx + (kx)2)2>

+ erc,M(dbx + (kx)?)
A, = ek, (xcosh< 7‘(4b + (kx) ))

+ 2 smh( ek (4bx + (kx) ))) +excuh

1 1
A, = {ez (d“ —~ gk“(kx)z - Ebpkx>

+es (occu + by +1kukx> (1+ 052)_“/2)}
))(1 +02)

X Asn [37»\/-( abx — cx) + okx - 1/2)] (84)
x dn {ekg/_ (4(abx — cx) + O((kx)z)(l n ocz)“/z)}

-1

A2
1 2 1
A =Seld, —gk“(kx) ) _Eb“kx
1 2\—(1/2)
+e3 OCCH—I—bu-i-zkpkx (14 o)
el -1
X {cn {4 (dobx — cx) + a(kx) (1 + o&)“/ﬂ }
1 5 1
Ay = {eZ <du - gku(kx) - 2bukx>
1 —
+e3 (occLl + b, + 5kukx> (1+ u2) (1/2)}

x 4v/2(1 4 o) [e(4(abx — cx) + au(kx)?)] !



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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A, = elku{ \/4(ocbx — ex) + a(kx)? Zy 4 ( ? (4(obx — cx)

a(kx)2)2> (1+ a2)<1/2>}
+e (m + by + ;kukx> A4 (abx — cx) + o(kx)?) (1 4 o2)~1/?
)
A, = elkp{cn B (14 o)~ (4(abx — cx) + oc(kx)z)]

. el 2\—(1/2) 2

+ A, sinh T (14 o) (4(obx — cx) + o(kx)
1

+e <occu + by +—kukx> A1+ 02)~ 172

A, = ek kx| ' Zo {’ek ((bx)* + (cx) )] + ey(byex — cubx))
Ay = ekl ™ P (B2)? + (e)?) M2 4 0((bx)* + (ex)?) ")
+ ex(bycx — cpbx)M((bx)* + (cx)?) ™!
Ay = erkylkx| ' Vexz, <’? (cx)z) + ey (b, — kybx(kx) " )hex
A, = ek, |kx| "' [A cosh(hecx) 4 Az sinh(hecx)]
+ ex(by — kybx(kx) ")\
Ay = ek, lkx|” '/In kx| — chl/4< (In |kx| — cx) )
+ ea(by — kybx(kx) ")\ (In [kx| — cx)
Ay = elku|kx|71[7xl cosh(Ae(In [kx| — cx)) + Ay sinh(he(In |kx| — cx))]
+ e[by — kyubx(kx)~'|A
A, = erkylkx| ™" \/ouIn kx| — C)CZ]/4< (otln |kx| — cx)2>
+ ea(by — kybx — In [kx|) (kx) )& (ot In [kx| — cx)
A, = ek, kx| ' [A cosh(he(oIn [kx| — cx))
+ Ay sinh(Ae(oln [kx| — cx))]
+ ex(by — ky (bx — In kx| ") (kx) ")
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27. A, = {ei (b, — kybx(kx)™")
+ e — kyex(ke) ) e (rrt) Y
28. A, = {e; (b, — kybx(kx) ") + ea(c, — kyex(kx) ™) I (xx¥)

In these formulas the symbol Z,(®) stands for the Bessel function,
sn (m),dn (w),cn (®) are the Jacobi elliptic functions having the module JTE;
Sf(xyx") is the general solution of the ordinary differential equation

2
o + 2cof+%f3 -0
and A, A1, A, are arbitrary real constants.

IV. CONDITIONAL SYMMETRY AND NEW SOLUTIONS
OF THE YANG-MILLS EQUATIONS

With all the wealth of exact solutions obtainable through Lie symmetries of the
Yang—Mills equations, it is possible to construct solutions that cannot be derived
by the symmetry reduction method. The source of these solutions is conditional
or nonclassical symmetry of the Yang—Mills equations.

The first paper devoted to nonclassical symmetry of partial differential
equations was published by Bluman and Cole [57]. However, the real impor-
tance of these symmetries was understood much later after the explanations
given in several papers [31,32,58-61] where the method of conditional sym-
metries had been used in order to construct new exact solutions of a number of
nonlinear partial differential equations.

The methods for dimensional reduction of partial differential equations based
on their conditional symmetry can be conventionally classified into two prin-
cipal groups. The first group is formed by the direct methods (the ansatz method
by Fushchych and the direct method by Clarkson and Kruskal [60]), relying on a
special ad hoc representation of the solution to be found in the form of the
ansatz containing some arbitrary elements (functions) fi, >, . .., f, and unknown
functions @, ¢,,..., ¢, with fewer dependent variables. Inserting the ansatz
in question into the equation under study and requiring the relation obtained
to be equivalent to a system of partial differential equations for the functions
®1;Py, ...,9, yield nonlinear determining equations for the functions
fi,f2,- .-, fn. Solution of the latter yields a number of ansatzes reducing a given
partial differential equation to an equation with fewer dependent variables. The
second group of methods (the nonclassical method by Bluman and Cole, the
method of conditional symmetries by Fushchych, and the method of side
conditions by Olver and Rosenau [58]) may be regarded as infinitesimal ones.
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They are in line with the traditional Lie approach to the reduction of partial
differential equations, since they exploit symmetry properties of the equation
under study in order to construct its invariant solutions. And again, any deviation
from the standard Lie approach requires solving overdetermined system of
nonlinear determining equations. A more profound analysis of similarities and
differences between these approaches can be found elsewhere [33,56,64].

So the principal idea of the method of ansatzes, as well as of the direct
method of reduction of partial differential equations is a special choice of the
class of functions to which the solution to be found should belong. Within the
framework of the preceding methods, a solution of system (46) is sought in the
form

A, = H,(x,By(0(x))), p=0,123

where H, are smooth functions chosen in such a way that substitution of the
above expressions into the Yang-Mills equations yields a system of ordinary
differential equations for new unknown vector functions B, of one variable ®.
However, when posed in this way, the problem of reduction of the Yang—Mills
equations seems to be hopeless. Indeed, even if we restrict ourselves to the case
of a linear dependence of the above ansatz on B,

Au(3) = Ruy(x)B"(0) (85)

where B,(®) are new unknown vector functions and ® = ®(x) is the new
independent variable, then the requirement of reduction of (46) to a system of
ordinary differential equations by virtue of (85) gives rise to the system of
nonlinear partial differential equations for 17 unknown functions R, .
Moreover, the system obtained is not at all simpler than the initial Yang—Mills
equations (46). Consequently, some additional information about the structure of
the matrix function Ry, should be input into ansatz (85). This can be done in
various ways, but the most natural one is to use the information about the
structure of solutions provided by the Lie symmetry of the equation under study.
In a previous work [33] we suggest an effective approach to study of
conditional symmetry of the nonlinear Dirac equation based on its Lie
symmetry. We have observed that all the Poincaré-invariant ansatzes for the
Dirac field (x) can be represented in the unified form by introducing several
arbitrary elements (functions) u;(x), ua(x),...,uy(x). As a result, we get an
ansatz for the field y(x) that reduces the nonlinear Dirac equation to system of
ordinary differential equations, provided functions u;(x) satisfy some compa-
tible over-determined system of nonlinear partial differential equations. After
integrating it, we have obtained a number of new ansatzes that cannot in
principle be obtained within the framework of the classical Lie approach.
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Here, following Ref. 49, we will show that the same idea proves to work
efficiently for obtaining new (non-Lie) reductions of the Yang—Mills equations
and for constructing new exact solutions of system (46).

A. Nonclassical Reductions of the Yang—Mills Equations

In the previous section we gave a complete list of P(1,3)-inequivalent ansatzes
for the Yang—Mills field, which are invariant under the three-parameter sub-
groups of the Poincaré group P(1,3). These ansatzes can be represented in the
unified form (53), where B, (®) are new unknown vector functions, ® = ®(x) is
the new independent variable, and the functions a,(x) are given by (54).

In (54), 6,(x) are some smooth functions, and 0, = 0,(&,bx*", cpxt),
a=1,2; &= Dkt = () (aw* + duxt); ay, by, cy, dy are arbitrary constants
satisfying relations (50).

The choice of the functions ®(x), 0, (x) is determined by the requirement that
substitution of ansatz (53) into the Yang—Mills equations yield a system of
ordinary differential equations for the vector function B, (®). By direct check,
one can prove the validity of the following statement [33,49].

Assertion 10. Ansatz (53),(54) reduces the Yang—Mills equations (46) to a
system of ordinary differential equations, if and only if the functions ®(x), 0, (x)
satisfy the following system of partial differential equations:

. o,0u=F(0)
2. Jo=Fo)
3. Gu0y, = Gy(®)
4. ag, = Hy(0) (86)
5. azaavxgwxﬁ = qu(m)
6. az[]asw = Su(o)
7. oAy + 3oy, apy + @y dapy apy = Ty (©)
where F1,Fy,Gy, ..., T,y are some smooth functions of ®, pu,v,y=0,1,2,3

and the reduced system has the form

kHVBY + lw/BY + muyBy + eqp\/yBV X 13Y + ethBV X BV
+ esz X (BV X BH) = 0 (87)
where
kyy = gurF1 — GG,y
by = guyF2 + 20,y — G Hy — GG,



MAXWELL AND SU(2) YANG—MILLS EQUATIONS 327

My = Sy — GuH,

duvy = 8uyGv + 8wy G — 280Gy (88)

1
hywy = ) (8uyHy — guHy) — Tuwy

Consequently, to describe all the ansatzes of the form (53),(54) reducing the
Yang—Mills equations to a system of ordinary differential equations, one has to
construct the general solution of the overdetermined system of partial differ-
ential equations (54),(86). Let us emphasize that system (54),(86) is compatible
since the ansatzes for the Yang-Mills field A, (x) invariant under the three-
parameter subgroups of the Poincaré group satisfy equations (54),(86) with
some specific choice of the functions Fy, F», ..., T, [35].

Integration of systems of nonlinear partial differential equations (54),(86) has
been performed [33,49]. Here we indicate the principal steps of the integration
procedure. While integrating (54),(86), we essentially apply the fact that the
general solution of system of equations 1,2 from (86) is known [62]. With
already known ®(x) in hand, we proceed to integrating linear partial differential
equations 3,4 from (86). Next, we insert the results obtained into the remaining
equations and get the final forms of the functions w(x), 6, (x).

Before presenting the results of the integration of the system of partial
differential equations (54),(86), we make the following remark. As direct check
shows, the structure of ansatz (53),(54) is not altered by the change of variables

o— o =T(0), 0 — 0)=~0+T(o)

0; — 0] = 0, + ™ (T} (w) cos 03 + T»(w) sin 03)

( (89)
(

0, — 0 = 0, + ™ (T2 () cos 03 — T; () sin 03)
0; — 9/3 =05+ T3((D)

where T(®), T,(w) are arbitrary smooth functions. That is why solutions of
system (54),(86) connected by relations (89) are considered as equivalent.

Integrating the system of partial differential equations under study within the
equivalence relations above, we obtain a set of ansatzes containing those equiva-
lent to the Poincaré-invariant ansatzes obtained in the previous section. That is
why we concentrate on essentially new (non-Lie) ansatzes. It so happens that
our approach gives rise to non-Lie ansatzes, provided the functions o(x), 6, (x)
within the equivalence relations (89) have the form

0, = 0,(§,bx,cx), o= o, bx,cx) (90)

where, as earlier, bx = b x*, cx = ¢, x*.
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The list of inequivalent solutions of the system of partial differential equa-
tions (54),(86) satisfying (90) is completed with the following solutions:

1
1. 6p=06;=0, a):ikx, 01 = wo(&)bx + wi(E)cx

0, = wy(&)bx + w3 (&)cx
2. o=bx+wi(§), 0p=oa(cx+w(§))

ea:_(jl>wa(é), a=1,2, 0;=0

3. 00=T(), 083=wi(E), ©=Dbx cos wi+cx sin w; + wy(&)

0, = <(%> (ee” 4 T)(bx sin w; — cx cos wy) +W3(E;)> sin wy

1
+ (4_1) (Wi (bx sin w; — cx cos wy) —Wwp)cos wy
1 .
0, = — ((4> (ge” + T)(bx sin w; — cx cos wy) + W3(5)> cos wy
1\ . . .
+ (4_1) (Wi (bx sin wy — cx cos wi) —wy) sin wy

4. 0p=0, 0;=arctan ([ex 4+ w,(&)][bx + Wl(&)}fl)

o1

Here o # 0 is an arbitrary constant, € = £1; wg, w;, wp, w3 are arbitrary smooth
functions on & = Jkx; and T = T(&) is a solution of the nonlinear ordinary
differential equation

(T +ee”) +w? =xe*, x € R (92)

a dot over the symbol denotes differentiation with respect to &.

Inserting ansatz (53), where a,,,(x) are given by formulas (54) and (91), into
the Yang—Mills equations yields systems of nonlinear ordinary differential
equations of the form (87), where

1
1. kll‘/ = —Zkuky, ZHY = —(Wo + W3)kuk7

My = —4 (W5 +wi + w3 +wi)kuk, — (o +Ww3)kk,
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1
Gy =5 (8urky + guyku — 28uvky)
hyvy = (Wo + w3)(gurkv — uvky) + 2(wi — wa)((kuby — kvby)cy
+ (bucy — byey)ky + (cuky — cvky)by)
2. k= =8 —buby, by =0, my =—o(ayay — dudy)
Guvy = &uybv + gwyby — 2gwby
hyvy = a((apdy — avdy)ey + (dyey — dyey)ay + (cpay — cvay)dy)
€
3. k= —gu — buby, Ly = — (E) bk, (93)
%
My = — (Z) kukys  quvy = &uyby + gvyby — 28by

€
hyyy = (Z) (8urkv — 8uwky)
4. kyy = —8uy —buby, Ly = _mil(é’w + buby)

myy = —0)726'“6'«/7 quvy = gu“{bv + gVYbH - ZgHVbY

1 _
vy = 5(0 l(guybv - guvbv)

B. Exact Solutions

Systems (87) and (91) contain 12 nonlinear second-order ordinary differential
equations with variable coefficients. That is why there is little hope for constru-
cting their general solutions. Nevertheless, it is possible to obtain particular
solutions of system (87), whose coefficients are given by formulas 2—-4 from
on.

Consider, as an example, system of ordinary differential equations (87) with
coefficients given by the formula 2 from (93). We look for its solutions of the
form

B, = keeif(0) + buerg(), fg#0, (94)

where e; = (1,0,0), e; = (0,1,0).
Substituting expression (94) into the abovementioned system, we get

(=) f=0, fe+2/g=0 (95)
The second ordinary differential equation from (4.11) is easily integrated

g=Af2 AeR, L#0 (96)
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Inserting the result obtained into the first ordinary differential equation from (95)
yields the Ermakov-type equation for f(®)

f4+a?f -3 =0,
which is integrated in elementary functions [63]
f=(02C* + o 2(C* — a2e*?) 2 sin2|o|o) (97)

Here C # 0 is an arbitrary constant.
Substituting (94),(96),(97) into the corresponding ansatz for A, (x), we get
the following class of exact solutions of the Yang-Mills equations (46):

Ay = €1k, exp (—oex — own) (a0 2C2 4+ o 2(CF — o2e?A2) /2
x sin2|o| (bx 4+ wi))"? + exh (0 2C? + o 2(C* — a2e?)2)!?
_ 1
x sin 2| (bx + wi)) " (bH + 2kuw1>

In a similar way we have obtained the five other classes of exact solutions of
the Yang-Mills equations

el
A, = elkMe*T(bx cos wy + cx sin wy + w2)1/221/4<(%) (bx cos wy

+ cx sin wy + wz)2> + ex) (bx cos wy + cx sin wy + wy)
. L, &+ .
X | ¢y cos wi — by sin wy + 2k, 1 (ee’ + T)(bx sin w;

— cxcoswy) + W3:| >
A= elkue*T(Cl cosh [eA(bx cos wy + cxsinw + wy)] + C, sinh [e)
X (bx cos wi + cx sin wy + wy)]) + ek (Cu cos wy — by, sin wy

1 .
+ 2k, [Z (ge” + T)(bx sin w; — cxcoswy) + W3:|)

A, = ejkye T (C*(bx cos wy + cx sin wy + wy)® + 7»262C’2)1/2

+ e A (C*(bx cos wy 4 cx sin wy + wz)2 + kzezC’z)*l

1
X <bu cos wi + cysinw; — (2> ky W1 (bx sin wy

—cxcoswy) — wz])
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A, = ek, Z ((’e;”) [(bx +wi)? + (cx + wZ)2}> + ezk(cu(bx +wi)

— by(cx +wy) — (;) kW1 (ex +wa) —wa(bx + W1)]>

e?»/2+C2[(bx+wl>2

1

Ay = ek, (Cr[(bx + wi)? 4 (ex +wr)?]
+ (ex +w2)? ™M) + eh[(bx + wy) + (cx + wo)?]”

X (cu(bx +wi) — bu(ex +wy) — G) ki (ex + wy)
— i (bx + wl)]>

Here Cy, Cy,C # 0, A are arbitrary parameters; wy, wp, w3 are arbitrary smooth
functions on § = %kx; T =T(&) is a solution of ordinary differential equation
(92). Besides that, we use the following notations:

kx = k", bx=>bux", cx=cu"
Zs(0) = C1Js(0) + CrY(o)
el:(17070)7 82:(071,0)

where Jg, Y are the Bessel functions.

Thus, we have obtained the broad families of exact non-Abelian solutions of
the Yang-Mills equations (46). We can verify by direct and rather involved
computation that the solutions obtained are not self-dual, that is, that they do not
satisfy the self-dual Yang—Mills equations.

C. Conditional Symmetry Formalism

Now we briefly discuss the problem of conditional symmetry interpretation of
ansatzes (53), (54), and (91). Consider, as an example, the ansatz determined by
formula 1 from (91). As direct computation shows, generators of a three-
parameter Lie group G leaving it invariant are of the form

Ql = kocaot

3
Qs = b0y — 2[wo(kyby — kyby) + wa(kuey — kyey)] Y A Dga (08)
a=1

3
Q3 = c50y — 2[wi (kuby — kyby) + w3 (kucy — kyey)] Y A Dpn
a=1

Evidently, the system of partial differential equations (46) is invariant under the
one-parameter group G having the generator Q;. However, it is not invariant
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under the one-parameter groups G, G3 having the generators Q», Q3. Consider,
as an example, the generator 0,. Acting by the second prolongation of the
operator O, (which is constructed in the standard way; see, e.g., Refs. 19 and 20)
on the system of partial differential equations (46), we see that the resulting
expression does not vanish on the solution set of Egs. (46). However, if we
consider the constrained Yang—Mills equations

L,=0, QA, =0, a=123

then we see that the system obtained is invariant under the group G,. In the
preceding formulas we use the designations

L, = 0OA, — "0,A, +¢((0,Ay) x Ay —2(0,A,) X A,
+ ("A)) X AY) + €*A, x (AY x A,)
01A, = ky0,A,
DA, = by0sAy + 2(wo(kuby — kyby) + wo (kuey — kyey))AY
Q3A, = c,0,A + 2(wi (kuby — kyby) + wi(kucy — kvey))AY

The same assertion holds for the Lie transformation group G having the gene-
rator Q3. Consequently, the Yang—Mills equations are conditionally-invariant
with respect to the three-parameter Lie transformation group G = G| @ G, ® Gj.
This means that solutions of the Yang—Mills equations obtained with the help of
the ansatz invariant under the group with generators (98) cannot be found by
means of the classical symmetry reduction procedure. We refer the reader
interested in further details to two monographs [21,33].

As very cumbersome computations show, the ansatzes determined by
formulas 24 from (91) also correspond to the conditional symmetry of
Yang—Mills equations. Hence it follows, in particular, that Yang—Mills equations
should be included in the long list of mathematical and theoretical physics
equations possessing nontrivial conditional symmetry [21].

V. SYMMETRY REDUCTION AND EXACT SOLUTIONS
OF THE MAXWELL EQUATIONS

In this section we exploit symmetry properties of the (vacuum) Maxwell
equations in order to construct their exact solutions.

It is well known that the electromagnetic field for the case of the vanishing
current is described by the Maxwell equations in vacuum

rotE = —a—H, divH=0
axo
rotH:—aE, divE =0
6)(?0
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for the vector fields E = E(xp,x) and H = H(xp,x) (we shall call them the
Maxwell fields).

First, we give a brief overview of symmetry properties of Egs. (99) following
[48].

A. Symmetry of the Maxwell Equations

As we have mentioned in the introduction, the maximal symmetry group
admitted by Egs. (99) is the 16-parameter group C(1,3) ® H. This group is the
direct product of the conformal group C(1,3) generated by the Lie vector fields

Py =20y, Joa = X00y, + X40x, + €apc(EpOn, — HyOF,)

Jap = xp0x, — X405, + EpOp, — E,0p, + H,0n, — H,0p,

D = x,0,, — 2(E.OF, + H,0H,)
Ko = 2x0D — x,x"0y, + 2x,8apc(EpOn, — Hp0F,)
K, = —2x,D — x,x*0,, — 2x0€qpc (EpOn, — HpOk,)
— 2H,(xp08,) — 2Eq(x50F, ) + 2(xpHb)On, + 2(xpEp )0,

(100)

and of the one-parameter Heaviside—-Larmor—Rainich group H having the
generator

Q = EaaH,, - HaaEl, (101)

where €, 1s the third-order antisymmetric tensor with €53 = 1. In this section
the indices denoted by the Latin alphabet letters a, b, ¢ take the values 1,2, 3, and
the ones denoted by the Greek alphabet letters take the values 0, 1,2, 3, and the
summation convention is used.

It is readily seen from (100) and (101) that the action of the group
C(1,3) ® H in the space R x R®, where R is Minkowski space of the
variables xp, x = (x1,X2,x3) and R® is the six-dimensional space of the
functions E = (Ey, E,, E3), H = (Hy,H,, H3), is projective. Furthermore, the
basis generators of this group can be represented in the form (15).

The matrices S, read as

0 S 0 -S
So1 = - >, So=1 - .
_523 0 513 0
0 Sp
Ss=| - .S
03 <S12 O) 12

Il
VR
o

(38
o g
(%)
~_—
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where 0 is the zero 3 x 3 matrix and

i 0 -1 0\ (00 -1\ 00 0
Sp=(1 0 0, S3{0 0 0], Ss=[0 0 -1
0 0 0 10 0 01 0

E is the unit 6 x 6 matrix. The matrix —A corresponding to operator Q (101) is

given by the formula
A:(?'g) (103)

where 0 and I are zero and unit 3 x 3 matrices, correspondingly.

Hence, it follows that C(1,3) ® H-invariant ansatzes for the Maxwell fields,
which reduce (99) to systems of ordinary differential equations, can be
represented in the form (22), namely,

V = A(x,x) V(o) (104)
with

E; E1

E, E,

| B <& E;

V=l | V= 7,

H, H,

H; H;

Here A(xo,x) is the 6 X 6 matrix, which is nonsingular in some open domain of
the space R!* and E, = E,(»), H, = H,(®) are new unknown functions of the
variable ® = ®(x, X).

In addition, the Maxwell equations admit the following discrete symmetry
group [48]:

U:x,=-x,, E=-E, H=-H (105)

The transformation properties of operators (100), (101) with respect to the action
of the group W read as

P,——-P,, Jyw—Jyw, D—D, K,——-K,, Q—0

so that actions of discrete symmetry groups ¥ (5.7) and ®; from Table I on the
basis operators of the algebra p(1,3) coincide. Therefore, we can use Assertions
5 and 6 and choose the parameter j to be equal to 2, namely, (—1Y = 1.
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In what follows we exploit invariance of the Maxwell equations under the
conformal group C(1,3) in order to construct their invariant solutions.

B. Conformally Invariant Ansatzes for the Maxwell Fields

First we will give two assertions that substantially simplify the full description
of invariant solutions of the Maxwell equations.

Assertion 11.  IfE = E(xo,x3), H = H(xo,x3), then it is possible to construct
the general solution of equations (5.1). It has the form

Ey = ¢(&) + ¥ (n), Hy = —@y(&) +¥(n)

Ey = @,(€) + ¥ (n), Hy = ¢(E) — ¥ (n)
E;=Cy, H; =G

where @y, ©,, 1, s, are arbitrary smooth functions; & = xg — x3, | = X + X3;
C,C, eR

Assertion 12. If E =E(x1,x,8), H=H(x,x,,8), where & = % (xo — x3),
then it is possible to construct the general solution of the Maxwell equations
(99). It is given by the following formulas:

E1=%(R+R*+T1+T1*)v leé(iR—iR*—Tz—TS)
EZ:%(iR—iR*—i—Tz—FT;), Hz=%(R+R*—T1 -1
E3s =8+, Hs = iS — iS”
where )
T;—Z;" (j=12)
S:%(Z'Jri%ngrx(z)
R:_2<66_9Z1+i@6_9;) +§%

Here 6; =0,(z,&), Mz) are arbitrary functions analytic by the variable
2=x1 +ix2; j = 1,2; i is the imaginary unit, namely, i = —1.

Proof of these assertions can be found in Refs. 50-53.
It follows from Assertions 11 and 12 that we have to exclude from further
consideration those subalgebras of the conformal algebra that yield solutions of
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the form covered by these assertions. It is straightforward to check that we have
to skip subalgebras L of rank 3 fulfilling the conditions

(Po+P3) ¢ L, (Po—P3) L, 1(Po,P3) £ L, (P1,P2)¢L

Thus, to get the full description of conformally invariant solutions of the
Maxwell equations, it suffices to consider the following subalgebras of the
conformal algebra c¢(1,3) (note, that we have also made use of the discrete
symmetry group VU in order to simplify their basis elements):

M = (Jo3, G, P2)

M, = (G1,Gy,Jp3s + J12), o €R

M5 = (J12,D, Py)

My = (J12,D, P3)

Ms = (Joz,D, Py)

Ms = (Jo3,J12,D)

M; = (Gy,Js +aD,P;) (0<|o| <1)
Mg = {Jis — D+ M,Gy,P;)

My = (Jo3 + 2D, Gy + 2T, P;)

My = {(J12,S+T,Z)

My =(S+T+J12,Z,G| + Py)

My = (Py + K> + V3(P, + K1) + Ko — P, Joa — D — V/3Jo,

Py + Ko — 2(K, — Py))
M3 = (Py+ Ko) & (J12,K3 — P3)
My = (2J12 + K5 — P3,2J13 — K2 + P2, 2053 + K1 — Py)
Ms = (P1 + K1 + 2Jp3, P, + K> + Ko — Py, 2J1» + K3 — P3)

Here we use the following designations:

M = Py + Ps, G()jz.]()j—.]]g (j=1,2)

1 1
Z=Jy+D, SZE(KOJrK%), TZE(Po—Pa)

Below, we consider the first 10 subalgebras from the preceding list. For these
subalgebras we can represent the matrix A from ansatz (104) as

A = exp {(In0)E} exp (26,H,) exp (20,H,) exp (—00S03) exp (03512)
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where the matrices S,,, have the form (102). Thus, we have

C G
A= ( < C)
where
cosh Op cos 03 —r; —cosh 0y sin 03 +r, 20,
C= coshOysinO3+r, coshOycosO;+r; 20,
—2S1 2S2 1
sinh O sin 05 +r,  sinh 6y cos 05 +r; 20,
G = | —sinh0ycos 03 +r; sinhOysin 03 —rp, —20,
2S2 2S1 0
and
= 2[(67 — 03) cos 03 + 20,0, sin O3)e ®
= 2[(67 — 03) sin 03 — 20,0, cos O3)e®
= 2[0; cos 85 + 0, sin 93]6’90
= 2[0; sin 63 — 6, cos 93]6‘_90

After some algebra, we obtain the following form of the conformally
invariant ansatz for the Maxwell fields:

E, = 0{(E;cos0; — E,sin03) cosh

+ (H, sin03 + H,cos03) sinh 0y

+20,E5 + 20,H; +40,0,%, 4 2(07 — 03)%,}
E, = 9{(52 cos 03 + E| sin 03) cosh 6y

+ (H, sin 03 — H, cos 03) sinh 0

— 20,H; + 20,E5 + 40,0,5, — 2(67 — 03)%,}
E; = e{E3 +20:3, + 29221}
H, = 0{(H, cos 03 — H, sin 03) cosh 0

— (E, sin 03 + E; cos 03) sinh 09

+20,H; — 20,E5 — 40,0,%, 4 2(07 — 03)%,}
H, = 0{(H, cos 03 + H, sin 03) cosh

+ (E| cos 03 — E, sin 03) sinh 0,

+20,E5 4 20,H; + 40,0,%, 4 2(07 — 03)%,}
H; = 9{[:13 +20:% — 29222}

(106)
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Here
¥ =[(H, — E}) sin 6; — (E, + H)) cos eg]e—"v
Yy = [(Ez + H]) sin 03 + (1:12 — El) cos 93]e’e°
The form of the functions 6, 6,,® for each of the subalgebras M;, (j =1,

2,...,10) is obtained from Assertions 5-7 with k = 2:

1
M1: 9:1, 60:—1H|X()—X3|, 61 :—Exl(xo—x3)7l

=0 =0, 0o=x3—x -1
1 _
My: 0=1, 0= —Inlxo— x3], el:—le(xo_)@)l
1 _
GZZ—E.XZ(X()—)Q.) l, 93:OCIH|X()—.X3|

22 2 2
O = x5 —X{ —X; — X3, aeR

M3Z 6= (X3)_2, 90:6] 292:0

-2

X2
0; = arctan—, © = (x} + x3)x;

X1
M4: 0= (X())_z, 90:61 292:0

X2 _
0; = arctan—, ® = (&} +x3)x;>
X1

Ms: e:()Q)_z, 9021n|(x0+x3)x2_1\, 0, =0,=06;=0

© = (5 —5)x°

_ 1 _
Mg: (2 +22)7", 08p=—=In|(xo—x3)(x0 +x3) |

2
— 0 — _ X2 R R NN R N
0, =0,=0, 0;=arctan—, o= (x]+x5)(x5—x3)
X1
M72 1.L a=-1
_ 1
Oz(xo—x3) l, 90:—§1n|x0—x_g|
1 _
elz—le(xO—)Q) l, 92293:0
W =2x9+x3 — xf(xo — x3)71
2. a#-—1
1
—1
Gz\x(z,—x%—xﬂ , 90:£ln|x5—x%—x§
1

0 Z—Exl(xo—x3)_1, 0, =0;=0

o =2aln|xy — x3| + (1 — o) In x5 — x7 — x3]|
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_ 1 1 _
Mg: 0= |)CQ—)C3| 17 60:—51n|x0—x3|, 91 :—EXI(X()—)Q) !

6229320, (DZXO+X3—X%()C0—X3)_1+1n|X0—X3|

_ 1
Mgl 0= [(XQ—X3)2—4X1] 2, 60:§1n|(x0—x3)2—4x1|

1
61:—1()(?0—)63), 6226320
1 2
®= [x0+x3 —x1(x0 —x3) + g(x() —X3)3 [(x0 —x3)2 — 4)61]73

Mio: 0= [(x1 — (x0 — x3)x2) (1 + (x0 —x3)>) ']

0o = %ln (061 = (x0 = x3)x2)* (1 + (0 — x3)) ]

0, = —%(Xz + (o — x3)x1) (1 + (x0 — x3)2)_l
02 = 5 (0 = (10 = 1) (1 + (30— x3)")
0; = —arctan (xo — x3), © = [(xo +x3)(1 + (x0 — x3)%)?

— 2x1(x2 + (x0 — x3)x1) — (%0 — x3)(xf(x0 - x3)2 - x%)]

X [x1 — (x0 — x3)x2]72 — X0 +x3

C. Exact Solutions of the Maxwell Equations

Now we have to insert ansatzes (106) into (99). However, it is more convenient
to rewrite the Maxwell equations (99) in the following equivalent form:

Oy (E1 + Ha) + 0, (E2y — Hy) = (Oy, — Oy, ) E3
Oy, (Ey — Ha) + 0y, (Ex + Hy) = —(0x, + 0y, )E3
Oy, (E2 — Hy) — Oy, (E1 + Hy) = —(0y, — Oyy)H3
Oy, (E2 + Hy) — 0y, (E1 — Hy) = —(0y, + 0x,)H3 (107)
(Oxy + 0xy)(E1 + Ha) = Oy E3 + 0, H3
(Oxp — Oxy)(E1 — Ha) = —0y, B3 + 0,,H3
(0x, — Ox)(E2 + Hy) = —0,,E3 — 0, H3
(Oxy + Oy )(E2 — Hy) = Oy, E3 — Oy, H3

We will give the calculation details for the case of the subalgebra M, only,
since the remaining subalgebras are handled in a similar way. For the case in
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hand, ansatz (106) can be written in the form

E,+ H, :fee" + 491E3 — 49%676011

E\—H,=he ™, E,+H =pe™®

- 108
E, —H = geeo —40,H5 + 49%679()[) (108)
E; = E3 - 291/’16760, H; = 1:13 - 261[)6790
where 0y = —In[xg — x3], 0; = —Jx1(xo — x3)~'. The functions E3, Hs, and
=f(w) = E, + H, =g(w)=E, —H
f=f(o) I 2, g=g(w) =E i (109)

h=h(®)=E —H, p=p(o)=E+H,
are arbitrary smooth functions of the variable ® = x§ — x7 — x3.
Inserting (108) into the second and fourth equations from (107) gives equa-
tions

E3=0, Hy=0 (110)

We remind the reader that the dot over the symbol stands for the derivative with
respect to the variable o.

Similarly, we get from the sixth and seventh equations of system (107) the
following reduced equations:

20h+3h=0, 2wp-+3p=0 (111)

Next, the fifth and eighth equations give rise to ordinary differential equations of
the form

2 —h=0, 25+p=0 (112)

Finally, substituting ansatz (5.10) into the first and third equations from (107)
yields

4¢0, [wh 4+ h + f] = 2& ' E;

) o (113)
4€01[g — wp — p] = —287 ' Hs
where € =1 for § = xg —x3 > 0 and € = —1 for xg — x3 < 0.
Taking into account (111)—(113), we see that E;=0and H; = 0.
Summing up, we conclude that the ansatz invariant with respect to the
subalgebra M; reduces the Maxwell equations to the following system of
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ordinary differential equations:
20h4+3h=0, 20p+3p=0, 2f—h=0
26+ p =0, E; =0, Hy=0

Below we give the reduced systems for the ansatzes invariant with respect to the
remaining subalgebras M,—M|: [note that the functions f, g, h, p are of the form
(109)]:

(114)

1. System (114)
2. f=0,E=0,§=0, Hy=0, oh+2h+op=0
wp+2p—ah=0, a€R

3. 20(1 +®)Es + (To +2)E; +3E3 =0

f=h=-2Vo(E; + (1 + 0)E;)
20(1 + ©)H; + (To + 2)Hs + 3H; = 0

g =—p=2Vo(H; + (1 +0)H;)

4. 20(0 — 1)Es + (To — 2)E3 +3E3 = 0
f=—h=2Vo(E; + (0 — 1)E3)
20(0 — 1)H; + (To — 2)Hs + 3H; = 0
g = —2Vo(H; + (0 — 1)Hg)

5. 20(w )E} + (To —2)Es +3E; =0
g=

—0 'p=2¢[E; + (o — 1)E3]
20(0 — 1)Hs + (To — 2)H; + 3H; = 0
f=o"h=2ef;+ (0 1)H;]
e=1for (xo+x3)x,"'>0
e=—1 for (xo+x3)x'<0
6. (W—1Es+E;=0, 20f +f=—2e/|0|E;
20h + h = 28m/|0)|§3, (o — 1)[}; +H;=0
20p + p = 2814/ |o|H3 208 + g = 28,/ |0|H3
gr=1 for xg+x3>0
g =-1 forxp+x3<0
82:1 for X()—X3>O
g =—1 forxyg—x3 <0
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7. 1. Ey=0, 2f=¢h, Hy;=0, 25—=—¢p
e=1 for xp—x3>0
e=—1 for xg—x3<0

- . 1
2. E;=0, 2(14‘0()}1—(14-&)}1:0
1 .
(& B 2)f +2(1 = o)f = g (/o
- . 1
Hy =0,  2(14a)p—(1+)p=0

——2)g+2(1—a)g:—se_émp 0<of <1, % —1

7N
Q| =

— 2 22
e=1 for xyj—xj—x3>0

e=—1 for x}—x}-x}<0
8. h:O’ EE:O7 p:o, 151320, 28f—h:
2eg+p=0
e=1 for xg—x3>0
e=—1 for xp—x3<0
9. h=def, p=—deg, E3:—(9m2+§>f—15wf20,

(3602 + &) + 180af + 140f =0, Hs = 150g + (9@2 n Z)g

(360> 4 €)g + 1800wg + 140g = 0
e=1 for 0>0
e=—1 for o<0
6 =4x; — (xo —)C3)2
10. F=h  h=(0*+1E;+ 0k, (0*+1)E;+40E;+2E;=0
g=—p, p=(0*+1)H;+ 0Hs, (0> + 1)H; +40H; +2H; =0

These systems are linear and therefore are easily integrated (the integration
details can be found in Refs. 50-53). Below we give the final result; specifically,
we present the families of exact solutions of the Maxwell equations (99)
invariant with respect to the subalgebras M;—My.

My Ep=Cixo—x3) ' —2x3C) g — 7 — 3| G2
Ey = Cilxo —x3)"" + 2x0Calxg — x7 — x5 G/
E3 = 2x1C1|x0 —xl 3| (3/2)
_ - 2 ,21=(3/2)
H] ——C4()C0—)C3) —2x3C3|x0—x1 —)C3|
Hy = Cy(xo — x3)~" = 2xC) a3 — —x§|_(3/2)
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Hy = 2x,C3|x3 — X2 — 2| %/?
M,: E, = |<:|—‘{c1 cos (an |€]) — Cy sin (aIn [€))
— xixo[hsin (aIn [€]) + p cos (ouln [£])]
+3(& =+ )lhcos (u1n[g)) - psin (aln <))}

E, = |§|1{C2 cos (aIn|&|) 4+ C; sin (a1n |E])
+ x1x2[psin (atln |&]) — A cos (aln |E])]
+%(&2 + 17 — x3)[hsin (¢ In|&|) 4 p cos (o In |§)]}

E3 = e{h|x; cos (aIn|&|) + xzsin(a1n |§])]
+ plxacos(atln |€]) — x; sin (e 1n |E])]}

H, = |é’;|_l{ — Cycos (alné]) — Cysin(aIn|E))
—x1x[psin (aIn|&|) — hcos (aln |E])]

+%(§2 - xf —&—x%)[h sin (aIn|&|) + p cos (aIn |2Zj,)]}

Hy = 11 { €1 cos (a2~ Cosin @in )
—xixz[hsin (aln|&]) + p cos (aln|E|)]
- (€~ ) hcos (an &) psin uin 2]}
H; = e{h[x; sin (atln |E]) — x; cos (e 1n |E])]
+ plx; cos (aln[§|) + x5 sin (aIn|E|)]}
where & = xog — x3, h = @ 2[C4 cos (aIn|o|) — Cs sin (a1n |o])]
p = *[Cscos (aln|w]) + Cysin(aln |o])], © = x*

veR e=1, forE>0ande=—1for§ <0
2C1xa

My E,=———""% 4 x,6 024, Ey=x0 024
3 B+ D) + X, 12, E3=2x3 12
2C3x4 —-(3/2 —-(3/2
H, = —W‘FMG CPAs, Hy =x;0 P4y
where A;; = C; <ln ﬁ;xs + 2x31\/8) + G
O T X3

G:x%+x§+x§, a=1,2
2Cy
My: 1. E,=¢epxpy ———5~
4 a ab b{x()(x%—kx%)
2C,
xo(x] +3)

- U_(3/2)A34}7 Es =xo0 %A

H, = —Sahxh{ - 0(3/2)A12}7H3 = x05~ /P Az
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VG — X
Vo +x0
c=x,—x—x3>0, ab=1,2

Cy
2. E, = —sabxb{i
Xo(xi +x3)

&)

xo(x7 4 x3)

where A;; = C; + C; <ln

+2x01\/6)

- G_(3/2)B34}, Es = xo5~ /7By

H, = —8abxb{ - 6_3/2312}7 H; = x05 */*B34

c
where B;; = C; + Cj<x01\/5— arctan\/—*>7 =X+ —x5 >0
. o

a,b=1,2

Here €4, (a,b = 1,2) is the antisymmetric tensor of the second order with
€12 = 1.

ZX()C4

Ms: 1. Ef=——— 5 — )c()c$7<3/2)A347 Ey=—712"°"___ X307(3/2)A12
(x5 — x3) x2(xf — x3)
2x0Cy _(3/2 2x3Cy (32
Hy=———""+x0 VAp, Hp=——"7"—— x50 /24y
(x5 — x3) 2(xg — x3)

E; =x6 A, Hy=x0 Ay

where A; = C; + C; (2@ Ve
‘ o~

), c=x+x x>0

Vo +x2
X0 Cy ~(3/2) %30 ~(3/2)
2. El = ———5 5 — X0 ( B34, E2 = —5 57 — X30 BIZ
(2 — x3) (x5 — 3)
x0Cy _ x3Cy _
Hi=——5——>+Xx0 Cl2B, H, =55y — X0 S
x (x5 — x3) X (x5 — x3)

E; =x6 2By, Hy=x0 2By

c c
WhereBij:Ci—l—C}(\/———arctan[), c=x,—1-x3>0
X2 X2 N

1 [E(x1Cy — x2Cs) +M(x1C3 — x3Cs)

MG: E1 ==
2] En(xt +x3)
_8]&(X]C1 +X2C4) — szn(x]Cl —X2C4)
o(x? +x3)
E :l -é’;(xlcs + x2C;) + N(x1Co + x2C3)
2] En(xt +x3)

i 81&_,()C1C4 — )CzC]) + 821](X1C4 + )CQC])
o(x? +x3)
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H _1 [n(xlCﬁ +x02C3) — E(x1Cs + x,C)

2 En(xi +3)
n 818(x02C) — x1Cy) + &N (x1Cs + x2Cy)
o(x} +x3)
o — 1 [E(x1C2 — x2C5) — M(x1C3 — x2Cs)
275 2. .2
En(xy +x3)

2
8§ C1 +0Cy) + ean(x1 €1 — xCy)
o(xf +x3)
= Clﬁil, H; = C4671
where 6 = x? + x5 +x3 —x3, & =x0+x3,M =x0 — x3 and
{ 1 if xp+x3>0 { 1 if xp—x3>0
81 = . 82 =
—1 if xp+x<0

—1 if xp—x<0
M 1. a=-1

1
=|n|" G/2) (Cl +4F) —xm 2C2— g|‘1| (172 fln ™ —1)

1 Lo -
=nl" (3/2) (C3 —ZG> —|—x1n72C4+§€|n| WZ)g(x%n P+1)

_ 1 _ 1 _ _
=IO (€= 6~ - el Pgtadn - 1)

- 1 _ _
H = 0l (€ 4F) = xin 26 = Jelnl 2 in 2+ 1)
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E=0c'(14+&)" {x1C6 +x2Cs + (1 + 0°) ' ex1 (G0 + Cy)
1
— &)Q(Cl(ﬂ + CZ) + —(1 — &2)()(2((;1 — O)Cz) — x1(C3 — (DC4))
2

$20 1+ )1+ ) 0 (G — 0C:) +1(Cr — 0C)
Es=0c'(14+0%)7"[Ci(0+E&)+ Ca(1 — Eo)]

H =—c'(1+ az)l{xlc6 + 005+ (1 + %)™ [éxl(C3m +Cy)
— &0 (Clo + C) +%(1 — E)(x(C1 — ©Ca) — x1(C5 — (oC4))] }
F30 1+ )1+ ) [0 (G — 0C) +1(C) — 0C)
Hy=c'(1+&)"! {m Cs —x0C6 — (1 +?) " [&,x. (Cio+ Cy)
+ 502 (C30 + Cy) — % (1 =E)(x1(Cy — @Cs) + x2(C5 — (oC4))] }

- %0-2(1 + (1 +02) "1 (C1 — 0C2) — x2(Cs — 0Cy)]

Hy =o' (14 0%) 7' [C3(0+&) + Ca(1 - E0)]
where 6 =x2 + 23, 0 =n(1 + &)o' =& n=x0+x3, E =% — x3
In these formulas C;, (j =1,2,...,6) are arbitrary real constants.

Note that the constructed Maxwell fields are, generally speaking, non-
orthogonal. However, provided some additional restrictions on the parameters

Cy,...,Cq are imposed, they become orthogonal. Consider, as an example, the
last solution from the preceding list. Imposing the orthogonality condition E - H
= 0 yields the following restrictions on the choice of Cy,..., Cq:

CrCs = C4Cs, Ci1Cg = C1C3 + CC4 + C3C5

Next, for the solution invariant under the subalgebra M, the orthogonality
condition leads to the following set of algebraic equations to be satisfied by the
parameters Cy, ..., Cq:

GG =CCy, CiC3=0



MAXWELL AND SU(2) YANG—MILLS EQUATIONS 349
VI. CONCLUDING REMARKS

The range of applications of the Lie group methods for solving systems of linear
and nonlinear partial differential equations is so wide that it is simply
impossible to give a detailed account of all the available techniques, even if we
consider only some fixed group, such as the conformal group C(1, 3). However,
the basic ideas and methods presented in this review chapter are easily adapted
to the cases of other groups of importance for modern physics. In particular, it is
straightforward to modify the general reduction method suggested here in order
to make it applicable for solving equations of nonrelativistic physics, where the
central role is played by the Galileo and Schrédinger groups.

Furthermore, the general method presented in this chapter applies directly to
solving the full Maxwell equations with currents. It can also be used to construct
exact classical solutions of Yang—Mills equations with Higgs fields and their
generalizations. Generically, the method developed in this chapter can be
efficiently applied to any conformally invariant wave equation, on the solution
set of which a covariant representation of the conformal algebra in Eq. (15) is
realized.

We do not consider here the solution techniques based on the symmetry
reduction of different versions of the self-dual Yang—Mills equations to integr-
able models (we refer the interested reader to several papers [13—15],[22-24,65]
for a detailed exposition of the results in this field available to date).

The results of exact solutions of nonlinear generalizations of the Maxwell
equations are also beyond the scope of the present review. A survey of these
results, as well as an extensive list of references, can be found in Fushchych
et al. [21].
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I. INTRODUCTION

It was assumed that a description of evolution of deterministic systems required
a solution of the equations of motion, starting from some initial conditions.
Although Poincaré [1] knew that it was not always true, this opinion was
common. Since the work of Lorenz [2] in 1963, unpredictability of deterministic
systems described by differential nonlinear equations has been discovered in
many cases. It has been established that given infinitesimally different initial
conditions, the outcomes can be wildly different, even with the simplest
equations of motion. This feature means the occurrence of deterministic chaos.
The literature devoted to this multidisciplinary and rapidly developing disci-
pline of science is huge. There are many excellent textbooks, monographs, and
collections of main papers, and we mention only a few [3-8].

In this overview we focus our attention on some problems of optical chaos.
In many optical effects and devices intrinsic instabilities occur and for over
thirty years they have been extensively investigated. The literature on optical
chaos is widespread and a few excellent reviews and collections of papers
should be recalled [9-13].

After an overview of the main papers devoted to chaos in lasers (Section I.A)
and in nonlinear optical processes (Section I.B), we present a more detailed
analysis of dynamics in a process of second-harmonic generation of light
(Section II) as well as in Kerr oscillators (Section III). The last case we consider
particularly in the context of coupled nonlinear systems. Finally, we present a
cumulant approach to the problem of quantum corrections to the classical
dynamics in second-harmonic generation and Kerr processes (Section IV).

A. Chaos in Lasers

Since the discovery of lasers it has been known that a derivation of time-
dependent equations governing interaction of molecules with electromagnetic
cavity modes leads to the so-called spontaneous instabilities. These laser ins-
tabilities were also observed experimentally —even for the first laser built by
Maiman in 1960. A random, periodic, or quasiperiodic train of spikes in a laser
generation is a fundamental instability due to nonlinearity of laser equations.
A comprehensive review of this specific laser-related topics was published in
1983 [14].

A major development reported in 1964 was the first numerical solution of the
laser equations by Buley and Cummings [15]. They predicted the possibility of
undamped chaotic oscillations far above a gain threshold in lasers. Precisely,
they numerically found “‘almost random spikes’ in systems of equations adop-
ted to a model of a single-mode laser with a bad cavity. Thus optical chaos
became a subject soon after the appearance Lorenz’ paper [2].
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Real development in the field of chaotic properties of laser action began over
10 years later. In 1975 Haken [16] used the model of a single-mode laser with a
homogeneously broadened line (HBL) described by the Maxwell-Bloch equa-
tions and after some approximations showed the equivalence with an appro-
priate Lorenz system of equations. The model was extended to a multimode case
[17]. For a modulated external field, certain laser systems are described by a
driven Van der Pol oscillator, and the existence of chaos was found numerically
for these systems [18]. In the case of HBL lasers, a spatial inhomogeneity of
pump leading to a coupling of different modes, could give rise to an undamped
spiking behavior of lasers. This instability is chaotic and was found numerically
in a two-mode laser case [19]. A detuning was also incorporated in this model
[20], and the exact equivalence between a bad-cavity laser with a modulated
inversion and nonlinear oscillator in the Toda potential driven by an external
modulation was presented a few years later [21]. The parameters in HBL lasers
for which chaos is expected are highly unreal because of big loss in cavity rates.
For a detailed discussion of instabilities in HBL lasers, we refer the reader to a
treatise by Milonni et al. [13] and a paper by Harrison and Biswas [22].

The Haken model can be easily extended to the case of a single-mode
inhomogeneously broadened line (IBL) laser [13]. Numerical investigation of
the Maxwell-Bloch equations has been carried out for the case of a Doppler
broadening and for different parameter ranges, leading to findings of period
doubling and intermittency routes to chaos [23,24]. A phenomenon of meta-
stable chaos was also observed. The Maxwell-Bloch equations with an
inhomogeneously broadened line were also studied in the context of mode
splitting [13,25], bad-cavity instability conditions [26], ring laser configuration
[27], Hopf bifurcations [28], and a period doubling route to chaos [29].

Laser instabilities were experimentally investigated in many kinds of lasers
(see an overview of early papers [14]), but the first experimental observation of
the optical chaos was performed by Arecchi et al. [30] in 1982. They used a
stabilized CO, laser with modulated cavity loss I' = y(1 + acos{2) and by
changing the frequency of modulation €, they found a few period doubling
oscillations of the output intensity, both numerically and experimentally.

A detailed analysis shows that the case of the IBL laser is more convenient in
experimental investigations because the value of the threshold gain coefficient
needed in a laser setup is much smaller. Some spontaneous instability for this
case was first discovered experimentally by Casperson quite early [31] in a low-
pressure, electric discharge HeXe laser at 3.51 um. For a special choice of
parameters the laser worked in the regime of the so-called self-pulsing
instability. But the first chaotic output from an IBL laser was experimentally
shown in 1982 by Weiss and King [32] in a HeNe laser (3.39 pm). A period
doubling route to chaos was found. In a HeXe laser, Gioggia and Abraham [33]
in 1983 reported a chaotic behavior of a generated signal and confirmed period
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doubling and intermittency routes to chaos. Similarly, chaotic emission was
observed in a ring cavity laser [34]. For an overview of early papers devoted to
IBL laser instabilities and chaos, see the study on self-pulsing and chaos in
continuous-wave (cw)-excited lasers by Abraham et al. [35].

To achieve the instability of homogeneous broadened line lasers, a satisfac-
tion of much more difficult conditions is required: large gain and the so-called
bad-cavity properties. This special regime for damping constants and mode
intensity is fulfilled in the far-infrared lasers [36]. In 1985 Weiss et al. [37,38]
experimentally found a period doubling route to chaos in the NHj3 laser. Further
experimental investigation of chaotic dynamics in such lasers was reported
later [39].

The CO, lasers were also investigated in connection with chaotic behavior,
and here we mention the most important papers in the field. The chaotic be-
havior associated with a transverse mode structure in a cw CO, laser was obser-
ved in 1985 [40]. In the CO, laser with elastooptically modulated cavity length,
a period doubling route to chaos was also found [41].

Chaos was also investigated in solid-state lasers, and the important role of a
pump nonuniformity leading to a chaotic lasing was pointed out [42]. A modula-
tion of pump of a solid-state NdPsO4 laser leads to period doubling route to
chaos [43]. The same phenomenon was observed in the case of laser diodes with
modulated currents [44,45]. Also a chaotic dynamics of outputs in Nd:YAG
lasers was also discovered [46-48]. In semiconductor lasers a period doubling
route to chaos was found experimentally and theoretically in 1993 [49].

An important technique of chaos control [50] was introduced in laser
systems in 1992 by Roy et al. [S1]. They adopted the so-called occasional
proportional feedback method to stabilize limit cycles in a multimode Nd:YAG
laser with KTP crystal (doubling the basic frequency), pumped by a diode laser.
The CO, laser with cavity loss modulation was used to implement the control
method of output signals proposed by Pyragas [52] and Bielawski et al. [53].
The experimental investigation of the control scheme based on a ‘“washout
spectral filter”” has been performed in the chaotic regimes of the CO, laser with
modulated loss [54] as well as in the CO, laser with intensity feedback [55]. In
1998, a control of chaos was demonstrated in Nd-doped laser with modulated
loss and pump and nonfeedback methods were adopted [56]. These important
methods of stabilization of chaotic systems are related to communication
theory. In particular, a synchronization of lasers in chaotic regimes has many
potential applications. In 1994 Roy and Thornburg proved experimentally for
the first time the possibility of synchronization of chaotic lasers [57], with
possible applications in digital communication [58]. The last experiments with
chaotic lasers revealed a possibility of transmitting a desired message in a very
fast way as well as encoding and decoding information in output lasers signals
[59-61].



CHAOS IN OPTICAL SYSTEMS 357
B. Chaos in Nonlinear Optics

Nonlinear optics is a very convenient area to investigate the phenomenon of
deterministic chaos both from theoretical and experimental points of view.

The Jaynes—Cummings model describing an ensemble of two-level atoms in
a resonant cavity with a single-mode field is a basic paradigm in quantum
optics. Numerical calculations of the appropriate Maxwell-Bloch equations
have revealed a chaotic behavior of the system in a semiclassical approach when
no rotating wave approximation is used [62,63]. In a full quantum-mechanical
approach, Graham [17] determined the eigenvalues and eigenstates of the
coupled atom-field system by numerical diagonalization, and the basis for a
quantum description of chaos was prepared. Later, different aspects of chaos in
the Jaynes—Cummings model were investigated in a semiclassical or in a full
quantum model [64—68].

A complex dynamical behavior was experimentally and numerically found in
a system of spin—% atoms in an optical resonator with near-resonant cw laser
light and external static magnetic field [69]. Three-dimensional Bloch equations
were solved, and a chaotic motions was found and compared with experiment.

Quite early optical chaos was found in optical bistability. In 1979 Ikeda used
a ring cavity configuration for an optically bistable system with two-level
absorbing atoms [70]. Ikeda constructed an iterated map of a such system and
solving it, found the chaotic output of transmitted field strengths. Moreover, by
changing the input light intensities, he proved a period doubling route to chaos.
Later, chaos was investigated in the case of off-resonant (dispersive) bistability
[71-74]. The first experimental observation of chaos in optical bistability
system was made in 1981 by Gibbs et al. [75] in an optical device with electro-
nically introduced delay time. Nakatsuka et al. [76] in 1983 observed experi-
mentally the first chaotic generation in the phenomenon of dispersive bistability.
Next, experimental and theoretical evidence of chaotic behavior of signals
generated in bistable systems was checked by a few groups [77-82].

Second-harmonic generation of light is a nonlinear phenomenon in which
chaotic behavior was discovered in 1983 [83] (for details, see Secction II). In
the Kerr effect with an external time-dependent pump, a chaotic output may also
occur, which was proved for the first time in 1990 by Milburn [84] (see also
Section III).

Many kinds of molecular systems pumped by a strong laser light show
chaotic dynamics. Indeed, in a semiclassical model of a multiphoton excitation
on molecular vibration, chaos was discovered by Ackerhalt et al. [85] and
theoretically and numerically investigated in detail [86,87]. Moreover, the
equations of motion that describe a rotating molecule in a laser field can exhibit
a chaotic behavior and have been applied in the classical case of a rigid-rotator
approximation [87,88].
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Dynamical instabilities and chaos were discovered in many light scattering
processes. For example Milonni et al. in 1983 [89] found a chaotic strange
attractor in stimulated Raman scattering. They solved numerically the classical
coupled wave equations in the case of perfect phase-matching conditions. Next,
a period doubling route to chaos was found, and a fractal dimension of the
attractor was calculated by Nath and Ray [90]. Chaos in stimulated Brillouin
scattering was found in 1984 by Candall and Albritton [91]. The dynamics of
generated signals in stimulated scattering processes in optical fibers has also
been investigated [92].

Another class of good candidates for a study of chaos in nonlinear optics are
wave-mixing processes in which chaos appears in the propagation of laser light
through passive nonlinear media [93]. A chaotic behavior was observed in
three-wave mixing [94] and in four-wave mixing [95].

Experimental work and theoretical investigation show an important role of
spatial chaos in optical fibers, directional couplers, and generally in all-optical
switching devices [96/97].

The problem of quantum chaos in optics has been studied in a few areas. For
a short review, see Section IV.

II. CHAOS IN SECOND-HARMONIC GENERATION OF LIGHT

A. Introduction

Nonlinear optics deals with physical systems described by Maxwell equations
with an nonlinear polarization vector. One of the best known nonlinear optical
processes is the second-harmonic generation (SHG) of light. In this section we
consider a well-known set of equations describing generation of the second
harmonic of light in a medium with second-order nonlinear susceptibility 2.
The classical approach of this section is extended to a quantum case in
Section IV.

The first experimental evidence of SHG was reported by Franken et al. [98],
who focused a ruby laser beam (A, = 0.694 nm) on a quartz crystal and
analyzed the two outgoing beams by a standard method (the second-harmonic
beam was observed in the UV region 2As = 0.347 nm). This experiment was
soon followed by a theoretical analysis by Armstrong et al. [99]. Since then
many articles have appeared on the subject (bibliographies are presented in
Refs. 100 and 101).

To analyze the dynamics of SHG, we use time-dependent ordinary differen-
tial equations. At the beginning, Maxwell’s equations governing SHG were
studied, and a simple analytical time dependent solutions was found [99]. The
classical case of SHG was discussed by Bloembergen [102], and the present-day
state in the dynamics of SHG without damping and pumping was clarified



CHAOS IN OPTICAL SYSTEMS 359

[103]. The same equations, albeit with damping and coherent external driving
field, were studied by Drummond et al. [104] as a particular case of sub/second-
harmonic generation. They proved that below a critical pump intensity, the
system can reach a stable state (field of constant amplitude). However, beyond
the critical intensity, the steady state is unstable. They predicted the existence of
various instabilities as well as both first- and second-order phase transition-like
behavior. For certain sets of parameters they found an amplitude self-modula-
tion of the second harmonic and of the fundamental field in the cavity as well as
new bifurcation solutions. Mandel and Erneux [105] constructed explicitly and
analytically new time-periodic solutions and proved their stability in the vicinity
of the transition points.

SHG equations were used also to analyze of deterministic chaos. Savage and
Walls were the first [83] to prove the existence of chaos in the case of nonzero
detuning between laser and cavity modes. They found a period-doubling route
to chaos. Bistability, self-pulsing, and chaos were also studied Lugiato et al.
[106]. The dynamics of SHG in the case of time-dependent external pumping
was investigated by the present authors. Numerical analysis of the equation of
motions was performed for the modulated pump amplitude [107] as well as for
the external pump of rectangular pulses [108]. Alekseeva et al. [109] presented a
detailed study of the spatial evolution of multifrequency fundamental and
second-harmonic radiation and showed that the system may exhibit a spatial
chaos due to multiple competing processes. Also, a hyperchaotic dynamic in
SHG was numerically predicted [110,111].

B. Basic Equations

Let us consider an optical system with two modes at the frequencies ® and 2®
interacting through a nonlinear crystal with second-order susceptibility placed
within a Fabry—Pérot interferometer. In a general case, both modes are damped
and driven with external phase-locked driving fields. The input external fields
have the frequencies o, and 2m,. The classical equations describing second-
harmonic generation are [104,105]:

do

d—tl = —'A'locl — F]O(l —|—KO(TO(2 +F1

dO(z 1 (1)
: 2

W = 7ZA,2CX2 — FZ“Z — EKCXI +F2

Rapid oscillations (at the frequencies ®, oz, 2m, 2w, ) are removed from Eq. (1)
by frequency-matching conditions in the usual way. The quantities A} = ® — o
and A, = 2m — 20, are frequency mismatches between the cavity and external
fields. Slowly varying in time, complex variables oy and o, are the electric field
amplitudes of the two modes E; (¢) = o (¢) exp(ior) and E>(t) = o (t) exp(2iwt)
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describing fundamental and second-harmonic modes, respectively. Similarly, F
and F, are proportional to the electric field amplitudes of the two external
pumped modes (1) = F;(t) exp(iopt) and F,(t) = F,(¢t) exp(2iwpt). Two
constants, I'y and I',, are the cavity loss rates for the appropriate modes. The
coupling constant x between the two modes is proportional to a nonlinear
susceptibility X<2> of the nonlinear medium. With a special choice of the spatial
mode functions, we can assume that x is real, and we exclude from our
investigation of polarization effects — all fields have linear polarization in the
same directions [104].

For numerical investigation, it is convenient to reduce the number of relevant
parameters in Eq. (1). On substituting

Al L'ie Fip)(t/x)
T=xt, A = %7 Yie) = %, hip) = % (2)
into (2), we get the following redefined set of equations:
do. . «
d—l = —iAjoy — vy00 + oo +£i(1)
doo i G
= B2t = Y0 — 5“? + (1)

where f; are taken to be real. The above equations can be written in real variables.
On inserting

o = Re(oal) +lIm(O(1) =V —|—ly3

4
Oy = Re(Otz) + iIm(Oﬁz) =y +iys ( )
we obtain four equations of motion:
d
% = Az — vy 2 + s A
dyz 1
== = Doy — 1o — 501 — ) +h
dt 2 5)
dys - _A
7 N Y1¥3 T+ YiYa — Y2y3
dys
A Ay, — _
i 2Y2 = V2Y4 — V1)3

These four equations of motion describe the dynamics of SHG in the four-
dimensional phase space (Rea;, Imay, Reay, Imay). In practice, we can observe
the motion only in the reduced phase space (phase surface). For example, with
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the help of two-dimensional phase portraits (Rea;, Ima;), (Rea;, Rea;) and
(Imo;, Imaoy), we can qualify the kind of motion of our system, which may be
periodic, quasiperiodic, or chaotic.

To identify chaotic behavior of a dynamical system, it is convenient to use
the Lyapunov exponents [112,113]. In particular, the procedure proposed by
Wolf et al. [114] is a very useful and efficient method that gives such exponents.
In this method we have to linearize the set of equations (5), and next the
linearized equations are solved together with the primary equations. Moreover,
we solve the eigenproblem for the Jacobi matrix of the set of linearized
equations in the so-called tangent space. Then, after Gram—Schmidt reorthonor-
malization, we obtain the set of Lyapunov exponents A; as eigenvalues of the
long-time product Jacobi matrix. So, in this method the number of exponents, is
equal to a dimension of phase space [115]. In our case we have a set
{MAA3hy}; thus, we get a spectrum of Lyapunov exponents. Such a spectrum
is ordered from maximal to minimal value. The quantity A, is traditionally
termed the maximal Lyapunov exponent (MLE), and its positive value points to
chaotic motion. If A; <0, the dynamical system behaves nonchaotically
(orderly).

A highly unstable system can manifest hyperchaotic behavior [116]. This
means that we have two positive Lyapunov exponents in a spectrum. The
phenomenon of hyperchaos have been investigated in many papers [117-120].
A route to hyperchaos was also investigated [121], and a method of controlling
of hyperchaos was introduced [122].

In next three sections we present a short overview of investigations of chaotic
and hyperchaotic behavior in the process of SHG.

C. Simplest Case: v, =0, A; =0, f; =0

In the simplest case of a free evolution without damping, pumping, and
mismatch, the equations of motion (3) are solved analytically. One easily notes
that the system (3) now belongs to the class of Hamiltonian systems with two
constants of motion:

I} = ojoy + 20500,
1

L= _Ei (ocfog — agoc’l‘z)

(6)

They reduce the set (5) of four equations in real variables to two equations. This
means that we can have only regular, periodic, or quasiperiodic behavior, never
chaos. Chaos in a dynamical system governed by ordinary differential equations
can arise only if the number of equations is equal to or greater than 3. We
remember that we refer to the case of perfect phase matching (Ak = k;—
2k, = 0), and the well-known monotonic evolution of fundamental and
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Figure 1. Monotonic behaviour of the fundamental and second-harmonic modes. Solution of
Eqgs. (7) for the initial conditions aj9 = 0.1 4+ 0.1 and a9 = 0.

second-harmonic mode intensities has been found [99,102] and is shown on
Fig. 1.If Ak # 0, we obtain three equations of motion for oy, oy, Ak (six equations
in real variables) and well known solutions show an oscillation behavior in such
cases of SHG. Detailed analysies are available in the literature [99,102,103].

Let us focus on the role of initial conditions in this case of SHG. The
equations of motion

(7)

dal —a*a daz_ 1a2
dt U 21

were solved with initial conditions a;(0) = a9 and a,(0) = ap. The case of
(19 # 0, 0109 = 0) is often called a second-harmonic generation process (Fig. 1).
For the case of (a9 # 0, atp9 # 0), that is, when both fields start from the nonzero
initial conditions, we deal with a mixed process of sub/second-harmonic
generation. Throughout this work the symbol SHG refers to both these cases. In
Fig. 2 we see the evolution of the system from the initial conditions: o9 =
0.1 4i0.1 and oy = 0.01 4 i0.01. One can observe in Fig. 2a the periodic
oscillation in intensity of both modes. However, in the phase space the motion of
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Figure 2. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).
Solution of Egs. (7) for the initial conditions oo = 0.1 4+i0.1 and oyy = 0.01 +:0.01. Quasi-
periodic behavior.
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the system is quasiperiodic, as seen in Fig. 2b. The phase point draws a nonclosed
path within the rosette area. The rosette becomes increasingly denser with time,
and finally we get a blackened area. A similar rosette is obtained for the second-
harmonic mode. For the case of (o;p = 0,050 # 0), Eq. (7) have constant
solutions, and we do not observe any time changes in the SHG system. There is
no subharmonic generation without an external pumping f5.

To sum up, in nonlinear systems the influence of initial conditions on
dynamics of a system is essential, therefore the three different initial conditions
discribed above lead to different dynamics within the same equations of motion.

D. Coherent External Field

Another clear example of a system generating second harmonics is the one
employing an external coherent pump field f; = constant without dumping
(y; = 0) and frequency mismatch (A; = 0). The system belongs to the class
of Hamiltonian systems. The function (Hamiltonian)

H) = ifi (2 —on) +ifs (45— 32) — gi (005 —o0o?) (8)

is a constant of motion for Eq. (3). Since we have only pumping, the trajectory
shows an expanding nature [123].

If we now include damping (without mismatch), we get results in compliance
with Ref. 104. As did Mandel and Erneux [105], we introduce the notions of
good (y; < v,) and bad (y, = v,) frequency conversion limits in our discus-
sions. We denote them as GCL and BCL, respectively. The case of a coherent
pump field was also studied by Drummond et al. [104] with a nonrescaled
version of Eq. (1). To get the compact results we use, in accordance with (3), the
parameters fp =2, T = 10¢, and v, = v, = 0.34 (BCL) or vy, =0, vy, =0.34
(GCL). For the intensity of the coherent pump

fi =27 +712)V21(11 +712) )

and f, =0, we get a transition from monotonic solutions of (3) to a self-
pulsation. As we see in Fig. 3a, after transient effects the system manifests self-
pulsation and an appropriate phase portrait for the fundamental mode is presented
in Fig. 3b. The limit cycle indicates a periodic motion of the system. If the pump
/1 increases some multiperiodic oscillations occur (Fig. 4). If we change the
parameters of pumping f; and f>, we can find [104] that this system exhibits both
first- and second-order phase transition-like behavior and also has a hard mode
transition. Farther numerical and analytical analysis [105] indicated a new
transition involves an hysteresis cycle.
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Figure 3. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).
Solution of Egs. (3) for fi =2, f, =0, vy, = v, = 0.34 (BCL) and initial conditions ojp = 0.1 + 0.1

and opp = 0. Self-pulsation.
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Figure 4. Multiperiodic behaviour in SHG. The same as in Fig. 3 but fj = 5.
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Figure 5. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).
Solutions of Egs. (3) with parameters A} = A, =1, =5.5,/, =0,y, = v, = 0.34 (BCL). The
initial conditions are oo = 0.1 +i0.1 and otrg = 0.01 +i0.01. Chaos.
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We get a very similar time behavior in subharmonic generation where fj; = 0
and f, # 0. Self-pulsation and multiperiodic evolution of intensities have been
found. However, these findings are not investigated here.

The case of a frequency mismatch between laser pumps and cavity modes
was investigated [83], and for the first time, chaos in SHG was found. When the
pump intensity is increased, we observe a period doubling route to chaos for
Ay = A; = 1. Now, for f; = 5.5, Eq. (3) give aperiodic solutions and we have a
chaotic evolution in intensities (Fig. 5a) and a chaotic attractor in phase plane
(Imoy, Reay) (Fig. 5b).

E. Modulated External Field

A more complicated behavior of the system (3) is manifested if the time-
dependent driving field and damping are taken into account. Let us assume that
the driving amplitude has the form f(t) = fo(1 + sin(27)), meaning that the
external pump amplitude is modulated with the frequency 2 around fy. More-
over, f, = 0and A; = A, = 0. It is obvious that if we now examine Eq. (3), the
situation in the phase space changes sharply. In our system there are two
competitive oscillations. The first belongs to the multiperiodic evolution
mentioned in Section II.D, and the second is generated by the modulated
external pump field. Consequently, we observe a rich variety of nonlinear
oscillations in the SHG process.

The frequency of modulation €2 is now the main parameter, and we are able
to switch the system of SHG between different dynamics by changing the value
of Q. To find the regions of ) where a chaotic motion occurs, we calculate a
Lyapunov spectrum versus the ‘“knob” parameter ). The first Lyapunov
exponent A; from the spectrum is of the greatest importance; its sign determines
the chaos occurrence. The maximal Lyapunov exponent A; as a function of € is
presented for GCL in Fig. 6a and for BCL in Fig. 6b. We see that for some
frequencies € the system behaves chaotically (A; > 0) but orderly (A; < 0) for
others. The system in the second case is much more damped than in the first
case and consequently much more stable. By way of example, for 2 = 0.9 the
system of SHG becomes chaotic as illustrated in Fig. 7a, showing the evolution
of second-harmonic and fundamental mode intensities. The phase point of the
fundamental mode draws a chaotic attractor as seen in the phase portrait
(Fig. 7b). However, the phase point loses its chaotic features and settles into
a symmetric limit cycle if we change the frequency to 2 = 1.1 as shown in
Fig. 8b, while Fig. 8a shows a seven-period oscillation in intensities. To avoid
transient effects, the evolution is plotted for 450 < © < 500.

Let us emphasize that for other values of parameter {2 we can also observe in
the phase plane intricate symmetric limit cycles [107,123], such as the five-
period oscillations we get for 2 = 0.78.
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Figure 6. Maximal Lyapunov exponent A; versus the modulation parameter €2 for fy = 2 and
the initial conditions are o9 = 0.1 4+ 0.1 and oy = 0.01 +:0.01. (a) GCL and (b) BCL.
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Figure 7. Time evolution of intensity (a) and phase portrait for the fundamental mode for

0 < 1 < 300 (b). Parameters are the same as in Fig. 6b (BCL), but with 2 = 0.9. Chaos.
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Highly unstable systems lead to two positive Lyapunov exponents that show
the hyperchaotic behavior [116]. Now, Eq. (3) is numerically examined with
damping constants v, = v, = 0.01. In Fig. 9a we see only the two largest Lya-
punov exponents of all the spectrum versus the modulation parameter ). The

0.4 -

>"1 2

0.0 2.0 4.0 6.0

(@)

()

Figure 9. The two largest Lyapunov exponents (a) and the bifurcation diagram (the maxima
of y) (b) versus the modulation parameter ). Parameters are fy = 1,v, = v, = 0.01 and the initial
conditions are o;p = 0.1 +70.1 and opy = 0.01 4 i0.01. Hyperchaos.
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Figure 10. The phase portraits Re o, versus Ima, forfy = 1,7, = v, = 0.01,0190 = 0.1 +i0.1,
and oy = 0.01 +i0.01. The hyperchaotic trajectory for 2 = 0.8 (a) and the limit cycle for
Q = 1.55(b). The time is 400 < t < 500.
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damping is so weak that we can state that the system is hyperchaotic. There are
two extensive regions of hyperchaos between 0.45 < Q2 < 0.98 and 2 > 2.22,
where two Lyapunov exponents are positive. In the region 0.98 < Q2 < 2.22
hyperchaos does not appear at all. Generally, the region 0.98 < Q2 < 2.22 can be
treated as nonchaotic apart from a few values of the parameter 2 for which only
one Lyapunov exponent is positive. These regions of stability and instability are
best visualized in the bifurcation diagram (Fig. 9b), where we plot the maxima
of Re oy = y; versus the parameter of modulation €. It is obvious that a change
in  switches the system among chaos, hyperchaos, or limit cycles. For
Q2 = 0.8, we observe a hyperchaotic orbit in the phase portrait of the second-
harmonic mode (Fig. 10a). The same orbit, except for {2 = 1.55, becomes a
limit cycle (Fig. 10b).

When the damping in the system is increased, the regions of hyperchaos
disappear. Moreover, it is interesting that the region of order that we obtained in
Fig. 9 is very stable despite changing damping constants, so we can chose the
frequency of modulation of an external field in such a way (1 < £ < 1.8) that
the system remains stable even for a relatively small damping.

F. Pulsed External Field

In this section we consider a case particularly important for experimental
investigation. The external driving field fi(t) applied to Eq. (3) has the form
of a train of pulses that are simulated by a computer. The length of the pulse is
denoted by T}, and the height of the pulse by fy. The distance between two
pulses is denoted by T5. For fy # 0 and T, = 0, the train of pulses becomes a
coherent driving field (Section II.D). The second driving field f, is assumed to
be zero and A; = A, = 0. We examine the dynamical system (3) in the same
way as in Section ILE. In Fig. 11 we present the maximal Lyapunov exponent
A1 as a function of the length of the pulse T; (for 7, = 1). As shown in
Fig. 11a,b, at the beginning A; is negative, implying the appearance of order in
the range 0 < 77 < 0.085 for GCL and 0 < 7| < 0.55 for BCL. The funda-
mental (] o; |*)) and second-harmonic (| o, |*) intensities tend to oscillatory
states in the course of time [108]. This is the short-pulse regime, and the
appropriate evolution of both intensities is shown in Fig. 12. Here, one can easy
recognize moments of time where the pulses are switched on and off. The
period of sawtooth-like oscillations is equal to the repetition rate of pulses. The
typical phase portrait for the short-pulse case is presented in Fig. 13. Finally, we
observe a limit cycle where the phase point moves up and down only a segment
of a straight line (shaded dark in Fig. 13b).

For 0.085 < T; < 0.5 (GCL) and for 0.55 < T} < 0.97 (BCL), the maximal
Lyapunov exponents A; are near zero; consequently, we obtained quasiperiodic
trajectories. Typical quasiperiodic trajectories for both cases are shown in
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Figure 11. The maximal Lyapunov exponent A; versus the pulse duration 7j, for
fo=2,T» =1,010 =0.141i0.1,00 = 0: (a) the case of GCL vy, =0,y, = 0.34; (b) the case of
BCL vy, =0.34,y, = 0.34.

Fig. 14. The trajectory is a nonclosed path, and for long times we get a black-
ened area.

A more complicated behavior of the MLE is observed for higher values of
T,. Varying the length of the pulse 7}, we observe regions of order and chaos.
By way of an example, the phase portrait Reoy versus Ima; for a chaotic
attractor is shown in Fig. 15.

Within the region of order (A; < 0) we see intricate symmetric and non-
symmetric limit cycles in phase diagrams. For example, for 71 = 4.1 we see in
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Figure 12. Intensities in the short-pulse regime for the GCL case. The parameters are the same
as for Fig. 11a but 71 = 0.01.

Fig. 16a symmetric limit cycles for the second-harmonic mode (GCL) and in
Fig. 16b, an nonsymmetric phase portrait example for 77 = 0.5 for BCL. In
both cases the phase point settles down into a closed-loop trajectory, although
not earlier than about T > 200. An intricate limit cycle is usually related to
multiperiod oscillations. For example, the cycle in Fig. 16a corresponds to
five-period oscillations of the fundamental and SHG modes intensity, and the
phase portrait in Fig. 16b resembles the four-period oscillations (see Fig. 17).
Generally, for 77 > 0.5, we observe many different multiperiod (even 12-period)
oscillations in intensity and a rich variety of phase portraits.

Some hyperchaotic behavior in SHG with pump of pulses has been shown
[111]. The two largest Lyapunov exponents versus a duration of pulse 7 are
presented in Fig. 18a for the cases of BCL. There are a two regions of
hyperchaos. A Typical hyperchaotic phase portrait is presented in Fig. 18b.

G. Final Remarks

Small changes in the modulated pump parameters €2,f, and in the pulse
parameters T),75,f, induce dramatic changes the output fields. Therefore
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Figure 13.
enlargement of the signed region of Fig. 13a. The parameters are the same as for Fig. 11a but

T, =0.01.
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Figure 14. Quasiperiodic orbits for the parameters of Fig. 11 but (a) 77 = 0.5 (GCL) and (b)

T, = 0.8 (BCL). The time is 0 < 1 < 300.
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Figure 15. Chaotic attractors for the parameters of Fig. 11 but 7) = 0.5 (GCL) (a) and T}, = 4

(BCL) (b). The time is 0 < t

< 300.



P. SZLACHETKA AND K. GRYGIEL

380
2.0
1.0
~ 00F
3
[0
o
_10 -
20k
-2.0 -1.0 0.0 1.0 2.0
Im o,
(a)
0.0
-0.5 +
N
3
[0
o
-1.0 [
-2.0 -1.0 0.0 1.0 2.0
Im Ol

(®)

Figure 16. Phase portraits for the second-harmonic mode: (a) symmetric example for GCL, (b)
nonsymetric example for BCL. The parameters are the same as for Fig. 11, and the time is

200 < T < 500.
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Figure 17. Evolution of the intensities related to the cases of Fig. 16: (a) five-period
oscillations in GCL; (b) four-period oscillations in BCL.
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Figure 18. (a) The two largest Lyapunov exponents A, and A, versus the pulse duration 7}, for
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duration 7| = 2.0.
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SHG can be used as a source of signals with chaotic or even hyperchaotic
amplitudes that can be suddenly switched to the periodic regimes. This kind of
performance can be employed for communications devices. We mention here
the possibility of encoding a message within chaotic dynamics [124].

In order to relate the theory and numerical calculations to the physical
parameters, we followed the estimations of Drummond et al. [104]. For a typical
spherical Fabry—Pérot interferometer of length 10 cm with an appropriate crystal
(e.g., KDP of length 1 cm), one can get approximate values of parameters of the
SHG system. The typical damping constant for the mirror reflectivities 0.995 is
v ~ 10°. The coupling constant k was estimated in the interval of 50-500s~".
These coupling constant values permit experimental verification of dynamical
behavior of SHG. In preceding, sections the coupling constant K is given by
relation k¥ = t/t, where T and ¢ are the rescaled and real times, respectively.
Therefore the parameter of modulation {2 can change between 0 and 3500 Hz
(in our calculations 0 < €2 <7 in arbitrary units). We also obtained the
appropriate pulse repetition rate in an interval from 1073 up to 102 s. This
rather rough estimation allows experimental verification of our numerical
analysis.

III. CHAOS IN KERR OSCILLATORS

A. Introduction

Since 1990 considerable interest has been devoted to mutually coupled dyna-
mical systems. Different kinds of new dynamical behavior have been revealed
and studied, including synchronization effects [125-128], oN-OFF intermittency
[129], two-state oN-OFF intermittency [130], uncertain destination dynamics
[131], or riddled basins of attractions [132]. Other interesting topics in the field
of coupled nonlinear systems are generation of beats and their properties. The
structure of beats has been intensely studied mainly in quantum and nonlinear
optics. The intricate beats are frequently referred to as “revivals™ and “collapse
phenomena” [133]. The revivals and collapses, representing the structure of
complicated modulations, remain quasiperiodic functions [134,135]. It is well
known that beats in linear systems originate from the superposition of periodic
functions with slightly different periods. The question is what are the changes in
the structure of beats in a linear system if the linear system is supplemented by a
nonlinear term and whether it is possible to generate chaotic beats.

One of the best known and most intensively studied optical models is an
oscillator with Kerr nonlinearity. Mutually coupled Kerr oscillators can be
successfully used for a study of couplers; the systems consist of a pair of coupled
Kerr fibers. The first two-mode Kerr coupler was proposed by Jensen [136] and
investigated in depth [136,137]. Kerr couplers affected by quantization can
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exhibit various quantum properties such as squeezing of vacuum fluctuations,
sub-Poissonian statistics, collapses, and revivals [138,139].

In this section we consider a model of interactions between the Kerr oscilla-
tors applied by J. Fiurasek et al. [139] and Pefinova and Karska [140]. Each
Kerr oscillator is externally pumped and damped. If the Kerr nonlinearity is
turned off, the system is linear. This enables us to perform a simple comparison
of the linear and nonlinear dynamics of the system, and we have found a specific
nonlinear version of linear filtering. We study numerically the possibility of
synchronization of chaotic signals generated by the Kerr oscillators by employ-
ing different feedback methods.

B. Basic Equations

The Hamilton function for a single Kerr oscillator is defined by

2 2 2 2 2 2\ 2
P~ %9 P~ ®9g
H =—4—"— — 1

o0 =+ B (5 + 250 (10)
where € is the Kerr parameter. If € = 0, the Hamiltonian expressed here describes
a simple harmonic oscillator with the natural frequency ®g. The dynamical
variables p and g denote the momentum and generalized coordinate, respectively.
The Hamilton equations

dg OH

A _ 11
dt Op (11)
dp  OH

YA (12)

applied to the Hamiltonian (10) lead to the following coupled equations of
motion:

dq
= = Pl e + oig)] (13)
dp
= = 00l + (0 + 05g”)] (14)

If the initial state of the system is determined by the initial conditions ¢(0) = ¢o
and p(0) = po, the solution of the system (13)—(14) is given by

q(r) = gocos o[l + e(p(z) + co(z)q(z))]t + 5)_(()) sinwp[1 + e(p(z) + m(z)qg)]t (15)

p(t) = pocosmo[l + €(pg + w5qp)]t — gowosinmo[1 + €(pg + wgqg)]t  (16)
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The system (13)—(14) has two independent constants of motion (first integrals):
the Hamilton function (10) and

O(p, g;1) = —wo[1 +€(p? + 5g7) 1 + arctan (%) (17)

For € = 0, the quantities (10) and (17) become first integrals for the harmonic
oscillator [141]. It is obvious from (15)-(16) that a trajectory in phase space
(p, q) for the Kerr oscillator is analytically the same ellipse as for the harmonic
oscillator

2 2.2
P (Doq 1 (]8)

e+ widt  pi+ojad

The only difference is that for the harmonic oscillator the phase point draws the
ellipse with the frequency wg, whereas for the Kerr oscillator with the frequency,
Q = wo[l + e(p} + ©3q3)]. The frequency 2 depends on the initial conditions,
which is a feature typical of nonlinear conservative systems [143].

The set of equations (13)—(14) describes a conservative system. However, the
effect of linear dissipation can be incorporated phenomenologically. Then, Egs.
(13)—-(14) have the form

dg

= = P+ e’ + 05q)] = vq (19)
dP 2 2 2

i = —wgq[l + €(p* + w3q*)] — vp (20)

where the terms yg and yp describe a loss mechanism, with the damping constant
v. The solution of the preceding equations is given by [142]

gty =e" <qo cosN(t) + Z—z sin N(t)) (21)
plt) = & ¥ (pocosN(1) — qooosin N(1)) (22)

where
N(E) = oot + 52 (0 + 03ad)(1 — e ) (23)

If € = 0, the system (19)—(20) describes a damped linear oscillator governed by
the equation
d2

dq
- 72 5 (@ +7)g =0 (24)
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Generally, if Kerr systems are driven by external time-dependent forces, the
equations of motion are nonintegrable and have to be studied numerically.

C. Dynamics of Linearly Coupled Kerr Oscillators

Let us consider a system of two classical oscillators with Kerr nonlinearity. Both
oscillators interact with each other by way of a linear coupling; moreover, they
are pumped by external time-dependent forces. The Hamiltonian for the system
is given by

H =

l

2
[H; + H; — qiFi(1)) — 9414> (25)
=1
where the Hamiltonian H; = %(pl2 + ®3q?) describes a simple harmonic
oscillator with the frequency ®,. Moreover, F;(t) = A;cos®;t is the time-
dependent force, with the amplitude A; and the frequency ®;. The parameter of
Kerr nonlinearity is denoted by €;. The interaction between the Kerr oscillators is
governed by the term a.q;¢,, where o plays the role of an interaction parameter.
The equations of motion for the system described by the Hamiltonian (25) are
given by

%:pl[l +€I(P% +w%q%)] — Y19 (26)
% - _méq‘[l +e(p+ (0(2)61%)] +oqga — 7ip1 +Ajcosm; ¢ (27)
% =po[l + &3 + 05)] — 122 (28)
% = —wpqa[1 + €2(p3 + 03q3)] + 9g1 — Yap2 + Arcos (29)

where the terms 7y,q; and y,;p; describe a loss mechanism. The loss mechanism has
been incorporated phenomenologically. If the linear coupling parameter o is
equal to zero, both anharmonic oscillators behave independently; that is, they do
not interact with each other. Therefore, for oo = 0 the equations of motion (26)—
(29) form two independent sets of equations. The equations of motion (26)—(29)
give a four-dimensional nonautonomous system that can be easily autonomized
[115] if we put ¢ = g3 in the functions cos;z. Then, time becomes a dynamical
variable and the fifth equation is given by

dqs

| 0)=0 30
dt ; Q3( ) ( )
In general, the system (26)—(30) is nonintegrable and its dynamics has to be
studied numerically. We examined it with the help of a fourth-order Runge—Kutta
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method. To calculate Lyapunov exponents, we used the procedure proposed by
Wolf et al. [114]. The spectrum of the autonomized system (26)—(30) is denoted
by the symbols {A1, Az, A3, g, As}.

1. Noninteracting Oscillators

Let us first consider the case of noninteracting oscillators that takes place when
the interaction parameter o in Egs. (26)—(29) is equal to zero. Then, the system
(26)—(29) consists of two independent subsystems in the dynamical variables
(gq1,p1) and (g2,p2). The parameters of the subsystems are A} = A; = 200,
0o =1, ¢ =€ =0.1, y; =0.05, y, =0.5. The frequencies w;, of the
external driving forces vary in the range 0 < w;, < 3.2. The autonomized
spectrum of Lyapunov exponents {A;, A,, A3} for the first oscillator / versus the
frequency ®; is presented in Fig. 19a. We observe three types of spectra:
{+,0,—1}, {0,0,—}, and {0, —, —}. The first indicates a chaotic attractor; the
second, a quasiperiodic orbit; and the third, a limit cycle. Therefore a change in
the frequency ; switches the chaotic oscillations (chaotic attractors) into
nonchaotic oscillations (quasiperiodic orbits, limit cycles) and inversely. The
autonomized spectrum of Lyapunov exponents for the second oscillator II
versus the frequency m, is shown in Fig. 19b. The difference between the
two figures is essential. The chaotic regions in Fig. 19b do not appear at all
because of the increase in damping in the system. The only attractors are limit
cycles {0, —, —}. By way of an example, for identical frequencies ®; = @, =
0.55, the Lyapunov spectra for the first and second oscillators are {0.08,0.00,
—0.23}" and {0.00, —0.55, —0.90}", respectively. The topology of the chaotic
attractor in the phase space (g1, p1) is shown in Fig. 20a. The phase point starts
from the initial conditions gi9 = 10 and p;p = 10 and moves within the
blackened area, which makes an attractor, after > 200. In the phase plane
(2, p2) the phase point draws a limit cycle (Fig. 20b). The intricate structure of
the limit cycle is related to multiperiodic oscillations of the system. The
blackened areas at the top and bottom of the limit cycle have a periodic
structure invisible in the scale of the phase portrait.

The single Kerr anharmonic oscillator has one more interesting feature. It is
obvious that for €; = 0 and y; = 0, the Kerr oscillator becomes a simple linear
oscillator that in the case of a resonance ®; = ®y manifests a primitive
instability; in the phase space the phase point draws an expanding spiral. On
adding the Kerr nonlinearity, the linear unstable system becomes highly chaotic.
For example, putting A} =200, ®; =09 =1, ¢, = 0.1 and y, = 0, the spec-
trum of Lyapunov exponents for the first oscillator is {0.20,0, —0.20}1.
However, the system does not remain chaotic if we add a small damping. For
example, if y; = 0.05, then the spectrum of Lyapunov exponents has the form
{0.00, —0.03, —0.12}', which indicates a limit cycle.
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Figure 19. Spectra of Lyapunov exponents for the system (26)-(30) with o = 0. The initial
conditions are g9 = 10,p19 = 10, g2 = 10, and pyy = 10. (a) Spectrum {1, Az, 7\.3}1 for the first
oscillator (I) versus the frequency o, for @y = 1, A} = 200. v, = 0.05, and €; = 0.1. (b) The same
for the second oscillator (II) with the parameters: wy = 1,4, =200, y, = 0.5, and €, = 0.1.

2. Interacting Oscillators

If the interaction parameter o is switched on, the system of coupled oscillators
(26)—(29) manifests a rich variety of spectacular behavior. Below, we concen-
trate on the most interesting ones. First, we answer the question as to how the
attractors in Fig. 20 change when both oscillators interact with each other.

1. The Case A = Ay, v, < Y,. The dynamics of the coupled oscillators is
investigated for an interaction parameter o varying in the range 0 < o < 1. The
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Figure 20. Phase portraits for the system (26)—(30) with o = 0. The initial conditions are
q10 = 10,p10 = 10,920 = 10, and pyo = 10. (a) Phase portrait (q;,p;) of the first oscillator for
A =200,00 = 1,€; =0.1,0; =0.55, and y; = 0.05. (b) Phase portrait (g,,p,) of the second
oscillator for Ay = 200,09 = 1,€; = 0.1, = 0.55, and y; = 0.5.

joint autonomized spectrum of Lyapunov exponents {A;, Ay, A3, Aq, A5} versus
the interaction parameter o is shown in Fig. 21. The value o = 0 is a limit value
related to the dynamics of the uncoupled oscillators. This has already been done
in Section III.C.1 In the region 0 < o < 0.74 the chaotic behavior of the coupled
oscillator system predominates over the nonchaotic one; thus, for most values of
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Figure 21. Spectrum of Lyapunov exponents {Aj,Az,A3,hs,As5} for the system (26)—(30)
versus the interaction parameter o. The other parameters are A; =A; =200,00 = 1,0 =
@, =0.55, ¢, =€ =0.1,7, =0.05, and v, = 0.5. The initial conditions are g;o = 10, p;o = 10,
20 = 10, and pyy = 10.

the parameter o, the maximal Lyapunov exponent is positive. For
0.68 < o < 0.71 we get the maximum chaos. For o > 0.74 the system does
not show chaotic behavior. Generally, the only spectra of Lyapunov exponents
that appear in Fig. 21 are of types {+,0,—,—,—}, {0,0,—,—,—}, and
{0, —, —, —, —}. These three types of spectra (for o > 0) do not allow us to
ascertain which of the two interacting oscillators is more (or less) chaotic than
the other unless o = 0. However, the dynamics of individual oscillators can be
estimated with the help of the appropriate phase portraits. For example, if the
interaction coupling is equal to oo = 0.7, the spectrum of Lyapunov exponents
has the form {0.14,0.00,—0.39,—0.55,—0.79}, and the appropriate phase
portraits are as shown in Fig. 22. The attractors for the interacting oscillators
shown in Fig. 22 are reminiscent of the attractors for noninteracting oscillators
presented in Fig. 20. Let us note that the maximal Lyapunov exponent for the
system of interacting oscillators, which is equal to A; = 0.14, is greater than the
maximal Lyapunov exponent for the uncoupled oscillators, which equals
A1 = 0.08. Therefore, for 0.67 < o < 0.72, the coupled oscillators are more
chaotic than their uncoupled version. However, as is seen from Fig. 21, this is not
arule. In the range 0.2 < o < 0.5 the values of the maximal Lyapunov exponent
are of the rank ~ 0.08, which corresponds to the value for uncoupled oscillators
(a measure of chaos in the coupled and uncoupled oscillators is in practice the
same). Therefore, the linear coupling here is relatively small in order to
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Figure 22. The same as in Fig. 20 but with the interaction parameter o = 0.7.

additionally increase the instability of the system. Rather chaos flows from one
oscillator to the other by the coupling term o.

2. The Case Aj = A, A, =0, v, =7, = 7. In what follows, we consider a
simple version of the system (26)—(29), namely: both oscillators are equally
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damped (y; =7y, =7) and only the first oscillator is externally pumped
(A} = A,A; = 0). Therefore, the equations of motion are

dq,

= pill +€(pt + 05q1)] — vau (31)
dpy _ 2, 22

o —o3q1[1 + e(p? + 0iq})] + aga — yp1 +Acosot (32)
dq,

o pall +€(p3 + 03a3]) — a2 (33)
sz

= 00l + e + 05y)] + ogqr = v (34)

This system in its linear version (i.e., when € = 0) is a dynamical filter. Suppose
that the oscillators interact with each other with the interaction parameter
o =0.9. The frequency ® of the external driving field varies in the range
0 < ® < 4.2. The other parameters of the system are A = 200, oy = 1,e€ = 0.1,
and y = 0.05. The autonomized spectrum of Lyapunov exponents {A;, Ay, 23,
A4, As} versus the frequency o is presented in Fig. 23. In the range 0 < » < 0.2
the system does not exhibit chaotic oscillation. Here, the maximal Lyapunov
exponent A; = 0 and the spectrum is of the type {0, —, —, —, —} (limit cycles).
For example, for ® = 0.05 we have {0.00,—0.07,—0.07, —0.07, —0.07}, and
the limit cycles are shown in Fig. 24. The blackened areas in Fig. 24 have a
periodic structure invisible in the scale applied. In the range 0.21 < ® < 3.41,

0.20 |

0.00

-0.20

-0.40 |

0.00 1.00 2.00 3.00 4.00

Figure 23. Spectrum of Lyapunov exponents {A;,Ay,A3,A4,As} for the system (31-(34)
versus the pump frequency «. The other parameters are A = 200,09 = 1,y = 0.05,e = 0.1, and
o = 0.9. The initial conditions are g;o = 10, pjo = 10, g20 = 10, and pyy = 10.
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Figure 24. Phase portraits (¢g;, p1) and (¢2, p2) for the system (31)-(34) with o = 0.9. The other
parameters are A = 200,09 = 1,e = 0.1,y = 0.05, and ® = 0.05. The initial conditions are the
same as for Fig. 23. Limit cycles.

new types of spectra appear: {0,0,—, —, —}, {+,0,—,—,—}, and {+,+,0,
—, —}. The first indicate a quasiperiodic orbit; the second, a chaotic attractor, the
third, a hyperchaotic attractor. Let us concentrate on the last and the most
interesting case, with two positive Lyapunov exponents. The system reaches the
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highest degree of hyperchaos for @ = 2.1. Then, the spectrum is {0.26,0.
10,0.00, —0.25, —0.41}, and the behavior of the phase point is presented in the
phase diagrams in Fig. 25. Here, the phase point starts from the initial state

q10 = q20 = p1o = p20 = 10 and moves into the hyperchaotic attractor after
t > 50. For @ > 3.41 the system behaves orderly.
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Figure 25. The same as in Fig. 24 but for ® = 2.1. Hyperchaos.



CHAOS IN OPTICAL SYSTEMS 395

The system (31)—-(34) with € =0 is a linear system with the normal
frequencies Q) = /03 — o and Q, = \/®§ + o.. For @p =1 and o = 0.9, we
have €; =0.32 and 2, = 1.38. It is known from linear dynamics that if
Q1 > o > €, the steady-state amplitude of the first oscillator is greater than
the steady-state amplitude of the second oscillator. If Q; < ® < €),, we observe
the inverse situation —the steady-state amplitude of the second oscillator is
now greater than that of the first oscillator. This behavior is known as dynamical
filtering of the signal F(r) = Acosot. The frequency range (€2;,€) is called
the charge-transfer band, whereas (1) and €), are the lower- and upper-band
frequencies, respectively. The question is whether the filtering is, in a sense, also
maintained in our nonlinear system. A detailed analysis shows that thevibrations
of the first oscillator are always greater than the oscillations of the second
oscillator, irrespective of the value of ®. This is also seen from the phase
portraits in Figs. 24 and 25, which show that the volume of the attractor in the
phase space (p2, ¢2) is always less than the attractors in the phase space (pi, ;).

The linear version (e = 0) of the system (31) —(34) has one more interest-
ing feature; namely, if Y =0, ® = oy and the following initial conditions are
satisfied (g10 =0, p1o =0, g20 = —A/a , poo = 0), then the solutions of the
linear equations of motion are ¢;(t) = 0, p1(t) = 0, g2(t) = (—A/a) cos ot and
p2(t) = (Awp/a) sinwgt. Therefore, the first oscillator remains in a state of rest
and the second performs harmonic vibrations; such a system is frequently
referred to as a dynamical damper. However, a nonlinear counterpart of the
linear dynamical damper does not exist. For e =0.1, A=9, o =0.9, and
® = o, = 1, the system behaves hyperchaotically. The spectrum of Lyapunov
exponents is {0.68,0.04,0.00, —0.04, —0.68}.

Finally, let us briefly consider the dynamical properties of the system (31)—
(34) without damping, that is, when y = 0. The other parameters are wy = 1,
a=0.9, and A =200. The appropriate spectrum of Lyapunov exponents
{M, N2, A3, A4, A5} versus the frequency 0 < ® < 2 is presented in Fig. 26.
As is seen from Fig. 26, the system is completely hyperchaotic. Here, the only
type of spectrum is {+,+,0,—,—}. This type of spectrum is a case of the
symmetric spectrum ( the axis symmetry is the Lyapunov exponent A3 = 0).

3. Synchronization

In chaotic motion trajectories starting from insignificantly different initial
conditions diverge from each other exponentially. The question is whether we
can converge chaotic signals from two identically or slightly different sub-
systems, both starting from different initial conditions. This behavior is possible
by linking them with a common signal and synchronizing both outputs. We
show that two single Kerr oscillators are a convenient system for synchroniza-
tion. According to the continuous feedback method [52,61,125,127], we
consider two Kerr subsystems (oscillators) where one subsystem is called the
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Figure 26. The same as in Fig. 23 but for y = 0.

drive and the other the response. Both systems are coupled unidirectionally by a
difference signal. The behavior of the response system depends only on the
drive system, but not vice versa. The dynamics of our system is governed by the
following set of equations:

= milre v} + 03] — (33)
% = —pqi[l + €1 (p} + 03q7)] — vip1 + Arcosoit + S (36)
U2 ot + a0 + i)~ .
% = — 0 [1 + €2(p3 + 03g3)] — Yop2 + Arcosant (38)

where S = k(g2 — ¢1) is the difference signal and k is the control parameter. As
is seen, the second oscillator (drive) pumps a signal to the first oscillator
(response) via the term S in Eq. (36) . The synchronization of chaos (for a chosen
parameter Kk and the initial conditions g9 # g0 and p1g # pao) takes place if the
chaotic trajectory ¢; = ¢ (¢) of the response oscillator jumps after some time
into the chaotic trajectory g, = g»(¢) of the drive oscillator. The time needed to
uniform chaotic motions of subsystems is called a synchronization time.

Let us consider the dynamics of synchronization for the system (35)—(38)
with the parameters A} = A, =200, g = 1, ®; = wp, = 0.55, y; = v, = 0.05,
and €; = €; = 0.1. The initial conditions for the drive and response systems are
(q10,p10) = (10, 10) and (q20,p20) = (5,5), respectively. For k = 0 both sys-
tems draw different chaotic orbits. Figure 27 shows the measure of synchroni-
zation A; = q;(t) — ¢q2(¢) versus time ¢ for k = 0.33. The appearance of the
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Figure 27. The time evolution of A; = g; — ¢, for k¥ = 0.33. The parameters and the initial
conditions of the system (35)-(38) are w; = wp, =0.55,A; =4, =200,000 = 1,6 =€, =0.1,
Yi="2= 005~ (P107£]10) = (107 10)’ and (pZOquO) = (575)

straight line after 7; = 2900 clearly implies that both chaotic orbits have just
been synchronized: ¢, (¢) = ¢»(t). The efficiency of the synchronization process
depends on the parameter k. This is illustrated in Fig. 28a, where the synchro-
nization time T is presented as a function of the parameter k. We observe four
regions of synchronization: 0.28 < ¥ < 0.35, 042 <k <0.54, 0.77 <x <
0.80, and x > 1.58. In the other regions it is not possible to achieve the
synchronization effect. The synchronization time takes the minimum value
T, = 200 for k¥ > 1.59.

In physical terms the unidirectional synchronization means that the drive
oscillator plays the role of an external source. The situation is different if one
considers the problem of a mutual synchronization of two oscillators, which we
may assume to be identical in all respect except for the initial conditions:
g0 # q20 and pio # pao. Let us consider the following model of mutual
synchronization

%21’1[1 +€1(P%+C°S‘I%)] — Y191 (39)
%: —wpqi[l + e (p} + 03g})] — vip1 +Arcosonr +S (40)
% = [l +e@; + 05¢3)] — 1242 (41)
dp2 _ ~0q2[1 + €2(p + 03g3)] — Yap2 + Azcosant — S (42)

dt
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Figure 28. Synchronization time T versus K. (a) for Egs. (35)—(38); (b) for Eqs. (39)—(42). The
parameters and the initial conditions are the same as for Fig. 27.

where S = k(g2 — ¢1). The system is similar to that governed by Egs. (26)—(29).
The equations of motion (39)—(42) can be derived from the Hamiltonian (25) if,
instead of ag;q,, we put 0.5x(q; — QQ)Z. The values of the parameters and the
initial conditions for the model of mutual synchronization are the same as for the
unidirectional model. Synchronization takes place in the ranges 0.22 < x < 0.27,
0.38 < ¥k < 0.41 and ¥ > 0.79, as is shown in Fig. 28b. For k¥ > 0.80 we obtain
the minimum value of T, =2 150
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It is interesting to note that the regions of unidirectional and mutual syn-
chronization do not overlap. In both cases we have the critical value of x (1.59,
unidirectional synchronization; 0.80, mutual synchronization), after which the
coupling is strong enough to maximize the process of synchronization.

4. Chaotic Beats

Let us now concentrate on the problem of beats generated by the system
(26)-(29) without a loss mechanism (y, =7y, =0). For y;, =y, =0, and
o = 0, the dynamics of the system (26)—(29) is reduced to two noninteracting
Kerr subsystems:

dq;

7; = pill +&(p; + w5q7)] (43)
Wi _ 200 2 L 02?)] + A =12 44
E**(ﬂo%’[ +€(p; +wpg;)] + Ajeosayt, j=1, (44)

These Kerr oscillators, with €; = €, = 0, are linear subsystems that in the case
of resonance (0 = ®; = m,) exhibit a common instability — the solutions of
Egs. (43) and (44) for + — oo grow linearly without bound. This resonance
instability of our linear subsystems vanishes for €; # 0 and €; # 0. The
subsystems become stable but only for small values of €; and €;. For example,
beats generated by the first oscillator for €; = 1072, A; =200, and 0y = ©; = 1
are illustrated in Fig. 29a, and the appearing beats originate from the Kerr
nonlinearity.

Beats generated by the second oscillator for €, = 107°, A, = 200, wy = 1,
and ; = 1.05 are shown in Fig. 29b. The Lyapunov analysis of beats presented
in Fig. 29 leads to the conclusion that the beats have a quasiperiodic nature, or,
as we frequently say, they are almost periodic solutions and our system can be
treated as a nearly linear system [143]. The structure of beats in the coupled
system (26)—(29) is much more intricate than for the individual noninteracting
subsystems (43)—(44), where the beats are quasiperiodic functions. Let us
suppose that the individual noninteracting oscillators (o = 0) behave as pre-
sented in Fig. 29 and answer the question as to how the structure of beats in both
figures change when the oscillators interact with each other (o # 0), that is, how
the occurrence of beats in the coupled oscillators depends on the selected value
of o. Numerical calculations show that the coupled system generates distinct
beats if o < 0.3. Let us now have a look at the Lyapunov analysis of beats. The
autonomized spectrum of Lyapunov exponents for the system (26)—(29) versus
the coupling parameter (0 < o < 0.16) is presented in Fig. 30. As is seen, the
most spectacular behavior of the system is observed for 0.01 < o < 0.13. In this
range our system generates beats and behaves hyperchaotically. The magnitude
of chaos depends on the value of the coupling parameter o. The highest degree
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Figure 29. Evolution of ¢; and ¢, versus t for Egs. (26)—(29) with oo = 0. The initial conditions
are qjo = 10,p1o = 10,920 = 10, and pyo = 10. The other parameters are A; = A, =200,y, =
Y2 =0,6; =€ =107, and 0y = ©; = 1 (a), wy = 1,0, = 1.05 (b).

of hyperchaos is achieved at o = 0.04, and the spectrum of the Lyapunov
exponents is given by the following set {0.013, 0.003, 0.000, —0.003, —0.013}.
The beats with chaotic envelopes in the g;- component are shown in Fig. 31a.
The envelope function is very sensitive to the interaction parameter o. A small
change in a, for example, from o = 0.04 to o = 0.05 drastically changes the
shape of the envelope function (Fig. 31a,b), leaving the basic frequency of
oscillations almost unchanged (Fig. 31, window). As seen in Fig. 31, the
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Figure 30. Spectra of Lyapunov exponents {A;, Xy, A3, As,As} for the system (26)—(29) versus
the coupling constant o. The other parameters are A; =A; =200,y =7, =0,09 =1,
o] = 1,y = 1.05, and €| = €, = 10~°. The initial conditions are gjo = 10, g = 10,pjo = 10,
and P20 = 10.

envelope functions can be drawn as smooth functions, in contradistinction to the
envelopes of beats generated stochastically [144,145]. For o > 0.16 the beats
lose their chaotic behavior and for o > 0.4, the beats vanish completely.

It is interesting that envelope functions can also behave as multiperiod
oscillations. This takes place if we take into account small damping. By way of
an example, for the damping constant y, = vy, = 0.1, the envelope function has
a feature of two period doubling oscillations.

5. Final Remarks

The dynamics of two linear coupled Kerr oscillators strongly depends on the
value of the interaction parameter o, frequency of pumping fields ®;, and the
damping constants ;. If the oscillators are coupled, both undergo a homo-
genization regarding the nature of their motion; either both are chaotic, or both
are ordered, as is obvious from the phase graphs. For some parameters chaotic
signals generated by the Kerr oscillators can be synchronized. Both unidirec-
tional and mutual synchronization have been studied. The phenomenon of beats
appears in linear and nonlinear systems whenever an impressed frequency is
close to a natural frequency of a linear system or whenever two slightly different
frequencies are impressed on a system regardless of what its natural frequencies
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Figure 31. Evolution of ¢;(r) versus for Egs. (26)-(29) from the initial conditions
q10 = 10,p10 = 10, g20 = 10, and pyo = 10 for (a) o = 0.04, (b) o = 0.05. The other parameters
are Aj =A, =200y, =7, =0,00=1,0; = 1,0, =1.05, and €¢; =€, = 107°.

may be. For the small parameters of nonlinearity € = 10~°, the quasiperiodic
beats in uncoupled Kerr oscillators become beats with chaotic envelopes if the
Kerr oscillators are linearly coupled. A small change in the interaction
parameter rapidly changes the shape of the envelopes, whereas the basic
frequencies of vibrations remains practically unchanged. Therefore the coupled
oscillators can be used as a source of signals with chaotic envelopes and stable
fundamental frequency. The appropriate materials useful for the generation of
beats with chaotic envelopes could be optical systems consisting of a pair of
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coupled Kerr fibers [138,139,146]. Since the pioneering work by Jensen [136],
twin-core nonlinear fibers (so-called couplers) have been one of the highest-
priority topics of fiberoptic research. The couplers are expected to find important
applications as all-optical switches [147] in photonics, for example. Another
interesting problem connected with optical application to secure communication
is synchronization of coupled systems [148,149].

D. Dynamics of Nonlinearly Coupled Kerr Oscillators

Let us now consider a system of two nonlinearly coupled Kerr oscillators. Now,
we write the Hamiltonian (25) in the form

H= H + € H qiF; (I)] + 2e1nH Hy (45)

2
i=1

14

where €, the intermodal coupling constant. The autonomized equations of
motion for the Hamiltonian (45) have the following form:

g1

o =Pl +en(pt + 0gar) + €2(p3 + 0543)] — via1 (46)
dp) _ 2 2 2 2 2 2 2
ar —oq1[1 + e (py + 0pq7) + €2(p3 + ©5q3)]

—Y1P1 +Ajcoso? (47)
dq,
- Pl e(p; + 05q3) + €2(pt + ©0oq;)] — 1242 (48)
d,
% —0pqa[1 + €2(p3 + 0543) + €12(PT + 051 )]

— Yop2 + Az cos ot (49)
dqs
&5 0)=0 50
dt ) CIS( ) ( )

Let us emphasize that if A; = 0, the set of equations (46)—(50) is integrable and
has a relatively simple analytic solution. If the initial state of the system is deter-
mined by the initial conditions ¢;(0) = gjo i p;(0) = pjo, the analytic solution is
given by [110]

4(1) = <q,.0cosE,< )+ 2 sinks >) (51)

pi(t) = e V' (pjocos E;(t) — wigposinE; (1)),  j=1,2 (52)
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where
Ev(f) = oot + 2 Hyg(1 — e 201y 4 220 g (1 — o720 (53)
"1 12
Ex(t) = oof + X Hyg(1 — e 20) + 220 g1 — 1) (54)
V2 "1
2 2 2
- [OYA7s
Hjo:i%jL 02‘1107 j=12 (55)

The system (46)—(50) is examined numerically with the following parameters:
A =A; =200, o9 =1, ¢, =€, =0.1, v, =0.05, y, =0.5. The frequencies
o » of the external driving forces and the cross interaction Kerr constant €, vary
in the range 0 < @1, < 3 and 0 < €5, < 1.5, respectively. Therefore we study
the dynamics of two nonlinearly coupled oscillators, I and II, which differ only in
the value of the damping constants y; and v,.

1. Noninteracting Oscillators

The case of noninteracting oscillators takes place when the coupling constant
€12 is equal to zero. Then, the systems (46)—(50) with €, = 0 and (26)—(29)
with o = 0 are identical, and their dynamics are considered in Section III.C.1.

2. Interacting Oscillators

Let us now consider the behavior of the system when the Kerr coupling constant
is switched on (€1, # 0). For brevity and clarity, we restrict our discussion to the
question of how the attractors in Fig. 20 change when both oscillators interact
with each other. To answer this question, let us have a look at the joint auto-
nomized spectrum of Lyapunov exponents for the two oscillators {A;, Ay, A3,
A4, hs} versus the interaction parameter 0 < €j, < 0.7. The spectrum is seen in
Fig. 32 and describes the dynamical properties of our oscillators in a global
sense. The dynamics of individual oscillators can be glimpsed at the appropriate
phase portraits. Let us now fix our attention on a detailed analysis of Fig. 32. For
the limit value €, = 0, the dynamics of the uncoupled oscillators has already
been presented in Fig. 20. In the case of very weak interaction 0 < €, < 0.0005,
the system of coupled oscillators manifests chaotic behavior. For €, = 0.0005
we obtain the spectrum {0.06,0.00,—0.21, —0.54, —0.89}. It is interesting to
note that the maximal Lyapunov exponent A; = 0.08 for the system of
noninteracting oscillators (e;, = 0) is greater than the maximal Lyapunov
exponent A; = 0.06 for the coupled system with the parameter €;, = 0.0005.
Therefore, in this case, the uncoupled system is more chaotic than the coupled
system. A further increase in the interacting parameter €j, leads to the dis-
appearance of chaos. In the region 0.0005 < €, < 0.15 the oscillators behave
orderly and nonchaotically. By way of example, for €;, = 0.1, all the values of
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Figure 32. Spectrum of Lyapunov exponents {A;,Ay,A3,A4,A5} for the system (46)—(50)
versus the Kerr coupling constant €;,. The other parameters are ®y) = 1,®0; = ®; = 0.55,
A} =A; =200, and €, =€, = 0.1. The initial conditions are g;o = 10,p;o = 10, g20 = 10, and
P20 = 10.

Lyapunov exponents are nonpositive: {0.00, —0.12, —0.26, —0.53, —0.68}. In
this case the appropriate limit cycles are shown in Fig. 33a,b. The intricate
structure of the limit cycles is reminiscent of the structure seen in Fig. 20. The
blackened areas in Fig. 33 contain some pattern structure invisible in the scale
used. As we see from Fig. 32, the situation changes in the region 0.15 < €j, <
0.43. Chaotic behavior of the system predominates over nonchaotic behavior —
for most values of the parameter €;,, one Lyapunov exponent is positive. The
most spectacular behavior of the coupled oscillators is observed in the region
0.43 < €12 < 0.49. Here, two positive Lyapunov exponents in the spectrum
indicate hyperchaotic behavior of the system. The highest degree of hyperchaos
is achieved by the system at €, = 0.46. The spectrum of the Lyapunov
exponents is given by the set {0.87,0.05,0.00, —0.83, —1.71}, pointing to the
existence of an hyperchaotic attractor. Its topology in the phase portraits (g1, p1)
and (g2, p2) is shown in Fig. 34a,b. Precisely, in the phase portraits the system
initially manifests a transient behavior but then (for ¢ > 500) settles into a
hyperchaotic attractor.

For €15 > 0.49 we observe a reduction of hyperchaos to chaos. Generally, in
the region 0.49 < €, < 0.75 chaos dominates order and is maximal for the
value €5 = 0.63, and the spectrum is {0.67,0.00, —0.20, —0.90, —1.48}. Spec-
tacular chaotic attractors appear for € = 0.7. Their phase portraits are presen-
ted in Fig. 35, where both attractors make impressions of spread limit cycles, as
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Figure 33. Phase portraits for the system (46)—(50) for €;; = 0.1 with the initial conditions
q10 = 10,p10 = 10, q20 = 10, and pyo = 10: (a) phase portrait (g;,p;) of the first oscillator for
A; =200, = 1,e; =0.1,®; = 0.55, and v, = 0.05; (b) phase portrait (g2,p») of the second
oscillator for A, = 200,09 = 1,e, = 0.1, 0, = 0.55, and y, = 0.5. Order.

chaos is relatively small here. The spectrum of Lyapunov exponents is {0.06,
0.00,—-0.31,—-0.92, —1.01}.

3. Final Remarks

The emergence of order and chaos in the system of two oscillators depends on
the value of the Kerr coupling constant €;,. For the fixed parameters of damping
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Figure 34. The same as in Fig. 33 but with €, = 0.46. Hyperchaos.

v, the sum of all exponents in the Lyapunov spectrum is not an invariant of the
parameter €. For the noninteracting oscillators (€1, = 0), the sum is equal to
S A = —1.60 and tends to the value ) , &; = —2.25 if € — 0.7. There-
fore we can say that the coupling term with €}, in the equations of motion has an
attribute of damping. These negative values result from nonconservation of
volume in phase space (for conservative systems, the sum of Lyapunov



408 P. SZLACHETKA AND K. GRYGIEL

20.00
10.00
S 0.00 [
-10.00
-20.00 L L L
-10.00 -5.00 0.00 5.00 10.00
P1
(@)
20.00
10.00 [
g 000
-10.00
—-20.00 L L L
-10.00 -5.00 0.00 5.00 10.00
P2
(b)

Figure 35. The same as in Fig. 33 but for with €, = 0.7. Weak chaos.

exponents equals zero). Obviously, even if the volume of the system is sup-
pressed, this does not mean that its length is equally suppressed in all directions.
Some directions are stretched. In the direction of stretching we observe only an
exponential separation of the trajectories, namely, chaotic or hyperchaotic
behavior of the system. Finally, let us emphasize that the appropriate media
for the experimental studies of chaotic behavior generated by Kerr nonlinea-
rities could be optical fibers. The appearance of chaotic output signals generated
by Kerr media means that the signals are unstable. The instability depends on
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the value of the coupling constant €;,. Therefore, by changing the value of the
coupling constant, we can turn the output chaotic signals into the periodic ones
and vice versa. Promising materials for the implementation of nonlinear Kerr
oscillators also seem to be some organic polymers [150].

IV. QUANTUM CHAOS

The modifications introduced by quantum mechanics into the dynamics of
classical systems that manifest deterministic chaotic behavior are frequently
referred to collectively as “‘quantum chaos [4,6,13,151— 161]. It is rather
conceded that quantization drastically modifies classically chaotic behavior. For
example, suppression of chaos to quasiperiodicity is observed in the quantum
kicked rotator, whose classical counterpart behaves chaotically [6,151,152]. In
the system of a hydrogen atom in a microwave field, quantum effects suppress
diffusive ionization by the mechanism of quantum localization [153,154].
Certain manifestations of chaos also become apparent in quantum optics [84,
162-167]. It seems that Wigner’s formulation of quantum mechanics offers the
simplest comparison between quantum and classical chaos in contradistinction
to the conventional procedure. The conventional way is to study how a wave-
packet initially fixed around a certain position ¢ and momentum p follows the
appropriate classical trajectory. However, this involves a disadvantage. Speci-
fically, the wavepacket spreads in the course of time and is no longer sharply
fixed around a particular position and momentum, rendering dubious the com-
parison with the respective classical trajectory. To avoid this spreading problem,
we can make use of the so-called Wigner symbols, which are a quantum
generalization of classical variables. For example, we can compare the time
evolution of the Wigner symbols for the position g and momentum p operators
with the classical evolution of the position ¢ and momentum p, respectively.
Generally, Wigner’s formulation of quantum mechanics leads to a c-number
representation of the density matrix, that is, to the quantum analog of a classical
probability density in (p, q) space. In quantum optics three kinds of c-number
functions are the most popular, the P representation, the Q function, and the
Wigner function W [168]. All these three functions are defined in (o = p + ig,
o* = p — iq) space instead of in (p,q) space. This is due to the coherent state
technique. The P representation is related to normal ordering of the creation a™
and annihilation a operators, the Q function is related to antinormal ordering of
the operators, and the Wigner function W is related to symmetric (Weyl)
ordering. The c-number approach makes it possible to treat quantum systems
in a “classical way,” including all their quantum features and contrasting the
quantum and classical dynamics within the framework of a phase picture. The
equations for the Wigner-like functions P and Q belong to the class of
generalized Fokker—Planck equations whose solutions are known only for some
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simple optical models. The Wigner approach can also be used to study both
“kicked” dynamics (i.e., a quantum map) and a continuous flow. Kicked models
are easier to analyze numerically than continuous models but are more difficult
to verify practically. On the other hand, continuous models seem to be
mathematically more cumbersome, resembling the complexity of hydrodyna-
mical systems. In the latter case we usually make some truncations leading to a
set of ordinary differential equations. Historically, for the first time in the
treatment of classical dynamical systems, a truncation method was used by
Lorenz [2]. A similar truncation method can be used for generalized Fokker—
Planck equations if we note that these equations generate a hierarchic and
infinite set of ordinary differential equations for statistical cumulants [169—-171].
The first truncation always leads to equations having the form of classical
equations of motion. The second truncation plays the role of the first quantum
correction, and so on. The cumulant method has also been applied to the study
of some aspects of chaos in classical and quantum mechanics [173,174] and in
quantum optics [165,166,171,172]. To identify chaotic behavior of a classical
dynamical system, it suffices to use the maximal Lyapunov exponent. A
quantum analog of the Lyapunov exponent involving the Q function has been
proposed by Toda and Ikeda [175]. However, as we have already mentioned, the
equation for the Q (P, W) function is mathematically cumbersome, and its
analytical solution is unknown for most nonlinear systems. This poses addi-
tional difficulties when it comes to calculate the Lyapunov exponents. However,
this problem can be solved indirectly and approximately by finite cumulant
expansion [165], enabling us to use the classical calculation method of
Lyapunov exponents for equations with statistical cumulants.

A. Chaos in a Kerr Oscillator

We write the Hamiltonian in the form

H=H +H+H (56)
where
H, = hoa'a + %"aﬂeﬁ (57)
H, = iliF(a' — a) (58)
Hy =0 Qblbj+ 1> (K ba' +K; bla) (59)
Jj J

In the single-mode Hamiltonian H;, the quantities & (a') are the photon
annihilation (creation) operators, respectively; o is the frequency of the
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harmonic oscillator, and  is the anharmonicity parameter. The Hamiltonian H,
describes the interaction between the classical external driving field F and the
single-mode field. The loss mechanism is described by the co ]Pling to a heat
bath governed by the reservoir Hamiltonian Hs. Here, the ( are the boson
annihilation (creation) operators of the reservoir. The frequen01es of the reservoir
modes are denoted by €2;. The quantities K; are the coupling constants between
the optical and reservoir modes. On eliminating the reservoir operators, we
obtain the master equation for the density operator p in the following form:

0P i . .
a*fiH1+H2,Pi+Liripi (60)

The irreversible term L;,[p | describes damping and has the following form:

+
=
—
<~
—
Q>
ho)
Q
Q>
hoh
Q>
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Q>
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‘O)
ho)
Q>
Q>
pifl
~—

(61)

The parameter I' is the damping constant, and (n) is the mean number of
reservoir photons. The quantum theory of damping assumes that the reservoir
spectrum is flat, so the mean number of reservoir oscillators (n) = (l;j (0)b;(0))
= (exp(ho/kT) —1)~" in the jth mode is independent of j. Thus the reservoir
oscillators form a thermal system. The case (n) =0 corresponds to vacuum
fluctuations (zero-temperature heat bath). It is convenient to consider the
quantum dynamics of the system (56)—(59) in the interaction picture. Then the
master equation for the density operator p is given by

ap
+v(n) (@'pa + apa’ — a'ap — paa') (62)

where T = 1y is the redefined time, y = I'/y, and # = F/y. The term oa'a
does not appear in Eq.(62) as a consequence of the interaction picture.

The master equation (62) can be transformed to a c-number partial differ-
ential equation. Three kinds of equations can be derived from (62): (1) an
equation for the Wigner function ® gy, related to symmetric (Weyl) ordering of
the field operators @,af, (2) an equation for the Wigner-like function Dy
related to antinormal ordering of the operators, and (3) an equation for the
Wigner-like function @ related to normal ordering. The statistical properties of
the ® functions are discussed fully in the book by Pefina [168]. These are
quasidistribution functions in the complex plane (o, o), where the quantity o is
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an eigenvalue of the annihilation operator 4, i.e. @ | o) = o | o). Here, | o) is a
coherent state.
For convenience we introduce the so-called s ordering of the field operators
a,a’. Then we can write ®(sym) = Pg), Pu) = P(_1) and D) = D).
From (62) we get the generalized Fokker—Planck equation for the quasidis-
tribution @) (o, o; 7) related to the s ordering [165]:

a@(_;)
ot

= Lejass + Lquant (63)

where

0 1
Lclass = @ |:(§'YOL —F + i0€|0(|2>
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+(s 1) 9 - (s>—1) 0 @Y)}

4 0w2on” W7 T4 20w
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N

2 Oo 0o
Let us emphasize that there is no difference among the equations for @ (sym), P (4),
and @y as long as the system (56)—(59) is classical. This problem has been
studied elsewhere [176,177]. In the classical limit the term Lguay in Eq.(63)
vanishes and @y is a classical distribution function. For Lgysn = 0 and y = 0,
Eq.(63) reduces to the classical Liouville equation, and for Lyyane = 0 and y # 0,
to the classical Fokker—Planck equation. So, we can say that the L., term
governs classical dynamics whereas the Lgyan term adds the quantum (operator)
correction. The decision as to whether chaos appears in the system (56)—(59) can
be made by investigating the separation rate of two peaks of a @, function
initially close to each other or by the analysis of equations for the statistical
moments originating in Eq. (63). Thus, instead of attempting to solve the partial
differential equation (63), we deal with the problem of solving a set of ordinary
differential equations for the statistical moments.
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The calculation of statistical moments with the help of @, is simple. For
example, if we want to calculate the average number of photons (a'a), we use
one of the three function ®(y), ®4) or ®(m). We have

(@'a) = | oo Dy (o, o) d’ar (65)
(@'a) = |(ao— 1) ®q) (0", o) d*at (66)
(ata) = (oc*oc —;) D (gym) (0, o) d*0t (67)

The value of (aa) is always the same, but the averaging procedure differs in each
case. The relations (65)—(67) are a simple consequence of the boson commutation
relation [a,a'] = 1 and the definition

(o)) = Joc*oc D (0", o) d*a (68)

where (0" o) ) = (ala), (o o) y) = (aa'), and (a*a) ) = 3 (@'a + aa’). It is
obvious that some expectation values do not depend on ordering, for example,
(@) = (@) vy = (&™) (4) = (&™) (sym)- The function @ ;) allows us to define the

quantum cumulants. The cumulants of first order are given by
<O(*>(s) =&, <°‘><s) =& (69)
The cumulants of second order have the forms

(o) () — (o) () () 5 = By (70)

It is easy to note that simple relations hold among B(w), Ba), and B(sym), namely,
B(a) = B(yy + 1 and B(gymm) = %(ZB(M + 1). Thus the average number of photons
can be expressed with the help of s ordering as follows: (a'a) = G, + '€,
where G(x) = B(S> — %

Analytical solutions of quantum Fokker—Planck equations such as Eq. (63)
are known only in special cases. Thus, some special methods have been deve-
loped to obtain approximate solutions. One of them is the statistical moment
method, based on the fact that the equation for the probability density generates

an infinite hierarchic set of equations for the statistical moments and vice versa.
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However, for numerical reasons the set of equations has to be truncated to a
finite number, which means approximation. In this section we restrict ourselves
to the second truncation (Gaussian approximation), namely, to the equations for
€, C and G(,). We arrive at the following set of equations:

;’_E =— %y& +F —i2G &+ CE + £ (72)
% = —vCy — il (1 +2G(,) + C(1 +4[E[)] = 6iGy € (73)
dG * «
= Gy FilCE? — CE + vn) (74)

We examine the dynamics of this system with the initial conditions £(0) = 1 + §
and G(;)(0) = C(0) = 0. The driving field # is assumed in the form of a train of
rectangular computer simulated pulses. The length of the pulse is denoted by T,
whereas T is the distance between the pulses, and % is their height. Moreover,
weput (n) =0,y =0.5,79=2,T, = land 0 < T} < 7.5. The physical sense
of the truncation is clear if we note that the first truncation [Eq. (63) is without
s terms] gives only the classical equation for the anharmonic oscillator:

dE.a _ 1 s e Dok
& et T - i (75)
Thus (a'a) = |€|* is a classical intensity. The system (75) is nonautonomous if

the function 7 is explicitly time-dependent. The autonomized version of Eq.(75)
is given by

o v - g
o (76)
T=1 w(0)=0

It is readily seen that the set of equations (76) consists of three equations of
motion in the real variables Re&, Im&, w. If # (1) = constant, chaos in the system
does not appear since the set (76) becomes a two-dimensional autonomous
system. The maximal Lyapunov exponents for the systems (75) and (72)—(74)
plotted versus the pulse duration 7 are presented in Fig. 36. We note that within
the classical system (75) by fluently varying the length of the pulse T}, we turn
order into chaos and chaos into order. For 0 < 77 < 0.84 and 1.08 < T; < 7.5,
the maximal Lyapunov exponents A; are negative or equal to zero and,
consequently, lead to limit cycles and quasiperiodic orbits. In the points where
A1 = 0, the system switches its periodicity. The situation changes dramatically if,
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Figure 36. Maximal Lyapunov exponents for the system before (solid line) and after quantum
correction (dashed line).

instead of Eq. (75), its quantum version, Egs. (72)—(74), is taken into account.
For the quantum system the maximal Lyapunov exponent is not positive,
Therefore the chaotic oscillations due to quantum correction vanish (Fig. 37).
The regular oscillations remain regular, but their structures change [165].

B. Chaos in Second-Harmonic Generation of Light

Let us consider a quantum optical system with two interacting modes at the
frequencies ®; and @, = 2y, respectively, interacting by way of a nonlinear
crystal with second-order susceptibility. Moreover, let us assume that the
nonlinear crystal is placed within a Fabry—Pérot interferometer. Both modes
are damped via a reservoir. The fundamental mode is driven by an external field
with the frequency ®; and amplitude F. The Hamiltonian for our system is
given by [169,178]:

H = I:Irev + I:Iirrev (77)
Hyey = hoydlay + Fionala, + inF(ale " — a,e™)
K
+ il (a%a, — alal) (78)
2
Hiee =0y S (01757 + k5 af + K, V5! Vi) (79)
j =1

where I:IreV describes the reversible part of interaction and I’ZIirrev is the irreversible
part responsible for the loss mechanism. The quantities a;, (a!); a,, (&;) are the
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Figure 37. Phase portraits Re& versus Im&. (a) the classical case; Eq. (75) with the initial
condition &(0) =1+ i. The parameters of the pulse are T; =0.98,7, =1, and Fy = 2. The
damping constant is Y = 0.5, and the time is 100 < t < 200. (b) The quantum system; Eqs. (72)-
(74) with the initial conditions £(0) = 1+ and G(,(0) = C(0) = 0. The parameters of the pulse
are 71 = 0.98,7, = 1, and Fy = 2. The damping constant is Y = 0.5, and the time 100 < t < 200.

photon annihilation (creation) operators for the fundamental and second-
harmonic modes, respectively. The parameter x is taken to be real and acts as
a nonlinear coupling constant between the two modes. Finally, the operators
bT< b() are the boson annihilation (creation) operators of the reservoir. The
frequen01es of the reservoir oscillations are denoted by Q and the coupling
constant between the optical and reservoir modes, by K 0 1 . The dynamics of the
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system (77) on eliminating the reservoir Hamiltonian (79) is governed by the
appropriate master equation for the density operator p. The master equation in
the interaction picture leads to the following c-number Fokker—Planck equation
for the quasidistribution function @, [168,169,178]

0P

61(73) = Letass + Lquam (80)
where
L —22: i(<I>)+ a(*¢)+a(D<I>)
class — — Yi do; (s) Vi ot do; (s)
d R

1 -5\ & 62@@) s O° s O
Lowant = 0 _ 39 p,®, D" ® 82
quant ( 5 >;Ylaafaai 260‘%( 1) — 239 *2( 1®e)  (82)

The quasidistribution function @, is defined as follows: ®(_;) =P and
®,__y=0. The function @) is determined in the complex plane
(o, 0, a7, o5), where o is an eigenvalue of the annihilation operator a;, namely,
ailoy) = oy|oy). Here, |o;) is a coherent state. The initial condition for the
Fokker—Planck equation is given by

D) (o1 (1), 02(1); T)|c—p = Ps) (01 (0) = 210, 02(0) = 0;0) (83)

which means that the amplitude of the fundamental mode initially differs from
zero whereas the amplitude of the second harmonic equals zero. The coefficients
D; and Dy, are given by

D)y =—-F —ajo,
D} =—-F — o0,
D; =0.502
D} = 0.50;2 (84)
Dy = b _ —0
oot}
oD}

* *
= — —o
11 60(1 2
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The general relations among the coefficients D; and D;; are presented elsewhere
[179]. The quantities v, and y, are the damping constants for the fundamental
and second- harmonic modes, respectively. In Eq.(82) we shall restrict ourselves
to the case of zero-frequency mismatch between the cavity and the external
forces (w; — oy = 0). In this way we exclude the rapidly oscillating terms.
Moreover, the time T and the external amplitude # have been redefined as
follows: T =kt and & = % The s ordering in Eq.(80) which is responsible for
the operator structure of the Hamiltonian allows us to contrast the classical and
quantum dynamics of our system. If the Hamiltonian (77)-(79) is classical (i.e.,
if it is a ¢ number), then the equation for the probability density has the form of
Eq.(80) without the s terms:

62 N 62 1—s az(b(s)
) WS N R ) L (—=)—
26 %( 11 (S)) 26(1%{2( 11 (S))? YZ( 2 >aq?aai

The s terms distinguish the classical and quantum dynamics quite naturally. If
they do not appear, the difference between P and Q vanishes.

The Fokker—Planck equation (80) generates an infinite and hierarchic set of
equations for the statistical moments (see Section IV.A.1). Below, we restrict
ourselves to a Gaussian approximation. The cumulants are defined by the
following relations:

& = (@) (85)
B; = (& a;) — (a}) (@) (86)
Biy = (4] &) — (a]){a2) (87)
Ci = (@) — (@)’ (88)
Cip = (a1 aa) — (ay1){az) (89)

Integration per partes of the Fokker—Planck equation for the quasidistribution
®(,_1) = P (the choice of a particular s is a question of taste only) allows us to
write the appropriate equations for the cumulants. In what follows, we assume
that damping is included only by way of coupling to the reservoir at zero
temperature, that is, (n;) = 0. The first truncation (the cumulants higher than
first-order vanish) leads to the classical limit. Then, from Eq. (80), we get the
classical Bloembergen equations [102] [see Egs. (1)]:

dg,

%:—Ylil"‘g"‘aéz (90)
e (O1)

dt
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The initial conditions have the following form:
£1(0) =&, &(0)=0 (92)

The s terms in Eq. (80) contribute nothing to the preceding equations. The
second-order truncation (Gaussian approximation) leads to the following set of
equations:

dg T

d—‘cl:_'Ylal“Fj’ +a]§2+B12 (93)
dg

cTrz = 7,6, —0.5(82 4+ C)) (94)
dB; X % " *

= 2nBi B Bk + Cig + O (95)
dB " *

712 = —2v,By — B},E, — Bjp&] (96)
dC, %

D —2v,C1 +2(C2&) + B1&,) + &, o7)
dc,

= —2v,C, — 2C1ré, (98)
dac X

dle =—(V1 +72)Ci2 + B, — C1§; + G (99)
dB» *

?: —(v1 +72)Bi2 + C12&; + & (B, — By) (100)

The set of equations (93)—(100), proposed for the first time by Pefina et al. [169],
is a development of the Bloembergen equations (90)—(91). The initial conditions
with respect to (83) are given by

&1(0) =&y, £2(0) =&y =0 (101)
B12(0) = B12(0) = C12(0) = C12(0) =0
The s terms in Eq. (80) contribute only the term &, in Eq. (97). Thus, the term &,
represents the quantum diffusional s-terms in the Fokker—Planck equation. The
other terms in Egs. (93)—(100) originate in the drift terms of the Fokker—Planck
equation. The terms Bj, and C; in Egs. (93)—(94) play the role of feedback terms
that pump quantum fluctuations into the classical Bloembergen equations. If the
s terms in Eq. (80) do not appear (the classical case), the term &, in Eq. (97) does
not appear, either. In this case the subset (95)—(100) with zero initial conditions
has zero solutions and in consequence leads to the first truncation [171].
Let us consider the driving field amplitude in the form % = % (1 + sin Q1),
meaning that the external pump amplitude is modulated with a frequency 2
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Figure 38. The calssical (dashed) and quantum (solid line) maximal Lyapunov exponents (a)
and the appropriate bifurcation maps (b,c) versus the modulated parameter €. The parameters are
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around % . For the time-independent field # = % (2 = 0), the system does
not manifest chaotic behavior. However, a change of € in the range 0 < 2 < 7
leads the system from periodic to chaotic motion or vice versa. The dynamical
behavior of our system is reflected by the Lyapunov exponents. The maximal
Lyapunov exponents as a function of the modulation parameter (2 for the
classical case [Egs. (90)-(91)] (dashed line) and for the quantum case [Egs.
(93)—(100)] (solid line) is plotted in Fig. 38a. For the classical case, one observes
several regions where the system behaves chaotically (A; > 0) whereas else-
where it behaves orderly (A; < 0). For the quantum case we observe only one
region of chaos 1.3 < Q < 1.72, which does not overlap exactly any classical
region of chaos. Generally, as is seen in Fig. 38, the quantum correction reduces
chaos in the system but does not eliminate it completely. For example, for
Q = 1.4, both the classical and quantum versions of the system behave
chaotically whereas the classical maximal Lyapunov exponent is greater than
quantum. This means a reduction of chaos in the classical system due to the
quantum correction. The reduction is also reflected by the appropriate bifurca-
tion diagrams (Fig. 38b,c). Another useful way to visualize the reduction of
chaos is to analyze the motion in the phase space. However, in our case, the
classical phase space is four-dimensional (Reg&;, Im&,;, Re&,, Im&,). This
means that we can compare only the motion in the reduced phase space. For
physical interpretation it is convenient to consider the motion in two-dimen-
sional intensity space (I, = |&,|*,1, = |&,|*). Then, instead of a typical phase
portrait, we deal with an intensity portrait. In the quantum case the intensities
are the average numbers of photons determined by (a;"a;) = \&,-|2 + B;, where B;
is the quantum correction to the classical intensity I; = |&;|".

The reduction of chaos for {2 = 1.45 is presented in the intensity portraits of
Fig. 39. However, as is seen in Fig. 38a, there is a small region
(1.68 < © < 1.80) where the system behaves orderly in the classical case but
the quantum correction leads to chaos. By way of an example for 2 = 1.75, the
classical system, after quantum correction, loses its orderly features and the
limit cycle settles into a chaotic trajectory. Generally, Lyapunov analysis shows
that the transition from classical chaos to quantum order is very common. For
example, this kind of transition appears for {2 = 3.5 where chaos is reduced to
periodic motion on a limit cycle. Therefore a global reduction of chaos can be
said to take place in the whole region of the parameter 0 < Q2 < 7.

As we see in Fig. 38, transitions leading from classical order to quantum
order are also possible. For example, for {2 = 6.7 the quasiperiodic classical
motion is reduced to periodic motion after the quantum correction.

C. Final Remarks

Using a cumulant expansion, we have shown how to obtain quantum corrections
to purely classical equations of motion. Quantum correction reduces chaos in
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Figure 39. Transition from classical chaos (a) to quantum chaos (b). The parameters are those
of Fig. 38 but with Q = 1.4.

the classical systems. The Lyapunov analysis and bifurcation maps show that
after the first quantum correction, the number of chaotic regions is reduced,
although not eliminated fully. The question is what happens if third-order or
higher-order corrections are taken into account?. Let us note that, for example,
the set (72)—(74) consists of 5 equations in real variables. If third-order
truncation is performed, the set (72)—(74) is additionally modified and supple-
mented with four equations in real variables, thus leading to 9 equations. The
fourth truncation leads to 15 equations in real variables, and so on. From the
formal point of view, the quantum corrections become more and more rigorous
with higher and higher order of the approximation. On the other hand, even if
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numerical calculations are performed in extended precision, computer errors

can accumulate significantly, leading to spurious high-order quantum correc-
tions due to the increasing numbers of equations and iterations. The quantum
Lyapunov whose classical counterpart is positive has to be calculated with a
finite time, empirically expressed. The time is of the rank (1)~', where A is the
classical Lyapunov exponent [158].

wn AW N =
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I. INTRODUCTION

For many years the (standard, i.e., Abelian) Stokes theorem has been one of
the central points of (multivariable) analysis on manifolds. Lower-dimensional
versions of this theorem, known as the (proper) Stokes theorem, in dimensions 1
and 2, and the Gauss theorem, in dimensions 2 and 3, respectively, are well
known and extremely useful in practice, such as in classical electrodynamics
(Maxwell equations). In fact, it is difficult, if not impossible, to imagine lectures
on classical electrodynamics without intensive use of the Stokes theorem. The
standard Stokes theorem is also called the Abelian Stokes theorem, as it applies
to (ordinary, i.e., Abelian) differential forms. Classical electrodynamics is an
Abelian [i.e., U(1)] gauge field theory (gauge fields are Abelian forms),
therefore its integral formulas are governed by the Abelian Stokes theorem.
But many interesting and physically important phenomena are described by
non-Abelian gauge theories. Hence it would be very desirable to have at our
disposal a non-Abelian version of the Stokes theorem. Since non-Abelian
differential forms need necessitate a somewhat different treatment, one is forced
to use a more sophisticated formalism to deal with this new situation.

The aim of this chapter is to present a short review of the non-Abelian Stokes
theorem. At first, we will give an account of different formulations of the non-
Abelian Stokes theorem and next of various applications of thereof.

A. Abelian Stokes Theorem

Before we engage in the non-Abelian Stokes theorem it seems reasonable to
recall its Abelian version. The (Abelian) Stokes theorem says (see, e.g., Ref. 1
for an excellent introduction to the subject) that we can convert an integral
around a closed curve C bounding some surface S into an integral defined on
this surface. Specifically, in three dimensions

+ K~d§:J curlA - iido (1)
c S
where the curve C is the boundary of the surface S, that is, C = 0S (see Fig. 1), A

is a vector field (e.g., the vector potential of electromagnetic field) and 7 is a unit
outward normal at the area element dc.

9S=C

Figure 1. Integration areas for the lowest-dimensional
(nontrivial) version of the Abelian Stokes theorem.
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More generally, in any dimension

e

where now N is a d-dimensional submanifold of the manifold M, ON is its
(d — 1)-dimensional boundary, ® is a (d — 1)-form, and do is its differential, a
d form. We can also rewrite Eq. (1) in the spirit of Eq. (2)

1 . .
% A,‘ dx' = —J (al'Aj — ajA,-)dx’ Adx’ (3)
0s=C 2 S

where A; (i =1,2,3) are components of the vector A, and the Einstein sum-
mation convention after repeating indices is assumed.
In electrodynamics, we define the strength tensor of electromagnetic field

F,‘j = 6,-Aj — ain
and the magnetic induction, its dual, as

1
B, k= E Siij ij
where g is the totally antisymmetric (pseudo) tensor. Thus the right-hand side
(rh.s.) of Eq. (3) represents the magnetic flux through S, and we can rewrite
Eqg. (3) in the form of (1):

. 1 . .
} A,‘dxl :—J Fi,-dx’/\dxf
as=c 2)s -

= L Bin'do (4)

In turn, in geometry A plays the role of connection (it defines the parallel
transport around C) and F is the curvature of this connection. A “global version”
of the Abelian Stokes theorem

exp (i ?Faszc A;(x) dxi) = exp (% L Fi(x) dx' A dxj> (5)

which is a rather trivial generalization of Eq. (4) is a very good starting point for
our discussion of the non-Abelian Stokes theorem. The object on the left-hand
side (L.h.s.) of (5) is called the holonomy, and more generally, for open curves C,
global connection.
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B. Historical Remarks

The birth of the ideas related to the (non-)Abelian Stokes theorem dates back to
the ninetenth century, with the emergence of the Abelian Stokes theorem. The
Abelian Stokes theorem can be treated as a prototype of the non-Abelian Stokes
theorem or a version of thereof when we confine our discussion to an Abelian
group.

A work closer to the proper non-Abelian Stokes theorem, by Schlesinger [2],
which generally considered noncommuting matrix value functions, appeared in
1927. In fact, no work on the genuine non-Abelian Stokes theorem appeared before
the concept of non-Abelian gauge fields emerged in the early 1950s. The first
papers on the non-Abelian Stokes theorem appeared in the late 1970s. At first,
the non-Abelian Stokes theorem emerged in the operator version [3-5] and later
on, in the very end of 1980s, in the path integral one [6,7].

C. Contents

The substantive part of this chapter consists of two sections. Section II is devoted
to the non-Abelian Stokes theorem itself. In the beginning, we introduce the
necessary notions and conventions. The operator version of the non-Abelian
Stokes theorem is formulated in Section II.A. Section IL.LB concerns the path
integral versions of the non-Abelian Stokes theorem: coherent-state approach
and holomorphic approach. Section II.C describes generalizations of the non-
Abelian Stokes theorem: topologically more general situations (Section II.C.1)
and higher-degree forms (Section II.C.2). Section III is devoted to applications
of the non-Abelian Stokes theorem in mathematical and theoretical physics.
Section III.A presents an approach to the computation of Wilson loops in two-
dimensional Yang-Mills theory. Section III.B deals with the analogous problem
for three-dimensional (topological) Chern—Simons gauge theory. Other possi-
bilities, including higher-dimensional gauge theories and QCD, are mentioned
in Section III.C.

II. NON-ABELIAN STOKES THEOREM

What is the non-Abelian Stokes theorem? To answer this question, we should
first recall the form of the well-known Abelian Stokes theorem [see Eq. (2)]

LM@ - JMdco ©

where the integral of the form ® along the boundary ON of the submanifold N is
equated to the integral of the differential dw of this form over the submanifold N.
The differential form o is usually an ordinary (i.e., Abelian) differential form,
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but it could also be something more general, such as a connection one-form A.
Thus, the non-Abelian Stokes theorem should be a version of (6) for non-Abelian
(say, Lie-algebra valued) forms. Since it could be risky to directly integrate Lie-
algebra-valued differential forms, the generalization of (6) may be a nontrivial
task. We should not be too ambitious perhaps from the very beginning, and not
try to formulate the non-Abelian Stokes theorem in full generality at once, as this
could be difficult or even impossible. The lowest nontrivial dimensionality of the
objects entering (6) is as follows: dimN =2 (dimON = 1) and dego =1
(degdw = 2). A short reflection leads us to the first candidate for the Lh.s. of the
non-Abelian Stokes theorem, the Wilson loop

Pexp (i }CA) (7)

called the holonomy, in mathematical context, where P denotes the, so-called
path ordering, A is a non-Abelian connection one-form, and C is a closed loop, a
boundary of the surface S (0S = C). Correspondingly, the r.h.s. of the non-
Abelian Stokes theorem should contain a kind of integration over S. Therefore,
the actual Abelian prototype of the non-Abelian Stokes theorem is of the form (5)
rather than of (4). More often, the trace of Eq. (7) is called the Wilson loop

Wi(C) = TrgPexp (i ii;cA) (8)

or even the “normalized” trace of it

1 .
m TrRP exXp (l J)CA> (9)

where the character R means a(n irreducible) representation of the Lie group G
corresponding to the given Lie algebra g. Of course, one can easily pass from (7)
to (8) and finally to (9). In fact, the operator (7) is a particular case of a more
general parallel-transport operator

UL:Pexp(iLA) (10)

where L is a smooth path, which for the L a closed loop (L = C) yields (7).
Eq. (10) could be considered as an ancestor of Eq. (7). As the 1.h.s. of the non-
Abelian Stokes theorem, we can assume any of the formulas given above for the
closed-loop C [i.e., Eqs. (7)-(9)], possibly yielding various versions of the non-
Abelian Stokes theorem. For some reason, it is sometimes more convenient to
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use the Wilson loop in the operator version (7) rather than in the version with the
trace (8). Sometimes it does not make any greater difference. The r.h.s. should be
some expression defined on the surface S, and essentially constituting the non-
Abelian Stokes theorem.

A physicist would view the expression (10) as typical in quantum mechanics
and as corresponding to the evolution operator. Equations (8) and (9) are, in-
cidentally, very typical in gauge theory, such as in QCD. Thus, guided by our
intuition, we can reformulate our chief problem as a quantum-mechanical one.
In other words, the approaches to the Lh.s. of the non-Abelian Stokes theorem
are analogous to the approaches to the evolution operator in quantum mechanics.
There are the two main approaches to quantum mechanics, especially to the
construction of the evolution operator: opearator approach and path-integral
approach. Both can be applied to the non-Abelian Stokes theorem successfully,
and both provide two different formulations of the non-Abelian Stokes theorem.

The conventions are as follows. Sometimes, especially in a physical context,
a coupling constant, denoted, for instance, e, appears in front of the integral in
Egs. (7)—(10). For simplicity, we will omit the coupling constant in our formulas.

The non-Abelian curvature or the strength field on the manifold M is defined
by

Here, the connection or the gauge potential A assuming values in a(n irreducible)
representation R of the compact, semisimple Lie algebra g of the Lie group G is
of the form

Ai(x) = Af(x)T°, i=1,...,dimM

where the Hermitian generators, T =719, T9 = T4, k,l=1,...,dimR, fulfill
the commutation relations

[T¢,T?] = ifere, a,b,c=1,...,dimG (11)

The line integral (10) can be rewritten in more detailed (as it is frequently used in
our further analysis) forms, such as
X .
i J Ai(x)dx'

U(x",x') = Pexp

or

"

iJ A (x)T¢ dxi‘|

X

Uk[ = Pexp
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without parametrization, and

"

ui',r) = Pexp{ir Afllx(n)] T dxc;gt) dt}

X

with an explicit parametrization, or some variations thereof. Here, the oriented
smooth path L starting at the point x’ and endng at the point x” is parametrized by
the function x/(¢), where ¢ <t < ¢ and X" = x/(¢'), ¥ = x'(¢").

A. Operator Formalism

Unfortunately, it is not possible to automatically generalize the Abelian Stokes
theorem [e.g., Eq. (4)] to the non-Abelian one. In the non-Abelian case one
faces a qualitatively different situation because the integrand on the lLh.s.
assumes values in a Lie algebra g rather than in the field of real or complex
numbers. The picture simplifies significantly if one switches from the “local”
language to a global one [see Eq. (5)]. Therefore we should consider the
holonomy (7) around a closed curve C:

Pexp (i % Aidxi>
c

The holonomy represents a parallel-transport operator around C assuming values
in a non-Abelian Lie group G. (Interestingly, in the Abelian case, the holonomy
has a physical role; it is an object playing the role of the phase that can be
observed in the Aharonov—Bohm experiment, whereas A; itself does not have
such an interpretation.)

The non-Abelian Stokes theorem is as follows. The non-Abelian general-
ization of Eq. (5) should read as

Pexp (zi{) A,-(x)dxi> = Pexp (ij F y(x)dx' A dx’)
as=C 2)s

where the L.h.s. has been already roughly defined. As far as the r.h.s. is concerned,
the symbol 2 denotes some “surface ordering,” whereas Z ;(x) is a “path-
dependent curvature” given by the formula

F () EL U (x, 0)F;(x)U(x, 0)

where U(x, O) is a parallel-transport operator along the path L in the surface S
joining the base point O of 0S with the point x:

U(x,0) = Pexp (zJ

L

A (y)dyl)

See Fig. 2, and later sections for more details.
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Figure 2. Parallel-transport operator along the
path L in the surface S.

1. Calculus of Paths

As a kind of a short introduction for properly manipulating parallel-transport
operators along oriented curves, we recall a number of standard facts. It is
obvious that we can perform some operations on the parallel-transport opera-
tors. We can superimpose them, we can introduce an identity element, and
finally, we can find an inverse element for each element.

The structure is roughly similar to the structure of the group with the fol-
lowing standard postulates satisfied: (1) associativity, (U,U,)U; = Uy (U,Us);
(2) existence of an identity element, IU = UI = U; (3) existence of an inverse
element U~', U"'U = UU~! = I. But let us note that not all elements can be
superimposed. Although parallel-transport operators are elements of a Lie group
G, their geometric interpretation has been lost in the notation above. We can
superimpose two elements only when the endpoint of the first element is the
initial point of the second one. Thus U, U, could be meaningful in the form (Fig. 3)

U(x1,x)U(x,x2) = U(x1,x2)

Xq A

Figure 3. Allowable composition of elements. X2
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and (Fig. 4)
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-1
X1

X2 Y Figure 4. Inverse element.

I =U(x,x)

U’l(xl,xz) = U(xp,x1)

These formulas become particularly convincing in graphical form. Perhaps one
of the most useful facts is expressed by Fig. 5.
It appears that this structure fits into the structure of the so-called grouppoid.

2. Ordering

There are a lot of different ordering operators in our formulas which have been
collected in this section.

X2

Figure 5. Deformation of a path.
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~ We know from quantum theory that the path-ordered exponent of an operator
A can be expressed by the power series called the Dyson series:

t//
Pexp iJ A(t) dt
t/
00 n // // t// R R R
Z—'J dtlj dt, - - J dty A(1)A(1) - - - A(ty)
o0 in [/I t” l” R R .
=1 +ZEJ dt,J dtz---J di, P[A(1)A(12) - - A(t)]
parl (2 1 I 1
00 " 1 T R R .
=1 +Zi"J dtlj dt2~~J di, A(1)A(1) - --A(t,)
n=1 4 t v

For example, for two operators

P[Al(tl)Ag(lz)] = G(tl — l2>A1(I1) (l‘g) + 6( 2 — ll)A (lz)A](ll)
where 6 is the step function.

Since the operators and matrices appearing in our considerations are, in
general, noncommutative, we assume the following conventions:

N
T %0 =5 xuXns - XX (12)
n=1
def
P(X1Xs,..., Xn_1Xn) = XnXn_1 - - - XoX] (13)

whereas for two parameters

Py, H X 25 H]'[an

m,n=1 n=1m=

= XynXnoan - XinXyn—1 - X1pXng - X201 X0 1

3. Theorem

The non-Abelian Stokes theorem in its original operator form roughly claims
that the holonomy around a closed curve C = 0S equals a surface-ordered
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exponent of the twisted curvature, namely

Pexp<i£A) - g)exp<iLf) (14)

where Z is the twisted curvature:
F =U'FU

A more precise form of the non-Abelian Stokes theorem as well as an exact
meaning of the notions appearing in the theorem will be given in the course of the
proof.

Proof. Following Aref’eva [3] and Menski [8], we will present a short, direct
proof of the non-Abelian Stokes theorem.

In our parametrization, the first step consists of the decomposition of the
initial loop (see Fig. 6) into small lassos according to the rules given in the
Section I1.A.1

N
. L y
Pexp (1 EI;CA> = ]\}golo(Ps,,) H Up i WonnUni

m,n=1

where the objects involved are defined as follows. Parallel-transport operators
from the reference point to the point with coordinates (%,%) consists of two

N'N
segments (see Fig. 7)

def ) 04
U = Pexp iJ A | Pexp iJ A
OF) (0,0)

0,1) (1,1)

Figure 6. The parametrized loop C as a boun-
(0,0) (1,0) dary of the “big” square S with the coordinates
{(0,0), (1,0), (1,1), (0,1)}.

v
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Figure 7. Approaching the “small” plaquette

inside the “‘big” square.

parallel-transport operator round a small plaquette S,,, (see Fig. 8)

Winn et Tr Pexp <l1; A)
Smn

where S, , is a boundary of a (small) square with coordinates

s _ (@ﬁ) m—lﬁ m—1n-—1 @n—l
mn — N)N? N ’N’ N bl N ,N’ N

Figure 8. The small plaquette.
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Now
1
UmnWanmn:U_ |:1+ an+0( >:|Um,n

=1 +mUmnanUmn +0< )

1
o)

where W, ,, has been calculated in the next (and last) paragraph of this section
[see Eq. (15)]

def
F mn == Uppr FnnUnn

and

def i
Wm,n — eXp (ﬁ =g;mﬁn>

Then

Pexp <i jﬂc A) = lim (P,,) ﬁ {Wm +0 <$ﬂ

mn=1

. ) 1
:A}En H H eXP{szmn+0< ):|

mn=1

1
11m (P,) H exp{ J’m,,—i—O(NB)}

m,n=1

The last equality follows from the fact that operations corresponding to the
change of the order of the operators yield the commutator

1 1 1
|:m gfm/‘n/ s ]W ,O/_fm//‘n//:| = 0 (m>

and there are maximum N — 1 transpositions possible in the framework of

s-ordering, so
1 1
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Thus, we arive at the final form of the non-Abelian Stokes theorem:
N .
Pexp(id A) = lim (P,) L Tl = 2expli| 7
exp| i g = lim (P, ml,,ll exp N2 T man| = exp| i S

In this paragraph we will perform a fairly standard calculus and derive the
contribution coming from a small loop W, ,:

(#4) ()
Wi, = Pexp| i J A | Pexp iJ A

(355 (55

(2 ;

i\’ 1
—— ) A A ol —
N) mn A (N3>

l'2

i ! N . N 1
1L 0~ 0 AT) — (A - A )+o(m)
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where
F=0A,—0,A, —i[A,A]

(occasionally, we put x and y in the upper position), and

1
A:Amn o -
()

Then

j 1
Wm,n = exp []%Fm,n +0 (m):l

There are may other approaches to the (operator) non-Abelian Stokes
theorem, which are more or less interrelated, including an analytical approach
advocated by Brali¢ [4] and Hirayama and Ueno [9]. An approach using product
integration [10], and last, but not least, a (very interesting) coordinate gauge
approach [11,12].

B. Path Integral Formalism

There are two main approaches to the non-Abelian Stokes theorem in the
framework of the path integral formalism: coherent-state approach and holo-
morphic approach. In the literature, both approaches occur in a few, and slightly
different, incarnations. Also, both have found applications in different areas of
mathematical and/or theoretical physics, and therefore both are useful. The first
one is formulated more in the spirit of group theory, whereas the second one
follows from traditional path integral formulation of quantum mechanics or
rather quantum field theory. Similar to the situation in quantum theory, the path
integral formalism is easier in some applications and more intuitive than the
operator formalism, but traditionally it is mathematically less rigorous. In the
same manner as quantum mechanics, initially formulated in the operator
language and next reformulated in the path integral one, we can translate the
operator form of the non-Abelian Stokes theorem into the path integral
language.

In order to formulate the non-Abelian Stokes theorem in the path integral
language, we will perform the following three steps:

1 We will determine a coherent-state/holomorphic path integral representa-
tion for the parallel-transport operator, deriving an appropriate transition
amplitude [a path integral counterpart of the Lh.s. in Eq. (14)].

2 For a closed curve C we will calculate the trace of the path integral form

of the parallel-transport operator in quantum theory in an external gauge
field A.
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3 We will apply the Abelian Stokes theorem to the exponent of the integrand
of the path integral yielding the r.h.s. of the non-Abelian Stokes theorem
[a counterpart of the r.h.s. in Eq (8)].

Preliminary formulas are presented in Eqgs. (16) and (17). Since both path
integral derivations of the transition amplitude have a common starting point that
is independent of the particular approach, we present it here:

f”
Pexp [i J A(r)dt

t

N
= lim g(l + i€A,) (16)

In this equation

7 — 7

An:Atna = s
). ="

th=ne+t, ty=1t", =1 (17)

From this moment on, both approaches differ.
1.  Coherent-State Approach

a. Group-Theoretic Coherent States. According to Zhang et al. [13] (see also
Ref. 14) [Per86] the group-theoretic coherent states emerge in the following
construction:

1 For g, a semisimple Lie algebra of a Lie group G, we introduce the stan-
dard Cartan basis {H;,E,,E_,}:

[H;, H] =0
[Hi; Eot] = alEOL
[E,,E_y] = o'H;
[Ea, Ep] = NopEop (18)

2 We chose a unitary irreducible representation R of the group G, as well as
a normalized state the, so-called, reference state |R). The choice of the
reference state is in principle arbitrary but not unessential. Usually it is an
“extremal state” (the highest-weight state), the state anihilated by E,
namely, E,|R) = 0.

3 A subgroup of G that consists of all the group elements / that will leave
the reference state |R) invariant up to a phase factor is the maximum-
stability subgroup H. Formally, this is

h|R) = |R)e®™  heH
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The phase factor is unimportant here because we shall generally take the
expectation value of any operator in the coherent state.

4 For every element g € G, there is a unique decomposition of g into a
product of two group elements, one in H and the other in the quotient
G/H:

G
g=CEth, g€G, h€eH, E_,Eﬁ

In other words, we can obtain a unique coset space for a given |R).

5 One can see that the action of an arbitrary group element g € G on |R) is
given by g|R) = Eh|R) = £|R)e®"). The combination |&,R) g&\R) is
the general group definition of the coherent states. For simplicity, we will
denote the coherent states as |g, R).

The coherent states |g, R) are generally nonorthogonal but are normalized to
unity:

(g;R|g,R) = 1.

Furthermore, for an appropriately normalized measure dp(g), we have a very
important for our furher analysis identity the so-called, resolution of unity:

j|g, R)du(g)(g.R| = 1 (19)

b. Path Integral. Our first aim is to calculate the ‘‘transition amplitude”
between the two coherent states |g’,R) and |g”, R)

t//
(g",R|Pexp iJA(t) dt||g,R)

V

= lim J--~J<gN,R|(1 +ieAy)|gn—1,R)dp(gn-1)

N—oo
(gn—1,R|(1 +ieAy_1)|gn-2, R)dp(gn—2)
-dw(gr){(g1,R|(1 + ieAy)|go, R) (20)

where we have used (16) and (19). To continue, one should evaluate a single
amplitude (i.e., the amplitude for an infinitesimal “‘time” €):

<gn7R|(1 + iEAn)|gn71aR>
= <gn;R‘gn717R> + i(g,l,R|An|g,l,1,R>e
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Now

<ng|gn717R> =

=1~ (Rlg" (1.)§(t2)IR)e + O(€?)
whereas
i(gn, RIAn|gn—1, R)E = i(g(t), RIA(t)[8(1n—1), R)e
i(RIg" (1)A(1:)8(tn — €)|R)e
i(R|g" (t)A(2)g(12)|R)e + O(€?)

Then
(gn, RI(1 + i€A,)|gu1,R) = 1 — (Rg"(1)2(1a)|R)e
+ i(Rlg" (1)A(12) g (1) IR )€ + O(€?)
= exp[(R| — g-r(tn)g(tn)
+ igT (ta)A(t2)g(ta)|R)E + 0(€2)]
Returning to (20), we obtain
(g",R|Pexp li J:, A(t) dt] g, R) = J[Du(g)]exp <i J:/ Ldt)

where the ““Lagrangian” appearing in the path integral is defined as

L = (Rlig (12(r) + &' (1)A(1)g(1)]|R) == RIA®(1)|R) (21)
and
Du(e)] = [ dulz)

<<t

According to Hirayama and Ueno [15], we can transform L in Eq. (21) to the
form originally proposed by Diakonov and Petrov [16]. Specifically, for any Lie
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algebra element K we have in the Cartan basis (18)

(RIK|R) = R|Zw+ >:Zx,-<1e|Hi|R>

where the ellipses represent E, generators vanishing between |R) states. Since
H;|R) = m;|R)

then

> h(R|Hi|R) = Zx (RIRAR) = him;

i

1
- —Z mTr(H;K) = — Tr(m - HK)
K4 K
where the normalization
TI'(H,I‘IJ) = KS,‘j
has been assumed. Thus
L = (R|A*(1)|R)

= % Z Tr[m:H;A (1)]

= %Tr{m H[ig"(1)3(r) + g (DA(1)g (1))} (22)

c¢. Non-Abelian Stokes Theorem. Finally, the Lh.s. of the non-Abelian Stokes

theorem reads as
tl/
JDu(g)exp i{) Ldt
tl

Du(g) = ] dulz()

v <t<t"

where

and g(¢') = g(¢"). Or, in the language of differential forms

e
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where now
Du(g) = [ [ dunlsx)]
xeC
and
1 . .
L= p” ZI: Tr[m - HA? (x)]dx' LL B, dy
with

A (x) = ig"(x)0ig(x) + &' () As(x)g (x)
dx'(t)
dt

A8(1) = A7 [x(1)]

Here B; is an Abelian differential form, so obviously

o, g) - v )

2. Holomorphic Approach

a. Quantum-Mechanics Background. For further convenience, let us formu-
late an auxiliary “Schrodinger problem” governing the parallel-transport
operator (10) for the Abelian gauge potential A

dz i
| — = —X'A; 23
Yt T (23)

which expresses the fact that the ‘““wavefunction” z should be covariantly
constant along the line L

where D; is the absolute covariant derivative.

First, let us derive the path integral expression for the parallel-transport
operator U along L. To this end, we should consider the non-Abelian formula
(differential equation) analogous to Eq. (23)

dz

i = —& (A7 [x(D]T (24)
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or
d ccixa a
(Diz), = {Skldt — XA [x(f)]Tkz}Zl =0

where z is an auxiliary “wavefunction” in an irreducible representation R of
the gauge Lie group G, which is to be parallelly transported along L parametrized
by x(t), t' < t < t”. Formally, Eq. (24) can be instantaneously integrated out,
yielding

2 (x//) — Uk[ (x//, x/)zl (x/)

where x” = x(¢"), ¥’ = x(¢), and
7
U",xX)=U({"1) = Pexp iJ i

as expected.
Let us now consider the following auxiliary classical mechanics problem
with the classical Lagrangian

L(z,2) = izDyz (25)

The equation of motion for z following from Eq. (25) reproduces Eq. (24) and
yields the classical Hamiltonian:

H = it ()AY[x(1)| T miz) = —i (DAY [x(1)] T 22 (26)

1

The corresponding auxiliary quantum-mechanics problem is given, according to
Eq. (26), by the Schrodinger equation

.d -
i 1®) = (1)) (27)

H(t) = —A(t) = =& (A ()] T = ' ()AYx ()T a & = Hu(r) af &

1

where the creation and annihilation operators satisfy the standard commutation
(—) or anticommutation (+) relations:

[&k’&?_]I = 8kla [&:7&7_]1 = [&k7&l]¥ =0
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It can be easily checked by direct computation that we have really obtained a
realization of the Lie algebra g in a Hilbert (Fock) space, [T“, Th l_=if abee in
accordance with (11), where Te = T, &,‘: a,. For an irreducible representation R,
the second-order Casimir operator C, is proportional to the identity operator /,
which, in turn, is equal to the number operator N in our Fock representation, that
is, if 7% — T, then [ — N = dwa; a;. Thus we obtain an important for our
further considerations constant of motion N :

IN,H]_ =0 (28)

It is interesting to note that this approach works equally well for commutation
relations as well as for anticommutation relations.

b. Path Integral. Let us now derive the holomorphic path integral repre-
sentation for the kernel of the parallel-transport operator:

t//
(Z"|Pexp iJ A(t)dt||Z)
t/
. _ A _s dzZy_1 dzy—y
— lim [ ... |(@w|(1 + icAy)|ay_)e o SNLENL
gim [ el +icho e i
L a . dzn_ordzn_—
(il + ey ey gperteana 22
. dzidzy A
e Z‘”‘ﬁ(zl\(l + i€Ay)|zo) (29)

Now we should calculate the single expectation value:

Gal(1 + i€ An) |20 1) = Galza1) + i(ZalAnlza1)e

Here
Zulzn_1) = oot
whereas
iZn|An|z0-1)€ = i(Zn]ZaAnzn 1 |20 1)€
= €2, AnZn—1(Zn | Zn-1)
Thus

<Zn | (1 + ieA,,) |Zn71> R iGZnAnanez"z”’l
= &[] + i€z, Apzn + O(€7)]

— e e+ieZnAnzn+0(62)
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Combining this expression with the exponent in (29), we obtain

—Zntn plnin-1 i€ AnzatO(€?) _ =% (tn—2n-1) i€t Anza+O(€?)

e e

= eXp[(—ann + €ZnAnZn)€ + O(GZ)]
Finally

U@ 25" ) = (&' | Pexp

4

—i Jt” H (t)dt} |Z)

th A(t)dr||Z)

= (7'|Pexp

where

and L is of “classical” form (25).

Let us confine our attention to the one-particle subspace of the Fock space.
As the number operator N is conserved by virtue of Eq. (28), if we start from the
one-particle subspace of the Fock space, we shall remain in this subspace during
all the evolution. The transition amplitude Uy (¢”,7) between the one-particle
states |1) = a; |0) and |1;) = a;"|0) is given by the following scalar product
in the holomorphic representation

i r A(t) dt

4

=ﬁuuwﬂpw%ﬂ’

Uk1:<lk|Pexp |11>

"

1

A1) dt] 1)@ 1)

P77 dz” dZ// dZ/ dZI
(2mi)?

= JDzsz(t")Zz(t')exp [Z(l’)z(t’) + ir” Ldt} (30)

4
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where now

dz(t) dz(1)

D’z =
. 2mi

r<t<t"

Depending on the statistics, there are two (F) possibilities (fermionic and
bosonic):

% F Lz = 2 Fuzk = wa Fuze =0

Both are equivalent in terms of one-particle subspace of the Fock space which we
will discuss in further detail later.

One can easily check that Eq. (30) represents the object we are looking for.
Namely, from the Schrodinger equation [Eq. (27)] it follows that for the general
one-particle state oy a; |0) (summation after repeating indices) we have

i%(um&; |0)) = Hy(t)a; aomé’ |0) = Hy(t)ou(a |0)) (31)

Using the property of linear independence of Fock space vectors in Eq. (31), and
comparing Eqs. (31) and (24), we can see that Eq. (30) really represents the
matrix elements of the parallel-transport operator. For closed paths, x(¢') = x(¢")
= x, Eq. (30) gives the holonomy operator Uy (x) and Uy is the Wilson loop.
Interestingly, the Wilson loop, which is supposed to describe a quark—antiquark
interaction, is represented by a ‘“‘true” quark and antiquark field, z and Z,
respectively. So, the mathematical trick can be interpreted “physically.”

Obviously, the “full” trace of the kernel in Eq. 3.9 is obtained by imposing
appropriate boundary conditions, and integrating with respect to all the variables
without the boundary term. Analogously, one can also derive the parallel-
transport operator (a generalization of the one just considered) for symmetric
n tensors (bosonic n-particle states) and for n forms (fermionic n-particle
states).

c. The Non-Abelian Stokes Theorem. Let us now define a (bosonic or
fermionic) Euclidean two-dimensional “‘topological” quantum field theory of
multicomponent fields z, z transforming in an irreducible representation R of the
Lie algebra g on the compact surface S, dimS =2,08S = C, S C M, dimM = d,
in an external non-Abelian gauge field A, by the classical action

1 . .
Se1 = J <iDiZDjZ+ZZFijZ>Xm Adx’, i,j=1,...,d (32)
S
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or in a parametrization x'(c', 52), by the action

Scl = J ycl(za Z)d20
S

1
= J g8 <iDAZDBZ+22FABZ)dZG, AB=1,2 (33)
S

where

DA = 6AxiD,-7 Dl‘ défa,- — iAi, FAB = aniGijFij
At present, we are prepared to formulate a holomorphic path-integral version
of the non-Abelian Stokes theorem

JDZZZZ Zjexp (—z’z’ + iﬂ; iZDz>
C
= JDzzzZZLexp(—Z'z' +iSa) (34)

or in the polar parametrization x'(c',6?)f < o' =t <1, 0<c’>=s5s< 1

JDZZ (") zi (1) exp{ —z2()z(f') + i in[z(t),z(t)]dt}

Va

1 t”
— JD2zzk(t”, Dz(7, 1) exp l—z(t’, 1)z(#,1) + iJ J P dtds] (35)
0Jr

where L(z,7) and #(z,z) are defined by Egs. (25) and (33), respectively. The
measure on both sides of Egs. (34) and (35) is the same; specifically, it is
concentrated on the boundary 0S, and the imposed boundary conditions are free.

It should be noted that the surface integral on the r.h.s. of Egs. (34) and (35)
depends on the curvature F' as well as on the connection A entering the covariant
derivatives, which is reminiscent of the path dependence of the curvature % in
the operator approach.

A quite different formulation of the holomorphic approach to the non-
Abelian Stokes theorem has been proposed in [17].

d. Appendix. For completness of our derivations, we will remind the reader of
a few standard facts being used above. First, we assume the following (non-
quite standard, but convenient) definition

| 2) L e e ) = e )

n

_ ) = > ("at)" _ >\ 2 i
=10y =30 = 3T

k=0
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where |0) is the Fock vacuum, namely, a|0) = 0, and the Baker—Campbell—
Hausdorff (BRS) formula has been applied in the first line. We could also treat
|z) as a coherent state for the Heisenberg group. We can easily calculate

*ln l‘l

(zlz) = Z )=§:<Z,f;)n:

m,n=" O n=0

Il
N

The identity operator is of the form

2mi

Actually
12) = [ 1aele =5
= J |2)8(¢ — 2)dz = |7

dzdz oz dzdz
o J e S0

All these formulas for a single pair of creation and annihilation operators
obviously apply to a more general situation of dim R pairs. The matrix elements
are

(21A]2) = (02 3" 43" T aje X |0)
a k.l
= (0] 2 Ay TZ,ZkZIeZk % |0)
a k.l
= Y A Tiaal)
a k.l
= (z|zAz]2)

where we have used the formula

Now

(Le| (1 + ieA)| 1)) = 8 + ie (0] Y A“ > Téa aa) |0)

a i,j

=B +iey AT = (1 +icA),
a
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Also
(Iklz) = =

3. Measure

The theory described above possesses the following ‘‘topological” gauge
symmetry

8z(x) = 0(x), 87(x) = 0(x) (36)

where 0(x) and 0(x) are arbitrary except at the boundary 0S, where they vanish.
The origin of the symmetry (36) will become clear when we convert the action
(32) into a line integral. Integrating by parts in Eq. (32) and using the Abelian
Stokes theorem, we obtain

Sa = 14; zDjzdx'
as
or in a parametrized form
S = i% zZD,zdt
as

To covariantly quantize the theory, we shall introduce the BRS operator s.
According to the form of the topological gauge symmetry (36), the operator s is
easily defined by sz = ¢,57 =%,5¢ = 0,57 = 0,5¢ = B,sx = B,sp =0, and
sB = 0, where ¢ and Y are ghost fields in the representation R, associated with 0
and 0, respectively; ¢ and y are the corresponding antighosts; and B, B are
Lagrange multipliers. All the fields possess a suitable Grassmann parity corre-
lated with the parity of 7 and z. Obviously s> = 0, and we can gauge-fix the action
in Eq. (32) in a BRS-invariant manner by simply adding the following s-exact
term:

S = s(L(d)Az + 2Ax)d26>

= J (BAz £ dAD + ¥ Ay +2AB)d*c
N

The upper (resp. lower) sign stands for the fields 7,z of bosonic (fermionic)
statistics. Integration after the ghost fields yields some numerical factor and the
quantum action

S =S8+ J (BAz +zAB)d*c (37)
S
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If necessary, one can insert /g into the second term, which is equivalent to
change of variables. Thus the partition function is given by

Z= Je"SDzDzDBDB,

with the following boundary conditions: B|as =Bles = 0.

One can observe that the job that the fields p and P are supposed to do
consists in eliminating a redundant integration inside S. The gauge-fixing
condition following from Eq. (37) imposes the following constraints:

Nz =0, Az=0

Since values of the fields z and 7 are fixed on the boundary 0S = C, we deal with
the two well-defined two-dimensional (2D) Dirichlet problems. The solutions of
the Dirichlet problems fix values of z and 7 inside S. Another, more singular,
gauge-fixing term has been proposed [18].

The issue of the measure has been also discussed [15].

C. Generalizations
1. Topology

Up to now we have investigated the non-Abelian Stokes theorem for a topo-
logically trivial situation. The term topologically trivial situation means, in this
context, that the loop we are integrating along in the non-Abelian Stokes
theorem is “‘unknotted’ in the sense of theory of “‘knots” [19]. It appears that in
contradistinction to the Abelian case, the non-Abelian one is qualitatively
different. If the loop C is topologically nontrivial and the bounded surface S
(0S = C) is not simply connected, the parameter space given in the form of a
unit square (as in the proof of the non-Abelian Stokes theorem) is not
appropriate. The non-Abelian Stokes theorem presented in the original form
applies only to a surface S homeomorphic to a disk (square). But still, of course,
the standard (topologically trivial) version of the non-Abelian Stokes theorem
makes sense locally. The meaning of locally in this context will become clear in
due course. The non-Abelian Stokes theorem for knots (and also for links —
multicomponent loops) was formulated by Hirayama et al. in 1998 [20]. Inter-
estingly, it follows from this new version of the non-Abelian Stokes theorem
that the value of the line integral along C can be nontrivial (different from 1)
even for the field strenght F,,, (x) vanishing everywhere on the surface S. This is
an interesting result that could have some applications in physics. One can
speculate that it could give rise to a new version of the Aharonov—Bohm effect.

To approach the non-Abelian Stokes theorem for knots, we should recall a
necessary portion of the standard lore of theory of knots. Since the first task is to
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find an oriented surface S whose boundary is C, we should construct the, so-
called Seifert surface, satisfying the abovementioned condition by definition. It
appears that the Seifert surface for any knot assumes a standard form home-
omorphic to a (flat) disk with 2g (“thin’") strips attached. The number g is called
the genus. The strips may, of course, be horribly twisted and intertwined [19].

Now we should decompose C and next S into pieces that can be put together
to form slices that are topologically trivial and thus subject to the standard non-
Abelian Stokes theorem. Such decomposition is shown in Fig. 9. Explicitly, this
reads as

C = (Cio(g-1)+9 - C11)(CoC7C4Cy) Co
1
= (gl_[ C10k+9C10k+7C10k+4C10k+1>Co, for g=>1 (38)
k=0
and C = C for g=0. Next
Cfol(gq)ﬂo
C = [Cio(g-1)+6 (Cfol(gqH?’—’Clo(gfl)wcm(gfl)+8) Cio(g-1)+3

Sig

SN (srtermtenteny } : [06 (C5' 1 CoC)
T ___3:__./
C;' (GG C1Cs) G5! (CoC5 ' C4C) G5 (C51C5 1 C1Cy) }
S; S, Si

g—1

1 el
= H C10+6 (Crops6Crors 10C10k9C 10648
=0

Sakr4

-1 1
Crotis (Crok+3C 0k 8 Crok+7Crok+5)

Sak13

-1 1
Crotss (Crok+6Cropss Crok+4Cirok+2)

Sars2

1 el
Ciot+3 (Crops3Crors2Crok+1Crok) Sar1

g—1
-1 -1
= H Cro+6Sak+4Cor 354k 13 Cropq654k+2 Crok-+3Sak 11
k=0

where C10k+10‘k:g71 = ClOg =1.
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Ciog-1)+9
‘ '
| |
| '
| ¢
1
) C14
Cio(g-1)+6 \
C13 C10 C
Cy
> C4 AN N
S, C, \\
I C1 \\
\
—>C, v
1
\\ 1
\ 1
S -
3 ;0
7’ 1
I C4 - ’ I| Ca
S, - ,"
> Cg /
S /
4 /
C8 C //
83 7’ Phd ’
—
0 C
S Co

Figure 9. Decomposition of the knotted loop C.
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Further generalization, to multicomponent loops (links) is described in the
original paper [20].

2. Higher-Dimensional Forms

The theorem considered up to now is a very particular, although seemingly
the most important, non-Abelian version of the Stokes theorem. It connects a
non-Abelian differential 1-form in dimension 1 and a 2-form in dimension 2.
The forms are of a very particular shape, namely, the connection 1-form and
the curvature 2-form. Now, we would like to discuss possible generalizations
to arbitrary, higher-dimensional differential forms in arbitrary dimensions.
Since there may be many variants of such generalizations depending on a
particular mathematical and/or physical context; we will start giving a general
recipe.

Our idea is very simple. First, working in the framework of the path integral
formalism, we should construct a topological field theory of auxiliary topolo-
gical fields on ON, the boundary of the d-dimensional submanifold N, in (an)
external (gauge) field(s) in which we are interested. Next, we should quantize
the theory, namely, build the partition function in the form of a path integral,
where auxiliary topological fields are properly integrated out. Thus the LHS of
the non-Abelian Stokes theorem has been constructed. Applying the Abelian
Stokes theorem to the (effective) action (in the exponent of the path-integral
integrand) we obtain the “r.h.s.” of the non-Abelian Stokes theorem. If we also
wish to extend the functional measure to the whole N, we should additionaly
quantize the theory on the r.h.s. to eliminate the redundant functional integration
inside N.

The example candidate for the topological field theory defining the Lh.s. of
the non-Abelian Stokes theorem could be given by the (classical) action

1 _
Stop = EiN (2dsC + daCz + ZB2) (39)

where z and Z are O-forms, ¢ and ¢ are (d — 2)-forms (all the forms are in an
irreducible representation R(G)), and d, is the exterior covariant derivative

di¢ =dC+AG  diC=dC—ATC

The non-Abelian B field naturally appears in the context of (topological) gauge
theory [see Eq. (45)]. Now, the Abelian Stokes theorem should suffice.

Generalization of the non-Abelian Stokes theorem to higher-degree forms in
the operator language seems more difficult and practically has not been attemp-
ted (see, however, Ref. 8 for an introductory discussion of this issue).
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III. APPLICATIONS

The number of applications of the non-Abelian Stokes theorem is not as large as
in the case of the Abelian Stokes theorem; nevertheless, it is the main motivation
for formulating the non-Abelian Stokes theorem. It is interesting to note that in
contradistinction to the Abelian Stokes theorem, whose formulation is ‘“homo-
genous” (unique), different formulations of the non-Abelian Stokes theorem are
useful for particular purposes and applications. From a purely techincal point of
view, one can classify applications of the non-Abelian Stokes theorem as exact
and approximate. The term exact applications means that one can perform
successfully an “‘exact calculus™ to obtain an interesting result, whereas the
term approximate application means that a more or less controllable approx-
imation (typically, perturbative) is involved in the calculus. Since exact
applications seem to be more convincing and more illustrative for the subject,
we will basically confine our discussion to presentation few of them.

Since the non-Abelian Stokes theorem applies to non-Abelian gauge the-
ories, and non-Abelian gauge theories are nonlinear, it is not surprising that
exact applications are scarce. In fact they are limited to low-dimensional cases
and/or topological models, which are usually exactly solvable. The first case
that we consider is pure, two-dimensional ordinary (almost topological) Yang—
Mills gauge theory. But a rich source of applications of the non-Abelian Stokes
theorem comes from topological field theory of the Chern—Simons type. The
path integral procedure makes it possible to obtain skein relations for knot and
link polynomial invariants. In particular, it appears that only the path integral
version of the non-Abelian Stokes theorem permits us to nonperturbatively and
covariantly generalize the method of obtaining topological invariants [21].

As a byproduct of our approach, we have computed the parallel-transport
operator U in the holomorphic path integral representation. In this way, we have
solved the problem of saturation of Lie algebra indices in the generators 7 “.
This issue appears, for example, in the context of equation of motion for Chern—
Simons theory in the presence of Wilson lines (an interesting connection with
the Borel-Weil-Bott theorem and quantum groups has been also suggested).
Our approach enables us to write those equations in terms of z and z purely
classically. Incidentally, in the presence of Chern—Simons interactions the
auxiliary fields 7 and z acquire fractional statistics, which could be detected
by braiding. To determine the braiding matrix, one should, in turn, find the so-
called monodromy matrix, making use, for example, of non-Abelian Stokes
theorem.

A. Two-Dimensional Yang-Mills Theory

There is a vast literature on the subject of the two-dimensional Yang—Mills
theory, approaching it from different points of view. One of the latest papers is



NON-ABELIAN STOKES THEOREM 461

that by Aroca and Kubyshin [22], who list of references to earlier papers. Two-
dimensional Yang—Mills theory is a specific theory. From the dynamical point of
view it is almost trivial—there are no local degrees of freedom, as a standard
canonical analysis indicates. In fact, it is “semitopological” field theory; that is,
it only roughly describes combinatorial-topological phenomena and surface
areas.

There are many important and interesting aspects in two-dimensional Yang—
Mills theory. One of them is the issue of determination of ‘“‘physical”
observables: Wilson loops [Eq. (8)]. Calculation of the Wilson loops Wg(C)
in two-dimensional Yang—Mills theory can be facilitated by the use of the non-
Abelian Stokes theorem.

A nice feature of (Euclidean) two-dimensional Yang-Mills gauge theory
defined by the action

1
ZJ Fi,(A)F**B(A)/gd*x, A,B=1,2 (40)
M

Saaym(A) =
is the possibility of recasting the action, and next, and more importantly, the
whole partition function in the form

z= JDFemewﬂ (41)

where now F is an independent field, and the action Syqyy is of the same form as
the original Eq. 40 but this time without A dependence (the subscript denotes
two-dimensional Yang—Mills theory).

Let us now consider “‘physical” observables, namely, Wilson loops. Con-
fronting the partition function (41) with the form of the Wilson loop trans-
formed by the non-Abelian Stokes theorem to a surface expression (14), we can
see that a kind of a Gaussian functional integral emerges. For an Abelian theory,
we would exactly obtain an easy Gaussian functional integral, but in a non-
Abelian case we should be more careful because .7 is a path-dependent object.
The fact that & is path-dependent can be ignored in the case of a single loop
because of the commutativity of the infinitesimal surface integrals (see below).
Since, according to the non-Abelian Stokes theorem

Wg(C) = TrgPexp (1J 97\/§d2x>
s

where & = % |,. For the expectation value

(Wg(C)) =z JDF exp(—Saaym) Wr(C)
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we obtain [7]
(Wr(C)) JDFexp(—%J F“F“\/gdzx)TrR.@eprJ F\/gdzx)
M S
:J H dF(x)exp(—lJ F“F“\/§d2x>
2 s

xeM\S

- Trg? J [ 4F(x) exp {i L (— %FF + iF“T“) \/gdzx}

xeS

1
o Trg exp (— 5 T J \/§d2x>
s
Thus, finally
1 . 1
(Wgr(C)) = Trgexp | — 3 C2(R)S| =dimRexp|— 3 C2(R)S
where

S:J \/Edzx
s

and
TT = Cz(R)7 TI'RI =dimR

In the case of n nonoverlapping regions {S;},i=1,...,n, C; =0S;, SiNS; =0
for i # j, and n irreducible representations R; of the group G with the generators
T;, we immediately obtain—literally repeating the last derivation—the formula
for the expectation value of the product of the n Wilson loops:

<ﬁ WR[(C5)> = ﬁ dlle eXp |:— % CQ(R,)S,:|
i=1 i=1

The case of the overlapping regions {S;} is a bit more complicated [7]. First, one
has to decompose the union of all regions {S;}, 0S; = C; into a disjoint union of
connected (i.e., not intersected by the loops) regions {S,}. Each loop C; is next
deformed into an equivalent loop Cj, which is a product of “big” (not
infinitesimal) lassos independently (a lasso per a region) covering each
connected region S, So.= Sy NS; (S, € {Sy}). The lassos coming from the
different loops C! but covering the same connected region S, should necessarily
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be arranged in such a way to enter the region S, at the same basepoint O,.
Consequently, the connected region Sy, Sy, C S;, N---NS;,, i <k <n, can be
covered with the k identical copies of the net of “small” (infinitesimal) lassos.
Every Gaussian functional integration with respect to the infinitesimal area 6S
enclosed by an infinitesimal lasso can be easily performed, yielding

exp <— %SS Ti) (42)

where

Tu:ZTi, T =19 QT,®--- 1

ico

Integration with respect to the consecutive infinitesimal areas gives the terms of
the form (42). Since T, is a generator of g in a product representation R,, namely,
Ry =R, ®---®R,, it follows that TO% is a Casimir operator. Accordingly, (42)
commutes with the product of the parallel-transport operators acting in the
product representation R,. Since the products in the pairs connect every
infinitesimal area 8S with the basepoint Oy, they cancel each other. This fact
means that the integral with respect to the whole region S, is given only by the
infinite product of the terms (42) and reads

1
M, = exp( —=S,T2 (43)
2 o

The full expectation value of the n loops {C;} consists of the trace of a product of
M, blocks (43) joined with the parallel-transport operators, which are remnants
of the primary decomposition of the loops. These joining curves enclose
zero areas, and can be deformed into points (without destroying M, blocks)
giving some “‘linking”’ operators L,. An operator L, is of a very simple form;
specifically, it is a product of the Kronecker deltas, which contract indices
belonging to the same representation but to different M matrices. Thus L causes
the matrix multiplication of M matrices to be performed in a prescribed order in
each representation sector independently. In other words, M mixes, with some
weights, indices of different representations (braiding), whereas L sets the order
of the matrix multiplications in a representation sector. M depends on the metric
(area of S) and group-theoretic quantities, while the concrete form of L depends
on the topology of the overlaps. Thus the expectation value of the product of the
n Wilson loops is finally given by

<H WR,.(ci)> =[] .M,
i=1 o
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This analysis is a bit simplified and shortened but gives the flavor of the power of
the non-Abelian Stokes theorem in practical instances.

B. Three-Dimensional Topological Quantum Field Theory

Topological quantum field theory has become a fascinating and fashionable
subject in mathematical physics. At present, the main applications of topolo-
gical field theory are in mathematics (topology of low-dimensional manifolds)
rather than in physics. Its application to the issue of classification of knots and
links is one of the most interesting. To approach this problem, one usually tries
to somehow encode the topology of a knot or link . As was first noted by Witten
[23], the problem can be attacked by means of standard theoretical physics
techniques of quantum field theory. In particular, using three-dimensional
Chern—Simons gauge theory, one can derive not only all the well-known
polynomial invariants of knots and links but also many of their generalizations.
Most authors working in the topological field theory description of polynomial
invariants follow Witten’s original approach, which relies heavily on the
underlying conformal field theory structure. There is also a genuinely three-
dimensional covariant approach advocated in its perturbative version [24,25]
using the non-Abelian Stokes theorem in its operator formulation. We shall
sketch an application of the non-Abelian Stokes theorem to a genuinely three-
dimensional, nonperturbative, covariant path integral approach to polynomial
invariants of knots and links in the framework of (topological) quantum Chern—
Simons gauge field theory.

To begin, we introduce the classical topological Chern—Simons action on the
three-dimensional sphere $°

k 2
SCS:7J TI‘<A/\dA+A/\A/\A>
47‘[ S3 3

k » 2
= LS d3x g7 Tr (A,-@,-Ak + §AiAjAk) (44)

where k € Z*. The use of this equation is not obligatory. One could as well
choose the action of the so-called BF theory

k .
SBF = —J d?’xﬁljkTr(B,'ij) (45)
4TC 3 ’

where B; = B(x)T“ is an auxiliary gauge field, and now k € R,

To encode the topology of a link ¥ = {C;} into a path integral, we introduce
an auxiliary one-dimensional topological field theory (topological quantum
mechanics) in an external gauge field A, living on the corresponding loop C;.
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The classical action of this theory is chosen in the form [see Eq. (25)]

Sc,(A) = i(f diziDyz; (46)
Ci

where the multiplet of scalar fields Zz;,z; transforms into an irreducible
representation R;. The partition function corresponding to (46) has the following
standard form:

Zi(A) = JDZZ,- expliSc,(A)]

It is obvious that the observables Sc,(A) are akin to the Wilson loops.
We define the topological invariant of the link . as the (normalized)
expectation value

<HZi(A)> = Udu exp (iS)} _]Jdu exp (iS) HZ,(A) (47)

where S consists of Scg plus quantum terms, and the measure should also contain
the auxiliary fields. We can calculate (47) recursively, using the skein relations.
Thus, our present task reduces to the derivation of the corresponding skein
relation. To this end, we consider a pair of loops, say, C; and C,, where a part of
C,, forming a small loop ¢ (¢ = ON), is wrapped round C; (see Fig. 10). In other
words, C; pierces N at a point P. Such an arrangement can be interpreted as a
preliminary step toward finding the corresponding monodromy matrix M.
Having given the loop ¢, we can utilize the non-Abelian Stokes theorem [actually
the Abelian Stokes theorem for (46)] in its holomorphic version, obtaining
Eq. (32). In a general position, N and C; can intersect in a finite number of points,

,
>

Figure 10. C; and C,, where a part of Cy, forming a small loop £(¢ =
ON), is warpped around C,.
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and the contribution to the path integral coming from these points can be
explicitly calculated. We replace the curvature in (32) by the functional deri-
vative operator

4n )

Fa e —
i) = G Saa )

This substitution yields an equivalent expression, provided the order of terms in
(47) is such that the functional derivative can act on Scs to produce F. Using
formal translational invariance of the product measure DA, and functionally
integrating by parts in (47) with respect to A, we obtain, for each intersection
point P, the monodromy operator

4n
M = exp [E (Z1sz|)(zZT512)(P)} (48)
To calculate the matrix elements of (48), one utilizes the following scalar
product:

(f g) = % Jfg exp (zz)dzdz

This kind of the scalar product is implicit in our derivations of the path integral.
Expanding (48) in a power series, multiplying with respect to this scalar product,
and resumming, we get the monodromy matrix:

4n
M = (2122, M 2221) = exp (E 7 ® T;‘)
The square root of the monodromy matrix gives rise to the so-called braiding
matrix B responsible for a proper form of skein relations, yielding knot or link
invariants.
C. Other Applications

We could continue to develop the idea of the previous section and try to
generalize it to higher-dimensional (topological) theories. To this end we should
apply a generalization of the non-Abelian Stokes theorem to non-Abelian forms
of higher degree, for example, following the approach proposed in Eq. (39), and
yielding the resluts obtained in an earlier study [26].

Quite a different story is the possibility of applying the non-Abelian Stokes
theorem (in the coherent-state version) to computations in QCD (QCD string,
area low, etc.) [6,27,28] or gravity [29]. Since such calculations are posssible
only perturbatively, their results are not rigorously controllable and thus are
uncertain.
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IV. SUMMARY

In this short review we have addressed the main issues related to the non-
Abelian Stokes theorem. The two principal approaches (operator and path
integral) to the non-Abelian Stokes theorem have been formulated in their
simplest possible forms. A generalization for a knotted loop as well as a sugges-
tion concerning higher-degree forms have also been presented. Only nonper-
turbative applications of the non-Abelian Stokes theorem (to low-dimensional
gauge theories) have been described. The review is not comprehensive; rather, it
is directed toward topological aspects reflecting the author’s interests.
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I. INTRODUCTION

In this volume, Sachs [1] has demonstrated, using irreducible representations of
the Einstein group, that the electromagnetic field can propagate only in curved
spacetime, implying that the electromagnetic field tensor can exist only when
there is a nonvanishing curvature tensor K. Using this theory, Sachs has shown
that the structure of electromagnetic theory is in general non-Abelian. This is the
same overall conclusion as reached in O(3) electrodynamics [2], developed in the
second chapter of this volume. In this short review, the features common to Sachs
and O(3) electrodynamics are developed. The B® field of O(3) electrodynamics
is extracted from the quaternion-valued B"¥ equivalent in the Sachs theory; the
most general form of the vector potential is considered in both theories, the
covariant derivatives are compared in both theories, and the possibility of
extracting energy from the vacuum is considered in both theories.

469
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II. THE NON-ABELIAN STRUCTURE OF THE FIELD TENSOR

The non-Abelian component of the field tensor is defined through a metric ¢* that
is a set of four quaternion-valued components of a 4-vector, a 4-vector each of
whose components can be represented by a 2 x 2 matrix. In condensed notation:

¢ =(q",¢"" . ¢".¢") (1)

and the total number of components of ¢g" is 16. The covariant and second
covariant derivatives of g* vanish [1] and the line element is given by

ds = q"(x)dx, (2)
which, in special relativity (flat spacetime), reduces to
ds = o"dx, (3)

where G* is a 4-vector made up of Pauli matrices:

(N N N S

In the limit of special relativity

9" - ¢'¢"" — o"c’ — " (5)
where * denotes reversing the time component of the quaternion-valued g*. The
most general form of the non-Abelian part of the electromagnetic field tensor in
conformally curved spacetime is [1]

Vv 1 * vV *
s =§QR(q”qV -q"'q") (6)

To consider magnetic flux density components of F*V, O must have the units of
weber and R, the scalar curvature, must have units of inverse square meters. In
the flat spacetime limit, R = 0, so it is clear that the non-Abelian part of the field
tensor, Eq. (6), vanishes in special relativity. The complete field tensor F*Y
vanishes [1] in flat spacetime because the curvature tensor vanishes. These
considerations refute the Maxwell-Heaviside theory, which is developed in flat
spacetime, and show that O(3) electrodynamics is a theory of conformally curved
spacetime. Most generally, the Sachs theory is a closed field theory that, in
principle, unifies all four fields: gravitational, electromagnetic, weak, and strong.
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There exist generally covariant four-valued 4-vectors that are components of
q", and these can be used to construct the basic structure of O(3) electro-
dynamics in terms of single-valued components of the quaternion-valued metric
g". Therefore, the Sachs theory can be reduced to O(3) electrodynamics, which
is a Yang-Mills theory [3,4]. The empirical evidence available for both the
Sachs and O(3) theories is summarized in this review, and discussed more
extensively in the individual reviews by Sachs [1] and Evans [2]. In other words,
empirical evidence is given of the instances where the Maxwell-Heaviside
theory fails and where the Sachs and O(3) electrodynamics succeed in descri-
bing empirical data from various sources. The fusion of the O(3) and Sachs
theories provides proof that the B> field [2] is a physical field of curved
spacetime, which vanishes in flat spacetime (Maxwell-Heaviside theory [2]).

In Eq. (5), the product g*¢"* is quaternion-valued and non-commutative, but
not antisymmetric in the indices p and v. The B® field and structure of O(3)
electrodynamics must be found from a special case of Eq. (5) showing that O(3)
electrodynamics is a Yang—Mills theory and also a theory of general relativity
[1]. The important conclusion reached is that Yang-Mills theories can be
derived from the irreducible representations of the Einstein group. This result is
consistent with the fact that all theories of physics must be theories of general
relativity in principle. From Eq. (1), it is possible to write four-valued, generally
covariant, components such as

ax = (4% 9% 9% 4%) (7)

which, in the limit of special relativity, reduces to

ox = (0,0,0,0) (8)
Similarly, one can write
ar = (4y: 9y 4y+4y) — (0,0, 67,0) 9)
and use the property
dxqy — qvqx — OxOy — OyOx (10)

in the limit of special relativity. The only possibility from Egs. (7) and (9) is that

axay — qyay = 2iq;
| (11)

OxOy — OyOx = 2iGZ
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where ¢! is single valued. In a 2 x 2 matrix representation, this is

0 gl 0 1
d=[3 4] =o=1]0 3] (12)
Similarly
0 —ig? o —i
2 Y
= Gy = 13
o liq% O]HY [l 0} )
3
3 az 0 1 0:|
% [0 _q%] =y (14)

Therefore, there exist cyclic relations with O(3) symmetry
axdy — avdx = 2id;

ayay — a9y = 2iqy (15)

aax — daxdy = 2iqy
and the structure of O(3) electrodynamics [2] begins to emerge. If the space basis
is represented by the complex circular ((1),(2),(3)) then Egs. (15) become

1) (2)x 2) (1)x 2 3
2) (3)x 3) (2)x .

3 * 3)x . (2
0y —ax'a; = 2igy

These are cyclic relations between single-valued metric field components in the
non-Abelian part [Eq. (6)] of the quaternion-valued F*V. Equation (16) can be put
in vector form

(1)
2

@) —;

G —;

q" x g g%

g% xq g (17)
4 x gV = ig®"

where the asterisk denotes ordinary complex conjugation in Eq. (17) and
quaternion conjugation in Eq. (16).

Equation (17) contains vector-valued metric fields in the complex basis
((1),(2),(3)) [2]. Specifically, in O(3) electrodynamics, which is based on the
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existence of two circularly polarized components of electromagnetic radiation

(2]

o) = i+ exp (i9) (18)

¢ = (i) e (i) (19)
giving

¢¥ =k (20)
and

B0 _ %QRq@) (21

Therefore, the B® field [2] is proved from a particular choice of metric using the
irreducible representations of the Einstein group [1]. It can be seen from Eq. (21)
that the B® field is the vector-valued metric field ¢*> within a factor % OR. This
result proves that B> vanishes in flat spacetime, because R = 0 in flat spacetime.
If we write

1
B® = gOR (22)

then Eq. (17) becomes the B cyclic theorem [2] of O(3) electrodynamics:

B « B@ — ;O g3«

(23)
Since O(3) electrodynamics is a Yang—Mills theory [3,4], we can write
q=q"i+q%+ 4% (24)
from which it follows [5] that
D"(Dn.g) =0; Dug=0 (25)

Thus the first and second covariant derivatives vanish [1].
The Sachs theory [1] is able to describe parity violation and spin—spin
interactions from first principles [6] on a classical level; it can also explain
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several problems of neutrino physics, and the Pauli exclusion principle can be
derived from it classically. The quaternion form of the theory [1], which is the
basis of this review chapter, predicts small but nonzero masses for the neutrino
and photon; describes the Planck spectrum of blackbody radiation classically;
describes the Lamb shifts in the hydrogen atom with precision equivalent to
quantum electrodynamics, but without renormalization of infinities; proposes
grounds for charge quantization; predicts the lifetime of the muon state;
describes electron—-muon mass splitting; predicts physical longitudinal and time-
like photons and fields; and has built-in P, C, and T violation.

To this list can now be added the advantages of O(3) over U(1) electro-
dynamics, advantages that are described in the review by Evans in Part 2 of this
three-volume set and by Evans, Jeffers, and Vigier in Part 3. In summary, by
interlocking the Sachs and O(3) theories, it becomes apparent that the advan-
tages of O(3) over U(1) are symptomatic of the fact that the electromagnetic
field vanishes in flat spacetime (special relativity), if the irreducible represen-
tations of the Einstein group are used.

III. THE COVARIANT DERIVATIVE

The covariant derivative in the Sachs theory [1] is defined by the spin—affine
connection:

DP =0P + QP (26)
where
1 *
O =7 (0ug” +I%4%)g; (27)

and where Fgu is the Christoffel symbol. The latter can be defined through the
reducible metrics g, as follows [1]:

1

I, = Egpx(a”gm + 0ugp. — 018op) (28)

In O(3) electrodynamics, the covariant derivative on the classical level is
defined by

D, =0, —igA, =0, — igM“Aﬁ (29)

where M are rotation generators [2] of the O(3) group, and where a is an internal

index of Yang—Mills theory. The complete vector potential in O(3) electro-
dynamics is defined by

A=AWe® L A@e() L 403)0) (30)
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where e“)7 e , ¢ are unit vectors of the complex circular basis ((1),(2),(3)) [2].
If we restrict our discussion to plane waves, then the vector potential is

A
D= 7 (ii +J) exp (id) (31)

where ¢ is the electromagnetic phase. Therefore, there are O(3) electrodynamics
components such as

A0 A0
Ag(l) _t eli®). Ag}) _ i) (32)
V2 V2

In order to reduce the covariant derivative in the Sachs theory to the O(3)
covariant derivative, the following classical equation must hold:

. 1 .
—igAu = ; (Dug")q, (33)

This equation can be examined component by component, giving relations such
as

e 1 Dy, (1
—ighy) =~ (Dxgy)Ay’ (34)
where we have used
1 . (1
ay) = —iqy’ (35)
Using [2]
K
8= A0) (36)
we obtain
. 1 )y (1 i Dy (1
qug() = Z(qu(y))qgv) = *Z(qu(y))qg() (37)

so that the wave number « is defined by

1
k=~ Dxqy (38)

Therefore, we can write

Dyl = D1g'™ = 0,¢' 4+ T}, * (39)
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and the wave number becomes the following sum:
1
= - LT 4 Thg0)

Using the identities

the wave number becomes

1 (il it I i¢)
K=——|—=e€e"+—=¢
4 (\/i V2

(43)

Introducing the definition (28) of the Christoffel symbol, it is possible to write

1
Fh:*

zglk(algm + 01812 — 01811)

{INE
= _o13p
28 z811 +

so that
i )
K= - 8078116 + - -

8v2

This equation is satisfied by the following choice of metric:

1 i
gu=5i g =-8v2e
Similarly

1
F;1 =5

zglx(azgm + 01821 — 01812)

L 45
— _ol39
28 7812 +

so that the wave number can be expressed as

K .
13 i
K=—"=8 812¢€

8v/2

¢
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an equation that is satisfied by the following choice of metric:

g1 = %; gt =-8v2e (49)

Therefore, it is always possible to write the covariant derivative of the Sachs
theory as an O(3) covariant derivative of O(3) electrodynamics. Both types of
covariant derivative are considered on the classical level.

IV. ENERGY FROM THE VACUUM

The energy density in curved spacetime is given in the Sachs theory by the
quaternion-valued expression

Eng = A"} (50)

where A" is the quaternion-valued vector potential and J| is the quaternion-
valued 4-current as given by Sachs [1]. Equation (50) is an elegant and deeply
meaningful expression of the fact that electromagnetic energy density is
available from curved spacetime under all conditions; the distinction between
field and matter is lost, and the concepts of ““point charge’” and ““point mass’ are
not present in the theory, as these two latter concepts represent infinities of the
closed-field theory developed by Sachs [1] from the irreducible representations
of the Einstein group. The accuracy of expression (50) has been tested [1] to the
precision of the Lamb shifts in the hydrogen atom without using renormalization
of infinities. The Lamb shifts can therefore be viewed as the results of
electromagnetic energy from curved spacetime.

Equation (50) is geometrically a scalar and algebraically quaternion-valued
equation [1], and it is convenient to develop it using the identity [1]

419" +q°q; = 2000 (51)
with the indices defined as
y=K=pu (52)
to obtain
q"q, = cod" (53)

Using summation over repeated indices on the right-hand side, we obtain the
following result:

q"q, = 409 (54)
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In the limit of flat spacetime
q"g, — o*o, = 4oy (55)

where the right-hand side is again a scalar invariant geometrically and a
quaternion algebraically.
Therefore, the energy density (50) assumes the simple form

AHJ:; = 4A()JSG() (56)

Ap and Jj are magnitudes of A" and J|. In flat spacetime, this electromagnetic
energy density vanishes because the curvature tensor vanishes. Therefore, in the
Maxwell-Heaviside theory, there is no electromagnetic energy density from the
vacuum and the field does not propagate through flat spacetime (the vacuum of
the Maxwell-Heaviside theory) because of the absence of curvature. The B
field depends on the scalar curvature R in Eq. (21), and so the B® field and O(3)
electrodynamics are theories of conformally curved spacetime. To maximize the
electromagnetic energy density, the curvature has to be maximized, and the
maximization of curvature may be the result of the presence of a gravitating
object. In general, wherever there is curvature, there is electromagnetic energy
that may be extracted from curved spacetime using a suitable device such as a
dipole [7].

Therefore, we conclude that electromagnetic energy density exists in curved
spacetime under all conditions, and devices can be constructed [8] to extract this
energy density.

The quaternion-valued vector potential A* and the 4-current J| both depend
directly on the curvature tensor. The electromagnetic field tensor in the Sachs
theory has the form

* * 1 * *
Fuy =0,A, — 0A, + g OR(quq, — qvq;,) (57)

where the quaternion-valued vector potential is defined as

Ay = %qi} J (kg + ¢ ) dx® (58)
The most general form of the vector potential is therefore given by Eq. (58), and
if there is no curvature, the vector potential vanishes.

Similarly, the 4-current J; depends directly on the curvature tensor K, [11,
and there can exist no 4-current in the Heaviside—-Maxwell theory, so the
4-current cannot act as the source of the field. In the closed-field theory,
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represented by the irreducible representations of the Einstein group [1], charge
and current are manifestations of curved spacetime, and can be regarded as the
results of the field. This is the viewpoint of Faraday and Maxwell rather than
that of Lorentz. It follows that there can exist a vacuum 4-current in general
relativity, and the implications of such a current are developed by Lehnert [9].
The vacuum 4-current also exists in O(3) electrodynamics, as demonstrated by
Evans and others [2,9]. The concept of vacuum 4-current is missing from the flat
spacetime of Maxwell-Heaviside theory.

In curved spacetime, both the electromagnetic and curvature 4-tensors may
have longitudinal as well as transverse components in general and the
electromagnetic field is always accompanied by a source, the 4-current J;. In
the Maxwell-Heaviside theory, the field is assumed incorrectly to propagate
through flat spacetime without a source, a violation of both causality and
general relativity. As shown in several reviews in this three-volume set,
Maxwell-Heaviside theory and its quantized equivalent appear to work well
only under certain incorrect assumptions, and quantum electrodynamics is not a
physical theory because, as pointed out by Dirac and many others, it contains
infinities. Sachs [1] has also considered and removed the infinite self-energy of
the electron by a consideration of general relativity.

The O(3) electrodynamics developed by Evans [2], and its homomorph, the
SU(2) electrodynamics of Barrett [10], are substructures of the Sachs theory
dependent on a particular choice of metric. Both O(3) and SU(2) electro-
dynamics are Yang—Mills structures with a Wu—Yang phase factor, as discussed
by Evans and others [2,9]. Using the choice of metric (17), the electromagnetic
energy density present in the O(3) curved spacetime is given by the product

where the vector potential and 4-current are defined in the ((1),(2),(3)) basis in
terms of the unit vectors similar to those in Eq. (2), and as described elsewhere in
this three-volume set [2]. The extraction of electromagnetic energy density from
the vacuum is also possible in the Lehnert electrodynamics as described in his
review in the first chapter of this volume (i.e., here, in Part 2 of this three-volume
set). The only case where extraction of such energy is not possible is that of the
Maxwell-Heaviside theory, where there is no curvature.

The most obvious manifestation of energy from curved spacetime is
gravitation, and the unification of gravitation and electromagnetism by Sachs
[1] shows that electromagnetic energy emanates under all circumstances from
spacetime curvature. This principle has been tested to the precision of the Lamb
shifts of H as discussed already. This conclusion means that the electromagnetic
field does not emanate from a “point charge,” which in general relativity can be
present only when the curvature becomes infinite. The concept of *“point
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charge” is therefore unphysical, and this is the basic reason for the infinite
electron self-energy in the Maxwell-Heaviside theory and the infinities of
quantum electrodynamics, a theory rejected by Einstein, Dirac, and several
other leading scientists of the twentieth century. The electromagnetic energy
density inherent in curved spacetime depends on curvature as represented by the
curvature tensor discussed in the next section. In the Einstein field equation of
general relativity, which comes from the reducible representations of the
Einstein group [1], the canonical energy momentum tensor of gravitation
depends on the Einstein curvature tensor.

Sachs [1] has succeeded in unifying the gravitational and electromagnetic
fields so 