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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

1. PRIGOGINE
STUART A. RicE
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PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the
series, Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume
119 is largely a dialogue between two schools of thought, one school concerned
with quantum optics and Abelian electrodynamics, the other with the emerging
subject of non-Abelian electrodynamics and unified field theory. In one of the
review articles in the third part of this volume, the Royal Swedish Academy
endorses the complete works of Jean-Pierre Vigier, works that represent a view
of quantum mechanics opposite that proposed by the Copenhagen School. The
formal structure of quantum mechanics is derived as a linear approximation for
a generally covariant field theory of inertia by Sachs, as reviewed in his article.
This also opposes the Copenhagen interpretation. Another review provides
reproducible and repeatable empirical evidence to show that the Heisenberg
uncertainty principle can be violated. Several of the reviews in Part 1 contain
developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories
distinct from the Maxwell-Heaviside theory, the predominant paradigm at this
stage in the development of science. Other review articles develop electro-
dynamics from a topological basis, and other articles develop conventional or
U(1) electrodynamics in the fields of antenna theory and holography. There are
also articles on the possibility of extracting electromagnetic energy from
Riemannian spacetime, on superluminal effects in electrodynamics, and on
unified field theory based on an SU(2) sector for electrodynamics rather than a
U(1) sector, which is based on the Maxwell-Heaviside theory. Several effects
that cannot be explained by the Maxwell-Heaviside theory are developed using
various proposals for a higher-symmetry electrodynamical theory. The volume
is therefore typical of the second stage of a paradigm shift, where the prevailing
paradigm has been challenged and various new theories are being proposed. In
this case the prevailing paradigm is the great Maxwell-Heaviside theory and its
quantization. Both schools of thought are represented approximately to the same
extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of
opinion is represented so that a consensus will eventually emerge. The
prevailing paradigm (Maxwell-Heaviside theory) is ably developed by several
groups in the field of quantum optics, antenna theory, holography, and so on, but
the paradigm is also challenged in several ways: for example, using general
relativity, using O(3) electrodynamics, using superluminal effects, using an

iX



X PREFACE

extended electrodynamics based on a vacuum current, using the fact that
longitudinal waves may appear in vacuo on the U(1) level, using a reproducible
and repeatable device, known as the motionless electromagnetic generator,
which extracts electromagnetic energy from Riemannian spacetime, and in
several other ways. There is also a review on new energy sources. Unlike
Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and
many thousands of papers are reviewed by both schools of thought. Much of the
evidence for challenging the prevailing paradigm is based on empirical data,
data that are reproducible and repeatable and cannot be explained by the Max-
well-Heaviside theory. Perhaps the simplest, and therefore the most powerful,
challenge to the prevailing paradigm is that it cannot explain interferometric and
simple optical effects. A non-Abelian theory with a Yang-Mills structure is
proposed in Part 2 to explain these effects. This theory is known as O(3)
electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous
logistical support and to the Fellows and Emeriti of the Alpha Foundation’s
Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at
the U.S. Department of Energy is thanked for a Website reserved for some of
this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MyRrRoN W. EvaNs

Ithaca, New York
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2 M. W. EVANS AND S. JEFFERS
I. INTRODUCTION

If one takes as the birth of the quantum theory of light, the publication of
Planck’s famous paper solving the difficulties inherent in the blackbody spectrum
[1], then we are currently marking its centenary. Many developments have
occurred since 1900 or so and are briefly reviewed below. (See Selleri [27] or
Milloni [6] for a more comprehensive historical review). The debates concerning
wave—particle duality are historically rooted in the seventeenth century with the
publication of Newton’s Optiks [2] and the Treatise on Light by Christian
Huygens [3]. For Huygens, light was a form of wave motion propagating through
an ether that was conceived as a substance that was ‘“‘as nearly approaching to
perfect hardness and possessing a springiness as prompt as we choose.” For
Newton, however, light comprised material particles and he argues, contra
Huygens, “Are not all hypotheses erroneous, in which Light is supposed to
consist of Pression, or Motion propagated through a Fluid medium?” (see
Newton [2], Query 28). Newton attempts to refute Huygens’ approach by
pointing to the difficulties in explaining double refraction if light is simply a form
of wave motion and asks, “Are not the Rays of Light very small bodies emitted
from shining substances? For such bodies will pass through uniform Mediums in
right Lines without bending into Shadow, which is the Nature of the Rays of
Light?”” (Ref. 2, Query 29). The corpuscular theory received a major blow in the
nineteenth century with the publication of Fresnel’s essay [4] on the diffraction
of light. Poisson argued on the basis of Fresnel’s analysis that a perfectly round
object should diffract so as to produce a bright spot on the axis behind it. This
was offered as a reductio ad absurdum argument against wave theory. However,
Fresnel and Arago carried out the actual experiment and found that there is
indeed a diffracted bright spot. The nineteenth century also saw the advent of
accurate methods for the determination of the speed of light by Fizeau and
Foucault that were used to verify the prediction from Maxwell’s theory relating
the velocity of light to known electric and magnetic constants. Maxwell’s
magnificent theory of electromagnetic waves arose from the work of Oersted,
Ampere, and Faraday, which proved the intimate interconnection between
electric and magnetic phenomena.

This volume discusses the consequences of modifying the traditional, classi-
cal view of light as a transverse electromagnetic wave whose electric and mag-
netic field components exist only in a plane perpendicular to the axis of
propagation, and posits the existence of a longitudinal magnetic field com-
ponent. These considerations are of relatively recent vintage, however [5].

The corpuscular view was revived in a different form early in twentieth cen-
tury with Planck’s solution of the blackbody problem and Einstein’s adoption of
the photon model in 1905. Milloni [6] has emphasized the fact that Einstein’s
famous 1905 paper [7] “Concerning a heuristic point of view toward the
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emission and transformation of light”” argues strongly for a model of light that
simultaneously displays the properties of waves and particles. He quotes Einstein:

The wave theory of light, which operates with continuous spatial functions, has
worked well in the representation of purely optical phenomena and will probably
never be replaced by another theory. It should be kept in mind, however, that the
optical observations refer to time averages rather than instantaneous values. In
spite of the complete experimental confirmation of the theory as applied to
diffraction, reflection, refraction, dispersion, etc., it is still conceivable that the
theory of light which operates with continuous spatial functions may lead to
contradictions with experience when it is applied to the phenomena of emission
and transformation of light.

According to the hypothesis that I want here to propose, when a ray of light
expands starting from a point, the energy does not distribute on ever increasing
volumes, but remains constituted of a finite number of energy quanta localized in
space and moving without subdividing themselves, and unable to be absorbed or
emitted partially.

This is the famous paper where Einstein, adopting Planck’s idea of light
quanta, gives a complete account of the photoelectric effect. He predicts the lin-
ear relationship between radiation frequency and stopping potential: ““‘As far as [
can see, there is no contradiction between these conceptions and the properties
of the photoelectric effect observed by Herr Lenard. If each energy quantum of
the incident light, independently of everything else, delivers its energy to elec-
trons, then the velocity distribution of the ejected electrons will be independent
of the intensity of the incident light. On the other hand the number of electrons
leaving the body will, if other conditions are kept constant, be proportional to
the intensity of the incident light.”

Textbooks frequently cite this work as strong empirical evidence for the ex-
istence of photons as quanta of electromagnetic energy localized in space and
time. However, it has been shown that [8] a complete account of the photo-
electric effect can be obtained by treating the electromagnetic field as a classical
Maxwellian field and the detector is treated according to the laws of quantum
mechanics.

In view of his subsequent discomfort with dualism in physics, it is ironic that
Einstein [9] gave a treatment of the fluctuations in the energy of electromagnetic
waves that is fundamentally dualistic insofar that, if the Rayleigh—Jeans formula
is adopted, the fluctuations are characteristic of electromagnetic waves. How-
ever, if the Wien law is used, the fluctuations are characteristic of particles.
Einstein made several attempts to derive the Planck radiation law without invok-
ing quantization of the radiation but without success. There was no alternative
but to accept the quantum. This raised immediately the difficult question as to
how such quanta gave rise to interference phenomena. Einstein suggested that
perhaps light quanta need not interfere with themselves, but might interfere with
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other quanta as they propagated. This suggestion was soon ruled out by inter-
ference experiments conduced at extremely low light levels. Dirac, in his
well-known textbook [10] on quantum mechanics, stated “Each photon inter-
feres only with itself. Interference between two different photons never occurs.”
The latter part of this statement is now known to be wrong [11]. The advent of
highly coherent sources has enabled two-beam interference with two separate
sources. In these experiments, the classic interference pattern is not observed
but rather intensity correlations between the two beams are measured [12].
The recording of these intensity correlations is proof that the electromagnetic
fields from the two lasers have superposed. As Paul [11] argues, any experiment
that indicates that such a superposition has occurred should be called an inter-
ference experiment.

Taylor [13] was the first to report on two-beam interference experiments un-
dertaken at extremely low light levels such that one can assert that, on average,
there is never more than one photon in the apparatus at any given time. Such
experiments have been repeated many times. However, given that the sources
used in these experiments generated light beams that exhibited photon bunching
[14], the basic assumption that there is only ever one photon in the apparatus at
any given time is not sound. More recent experiments using sources that emit
single-photon states have been performed [15-17].

In 1917 Einstein [18] wrote a paper on the dualistic nature of light in which
he discusses emission ‘‘without excitation from external causes,” in other words
stimulated emission and also spontaneous absorption and emission. He derives
Planck’s formula but also discusses the recoil of molecules when they emit
photons. It is the latter discussion that Einstein regarded as the most significant
aspect of the paper: “If a radiation bundle has the effect that a molecule struck
by it absorbs or emits a quantity of energy Av in the form of radiation (ingoing
radiation), then a momentum Ahv/c is always transferred to the molecule. For an
absorption of energy, this takes place in the direction of propagation of the
radiation bundle; for an emission, in the opposite direction.”

In 1923, Compton [19] gave convincing experimental evidence for this pro-
cess: “The experimental support of the theory indicates very convincingly that a
radiation quantum carries with itself, directed momentum as well as energy.”
Einstein’s dualism raises the following difficult question: If the particle carries
all the energy and momentum then, in what sense can the wave be regarded as
real? Einstein’s response was to refer to such waves as “ghost fields” (Gespen-
sterfelder). Such waves are also referred to as “empty” - a wave propagating in
space and time but (virtually) devoid of energy and momentum. If described
literally, then such waves could not induce any physical changes in matter.
Nevertheless, there have been serious proposals for experiments that might
lead to the detection of “empty” waves associated with either photons [20]
or neutrons [21]. However, by making additional assumptions about the nature
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of such “empty” waves [22], experiments have been proposed that might reveal
their actual existence. One such experiment [23] has not yielded any such
definitive evidence. Other experiments designed to determine whether empty
waves can induce coherence in a two-beam interference experiment have not
revealed any evidence for their existence [24], although Croca [25] now argues
that this experiment should be regarded as inconclusive as the count rates were
very low.

Controversies still persist in the interpretation of the quantum theory of light
and indeed more generally in quantum mechanics itself. This happens notwith-
standing the widely held view that all the difficult problems concerning the cor-
rect interpretation of quantum mechanics were resolved a long time ago in the
famous encounters between Einstein and Bohr. Recent books have been devoted
to foundational issues [26] in quantum mechanics, and some seriously question
Bohrian orthodoxy [27,28]. There is at least one experiment described in the
literature [29] that purports to do what Bohr prohibits: demonstrate the simul-
taneous existence of wave and particle-like properties of light.

Einstein’s dualistic approach to electromagnetic radiation was generalized by
de Broglie [30] to electrons when he combined results from the special theory of
relativity (STR) and Planck’s formula for the energy of a quantum to produce
his famous formula relating wavelength to particle momentum. His model of a
particle was one that contained an internal periodic motion plus an external
wave of different frequency that acts to guide the particle. In this model, we
have a wave—particle unity—both objectively exist. To quote de Broglie [31]:
“The electron ... must be associated with a wave, and this wave is no myth;
its wavelength can be measured and its interferences predicted.” De Broglie’s
approach to physics has been described by Lochak [32] as quoted in Selleri [27]:

Louis de Broglie is an intuitive spirit, concrete and realist, in love with simple
images in three-dimensional space. He does not grant ontological value to mathe-
matical models, in particular to geometrical representations in abstract spaces; he
does not consider and does not use them other than as convenient mathematical
instruments, among others, and it is not in their handling that his physical intuition
is directly applied; faced with these abstract representations, he always keeps in
mind the idea of all phenomena actually taking place in physical space, so that
these mathematical modes of reasoning have a true meaning in his eyes only
insofar as he perceives at all times what physical laws they correspond to in usual
space.

De Broglie’s views are not widely subscribed to today since as with “empty”’
waves, there is no compelling experimental evidence for the existence of phy-
sical waves accompanying the particle’s motion (see, however, the discussion in
Selleri [27]). Models of particles based on de Broglian ideas are still advanced
by Vigier, for example [33].
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As is well known, de Broglie abandoned his attempts at a realistic account of
quantum phenomena for many years until David Bohm’s discovery of a solution
of Schrodinger’s equation that lends itself to an interpretation involving a phy-
sical particle traveling under the influence of a so-called quantum potential.

As de Broglie stated:

For nearly twenty-five years, I remained loyal to the Bohr-Heisenberg view, which
has been adopted almost unanimously by theorists, and I have adhered to it in my
teaching, my lectures and my books. In the summer of 1951, I was sent the
preprint of a paper by a young American physicist David Bohm, which was
subsequently published in the January 15, 1952 issue of the Physical Review. In
this paper, Mr. Bohm takes up the ideas I had put forward in 1927, at least in one
of the forms I had proposed, and extends them in an interesting way on some
points. Later, J.P. Vigier called my attention to the resemblance between a
demonstration given by Einstein regarding the motion of particles in General
Relativity and a completely independent demonstration I had given in 1927 in an
exercise I called the “theory of the double solution.”

A comprehensive account of the views of de Broglie, Bohm, and Vigier is
given in Jeffers et al. [34]. In these models, contra Bohr particles actually do
have trajectories. Trajectories computed for the double-slit experiment show
patterns that reproduce the interference pattern observed experimentally [35].
Furthermore, the trajectories so computed never cross the plane of symmetry
so that one can assert with certainty through which the particles traveled.
This conclusion was also reached by Prosser [36,37] in his study of the double-
slit experiment from a strictly Maxwellian point of view. Poynting vectors
were computed whose distribution mirrors the interference pattern, and these
never cross the symmetry plane as in the case of the de Broglie-Bohm—Vigier
models. Prosser actually suggested an experimental test of this feature of his
calculations. The idea was to illuminate a double-slit apparatus with very short
microwave pulses and examine the received radiation at a suitable point off-axis
behind the double slits. Calculations showed that for achievable experimental
parameters, one could detect either two pulses if the orthodox view were cor-
rect, or only one pulse if the Prosser interpretation were correct. However,
further investigation [38] showed that the latter conclusion was not correct.
Two pulses would be observed, and their degree of separation (i.e., distinguish-
ability) would be inversely related to the degree of contrast in the interference
fringes.

Contemporary developments include John Bell’s [39] discovery of his fa-
mous inequality that is predicated on the assumptions of both locality and
realism. Bell’s inequality is violated by quantum mechanics, and consequently,
it is frequently argued, one cannot accept quantum mechanics, realism, and
locality. Experiments on correlated particles appear to demonstrate that the Bell
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inequalities are indeed violated. Of the three choices, the most acceptable one is
to abandon locality. However, Afriat and Selleri [40] have extensively reviewed
both the current theoretical and experimental situation regarding the status of
Bell’s inequalities. They conclude, contrary to accepted wisdom, that one can
construct local and realistic accounts of quantum mechanics that violate Bell’s
inequalities, and furthermore, there remain several loopholes in the experiments
that have not yet been closed that allow for local and realist interpretations. No
actual experiment that has been performed to date has conclusively demon-
strated that locality has to be abandoned. However, experiments that approxi-
mate to a high degree the original gedanken experiment discussed by David
Bohm, and that potentially close all known loopholes, will soon be undertaken.
See the review article by Fry and Walther [41]. To quote these authors: “Quan-
tum mechanics, even 50 years after its formulation, is still full of surprises.”
This underscores Einstein’s famous remark: “All these years of conscious
brooding have brought me no nearer to the answer to the question ‘“What are
light quanta?”” Nowadays, every Tom, Dick, and Harry thinks he knows it, but
he is mistaken.”

II. THE PROCA EQUATION

The first inference of photon mass was made by Einstein and de Broglie on the
assumption that the photon is a particle, and behaves as a particle in, for example,
the Compton and photoelectric effects. The wave—particle duality of de Broglie
is essentially an extension of the photon, as the quantum of energy, to the photon,
as a particle with quantized momentum. The Beth experiment in 1936 showed
that the photon has angular momentum, whose quantum is 7. Other fundamental
quanta of the photon are inferred in Ref. 42. In 1930, Proca [43] extended the
Maxwell-Heaviside theory using the de Broglie guidance theorem:

h(&)o :m062 (1)

where my is the rest mass of the photon and mqc? is its rest energy, equated to the
quantum of rest energy /wo. The original derivation of the Proca equation
therefore starts from the Einstein equation of special relativity:

22
prpu = mge (2a)
The usual quantum ansatz is applied to this equation to obtain a wave equation:

0
En = ilhi—: = —ih 2b
n=ihg; P iV (2b)



8 M. W. EVANS AND S. JEFFERS

This is an example of the de Broglie wave—particle duality. The resulting wave
equation is

(0+25 ) =0 )

where s is a wave function, whose meaning was first inferred by Born in 1926. If
the wave function is a scalar, Eq. (3) becomes the Klein—-Gordon equation. If s is
a 2-spinor, Eq. (3) becomes the van der Waerden equation, which can be related
analytically to the Dirac equation, and if \ is the electromagnetic 4-potential A*,
Eq. (3) becomes the Proca equation:

i moc’ ’ i
DAt = (=) 4 (4)

So AH can act as a wave function and the Proca equation can be regarded as a
quantum equation if A" is a wave function in configuration space, and as a
classical equation in momentum space.

It is customary to develop the Proca equation in terms of the vacuum charge
current density

N\ 2
1
A" = — <m(})ic > AY = %A = S—OJ”(Vac) (5)

The potential A" therefore has a physical meaning in the Proca equation because
it is directly proportional to J"(vac). The Proca equations in the vacuum are
therefore

o\ 2
0uF™ + <m‘;; ) A = (6)
3uA* =0 (7)

and, as described in the review by Evans in Part 2 of this compilation [44], these
have the structure of the Panofsky, Phillips, Lehnert, Barrett, and O(3) equations,
a structure that can also be inferred from the symmetry of the Poincaré group
[44]. Lehnert and Roy [45] self-consistently infer the structure of the Proca
equations from their own equations, which use a vacuum charge and current.

The problem with the Proca equation, as derived originally, is that it is not
gauge-invariant because, under the U(1) gauge transform [46]

A At Lo (8)
8
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the left-hand side of Eq. (4) is invariant but an arbitrary quantity éa”A is added to
the right-hand side. This is paradoxical because the Proca equation is well
founded in the quantum ansatz and the Einstein equation, yet violates the funda-
mental principle of gauge invariance. The usual resolution of this paradox is to
assume that the mass of the photon is identically zero, but this assumption leads
to another paradox, because a particle must have mass by definition, and the
wave-particle dualism of de Broglie becomes paradoxical, and with it, the basis
of quantum mechanics.

In this section, we suggest a resolution of this >70-year-old paradox using
0O(3) electrodynamics [44]. The new method is based on the use of covariant
derivatives combined with the first Casimir invariant of the Poincaré group.
The latter is usually written in operator notation [42,46] as the invariant
P, P", where P" is the generator of spacetime translation:

. "
PH = H = —
i0 P 9)

The ordinary derivative in gauge theory becomes the covariant derivative
Oy — D, =0, —igA, (10)

for all gauge groups. The generator D, is a generator of the Poincaré group
because it obeys the Jacobi identity

> _[Do.[Dv.Dy]] =0 (11)

oV,

and the covariant derivative (10) can be regarded as a sum of spacetime
translation generators.
The basic assumption is that the photon acquires mass through the invariant

D,D"*y =0 (12)
for any gauge group. This equation can be developed for any gauge group as
(0, — igAy) (" + igA" )W =0 (13)
and can be expressed as
O — igA, " + igdy (AM) + g?A, AM)
=0
= [ — igA, MV + igyd,A* + ig MO, + g2 A, AN (14)

= (O + igdu A" + g*A,AM )
=0
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This equation reduces to
(O + <) = —igd, A"V (15)
for any gauge group because

K

g=qwi  AuAt =4 (16)

In the plane-wave approximation:

0uAF =0 (17a)
and the Proca equation for any gauge group becomes
(O+&)y=0 (17b)

for any gauge group.

Therefore Eq. (18) has been shown to be an invariant of the Poincaré group,
Eq. (12), and a product of two Poincaré covariant derivatives. In momentum
space, this operator is equivalent to the Einstein equation under any condition.
The conclusion is reached that the factor g is nonzero in the vacuum.

In gauge theory, for any gauge group, however, a rotation

¥ =ty =5y (18)

in the internal gauge space results in the gauge transformation of A, as follows
g _
A, = SA,S™ —g(aus)s ! (19)

and to construct a gauge-invariant Proca equation from the operator (16), a
search must be made for a potential A, that is invariant under gauge trans-
formation. It is not possible to find such a potential on the U(1) level because the
inhomogeneous term is always arbitrary. On the O(3) level, however, the
potential can be expressed as

Ay = AL 4 4D | AG)C) (20)

if the internal gauge space is a physical space with O(3) symmetry described in
the complex circular basis ((1),(2),(3)) [3]. A rotation in this physical gauge
space can be expressed in general as

W = exp (IMUA“(x))y 1)
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where M“ are the rotation generators of O(3) and where AW A® and A®) are
angles.
Developing Eq. (13), we obtain

(0 — igA(M) (0" + ig A" )y
(0 — igAP) (" + ig A"V} =0 (22)
(0, — igAP) (0" 4 igA"® )y =0

W W

0

The eigenfunction \y may be written in general as the O(3) vector
VE (23)
and under gauge transformation
AY = exp (iIM A% (x*))AY (24)
from Eq. (21). Here, A", A and A®) are angles in the physical internal gauge

space of O(3) symmetry.
Therefore Eqgs. (22) become

1
[°AY = —PAY = S—OJV(vac) (25)
where
(@)
I = <p<'>,J) i=1,2,3 (26)
c
and Egs. (25) become
FAO)
0A"W = —2av0 = ” (27)
v(2)
A = a0 =7 (28)
€0
0A'® =0 (29)

It can be seen that the photon mass is carried by A¥() and AV(?), but not by AV,
This result is also obtained by a different route using the Higgs mechanism in
Ref. 42, and is also consistent with the fact that the mass associated with A(®)
corresponds with the superheavy boson inferred by Crowell [42], reviewed in
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Ref. 42 and observed in a LEP collaboration [42]. The effect of a gauge
transformation on Eqgs. (27)—(29) is as follows:

O <A§}> + la”A<1>) =2 (Aff) + laMA“)) (30)
8 8

O (Aff) + lauA@)) = —«? (Aff) + lauA@)) (31)
8 8

O <A§§> + ;auA“)) =0 (32)

Equations (30) and (31) are eigenequations with the same eigenvalue, —«2, as

Egs. (27) and (28). On the O(3) level, the eigenfunctions AELI) + é@HA(l) are not
arbitrary because A(") and A®) are angles in a physical internal gauge space. The
original Eq. (12) is gauge-invariant, however, because on gauge transformation

2 iy 247 AR, r_ K
gAAY — g" A AM & =10y (33)
and
D, D"y — D, D" (SYy) = YD, D" S+ SD, D" =0 (34)

because S must operate on \.
In order for Eq. (34) to be compatible with Egs. (30) and (31), we obtain

which are also Proca equations. So the >70-year-old problem of the lack of
gauge invariance of the Proca equation is solved by going to the O(3) level.

The field equations of electrodynamics for any gauge group are obtained
from the Jacobi identity of Poincaré group generators [42,46]:

> [Ds, [Dy,DV]] =0 (37)

[SATRY
If the potential is classical, the Jacobi identity (37) can be written out as
DsGyy + D, Gy + DyGoy — GywDs — GysDy — Gop Dy =0 (38)
This equation implies the Jacobi identity:

[As, Gu] + [Ay, Gyo] + [Av, Go] =0 (39)
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which in vector form can be written as

A, x G" =A° x G" + A" x G'° +AY x G
=0 (40)

As a result of this Jacobi identity, the homogeneous field equation
D,G" =0 (41)

reduces to
0,G" =0 (42)

for all gauge group symmetries. The implication is that instantons or pseudo-
particles do not exist in Minkowski spacetime in a pure gauge theory, because
magnetic monopoles and currents vanish for all internal gauge group
symmetries. Therefore, the homogeneous field equation of electrodynamics,
considered as a gauge theory of any internal symmetry, can be obtained from the
Jacobi identity (42) of the Poincaré group of Minkowski spacetime. The homo-
geneous field equation is gauge-covariant for any internal symmetry. Analo-
gously, the Proca equation is the mass Casimir invariant (12) of the Poincaré
group of Minkowski spacetime.

There are several major implications of the Jacobi identity (40), so it is help-
ful to give some background for its derivation. On the U(1) level, consider the
following field tensors in ¢ = 1 units and contravariant covariant notation in
Minkowski spacetime:

ro —-B' —-B> —-B? 0 B By B
v B' 0 E* —E*| B -B; 0 Es  —E
B> —E2 o E' | " -B, —-E; 0 E
B> E* —E' 0 -B; E, —-E 0
0 E, E, E; 0 —-E' —E* —E
—E 0 -B; B E' 0 B B?
Fps = ! BT o
—E, B 0 -B; E* B 0 -B!
| —-E; —B, B 0 E* —B*> B! 0
(43)

These tensors are generated from the duality relations [47]

R P -
) | | ) (44)
G = ESHVPGGPU; G = — ESHVppoG
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where the totally antisymmetric unit tensor is defined as

80123 =1= —&€0123 (45)

and result in the following Jacobi identity:
OuF™ = O°F" 4+ "F'° + 0'F* =0 (46)
It also follows that
OuF" = 0o F™ + 0, F¥° + 0, F°" (47)

The proof of the Jacobi identity (46) can be seen by considering a development
such as

~ 1
8P = 204 ("7 Fyo)

1
_ Eau (gpv()lFm + 8uv02F02 + 8pv03FO3 + 8;WIOFIO + 8}1\/2()}720 + guv30F30

+ 8pVIZF12 + SMVI3F13 + 8],lVZIF21 =+ 8pv’le31 + 8pv23F23 4 8uv32F32)
(48)
If v=20, then
O F"0 £ 0, F 4 0;F = —9,F® — 0, F® —0;F? =0 (49)

Equation (47) may be proved similarly. On the O(3) level there exist the analo-
gous equations (40) and

Ay xG" =A; xG" +A, xG° +A, x G (50)

which is not zero in general.
It follows from the Jacobi identity (40) that there also exist other Jacobi iden-
tities such as [42]

AP x (AD xAP) + A0 x (AN xAP) + AP x (A xaAP) =0 (51)

The Jacobi identity (40) means that the homogeneous field equation of electro-
dynamics for any gauge group is

0,G" =0 (52)
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If the symmetry of the gauge group is O(3) in the complex basis ((1),(2),(3))
[42,47], Eq. (52) can be developed as three equations:

0,6 =0 (53)
3,G"? =0 (54)
0,63 =0 (55)

Now consider a component of the Jacobi identity (39)

emeAY G + 1) AP G + g1y pEAYGE) =0 (56)

and consider next the following cyclic permutation:
2) ~(3 3) (2 2) ~(3 3) (2 2) ~(3 3) (2
Ag'Gy — 4G + 4Gy - A6y +AYGY - AV G =0 (57)

This gives the result

y | EY 2) (3
BY +2X _APED =0 (58)
Using Eq. (54), we obtain the result
EY =0 (59)

thus E® vanishes identically in O(3) electrodynamics. The third equation (55)
therefore becomes the following identity:

=0 (60)

In other words, B is identically independent of time, a result that follows from
its definition [42,47]

B® = —igd) x A? (61)

The ansatz, upon which these results are based, is that the configuration of the
vacuum is described by the doubly connected group O(3), which supports
the Aharonov-Bohm effect in Minkowski spacetime [46]. More generally, the
vacuum configuration could be described by an internal gauge space more
general than O(3), such as the Lorentz, Poincaré, or Einstein groups. The O(3)
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group is the little group of the Poincaré group for a particle with identically
nonzero mass, such as the photon. If the internal space were extended from O(3)
to the Poincaré group, there would appear boost and spacetime translation
operators in the gauge transform (36), as well as rotation generators. The
Poincaré group is the most general group of special relativity, and the Einstein
group, that of general relativity. Both groups are defined in Minkowski space-
time. In all these groups, there would be no magnetic monopole or current in
Minkowski spacetime because of the Jacobi identity (37) between any group
generators. The superiority of O(3) over U(l) electrodynamics has been
demonstrated in several ways using empirical data [42,47-61] such as those
available in the Sagnac effect, so its seems logical to extend the internal space to
the Poincaré group. The widespread use of a U(1) group for electrodynamics is a
historical accident. The use of an O(3) group is an improvement, so it is expected
that the use of a Poincaré group would be an improvement over O(3).
Meanwhile, the Jacobi identity (40) implies, in vector notation, the identities

A@.BB) _ B2 .40) =9
AG gl _ BB A =9 (62)
AV _ph.4@ =9
and
ADBD _ cACIBO) 4 A« BB _ 40« EO = ¢
AVBO — cADBM £ A x BV A0 EO = ¢ (63)
CA(()Z)B(I) _ cA(()])B(2> +AD x E® 4@ w1 =9

It has been shown elsewhere [42] that the identities (63) correspond with the B
cyclic theorem [42,47-61] of O(3) electrodynamics:

B «x B® — ;g0 g+
(64)

which is therefore also an identity of the Poincaré group. Within a factor, the B
cyclic theorem is the rotation generator Lie algebra of the Poincaré group. In
terms of the unit vectors of the basis ((1),(2),(3)), the B cyclic theorem reduces to

e x e — g+ .
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which is the frame relation itself. This relation is unaffected by a Lorentz boost
and a spacetime translation. A rotation produces the same relation (65). So the B
cyclic theorem is invariant under the most general type of Lorentz transforma-
tion, consisting of boosts, rotations, and spacetime translations. Similarly, the
definition of B, Eq. (61), is Lorentz-invariant.

The Jacobi identities (63) reduce to the B cyclic theorem (64) because of
Eqs. (53)—(55), and because E® vanishes identically [42,47—61], and the B cyc-
lic theorem is self-consistent with Eqgs. (53)—(55). The identities (62) and (63)
imply that there are no instantons or pseudoparticles in O(3) electrodynamics,
which is a dynamics developed in Minkowski spacetime. If the pure gauge
theory corresponding to O(3) electrodynamics is supplemented with a Higgs
mechanism, then O(3) electrodynamics supports the ‘t Hooft-Polyakov mag-
netic monopole [46]. Therefore Ryder [46], for example, in his standard text,
considers a form of O(3) electrodynamics [46, pp. 417ff.], and the ‘t Hooft—
Polyakov magnetic monopole is a signature of an O(3) electrodynamics with
its symmetry broken spontaneously with a Higgs mechanism. In the pure gauge
theory, however, the magnetic monopole is identically zero. It is clear that the
theory of ‘t Hooft and Polyakov is O(3) electrodynamics plus a Higgs mechan-
ism, an important result.

In order to show that the Proca equation from gauge theory is gauge-invar-
iant, it is convenient to consider the Jacobi identity

D,G" =0 (66)

which is gauge-invariant in all gauge groups. Now use
D,G" = D;G™ + D.G°* 4 D, G*° (67)
and let two indices be the same on the right-hand side. This procedure produces
DyG*" =D (G + G*°) =0 (68)

showing that:
D,G" =0 (69)

is also gauge-invariant for all gauge groups. Finally, expand Eq. (69) as
D,G" = D, (D"AY — D'A*) =0 (70)
to obtain

D,D"AY =0 (71)
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which is also gauge-invariant for all gauge groups.
On the U(1) level, for example, the structure of the Lehnert [45] and gauge-
invariant Proca equations is obtained as follows:

(O+x>)A" =0 (72)
(a“ + igA;)G“V -0 (73)

These are regarded as eigenequations with eigenfunctions AY and G"' in
configuration space. In this method, there is no need for the Lorenz condition.
The equivalent of Eq. (72) in momentum space is the Einstein equation (2), and
this statement is true for all gauge group symmetries. Comparing Eqs. (6) and (7)
with Egs. (72) and (73), the following equation is obtained on the U(1) level:

KA = igA G (74)
This equation may be developed as follows:
E
KCAO = jgA*- = (75)
c
In the plane-wave approximation
kA® == = g0 (76)
and it is seen that condition (74) is true on the U(1) level. Equation (73) can be
written as
e
0,G" = —igA G = — (77)
€0

in the vacuum, and this is the Lehnert equation [42,45]. The latter gives
longitudinal or axisymmetric solutions and can describe physical situations that
the Maxwell-Heaviside theory cannot.

On the O(3) level, one can write the Proca equation in the following form
22):

(O+ ngS)A“(z))AV(]) -0
(O +gAPAM) A =0 (78)

O+ ngELS)A“B))AV(S) =0
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The third equation of (22) reduces to a d’ Alembert equation
0A'®) =0 (79)

because A,E?)A“(3> = 0in O(3) electrodynamics. Equation (79) is consistent with

the fact that AE?) is phaseless by definition in O(3) electrodynamics. The first two

equations of the triad (78) are complex conjugate Proca equations of the form
(O+«HA" =0

(O+x)A" =0 (80)

so we obtain the U(1) Proca equation, but with the advantages of O(3) electro-
dynamics inbuilt.

In summary, the structure of the Proca equation on the O(3) level is as
follows:

D,G" =0 (81)

which is equivalent to
0,G" = —gA, x G* (82)

The latter equation can be expanded in the basis ((1),(2),(3)) as [42]
V-DW* = ig(A®.pB) — p?.A0))
V.-D@* — ig(A<3) D _p® .A(l))
vV-D®* = ig(A<1) .p® _pW) -A?)

DD+

v x B 8 = —ig(cAP'D®) — cAP'D® + A x HO) — A®) x H?)
(2)=

V x HY* — al;t = —ig(cAF'DY — cAVD®) + A®) 5 HD — A1) x HO))
3)x

V x H®* — aDa(t> = —ig(cA(()l>D(2> - cA(()Z)D“) + AW x H? —A® x D)

(83)

It can be seen that, in general, there are extra Noether charges and currents that
define the photon mass gauge invariantly. The magnetic field strength and
electric displacement is used in Eq. (83) because, in general, there may be
vacuum polarization and magnetization, defined respectively as

D=¢E+P

(84)
B =yy(H+M)
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There may be a vacuum charge on the O(3) level provided that the term
v-DB* = ig(A(l)-D(z) _D(l).A(2)) (85)

is not zero. For this to be the case, the vacuum polarization must be such that the
displacement D'V is not the complex conjugate of the displacement D®. It can
be seen as follows that for this to be the case, polarization must develop
asymmetrically as follows:

DY = gEW 4+ ap)

D? = gE® 4 pp? (86)

If there is no vacuum polarization, then the photon mass resides entirely in the
vacuum current.

In the preceding analysis, commutators of covariant derivatives always act on
an eigenfunction, so, for example:

[DuaDvN’ = [au —igAy, 0y — igAv}\L’
= (0,0, — 0,0, )V — igA 0 + igOy(AL)
— igdyu(AV) + igAyOu Y — g2 [Au, AW

. : . . (87)
= —igA Oy + igdVALV + ig A Oy — ig(BuAv )V
- igAvau\l’ + igAvau‘]r’ - 82 [AuaAVNJ
= —ig(0,A, — 0,A, — ig[A,, AV
giving the field tensor for all gauge groups:
Guy = O4Ay — 0yA, — ig[A,, A (88)

In the literature, the operation [Dy,, D,|\ is often written simply as [D,, D,] but
this shorthand notation always implies that the operators act on the unwritten \J.

On the O(3) level, the clearest insight into the meaning of the Jacobi identity
(37) is obtained by writing the covariant derivative in terms of translation (P)
and rotation (J) generators of the Poincaré group:

Dy =06 — igAs = 0o — ig(ALIx + ALy + AZJy)

89
0 = —iPs (89)

where Jy, Jy, and J; are the rotation generators. The translation generator is
defined [42,46] as

Py = iy (90)



THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT 21
The Jacobi identity of operators (37) therefore becomes, after index matching

[Po + gALTx, [Pc + gALTy, Py, + gALT7]]
= [Px + gAYJx, [Py + gA}Jy, Pz + gAZJ7]| (o1)

Now consider the component

[PXa [PY +gA¥aPZ +gA§JZ]]
= [Px, [Py, P7] + gA} Uy, Pz] + gAS [Py, J7] + g°AVAZ [Ty, J7]]  (92)

and use the Lie algebra [46]

Jy,Px| = —iPx [Px,Px] =0
[Py,Jz] = iPx [Px,Jx] =0 (93)
[Jy,]z] =il

to find that it vanishes. In vector notation, this result implies Eq. (52)
9,G" =0 [O(3) level] (94)

and the result
[Am GK?\] + [AK7 ch] + [Aka GGK] =0 (95)

which can be developed as
[0, G =0 (96)
giving Eq. (94) again self-consistently. Similarly
Ay, G =0 (97)
giving Eq. (40). In operator form, this is
[eAXJx, [P + gAYJy, P + gAZJ;] =0 (98)

and the factor [A, C“V] is a simple multiplication operation on .

The overall result is that the homogeneous field equation for all group sym-
metries is the result of the Lie algebra of the Poincaré group, the group of spe-
cial relativity. The Jacobi identity can be derived in turn from a round trip or
holonomy in Minkowski spacetime, as first shown by Feynman [46] for all
gauge groups. The Jacobi identity is Lorentz- and gauge-invariant.
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III. CLASSICAL LEHNERT AND PROCA VACUUM CHARGE
CURRENT DENSITY

In this section, gauge theory is used to show that there exist classical charge
current densities in the vacuum for all gauge group symmetries, provided that the
scalar field of gauge theory is identified with the electromagnetic field [O(3)
level] or a component of the electromagnetic field [U(1) level]. The Lehnert
vacuum charge current density exists for all gauge group symmetries without the
Higgs mechanism. The latter introduces classical Proca currents and other terms
that represent energy inherent in the vacuum. Some considerable mathematical
detail is given as an aid to comprehension of the Lagrangian methods on which
these results depend.

The starting point is the Lagrangian that leads to the vacuum d’Alembert
equation for an electromagnetic field component, such as a scalar magnetic
flux density component, denoted B, of the electromagnetic field. The identifica-
tion of the scalar field, usually denoted ¢ [46], of gauge theory with a scalar
electromagnetic field component was first made in the derivation [62,63} of
the ‘t Hooft—Polyakov monopole. In principle, ¢ can be identified with a scalar
component of the vacuum magnetic flux density (B), or electric field strength
(E), or the Whittaker scalar magnetic fluxes G and F [64,65] from which all
potentials and fields can be derived in the vacuum. The treatment is classical,
and the field is regarded as a function of the spacetime coordinate x*, and not as
an eigenfunction of quantum mechanics. The general mathematical method
used is a functional variation on a given Lagrangian, and so it is helpful to il-
lustrate this method in detail as an aid to understanding. The basic concept is
that there exists, in the vacuum, an electromagnetic field whose scalar compo-
nents are B and E, or G and F, scalar components that obey the d’ Alembert, or
relativistic wave, equation in the vacuum. The Lagrangian leading to this equa-
tion by functional variation is set up, and this Lagrangian is subjected to a local
gauge transformation, or gauge transformation of the second kind [46]. Local
gauge invariance leads directly to the inference, from the first principles of
gauge field theory, of a vacuum charge current density first introduced phenom-
enologically by Lehnert [45]. Inclusion of spontaneous symmetry breaking with
the Higgs mechanism leads to several more vacuum charge current densities on
the U(1) and O(3) levels, and in general for any gauge group symmetry. Each
of these charge current densities in vacuo provides energy inherent in the
vacuum.

The method of functional variation in Minkowski spacetime is illustrated first
through the Lagrangian (in the usual reduced units [46])

1
=~ FMFy (99)
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where F"V is the field tensor on the U(1) level [46-61]. The relevant Euler—
Lagrange equation is

0¥ 0¥
Ol ) =5 100
(een) o, (1)
Consider the component
0¥
0| =] =0 101
(5a) oy

For indices v = 0 and p = 1, summation over repeated indices gives
F"Fy = F'%F 5 + F"'F, (102)
Therefore

F'F ) = (0'A° — 3°A")(8,40 — 0oA))
= (0'A°)(9140) — (°A")(9140) — (0'A")(BoA1) + (3°A")(BoA:)
= —0xAgOxAg + 0pAxOxAg + O0xApO0pAx — OpAxOpAx

(103)
using contravariant—covariant notation. In the same notation, we have
0 0
= — 104
0(00A1) 0(0oAx) (104)
SO
OFF10) _ 5 Ao — SxAo + Body + B0 (105)
(@01 XA XA 0Ax 0Ax
Using the additional minus sign in the Lagrangian (99), we obtain
O(=F"F10/2) _ 10
— - =F 106
0(00A) (106)

and repeating with the term

FO'Fy = (0°A' —9'A%)(0pA; — 014)
= —QpAx0oAx + 0xAgQoAx + DpAxOxAg — OxAodxAg  (107)
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gives the same as Eq. (103). So the final result of the functional variation is
O F*" =0 (108)

which is the vacuum inhomogeneous field equation in the Maxwell-Heaviside
theory. This equation is widely accepted, but it violates causality, because there is
a field (effect) without a source (cause). This flaw is usually overlooked by
stating that the field is in a source-free region, or that the field is infinitely distant
from its source. Both explanations are unsatisfactory.

Another example of functional variation is the Lagrangian

1 1
L == PP + §m2AHA“ (109)

which leads to the Proca equation in the received view [46]. The obvious
problem with this Lagrangian is that for identically nonzero m, the product A,,A*
is not gauge-invariant on the U(1) level. Setting that problem aside for the sake of
argument, contravariant—covariant notation gives

A AN = AT — A — A} — A (110)
so that functional variation proceeds as follows:
07 2m2A0. 07 2m2AX. 0L 2m2Ay_ 07 2m2A,

A0 2 7 dAx 2 Ay 2 oA, 2
(111)

The overall result is

0L _ par (112)
oA,

giving the received Proca equation [46]:
O™ +mPAY =0 (113)

The Lagrangian (109) is not gauge-invariant, so Eq. (113) is not gauge-invariant.
However, the foregoing illustrates the method of functional variation that will be
used throughout this section.

In order to derive field equations in the vacuum that are self-consistent, cause
must precede effect and the classical current of the Proca current must be gauge-
invariant. The starting point for the development is the concept of scalar field
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[46], which is usually denoted ¢. The basic idea [46] behind the existence of the
scalar field ¢ is a transition from a point particle at coordinate x(¢) to a field

(") = (X, Y,Z,1) (114)

which is a function of X, ¥, Z and ¢ in Minkowski spacetime. The scalar field ¢ is
a classical concept and is governed by the Euler-Lagrange equation:

The source of electric charge in this view is a symmetry of the action in Noether’s
theorem, a symmetry that means that ¢ must be complex, that is, that there must
be two fields:

b == (0 + id) (116)
1 )
(b*:ﬁ(d)l —l¢2) (117)

These fields are regarded as independent functions in the method of functional
variation. In developing their concept of a magnetic monopole, ‘t Hooft and
Polyakov identified ¢ with a scalar component of the electromagnetic field, a
component that they denoted F [46]. It is convenient for our purposes to identify
¢ with a scalar component B of the electromagnetic field in the vacuum.
Therefore, there are two independent magnetic flux density components:

1 .
1 .
B*:%(Bl —le) (119)

The Lagrangian governing these scalar components is
¥ = (0,B)(0"B") (120)

and is invariant under global gauge transformation, also known as ‘“‘gauge
transformation of the first kind”

B—e B, B — B (121)

where A is any real number. The Euler-Lagrange equation

= (s00) (122)
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with the Lagrangian (120) gives the d’ Alembert equations:

OB =0 (123)
OB =0 (124)

which are the relativistic wave equations in the vacuum satisfied by B and B”. For
example, if B and B" are components of a plane wave, they satisfy the
d’Alembert equations (123) and (124).

However, in special relativity, the number A is a function of the spacetime
coordinate x*. This property defines the local gauge transformation

B — ¢ M p; B* — Mg (125)

1
& = (0,B)(d"B*) — ig(B*0"B — Bo"B*)A, + g*A,A"B*B — 2P Fuy

1
= (OB +igAuB) (O"B" — igA"B") — L F*'Fyy (126)

or gauge transformation of the second kind. The Lagrangian (120) is invariant
under the local gauge transformation (125) if it becomes [46]: The 4-potential
becomes

1
Ay = Ayt 0 (127)

where A is any number and the derivative O, becomes the covariant derivatives:

D,B = (8, + igA,)B (128)
D,B* = (3, — igA,)B" (129)

acting respectively on B and B". The Lagrangian (126) is gauge invariant under a
U(1) gauge transformation that introduces the electromagnetic field tensor F*.
Using the Euler-Lagrange equation (100) gives the vacuum field equation:

0, F" = —ig(B"0"B — BO"B*) 4 2g°A"|B|*
— ig(B*D"B — BD"B") (130)
= —gJ"(vac)
where

J¥(vac) = i(B*D"B — BD"B") (131)
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Therefore J*(vac) is a covariant conserved charge current density in the vacuum.
The coefficient g of the covariant derivative has the units [47-61] of ¥ /A(O) in the
vacuum. Using

K

o (132)

g:

has been shown recently [47-61] to explain the Sagnac effect and interferometry
in general using an O(3) invariant electrodynamics. The coefficient g is the same
on the U(1) and O(3) levels.

In SI units, Eq. (130) is

0uF" = —igc(B*D'B — BD"B*)Ar (133)

and shows that the electromagnetic field in the vacuum has its source in the
conserved J"(vac), which is divergentless.

In Eq. (133), Ar is the area of the electromagnetic beam, ¢ the vacuum speed
of light and p, is the vacuum permeability in SI units.

The analysis can be repeated by identifying the scalar field ¢ with a scalar
component A of the vacuum four potential A*. Thus Eqs. (118) and (119)
become

A :%(A1 +idy) (134)
A = %(Al —iAy) (135)

and the Lagrangian (120) becomes
& = (0,A)(0"A™) (136)

Local gauge transformation is defined as

A — exp(—iA(x"))A

137
A" — exp (IA(x*))A” (137)
and the gauge-invariant Lagrangian (126) becomes
1
P = (0,A +igA A)(O"A — igAMA™) — ZF“VF”V (138)

Finally, the inhomogeneous field equation in the vacuum becomes

OuF" = —igc(A*DMA — ADMAY) (139)
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in ST units. This form has the advantage of eliminating any geometric variable
such as Ar from the vacuum charge current density. The covariant derivatives
(128) and (129) become

D,A = (8, + igA,)A (140)
DyA* = (0, — igA,)A* (141)

indicating the presence of self-interaction in the terms A A and A A*. This self-
interaction is observed empirically [47-61] in a number of ways, including the
inverse Faraday effect and the third Stokes parameter defining the circular
polarization of electromagnetic radiation.

So it is also possible to use the form (139) for the vacuum charge current
density, a form that eliminates any geometric unit such as Ar that is not fully
relativistic. However, A is, strictly speaking, a potential energy difference and
not a field.

Using the Euler—Lagrange equation (122) with the Lagrangian (126) pro-
duces the two complex conjugate equations (reduced units):

(B = —ig(Bo"A, + A,"B) + g*A,A"B (142a)
(O0B* = ig(B*3"A, + A,0"B*) + g*A,A"B* (142b)

or their representation in terms of the scalar A:

(A = —ig(AA, + A MA) + g2A,AMA (143a)
(A" = ig(A"0"A, + A 0"A%) + g*A,AMA (143b)

Equations (133) and (142) or (139) and (143) can be solved simultaneously,
because they are each two equations in two unknowns (B and A*) or (A and A").

It can be shown on this U(1) level that the introduction of a Higgs mechan-
ism [46], namely, spontaneous symmetry breaking, produces three more va-
cuum charge current densities in addition to the Lehnert-type charge current
density (133) or (139). One of these is a Proca vacuum charge current density
that is gauge-invariant on the classical level. The Higgs mechanism is intro-
duced by considering the usual Lagrangian [46]

L =T-V=0ud)@") —m’d"d - 1(¢"$)* (144)
and adapting it for the electromagnetic field in the vacuum by writing it as

S =T -V =(0,B)("B") — m*B'B — \(B*B)’ (145)
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or

P =T —V=(0,A)"A") — m?A*"A — L(A*A)? (146)

depending on whether ¢ is chosen to be B or A. The appearance of three new
currents occurs for both choices and of course B is related to A through the vector
equation:

B=V xA (147)

In Eq. (144), it is well known that the mass m is regarded as a parameter that can
become negative and that A premultiplies the self-interaction term. The adapta-
tion of the Higgs mechanism for the vacuum electromagnetic field therefore
automatically implies that scalar components of that field self-interact. The self-
interaction of electromagnetic fields on the received U(1) level is observable in
the Stokes parameters, energy and Poynting vector for example, and in nonlinear
optical phenomena of various kinds [47-61].
Considering Eq. (145), we obtain

Z—Z = m’B* + 2\B*(B*B) (148)

and if m?> < 0, there is a local maximum at B = 0 and a minimum at

a®> = |BJ*= — ie, a=|B] (149)

ﬁ;

The scalar fields B and B” therefore become

B(XH) =a +%(Bl + iBg) (150)
B*(x“):a—l—%(Bl—iBg) (151)

so the Lagrangian becomes

% =0,(a+B)*(a+B")—m*(a+B*)(a+B)—\(a+B*)(a+ B))’
(152)
It is interesting to develop this expression as

% = BB*(m* — \BB*) + - --
= —ABB*(2a* + BB*) + - - (153)
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which can be expressed algebraically as

2 1 2 1
¥ = —7\,(6124—7%31 —‘y—E(B%—l-B%)) (3(12 +7%B| +§(B% —i—B%)) =+ .-
)
= 0,BA"B* — 2ha®*B} — V2\B,(B? + B3) — Z(B% +BY)? -3t (154)

In contemporary thought, the Higgs mechanism has acted in such a way as to
produce a field component B, with mass, specifically, a scalar field with mass that
is gauge-invariant. Therefore, spontaneous symmetry breaking of the vacuum
introduces fields with effective mass.

Considering a local gauge transformation of the Lagrangian (145) produces
the gauge-invariant Lagrangian:

¥ = (0 +igAy)(a + B)(@" —igA*)(a + B*) — m*(a+ B)(a + B)
—Ma+ B)*(a+BY)* — %F”VFW (155)

Using this Lagrangian in Eq. (100) produces the following result (reduced units)
by functional variation:

2.2
3,F" = —ig(B*D"B — BD'B*) — %A” +2v2g%aB A" + V2agd" B,

(156)

The term —g?m*A* /A implies that the electromagnetic 4-potential A" has
acquired mass. Simultaneously there appear two other terms. All four vacuum
charge current densities produce vacuum energy through the equation

En(vac) = JJ“(Vac)AudV (157)
Alternatively, Eq. (156) can be written from Eq. (146) in terms of the scalar A:
AR
OF™ = —ig(A*D"A — AD"A*) — ¢*m? =+ 2V2g%aA A + V2agdH A,
(158)
Therefore, spontaneous symmetry breaking of the vacuum on the U(1) level
produces new vacuum charge current densities that act as sources for the

electromagnetic field and produce energy inherent in the topology of the vacuum.
The topology is described by gauge theory and group theory.
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In an O(3) electromagnetic sector [47-61], the Lagrangian (120) becomes
1 Ui
£ = EépB,@ B (159)

where there are internal indices i to indicate the existence of an internal gauge
group of O(3) symmetry. In the complex basis ((1),(2),(3)), the Lagrangian can
be expressed in terms of the physical magnetic field:

B = BYe) 4 B 1 BB (160)

In vector notation, the Lagrangian (159) can be written as
1 B
,?:E@uB-a B (161)

and using the Euler—Lagrange equation

0 oY

produces the vacuum d’ Alembert equation
OB=0 (163)
which in component form becomes
OBY =0, i=1,23 (164)
The Lagrangian (161) is invariant under a global O(3) transformation
B =¢'AB (165)
where J; are rotation generators of the O(3) group, and where A; are angles in the
physical internal space ((1),(2),(3)).
The local O(3) transformation corresponding to Eq. (165) is
B = /MB (166)

and the Lagrangian (161) is invariant under this if it becomes

1
g:DuB’DuB—ZGHV'GHV (167)
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where the field B and the electromagnetic field G, are vectors of the internal
gauge space and where G, is a tensor of Minkowski spacetime. Field equations
are obtained from the Lagrangian (167) by functional variation using Euler—
Lagrange equations such as

o (%) -2 (168)

where A* is a vector in the internal gauge space and a 4-vector in Minkowski
spacetime. The field tensor in O(3) is defined [46-61] as

G" = 0"AY — 0VAM + gAM x AY (169)
In analogy with the Lagrangian (99), the factor — le is needed because of double

summation over repeated indices. So functional variation of the term — G, * G*"
gives 6VGHV. However, on the O(3) level, we must consider the additional terms

1
L1 =~ 78(G" Ay x A, +AY X A"-Gy)

1
= _Zg(A“.(GW X Ay)+ A" (G x AY)) (170)
which have the same premultiplier —% due to double summation over repeated

indices. From the terms (170)

07 v v
aar = 80w x A" = —gA" x Gy (171)

So the sum of terms (which appear on the left-hand side of the field equation)
from variation in the term —%Gw +G"in the Lagrangian (167) is

D'G,, =0'G, + gA" x G, (172)

which is a covariant derivative in electrodynamics invariant under a local O(3)
transformation. We must also consider functional variation of the term

%3 =DyB-D"B = (0, + gA,x)B- (0" + gA"x)B (173)
which can be expressed as

L3 =0,B+0"B + gA,* (B x O"B) + gA"+ (B x 0,B)
+8°((A,-A")(B*B) — (A, *B)(B-A")) (174)
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We obtain

05
oAV

g(B x 0,B) +82(AM(B'B) — (Ay*B)B)
=g(B x 0,B) + ¢’B x (A, x B) (175)

So the complete field equation obtained from the Lagrangian (167) by functional
variation is
D'G,, = —g(D,B) x B = —gJ,(vac) (176)

This equation in vector notation for the internal gauge space can be developed as
three equations in reduced units

a“GHV(l) - ig(A(z)G”V(S) —AB® G2 _ g pvpB) | B®Dp'B?) (177)
D) _ gBG pvg) +BYD'BR) (178)

D@ — 4@ G _ g pvp) _|_B(2)DVB(1)) (179)

=~ Tt~ T

where a covariant derivative acting on a component such as B‘" is
p'BM — v — ig( v(2) gB3) _AV(3)B(2)) (180)

Therefore there are several more vacuum current terms on the O(3) than on the
U(1) level. The factor g is, however, the same on both levels. In ST units, the Egs.
(177)—-(179) become
apG”VU) — ig(ALZ)G”V(s) _ AS)GMV@))
— igC(B(2>DVB<3) —B<3)DVB(2))Ar (181)

If the field ¢ is identified with the space components of A in the basis
((1),(2),(3)), the following three vacuum equations are obtained
GHG“V(I) — ig(AEl2>G”V(3) ,AS)GW(?))
— igc(APDYAB) — AP p¥AR)) (182)

in which the vacuum currents have no geometric factor.
The structure of these vacuum charge current densities can be developed as
follows in terms of time-like, longitudinal and transverse components. In this
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development, we take the real parts of A and A,,. The complete inhomogeneous
field equation in the vacuum is

0'Gyy + gAY x G, = —g(D,A) X A (183)
where the right-hand side can be expanded as
Ju(vac) = g0,A x A + g%A x (A x A,) (184)

The longitudinal current density in vacuo is investigated, first in the plane-wave
first approximation, by taking the real part of the potential

=

A

A=— (ii +j)e' @2 (185)
which is
ReA A% J 186
eA = ——(—isind + Jcos
5 (ising +Jcos) (186)
where
db=wr—«Z (187)

The longitudinal current density is (in SI units)

2
Ji=2- 04 x A+ 54 x (A x A3) (189)
Ho¢ Ho¢

and the vector magnitude is
A0 = |a] = (A7 +4)"° (189)

In general, the vacuum current density has a definite structure in the vacuum that
is much richer than in the first plane-wave approximation: a structure that has to
be computed because analytical solutions to Eq. (183) are not available.

In the plane-wave first approximation, the current density is therefore

2
JO (vac) = EKC B® (190)

in SI units and is directly proportional to the vacuum B> field. The structure of
Eq. (190) was first derived by considering the inverse Faraday effect as Eq. (243)
of Ref. 42. Equation (190) (above) was first derived phenomenologically on the
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O(@3) level in Ref. 51 and first developed phenomenologically in Ref. 59.
Equation (190) is its rigorous first-principles description in the vacuum. The first
principles of gauge field theory therefore produce vacuum charge current den-
sities in the vacuum for all gauge group symmetries. There are several experi-
mental reasons [42,47-61] for preferring O(3) over U(1) for electrodynamics.

The vacuum charge density is also structured in general, but in the plane
wave, first approximation is given by

2
A
Jp = 20 (191)
HoC

because by definition, the time component of the vector A is zero. This is how it
differs from the 4-vector A¥, and why it is an independent variable in the method
of functional variation used to derive Eq. (183) from an O(3) invariant
Lagrangian.

The vacuum transverse current densities are also structured, and in general
they are

2

Ji=20AxA+5-4x(AxA) (192)
Ho¢ Hoc
g g

L= 0,AxA+5Ax(AxA) (193)
Ho¢ Ho¢

In the plane-wave first approximation, they reduce to
Ji = —gAAGi (194)
J2 = g ATALj (195)
using the vector triple products:
AxX(AxA)=—AA% (196)
A X (A x Ay) = —A2A,j (197)

In ST units, the transverse vacuum current densities are given in the plane-wave
first approximation by

ZAIA%E'
HoC
A%A; .
2401 j

HoC

Ji=-¢ (198)

Jo=g (199)
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It is emphasized, however, that there is no reason to assume plane waves. These
are used as an illustration only, and in general the vacuum charge current
densities of O(3) electrodynamics are richly structured, far more so than in U(1)
electrodynamics, where vacuum charge current densities also exist from the first
principles of gauge theory as discussed already.

The complete vacuum inhomogeneous equation is

0'Gyy = —gA" X Gy, — g(D,A) X A (200)

If p =2 and v = 1, the left-hand side vanishes because G, contains only B3,
which is phaseless. The right-hand side gives the equation

B3 = gA A (201)
which reduces in the notation that we have been using to
B®) = —igaM) 5 A?) (202)

In the usual complex circular basis used for O(3) electrodynamics [42], this is the
definition of the field B,

Therefore, a check for self-consistency has been carried out for indices |1 = 2
and v = 1. It has been shown, therefore, that in pure gauge theory applied to
electrodynamics without a Higgs mechanism, a richly structured vacuum charge
current density emerges that serves as the source of energy latent in the vacuum
through the following equation:

En = JJ” A dv (203)

Therefore, on the O(3) level, there are several sources of energy latent in the
vacuum. This conclusion is gauge-invariant because the Lagrangian is O(3)
invariant. It is concluded that potentials can give rise to physical effects in the
vacuum on both the U(1) and O(3) levels. These effects are reviewed experi-
mentally by Barrett [S0]. The best known is the Aharonov—Bohm effect, which
Barrett has shown [50] to be supported self-consistently only by O(3) electro-
dynamics and not by U(1) electrodynamics. Both the O(3) and the U(1) group are
non-singly connected, the O(3) group being doubly connected in topology [50].
The latter dictates the structure of the field equations in gauge theory applied to
classical electrodynamics.

The wave equation in the vacuum for O(3) electrodynamics can be obtained
by functional variation in the Euler-Lagrange equation

a=(eem) = @on) o



THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT 37
with the gauge-invariant Lagrangian
P — DyA-D'A — iGw G" (205)
obtained by a local gauge transformation on the Lagrangian:
- %apA o (206)

The only assumption therefore is that the Maxwell vector potential A exists in the
physical internal space of O(3) symmetry. The gauge-invariant Lagrangian (205)
can be developed as

P =0,A A+ g(A, x A-"A +OAA* X A) + g% (A, x A)+ (A" x A)

(207)
P =0,A A +g(A-(0"A xA,) +A(D,AA")) + g2 (A, x A)+ (A" x A)
(208)
Using the vector identity
Ay xA-A" xA =(A,-A")(A-A) — (A *A)(A-AY) (209)
gives the results
0z u i 2 u
a:g@ A X Ay + g0, A x A* +2g°A(A, -AY)
— (A, (A-AY) — (A-4,)AY) (210)
and
0%
= )= i i
Oy (6(6HA)) 20,0"A +2g0, (A" x A) (211)

The vacuum wave equation in O(3) electrodynamics is therefore
OA = —g0u (A" x A) +g(0,4) x A" + gz(A(All ‘AM) —A,(A-AY)) (212)

Using

A¥ X (A xA,) =A(A"-A,) — A, (A"-A) (213)
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Eq. (212) simplifies to
(1A + g0, (A" x A) = g(0,A4) x A" — g*(A x A,) x A" (214)
which can be written as
O (D" + gA*x)A) = g(0,A) x A* + g’A" x (A x A,) (215)
This form further simplifies to
3u(DA) = g((0, + 8A, x)A) x A¥ (216)

which becomes
0. (D"A) = g(D"A) x A, (217)

Therefore, we finally obtain the wave equation of O(3) electrodynamics in the
form

D, (D'A) = 0 (218)

which is a d’Alembert equation for A with O(3) covariant derivatives.

The derivation of Eq. (218) from Eq. (206) follows from local gauge invar-
iance, and it is always possible to apply a local gauge transform to the vector A,
the Maxwell vector potential. The ordinary derivative of the d’ Alembert wave
equation is replaced by an O(3) covariant derivative. The U(1) equivalent of
Eq. (218) in quantum-mechanical (operator) form is Eq. (13), and Eq. (212)
is the rigorously correct form of the phenomenological Eq. (25). It can be
seen that Eq. (212) is richly structured in the vacuum and must be solved nu-
merically. The vacuum currents present in Eq. (218) can be computed from the
right-hand side of the wave equation (212), and these vacuum currents follow
from local gauge invariance.

On the U(1) level, the starting Lagrangian is

& = 0,A0"A” (219)
which on local gauge transformation becomes
1
L = (0,A+igALA) (A" — igAPA”) — ZF”VFW (220)

Using the Euler—Lagrange equations

0% 0% 0% 0%
o <a<auA>>’ oA~ o <a<aw>> (221)
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we obtain

A" = ig(0,A")A* + igA, (D"A*) + g*A AMA* (222)

which is Eq. (143), showing a richly structured vacuum charge current density.
Equation (222) can be developed as

0, (Q"A* — igAMA*) = igA, (O"A") + g?A,AMA” (223)

that is
0 (D'AY) = igA, (0"A* — igAMA¥) (224)
Dy(D"A*) =0 (225)

which is a vacuum d’Alembert equation with U(1) covariant derivatives. To
obtain Eq. (225) from Eq. (219), the only assumption is that the Lagrangian is
invariant under the local U(1) gauge transform:

A — exp(—iA(x"))A (226)
Similarly, we obtain
O"DyA = —igA"(0,A + igA,A) (227)
and the d’Alembert equation
D*(D,A) =0 (228)

with covariant derivatives.
A possible solution of Eq. (228) is:

DA=0 (229)
specifically
ot =—igA, (230)
Define
. K
Kp :gAH:mAp (231)

and Eq. (230) becomes the following quantum ansatz:

i
i (232)

au:_iKu:_h
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On the quantum level, Eq. (229) becomes an operator equation, and, using the
quantum ansatz, we obtain

D" D,A = 0; ie, [HOA=-«x"A (233)

which is Eq. (12) (above). In fully covariant form, Eq. (233) becomes the gauge
invariant Proca equation:

2
A = —kik,A" = kA" = — (%) A (234)

Note that the Proca equation requires
KMk # 0 (235)

and has been obtained without the use of the Lorenz condition.
The equivalent procedure on the O(3) level is to choose a particular solution

DA = (0" 4+ gA*x)A =0 (236)

which, in the general notation of gauge field theory, is
M = igAMBy (237)
giving again the quantum ansatz on the O(3) level. In the complex circular basis

AF — ADe) L A1) L AB)e®

A=A+ A® 1 4G (238)
and Eq. (236) becomes
@ + ga"x) (A + A% 1+ 40) =0 (239)
This equation can be developed as
0
&A(l) =—gA® x AW ... (240)

in other words, as

iKA@" = AG) x 41 (241)
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which gives self-consistently the definition

B®* = —iga® x A (242)
Similarly, we obtain
0,0 @) o A0)
a—ZA = gA® x AC (243)

which gives the following definition:
B = —igd® x A® (244)

Using the relation g = « /A(O> in Egs. (242) and (244) gives two equations of the
B cyclic theorem [42,47-61]:

B® x B) — ;O g2)

B® x B® — ;O g+ (245)
It follows from the quantum ansatz (237) that
0
fa—X(A(l) +AD + 40 = Al 5 (AN £ 4@ 1 4G =0
5 (246)
_W(A(l) +A® —|—A(3>) — gA(Y3> % (A(l) +A4@ +A(3)) —0
which is self-consistent because
AY =AY =0 (247)
Finally, the time-like component of Eq. (236) is
10
E&(A(U +A® 4 A0) = gAY (AN 4 AP 4 A0 (248)

which gives again Eqgs. (242) and (244).
Therefore the Proca equation can be recovered on the O(3) level from the
special solution (236) as the operator equation:

0uoMy = —g?AMIARy (249)

This result is given in Eq. (22) of the preceding section.
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A Lagrangian such as Eq. (219) is made up purely of a kinetic energy term:
¥ =T =0,A0'A" (250)

and a local gauge transformation on the Lagrangian produces

1
P =TV =0,AA" +ig(A AMA" — A*A*D,A) + g* A AAMA™ — 2" Fay
(251)

where Vis a potential energy term. In field theory [46], the ground state is the
vacuum, and the ground state is obtained by minimizing the potential energy V
with respect to a variable such as A or A*. The minimum of Vin Eq. (251) with
respect to A, is the vacuum charge current density, which is a ground state of the
field theory and that is obviously a property of the vacuum itself. The ground
state defined by the minimum

oA~ F* (252)

is the electromagnetic field, which is also a vacuum property. So the
inhomogeneous field equation

J*(vac)
€0

QM = (253)

is a relation between ground states of the field theory, or a relation between
vacuum states. Similarly, a ground state such as

0L . .
e igAyD'A* # 0 (254)

is a vacuum property. It can be seen that Eq. (254) is a minimum because

e 20412
AT 2g7|A| (255)

is always greater than zero.

The source of the potential energy V in Eq. (251) is local gauge transforma-
tion, and so the source of V is the vacuum itself, as described by special rela-
tivity and gauge theory. The kinetic energy T appearing in Eq. (250) has no role

in defining the ground state of the field theory, because the ground state is de-
fined by the minimum of V with respect to a given variable, as just argued. In
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these equations, the physical A and A" are excitations above the ground state or
vacuum, and the vacuum gives no contribution to the global Lagrangian (250).
The potential energy V is part of the locally gauge-invariant Lagrangian that
gives the field equation (253), a relation between vacuum properties. The va-
cuum charge current density gives energy latent in the vacuum, and rate of
doing work by the vacuum. These are given respectively by

En = JJV(vaC)AHdV (256)
and by
aa_v;/ = JJ(vac) ‘E dV (257)

The volume V is arbitrary and, from Eq. (257) standard methods [66], give the
vacuum Poynting theorem

aa—(t](vac) + V-S(vac) = —J(vac)-E (258)

or law of conservation of energy and momentum for various vacuum properties.
The vacuum energy flow is represented by the Poynting vector S(vac):

V-S(vac) = —J(vac)-E (259)

Integrating this equation gives
S(vac) = — JJ (vac)+Edr + constant of integration (260)

where the constant of integration represents a physical component of energy flow
whose magnitude is not limited by any concept in gauge field theory. The
physical object J(vac) also emanates from the vacuum, and its magnitude is not
limited because the magnitude of A" is not limited by vacuum topology. The
energy flow represented by S(vac) is electromagnetic energy flow generated by
vacuum topology, and can be converted, in principle, to other forms of energy
with suitable laboratory devices.

The physical meaning of the vacuum Poynting theorem [46] in Eq. (258) is
that the time rate of change of electromagnetic energy within an arbitrary vo-
lume V, combined with the energy flowing out through the boundary surfaces of
the volume per unit time, is equal to the negative of the total work done by the
field (a vacuum property) on the source, interpreted as vacuum charge current
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density. This is a statement of conservation of energy applied within the vacuum
and in the absence of matter (electrons). In the received view

J¥(vac) =0 (261)

and there is no vacuum Poynting theorem, but as argued already, the received
view violates gauge invariance, special relativity, and causality. In the correctly
gauge-invariant Eq. (253), work is done by the source (a vacuum property) on the
field (another vacuum property), work that can be transmitted to rate of change of
mechanical energy as follows [46]:

dEn
% (mech) = JJ(Vac) +Edv (262)

In general relativity, gravity is curvature of spacetime, and so the ordinary
potential energy mgh emanates ultimately from the vacuum topology itself. Here
m is mass, g is the acceleration due to gravity, and # is a difference in height. The
electromagnetic field is orders of magnitude stronger than the gravitational field.
Special relativity is a special case of general relativity, and sometimes A" is
known [46] as a connection, in analogy with the affine connection of general
relativity. The gravitational field is the vacuum, and the electromagnetic field is
the vacuum. Mass and gravitational field, and charge and electromagnetic field,
are therefore all consequences of relativity and vacuum topology.

In this view, the structures of the vacuum and matter currents are identical:

F(vac) = =5 (A'D'A —ADMAT); g =
Ho€ AL
; . (263)
J¥(matter) = — 5 (A*DMA — ADMA®); g§=7
Ho¢ h

and one is transformed into the other for one electron and one photon by the
relation

K e
A0 " q

(264)

Therefore, the momentum of one photon is transformed to the electron
momentum

fik = eA©) (265)

and the photon momentum and energy emanate from the vacuum itself, as just
argued. In this way, the elementary charge e on the proton also becomes a
topological property, arguing in analogy with the way in which mass in general
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relativity is a property of the vacuum. Again, in analogy with general relativity,
photons are formed out of the vacuum as gravitons are formed out of the vacuum.
The relation (265) is true for all internal gauge group symmetries. In the
foregoing, we happen to have been arguing on the U(1) level, but the concepts are
the same on the O(3) level. Therefore, charge e is the result of the field, which is a
vacuum property.

The above is a pure gauge field theory. The Higgs mechanism on the U(1)
level provides further sources of vacuum energy as discussed already. On the
O(3) level, the Higgs mechanism can also be applied, resulting in yet more
sources of energy.

Gauge theory of any symmetry must have two mathematical spaces:
Minkowski spacetime and the internal gauge space. If electromagnetic theory
in the vacuum is a U(1) symmetry gauge field symmetry, there is a scalar inter-
nal space of U(1) symmetry in the vacuum. This internal space is the space of
the scalar A and A” used in the foregoing arguments. In geometric form

A=Ai+Asj (266)

is a vector in a two-dimensional space with orthonormal basis vectors i and j.
This space is the internal gauge space of the U(1) gauge field theory applied to
vacuum electromagnetism. A global gauge transform is a rotation of A through
an arbitrary angle A. Such a process is described [46] by the O(2) group of
rotations in a plane, homomorphic with U(1). The invariance of action under the
same global gauge transformation results in a conserved charge Q and a
divergentless current:

Qo

o 0; 0= JJOdV; ' =0 (267)

These concepts stem from a variational principle applied to the action
S = Jf(AauA)d“x (268)

which is stationary [46] under the condition

0¥ 07
o) 0 2

which is the Euler—Lagrange equation for A in the internal U(1) gauge space of
electromagnetic theory in the vacuum. The action is considered [46] in Noether’s
theorem to be unchanged by re-parameterization of x* and A, that is, is invariant
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under some group of transformations on x* and A. It follows [46] that there exist
conserved quantities that are combinations of fields and derivatives, which are
invariant under these transformations: energy, momentum, angular momentum,
and charge.

For example, it can be shown that the energy momentum tensor due to A is
[46]

1
0, = 0"40,4 — ES‘V‘GGA@GA (270)
For translation of the origin of space and time [46], Noether’s theorem gives

v

1
Iy = 0} = —0"AD.A + 7 80,A0°A (271)

The conserved quantity in this case is the energy momentum

d [0

- J 00d’x =0 (272)
in the internal gauge space. The energy and momentum of the field in the internal
gauge space are given by

En = J98d3x; p= Je?d3x (273)

Under the local gauge transformation (226) of the Lagrangian (219), the action is
no longer invariant [46], and invariance must be restored by adding terms to the
Lagrangian. One such term is

L) = —gl'A, (274)

where g is a parameter such that gA,, has the units of 0,. It is important to realize
that this is true under all conditions, including the vacuum, so if electromagnetic
theory in the vacuum is a U(1) gauge theory, then both g and A, must be
introduced in the vacuum. It is clear that

K

o (275)

g:

satisfies the requirement that gA,, have the same units as 0,,. The 4-potential A, is
introduced from Minkowski spacetime and, under local U(1) gauge transforma-
tion

1
Ay — A +-0,A (276)
8
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where A is arbitrary. Local gauge transformation therefore results in the total
Lagrangian (251) that is needed to render the action invariant.

Therefore the Lehnert equation (253) correctly conserves action under a local
U(1) gauge transformation in the vacuum. Such a transformation leads to a va-
cuum charge current density as the result of gauge theory itself, because U(1)
gauge theory has a scalar internal space that supports A and A*. These must be
complex in order to define the globally conserved charge:

Q= Jjodv (277)

from the globally invariant current:
JH=i(AT0"A — ADMAY) (278)

in the internal U(1) space of the gauge theory.

The existence of a vacuum charge current density in the vacuum was first
introduced phenomenologically by Lehnert [45,49], and it has been shown
that the Lehnert equations can describe phenomena that the Maxwell-Heaviside
equations are unable to describe. The reason for this is now clear. The vacuum
Maxwell-Heaviside equations do not conserve action under a local gauge trans-
formation in the internal scalar space of a U(1) gauge field theory. In order to
conserve action, a locally gauge-invariant charge current density of the type ap-
pearing in Eq. (253) is needed in the vacuum, and it has just been argued that
such a conclusion has a solid basis in gauge theory. If the charge current density
were absent, there would be no scalar internal space for U(1) gauge theory ap-
plied in the vacuum to electromagnetism. It follows, as argued already, that the
vector potential A, and the electromagnetic field tensor F*¥ are the result of lo-
cal gauge transformation and originate in the vacuum topology.

There is empirical evidence that electrons and positrons annihilate to give
photons, and this process is represented symbolically by

e +et =2y (279)

This process cannot be described classically, because positrons are the result of
the Dirac equation, but it illustrates the fact that a vacuum current (of photons) is
made up of the interaction of two Dirac currents, one for the electron, one for the
positron, and these are both matter currents. Therefore, there is a transmutation
of matter current to vacuum current. On the classical level, this can be described
in the scalar internal gauge space as

b=A (280)
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where ¢ is a matter field and A is the scalar component of an electromagnetic
potential. As shown in Egs. (263), the matter and vacuum fields have the same
structure. The coefficient g in the vacuum field is k/A(®) and is e/% in the matter
field. The process

hk — €AV (281)

is therefore a transfer of photon linear momentum to an electron, as in the
Compton effect. As soon as 7 is introduced, Planck quantization is also
introduced. Since e is a property of neither the electromagnetic field nor the
Dirac electron, the equation

fik = eA© (282)

can be regarded [47-61] as a Planck quantization of the factor g in the vacuum:

K e
g:w:ﬁ (283)

The Lehnert equations are a great improvement over the Maxwell-Heaviside
equations [45,49] but are unable to describe phenomena such as the Sagnac ef-
fect and interferometry [42], for which an O(3) internal gauge space symmetry
is needed.

IV. DEVELOPMENT OF GAUGE THEORY IN THE VACUUM

Gauge theory can be developed systematically for the vacuum on the basis of
material presented in Section II. Before doing so, recall that, on the U(1) level, A*
exists in Minkowski spacetime and there is a scalar internal gauge space that can
be denoted

A =Aji+Ayj=Axi+ Ayi (284)

The internal gauge space has local symmetry, and is a physical space. In complex
circular notation, the vector in the internal gauge space can be written as

A=Al AN (285)

indicating two states of circular polarization. Therefore, we have A*!) and A*(?)
in the vacuum. Circular polarization becomes a prerequisite for the conserved Q
of Eq. (277). In the notation of Eq. (285)

A —

(Ax —iAy); AP = —(Ax +iAy) (286)

Nia

1
V2
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Circular polarization appears in general if

Ax = AV exp (—i(or — k2Z)) (287)
Ay = AW exp (—i(ot — kZ)) (288)

where we have included the electromagnetic phase on the U(1) level. The scalar
internal space in the vacuum is therefore described by the following two vectors:

1 . o L
A:E(AXJHAY), A fﬁ(AX Ay) (289)

Global gauge transformation on these vectors produces a shift in the electro-
magnetic phase

Ax — AQexp (—i(or — kZ + A)) (290)
Ay — AQexp(—i(wr — kZ + A)) (291)

where A is an arbitrary number. So under global gauge transformation, the
electromagnetic phase in the vacuum is defined only up to an arbitrary A. Under
local gauge transformation

Ax — A exp (—i(or — kZ + A(x"))) (292)
Ay — AW exp (—i(of — kZ + A(x"))) (293)

and the U(1) electromagnetic phase is defined up to an arbitrary number A, which
is a function of the spacetime coordinate x*. In consequence, it has been shown
elsewhere [42,47-61] that U(1) gauge theory applied to electromagnetism does
not describe interferometry or physical optics in general.

There is an interrelation between the A and A" vectors of the scalar internal
gauge space and components of A*!) and A*?) in the vacuum

AW = jAgeV (294)
AP = —jAye® (295)
sothatA) = A®* is a vacuum plane wave. It can be seen that, on the U(1) level,

local and global gauge transformation introduce arbitrariness into the electro-
magnetic phase factor:

v = exp(—i(or — KZ)) (296)
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Dirac attempted to remedy this flaw on the U(1) level by defining the electro-
magnetic phase factor by [42]

Y = exp (ig }Aﬂx“)dx”) (297)

On the O(3) level, vacuum gauge theory is defined by a Clifford algebra
Ay =APe) +A4Ve® + A0 (298)
A =A%) 4 AW 1 A (299)

where A, is a vector in the internal gauge space of O(3) symmetry and a 4-vector
in Minkowski spacetime. In the internal gauge space, the Maxwell vector
potential is defined as

A=Axi+Ayj+Azk = APe) 4 A2 4 A3)e() (300)

indicating by ansatz the existence of a nonzero A in the vacuum. The latter
describes the Sagnac effect with precision as demonstrated elsewhere [42] using
a non-Abelian Stokes theorem. On the O(3) level, the electromagnetic phase
factor is a Wu—Yang phase factor denoted

Y = Pexp (ig jEAH(xH)dxH> (301)

where parallel transport is implied [42] with O(3) covariant derivatives. In the
vacuum, the factor g is given by Eq. (275) for all gauge group symmetries. There
is again a relation between the internal vector A and components in the vacuum
of the four vector A*. For example

AV =jAgeD; AP = _jAye@;  AB) =Azk (302)

So it becomes clear that the description of the vacuum in gauge theory can be
developed systematically by recognizing that, in general, A is an n-dimensional
vector. On the U(1) level, it is one-dimensional; on the O(3) level, it is three-
dimensional; and so on. The internal gauge space in this development is a
physical space that can be subjected to a local gauge transform to produce
physical vacuum charge current densities.

So in the general case where A is an n-dimensional vector [46], a local gauge
transform on this vector is represented in the vacuum by

A(xX) — A'(") = exp (IMPAY (M)A (M)
= S(M)AM) (303)
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where M“ are the generators of the group that describes the symmetry of the
internal gauge space, and where the index a is summed from 1 to 3 when the
internal gauge group is O(3). It follows that

0, A" = S(0,A) + (0,5)A (304)

so O, A does not transform covariantly. This is the basis of the gauge principle and
the principle of parallel transport in the vacuum for any gauge group symmetry.
Parallel transport in the vacuum produces the vector 6A, where

BA = igM Aldx'A (305)

So the product gM“Af is the result of special relativity in the vacuum, and g is
adjusted for correct units. Ryder [46] simply describes A as “an additional field
or potential;” Feynman describes it as “‘the universal influence.” Therefore, as
argued in the foregoing section, both the potential and the electromagnetic field
in the vacuum originate in local gauge transformation, which, in turn, originates
in special relativity itself.

The covariant derivative in the vacuum for any internal gauge group symme-
try is therefore defined by

D,A = (3, — igM A%)A (306)

and is valid for an n-dimensional A and for any internal gauge group whose
generators are represented by matrices M“ [46]. The U(1) covariant derivative in
the vacuum is given by M = —1, resulting in

DA = (0, +igA,)A (307)
On the O(3) level, the covariant derivative in the vacuum is given by

DA =0,A +gA, x A (308)

Considering a rotation A = SA in the vacuum, the covariant derivative transforms
as

DA — DLA’ =SD,A (309)
that is

(8 — igAl)A’ = S(8, — igA,)A (310)
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which [42] leads to the law governing A, under gauge transformation in any
gauge group:

Al =SAS - é (0,8)S™! (311)

It is also possible to consider the holonomy of the generic A in the vacuum.
This is a round trip or closed loop in Minkowski spacetime. The general vector
A is transported from point A, where it is denoted A 5 ¢ around a closed loop with
covariant derivatives back to the point A, o in the vacuum. The result [46] is the
field tensor for any gauge group

i ;
Gy = § [Dy,D,] = 0,A, — 0,A, — ig[Ay, A)] (312)

and the field tensor is the result of rotating the vector A in the internal space of the
gauge theory in the vacuum. It is seen that the field tensor is a commutator of
covariant derivatives, and therefore originates in local gauge transformation. On
the U(1) level, the field tensor in the vacuum is

Fuw =0,A, —0,A, (313)
and on the O(3) level is
G, =9,A, —0,A, +gA, XA, (314)
The field tensor transforms covariantly [46] because

AA70 — ALX‘O = SAA,()

, (315)
Apg — Ay = SAq)

in the vacuum.
Similarly, transport of the generic A around a three-dimensional closed loop
[46] produces the Jacobi identity

Z [Dca[DleDVH :0 (316)

cyclic

for any gauge group symmetry in the vacuum. On the U(1) level, it is the
homogeneous field equation

™ =0 (317)
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and on the O(3) level, the homogeneous field equation:
D,G" =0 (318)

The complete set of vacuum field and wave equations on the U(1) level is
therefore

™ =0 (319)
i

=7 (;)ac) (320)

D'"D,A =0 (321)

and the complete set on the O(3) level is

9,G" =0 (322)
D'G,, = —gc(D,A) x A (323)
D,(D'A) =0 (324)

All these results are derived essentially by considering a rotation of the general
vector A in the internal space of the gauge theory in the vacuum.

In order to demonstrate that spontaneous symmetry breaking can affect the
energy inherent in the vacuum, consider the globally invariant Higgs Lagran-
gian:

L =0du(a+A)Ma+A") —m*a+A") (a+A) —M(a+A%)(a+A))
(325)

It has been demonstrated already that local gauge transformation on this
Lagrangian leads to Eq. (153), which contains new charge current density terms
due to the Higgs mechanism. For our present purposes, however, it is clearer to
use the locally invariant Lagrangian obtained from Eq. (325), specifically

P = (0, +igAy)(a+ A) (D — igA")(a + A")

1
—mPa+A)a+AY) = Ma+ A (a+ AT — Z PV Fu (326)

with the Euler—Lagrange equations:

0. 0 0 0
o (a(a“A)) - (G(GHA*)> (327)
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Such a procedure produces the equations:

D D'A* = —m*A* — 20 A" (AA¥)

(328)
D,D'A = —m*A — 2)A(A*A)
where we have used a = a*. So the effect of the Higgs mechanism is to generate
the inhomogeneous wave equations (328) from the homogeneous wave equations
(225) and (228) by spontaneous symmetry breaking [46] of the vacuum. The
charge current densities on the right-hand side of Eq. (328) can be used to
generate the equivalent matter charge current densities as discussed later in this
section.
Without the Higgs mechanism, the Lagrangian (325) is

L = 0,A'A* — m*A*A — MATAATA (329)
and using Eqgs. (327) produces the wave equations:

[JA* = —(m® +2AAA)A*

(330)
OA = —(m* + 2hAA")A
At the Higgs minimum
2
2 2 m
= |Al'= —— 331
@ =|aP= -2 (331)
Egs. (330) become
A" =0
- (332)
OA=0

At the local Higgs maximum [46] for m? < 0, that is, at m = 0, Eqgs. (330)
become
[JA* = —20(A*A)A"

[JA = —21(AA%)A (333)

and Eqgs. (328) become

D,DMA* = —2)0A*(AA*)

(334)
D,D"A = —2)A(A*A)
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So both the globally and locally invariant equations of motion of the internal
gauge space [the Euler-Lagrange equations (327)] are different at the Higgs
maximum and minimum. The minimum and local maximum are different ground
states of the field, and are different vacuum states. The difference between the
Higgs maximum and minimum represents potential energy difference within the
vacuum itself. The Higgs mechanism is well known to lead to electroweak theory
and to the existence of the Higgs boson, so it is well established that in the
vacuum, there is a usable difference of potential energy, the different minima of
which lead to different ground states of the field theory and to different vacua. In
nineteenth-century classical electromagnetism, on which a text such as that by
Jackson [66] is based, such concepts do not exist. There is no vacuum charge
current density, and there are no potential energy maxima or minima in the
vacuum itself.

It is well known that there is an interesting analogy between spontaneous
symmetry breaking of the vacuum and the Landau—Ginzburg free energy in
superconductors. The latter is obtained from the locally invariant Lagrangian
(325) in the static limit [46]

%A =0 (335)

where the mass term is defined as m?> = a(T — T,) near the critical temperature
T,. At T > T., m* > 0 and the minimum free energy is at |[A| = 0. When
T < T.,m?* < 0 and the minimum free energy is at |A|*= —(m?/2X) > 0. This is
an analogy with the case of spontaneous symmetry breaking in the vacuum,
where there is a difference of free energy (or latent free energy) on the classical
level that can be used for practical devices.

The effect of the Higgs mechanism can be seen most clearly by minimizing
the Lagrangian (251) with respect to A:

07 .
L = 8ADMAT =0 (336)

This minimum value defines the ground state and the true vacuum through the
equation

D'A* =0

337

D'A =0 (337)

This means, however, that the vacuum charge current density disappears:
J*(vac) = — & (A*DMA — ADVA*) = 0 (338)

HoC



56 M. W. EVANS AND S. JEFFERS

It thus becomes clear that the vacuum charge current density introduced by
Lehnert is an excitation above the true vacuum in classical electrodynamics. The
true vacuum is defined by Eq. (337). It follows that in the true classical vacuum,
the electromagnetic field also disappears.

Using the Higgs Lagrangian (326) however, the true vacuum is defined by

07
T igA,D"A* — m*A* — 20A*(AAY) = 0 (339)

and the true vacuum itself carries a charge current density. The charge current
density in the true vacuum is described by Eq. (339), which is consistent with the
fact that the Lehnert charge current density implies photon mass, as does the
Higgs mechanism.

The transfer of the energy associated with this true vacuum charge current
density to a matter current is achieved by adjusting the value of the coupling
constant g such that the vacuum value g = x/A®) becomes e/h in matter.
The resulting equation is

K

§=25 =7 (340)
specifically
fik = eA©) (341)
which classically gives the minimal prescription:
p=eA (342)

The momentum p is derived from a limit of general relativity, and so is derived
from the structure of spacetime. Therefore eA is also derived from the structure
of spacetime, or from the vacuum itself. The meaning of e is reinterpreted as the
minimum value of

K

and this minimum value is the charge on the proton.
At the Higgs minimum, the Lagrangian in the internal space of the U(1)
gauge theory is

& =d,ad"a* — m*a*a — M a*a)® (344)
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which, on local gauge transformation, becomes
1
L = (0, + igA,)a(d* — igAM)a* — m*aa* — M(aa*)® — ZF“"Fuv (345)

The equations of motion of the field at the Higgs minimum (the minimum
potential energy of the vacuum) are the Euler—Lagrange equations

wlma) wodlamn) 09
T Cvn) o)

and using the globally invariant Lagrangian (344) in Egs. (346) gives the result

Oa* = —(m? + 2 a*a)a* = 0

348
(a = —(m* + 2haa*)a = 0 (348)

and, using the locally invariant Lagrangian (345) in Eqs. (346) gives the result

D,(D"a*) = —(m* + 2ha*a)a* = 0

5 (349)
D, (D"a) = —(m" +2haa*)a =0
Equation (348) is the globally invariant wave equation defining a, and Eq. (349)
is its locally invariant equivalent. Using the locally invariant Lagrangian (345) in
Eq. (347) gives the inhomogeneous field equation (SI units)

O\F" = —igc(a*D"a — aD"a™) (350)

where the charge current density on the right-hand side is obtained from the pure
vacuum by local gauge transformation and local gauge invariance. Both the left-
and right-hand sides of Eq. (350) are defined by the minimum of potential
energy, and by the minimum value that A can attain. This minimum value is a,
and is the vacuum expectation value of A [46], associated with a nonzero potential
energy that gives rise to A" and F*V by local gauge invariance. Therefore the
source of an electromagnetic field propagating in the vacuum is the Higgs
minimum value of A, which is denoted a. If we do not use a Higgs mechanism,
then the vacuum expectation value of A in the internal gauge space of the U(1)
gauge theory is zero, and the globally invariant Lagrangian disappears.
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Therefore, in the presence of a Higgs mechanism
(0]A]0)*= & (351)

and in its absence:
|(0]A[0)*=0 (352)

The Lagrangian (345) can be written as [see Eq. (158)]
L =gra* A A" + - (353)
and if the photon mass is identified as

2g%d? (354)

2
"y,

the Lagrangian (353) gives a Proca equation that is locally gauge invariant on the
U(1) level. Therefore, application of the Higgs mechanism in this way has
produced one massive photon from one massless photon. The scalar field a
remains unaffected, so degrees of freedom are conserved. Therefore, this theory
identifies photon mass as the result of local gauge invariance applied at the Higgs
minimum, that is, the minimum value that the potential energy of the globally
invariant Lagrangian can take in the vacuum.
This minimum value provides the true vacuum energy

En(vac) JJ“(vac)AudV (355)

and a rate of doing work:
dCTV[V (vac) = JJ(vac) ‘EdV (356)
The Poynting theorem for the true vacuum can be developed as in Egs. (258)-
(262). The true vacuum energy (355) comes from the vacuum current in Eq.
(350), which is transformed into a matter current by a minimal prescription as
discussed already. This matter current in principle provides an electromotive
force in a circuit. It is to be noted that the local Higgs maximum occurs at A = 0
[46], so the local Higgs minimum occurs below the zero value of A.
The overall conclusion is that there is no objection in principle to extracting
electromotive force from the true vacuum, defined by the minimum value, a,

which can be attained by A in the internal scalar space of the gauge theory,
which is the theory underlying electromagnetic theory.
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On the O(3) level, the globally invariant Lagrangian corresponding to Eq.
(344) is

1 m2 2
CS,”:T—Vziapa-é“a—Ta-a—X(a-a) (357)

with potential energy:

2

% :%a-a+k(a-a)2 (358)

Here, a is a vector in the internal space of O(3) symmetry. The equation of

motion is
0¥ 0¥ 0¥
— =0 =) ="~ 359
da " (6“a> (a“a) (359)
and produces, from the Lagrangian (357), the result
Oa =m’a + \a(a-a) =0 (360)
which is a globally invariant wave equation of d’Alembert type for the three

components of a. Local gauge transformation of the Lagrangian (357) produces
[cf. Eq. (205)] the following equation:

1 2 1
.Z:EDpa-D”a—m?ma—?x(a-a)z—ZGW°G“V (361)

Use of Eq. (359) produces the wave equation
D*(D,a) = m*a + \a(a-a) = 0 (362)

The Euler—Lagrange equation

0% . 0%
aar ~C (6(6"A”)> (363)
produces the field equation
D'G,, = —g(D,a) x a (364)

where the current on the right-hand side is a current generated by the minimum
value of A in the internal O(3) symmetry gauge space. This minimum value is the
vacuum and is denoted by the vector a
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The Lagrangian (361) can be written as
P =gA, xaA" xa+ - (365)
and produces three photons with mass from the vector identity
(Ay xa)+ (A" xa) = (A,+A")(a*a) — (A -a)(a-A") (366)

and the term
P =g aa) (A, AY) + - - (367)

One of these is the superheavy Crowell boson [42], associated with index (3) in
the ((1),(2),(3)) basis, and the other two are massive photons associated with
indices (1) and (2). The superheavy Crowell boson comes from electroweak
theory with an SU(2) electromagnetic sector and may have been observed in a
LEP collaboration at CERN [44,56].

On the O(3) level, the vacuum current (SI units)

8
J = ——(D"a) x 368
(vae) = & (D'a) xa (368)

gives the vacuum energy

En= JJ”(vac)°AHdV (369)

which can be transformed into a matter current by the minimal prescription
(342). This matter current is effectively an electromotive force in a circuit. Gauge
theory of any internal gauge symmetry applied to electromagnetism comes to the
same result, that energy is available from the vacuum, defined as the Higgs
minimum. This appears to be a substantial advance in understanding.

In order to check these results for self-consistency, the locally invariant
Higgs Lagrangian, when written out in full, is

¥ =0(ap +A)d"(ap +A)"— ig((ap + A)""(ap + A)—(ap + A)d"(ap + A)")A,

+ g*A A  (ap + A)2 —m*(ag +A)(ag +A)"
o1
—M(ao + A)(ag +A)*)* — 7 Fa (370)

where ag is the minimum value and where the complex scalar field is

A= (Al + A7) (371)

1
V2
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in the internal space. In this Lagrangian, aq is a constant so the Lagrangian (370)
can be written as

1 1 1

L =~ FuF" + SaiAAY + 3 (0,A1)° + 3 (0,A2)°

— 2Ma}A? + V2gapAM O, AL + - - (372)
At its minimum value, this Lagrangian is
1

L == PP + gPaiA, A" (373)

which gives the following locally gauge-invariant Proca equation:
OuF™ +m AY =0 (374)

The photon mass is identified as argued already by

mﬁ = 2" |ag| (375)
and if we further identify
s K
= 376
& =2 (376)

we obtain the de Broglie guidance theorem in SI units:
ho = my,c? (377)

So, as argued already, the photon mass is picked up from the vacuum, that is,
from the minimum value of the locally invariant Higgs Lagrangian (370). This
conclusion means that the Lehnert charge current density that leads to the Proca
equation [45,49] is also a property of the vacuum, as argued above. In order to
show this result, the constant ay is expressed as the product of two complex fields
a and a". To illustrate this by analogy, one can show that the dot product of two
conjugate plane waves gives a constant

A0 A0 )
02 — 7 (i — ij)-e"bﬁ (i+if)e ™ =A41.4? (378)

but the individual plane waves are functions of coordinates and time.
Analogously, therefore, a and a are functions of x*. The vacuum Lagrangian



62 M. W. EVANS AND S. JEFFERS
can therefore be written as
& = 0uad'a” —ig(a*®"a — ad"a")A,
+ SPAA S — mPata — Ma'a)® — %F“"Fllv (379)
From Eq. (373), it is known that this Lagrangian is
L =g*A A — %F”VFHV (380)
There is therefore a balance between globally invariant Lagrangians:

L =d,ad"a” — m*a*a — Ma*a)’

= ig(a"®"a — ad'a")A, = gJ'A, (381)

The globally invariant vacuum energy is therefore:
1
En = JJ“AHdV = —J@,laa”a* —m’d*a — Ma*a)*dV (382)
8

and is defined in the internal space of the gauge theory being considered [in this
case of U(1) symmetry]. It can be seen that the vacuum energy is essentially a
volume integration over the original globally invariant Lagrangian

L = d,ad'a* — m*a*a — Ma'a)® (383)

used in the Higgs mechanism. We have defined the mass of the photon by
Eq. (375), and so the locally gauge-invariant Proca wave equation is

DA, = —28°agA, (384)

Energy is usually written as the volume integral over the Hamiltonian, and not
the Lagrangian, and Eq. (382) may be transformed into a volume integral over a
Hamiltonian if we define the effective potential energy

V = —m’d*a — Ma*a)® (385)

which is negative.

The locally gauge-invariant Lehnert field equation corresponding to Eq. (374)
was derived as Eq. (350). The photon picks up mass from the vacuum itself, and
having derived a locally gauge-invariant Proca equation, canonical quantization
can be applied to produce a photon with mass with three space dimensions.
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V. SCHRODINGER EQUATION WITH A HIGGS MECHANISM:
EFFECT ON THE WAVE FUNCTIONS

In order to measure the effect of vacuum energy in atoms and molecules, in the
simplest case of the hydrogen atom, it is necessary to develop the nonrelativistic
Schrodinger equation with an inbuilt Higgs mechanism. The method used in this
section is to start with the Lagrangian for the Higgs mechanism in matter fields,
derive a Klein—Gordon equation, and from that, an Einstein equation, then to take
the nonrelativistic limit of the Einstein equation, and finally quantize that to give
the Schrodinger equation with a Higgs mechanism. It turns out that the Higgs
minimum is at an energy %mc2 below the vacuum minimum with no Higgs
mechanism, meaning that this amount of energy is available in the vacuum.
Some examples of the effect of this negative potential energy on analytical
solutions of the Schrodinger equation are given in this section.

The starting Lagrangian on the U(1) level for a free particle, such as an elec-
tron, is the standard Lagrangian for the Higgs mechanism:

L = 0,000 — m’p"d — M(¢"¢)’ (386)

Using Egs. (115) and (221), this Lagrangian gives the Klein—Gordon equations
(O + (m* + 20" $))d* =0 (387)

(O + (m* +2009"))d = 0 (388)

in which ¢ and ¢* are considered to be complex-valued one-particle wave
functions. It can be seen that the effect of the Higgs mechanism is to increase the
mass term m> to m? + 2" .

This additional effective mass is introduced from spontaneous symmetry
breaking of the vacuum. The two Klein—Gordon equations therefore take on
the form

(O + )" = —20(0p" )" (389)
( + ) = —20(6d")d (390)

The classical equivalent of these equations is the Einstein equation for one
particle

En* = p*c® + mic* + 20 (dd")c? (391)
The Higgs mechanism has produced an additional rest energy:

Eno(Higgs) = 2M(¢¢")c* (392)
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In Eq. (391), En is the total energy, and the equation can be written as follows:
p262 = En* — En(z)

2N\ —1
= mjc* (1 — Izz) —mict — 27»<d)2>c4 (393)

To reach the nonrelativistic limit of this equation, the right-hand side is expanded
as

2
u
prct = m*ct I 27»<d>2>c4 (< ¢) (394)

which, for u < ¢, results in the nonrelativistic equation
2
pPct = m?ct — = 2X<¢2>c4 = En® — En} (395)
c

which has the same form as the original, fully relativistic, equation (393). The
nonrelativistic equation (395) can be written as

mu? = p* +20{d*)*  (u < c) (396)
that is

1 2_1’2 Aoy o
st =54 (¢%)e (397)

The left-hand side is the nonrelativistic kinetic energy of one particle. It can be
seen that the Higgs mechanism changes the classical nonrelativistic expression

A (398)

to Eq. (397). The Schrddinger equation without the Higgs mechanism is obtained
by applying the quantum ansatz

0
En — ih—; p — —ihV (399)
ot
to Eq. (398), giving
T
—ih—=—V-"¢ (400)

ot 2m
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The Schrodinger equation in the presence of the Higgs mechanism is therefore

3 I A

—ih s _%V2¢+ (¢%)c (401)

where <d)2> is the expectation value of the wave function. At the Higgs minimum,
this expectation value is [46]

m2

() = -2 (402)
and so the Schrodinger equation at the Higgs minimum is
2 g Ly (403)
ot 2m
which can be written in the familiar form
En¢:H¢:(T+V)¢ ™
404
T=— % v?
where
V= Lm?=min (ﬁ <¢2>c2) (405)
2 m

is a negative potential energy produced by spontaneous symmetry breaking of
the vacuum. The Schrodinger equation (404) shows that the Higgs minimum (the
symmetry broken vacuum) is at an energy:

1
V(Higgs) = Emc2 (406)

below the vacuum for the ordinary Schrédinger equation (400). The vacuum
expectation value for the ordinary Schrodinger equation is

(%) =0 (407)
We have therefore derived a nonrelativistic Schrodinger equation for a
free particle with an additional negative potential energy term V = f%mcz.

In order to apply this method to the hydrogen atom, the relevant Schrodinger
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equation is

12
<_ Z_uvz - VCoulomb + V> d) = End) (408)
e 1
Veoulomb = dneyr (408a)

where Voulomb 18 the classical Coulomb interaction between one electron and
one proton and p is the reduced mass:

mem,

h = et (409)

The Higgs mechanism is the basis of electroweak theory and other elemen-
tary particle and gauge field theories, so it can be stated with confidence that to a
good approximation the energy %mc2 is released from the vacuum when a shift
occurs between the Higgs minimum and the ground state of the hydrogen atom.
The challenge is how to find a mechanism for releasing this energy. Mills [67]
has found a working device based on the postulated collapse of the H atom
below its ground state. The Schrodinger equation with a Higgs mechanism
shows that there is an extra negative potential energy term that may account
for the energy observed by Mills [67]. This possibility will be explored later
by solving Eq. (408) analytically to find the effect of V on the states of the H
atom. First, however, we illustrate the effect of V on analytical solutions of the
Schrodinger equation, starting with the free-particle solution.

The wave function for Eq. (404) is well known [68] to be of the form

(410)

1/2
b= Alei¥Z + B'e‘iK/Z; = <2m(E - V)) /

h2

where the particle momentum is given by 7ix’. The scheme in the following
equation group explains the role of the two parts of the wave function:

oy = hKl; _ A/eiK’Z
i v (a11)
—p= hKl; \JJ — B/e—mZ

In the Schrodinger equation (404), the maximum value of the vacuum potential
energy is the Newton vacuum

V=0 (412)

and its minimum value is the Higgs vacuum, or minimum of the symmetry-
broken vacuum:

1
V =——-mc’

> (413)
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In Newtonian mechanics, the particle cannot be found below V = 0, therefore
Newtonian mechanics always corresponds to V = 0 [e.g., Eq. (398)], and this
represents, classically, an insurmountable barrier to a particle such as an electron
attempting to enter the Higgs region below V = 0. In quantum mechanics,
however, an electron may enter the Higgs region by quantum tunneling, which
occurs when E < V = 0. The wave function for this process is well known to
be [68]

d =A™ (414)

and has a nonzero amplitude. An electron of energy 1.6 x 10~ J incident on a
barrier of height 3.2 x 10~'? J has a wave function that decays with distance
as e 12 @M and decays to 1/e of its initial value after 0.2 nm, about the
diameter of an atom [68]. Therefore, quantum tunneling is important on atomic
scales. So quantum-mechanically, an electron can enter the Higgs region and
gain negative energy. This means that it radiates positive energy [46]. The
maximum amount of energy that can be radiated is determined by the minimum
value of the Higgs region, which defines the ground state, namely, the Higgs
vacuum. This is a result of Eq. (404) for a free electron. To see that negative-
energy states En are possible, write Eq. (395) as

En* = p*c® + En}) (415)

and its solutions are
En = £(p*c* + En})"/? (416)
The states of the hydrogen atom must be found from Eq. (408). When V = 0,

the ground state of the H atom is well known [68] to be determined by
the expectation value

4
En_—ﬂ;eg(%#i; n=1 (417)
from the Schrédinger equation:
2
—%v% - 4::0r¢ = En (418)
When Vis not zero, Eq. (418) becomes
e = (v (419)
2u 4meor
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and the electronic orbital energy becomes

pet 1

En=——"——5-
32n2e2h’ n

(420)

Here, n is the principal quantum number. So, for V = 0 the electronic orbital
energy in the H atom becomes less negative as n increases. However, if we add
V < 0 from the Higgs region to the ground state of H determined by n = 1, the
electronic orbital energy falls below its ground state. This emits energy in the
same way as an electron falling from a higher to a lower electronic atomic orbital
emits energy. The energy emitted by driving the H orbital below its ground state
has been observed experimentally by Mills et al. [67], repeatedly and repro-
ducibly. The Higgs mechanism on the U(1) level accounts for this energy
emission.

VI. VECTOR INTERNAL BASIS FOR
SINGLE-PARTICLE QUANTIZATION

Conventional single particle quantization is based on the quantum ansatz (399)
applied to the Einstein equation (415) to produce the Klein—Gordon equation

(O+m)o=0 (421)
(O+m*)e* =0 (422)
where ¢ is regarded as a single-particle wave function. In the nonrelativistic
limit, the Schrodinger equation is obtained as demonstrated in Section IV.

Formally, the Klein—Gordon equations (421) can be obtained from the U(1)
Lagrangian [46]

L = (0,0)(3"¢") — m* b’ (423)

which is globally invariant. Usually, the Lagrangian (423) is applied to complex
fields, but formally, these can also be wave functions. On the U(1) level, they take
the form

(bx —idy) (424)

(bx +idy) (425)
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On the O(3) level, there are three wave functions:

00 = = (= )
0% = =+ i) (426)
o = o,

and it is possible to collect these components in vector form through the relation
¢ = oPel) + oVel® + oVel® = dyi+ dyj + ok (427)

where ¢y, dy, d, are real-valued. The unit vectors of the circular basis are
defined as

(428)

On the O(3) level, therefore, the probability density of the Schrodinger equation
is

p= ¢(1)¢(2) _ ¢(2)¢(1) — ¢(3)¢(3)* (429)
and there are three Schrédinger equations:
hZ 5 ad)(l)
- m— _;
2mV ¢ ih ot
" ) o
- — ik 429a
o Vb ih—, ( )
R 3 ap®
- 3) — _in
2m Ve "

which identify (1>(]), (1>(2), (1>(3) as angular momentum wave functions. Atkins [48]
has shown that angular momentum commutator relations can be used to derive
the laws of nonrelativistic quantum mechanics. So the internal O(3) space, in this
instance, corresponds to ordinary three-dimensional space. In a U(1) internal
space, the third component (l)(3) of angular momentum is missing and the
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wave functions are ¢<1) and (I)(2>. In Newtonian and nonrelativistic quantum
mechanics, the internal space is therefore O(3). The probability currents of the
Schrédinger equation are

_; 62V — ¢y e?) (430)
2m
and
J= i (GPTH — 68T =0 #31)
m

in the complex circular basis. In a more general spherical harmonic [68] basis for
three-dimensional space, the angular momentum wave functions are eigenfunc-
tions such that

|n,m) = Y(0,0) (432)

where

Yim (0,0);  I=1; m=0,%1 (433)

are the spherical harmonics. Therefore, it is also possible to describe the internal
0O(3) basis of electrodynamics in terms of spherical harmonics.

The probability densities of the Klein—-Gordon equation [46] in an O(3) inter-
nal basis contains terms such as

7 @d)(l) a¢(2)
- 2 —_ &M
p=1 c2 (d) ot ¢ ot (434)
This term is usually written as
h od 0
p= 2mc2 ( o 6_t> (435)

and in general can become negative. So the Klein—-Gordon equation is abandoned
in general as an equation for single-particle quantum mechanics. However, for
the photon with mass, the probability density from the Klein—Gordon equation is
positive definite, because it is possible to use the de Broglie wave functions:

d)* _ d)(z) = exp (i((Dt - KZ))

" . (436)
¢ = ¢ = exp(—i(wr — x2))
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to give
ho
= 437
pP=- (437)
When mass m is the rest mass, the de Broglie theorem states that
moc* = hoy (438)

and p = 1. For the free photon with mass, the Klein—-Gordon equation gives a
positive definite probability density because the derivative 6¢<1) /0t is not
independent of (])(2). The equation shows that the free photon with mass can also
take on negative energies. Therefore, the vector ¢ in this case can be interpreted
as a single-particle wave function. The probability 4-vector for the photon with
mass is given by [46]

J“-—l (00— (@9T)9) (439)

which for the de Broglie wave function gives

. hix
o= (440)
The 4-current j* is conserved:
%f—l ~(6"0¢ — o097 (441)

If we define

A=A@e) L ADe@ 1 4B)e0)
=Axi +Ayj +Azk (442)

there emerge four Klein—Gordon equations that all give a positive probability
density:

(O+mHAD =0;  i=0,1,2,3 (443)

for an O(3) invariant theory. In a U(1) invariant theory, there are only two
equations:

(O+mHAD =0;  i=1,2 (444)
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The four Klein—Gordon equations are for the photon regarded as a scalar particle
without spin. If the scalar components A, A, A®, A® are regarded as fields
and quantized, a many-particle interpretation of the photon emerges, and they are
recognized as bosons, which have integral spin. Therefore, in an internal space
that is globally invariant under a gauge transform, the four equations (443) give,
after field quantization (second quantization), a globally gauge invariant Proca
equation

(O +m*A* =0 (445)
where the 4-vector is defined as
AN = (A(O),A(]),A(2),A(3)) (446)

To an excellent approximation, the four Klein—-Gordon equations (443) are
d’Alembert equations, which are locally gauge-invariant.

However, there remains the problem of how to obtain a locally gauge-
invariant Proca equation. To address this problem rigorously, it is necessary
to use a non-Abelian Higgs mechanism applied within gauge theory.

The starting point of our derivation is the globally invariant O(3) Lagrangian
of the Higgs mechanism

L =0A A —m’A-A" —MA-A") (447)
where A and A" are regarded as independent complex vectors in the O(3) internal

space of the gauge theory. Application of the Euler—Lagrange equations (204)
give the following results:

aa;f = —mPA* — 204 (A-A")
0. X ) (448)
- A —2)A(A-A")
Therefore, at the Higgs minimum
* m’ _
A-A" = — o = (449)

The wave equation obtained from Eqs. (204) and (448) with the Lagrangian
(447) is

0"0,A = —m*A —2)A(A A7) (450)
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and, at the Higgs minimum, reduces to
9,4 =0 (451)
If we define:
A =A%) 4 AW 4 A (452)

then four globally invariant d’Alembert equations are obtained:
(453)

The locally invariant Lagrangian obtained from the Lagrangian (447) is
1
Z =DyA-D'A" = Gy G — m*A-A* — L(A-A*)? (454)

where it is understood that
A — Qo -|—A

. X . (455)
A" —ay+A

The following Euler-Lagrange equation is used next with the Lagrangian (454):

0¥ 0%
oA, <a<avAu>> (436)

The Lagrangian (454) contains terms such as
D,A+D"A™ = (O, + A x)A - (" —A¥x)A™
=0,A-0"A" +gA, x A-0"A" — g0, A-A" X A"
— %Ay xA)+ (A" x A") (457)

and a field equation emerges from the analysis by using

L gA x O"A* — g?(AM(A-A") — A*(A-AW))
oA,
= —g0"A" x A +g*(A" x A") x A

= —gD"A* x A (458)
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giving
D,G" = —gD"A* x A (459)

At the Higgs minimum, this field equation reduces to the locally gauge-invariant
Proca equation

D,G" = —g’ay x (A" x a}) (460)

and the Lagrangian reduces to
1 .
&= —ZGHV-G“" — % (A, x @)+ (A" x a}) (461)

Therefore, it can be seen that the mass of the photon in this analysis is derived
from the Higgs vacuum, which is the minimum of the potential energy term in
the Lagrangian (454). The field equation (460) is O(3) invariant and, therefore,
the existence of photon mass is made compatible with the existence of the B’
field, as inferred originally by Evans and Vigier [42]. The Higgs mechanism is
the basis of much of modern elementary particle theory; thus this derivation is
based on rigorous gauge theory that is locally O(3) invariant.

VII. THE LEHNERT CHARGE CURRENT DENSITIES
IN O(3) ELECTRODYNAMICS

We have established that, in O(3) electrodynamics, the vacuum charge current
densities first proposed by Lehnert [42,45,49] take the form

Ju(vac) = g0, A x A + g%A x (A x A,) (462)

In this section, we illustrate the self-consistent calculation of these charge current
densities in the plane-wave approximation, using plane waves in the X, ¥, and Z
directions. In general, the solution of the field equation (459) must be found
numerically, and it is emphasized that the plane-wave approximation is a first
approximation only. In the internal space, there is the real vector:

A =Axi+Ayj+Azk (463)
and by definition

Ay = Ayxi+ Auyj+ Ak (464)
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First, we consider a plane-wave propagating in the Z direction, so that

A=A it A cost + Ak (465)
= ———=SsInPl’+ ——=Cos +
\/2‘ \/i J Z

and adapt the following notation:
Az = Az zk = —Azk (466)

Elementary vector algebra then gives

$PA % (A X A3) = K*(—Axi — Ayj + Azk) (467)
and
20,4 x A = K*A0) (k + € singi — L cos ¢j) (468)
V2 V2

The i and j terms must cancel, so we obtain the following, self-consistently:

A= Ao Ay =2 cose (469)
x = ——=sind; y = —= cos
V2 V2

The Lehnert vacuum current density for a plane wave in the Z direction is
therefore
K2A0)

Jz=2 k (470)
Ho

If this is used in the third equation of Eq. (83), the B cyclic theorem [47-61] is
recovered self-consistently as follows. Without considering vacuum polarization
and magnetization, the third equation of Eqgs. (83) reduces to

V xB® =0 (471)

because B is phaseless and E is zero by definition. This must mean that there is a
balance of terms on the right-hand side, giving

kBB = —igaM) x B®
(472)
kB®* = —igd® x B
so that
kAOBO* = _jxa) x B (473)
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giving the B cyclic theorem self-consistently:
BY x @ — g0 g3+ (474)

The Lehnert charge density for a plane wave propagating in the Z direction is
obtained similarly as

~ 2¢?A0)

HoC

(475)

If a plane wave is now considered propagating in the X direction, the vector
in the internal space is defined as

A AV dj A ¢k + Axi (476)
= ———=SIn + ——= cos —+ Axt
V2 T .

and it can be shown that the Lehnert vacuum current in the X direction is given
self-consistently from Eq. (462) by

i (477)

Finally, if we consider a plane wave propagating in the Y direction, the vector in
the internal space is given by

A=— —(0) i k —<0) i +Ayj 8
siIno k + Ccos (I) 1+ 47

and the vacuum current density is given by

K2 A (O)
Jy=-2 J (479)
Ho

Therefore, in order to obtain self-consistent results from Eq. (462), it is necessary
to consider plane waves in all three directions. This is as far as an analytical
approximation will go. In order to obtain solutions from the field equation (459),
computational methods are required.

In summary, the Lehnert current densities in the Z, X, and Y directions, re-
spectively, are

i Jy=- J (480)
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and are accompanied by a vacuum charge density:

(481)

These results are obtained self-consistently from using plane waves in the X, Y,
and X directions.

VIII. EMPIRICAL TESTING OF O(3) ELECTRODYNAMICS:
INTERFEROMETRY AND THE AHARONOV-BOHM EFFECT

In order to form a self-consistent description [44] of interferometry and the
Aharonov-Bohm effect, the non-Abelian Stokes theorem is required. It is
necessary, therefore, to provide a brief description of the non-Abelian Stokes
theorem because it generalizes the ordinary Stokes theorem, and is based on the
following relation between covariant derivatives for any internal gauge group
symmetry:

1
}DH det = — EJ [Dy,D,)dc"" (482)
This expression can be expanded in general notation [46] as
1
EF(@” —igAy)dx" = — EJ [On — igAy, 0y — igAy]dc* (483)

where g is a coupling constant, and A, is the potential for any gauge group
symmetry [44]. The coupling constant in the vacuum is

K

$=u (484)

as used throughout this review and the review by Evans in Part 1 of this three-
volume compilation [44]. The terms

% B dd = [8, 8] = 0 (485)

are zero because by symmetry

avau = auav (486)
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SO

dudit = — [0, 8,]do™ = 0 487
4 2 H

It can also be shown, as in the earlier part of this review, that
[Apaév] = —avAu§ [@WAV} = auAv (488)
Therefore a convenient and general form of the non-Abelian Stokes theorem is
Jmp ¥ = — %J G d™ (489)
where the field tensor for any gauge group is
Gy = 0pAy — 0vA, — ig[AL, Ay (490)

Equation (489) reduces to the ordinary Stokes theorem when U(1) covariant
derivatives are used. First, define the units of the vector potential as

Ay = (¢,cA) (491)
and the units of the U(1) field tensor as

r E; E,  E37

0 -z =
C Cc C
E
=L 0 B; —B,
Fw=| (492)
~Z2 By 0 B,
C
E
-= B, -B, 0
- C -

Summing over repeated indices gives the time-like part of the U(1) Stokes
theorem:

%d)dt = % <J Exdc®' + JEdem) (493)

where the SI units on either side are those of electric field strength multiplied by
area. Summing over the space indices gives

. 1 "
%Aidx’ = 7§JFudGlj (494)
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which can be rewritten in Cartesian coordinates as
AX dX = BX dGYZ

ﬁ AydY = | Bydo™ (495)

AydZ = | B,do*¥

or as the vector relation

#A-dr:JB-dAr (496)

which is the ordinary Stokes theorem in Maxwell-Heaviside electrodynamics. In
the vacuum, A is a plane wave and is perpendicular to the propagation axis, so

{mzdz —0.  VxAk=0 (497)
which is self-consistent with Ay = 0 for Maxwell-Heaviside electrodynamics.
If electrodynamics is a gauge theory with internal O(3) gauge group symme-
try, however, there are internal indices and the vector potential becomes
Ay =APe) + A0le® 4 APl (498)
The field tensor is similarly
Gy =Glle! +Ge® + G[e (499)
where
eV x e =gl (500)

In O(3) electrodynamics therefore, Eq. (482) gives a term such as

%Ag‘”d;ﬁ = i3 (J 41", A5 de" + J [A(z'),Aﬁz)]dGﬂ) (501)

which reduces to

%A(;)dz = figJ AD, AP dAr = JB(ZS)dAr (502)
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Both A and B® are longitudinally directed and are nonzero in the vacuum.
Both A and B are phaseless, but propagate with the radiation [47-62] and
with their (1) and (2) counterparts. The radiated vector potential A® does not
give rise to a photon on the low-energy scale, because it has no phase with which
to construct annihilation and creation operators. On the high-energy scale, there
is a superheavy photon [44] present from electroweak theory with an SU(2)x
SU(2) symmetry. The existence of such a superheavy photon has been inferred
empirically [44]. However, the radiated vector potential A® is not zero in O(3)
electrodynamics from first principles, which, as shown in this section, are
supported empirically with precision.
On the O(3) level, there are time-like relations such as

1
jEAdeO =— EJE)OAV —0,Ag — ig[Ag, Ay dc®) (503)

which define the scalar potential on the O(3) level. The constant A® can be
expanded in a Fourier series:

2

AZ2A2<%—4<COS¢—%COSZd}—F%COS?)d)—‘r“')) (504)

where o is chosen so that
b=0r—xZ+a (505)

is always one radian. So both the scalar and vector potentials in O(3) have
internal structure.

The non-Abelian Stokes theorem gives the homogeneous field equation of
0O(3) electrodynamics, a Jacobi identity in the following integral form:

1
jEDH v + EJ Dy, Dy]do™ = 0 (506)
To prove this, we again use
1 v
Dydx* = — 2 [Dy,Dy]dc" (507)
to obtain the identity
1

EJ (IDy, D] — [Dy, D]y do™ =0 (508)
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whose integrand is the identity
Dy, D) — Dy, D] = 0 (509)

From this, we obtain the Jacobi identity

> [D6, [Py, D] =0 (510)

CNTRY

straightforwardly for all group symmetries, including, of course, O(3). The
homogeneous field equation in O(3) can be written in differential form as

DG =0
= D'G" + D'G" + D'G™ (511)
and the equivalent in U(1) electrodynamics in the differential form is
0™ =0
= 0"FW 4 Q' FY 4 OV (512)
As discussed in the earlier part of this review, Eq. (511) is an identity between
generators of the Poincaré group, which differs from the Lorentz group because
the former contains the generator of spacetime translations
p =0y, (513)

a group generator that also obeys the Jacobi identity. So we can write

> [Po, (D D] =0 (514)

ATRY
which is:

D,G" =0 (515)
and it follows that Eq. (515) can be written as

0,G" =0
- (516)
Ay xG"V =0
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The homogeneous field equation (515) of O(3) electrodynamics therefore
reduces to

oB
VvV x EV 4+ =0
ot
(2)
V x E® +aB =0 (517)
ot
oB®
=0
ot

Equation (515) can be expanded into the O(3) Gauss and Faraday laws

B(D*
v x BV 40 == —ig(cAy BY — cAP'BY + A0 x BV —A®) x E)

(519)

which are homomorphic with the SU(2) invariant Gauss and Faraday laws given
by Barrett [50]:

V+B=—ig(AB—B-A) (520)

VX3+%_’::fiq([AO,B}+A XE—E x A) (521)

The vacuum O(3) and SU(2) field equations, on the other hand, are more
complicated in structure and highly nonlinear. The O(3) inhomogeneous field
equation is given in Eq. (323) and must be solved numerically under all
conditions.

These field equations are therefore the result of a non-Abelian Stokes theo-
rem that can also be used to compute the electromagnetic phase in O(3) elec-
trodynamics. It turns out that all interferometric and physical optical effects are
described self-consistently on the O(3) level, but not on the U(1) level, a result
of major importance. This result means that the O(3) (or SO(3) = SU(2)/Z2)
field equations must be accepted as the fundamental equations of electrody-
namics.

If we define

K

3
A= =

(522)
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then an equation is obtained for optics and interferometry:
fi;dZ ~x JdAr (523)

which relates the line integral on the left-hand side to the area integral. Multi-
plying both sides of Eq. (523) by k gives a relation between the dynamical phase
and topological phase on the right-hand side [44]:

K j£ dz = «* JdAr (524)
Application of an O(3) gauge transform to Eq. (502) results in

1
AY =AY 1 5,00
8

(525)
BY — sBY)s™!
So after gauge transformation
1
iﬁ <A<Z3> + §62A<3)>dz = JSB(;)S" dAr (526)

and if A? ) is initially zero (vacuum without the Higgs mechanism), the gauge
transform produces the nonzero result:

anZA<3>dz = AND) =g JSB?)S’ldAr (527)

which is the Aharonov—-Bohm effect, developed in more detail later.
The time-like part of the gauge transform gives the frequency shift [44]:

oA
ot

o — o0+ =0+0 (528)

The left-hand side of Eq. (523) denotes a round trip or closed loop in Minkowski
spacetime [46]. On the U(1) level, this is zero in the vacuum because the line
integral

fi;dZ —x JdAr (529)
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reduces in U(1) to a line integral of the ordinary Stokes theorem and is zero. In
0O(3) electrodynamics, Eq. (529) is a line integral over a closed path with O(3)
covariant derivatives and is nonzero.

In the Sagnac effect, for example, the closed loop and area can be illustrated
as follows:

C A

There is no Sagnac effect in U(1) electrodynamics, as just argued, a result that is
obviously contrary to observation [44]. In O(3) electrodynamics, the Sagnac
effect with platform at rest is given by the phase factor [44]

exp (z+ k® -dr) = exp (iK?Ar) (530)
A-C

because on the O(3) level, there is a component k(®) that is directed in the path r.
The phase factor (530) gives the interferogram

w2
Y = cos <2C2Ar + 2nn> (531)

as observed. The Sagnac effect with platform in motion is a rotation in the
internal gauge space given by Eq. (528), which, when substituted into Eq. (530),
gives the observed Sagnac effect to high accuracy:

QA
Ay = cos (4 ® 5 Ty 21m> (532)
c

The Sagnac effect is therefore due to a gauge transformation and a closed loop in
Minkowski spacetime with O(3) covariant derivatives.

If we attempt the same exercise in U(1) electrodynamics, the closed loop
gives the Maxwell-Heaviside equations in the vacuum, which are invariant un-
der T and that therefore cannot describe the Sagnac effect [44] because one loop
of the Sagnac interferometer is obtained from the other loop by 7 symmetry.
The U(1) phase factor is of — KZ + o, where o is arbitrary [44], and this phase
factor is also T-invariant. The Maxwell-Heaviside equations in the vacuum are
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also invariant under rotation, and are metric-invariant, so cannot describe the
Sagnac effect with platform in motion.

Physical optics, and interferometry in general, are described by the phase
equation of O(3) electrodynamics, Eq. (524). The round trip or closed loop in
Minkowski spacetime is illustrated as follows:

OA AO

W

A

A

over one wavelength A of radiation. If k = k/A(®), the area is shown straight-
forwardly to be

2
Ar = % (533)

and if g is proportional to k /A(%), the area is proportional to 2 /7. Only the Z axis
contributes to the left hand side of Eq. (524), which correctly describes all
physical optical and interferometric effects. The closed loop is zero in U(1)
electrodynamics because the line integral in Eq. (524) is zero from the ordinary
Stokes theorem. Therefore Maxwell-Heaviside electrodynamics cannot describe
optics and interferometry. The root cause of this failure is that the phase is
random on the U(1) level.

The description of Young interferometry for electromagnetism is obtained
immediately through the fact that the change in phase difference over trajec-
tories 1 and 2 illustrated below

is given by

AS = —1; AP edr = kAr (534)
2—-1
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where A® = |A®)|, and where A® is directed along the path r in the vacuum.
Equation (536) gives the correct result for Young interferometry for vacuum
electromagnetism:

Ad = kAr = Z%Ar (535)

The change in phase difference of the Young experiment is related through the
non-Abelian Stokes theorem to the topological

Ad = gJB<3)dAr (536)

which is an integral over the B® field of O(3) electrodynamics. The Young
interferometer can therefore be regarded as a round trip in Minkowski spacetime
with O(3) covariant derivatives, as can any type of interferometry or physical
optical effect. If an attempt is made to describe the Young interferometer as a
round trip with U(1) covariant derivatives, the change in phase difference (534)
vanishes because the vector potential in U(1) electrodynamics is a transverse
plane wave and is always perpendicular to the path. So on the U(1) level

AS =0 (537)

and there is no Young interferometry, contrary to observation. The same result
occurs in Michelson interferometry and therefore in ordinary reflection [44].

The O(3) description of the Aharonov—-Bohm effect relies on developing the
static magnetic field of a solenoid placed between the two apertures of the
Young experiment as follows

B = —igd) x A (538)
where
A0 .
AW = AP = (i )™ 539
NG (it +J) (539)

are nonpropagating and transverse. On the O(3) level, the following gauge
transformations occur:

1
Al — 4D +§apA<'>

(540)
1
AP — AD 4+ gapAQ)
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This means that on O(3) gauge transformation

AL AW 4 40

A® 5 A® L 4@ (541)
In regions outside the solenoid, the static magnetic field is represented by
SBOS™ = —igd) x A® (542)
and is not zero. The Aharonov—Bohm effect is therefore described by
AS = %JSB@)S’I -dS (543)

as observed [46]. On the U(1) level, the static magnetic field is represented by
B=V xA (544)

but in regions outside the solenoid
1
B=Vx (—VA) =0 (545)
8

and the magnetic field is zero. So there is no Aharonov—Bohm effect on the U(1)
level because B is zero in the integral (543). This has also been pointed out by
Barrett [50] with an O(3) invariant electrodynamics.

Therefore, in this section, several effects have been demonstrated to be de-
scribable accurately by O(3) electrodynamic and to have no explanation at all in
Maxwell-Heaviside electrodynamics. It is safe to infer, therefore, that O(3)
electrodynamics must replace U(1) electrodynamics if progress is to be made.

IX. THE DEBATE PAPERS

There has been an unusual amount of debate concerning the development of O(3)
electrodynamics, over a period of 7 years. When the B® field was first proposed
[48], it was not realized that it was part of an O(3) electrodynamics homomorphic
with Barrett’s SU(2) invariant electrodynamics [50] and therefore had a solid
basis in gauge theory. The first debate published [70,79] was between Barron and
Evans. The former proposed that B® violates C and CPT symmetry. This in-
correct assertion was adequately answered by Evans at the time, but it is now
clear that if B violated C and CPT, so would classical gauge theory, a reduction
to absurdity. For example, Barrett’s SU(2) invariant theory [50] would violate C
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and CPT. The CPT theorem applies only on the quantum level, something that
Barron did not seem to realize.

In chronological order, the next critical papers to appear were by Lakhtakia
[71] and Grimes [72]. Both papers are obscure, and were adequately answered
by Evans [73]. Neither critical paper realized that the B field is part of a clas-
sical gauge theory homomorphic with the SU(2) invariant theory by Barrett,
published earlier in a volume edited by Lakhtakia [50] himself. This fact reflects
the depth of Lakhtakia’s confusion. Critical papers were published next by
Buckingham and Parlett [74] and by Buckingham [75], essentially duplicating
Barron’s argument. If these papers were correct, then classical gauge theory
would violate CPT and T, a reduction to absurdity. This has been pointed out
by Evans [42] and by Evans and Crowell [76]. The next critical paper to appear
was by Lakhtakia [77], answered by Evans [78]. Lakhtakia had already pub-
lished Barrett’s SU(2) invariant theory [50] 2 years earlier, so his critical paper
is invalidated by the fact that the SU(2) and O(3) invariant theories discussed,
for example, in the preceding section, are homomorphic. Then appeared a paper
by Rikken [79] answered by Evans [80]. The former claimed erroneously that
B is a nonradiated static magnetic field and set about finding it experimentally
on this basis. His estimate was orders of magnitude too big, as pointed out by
Evans [42] and in the third volume of Ref. 42. The correct use of B gives the
empirically observed inverse Faraday effect [42].

These papers were followed by a letter by van Enk [81], answered by Evans
[82]. Although not denying the possibility of a B, van Enk made the error of
arguing on a U(1) level, because, again, he did not realize that B is part of an
O(3) invariant electrodynamics and does not exist on the U(1) level. All critical
papers cited to this point argued on the U(1) level and are automatically incor-
rect for this reason. This error was next repeated by Comay [83], who was
answered by Evans and Jeffers [84]. Comay attempted to apply the ordinary
Abelian Stokes theorem to B and is automatically incorrect because the
non-Abelian Stokes theorem should have been applied. The Lorentz covariance
of the B cyclic theorem was next challenged by Comay [85], and answered
by Evans [86]. The B cyclic theorem is the basic definition of B in an
O(3) invariant gauge theory, which is therefore automatically Lorentz covariant,
as are all gauge theories for all gauge group symmetries. Comay [87] then
challenged the ability of B® theory to describe dipole radiation and was an-
swered by Evans [42,88]. It is clear that an O(3) or SU(2) invariant electrody-
namics can produce multipole radiation of many types. These comments by
Comay are therefore trivially incorrect, not least because they argue again on
the U(1) level.

Two papers by Raja et al. [89,90] erroneously claimed once more that B® is
a static magnetic field and should have produced Faraday induction vacuo.
These papers were answered by Evans [91,92]. In the O(3) invariant electrody-



THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT 89

namics defining B(3), the latter is a radiated, phaseless, field, and does not pro-
duce Faraday induction.

Independent confirmation of the invariance of the B cyclic theorem was next
produced by Dvoeglazov [93], but he did not argue on the O(3) level as re-
quired. His argument is therefore only partially valid, but produces the correct
result.

Comay [94] then repeated the earlier arguments [69,74] on C and CPT
violation and was answered by Evans and Crowell [76], who showed that all
gauge theories trivially conserve CPT and C on the quantum level. Comay again
made the error of arguing on the U(1) and classical levels, whereas B® exists
only on the O(3) level and the CPT theorem exists only on the quantum level.
The argument by Comay using the Stokes theorem [83] was next duplicated by
Hunter [95], who again argued erroneously on the U(1) level. The reply to Hun-
ter [96] pointed this out. Next in chronological order, Hunter again duplicated
Comay’s argument [97] and was again replied to by Evans [98], on the correct
0O(@3) level. Additionally, Comay and Dvoeglazov [99,100] have argued erro-
neously on the U(1) level concerning the Lorentz covariance of the B cyclic the-
orem, something that follows trivially from the O(3) gauge invariance of the
gauge theory that defines B®.

The preceding section, and a review in Part 1 of this compilation, supply
copious empirical evidences of the fact that the B> field is part of the topo-
logical phase that describes interferometry through a non-Abelian Stokes theo-
rem. Therefore, the early critical papers are erroneous because they argue on a
U() level.

X. THE PHASE FACTOR FOR O(3) ELECTRODYNAMICS

The phase factor in classical electrodynamics is the starting point for
quantization in terms of creation and annihilation operators, and so it is
important to establish its properties on the classical O(3) level. In this context,
Barrett [50] has provided a useful review of the development of the phase factor,
and Simon [101] has shown that the phase factor is in general due to parallel
transport in the presence of a gauge field. On the O(3) level, therefore, the phase
factor must be due to parallel transport around a closed loop in Minkowski
spacetime (a holonomy) with O(3) covariant derivatives and is governed by the
non-Abelian Stokes theorem, Eq. (482). This inference means that all phases in
0O(3) electrodynamics have their origin in topology on the classical level. This
inference is another step in the evolution of understanding of topological phase
effects. As pointed out by Barrett [50], the origin of such effects was the
development of the Dirac phase factor by Wu and Yang [102], who argued that
the wave function of a system will be multiplied by a path-dependent phase
factor after its transport around a closed curve in the presence of a potential in
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ordinary space. This process is now understood to be the origin of the non-
Abelian Stokes theorem (482) and to explain the Aharonov—Bohm effect. The
phases proposed by Berry [103], Aharonov and Anandan [104], and Panchar-
atnam [105] are due to a closed loop in parameter or momentum space. These
effects occur both on the classical and quantum levels [50].

Originally, Berry [103] proposed a geometric phase for a nondegenerate
quantum state that varied adiabatically over a closed loop in parameter space.
This occurred in addition to the dynamical phase. It was shown later [50] that
the effect is present without the need for an adiabatic approximation, and is also
present for degenerate states. Aharonov and Anandan [104] showed that the ef-
fect is present for any cyclic evolution of a quantum system, and Bhandari and
Samuel [106] showed that the effect is closely related to the geometrical phase
discovered by Pancharatnam [105]. The topological phase, therefore, has its ori-
gin in topology, either on the classical or quantum level, and is equivalent to a
gauge potential in the parameter space of the system on the classical or quantum
level.

There are at least three variations of topological phases [50]:

1. A phase arising from cycling in the direction of a beam of light

2. The Pancharatnam phase from cycling of polarization states while keeping
the direction of the beam of light constant, a phase change due to polari-
zation change

3. The phase change due to a cycle of changes in squeezed states of light

If the topological phase is denoted ®, then it obeys the conservation law
B(C) = —g ﬁ;A dr (546)

and occurs on the classical level from polarization changes due to changes in the
topological path of a light beam. The angle of rotation of linearly polarized light
is a direct measure of the topological phase at the classical level. An example of
this is the Sagnac effect, which can be explained using O(3) as discussed already.
The Sagnac effect can be considered as one loop in the Tomita—Chiao effect
[107], which is the rotation of the plane of polarization of a light beam when
propagating through an optical fiber.

The next level in the evolution of understanding of the electromagnetic phase
is to consider that all optical phases are derived from the non-Abelian Stokes
theorem (482), so all optical phases originate in the phase factor

Y = exp (ig %Dudx”> = exp <—%ig J [Dy, D] dc“v> (547)
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which originates directly in the non-Abelian Stokes theorem (482). Therefore, on
the O(3) level, all optical phases are topological in origin. We have briefly
discussed how the phase factor reduces to a line integral over the dynamical
phase and this property of Eq. (547) is also reviewed in Part 1 by Evans [44]. It
has been argued that the most general equation (547) reduces to

Y = exp <ig *Audx”> = exp <i§JGde“V> (548)

for a round trip in Minkowski spacetime for all internal gauge group symmetries.
The notation used in Eq. (548) is the condensed notation used by Ryder [46], in
which the field tensor is in general defined by

Gy = 0,4, — 0,4, — ig[A,,A)] (549)

In free space, as argued already, the factor g is x/A().
If we attempt to apply Eq. (548) on the U(1) level, relations such as

Y = exp (z’g %A -dr) = exp (ig JB -dAr) (550)

are obtained. In free space, on the U(1) level, A is, however, a plane wave, and is
therefore always perpendicular to the path r of the radiation. Therefore, on the
U(1) level in free space

?l;A-dr:JB-dAr:O (551)
On the O(3) level in free space, however, relations such as

Y = exp <ig+A(3) -dr> = exp (ig JB(3> -dAr) (552)

are obtained, where A is parallel to the path of the radiation. Using g =« /A(O)
in free space, Eq. (552) reduces to

Y = exp <i+1<(3) ~dr> = exp (ig JB(3) -dAr) (553)

and the left-hand side can be recognized as a line integral over what is usually
termed the dynamical phase. By definition, the line integral changes sign on
traversing a closed loop from O to A to A to O, and this fundamental
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mathematical property is responsible for all optics and interferometry as argued
in this review and in Ref. 44. This inference is an evolution in understanding of
the phase in optics and electrodynamics.

The B field appearing on the right-hand side of the non-Abelian Stokes
theorem (553) changes sign [47-62] between left- and right-handed circularly
polarized states, and a linearly polarized state is a superposition of two circu-
larly polarized states. This inference gives rise to Pancharatnam’s phase, which
is due to polarization changes and also to the phase caused by the cycling of the
tip of the vector in a circularly polarized electromagnetic field. Therefore, we
reach the important conclusion that the B field is an observable of the phase
in all optics and electrodynamics. It has been argued briefly in this review and in
Part 1 of this series [44] that the B field provides an explanation of the Sagnac
effect.

The U(1) phase factor in the received view, on the other hand, is well known
to be

v = exp(i(of — k-r+a)) (554)

where o is an arbitrary number. So the phase factor (y) is defined only up to an
arbitrary o, an unphysical result. If o = 0 for the sake of argument, the phase
factor (y) is invariant under motion reversal symmetry (7) and parity inversion
symmetry (P) [44]. Since one loop of the Sagnac effect is generated from the
other by 7, it follows that the received phase factor () is invariant in the Sagnac
effect with platform at rest and there is no phase shift, contrary to observation
[44]. The phase factor (553), on the other hand, changes sign under T and
produces the observed Sagnac effect. The phase factor (554) is invariant under P
and cannot explain Michelson interferometry or normal reflection [44]. The
phase factor (553) changes sign under P and explains Michelson interferometry
as observed [44]. We have argued earlier in this review that the phase factor (553)
also explains Young interferometry straightforwardly.

Therefore, the distinction between the topological and dynamical phase has
vanished, and the realization has been reached that the phase in optics and elec-
trodynamics is a line integral, related to an area integral over B by a non-
Abelian Stokes theorem, Eq. (553), applied with O(3) symmetry-covariant de-
rivatives. It is essential to understand that a non-Abelian Stokes theorem must
be applied, as in Eq. (553), and not the ordinary Stokes theorem. We have also
argued, earlier, how the non-Abelian Stokes explains the Aharonov-Bohm effect
without difficulty.

We also infer that, in the vacuum, there exists the topological charge

1
8m :Vi;Ade” (555)
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where Vis a volume, and for one photon, the quantum of electromagnetic energy,
the phase becomes

d):gi;A“)-dr:gJBm-dAr:j:l (556)
where g = k/A®). The flux due to one photon is classically

A0 p
J B .gar =24 _" (557)
K e

and so we have the quantum classical equivalence
eA©) = nx (558)

which is a Planck quantization. In quantum theory, the magnetic flux of one
photon is +7/e, depending on the sense of circular polarization.

It can be shown that the Sagnac effect with platform at rest is the rotation of
the plane of linearly polarized light as a result of radiation propagating around a
circle in free space. Such an effect cannot exist in the received view where the
phase factor in such a round trip is always the same and given by Eq. (554).
However, it can be shown as follows that there develops a rotation in the plane
of polarization when the phase is defined by Eq. (5§53). It is now known that the
phase must always be defined by Eq. (553). Therefore, proceeding on this infer-
ence, we construct plane polarized light as the sum of left and right circularly
polarized components:

Re(i — ij)e™® = cosdi+ sindyj (559)
Re(i — if)e '® = cosdi — sindyj (560)

where the phase factor ¢ is given by Eq. (553). Plane-polarized light at the
beginning of the 180° round trip of the Sagnac effect is therefore

(i — ij)(e® + e7™®) = 2icos d (561)

The round trip of the Sagnac effect in a given—say, clockwise—direction
produces the effect

(i — if)e" @) 4 (i — jj)e~ (009 (562)
where

bg = g+A<3> “dr = gJB@ -dAr (563)
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is generated by the round trip over 2r radians. The extra phase factor for the left
circularly polarized component is ¢,, and the extra phase factor for the right
circularly polarized component is —¢¢ because B® changes sign between senses
of circular polarization. The effect of the round trip in the Sagnac effect on the
plane of linearly polarized light is therefore

(cos (¢ + bs) + cos(d — dg))i + (sin(d + bs) + sin (b — bg))j  (564)
Using the angle formulas

cos(A £ B) = cos A cos B F sinA sin B

(565)
sin(A + B) = sinA cos B + cos A sin B
the effect can be expressed as
2cosd(icos g — jsindy) (566)

The original plane-polarized light at the beginning of the round trip is described
by

2cos di (567)

so the overall effect is to rotate the plane of polarized light. Therefore, a linearly
polarized laser beam sent around an optical fiber in a circle arrives back at the
origin with its plane rotated as in Eq. (566). This is a description of the Sagnac
effect with the platform at rest. Spinning the platform produces an extra phase
shift that is described [44] by a gauge transformation of A [a rotation in the
physical O(3) internal space]. This extra phase shift produces an extra rotation in
the plane of polarization of linearly polarized light.

Therefore, it becomes clear that the Sagnac effect is one loop of the Tomita—
Chiao effect [107], which is the rotation of the plane of a linearly polarized light
beam sent through a helical optical fiber. In both the Sagnac and Tomita—Chiao
effects, the angle of rotation (or phase shift) is a direct measure of the phase
factor (y), whose origin is in topology. A circle can always be drawn out into
a helix of given pitch (p), length(s), and radius (7). This can be seen by straigh-
tening out the helix into a line, and bending the line into a circle. So the Tomita—
Chiao effect must reduce to the Sagnac effect for this reason. The former effect
can be expressed in general as

b= 2n(1 —g)gJB<3>-dAr (568)
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because for one photon
gJB<3> <dAr = £1 (569)

Therefore, the Tomita—Chiao effect reduces to the Sagnac effect under the
condition

o (1 - ‘—’) =1 (570)
that is

-5 (571)

or when the pitch:length ratio of the helix is this number, which is self-
consistently less than one (the length s is always greater than the pitch p).

The received view, in which the phase factor of optics and electrodynamics is
given by Eq. (5§54), can describe neither the Sagnac nor the Tomita—Chiao ef-
fects, which, as we have argued, are the same effects, differing only by geome-
try. Both are non-Abelian, and both depend on a round trip in Minkowski
spacetime using O(3) covariant derivatives.

Having argued thus far, it becomes clear that the phase factor (553) can be
generalized and put on a rigorous footing in topology [50]. It is precisely obtai-
ned from a set of angles associated with a group element, and only one such
angle can correspond to a holonomy transformation of a vector bundle around
a closed curve on a sphere. For example, in a SU(2) invariant electrodynamics,
there is a single angle from the holonomy of the Riemannian connection on a
sphere. Thus, we infer that gauge structure appears at a very fundamental level
in all optical effects that depend on the electrodynamical phase. We can also
infer new effects, for example, if the helix of the Tomita—Chiao experiment is
spun, an effect equivalent to the Sagnac effect should be observable. The gen-
eral conclusion is that all electrodynamical phases are non-Abelian, and quan-
tization proceeds naturally on this basis. For example, Berry’s phase was first
inferred in quantum mechanics. We can conclude that all phases are topological.

The properties of the phase factor (548) on O(3) gauge transformation have
been shown [47] to explain the Sagnac effect with platform in motion. In con-
densed notation, gauge transformation produces the results

A =SA,5! il 0,8)S~!
H K g( K ) (572)
G, =SGS™!
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where S is defined by
S = exp (IM*A(x")) (573)

In the O(3) gauge group, M are rotation generators, and A“ are angles in three-
dimensional space, which coincides with the internal gauge space. Rotation
about the Z axis leaves the B® field unaffected. In matrix notation, this can be
demonstrated by

0 —-B; O coso, sina O 0 —-Bz O cosae —sina O

Bz 0 0|=| —sina cosaa O] | Bz 0 0 sino.  cosa O

0 0 0 0 0 1 0 0 0 0 0 1
(574)

The gauge transformation of A, has been shown [44] to be given by
1
AZ — AZ + —azo( (575)
8

Therefore, the phase factor on O(3) gauge transformation becomes

exp (ig%(A(S) + Va) -dr) = exp (ig JBm -dAr) (576)
and using the property
f{)Voc-dr =0, ie, Vx(Va)=0 (577)

it is seen that the phase factor is invariant under an O(3) gauge transformation.
The phase factor, however, contains only the space part of the complete expres-
sion (548). Gauge transformation of the time part gives the result [44]

_60{

o — oL Q=—
ot

(578)

which explains the Sagnac effect with platform in motion.
On the U(1) level, the ordinary Stokes theorem applies, and this can be writ-
ten as

J)A-dr:JV x A+dAr (579)
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which is gauge-invariant because of the property
%Vx-dr: 0 (580)

which is equivalent to the fundamental vector property:
Vx(Vy) =0 (581)

However, as argued, A is always perpendicular to the path r on the U(1) level, and
so the phase factor (548) cannot be applied on this level.

Barrett [50] has interestingly reviewed and compared the properties of the
Abelian and non-Abelian Stokes theorems, a review and comparison that makes
it clear that the Abelian and non-Abelian Stokes theorems must not be confused
[83.,95]. The Abelian, or original, Stokes theorem states that if A(x) is a vector
field, S is an open, orientable surface, C is the closed curve bounding S, d! is a
line element of C, n is the normal to S, and C is traversed in a right-handed
(positive direction) relative to n, then the line integral of A is equal to the surface
integral over S of V X A +n:

+A-dl - L (V x A)nda (582)

and, as pointed out by Barrett [50], the original Stokes theorem just described
takes no account of boundary conditions.

In the non-Abelian Stokes theorem (482), on the other hand, the boundary
conditions are defined because the phase factor is path-dependent, that is, de-
pends on the covariant derivative [50]. On the U(1) level [50], the original
Stokes theorem is a mathematical relation between a vector field and its curl.
In O(3) or SU(2) invariant electromagnetism, the non-Abelian Stokes theorem
gives the phase change due to a rotation in the internal space. This phase change
appears as the integrals

ffA@ dr = JB<3) -dAr (583)

which do not exist in Maxwell-Heaviside electromagnetism. There is a profound
ontological difference therefore between the original Stokes theorem, in which
B® is zero, and the non-Abelian Stokes theorem, in which B is nonzero and of
key importance. Therefore progress from a U(1) to an O(3) or SU(2) invariant
electromagnetism is a striking evolution in understanding, as argued throughout
Ref. 44 and references cited therein and in several reviews of this volume.



98 M. W. EVANS AND S. JEFFERS

Equation (482) is a simple form of the non-Abelian Stokes theorem, a form
that is derived by a round trip in Minkowski spacetime [46]. It has been adapted
directly for the O(3) invariant phase factor as in Eq. (547), which gives a simple
and accurate description of the Sagnac effect [44]. A U(1) invariant electrody-
namics has failed to describe the Sagnac effect for nearly 90 years, and kine-
matic explanations are also unsatisfactory [50]. In an O(3) or SU(2) invariant
electrodynamics, the Sagnac effect is simply a round trip in Minkowski space-
time and an effect of special relativity and gauge theory, the most successful
theory of the late twentieth century. There are open questions in special relativ-
ity [108], but no theory has yet evolved to replace it.

By using the O(3) invariant phase factor (547), we have also removed the
distinction between the topological phase and the dynamical phase, reaching,
as argued earlier, a new level of understanding in all optical effects that depend
on electromagnetic phase.

For example, the description of the Aharonov—-Bohm effect and other types
of interferometry become closely similar. The Young interferometer, for exam-
ple, is described by

K K
L G egr—_=_|g0.
o iil AD war = JB ds (584)

and the Aharonov-Bohm effect can be described by

e e e
—p A¥.dr = —JB(3) -dS = — o 585
hi,l " i (585)

In both cases, the magnetic flux

o) = JB(3) -dS (586)

is generated by the round trip in Minkowski space with O(3) covariant
derivatives (holonomy) on the left-hand side of Egs. (584) and (585). So the
original magnetic field inside the solenoid does not contribute to the Aharonov—
Bohm effect, as pointed out by Barrett [50], and the U(1) invariant description
[46] of the effect is erroneous. The effect is due to the magnetic field B® of 0(@3)
electrodynamics. The Sagnac, Michelson, and Mach—Zehnder effects, and all
interferometric effects are similarly described by Eq. (584), and all interfero-
metry and optics originate in topology. The only difference between these effects
and the Aharonov—Bohm effect is that in the latter, interaction with electrons
takes place, so the factor k/A(?) is replaced by ¢/7 in a minimal prescription.
The interpretation of Eq. (584) is that the potential A is defined along the
integration path of the line integral. The field B is defined as being perpendi-
cular to the plane or surface enclosed by the line integral. Neither A® nor B®
exists in a U(1) invariant electrodynamics. Effects attributed to the topological
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phase, such as those of Pancharatnam and Tomita and Chiao, reviewed already,
do not exist in a U(1) invariant electrodynamics, but are described by Eq. (584)
in an O(3) invariant theory. Equation (3) is for circularly polarized radiation pro-
pagating in a plane, and so allowance may have to be made for the geometry of
a particular experiment. We have illustrated this with the Tomita—Chiao effect.
The key to this evolution in understanding is that there exists in an O(3) invar-
iant electrodynamics, an internal gauge space with index (3). The existence of
this index gives rise to the non-Abelian Stokes theorem (584). The internal space
on a ((1),(2),(3)) level is considered to be the physical space of three dimensions
and not an isospace. Therefore, a rotation in the internal space ((1),(2),(3)) is
a physical rotation in three-dimensional space. The spinning platform of the
Sagnac effect is an example of one such rotation, about the axis perpendicular
to the platform, and results in Eq. (578), which, as shown elsewhere [44], gives
the observed Sagnac effect, again through Eq. (584). Such concepts are avail-
able in neither a U(1) invariant electrodynamics nor gauge theory, which con-
siders the internal space as an isospace.

Therefore, it has been shown convincingly that electrodynamics is an O(3)
invariant theory, and so the O(3) gauge invariance must also be found in experi-
ments with matter waves, such as matter waves from electrons, in which there is
no electromagnetic potential. One such experiment is the Sagnac effect with
electrons, which was reviewed in Ref. 44, and another is Young interferometry
with electron waves. For both experiments, Eq. (584) becomes

ffuke) dr = K*Ar (587)

and for matter waves
mict
(1)2 = C2K2 —+ # (588)
where my is the mass of the particle. The Sagnac effect in electrons [44] is
therefore the same as the Sagnac effect in photons, and is given [44] by

Ar 2 o omict mdct
20 =25 (@ 9 - (0 ) - "5 4 1
40QAr
= (589)

from the gauge transform (578). This is the observed result [44]. The Young
effect for electrons is similarly

Ap=¢ k¥ -ar (590)
2—-1
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and also more generally for particles such as atoms and molecules, the famous
two-slit experiment.

On this empirical evidence, it is possible to reach a far-reaching conclusion

that all wave functions in quantum mechanics are of the form (590). For exam-
ple, the electron wave function from the Dirac equation is

Positive energy: ™ (r) = u(® (p)exp (—i#p-dr) (591)
Negative energy: \|J(°‘)(r) = v(®(p)exp (i %p-dr) (592)

instead of the conventional [46]

VO (1) = u (p)exp (~ip+r) (593)
v (p)exp ip-r) (594)

<
>
£
—~
~N
S
Il

The path and area in Eq. (584) and in wave functions such as those of the photon
and electron are given by the following sketch:

The shaded area in this sketch is not arbitrary, as it is determined by the right-
hand side of Eq. (587). The line integrals OA and AO change sign, and this
accounts for reflection of matter waves and for the Sagnac and Young effects in
matter waves, such as electron waves. Therefore, the electron is an O(3) invariant
entity, as shown by the Sagnac effect for electron waves [44]. It follows that the
Dirac equation should be developed as an O(3) invariant equation.

The Fermat principle can now be reworked into an O(3) invariant form and
the principles of quantum mechanics on a nonrelativistic level developed from
it. In so doing, we modify the discussion by Atkins [68] for an O(3) invariant
treatment. Fermat’s principle of least time is the basic law governing light pro-
pagation in geometric optics. In the received view, light travels in a straight line
in geometric optics, but the physical nature of light is a wave motion. These two
fundamental aspects are unified in the sketch following Eq. (594), constructed in
an O(3) invariant theory, in which the phase now correctly describes both the
wave nature of light and the fact that it travels in a straight line in the vacuum
or a uniform medium. The U(1) invariant phase shows only the latter property of
light, and consequently is a number invariant under motion reversal symmetry
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(T) and parity inversion symmetry (P). Similarly, particles travel in a straight
line by Newton’s first law, but de Broglie demonstrated that particles have a
wave nature-wave particle duality. Therefore, the phase in classical electrody-
namics becomes the wave function in quantum mechanics, and the general and
important conclusion is reached that both the electromagnetic phase and the
wave function of particles are O(3) invariant. We have already argued that
this new general principle is supported by the Sagnac and Young effects in
matter waves. In retrospect, it is not surprising that the wave function should
reflect wave—particle duality, for both the photon and matter waves.

A simple example of the Fermat principle may be used to show the weakness
inherent in a U(1) invariant phase. Fermat’s principle states that the path taken
by a light ray through a medium is such that its time of passage is a minimum.
Following Atkins [68], consider the relation between angles of incidence and
reflection. The least-time path is the one corresponding to the angle of incidence
being equal to the angle of reflection, giving Snell’s law. However, reflection is a
parity inversion, under which the U(1) invariant phase

P(ot —Kk*r) = ot —K*r (595)

does not change [44]. This is seen at its clearest in normal reflection. Therefore,
the U(1) invariant phase cannot describe normal reflection and Snell’s law, and
violates Fermat’s principle. The O(3) invariant phase

0} :%mdt—iék-dr (596)

on the other hand, changes sign on reflection, because of the property of the path

integral
P(%K-dr) = _{;K.dr (597)

and so is in accordance with the Fermat principle. This conclusion is a major
evolution in understanding because Fermat’s principle is at the root of quantum
mechanics, in particular, the time-dependent Schrodinger equation.

Following Atkins [68], the propagation of particles follows a path dictated by
Newton’s laws, equivalent to Hamilton’s principle, that particles select paths be-
tween two points such that the action associated with the path is a minimum.
Therefore, Fermat’s principle for light propagation is Hamilton’s principle for
particles. The formal definition of action is an integral identical in structure
with the phase length in physical optics. Therefore, particles are associated
with wave motion, the wave—particle dualism. Hamilton’s principle of least
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action leads directly to quantum mechanics. The final touch to this development
was made by de Broglie. Therefore, a particle is also described by an amplitude
V(r), and amplitudes at different points are related by an expression of the fol-
lowing form [68]:

Y(Py) = > Ny (Py) (598)

If this is to be O(3) invariant, the phase in quantum mechanics must take the form
(597). In the classical limit, the particle propagates along a path that makes the
action S a minimum. Therefore, the O(3) invariant phase is proportional to S
through the Planck constant. It is concluded that the O(3) invariant phase in
quantum mechanics is given by

¢ = fi;K.dr (599)

The amplitude describing a particle in O(3) invariant quantum mechanics is

V= Ygexp = Ypexp O/ (600)

where S is the action associated with the path from P; (a point at x;, f;) to P, (a
point at x,, f;). An equation of motion can be developed from this form by
differentiating with respect to time t,:

%\p(x’ t) = —%En\l/(x, 1) (601)

The rate of change of the action is equal to — En, where En is the total energy
T+ V

oS
—=-E 602
3 n (602)
Therefore, the equation of motion is
0 i 0S
o (x, 1) = ﬁg\L’(x’ 1) (603)

and if En is interpreted as the Hamiltonian operator H, the O(3) invariant time-
dependent Schrodinger equation is obtained:

oy

H\ = ih—
v ’hat

(604)
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So, if the O(3) invariant wave function is defined as
U = Y exp <—i+wdr - {)wdr) (605)

where

S=—n|dwdr — dx-dr 606
(o fuear) o

_ oS
ot

the energy is given by

En = ho = (607)

which is the energy for one photon. Equation (605) is the O(3) invariant de
Broglie wave function.

XI. O(3) INVARIANCE: A LINK BETWEEN
ELECTROMAGNETISM AND GENERAL RELATIVITY

In order to develop a Riemannian theory of classical electromagnetism, it is
necessary [109] to consider a curve corresponding to a plane wave:

f(2) = (i —ij)e (608)

In terms of the retarded time [f] = ¢ — Z/c, the U(1) phase ¢ is o]f], and the
retarded distance is Z — Zy = c[t]. The electromagnetic wave propagates along
the Z axis, and the trajectory of the real part is

fr(Z) = Re(f(Z)) = (cos d, sind, P) (609)

which is a circular helix. The curve (609) is a function of Z with Z, regarded as a
constant in partial differentiation of f(Z) with respect to Z. More generally, a
Z-dependent phase angle must be incorporated in ¢, which becomes [42]:

fR(Z) = (cos(x(Z — Zy) + @), sin(x(Z — Zy) + @), x(Z — Zy) + D) (610)
Frenet’s tangent vector (7) is obtained by differentiation:

Ufr(Z)
0Z

= kT = (—xsind, kcos d, k) (611)
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In elementary differential geometry, therefore, the electromagnetic helix
produces a nonzero 7, and tangent vectors are characteristic of curved spacetime
in general relativity. The scalar curvature in elementary differential geometry is

O fr(2)

R=|—F——
i

’ = [k*(cosd, —sin, 0)| = x> (612)

and this is also the scalar curvature of the electromagnetic wave in general
relativity, specifically, the scalar curvature of Riemann’s tensor, obtained by
suitable antisymmetric index contraction. The electromagnetic field therefore
becomes a property of spacetime, or the vacuum.

The metric coefficient in the theory of gravitation [110] is locally diagonal,
but in order to develop a metric for vacuum electromagnetism, the antisymme-
try of the field must be considered. The electromagnetic field tensor on the U(1)
level is an angular momentum tensor in four dimensions, made up of rotation
and boost generators of the Poincaré group. An ordinary axial vector in three-
dimensional space can always be expressed as the sum of cross-products of unit
vectors

I=ixj+jxk+kxi (613)

a sum that can be expressed as the metric
g =g (614)
where the gEfy coefficient in three dimensions is the fully antisymmetric 3 x 3

matrix. This becomes the right-hand side in four dimensions. In the language of
differential geometry, the field tensor becomes the Faraday 2-form [110]

1
F=3 apdx® A dxP (615)

where the wedge product dx* A dxP between differential forms is an exterior
product. Equation (615) translates in tensor notation into

F = Fypdx” ® dx® (616)

We have argued here and elsewhere [44] that the plane-wave representation
of classical electromagnetism is far from complete. In tensor language, this in-
completeness means that the antisymmetric electromagnetic field tensor on the
O(3) level must be proportional to an antisymmetric frame tensor of spacetime,
Rﬁf\\,), derived from the Riemannian tensor by contraction on two indices:

Rffy = R&W (617)
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Therefore REW) is an antisymmetric Ricci tensor obtained from the index
contraction from the Riemann curvature tensor. Further contractlon of REW) leads
to the scalar curvature R, which, for electromagnetism, is k2. The contraction
must be

1

R=1 — gl R (618)

The principle of equivalence between electromagnetism and the antisymmetric
Ricci tensor is

K
RY = Gy = -~ G, (619)

whose scalar form is
R=gG" (620)

where G is a scalar field amplitude and where R = 2 is the scalar curvature of
vacuum electromagnetism, whose metric coefficient is antisymmetric. In this
view, vacuum electromagnetism is the antisymmetric Ricci 2-form [110], and
gravitation is the symmetric Ricci 2-form.
Geodesic equations can be developed for the vacuum plane wave from the
starting point [110]
d#
Dt = 7 IMoxk'x® =0 (621)
where k" = dx*/dA\ is the wave 4-vector and T’ is the affine connection. The

symbol D in Eq. (621) is therefore a covariant derivative. In the received view, on
the U(1) level, Eq. (621) becomes

d* =0 (622)

in which the wave-vector does not vary along its path. Equation (621), on the
other hand, has a parameter that varies along the ray, and the world line is a helix.
This is a conclusion reminiscent of the fact that the O(3) electromagnetic phase is
described by a line integral, as developed in the previous section.

A relation is first established between k" and the A" 4-vector:

K
B B
K _A(O)A (523)
Using this equation in Eq. (621) gives
dA* dA*
It AYA® = ATH =0 624
an +A an +A (624)
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where A is a scalar. The contracted affine connection I'* is proportional to A* in
general gauge theory, and we adopt this rule to give

K

which is an equivalence principle between field and frame (or vacuum)
properties. Such an equivalence does not appear on the U(1) level if the ordinary

derivative replaces the covariant derivative.
Equation (625) can be written as

A
T RAN =0 (626)

where the dimensionality of X is k2, the inverse of the Thomson area of a photon
[42], and if A = Z?/2, Eq. (626) become

d*A¢
dz?

+ RAY = (627)

This has the form of a geodesic equation [111], and is obeyed by a plane wave.
Similarly, we obtain:

“ 4 RAY =0 (628)

an equation that is also obeyed by a plane wave. Now, subtract Eq. (627) from
Eq. (628) to give the d’Alembert wave equation:

A" = (R — R)A* =0 (629)

which is the Proca equation

2 4
myc
2

A" = — =0 A* =0 (630)

whose right-hand side happens to be zero because we have used a plane wave to
derive it. The Proca equation (629) is an equation of a spacetime or vacuum
whose curvature is R = k2, and not zero.
Equations (627) and (628) are special cases of the usual definition of the
Riemann tensor in curvilinear geometry
Apve — Ay = R A, (631)

HvK
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where A; is a general 4-vector field [111]. Equation (631) can be written as

(DyDy — DcDy)A, + R, Ay =0 (632)

TN

and this is a (geodesw equation. Multiply Eq. (632) by the antisymmetric metric

coefficient g,/ to obtain
8% (DyDx = DcDy) + g3 RiyycAs = 0 (633)
and identify
VK d2 VK
R=giRiws 5= 8n(DvDx = DiDy) (634)

This procedure reduces Eq. (631) to Egs. (627) and (628), which are special cases
obtained by tensor contraction.

Electromagnetism can therefore be defined geometrically in curvilinear co-
ordinates, and has vacuum properties such as scalar curvature, metric coefficient,
affine connection, and Ricci tensor that manifest themselves fully on the O(3)
level:

0
A()R(A>

Gw=—R, (635)

This equation can be written in precise analogy with the Einstein equation

R
W = ho % (636)
()

where T}, is an antisymmetric electromagnetic energy-momentum tensor and
R = «? is the scalar curvature in O(3) electromagnetism. Equation (636) is
therefore a rotational Einstein equation. The scalar curvature in electromagnet-
ism is defined through the antisymmetric metric coefficient (gw)):

KWV p(A)
gy R%, (637)

The analogous definition of scalar curvature in gravitation is given through the
metric g,y:

R(grav) = g”"REISV) (638)
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and the symmetric part of the Ricci tensor Rffg, that is, through the equation

S K
Rng) = R?ucv (639)
If O(3) electromagnetism [denoted e.m. in Eq. (640)] and gravitation are both to

be seen as phenomena of curved spacetime, then both fields are derived
ultimately from the same Riemann curvature tensor as follows:

A
Tft‘y(e.m.) = ho ;V (640)
(s) ¢t (s 1
T, (grav.) = - Ry — ngR (641)
Ry =R +RY) (642)

The unification of O(3) electromagnetism and gravitation using these concepts is
summarized in Table 1.

TABLE I
Some Concepts in the Unified Theory of Fields
Concept of Quantity Gravitation Electromagnetism
Riemann tensor Ry RY,
Ricci tensor Rflsv) =R}, REIAV) = RZW
Metric coefficient gyuv(diagonal) gfﬁ,)(off—diagonal)

Scalar curvature

Einstein tensor

Field equation

Connection

Local group
Group generator
Identity

Energy-momentum
tensor

Equivalence principle

Universal constant

R= RS

1
S _
RS — S8R = G

E 8k
GL(A\') = T;(‘?
c
T,
Poincaré

Bianchi identity

DR, + DyRY,, + DyRS,, =0

vp

T, S) (translational )

Gravitation is a
noninertial frame

k (Einstein’s constant)

R=g@WRW =

RY
2
4 _ X
RHV = %T;(w)
=" MMmAr
we T 0) R
Poincaré

Feynman Jacobi
identity(x = A)

TS*V‘) = oy

ho
=% RflAV) (rotational )

Electromagnetism is a

noninertial frame
K

A0)
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The electromagnetic field equations on the O(3) level can be obtained from
this purely geometrical theory by using Eq. (631) in the Bianchi identity
DGy + DyGry + DyGue = Ry Ay + Ri Ay + Rl Ay
= DyR;,, + DyR;,, + DR}, =0  (643)
with appropriate index contraction. The end result is the Feynman Jacobi identity
discussed in earlier sections of this review

D,G" =0 (644)
an identity that can be written as
D,G" =0 (645)

The O(3) field equations can be obtained from the fundamental definition of
the Riemann curvature tensor, Eq. (631), by defining the O(3) field tensor using
covariant derivatives of the Poincaré group.

Equation (643) is also a Bianchi identity in the theory of gravitation because
G, is derived from the antisymmetric part of the Riemann tensor, whose sym-
metric part can be contracted to the Einstein tensor.

Similarly, Eq. (643) can be developed into an inhomogeneous equation of the
unified field. First, raise indices in the Riemann tensor and field tensor:

GY* — nggmGpc; RﬁVK — gvpgKGRﬁpG (646)
From the equivalence of G, and RL@ in Eq. (635), individual terms in the
identity (643) can be equated:

DG" = R A, (647a)
D,G*" = R4, (647b)
D,G™ = RI"™A;, (647¢)

Consider the antisymmetric part of the Riemann tensor in Eqs. (647) by suitable
contraction. In Eq. (647c), for example, the contraction is A = p. The result
reduces to the O(3) inhomogeneous field equation of electromagnetism in the
form

JV(vac)
DG = R Ay == (648)
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where the term
J¥(vac) = gR2™MA, (649)

is the O(3) charge current density, which can be seen to exist in the vacuum as
argued earlier.

There are well known similarities between the Riemann curvature tensor
of general relativity and the field tensor in non-Abelian electrodynamics. The
Riemann tensor is

K K K p K P K
Ry, = 0%, — 0175, + 15,15, — 15,5, (650)
and is made up of a Ricci tensor and a Weyl conformal tensor. The following
contraction of indices
RS =0,T%

Kpv Ki

=0, + TGy — TR I5, (651)
leads to an expression similar to the field tensor as argued. The holonomy [46] in
general relativity is

|
AVH = ER;MVPAS“ (652)
which can be compared with the holonomy in gauge theory
A\l}A - _igASuVG”\l]A (653)

In both cases, the AS*¥ factor is a hypersurface. This suggests that the Ricci
tensor is in general complex, and given by

Ry =R + iR (654)

where the real part is symmetric and the imaginary part is antisymmetric. Barrett
[50] has pointed out that O(3) gauge theory is non-Minkowskian in general, and
requires an extrapolation of twistor algebra to non-Minkowski spacetime,
requiring the presence of a Weyl tensor, complex spacetime, and curved twistor
space. In O(3) electrodynamics, therefore, Minkowski spacetime applies only
locally, and Minkowski vector spaces are tangent spaces of spacetime events.
The Weyl anti-self-dual spacetime is independent of the self-dual spacetime.
There is conformally curved, complex spacetime, as reflected in the complex
Ricci tensor discussed already. The Weyl tensor is not zero. A complex spacetime
[50] is defined by a four-dimensional complex manifold, M, with a holomorphic
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metric g, A differential function defined on an open set of complex numbers is
holomorphic [50] if it satisfies the Cauchy—Riemann equations. With respect to a
holomorphic coordinate basis x* = (x?,x!, x, x*), the metric is a 4 x 4 matrix of
holomorphic functions of x*, and its determinant is nowhere vanishing. The Ricci
tensor becomes complex-valued as argued already. Self-consistently, it can be

checked that the determinant of the metric

0 -1 -1 -1

1 0 -1 1
1 -1 1 0

is nonzero, (i.e., —1). So the use of an antisymmetric Ricci tensor is justified
from first principles.

XII. BASIC ALGEBRA OF O(3) ELECTRODYNAMICS
AND TESTS OF SELF-CONSISTENCY

In this section, some elementary details of the complex circular basis algebra
generated by ((1),(2),(3)) are given. The basis vectors are

1 1
n — i if): P — M) 4 ?
e’ = 1—10); 1= e’ +e
\/5( i) \/5( )
1 1
T (1) _ ¢ (656)
e = 1+ 7); = e —e
ﬁ( i J ﬁ( )
e® =k
Within a phase factor and amplitude, e = e®* is the vectorial part of the

complex description of right and left circularly polarized radiation. The basis
unit vectors e(l), e(z), and ¢® form the 0O(3) cyclic permutation relations:

o) 5 o@ — o)
e? x e = jel)* (657)

¢® x o) — jg@*

A closely similar complex circular basis has been described by Silver [112] for
three-dimensional space. This space forms the internal gauge space in O(3)
electrodynamics, as argued already. In the complex circular basis, the unit vector
dot product is

(658)
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as compared with the same concept in the Cartesian basis

ii=jj=kek=1
ij=ik=jk=0

Vectors are defined as

A=AD 140 1 40
=A@ L AMe@) 1 4B3)eB)

where
1
AV = — (A —iAy) = AP
/3 Ax i)
AB®) = A,

The dot product of two vectors is therefore

AB — ADBe() . 4 AQ B2 o) 4 ABBB)0) o)

=ADBR) L A@p1) 4 AG)pB)
The del operator in the circular basis is defined by

0 1

= —_— (v ). = __ _
VX oxX \/E(V + Vv ), \V4 \/~(VX lVy)
0 i
Vy Y% \/E(v A\ \Y \/_(VX +iVy)
0
V, = = v, ve = v,

and the divergence of a vector is therefore
VA =vVUAQ L v@A0 L yBIAG)
and the gradient of a scalar is
Vo=V he? + VP ¢pel) 4 VO el
The curl operator in the complex circular basis is

e 2 LB i J k
VxA=—-ivh) v@ v0®|=|Vy Vy Vy
A AQ) 40) Ax Ay Az

(659)

(660)

(661)

(662)

(663)

(664)

(665)

(666)
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and the vector cross-product is

D @ | i j ok
AxB=—ilAD A® ACG) | =|Ay Ay A, (667)
B p2) BB Bx By B;

It is helpful to exemplify the basis by calculating the vector cross-product in
detail and comparing it with the Cartesian counterpart. This procedure shows that
the ((1),(2),(3)) and Cartesian representations are equivalent when correctly
worked out.

The e® component can be developed as

— l'e(3)(A(1)B(2) —A(Z)B(l))
V2 V2 V2 V2
= AxBy — AyBx (668)

(By — iBy) — — (Ax — iAy)

and is equivalent to the Cartesian component obtained from the well-known
expression

i j ok
Ax Ay Az|= (AxBy — AyBy)k +--- (669)
By By By

The other two components are evaluated by developing the sum
AxB= —i[e(l)(A<2)B(3> —A®BR)) e(2)(A(1)B(3) _A(3)B(1))] 4.

S [L i - i) (i (Ax +idy)By — 22 (By + iBy))

V2 V2 V2
1, .. [1 . Az .
ﬁ(lﬁ*{])(ﬁ(Ax 7lAy)BZ ﬁ(BXlBY)>:| + -
= i(AyBZ — Asz) 7j(AxBZ — Asz) —+ - (670)

and again we obtain a result equivalent to the Cartesian sum.
A conjugate product such as AW x A®) js evaluated as

—ilA® 0 0 |=-iA"% (671)
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and is the same as the Cartesian equivalent:

i j k
AP AP 0| = —ia02g (672)
AY Ay o

In the logic of the complex circular basis, unity is expressed as the product of two
complex conjugates, referred to hereinafter as complex unity

101@ (673)

where

o Lg_a. @_ Ly
0= s 18 =) (674)

Therefore, developments such as the following are possible:

eDee® = 1) 1M — 1112 =12 21
(675)

AM 4@ — A@ (D) gD () — ADAR) = 402
Since the product 1V1® is always unity, it makes no difference to the dot
product of unit vectors or of conjugate vectors such as A" and A®, but the dot

product of a vector A" and a unit vector e® is
1
AN e = 4@ (1), () :E(AX —iAy)(1 41
1
=—(Ax — iAy + iAx + Ay) (676)

2

Similarly [42], the dot product of a complex circular Pauli matrix ¢(!) and a unit

vector @ is

61 e

(GX — iGy + iGX + Gy) (677)

| =

leading to
(o) .e(Z))(o-(2> ce) =eM e 4 igl)eell) x ¢ (678)

and the prediction of radiatively induced fermion resonance.



THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT 115

As we have argued, the basis ((1),(2),(3)) defines an internal space in elec-
trodynamics, and was first applied as such by Barrett [50] in an SU(2) invariant
gauge theory. As a consequence of this hypothesis, we can write

AV — ARR)() 4 AR(Dg(2) 4 A1) (679)

so A" is developed as a vector in the internal space. The object A*(!), A*?) and
A"O) are scalar coefficients in the internal space. The boldface character A" is
simultaneously a vector in the basis ((1),(2),(3)) and a 4-vector in spacetime. If
we consider to start with the received view of ordinary plane waves, the boldface
character in this case is a vector of three-dimensional space in the basis
((1),(2),(3)) and so is also a vector in the internal space of O(3) electrodynamics.
As we have argued, the phase factor ¢’® on the O(3) level is made up of a line
integral, related to an area integral by a non-Abelian Stokes theorem. In order to
expand the horizon of the gauge structure of electrodynamics to the O(3) level,
an additional spacetime index must appear in the definition of the plane wave,
and the (1) and (2) indices must become indices of the internal space. This is
achieved by recognizing that

0

Al :A;l) — i‘ﬁe—mb _ Al
0

A = Al = ‘%eid) — A20) (680)
2

A0 — 43(1) — 402) — 432 —
These equations define two of the scalar coefficients of the complete 4-vector A"

AR — (O,A(U)

1
AR — (O,A(Z)) (681)
a deduction that follows from the fact that AY = A®” are transverse and so can
have X and Y components only. The scalar coefficients A*(") and A*?) are light-
like invariants

ARDAD = 4424 = 0 (682)

of polar 4-vectors in spacetime. The third index (3) of the non-Abelian theory
must therefore be in the direction of propagation of radiation and must also be a
light-like invariant

AP =0 (683)

in the vacuum.
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One possible solution of Eq. (683) is
ARG) = (cA® A®)) (684)
where
A0 =140)| (685)
Such a solution is proportional directly to the wave 4-vector
KM = (ck, ke?) = gAH® (686)
and to the photon energy momentum:
pu(3) - thll(3) = hh®) (687)

in the vacuum. Therefore, the complete vector in the internal ((1),(2),(3)) space is
the light-like polar vector

AY = (0,4A)e™ 4 (0,41)e® + (cA® A (688)

and has time-like, longitudinal, and transverse components, which are all
physical components in the vacuum. On the U(1) level, the time-like and longi-
tudinal components are combined in an admixture [46].

Similarly, the field tensor on the O(3) level is a vector in the internal space:

G" — GV 4 GV(12) | Ghv(3)e() (689)

and the coefficients G*() are scalars in the internal space. They are also antisym-
metric tensors in spacetime. General gauge field theory for O(3) symmetry then
gives

G =t av (e — VA — o) x 4¥0)

GHYr = BFAYDF _ VAR o qHB) 5 V(1) (690)

GHVB) = rAVE)r _ VgRB) _ jepr(l) 5 4VC)
which is a relation between vectors in the internal space ((1),(2),(3)). The cross-
product notation is also a vector notation; for example, A*® % AV3) is a cross-
product of a vector A*?) with the vector A" in the internal space. In forming the

cross-product, the Greek indices are not transmuted and the complex basis is
used, so that the terms quadratic in A become natural descriptions of the
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empirically observable conjugate product. As we have argued, the scalar
coefficient g = x /A(O) is a scalar in both the internal gauge space and spacetime.
In field—matter interaction, g changes magnitude [44]. The field tensor on the
O(3) level is therefore a vector in the internal space and is nonlinear in the
potential. It contains the longitudinal field B® in the vacuum. The field tensor on
the U(1) level does not define B(3), which exists only on the O(3) level.

Equation (690) is a concise description that contains a considerable amount
of information about the O(3) theory of electromagnetism in the vacuum: infor-
mation that is available without assuming any form of field equation. It is im-
portant to give details of the correct algebraic form of reduction of Eq. (690).
Consider, for example, the equation

GHYIF = arAY(DF VAR _ o AR2) 5 4V6) (691)
which consists of components such as
G120 — gl g2 _ g241(0)x _ igs(l)(z)(3)A1(2)A2(3) (692)
where &(1)(2)(3) is the Levi-Civita symbol defined by
smEE) =1=—gnee = (693)

Now take the vector potential as defined already with
10
t=-=,-V 694
(t5Y) (694)

then we obtain

G2 — gl g2 _ g2a1()x _ ig(Al(z)Az(a) —Al3)420)
=0 (695)
This is a self-consistent result because there is no Z component of G*¥(*| which
is defined as transverse. Both the linear and nonlinear components are zero.
Consider next the element:
G13 -9 A3 63 1(1)x _ l-g8<1><2)(3>Al(2)A3(3)
:alA3(2) _63A1(2) _i (A](Z)A3( ) Al( )A%(2))
= — (@ +igA*NA'?D = _(3® 4 ix)A'? (696)
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where we have used

8= 1w A = 4D = 4O (697)

There are two contributions to the field element G'*®, a magnetic component:
—o’A1® (697a)
and
—igA3G)IA) (697b)
In vector notation, Eq. (696) is a component of

2B =V x AWM — jg4®) x A1)
= (V—igA®) xAW

_ 1 e 1
7VXAUfE@m>xm> (698)
Furthermore:
%A% = jxA'@ (699)
and so it follows that
B =V x Al — —_L_p6) , ) (700)
B
Similarly:
B — v xA® — __L p0) g0 (701)
B©)

Therefore, the definition of the field tensor in O(3) electrodynamics gives the first
two components of the B cyclic theorem [47-62]
B® x BY — ;O g2)+

B® x B® — ;g0 g« (702)

together with the definition of B and B® in terms of the curl of vector
potentials:

BY =v xAW

B =V xA? (703)
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It is convenient to write this result as

H(vac) = HLB — M(vac) (704)
0

where H(vac) is the vacuum magnetic field strength and p, is the vacuum
permeability. The object M(vac) does not exist on the U(1) level and can be
termed vacuum magnetization:

1

M) =~ 5w

B®) x B (705)

The objects MV(vac) and M@ (vac) depend on the phaseless vacuum magnetic
field B® and so do not exist as concepts in U(1) electrodynamics. The B field
itself is defined through

GHV3)x — gugvB3)x _ gvprG)x _ ,-gAu(l) « AV@) (706)

with (3) aligned in the Z axis. So, by definition, the only nonzero components are

G12B3)* — _G2103)x _ B(ZS) (707)
It follows that
BY) = —ig(A'MA%2) _ A12)42()) (708)
or
B® =BG = _ijgdD) x A®) = —B%O)BW x B? (709)

giving the third component of the B cyclic theorem B(1) x B®? = jBOBG)* and
the vacuum magnetization:

1

MO =~
ipy B

B x B? (710)

On the U(1) level, A" x A® is considered to be an operator [44] of nonlinear
optics with no third axis, but on the O(3) level it defines B as argued.

Therefore, on the O(3) level, the magnetic part of the complete free field is
defined as a sum of a curl of a vector potential and a vacuum magnetization
inherent in the structure of the B cyclic theorem. On the U(1) level, there is
no B® field by hypothesis.
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The following field coefficients can be calculated:

G()l (60 4 lgA0(3 )A 2) _ _Gl()(2)
G®? =0
G13® (63+ng3<3))A @) — _g312) (711)
G0 — _(a~ + lgA3<3))A 2 — _G32)
G122 —
so that
G12(3)* — _GZI( ) — _lg(Al( )AZ( ) _A1(2)A2(l)) ( )
The three field tensors are therefore the transverse
0o —Ee'W g2 0
2+ E') 0 0 B2
() — g — £200) 0 0 Rttt (713)
0 —cB2) gl 0
and the longitudinal:
0 0 0 0
_cB33)
w3 _ av3) _ |0 0 cB 0
G =G =10 B0 0 0 (714)
0 0 0 0

On the O(3) level, there also exists a vacuum polarization, because the com-
plete electric field strength is given in the vacuum by

2E?) = — S igcAVA?)
0
= +igcA” )A®) = 2~ 715
ot
Using g = K/A(O), then
04

E® = 9 _ _icA® — _ipa® (716)
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and it is convenient to express this result as
D (vac) = ggE® + P (vac) (717)

where D@ (vac) is the electric displacement in vacuo, and where the vacuum
polarization is

P (vac) = —iggwA? (718)

The vacuum polarization is well known to have an analog in quantum
electrodynamics [46], the photon self-energy. The latter has no classical analog
on the U(1) level, but one exists on the O(3) level, thus saving the correspon-
dence principle. The classical vacuum polarization on the O(3) level is trans-
verse and vanishes when ® = 0. It is pure transverse because, as follows, the
hypothetical E® field is zero on the O(3) level

GPBB) — g0A303) _ 34003 _ l-g(AO(l)A3(2) _A3(2)A0(1))
=0 (719)

giving
GO — G032 — 5036) _ (720)

in the vacuum. In the presence of field—matter interaction, this result is no longer
true because of the Coulomb field, indicating polarization of matter.
In the presence of field—matter interaction [44]

Huv([)* — 80F“V(i)* _ MHV(i)* (721)
where i = 1,2, 3. Here

Fv@x = grgvi) _ gvarl)

(722)
M) = isog/A”(z) x AVG3)
in cyclic permutation, with g’ < g empirically [44].

There are therefore obvious points of similarity between the O(3) theory of
electrodynamics and the Yang-Mills theory [44]. Both are based, as we have
argued, on an O(3) or SU(2) invariant Lagrangian. However, in O(3) electrody-
namics, the particle concomitant with the field has the topological charge
K /A(O). In O(3) electrodynamics, the internal space and spacetime are not inde-
pendent spaces but form an extended Lie algebra [42]. In elementary particle
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theory, the internal space is usually an abstract isospin space [46]. The overall
structures of O(3) electrodynamics and of Yang—Mills theory are the same.

XIII. QUANTIZATION FROM THE B CYCLIC THEOREM

The B cyclic theorem is a Lorentz invariant construct in the vacuum and is a
relation between angular momentum generators [42]. As such, it can be used as
the starting point for a new type of quantization of electromagnetic radiation,
based on quantization of angular momentum operators. This method shares none
of the drawbacks of canonical quantization [46], and gives photon creation and
annihilation operators self-consistently. It is seen from the B cyclic theorem:

B x B® — ;g0 g«
B® x B®) = jOB)~ (723)
B® x BD — ;g0 g2)+

that if any one of the magnetic fields BV, B® or B® is zero, this implies that the
other two will also be zero. The B cyclic theorem can be put in commutator form
by using the result that an axial vector is equivalent to a rank 2 antisymmetric
polar tensor

1
Bk = EsijkBij (724)

where g is the Levi—Civita symbol. The rank 2 tensor representation of the axial
vector By is mathematically equivalent but has the advantage of being accessible
to commutator (matrix) algebra, allowing B, B®, and B® to be expressed as
infinitesimal rotation generators and as quantum-mechanical angular momentum
operators. These methods show that the photon has an elementary longitudinal
flux quantum, the photomagneton operator B, which is directly proportional to
its intrinsic spin angular momentum [42].

The unit vector components of the classical magnetic fields B, B®, and
B® in vacuo are all axial vectors by definition, and it follows that their unit
vector components must also be axial in nature. In matrix form, they are, in
the Cartesian basis

0 0 0 00 —1 010
i=|0 0 1]; j=]00 0|, k=|-1 0 0| (725
0 -1 0 10 0 000
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and in the circular basis

(o o0 L [0 0 - ( 01 0
= _— 0 el =—10 0 1|; e¥=|-1 0 0
- V21 Z1 o 00 0
(726)

The latter form a commutator Lie algebra, which is mathematically equivalent to
the vectorial Lie algebra:

eV e®] = —jel® (727)

Equations (723) and (727) therefore represent a closed, cyclically symmetric,
algebra in which all three space-like components are meaningful. The cyclical
commutator basis can be used to build a matrix representation of the three space-
like magnetic components of the electromagnetic wave in the vacuum

B — jB0),(1) id
B? = —jB0)() =10 (728)

B® = B0),()

from which emerges the commutative Lie algebra equivalent to the vectorial Lie
algebra

B?] = —iB B~ (729)

This algebra can be expressed in terms of the infinitesimal rotation generators of
the O(3) group [42] in three dimensional space:

Lo oo
JV=_ieW=—"orN0 0 —i|; J¥P=iP=—| 0 0 i
2 2
v 1 i 0 V2 —1 —i 0
0 -1
JO=—ie®|i 0 0 (730)
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The magnetic field matrices and rotation generators are linked by
B — _pgO) (1) id
B® — _pg0) () ,—id (731)
B® — ;B0 0)
so the commutative algebra of the magnetic fields (729) is part of the Lie algebra
of spacetime. The real and physical B component is directly proportional to the

rotation generator J*, which is a fundamental property of spacetime, in which
the matrices (730) become

00 10 0 01 0
OIS I PRI B LU
V2l-1 i 00 V2l-1 —i 0 o0
00 00 0 00 0
0 —i 0 0
i 00 0
=" (732)
00 0
0 00 0

It follows that magnetic fields in the vacuum on the O(3) level are directly
proportional to rotation generators of the Poincaré group [42], and electric fields
are directly proportional to boost generators.

The rotation generators form a commutator algebra of the following type in
the circular basis:

P @) = O (733)

which becomes

Vx,Jy| = iJz (734)

in the Cartesian basis, and which is, within a factor #, identical with the com-
mutator algebra of angular momentum operators in quantum mechanics. This
inference provides a simple route to the quantization of the magnetic fields,
giving the result
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where B are now operators of quantum mechanics. Such a quantization scheme
can exist only on the O(3) level. In particular, the longitudinal B® is the
photomagneton operator, which is a stationary state in quantum mechanics.

These results can be generalized to electric fields using boost operators, K%,
which in the Poincaré group are also 4 x 4 matrices:

EW — gO) g(),id
E® = EO K@) =id (736)
iEG) — iEO ()

Therefore, electric fields are boost generators, whereas magnetic fields are
rotation generators. It follows that the Lie algebra of electric and magnetic fields
in spacetime is isomorphic with that of the infinitesimal generators of the
Poincaré group [42]. The latter type of Lie algebra can be summarized as
follows:

g2 = &~
KD KP] = —je®r -
[K(l),e(2>] — _iKk®*

[K(l)“[(l)} =0--

This isomorphism is conclusive evidence for the existence of the longitudinal
B® in the vacuum.

There is also a relation between polar unit vectors, boost generators, and
electric fields. An electric field is a polar vector, and unlike the magnetic field,
cannot be put into matrix form as in Eq. (724). The cross-product of two polar
unit vectors is however an axial vector k, which, in the circular basis, is e, In
spacetime, the axial vector k becomes a 4 x 4 matrix related directly to the in-
finitesimal rotation generator J© of the Poincaré group. A rotation generator is
therefore the result of a classical commutation of two matrices that play the role
of polar vectors. These matrices are boost generators. In spacetime, it is there-
fore

[Kx,Ky| = —iJz (738)
and cyclic permutations. In the circular basis, this algebra becomes
KW, K@) = el (739)

Therefore, although polar vectors cannot be put into matrix form in three-
dimensional space, they correspond to 4 x 4 matrices in spacetime. In three-
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dimensional space, the electric component of the electromagnetic field are
oscillatory fields that can be written directly in terms of the unit vectors of the
circular basis:

E© ) E© .
ED ==—(i—ije®  E?D ="—(i+ij)e® 740
Ty Ty li+i) (740)
In spacetime, the equivalents are
ED — E(O)K(Ueid); EQ@ — gO) g ,~i¢ (741)

The phase ¢ is a line integral on the O(3) level. The boost generators appearing in
Eq. (741) are written in a circular basis

000 1 0 0 0 1

g 1| 000 = o 1|0 00 742

— : = (742)
V2| 0o 0 o0 V21 0 0 0
1 i 0 0 1 —i 0 0

and correspond to the complex, polar, unit vectors ¢ and ¢ in Euclidean space.
It is not possible to form a real electric field from the cross-product of E‘"
and E®, and this is self-consistent with the fact that on the 0O(3) level there is no
real E® [42].
The complete Lie algebra of the infinitesimal boost and rotation generators of
the Poincaré group can be written as we have seen either in a circular basis or in
a Cartesian basis. In matrix form, the generators are

=)

Kx

=
I

9
I

S O o O
S O o O
S O O =
S O o O
S O = O
S O o O

=)

- O

(=)

Jy JZ

oy
I
c o o o
©c o o o
\
c o o
©c o o o
o
c o o
©c o o o
c o o o

(743)
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The relation between fields and generators in spacetime can be summarized as

) o (744)
EV = EO) g(1)id
EQ@ — gO) g () —id
iE®) — jEO gG)
leading to the Lie algebra:
[B(l),B<2)] — ;BOpgB)*
[E(1>,E<2)] — (E0)2,03)%
(745)
[E(l),B(z)] _ iB(O)(lEG))
[E(l),B(l)] =0--
where we have used the notation
ie) = J(l); —ie® = J(Z); ie® = J@3) A
ie® = 2. —ijelV) = J(l); ie® = —jB3) (7 0)

This type of Lie algebra occurs on the O(3) level, but not on the U(1) level. Since
iE® is purely imaginary, it has no physical meaning.

Therefore, the Lie algebra of the magnetic and electric components of the
plane waves and spin fields in free space is isomorphic with that of the infini-
tesimal boost and rotation generators of the Poincaré group in spacetime. Ex-
perimental evidence (presented in Ref. 3 and in this review) suggests that B
is real and physical and the theory of electromagnetism in the vacuum is rela-
tivistically rigorous if and only if the longitudinal fields B (physical) and iE*®
(unphysical) are accounted for through the appropriate algebra. If B and iE®®
are set to zero, as in the received view [U(1) level], then the isomorphism is lost,
and electromagnetism becomes incompatible with relativity. If B® were zero,
the rotation generator J would be zero, which is incorrect. Similarly, if iE®
were zero, the boost generator K®) would be incorrectly zero.

In units of 7, the eigenvalues of the massless photon are —1 and +1, and
those of the photon with mass are — 1, 0, and + 1. In three-dimensional space,
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the latter are obtained from relations such as:

T®e) — 1160
JPe? = _1¢? (747)
7363 — e

where J is the rotation generator:

0 —i 0
JO =il =1i 0 0 (478)
0 0 0

There is no paradox [112] in the use of e as an operator as well as a unit vector.
In the same sense [112], there is no paradox in the use of the scalar spherical
harmonics as operators. The rotation operators in space are first-rank 7 operators,
which are irreducible tensor operators, and under rotations, transform into linear
combinations of each other. The T operators are directly proportional to the scalar
spherical harmonic operators. The rotation operators, J, of the full rotation group
are related to the T operators as follows

', =iV, Tl=i?; Tl =iy® (749)

and to the scalar spherical harmonic operators by

. 1/2 . 1/2 . 1/2
yl. =t 3 J. yl =1 3 J@. yl =1 3 J®
-1 \4n ’ ' \dn ’ O r\4n
(750)
This implies that the fields B, B(z), and B® are also operators of the full

rotation group, and are therefore irreducible representations of the full rotation
group. Specifically

12
B — B(m,(‘“‘) Yl it
5 7

4m\ '/ ;
B<2>:B<0>r(?) yleit (751)
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which shows that B®) = ? 0 violates the fundamentals of group theory. Thus
B(l), B(z), and B® are all nonzero components of the same rank 1 scalar spherical
harmonic Y, ,},,; M = —1,0, 1. Furthermore, since the operators J(l), J(z), and J(3)
are components in a circular basis of the spin, or intrinsic, angular momentum of
the vector field representing the electromagnetic field, the fields B, B®, and
B® are themselves components of spin angular momentum. It is also clear that
JU is a lowering (annihilation) operator

JWe® = 110 JWel) = —1¢0; JWe() — 0e® (752)
and that J? is a raising (creation) operator:

T2e@ — 0D

)

JPe® = —12); e = 11O (753)

The total angular momentum J 2 is also an eigenoperator, for example:
S =11+1)e®;  1=1 (754)

The operator J* is therefore also an intrinsic spin, and can be identified in this
novel quantization method based on the B cyclic theorem with the intrinsic spin
of a photon with mass, with eigenvalues — 1, 0, and + 1.

For a classical vector field, its intrinsic (spin) angular momentum is identifi-
able with its transformation properties [112] under rotations, and within a factor
7, the rotation operators are spin angular momentum operators of the spin one
boson. Recognition of a nonzero B® is therefore compatible with the eigenva-
lues of both the massive and massless bosons. The vector spherical harmonics
[112] are specific vector fields that are eigenvalues of j> and of j, where j is the
operator for vector fields of infinitesimal rotations about axis (3). They have de-
finite total angular momentum and occur in sets of dimension (2j + 1) that span
in standard form the D representations of the full rotation group, and are there-
fore irreducible tensors of rank j. Defining the total angular momentum as the
sum of the “orbital” angular momentum / and intrinsic (spin) angular momen-
tum J, we have

j=I+1J (755)

and the vector spherical harmonics are compound irreducible tensor operators
[112]:

Yo, = el (756)

They are formed from the scalar spherical harmonics Y/,, which form a complete
set for scalar functions, and the ¢ operators, which form a complete set for any
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vector in three-dimensional space. Therefore, the vector spherical harmonics
form a complete set for the expansion of any arbitrary classical vector field:

A=Axi+Ayj+Azk (757)

in a Cartesian basis. For this vector, the I, operates on the Ay,Ay,A; and J,
operates on i, j and k. Thus, I, operates on the spatial part of the field and J, on
the vector part.

Therefore the operator for infinitesimal rotations about the Z axis contains
two ‘“‘angular momentum’ operators, / and J, analogous with orbital and spin
angular momentum in the quantum theory of atoms and molecules. The infini-
tesimal rotation is therefore formally a coupling of a set of spatial fields trans-
forming according to DY with a set of three vector fields [e(l),e(z), e(3)],
transforming according to D". Equation (756) is an expression of this coupling,
or combining, of entities in two different spaces to give a total angular momen-
tum. It follows, from these considerations, that the vector spherical harmonics
are defined by

Yin = (llmn|lILM)Y', e, (758)

mn

where (Ilmn|lILM) are Clebsch-Gordan, or coupling, coefficients [112]. For
photons regarded as bosons of unit spin, it is possible to multiply Eq. (758) by
(110M|11LM) and to sum over L [112]. Using the orthogonality condition

> (il jam = mh| 1 jajm) (Gt ol i jom — ma) = 8, (759)
J

it is found that

I+1
Y3 (0, )ey = Y (IIOM|IILM)Yyy, (760)
L=|I-1]

which is an expression for the unit vectors e,, in terms of sums over vector
spherical harmonics, that is, of irreducible compound tensors, representations of
the full rotation group.

On the U(1) level, the transverse components of e, are physical but the long-
itudinal component corresponding to M = 0 is unphysical. This asserts two
states of transverse polarization in the vacuum: left and right circular. However,
this assertion amounts to ey = e(® = 70, meaning the incorrect disappearance
of some vector spherical harmonics that are nonzero from fundamental group
theory because some irreducible representations are incorrectly set to zero.
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This point can be emphasized by expanding B> in terms of Wigner 3-j symbols
[112], which yields results such as

B0 — 0™ _ 50 Yoo _ B V2¥i, — Yo, (761)
Yo V3 Yy

showing that B is nonzero and proportional to the nonzero vector spherical
harmonic ¥}, on a fundamental level. Therefore, the fundamentals of group
theory are obeyed on the O(3) level, but not on the U(1) level.

All three of e'",e®, e can be expressed in terms of vector spherical har-
monics. Thus, in addition to the nonlinear B cyclic theorem, the following linear
relations occur

BB — p0),6) — Qan) (e 1 e®) + BOp
2

ol

= —Z2cBO (e — @) + BOd (762)

where the coefficients are defined by the following combination of scalar and
vector spherical harmonics:

Altm) Alirim)
a=—|———"—); c=——|——"—+
V2 \1rf =1, V2 \1ri+ 71,

bﬁ<Y1111+Y1111>; d\/§<Y11"_Y11”>

Yj —v! Yl + 1!

(763)

On the O(3) level, therefore, B is nonzero because B" and B® are nonzero.

On the U(1) level, the plane wave is subjected to a multipole expansion in
terms of the vector spherical harmonics, in which only two physically signifi-
cant values of M in Eq. (761) are assumed to exist, corresponding to M = +1
and — 1, which translates into our notation as follows:

e, = —e?; e =el; e =e? (764)

On the O(3) level, the case M = 0 is also considered to be physically meaningful.
In consequence, there is an additional, purely real, 2= pole component of the
electromagnetic plane wave in vacuo corresponding to B®. The vector spherical
harmonics Y%, with 1 = L are no longer transverse fields, and the vector e,
which is longitudinal, can also be expressed in terms of the L = 1, M = 0 vector
spherical harmonics as in Eq. (761). The longitudinal B®, according to Eq.

(761), can be expanded for all integer 1 of that equation in terms of vector
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spherical harmonics. Each value of 1 for M =0 in Y% on defines a different
nonzero component of B®. Therefore the L = 1 components in the expansion of
B® are dipolar fields.

As an example of these methods, consider the B cyclic theorem for multipole
radiation, which can be developed for the multipole expansion of plane-wave
radiation to show that the B® field is irrotational, divergentless, and fundamen-
tal for each multipole component. The magnetic components of the plane wave
are defined, using Silver’s notation [112] as

B1 = B(O)eid’el
B_, = B0e %, (765)
By =B"e,

where the basis vectors in Silver’s spherical representation are related by
e_| Xe = —ieo (766)

in cyclic permutation. The phase factor on the O(3) is a line integral, as argued in
this review and elsewhere [44]. The B cyclic theorem in this notation is therefore

B, x B, = —iBYB, (767)

In order to develop Eq. (767) for multipole radiation, we use the following
expansions [112]:

e =120 + 1)ju(kZ)Py(cos)

!
I+1 (768)
Z (NOM|I1LM) Y,

1
M= yT
Yo,

where [ is the /th multipole moment, j; the /th modified Bessel function, and P, is
the /th Legendre polynomial. The basis vector e,, (M = —1,0,+1) is expanded
in terms of the Clebsch-Gordan coefficients (/10M|/1LM) and the vector spheri-
cal harmonics ¥%;,;, and normalized with the scalar spherical harmonic Y.

In deriving Eq. (767), we have used on the left-hand side the conjugate pro-
duct of phase factors:

ePe i =1 (769)

Using Egs. (768a) and (769), it is seen that the product is unity if we sum over all
multipole components with 1 — oo in Eq. (768). In all other cases, the B cyclic
theorem is

B_, x B, = —ixB"B, (770)
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where x is different from unity. It is given as follows for the first few multipoles:

x=9/1P}, for I=1
=25j5P; for [=2 (771)
=49j3P; for [=3

In this notation

Pi(cos) = (2m(20 4 1))/2¥1(0)
, 772
Jikr) = <k>l(i5r>jo(kr) e

It is important to note that By in Eq. (770) is the same as By in Eq. (767):
phaseless, irrotational, and divergentless. The factor x arises purely from the
truncation of the infinite series (768a) in individual multipole components. As
discussed by Silver [112], the e, vectors are polarization vectors for the
electromagnetic wave, but are also spin angular momentum eigenfunctions.
Tautologically, therefore, Eq. (767), the B cyclic theorem, is a spin angular
momentum equation for the photon, with M = —1,0,1. The photon wave
function, therefore, has components ¢’*“e;, e~*?¢_,, and e,. The observables in
this theory are therefore energy and B,. The complete vector fields B,B _ {,B are
described in terms of the vector spherical harmonics, and the B cyclic theorem
indicates the existence of an intrinsic magnetic field B, which is described by the
transformation of the frame under rotation. As is well known in classical angular
momentum theory, only the B, component remains sharply defined under
rotation. The components B, and B _ | are defined only within an arbitrary phase
factor. Within 7, this is the quantum theory of angular momentum [112].
Since B® is time-independent, it obeys

B®) = —Vd, (773)
where @5 is determined by the Laplace equation:
Viop =0 (774)

Analogously, a Coulomb field can be expressed as the gradient of a scalar
potential that obeys the Laplace equation in a source-free region such as the
vacuum in conventional electrostatics. To find the general form of B® in a
multipole expansion, we therefore solve the Laplace equation for ®p, and
evaluate the gradient of this solution

=——p(0)Q() (775)
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in spherical polar coordinates. The general solution (775) can be written as
®p = (Ar' + Br 2)Y;,,(0, ¢) (776)

where Y,,,(0, ¢) are the spherical harmonics and A and B are constants. Here, m
and / are integers, with [ running from —m to m. The solution of Laplace’s
equation is therefore obtained as a product of radial and angular functions. The
latter are orthonormal functions, the spherical or tesseral harmonics, which form
a complete set on the surface of the unit sphere for the two indices / and m. The
integer [ defines the order of the multipole component; / = 1 isadipole,/ = 2isa
quadrupole, [ = 3 is an octopole, and [/ = 4 is a hexadecapole.
The most general form of B from the Laplace equation is therefore

B(3) — 7V(Ar1 -+ Bl’72)Ylm(ea d)) (777)

This is the phaseless magnetic field of multipole radiation on the O(3) level. The
solution (777) reduces to the simple

B®) = B0eB) — pO)k (778)

whenl=1,m=0,r=2,0=0,A=—-B% B=0,and V = (0/3Z)k. More
generally, there exist other irrotational forms of B®:

1. B® for dipole radiation: =1, m=-1,0,1
2. BY for quadrupole radiation: [=2, m=—2,...,2 (779)
3. B for octopole radiation: =3, m=-3,...,3

The B® fields for n-pole fields are irrotational for all n on the O(3) level.

As argued, infinitesimal field generators appear as a by-product of this novel
quantization scheme, so that B® is rigorously nonzero from the symmetry of
the Poincaré group and the B cyclic theorem is an invariant of the classical field.
The basics of infinitesimal field generators on the classical level are to be found
in the theory of relativistic spin angular momentum [42,46] and relies on the
Pauli-Lubanski pseudo-4-vector:

1
wh = — 5 eMVPp Ty (780)

where e*VP (with €°1%3 = 1) is the antisymmetric unit 4-vector. The antisym-
metric matrix of generators J,, is given by

0 K, K> K;
| =K 0 —J3 )
Jyp = K s 0 s (781)

K5 —J, ] 0
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where every element is an element of spin angular momentum in four dimen-
sions. The energy momentum polar 4-vector is defined by

P=0"p) = (%,p) (782)

The infinitesimal generators can be represented as matrices or as combinations of
differential operators [46]. The Pauli-Lubanski operator then becomes a product
of the Jy, and p, operators. Barut [113] shows that the Lie algebra of the W*
operators is

[WH, WY] = —ighoPpo W, (783)

which is a four-dimensional commutator relation. The theory is relativistically
covariant and, of course, compatible with special relativity. Equation (783) gives
the Lie algebra [42] of intrinsic spin angular momentum because rotation
generators are angular momentum operators within a factor 7, and this allows
relativistic quantization to be considered. Similarly, translation generators are
energy momentum operators within a factor /. This development leads to
Wigner’s famous result that every particle is characterized by two Casimir
invariants of the Poincaré group, the mass and spin invariants [46].

Our basic ansatz is to assume that this theory applies to the vacuum electro-
magnetic field, considered as a physical entity of spacetime in the theory of spe-
cial relativity. The intrinsic spin of the classical electromagnetic field is the
magnetic flux density B, Infinitesimal generators of rotation correspond with
those of intrinsic magnetic flux density in the vacuum. Boost generators corre-
spond with intrinsic electric field strength. Translation generators correspond
with the intrinsic, fully covariant, field potential. Thus, the symbols are trans-
muted as follows:

J — B; K — E; P—A (784)

In Cartesian notation, the Pauli—Lubanski vector of particle theory becomes a
4-vector of the classical electromagnetic field

1
wh = — 3 g"VPAFyp (785)

and the Lie algebra (783), a Lie algebra of the field.

If it is assumed that the electromagnetic field propagates at ¢ in the vacuum,
then we must consider the Lie algebra (783) in a light-like condition. The latter
is satisfied by a choice of

AY = (A% Ap)

786
49— A, (786)
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The basic ansatz is that there is a field vector analogous to the Pauli-Lubanski

vector of particle physics, a field vector defined by

W = A,

(787)

where F™ is the dual of the antisymmetric field tensor. This vector has the

following components:
W° = —B'A, — B’A, — B’A;
W! = BlAg + E3A; — E*A;
W? = B’Ay — E°A, + E'A;
W? = B3A, + E°A, — E'A,

If it assumed that for the transverse components

B=VxA
that A and B are plane waves
A0 )
A =" (ii +j)e
7 (i +J)
B )
B =——(ii +j)e'*
7 (it +j)

and that the longitudinal E® is zero, then Eq. (788) reduces to

Wy = AzB;
Wx = AoBx +AzEy
Wy = AgBy — AzEx
Wz =AoBz

These assumptions mean that

A" = (A°,0,0,A%); AY =43

(788)

(789)

(790)

(791)

(792)

can be used as an ansatz. Conversely, the use of this definition means that the
transverse components are plane waves, and for the transverse components,

B =V =A.

In the Coulomb gauge, the vector W* vanishes, meaning that there is no cor-
respondence between the particle and field theory for the Coulomb gauge, or the
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received view of transversality in the vacuum. The final result is therefore
W = A°(B,0,0,B;) (793)

which is compatible with the Lie algebra of a light-like particle. This corresponds
in the particle interpretation to the light-like translation generator:

Pt =’pz); P’ =pz (794)
The Pauli-Lubanski pseudovector of the field in this condition is

W = (AzBy, AzEy + AoBx, —AzEx + AoBy, AoBz)
= Ao(Bz, Ey + Bx, —Ex + By, Bz) (795)

and the Lie algebra (783) becomes, in ¢ = 1 units:

[Bx + Ey, By — Ex] = i(Bz — Bz)
By — Ex, B;] = i(Bx + Ey) (796)
[Bz, Bx + Ey| = i(By — Ex)

which has E(2) symmetry. In the particle interpretation, Eqs. (795) and (796)
correspond to

WY = (pzJz,pzKy + poJx, —pzKx + poly, poJz) (797)

and
[Ux + Ky, Jy — Kx| = i(Jz — Jz)
[y — Kx, Jz] = i(Jx + Ky) (798)
[z, Jx — Ky] = i(Jy — Kx)

In the rest frame of a photon with mass, the field and particle Pauli-Lubanski
vectors are respectively

W = (0, AoBx, AoBy, AoBz) (799)

and
WH = (0, poJx, poJy; polz) (800)

The rest frame Lie algebra for field and particle is respectively (normalized
B = 1 units):

[Bx,By] = iBy- -- (801)
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and
Ux,Jy] =iJz- - (802)

The E® field algebra is compatible with the vacuum Maxwell equations written
for eigenvalues of our novel infinitesimal field operators. This can be demon-
strated as follows:

By = Ex; BX = —Ey (803)

It is assumed that the eigenfunction (y) operated on by these infinitesimal field
generators is such that the same relation (803) holds between eigenvalues of the
field. In order for this to be true, the eigenfunction must be the de Broglie wave
function, specifically, the phase of the classical electromagnetic field. On the
0O(3) level, this is a line integral, as we have seen.

The relation (803) interpreted as one between eigenvalues is compatible with
the plane-wave solutions

EV — E@* — ——(i— l])e’¢
V2
(804)
B — p@* — ﬂ(ﬁ +j)e®
V2
which are special cases of the O(3) invariant electrodynamics defined by
1
M — @ — (7 — if): () =
e =7 = i—ij); e =k 805
i) (805)

It follows that the same analysis can be applied to the particle interpretation,
giving

0" =0, J" =0 (806)

in the vacuum. This is a possible conservation equation (relation between spins)
that is compatible with the E® symmetry of the little group of the Poincaré
group. This is the little group for a massless particle. On the U(1) level, therefore,
it is concluded that the vacuum Maxwell equations for the field correspond with
Eq. (806) for the particle, an equation that asserts that the spin angular
momentum matrix is divergentless. In vector notation, we obtain from Egs.
(803)—(806) the familiar U(1) equations

VB =0; VE=0
1 OE (807)

VxE—i—aa—f:O; VxB——=—=0
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and the less familiar relation between eigenvalues of spin angular momentum in
four dimensions:

VJ=0; V:K=0
(808)
V><J+6—K:0; VxK—a—Jzo
ot ot

On the O(3) level, particular solutions of the E? Lie algebra (796) give a total
of six commutator relations. Three of these form the B cyclic theorem
(B = 1 units):

[Bx, By] =iBz
[By, Bz] = iBx (809)
[Bz, Bx] = iBy

and the other three are

[Ex, Ey] = —iBz
[Bz, Ex] = iEy (810)
[Ey, Bz] = iEx
In the particle interpretation, these are part of the Lie algebra of rotation and
boost generators of the Poincaré group:
Ux, Jy] =iJz [Kx, Ky] = —iJz
Uy, Jz] =iJx [Jz, Kx] = iKy (811)
Jz, Jx] =iJy [Ky, Jz] = iKx

From these relations, we can obtain
B « B@ — ;O BB~
B® x B®) = jOB* (812)
B® x B — ;g0 g2)
EV <« E® — j:2g0gB3)=

B®) x EV = icBOE®)* (813)
B®) x E® — _ijcpO gD
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where B = B©e®_ Similarly, in the particle interpretation, and switching from
rotation generators to spin angular momentum, we obtain:

JU 5 J@ = i@
J?P x J® = ing (814)
J® 5 JO = jpg@*

where 7 is the quantum of spin angular momentum.

In the rest frame of a photon or particle with mass, we obtain, for field and
particle, respectively, Eqgs. (812) and (813); that is, there are no boost genera-
tors.

From this analysis, it is concluded that the B®> component is identically non-
zero, otherwise all the field components vanish in the B cyclic theorem (812)
and Lie algebra (809). If we assume Eq. (803) and at the same time assume
that B® is zero, then the Pauli-Lubanski pseudo-4-vector vanishes for all A.
Similarly, in the particle interpretation, if we assume the equivalent of Eq. (803)
and assume that J is zero, the Pauli—-Lubanski vector W* vanishes. This is
contrary to the definition of the helicity of the photon. Therefore, for finite field
helicity, we need a finite B®.

The precise correspondence between field and photon interpretation devel-
oped here indicates that E(2) symmetry does not imply that B® is zero, any
more than it implies that J* = 0. The assertion B> = 0 is counterindicated
by a range of data reviewed here and in Ref. 44, and the B cyclic theorem is
Lorentz-covariant, as it is part of a Lorentz-covariant Lie algebra. If we assume
the particular solutions (809) and (810) and use in it the particular solution
(803), we obtain the cyclics (809) from the three cyclics Eq. (810); thus we ob-
tain

[By7 —BX] =By
By, By] = —iBy (815)
[Bz, —Bx| = —iBy

This is also the relation obtained in the hypothetical rest frame. Therefore, the B
cyclic theorem is Lorentz-invariant in the sense that it is the same in the rest
frame and in the light-like condition. This result can be checked by applying the
Lorentz transformation rules for magnetic fields term by term [44]. The
equivalent of the B cyclic theorem in the particle interpretation is a Lorentz-
invariant construct for spin angular momentum:

JO % g — g™ (816)
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It is concluded that the B®” component in the field interpretation is nonzero in the
light-like condition and in the rest frame. The B cyclic theorem is a Lorentz-
invariant, and the product B(") x B® is an experimental observable [44]. In this
representation, B is a phaseless and fundamental field spin, an intrinsic
property of the field in the same way that J© is an intrinsic property of the
photon. It is incorrect to infer from the Lie algebra (796) that B must be zero
for plane waves. For the latter, we have the particular choice (803) and the
algebra (796) reduces to

i(B, —Bz) =0 (817)

which does not indicate that Bz is zero any more than the equivalent particle
interpretation indicates that J is zero.
In order to translate a Cartesian commutator relation such as

[Bx,By] = iB"'B, (818)
to a ((1),(2),(3)) basis vector equation such as
B x B® = ipOgB) (819)
consider firstly the usual vector relation in the Cartesian frame:
ixj=k (820)
The unit vector i, for example, is defined by
i = uyi (821)
where u, is a rotation generator, in general a matrix component [46]. Therefore
ux = i(Jx)y, (822)

The cross-product xj therefore becomes a commutator of matrices

Vx,Jy] = iJz (823)
that is
| 0 0 0 . [0 0 —1 . 0 0 -1 | 0 0 0
-10 0 1]=-]10 O 0| —-1|0 O 0|-10 0 1
l l l l
0 -1 0 |1 0 0 1 0 0 0 -1 0
0 1 0]
=|-1 0 (824)
0 0 0]
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This can be extended straightforwardly to angular momentum operators
and infinitesimal magnetic field generators. Therefore, a commutator such as
Eq. (818) is equivalent to a vector cross-product. If we write B as the scalar
magnitude of magnetic flux density, the commutator (818) becomes the vector
cross-product

(BYi) x (BY)j = B (BVk) (825)
which can be written conveniently as
(ByBy)"%i x (BxBy)"?*j = iB" Bk (826)

However, the Cartesian basis can be extended to the circular basis using relations
between unit vectors developed in this review chapter. So Eq. (826) can be
written in the circular basis as

(BxBy)"?e") x (BxBy)"?e® = —B)B e (827)
which is equivalent to
B x B = BB~ (828)
where we define
B = B® = (ByBy)"%e);  BO) = B e (829)

To complete the derivation, we multiply both sides of Eq. (828) by the phase
factor e/®e~® to obtain the B cyclic theorem. The latter is therefore equivalent to
a commutator relation of the Poincaré group between infinitesimal magnetic field
generators. Similarly

[Ex, Ey] = ic?BYB, (830)
is equivalent to

EY) x E® = ic?BOB) (831)

XIV. O(3) AND SU(3) INVARIANCE FROM THE RECEIVED
FARADAY AND AMPERE-MAXWELL LAWS

The received Faraday and Ampere-Maxwell laws [111] in the vacuum asserts
that there are fields without sources, so the laws become respectively

V><E+%—?:0 (832)

VxB-———=0 (833)
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These laws are useful but represent cause without effect, that is, fields propagat-
ing without sources, and the Maxwell displacement current is an empirical
construct, one that happens to be very useful. These two laws can be classified as
U(1) invariant because they are derived from a locally invariant U(1) Lagrangian
as discussed already. Majorana [114] put these two laws into the form of a Dirac—
Weyl equation (Dirac equation without mass)

Wiy —ipaVis — ipsl, =0
Wi, —ips{; — iP1\|/3 =0 (834)
W3 —ip1y, — ipay, =0

in which a combination of fields (SI units) acts as a wave function
1
; = —E; — iB;; i=1,2,3 (835)
c
and in which the quantum ansatz

p = —ihV; ih% —En=W (836)
has been used. It is shown in this section that the Majorana equations are O(3)
invariant, so the received view is self-contradictory. There is something hidden
inside the structure of the Faraday and Ampere-Maxwell laws that removes their
U(1) invariance [44]. It can be checked straightforwardly that Eqs. (835) and
(834) lead back to Egs. (833) and (832). In condensed notation, the Majorana
equations (834) have the form of the Dirac—Weyl equation:

WH+ap¥=0 (837)
The structure of the Dirac—Weyl equation itself is [46]
(v%po + v'pi)¥ =0 (838)

In Eq. (837), however, the a matrix is an O(3) rotation generator matrix with
components

00 0 00 i 0 —i 0
=10 0 —il; oa=|00 0[; oz=|i 0 0| (839
0 i 0 —i 00 0 00

obeying the O(3) invariant commutator equation

[OL,‘, ka] = *igiklala (la ka l= 15 23 3) (840)
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which is within a factor %, the O(3) invariant commutator equation for angular
momentum [42,44,46]. Therefore, the Majorana form of Egs. (832) and (833),
namely, Eq. (837), is O(3) invariant, not U(1) invariant. The determinant
condition

W —ips  ips
ip3 w —ipl =0 (841)
—ip> ipr W

gives the relation between energy and momentum for a massless photon, but at
the same time, the Majorana equation (837) can be written as a Schrodinger
equation

HY = WY (842)
=_—ap (843)

which is usually a nonrelativistic equation for a particle with mass. This is
another self-inconsistency of the received Faraday and Ampere—-Maxwell laws:
the latter ought to be a law for a particle with mass and ought to account for the
Lehnert current, as argued already. Operators such as

Y =—iaxa (844)

are intended for the intrinsic spin of the photon, which however, must have
eigenvalues — 1,0, 1 in order to be consistent with the O(3) angular momentum
commutator equation (840). The received view [42,44,46] produces eigenvalues
—1 and +1 only, which is another self-inconsistency.

Equation (837) can be put into the form of an O(3) covariant derivative act-
ing on the wave function ¥

where
gAy = a-% =oa°K
o (846)
8= W

So the simplest form of the Majorana equation is

Dy¥ =0 (847)
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and is the time-like part of an O(3) covariant derivative acting on the wave
function W. The form of Eq. (847) is not, however, fully covariant. The fully
covariant form of the vacuum O(3) field equations, as argued already, is
collectively Egs. (318) and (323), which have a Yang—M ills structure. Therefore,
the Majorana equation is part of an approximation to the O(3) invariant field
equations (318) and (323). As argued already, these latter equations give photon
mass through the Higgs mechanism. It does not seem possible to introduce
photon mass into the Majorana equation (837), revealing that it is an approxi-
mation. This implies that the received Faraday and Ampere—Maxwell laws in the
vacuum are also incomplete [42,44] and that U(1) invariant electrodynamics is
incomplete. The latter is seen dramatically in interferometry, as argued in this
review and elsewhere [44]. For example, a U(1) invariant electrodynamics cannot
describe Sagnac interferometry, with platform either at rest or in motion; and
cannot describe Michelson interferometry. An O(3) invariant electrodynamics
describes both effects self consistently. Oppenheimer [115] derived the same
equation as Majorana independently a few years later.
The Majorana equation (837) can also be put in the form

Y(W+a-p) =0 (848)

which is analogous with the corresponding equation for Dirac—Weyl adjoint
wave function. The notation of Eq. (848) means that

pzia; Y= (v’ (849)

The symmetric energy-momentum tensor (7,,) of electromagnetism in the
vacuum can be defined from the Majorana equation using the matrices

2000 = 1; 20101 = 0y 20102 = ; 2003 = o3

[—1 0 0 0 -1 0
20(11 = 01 0 ) 20612 =|-1 00

L0 0 1 L0 0 0

0 0 —1] 1 0 0 (850)
20(13 = 0 0 0 ; Ol = 0 -1 0

20(23: 0 0 -1 N 20(33: 0 1 0
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where
Oy = Oy (n,v=0,1,2,3) (851)
to give the result:
Ty = Vo, ¥ (852)

Only eight of the nine matrices (850) are independent, and they form a basis for
the SU(3) group, which is used for strong-field theory [46]. Therefore, the
energy-momentum tensor is SU(3) invariant.

Therefore, if we start from a traditionally U(1) invariant pair of equations
(832) and (833), we find that they can be put into an O(3) invariant form,
and that the concomitant energy-momentum tensor is SU(3) invariant. It is
therefore interesting to speculate that an SU(3) invariant electrodynamics can
be constructed self-consistently, and is more general than the O(3) invariant
form developed here and elsewhere [44]. To view electrodynamics in the va-
cuum as a U(1) invariant theory is highly restrictive, self-inconsistent [44],
and in contradiction with ordinary data such as those from ordinary interfero-
metry and ordinary physical optical effects such as normal reflection [44]. Ana-
lyses by Majorana, and later Oppenheimer, show that invariance symmetries can
be transmuted among each other for the same set of equations, and so it seems
that there is no limit to the internal structural symmetry of electrodynamics on
both classical and quantum levels. It is necessary to check each set of equations
empirically as the theory is developed. The O(3) invariant electrodynamics [44],
for example, has been checked extensively with interferometry and other forms
of data [47-62] by several leading specialists. Broad agreement has been
reached as to the fact that a paradigm shift has occurred, and that the
Maxwell-Heaviside electrodynamics have been replaced by one where there
can be invariance under symmetry groups different from U(1). This paradigm
shift has extensive consequences throughout physics and the ontology of phy-
sics, in chemistry, and in cosmology. The next section, for example, shows that
the dark matter in the universe can be thought of as being made up of photons
with mass slowed to their rest frame by the Higgs mechanism. The Dirac equa-
tion itself is SU(2) invariant [46], and therefore a model of the electron must be
either SU(2) or O(3) invariant. Vigier has recently developed an O(3) invariant
model of the electron [116] based on the development of an O(3) invariant elec-
trodynamics [42,45,47-62]. The Dirac equation is the relativistically correct
form of the Schrodinger equation, and an example of an O(3) invariant Schro-
dinger equation appears in Eq. (842). We argued earlier that the phase of the
Schrodinger equation must be O(3) invariant in general. Taking this line of
argument to its logical conclusion, then, Newtonian dynamics are also O(3)
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invariant. The latter is clear from the fact that Newtonian dynamics takes place
in the space of three dimensions described by the rotation group O(3). Another
insight is obtained from the fact that the angular momentum commutator rela-
tions of quantum mechanics [68] are O(3) invariant.

The O(3) invariance of the Majorana equation (837) can be demonstrated
clearly by the use of plane waves

A0
A =—— (ii +j)e'®
\/5( J)e
8= Gy jyot (553)
— (i +
Vo
E©
E=——(i—|
\/5( ij)e’®
whereon
1
—iB+-E = —2kiA (854)
c

Therefore, Eqs. (834) reduce to
B
W?l = —iprA3 + ip3As
B, . .
W? = —ip3A| + ip1A3 (855)
B; . .
W? = —ip1Ay + ip2A,

Using the four equations

W = p° = ngA°

856
pl:thlv l:1a273 ( )

we recover the O(3) invariant definition of the B> field and two other similar
equations that are equations of the O(3) invariant field tensor as argued already:

. K * *
BZ = 71@ (AxAy 7AyAX) (857)

These equations reduce in turn [42,44,47-62] to the B cyclic theorem:

B x B = BB (858)
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showing that the Majorana equations are the B cyclic theorem. The latter is
therefore O(3) gauge-invariant and Lorentz-covariant because the Majorana
equations are equivalent to equations with these properties.

XV. SELF-CONSISTENCY OF THE O(3) ANSATZ

A three-way cross-check of the self-consistency of the O(3) ansatz can be carried
out starting from Eq. (459), in which A is complex because the electromagnetic
field in O(3) electrodynamics carries a topological charge k/A(?). The vector
field A in the internal space of O(3) symmetry must depend on x* by special
relativity and can be written as

A=A+ A® 4 A0 (859)
where
A0 )
AV = A" =" (ii +j)e ™ =A®
V2 (860)
AB) — A0

It is now possible to check whether Eq. (459), with its extra vacuum current, is
compatible with Eq. (106) of Ref. 44, which is

VvV x B®

1 0E®)
:76 —ig(AM x B® —A® x By _ S pra* x4 (861)
C at l,lo

It follows, from the structure adopted for A in Eq. (860), that
D’A" x A =3°AP x AW £ °A1 x 4
= ikAD x A® _ jkA?@ « 4D

= igBY x A®) — jgB® x AW (862)

and so we obtain
V xB® =0 (863)

which is self-consistent with the fact that B is irrotational and that E® is zero.
Another consequence of Eq. (459) is that it gives a vacuum polarization

V-P®) = p(vac) = — 5 D°A* x A (864)
Ho
where p(vac) is the vacuum charge density. The vacuum polarization P does

not appear from the field tensor [42], but appears from the vacuum charge current
density term on the right-hand side of Eq. (459). This vacuum charge current
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density term must always be present from fundamental gauge principles on the
O(3) level. So we have identified the concept of a vacuum charge density as the
divergence of a vacuum polarization.

The concepts of O(3) electrodynamics developed in this review and in Ref.
44 scratch the surface of what is possible. The field equations must be solved
numerically to obtain all the possible solutions, and checked against empirical
data at each stage. Numerical solution of this nature has not yet been attempted.
The concept of radiatively induced fermion resonance [44], which might lead to
nuclear magnetic resonance and electron spin resonance without the need for
permanent magnets, is one obviously useful spinoff of O(3) electrodynamics
that has not been explored. These are two of several major advances that could
be made within the near future. On the high-energy scale, the concept of higher-
symmetry electrodynamics has led to the Crowell boson, which has been de-
tected empirically, and, as reviewed by Crowell in this edition, leads to a novel
grand unified theory. The development of O(3) electrodynamics also gives bet-
ter insight into the energy inherent in the vacuum, and shows beyond reasonable
doubt that all optical phenomena are O(3) invariant, a major advance in the 400-
year subject of physical optics. During the course of this development, it has
been shown that there are several internal inconsistencies [44] in the U(1) invar-
iant electrodynamics, and several instances, in particular interferometry, where
the U(1) theory fails. Two typical examples are the Sagnac and Michelson ef-
fects. The O(3) invariant electrodynamics succeeds in describing both effects
with precision from first principles because of the use of a non-Abelian Stokes
theorem for the electromagnetic phase, a theorem that shows that all interfero-
metry is topological in nature and depends on the Evans—Vigier field B®. The
O(3) invariant electrodynamics carries a topological charge k/A® in the va-
cuum, a charge that also acts as the coupling constant of the O(3) covariant de-
rivative. The concept of vacuum charge current density has been established
self-consistently on the O(3) invariant level from the first principles of gauge
field theory. These are some of several major advances.

Therefore, the empirical and theoretical evidence for the superiority of an
O(3) invariant over a U(1) invariant electrodynamics is overwhelming. It is clear
that the process of development can be continued, for example, in quantum elec-
trodynamics, electroweak theory, and grand unified theory, and the ontology of
these developments can also be studied in parallel.

XVI. THE AHARONOV-BOHM EFFECT AS THE BASIS
OF ELECTROMAGNETIC ENERGY INHERENT
IN THE VACUUM

The Aharonov-Bohm effect shows that the vacuum is configured or structured,
and that the configuration can be described by gauge theory [46]. The result of
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this experiment is that, in the structured vacuum, the vector potential A can be
nonzero while the electric field strength E and magnetic flux density B can be
zero. This empirical result is developed in this section by defining an inner space
for the gauge theory, and by summarizing some of the results proposed earlier in
this review in light of the Aharonov—Bohm effect. Therefore the non-simply
connected U(1) vacuum is described by a scalar internal gauge space, and the
non-simply connected O(3) vacuum, by a vector internal gauge space. The core
of the idea being presented in this section is that the Aharonov—Bohm effect is a
local gauge transformation of the true vacuum, where

A =0 (865)

This type of gauge transformation produces a vector potential from the true
vacuum. Components of this vector potential are used for the internal gauge
space whose Lagrangian is globally invariant. A local gauge transformation of
this Lagrangian produces the topological charge

K

i (866)

g:

the electromagnetic field, which carries energy, and the vacuum charge current
density first proposed empirically by Lehnert [49] and developed by Lehnert and
Roy [45]. These authors have also demonstrated that the existence of a vacuum
charge current density implies the existence of photon mass. Empirical evidence
for the existence of the vacuum charge current density is available from total
internal reflection [45,49]. The source of the energy inherent in vacuo is therefore
spacetime curvature introduced through the use of a covariant derivative:

D, =0, — igA, (867)

The product gA, in the covariant derivative is, within a factor 7, an energy
momentum. Therefore, photon mass is produced by spacetime curvature
because, in a covariant derivative, the axes vary from point to point and there
is spacetime curvature. Similarly, mass is produced by spacetime curvature in
general relativity. Therefore, spacetime curvature in the configured vacuum
implied by the Aharonov—Bohm effect is the source of electromagnetic energy
momentum in the vacuum. There is no theoretical upper bound to the magnitude
of this electromagnetic energy momentum, which can be picked up by devices,
as reviewed in this series by Bearden and Fox (Part 2, Chapters 11 and 12; this
part, Chapter 11). Therefore, devices can be manufactured, in principle, to take
an unlimited amount of electromagnetic energy from the configured vacuum as
defined by the Aharonov—Bohm effect, without violation of Noether’s theorem.
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The gauge theory developed earlier in this review is summarized for the U(1)
and O(3) non-simply connected vacua using the appropriate internal gauge
spaces. The earlier calculations are summarized in this section. It has been de-
monstrated in this series, that there are several advantages of O(3) gauge theory
applied to electrodynamics over U(1) gauge theory applied to electrodynamics,
but the latter can be used to illustrate the method and to produce the vacuum
Poynting theorem that is an expression of Noether’s theorem for the structured
vacuum. The theory being used is standard gauge theory, so the Noether theo-
rem is conserved; that is, the laws of energy/momentum and charge current con-
servation are obeyed. The magnitude of the energy momentum is not bounded
above by gauge theory, so the Poynting theorem (law of conservation of elec-
tromagnetic energy) in the configured vacuum indicates this fact through the
presence of a constant of integration whose magnitude is not bounded above.
This suggests that the magnitude of the electromagnetic energy in the structured
classical vacuum is, in effect, limitless.

The non-simply connected U(1) vacuum is considered first to illustrate the
method as simply as possible. This is defined as earlier in this review by the
globally invariant Lagrangian density

&£ = 0,A0MA* (868)

where A and A* are considered to be independent complex scalar components of
the vector potential obtained by gauge transformation of the true vacuum, where
A, = 0 [46]. The potentials A and A* are complex because they are associated
with a topological charge g, which appears in the covariant derivative when the
Lagrangian (868) is subjected to a local gauge transformation. The topological
charge g should not be confused with the point charge e on the proton. In the
classical structured vacuum, g exists but e does not exist. The two scalar fields
are therefore defined as complex conjugates:

1
A=—(A+1iA 869
\/Z( 1 +iAz) (869)

1
Ar=—(A —iA 870
\/E( 1 —iA) (870)

The two independent Euler—Lagrange equations
07 07 0 0¥

o (6(6VA)>’ o = o (a(avA*)> (871)

produce the independent d’ Alembert equations of the structured vacuum:

OA=0; [OA"=0 (872)
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The Lagrangian (868) is invariant under a global gauge transformation:
A— A A S etAr (873)
where A is a number. Under a local gauge transformation, however
A— e MA A A4 (874)

where A becomes a function of the spacetime coordinate x* by special relativity.
Under a local gauge transformation [46] of the structured U(1) vacuum defined
by the Lagrangian (868), the latter is changed to

1
& = DADMA" — W Fy (875)

as argued earlier in this review. Here, F\,, is the U(1) invariant electromagnetic
field tensor

Fu.w =0,A, —0,A, (876)
where the covariant derivatives are defined by

DA = (3, + igA,)A (877)
DMA* = (0" — igAM)A* (878)

Here, A, is the vector 4-potential introduced in the vacuum as part of the
covariant derivative, and therefore introduced by spacetime curvature. The elec-
tromagnetic field and the topological charge g are the results of the invariance of
the Lagrangian (868) under local U(1) gauge transformation, in other words, the
results of spacetime curvature.

By using the Euler—Lagrange equation

0% 0¥
8 (m) = oA, (879)

with the Lagrangian (875), we obtain the field equation of the U(1) structured
vacuum

OyF"Y = —igc(A*D"A — ADMA™) (880)
a field equation that identifies the vacuum charge current density

J*(vac) = —igceg(A*DMA — ADMA*) (881)
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first introduced and developed by Lehnert et al. [45,49]. Equation (880) is an
inhomogeneous field equation of the configured U(1) vacuum, and gives rise to
the inherent energy of the configured vacuum

En = JJ“(Vac)AHdV (882)

and rate of doing work by the configured vacuum

aw

— = JJ(vac) ‘EdV (883)
dt

where E is the electric field strength of the field tensor F),,. The volume V is
arbitrary, and standard methods of U(1) invariant electrodynamics give the
Poynting theorem of the U(1) configured vacuum:

du
% + V-S(vac) = —J(vac)-E (884)
Here, S(vac) is the Poynting vector of the U(1) configured vacuum, representing
electromagnetic energy flow, and is defined by

V-S(vac) = —J(vac)-E (885)

Integrating this equation gives
S(vac) = — JJ(VaC) «Edr + constant (886)

where the constant of integration is not bounded above. The electromagnetic
energy flow inherent in the U(1) configured vacuum is not bounded above,
meaning that there is an unlimited amount of electromagnetic energy flow
available in theory, for use in devices. Some of these devices are reviewed in this
edition by Bearden and Fox [chapters given above, in text following Eq. (867)].
Sometimes, the constant of integration is referred to as the “Heaviside compo-
nent of the vacuum electromagnetic energy flow,” and the detailed nature of this
component is not restricted in any way by gauge theory. The Poynting theorem
(884) is, of course, the result of gauge theory.

In the non-simply connected O(3) vacuum, the internal gauge space is a vec-
tor space rather than the scalar space of the U(1) vacuum. Therefore, we can
summarize and collect earlier results of this review using the concept of an
O(3) symmetry internal gauge space, a space in which there exist complex
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vectors A and A*. The globally invariant Lagrangian density for this internal
space is

L =0,A0"A" (887)

and the two independent Euler—Lagrange equations are

0¥ 0 0 0
@ <ﬁ) o (—aVA*> (888)

giving the d’Alembert equations
A =0; A" =0 (889)
Under the local O(3) invariant gauge transformation
A—eMNA; AT e A (890)

the Lagrangian (887) becomes, as we have argued earlier
1
¥ =DyA-D'A™ — ZG“V - G" (891)

and using the Euler-Lagrange equation

0¥ 0¥

the inhomogeneous O(3) invariant field equation is obtained
D,G" = —gD'"A" x A (893)

as shown in detail earlier. The term on the right-hand side is the O(3) invariant
vacuum charge current density that is the non-Abelian equivalent of the right-
hand side of Eq. (880). In general, Eq. (893) must be solved numerically, but the
presence of a vacuum charge current density gives rise to the energy of the O(3)
configured vacuum

En(vac) = Jj“(vac) *A,dV (894)

whose source is curvature of spacetime introduced by the O(3) covariant
derivative containing the rotation generators J; of the O(3) group. The curvature
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of spacetime is also the source of photon mass, in analogy with general relativity,
where curvature of spacetime occurs in the presence of mass or a gravitating
object.

Therefore, in summary, the empirical basis of the development in this section
is that the Aharonov—Bohm effect shows that, in regions where E and B are both
zero, A can be nonzero. Therefore, the Aharonov—Bohm effect can be regarded
as a local gauge transformation of the true vacuum, defined by A, = 0, and the
Aharonov-Bohm effect shows that a nonzero A, can be generated by a local
gauge transformation from regions in which A, is zero. Therefore, in a struc-
tured vacuum, it is possible to construct a gauge theory whose internal space
is defined by components of A, in the absence of an electromagnetic field.
The latter is generated by a local gauge transformation of components of an
A, which was generated originally by a local gauge transformation of the
true vacuum where A, = 0. This concept is true for all gauge group symmetries.
It is well known that contemporary gauge theories lead to richly structured va-
cua whose properties are determined by topology [46]. The Yang—Mills vacuum,
for example, is infinitely degenerate [46]. Therefore local gauge transformation
can produce electromagnetic energy, a vacuum charge current density, a vacuum
Poynting theorem, and photon mass, all interrelated concepts. We reach the sen-
sible conclusion, that in the presence of a gravitating object (a photon with
mass), spacetime is curved. The curvature is described through the covariant de-
rivative for all gauge group symmetries. The energy inherent in the vacuum is
contained in the electromagnetic field, and the coefficient g is a topological
charge inherent in the vacuum. For all gauge group symmetries, the product
gA, 1s energy momentum within a factor 7, indicating clearly that the covariant
derivative applied in the vacuum contains energy momentum produced on the
classical level by spacetime curvature. This energy momentum, as in general
relativity, is not bounded above, so the electromagnetic energy inherent in the
classical structured vacuum is not bounded above. There appear to be several
devices available that extract this vacuum energy, and these are reviewed in
this compilation by Bearden and Fox. In theory, the amount of energy appears
to be unlimited.

The Aharonov-Bohm effect depends on the group space of the internal space
used in the gauge theory. If this internal space is U(1), the group space is a cir-
cle, which is denoted in topology [46] by S'. This group space is not simply
connected because a path that goes twice around a circle cannot be continuously
deformed, while staying on the circle, to one that goes around only once [46]. A
curve going around the solenoid n times cannot be shrunk to one around m
times, where m # n. The configuration space of the vacuum is therefore not
simply connected, and this allows a gauge transform of the pure vacuum, to cre-
ate what is known as a “‘pure gauge vacuum” [46]. In U(1) gauge theory, the
mathematical reason for the Aharonov—Bohm effect is that the configuration
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space of the null field (pure gauge vacuum) is a ring, denoted by S' x R in to-
pology [46]. The vector potential in the pure gauge vacuum is derived from a
gauge function that maps the gauge space in to the configuration space. These
mappings are not all deformable to a constant gauge function %, which would
give a zero Vy in the pure gauge vacuum and a null Aharonov—Bohm effect.
This, then, is the conventional U(1) invariant explanation of the Aharonov—
Bohm effect.

The O(3) invariant explanation, as we have seen, uses an internal gauge space
that is the physical space O(3). This space is doubly connected [46]. The group
space of O(3) is obtained by identifying opposite points on the 3-space S?,
which is the topological description of the unit sphere in four-dimensional
Euclidean space, denoted E*. Opposite points on the 3-space S’ correspond to
the same O(3) transformation. It is possible to show that this space is doubly
connected by considering closed curves S' in the group space of O(3). One
can consider paths [46] that may be shrunk to (are homotopic to) a point and
to a straight line. These are the two types of closed path S' in the group space
of O(3), with the implication that there is one nontrivial vortex in an O(3) gauge
theory.

The simplest example of the O(3) invariant Aharonov—Bohm effect is the
equation of interferometry

§A<3> -dr = JB<3) -dS (895)

used in the region outside the solenoid where the vector potential sketched below

1S nonzero:
@ A® (896)

The line integral is defined over the circular path, exactly as in the O(3) invariant
explanation of the Sagnac effect discussed earlier in this review and in Vol. 114,
part 2. The key difference between the O(3) and U(1) invariant explanations of
the Aharonov—Bohm effect is that, in the former, there is a magnetic field B®
present at the point of contact with the electrons. Agreement with the empirical
data is obtained because

IB®)| = |B| (897)

that is the total magnetic flux inside the area S must be generated by the static
magnetic field B of the solenoid. The fact that we are using an O(3) gauge theory
means that the configuration space of the vacuum is doubly connected. As
discussed in the technical appendix, the vector potential A” in Eq. (895) can be
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regarded as having been generated by an O(3) gauge transformation that leaves
B® invariant. Equation (895) is the consequence of a round trip in spacetime
using parallel transport with O(3) covariant derivatives. Therefore, the simplest
O(3) invariant explanation of the Aharonov—Bohm effect simply means that it is
an interferometric effect, very similar in nature to the O(3) invariant explanation
of the Sagnac effect or Michelson interferometry.

The simplest example of the generation of energy from a pure gauge vacuum
is to consider the case of an electromagnetic potential plane wave defined by

A0) )
A=Aji+Ayj= 7 (ii +j)e (@12 (898)

The pure gauge vacuum is then defined by
A #0; E =0; B=0 (899)
and a Lagrangian density can be constructed which is proportional to
¥ =0,A-0"'A (900)

A global gauge transformation of A in the pure gauge vacuum is equivalent to a
rotation of A through an angle A [46], producing a conserved quantity Q as the
result of the invariance of the action under the global gauge transformation. It can
be shown as follows that Q is proportional to conserved electromagnetic kinetic
energy

1
En = u—JB((’)ZdV (901)
0

generated by the global gauge transformation of the pure gauge vacuum, which,
in turn, is generated from the pure vacuum by a local gauge transformation.
For plane waves

A . i A A(O) —i(0t—«Z) (902)
| =i—=e ; 2= =€
V2

In a U(1) invariant theory, the pure gauge vacuum is defined by a scalar internal
gauge space in which there exist the independent complex scalar fields:

1 e S IR
A:E(A1+IA2), A _\/E(Al Az) (903)
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These are complex scalar fields because there is an invariant topological charge
present, defined by

K
&= 10 (904)

The Lagrangian density produced by these scalar fields is, as we have seen
& = 0,AD"A* (905)
and the global gauge transformation is defined by
A—e A A S etAr (906)
This type of transformation is not dependent on spacetime and is purely internal

[46] in Noether’s theorem. Under a global gauge transformation, Noether’s
theorem gives the conserved current

JH = igc(ATO"A — ADMAY) (907)
with a vanishing 4-divergence and a conserved topological charge:

Q0= JJOdV (908)

From Eq. (907), the conserved topological charge Q is

_ 2 [ 2,002 0 2¢ [ po0p2
QfmJKA av = oo [BO2av (909)
which can be written as
2c
0= ATﬁfEn (910)
where
1
En = “—JB(O)ZdV (911)
0

is a conserved kinetic electromagnetic energy. For a monochromatic plane wave
in the vacuum, the quantity g is also conserved because k and A‘”’ do not change.
Therefore it has been demonstrated that, in a pure gauge vacuum defined by the
plane wave A, conserved electromagnetic energy density is generated by a global
gauge transformation, which is a rotation of A through the angle A.
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This is the simplest example of the generation of kinetic electromagnetic en-
ergy by a gauge transformation of a pure gauge vacuum defined initially by a
nonzero A and zero E and B. The more complete description of energy gener-
ated from the pure gauge vacuum is given by a local gauge transformation, as
argued already in this review on the U(1) and O(3) levels. It is to be noted that
the conserved quantity Q has the following properties:

1. It is time independent.

2. It does not depend on the charge on the proton.

3. It is a classical quantity.

4. Tt is not integer-valued and when A is real it vanishes.

It can be shown as follows that the transition from a pure vacuum to a pure
gauge vacuum is described by the spacetime translation generator of the Poin-
caré group. The pure vacuum on the U(1) invariant level is described by the field
equations:

0 F™ =0 (912)
O F™ =0 (913)

with
=0, FV=0 (914)

So the kinetic electromagnetic energy term in the Lagrangian

1
L = FuF" (915)

is zero. In the pure gauge vacuum, the ordinary derivative is replaced by the
covariant derivative, so the field equations (912) and (913) become

OuFY = —iA " (916)

OuF" = —iA F* (917)
where A, is defined by

Ayg=— é (9,85)5™"! (918)

but where the fields F*¥ and F*are still zero. Therefore

FY = 0"AY — 3"A* = 0 (919)
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and the contribution of the field to the energy in a pure gauge vacuum is zero.
However, there occurs an energy change from a pure vacuum to a pure gauge
vacuum, an energy change proportional to gA,.. The origin of this energy change
is topological; that is, the energy change can be traced to the replacement of the
ordinary derivative 0, by the covariant derivative D,,.

Essentially, this replacement means that the spacetime changes from one that
is conformally flat to one that is conformally curved; in other words, the axes
vary from point to point whenever a covariant derivative is used for any gauge
group symmetry. It is this variation of the axes that introduces energy into a pure
gauge vacuum. The covariant derivative in the latter is

D, =0, —igA, (920)
which can be written using the rule i0, = x, as
|<u—>l<u—&-l<Ll (921)
This expression is equivalent [42] to
Py, — P, + P’u (922)

where P, is the spacetime translation generator of the Poincaré group. Within a
factor 7, the spacetime translation generator is the energy-momentum 4-vector. It
becomes clear that the use of a covariant derivative introduces energy momentum
into the vacuum, in this case a pure gauge vacuum. Lagrangians, consisting of
components of A, in the pure gauge vacuum when subjected to a local gauge
transformation, give the electromagnetic field and its source, the vacuum charge/
current density, first introduced empirically by Lehnert [49].

In the final part of this section, the method of local gauge transformation is
outlined in detail to show how the electromagnetic field and conserved vacuum
charge current density emerge from the local gauge transformation of the pure
gauge vacuum. The illustration is given for convenience in a U(l) invariant
theory, and leans heavily on the excellent account given by Ryder [46,
pp. 94ff.]. We therefore consider a local gauge transformation of a pure gauge
vacuum with scalar components A and A™:

A — exp(—iA(x"))A

A" — exp(—iA(x"))A” (923)

For A < 1
SA = —iAA (924)
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and
OpA — 0,A — i(0,A)A —iA(D,A) (925)
Therefore
8(0,4) = —iA(0,A) —i(0,A)A (926)
and
OA* = [AA” (927)

5(8,A%) = iA(D,A") + i(8,A)A*

The effect of the local gauge transform is to introduce an extra term 0, A in the
transformation of the derivatives of fields. Therefore, 8,A does not transform
covariantly, that is, does not transform in the same way as A itself. These extra
terms destroy the invariance of the action under the local gauge transformation,
because the change in the Lagrangian is

0L 0L .

where (A — A*) denotes the two additional terms in A, Substituting the Euler—
Lagrange equation (888) into the first term, and using Eqs. (924)-(926), gives

% o0y
C 0,0 (Cina) -2 (Ling,A — iAgA

0¥ éua(apA)( i )+6(6uA)( iAO,A — IAD,A)
—ing, ST O A (A — A (929)

FEW R EWIR

The first term is a total divergence, so the corresponding change in the action is
zero. Using

L = (0,A)(0"A%) — m*A*A (930)
for the Lagrangian then gives
0F = i0,A(A"O"A — AQ"A™) = JHO, A (931)
where the (SI) current is given by Eq. (907), in reduced units

T4 = i(A*OMA — ADHAY) (932)
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The action is therefore not invariant under local gauge transformation. To restore
invariance the four potential, A, must be introduced into the pure gauge vacuum

to give the Lagrangian

& = _gJMAu
= —ig(A"0"A — AD"A™)A, (933)
where g is the topological charge in the vacuum, defined in such a way that gA,,

has the same SI units as k. On the U(1) level, local gauge transformation means
that

1
Ay = Ayt 0 (934)

so that

0L = —g(dJ")A, — gJ"(8A,)
= —g(8J")A, — JH'O A (935)
The action is still not invariant under a local gauge transformation, however,
because of the presence of the term —g(8J")A, on the right-hand side of Eq.
(935), a term in which

8" = iS(A*OMA — ADFAY)
= 2A*AMA (936)

so that
3L + 8L = —2gA,("N)A™A (937)
Therefore, another term must be added to the Lagrangian %:
Ly = A AMATA (938)
Using Eq. (934), we find that
8.L> = 2g°A,8AA™A = 2gA, (D" A)A*A (939)
so that

8L +8L1+8L2=0 (940)
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The total Lagrangian ¥ + ¥, + %5 is now invariant under the local gauge
transformation because of the introduction of the 4-potential A,,, which couples
to the current J,, of the complex A of the pure gauge vacuum. The field A, also
contributes to the Lagrangian, and since ¥ + % + %> is invariant, an extra

term #5 appears, which must also be gauge-invariant. This can be so only if the
electromagnetic field is introduced

Fuw=0,A, —0,A, (941)
so that
|-
&y = _ZF va (942)
The total invariant Lagrangian is therefore
Loa=ZL+L1+ L2+ Y3
1
= (0,A + igA,A)(O"A* — igAMA™) — m*ATA — ZF“VF,W (943)

The Lehnert field equation is obtained from this Lagrangian using the Euler—
Lagrange equation

0¥ 0¥
— == = 44
o eay) 0 o4
giving in SI units
OyF" = —igc(A*D"A — AD"A™) (945)

It is noted that the Lehnert charge current density
J4 = —igogc(A*D'A — ADMAY) (946)

is gauge-covariant and also conserved, and thus cannot be gauged to zero by any
method of gauge transformation. It is the direct result of a local gauge
transformation on a pure gauge vacuum and acts as the source of the vacuum
electromagnetic field F*V, as discussed already. The covariant current (946) is
conserved because

0" =0 (947)



164 M. W. EVANS AND S. JEFFERS

XVII. INTRODUCTION TO THE WORK
OF PROFESSOR J. P. VIGIER

We append what we believe to be a comprehensive listing of the publications of
Professor Jean-Pierre Vigier. They represent a wide range of topics from the
interpretation of quantum mechanics, particle physics, cosmology, and relati-
vistic physics. What is remarkable about this list is not just the breadth of topics,
but the philosophical consistency that underlies the physics. Firmly rejecting the
orthodox interpretation of quantum mechanics, particles of all types are, at all
times, regarded as objectively existing entities with their own internal structure.
Particles are guided by pilot waves, so the dualism of orthodoxy is firmly rejected
in favor of realist ontology.

What follows is a brief account of Professor Vigier’s life and career as related
to one of us (S. Jeffers) in a series of conversations held in Paris during the sum-
mer of 1999. A more complete version of these conversations will appear in a
book being compiled by Apeiron Press and the Royal Swedish Academy to
mark the 80th birthday of Professor Vigier. A comprehensive biography of
this remarkable man, whose life has witnessed major revolutions both in physics
and in politics (his twin passions), remains to be written.

“Great physicists fight great battles”’—so wrote Professor Vigier in an essay
he wrote in a tribute to his old friend and mentor Louis de Broglie. However,
this phrase could be applied equally well to Vigier himself. He has waged battle
on two fronts—within physics and within politics. Now almost 80, he still con-
tinues to battle.

He was born on January 16, 1920 to Henri and Frangoise (née Dupuy) Vigier.
He was one of three brothers, Phillipe (deceased) and Frangois, currently Pro-
fessor of Architecture at Harvard University. His father was Professor of English
at the Ecole Normale Supérieure—hence Vigier’s mastery of that language. He
attended an international school in Geneva at the time of the Spanish civil war.
This event aroused his intense interest in politics, as most of his school friends
were both Spanish and Republicans. Vigier was intensely interested in both phy-
sics and mathematics, and was sent by his parents to Paris in 1938 to study both
subjects. For Vigier, mathematics is more like an abstract game, his primary in-
terest being in physics as it rests on two legs, the empirical and the theoretical.

All the young soldiers were sent to Les Chantiers de la Jeunesse, and it was
there that he joined the Communist Party. The young radicals were involved in
acts of sabotage near the Spanish border, such as oiling the highways to impede
the progress of the fascists. At that time, the French Communist Party was deep-
ly split concerning the level of support to be given to the Résistance. A few lea-
ders went immediately to the Résistance, while others, like Thorez, wavered. In
the period before the Nazi attack on the Soviet Union, the party equivocated
with respect to the Résistance. At that time, Vigier was in a part of France
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controlled by the famous communist leader, Tillion, who had participated in the
revolt of the sailors in the Black Sea in 1918. Tillion immediately organized
groups of resistance fighters called the Organisation Spéciale. Vigier was in-
volved in bombing campaigns against both the Nazis and Vichy collaborators
in the Free Zone.

In Geneva, Vigier was involved in communicating between the French mili-
tary communist staff and Russia, until he was arrested at the French border in
the spring of 1942 and taken to Vichy. There, the French police interrogated him
as he was carrying coded documents. Two police officers brought him by train
from Vichy to Lyon to be delivered into the hands of the notorious Klaus Barbie.
Fortunately, the train was bombed by the English, and Vigier managed to jump
through a window, escaped to the mountains, and resumed his activities with the
Résistance until the end of the war. He became an officer in the FTP movement
(Francs-Tireurs et Partisans, meaning sharpshooters and supporters). When De
Gaulle returned to France, part of the Résistance forces were converted to reg-
ular army units. The cold war started almost immediately after the defeat of the
Germans. Vigier was still a member of the French General Staff while complet-
ing the requirements for a Ph.D. in mathematics in Geneva. Then the commu-
nists were kicked out of the General Staff and Vigier went to work for Joliot-
Curie. He, in turn, lost his job for refusing to build an atomic bomb for the
French government. Vigier became unemployed for a while and then learned,
through an accidental meeting with Joliot-Curie, that Louis de Broglie was
looking for an assistant. When he met De Broglie, the only questions asked
were “Do you have a Ph.D. in mathematics?”” and “Do you want to do phy-
sics?”” He was hired immediately in 1948, and with no questions asked about
his political views. Although Secretary of the French Academy of Science, de
Broglie was marginalized within physics circles given his well-known opposi-
tion to the Copenhagen interpretation of quantum mechanics. Notwithstanding
his Nobel prize, de Broglie had difficulty in finding an assistant. Vigier entered
the CNRS (Centre national de la recherche scientifique) and worked with De
Broglie until his retirement. Vigier’s political involvement at that time included
responsibility for the French communist student movement.

In 1952, a visiting American physicist named Yevick, gave a seminar at the
CNRS on the recent ideas of David Bohm. Vigier reports that upon hearing of
this work, De Broglie became radiant and commented that these ideas were first
considered by himself a long time ago. Bohm had gone beyond De Broglie’s
original ideas however. De Broglie charged Vigier with reading all of Bohm’s
works in order to prepare a seminar. De Broglie went back to his old ideas, and
both he and Vigier started working on the causal interpretation of quantum me-
chanics. At the 1927 Solvay Congress, de Broglie had been shouted down, but
now, following the work of Bohm, there was renewed interest in his idea that
wave and particle could coexist, eliminating the need for dualism. Vigier recalls
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that at that time, the catholic archbishop of Paris who exclaimed that everyone
knew that Bohr was right, upbraided de Broglie, and how de Broglie could pos-
sibly believe otherwise. Although a devout Christian, he was inclined to materi-
alist philosophy in matters of physics.

Vigier comments on his days with de Broglie that he was a very timid man
who would meticulously prepare his lectures in written form—in fact, his books
are largely compendia of his lectures. He also recalls one particular incident that
illustrates de Broglie’s commitment to physics. Vigier was in the habit of meet-
ing weekly with de Broglie to take direction as to what papers he should be
reading, and what calculations he should be focusing on. On one of these occa-
sions, he was waiting in an anteroom for his appointment with de Broglie. Also
waiting was none other than the French Prime Minister Edgar Faure who had
come on a courtesy visit in order to discuss his possible membership in the
French Academy. When the door finally opened, de Broglie called excitedly
for Mr. Vigier to enter as he had some important calculations for him to do,
and as for the prime minister, well he could come back next week! For De
Broglie, physics took precedence over politicians, no matter how exalted.

De Broglie sent Vigier to Brazil to spend a year working on the renewed cau-
sal interpretation of quantum mechanics with David Bohm. Thereafter, Yukawa
got in touch with de Broglie, with the result that Vigier went to Japan to work
with him for a year. Vigier comments that about the only point of disagreement
between him and de Broglie was over nonlocality. De Broglie never accepted
the reality of nonlocal interactions, whereas Vigier himself accepts the results
of experiments such as Aspect’s that clearly imply that such interactions exist.

His response to the question “Why do we do science?” is that, in part, it is to
satisfy curiosity about the workings of nature, but it is also to contribute to the
liberation from the necessity of industrial labor. With characteristic optimism,
he regards the new revolution of digital technology as enhancing the prospects
for a society based on the principles enunciated by Marx, a society whose mem-
bers are freed from the necessity of arduous labor—this, as a result of the ap-
plication of technological advances made possible by science.

TECHNICAL APPENDIX A: CRITICISMS OF THE U(1)
INVARIANT THEORY OF THE AHARONOV-BOHM
EFFECT AND ADVANTAGES OF AN 0(3)
INVARIANT THEORY

In this appendix, the U(1) invariant theory of the Aharonov—Bohm effect [46] is
shown to be self-inconsistent. The theory is usually described in terms of a
holonomy consisting of parallel transport around a closed loop assuming values
in the Abelian Lie group U(1) [50] conventionally ascribed to electromagnetism.
In this appendix, the U(1) invariant theory of the Aharonov—Bohm effect is
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criticized in several ways with reference to the well-known test of the effect
verified empirically by Chambers [46] and a holonomy consisting of parallel
transport with O(3) covariant derivatives is applied to the Aharonov—Bohm
effect, eliminating the self-inconsistencies of the U(1) invariant theory. Close
similarities between the O(3) invariant theories of the Aharonov—Bohm and
Sagnac effects are revealed.

It is well known that the change in phase difference of two electron beams in
the Aharonov—Bohm effect is described in the conventional U(1) invariant the-
ory by

AS:%JV xA-dS:%JB-dS (A.1)

where the magnetic flux density B of the solenoid is related to the vector
potential A by

B=V xA (A2)
Outside the solenoid, however
B=VxA=0 (A.3)

which means that the change in phase difference in Eq. (A.1) is zero, and that
there is no Aharonov—Bohm effect, contrary to the observation. In the U(1)
theory, an attempt is made to remedy this self-inconsistency by using the fact that
A is not zero outside the solenoid, and so can be represented by a function of the

type
A=Vy (A4)
The Aharonov—Bohm effect is then described by [46]

=¢ cdr=S =% | B-
AS_;A;VX dr h[X]O hJB ds (A.5)

using the assertion that ¥ is not single-valued. The analytical form of y is

2
— (A6)

where B is the magnitude of the flux density B inside the solenoid, R is the radius
of the solenoid, and ¢ is an angle, the ¢ component in cylindrical polar
coordinates.
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However, the interpretation in (A.5) is self-inconsistent in several ways:

1. Outside the solenoid, B =0, so x = 0 from Eq. (A.5), and there is no
Aharonov-Bohm effect, contradicting Eq. (A.5).

2. For any function 7y, a basic theorem of vector analysis states that

Vx(Vy)=0 (A7)
This theorem is also valid for a periodic function, so outside the solenoid
B=VxA=0 (A.8)

for y, and from Eq. (A.1), the Aharonov—Bohm effect again disappears. For
example, if we take the angle

= sin’lg, (x| < a) (A.9)
then:
Vy = (a® =) (A.10)
and
Vx(Vy)=0 (A.11)

or if we take the periodic function
% = COSX; Vy = —sinx i (A.12)

then
Vx(Vy) =0 (A.13)

Another criticism of Eq. (A.5) is that the empirical result is obtained only if
X — ¥ + 2m, whereas in general, 3 — ¥ + 2nn for a periodic function. So the
value of n has to be artificially restricted to n = 1 to obtain the correct analytical
and empirical result.

The basic problem in a U(1) invariant description of the Aharonov—Bohm
effect is that the field B is zero outside the solenoid, so outside the solenoid,
V X A is zero, whereas A is not zero [46]. At the same time, the U(1) Stokes
theorem states that

Jv xA-dS:ffA-dr (A.14)
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so that the holonomy ¢ A - dr is zero and the effect again disappears for A outside
the solenoid because the left-hand side in Eq. (A.14) is zero.

In the O(3) invariant theory of the Aharonov—Bohm effect, the holonomy
consists of parallel transport using O(3) covariant derivatives and the internal
gauge space is a physical space of three dimensions represented in the basis
((1),(2),(3)). Therefore, a rotation in the internal gauge space is a physical rota-
tion, and causes a gauge transformation. The core of the O(3) invariant explana-
tion of the Aharonov—-Bohm effect is that the Jacobi identity of covariant
derivatives [46]

Z [Ds, [Dy, Dy]] =0 (A.15)

[SNTRY

is identical for all gauge group symmetries with the non-Abelian Stokes theorem:
1
%Dud)&L + EJ [Dy,Dyldc*Y =0 (A.16)

for any covariant derivative in any gauge group symmetry. In the O(3) invariant
theory, the following three identities therefore exist

fP}(f).dr: JB(i)‘dS; i=1,2,3 (A17)

that is, one for each of the three internal indices (1), (2), and (3). The quantities in
Eq. (A.17) are linked by the following vacuum definition:

B = —igA) 5 A?) (A.18)
The vector potential A® and the longitudinal flux density B® are both phaseless,
so Eq. (A.17) with i = 3 is the invariant equation needed for a description of the
Aharonov-Bohm effect

ffA@) “dr = JB<3>-dS (A.19)

The Aharonov—Bohm effect is therefore caused by a gauge transformation in a
vacuum whose configuration space is O(3). The effect is a gauge transformation
of Eq. (A.19) into the region outside the solenoid because the left- and right-hand
sides of Eq. (A.19) exist only inside the solenoid. In general field theory, gauge
transformations of the potential and of the field are defined through the rotation
operator

S = exp (iIM?A“(x")) (A.20)
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where M are the group rotation generators and A“ are angles that depend on the
4-vector y*. Under a general gauge field transformation

Al =SAS — é (0,8)5 ™! (A21)
G, = SGyS™ (A.22)

In the O(3) invariant expression (A.19), the vector potential transforms according
to

A®) 4B 4 —— 0 A23
—AT 5z (A.23)

and the magnetic field transforms as
B® — B® (A.24)

At the point of contact with the electrons, therefore, in the region outside the
solenoid, the Aharonov—-Bohm effect is caused by

lfi;a—“e@ “dr = JB(3) -dS (A.25)
gJoz

in other words, there is a magnetic field present at the point of contact with the
electrons and the left-hand side of Eq. (A.25) is physically significant. The
reason for this is that the O(3) symmetry internal space of the theory is the
physical space of three dimensions: the vacuum with configuration space O(3), a
nonsimply connected configuration space. Therefore, none of the self-inconsis-
tencies present in the U(1l) invariant theory are present in the O(3) invariant
theory of the Aharonov—Bohm effect. Agreement with the empirical data is
obtained through the O(3) invariant equation:

AS = %JB@ -dS (A.26)

and this analysis clearly demonstrates the simplicity with which the novel O(3)
electrodynamics removes the self-inconsistencies of the U(1) description.

TECHNICAL APPENDIX B: O(3) ELECTRODYNAMICS
FROM THE IRREDUCIBLE REPRESENTATIONS
OF THE EINSTEIN GROUP

In Part 1 of this three-volume set, Sachs [117] has demonstrated that electro-
magnetic energy is available from curved spacetime by using the irreducible
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representations of the Einstein group. The metric is expressed using a quaternion-
valued 4-vector, ¢", with 16 components. If we define the scalar components of
q" as

¢ =44 q) (B.1)
the quaternion-valued 4-vector is defined as
otqy = (¢°0°,q10',420%,¢35%) (B.2)

In the flat spacetime limit, the g* is replaced by the 4-vector made up of Pauli
matrices:

o = (c°,6!, 0%, c%) (B.3)

The field tensor given by Sachs in his Eq. (4.19) contains, in general, longitudinal
as well as transverse components under all conditions, including the vacuum
defined as Riemannian spacetime. Sachs’ Eq. (4.16) shows that the electro-
magnetic canonical energy-momentum tensor (7") is spacetime curvature in
precisely the same way that gravitational canonical energy momentum is
spacetime curvature. Therefore, code must be developed to solve Sachs’ Egs.
(4.16) and (4.18) in order to understand electromagnetic phenomena in general
relativity for any given situation. Sachs’ Eq. (4.16) shows that electromagnetic
energy is available in the vacuum, defined as Riemannian curved spacetime, and
can be used to power devices.

The electromagnetic field propagating through the curved spacetime vacuum
always has a source, part of whose structure is the quaternion-valued 7*. This
source is the most general form of the Lehnert vacuum 4-current [45,49]. Gen-
eral relativity [117] also shows that there is no electromagnetic field if there is
no curvature, so a field cannot propagate through the flat spacetime vacuum of
Maxwell-Heaviside theory. The latter’s notion of transverse plane waves propa-
gating in the vacuum without a source is therefore inconsistent with both gen-
eral relativity and causality, because there cannot be cause without effect (i.e.,
field without source).

In general, all the off-diagonal elements of the quaternion-valued commuta-
tor term [the fifth term in Sachs’ Eq. (4.19)] exist, and in this appendix, it is
shown, by a choice of metric, that one of these components is the B field dis-
cussed in the text. The B field is the fundamental signature of O(3) electro-
dynamics discussed in Vol. 114, part 2. In this appendix, we also give the most
general form of the vector potential in curved spacetime, a form that also has
longitudinal and transverse components under all conditions, including the
vacuum. In the Maxwell-Heaviside theory, on the other hand, the vector
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potential in the vacuum is generally considered to have transverse components
only in the radiation zone, a result that is inconsistent with general relativity,
0O(3) electrodynamics, and Lehnert’s extended electrodynamics.

In Vol. 114, part 1, Sachs has shown that the most general form of the elec-
tromagnetic field tensor is

1 * * * *
Fy = Q(Z (k0" @ + @vq" Kpn + 4" K545 + g% 5.4")

1 * *
+3 (@04 — qup)R> (B.4)

where K, is the curvature tensor defined in terms of the spin—affine connection
[117]

Kon = 0pfh — 002 — .0 + Q0 (B.5)

where Q = ®©) has the SI units of magnetic flux (Weber), and where R is the
scalar curvature in inverse square meters. The asterisk in Eq. (B.4) denotes
quaternion conjugate, which entails [117] reversing the sign of the time com-
ponent of the quaternion-valued g". Thus, if

" =(¢"4". 4. q) (B.6)

then
¢ =(-4"49".¢.7) (B.7)

The metric in the irreducible representation of the Einstein group is proportional
to [117]

"¢ +q'¢" #0 (B.8)

and replaces the familiar metric g"¥ generated by the reducible representations of
the Einstein group and used to describe gravitation. Therefore, the replacement
of reducible by irreducible representations unifies the gravitational and electro-
magnetic fields inside the structure of one Lie group: the Einstein group. This
important result shows that electromagnetic energy is available from curved
spacetime in the same way that gravitational energy is available from curved
spacetime, a well-accepted concept.

The demonstration by Sachs [117] that electromagnetic energy is available
from the vacuum (Riemannian curved spacetime) generates the most precise
classical electromagnetic theory available. Its notable successes [42] include
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the ability to reproduce the Lamb shift in hydrogen without renormalization; the
ability to produce the Planck distribution of blackbody radiation classically: the
correct prediction of the lifetime of the muon state and electron—-muon mass
splitting. The Sachs theory also shows the existence of physical longitudinal
and time-like components of the vector potential in the vacuum, predicts a small
but nonzero neutrino and photon mass, and establishes grounds for charge quan-
tization. These precise predictions firmly establish the possibility of obtaining
electromagnetic energy from the vacuum, and firmly establish the existence
of the B field as one of the possible longitudinal components of the tensor
(B.4) in the vacuum (Riemannian curved spacetime). It follows that O(3) elec-
trodynamics is also a theory of curved spacetime, and that the extended electro-
dynamics of Lehnert is a transitional theory in flat spacetime, but one that has
several notable advantages over the Maxwell-Heaviside theory, as reviewed by
Lehnert in Part 2 of Vol. 114. The Lehnert theory also gives the B field in the
vacuum.

Equation (B.4) shows that the electromagnetic field in general relativity is
non-Abelian, and acts as its own source. The gravitational field also acts as
its own source, in that the gravitational field is a source of energy that, in turn,
is gravitation. In gravitational theory, the Einstein curvature tensor is equated
with the canonical energy-momentum tensor. In electromagnetic theory, the
same applies, as in Sachs’ Eq. (4.16). Gravitation is therefore an obvious man-
ifestation of energy from the vacuum; electromagnetic energy from the vacuum
is also available in nature, a result that has been confirmed experimentally to the
precision of the Lamb shift. Therefore, there is an urgent need to develop code
to solve the Sachs field equations for any given experimental setup. This code
will show precisely the amount of electromagnetic energy that is available in the
vacuum (Riemannian curved spacetime).

The quaternion-valued metric g can be written as

w_ | 9+a9z qx—iqy B.9
i [4x+i¢1Y QOCIZ} (B.9)

Therefore
0 qx 0 —qu
qx |:CIX 0} qy qu 0 ( )
and
qxqy — qvqx = i(qxqy + qrqx)oz (B.11)
Similarly

qxqy + qvqx = i(gxqy — qvqx)oz (B.12)
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In order for both gxqy + gygx and gxgy — gyqx to have real-valued parts, the
individual scalar components gy and gy must be complex-valued in general.

We recover the structure of O(3) electrodynamics in quaternion-valued form
by a choice of metric

AY

— i

QXZIW:—Z? ; qy =

where ¢ is an electromagnetic phase factor and where A" = A®* is part of the
vector potential of O(3) electrodynamics as described in the text, and whose
phase factor is a Wu—Yang phase factor as developed in Vol. 114, part 2. The
choice of metric in Eq. (B.13) leads to

gxqy — qvqx = 267 (B.14)

giving the phaseless and longitudinally directed B® field of O(3) electro-
dynamics

1
B® = iz@(())R (B.15)

where ®© is a magnetic flux in webers. The two signs in Eq. (B.15) represent
left and right circular polarization. Within a factor of i, the result (B.15) is the
same as that obtained [42] using a unification scheme based on an antisymmetric
Ricci tensor.

It can therefore be inferred that O(3) electrodynamics is a theory of Rieman-
nian curved spacetime, as is the homomorphic SU(2) theory of Barrett [50].
Both O(3) and SU(2) electrodynamics are substructures of general relativity
as represented by the irreducible representations of the Einstein group, a contin-
uous Lie group [117]. The B® field in vector notation is defined in curved
spacetime by

BO) = —jga) »x A?) (B.16)
while in the flat spacetime of Maxwell-Heaviside theory it vanishes:
BB = —igA x A =0 (B.17)

From general relativity, it may therefore be inferred that the B field must exist,
and that it is a physically meaningful magnetic flux density in the vacuum. The
phaseless B>’ component is one of an infinite set of longitudinal, and in general
oscillatory, components of the field tensor (B.4). This result has been tested
experimentally to the precision of the Lamb shift.
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In general, all the off-diagonal elements of the commutator term in Eq. (B.4)
exist and are nonzero. For example

9097 — 9240 = 240425z (B.18)

which is a real and physical, longitudinally directed, electric field component in
the vacuum. Such a component is in general phase-dependent. If the metric is
chosen so that

CIOZQZZWZI (B.19)
we recover the longitudinal and phaseless electric field component:
@ !
EY = :l:Zc<I>R (B.20)

There is in-built parity violation in the Sachs theory [76], so the distinction
between axial and polar vector is lost. This is the reason why the Sachs theory
allows a phaseless E® to exist while O(3) electrodynamics does not. There is no
parity violation in O(3) electrodynamics. The question arises as to what is the
interpretation of the phaseless E in general relativity. The empirical evidence
for a radiated B® field is reviewed in Vol. 114, Part 2 and in the text of this
review chapter. An example is the inverse Faraday effect, which is magnetization
produced by circularly polarized radiation. However, there is no electric
equivalent of the inverse Faraday effect; that is, there is no polarization produced
by a circularly polarized electromagnetic field. The phaseless E> present in the
vacuum in general relativity may, however, be interpretable as the Coulomb field
between two charges in the radiation zone. The Coulomb field is missing in
Maxwell-Heaviside theory, where the electric field is pure transverse, and as
pointed out by Dirac [42], this result cannot be a proper description of the fact
that there a longitudinal and phase-free Coulomb field between transmitter and
receiver must always be present.

The most general form of the vector potential can be obtained by writing the
first four terms of Eq. (B.4) as

Fopt = 0pA1 — 0, (B.21)

The vector potential is therefore obtained as

.0 x
Al = n (kpnq" + qu;x)qy dx? (B.22)
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and can be written as

1= (2| O+ ) (8.23)
In order to prove that
Jqf, ax? = q, de" (B.24)
we can take examples, giving results such as
Jq’; dx* = — JquY = —gx JdY (B.25)

because gx has no functional dependence on Y. The overall structure of the field
tensor is therefore the quaternion-valued

Foy = C(0pq, — Oyqy) + D(qpq, — 444,,) (B.26)

where C and D are coefficients:

C= %J (kpnq" + qu;k)dxp
(B.27)
D= @
8

Equation (B.26) has the structure of a quaternion-valued non-Abelian gauge field
theory. If we denote

D .
=8 (B.28)
Eq. (B.26) becomes
Foy = 0p A} — 0,A; — ig(Ap A} — AyA}) (B.29)

which is a general gauge field theory where A7 is quaternion-valued. The rules
of gauge field theory developed in the text and in part 2 of Vol. 114 can be applied
to Eq. (B.29); for example, Eq. (B.29) is derived from a holonomy in curved
spacetime.
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I. INTRODUCTION

A. Force Lines, Vortex Atoms, Topology, and Physics

The lines of force, both electric and magnetic, were very real to Faraday when he
proposed the idea of field. In his view, forged after many long hours of laboratory
work, they had to be tangible and concrete, since the experiments indicated
clearly that something very special occurred along them, a sort of perturbation of
space of a nature still to be understood at the time [1].

Faraday’s original view was maintained during most of the nineteenth
century, as it is clear from the many attempts to explain the lines of force in
terms of the streamlines and vorticity lines of the ether. During a long period,
the electromagnetic phenomena were supposed to be a manifestation of the
motion of this subtle substance, which would be understood eventually thanks to
the mechanics of fluids. According to this opinion, the lines of force were
associated with ether particles and had, therefore, the reality of a material subs-
tance, even if it were of a very special kind. Nobody less than Maxwell, who had
argued several times in terms of this interpretation of the electric and magnetic
lines [2—4], admitted as a sound and promising idea Kelvin’s suggestion in 1868
that atoms were knots or links of the vortex lines of the ether, a picture presented
expressively in a paper called “On vortex atoms” [5-8]. He liked the idea, as it
expressed for instance in his presentation of the term “atomism’ in the Encyclo-
paedia Britannica in 1875 [9,10].

Kelvin used to say: “I can never satisfy myself until I can make a mechanical
model of a thing.” Because of this urge, deeply engraved in his scientific style,
he was reluctant to fully accept Maxwell’s new electromagnetic theory. Looking
for a different approach, he had applied to his topological idea the then new
Helmholtz’s theorems on fluid dynamics. He did find extremely unsatisfactory
the then widely held view of infinitely hard point atoms or, in his own words,
“the monstrous assumption of infinitely strong and infinitely rigid pieces of
matter”” [11]. Kelvin was much impressed by the conservation of the strength of
the vorticity tubes in an inviscid fluid according to Helmholtz theorems, thinking
that this was an inalterable quality on which to base an atomic theory of matter
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without infinitely rigid entities. We know now that this is also a trait of topolo-
gical models, in which some invariant numbers characterize configurations that
are rigid and can deform, distort or warp. As he put it, ““‘Helmholtz has proved
an absolutely unalterable quality in any motion of a perfect liquid . . . any portion
[of it] has one recommendation of Lucretius’ atoms—infinitely perennial
specific quality.”

Inspired by Helmholtz theorems, Kelvin understood in a striking combina-
tion of geometric insight and physical intuition that such knots and links would
be extremely stable, just as matter is. Furthermore, he thought that the remark-
able variety of the properties of the chemical elements could be a consequence
of the many different ways in which such curves can be linked or knotted.
Should he be alive today, he could have added to stability and variety two other
important properties of matter, not known in his time [12]. One is transmuta-
bility, the ability of atoms to change into another kind in a nuclear reaction,
which could be related to the breaking and reconnection of lines, as happens, for
instance, to the magnetic lines in plasmas after disruptions in a tokamak. The
other is the discrete character of the spectrum, which is also a property of the
nontrivial topological configurations of a vector field, as was shown by
Moffatt [13].

The reception to Kelvin’s idea was good; Maxwell was impressed by its
mechanical simplicity and because its success in explaining phenomena would
not depend on ad hoc hypothesis. However, neither topology nor atomic pheno-
menology was sufficiently developed to follow this deep insight. It was soon
forgotten to remain unknown for a long time.

It is ironic that, in spite of his favorable attitude to Kelvin’s model, Maxwell
himself contributed to the fading of the force lines with his monumental Treatise
on Electromagnetism, after which, because of the successful developments of
algebra and differential geometry, the line of force was relegated behind the
concepts of electromagnetic tensor F,, and electromagnetic vectors E;, Bj,A,. It
is usually now a secondary concept, always derived from F, as the integral
lines of B and E. As it is used mainly in elementary presentations, it is often
assumed that it is not adequate for a deep analysis of the electromagnetic
interactions.

Topology appeared again in fundamental physics with Dirac’s appealing and
intriguing proposal of the monopole in 1931 [14] and its quantization of the
electric charge because of a mechanism requiring that the fundamental electric
and magnetic charges, ¢ and g, verify the so-called Dirac relation eg = 2n (in
MAKS rationalized units with vacuum permittivity equal to 1); although that new
particle was never observed, the idea is certainly fertile and was later developed
in other contexts [15,16]. Since 1959, when Aharonov and Bohm [17] dis-
covered the effect that bears their name, it is known that the description of some
electromagnetic phenomena does require topological considerations. Another
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important milestone is the sine—-Gordon equation, which offers the simplest
model with a conservation law of topological origin, based on the degree of a
map S'+— S' of the circle on itself. Its extension to three dimensions by Skyrme
[18-20] lead to a model with topological solitons and a conserved constant
proportional to the degree of a map S*+ S* between three-dimensional spheres.
Skyrme had studied with attention Kelvin’s ideas on vortex atoms. As he
explained he had three reasons for proposing his own model: unification,
renormalization, and what he called the ‘“fermion problem.” He hoped that
his skyrmion, as his basic solution came to be known, would be a fundamental
boson from which all the particles would be built; because any topological
theory is nonlinear, the possibility of removing the infinities seemed a realistic
aim; he did not like fermions as fundamental entities so that explaining them out
of bosons seemed very attractive to him.

The classification of knots and links had been attempted by Tait in 1911,
when trying to develop Kelvin’s model of the vortex atom. He posed the
problem and formulated some conjectures, treating with success the simplest
cases. However, in spite of its interest, this new branch of mathematics fell into
oblivion for many years—in spite of the discovery in 1928 of the Alexander
polynomials, which are invariants associated with knots and links—until the
1980s, when Jones found another set of polynomials that opened the door to the
proof of some of Tait’s conjectures. Simultaneously, the idea that topology will
play a major role in quantum physics was progressively imposing itself. As
Atiyah [12] puts it, this is not surprising, since ‘“‘both topology and quantum
physics go from the continuous to the discrete.” Developments from pure
mathematics turned out to be related to Yang—Mills field theory, such as the
proposal by Witten of a topological quantum field theory that may open the way
to a deeper understanding of quantum physics [21,22] or the study of config-
urations of vector fields [23].

B. The Aim of This Work

The aim of this report is to explain and develop a topological model of elec-
tromagnetism that was presented by one of us (AFR) in 1989 [24-26]. The main
characteristics of this model are

1. It is based on the idea of ‘“‘electromagnetic knot,” introduced in 1990
[27-29] and developed later [30-32]. An electromagnetic knot is defined as a
standard electromagnetic field with the property that any pair of its magnetic
lines, or any pair of its electric lines, is a link with linking number ¢ (which is a
measure of the extent to which the force lines curl themselves around one
another, i.e., of the helicity of the field). These lines coincide with the level
curves of a pair of complex scalar fields ¢, 6. The physical space and the
complex plane are compactified to S* and S%, so that the scalars can be
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interpreted as maps S°+S2, which are known to be classified in homotopy
classes characterized by the integer value of the Hopf index n, which is related
to the linking number ¢. Moreover, the Faraday 2-form and its dual are equal to
the pullbacks of the area 2-form in S? by the two maps & = —¢*c, *F = 0*c.
The topology of the force lines thus induces a topological structure in the set of
the fields of the model.

2. The topological model is locally equivalent to Maxwell’s standard theory
in the sense that the set of electromagnetic knots coincides locally with the set
of the standard radiation fields. In other words, standard radiation fields can be
understood as patched-together electromagnetic knots. This can still be express-
ed as the statement that, in any bounded domain of spacetime, any standard
radiation fields can be approximated arbitrarily enough by electromagnetic
knots (except for a zero measues set). However, it is not globally equivalent to
Maxwell’s theory because of the special way in which the electromagnetic knots
behave around the point at infinity.

3. The standard Maxwell equations are the exact linearization by change of
variables (not by truncation) of a set of nonlinear equations referring to the
scalars ¢, 0. The fact that this change is not completely invertible produces a
hidden nonlinearity, thanks to which the linearity of the Maxwell equations is
compatible with the existence of topological constants of motion that are
nonlinear in A* and F\,.

4. In the case of empty space, one of these topological constants of the
motion is the electromagnetic helicity of a knot, defined as the semisum of the
magnetic and electric helicities, which turns out to be equal to the Hopf index n
of the maps ¢ and 6: # =1[(A-B+C-E)d’r =n, where B=V x A,
E =V x C. This implies an interesting interpretation of the Hopf index n, since
that helicity is equal to the classical expression of the difference between the
numbers of right-handed and left-handed photons contained in the field Ny — N,
(defined by substituting Fourier transform functions for creation and annihila-
tion operators in the quantum expression). In other words, n = Ng — N. This
establishes a relation between the wave and the particle understanding of the
idea of helicity, that is, between the curling of the force lines to one another and
the difference between right- and left-handed photons contained in the field.

5. Another topological constant of motion is the electric charge (and
eventually the magnetic charge as well), which is topologically quantized in
such a way that any charge is always equal to an integer number times go: (a)
the fundamental charge is go = 1, in natural units (in the rationalized MKS
system qo = \/}%; in SI units g9 = v/hicep); (b) the number of fundamental
charges inside a volume is the degree of a map between two spheres S?>. Note
that go = 3.3¢ = 5.29 x 107" C. We will argue in Section VII that this is a
“good” value.
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The model has, moreover, the appealing property of being completely
symmetric between electricity and magnetism, to the point of having room
for magnetic charges, also quantized and having the same fundamental value g.
This might seem a negative feature at first sight, since the Dirac monopole g has
a value quite different from that of the electric charge: (20()_l = 68.5 times
bigger. However, it is known that the sea of virtual electron—positron pairs of the
vacuum is dielectric but must be paramagnetic, so that the observed electric
charge must be smaller than the bare one, while the observed magnetic charge
should be larger. As the model is classical, an intriguing idea arises: g could be
interpreted as the common value of the electric and the magnetic bare charges,
assuming that the effect of the virtual pairs is to decrease the observed electric
charge from gy =5.29 x 107! C to e = 1.6 x 107" C and to increase the
magnetic charge with room in the model from gy to g = 1.1 x 1077 C = 68.5¢.

The model was proposed in Ref. 24 and developed in Refs. 25,27-32, and 34.

C. Faraday’s Conception of Force Lines Suggests a Topological
Structure for Electromagnetism

As we said above, Faraday thought of the force lines as something real,
concrete, and tangible. Let us now be faithful to his original view, representing
the dynamics of the electromagnetic field by the evolution of its magnetic and
electric lines or, in other words, attempting a line dynamics (For the time being,
we consider only the case of empty space; point charges will be introduced
later.) In order to compare with the standard formulation of electromagnetism,
we need to know how to derive the electromagnetic tensor from these lines. As a
simple tentative idea, let us represent the magnetic lines by the equation
&(t,x,y,2) = ¢y where ¢ is a complex function of space and time and ¢ is a
constant labeling each line. This means that the magnetic lines are the level
curves of ¢(7,x,y,z). As the magnetic field is tangent to them, it can always be
written as (bars over complex numbers indicate in this work complex conjugation)

B =gV x Vo

where g is some function that, because V - B = 0, must depend on (z,r) only
through ¢ and &, that is

B = 5($,$)Vo x Vo (1)
which can also be written as

Bi = — s € Fy (2)
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where
Fij = —g(,$)(0:00;0 — 0;¢0;0) 3)

Covariance implies, then, that the Faraday electromagnetic tensor must have the
form

Fu = —g(o, (T))(au&)av(l) - av&)aud)) (4)

and the electric field is

E = —g($,$)(Q0oVd — V) (5)

Therefore, when trying a line dynamics, an antisymmetric rank 2 tensor appears.
Asis seen, E - B = 0 or, equivalently, det(F, HV) = (), as the electric and the vector
fields are orthogonal, which means that, with this method, the Faraday 2-form
is degenerate and the field is of radiation type (also called singular, degenerate,
or null).

We will admit that the total energy is finite, which implies, of course, that B
and E go to zero at infinity. The simplest way for this condition to be achieved is
requiring that the limit of ¢ when r — oo does not depend on the direction or,
stated otherwise, that ¢ takes only one value at infinity. There are certainly other
ways; we could, for instance, ask that ¢ is real or that its real part is a function
of its imaginary part at » = oo. In this work the first and simplest possibility is
explored and so, after assuming that the magnetic lines are the level curves of
the scalar ¢, it will be admitted also that ¢ is one-valued at infinity.

The title of this section alludes to an important consequence of this argument.
It is clear that the fact that ¢ is one-valued at infinity implies that R? is compac-
tified to S* and that ¢(r, ¢) can be interpreted at any time as a map S°— S2, after
identifying, via stereographic projection, R* U {oo} with S and the complete
complex plane C with S?. Maps of this kind have nontrivial topological
properties, so that the attempt to describe electromagnetism by the evolution
of the magnetic lines, represented as the level curves of a complex function,
leads in a compelling and almost unavoidable way to the appearance of a
topological structure—and a very rich one, as we will see.

It turns out that a tensor as that of (4) is similar to an important geometric
object related to the map ¢. Let us consider the area 2-form o in the sphere S2,
normalized to unit total area. Its pullback to S° x R (identified with the
spacetime) is

.1 ddndod
YO 2 11 ger )
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[This means that we take the complex number ¢(r, ) as a coordinate in S2.]
Note that ¢* in (6) indicates pullback by the corresponding map ¢ and should not
be mistaken for the complex conjugate of ¢, which we denote as ¢. As we see,
there is a 2-form closely associated with the scalar, the level curves of which
coincide with the magnetic lines. Since both ¢*c and the Faraday 2-form % =
%F wdxt A dx¥ are closed, it seems natural to identify the two, up to a normali-
zation constant factor that, for later convenience, we write as —/a. More
precisely, we assume that

F = —ad'o (7)
and, consequently

_ Va0, povd — 00,0

TR, o

Note that the normalizing constant a, with the dimensions of action times
velocity, must be introduced necessarily in order for F, to have the right
dimensions; it can always be written as the product of a pure number times the
Planck constant times the light velocity (in natural units, a is a pure number; the
electric and magnetic fields are then inverse square lengths). As is seen, Fy, is of
the form (4) with g = —/a/(2mi(1 4+ ¢d)?). It should be stressed now that the
assumption that ¢ has only one value at infinity leads compellingly from (1) to
(8). Because .7 is closed in S*, the second cohomology group of which is trivial,
there exists a 1-form .7 = A, dx", such that # = d.o/, where the 4-vector A, is
clearly the electromagnetic field, Fy, =04, —0,A, and B =V xA
[24,25,36,37].

As long as no charges are present, we can play the same game with the
electric field E and a scalar field 0, the level curves of which coincide with the
electric lines. In that case, if the pullback of the area 2-form in S? by 0 is

1 doOAdd
e*c:_,L,2 (9)
2mi (1 + 00)

and the dual to the Faraday form is taken to be
*F =+/a0'c (10)
the dual to the Faraday tensor is then

*
pv

~ 1/ad,00,0 — 9,00,0
i (1+00)°
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so that the following duality condition must be fulfilled
* UV 1 voB
F* = Ee” Fag (12)

which expresses the duality of # and *% . The conditions for the existence of the
pair ¢, 0 will be discussed later; for the moment let us say that they pose no
difficulty. Equation (12) can be written also somewhat more formally as

' = —0'c (13)

where * is the Hodge or duality operator.
It is convenient now to introduce two definitions:

1. We will say that the map y:S®> x R— S?, given by a scalar field y(r,?),
generates an electromagnetic field if the corresponding pullback of the
area form in S? ¥* o, or its dual form ) * o, verifies the Maxwell equations
in empty space.

2. A pair of maps ¢, 0: S> x RS2, given by two scalar fields ¢(r, ¢),0(r, 1),
will be said to be a pair of dual maps, if the pullback of o, the area form
in S2, by the first map is equal to the dual of the pullback by the second
one. In other words, if

¢'c =x0"c, 0"c = —xd*c (14)

Note that, as the square of the Hodge operator is —1, these two equations
imply each other.

An equivalent definition is that ¢ and 0 are dual if they define, by pullback of
the area 2-form in S2, two tensors F w» Fuy, given by Egs. (8) and (11), which
are dual in the sense of Eq. (12).

A surprising and important property appears now, expressed by the following
proposition.

Proposition 1. If d(r, 1), 0(r, t) are two scalar fields one-valued at infinity, and
they form a pair of dual maps ¢,0:8%—S?, the forms, F = —\/ad*c and
*F = \/a®" o, verify necessarily the Maxwell equations in empty space.

Proof. The proof is simple. The 2-forms # = —y/a ¢ c and *F = \/a0"c are
exact (because the second group of cohomology of S° is trivial), so that they
verify

dF =0, d+F =0 (15)
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which are the Maxwell equations in empty space. Note that the substitution of the
duality condition (13) changes each one of these equations into the other, as it
gives

dx(¢p"c) =0, dx(0'c) =0 (16)

which are in fact d * # = 0, d%# = 0. [In terms of the two tensors: it is easy to
see from (8) and (11) that both obey automatically the first pair *PY SGBFVB =0,
euﬁvﬁaﬁ *Fys = 0. Substitution of (12) gives 0y F*P =0, 6;F°‘B = 0, the second
pair for both.]

To summarize this subsection, the description of the dynamics of the force
lines as the level curves of two maps S°+—S2, given by two complex functions ¢
and 0, leads in a compelling way to a topological structure, in such a way that
the mere existence of a pair of such functions guarantee that the corresponding
pullbacks of the area 2-form in S? automatically obey the Maxwell’s equations
in empty space.

In other words, for any pair of complex scalar fields, dual to one another in
the sense explained above, there is an electromagnetic field in empty space. This
association is studied in detail in the following text.

D. The Hopf Index

As we have shown, if a scalar field ¢(r) is one-valued at infinity (i.e. if its limit
when r — oo does not depend on the direction), it can be interpreted as a
map ¢: S+ S2. To do that, one must identify, via stereographic projection, the
3-space plus the point at infinity R* U {oco} with $°, and the complete complex
plane C U {co} with the sphere S°.

To realize these identifications, we can proceed as follows. A point P in S2
can be represented in two convenient ways: (1) with the Cartesian coordinates
ni,no,n3, such that n? = Zn,% = 1; and (2) with the spherical angles ¥, @,
related to ny by ny + in, = sindexp (ip), n3 = cos¥. Its stereographic projec-
tion is the complex number ¢ = cot(¢/2)exp (ip), which will be taken in this
work as the coordinate of P in S? (unless otherwise stated). On the other hand,
the Cartesian uy,...,us with the condition ) u,% =1 can be taken as coordi-
nates of a point Q in S3. Their relation with the Cartesian x;,x;,x3 of its
stereographic projection on the 3-space uy = 0 are x; = uy/(1 — u4), and the
inverse equations u, = 2x;/(1 4 12), ug = (r* — 1)/(r* + 1), with > = > x7.

In this way, a complex function ¢(r) can be interpreted as a map S°+— S2.
This is very important, since maps of this kind can be classified in homotopy
classes labeled by a topological integer number called the Hopf index, so that
the same topological property applies to any scalar field (provided that it is one-
valued at infinity).

Let a map f:S°+— S, which we suppose to be smooth, be realized by a
complex function f(r), and let us consider the pullback of the area 2-form of $?
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normalized to the unity o, which is equal to (for convenience we introduce a
minus sign)
1 dfnd
F:—f*G:—,fi,fz (17)
i (1+ff)
Since F is closed in S* whose second group of cohomology is trivial, it must also
be exact or, in other words, there exists a 1-form A, well defined in S® and such
that F = dA. As was shown in 1947 by Whitehead [43], the integral of the form F
through ¥, which gives the Hopf index can be written as

nzL}A/\F (18)

[Note that this expression is unchanged by the minus sign introduced in Eq. (17).]

It must be stressed that the Hopf index is closely related to the linking
number of any pair of lines ¢ (defined as the number of intersections of one line
with a surface bounded by the other), but is a different concept. If the multipli-
city of the map is m [i.e., if the level curves defined by the equation ¢(r) = ¢,
have m disjoint connected components], the Hopf index is n = ¢m?. If a line is
defined as a level curve, and there is multiplicity, it is the union of m closed
loops. In that case, we could generalize the idea of linking number of the lines
to design all the linkings of two sets of m loops each one, what is precisely £m?.
However, mathematicians seldom use that generalization [36—42].

It is convenient to consider the 2-form F in more detail. From (17) we can
write

1 8ifof —oifdif
ani - (1+ff)°

Like any antisymmetric tensor in three dimensions, f;; can be expressed in terms
of a vector b(r) as

1
inﬁjdxi/\dxj: dx,-/\dxj (]9)

1
fi = —€iibk, b = —S€iif (20)

2
It can be seen from (19) that V - b = 0. Consequently, if A = —a'dyx;, it turns out
thatb = V X a. Itis clear that the vector b is always tangent to the level curves of
f, which are its integral lines. It plays an important role in the description of the
maps from S* (or R?) to S? (or C). Here, it is called the Whitehead vector of the
map f, and is noted b = Wy. The expression (18) of the Hopf index can then be
written as

n:J a-bd’r (21)
R3
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The quantity in the right-hand side of (21) is called the helicity of the vector b and
is used in several contexts, mainly in fluid and in plasma physics. The term was
coined by Moffatt in 1969 in a paper on tangled vorticity lines [44] with the
velocity of a fluid v and its vorticity =V x v as the vectors a and b. The
magnetic helicity h = [A - Bd>r is useful to study the magnetic configurations
in astrophysical plasmas and in tokamaks.

E. Magnetic and Electric Helicities

In Section 1.B, two maps ¢,0 were introduced, such that its level curves are
the magnetic and electric lines of an electromagnetic field. Comparing the
expressions (6)—(7) and (9)-(10) with (17), we observe a close formal relation
between the theory of the Hopf index and the Maxwell theory in empty space. It
follows that, for the electromagnetic fields generated by pairs of dual
maps ¢, 0: $?+— 52, there are two constants of the motion of topological origin.
They are the magnetic helicity

by = J A-Bdr =n,a (22)
R3

where n,, is the Hopf index of the map ¢, related (as explained before) to the
linking number of any pair of its level curves that coincide with the magnetic
lines, and the electric helicity

he:J C-Ed’r=n.a (23)
R3

where C is a vector potential for E , that is, V x C = E, and n, is the Hopf index
of the map 0, related (as explained before) to the linking number of any pair of
electric lines which are the level curves of 6.

It will be shown in Section II.C that the two Hopf indices are equal,
n, = n, = n, in the case of electromagnetic knots in empty space.

F. Definition of an Electromagnetic Knot

The defining physical feature of an electromagnetic knot is that any pair of
magnetic lines (or of electric lines) is a pair of linked loops (except perhaps for
some exceptional lines or exceptional times) (see Fig.1). From the mathematical
point of view, we define an electromagnetic knot to be an electromagnetic field
generated by a pair of dual maps ¢, 0: S*— S? verifying (14) [i.e., an electro-
magnetic field that can be expressed in terms of a pair of dual maps by means of
equations (8) and (11)].
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Figure 1. Schematic aspect of several force lines (either magnetic or electric) of an
electromagnetic knot. Any two of the six lines shown are linked once.

This definition implies that the corresponding Faraday 2-form & and its dual
*Z can be written as # = —¢" o and *Z = 0”0, that is, as minus the pullback
and the pullback of the area form in S? G by the two maps. This will be relevant
for the quantization of the charge.

A very important property is that the magnetic and electric lines of an
electromagnetic knot are the level curves of the scalar fields ¢(r,¢) and 0(r, ),
respectively. Another is that the magnetic and the electric helicities are topologi-
cal constants of the motion, equal to the common Hopf index of the correspond-
ing pair of dual maps ¢, 0 times a constant with dimensions of action times
velocity.

In an electromagnetic knot, each line is labeled by a complex number. If
there are m lines with the same label, we will say that m is the multiplicity. If all
the pairs of line have the same linking number Z, it turns out that the Hopf index
is given as n = fm?.

An electromagnetic knot is a radiation field (i.e., E - B = 0); the magnetic
and electric lines are orthogonal at any point. This means that E, B, and the
Poynting vector S = E x B are three orthogonal vectors everywhere. The corres-
ponding three families of curves (electric, magnetic, and energy flux lines) form
three orthogonal fibrations of S°, since each family fills all the space, in the
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sense that a line of each kind passes through every point (although there may be
some exceptional lines, or one or several of the vectors may vanish at certain
points or times). This property is allowed by the fact that S is parallelizable.
Indeed, an electromagnetic knot has a rich structure.

II. MEANINGS OF ELECTRIC AND MAGNETIC HELICITIES

The helicity of a divergenceless vector field was already used by Woltjer in
1958 [45] in an astrophysical context. Moreau [46] showed soon after that it is a
conserved quantity in certain flows of fluid dynamics. Moffatt, in a seminal
paper [44], coined the term helicity and clarified its topological meaning. For a
pedagogical review, see Ref. 47.

Let X(r), r € D, be a real vector field defined in a parallelizable three-
dimensional (3D) manifold D. If X is divergenceless, that is, if V-X =0,
another vector field exists in D, at least locally: the vector potential Y(r), such
that X = V x Y. The helicity of the divergenceless vector field X(r) in D is the
integral

h(X,D) = J X -Ydr (24)

We will write 7(X) or simply £ if there is no risk of confusion. The helicity (24) is
especially useful in two physical contexts: (1) in fluid dynamics, where Y is the
flow velocity v(r,7), X is the vorticity w = V X v, and h(w, D) is called vortex
helicity; and (2) in plasma physics, or in general in electromagnetism, under the
form of magnetic helicity, defined as

hm:J A-Bdr (25)
D

in terms of the magnetic field and its vector potential. Using the field equations
for B and A, we find that the time evolution of the magnetic helicity (25) is given
by

EJ A-Bd3r:—2J E-Bd3r—J (AB+E x A)-ndS  (26)
ot Jp D oD

where n is an unit vector orthogonal to the surface 0D, the border of the manifold
D, and dS is the area element in that surface. For the magnetic helicity to be time
invariant, the integrals at the right hand side of (26) must vanish, this implying
two conditions. The surface integral in (26) depends on the boundary conditions;
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we will take fields that vanish in 0D, so that the only requirement for the time
invariance of the magnetic helicity is

J E-Bd’r=0 (27)
D

The equation E - B = 0 is Lorentz-invariant. The fields that satisfy it are called
radiation fields.

The electric and magnetic fields are invariant under gauge transformations
Ayu(x)—Au(x) + 0, A(x). The effect of these transformations on the helicity has
been treated by Marsh [49]. The variation of the magnetic helicity under a gauge
transformation 5A = —VA is

Shm:—J VA-Bd3r:—J V. (AB)d’r (28)
D D

If D is simply connected, its first cohomology group is trivial and, consequently,
A is globally defined in D (it is a one-valued function). The Stokes theorem
implies then that &k, = 0; in other words, the magnetic helicity is gauge-
invariant in simply connected domains, with the standard boundary conditions.
If, on the other hand, D is not simply connected, a gauge transformation implies a
nontrivial change of the helicity. Here, we will consider only simply connected
spatial domains so that the magnetic helicity will always be gauge-invariant.

A. Helicity and Topology of the Force Lines

We will now apply the ideas of magnetic and filamental tubes. Consider a small
closed circular curve C. We define its magnetic tube to be the set of all magnetic
lines that intersect C. It is obvious that the internal flux of any magnetic
tube does not depend on the section that we use to compute it. The strength
of the magnetic tube is defined as the flux across any section. A filamental tube
is a magnetic tube with infinitesimal section, but with non vanishing finite
strength.

In the first paper on the topological meaning of the helicity, Moffatt [44]
considered closed non-self-knotted filamental tubes. Suppose that D, the region
on which a divergenceless vector field B is defined at a certain time is a simply
connected domain (B is here a magnetic field, but the results can be applied to
any divergenceless vector field). Now consider the special situation in which B
is zero except in two filamental tubes whose axes are two oriented, closed, and
non-self-knotted magnetic lines C y C’, that can, however, be linked to one
another. The filamental tubes have zero section but nonvanishing strengths
3P, 6P’, respectively. Moreover, the magnetic lines run parallel to C and
C', respectively, along each filamental tube. Moffatt showed that, in these
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conditions, the magnetic helicity can be written as

_ / LM Nt
B = 2003 <4n : (dr x ar') T (29)

where the integral between brackets in (29) is known as the Gauss integral and
coincides with the linking number L(C,C’) of the closed curves C and C'.
Consequently, the helicity of two filamental tubes is

By = 2L(C, C')505%’ (30)

If there are several closed filamental tubes, the total helicity is

hn =YY L(Ci, C;)30:5%; (31)

i A

where L(C;, C;) is the linking number of the tubes C;, C;. Equation (30) can be
generalized to finite section magnetic tubes under the condition that, into each
one, the magnetic lines are not linked, and the tubes are not self-knotted. We may
then assume that every magnetic tube is composed of a large number of
filamental tubes of infinitesimal sections. Then each pair of filamental tubes (one
for each magnetic tube) contributes to the total helicity with a quantity given by
(30). With addition of the contributions of all pairs, this results in

By = 2L(Cy, C,)®, @, (32)

where ®; and ®, are, respectively, the total strengths of the magnetic tubes and
L(Cy,C,) is the linking number of two filamental tubes representing each
magnetic tube.

The relationship between the linking number and the helicity of a self-
knotted filamental tube has been studied by Berger and Field [50] and Moffatt
and Ricca [51]. We are looking for an expression for the helicity in a filamental
tube T of strength 3P, around a closed magnetic line C that can be self-knotted.
In this case, the magnetic helicity takes the value

b = (8B (W + T + T ) (33)

where #(C) is the spatial writhing number, which is a real number defined by
the limiting form of the Gauss integral (29) when C — C', 7 (C) is the total
torsion of the curve, and 7 o(C, B) is the intrinsic twisting number, defined as the
(integer) number of times that any magnetic line in the surface of the tube T
surrounds the axis C. None of the numbers %, 7, and 7 is a topological
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invariant, and only the last one is an integer number, though all of them have a
well defined geometrical meaning. But their sum, that is the important thing in
(33), is, according to the Calugareanu theorem [52], equal to a topological invari-
ant, the linking number of the axis C and any magnetic line C,, that surrrounds
the surface of the tube T

L(C,Cy) =W (C)+ 7 (C)+ T o(C,B) (34)

Using this theorem, we conclude that the magnetic helicity of a filamental tube T
whose axe is a closed, self-knotted curve C, is given by

by = (8®)L(C,T) (35)

where L(C,T) is the linking number of the axe C and any magnetic line that
rounds the surface of the tube 7.

The next stage in the study of the topological meaning of the helicity is to
consider a continuous distribution. In Ref. 47, the case was considered of a
simply-connected domain D, and a divergenceless vector field B satisfying the
following conditions: (1) B is regular and nonvanishing in D, and (2) the
magnetic lines are closed curves. Under these conditions it is easy to see that the
linking number of any two magnetic lines does not depend on the lines that we
choose to compute it, because two closed curves cannot tie or untie under
smooth deformation. Consequently, the linking number of any two magnetic
lines is a property of the vector field, and can be denoted L(B). The linking
number 1s also invariant under smooth deformation of the field and, in
particular, is time-invariant. This means that the set of divergenceless vector
fields defined on a domain D satisfying conditions (1) and (2) can be classified
in homotopy classes, labeled by its linking number. We split D in an infinite
number of filamental tubes with strengths 3®;, in such a way that they comple-
tely fill D. Now using (30) and (35), and assuming that the linking number is an
invariant, the magnetic helicity in D results in

. (ZZZS@S@ +Z (5%;) )

i A

<Z 3P, ) = L(B (36)

where @ is the total strength of the magnetic field (the sum of strengths of all the
tubes that fill D).
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We have seen that the helicity of simple field configurations, in which the
magnetic lines are linked, depends on the linking number of these lines.
However, some configurations are possible in which the field lines are open,
infinitely long, and possibly space-filling. The classical linking number above
defined has no sense in this case, so it is difficult to study the meaning of the
helicity related to the topology of these lines. Nonclosed lines can be treated,
however, following the approach proposed by Arnold [53], who used the
language of dynamical systems to define the linking invariant of the problem.
Arnold defined a asymptotic linking number from the classical linking number
of the field lines that become closed by using a family of short paths (he showed
that the result is independent of the family of short paths). In this way, Arnold
proved that the contribution to the total helicity of two filamental tubes around
two magnetic lines C and C’ is

By = 20(C, C 308D’ (37)

which is formally equal to the Moffatt equation (30), if the Gauss linking number
L is replaced by the mean value A of the asymptotic linking number. If the lines
were closed, then A would coincide with the classical linking number, and
Eq. (37) would be general.

In conclusion, the helicity of a divergenceless vector field is a measure of the
linking number of the field lines. Even in the case that these lines are not closed,
the notion of linkage has sense, because a mean value of an asymptotic linking
number can be defined, and this value coincides with the helicity.

The electromagnetic helicity has also been studied by Evans [54-57], espe-
cially its consequences for his new non-Abelian SO(3) gauge version of QED
(quantum electrodynamics).

B. The Case of Maxwell’s Theory in Vacuum: Electromagnetic Helicity

In standard classical electrodynamics, the Maxwell equation d% = (0 becomes a
Bianchi identity by using the electromagnetic potential .7, defined as ¥ = d.</.
The dynamical equation for this field in empty space is d* % = 0.

But the Minkowski spacetime R* has trivial cohomology. This means that the
Maxwell equation implies that .7 is a closed 2-form, so itis also an exact form and
we can write *# = d¥%, where % is another potential 1-form in the Minkowski
space. Now the dynamical equation becomes another Bianchi identity. This
simple idea is a consequence of the electromagnetic duality, which is an exact
symmetry in vacuum. In tensor components, with .o/ = A, dx" and ¥ = C,dx",
we have F,,, = 0,4, — 0,4, and *F,, = 0,C, — 0,C,, or, in vector components

B:VxA:aa—(;+Vc°

A
E:VXC:—a——VAO
ot

(38)
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Note that the equations (38) are clearly invariants under the gauge transforma-
tions A, — A, + oA, Cy—C, +9,I.

The electric and magnetic fields are dual to one another and have the same
properties in Maxwell theory in empty space. Given the divergenceless vector
field B, we have defined the magnetic helicity as

hm:J A-Bdr (39)
R3

where B = V X A. Now, in vacuum, given the divergenceless vector field E, we
can also define an electric helicity through

h, = J C-Ed’r (40)
R3

where E =V x C.

Equations (39) and (40) imply that the two helicities are finite if the magnetic
and electric fields decrease faster than r—> when r — oo. This implies that the
vector potentials A* and C* must decrease faster than r~' when r — oco. We will
assume that our fields always satisfy these conditions at infinity.

We must consider two currents of helicity. In Ref. 47 the following magnetic
helicity current was considered:

A=A, F™ (41)
The corresponding electric helicity current is

HY = C.F"Y (42)
As it is easy to show that

QY = 0, 4" = —2E-B (43)

the magnetic and the electric helicities
hy, = J O &r, h, = J H° dPr (44)
R3 R3

are time invariants for radiation fields E - B = 0 and, more generally, if the
spatial integral of E - B vanishes.

Given any Maxwell field in vacuum, we define the current density of electro-
magnetic helicity #* as one-half times the sum of the current densities of
electric and magnetic helicities (41) and (42):

1
A =2 (FRCo +" FuAy) (45)
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By construction, and taking into account Eqgs. (43), the density of electro-
magnetic helicity is a conserved current for any Maxwell field in vacuum (with
the above indicated behavior at infinity):

MM =0 (46)

This implies that the quantity
1
%:J ]fod3r:—J (A-B+C-E)d°r (47)
R3 2 R3

is a constant of the motion, called electromagnetic or total helicity. Because of
the previous considerations, the electromagnetic helicity is also gauge-invariant.
From now on, we will call (47) the electromagnetic helicity, or just the helicity,
and (45) will be the density of electromagnetic helicity.

C. The Particle Meaning of Helicity

The helicity is gauge-invariant. In the Coulomb gauge, it is obvious that A and
C satisfy the d’Alembert equation, whose solutions can be written in terms of
Fourier transforms

1 d3k —ik-x a ik-x
A(r; t) = WJ\/T_@ (a(k)e k + a(k)ek ) (48)

where k* = (0,k) is null (k*k, = ©®> —k*=0) and k- x = ktx, = ot — k- T.
The factor 1/+/20 is a normalization factor that allows the measure to be
Lorentz-invariant. 7 is the complex conjugate of z.

The divergenceless condition of the field A in the Coulomb gauge means that
the complex vector a(k) is transverse, so that k- a(k) = 0. Then, for every
value of k, we can choose an orthonormal trihedron with by the real vectors
k/o, e;(k) and e,(k), and we can represent the field a as

a(k) = a;(k)e; (k) + ax(k)ex (k) (49)
where
k k k
e X e =—, — X e] = ey, — X e = —e (50)
® ® ®

For convenience, the definition of the trihedron is completed with

el(fk) = 7el(k), ez(fk) = ez(k) (51)
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We have written the field A as a superposition of plane waves. However, it will be
more convenient to write it as a superposition of circularly polarized waves, in
the same way as in quantum electrodynamics [58]. With this aim, we define the
components right (R) and left (L) as

e; (k) + iex (k) e; (k) — iey(k)

er(k) = ) e (k) =
V2 v2 (52)
_ay(k) — ias(k) _ay(k) +iay(k)
alb) ==—75——  alk)="re
With these definitions
k-eR:k-eL:O, ep-eg=¢ep-e, =0
eR-eLzl, eRxeR:eLxeL:O (53)
k
—xeR:—ieR, —xeL:ieL, eRxeL:—i—
o) [0 O]
and, moreover
er(—k) = —er(k

eL(fk) = —ep (k)

Leaving out the argument K in the quantities e(k) and a(k), we arrive at

1 d3k —ikx — — ik-x
A(I’7 l) = WJ\/T(B ((CRClR + eLaL)e k + (eLClR + eRaL)ek ) (55)

The Fourier components ag and ay, are, in (55), functions of the vector k. In QED,
agr(k) is interpreted as a destruction operator of photonic states with energy o,
linear momentum k and spin k/m, while the function ag becomes the creation
operator a; of such states. Analogously, a;(k) is a destruction operator of
photonic states with energy o, linear momentum k and spin —k/®, and a; is the
correspondent creation operator [58].

We can play the same game with C. In this case, we can represent C in the
form (55), but changing the functions ag and a; by new functions cg and c;.

Now we must satisfy the equations (38). Doing this, we find

-k
K X (eRaR + eLaL) = @RCRr + €ercr.

k
€rar +e€ra; = 6 X (eRcR + eLcL)
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and, using (53), they reduce to
CR(k) = iaR(k), CL(k) = —iaL(k) (57)

The vector potential C results in

l d3k —ik-x — — ik-x
C(r, t) = W J\/ﬁ ((eRaR — eLaL)e — (eLaR — eRaL)e ) (58)
In the Coulomb gauge, the helicity can be written as
1 oC 0A
H=-| ([A-=-C-— & 5
ZJRz( ot ¢ 6t> ' (59)
Introducing the expressions (55) and (58) in (59), we obtain
H = J(aR (K)ag(k) — ap(k)a.(k))d*k (60)

This is what we were looking for. In quantum electrodynamics, the right-hand
side of (60) is interpreted as the helicity operator, that is, the difference between
the numbers of right-handed and left-handed photons. We can write the usual
expressions

Ng = JaR(k)aR(k) &k
(61)
NL = J&L(k)aL(k) d3k

and write Eq. (60) as
H = (Ng — NL) (62)
The consequence is that the helicity that we are studying is the classical limit

of the difference between right-handed and left-handed photons [26,30,31].
Note that, in physical units (with /2 # 1 and ¢ # 1), Eq. (62) would be

H = hC(NR — NL) (63)

This equation shows a close relation between the wave and particle aspects of the
helicity. On the left side, the wave helicity is the semisum of the electric and
magnetic helicities that characterizes the topology of the force lines as a function
of the linking number of the pairs of electric lines and of the magnetic lines. On
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the right side, the particle helicity is the classical limit of the difference between
right- and left-handed photons. For all this, if we have an electromagnetic field
with a trivial configuration of force lines (vanishing linking number), then we
will know that the classical expression for the number of right-handed photons is
equal to the classical expression for the number of left-handed photons. But if we
observe a non-vanishing linking number in the magnetic and the electric lines,
these two numbers will be different. Here it is the wave—particle duality of the
helicity.

We previously defined the radiation fields (called singular by mathema-
ticians) as those electromagnetic fields that satisfy E - B = 0. Now consider the
case of singular fields in vacuum, with the abovementioned contour conditions,
which we can summarize by stating that the helicity must be finite. In this case,
the Fourier components ag and a; should be less singular than ®—/2 when
® — 0, and they should decrease more rapidly than ®~2 when ® — oo. This
behavior allows us to prove the following property [31]: The electric and
magnetic helicities of any radiation field in vacuum are equal.

For the proof, we use the representations of A and C given by (55) and (58).
It is easy to see that

i — hy = Jd3k[(aL(k)aL(—k) ~ ap(K)ag(—K))e " £ cc]  (64)

where c.c. means that the complex conjugate should be added, and t = 2¢. We
compute the integral in the angular variables of the spherical coordinates in the
space of vectors k. The result is called F(®), specifically

F(o) = o JdQ[aL(k)aL(—k) — ag(k)ag(—Kk)] (65)

where (2 is the solid angle and F(w) = F(—®). The difference of helicities is
now

hy —h, = JOO do [F(Q))e_im + F(—(,O)eiwr] (66)
0

Because of the previously stated behavior of ag and a;, and looking at the
definition (65), it is clear that F(®) is a square integrable function, and that

iy —he = (1) +£(1) (67)

where f(t) is the Fourier transform of F(). It is also known that

%(hm —he) = —4J E-Bd’r (68)
R3
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so, in the case of singular field, E - B = 0 and h,, — k. is a constant. Equation
(68) implies then that the real part of f(t) does not depend on t. Now, recalling
that it is a square integrable function, it can only be zero. Consequently,
h,, — h, = 0 for singular fields in vacuum.

The conclusion of this subsection is that Eq. (62) for singular fields takes the
form

H =hy =h, = (NR - NL) (69)

This will play an important role in the relationships presented in the following
sections.

III. ELECTROMAGNETIC KNOTS

In a way that is completely independent of their use as a basis for the topological
model presented above, electromagnetic knots are standard solutions of Max-
well equations in vacuum that have special topological properties; their helicity
is topologically quantized, with h,, = h, = an, where n is an integer, the Hopf
invariant of the two applications from which electric and magnetic fields are
constructed. This allows us to classify the set of electromagnetic knots in
homotopy classes C,, labeled by the value n of the Hopf index, which as
explained in Section 1.D, is related to the linking number ¢ of the lines.

Here we summarize a program to find explicitly the Cauchy data of
electromagnetic knots [25,27,30-32]. Let ¢, 0:S*> — S? be two applications
satisfying the following two conditions:

1. The level curves of ¢, must be orthogonal, in each point, to the level
curves of 0y, since we know that electromagnetic knots are singular fields
(E - B = 0). This condition can be written as

(Voo x V) - (V0 x VOy) =0 (70)

2. Moreover, in order to maintain the orthogonality (70) through every time,
it is necessary that the Hopf index of ¢, and of 8, be equal:

H(dy) = H(6) (71)

Given ¢, and 6y with these two conditions, we can build the magnetic and
electric fields in t = 0 as

B(r,0) = Va Vo x Voo
7 2mi (1 + o)’ (72)
E(I‘,O _@Véo ><V60

2 (1 + 090’
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Next, two complex functions f(r) and g(r) should be given, such that

V0, x V0o = £V, — FVd,

_ - _ (73)
Vb, x Vo, = gV0y — gV,
from which we define
- 2
I+
b= <1-+%0§0) !
70 0 5 (74)
( 1+ 9090)
0 =(—0)¢
1+ odo
Then, the Cauchy data of the fields ¢(r, ) and 0(r, ¢) are given by
odp(r,t
bulr) = 0(,0), oy (r) = 20
=0 (75)
o0(r, ¢
0o(r) = 6(r,0), 0:(r) = (6 )
r =0
and the Cauchy data of the magnetic and electric fields are
\/EV(I)O X V(T)O \/EélVGO —61Véo
B(r7 0) = — — 3= A — 3
20 (14 dodg)” 2 (1 + 0900)
_ - - (76)
E(r,0) = ﬁ V0o x Vb ﬁdﬁv% — 0,V

©2mi(140000)" 2 (1+ docho)’

It is easy to see that Egs. (76) are precisely the duality condition 0"c = —x¢* o,
int = 0, of an electromagnetic knot defined as F = —y/ad* o, *F = \/ab*c. As
the duality condition is conserved in time, (76) thus defines an electromagnetic
knot of homotopy class n (the Hopf index of both ¢ and 6j).

A. Hopf Fibration

The group-theoretic method to find nontrivial maps S* — S? is based on the
isomorphism between S* and the group manifold SU(2). Every point g € SU(2)
can be written as

g = exp (o)) (77)

where o/ are three real parameters, j = 1,2,3, and o; are the Pauli matrices.
Every point V in Lie algebra su(2) can be written as

V =ido; (78)
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where the manifold $? is simply
82 ={V € su(2),detV = 1} (79)

In this way, every map S° — S? can be viewed also as a map from the group
SU(2) to the subset of the Lie algebra su(2) with determinant equal to 1.

Any point in SU(2) can be written, in Skyrme’s parametrization (analogous
to the stereographic projection $* = SU(2) U {o0}), as

g = exp (i%xjcj), o = 2arctan r (80)

Consider the set of transformations SU(2) — S* given by
o = glkicy)g! (81)

where n, n'n; = 1 are the coordinates in S2, k, kjkj = 1 are constant parameters
(that we can choose in order to obtain different maps $> — $?), and g € SU(2) is
given by (80).

It is easy to see that, under the applications (81), the inverse image of every
point in §? is a closed line SU(2), the fiber. The set of these fibers is called the
fibration of SU(2) by the map (81), and it is given by

8(v) = gexp(itk'o;) (82)

where 7 is the evolution parameter of the fiber. For every point g there is only one
fiber. We can also define the scalar product of the velocity vectors of two of these
fibrations as

. | R
(81:82) =5 Tr(§78) = ki ke (83)

Consequentely, if we choose, for example, k; = (0,0,—1), k, = (—1,0,0), and
k; = (0,—1,0), we obtain, not only two, but three fibrations; its fibers are
mutually orthogonal in each point. These fibrations can be written in R®
coordinates (thanks to the Skyrme’s parametrization) as

e The Hopf fibration, g(t) = gexp(—ito3), with

x(1) =

2xcosT + 2ysint
(r?+1) — (r> = 1)cost + 2zsint

2ycosT — 2xsint

y(tr) = (,,2 ¥ ]) _ (r2 _ l)COS‘E + 2zsinT (84)

2zcost + (r> — 1)sint

z(t) = (r2+1) — (r2 — 1)cost + 2zsint
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It is easy to see that these fibers have linking number equal to one. For
instance, the fibers passing through the points (x,y,z) = (1,0,0) and
(x,y,2) = (0,0,1) are, respectively, the circle x> + y> = 1 and the z axis,
that are obviously linked.

e A fibration orthogonal to (84), g(t) = gexp(—ito), with

2xcost + (r* — 1)sint

x(1) = (2 +1) — (2 — 1)cosT + 2xsint
2ycost + 2zsint
_ 85
y(1) (r2+1) — (12— 1)cost + 2xsint (85)
27c0sT — 2ysinT
(1) =

(r2+1)— (r> — 1)cost + 2xsint

This fibration can be obtained from the Hopf one by the change
(x,,2) — (v,z,x) in the expression of the map, so its fibers are linked too,
and the linking number is also one.

e A fibration orthogonal to both (84) and (85), g(t) = gexp(—ito;), with

2XC0ST — 2zSInT

x(t) = (P + 1) — (2 — I)cost + 2ysint
2ycost + (r* — 1)sint
_ 86
y(1) (P4 1) — (2 — 1)cost + 2ysint (86)
2zcosT + 2xsint
(1) =

(r2+1) — (r2 — 1)cost + 2ysint

Once more, this corresponds to the change (x,y,z)+— (z,x,y) in the Hopf
map, so the linking number is one.

Summarizing this subsection, the group-theoretic techniques allow us to
obtain three maps §> — S? whose velocity vectors are mutually orthogonal, and
with the same linking number. Next, we have to build the Cauchy data of the
electromagnetic knots based on these maps.

B. Cauchy Data for Electromagnetic Knots

It is convenient to work with nondimensional coordinates in the mathematical
spacetime S x R, and in S2. In order to do that, we define the non dimensional
coordinates (X,Y,Z,T), related to the physical ones (x,y,z,t) by

(X,Y,Z,T) = A(x,y,2,1) (87)

and A*r? =022+ +22) =X> 4+ Y* 4+ 7> = R®, where A is a constant
with inverse length dimensions. Now, we can perform the corresponding
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stereographic projections in the maps (81), with k = (0,0, —1), k = (—1,0,0)

and k = (0, —1,0), to obtain the following maps R* U {0} — C U {o0}:
e The Hopf map

2(X +iY)

= 88
o 2Z +i(R2— 1) (88)
e The map corresponding to the change (X,Y,Z)—(Y,Z,X) in (88)
2(Y +iz)
= 89
T 2X+i(R2—1) (89)
e The map corresponding to the change (X,Y,Z)—(Z,X,Y) in (88)
2(Z+iX
(Z +iX) (90)

Py iR - 1)

Because of their construction, it is obvious that the three maps (88)—(90) have the
same Hopf index. Following the methods explained in Sections I.D-LF, it is
easily shown that the three maps have Hopf index n = 1 and that the three
fibrations are mutually orthogonal at each point. Consequently, any two of these
three maps is a pair of dual maps, from which we can build an electromagnetic
knot. The fibers of the third fibration are everywhere tangent to the Poynting
vector of that knot. There is then a nice mathematical structure, with three
fibrations that can be termed magnetic, electric and of the energy flux. This
happens also in the general case.

If we choose the maps ¢ and 0y to generate a knot, the Cauchy data for the
magnetic and electric fields are

4y/a)?
BT

4/a\’
(1 + R2)?

(2(Y = XZ), 2(X +YZ),—1 = Z* + X* + 1?)
(91)
E(r,0) = (1+X*—Y* =272 2(~Z+XY),2(Y + XZ))

From (91), two vector potentials, A and C, can be computed, such that
B=V x A, E=V xC, with the results

__ 2Jah x

A(r,O)—n(1+R2)2(Y, X, 1)
(92)

C(r,0) = 2yar (1,-Z,Y)

(1 + R2)?
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The magnetic and electric helicities of this knot turn out to be
hm:J A~Bd3r:he:J C-Ed’r=a (93)
R R

Consequently, we have obtained the Cauchy data of an electromagnetic knot, a
representative of the homotopy class C;, for which, according to (63)

a
NR —NL :h_ (94)

c

C. Time-Dependent Expressions

To find the electromagnetic knot, defined at every time, from the Cauchy data
(91), we use the Fourier analysis. The magnetic and electric fields can be written
as

1 .

B(r,1) = TERE Jd3k (R;(K)cosk - x — Ry (K) sink - x) o
1 .

E(r,1) = (271)3/2 Jd3k(R] (k)sink - x + Ry(k)cosk - x)

where k - x = of — k - r, ®®* = k?, and the real vectors R;, R, satisfy, in order to

mantain Maxwell’s equations, the relations
k-Ri=k-R,=R;-R, =0

(96)
kxR, = oR;,k x R; = —0R,

The important point in the use of Fourier analysis is that the vectors R|,R;, can be
computed from the Cauchy data of the electromagnetic field:

R (k) + iRy (k) = Jd3r(B(r, 0) + iE(r,0))eT (97)

(211:)3/2

For the electromagnetic knot with Cauchy data given by (91), we find

a efu)/k
R, = \/;L;kzo) (k1k3, (Dk3 + k2k3, —wky — k% — k%)

a e @
R, = \/\2./1._[;\‘27 ((Dkz + k% + k%, —wk; — kiky, —k1k3)
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Introducing these vectors in (95), the expressions, for all the times, of one
electromagnetic knot representative of the homotopy class C; are

Van
B(l)(r, l) = m (QHl + PHQ) (99)
7\/2
EV(r,1) = n(:;/;aT?)S (OH, — PH))

where the superscript (n) indicates the homotopy class C, of the knot, the
quantities A, P, Q are defined by

RP—T2+1

A=
2 ’

P=T(T*-3A%, Q=A(A*>-3T%) (100)

and the vectors H; and H, are

N -2+ X*+ (Y +T)
IL:G#T=H;X—W+HZ +2+(+)

(101)

<1+X2+Z2—(Y+T)2
H, = .

,—Z+X(Y+T),Y+T+XZ>
This solution verifies E) - B! = 0 and (E()* — (B()? = 0. To study its time
evolution, an interesting tool is the energy density:

(EV)? + (B art(1+X> 4+ (Y +T7)* +2%)°
2  4n2 (A2 + 12)°

Po(r,t) = (102)

It can be seen in this expression how the knot spreads, its energy density going to
Zero.

The final step to characterize this knot is to find the time evolution of the
basic complex scalar fields ¢ and 0. This is not easy since these fields satisfy
highly non-linear equations, the duality equations,

_ ﬁau&)avd) B aud)ava)
T (14 6¢)°
.. +/a0,060,06 —0,00,0
W o (14807

(103)

with the corresponding Cauchy data ¢,09. However, the basic fields have a very
important property that allows us to solve (103)—their level curves evolve in
time in such way that their linking number is a constant of the motion (because
the magnetic and electric helicities are constants of the motion for the
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electromagnetic field). This stability condition is a kind of hint on the form of the
basic fields. The result is that the scalar fields ¢ and 0 that give way, through
(103), to the electromagnetic knot (99), are

(AX — TZ) + i(AY + T(A — 1)
(AZ +TX) +i(A(A—1) -

(AY+T( — 1)) +i(AZ +
(AX = TZ) +i(A(A-1) —

b(r,1) =

v 104
% (104)

)
)
O(r, 1) = ;

where A is given by (100).

D. A Family of Electromagnetic Knots with Hopf Indices +n?

The electromagnetic knot given in the previous subsections, a representative of
the homotopy class Cj, can be easily generalized to classes C,2. To do that, we
will need a property of the Hopf index.

Consider a smooth map f: S* — §2. We have called the fiber of a point p € §?
to the inverse image f~!(p), which is generally a closed curve in S*. Now we
define the multiplicity of the fiber f~!(p) to the number of connected
components of f~!(p). Consider the map f":S®> — $2, where n is an integer,
for f" to be a good smooth map. The linking number of the closed curves that
form the fibers of /" is equal to the linking number of the closed curves that
form the fibers of f (they are the same curves). However, the multiplicity of the
fibers of " is equal to n times the multiplicity of the fibers of f. Consequently,
the Hopf index has the following property:

H(f") = n’H(f) (105)

Instead of the nth power, we will use a different function with the same property.
If the map f is written as f = Ped, we define the map £ as

) = peina (106)
where 7 is an integer. The Faraday’s tensor of f") is Fy (f™) = nF,,(f), so that
H(f") = n’H(f) (107)

Now, instead of (104), we can use the basic scalar fields d)(") and 6("), defined by
(106), and given by

(AX — TZ) + i(AY + T(A — 1)
S0 = ((AZ+7X>+<A<A e )

TY
(108)
TX

)
)
. (AY + T(A— 1)) + iAZ + TX)
0e,1) = ((Ax 1Z) T iAG - 1) >)
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where A is given by (100). These two maps have Hopf index equal to n”,n integer,
and their corresponding velocity curves are mutually orthogonal (they are the
same as the velocity curves of ¢ and 60, respectively). So we conclude that the
complex scalar fields (1)(") and 6 give place to electromagnetic knots represen-
tatives of the homotopy classes C,.. The magnetic and the electric fields are
simply

(109)
where B(") and E() are, respectively, the magnetic and the electric fields of the

representative of the homotopy class Cj, given by (99). The electromagnetic
knots (109) satisty

hy = h, = an® (110)
so the topological charge has the value
a
NR—NL:%nz (111)

These particular knots have the following curious values for the energy, linear
momentum, and angular momentum:

EM@N2 L (g*))2
0= (( BN oy

p=|E") xB") : &#r = n’ake, (112)

J=]rx (E(”z) X B<”2))d3r = n*ae,

These knots thus move in the y direction, and the angular momentum is along the
motion direction.

It is easy to show that we can also construct electromagnetic knots with Hopf
index —n? by means of the dual fields

O (1) = ¢ (—r, —1)

(113)
6(_’”)(r7 1) = 0" (—r, —1)
The magnetic and electric fields of the electromagnetic knot are then
B (r,1) = B™) (—r, —t
() =B (-0 -
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and the magnetic and electric helicities are given by

hy, =h, = —an® (115)
and the topological charge
a
NR—NL:—%nZ (116)

The energy, linear momentum, and angular momentum of the particular knots
(114), representatives of the homotopy classes C_,, are as follows:

()2 4 (B2
p() — <(E ) ;(B ) >d3r:2n2a>\’

p=|EC") x BC") : &*r = n’ake, (117)

J=|rx E) x B dr = —n’ae,

IV. A TOPOLOGICAL MODEL OF ELECTROMAGNETISM

The discussion in Section I, especially Section I.C, suggest the possibility of a
theory of the electromagnetic field that uses as coordinates the pair of complex
scalar fields ¢, 0, whose level curves coincide with the magnetic and electric
force lines. For this purpose, let us recall the definition of electromagnetic knot
given in Section LF as a solution of the Maxwell equations in empty space, such
that any pair of magnetic lines (or any pair of electric lines) is a link. As was
shown in Section II.C, the Hopf indices are necessarily equal, as a consequence
of the Maxwell equations. It must also be stressed that the electromagnetic knots
are radiation fields, in the sense that their magnetic and electric fields are
orthogonal (i.e., verify the condition E - B = 0).

A. A First Model

As a first step in constructing a topological model of the electromagnetic field,
let us consider the set of electromagnetic knots defined by pairs of dual scalars
(¢, 0). If we try a theory based on these two scalars, the most natural election
for the action integral is

g = ,_J(g:@) A+ F () + 7 (0) A F(0)) (118)
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where 7 (¢) = —v/a oo, *F (¢) isits dual, xZ (0) = \/a 6 c, and Z (8) is the
dual of *7 (0) [as in Egs. (9) and (12)], since this is equal to the standard action
— fi,? A*F = — I%FWF“" d*x. As the scalars ¢, 8 must be a dual pair, they
must be submitted to the duality condition or constraint — % (¢*c) = 6", which
is written in terms of the electromagnetic tensors

G" =*F" () — %emmﬁ(cb) =0 (119)

[As discussed in Section I.C we will say that two scalars are dual or that they
form a dual pair if they verify the duality constraint (15) or, equivalently, (119)
for any given time.] According to the method of the Lagrange multipliers, let us
vary, as independent fields, the two scalars ¢ and 0 in the modified Lagrangian
density

L' =2 +1"G,, (120)

with & = —(Fu($)F™ () — *Fuw(0)F™(0))/8, where the components of the
tensor u*? are the multipliers. A simple calculation shows that the duality cons-
traint (119) does not contribute to the field equations, which means that, if it is
satisfied by the Cauchy data, it is kept naturally in the time evolution, an interes-
ting and consequential property. The Euler-Lagrange equations turn out to be

0 FP(P)opd =0, 0 FP($)3pd" =0

(121)
0, FP(0)050 =0, 0, F*P(0)050" =0
It follows immediately that both Fy(¢) and *Fp(8) obey the Maxwell equations
in empty space. In fact, the first pair for both tensors

GuBYaaBFyg((l)) = O, e”B"&aﬁ y Y;,(G) =0 (122)

holds automatically for any arbitrary pair of dual scalars because of the
definitions in Egs. (10) and (13). On the other hand, it follows from (122) and the
duality condition (119) that

pFP(d) =0, 0 FPO)=0 (123)

which is the second pair for both tensors. As Fy,,(¢) and *F,,(0) are the electro-
magnetic tensor and its dual, respectively, the Egs. (122) and (123) are indeed the
Maxwell equations in empty space; we thus have a model of topological
electromagnetic fields.
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It must be stressed that we have in fact proved two different properties,
which can be stated as follows.

Property 1. In a theory based on the pair of fields (¢, 0) with action integral
equal to (118), submitted to the duality constraint (119), both tensors F,g and
"F,p obey the Maxwell equations in empty space. As the duality constraint is
naturally conserved in time, the same result is obtained if it is imposed just at
t=0.

Property 2. If two scalar fields ¢, 0 form an arbitrary pair of dual fields, in
the sense of Eq. (15) [or, equivalently, if they verify (119)], the tensors F,g and
"Fop satisfy the Maxwell equations in empty space at any time.

Note that the property 2 is surprising and beautiful; for the Maxwell equations to
hold, it is not necessary to consider any variational principle whatsoever. Given a
scalar field that can be interpreted as a map ¢: S+ S, the mere existence of a
dual map O guarantees that the two pull-backs of the area 2-form in §* obey
Maxwell’s equations in empty space. This fact must be stressed—the duality
condition on the two scalars implies the Maxwell equations by itself.

A better understanding of this curious property can be obtained by using,
instead of (118), the following action integral

= ——Jy(q))A*g?(e) (124)

which is also equal to the standard action for the electromagnetic field. The
integrand in (124) has an interesting interpretation. If we now define the product
map y = ¢ x 0: 53+ 5% x 2, it turns out that it is equal to the pullback of the
volume form in S? x S? by the map y, thatis, to ¥" = x*(c Ac) = ¢*c A 0’0,
so that

a
S =— |\ 12
QCJ (125)

It turns out that ¥~ is an exact form. As explained in Section I, there exist two 1-
forms in $° .7 and ¥, such that # = d.o/ and +% = d% (because the second
group of cohomology of §3 is trivial). It is then clear that ¥ = —(4a)”'d(./A
*F +F NE). As a consequence, the Euler-Lagrange equations of (124) are
trivial (just 0 = 0) and the action (125) takes a stationary value for a pair of maps
(or of scalar fields), even if they are not dual.

This means that, if the two scalars are dual (i.e., if they define the same
electromagnetic field), the corresponding pullbacks obey the Maxwell equations
and are solutions of a variational problem with the standard action expressed in
terms of these scalars.
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Let us now identify the Cauchy data. As the Maxwell equations are of second
order in the scalars, the initial data should be the two functions (¢(r,0), 6(r,0),
plus their time derivatives Oyd(r, 0), 0o0(r, 0)). However, it is easy to show that
the latter can be expressed in terms of the former, as a consequence of the
duality constraint (119).

As the knots are radiation fields, the level curves of the two scalars of a dual
pair ¢, 0 must be mutually orthogonal (i.e., form two fibrations of the 3-space,
orthogonal to one another). This means the they must obey the differential
condition

(Vo x Vo) - (VO x VO) =0 (126)

which is a real partial differential equation for two complex functions and has
therefore an infinity of solutions. This condition (126) is conserved naturally
under the time evolution. Let us write the electromagnetic tensor corresponding
to the scalar y as fi,, () [this means that F,, = f,,(¢), while *F,, = £,,(8)]; we
will use the following notation:

Bi(y) = _%ezj/‘kfjk(X)» Ei = foi(x) (127)

The duality condition then takes the form
E=¢&(0)=-%0), B=2()=4~00) (128)

According to (128), the electric field —2(0) is a linear combination of V¢ and
V¢, which can be written as %(0) = bV + bV, so that the function b(r, ) can
be expressed in terms of ¢,0 and their space derivatives.

Substitution in (128) shows that Jod = 2mib(1 + d*$)*, an analogous
expression holding for 0y0. Consequently, the time derivatives of the scalars
can be expressed in terms of the scalars and their space derivatives. In other
words, the Cauchy data are just the pair of complex functions ¢(r,0),0(r,0)
that verify the condition (126). The system therefore has two degrees of freedom
with a differential constraint that is conserved naturally under the time evolution.

B. A Topological Quantization Condition

As was shown in Section LE, the Hopf indices n,, and n, of the maps S°—S?
defined by the two scalars are related to the magnetic and electric helicities as

hmzj C-Ed’r = n,a, he:J A-Bdr=na (129)
R3 R3
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where it must be recallded that the constant @ has dimensions of action times
velocity. This certainly has the aspect of a quantization condition. In fact, it looks
similar to the conditions used in the old quantum theory

Iy = fj;l?k dqr = nih (130)

As was shown in Section II, the two Hopf indices (which are the magnetic and
electric linking numbers) are equal in empty space (i.e., without charges),
n, = n,, = n. Let us emphasize this fact; the electromagnetic knots are classified
in homotopy classes labeled by the linking number of any pair or magnetic (or
electric) lines. They verify thus a quantum condition of topological origin. We
will see later that this has a very intuitive and suggestive physical interpretation.

C. The Topological Model

Electromagnetic radiation fields—also called degenerate or singular by
mathematicians—are defined by the condition det(F,,) =0 or, equivalently,
by E - B = 0, that is, by the orthogonality of the electric and magnetic vectors.
As was stated above, the electromagnetic knots are of this type. This means that
the model just described contains only radiation fields.

Radiation fields are especially interesting since they are usually represent
photon states. Moreover, it is known that, because of the Darboux theorem [59-
61], the Faraday form of any electromagnetic field % and its dual *% can be
written, locally, as

F = \/E(dql ANdp +dg; /\dpz), xF = \/E(dvl Aduy + dv, /\duz)
(131)

where gy, pi, Vi, U are functions of spacetime that can also be chosen as
coordinates of the field [62] and « is a constant with dimensions of action times
velocity, introduced here in order for these functions to be dimensionless. Each
of the two terms in these sums is a radiation field (i. e. verifies E - B = 0). This
means that any standard electromagnetic field in empty space can be expressed as
the sum of two fields of radiation type, although we must note that this
representation is not unique, since we can make canonical transformations to
new variables (qx, pr) — (Ok, Px) [or (vi,ux) — (Vi, Ux)] without changing the
form of (131) (by “‘standard electromagnetic field” we mean any solution of
Maxwell equations).

In physical terms, this can be understood in the following way. Take an
electromagnetic field with Poynting vector S = E x B. By a suitable Lorentz
transformation [with direction unit vector n and velocity parameter n given by
ntanh2n = 2S/(E? + B?)], we can change to a frame in which § = 0 at any
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prescribed point P, which means that E and B are parallel there [65]. Taking
their common direction as the Oz axis, the Faraday form can be written in the
form (131)

F =dt Nd(Ez) +d(Bx) Ady (132)

(because # is closed). In general, the Faraday form (or its dual) cannot be
expressed in a form simpler than (131), because it is of rank 4 and also of class 4
(this means that four 1-forms and four functions, respectively, are needed to
express it). However, in the important case of the radiation fields a simpler
representation is possible, since the Faraday form, which is only of rank 2 and
class 2, is degenerate and can be written in terms of only two functions
q(r,t),p(r,1) and two 1-forms dg, dp (a similar property holds for its dual) as
follows:

F =/adq \dp, *F = +Jadv \du (133)
The electric and magnetic fields then have the form

B = /aVp x Vg = /a(0ouVv — dpvVu)

E = aVu x Vv = v/a(8yqVp — dopVq) (139
Note that, in this case, the magnetic lines are contained in magnetic surfaces.
There are in fact two families of them, given by the equations p = py and g = gy,
where each line forms the intersection of two surfaces, one of each family (there
are also two families of electric surfaces u = ug and v = vg). The functions (p, )
and (u, v) are the Clebsch variables of B and E, respectively [63,64]. They can be
used as canonical variables [62]. As explained above, they are not uniquely
defined, but may be changed by canonical transformations.

We must emphasize that, given a constant a, any electromagnetic field may
be written in the form (131) and that, with this definition, the Clebsch variables
are dimensionless quantities.

It is easy to express the Clebsch variables of a knot in terms of the scalars.
If it derives from the scalars ¢ = Sexp(2iny) and 6 = Rexp (2imp) through
Egs. (10)—(13), it turns out that

1 1

“1rs q=", Vzm, u=p (135)

p

as can be seen by simple substitution in (134), and on comparison with (134)
later. It must be emphasized that, as is seen, this election of Clebsch variables
verifies the following two properties: (1) 0 < p,v <1 and (2) ¢g,u are phase
functions.
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We can now construct a topological model of electromagnetism in empty
space, which can be formalized by means of a variational principle as follows.
Let us take two pairs of dual scalars ¢y, 0, where k = 1,2 as fundamental fields
and define an electromagnetic field by the equations

7 = —Va($io + ¢30),  +7 = Va(6ic +0;0) (136)

where the asterisk superscripts indicate pullback of the area 2-form o in S? to the
Minkowski spacetime M = R® x R (identified here with $* x R) by the
corresponding map. Note that (136) has the same form as (131), since the two
terms on the right-hand sides of each of these equations can be written as exterior
products of differentials of function, because they are electromagnetic knots.

It seems logical to take as action integral

4

7= _lz J(g?(q)k) AN*T (&) ++F (00) A7 (0r)) (137)
k

which coincides with the usual form — % (F A xZ). The duality conditions
—x(¢p;0) = 670, k=1,2 (138)

must be imposed by means of the Lagrange multipliers method. It is very easy to
show that the corresponding Euler-Lagrange equations are

dF =0, d+F =0 (139)

since again the duality conditions do not contribute to these equations. This
means that they are naturally conserved under time evolution. In this way, we can
extend the topological model to a theory of electromagnetism in empty space,
which includes nonradiation fields, and uses electromagnetic knots instead of
radiation fields. We will see below-that it is locally equivalent to Maxwell’s
standard theory, as will be shown in next section.

In the same way as before, we could use as action integral

S = —%J(é’(dﬂ) A*F(01) + F(b2) A x7(62)) (140)

as in the previous case of only one pair of scalars.

Note that (139) are highly nonlinear in the scalars but become exactly the
linear Maxwell equations in the fields F,, and "F,. In this sense, the Maxwell
equations are the exact linearization (by change of variables, not by truncation!)
of a nonlinear theory with topological properties, in which the force lines
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coincide with the level curves of two scalar fields. The model thus gives a line
dynamics.

We end this section with a comment referring to the Cauchy data for the
scalars. In standard Maxwell theory, the Cauchy data are the eight functions
A,,00A,, and there is gauge invariance. In this topological model, they are the
four complex functions ¢(r,0), 6;(r,0), that is, eight real functions, con-
strained by the two conditions (Vd, x V) - (VO x VO,) =0, k= 1,2, to
ensure that the level curves of ¢, will be orthogonal to those of 0. It is not
necessary to prescribe the time derivatives 0gdy, 000y since they are determined
by the duality conditions (138), as explained above.

V. LOCAL EQUIVALENCE AND GLOBAL DIFFERENCE
WITH THE STANDARD MAXWELL THEORY

As we have seen, any pair of dual maps generates a standard electromagnetic
field. However, given a standard solution of Maxwell’s equations in empty
space, it is not true in general that there exist one pair of dual maps that generate
this field. In this section we examine this question. First, we will prove that any
radiation electromagnetic field is locally equal to an electromagnetic knot, and
hence that the topological model is locally equivalent to the Maxwell standard
theory, although they are nonequivalent from globally. Their difference relates
to the behovior of the fields around the point at infinity. After that, we will
examine more the difference more closely, showing the existence of what can be
called a ‘“‘hidden nonlinearity.”

A. Local Equivalence

The electromagnetic knots satisfy a very important property. In a precise way,
the following proposition holds true.

Proposition 2. Any standard radiation electromagnetic field in empty space
with Faraday 2-form 7, regular in a bounded spacetime domain D, coincides
locally with a knot around any point P € D in the following sense. There is a knot
with 2-form F*" such that 7*' = F*" around P, except perhaps if P is in a zero
measure set. The same property holds for x7*.

This means that the difference between the set of the radiation solutions of
the Maxwell equations and the set of the electromagnetic knots is not local but
global. In other words: Radiation fields and knots are locally equal. A proof is
the following.

Proof.  Let the Faraday 2-form of the standard radiation field Z#* be expressed
as (133), where p,g are two dimensionless functions of spacetime. We then define
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the functions 1, 0 as

1
n=n(p*+4%), o= %arctang (141)

It is then clear that

F = \/add A dn (142)

so that 1 and & give another election of the Clebsch variables of the standard field
(they are obtained from p,q by a canonical transformation). If an electro-
magnetic knot is generated by the scalar ¢ = Sexp(i2ny) through Egs. (9)—(10),
it is easy to show that

= Vady Nd ——o< (143)

1
(14 5?)

This means that #* will be a knot if there exist regular functions S(r), y(r), one-
valued at infinity, such that

1

N=1re =y (144)
The second equation poses no problem because 6 was defined as a phase
function. If n < 1, the solution for S is trivial, as the standard field with form Z#*
then becomes a knot. The same happens if 1 is bounded, say, if n < A, because
we can then take as the Clebsch variables ' = n/n’, 8’ = 1’3, where n’ is an
integer greater than A. Dropping the primes and entering the new Clebsch
variables in (144), it is clear that there then exists a solution for S, 7.

Let us consider the case in which 1 is not bounded in D [but F}, is
continuous and Eq. (142) is still valid]. Let X be the 3D set in which n diverges
(a zero measure set). In general, D — X consists of k£ connected open compo-
nents D;. Let D* C D; be k open subsets in which n is bounded. In each one of
them, we can deﬁne Clebsch variables ', &', by the same method as before. It
follows that the field is equal to a knot in each Dj*. Now, the volume of D — UDJ*
may be made as small as desired. This means that the magnetic field can be
obtained by patching together those of the knots 7 J]-‘", each one defined in the
corresponding D, except for a set as small as required containing X.. (Note that
there is no problem if any D; is not simply connected.) The same can be said of
the dual to the Faraday 2-form %", which coincides with the corresponding
2-form of a knot, except perhaps in a zero measure set ¥’. This means that any
radiation electromagnetic field coincides locally with an electromagnetic knot,
except perhaps on a zero-measure set. In other words, standard radiation fields
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can be obtained by patching together electromagnetic knots generated by ¢;, 6;,
each one defined in a different domain, except at most on the zero-measure set
> U Y. This ends the proof.

Traditionally, physics emphasizes the local properties. Indeed, many of its
branches are based on partial differential equations, as happens, for instance,
with continuum mechanics, field theory, or electromagnetism. In these cases, the
corresponding basic equations are constructed by viewing the world locally,
since these equations consist in relations between space (and time) derivatives of
the coordinates. In consonance, most experiments make measurements in small,
simply connected space regions and refer therefore also to local properties. (There
are some exceptions; the Aharonov—Bohm effect is an interesting example.)

The local equivalence that we have just proved implies that the predictive
contents of the Maxwell’s theory and of this topological model are exactly the
same when referred to local experiments, as most of them are. Accordingly, it is
not possible to discern between the two by viewing locally. This is the operative
meaning of local equivalence.

However, the fact that there is a difference of global character is very impor-
tant and has interesting consequences. As we will see, it provides a topological
structure. This is surprising and intriguing since it means that the linear Maxwell
equations are compatible with the existence of topological constants of the
motion, one of which is the electric charge. The topological model thus gives
something more than Maxwell’s theory: the quantization of the charge, as we
will see in Section VIIL.

It is convenient now to give examples of the expression of electromagnetic
fields in the form (142) or equivalently (9)-(12). We now present three
examples: the Coulomb potential, a plane wave, and a standing wave.

If ¢ = Pe?™, 0 = Ve™, it is easy to see that

1 1
BT A e
where ¢ and u are the other two Clebsch variables.

1. Coulomb potential, E = Qr/(4nr), B = 0. This field can be obtained
from the scalars

ct (22 +r2)? r B o
where o, B are the azimuth and the polar angle and r is any length. The Clebsch
variables are

72 ( P+ 2 l2)2

9=0 8ncy/ar’t

p

2[3 Qo

log(r/ry), v=cos =

2 "Tonva

P=(rraeny
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As can be seen, both scalars are regular everywhere except at r = 0 and
r = 0Q.

2. Plane wave, E = Ey(0,sino(x/c —1),0), B = Ey(0,0,sino(x/c —1)).
The two scalars and the corresponding Clebsch variables are

1+ cosw(x/c —1t) 4 mncEyy
= X
sinw(x/c — 1) l Vaow
1+ coso(x/c —1t) A4ncEyz
= exp| i
sino(x/c — 1) Vaw

andp =1 (1 — coso(x/c — 1)), g = (2cEpy/\/ao), v =% (1 — cosw (x/c — 1)),
u = (2cEgz/+/aw). It is seen that ¢ and 0 do not represent smooth maps §3 +— $?
because they are not well defined at infinity. However, there are smooth maps that
coincide with them in any bounded domain and that are well defined at infinity.
The fact that plane waves in all the space R? are not expressable as global knots is
not a matter of concern, since a plane wave extending to all 3-space is not in fact
a physical solution since it requires an infinite amount of energy.
3. A standing wave given by

(146)

Ag =0, A1 = Ap coskix sink,y sink3z cosmt
Ay = Agysinkyx coskyy sinksz cos ot (147)

A3z = Agzsinkjx sinkyy cosksz cos ot

which expresses one mode of a cubic cavity. The scalars that give this field can be
taken as

1—p . 1—v .
d) _ pez2rrq7 0= VezZRu (148)

where the Clebsch variables are equal to

1 3
p= 3 (1 + sinkjx sink,y sinkszcos mt), = Z \/_ log|smk X
1 3.2k x A
= 5(1 + coskjx coskyy coskszsinor), u= ; (\/f L )i log |cos k;x;]

Note that the scalar field ¢ (resp. 0) is not well defined in the planes k;x; = n;n
[resp. kix; = (n; + %)TC], where the n; are integers, where g (resp. u) diverges. But
there are scalars ¢, ,,, well defined and smooth in the finite domains
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mn < kix < (n + Dm, npn < kpy < (np + D1, n3n < kaz < (n3 + 1)w, which
generate the fields in each one of them (and similarly with 0). However, the
electric and magnetic fields cannot be produced by a pair of smooth maps
§%+ 5%, As we stated before, the fields can be obtained by patching together
knots defined in bounded domains. Locally, this electromagnetic wave coincides
with a knot around any point (except for a zero measure set), but there is no knot
coinciding with it throughout all the space R>.

B. Global Difference

Example (2) given above is interesting. The standard plane wave is used very
often even though it is in fact physically impossible—unless we can provide an
infinite amount of energy to produce such a state. That it cannot be an
electromagnetic knot is also clear. This is so because, in the case of the
electromagnetic knots, only one magnetic line and one electric line passes
through the point at infinity (because ¢ and 0 are one-valued there). Quite to the
contrary, for plane waves, an infinite number of lines go to infinity without
coming back (the scalar field is not even defined at infinity). This illustrates the
global difference between standard fields and electromagnetic knots. They
cannot be differentiated locally, but they behave in quite different ways around
infinity.

Example 1 above is considered in Section VIII to illustrate the topological
quantization of the electric charge, which is one feature of the topological
model.

VI. A HIDDEN NONLINEARITY

We have found a structure with two levels. At the deeper one, it is nonlinear
since the scalars ¢ and O obey highly nonlinear equations. However, the
transformation 7: ¢ — #, % given by (9) and (12)

T:0 — (F = —ad’c, xF =ab’c) (149)

where G is the area 2-form in $?, changes these nonlinear equation for ¢ and 0
into the linear Maxwell’s ones for % ,thus linearizing the theory. This is
important; the Maxwell equations are the exact linearization of a nonlinear and
topological theory (by change of variables, not by truncation!). The theory seems
to be linear if the equation is assumed to be satisfied by the field F,,, but it cannot
be really linear since the topological quantization of the helicity imposes the
nonlinear conditions

hm:JA-Bd3r:na, he:[C-Ed3r:na (150)
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It is clear therefore that one cannot obtain another solution simply by multiplying
B and E by a real number (or by adding two different solutions). A similar
situation arises in the work by Evans [57].

We call this unexpected and curious property ‘“‘hidden nonlinearity”. It is due
to the fact that the transformation T is not invertible, since there are solutions of
Maxwell’s equations for which 7-'.% is not defined. In other words, in some
cases there are no scalar fields ¢,0 generating %, which could be interpreted as
maps S>+—S? (as the three examples given above clearly show). As a conse-
quence, although all the electromagnetic fields of the topological model obey
the linear Maxwell equations, they do not span the vector space of all the
solutions, but form a nonlinear subset instead. More precisely, we have seen
that any standard electromagnetic field in empty space is locally equal to the
addition of two electromagnetic knots, except for a zero measure set. However,
the addition of all pairs of electromagnetic knots gives only a nonlinear subset
of the set of all the standard electromagnetic fields. Some standard fields are
lacking. This might appear disastrous, but the local equivalence shown earlier
indicates that it is not a matter of concern.

Which standard electromagnetic fields must be excluded from the topologi-
cal theory because they cannot be generated by a pair of dual maps? The fields
to be excluded are those with helicities not verifying the equations (150) and
also those for which the scalars do exist locally but do not behave well at infinity
or are not of class C' and for which the Hopf index cannot be defined. Contrary
to what it might seem, this is not necessarily a drawback of the model. In fact, it
can be said that Maxwell’s equations have too many solutions, since not all of
them can be realized in nature and because some of them have energy, or
momentum, that is infinite. Others are Coulomb or Liener—Wiechert potentials
coupled to charges that are not integer multiples of the electron fundamental
value e, or that would have been radiated by monopoles (if these particles do not
exist), or have discontinuities in surfaces, meant to represent in a simple way
changes of the field that are abrupt but continuous. Consequently, the fact that
not all the standard solutions are included in the topological model is not
necessarily a disadvantage.

In order to better understand the role of the hidden nonlinearity, let us
examine two properties of the knots.

1. If F,y is a knot, all its integer multiples nF),, are also knots. It is easy to
understand why. Let ¢ = Sexp(i2ns) and 6 = Qexp(i2ng). It is then a
simple matter to see that nF,, and n *F\,, are generated by the scalars d)(”> =
Sexp(ni2ns) and 0" = Qexp(ni2ng), which are clearly defined if n is an
integer. Note that the helicity of nF,, is equal to n* times that of Fy,.

2. If F,, is a knot and the scalars ¢ and 0 never take the values O or oo, then
all cF,,, where c is a real number, are also knots.
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This is so because cF, and c *F,, are generated by $'© = Sexp (ci2ns) and
09 = Qexp (ci2ng), respectively, which are clearly defined for any real c. Note
that in this case, ¢ and 0 are maps S>—R' x S!, which form only one homotopy
class. Note also that the helicities vanish in this case.

This shows that there is still some linearity. In particular, there is a subset of
knots that form a vector space and is therefore a linear sector of the model. It is
the set of the knots with zero helicity or with unlinked lines. Note also that the
theory is fully linear from the local point of view, as a consequence of the local
equivalence with Maxwell’s theory shown in Section V.A. By this we mean that
the set of the electromagentic knots contains all the linear combinations of
standard solutions around any point.

VII. TOPOLOGICAL QUANTIZATION
OF ELECTROMAGNETIC HELICITY

As was shown in Section II, the magnetic and the electric helicities of any
radiation electromagnetic field are equal. Moreover, in the case of the topolo-
gical model, the helicities of the knots verify

hm:JA-Bd3r:he:JC~Ed3r:na (151)

where B = VXA, E = VxC, a is the normalizing constant of the model, and n
is the common value of the Hopf indices of the two maps ¢, 0 : S3—52, which is
related to the linking number of any pair of magnetic or electric lines, as
explained in Section 1.D.

Furthermore, it was shown in Section II.C that the semisum of the two
helicities # = %(hm + h.) = na, which we call the electromagnetic helicity, is
a constant of the motion for any standard electromagnetic field in empty space:

H = hc Jd3k(aR(k)aR(k) — ag(k)az(k)) (152)

In the case of a knot, it follows that

n= %jd3k<ak<k>ak<k> ~ a(W)ay(K)) (153)

In QED, ag,a; are taken to be annihilation operators (and ag,a; creation
operators) for photons, where the integral on the right-hand side of (152) and
(153) is the operator for the difference between the numbers of right-handed and
left-handed photons Ny — N;. If the knots are classical, those Fourier transforms
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are functions, so that the integral in the right-hand side is the classical limit of
this difference. Consequently, the value of Ng — Ny for a knot is topologically
quantized and takes the value na/hc. (Note that this is true even if the knots are
classical fields.) This suggests a criterion for the value of the normalizing
constant. Taking a = #ic (in natural units, this is a = 1 and in SU a = Jicey,
where € being the permittivity of empty space), one has

n=Ng— N (154)

Equation (154) relates, in a very simple and appealing way, two meanings of the
term helicity, related to the wave and particle aspects of the field. At the left, the
wave helicity is the Hopf index n, characterizing the way in which the force
lines—either magnetic or electric—curl around one another (as explained before
n = {m?, where £ is the linking number and m the multiplicity of the map). At the
right, the particle helicity is the difference between the numbers of right-handed
and left-handed photons. This is certainly a nice property. It suggests that the
electromagnetic knots are worthy of consideration. Note that this property gives
anew interpretation of the number n. We know that it is a Hopf index. We see that
it is furthermore the difference of the classical limit of the numbers of right-
handed and left-handed photons.
All the electromagnetic knots verify the quantum conditions

h,, = h, = nhic, N —Np=n (155)

Note that the set of the electromagnetic knots contains some with very low
energy, for which n is necessarily very small. Even if they can be defined as
classical fields, the real system would have quantum behavior, since the action
involved would be of the order of 7. On the other hand, there are states with n
small and even zero, which have, however, macroscopic energy. They are those
for which Ng, Ny are large. When n is large, the photon contents are high and the
energy is macroscopic. These are the states for which the classical approximation
is valid.

This suggest that the set of the electromagnetic knots give a classic limit with
the right normalization.

VIII. TOPOLOGICAL QUANTIZATION OF ELECTRIC
AND MAGNETIC CHARGES

Quantization of the electric charge is one of the most important and intriguing
laws of physics. However, the value of the fundamental charge is obtained
through experiments, as all the efforts to predict it—or the fine-structure
constant o—within a theoretical scheme have failed so far.
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This important law is usually stated by saying that the electric charge of any
particle is an integer multiple of a fundamental value e, the electron charge,
whose value in the International System of Units is (SI units) e = 1.6 x
1071 C. The Gauss theorem allows a different, although fully equivalent,
statement of this property, namely, that the electric flux across any closed
surface X that does not intersect any charge is always an integer multiple of e
(we use the rationalized MKS system here). This can be written as

JE © = ne (156)

where o is the 2-form E - ndS, and n is a unit vector orthogonal to the surface, E
is the electric field, and dS is the surface element. We could as well write (156) as

J *F = ne (157)
s

where «Z is the dual to the Faraday 2-form # = 1F,,dx* A dx". Stated in this
way, the discretization of the charge is interesting because it shows a close
similarity to the expression of the topological degree of a map. Assume that
we have a regular map 0 of ¥ on a 2-sphere S? and let G be the normalized area
2-form in $. It then happens that

L L (158)

where 0%c is the pullback of & and n an integer called the “degree of the map,”
which gives the number of times that S? is covered when one runs once through ¥
(equal to the number of points in 3 in which 0 takes any prescribed value). Note
that 0" in (158) indicates pullback by the map 0 and must not be mistaken for the
complex conjugate of 0, which will be written 0.

Comparison of (157) and (158) shows that there is a close formal similarity
between the dual to the Faraday 2-form and the pullback of the area 2-form of a
sphere S2. It can be expressed in this way. Let an electromagnetic field be given,
such that its form =% is regular except at the positions of some point charges.
Let a map 0:R3—S” also be given, which is regular except at some point
singularities where its level curves converge or diverge. Then, Eqgs. (157) and
(158) are simultaneously satisfied for all the closed surfaces ¥ that do not
intersect any charge or singularity.

This means that the electric charge will be automatically and topologically
discretized in a model in which these two forms—*% and 6" c—are propor-
tional; the fundamental charge is equal to the proportionality coefficient and the
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number of fundamental charges in a volume then have the meaning of a
topological index.

This is exactly what happens in the topological model. Indeed, the dual to the
Faraday 2-form is expressed in it as

«F = Jab'c (159)

where a is a normalizing constant with dimensions of action times velocity.
Remember that the electric field is E = \/a (2mi) ' (1 + 00) >V0 x V0; the
electric lines are therefore the level curves of 0. The degree of the map X+ 5>
induced by 0 is given by (158); therefore

L «F = nva (160)

As this is equal to the charge Q inside X, it follows that Q = n+/a, which implies
that there is a fundamental charge g9 = \/a, where the degree n represents the
number of fundamental charges inside Y. This gives a topological interpretation
of n, the number of fundamental charges inside any volume .

It is easy to understand that n = 0 if 0 is regular in the interior of X. This is
because each level curve of 0 (i. e., each electric line) is labeled by its value
along it—a complex number—and, in the regular case, any one of these lines
enters into this interior as many times as it goes out of it. But assume that 0 has a
singularity at point P, from which the electric lines diverge or to which they
converge. If ¥ is a sphere around P, we can identify R* except P with ¥ x R, so
that the induced map 0 : X+S? is regular. In this case, n need not vanish and is
equal to the number of times that 0 takes any prescribed complex value in X,
with due account to the orientation. Otherwise stated, among the electric lines
diverging from or converging to P, there are |n| whose label is equal to any
prescribed complex number.

This shows why the topological model embodies a topological quantization
of the charge, because it entails the automatic verification of the equation (159).
This mechanism for the quantization of the charge was first shown in Ref. 33
and developed later in Refs. 26,34, and 35. As the magnetic field is B = —/a
i)~ (1 + $d) >V x Vo, the magnetic and electric lines are the level
curves of ¢ and 6, respectively.

To better understand this discretization mechanism, let us take the case of a
Coulomb potential [31,33], E = Qr/ (47tr3), B = 0. The corresponding scalar is

then
eztan(g)exp<i%(p) (161)
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where ¢ and ¥ are respectively the azimuth and the polar angle. The scalar (161)
is clearly defined only if Q = n+/a, where n is an integer. The lines diverging
from the charge are labeled by the corresponding value of 6, so that there are |n|
lines going into or out of the singularity and having any prescribed complex
number as their label. If n = 1, it turns out that 0 = (x + iy)/(z + r).

This mechanism has a very curious aspect—it does not apply to the source
but to the electromagnetic field itself. This is surprising; one would expect that
the topology should operate by restricting the fields of the charged particles.
However, in this model, the field that mediates the force is the one that is sub-
mitted to a topological condition. It must be emphasized furthermore that the
maps S°+— S2, given by the two scalars ¢, 0, are regular except for singularities
at the position of point charges, either electric or magnetic (if the latter do exist).
At these points, the level curves (i.e., the electric lines) either converge or diverge.

In the previous section, it was shown that the constant @ must be equal to
Vic in order to obtain the right quantization of the electromagnetic helicity.
This implies that the topological model predicts that the fundamental charge,
either electric or magnetic, has the value

go = Vic (162)

(in the MKS system), which is about 3.3 times the electron charge. In SI units,
this is go = v/ficeg = 5.29 x 10~'° C, and in natural units gy = 1. Note that this
applies to both the electron charge and the hypothetical monopole charge. This
property can be stated by saying that, in the topological model, the electromag-
netic fields can be coupled only to point charges that are integer multiples of the
fundamental charge gy = v/7ic. Note that the same discretization mechanism
would apply to the hypothetical magnetic charges (located at singularities of ),
and their fundamental values would also be gy = V/7ic.

A. The Fine-Structure Constant at Infinite Energy Equal to 1/41?

As the topological model as presented here is classical, this value of gy must be
interpreted as the fundamental bare charge, both electric and magnetic. The
corresponding fine-structure constant is clearly o = 1/4m, which is certainly a
nice number. We now argue that 1/47 is an appealing and interesting value for
the unrenormalized fine-structure constant (i.e., neglecting the effect of the
quantum vacuum). In that case, the topological model would describe the
electromagnetic field at infinite energy.

The argument goes as follows. Let us combine this topological quantization
of the charge with the appealing and plausible idea that, in the limit of very high
energies, the interactions of charged particles could be determined by their bare
charges (i.e., the value that their charges would have if they were not
renormalized by the quantum vacuum; see, e.g., Section 11.8 of Ref. 66).
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However, a warning is necessary. As the concept of bare charge is complex, it is
convenient to speak instead of charge at a certain scale. To be precise and avoid
confusion, when the expression ‘‘bare charge” is used here, it will be taken as
equivalent and synonymous to “infinite energy limit of the charge” or, more
correctly, “charge at infinite momentum transfer,” defined as e, = /4mhco,
where o, = lim o(Q?) when Q% — oo.

The possibility of a finite value for o, is an intriguing idea worth studying.
Indeed, it was discussed very early by Gell-Mann and Low in their classic and
seminal paper “QED at small distances’ [67], in which they showed that it is
something to be seriously considered. However, they could not decide from
their analysis whether e is finite or infinite. The standard QED statement that it
is infinite was established later on the basis of perturbative calculations. Never-
theless, and contrary to an extended belief, the alternative presented by Gell-
Mann and Low has not been really settled. It is still open, in spite of the many
attempts to clarify this question.

The infinite energy charge e, of an electron is partially screened by the sea
of virtual pairs that are continuously being created and destroyed in empty
space. It is hence said that it is renormalized. As the pairs are polarized, they
generate a cloud of polarization charge near any charged particle, with the result
that the observed value of the charge is smaller than e.,. Moreover, the apparent
electron charge increases as any probe goes deeper into the polarization cloud
and is therefore less screened. This effect is difficult to measure, as it can be
appreciated only at extremely short distances, but it has been observed indeed in
experiments of electron—positron scattering at high energies [68]. In other
words, the vacuum is dielectric. On the other hand, it is paramagnetic, since
its effect on the magnetic field is due to the spin of the pairs. As a consequence,
the hypothetical magnetic charge would be observed with a greater value at low
energy than at very high energy, contrary to the electron charge.

The coinage ‘“‘bare charge” is appropriate for e, as it is easy to understand
intuitively. When two electrons interact with very high momentum transfer,
each one is located so deeply inside the polarization cloud around the other that
no space is left between them to screen their charges, so that the bare values,
namely, e, interact directly. As unification is assumed to occur at very high
energy, it is an appealing idea that o, = ogur. Indeed, although this possibility
is almost always neglected, it is certainly worth of careful consideration. [It is
true that one could imagine that o(Q?) has a plateau at the unification scale
corresponding to a critical value smaller than o, but we consider here the
simpler situation in which that plateau does not exist.] This suggests that a
unified theory could be a theory of bare particles (in the sense of neglecting the
effect of the vacuum). If this were the case, nature would have provided us with
a natural cutoff, in such a way that ogyr = o (Where the subscript GUT
denotes grand unified theory).
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As a consequence of these considerations, it can be argued that the
topological model implies the equalities ogur = 0o = 1/4m. The argument
goes as follows.

1. The value of the fundamental charge implied by this topological
quantization ey = Ve is in the right interval to verify ey = es, = goo» that is, to
be equal to the common value of both the fundamental electric and magnetic
infinite energy charges. This is so because, as the quantum vacuum is dielectric
but paramagnetic, the following inequalities must be satisfied: e < eg < g, as
they are indeed, since e = 0.3028, ¢y = 1, g = ¢/20. = 20.75, in natural units.
Note that it is impossible to have a complete symmetry between electricity and
magnetism simultaneously at low and high energies. The lack of symmetry
between the electron and the Dirac monopole charges would be due, in this view,
to the vacuum polarization: according to the topological model, the electric and
magnetic infinite energy charges are equal and verify e go0 = eg = 1, but they
would be decreased and increased, respectively, by the sea of virtual pairs, until
the electron and the monopole charge values verifying the Dirac relation
eg = 2n [14]. The qualitative picture seems nice and appealing.

2. Let us admit as a working hypothesis that two charged particles interact
with their bare charges in the limit of very high energies (as explained above).
There could be then a conflict between (a) a unified theory of electroweak and
strong forces, in which o = o at very high energies and (b) an infinite value of
0. This is so because unification implies that the curves of the running
constants o(Q?) and o, (Q?) must converge asymptotically to the same value
agur-. It could be argued that, to have unification at a certain scale, it would
suffice that these two curves be close in an energy interval, even if they cross
and separate afterward. However, in that case, the unified theory would be just
an approximate accident at certain energy interval. On the other hand, the
assumption that both running constants go asymptotically to the same finite
value agur gives a much deeper meaning to the idea of unified theory, and is
therefore much more appealing. In that case, e,, must be expected to be finite,
and the equality ogut = 0l must be satisfied.

3. The value oy = €3 /4nhc = 1/4n = 0.0796 for the infinite energy fine-
structure constant o, is thought-provoking and fitting, since agyr is believed to
be in the interval (0.05, 0.1). This reaffirms the assertion that the fundamental
value of the charge given by the topological mechanism e( could be equal to e,
the infinite energy electron charge (and the infinite energy monopole charge
also). It also supports the statement that agyr must be equal to o and to 1/4m.
All this is certainly curious and intriguing since the topological mechanism for
the quantization of the charge described here [26,33-35] is obtained simply
by putting some topology in elementary classical low-energy electrodynamics
[24-25,26,30,31].
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We believe, therefore, that the following three ideas must be studied care-
fully: (1) the complete symmetry between electricity and magnetism at the level
of the infinite energy charges, where both are equal to v//ic and the symmetry is
broken by the dielectric and paramagnetic quantum vacuum; (2) that the
topological model on which the topological mechanism of quantization is based
could give a theory of high-energy electromagnetism at the unification scale;
and (3) that the value that it predicts for the fine-structure constant oy = 1/47w
could be equal to the infinite energy limit o, and also to agyr, the constant of
the unified theory of strong and electroweak interactions.

In this way the three quantities (both the electric and the magnetic fine-
structure constants at infinite momentum transfer and ogyr) would be equal.
Furhermore, there would be a complete symmetry between electricity, magnet-
ism, and strong force at the level of bare particles (i.e., at 0% = 0); this
symmetry would be broken by the effect of the quantum vacuum.

IX. SUMMARY AND CONCLUSIONS

In this chapter we have presented a topological model of electromagnetism that
was proposed by one of us (AFR) in 1989 [24,25]. It is based on the existence of
a topological structure that underlies Maxwell’s standard theory, in such a way
that the Maxwell equations in empty space are the exact linearization (by change
of variables, not by truncation) of some nonlinear equations with topological
properties and constants of the motion. Although the model is classical, it
embodies the topological quantizations of the helicity and the electric charge,
which suggest that it clarifies the relationship between the classical and quantum
aspects of the electromagnetism. Indeed, the model was developed in the spirit
described by the Atiyah aphorism ““Both topology and quantum physics go from
the continuous to the discrete.”

The main characteristics of the topological model are summarized as follows:

1. TIts topological structure is induced by the topology of the force lines
(both electric and magnetic). Indeed, it is based on the idea of electromagnetic
knot, defined (in empty space) as a standard electromagnetic field in which any
pair of magnetic lines and any pair of electric lines is a link. An electromagnetic
knot is constructed by means of a pair of complex scalar fields ¢, 0 with only
one value at infinity. The magnetic (resp. electric) lines are the level curves of ¢
(resp. 0). These scalars can be interpreted as giving two maps (termed dual)
from the sphere S to the sphere S?, which are characterized by the common
value of their Hopf indices n. The magnetic and electric helicities are
IA ‘Bd’r = f C - Ed®r = n (in natural units). An important feature is that the
Faraday 2-form and its dual are the pullbacks of o, the area 2-form in S, by the
two scalars, so that # = —¢ o, xF = 0"c.
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2. TItis locally equivalent to Maxwell’s standard theory in empty space (but
globally disequivalent). This means that it cannot enter in conflict with Maxwell’s
theory in experiments of local nature.

3. The linear Maxwell equations appear in the model as the linearization by
change of variables of nonlinear equations that refer to the scalars ¢,0. This
introduces a subtle form of nonlinearity that we call ‘‘hidden nonlinearity.” For
this reason, the linearity of Maxwell’s equations is compatible with the existence
of topological constants of the motion.

4. One of these topological constants of the motion is the electromagnetic
helicity, defined as the semisum of the magnetic and electric helicities, which is
equal to the linking number of the force lines

_!

H
2

J(A~B+C-E)d3r:n

Moreover, it turns out that Ny — N, = n, where Ng,N; are the classical
expression of the number of right-handed and left-handed photons (i.e., obtained
by substituting the Fourier transform functions ag(k), ar (k) for the quantum
operators agg, drk). This establishes a nice relation between the wave and
particle meaning of helicity (i.e. between the linking number of the force lines
and the difference Ny — Ny, referring to the photonic content of the field). This
suggests that the topological model could give the classical limit of the quantum
theory with the right normalization.

5. Another topological constant is the electric charge, which is, moreover,
topologically quantized; its fundamental value is go = v/%ic in the rationalized
MKS system (g9 = v/hceg in the SU system; go = 1 in natural units). Further-
more, the number of fundamental charges inside a volume is equal to the degree
of a map between two spheres S2. It turns out that there are exactly |m| electric
lines going out from or coming into a point charge g = mq, for which ¢ is
equal to any prescribed complex number (taking into account the orientation of
the map).

The topological model is completely symmetric between electricity and
magnetism, in the sense that it predicts that the fundamental hypothetical
magnetic charge would also be gg. Note that gy = 3.3 ¢ and that the correspond-
ing fine-structure constant is o9 = 1/4mw. It is argued in Section VIILA that g
could be interpreted as the bare electron and monopole charge. As the quantum
vacuum is dielectric but paramagnetic, the observed electric charge must be
smaller than g (it is equal to 0.303 gy), but the Dirac charge must be greater (it
is equal to 20.75 qp). This suggests that o could be the fine-structure constant at
infinite energy and, consequently, that the coupling constant of the grand unified
theory could also be o, = og = 1/4m.
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This is an indication that the topological model could give a theory of bare

electromagnetism or, equivalently, of electromagnetism at infinite energy at the
unification scale.

Our conclusion is that the topological model of electromagnetism is worth

careful consideration.
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A diagram, the holodiagram, which is based on a set of ellipses, was designed to
simplify the making and evaluation of holograms. It was, however, soon found
that this diagram could be used in many other fields of optics and, surprisingly,
also in Einstein’s theory of special relativity. Holography with ultrashort pulses
“light-in-flight recording by holography” can produce slow-motion pictures of
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light pulses. However, in such recordings a spherical light wave appears
deformed into one of the ellipsoids of the holodiagram (the two focal points are
the emitter respective the observer). The reason for this distortion is the limited
velocity of the light used for observation in much the same way as the cause of
the apparent deformations of fast-moving bodies described in special relativity.
The main difference is that in holography the distance separating the two focal
points of the ellipsoids is static while in relativity it is dynamic and caused by a
high velocity of the observer. Using this new graphical approach to relativity, we
find no reason for the Lorentz contraction; instead, we accept an elongation of
the observation sphere.

I. INTRODUCTION TO EINSTEIN’S SPECIAL
RELATIVITY THEORY

Special relativity is based on Einstein’s two postulates of 1905:

1. The same laws of electrodynamics and optics will be valid for all frames
of reference for which the equations of mechanics hold good.

2. Light is always propagated in empty space with a definite velocity ¢
which is independent of the state of motion of the emitting body.

In this chapter I would prefer to express these two postulates using the following
statements:

1. If we are in a room that is totally isolated from the outside world, there is
no experiment that can reveal a constant velocity of that room.

2. When we measure the speed of light (¢) in vacuum, we always get the
same result independent of any velocity of the observer and or of the
source.

To make such strange effects possible, it is assumed that the velocity results in
that time moves more slowly (so that seconds are longer), which is termed
relativistic time dilation, and it was assumed (by Lorentz) that lengths (rulers)
are shortened in the direction of travel (Lorentz contraction). The contraction
effect was presented by Lorentz [1] to explain the Michelson—Morley experi-
ments in 1881 and was later adapted by Einstein [2] in his famous special theory
of relativity [2]. Time dilation is more “real’” than the Lorentz contraction
because it produces a permanent result, a lasting difference in the reading of a
stationary and a traveling clock, while the Lorentz contraction is much more
‘“apparent” as it produces no permanent result; there is a difference in length
only as long as there is a difference in velocity of two rulers.

The Michelson—Morley interferometer compares the time of travel for light
rays along just two perpendicular one-dimensional paths, while holography can
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be used to make that comparison for light rays in all three dimensions. Thus,
there are reasons to believe that experiences from holography with ultrashort
pulses could shine new light on the theory of relativity.

II. INTERSECTING MINKOWSKI LIGHTCONES

Let us start by studying the Minkowski diagram [3], which is based on one cone
of illumination and one of observation. It was invented in 1908 to visualize
relativistic relations between time and space. In Fig. 1. we see our modification
of this diagram. The x and y axes represent two dimensions of our ordinary
world, while the z axis represents time (¢), multiplied by the speed of light (¢),
simply to make the scales of time and space of the same magnitude. Thus, in the
x—ct coordinate system, the velocity of light is represented by a straight line at
45° to the ct axis. As all other possible velocities are lower than that of light, they
are represented by straight lines inclined at an angle of less than 45° to the ct axis.

An ultrashort light pulse is emitted at A and slightly later an ultrafast
detection is made at B. The separation in time and space between A and B
could be either (1) static because A and B are fixed in space as in most
holography (in which case we would refer to the one who makes the experiment
the “rester”” (2) dynamic, caused by an ultrahigh velocity (v) of the person

Figure 1. An ultrashort light pulse is emitted at A, which is the apex of a Minkowski lightcone.
In our coordinate system x—y represent two axes of our ordinary world, while the third axis ct
represents time. The widening of the cone upward represents the radius of the sphere of light as it
increases with time. An ultrashort observation is later made at B, the apex of an inverted cone. The
only way for light to be transmitted from A to B is by scattering objects placed where the two cones
intersect. If the observer’s velocity (v) is high, this intersection will be an ellipse that is inclined in
relation to our stationary world.
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(called the ““traveler’’) who performs the experiment. In the original Minkowski
diagram the distance A—B was zero, but to adapt the diagram to holography, we
had to introduce a separation in both time and space. If there is a separation in
time only, the world will be seen intersected by spheres, but when the separation
in space is introduced, these spheres are transformed into ellipsoids.

We will first concentrate on the illumination cone. A spherical wavefront is
emitted in all directions from a point source (A) and expands with the speed of
light. In our chosen coordinate system, which is limited to only two space
coordinates and one time coordinate, this phenomenon is represented by a cone
with its apex at A, expanding in the direction of the positive time axis. The
passing of time is represented by cross sections of the cone by planes parallel to
the x—y plane at increasing ct values (Fig. 2). These intersections will, when
projected down to the x—y plane, produce circles of increasing radius that in our
3D world represent the expanding spherical wavefront from the point source at
A. As time increases, the circles around A expand, while those around B
contract. The ellipses caused by the intersection of those circles stay fixed and
unchanged as explained later, in Section IV.

Let us now more closely study the observation cone that intersects the
illumination cone. If a point of illumination represents a point source of light, a
point of observation represents a point sink of light, a point toward which
spherical waves are shrinking. In the Minkowski diagram, it is represented by a
cone that is inverted in relation to the lightcone, referred to as the observation
cone (B), which like the light cone has a cone angle of 90° and the observer at
the apex (B). Thus, an observer at B can see nothing outside this cone because of
the limited speed of light (c¢). The only general way for light to pass from the
illumination cone to the observation cone is by deflection, such as by scattering
from matter that exists at the intersection of the two cones. The only exception
is when the two cones just touch each other, which is the only case when light
might pass directly from A to B.

The intersection of the two cones produce an ellipse that in three dimensions
represents an ellipsoid of observation. In other words, it represents the traveler’s
surface of simultaneity that, to this traveler, who is situated at the apex (B) of
the cone of course appears spherical. The traveler’s time axis (ct!) is at a dif-
ferent direction than the time axis of the rester’s x—y plane (ct). Thus ob-
servations that appear to be simultaneous to the rester are not simultaneous to
the traveler and vice versa, because time varies in a linear fashion along the line
of travel.

To simplify the diagram of Figs. 1 and 2, we have drawn only two space
dimensions and time. If all three space dimensions had been included the
intersection of the two cones would represent the ellipsoid of observation,
where the apices (A and B) of the two cones are the focal points. The situation
will be the same regardless of whether the separation between A and B is static
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Figure 2. The relation between the Minkowski diagram and the holodiagram designed for the
creation and evaluation of holograms. The horizontal intersections of the two cones represent
different points of time, and the two sets of circles formed by those intersections are identical to the
two sets of circles originally used to produce the ellipses of the holodiagram as later described in
Fig. 5.

or caused by an ultrahigh velocity. Thus, our concept of ellipsoids of observa-
tion applies just as well to the evaluation of apparent distortions at relativistic
velocities as to radar, gated viewing, holographic interferometry, and hologra-
phy with picosecond pulses [4]. As soon as there exists a separation between A
and B, the spheres of observation are transformed into ellipsoids of observation.

In ordinary optics there usually exists perfect symmetry in relation to time.
The light rays are the same regardless of whether times goes forward or
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backward. In our diagrams of Figs. 1 and 2, however, the situation is different. A
change of A is observed after a delay, while a change of B is observed instantly,
as understood by the following example. If a star (A) that is one lightyear away
suddenly starts moving toward us, it will take one year before we see a Doppler
blueshift, but if we (B) suddenly start moving toward the star, the blueshift is
seen without delay. Thus, if A is moved, there is a delay until the cone of
illumination and the ellipsoids of observation are changed, but a motion of B
causes instantaneous change. On this the basis of this result, we will take a look
at the “twin paradox” and explain it as a result of this asymmetry (Appendix A)

III. HOLOGRAPHIC USES OF THE HOLODIAGRAM

Both holography and the special theory of relativity are based on interferometry,
which in turn depends on path lengths of light. Let such a pathlength be
represented by a string. Fix the ends of the string with two nails on a blackboard
and while keeping the string stretched draw a curve with a chalk. The result will
be an ellipse with its two focal points at the nails (Fig. 3). Thus, we understand
that if a light source is at one focal point (A) the pathlength for light to the other
focal point (B) via any point on the ellipse will be constant. If we could draw a
curve with chalk in three dimensions, the result would be a rotational symmetric
ellipsoid still with the focal points A and B. Now shorten the string by the
coherence length of a HeNe laser and produce another ellipse and finally, instead
lengthen the string by another coherence length. If we place a HeNe laser at A, a
hologram plate at B, and a reference mirror at the middle ellipse, we can record
any object within the two outermost ellipses because the difference in pathlength
for the light from the object and from the mirror will be within the coherence
length. If the coherence length, or the pulse length, of the laser is very short, we
will, on reconstruction of the hologram, see the object intersected by a thin
ellipsoidal shell. This method, termed ‘‘light-in-flight recording by holography,”
can be used to observe the three-dimensional shape of either a wavefront (or
pulsefront) or a real object [4].

If we instead produce a set of ellipses by frequently lengthening the string by
the wavelength of light (A), one interference fringe would form for every
ellipsoid intersected by each point on an object as it moves between two
exposures in holographic interferometry. On the basis of this idea, we produce
the holodiagram [5]. The separation of the ellipses at a point C compared to
their separation at the x axis is termed the k value, which depends on the angle
ACB. As the peripherical angle on a circle is constant, the k value will be
constant along arcs of circles passing through A and B as seen in Fig. 3. The
moiré effect of two sets of ellipsoids visualize interference patterns in holo-
graphic interferometry [6].
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Figure 3. Let us assume that a string is fixed with one end at A and the other at B. Keeping the
string stretched, a set of ellipses are drawn, and for each adjacent ellipse the string length is
increased by a certain constant value (AL). The separation of the ellipses varies with a factor k that is
constant along arcs of circles. In this holodiagram let A be the spatial filter in a holographic setup and
B be the center of the hologram plate. If AL is the coherence length of light, the diagram can be used
to optimize the use of a limited coherence in recording large objects. If AL instead represents the
wavelength of light, the ellipses can be used to evaluate interference fringes in holographic
interferometry or conventional interferometry with oblique illumination and observation. Finally, if
AL represents a very short coherence length, or pulselength, the ellipses visualize the spherical
wavefront from A as seen from B, deformed by the limited speed of the light used for the
observation.

To make the diagram easier to study, we have painted every second area
between the ellipses black as seen in Fig. 4. From this we can see how the
thickness of these areas, which represent the k value, varies over the diagram.
The k value is constant along arcs of circles that pass through A and B.
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Figure 4. To make the diagram of Fig. 3 easier to study, we have painted every second area
between the ellipses black. We see that the thickness of the areas varies with the k value throughout
the diagram.

Therefore, in Fig. 3 we have printed the k value where these circles cross the Y
axis. When the position in the holodiagram is known for a selected object point,
then the sensitivity is known in both amplitude and direction. Thus, the
holodiagram can be used to simplify the planning of the holographic setup
and the evaluation of the displacement from the number of fringes.

IV. APPLICATION TO INTERFEROMETRY

If an object point is moved from one ellipsoid half way to an adjacent one, then
the phase at B on the hologram plate will change by 180°. This means that the
interference pattern at B moves half a fringe separation. If we make a double
exposure with such an object motion in between the two exposures, then the
fringes on the hologram plate will be displaced so that where there was darkness
during the first exposure there will be brightness during the second and vice



ELLIPSOIDS IN HOLOGRAPHY AND RELATIVITY 263

versa. For this reason the fringes on the hologram plate will be wiped out at B,
and because there is no diffraction, the corresponding object point will appear
dark during reconstruction. Consequently, if, for example, a long object is fixed
to one end and the other end is moved so that it crosses five ellipsoids, the object
will be covered by five fringes in the reconstructed holographic image.

A movement parallel to one ellipsoid will not change the string length and
therefore causes no pathlength difference and consequently no fringes are
formed on the reconstructed object image, while a movement perpendicular
to the ellipsoids causes the most fringes. Later on we will show that the direction
perpendicular to the ellipsoids will be on the surface of a set of hyperboloids.
Thus, the hyperbolas represent the sensitivity direction, while the ellipses
represent the direction of zero sensitivity, and the closiness of the ellipses is a
measure of the sensitivity in that direction.

The separation between the ellipses varies over the diagram as seen in Fig. 3.
Thus, along the x axis to the left of A and to the right of B the sensitivity is half
the wavelength, and everywhere else it is lower. In between A and B it is almost
zero, but as we move outward along the y axis, it increases until, at an infinite
distance, it again becomes half the wavelength. We designate the separation as k
times the wavelength. Thus, this k value is a desensitizing factor that represents a
measure of how large a movement is necessary to produce one interference fringe.

Referring to Fig. 3 again, the displacement in the sensitivity direction can be
calculated from the number of fringes on the reconstructed object in the
following way: Displacement is k times the number of fringes multiplied by
half the wavelength. A greater k value caused by more grazing incidence of the
light rays works just as if there was a longer wavelength or a redshift of the light.

Let us study some more examples of this statement. When we look at a flat
object that scatters light, such as a page in a book, it appears more and more
mirror-like the more we tilt it, so that we look almost parallel to the surface. The
reason is that, to see a surface, that surface must have a microscopic structure
whose hills and valleys must be of a size comparable at least to the wavelength
of light. If the structure is finer, we do not see the surface itself; instead, we see a
mirror reflection, or, as it is also termed, a specular reflection. As we tilt the
surface, the k value increases which produces the same result as if there had
been an increase in the wavelength of the light, which is the same as a redshift.

Using the holodiagram, we have managed to lower the sensitivity of
holographic interferometry so much that an object movement of 2 mm caused
only two fringes. We also made an interferometer the ““interferoscope’ in which
the sensitivity could be changed from 1 to 5 um (micrometers) per fringe just by
changing the k value [7]. In this case the k value was about 16; had it been unity,
the sensitivity would have been half the wavelength or about 0.3 pm.

Another approach to this holodiagram is to draw one set of equidistant
concentric circles centered at A and another set at B as seen in Fig. 5. A number
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Figure 5. An alternative way to constract the holodiagram is to draw two sets of concentric
circles where for each adjacent circle the radius is increased by a certain constant value. One set of
ellipsoids and one set of hyperboloids are formed. If A and B are two sources of coherent light, or
two points of observation, the ellipsoids move outward with a velocity greater than the speed of
light, while the hyperboloids will be stationary. These hyperboloids represent the diffraction-limited
resolution of a lens and are used for in-plane measurements in holography, moiré and speckle
techniques. If A is a source of coherent light and B is a coherent point of observation, the
hyperboloids move with a speed greater than light to the right while the ellipsoids will be stationary.
These ellipsoids represent the interferometric limited resolution and are used for out-of-plane and
3D measurements.

of rhombs, or diamonds, are formed where the circles intersect. By painting
every second rhomb black one set of ellipses and one set of hyperbolas are
produced. The two diagonals of a rhomb are perpendicular, and thus the ellipses
and the hyperbolas intersect at right angles. One diagonal of the rhombs
represents the separation of the ellipses and the other, the separation of the
hyperbolas. The radius from A and B are termed R4 (resp. Rp). The set of ellipses
is represented by R4 + Rp = constant and the set of hyperbolas, by R, —
Rp = constant. If the separation of the concentric circles is 0.5, the separation
of the ellipses (one diagonal of the rhomb) at a point C is

0.5
Doy = —— = k- 0.51 (1)
coS
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while the separation of the hyperbolas (the other diagonal) is

~0.5n
~ sina

hyp (2)
where o is half the angle ACB of Fig. 3. The factor k of Eq. (1) is identical to the &
of Fig. 3, and its value is

- 3)

"~ cosa

Interferometric measured displacement (d) is calculated d = nk 0.5\, where n is
the number of interference fringes between the displaced point and a fixed point
on the object. In holographic, or speckle, interferometry, A is a light source from
which spherical waves radiate outward while B is a point of observation, or a
light sink, toward which spherical waves move inward (see Fig. 6). In that case
the hyperbolas will move with a velocity greater than light while the ellipses are

Figure 6. A light-in-flight recording of light focused by a lens. One single picosecond
spherical pulse from a modelocked laser at A illuminated a white screen at an oblique angle. The
screen was placed so that its normal passed trough the hologram plate at B. Part of the pulse was,
after an appropriate delay, used as a reference beam at B. A cylindrical lens was fixed to the screen,
and by multiple ephotographic exposures of the reconstructed image, the focusing effect of the lens
was recorded.
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stationary and Eq. (1) is used to find the displacement normal to the ellipsoids
(out-of-plane displacement). If both A and B are light sources, the ellipsoids will
move with a velocity greater than light while the hyperbolas (Young’s fringes)
are stationary, and the hyperbolas are used to evaluate the displacement normal
to the hyperboloids (in-plane displacement). The situation will be similar if A
and B both are points of observation while the light source could be anywhere.
Finally, if A-B represents the diameter of a lens, the minimum separation of the
hypebolas will represent the diffraction limited resolution of that lens [8] (except
for a constant of 1.22).

V. LIGHT-IN-FLIGHT RECORDING BY HOLOGRAPHY

A hologram is recorded only if object light and reference light simultaneously
illuminate the hologram plate. Thus, if the reference pulse is one picosecond
(10725 = 0.3 mm) long, the reconstructed image of the object will be seen only
where it is intersected by this light slice, the thickness of which depends on the
length of the pulse. If the reference pulse illuminates the hologram plate at an
angle from the left, for instance, it will work like a light shutter that with a
velocity greater than light sweeps across the plate. Thus, what happens first to the
object will be recorded farthest to the left on the plate, while what happens later
will be farther to the right. If the hologram plate is studied from left to right, the
reconstructed image functions like a movie that with picosecond resolution in
slow motion shows the motion of the light pulse during, for example, 1 ns
(nanosecond) (300 mm). This method, referred to as “light-in-flight (LIF)
recording by holography,” results in a frameless motion picture of the light as it
is scattered by particles or any rough surface. It can be used to study the
coherence function of pulses [9,10], and the 3D shape of wavefronts (Fig. 6) or of
physical objects [11] (Fig. 7).

Figure 8 shows the holographic setup used to produce a LIF hologram of
light reflected by a mirror. As the observer moves her eye, or a TV camera, from
left to right behind the hologram plates he will see, as in a frameless motion
picture, how the light pulse bounces off the mirror. Thus the method could be
said to represent four-dimensional holography that can record the three dimen-
sions of ordinary holography plus time.

If A and B are close together and if there are scattering particles, such as
smoke in the air, while observing the reconstructed hologram the experimenter
would find herself in the center of a spherical shell of light with a radius
R = 0.5ct, where (¢) is time interval between emission of light (at A) and
recording (at B). If, however, A and B are separated she would find herself in the
focal point B of an ellipsoid where A is the other focal point. The string length
(referring to Fig. 3) is R4 + Rp = ct. The thickness of the ellipsoidal shell
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Figure 7.  Light-in-flight recording of a set of spheres illuminated by a 3-ps laser pulse. The
light source (A) and the point of observation at the hologram plate (B) were close together and far
from the object. Thus, the intersecting ellipsoidal light slice can be approximated into a spheroidal
light slice with a large radius and a thickness of 0.5 mm.

would be k x 0.5¢ At, where At is pulselength (or coherence length) and £ is
the usual k value. If the distance A — B were infinite, the observer at B would be
in the focal point of a paraboloid. Thus, we have shown that a sphere of
observation appears distorted into an ellipsoid and a flat surface of observation
into a paraboloid and the sole reason for these distortions is the separation
A—B.

In Fig. 9 we see at the top the ordinary holodiagram where the eccentricity of
the ellipse is caused by the static separation of A and B. However, it is
unimportant what the observer is doing during the time between emission and
detection of light pulses. Thus, the observer could just as well be running from
A to B so that the eccentricity of his observation ellipsoid is caused solely by the
distance he has covered until he makes the observation. If his running speed is
close to the velocity of light, this new dynamic holodiagram is identical to the
ordinary, static holodiagram. This fact has inspired to the new graphical
approach to special relativity, which will be explained in Section IX, but let
us first study the development of Einstein’s special relativity theory.
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Hologram plate
Exposure of Light-in-Flight

lmage of Screen

Reconstruction of Light-in-Flight

Figure 8. During exposure of a light-in-flight hologram only those parts are recorded for which
the pathlengths of the reference beam and the object beam are equal. If during exposure you look
through the left part of the hologram plate, you will see only a bright line on the left part of the
screen. If you look through the right part of the hologram plate, you will see a bright line on the right
part of the screen. You will also see the light reflected by the mirror on the screen because the
pathlength of the reference beam R is equal to not only O; but also O,. One could say that each part
on the hologram plate records light of a certain age.

VI. THE MICHELSON-MORLEY EXPERIMENT

One way to understand special relativity is to see how time dilation and Lorentz’
contraction of objects parallel to motion can be used to explain the null results
of the Michelson—-Morley [1] experiment, which was performed to measure
the velocity of earth in relation to an assumed ether. The result was that the
expected influence of such an ether on the velocity of light was not found. Let us
now study this double-pass example, where one arm of a Michelson inter-
ferometer was perpendicular to the velocity of the earth’s surface, while the other
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was parallel. When the interferometer is at rest, the lengths of both arms are
identical.

Now, let me, the author, and you, the reader, be stationary in the stationary
space and study the moving interferometer from there. The velocity of the
interferometer from left to right is (v) while the speed of light is (¢). The time

Relativity

Figure 9. Two holodiagrams: (a) holography—the ordinary static holodiagram in which A is
the light source, B is the point of observation (e.g., the center of the hologram plate), while C is an
object for which the k value is 1/cos a; (b) the dynamic holodiagram in which an experimenter emits
a picosecond pulse at (A) and thereafter runs with a velocity close to the speed of light and makes a
picosecond observation at B. The k value is as before:

1 ct 1
k=—= =
CcoSs oL \/CZIZ — 272 \/1 V2
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for light to travel along the perpendicular arm when the interferometer is
stationary is #y. When it is moving at velocity v, the pathlength becomes longer
and therefore the travel time #, becomes longer. However, this increase in
traveling time of the light must not be observable by the traveling observer
because that would be against the postulate (1) of special relativity. But why is
this increase in traveling time not observed by the observer who is traveling
with the interferometer? The accepted solution is that this increase in traveling
time is rendered invisible because all clocks moving with the interferometer are
delayed by a certain value so that each second becomes longer. A great number
of experiments have supported this statement, and the slowing of time is termed
time dilation. If the time dilation is %, a traveling clock will show 3 s when a
stationary clock shows 4s. ‘

The delay along the parallel arm of the interferometer has to be exactly the
same as that of the perpendicular arm; otherwise the difference in arriving time
could be observed interferometrically and interpreted as a change in the speed
of light, which would be against Einstein’s postulates (1) and (2) . When the
light is moving in the same direction as the interferometer, the travel time will
be longer than when it is moving in the opposite direction. The total time will be
longer than that of the perpendicular arm. Thus, judging from the time of flight,
the parallel arm appears elongated in comparison to the perpendicular arm. In
order to fulfill postulates (1) and (2), it was decided by Lorentz that this,
elongation of the parallel arm that was apparent to the traveling observer was
compensated for by introducing a corresponding assumed contraction, namely,
the Lorentz contraction.

Thus we have found that time dilation has been proved by many experi-
ments and, as it produces a permanent delay, there is no reason to doubt its
existence. It is independent of the sign of the velocity of the interferometer and
it produces the correct result for a single-pass measurement as well as for the
demonstrated double pass. The slowing of time results in a longer wavelength of
the light from the source traveling with the interferometer, consequently the
number of waves in the perpendicular arm and thus the phase after a single or a
double pass through that arm is independent of the velocity (v) of the
interferometer. First we will just accept the time dilation as derived from the
effect of the arm perpendicular to velocity and then solely the arm parallel to
velocity.

The Lorentz contraction of the parallel arm is more complicated and cannot
be measured directly as it is not permanent but disappears when the velocity (v)
disappears. Thus, I find the discussion of assumed contractions or elongations of
a moving object meaningless as they are, by definition, invisible. I look at them
as only theoretical tools, and in the following section we will solely study how
the stationary world appears deformed when studied and measured by an
observer traveling with a velocity close to that of light.
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VII. INTRODUCING SPHERES OF OBSERVATION
TRANSFORMED INTO ELLIPSOIDS OF OBSERVATION

Let us compare static and dynamic separation of illumination and observation. A
person is performing experiments based on gated viewing, which means that a
short pulse of light (picosecond pulse) is emitted and, after a short time (e.g.,
20 ns), she makes a high-speed recording with a picosecond exposure time. If the
illumination point source (A) and the observation point (B) are close together, the
experimenter will find herself surrounded by a luminous spherical shell with a
radius of 3 m. This spherical shell can be seen only if something scatters the light,
for instance, if the experiment is performed in a smoke-filled or dusty space. If
there are large objects in the space, she will see these objects illuminated only in
those places where they are intersected by the sphere. The experiment described
can be used to map the space around the experimenter. This is identical to well-
known radar methods. By changing the delay between emission and recording,
intersections of differently sized spheres can be studied. In this way, the outside
world is mapped in polar coordinates.

If the illumination point (A) and the observation point (B) are separated, the
situation will be different. As the luminous sphere around A grows, the observer
will see nothing until the true sphere reaches B. Then, she will find herself
inside an ellipsoidal luminous shell. One focal point of the ellipsoid will be A;
the other, B. By changing the delay between emission and recording, intersec-
tions of ellipsoids with different sizes, but identical focal points, can be studied.
In this way the space around the experimenter can be mapped in bipolar
coordinates. The experimenter should know the separation of A and B so that
her mapping will be correct. If she erroneously believes the separation to be
zero, she will misjudge the ellipsoids as spheres and make errors, especially in
the measurement of lengths parallel to the line AB. She will also make angular
errors because of the angular differences between points on the spherical and the
ellipsoidal shells.

We shall take a closer look at the possibilities of applying the concept of the
ellipsoids to visualize special relativity more generally. Our goal is to find a
simple graphical way to predict the apparent distortions of objects that move at
velocities close to that of light and to restore the true shape of an object from its
relativistically distorted ultra-high-speed recording.

We have already described that, if the illumination point (A) is separated
from the observation point (B), the gated viewing system produces recordings of
intersections of ellipsoids having A and B as focal points. Now, let me, the
author, and you, the reader, be stationary in a stationary space and study what a
traveling experimenter (the traveler) will see of our stationary world when
he travels past at relativistic velocity using picosecond illumination and
observation.
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Instead of an assumed contraction of fast moving objects, I have introduced
the idea that the travelers’ spheres of observation by the velocity are trans-
formed into ellipsoids of observation. One advantage is that this new concept is
easier to visualize and that it makes possible a simple graphic derivation of
distortions of time and space caused by relativistic velocities. Another advan-
tage is that it is mentally easier to accept a deformation of spheres of observation
than a real deformation of rigid bodies depending on the velocity of the observer.

Our calculations refer to how a stationary observer (the rester) judges how a
traveling observer (the traveler) judges the stationary world. We have restricted
ourselves to this situation exclusively because it is convenient to visualize
ourselves, you the reader and I the author, as stationary. When we are stationary,
we find it to be a simple task to measure the true shape of a stationary object.
We use optical instruments, measuring rods, or any other conventional measur-
ing principle. We believe that we make no fundamental mistakes and thus
accept our measurements as representing the true shape. No doubt the traveler
has a much more difficult task. Thus we do not trust the traveler’s results but
refer to them as apparent shapes.

VIII. THE PARADOX OF LIGHT SPHERES

In Fig. 10a we see a stationary car in the form of a cube. An experimenter emits
an ultrashort light pulse from the center of the cube (A) and some nanoseconds
later makes an ultrashort observation (B) from that same place. The true sphere
of light emitted from (A) will reach all sides of the cube at the same time. Thus,
while performing the observation from (B), the experimenter will simultaneously
on all sides see bright points growing into circular rings of light. However, if the
car is moving at velocity v close to ¢, the true sphere, as seen by a stationary
observer, will not move with the car but remain stationary. The result will be that
the sphere reaches point E on the side of the car earlier than, for instance, point D
as seen in Fig. 10b. However, referring to Einstein’s postulates 1 and 2, this fact
must in some way be hidden to the traveling observer.

Figure 11 illustrates our explanation, which is that the traveler’s sphere of
observation is transformed into an ellipsoid of observation, as its focal points are
the point of illumination (A) respective of the point of observation (B) separated
by the velocity (v) as already described in Figs. 1, 2, and 9. The minor diameter
of the ellipsoid is, however, unchanged and identical to the diameter of the
sphere. The ellipsoid reaches E earlier than, for example, D, and therefore the
different sides of the cube are observed at different points of time. However, to
the traveler all the sides appear to be illuminated simultaneously, as by a sphere
of light that touches all the sides at the same time. The reason why the ellipsoid
to the traveler appears spherical is that A and B are focal points and thus
ACB = ADB = AEB = AFB.
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Figure 10. (a) Point A is the point source
of light and B, the point of observation. To the
traveling observer the sphere of light appears
centered to the cubic car, independent of its
velocity. Thus, she observes that all the sides
are touched by this sphere simultaneously. (b)
To the stationary observer the sphere of light
appears fixed to his stationary world. Thus, the
sphere will reach E earlier than D. This fact
must be hidden from the traveling observer;
otherwise he could measure the constant
velocity of the car, which would be against
Einsteins’ special relativity theory.
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Our new explanation is that to the traveling observer, her sphere of observation is
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by the velocity transformed into an ellipsoid of observation. However, to the traveler this ellipsoid
appears spherical because A and B are focal points of the ellipsoid and thus ACB = ADB = AEB.
Thus, to her the car appears cubic because she observes that all sides of the car are touched by this
sphere simultaneously, just as when the car was stationary. To the stationary observer this
simultaneity is, however, not true.
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The cubic car is shown elongated because time varies linearly along the car.
Point E appears farther to the left because it was illuminated and thus recorded
early when the whole moving car was farther to the left, while point D was
illuminated and recorded later when the car had reached farther to the right.
Thus the observations of the walls of the car appears simultaneous to the
traveler but not to the stationary observer (compare to the inclined intersection
of Figs. 1 and 2). As both the car and the ellipsoid of observation are elongated
in the direction of travel, there is no need for an assumed contraction to make
the velocity invisible to the traveler.

As time passes, the ellipsoid will grew and produce an ellipse on the ceiling
of the car. Even this phenomenon will be invisible to the traveler because it has
been mathematically proven that the intersection of an ellipsoid by a plane
appears circular when observed from any focal point of the ellipsoid [12].
Further on, if the car had not been cubic but instead had consisted of a reflecting
sphere with the light source in its center, the distortion into an ellipsoid would
still be invisible. The traveler would find no difference in the reflected rays.

IX. TIME DILATION AND APPARENT
LORENTZ CONTRACTION

Let us now see if this new idea about the observation ellipsoid produces the same
results as derived from the Michelson interferometry experiment. We, who are
stationary, the resters, understand that the traveler’s observation ellipsoid has its
focal points at A and B and that light with the speed of ¢ travels ACB of Fig. 11.
On the other hand, the traveler’s observation sphere is perceived, by the traveler,
as being centered at B, with the light simply having traveled with the speed of ¢ in
path ACB of Fig. 10a. Thus, the time dilation is the time ¢, it takes for light to pass
ACB divided by the time it takes to pass OCO (Fig. 11) where OC = cty,
CB = ct,, and OB = vt,. Applying the Pythagorean theorem on the triangle
OCB results in the accepted value of the time dilation [13]:

t, CB 1 1
Time dilation=t=—=— = —
rn CO y2  cosa
-5
¢

(4)

where k is the usual k value of the holodiagram. Stationary objects as measured
by the observation ellipsoid, or by any measuring rod carried in the car, will
appear to the traveler contracted by the inverted value of the major diameter ED
to the minor diameter CF of his observation ellipsoid:

. co V2 1
Lorentz contraction = CB- 1 - 2= cos oL = Z (5)
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This result is identical to the accepted value of the Lorentz contraction [14], but
our graphic derivation shows that this is true only for objects that just pass by
(Fig. 17). Objects in front appear elongated by OC/BD, while objects behind
appear contracted by OC/BE.

When the traveler emits a laser beam in his direction OC, it will, in relation
to the stationary world, have the direction AC, and its wavelength will be
changed by the factor AC/OC. When looking in the direction OC, his line of
sight will be changed to BC and the wavelength of light from the stationary
world will be changed by the factor BC/OC (the same change will happen to his
laser beam). This factor is well known as the “relativistic transversal Doppler
shift.”” Finally, using our approach, we find that v can never exceed c because
v = csina (Fig. 9).

X. GRAPHICAL CALCULATIONS

Let us now examine the emitted light rays in more detail and assume, in another
example, that the traveler who is moving from left to right directs a laser in the
direction BH of Fig. 12. The direction of the beam in relation to the stationary
world will then be AG. Point G is found by drawing a line parallel to the line of
travel (the x axis) from the point (H) on the sphere of observation to the
corresponding point (G) on the ellipsoid of observation. As the point of
observation is identical in space and time in the two systems, the center of the
sphere should coincide with the focal point of the ellipsoid of observation [15].

Figure 12. To the traveler an arbitrary point (G) of the stationary world appears to exist at H,
which is found by drawing a line of constant Y value from G to the sphere. As the traveler directs the
telescope in her direction BH, her line of sight in the rester’s universe will be GB. As the traveler
directs the laser in his direction BH, the direction of the laser beam will appear to be AG to the rester.
The Lorentz contraction is MN/ED.
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The angle of outgoing (emitted) light (o) and incoming (lines of sight) light (B)
are calculated from Fig. 12:

. v?
sin /1 — —

P (6)
—+cosh
c
)
sinyq/1 — v—z
tanp = ——— (7)

—X—&-cosk
C

These two equations, derived solely from Fig. 12, are identical to accepted
relativistic equations (see, e.g., Ref. 16). From Fig. 13a it is easy to see that the

Figure 13. (a) The graphical method
for finding the direction of light rays in Fig.
12 is independent of where along the x axis
in which the circle is situated. Thus, for
simplification it can just as well be placed in
the center of the ellipse. Thus, we see how
the outgoing laser beams are concentrated
forward as by a positive lens. (b) Again
using the method of Fig. 12, we find that the
lines of sight are diverged backward so that
the view forward appears demagnified as by
(b) a negative lens.
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emitted rays are concentrated forward as if there was a focusing effect by a
positive lens. This phenomenon, which was pointed out by Einstein, results in the
light energy from a moving source appearing to be concentrated forward for two
reasons. The light frequency is increased by the Doppler effect and the light rays
are aberrated forward. This explains why the electron synchrotron radiation
appears sharply peaked in intensity in the forward tangential direction of motion
of the electrons. In the backward direction, we have the opposite effect. The light
is defocused as if by a negative lens.

In Fig. 13b the line of sight is seen aberrated backward along a line through
G from focal point B of Fig. 12 . The traveler is still moving to the right, and her
direction of observation, the telescope axis, is in the direction BH. Thus, the
stationary world around the traveler appears concentrated in the forward direc-
tion as if demagnified by a negative lens. In the backward direction we have the
opposite effect. The stationary world appears magnified by a positive lens.

Let us again study Fig. 12 and calculate the Doppler ratio, which is the
Doppler shifted wavelength divided by the original wavelength. The traveler
observes the wavelength (A,) while measuring the true wavelength (Ao) from the
stationary world. Using some trigonometry, we get the following expression for
the Doppler ratio

v
1 ——cos
A BG Y
—:—:Cizk(l—Kcosy) (8)
7\.0 BH Vz C
1=
c

where (),) is the wavelength as seen by the observer who travels in relation to the
light source and (L) represents the wavelength as seen by the observer who is at
rest in relation to the light source. This equation, derived solely from Fig. 12, is
identical to accepted relativistic equations (see, e.g., Ref. 17).

Now let us study Fig. 12 again and seek the direction in which the traveler
should experience zero Doppler shift. She should not look backward because in
that direction there is a redshift. Nor should she look directly sideways because
even then there is a redshift, the relativistic transverse redshift. As forward is the
blueshift, she should look slightly forward. The way to find the zero Doppler
shift for incoming light follows from Fig. 12 where K is the point of intersection
for the traveler’s sphere of observation as seen by the traveler, and the ellipsoid
of observation as seen by the rester. Draw a line parallel to the x axis from K to
the corresponding point on the sphere (M). Thus BM is the direction the traveler
should look to see zero Doppler shift. The line BM is directed slightly forwards,
and from that fact we understand that redshift has to be predominant in universe
even if there were no expansion from a big bang but only a random velocity
increasing with distance.
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Now let us study Fig. 12 again and seek the direction (/) in which the traveler

should experience zero Doppler shift. She should not look backward because in
that direction there is a redshift. Nor should she look directly sideways because
even then there is a redshift, the relativistic transverse redshift. As forward is the
blueshift, she should look slightly forward. The way to find the zero Doppler
shift for incoming light (a) is as follows:
Draw a line parallel to the x axis from G to the corresponding point on the sphere
(K), where G is the point of intersection for the traveler’s sphere of observation as
seen by the traveler, and the ellipsoid of observation as seen by the rester. Thus
BK at the angle 7 is the direction the traveler should look to see zero Doppler
shift. BG at the angle 3 represents that direction after the line of sight has been
relativistically aberrated. The line AL, at the angle v, represents the light rays that
are emitted by the traveler and that the rester experiences as having zero Doppler
shift.

All equations solely derived from Figs. 9 and 12 are identical to accepted
relativistic equations (see, e.g., the references cited in Ref. 12).

XI. PREDOMINANT REDSHIFT EVEN
WITHOUT THE BIG BANG

In Fig. 14, we see the distribution in space of redshift and blueshift as an object
is traveling at different velocities. An object that emits light and moves to the
right at a velocity (v) that is low compared to that of light (¢) produces
blueshifted light forward and redshifted light backward. The situation is the
same for an observer traveling at the velocity (v); objects in front of him
appear blueshifted while those behind him appear redshifted. These state-
ments are based on the well-known Doppler effect. However, the closer the
velocity is to the speed of light, the more of the light is redshifted and the less is
blueshifted. This result can be derived either by our graphical method using the
ellipses of the holodiagram (Fig. 12), or based on Einstein’s statement that the
time of clocks (or atoms) that travel fast in relation to the observer is slowed
down [18,19].

Therefore, the fact that more distant stars are more redshifted (the Hubble
effect) does not prove that they are moving away from us, only that they are
moving at higher velocities than those stars that are closer by. Such a situation
appear quite natural. Stars might move in a random way, but move faster the
farther away they are. Perhaps because they are just like water molecules in a
turbulent river, or perhaps even simpler, because they rotate in relation to a
larger universe. In either case there would be a redshift that increases with
distance. Thus, the expansion of the universe and the big bang are not directly
proved by a redshift of distant stars.
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These statements are still clearer with the help of the diagram in Fig. 15. The
velocity away from the observer is named radial (vg.), while the one perpendi-
cular to that direction is vy. Both velocities are expressed in fractions of the
speed of light (c¢). Because c is the maximal velocity the diagram is limited by

the circle: ) 5
(ve)* + (vr)" = ¢ )

v=<(Q.1lc

v =0.6¢

v=0.9c¢

Figure 14. An object that emits light and moves to the right at a velocity v that is low
compared to that of light ¢ produces blueshifted light forward and redshifted light backward. The
situation is the same for an observer traveling at the velocity v; objects in front of him appear
blueshifted; those behind, redshifted. These conclusions are based on the Doppler effect. However,
the closer the velocity is to the speed of light, the more of the light is redshifted and the less is
blueshifted. This result can be derived either by our graphical method using the ellipses of the
holodiagram as seen here or by equations based on Einstein’s statement that the time of clocks (or
atoms) that travel fast in relation to an observer are slowed down. Therefore the fact that more
distant stars are more redshifted (the Hubble effect) does not prove that they are moving away from
us, only that they are moving at higher velocities than those nearer. Thus the expansion of the
universe and the big bang are not proved solely by a redshift of distant stars.
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Figure 15. Visualization of the Doppler shift d caused by a combination of radial velocity Vg
and transverse velocity V7. From this diagram, we see that large redshifts (d is positive) can be
caused even when there is a large velocity toward the observer (Vi is negative) if combined with a
sufficiently large transverse velocity.

The Doppler shift (d) is calculated from the following equation:

)
I
C

Thus the Doppler shift is the difference between the Doppler-shifted wavelength
(M) and the original wavelength () divided by A¢. The numerator is the classical
Doppler redshift from a moving light source, while the denominator represents
the red-shift caused by the relativistic time dilation resulting from the total
velocity, which is independent of the direction of motion.

g= B =2) T (%R) (10)
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When the transverse velocity is zero, Fig. 15 shows that the Doppler shift (d)
increases (redshift) with increasing radial velocity to the right, away from the
observer. The Doppler shift is negative (blueshift) when the radial velocity is
negative, to the left, toward the observer. When the radial velocity is zero, even
the Doppler shift is zero.

However, when the transverse velocity differs from zero, everything becomes
more complicated. Let us, for instance, study a Doppler shift of 0.5, which could
be caused by a radial velocity of 0.38c. This could just as well have been caused
by zero radial velocity combined with a transverse velocity of some 0.75¢. It
could even be caused by a radial velocity of —0.62¢ combined with the same
transverse velocity of 0.75¢. In the latter case, a motion toward the observer,
which should result in a blueshift, results in a redshift when combined with a
sufficiently large transverse velocity.

From the preceding statements, we understand that the true velocity of an
object cannot be deduced from the redshift alone. For a given redshift there
exists an upper limit to the radial velocity. It would be a great mistake to take for
granted that this upper limit represents the actual velocity of the object. This
cannot be determined without knowledge of the transverse velocity, and even
then there might exist two possible radial velocities for one redshift, as demon-
strated in previous example.

Thus, we have demonstrated, in the form of a diagram, the crosstalk between
transverse velocity and a radial velocity measured by red shift. As we shall se in
Section XII, the crosstalk between the radial velocity and the apparent transverse
velocity is demonstrated by the use of another but similar diagram. By adding
those two diagrams together we will finally find a method of evaluating the true
velocity of the light source.

XII. TRANSFORMATION OF AN ORTHOGONAL
COORDINATE SYSTEM

We shall now demonstrate how the diagram can be used for practical evaluation
of the true shape of rigid bodies, whose images are relativistically distorted. The
“true” shape is defined as the shape seen by an observer at rest in relation to the
studied object. Again, let a traveling experimenter at high velocity pass through
the stationary space (Fig. 16). She emits six picosecond light pulses with a
constant time separation of ¢. After another time delay of ¢, she makes one single
picosecond observation at B. Figure 16 shows how her spheres are transformed
into ellipsoids. Let us look at one stationary straight line that is perpendicular to
the direction of travel and see how it appears to the traveler. From every point at
which the stationary line (S—S) of Fig. 16a is intersected by an ellipsoid a
horizontal line is drawn to Fig. 16b until it intersects the corresponding sphere.
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Figure 16. The traveler of Fig. 12 emits ultrashort light pulses at A, A, A3, Ay, As, and Ag.
Finally he makes one ultrashort observation at B. The vertical straight line S-S in the stationary
world appears to the traveler to be distorted into the hyperbolic line $'-S".

The curve connecting these intersections in Fig. 16b then represents the straight
line of Fig. 16a as it appears distorted to the traveler.

In Fig. 17a a total stationary orthogonal coordinate system is shown, and in
Fig. 17b we see the corresponding distorted image as observed by the traveler,
who is represented by the small circle (i,0) passing from left to right. The
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Figure 17. Orthogonal coordinate system of the stationary world (a) appears distorted into that
of (b) to the traveler who exists at the small circle (i, 0) and is moving to the right at a speed of 0.6¢.
From the diagram we find that flat surfaces parallel to motion are not changed but those perpendi-
cular to motion are transformed into hyperboloids, while the plane (i—i) through the observer is
transformed into a cone. The back side can be seen on all objects that have passed this cone. The
separation of advancing hyperboloids is increased, while that of those moving away is decreased.
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identical transformation would occur if the observer at B were stationary and
instead the orthogonal coordinate system passed her with the constant speed of
0.6¢ from right to left.

All apparent displacements occur because different points on the object are
studied at different points of time. During this time difference, the object has
moved in relation to the observer, but only along its line of motion. Thus, flat
surfaces parallel to the direction of velocity are not changed in respect to
flatness, angle, or separation. From Fig. 17b, we find the following:

1. Flat surfaces moving toward the observer are transformed into
hyperboloids that appear convex to the observer.

2. Flat surfaces moving away from the observer are transformed into similar
hyperboloids that appear concave to the observer.

3. The flat surface passing through the observer (i—i) is transformed into a
cone.

4. The observer can see the back side of all objects that have passed through
the surface of the cone.

5. The spacing of the surfaces moving toward the observer is increased.

6. The spacing of the surfaces moving away from the observer is decreased.

7. Let the original spacing (d) rotate so that it is kept normal to the
hyperboloid surface. It will then always occupy the same angle of view as
the spacing of the hyperboloids. This confirms Terrell’s statement, that,
however, is true only for very small angles of view [20].

We have compared results from Fig. 17 with those of several other workers
and found good agreement. Bhandari states that a vertical line moving at high
speed assumes the shape of a hyperbola [21]. Mathews and Lakshmanan criticize
the concept of relativistic rotation and introduce “the train paradox” [22]. When
a fast-moving train is studied, should one imagine each boxcar to be rotated or
the train as a whole rotated? What happens to the stationary rails? Finally, they
conclude that the rotated appearance is not self consistent. We agree with this
statement. The train is easily visualized in our Fig. 17b as one of the horizontal
rows of deformed squares. From this, it is obvious that the distortion of the total
train cannot be explained solely by rotation.

However, the statements by Terrell that objects appear rotated but nondis-
torted are verified in Fig. 17 when the studied objects subtend sufficiently small
visual angles and changes in distances are neglected. Our diagram shows that
the solid angle of sight of the separation of the hyperboloids varies as if the
original separation (d) had rotated to keep it perpendicular to the hyperboloids.
Thus, each infinitesimal original square that has been distorted into a diamond-
like shape might, to the observer, appear to be rotated. Further, small spheres
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are transformed into ellipsoid like shapes that, however, cover approximately
the same solid angle of view as do the original spheres. It is interesting to note
that these two statements are equally true whether the object appears Lorentz
contracted or expanded as seen in the diagram in Fig. 17.

Even if Terrell’s statements in a limited way are verified by our diagram, it is
so only when the observation is made by a camera. As soon as holography is
included, it is easy to study variations in distances and then we understand that
his statements are only approximations of the true story. Using holography shear
and rotation can be distinguished so that the large-scale distortions as presented
in Fig. 17 are observed.

Finally, Scott and van Driel show that stars appear moved toward the point of
travel at increased speed [23]. It is also pointed out ‘““although a sphere remains
circular in outline, the apparent cross section may be grossly distorted and in
some conditions the outside surface of the sphere appears concave.” The last
statement is verified by our Fig. 17 where a flat surface that has passed the
observer appears concave.

We have up to now tested our graphical method of calculating relativistic
apparent distortions by comparing it with accepted relativistic equations, and we
have always found that it produces identical results. Let us do the same with
Fig. 17, which was published in 1985 and compare it to Fig. 4.13b of Mook and
Vargish’s book [24] published in 1987, Inside Relativity. In their figure the
orthogonal coordinate system is moving from left to right past a stationary
observer, while in our Fig. 17 a stationary orthogonal coordinate system is
studied by an observer moving from left to right. Therefore the two figures are
turned in different directions.

There are two more differences; (1) the speed of our observer is 0.6¢, while
the speed of their orthogonal system is 0.8c; and (2) we have studied the
apparent shape of flat surfaces as the observer is moving past, and through,
those surfaces, while they have studied a grid painted on a flat screen that travels
parallel to its surface at a distance of a tenth of the height of the grid. Therefore,
in our figure, the flat surface passing through the observer is seen as a cone
intersected along its axis producing a triangle with a sharp point at O. In their
figure, however, the intersection does not pass through the axis, and we see
another cone intersection that produces a hyperbola instead of a triangle. Apart
from these difference in conditions, the diagrams are identical, which is quite
impressive as their figure is produced by a computer using the accepted
relativistic equations, while our figure is produced in a graphical way by using
two pins, a string and a ruler.

Let us compare the apparent distortion of flat surfaces moving past an
observer at increasing relativistic velocities. Figure 17b represents an orthogo-
nal coordinate system moving from right to left at the speed of 0.6¢ past the
stationary observer at B. As the velocity is increased and approaches that of
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light, the cone angle (i,0,i) approaches zero. Thus all approaching objects
appear rotated through 90° so that their back side can be seen. The separation of
advancing hyperboloids approaches infinity, while those moving away are
transformed into paraboloids, and their separation along the line through the
observer (O) approaches zero.

It is interesting to compare these results with the apparent shape of the only
known flat surfaces that move with the speed of light, namely, flat wavefronts or
flat sheets of light that are studied by its scattered light by using the light-in-
flight technique. The cone angle is zero, and the back side of all visible wave-
fronts is seen. The separation of all approaching surfaces appears to be infinite.
As the wavefronts pass by they are tilted through 45° instead of approaching
90°. The wavefronts that move away from the observer are transformed into
paraboloids instead of hyperboloids. Their spacing appears to be half of their
true value instead of zero.

The main difference between a set of flat solid surfaces moving perpendi-
cular to their surfaces and flat wavefronts or flat sheets of light is that the former
experience Lorentz contraction, which the light surfaces do not. We could
expand this observation by stating that the Doppler shift is a sign and a measure
of relativistic transformations. The light reflected from a moving solid surface is
Doppler-shifted, but scattered light from a moving sheet of light is not. If wee
look at an advancing object, it will appear most blueshifted when it approaches
directly toward us. However, the color of a moving light sheet is independent of
from what angle it is observed.

The apparent length of the cars of a passing train is equal to the true
length only at the angle of sight of zero Doppler shift (close to G—-H in Fig. 17b).
The apparent length of light pulses, on the other hand, is equal to the true length
only at an angle of sight that is perpendicular to light propagation (d of
Fig. 17b).

The rules for the apparent distortion of wavefronts or pulsefronts are much
simpler than those of solid objects moving at relativistic velocities. In the follo-
wing, we will repeat the three simple rules concerning the practical use of light-
in-flight recordings for the study of the shape of wavefronts or stationary objects.

The curvature of a wavefront appears transformed into the curvature of a
mirror surface shaped so that it would focus the total wavefront into the point of
observation.The reason is that a focusing mirror reflects light in such a way that
the total wavefront arrives to the focal point at one point of time. Thus, a small
flat wavefront that passes by will appear tilted at 45°. A larger flat wavefront
will not only appear tilted but will also be transformed into a paraboloid whose
focal point is the point of observation. A spherical wavefront appears trans-
formed into an ellipsoid, where one focal point is the point source of light (A)
and the other is the point of observation (B). This configuration represents one
of the ellipsoids of the holodiagram.
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Light-in-flight recording by holography can be used to reveal the intersection
of a light slice and a scattering surface. By positioning this surface in a special
way, it is possible to produce a cross section of the apparent wavefront that is
identical to a cross section of the true wavefront. Such an undistorted view of
the true wavefront is formed if the scattering surface is a part of a sphere the
center of which is the point of observation. A good approximation of this
configuration is a flat surface at a large distance, parallel to the observer as seen
in Fig. 8.1 of Ref. 4. There is another way to reach the same result, namely, to
illuminate the object by light shining foward A, rather than by the light from a
point source at A. In that case, the ellipsoids are changed into hyperboloids and
the hyperboloid in the middle between A and B will be a flat surface.

XIII. CONCLUSION

In a new graphical way, we have solved optical problems found in the literature
regarding special relativity. To arrive at these results, we used the accepted
concept of the constancy of the speed of light and the following tools: a string
and two nails for making ellipses and a ruler, pen, and paper to draw the diagrams.

No extensive mathematical knowledge or profound knowledge about rela-
tivity is needed to make and use the diagram. The technique is based on a
slightly refined diagram, the holodiagram, which was initially designed for
holography and conventional interferometry. Simplicity and visualization are
the main advantages compared with application of the conventional equations
presented by Einstein. The result is that for each velocity one diagram shows, in
a concentrated form, the distribution in space of the following phenomena:

1. The Doppler shift, of which the transverse redshift is a special case

2. The aberration of light rays and lines of sight

3. The apparent rotation, which is found to be a part of the more general
object distortion

4. The Lorentz contraction, which is found to be a special case of apparent
expansions and contractions

5. The time dilation, which is found to be a special case of more general
apparent speeding up and slowing down of time

Furthermore, we have found that the diagram can be used instantly after that the
observer’s velocity has changed but not when the changes its velocity object’s
has changed. From this fact, we conclude that the ellipses (ellipsoids) of Fig. 16
and the cone of the diagram of Fig. 17b move at infinite velocity with the
observer but only with the speed of light with the observed object. There is good
reason to believe that this phenomenon produces the asymmetry needed to
explain the twin paradox of Appendix A.
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Finally, we have shown that our method can be used to predict the
relativistically distorted image or to restore the true image from it. The apparent
distortion of a flat surface that approaches the speed of light is compared with
the apparent distortion of a flat wavefront observed by holographic light-in-
flight recording. It is found that these distortions are not identical but their main
features are similar.

Inspired by the holographic uses of the holodiagram, we have introduced the
new concept of spheres of observation that by velocity are transformed into
ellipsoids of observation. In this way time dilations and apparent length con-
tractions are explained as results of the eccentricity of ellipsoids. Our approach
explains how a sphere of light can appear stationary in two frames of reference
that move in relation to each other. It visualizes and simplifies in a graphical
way the apparent distortions of time and space that are already generally
accepted using the Lorentz transformations. When the ellipsoids are used to
explain the null result of the Michelson—Morley experiment, there is no need to
assume a real Lorentz contraction of rigid bodies, caused by a velocity of the
observer. We have used our graphical concept to calculate, the time dilation, the
apparent Lorentz, contraction, the transversal relativistic redshift, the relativistic
aberration of light rays, and the apparent general distortion of objects. In all
cases our results agree with those found in other publications [25]. However,
using our approach we look at all those relativistic phenomena, except for time
dilation, as caused solely by the influence of velocity on the measurement
performed.

APPENDIX A: A MODIFICATION OF THE WELL-KNOWN
TWIN PARADOX

Two spaceships, named the Rester and the Traveler and comanded by captains of
those same names, both produce flashes of light at a frequency of exactly one
flash per second. The ships are first close together, but then the traveler starts his
ship’s rockets and travels to a star one lightyear away at a constant speed that
is one-tenth of the speed of light (c). After 10 years, the traveler turns and travels
back to the rester again, where both captains compare experiences (Fig. 18).

The traveler says: 1 saw that the frequency of your flashes became lower as [
traveled away from you, but after 10 years when I turned and traveled
back to you their frequency became higher, so that when we met after 10
more years, I found that the number of your flashes and my flashes during
the 20 years were exactly equal.

The rester says: 1 experienced exactly the same thing. The frequency of your
flashes became lower as you traveled away from me, but when you turned
and traveled back to me, their frequency became higher. But, there was
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The modified Twin Paradox
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Figure 18. Two rocket ships are at rest. Then one ship, the Traveler, starts its rockets and
travels at the speed of 0.1c to a star one lightyear away, turns, and comes back. During the travel
both ships produce flashes at exactly one flash per second. The traveler (the Traveler’s captain)
counts the flashes from the other ship, the Rester, and finds the frequency to be lower during the first
10 years and higher during the other 10. However, the captain of the other ship, the Rester, finds the
Traveler’s flash frequency to be lower during 11 years and higher during only 9 years. They have
counted different numbers of flashes, as if the Traveler’s time went slower.

one very important difference: 1 counted the flashes of lower frequency
during 11 years and the higher frequency during only 9 years. Thus, it is
impossible that the number of your flashes and my flashes during the 20
years were exactly equal. It appears as if I ought to have counted a lower
number of your flashes.

The traveler: The reason why you experienced my turning no sooner than
after 11 years is obvious; my turning point was one lightyear away from
you.

The rester: The changes in frequency are well known as the Doppler effect.
The reason is obvious—the longer the distance separating us, the more
flashes that are flying in the space between us and that have not yet
reached the observer. This phenomenon is, of course, symmetric and
independent of who the sender is and who the observer is.

Thus, again, it is impossible that both the traveler and the rester counted the same
number of flashes during the 20 years. But on the other hand it is also impossible
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that any flash simply disappeared. There is something fishy about this. Where did
they go wrong in their assumptions?

If we believe in Einstein, the answer to this problem is simple. The statement
that rester and traveler both counted the same number of flashes is incorrect; the
number of flashes from the traveler not only appears lower to the rester but it is
lower, because the time (the clock) of the traveler is slower. But does that really
give the solution to the paradox? Well, that is certainly worth thinking about.

The ordinary version of the twin paradox is based on knowing Einstein’s
statement that the time of fast moving objects is slowed down. The question is:
How do we know which one is moving if we have no references in empty space?
I, however, want to point out that if the observer changes velocity, this
immediately results in a change of the Doppler shift, but if the light source
changes velocity there is a delay before the observer notices any Doppler shift. I
think that this delay between cause and effect is of great importance in many
fields of physics and has not received the recognition it deserves. It is the same
as saying that if the position of point A of the holodiagram is changed, there will
be a delay before the holodiagram has adjusted itself to the new situation, but if
point B is moved, the holodiagram adjusts itself immediately.

APPENDIX B: FUNDAMENTAL CALCULATIONS
BASED ON THE HOLODIAGRAM

If we define resolution as the shortest distance corresponding to the formation of
one interference fringe, Fig. 5 represents the resolution limit of any possible
optical system using the corresponding geometric configuration. The diffraction
limited resolution and the ‘“‘interference limited resolution” are represented by
the separation of the hyperboloids and the ellipsoids, respectively.

In the following examples are presented where the resolution of Fig. 5 is
compared to corresponding values quoted from different references in which
other methods of calculation have been used. If there is a discrepancy, the value
of the reference is noted.

1. A and B are two mutually coherent points of illumination. The hyperbo-
loids represent interference surfaces in space. An object point passing through
these surfaces will produce a beat signal. Any measuring system based on this
configuration will have zero sensitivity parallel to the hyperboloids and
maximal sensitivity normal to the hyperboloids (parallel to the ellipses). The
resolution in this direction, is represented by the separation of the hyperboloids:

0.51
Resolution = —
sino
The diagrams of Fig. 5 can be utilised for the understanding and the use of the

following optical phenomena:
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I.1.
1.2.
1.3.
1.4.

L.5.
1.6.
1.7.

1.8.

1.9.

1.10.
1.11.

1.12.

1.13.

1.14.

1.15.

NILS ABRAMSON

Conventional interferometry [26]

Young fringes [27]

Bragg angle [28]

Fresnel zone plate producing a virtual image (any cross section of the
hyperboloids) [29]

Two-beam Doppler velocimeter [30]

Two-beam radar [31]

Ordinary and Lippman holography (A is object point, B is reference
point) [32]

Hologram interferometry (fringes seen on the hologram plate when
studied from the real image of an displaced object point) [33];
identical to the results of 2.6 and 3.4

Two-beam hologram interferometry (measurement of in-plane dis-
placement) [34]

Objective speckles; speckle size 0.61A/sina [35]

Speckle photography for in-plane measurement: resolution: 0.61%/
sina. (A-B is the lens diameter) [36]

Two-beam speckle photography (measurement of in-plane displace-
ment) [37]

Projected interference fringes (sensitivity direction is normal to object
surface and the resolution corresponds to the movement of a surface
point from one paraboloid to the adjacent) [38,39]

Focused spot size (A and B are two diametrical points on the lens);
resolution 0.61/sina [40]

Resolution of any optical system (necessary condition for resolution of
an object with the size AB is that the lens of observation at least crosses
one bright and one dark hyperboloid); identical to the results of 1.14
and 3.6

The moiré of two cross sections of the hyperboloids represents the difference
of two interference patterns. If the two cross sections are identical but one is
displaced, the moiré fringes also represent the loci of constant resolution in the
displacement direction. If one focal point is fixed, and the other one is displaced,
the resulting moiré pattern forms a new set of hyperboloids whose foci are the
two positions of the displaced focal point. This new pattern is independent of
the position of the fixed focal point (a rotation of one of the original spherical
wavefronts of Fig. 5 produces no moiré effect). Therefore hologram interference
fringes are independent of the position of the point source of the fixed reference

beam.
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2. A is a point of illumination, B is a coherent point of observation. B is the
center of ‘‘spherical wavefronts of observation” and has been brought to
coherence with A by receiving a direct reference beam. The ellipses represent
imaginary interference surfaces in space. An object point passing through these
surfaces will produce a beat signal. Any measuring system based on this
configuration will have zero sensitivity parallel to the ellipsoids and maximal
sensitivity normal to the ellipsoids (parallel to the hyperbolas). The resolution in
this direction is represented by the separation of the ellipsoids:

Resolution = ﬂ = 0.5k\
cos ol

The diagrams of Fig. 3-5 can be utilized to understand and use the following
phenomena:

2.1.

2.2.
2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.
2.11.
2.12.
2.13.

Conventional interferometry and interferometry using oblique illumi-
nation and observation [41,42]

Bragg angle

Fresnel zone plate producing real image (any cross section of the
ellipsoids) [53]

Holography (utilizing the coherence length, controlling the sensitivity
to unwanted movements) [26,52]

Hologram interferometry (evaluating displacement, planning the
resolution; one interference fringe is formed each time an ellipsoid
is crossed by an object point) [26,43]

Hologram interferometry using two points of observation [44]
(identical to the results of 1.9 and 3.4)

Hologram contouring using two frequency illuminations [45]

A 05y A

. = -0.5k\
M—X cosat A — A 0.5k

Resolution =

Gated viewing (the ellipsoids represent surfaces of constant time delay):
resolution = cf cos o0 = kct, where c is speed of light and ¢ is pulsewidth

Doppler velocimeter [46]: v = kf0.5A, where v is velocity and f is
frequency

Doppler radar [47]: v = kf0.5A

Relativistic Lorentz contraction = 1/cosa = 1/k (see Fig. 9)
Relativistic time dilation = 1/k

Relativistic transversal Doppler effect = k
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The moiré effect of two cross sections of the ellipsoids (Fig. 4) represents the
difference of two imaginary interference patterns. It also represents the
interference fringes of hologram interferometry [48]. If the two cross sections
are identical but one is displaced, the moiré fringes also represent the loci of
constant resolution in the displacement direction. If one focal point of the
ellipsoids is fixed and the other one is displaced, the resulting moiré pattern
forms a set of hyperboloids whose foci are the two positions of the displaced
focal point. This new pattern is independent of the position of the fixed focal
point (a rotation of one of the original spherical wavefronts of Fig. 5 produces no
moiré effect). Therefore, the movement of hologram interference fringes, when
studied from different points of observation, is independent of the position of the
fixed point source of illumination.

3. A and B are two mutually coherent points of observation. The informa-
tion from A and B are brought together in a coherent way, such as by a semi-
transparent mirror or by the use of a reference beam. Points A and B could even
be just two points on a lens. The hyperboloids represent imaginary interference
surfaces in space. An object point passing through these surfaces will produce a
beat signal. Any measuring system based on this configuration will have zero
sensitivity parallel to the hyperboloids and maximal sensitivity, normal to the
hyperboloids (parallel to the ellipses). The resolution in this direction is
represented by the separation of the hyperboloids:

0.5M

Resolution = ——
sin o

The hyperbolas of Fig. 5 can be utilized to understand and use the following
optical phenomena:

3.1. Doppler velocimeter using two points of observation [46].

3.2. Subjective speckles (A and B are two diametrical points on the
observations lens). The number of subjective speckles seen on the object
is equal to the number of objective speckles projected on to the lens;
therefore 3.2 and 1.10 give identical results.

3.3. Speckle photography where the camera lens is blocked but for two
diametrical holes (measurement of in-plane displacement) [49].

3.4. Hologram interferometry using two observations. The number of fringes
passing an object point when the point of observation is moved from A
to B is equal to the number of hyperboloids passed by that object point
between the two exposures. This number is also equal to the number of
hyperboloids of 1.8 seen between A and B. The results of 1.8 and 2.6
and 3.4 are identical.

3.5. Stellar interferometry (A and B are the two mirror systems in front of
a telescope objective or the two antennas of a radiotelescope). The
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resolution for double star systems is 0.5A/sinc, for large star
0.61\/sin o [50].
3.6. Diffraction-limited resolution of, for instance, a microscope (A and B

are the two diametrical points on the objective lens). Maximal
resolution is 0.61\/ o [51].

Thus, we have studied a great number of different optical systems. The
agreement between the accepted values of resolution and those found by the use
of the “holodiagram” of Figs. 3 and 5 is very good. The discrepancies found,
when a circular illuminating or observing area such as a lens is involved are
caused by the fact that the total area of the lens is used, not only two diametrical
points. To produce an image, some of the resolution has to be given up. The
graphical approach of the holodiagram also agrees well with accepted relati-
vistic equations.

The holodiagram appears to represent the fundamental resolution of any
optical system and to verify the relativistic distortions of time and space. Thus, I

Weaker gravitation as
Mercury advances

7

Stronger gravitation as
Mercury retreats

Figure 19. It is assumed here that the concept of the ellipsoids of observation apply to all fields
moving with the velocity of light, such as electric or gravitational fields. Thus, precession of the
perihelion of Mercury (the rotation of its elliptic orbit) can be explained by the asymmetry of the
gravitational forces as the planet advances toward (resp. retreats from) the sun.
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hope that it might become a useful educational tool that concentrates a large
amount of information into one unifying method.

APPENDIX C: OTHER POSSIBLE APPLICATIONS

Up to now we have used the concept of ellipsoids of observation to explain
apparent distortions of fast-moving objects as measured by light. However, these
ellipsoids of observation apply just as well for observations using other fields that
propagate with the speed of light, including electric or probably gravitational
fields. Thus, the precession of the perihelion of Mercury [25] can be explained
only by an asymmetry in the forces acting on the planet during its orbit. Such an
asymmetry is visualized in Fig. 19, where, because of the assumed limited
velocity of gravitation, the gravitational force varies as the planet advances
toward (resp. retreats from) the sun. Using similar approaches, it is possible to
develop our methods to visualize other relativistic effects such as kinetic energy
and magnetic forces as functions of the eccentricity of ellipsoids.
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I. INTRODUCTION

This chapter was originally planned as a review of the state of modern cos-
mology; however, on reflection, I decided that a more creative use of the
opportunity to contribute to this volume would be to lay before the reader
certain well-founded observational results that, at the very least, indicate that
our cosmos is not quite as well understood as we are commonly inclined to
believe.

Both pieces of evidence are in the mainstream literature, each is the subject
of continuing work, and neither has had any impact to date on mainstream
thinking.

After reviewing these observational results, I will argue that either alone
presents modern cosmology with a potentially fatal crisis—beyond the ability of
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any patch-and-mend device to “‘save appearances.” Accepting this, we go on to
suggest that the root of the problem lies in the failure of modern gravitational
theory to incorporate Mach’s principle in a sufficiently fundamental way, and
we briefly illustrate a way forward, to compensate for this deficit.

II. SOME BACKGROUND

A. General Comments

Both pieces of evidence concern spiral galaxies; the first concerns the nature of
the cosmological redshift measured for such objects, while the second concerns
the nature of spiral galaxy dynamics. To have a clear appreciation of the issues,
some background knowledge is useful.

First, it is useful to know that a model spiral galaxy can be considered to
consist of a central spherical bulge component, embedded in a rotating disk of
stellar and gaseous material with the whole embedded in a spherical halo of
very diffuse gas and “halo stars.” It is conventionally believed that this latter
component is much more massive than it appears, with the deficit made up of
“dark matter.”

Spiral galaxies rotate, with maximal rotation rates of, typically, 200 km/s
reached at distances of typically 10 kpc from the galactic centers (kpc =
kiloparsec, 1 parsec ~ 3.25 lightyears). Consequently, for a galaxy seen edge-
on, light from the receding arm will be Doppler-shifted to the red, while light
from the approaching arm will be Doppler-shifted to the blue. The profile of any
galaxy’s rotation across its disk is called its rotation curve.

Additionally, galaxies appear to have individual motions relative to their
local environment: the so-called peculiar motions. These motions are thought to
be generated by local gravitational interactions, and are not thought to exceed a
hundred or so km/s and give rise to additional true Doppler effects. Finally, the
light from all galaxies has a global distance-dependent redshift component—the
so-called cosmological redshift, which is usually quantified in units of velocity
as if it were a true Doppler shift.

B. The Astrophysical Distance Scale

Briefly, astronomers have two basic methods for estimating distance scales for
spiral galaxies that are independent of the observation of special standard
candles such as supernovae.

The first of these is the widely known Hubble law, which relates the distance
to an object to its measured redshift via the relationship cz = Hd, where c is the
speed of light in the vacuum, z is the measured redshift of the object, and H is
Hubble’s constant—typically estimated to be about 75 kms~' Mpc~' where
1 Mpc ~ 3.25 million lightyears.
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The second is using the Tully—Fisher relationship, which provides a direct
relationship between the absolute luminosity of a spiral galaxy and its maximum
rotation speed. Since the maximum rotation speed can be directly estimated by
observation, one can estimate the absolute luminosity; since we measure directly
the apparent luminosity, the inverse-square law allows us to estimate the
distance to the object concerned. For the present discussion, it is important to
understand that, at optical wavelengths, estimates of maximum rotation speeds
are generally extrapolations from rotation curve measurements.

C. Measuring Galactic Redshifts

In view of the foregoing, when astronomers are said to measure a galaxy’s
redshift, they begin by measuring a (very noisy) Doppler profile across the disk
of the galaxy that contains the three redshift components. That component
arising from the galaxy’s own rotation is subtracted by some form of averaging
process taken over the whole profile, leaving a measurement that consists of the
required cosmological redshift together with an irreducible component arising
from the galaxy’s own peculiar motion.

It is crucial to understand that, even assuming a zero peculiar velocity, it is
only rarely possible, even in principle, for this process to yield a cosmological
redshift to better than 10 km/s accuracy—and, because astronomers have no
particular need for highly accurate redshift determinations, the effort to obtain
them is rarely made.

D. Measuring Galactic Rotation Curves

The rotation curve is calculated in two steps: (1) by subtracting the global
redshift component (i.e., cosmological redshift + Doppler effect arising from
peculiar motion) from the Doppler profile measured directly across the galaxy’s
disk and (2) by determining the actual dynamical centre of the galaxy.

The process of estimating the global redshift component and estimating the
dynamical center is termed the process of ““folding the rotation curve.” Because
of the very noisy nature of the data, this process is very far from trivial,
especially if one is interested in accurate dynamical studies of spiral galaxies.

III. COSMOLOGICAL REDSHIFTS: ARE THEY QUANTIZED?

A. The Tifft Story

Around about 1980, William Tifft, a radio astronomer at the University of
Arizona in Tucson, had the wild idea that, perhaps, the cosmological redshifts of
galaxies had preferences for multiples of some basic unit. Subsequently, he
looked and made two claims [1,2]:
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e That the differential redshifts between galaxies in groups (obtained by
subtracting redshifts in pairs) were quantized in steps of 72 km/s

e That the redshifts of galaxies measured with respect to our own galactic
center were quantized in steps of 36 km/s

Initially, these claims raised quite a lot of interest—but it soon became apparent
that the claimed effects were deeply problematical from the point of view of
prevailing cosmology and, very conveniently, that Tifft’s own statistical methods
were very far from being robust. This latter fact made it very easy for the
community to ignore a potentially very difficult problem for the status quo.

Subsequently, Tifft has formed increasingly complex hypotheses, claiming
to see evidence for increasingly refined hierarchical systems of redshift
quantization. Irrespective of whether there is anything substantive in his claims,
Tifft failed to do the one absolutely necessary thing: perform a totally rigorous
analysis of a single well-defined hypothesis that could withstand any criticism
directed at it.

B. The Napier Story

The whole business would have probably faded away, forgotten for years, had the
astronomer Bill Napier (then at the Royal Observatory, Edinburgh) not taken
an interest in Tifft’s claims around 1987. Napier was by then well known as
the originator of “‘cometry catastrophy theory,” according to which the long
sequence of catastrophic species extinction, which is part of the geologic record,
has arisen because of the cyclical motion of the solar system in and out of the
galactic plane—with each passage through the plane bringing with it vastly
increased risk of cometry collision (see Clube and Napier [3] for first report).

This work had given Napier considerable expertise in the analysis of
phenomena that appear as potentially periodic, and it was this aspect of the Tifft
claim that aroused his interest. Napier’s personal view, then, was that the whole
thing was probably nonsense and that the claimed periodicities would evaporate
under rigorous investigation (private communications). Unlike Tifft, who
simply set out to look for redshift quantization at any periodicity, Napier, and
co-worker Guthrie, started with Tifft’s specific claim that such a quantization
existed with a period of 36 km/s—thus, he was in the quite different business of
testing a specific well-defined hypothesis. For the sake of simplicity, I will not
consider the equally important 72-km/s claim, since the story is essentially
similar.

Napier began by using Monte Carlo methods to establish that an essential
precondition for a rigorous analysis of the type proposed was the availability of
a sufficiently large sample of redshifts, each with formal accuracy better than
5km/s; anything less would result in even a real signal at ~36 km/s being
washed out by measurement errors.
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Napier’s co-worker, Guthrie, performed a very detailed literature search to
assemble a sample of 97 redshift measurements of the required accuracy—
taking care to reject any that had ever been used by Tifft in any of his claims.
This sample formed the backbone of the subsequent Napier—Guthrie analysis.

Remember that the original claim was that the effect existed in redshift
determinations that had been reduced to the frame of reference of our own
galaxy’s center. Since redshift determinations are routinely given in the solar
frame of reference, this amounted to the need to correct the redshifts in the
sample for the sun’s motion with respect to the galactic center. At the time,
1989, the solar vector determinations resided inside a very large error box, and
so Napier’s analysis had a lot of slack associated with this part of it. Even so, it
quickly became apparent that a very strong quantization effect emerged for
estimated solar vectors anywhere inside the error box, at a periodicity of
37.6 km/s (against the claim for 36km/s) [4-6]. Figure 1 shows the power
spectrum arising from their analysis after redshift determinations have been
corrected for the solar motion, using an estimated solar vector V = 220 km/s,
1 =95° b= —12° where [ is the galactic longitude and b is the galactic
latitude. Extensive Monte Carlo simulations give a probability of ~ 1073 for a
signal like that of Fig. 1 to have arisen by chance alone.

PSA of 97 spiral galaxy redshifts
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Figure 1. The power spectrum analysis of Guthrie and Napier’s first sample of 97 redshifts.
This peak power occurs when redshifts are corrected for the solar motion with respect to our galactic
center.



ASTROPHYSICS IN THE DARK: MACH’S PRINCIPLE LIGHTS THE WAY 303

Subsequent to this initial publication, the satellite Hipparchus has been
launched, which has resulted in very refined conventional determinations of the
solar vector error box; concurrently, Napier has reversed the Napier—Guthrie
analysis, assuming the prior existence of the 37.6-km/s effect using it to obtain
independent determinations of the solar vector error box. These lie wholly
inside the Hipparchus error box determinations.

This analysis has been repeated on independent (although less accurate)
samples (one of which was donated by one of the anonymous referees of the
original publication) with similar results. Napier and Guthrie’s parallel analysis
of the claims for 72km/s for differential redshifts between galaxies in groups
has been similarly successful, and has equally bizarre implications.

To summarize, Tifft’s original claims have been strongly and independently
substantiated by the Napier—Guthrie analysis; this latter analysis has appeared in
the mainstream literature and stands increasingly secure as Hipparchus
observations continue to tighten the solar error box. Any serious thought about
these two effects soon convinces one that the implications for cosmology are
profound—and very difficult to comprehend.

IV. IS GALACTIC EVOLUTION CONFINED
TO DISCRETE STATES?

This question arose in the course of a routine analysis of galaxy rotation curve
data by myself (see Section II), which was originally driven by a prediction
arising from an extension of the theory, to be briefly described in the latter
sections of this chapter. This theoretical prediction was to the effect that, in an
“idealized spiral galaxy” (i.e., one without any central bulge and with perfect
rotational symmetry), then the circular velocity should have the general form
V = AR®*, where R is the radial distance from the center and (A,o) are
parameters that vary from galaxy to galaxy. It is necessary to understand that,
generally speaking, it is clear from real data that a simple power law cannot
apply over the whole radial range of the typical spiral galaxy; at best, it can have
any applicability at all only in the so-called optical disk (i.e., in that portion of
the disk component of the galaxy that emits visible light). Astronomers
generally treat rotation curves in their entirety, and describe them with very
complicated phenomenologically derived functions, and ignoring the obvious
fact that spiral galaxies are manifestly composed of at least three distinct
dynamical regions: a spherically symmetric central part, a rotationally sym-
metric intermediate disky part, and an optically diffuse spherically symmetric
outer part. The power law hypothesis arose from theoretical considerations of a
purely disk mass distribution, and can therefore have a possible applicability
only in the disk regions of spirals.
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The original analysis (of the rotation curves of 900 individual galaxies) was
based on the rationale that, if the data were viewed through the “filter” of the
power law hypothesis, then, if the hypothesis was “good enough,” unsuspected
new relationships between the dynamical and the luminosity properties of spiral
galaxies might be revealed. This turned out to be very much the case, and much
that was new and interesting was uncovered and is now available in the
literature [7].

However, this work led to the almost incidental discovery of an effect that, at
the very least, reminds us that the cosmos is not quite as well understood as we
like to believe, and that almost certainly indicates the need for a revolution in
cosmology.

A. A Numerical Coincidence

Given my complete initial ignorance of rotation curve data, and its typical
forms, the story began with the decision to perform a practise minianalysis of
the first rotation curve sample ever published—the 21 rotation curves published
by Rubin et al. [8]—from the point of view of the power law hypothesis,
V = AR*. Of the 21 rotation curves, 9 exhibited very strongly nonmonotonic
behavior in their inner regions and were obviously poor candidates for any
power law fit, and so were rejected on these purely subjective grounds. For each
of the remaining 12 rotation curves, I computed the parameter pair (InA, o) by
a simple regression procedure; the results for InA (rounded to one decimal
place) are tabulated in Table I. It was immediately clear that, after allowing for
the rounding process, every singly value was within +0.15 of being an integer
or half-integer value—a result that (ignoring its aposteriori nature) can be
computed as being a 1: 500 chance. Before continuing, it is necessary to clarify
the fact that the In A scale is ultimately determined by the galactic distance
scale, which Rubin et al. fixed by using Hubble’s law with H = 50 kms™!
Mpc !, the preferred value in the early 1980’s. Consequently, had Rubin used a
contemporary value (nearer to 80 kms~! Mpc™'), the integer/half-integer

TABLE I
Twelve RFT“ 1980 Spirals
Galaxy In A Galaxy In A
N3672 3.6 U3691 3.6
N3495 4.0 N4605 4.0
10467 4.1 NO0701 4.1
N1035 4.1 N4062 4.5
N2742 4.5 N4682 4.5
N7541 4.6 N4321 4.9

“Rubin-Ford-Thonnard.
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structure would have given way to something else. The real point of interest is
therefore the apparent regularity the InA distribution manifested in Table 1.

At the time, I considered this to be almost certainly a numerical coincidence,
but one worth investigating once the primary task that I had in mind had been
completed.

B. Essential Data Reduction

It is necessary to introduce a little detail into the story. An essential step in the
minianalysis referred to above was the decision to reject certain rotation curves,
made on the basis of the subjective judgment that they were not ‘“monotonic
enough” in their innermost regions. In effect, I was rejecting those galaxies for
which there appeared to be a particularly strong influence of the bulge on the
disk dynamics.

While this subjective approach was perfectly justifiable for a small
experimental analysis, it could play no part in the large analysis contemplated
for which all decisions had to be made in an automatic “‘blackbox’’ fashion. We
dealt with this problem by writing a piece of software that automatically cut out
the innermost parts of rotation curves that were judged, according to objectively
defined statistical criteria, to be unusually affected by the presence of the bulge.
The effectiveness of this process was tested by means completely independent
of the present considerations.

C. Chasing the Coincidence

The primary task was to test the power law hypothesis, and to this end I had
obtained a sample of 900 optical rotation curves, originally measured by
Mathewson et al. [9], and folded (see Section II.D) by Persic and Salucci [10],
two Italian astronomers.

For this sample, the galactic distance scale has been set by Mathewson, Ford,
and Buchhorn (MFB) using the Tully—Fisher relationship, which sets distance
scales by using an observed correlation between the maximum rotation velocity
of a spiral and its absolute luminosity, and so is quite distinct from Hubble-
based distance determinations. Even so, the Tully-Fisher method gives an
absolute scale only after calibration, and the MFB calibration gave a scale that
was statistically similar to a Hubble scale using H = 85kms~! Mpc~!.

With this information, the results of the primary analysis of the 900 rotation
curves made it possible to recalibrate the Table I to give specific predictions for
the existence of preferred InA values in the folded MFB sample, and these
predictions are given in Table II.

Table II represents a set of specific predictions about the In A distribution for
the 900 folded MFB rotation curves, and it is these that were to be tested against
the MFB sample.
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TABLE 1T
In A Data
RFT Scale Predicted Value
with MFB Scale
3.5 3.81
4.0 4.22
4.5 4.63
5.0 5.04

D. The Results

We present the totality of our results. The computation of In A for each galaxy
requires the following:

e A measured rotation curve for the galaxy.

e The folding of each rotation curve (see Section II.D). This data reduction
process is nontrivial, and different people have their own favored methods.

e An estimate of the maximal rotation velocity for the galaxy. Such
estimates are problematical for optical data, such as those analyzed here,
and different people have their own favored methods of estimation.

o A Tully—Fisher calibration for the sample to get the distance scale. These
can vary between samples owing to the details of photometric methods
used by astronomers.

e An automatic and predefined ‘“‘blackbox” technique for removing the
effects of the bulge on disk dynamics.

In the present case, we have three distinct samples obtained by two independent
groups of astronomers, two distinct folding techniques, three distinct methods of
estimating maximal rotation velocities, and one method for removing bulge
effects that has been tested by means independent of any of the present con-
siderations. As we shall see, the results are not affected by any of these variations.

E. The Mathewson-Ford-Buchhorn (MFB) Sample Folded
by the Persic-Salucci Eyeball Method

Figure 2 gives the In A frequency diagram for the rotation curves of 900
southern sky spirals, observed by the Australian astronomers Mathewson et al.,
(MFB) [9] using Australian telescopes at Siding Spring. MFB estimated
maximum rotation speeds for each galaxy (for use in the Tully—Fisher distance
relationship) using a subjective eyeball technique.

These rotation curves were folded by the Italian astronomers Persic and
Salucci [10] using a case-by-case eyeball technique. The short vertical bars give
the positions of the predicted peak centers given in Table II, and it is
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Figure 2. The MFB sample folded by the Persic—Salucci [10] eyeball method.

immediately clear that the predictions are strongly fulfilled on this sample.
These initial results are now in the literature [11].

F. The MFB Sample Folded by the Roscoe Automatic Method

I considered the potential implications raised by the strongly positive result of
the first test of the hypothesis of Table II to be so profound that tests on further
samples became absolutely essential. Since the Italian folding method was
(extremely) time-consuming, it was necessary to develop automatic methods for
this part of the data reduction process; this turned out to be a nontrivial exercise,
and the details of the method have been published [12].

For completeness, we show, in Fig. 3, the In A frequency diagram for the
rotation curves of the MFB sample (originally folded by Persic and Salucci
[10]) folded by this automatic method; the vertical dotted lines indicate the peak
centers of the Persic—Salucci solution. The clarity with which the peaks in this
latter solution are reproduced in Fig. 3 indicates (1) that the peaks of Fig. 2 are
not an artifact of the Persic—Salucci method; and (2) that the automatic
algorithm works.

G. The Mathewson-Ford Sample Folded by the
Roscoe Automatic Method

The next sample of 1200+ rotation curves was observed by the Australians,
Mathewson and Ford (MF) [13] (Buchhorn had discovered that astronomy pays
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Figure 3. The MFB sample folded by the automatic method of Roscoe; the vertical dotted lines
indicate peak centers of Persic—Salucci [10] solution.

less than the bond markets), and was the first independent sample folded by the
new software; the maximum rotation velocities of each galaxy were again
estimated using a subjective eye-ball technique.

This sample is, on average, about 70% more distant that the MFB [9] sample
so that, on average, only about 30% of the light is received at the telescope. For
this reason, we expect a considerable attenuation of the signal.

The resulting In A diagram is shown in Fig. 4, where the vertical dotted lines
indicated the peak centers of the A, B, C, D peaks of Fig. 3. Notwithstanding the
obvious signal attenuation (in comparison with Fig. 3), the coincidence of the
peak structures is exact.

H. The Courteau Sample Folded by the Roscoe Automatic Method

The results obtained from the first two samples analyzed (one of which was
folded using two quite distinct methods) indicate that something profound has
been uncovered—unless, perhaps, the observing astronomers [9] were somehow
inadvertently introducing the signal into the sample. However, given the
necessity of further reducing the data to remove bulge effects using our ‘hole-
cutting’ technique, and the a priori ignorance on the part of MFB and MF of this
future process, this seems to be an extremely remote possibility. Even so, given
the profound nature of the claimed result, it is a possibility that must be
accounted for. For this reason, we obtained the only other available substantial
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Figure 4. The Mathewson—Ford sample folded by the Roscoe automatic method; the vertical
dotted lines indicate the peak centers of Fig. 3.

sample in existence, consisting of 305 northern sky spirals, and observed by the
Canadian astronomer Courteau using U.S. telescopes at Lick Observatory and
Las Palmas.

This sample was used by Courteau [14] in a study of systematic ways of
defining maximum rotation speeds for spirals (remember that MFB and MF
used subjective methods), and we present the In A diagrams resulting from his
stated best and worst methods of estimating these maximum speeds in Figs. 5
and 6, respectively. Except for the A peak (which is at the dim end of all the
samples, and therefore suffers from small numbers), the peak positions are
exactly reproduced.

I. Conclusions

We began with an explicit hypothesis made on the basis on the analysis of a very
small sample (12 objects!), and a subsequent analysis of three other large
samples has confirmed this hypothesis, in detail, and with a power that is
virtually impossible to refute. But what can all this possibly mean?

In dimensionless form the power law V = AR which gave rise to the
analysis in the first place, can be expressed as

vV _(RY
Vo \Ro
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Figure 5. The Courteau sample with his best maximum rotation speed estimates; vertical
dotted lines indicate peak centers in Fig. 3.
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Figure 6. The Courteau sample with his worst maximum rotation speed estimates; vertical
dotted lines indicate peak centers in Fig. 3.
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so that A = (Vo/Rp)*. A detailed analysis of the correlation between o and In A
[11] shows that Vi and R, are each very strongly correlated with luminosity
properties. Consequently, for absolute magnitude M (the astronomer’s way of
talking about absolute lumnosity) and surface brightness S, we can write

A=F(M,S,a)
which, since A appears to assume discrete values ky, ko, . .., implies
F(M,S,Ot) :kl,kz,...

Thus it appears that spiral galaxies are constrained to exist one of a set of discrete
state planes in the three-dimensional (M, S, o) space. This then gives rise to one
of two possibilities: either a spiral galaxy is “born” on one of these planes, and
remains on this plane over its whole evolution; or a spiral galaxy remains on one
of these planes for very long periods, with the possibility of transiting to other
planes in very short periods of time.

There is currently no way of distinguishing between these possibilities, and
neither is at all comprehendable from the point of view of any extant theory of
galaxy formation—all of which are deeply embedded in the ‘“‘standard model”
of modern cosmology.

V. A POSSIBLE THEORETICAL RESPONSE:
MACH’S PRINCIPLE REVISITED

A. Introduction

The findings of the previous sections indicate that astrophysics is a far less
understood science than is generally believed—it may even turn out to be
exciting again! But what could possibly constitute a rational theoretical
response in the face of such phenomenology? We could try the mechanical
approach, and explicitly try to formulate theories that addressed these pheno-
mena directly; or we could step back, and ask if there is any way in which it
could be argued that current theoretical perspectives fail to address identifiable
fundamental issues. The approach that one chooses to take is, to a large extent, a
matter of taste and (probably) prejudice. What is certainly true in the present
case is that the “‘discrete state” phenomenon for spiral galaxies was discovered
as a direct result of the theoretical prediction that circular velocities in
“idealized” disk galaxies (i.e., spirals without bulges and with perfect rotational
symmetry) should conform to the general power law V;o = AR*, where (A, o)
are two parameters that vary between objects; in turn, this prediction came from
a theory that was constructed in the first instance to address what I saw as a
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fundamental failing of modern gravitation theory: its failure to encompass
Mach’s principle in a fundamental way.

This can be briefly explained as follows. Ordinary physical space is a metric
3-space, which means that it is a three-dimensional space within which we can
perform measurements of distance and displacement. Very little thought con-
vinces us that our concepts of a physical metric space are irreducibly connected
to its matter content—that is, all our notions of distance and displacement are
meaningless except insofar as they are defined as relations between objects.
Similarly, all our concepts of physical time are irreducibly connected to the
notion of material process. Consequently, it is impossible for us to conceive of
physical models of “metric spacetime” without simultaneously imagining a
universe of material and material process. From this, it seems clear to me that
any theory that allows an internally self-consistent discussion of an empty
metric spacetime is a deeply nonphysical theory. Since general relativity is
exactly such a theory, it is fundamentally flawed, according to this view.

Since theories of gravitation are conventionally derived as point perturba-
tions of some assumed inertial space (or flat spacetime, or equivalent), it follows
that a prior condition to an understanding of gravitation is an understanding of
the inertial space that is to be perturbed. The following section is devoted to the
single problem of gaining such an understanding. As a means of clarifying the
basic concepts involved, the development is restricted to its quasiclassical (i.e.,
nonrelativistic) form.

B. Historical Overview

The ideas underlying what is now known as Mach’s principle can be traced to
Berkeley [15,16], for which a good contemporary discussion can be found in
Popper [17]. Berkeley’s essential insight, formulated as a rejection of Newton’s
ideas of absolute space, was that the motion of any object had no meaning
except insofar as that motion was referred to some other object, or set of objects.
Mach ([18] reprint of 1883 German edition ) went much further than Berkeley
when he said ‘I have remained to the present day the only one who insists upon
referring the law of inertia to the earth and, in the case of motions of great
spatial and temporal extent, to the fixed stars.”” In this way, Mach formulated the
idea that, ultimately, inertial frames should be defined with respect to the
average rest frame of the visible universe.

It is a matter of history that Einstein was greatly influenced by Mach’s ideas
as expressed in the latter’s The Science of Mechanics (see, e.g., Ref. 19) and
believed that they were incorporated in his field equations as long as space was
closed [20]. The modern general relativistic analysis gives detailed quantitative
support to this latter view, showing how Mach’s principle can be considered to
arise as a consequence of the field equations when appropriate conditions are
specified on an initial hypersurface in a closed evolving universe. In fact, in
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answer to Mach’s question asking what would happen to inertia if mass were
progressively removed from the universe, Lynden-Bell et al. [21] point out that,
in a closed Friedmann universe, the maximum radius of this closed universe and
the duration of its existence both shrink to zero as mass is progressively
removed.

Thus, it is a matter of record that a satisfactory incorporation of Mach’s
principle within general relativity can be attained when the constraint of closure
is imposed. However, there is still the point of view that, because general
relativity allows solutions that give an internally consistent discussion of an
empty inertial spacetime—whereas it is operationally impossible to define an
inertial frame in the absence of matter—then the theory (general relativity) must
have a non-fundamental basis at the classical level.

The present chapter attempts to lay the foundations of a theory of space,
time, and material that addresses this perceived problem, and the main result is
to show how a flat inertial space is irreducibly associated with a fractal D = 2
distribution of material. Furthermore, in the course of the development,
fundamental insight is gained into the possible nature of “time.”

C. Outline Analysis

We begin with a short review of Mach’s principle, and draw from this the general
conclusion that conceptions of an empty inertial spatiotemporal continuum are
essentially nonphysical. The fact that we have apparently successful theories
based exactly on such conceptions does not conflict with this statement—as
long as we accept that, in such cases, the empty inertial spatiotemporal conti-
nuum is understood to be a metaphor for a deeper reality in which the metric (or
inertial) properties of this spatiotemporal continuum are somehow projected out
of an unaccounted-for universal distribution of material. For example, according
to this view, the fact that general relativity admits an empty inertial spatio-
temporal continuum as a special case (and was actually originally derived as a
generalization of such a construct) implies that it is based on such a metaphor—
and is therefore, according to this view, not sufficiently primitive to act as a
basis from which fundamental theories of cosmology can be constructed.

By starting with a model universe consisting of objects that have no other
properties except identity (and hence enumerability) existing in a formless
continuum, we show how it is possible to project spatiotemporal metric
properties from the objects onto the continuum. By considering idealized
dynamical equilibrium conditions (which arise as a limiting case of a particular
free parameter going to zero), we are then able to show how a globally inertial
spatiotemporal continuum is necessarily identified with a material distribution
that has a fractal dimension D = 2 in this projected space. This is a striking
result since it bears a very close resemblance to the cosmic reality for the low-
to-medium redshift regime.
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However, this idealized limiting case material distribution is distinguished
from an ordinary material distribution in the sense that the individual particles
of which it is composed are each in a state of arbitrarily directed motion, but
with equal-magnitude velocities for all particles—and in this sense is more like
a quasiphoton gas distribution. For this reason, we interpret the distribution as a
rudimentary representation of an inertial material vacuum, and present it as the
appropriate physical background within which gravitational processes (as
conventionally understood) can be described as point-source perturbations of an
inertial spatiotemporal-material background. We briefly discuss how such
processes can arise.

1. Overview of the Nonrelativistic Formalism

In order to clarify the central arguments and to minimize conceptual problems
in this initial development, we assume that the model universe is stationary in
the sense that the overall statistical properties of the material distribution do not
evolve in any way. Whilst this was intended merely as a simplifying assump-
tion, it has the fundamental effect of making the development inherently
nonrelativistic (in the sense that the system evolves within a curved metric
3-space, rather than being a geodesic structure within a spacetime continuum).

The latter consequence arises in the following way. Since the model universe
is assumed to be stationary, there is no requirement to import a predetermined
concept of “time” into the discussion at the beginning—although the qualitative
notion of a generalized ‘“‘temporal ordering” is assumed. The arguments used
then lead to a formal model that allows the natural introduction of a generalized
temporal ordering parameter, and this formal model is invariant with respect to
any transformation of this latter parameter, which leaves the absolute ordering
of events unchanged. This arbitrariness implies that the formal model is
incomplete, and can be completed only by the imposition of an additional
condition that constrains the temporal ordering parameter to be identifiable with
some model of physical time. It is then found that such a model of physical
time, defined in terms of “‘system process,” arises automatically from the
assumed isotropies within the system. In summary, the assumption of station-
arity leads to the emergent concept of a physical “‘spatiotemporal continuum”
that partitions into a metric 3-space together with a distinct model of physical
time defined in terms of ordered material process in the metric 3-space. The
fractal D = 2 inertial universe then arises as an idealized limiting case.

2. Overview of the Relativistic Formalism

The relativistic formalism arises as a natural consequence of relaxing the
constraint of a stationary universe. The formalism is not considered in any
detail here but, briefly, its development can be described as follows. If the
universe is not stationary, then it is evolving—and this implies the need for a



ASTROPHYSICS IN THE DARK: MACH’S PRINCIPLE LIGHTS THE WAY 315

predetermined concept of “time” to be included in the discussion at the outset.
If this is defined in any of the ways that are, in practice, familiar to us then we
can reasonably refer to it as ‘“local process time.” Arguments that exactly
parallel those used in the stationary universe case considered in detail here then
lead to a situation that is identical to that encountered in the Lagrangian
formulation of general relativity—in that historical case, the equations of
motion include a local coordinate time (which corresponds to our local process
time) together with a global temporal ordering parameter, and the equations of
motion are invariant with respect to any transformation of this latter parameter,
which leaves the ordering of “spacetime’ events unchanged. This implies that
the equations of motion are incomplete—and the situation is resolved there by
defining the global temporal ordering parameter to be “particle proper time.”
The solution we adopt for our evolving universe case is formally identical, so
that everything is described in terms of a metric spacetime. By considering
idealized dynamical equilibrium conditions, we are led to the concept of an
inertial spacetime that is identical to the spacetime of special relativity—except
that it is now irreducibly associated with a fractally distributed relativistic
photon gas.

D. Mach’s Principle

Although most reading this chapter will have a general understanding of Mach’s
principle, its centrality to our argument makes a short review a worthwhile
investment.

1.  Conventional Approach

Briefly, there are two kinds of mass: gravitational mass and inertial mass.
Gravitational mass is what is measured on any kind of weighing machine
(classically a pan balance, in which the mass to be measured is weighed against
a collection of standard masses); inertial mass is what is measured in a collision
experiment between the mass to be measured and a standard mass. In each case,
the measured quantity is measured relative to some chosen standard, and
therefore has no absolute significance.

The relevant facts about inertial mass are best explained first in the context of
collisions between two smooth balls on a horizontal smooth surface viewed
from a nonaccelerating frame of reference (the precise meaning of the term
“nonaccelerating” is given shortly): Suppose we arrange for two balls, A and B,
say, to be rolled along the same line at different speeds so that they collide, and
then rebound (necessarily on the same line also), and that the change in the
speeds of each ball is measured to be AV, and AVpg, respectively. Then it is
found that the ratio AV, /AVpg always has the same value independently of the
initial speeds of the two balls. In other words, the calculated ratio appears to be
a relative property of the balls, rather than being dependent on the initial



316 D. F. ROSCOE

conditions of the experiment. Now suppose that the experiment is repeated, but
is now viewed from an accelerating frame of reference. It is now found that the
ratio AV, /AVp varies according to the initial speeds of the two balls.

The preceding paragraphs are clear, except in one respect: the notions of
accelerating and nonaccelerating are undefined. This lack of rigor is usually
rectified by defining the state of nonacceleration to be relative to the distant
galaxies: specifically, by identifying that frame of reference that appears to be at
rest with respect to the statistically averaged motion of distant galaxies, and then
using this very special frame as a standard against which nonaccelerating
motion is defined. It is then found that the ratio AV,/AVjg calculated in the
collision experiments is constant in this class of frames; this ratio is termed the
“relative inertial mass of the two balls,” and the frames within which it can be
measured (the nonaccelerating frames) are termed inertial frames.

The analysis described above makes it clear that there is some kind
of relationship between the distant galaxies, and the idea of relative inertial
mass - and the statement of the existence of such a relationship—is termed
Mach’s principle.

2. Alternative Approach

Although the conventional approach outlined above contains all the essential
components of Mach’s principle, it does not focus on what, in our view, is the
essential point about the principle: that it is impossible to define inertial frames
in the absence of material. This fact is brought out most clearly in the following
alternative approach.

Specifically, rather than define inertial frames with respect to the universal
rest frame, we can define an inertial frame as any frame of reference within
which the series of collision experiments discussed above yields the ratio
AV, /AVp to be a constant independently of the experiment’s initial conditions.
If this constant ratio is then termed the ‘“‘relative inertial mass of the two balls,”
then the whole idea of the inertial frame and inertial mass is arrived at without
any reference whatsoever to ““distant galaxies”—and, in fact, is given a local
context.

More significantly, this approach brings into the foreground the crucial point
about Mach’s principle: that it is impossible to define inertial frames in the
absence of material. It is this argument that, in our view, renders general
relativity—which allows an internally consistent discussion of empty inertial
spacetime—into a nonfundamental theory.

E. A Qualitative Description of the New Approach

We have argued that the fundamental significance of Mach’s principle arises
from its implication of the impossibility of defining inertial frames in the
absence of material; or, as a generalization, we can say that it is impossible to
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conceive of a physical spatiotemporal continuum in the absence of material. It
follows from this that, if we are to arrive at a consistent and fundamental
implementation of Mach’s principle, then we need a theory of the world
according to which (roughly speaking) notions of the spatiotemporal continuum
are somehow projected out of primary relationships between objects. In other
words, we require a theory in which notions of metrical space and time are to be
considered as metaphors for these primary relationships. Our starting point is to
consider the calibration of a radial measure which conforms to these ideas.

Consider the following perfectly conventional procedure that assumes that
we “know” what is meant by a given radial displacement, say, R. On a
sufficeintly large scale (e.g., > 10® lightyears), we can reasonably assume that it
is possible to write down a relationship describing the amount of mass contained
within a given spherical volume, for instance

M =U(R) (1)

where U is, in principle, determinable. Of course, a classical description of this
type ignores the discrete nature of real material; however, overlooking this point,
such a description is completely conventional and unremarkable. Because M
obviously increases as R increases, then U is said to be monotonic, with the
consequence that the above relationship can be inverted to give

R = G(M) 2)

which, because (1) is unremarkable, is also unremarkable.

In the conventional view, (1) is logically prior to (2); however, it is perfectly
possible to reverse the logical priority of (1) and (2) so that, in effect, we can
choose to define the radial measure in terms of (2) rather than assume that it is
known by some independent means. If this is done, then, we have immediately,
made it impossible to conceive of radial measure in the absence of material.
With this as a starting point, we are able to construct a completely Machian
cosmology in a way outlined in the following sections.

F. A Discrete Model Universe

The model universe is intended as an idealization of our actual universe, and is
defined as follows:

o It consists of an infinity of identical, but labeled, discrete material particles
that are primitive, possessing no other properties beyond being countable.

e “Time” is to be understood, in a qualitative way, as a measure of process
or ordered change in the model universe.

e There is at least one origin about which the distribution of material
particles is statistically isotropic—meaning that the results of sampling
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along arbitrary lines of sight over sufficiently long characteristic “‘times”
are independent of the directions of lines of sight.

e The distribution of material is statistically stationary—meaning that the
results of sampling along arbitrary lines of sight over sufficiently long
characteristic times are independent of sampling epoch.

Although concepts of invariant spatiotemporal measurement are implicitly
assumed to exist in this model universe, we make no apriori assumptions about
their quantitative definition, but require that such definitions arise naturally from
the structure of the model universe and from the following analysis.

1. The Invariant Calibration of a Radial Coordinate
in Terms of Counting Primitive Objects

In Eq. (2), we have already introduced, in a qualitative way, the idea that the
radial magnitude of a given sphere can be defined in terms of the amount of
material contained within that sphere and, in this section, we seek to make this
idea more rigorous. To this end, we note that the most primitive invariant that
can be conceived is that based on the counting of objects in a countable set, and
we show how this fundamental idea can be used to define the concept of
invariant distance in the model universe.

The isotropy properties assumed for the model universe imply that it is
statistically spherically symmetric about the chosen origin. If, for the sake of
simplicity, it is assumed that the characteristic sampling times over which the
assumed statistical isotropies become exact are infinitesimal, then the idea of
statistical spherical symmetry, gives way to the idea of exact spherical
symmetry thereby allowing the idea of some kind of rotationally invariant radial
coordinate to exist. As a first step toward defining such an idea, suppose only
that the means exists to define a succession of nested spheres, S; C
S C---CSp,, about the chosen origin; since the model universe with
infinitesimal characteristic sampling times is stationary, then the flux of particles
across the spheres is such that these spheres will always contain fixed numbers
of particles, say Ni,N,...,N,, respectively.

Since the only invariant quantity associated with any given sphere, say S, is
the number of material particles contained within it, such as N, then the only
way to associate an invariant radial coordinate, say, r with S is to define it
according to r = rof (N), where ry is a fixed scale constant having units of
“length” and the function f is restricted by the requirements f(N,) > f(Np)
whenever N, > N;, f(N) > 0 for all N > 0, and f(0) = 0. To summarize, an
invariant calibration of a radial coordinate in the model universe is given by
r = rof (N) where

e f(N,) > f(N,) whenever N, > Nj.
e f(N) >0 forall N> 0 and f(0) =0.
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Once a radial coordinate has been invariantly calibrated, it is a matter of routine
to define a rectangular coordinate system based on this radial calibration; this is
taken as done for the remainder of this chapter.

2. The Mass Model

At this stage, since no notion of inertial frame has been introduced, the idea of
inertial mass cannot be defined. However, we have assumed the model universe
to be composed of a countable infinity of labeled—but otherwise indistinguish-
able—material particles so that we can associate with each individual particle a
property called mass that quantifies the amount of material in the particle, and is
represented by a scale constant, say, mg, having units of mass.

The radial parameter about any point is defined by r = rof (N); since this
function is constrained to be monotonic, its inverse exists so that, by definition,
N =f"Y(r/ro). Suppose that we now introduce the scale constant n; then
Nmgy = mof ~'(r/ro) = M(r) can be interpreted as quantifying the total amount
of material inside a sphere of radius r centered on the assumed origin. Although
r=rof (N) and M(r) = Nmy are equivalent, the development that follows is
based on using M (r) as a description of the mass distribution given as a function
of an invariant radial distance parameter, r, of undefined calibration.

It is clear from the foregoing discussion that r is defined as a necessarily
discrete parameter. However, to enable the use of familiar techniques, it will
hereafter be supposed that r represents a continuum—with the understanding
that a fully consistent treatment will require the use of discrete mathematics
throughout.

G. The Absolute Magnitudes of Arbitrary Displacements
in the Model Universe

We have so far defined, in general terms, an invariant radial coordinate
calibration procedure in terms of the radial distribution of material valid from
the assumed origin, and have noted that such a procedure allows a routine
definition of orthogonal coordinate axes. Whilst this process has provided a
means of describing arbitrary displacements relative to the global material
distribution, it does not provide the means by which an invariant magnitude can
be assigned to such displacements—that is, there is no metric defined for the
model universe. In the following, we show how the notion of “metric’’ can be
considered to be projected from the mass distribution.

1. Change in Perspective as a General Indicator of Displacement
in a Material Universe

In order to understand how the notion of metric can be defined, we begin by
noting the following empirical circumstances from our familiar world:
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o In reality, one (an observer) recognizes the fact of a spatial displacement
by reference to one’s changed perspective of one’s material universe.

e The same observer can judge the magnitude of a displacement in terms of
the magnitude of the changes in the perspective of the material dis-
tribution arising from the displacement.

These circumstances suggest the possibility of using the concept of ““perspective
change” in the model universe as a means of associating absolute magnitudes to
coordinate displacements. However, before this can be done, we must first give a
quantitative meaning to the notion of perspective in the model universe.

2. Perspective in the Model Universe

In general terms, a “perspective” implies the existence of an observed object
plus a particular angle of view onto the object. If, in the context of the mass-
model, M(r), the observed object is considered defined by the specification of a
constant-mass surface (r = constant), then, subject to the magnitude of the
normal gradient vector, VM, as a monotonic function of r, total perspective
information is precisely carried by the normal gradient vector itself. To see this,
we note that the assumed monotonicity of the magnitude of VM means that it is
in a 1:1 relation with r; consequently, this magnitude defines which constant-
mass surface is observed. Simultaneously, the direction of VM, which is always
radial, defines an angle of view onto this constant-mass surface.

So, to summarize, an observer’s perspective of the mass model, M(r), can be
considered defined by the normal gradient vector, n = VM, at the observer’s

position.
3. Change in Perspective in the Model Universe

We now consider the change in perspective arising from an infinitesimal change
in coordinate position. Defining the components of the normal gradient vector
(the perspective) as n, = V,M,a = 1,2, 3, then the change in perspective for a
coordinate displacement dr = (dx!, dx?,dx®) is given by

dn, = V,(VaM)dxi = gjudxj, ga» = VoVM (3)

for which it is assumed that the geometrical connections required to give this
latter expression an unambiguous meaning will be defined in due course. Given
that g, is non-singular, we now note that (3) provides a 1 : 1 relationship between
the contravariant vector dx® (defining change in the observer’s coordinate
position) and the covariant vector dn, (defining the corresponding change in the
observer’s perspective). It follows that we can define dn, as the covariant form of
dx“, so that g,, automatically becomes the mass model metric tensor. The scalar
product dS?> = dn;dx' is then the absolute magnitude of the coordinate
displacement, dx“, defined relative to the change in perspective arising from
the coordinate displacement.
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The units of dS? are easily seen to be those of mass only and so, in order to
make them those of length’>—as dimensional consistency requires—we define
the working invariant as ds* = (2r3/mg)dS?, where ry and my are scaling
constants for the distance and mass scales, respectively, and the numerical factor
has been introduced for later convenience.

Finally, if we want

r2 . ]"2 . .

ds® = (2—’20) dn;dx' = (2—’20) gijdx'dx’ 4)
to behave sensibly in the sense that ds> = 0 only when dr = 0, we must replace
the condition of nonsingularity of g, by the condition that it is strictly positive
(or negative) definite; in the physical context of the present problem, this will be
considered to be a self-evident requirement.

4. The Connection Coefficients

We have assumed that the geometric connection coefficients can be defined in
some sensible way. To do this, we simply note that, in order to define con-
servation laws (i.e., to do physics) in a Riemannian space, it is necessary to be
have a generalized form of Gauss’ divergence theorem in the space. This is
certainly possible when the connections are defined to be the metrical
connections, but it is by no means clear that it is ever possible otherwise.
Consequently, the connections are assumed to be metrical and so g, given in
(3), can be written explicitly as

oM, M

8a = VaVoM = 5o ~ Lot ®)

where ', are the Christoffel symbols, and given by

Tk ! gkj (% + % _ ag“b>

ab =28\ T oxb oW

H. The Metric Tensor Given in Terms of the Mass Model

It can be shown how, for an arbitrarily defined mass model, M(r), (5) can be
exactly resolved to give an explicit form for g, in terms of such a general M(r).

Defining

aMm
(rlry and M =——

_ /1 2 3 _
= o = =
r=(x,x,x), 75

N =

where (-|-) denotes a scalar product, it is found that

8ab = Adap + BxxP (6)
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where
d()M + my B A d(]M/M,

A d ’ 29 2A9

for arbitrary constants dy and m;, where, as inspection of the structure of these
expressions for A and B shows, dj is dimensionless and m; has dimensions of
mass. Noting that M always occurs in the form doM + m;, it is convenient to
write 4 = dyM + m;, and to write A and B as

M MMM
(7)
I. Geodesic Distance Determined in Terms of Matter Distribution

We calibrate the radial displacement parameter so that it coincides with the
geodesic radius, and find the remarkable result that, on sufficiently large scales,
the calibrated radius of a sphere centered on the chosen origin in the model
universe then varies as the square root of the mass contained within the sphere.

Using (6) and (7) in (4), and after using x’ dx' = r dr and ® = r?/2, we find,
the following for an arbitrary displacement:

2N\ (4 . MM
ds* = [ | _dddy — o = — dr?
s (2mo){q> rax (<I>2 do//) r}

Now suppose that the displacement is purely radial; in this case, we find

2 ! !
2 5 MM 5
=(—|<®
ds (2m0){ ( dotl )dr }

Use of .#' = d.# /d® reduces this latter relationship to

2 2
ds? = 0 (d\/eﬂ) ds =2 _av

d() my d()m()

which defines the invariant magnitude of an infinitesimal radial displacement
purely in terms of .# = doM + m;, which represents the mass model. From this,
we easily see that if we make the association » = s (which we can, since r is so
far uncalibrated) so that the radial coordinate r effectively coincides with the
geodesic distance, then geodesic radial displacement from the chosen coordinate
origin is defined by
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where .# is the value of .# at r = 0; the significance of this result lies in the fact
that it says the perception of physical displacement is created by the matter
distribution.

For convenience, this result is restated as follows. Using .# = dyM + m; and
noting that M(r = 0) = 0 necessarily, then .#y = m; from which the preceding
result can be equivalently arranged as

= [, ) ®)

1o

Using .# = doM + m, again, the mass distribution function can be expressed in
terms of the invariant radial displacement as

2
r momy [ r
M:m0<> +2,/— 1() 9)
ro do \ro
which, for large r, can be approximated as M = mq(r/ ro)z. In other words, on a
sufficently large scale, radial distance varies as the square root of mass from the
chosen origin—or, equivalently, the mass varies as 7>. As a consequence of this,

M /r* is a global constant on a large enough scale and has the limiting value
my/r3; for the remainder of this paper the notation gy = my/r3 is employed.

J. A Qualitative Discussion of the Temporal Dimension

So far, the concept of time has entered the discussion only in the form of the
qualitative definition given in Section V.F; it has not entered in any quantitative
way, and, until it does, there can be no discussion of dynamical processes.

Since, in its most general definition, time is a parameter that orders change
within a system, a necessary prerequisite for its quantitative definition in the
model universe is a notion of change within that universe, and the only kind of
change that can be defined in such a simple place as the model universe is that
of internal change arising from the spatial displacement of particles. Further-
more, since the system is populated solely by primitive particles that possess
only the property of enumerability (and hence quantification in terms of the
amount of material present), then, in effect, all change is gravitational change.
This fact is incorporated into the cosmology to be derived by constraining all
particle displacements to satisfy the ‘“weak equivalence principle.” We are then
led to a Lagrangian description of particle motions in which the Lagrange
density is degree zero in its temporal ordering parameter. From this, it follows
that the corresponding Euler-Lagrange equations form an incomplete set.

The origin of this problem traces back to the fact that, because the Lagrangian
density is degree zero in the temporal ordering parameter, it is then invariant
with respect to any transformation of this parameter that preserves the ordering.
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This implies that, in general, temporal ordering parameters cannot be identified
directly with physical time—they merely share one essential characteristic. This
situation is identical to that encountered in the Lagrangian formulation of
general relativity; there, the situation is resolved by defining the concept of
“particle proper time.” In the present case, this is not an option because the
notion of particle proper time involves the prior definition of a system of
observer’s clocks—so that some notion of clock time is factored into the prior
assumptions on which general relativity is built.

In the present case, it turns out that the isotropies already imposed on the
system conspire to provide an automatic resolution of the problem that is con-
sistent with the already assumed interpretation of time as a measure of ordered
change in the model universe. To be specific, it turns out that the elapsed time
associated with any given particle displacement is proportional, via a scalar
field, to the invariant spatial measure attached to that displacement. Thus,
physical time is defined directly in terms of the invariant measures of process
with the model universe.

K. Dynamical Constraints in the Model Universe

First, and as already noted, the model universe is populated exclusively by
primitive particles that possess solely the property of enumeration, and hence
quantification. Consequently, all motions in the model universe are effectively
gravitational, and we model this circumstance by constraining all such motions
to satisfy the weak equivalence principle, by which we mean that the trajectory
of a body is independent of its internal constitution. This constraint can be
expressed as follows:

Constraint 1. Particle trajectories are independent of the specific mass values
of the particles concerned.

Second, given the isotropy conditions imposed on the model universe from
the chosen origin, symmetry arguments lead to the conclusion that the net action
of the whole universe of particles acting on any given single particle is such that
any net acceleration of the particle must always appear to be directed through
the coordinate origin. Note that this conclusion is independent of any notions of
retarded or instantaneous action. This constraint can then be stated as follows:

Constraint 2. Any acceleration of any given material particle must necessarily
be along the line connecting the particular particle to the coordinate origin.
L. Gravitational Trajectories

Suppose that p and g are two arbitrarily chosen point coordinates on the trajec-
tory of the chosen particle, and suppose that (4) is integrated between these
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points to give the scalar invariant

o= o= [ e

Then, in accordance with the foregoing interpretation, I(p,q) gives a scalar
record of how the particle has moved between p and g defined with respect to the
particle’s continually changing relationship with the mass model, M(r).

Now suppose that I(p, ¢) is minimized with respect to choice of the trajectory
connecting p and g¢; this minimizing trajectory can then be interpreted as a
geodesic in the Riemannian space that has g, as its metric tensor. Given that g,
is defined in terms of the mass model M(r)—the existence of which is
independent of any notion of inertial mass, then the existence of the metric
space, and of geodesic curves within it, is likewise explicitly independent of any
concept of inertial mass. It follows that the identification of the particle trajec-
tory r with these geodesics means that particle trajectories are similarly inde-
pendent of any concept of inertial mass, and can be considered as the modeling
step defining that general subclass of trajectories that conform to that charac-
teristic phenomenology of gravitation defined by Constraint 1 (in Section V.K).

M. The Equations of Motion

While the mass distribution, represented by .#, has been explicitly determined
in terms of the geodesic distance at (8), it is convenient to develop the theory in
terms of unspecified ./#.

The geodesic equations in the space with the metric tensor (6) can be
obtained, in the usual way, by defining the Lagrangian density

7= (\/%gg)\/@: (\/%g;) (A(E[F) + BS)' (11)

where &' = dx'/dt, and so on, and writing down the Euler-Lagrange equations
2AT + <2A’<I> — 2$A>I" + <B’<I>2 +2Bd — A'{r|r) — 2gB<I>>r =0 (12)

where I = dr/dt and A’ = dA/d®, and so forth. By identifying particle trajec-
tories with geodesic curves, this equation is now interpreted as the equation of
motion, referred to the chosen origin, of a single particle satisfying Constraint 1.

However, noting that the variational principle, Eq. (10), is of order zero in its
temporal ordering parameter, we can conclude that the principle is invariant
with respect to arbitrary transformations of this parameter; in turn, this means
that the temporal ordering parameter cannot be identified with physical time.
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This problem manifests itself formally in the statement that the equations of
motion (12) do not form a complete set, so that it becomes necessary to specify
some extra condition to close the system.

A similar circumstance arises in general relativity theory when the equations
of motion are derived from an action integral that is formally identical to (10).
In that case, the system is closed by specifying the arbitrary time parameter to
be the “proper time,” so that

o - did
dtg(xj,dxj)ﬂf(x/,a) =1 (13)

which is then considered as the necessary extra condition required to close the
system. In the present circumstance, we are rescued by the, as yet, unused
Constraint 2.

N. The Quantitative Definition of Physical Time
1. Completion of Equations of Motion

Consider Constraint 2, which states that any particle accelerations must neces-
sarily be directed through the coordinate origin. This latter condition simply
means that the equations of motion must have the general structure r =
G(t,r,r)r for scalar function G(z,r, ). In other words, (12) satisfies Constraint
2 if the coefficient of r is zero, so that

. & A. &£
<2A’<I>—2§A> =0 =T & = kA (14)

for arbitrary constant ko, which is necessarily positive since A > 0 and ¥ > 0.
The condition (14), which guarantees Constraint 2, can be considered as the
condition required to close the incomplete set (12), and is directly analogous to
(13), the condition that defines ““proper time’” in general relativity.

2. Physical Time Defined Quantitatively as Process

Equation (14) can be considered as the equation that removes the preexisting
arbitrariness in the time parameter by defining physical time; from (14) and (11)
we have

PP = IZAY = A(E]F) + B = 2g0k2A? — guiiil = 2gok2A2 (15)

so that, in explicit terms, physical time is defined by the relation

1 o
2 i
t* = ——— | g;dx'dx 16
<2g0k(2)A2>gJ X ax ( )
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In short, the elapsing of time is given a direct physical interpretation in terms of
the process of displacement in the model universe.

Finally, noting that, by (16), the dimensions of k(z) are those of L°/[T? x M?,
then the fact that go = myo/r3 (see Section V.I) suggests the change of notation
k3 oc v3/g3, where vy is a constant having the dimensions (but not the
interpretation) of velocity. So, as a means of making the dimensions that appear
in the development more transparent, it is found convenient to use the particular
replacement k3 = vj/(4d5g3), where dy is the dimensionless global constant
introduced in Section V.H. With this replacement, the definition of physical
time, given at (16), becomes

4d280 .
di* = (25059 o dxidnd 17
(S8 )y (1)

since, as is easily seen from the definition of g, given in Section V.H, g;dx'dx/
is necessarily finite and nonzero for a nontrivial displacement dr.
3. The Necessity of v§ # 0

Equation (17) provides a definition of physical time in terms of basic process
(displacement) in the model universe. Since the parameter V% occurs nowhere
other than in its explicit position in (17), it is clear that setting v(z) =0 is
equivalent to physical time becoming undefined. Therefore, of necessity, v3 # 0.

0. The Cosmological Potential

The model is most conveniently interpreted when expressed in potential terms,
and so, in the following, paragraphs, we show how this is done.

1. The Equations of Motion: Potential Form

From Section V.N, when (14) is used in (12), there results
. ;a2 - e A2
2Ar + (B'® +ZB<I>—A<r|r>—2XB<I> r=0 (18)

Suppose we define a function V according to V = Cy — (£|F)/2, for some
arbitrary constant Cy; then, by (15)

1 V2 B .2
V=Co—-(i)=C)——2-A+—& 19
0= 5 ({0 = Co— A+ (19)

where A and B are defined in (7). With the unit vector r, this function can be used

to express (18) in the potential form

av ;
dr

(20)
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so that V' is a potential function and Cj is the arbitrary constant usually associated
with a potential function.

2. The Potential Function, V, as a Function of r

From (19), we have

2
-2 1% B

2C) — 2V = i 4+7°0 =—2 A ——F%?

0 d d 2d(2)g0 Arr

so that V is effectively given in terms of r and 7. In order to clarify things further,
we now eliminate the explicit appearance of 7. Since all forces are central,
angular momentum is conserved; consequently, after using conserved angular
momentum, 4, and the definitions of A, B, and .# given in Section V.H, the
foregoing equations can be written as

-2 4% [m;  dy—1 [(6mv3
2C)—2V = 7+ 7170 =vj+—2, /— —
0 e 0T Vg TP B

2 [domy (2mv3 1 my (mv?
_’_7% 0 1< 210_h2)+41<210_h2>
r°\l g \ djgo r* go \dj &o

(1)

so that V(r) is effectively given by the right-hand side of (21).
P. A Discussion of the Potential Function

It is clear from (24) that m; plays the role of the mass of the central source that
generates the potential, V. A detailed analysis of the behavior of V shows that
there are two distinct classes of solution depending on the free parameters of the
system:

e A constant potential universe within which all points are dynamically
indistinguishable; this corresponds to an inertial material universe, and
arises in the case m; = 0,dy = 1.

e All other possibilities give rise to a ‘“distinguished origin® universe in
which either.

There is a singularity at the center, r = 0.

There is no singularity at » = 0 and, instead, the origin is the center of a
nontrivial sphere of radius Rpi, > 0, which acts as an impervious
boundary between the exterior universe and the potential source. In
effect, this sphere provides the source with a nontrivial spatial extension
so that the classical notion of the massive point source is avoided.
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Of these possibilities, the constant potential universe is the one that suits the
needs of a realistic cosmology, and this possibility is discussed in detail in the
following sections.

However, of the two cases in the distinguished origin universe, the no-
singularity case offers the interesting possibility of being able to model the
gravitational effects created by a central massive source, but without the non-
physical singularity at the origin. This case is mentioned here for future
reference.

Q. The Fractal D=2 Inertial Universe

Reference to Eq. (21) shows that the parameter choice m; =0 and dy = 1
makes the potential function constant everywhere, while Eq. (9) shows how, for
this case, universal matter in an equilibrium universe is necessarily distributed
as an exact fractal with D = 2. Thus, the fractal D = 2 material universe is
necessarily a globally inertial equilibrium universe.

Given that gravitational phenomena are usually considered to arise as mass-
driven perturbations of flat inertial backgrounds, the foregoing result—to the
effect that the inertial background is necessarily associated with a nontrivial
fractal matter distribution—must necessarily give rise to completely new
perspectives about the nature and properties of gravitational phenomena.
However, as we show in Section V.Q.1, the kinematics in this inertial universe is
unusual, and suggests that the inertial material distribution is more properly
interpreted as a material vacuum out of which (presumably) we can consider
ordinary material to condense in some fashion.

1. The Quasiphoton Fractal Gas
For the case m; = 0, dy = 1, the definition M in (9) together with the definitions
of A and B in Section V.H. give

2m0
2
o

A="0 B=0

so that, by (19) (remembering that gy = my/ r%), we have
(Eli) = vg (22)

for all displacements in the model universe. It is (almost) natural to assume that
the constant v3 in (22) simply refers to the constant velocity of any given particle,
and likewise to assume that this can differ between particles. However, each of
these assumptions would be wrong since—as we now show—v% is (1) more
properly interpreted as a conversion factor from spatial to temporal units and, (2)
a global constant that applies equally to all particles.
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To understand these points, we begin by noting that (22) is a special case of
(15) and so, by (16), can be equivalently written as

1
df* = — (dr|dr) (23)
Yo

which, by the considerations of Section V.N.2, we recognize as the definition of
the elapsed time experienced by any particle undergoing a spatial displacement
dr in the model inertial universe. Since this universe is isotropic about all points,
there is nothing that can distinguish between two separated particles (other than
their separateness) undergoing displacements of equal magnitudes; conse-
quently, each must be considered to have experienced equal elapsed times. It
follows from this that v% is not to be considered as a locally defined particle
velocity, but is a globally defined constant that has the effect of converting
between spatial and temporal units of measurement.

We now see that the model inertial universe, with (23) as a global relation-
ship, bears a close formal resemblance to a universe filled purely with
Einsteinien photons—the difference is, of course, that the particles in the model
inertial universe are assumed to be countable and to have mass properties. This
formal resemblance means that the model inertial universe can be likened to a
quasiphoton fractal gas universe.

R. A Quasifractal Mass Distribution Law, M ~ r2: The Evidence

A basic assumption of the standard model of modern cosmology is that, on some
scale, the universe is homogeneous; however, in early responses to suspicions
that the accruing data were more consistent with Charlier’s conceptions of an
hierarchical universe [22-24] than with the requirements of the standard model,
De Vaucouleurs [25] showed that, within wide limits, the available data satisfied
a mass distribution law M = r'3, while Peebles [26] found M = r!23. The
situation, from the point of view of the standard model, has continued to
deteriorate with the growth of the database to the point that ‘“the scale of the
largest inhomogeneities discovered to date) is comparable with the extent of the
surveys, so that the largest known structures are limited by the boundaries of the
survey in which they are detected” [27].

For example, several redshift surveys, such as those performed by Huchra
et al. [28], Giovanelli et al. [29], De Lapparent et al. [30], Broadhurst et al.
[317], Da Costa et al. [32] and Vettolani et al. [33], have discovered massive
structures such as sheets, filaments, superclusters, and voids, and show that large
structures are common features of the observable universe; the most significant
conclusion to be drawn from all of these surveys is that the scale of the largest
inhomogeneities observed is comparable with the spatial extent of the surveys
themselves.
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More recently several quantitative analyses of both pencil-beam and wide-
angle surveys of galaxy distributions have been performed; three examples are
given by Joyce et al. [34], who analyzed the CfA2-South catalog to find fractal
behavior with D = 1.9 +0.1; Labini and Montuori [35] analyzed the APM-
Stromlo survey to find fractal behavior with D = 2.1 4 0.1, while Labini et al.
[36] analyzed the Perseus—Pisces survey to find fractal behavior with
D =2.0£0.1. There are many other papers of this nature in the literature,
all supporting the view that, out to medium depth, at least, galaxy distributions
appear to be fractal with D ~ 2.

This latter view is now widely accepted (see e.g., Wu et al. [37]), and the
open question has become whether there is a transition to homogeneity on some
sufficiently large scale. For example, Scaramella et al. [38] analyze the ESO
Slice Project redshift survey, while Martinez et al. [39] analyze the Perseus—
Pisces, the APM-Stromlo, and the 1.2-Jy IRAS redshift surveys, with both
groups finding evidence for a crossover to homogeneity at large scales. In
response, the Scaramella et al. analysis has been criticized on various grounds
by Joyce et al. [40].

So, to date, evidence that galaxy distributions are fractal with D ~ 2 on small
to medium scales is widely accepted, but there is a lively open debate over the
existence, or otherwise, of a crossover to homogeneity on large scales.

To summarize, there is considerable debate centered around the question of
whether the material in the universe is distributed fractally, with supporters of
the bigbang picture arguing that, basically, it is not, while the supporters of the
fractal picture argue that it is with the weight of evidence supporting D = 2.
This latter position corresponds exactly to the picture predicted by the present
approach.

S. Conclusions

The main result arising from the present stationary universe analysis is that a
perfectly inertial universe, which arises as an idealized limiting case, necessarily
consists of a fractal, D = 2, distribution of material. This result is to be
compared with the real universe, which approximates very closely perfectly
inertial conditions on even quite small scales, and that appears to be fractal with
D = 2 on the medium scale.

Since gravitational phenomena are conventionally considered to arise as
mass-driven perturbations of a flat inertial background, the main result of the
analysis—that the flat inertial background is irreducibly associated with a
nontrivial fractal distribution of material—must necessarily lead to novel
insights into the nature and causes of gravitational phenomena.

The material background has the structure of a quasi—photon gas in the sense
that its individual particles move in arbitrary directions but with identical velo-
city magnitudes. For this reason, we interpret the material inertial background
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as a form of material vacuum so that, ultimately, on the proposed view,
gravitational phenomena are to be seen as disturbances of a material vacuum
and the present analysis is to be interpreted in terms of a rudimentary vacuum
physics.

VI. OVERALL CONCLUSIONS

In the first sections of this chapter, we described two distinct forms of pheno-
menology that are both extremely difficult to comprehend from the perspective
of conventional astrophysics and cosmology; any serious consideration of either
soon leads one to the conclusion that some form of new physics is probably
indicated. But, having arrived at such a tentative conclusion, it is extremely
difficult to imagine what form of new physics might lead to such phenomena.

However, in the present case, the second of these two phenomena was
discovered directly as a consequence of believing that Mach’s principle is not
incorporated into modern gravitation theory in any fundamental way, and
replacing this with a theory that addresses this problem directly. This resulting
theory gives completely new quantitative insight into the nature of ‘“‘time as
material process” and leads to what can be described only as a rudimentary
form of vacuum physics. This theory associates inertial spacetime directly with
a material vacuum that possesses a fractal dimension of 2—a result that chimes
perfectly with modern galaxy surveys out to medium distances, especially if one
imagines that, somehow, galaxies condense out of the material vacuum.

In conclusion, there is good reasons to believe that the rudimentary vacuum
physics described in this chapter represents a potentially sound foundation for
the study of (at least) the ‘“‘discrete dynamical states’ phenomenology. Given
that it stretches incredulity to believe that two sets of new physics are indicated
by the two phenomenologies described, it also seems quite possible that this
vacuum phsyics has the potential to address the “quantized redshift” pheno-
menology as well.
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This chapter starts with a revision, from the viewpoint of objective reality, of
some physical, logical, and conceptual inconsistencies in the description of the
photon in free space. Then, in the context of a four-dimensional ether, we
introduce the novel concept of dynamic rest mass as a signed flow of ether fluid.
Here, particles (antiparticles) are extended objects formed by a momentum flow
along the positive (negative) direction of the normal to the 3D surface of Dirac’s
sea of energy. Therefrom, the photon is modeled as a semiclassical particle—
antiparticle doublet, which can explain the meaning of frequency and rest mass
of photon. For the photon’s ground state, it predicts two values of spin (1) and
de Broglie’s energy equation. In the excited state, the photon has three possible
values of spin: 0, 2. It also leads to solutions of Maxwell’s equations containing
both advanced and retarded components. In the near field there are longitudinal
field components that disappear in the far field. In this sense, Maxwell’s
equations are identified as a limiting case at macroscopic distances.

I. INTRODUCTION

The possibility that the propagation of light could have a dual nature arose in the
seventeenth century as a controversy between Newton and Huygens: corpuscular
versus undulatory descriptions, respectively. When Maxwell’s electromagnetic
theory was developed in the nineteenth century, the matter seemed settled in
favor of the proponents of wave-like electromagnetic phenomena.

However, right at the beginning of the twentieth century, Planck and Einstein
again introduced the corpuscular view with the notion of the photon. The energy
E of such a particle is given by de Broglie’s relation

E =ho = hv (1)

where, as usual, i = h/2m are the reduced and nonreduced constants of Planck,
and ® = 2nv are frequencies associated with the photon in radians per second
and cycles per second respectively.

A hundred years after birth, the inner structure of the photon remains a
mistery. This is particularly true when one searches for an objective reality
representation. In this chapter, the focus is on the nature of the photon and the
propagation of electromagnetic radiation in free space. Questions arise in at
least three different areas: the rest mass, the velocity, and the solutions of
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Maxwell’s and wave equations in free space. As discussed elsewhere in the
book, one can also question the validity of the conventional representation itself;
in this chapter, however, we will keep as close as possible to Maxwell’s
equations. Without any pretension for completeness, some of the issues are as
follows.

A. Questions Related to the Rest Mass of the Photon

There is an apparent incompatibility between Ey = 0, and other properties of the
photon. For instance

1. The Frequency. What is the thing that oscillates with frequency v ?
Clearly, it cannot be an entity that preexists at rest. Hence, E in Eq.(1)
must relate to an entity in a state of oscillatory motion that disappears
when motion ends. Then, it seems that, from this viewpoint, the photon
behaves as a wave.

2. The Duality. Hence, if the photon is a wave, what is the origin of the
particle-like behavior?

3. The Spin. How can we reconcile spin s =1 and Ey = 0? Spin is a
constant, identical for all photons of arbitrary energy E. Hence, it is
independent of energy and, therefore, it does not depend of the state of
motion characterized by ®. Also, evidently, spin cannot be a property of a
nonexistent rest mass. Therefore, spin is associated with what?

One possible solution is to relax the condition that rest mass is zero exactly, and
allow for a tiny rest mass. Many distinguished physicists have explored this
alternative, including Einstein, de Broglie, Schrodinger, and Vigier [1-8]. For
additional bibliography, see Ref. 8, where Vigier explores the idea anew in the
context of his interpretation of the nonnull results of Michelson and Morley;
Vigier suggests a value my ~ 107% g. (See pp. 275-291 of Jeffers et al. [9] for a
compilation of Vigier’s quantum-mechanical papers.)

A weaker alternative would be to admit Ey = 0 in a preferred frame of
reference ¥, but to allow for a local nonzero rest mass mg ~ 10734 g as an
artifact of the total motion of the earth relative to X [10]. However, this value is
too high compared to the limits set to the photon mass, typically in the range
my ~ 10732-10* g [11]. At any rate, there are two implications of a nonzero
photonic mass:

1. Locally, the speed of light is not a constant over all frequencies.

2. An absolute inertial frame of reference ¥ must be reintroduced. In plain
words, introduce a modern version of the ether.

In the present writing, we propose a novel alternative: rest mass is not absence of
mass but neutrality of momentum flux within a well-defined spatial region (see



338 HECTOR A. MUNERA

Section IV). In this way, the properties of photon and electromagnetic radiation
naturally arise from flow of momentum in Euclidean space.

B. Questions Related to the Velocity of the Photon

There are at least four different velocities associated with photons:

Particle velocity ¢
e Phase velocity in the wave representation vpy

Group velocity in the wave representation vg;

Velocity of momentum and energy transport ve,

To describe the transport of sound, Lord Rayleigh [12] introduced the concepts
of phase and group velocities. Since there is a fluid for the propagation of sound,
there is no particular difficulty in understanding the various physical processes
arising therein [13]. The same concepts vp, and v, were applied to light by the
same Lord Rayleigh [14] and Gouy [15] and later on by Lamb [16] and [17]. For
propagation of electromagnetic waves in dispersive media, there is no particular
difficulty in building a physical picture for the underlying processes. For
completeness, it is noted that negative group velocities were theoretically
predicted at the beginning of the twentieth century. Lamb [16, p. 479] noted that
“It is hardly to be expected that the notion of a negative group-velocity will have
any very important physical application.”

A paper by Mitchell and Chiao [18] reports some experimental evidence
indicating the physical existence of negative group delays, but there are some
challenges to the theoretical interpretation [19].

The situation with photon propagation in free space is quite diferent. If
vacuum is equated to absence of a fluid, what is the support for the waves? Of
course, particle-like propagation solves the problem, but it (strictly) invalidates
Maxwell’s equations in vacuum. There is a positive aspect. Since vacuum is
nondispersive, all velocities have the same magnitude.

Let us concentrate on the particle aspect only. The main issue is to identify
an space (three- or four-dimensional?) where photons propagate with constant
speed c. Einstein’s second postulate of the special theory of relativity (STR)
requires the speed of light in free space to be the same for all inertial observers.
This postulate is conventionally interpreted as implying the non-existence of a
preferred frame Y. As discussed in section II, the exactly opposite view will be
adopted here.

There is another curiosity related to the speed of photons in STR. Long ago,
it was noted [20-22] that the second postulate of STR (speed of light invariance)
may be derived from a pair of more fundamental assumptions: the principle of
relativity for inertial observers plus the principle of isotropy of spacetime. More
recent work along the same lines [23-25] implies that the parallel addition
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theorem of STR becomes

Vi + v

V==~ 2
1+ K 2viv,

()
where K is an arbitrary constant with dimensions of speed [25]. Equation (2)
suggests that there is no need for the speed of light to appear in STR, and that

another more fundamental constant speed could play the role.
Photon speed also appears in the most popular equation of physics:

E = mc? (3)

Of course, Eq. (3) is valid for any particle. The question is: Why is the speed of
the photon there? One may conjecture with DiMarzio [26] that there is a more
fundamental meaning for c. In this context, Munera [27] explored the possibility
of deriving the main predictions of STR from Newton’s theory plus a postulate of
mass—energy equivalence: E = mK>. The value of the unknown constant K was
obtained from the acceleration of electrons [28]. The numerical value is ¢ within
the limits of accuracy of the (large) experimental error.

C. Questions Related to Solutions of Electromagnetic Equations in vacuo

According to the conventional view, charge density p and electric current density
J do not exist in free space. Hence, there are no sources for the electric and
magnetic fields. However, both Maxwell’s equations and the homogeneous wave
equations have nontrivial solutions for the fields E and B. Then, what is the
origin of the electromagnetic field? There is a possible solution. After being
produced, fields E and B have existence independently of the source. This
interpretation implicitly requires an underlying substance, or at least a 3D space,
where the fields E and B linger.

A second question concerns the existence of longitudinal components of the
magnetic field. Maxwell’s equations in free space are (completely??) equivalent
to two homogeneous uncoupled wave equations for the vector fields E and B.
The uncoupled wave equations admit longitudinal components for both fields E
and B. However, longitudinal components are prohibited in the conventional
interpretation of Maxwell’s equations.

A third similar question arises in the potential representation of fields E and
B. Conventionally, a magnetic scalar potential is not included as part of the
solution of Maxwell’s equations. However, there is no a priori prohibition for
the existence of such solution within a general formulation. Sections III.A-IIL.LE
consider previous issues in some detail.

Another question is related to the symmetrization of Maxwell’s equations.
Dirac asked himself whether there existed magnetic monopoles, and proposed
inclusion of a magnetic source to make Maxwell equations symmetric.
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Section III. F exhibits a different route to symmetrize the equations, without the
introduction of magnetic monopoles.

Finally, both the Maxwell equations and the wave equations admit solutions
in terms of retarded and advanced potentials. Long ago, Conway [29] recognized
the existence of such solutions in his study of the electron. Referring to “the con-
vergence, of the disturbances’ Conway said that ‘“the medium now contains the
future history of the motion of the electron” (Ref. 29, p. 160, emphasis in original).

Obviously, such interpetation led to disregard advanced solutions as non-
physical. For instance, Ritz [30] and Tetrode [31] considered that the mathema-
tical existence of advanced solutions was a major weakness of Maxwell’s
equations. An attempt to provide a physical basis for advanced potentials is due
to Lewis, who proposed focusing on the process of propagation from an emitter
to an absorber far away from the emitter [32]. This concept also appears in the
work of Wheeler and Feynman [33]. However, such model constitutes another
form of causality violation. Lewis [32, p. 25] himself stated: ‘I shall not attempt
to conceal the conflict between these views and common sense.”

D. A Model for the Photon

From a pragmatic viewpoint, there is no need for a model of the photon. One may
be content with a description of the particle based entirely on the equations that it
obeys. This is a very respectable scientific stance. There is another equally
respectable scientific position—try to understand the mathematical equations in
relation to a physical model. In previous paragraph we mentioned the attempts of
several investigators [30-33]. More recent trials are those of Warburton [34], Fox
[35], Scully and Sargent [36], Hunter and Wadlinger [37,38], Evans and Vigier
[39], Barbosa and Gonzalez [40], and Lehnert [41]. For additional contemporary
models see Hunter et al. [42].

This chapter describes the programme of the present author to develop yet
another representation for the photon in a semiclassical setup. Section II
discusses the concept of a preferred frame, and briefly evaluates the empirical
evidence against it. Section III discusses some properties of Maxwell’s
equations that shaped our model. Section IV presents a four-dimensional ether,
which leads to a photon model in Section V. The model is based on a rotating
doublet, and contains retarded and advanced potentials in a setup that hopefully
avoids the pitfalls of previous attempts. A closing section, Section VI,
summarizes the main findings.

II. THE EXISTENCE OF A PREFERRED FRAME

A. The Meaning of a Constant Speed of Light

Let us concentrate here on the photon as a particle only. The main task is
to identify the family of frames where the photon propagates with a constant
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speed c.' In his early papers, Einstein accepted the notion of a preferred frame
both for the special and the general theories of relativity. In his words [43, p. 17]:

Newton might no less well have called his absolute space ‘Aether’; what is
essential is merely that besides observable objects, another thing, which is not
perceptible, must be looked upon as real, to enable acceleration or rotation to be
looked upon as something real.

Einstein’s second postulate requires the speed of electromagnetic radiation in
free space to be the same for all inertial observers. The special theory of
relativity (STR) is conventionally interpreted as a prohibition for the existence
of a preferred frame .

However, the operational identification of inertial observers without a
preferred frame is plagued with difficulties, as a cursory examination of
textbooks in classical and relativistic mechanics will immediately show. A
possible solution is to identify inertial observers with the class of observers in
free fall in arbitrary gravitational fields [44]. But this is a direct link to the frame
where gravitation exists, which is the very same ‘Aether’ acknowledged by
Einstein himself.

In the spirit of Lorentz [45], de Broglie, and Vigier, let us postulate the
existence of a preferred frame X. Operationally, > may be identified with the
frame of cosmic background radiation (CBR), whose isotropic thermal nature
was established by measurements during the COBE-FIRAS project [46]. Then,
the principle of relativity simply states that all frames that are not accelerated
relative to X, are equivalent to it.

More formally, consider any frame S with an observer at the origin, and let
the acceleration of the origin relative to X be ag =0. Let S* be the class of
inertial frames equivalent to 3:

$® = {Sla} = 0} (4)

Then, the principle of relativity simply states that all frames belonging to S* are
equivalent. Hence, in this limited context, Einstein’s second postulate reduces to
the statement that speed of electromagnetic radiation is a constant ¢ in S*.

More generally, consider the class of all frames S; whose origin has the same
acceleration a; relative to X:

Si = S(a;) = {Slag = a;} (5)

Clearly, any two frames belonging to some S; are in inertial relation (i.e., either at
relative rest, or in relative uniform motion). An example is provided by two
frames in free fall in a region of constant gravitational field [assuming, of course,

'Often, following the optical tradition, we will refer to the speed of electromagnetic radiation in
general as the speed of light.
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that gravitation is defined with respect to the preferred frame (see quotation [43]
at the beginning of this section.).

According to the principle of relativity, the speed of light is a constant c¢; in
any set S;. Up to this point our interpretation and the conventional interpretation
of STR coincide. The difference arises when the STR requires that

ci=c, Vi (6)

We will not pursue this issue any further here, it is simply noted that condition (6)
is much stronger than our assumption of a constant ¢ in S [Eq. (4)].

B. The Empirical Evidence

Let us turn to the often forgotten, but all important question of emipirical
verification. According to current information, our solar system moves relative to
CBR with speed vg ~ 10-3¢ [46-48]. Diurnal and annual rotation of the earth
lead to local anisotropies that were documented long ago in different contexts.
For instance, Esclangon [49] measured an anisotropic effect for the propagation
of light along two perpendicular axes: northwest and northeast. The time
difference for propagation along the two perpendicular directions depended of
sidereal time, thus suggesting an absolute motion of the earth.

Now then, is there any direct evidence for the nonexistence of 3? According
to the present author’s knowledge, the only available evidence is the claimed
nullresult of the Michelson—-Morley type of experiments.

Michelson and Morley [50] used an interferometer to measure the speed of
light along two orthogonal directions: parallel and perpendicular to the earth’s
orbital speed. They found that the speeds differed by a value somewhere in the
range between 5 and 7.5 km/s. Michelson and Morley were extremely surprised
because they expected to observe a difference of 30 km/s. At that time they had
no plausible explanation for their empirical observation and decided to interpret
the outcome of the experiment as a null result: no difference in speed along both
direction (apparently, the reason for this choice was that Fresnel’s theory
predicted no difference).

Of course, such interpretation nicely fitted with Einstein’s second postulate,
proposed 18 years later. Tolman [51, p. 27] explicitly said:

In support of this principle is the general fact that no “ether drift” has ever been
detected, but, especially, the conclusive experiments of Michelson and Morley,
and Trouton and Noble, in which, a motion through the ether, of the earth in its
path around the sun would certainly have been detected.

Eventually, along with the success of relativity theory, the incorrect interpreta-
tion (i.e., that the outcome of the experiment was a nullresult) became
entrenched in mainstream physics.



A SEMICLASSICAL MODEL OF THE PHOTON 343

At the beginning of the twentieth century, there were several isolated voices
claiming for a revision of the Michelson—-Morley interpretation. Hicks [52]
performed a theoretical analysis of the Michelson—-Morley experiment and
concluded that data were consistent with a somewhat larger magnitude of the
difference of speeds. More importantly, he noted that the data followed a
periodic curve proportional to cos20, where angle 0 refers to a rotation of the
interferometer relative to the presumed direction of orbital velocity. The
functional dependence present in the results is of the form to be expected if
there existed 3.

The most important critic of Michelson and Morley’s interpetation was, no
doubt, Dayton C. Miller. He was a collaborator of Morley in the work that
followed the initial experiments. Miller applied some of the corrections
suggested by Hicks [52] to the results of Michelson-Morley experiment. Miller
reports that, after the corrections, the difference of speeds measured in the
original experiment were 8.8 km/s for the noon observations and 8.0 km/s for
the evening observations [53, p. 207]; clearly, nonnull results.

After Morley’s retirement, Miller continued a lonely quest for more than 20
years. He repeated the experiment many times at Cleveland and at Mount
Wilson, and typically found a nonnull difference of speed around 10 km/s
[53-55]. More importantly, he carried out measurements during a whole
calendar day, spaced at intervals of three months. He identified seasonal
variations both in the magnitude of the difference of speeds, and in the shape of
the daily curve [53]. He ascribed the seasonal variations to a motion of the solar
system of 208 km/s relative to the fixed stars. This velocity is of the same order
of magnitude as the currently accepted vg ~ 1073¢ !! However, his argumenta-
tion was not clear enough at that time.

Shankland and collaborators [56] thoroughly reviewed Miller’s results, and
applied formal statistical tests to Miller’s data to conclude that [56, p. 171]
“there can be little doubt that statistical fluctuations alone cannot account for
the periodic fringe-shifts observed by Miller.”” To any outsider, this remark
highly commends the experimental quality of Miller’s work. However,
regarding the curves depicting seasonal variations, Shankland et al. also noted
that, according to their (Shankland’s) theory [56, p. 172] “the four curves
should have a common maximum (or minimum) . .. only the amplitude may be
different at different epochs.”

Hence, they concluded that Miller’s experimentally observed seasonal
variations were simple experimental artifacts!! Evidently, Shankland et al. [56]
did not grasp the full meaning of Miller’s suggestion that the sun was in motion
relative to the fixed stars.

The conclusions of the paper by Shankland and collaborators [56] exemplify
an obnoxious practice. Empirical evidence is used in an unconventional manner
(to say the least). Indeed, experiments are typically carried out to check a
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theory. If evidence opposes theory, then the latter is suspect. On the contrary,
Shankland et al. did the exact opposite: since evidence opposed their theory,
they disregarded the evidence, not the theory.

Several authors have independently revisited Miller’s work. Vigier’s [7]
interpretation was mentioned in Section I. In 1988 the present author began a
revision of all experiments of the Michelson—-Morley type (M-M experiments)
reported in the literature. The review is published as Munera [57].

M-M experiments typically yielded finite (nonzero) differences of speed
along two perpendicular positions of the interferometer’s reference arm. Such
difference is consistently lower than the value to be expected from orbital
motion alone (30 km/s), within the naive conventional approximation of not
taking into account diurnal variations due to earth rotation. With the exception
of Miller, all authors consistently interpreted their observations as nullresults.

A most surprising finding in our review was that no significant effort was
made by the experimenters to try and find a theory closer to the empirical
observations. For instance, solar motion vg ~ 10~3¢ is not included in the
analysis. The only exception is Miller [53], who used his observations to derive
such a value for solar motion. This criticism is particularly valid for the more
recent experiments.

Minera [57] took into account both earth rotation and orbital motion, as a
function of the local latitude and longitude. Prediction of the variation of speed
difference as function of time of day are given in Minera [57] for the locations
of Miller’s experiment. The qualitative shape of the variations is of the same sort
observed by Miller in the 1930s. However, the magnitudes are not correct
because solar motion was not included.® Selleri [58] allowed for small
violations of Lorentz invariance; a correction factor around 1073 reproduces
Miller’s observations. Also independently, Allais [59] revisited Miller’s work.
He argues that Miller’s seasonal variations are strong proof for a local
anisotropy of space.

In summary, the only direct evidence against the existence of a preferred
frame X is the interpretation of Michelson—-Morley experiments as being a
nullresult. To put it mildly, this evidence is fairly weak. On the contrary, there is
mounting evidence for the existence of local anisotropies [49,59,60], which can
be interpreted as motion of the earth relative to . Additionally, a replication of
Faraday induction experiments with a rotating permanent magnet yielded a
positive outcome [61]. Such results may be interpreted as an indication of the
existence of absolute motion, and hence of X. As usual, the final referee will be
empirical evidence. Hence, there is a pressing need to carry out new

2Solar motion was not included because our intent was to make predictions within the same
assumptions used in the original papers: orbital and rotational motion only.
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experiments of the Michelson—-Morley type using high-resolution modern
equipment to check several competing new interpretations.

III. SOLUTIONS OF MAXWELL’S EQUATIONS IN FREE SPACE

A. Maxwell’s Equations for Ether

Let us picture the “vacuum” as a fluid filling the preferred frame ». As usual in
electromagnetic theory, any material substance is described by three parameters
(62, Chap. 1]:°

e The dielectric constant, or permittivity, €

e The magnetic permeability, |

e The specific conductivity, ¢ [units: s~ ' (reciprocal seconds)]

For the ether it is postulated here that
£ = 1’ n= 17 =0 (7)

Then, Maxwell’s equations for any arbitrary material medium reduce to the
system of Maxwell equations (MEs) for the vacuum (see any standard source,
such as Ref. 62,63,64, or 65). In CGS units, MEs are [66]:

0B

E=—-— 8
V x » (8)

OE 4n
B=4+—+— 9
V x ta, )
V -E =4np, (10)
V-B=0 (11)

where time is expressed as a length u*

u=ct (12)

and E, B are the electric and magnetic fields in vacuum, respectively (units: dyne
esu ! = esu cm ), p, is charge density (units: esu cm ), and J is current
density (units: esu s ! cm_z).

The set of four equations may be divided into:

3In the rest of this chapter, references to the authoritative book of Born and Wolf will be [62]
(reference number 62 in brackets) followed by page or section number(s) in that book.

“In my earlier papers time was represented by w. A different symbol is used here to avoid confusion
with photon’s omega .
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e Two induction expressions: Fraday [Eq. (8)] and Ampere [Eq. (9)]

e Two source conditions: electric [Eq. (10)] and (absence of) magnetic
source [Eq. (11)]

Consider a region of X in our neighbourhood (this is our three-dimensional
space), where there exists an electromagnetic field E, B and an associated current
J. Let these three vector quantities obey Ampere’s Eq. (9). Operate with V- on
(10) and substitute Eq. (10) to get the charge continuity condition [62, p. 2]:

op,
Uu

c—+V-J=0 (13)
The derivation of Eq. (13) means that the equation of continuity is a mere
mathematical consequence of only two of Maxwell’s equations; that is, the
condition of continuity does not add additional physical information to
Maxwell’s equations.

If the distribution of charge in a certain region of space is time-independent,
p, = p(r), then Eq. (13) reduces to

V=0 (14)

As noted elsewhere [67], Eq. (14) means that the continuity condition does not
prohibit the existence of an electromagnetic current density J in free space. It is
stressed that Eq. (14) is a mathematical prediction of Maxwell’s equations,
completely independent of any interpretation.

On the interpretational side, at least three different mechanisms may lead to a
current density J:

e Motion of electric charges in the medium (superscript m ) leading to a
convection current density J, = pl'v,,

e Resistive dissipation in the medium producing a conduction current
density J. = oE

e Nonresistive redistribution of energy within the electromagnetic field
E, B, described by Ampere’s Eq. (9) and leading to an electromagnetic
displacement current J,

Then
J=J.+J.+Js (15)

The first two terms on the right-hand side of Eq. (15) are conventionally ascribed
to dispersive media [62, p. 9], while the third term is the displacement current
density J; [66, Chap. 9]. The latter may be easily observed in material media
(air); see, for instance, Carver and Rajhel [68] and Bartlett and Corle [69]. It is
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assumed here that J; also exists in a vacuum with ¢ = 0. Therefore, in free space
without charges, J. = J. = 0, Ampere’s law leads to

c oE

However, the interpetation of J; is open to considerable controversy,as a quick
reference to conventional journals indicates; see, for instance, Warburton [34],
French and Tessman [70], Rosser [71], and references cited therein.

Some extensions of MEs indentify free space with a medium having ¢ # 0
[72]; in such cases there is a dispersive loss of energy. If one wishes to maintain
a relativistic theory, previous fact introduces additional complications. To
correct such new difficulties, Lehnert [41,73] postulated additional sources in
vacuo (V - E # 0 when o # 0).

Let us turn now to different aspects of the solutions of Maxwell’s equations
with c = 0.

B. Source of Electromagnetic Field in Free Space

Consider propagation of photons in vacuum. The first issue is to determine the
meaning of such propagation. It seems fairly clear that Maxwell’s equations
describe the propagation of electromagnetic field E, B in general. However, as
mentioned in the introduction, what is the mechanism for undulatory propagation
in vacuum?

To understand propagation of photon, it is necessary to define the photon.
There are many possibilities, including the following:

1. The photon and the electromagnetic wave are different manifestations of
the same reality (particle—wave duality).

2. The photon is a different entity that is guided by the electromagnetic wave
(de Broglie and Vigier; see references at the end of this chapter).

3. The photon is not a particle, but a process. A prime example is the
absorber model of Lewis [32] and Wheeler and Feynman [33]; for a
revival of the same idea, see Whitney [74]. For a related concept with
emphasis on path, see Ryff [75].

4. The photon and the electromagnetic field are different entities. For
instance, Ritz [30] proposed an emission theory. In Section V we will try a
similar dichotomy, but maintining a constant speed of signal relative to X.

For the time being, let us consider the conventional view: wave—particle duality.
Then, propogation of photon is the same as propagation of electromagnetic field
E,B. In free space the charge density is null everywhere, except possibly at the
source. The photon is chargeless; hence, if Maxwell’s equations are applicable to
a photon in vacuum, p, = 0 everywhere. This leads to some contradiction.
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There is a cause—effect relationship between electric charge density and
electric field, represented by Eq. (10). Since p, = 0, it should follow that E = 0.
Such trivial solution, however, cannot possibly represent a photon. There is
another alternative. Induction Egs. (8) and (9) relate to E and B so that, if B
were an independent variable, variations of magnetic field could, in principle,
induce an electric field. However, magnetic field B is conventionally ascribed to
moving charges [66]. Again, p, = 0 forbids B, and a fortiori E. It seems that
there is some violation of causality: an electromagnetic field represented by E
and B (effect) without a source p, (cause).

Considerations of this sort led us to suggest that, in order to avoid violations
of causality within the wave—particle duality, there are two possible
interpretations of Maxwell’s equations [76]:

o Alternative 1. Assume that electromagnetic free field is a primitive
concept.

o Alternative 2. Admit that there are hidden charge doublets at the photon
source.

The first route leads to a model of the physical world where the concept of
particle is derived, while the second assumption implies the opposite view. Long
ago, Bateman [77, pp. 9-10] reached a conclusion similar to our second
alternative: “Since the electric force is ultimately at right angles to the radius
there is no total charge associated with the singularity, for the charge is equal to
the surface-integral of the normal electric force over a large sphere concentric
with the origin and this integral is evidently zero. We are consequently justified
in regarding the singularity as a doublet and in fact as a simple electric doublet of
varying moment as indicated by the way in which the electric and magnetic
forces become infinite”” (emphasis added).

More recently, McLennan [78] also analysed the meaning of MEs, in
particular the implications of Gauss’ theorem in the context of p, =0. He
concluded, however, that there should exist two different sets of MEs: one for
the field, another for the source. This view is reminiscent of some remarks made
earlier by Warburton [34].

From a completely different viewpoint, Mannheim [79, p. 913] proposed a
theory to quantize relativistic fermions using classical coordinates. In the
conclusions he suggests that “‘gauge fields may not be fundamental at all but
may be fermion composites.”

Section IV describes the aether as a four-dimensional fluid; this is equivalent
to assigning objective reality to the field. Thence, in section 5 the photon is
modelled as a charge doublet, that acts as the source. In the context of this
section, our model contains elements of both Bateman (the doublet) and
McLennan (the differentiation between field and source).
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Summarizing, in the conventional wave-particle view, the condition p, = 0
in free space may be described as being charge-neutral, rather than charge-free.

C. The Meaning of Current Density in Free Space

The conventional view that J = 0 when p, = 0 is not a result of MEs. As noted in
Section III.A, MEs only lead to Eq. (14), which does not mean a fortiori that
J=0.

To see this, let us introduce some definitions first. The Poynting vector G
represents energy flux density (units: esu’cm > ™' = ergem®s ). It is a
capability of the electromagnetic field to perform work defined as

c
G=—ExB 17
4n X (17)
The internal energy transfer along the electric field is Q; (units: erg s~ ') given by
QI:J E-Jdv (18)
14

The electric and magnetic energy densities w,, w,, in free space (units: erg cm73)
are defined as

1 E? B?
wgz—J E-dE=—, wm:J B-dB=— (19)
4r Jy 8n v 8n

The electromagnetic energy associated with a volume V is W (units: erg):

W:J (we+wm)dv:iJ(E2+BZ)dv (20)
v 8n

A conventional interpretation is “‘that W represents the total energy contained
within the volume” [62, p.8]. McLennan [78b] challenges this interpretation
proposing that, instead, W is a potential energy. Along the same line of thought,
long ago Ritz [30] identified w, with potential energy and w,,, with kinetic energy
[30, pp. 157-158].

Independently of interpretation, MEs directly lead to [62, Sec. 1.1.4]

dw dw
—+Q,++G-ndsz—+Q,+Qp:o (21)
dt . dt

where n is a unit vector’ orthogonal to the surface S that bounds the integration
volume V, and the energy Qp propagated by the Poynting vector is implicitly
defined.

SUnit vectors are represented by lowercase boldface characters. If there is a risk of confusion, an
additional caret is used.
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Equation (21) implies that time variations of energy, inside any V, manifest
in two different forms. It is pointed out that, conventionally, only the first one is
allowed:

e Transport Qp along the direction of propagation g (this unit vector is
parallel to the Poynting vector)

e Internal rearrangement of energy Oy

If one adopts McLennan’s [78b] interpretation, then Eq. (21) is a realization of a
standard theorem of Newtonian mechanics: conservation of total energy =
conservation of kinetic plus potential energy (see, e.g., Chap. 4 of Kleppner and
Kolenkow, [80]). The reason is simple: Coulomb electric force is central, then
work is path independent, and total energy is function of position only. The time
derivative of total energy is of course zero, as in Eq. (21). In this interpretation
QOp and Q; are manifestations of kinetic energy.
The differential form of Eq. (21) is

a e m

Owetwn) _ g y_v.q (22)
ot

This equation simply states that variations of energy density at a given spacetime
point are due to transport along the Poynting vector plus transport along electric
field. Clearly, when J = O all transport is along g [62, Eq. 43, p. 10].

D. Equivalence of Maxwell’s and Wave Equations

It is easy to decouple E and B in Maxwell’s equations, thus obtaining two vector
wave equations. Operate with V x on Eq. (8), and substitute Eqgs. (9) and (10) to
get

O’E 4n oJ
[JE = V°E — P it (che - @) (23)

where the D’ Alembertian operator is defined as (units: cmfz)

o-v_ 2 (24)
ou?

Likewise, to obtain a wave equation for magnetic field, operate with Vx on
Eq. (9), and substitute Eqgs. (8) and (11) to get

OB -y 0B_ 4

- o (cVp, +V <) (25)
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Again, as in Section III. B, Egs. (23) and (25) clearly depict the cause—effect
relationship between the fields E, B and the source p, # 0. If field is a primitive
concept, then the left-hand side is the cause, whereas the right-hand side is the
cause if charge is primitive.

In free space with p, = 0, then J, = 0. Expressions (23) and (25) reduce to

O’E 4r (04
2
DE:VE_W:_7(E> (26)
o’B 4
OB = VB -0 = — = (V x J) (27)

If Eq. (16) is substituted into (27), then an identity follows, which suggests that
Eq. (27) is not an independent condition. Of course, when J; =0 the
conventional homogeneous wave equations obtain

[JE =0 (28)
OB =0 (29)

As in Section III.B, the question of causality immediately arises. If there is no
source, why are there nontrivial solutions for the fields E,B? Again, the
alternatives discussed in Section III.LB may provide an answer. Another
standpoint is to assume that Egs. (28) and (29) describe an independent reality.
Then, after being produced, fields E,B exist on their own, quite independently of
the continued existence of the source. Of course, the properties of the fields
depend of the source at the moment of emission.

There is a curiosity here. The process to decouple the Maxwellian fields E.B
that was explained above is completely algebraic. There are no additional
physical concepts introduced in the process. Therefore, Eqgs. (28) and (29)
should be completely equivalent to Maxwell equations. That is, the set of
solutions to the wave equations represented by (26) and (27), or by (28) and
(29), should be the same as the set of solutions to Maxwell’s equations.
However, as noted elsewhere by Munera and Guzman [81], this is not the case.
A possible explanation may be the nature of Eq. (27): it is an identity.

Let us illustrate previous claim with an elementary example for p = 0. In
Cartesian coordinates, let

E=Ei+Ej+EK, E,=E =
B=Bi+Bj+Bk,  B,=B, =0, B,=Asink(z—u)] (31)
Evidently, fields E,B are a solution of wave equations (28) and (29), respectively.

However, fields E,B are only partially consistent with Maxwell equations, as
follows:
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e Equation (30) is directly consistent with the electric source Eq. (10).

e Equation (31) is directly consistent with the magnetic source condition
(1.

e Equations (30) and (31) are consistent with Ampere’s Eq. (9), interpreted
as a definition for J; (Eq. 16). In this sense, any arbitrary pair of vectors is
a solution of Ampere’s equation.

e However, Egs. (30) and (31) are not consistent with Faraday’s Eq. (8).
Indeed, a direct substitution shows that

V x E = +kAfcos[k(z — u)j # — 2—13 = +kABcos[k(z —u)li  (32)

Previous example demonstrates in a straightforward manner that the uncoupled
wave equations (28) and (29) are not completely equivalent to Maxwell’s
equations. We have no explanation for this fact, other than the (possible??) lack
of independence of Eq. (27) noted above.

This finding may be related to similar remarks of Ritz [30] regarding Lorentz
electron theory [45]. Ritz concluded that the solutions to the wave equations
were more fundamental than Maxwell’s equations. In his words [30, p. 172]:
““on voit qu’en derniere analyse c’est la formule des actions élémentaires, et non
le systeme de equations aux dérivées partielles, qui est I’expression exacte et
complete de la théorie de Lorentz” (emphasis in original).

Conventional electromagnetic theory is fully aware of this difficulty, but no
attention is paid to the inconsistency. Pragmatically, Jackson simply notes that
solutions to the wave equations must also satisfy Maxwell’s equations [63,
Chap. 7, p. 198], and go on to use Faraday’s Eq. (8) as a coupling condition for
the two wave equations. We will return to this point in Section V.

In the present simple example, Eq. (32) immediately suggests a valid
solution; namely, that the magnetic field must lie along the y axis, thus leading
to the well-known orthogonality between the electric and magnetic fields. A
bona fide solution for Maxwell’s equations is then provided by the electric field
of Eq. (30), and

B = B.i + B,j + Bk, B, =B,=0, B,=A"sin[k(z—u)] (33)

Equations (30) and (31) are a solution of Faraday’s equation provided that
AF = AB = A. Then, in a single stroke, Faraday’s condition achieves two
different things: orthogonality and equal amplitude of fields E and B.

Summarizing the discussion in this section. It seems as if the entire physical
information about the behavior of the electromagnetic field were contained in
Faraday’s equation. The other three equations play a minor role: definitions of
current density, electric source, and absence of magnetic source.
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E. Longitudinal Components of Magnetic Field

In a long series of publications, Evans and Vigier [39] and Evans et al. [82] have
suggested the existence of a non-Maxwellian longitudinal component of
magnetic field. Here we want to explore a related problem: the sense in which
longitudinal components of magnetic field may exist within the realm of the
conventional Maxwellian theory, in the extended sense of Eq. (16).

Let us consider the propagation of electromagnetic waves with both fields
nonzero: E # 0 and B # 0. As usual, propagation is parallel to the Poynting
vector G, defined in Eq. (17). Evidently, by definition, vector G is perpendicular
to both fields E and B. Hence, there cannot exist components of the magnetic
field B parallel to the instantaneous direction of propagation G.

In order to determine the direction of propagation of some arbitrary wave,
the observer must make a measurement or observation during a finite period of
time 7Ty, at some three-dimensional location, say, a small volume at some
position AV(r). The result of the measurement will be some deposition of
energy AW(r) within AV(r) given by [recall Eq. 21)]

Ty Ty

Ty Ty
aw—-| "= | "0+ onar = |

o dt 0 0

o+ |

iﬁ G -ndSdr (34)
0 N

The average energy deposited per unit volume during the observation time is
obtained from Eq. (22) as

AW O(we +wm)\ 1

AT ot Ty
Equations (34) and (35) show that the result of any actual measurement will
strongly depend of the direction of propagation G, that is, of the surface through

which the electromagnetic radiation enters the detector. As a first approximation,
let us concentrate on the average direction of propagation (G):

TM TMA‘
JE~Jdt+J V-Gdt) (35)
0 0

(G) = Ti JTM Gdr — (Ti JTM G(1) dt) o= (G)g (36)

M Jo M Jo

In the conventional solution of MEs as plane electromagnetic waves, the
direction of propagation G is always perpendicular to the plane; hence, it is time-
independent. Let an external observer of the electromagnetic wave define the
z-axis as parallel to G. Then, G = G(¢)k, and (G) = (G)k.

Consider a non-plane-wave solution of Maxwell’s equations, whose direction
of propagation varies with respect to the z axis. In general it holds that

(G) = (Goi+(Gy)i+ (G)k (37)
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The instantaneous direction of propagation is, of course, perpendicular to the
plane defined by the instantaneous electromagnetic fields E and B. But this time-
dependent direction need not be parallel to the z axis, physically defined as the
direction for the average propagation of energy. Let us illustrate the point with
variations of the same simple example of previous section, for additional details
see Munera and Guzman [67].

Example 1. Consider the following fields E and B, which are solutions of
Maxwell’s equations for p, = 0:

E=Ei+Ej+Ek  E=E=0, E =Asinfk(z—u) (38)
B= Bxi + Byj + sz7 B, = Bz = 07 By = ASin[k(Z - u)} (39)

This is a monochromatic linearly polarized wave with electric field vibrating in
the x—z plane, and the magnetic field vibrating in the y—z plane. We have adopted
the practice of explicitly identifying the plane of vibration [62, p. 29]. Current
density associated with E and B is given by Eq. (16) as J = 0. It is stressed that
J = 0 is obtained here from the fields, whereas the conventional approach is to
assume the current to be zero on the grounds that p, = 0.

The Poynting vector and its time-average are [Eqgs. (17) and (26),
respectively]:

A2

G= c4—nsin2(k(z —u))k (40)
cA?

G)=—k 41
(G) =% (41)
where the average is taken over an integer number of cycles m
2nm  2mm
M= = — (42)

ke 0]
Clearly, there are no longitudinal components in a plane wave.

Example 2. Let us consider a variation of Example 1. The plane wave of
previous example is perturbed with the addition of a small longitudinal
component of magnetic field to get

E=Ei+Ej+Ek E,=E =0, E,=Asin[k(z—u)] —Bsinlk.(y — u)]
(43)
B=B.i+B,j+Bk B,=0, B,=Asink(z—u)], B,=Bsin[k.(y—u)]
(44)
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Again, Eq. (16) yields J = 0. The Poynting vector G has components

G, =0, G, = % (ABsin [k(z — u)]sin [k (y — u)] — B*sin® [k (y — u)]

G, = % (A%sin® [k(z — u)] — ABsin[k(z — u)]sin [k (y — u))]) (45)

This example is a nonplanar linearly polarized wave. The direction of vibration
of the electric field is still along the x axis, while the magnetic field and the
Poynting vector are both contained on the y—z plane. The instantaneous direction
of magnetic field is along angle 6 given by

B,
tanf = = (46)
B,

where the angle is measured from the z axis (direction of the unperturbed wave).
Let us take the average of Eqs. (45) during Tj,. The integration leads to
particularly simple results when the ratio R = (k. /k) = (o, /®) is rational; on
the contrary, when R is not rational, it is not possible to find a time of integration
such that the longitudinal magnetic components disappear. In the rational case,
the observation period is chosen such that

2nm _ 2nm _ 2nn - 2nn

Ty=—"=—=—=— 47
M ke (O] kLC (V)3 ( )
where n, m are arbitrary integers.® The results are
cB? cA?
Gy) =0, Gy) = ——, G,) =— 48
(G G) =% (G) =% (48)

When R is rational, there is a surprising find for a linearly polarized wave;
specifically, the average energy along the direction of propagation (the z axis) is
the same for the unperturbed [Eq. (41)] and the perturbed cases [Eq. (48)]. This is
important because a direct measurement of intensity cannot distinguish between
the two physically different situations.

On the other hand, the average propagation of energy along the y axis is quite
different: zero in the plane case (Example 1), and negative in the nonplanar
Example 2. This means that the wave absorbs energy from the surroundings. As

“This is a sort of quantization of frequencies [an unexpected connection between classical MEs and
quantum mechanics (QM)]. Vigier [8, p. 14] mentions another instance of a Maxwellian connection
to QM.
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expected, the energy intensity ratio depends of the amplitudes of the waves:

G,) B
(G) A2

(49)

Assuming that physical polarized light is closer to Example 2 than to Example 1,
then one would expect to see transfer of energy in a direction perpendicular to the
propagation of a finite light beam. In a recent experiment a transversal light
current was induced by a magnetic field [83]. As a wild conjecture, the classical
mechanism contained in Example 2 might be at work there.

Example 3. Consider now a variation of Example 2: addition of scalar
magnetic potential. Consider a generic magnetic potential of the form

" (r,u) = oM (r)e o (50)

where ) is a reference potential (units: erg esu 1) and H, is a constant (units:
cm "), and M(r) is a solution of the dimensionless wave equation V2M(r) = 0.
Let us apply a gauge transformation to the solution of MEs in Example 2 as
B — B+ V®"(r,u). A new solution of Maxwell’s equations is then

oM
E, = Asin [k(z — u)] — Bsin [k, (y — u)] + Ho®ge o Ja dz — axFy(u)

E, = —Hy®ge ™" J@a_ﬁ;l dz + ayF1(u) (51)
E, = Fy(u)

B, = By o aaixd

B, = Asin[k(z — u)] + ®oe " aa—Axd (52)
B, = Bsin[k;(y — u)] + ®oe Hov aa—A:

where a, Fi(u), F>(u) are a real constant and two arbitrary functions of time, to
be determined from boundary conditions. Equation (16) yields J # 0, with

components

c _ oM dF,(u)

= — HZ(I) Hyu —d

J 47t< 0 Poe Jay 7+ ax an
c _ oM dF,(u)

= — [ H3®ge Mo | == 53
Iy 41 < 0%0¢ J Ox dz+ay du (53)
¢ dFy(u)

T 4An du
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The energy transported by the field is given by Eq. (17), and differs from the
standard equation in the presence of the term E -J # 0. According to sign,
energy may be extracted from (lost to) Dirac’s sea of energy. The explicit average
components of the Poynting vector are given in Mdnera and Guzman [67]. It may
be expected that, if the magnetic potential exists, both Hy — 0 and ®; — O.
Hence, very precise measurements will be required to detect its contribution to
total energy flux.

F. Symmetrization of Maxwell’s Equations

Many people in the past have wondered why each pair (8)—(9) and (10)—(11) in
Maxwell’s equations do not have exactly the same structure. For instance, to
make Eq. (11) exactly alike (10), then, according to Dirac’s [84] suggestion, the
existence of magnetic sources. Despite the fact that monopoles have never been
convincingly observed, the subject is still alive. Zeleny [85] derives magnetic
monopoles by assuming that “‘the field mediating the electromagnetic interaction
shall be the antisymmetric tensor field,” while Adawi [86] connects them to
special relativity.

Minera and Guzman [87] tackled the question from a different angle and
without the introduction of new sources. The starting point is fairly simple:

1. Acknowledge that the pair of electromagnetic fields E, B represent some
physical reality.

2. Assume that the pair E, B can be handled as any pair of vectors, regardless
of the axial symmetry of B.

3. Obtain new vectors P, N as a linear combination of the electromagnetic
pair E,B. Consequently, the new vectors (defined below) must have
physical nature:

P=E+B (54)
N=B-E (55)

From Egs. (54) and (55) it follows that

P—-N
E=—" 56
. (56)
B:¥ (57)

Direct substitution of (56) and (57) into MEs (8)—(11) easily leads to two



358 HECTOR A. MUNERA

symmetric induction equations plus two symmetric source equations:

ON 4nJ
P=——+—
V x % + " (58)
oP 4nJ
V xN= +a + T (59)
VP = +4np, (60)
V-N= —4np, (61)

There is a clear symmetry. In particular there are electrical sources for both fields
P, N. There is a simple change of sign in the source, but monopoles do not arise
However, there is no such sign difference for the current density J. There are two
equations of continuity, one for each field P, N, while there is only one in the
unsymmetrized version of Maxwell’s equations.

Since the derivation is completely algebraic, the symmetrized set of equations
(58)—(61) should be identical in every respect to the conventional MEs (8)—(11).
Surprisingly, there are some slight differences as discussed in Miunera and
Guzman [87]. One of them is related to the Coulomb gauge, as follows.

Let us express Egs. (58)—(61) in terms of potentials, rather than fields.
Toward that end, let us invoke a general result from field theory (see, e.g.,
Kellogg [88], p. 76): Any vector field F(r,w), sufficiently differentiable, is the
sum of a gradient and a curl. Then, fields P,N are given by

P=VxA"-vU" (62)
N=VxA¥-vU" (63)

Here A", AV are the individual vector potentials, and U”, UV are arbitrary scalar
potentials. Since source equations for P, N are nonsolenoidal, there is no doubt
regarding the presence of the gradients of the arbitrary functions U, UV. Note
that the magnetic scalar potential U? associated with B is not ignored.’

Substitute now definitions (62) and (63) into the symmetrized Maxwell’s
equations to get

0AN o(VUN) 4
VX<VXAP+E):+%+%J (64)
0A" o(vVUr) 4
Vx(VxAN—E):—<au )+%J (65)
VU = —4np, (66)
V2UN = +4mp, (67)

"The conventional practice is to ignore it on the grounds that the source is solenoidal.
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Source expressions (66) and (67) are Poisson equations that were obtained
directly from Maxwell’s equations without invoking the Coulomb gauge
condition V - A = 0. However, according to standard textbooks, for instance,
Chap. 6 of Jackson [63], the Coulomb gauge condition is required in order to
impose transversality on AE. Therefore, we are led to a dichotomy: fields P,N
are either (1) free from the transversality constraint or (2) have the transversality
trait built in. Either case is a surprise, because there was no additional physics
involved in the derivation of the symmetrized set. In our original paper [87], no
special meaning was attached to vector fields P, N. There is now a suggestion,
presented in Section V of this writing.

IV. A FOUR-DIMENSIONAL ETHER

The idea that the modern ‘““vacuum” (=ether in this writing) is of hydrodynamic
nature is a recurrent one. Dirac [89] acknowledged its plausibility, for an
elaboration, see Cufaro-Petroni and Vigier [90], and for a more recent summary,
Chebotarev [91].

Other examples of ether are a superfluid of particle—antiparticle pairs [92], a
fluid of “stuff” particles [26], and a variety of fluids [93-97]. From such fluids,
electrodynamic and particle models easily follow; see Thomson [98], Hofer
[99], Marmanis [100], and Dmitriyev [101].

The present author has proposed a four-dimensional (4D) hydrodynamic
model that allows for a variable component of the 4-velocity along the time axis
[102, 103]. The model leads to a 4D force as the gradient of the 4-pressure; the
3D-electromagnetic force is a particular case [104].

A. A Four-Dimensional Equation of Motion

Let us assume the existence of a four-dimensional (4D) flat Euclidean space
Y = (u,x,y,z), where the time dimension u = v, behaves exactly the same as
the three spatial dimensions [102, 104]. Further, let X be filled with a fluid of
preons (=tiny particles of mass m and Planck length dimensions). These
particles are in continual motion with speed ¥~ = (vy, vy, vy, v;) = (v4, V). No a
priori limits are set on the speed v, of preons along the u -axis.

Note that the limitations of the special theory of relativity (STR), when
applicable, refer to V = |V| = (v} + v§ + vg)l/ ?, which is the speed of particles
in our 3D world. However, v, is the projection of the 4D velocity 7~ onto the
u axis, which is not a spatial speed. Here, we extend the notion of absolute space
to 4D (= R*), whereas the spacetime of STR is (ct,x,y,z), specifically, R'3.

84D concepts and vectors are represented by either calligraphic or Greek uppercase letters, while 3D
vectors are in the usual boldface.
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Motion of individual preons in ¥ is governed by a 4D equation of motion,
given by the following matrix expression [102]:

6”(p“V"/) = —a“‘[,'4x4 — @“P (68)

where p = nm is the preonic fluid mass density, n is the number of preons per
unit 3D volume, the vector operator 0, = (0,,V),0, = 0/0u is a 4D gradient,
the 4D stress tensor Tsys is a 4 X 4 matrix, P = P(u,x,y,z) is the pressure
generated by the preonic fluid, and the Greek index i = (u, x,y, z). The energy-
momentum tensor p¥ ¥ results from the dyadic product ¥ 7¥".

Now consider an arbitrary 3D hypersurface formed by a projection of the 4D
universe onto the u axis, say, u = up = vgto (see Fig. 1). The plane u — r may be
interpreted in two complementary ways:

Interpretation 1 (Fig. la). At an arbitrary time f, (say, the present), the line
u = ugp divides the plane into three classes of particles:

e Preons moving with v, > Y (upper region)
e Preons moving with v, < ¥ (lower region)
e Preons moving with v, = vg (on the horizontal line)

Interpretation 2 (Fig. 1b). For the class of preons moving with v, =19, the
line u = uy divides the plane into three periods of time:

o The future for ¢ > fy (upper half-plane)
e The past for t < ¢y (lower half-plane)
e The present ¢ = 1y (on the line)

u=vt u=vt

U superluminal u
0

Vy>Vy o future t>t,
Uo=Vito Up = vSto
subluminal
past t<t,
v, < v8
r=(xy2) r=(xy2)
(a) constant time t = t, (b) constant speed V,, = V;,

Figure 1. Four-dimensional representation of universe as a u — r diagram; (a) constant time
t = ty; (b) constant speed v, = vg‘ The projection on the u axis is a 3D hypersurface. This horizontal
line partitions the universe into two half-spaces. (a) For a given time #, (say, the present) the upper
(resp. lower) space corresponds to universes with higher (resp. lower) speeds on the u axis. (b) For a
given u = uy, the upper (resp. lower) space corresponds to the future (resp. past). See discussion in
the text.
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The conventional worldlines of STR and the space underlying Feynman
diagrams belong to interpretation 2 with vg unspecified.

Let us postulate that we live in a 3D hypersurface that slides along the u axis
with speed vg = ¢,, Where the u axis coincides with the arrow of time. The
4-velocity is then a (row or column) vector ¥, = (£cq, vy, vy, v;). The plus
(resp. minus) sign corresponds to the speed of preons that enter (resp. leave) our
3D world, parallel (resp. antiparallel) to the time arrow. It will be seen below
that this constant ¢, is the one that enters Einstein’s mass—energy equation, and
corresponds to the speed of our 3D world along the time axis (interpretation 2 in
Fig. 1). The speed of electromagnetic radiation in free space is a different
constant ¢ .The value of the latter may be either identical or numerically close to
¢4, depending of whether one adopts a relativistic or an emission theory for
photons, respectively (see Section V).

The meaning of the u — r plane under interpretation 1 can now be rephrased
as follows. At any arbitrary time 7, (say, the present), our 3D world separates
superluminal from subluminal preons. Furthermore, as seen in Fig. 1, there is a
continuous exchange of preons between our hypersurface and the two half-
spaces above and below.

For events inside our hypersurface, Eq. (68) reduces to

ap(p“Va'Va) = —au’t4x4 — 6“P (69)
The stress tensor T4y is formed by the conventional 3 x 3 viscosity matrix 13,3

associated with the 3D spatial dimensions, and by the elements associated with
the u-dimension given by

S; .

Ty = Tju = C_Ja J= (x,y,z) (70)
O = - O _ —l§ SES(r—rt) = —¢, > g8 —r*)  (71)
u buu ca ot Ca u a

all+ all+

where S = (Sy, Sy, ;) is a (displacement) energy flux density along axes x,y,z
with dimensions of energy per unit time per unit area, the source/sink S* = g*¢2
is a concentrated energy flow along the u axis with dimensions of energy per unit
time, the preonic flow g* has dimensions of mass per unit time, and 3(r — r*) is
Dirac’s tridimensional delta function (dimensions: L2, L = length) representing
the position of the source/sink.

Equation (70) may be interpreted as a transfer of energy (by displacement)
from the u axis into the spatial axes (or the other way around), whereas Eq. (71)
is a flow of momentum along the u axis. It follows that the 4D source & =
(SE,S) represents a convective transfer of momentum and energy, that is
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mediated by preons flowing from one region of the 4D fluid into another.
Therefore, there is conservation of preons in the whole 4D universe; hence,
conservation of energy and momentum also follow.

It is mentioned in passing that other fluid theories contain expressions similar
to our Eq. (69) (e.g., Eq. 3 in Ref. 97). However, our approach is fundamentally
different because we allow for interaction between our world and other regions
of ¥ where preons move with v, # ¢, as described by the more general Eq. (68).
This interaction gives rise to the 4D source . = (57, S) described by Eqs. (70)
and (71).°

By analogy with the standard 3D case, the 4D preonic fluid exerts force, and
performs work along the four dimensions u,x,y,z, via its hydrodynamic
pressure P. Thence, P is interpreted as potential energy per unit volume. The
force density associated with the preons contained in a unit 3D volume is

F = —,P (72)

Summarizing, the preonic fluid was described by the general equation of motion
(68), that we interpret as a unified field equation (UFE) representing all forces.
Our expression is completely based on conventional hydrodynamics. No sources
were included here; pressure is a result of the motion of preons. Consequently
our model differs of Einstein’s general field equation in regard to the sources.
The possibility that gravitational tensor sources could be substituted for
something simpler has been noted previously [106, p. 97]. For additional details,
see Munera [102,104].

B. Electromagnetic Force

In the spirit of effective field theories, it is expected that Maxwell equations
should be a special case of UFE, valid in restricted regions of X. It has been
shown elsewhere [104] that the UFE reduces to Maxwell’s equations when the
following three conditions hold:

1. Preons have v, = ¢, (our 3D-world).
2. p is a constant, then O,p = 0.
3. The preonic flow is inviscid: T3x3 = 0.

The first row in Eq. (69) corresponds to the u axis. Substituting conditions 2 and 3
above, this leads to the scalar equation

1
Oupe+—V - Ja = —ke(peaV -V + OuP) (73)

°Readers who are uncomfortable with the notion of a fourth dimension may refer to an alternative
interpretation. The source term may be viewed as a transfer of energy and momentum from one
region of 3D space to another, under the assumption that our 3D space may be topologically
disconnected, as in Gribov [105].
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where
Jo = kS (74)
I=—k Y S; (75)
all+
ke
dup, = — =) _Syd(r—rs) (76)
Ca all+

The dimensional constant &, has units of charge per unit energy. Hence, 1, J,; are
proportional to energy flow along the u axis, and flow of energy into (from) our
3D world from (resp. into) the u axis. In this sense, electric current and charge
density are simple auxiliary 3D concepts associated with the 4D energy-
momentum source . = (S&,S). This result is reminiscent of some opinion of
Warburton [34], who claims that the displacement current is not a fundamental
concept.

The definition of electric charge density in Eq. (76) agrees with our opinion
that p, = 0 in Maxwell’s equations represents charge neutrality (see Section
III); the simplest case is S + S, = 0. Also note that J, defined by Eq. (74) is
independent of p, thus allowing for the existence of a displacement current in
the absence of electric charge, as also discussed in Section III.

Equation (73) is a generalization of the continuity equation for electric
charge. Indeed, the left-hand side is the standard Eq. (13), which obtains when

pc,V-v+0,P=0=%,=—0,P=pc,V-V (77)

which means that there exists a force density %, along the u axis when
V - v # 0. Therefore, compressibility of the preonic fluid leads to the creation of
sources and sinks. It is noted that most conventional fluid models in the literature
stay within the boundaries of incompressible fluids.

The magnetic vector potential A® is identified with the convective transport
of momentum by individual preons:

nmc,v pcav

A8 = =
K, K,

(78)

where K, is a dimensional constant with dimensions of charge density. From this
definition it follows that

B:_pcanv (79)
K.
E = PV | gy (80)

e
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Definitions for electromagnetic field in Eqgs. (79) and (80) are similar to Hofer’s
[99]. There is a difference: we start from an equation of motion for a 4D ether,
while Hofer starts from a wave equation for 3D momentum density (his eq. 16).
Our B is also similar to Marmanis [100], but his E is quite different.

After substitution of Eqs. (74)—(77) into the spatial part of Eq. (69) we get

pcaauv+ng2— pv x (V xv)—&—lfu—i— 0 Js=-VP (81)

Cy cqke,
Further substitution of Egs. (77)—(80) leads to the 3D force density

|
F=-VP=KE+K—~xB+~7,+—0J (82)

CU C(l C(l ke

Note that the spatial components of the equation of motion (69) directly
represent force density in our 3D world. Also note that the right-hand side of
Eq. (82) is independent of the explicit values of constants K, and k, (as expected
because charge is not a fundamental concept here).

The first two terms on the right-hand side are the Coulomb and the Lorentz
forces. There are two additional terms in Eq. (82):

1. A displacement induction force density

1 1
F,=—29,J,=—0,S 83
¢ Ccake Ja Ca ( )
produced by temporal variations of the displacement energy flux S. As
noted before, this flux is independent of the existence of electric charge

density.
2. A force associated with regions of compressible preonic fluid:
v K.7
Fe=—F,=——S“A"=pwW.v 84
c s b2 p (84)

As announced, both force terms are independent of the auxiliary constants K,
and k.. Since F¢ appears in regions of compressible fluid, it probably is
associated with variable preonic density p. Then, it could be concluded at first
sight that, strictly speaking, Maxwell’s equations are not applicable in the
presence of F¢. However, if the photon is associated with a source-sink pair, as in
Section V, it can still hold that density is a constant on the average.

C. Particles as Solitons in 4D Ether

In Eq. (72) there is a component of force along the u dimension, leading to the
appeareance of sources and sinks in our hypersurface, as follows:
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u
t<ty | t>1y t<tg| t>ty
Uo=Cto—
t<ty |t>t t<ty|t>t ’\
F,<0 F,>0 F,>0 F,<0

r=(xy.2)

Figure 2. The four mechanisms for producing sources and sinks (see the text).

Sources S are produced by the fourth component of force, which acts on preons
outside our hypersurface, via two mechanisms (Fig. 2, left side):

e Preons moving with v, > ¢, are decelerated to enter our world at r = £,
with v, = ¢,.

e Preons moving with v, < ¢, are accelerated to enter our world at t = 1,
with v, = c,.

Sinks S, are produced by the fourth component of force, which acts on preons in
our hypersurface, where they move with v, =c, at t < fy. There are two
mechanisms (Fig. 2, right side):

e Preons are accelerated and leave our world at r = ¢, with v, > c,.
e Preons are decelerated and leave our world at t = fg with v, < ¢,.

In the representation advanced above, our 3D world is bounded by a hypersur-
face, whose normal points into our world. This is interpreted as the surface of
Dirac’s sea of energy momentum. Sources and sinks correspond to punctures on
the hypersurface driven by % ,, identified with particles and antiparticles,
respectively. In this way, particles and antiparticles become solitons in the 4D
ether.

The mass of a particle (resp. antiparticle) is then proportional to the preonic
mass flow into (resp. out of) our 3D-world, which carry a momentum flux g*c,.
Particles (resp. antiparticles) are solitons of steady flow, whose rest mass M; is
the result of a transfer of energy from (resp. into) the u axis during the duration
T,, of a measurement inside a 3D volume whose size corresponds to the volume
of the particle. Then

Mgici = qicZTm (85)

Notice that this generic model for particles immediately solves one of the
greatest difficulties in quantum mechanics: the infinities associated with electric
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and gravitational energy. Indeed, momentum flows at a finite rate, but the total
amount of energy transferred by the field depends of the interaction (or
observation) time.

As briefly recollected by Ohanian [107], the mechanical origin of spin was
mentioned as a possibility at the beginning of the twentieth century. Quantum
theory adopted a point model for particles, which completely closed the door to
a mechanical interpretation of spin. Corben [108-111] tried to develop a
relativistic composite model for particles, where the basic components were
punctual, but allowing for a separation between the center of mass and the
center of charge. Corben argued that one of the components could have negative
mass.

Other, more recent, attempts to develop nonconventional particle models are
those of Vigier [8], who proposed an extended model for the electron, and
Costella et al. [112] with a classical representation for antiparticles.

It appears that a mechanical model for spin must start from extensive
particles. It is expected that the 4D solitons will exhibit vorticity in many
instances. Let the moment of inertia / associated with a particle be

I=Mgr; (86)

where the radius of gyration r, is a property of the extended vortices that form the
soliton. Detailed models are currently under development and will be published
at a later date.

An electron model is needed for the model of the photon in Section V. As a
first approximation, let the electron (resp. positron) be a thin disk of mass m,
and radius r, rotating at an average angular velocity ®,. The angular momentum
of the disk is then

2
M, h

:Ie: ¢ e::l:— 87

s=1o 5o 2 (87)

Let the magnetic moment [ be associated with the vortex radius 7, then

2 2
Tr;ev  er;m, I e
H c 2¢ s mec (88)

Note that this extended semiclassical model leads to the correct ratio of magnetic
moment to spin [Eq. (88)]. Failure of classical theory to account for the correct
ratio is one of the main arguments in favor of a quantum model. However, it is
noted that Eq. (88) results from a first approximation to a definitive model of a
vortex.
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V. A CHARGE-NEUTRAL/MASS-NEUTRAL PHOTON
A. Historical Introduction

The idea that the photon may be a composite particle is not new. Long ago
de Broglie [113] (see also de Broglie’s treatise on light and matter [114])
suggested that the photon was a composite state of a neutrino—antineutrino
pair; such a pair, however, did not obey Bose statistics. To avoid this difficulty
Jordan [115] introduced neutrinos with different momenta. Over the years,
additional adjustments were made by other investigators [116—121]. Since the
photon restmass is zero, or very small [7], neutrinos are chosen as its
components. However, one would naively expect that if the photon is a
composite particle it may under some conditions decay or be separated into its
components. Indeed, photon pair production leads to an electron—positron pair,
but not to a neutrino—antineutrino one. However, from the viewpoint of total rest
mass, an electron plus a positron cannot be the components of a low energy
photon. There is a clear difficulty for composite models along this line of
thought.

In a later paper the same de Broglie [3] conjectured that photons may contain
two Dirac corpuscles. The idea that dipoles are related to the photon has been
around for a while, for example, see Bateman [77], Warburton [34], Hunter and
Wadlinger [37,38], McLennan [78], and Barbosa and Gonzalez [40].

Spin is typically treated as a quantum phenomenon; an easily accesible and
readable account is given by Ohanian [107]. However, the possibility that spin
may be a phenomenon with classical overtones has been a recurrent one
[79,107-111,122-124]. The connection between the classical polarization of
light and quantum mechanics was noted long ago by Fano [125], while the
connection between polarization and Clifford algebra for spinors was noted
more recently [126]. Finally, some philosophers have suggested that spin is a
mere property of space [127].

The development of our photon model started from the interpretative
difficulties discussed in Section III. In particular, the possibility that zero charge
in vacuum may be interpreted as neutrality of charge almost everywhere, rather
than as complete absence of charge [76]. The symmetrization of Maxwell’s
equations in Section IIL.E hinted at the presence of two charges of different sign.
Pair production and pair annhilation processes further hint that the constituents
of the photon are a positron—electron pair, but there was always the nagging
question of rest mass. Finally, the notion of a 4D ether led to the concept of a
dynamic mass: a flow of ether fluid across the projection of our world onto the u
axis. In this way the photon may be modeled as a source—sink pair (into and out
of our 3D world), having a zero net mass flow, thus accounting for a photon zero
rest mass. Such a model is strongly reminiscent of Newtonian mechanics. The
concept, however, is not completely new if one recalls that Feynman was able to
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derive Maxwell’s equations from Newton’s equations of motion plus the
commutation relations [128].

Ritz’ [30] remarkable paper'® derives the retarded electromagnetic potential
from the electrostatic field of the electron, as in Section V.C below. McLennan’s
[78] suggestion that the photon is a rotating dipole is analogous to the model to
be developed in Section V.B. The ellipsoidal shape of Hunter and Wadlinger
[37] also appears in our model. However, to the present author’s knowledge,
models in the literature do not explicitly derive the electric and magnetic fields
as a combination of the elementary electrostatic fields of the particle—
antiparticle pair; put in a different way, models do not have a source of
advanced potential in the same spatial region as the source of retarded potential.

Overall, the most significant differences between our approach and other
photon models known to the present author are

1. The source of electromagnetic field is explicitly identified as a positron—
electron pair.

The source of advanced potentials is at the photon itself.

Spin of photon is connected to both orbital and rotational motion.
Momentum of the photon is generated in the plane of rotation.
Mass is a dynamic concept.

Rest mass is identified with mass neutrality.

Nk v

Potential energy in the electromagnetic field is a result of linear
momentum transport.

B. The Photon as a Soliton Doublet

Let the photon be a 4D soliton doublet, which manifests in our world as an
electron—positron pair, orbiting the common center of mass at distance r, with
angular velocity ®,. There is an incoming momentum flux ¢*¢, and a canceling
outgoing flow of equal magnitude g~ c,, so that net momentum flux across the
soliton doublet'" is zero. The word dipole was not used to stress the fact that the
pair is formed by a particle and an antiparticle, having zero net mass.

The model is similar to a positronium atom, so that nonrelativistic quantum
behavior of the photon may be obtained from conventional quantum mechanics.
Relativistic predictions require application of Dirac’s theory; see, for instance,
Chaps. XI-XII of the standard textbook by Dirac [129] himself. As a first

"Ritz paper is remarkable in every sense; it is 130 pages long. We saw Ritz’ paper while in the last
stage of preparation of this chapter, and learned that we had rediscovered two concepts that he used
in exactly the same way: the ballistic fluid and the electrostatic field of the electron.

"The sense of word “doublet” here is related to a quantum mechanical doublets: two states of a
particle.
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approximation, this chapter uses a semiclassical model, reminiscent of Bohr’s
atom.

Rotation of the positron—electron pair is produced by the mutual Coulomb
central force. Hence, the torque is zero.'? Tt follows that motion is in a plane
perpendicular to orbital angular momentum L. Furthermore, the magnitude of L
is a constant.

Previous results considerably simplify the analysis of motion of the doublet
in the preferred frame ¥, which is an inertial system by definition. Let the z axis
be perpendicular to the plane of motion at the center of mass of the electron—
positron pair and. Vector L lies along the z axis, and the magnitude is

L. = I,o, = 2m,ryo, (89)

where I, is the moment of inertia of the source—sink pair in the nonrelativistic
region. Note that both electron and positron contribute to I, because the whole
preonic mass of the pair still is on the 3D surface of our world (i.e., the preonic
mass of the antiparticle has not yet gone into the u axis).

Since motion takes place on the x—y plane, total photon spin is given by

J=S+L= (o +I o,)k+ Lok =nk (90)

where the first term on the right-hand side represents rotational motion of
electron and positron around their internal axes, given by Eqs. (86) and (87). All
angular velocities are positive when rotation is counterclockwise, and negative in
the opposite sense.

Now, L, is a constant because of central forces, and electron/positron spin is
also a constant given by Eq. (87). Hence the magnitude of photon spin is also a
constant, which has been equated to nh in Eq. (90). Parameter n allows for
different levels of energy of the system. Quantization is introduced as in Bohr’s
atom assuming that orbits are stable for values of energy corresponding to
integer values of n.

In photon ground state, spins of the electron—positron pair form a singlet such
that

h h
S = + T =———=0 91
sT4s ) (91)
Then, photon spin in ground state is
J=S+L=Lk=2mr o, =hk (92)

"2This is a well-known result from Newtonian mechanics; see, for instance, Chap. 6 of Kleppner and
Kolenkow [80].
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for counterclockwise orbital rotation. For clockwise rotation the opposite sign
holds. Then, this model naturally predicts different photon helicity.

In some excited state, either the electron or the positron may flip-spin,
producing S = +A. This would lead to J = +2h,0. Of course, quantum
mechanically all values —2,—1,0,+ 1,42 are allowed.

Although L, is a constant, there is no limitation on the values of ®, and r,.
This means that even for a fixed value of n the orbit need not be circular. In
ground state L, = 2mer500Y = N, so that both ®; and r, may vary, producing an
elliptical motion. Of course, as seen below, the value of energy will vary
between two extremes associated with the major and minor axes of the ellipse.

The kinetic energy of orbital motion is

L2 Lo, nho
K _ v TV Y 93
orb ) ) ) ( )

The kinetic energy of rotation of the electron around its proper axis equals the
kinetic energy of the positron. The total rotational energy is then

Lo? ho,
Kio=2 ) = S0, = ) (94)
The total kinetic energy of the photon is
nhow, ho, &
K, = Koo + Kot = —— + == (no, + ©,) (95)

2 2 2

For low-energy photons, the rotational and orbital motions occupy the same
region in 3D space, where the same preonic fluid participates in both motions.
Then, as a first approximation, it is assumed that ®, = ®, = ©."® Substituting in
(95), the total kinetic energy of a photon in state n is

K, — (n +21)hc0 (96)

The ground-state for the photon occurs for n = 1 with energy
K| = ho = hv (97)
which is de Broglie’s famous expression. It is noted that in the relativistic energy

equation, total energy is the sum of rest mass energy, plus energy carried by

3An alternative rationalization: a resonant orbital and rotational motion.
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linear momentum (i.e., kinetic energy). In the photon, all energy is kinetic. This
explains why potential energy was not considered.

For photon ground state, it is easily checked that rotational motion and
orbital motion occur in the same 3D region. From from Egs. (92), (86), and (87)
we obtain

Ty =Ty (98)

A 2D pictorial representation of the photon model is shown in Fig. 3a. For
macroscopic fluids, there are three-dimensional representations of sink—source
pairs in Brandt and Schneider [130].

As a numerical example, consider an X ray with v = 10'® Hz. The tangential
speed of rotation of the preonic fluid is about v =~ 0.1¢ and the radii in Eq. (98)
are ry = r, & 10~'2 m. For a microwave radiation of v = 10'° Hz the tangential
speed of rotation of the preonic fluid is about v & 10~3¢ and the radii in Eq. (98)
are r, = ry &~ 107® m. The low values of tangential speed justify the use of the
nonrelativistic mass in the moment of inertia [recall Egs. (86) and (87) in
Section IV, and all previous equations in this section).

Finally, let us consider elliptical motion for » = 1. Angular velocity in
Eq. (97) is given by

®,, + Oy Oy — Op
= Ao =—F— 99
— . (99)
F+
z o
F P
e d,
fe de
R
e+
r
r ! y
! ¢
o
et fe
X
(a) Composite photon model (b) Electrostatic field of doublet

Figure 3. The photon as a rotating doublet: (a) composite photon model—extended electron—
positron pair rotating in x—y plane; (b) electrostatic field of doublet—electrostatic force on a test
particle at rest.
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where ®,,,wy correspond to angular velocities at the minor and major axes
respectively, calculated with the help of Eq. (92). There are small variations in
energy K, that manifest as a spread in frequency A, neatly leading to
wavepackets. Similar variations of ®, are expected within each state
n=j,j=1,2,.... This subject will be treated in detail elsewhere.

In summary, the photon has been modeled as a doublet in rotation in the
preferred frame .. Spin and energy have been obtained from a semiclassical
analysis. Polarization corresponds to a fixed direction of vector L in . In a
nonpolarized photon vector L has a time-dependent direction. A particular case
of nonpolarization is the ellipsoid, as in Hunter and Wadlinger [37]. Our Eq. (96)
allows for the existence of multiphotons that vary in steps of half the ground-
state photon energy; such prediction differs of the prediction of Hunter and
Wadlinger [37]. Photons in motion with respect to X will be considered
elsewhere. The photon is the source of the electromagnetic field, as explained
next.

C. Electrostatic Force of a Rotating Doublet

Consider an electron at rest in the preferred frame ». The force on a stationary
(negative) test particle is given by Coulomb’s law

Ft=F't = Fri+ Fij+Fik, F! :diFﬂ Ff = %F*
e e
Fr :diﬁ (100)

e
_ e _ q+CAlest
d>  4And?

e

(101)

where the plus sign refers to the source and A is the area associated with the
test particle. The first part of Eq. (101) is the standard expression, which may be
used by readers who prefer to avoid interpretational aspects.

The second part of Eq. (101) is based on the 4D model of Section IV. The
electron is an isotropic 3D source that emits a momentum flow g*c at time z,.
The preonic fluid'* propagates in straight line with constant speed ¢ from the
point of emission to a spatially separated point P located at distance d, at the
moment of emission. The preonic fluid carries momentum, which materializes
as force during interaction with an obstacle, say, a test charge. To be specific, let
the test particle be an electron of effective radius 7,, then Ay = nr?. From

“This is equivalent to the flow of “fictive” particles in Ritz [30]. A summary of the latter is
presented by [35].
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Eq. (101), the preonic mass flow g* associated with the electron (resp. positron)
mass, in CGS units (g s’l) is
4¢?
T = = = — 102
A e S q (102)
Equation (101) allows for different theories, according to the value of the speed
of propagation:

1. Einsteinian relativity when ¢ is independent of motion of emitter and
energy of photon. Observers accelerated relative to ©.'> will perceive the
same constant ¢ provided that source and observer be in inertial relation,
that is, either at relative rest or in relative constant motion. Presumably,
C = Cq4.

2. Lorentzian relativity where c is a constant in X, independently of motion
of emitter, and energy of photon. Then, ¢ = ¢,. Observers in motion
relative to ¥ will perceive speeds of propagation different from c,.

3. Modified Lorentzian relativity when c is independent of motion of emitter,
but depends of energy of photon. For instance, ¢ = (c2 — r%(x)%)l/ 2
Observers in motion relative to > will measure speeds of propagation

different from c.

4. Emission theory (see the paper by Cyrenika [131] for the principles of
emission theory) when ¢ depends of photon energy and speed of the
emitter. This is the case of Ritz [30] and other emission theories reviewed
by Fox [35].

The photon model here refers to a photon at rest in . The four theories just
mentioned are compatible with Eq. (101). Detailed predictions of each theory are
different, so that crucial tests may be designed and carried out. For instance, the
Michelson—Morley experiment is conventionally interpreted as a demonstration
of Einsteinian relativity, but the evidence is not convincing, as discussed in
Section II. Another example, to discriminate between relativistic theories (1) and
(2) and emission theories (3) and (4), it is necessary to measure with high
precision the velocity of photons with energy higher than 100 keV.

The ballistic preonic fluid reaches the stationary observation point P with
some delay at time #p:

d,
tp=1t,+ - (103)

Clearly, electrostatic force is a retarded concept. Of course, if source is at rest,
force does not change over time, so that the force field appears as static, as if it
were time-independent.

'S Actually, the preferred frame is undefined in special theory of relativity.
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Now consider a change in the origin of coordinates. The source is still on the
x—y plane but located at distance r, from the origin at azimuthal angle ¢. The
electrostatic force at any arbitrary P = (x,y,z) is immediately obtained from
Eq. (100) with appropriate cosine angles (see Fig. 3b):

pr X ycose

, ; YISO e g Zpe (04)

F* Fh=
S d, © T d,

Now consider a sink (i.e., positron) on the x—y plane, located at distance r, from

the origin at azimuthal angle ¢ + m. There is an attractive electrostatic force at

any arbitrary P = (x,y,z) given by

_ x+rycosQ __ _ y+rysing 0z

F-="""""7F", Fr="—"1""F" F-==F 105

X da y da z da ( )
2 —

_ e q CAtest

FF=——=1"72-- 106
dg 4nd§ (106)

where the minus sign refers to the sink and d, is the distance from sink to the
stationary P at the moment of absorption. In this ballistic model, preons flow past
P at time 7p in the direction of the sink. Preons arrive to the sink at some later
time ¢, where they are absorbed:

d,
to=1tp+— (107)
C

Summarizing the previous discussion, individual forces are active along the
respective rays. If test charge is negative, electron force is repulsive, whereas
positron force is attractive. Also, distance d, is evaluated at the time of emission
t., while d, is evaluated at the moment of absorption. Net force is the vector
addition.

Up to this point the electron and positron forces were treated as independent.
Now consider a doublet in a photon. Let T be the proper time of the photon.
Preons absorbed at T were at P at an earlier time tp = T — (d,/c), while preons
emitted at t arrive to P at a later time tp =t + (d./c). However, from the
viewpoint of observer P the interest is in determining force at an arbitrary time
tp. This is the combined effect of two flows of fluid:

e Preons en route to the sink, where they will arrive at a later time: T = ¢, =
tp + (da/c)
e Preons coming from the source, emitted earlier at T =1, = tp — (d,/¢)

These two processes constitute a straightforward, causal explanation of advanced
and retarded forces and potentials. Net effect at P is obtained by vector addition.
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If the doublet rotates, there is still emission and absorption. The same
expressions are still valid, provided that there is independence among time
intervals. In other words, that emission and absorption processes at time T + dt
be independent of previous processes in the doublet at time t. Such assumption
is fairly weak.

Consider the simplest case: a doublet rotating with constant angular velocity
o on the x—y plane. Let T = 0 at ¢ = 0. Then, ¢ = wt. If proper time is not
measured from the x axis, there is an additional phase angle (with an appropriate
sign): @ = ®T + @,. Substitute in Egs. (104) and (105), and introduce the
observer’s time to get

_ x — rycos(otp — kd,) y — rysin(otp — kd,)

Ff 4 Ft, F; = 4. Ft
Ff = d%F* (108)
X + rycos(otp + kd,) P Fo— y + rysin(orp + kd,) P
* d, } d,
Fo = diaF* (109)
where, as usual, the wavenumber in vacuo is
®
k= " (110)

Explicit expressions for the distances contain trascendental expressions:

d> = (x — rycos (wtp — kde))z—i—(y — rysin(ofp — kde))z—i—z2

d? = R* + 1] — 2ry(xcos (otp — kd,) + ysin (otp — kd_)) (111)
d? = (x + rycos (0tp + kdy))* + (y + rysin(otp + kd,))* + 2

& =R+ r% + 2ry(xcos (otp + kd,) + ysin (wtp + kd,)) (112)
R2 —_ X2 +y2 +22

Evidently, both forces change direction with time as the individual rays associa-
ted with the source and the sink rotate. Also, the wavenumber, Eq. (110),
formally is the conventional expression; of course, k describes propagation of the
electromagnetic wave. However, the origin of angular velocity o is the rotation
of the source.

It is noteworthy that the forcefield of the doublet was calculated as a mere
electrostatic force of the components. Of course, there is acceleration associated
with the rotation of the doublet, but no explicit allowance was made for such
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fact. Only time delays and geometrical positions are involved in our calculation.

In this sense, Eq. (108) is a straightforward way of obtaining the forcefield of an

accelerated electron, calculated in a different approach by Conway [29].
There are three regions associated with Eqgs. (108) and (109):

e Inner region, inside the photon, defined by R < r,.

e Near-field region, when distance is of order of magnitude of photon
dimensions, R ~ r,.

o Far-field region or radiation zone, defined by R > r,. At macroscopic
distances, the longitudinal component of force is negligible, so that the
radiation field is almost plane (i.e., perpendicular to the z-axis in Fig. 3).

The boundaries between the regions are frequency-dependent, as shown by the
numerical values of Section V.B. Also note that, in all three regions, there is no
longitudinal component of the net force along the z-axis. Strictly speaking, there
are longitudinal net forces elsewhere.

Finally, Eqs. (108) and (109) may be easily adapted to emission by atomic
transitions. For the hydrogen atom, one only needs to substitute reduced masses
as appropriate. The same is true, as a first approximation, for more complex
atoms, where an electron undergoing a transition sees the rest of the atom as a
positive charge. Computer animations of such transitions have been indepen-
dently produced by Barbosa and Gonzélez [40].

D. Symmetric Electromagnetic Fields of the Doublet

At macroscopic distances, within some beam area around the z axis, the field of
forces F*,F~ is plane FAPP.'® However, forces F*,F~ are not orthogonal in
general; so, they cannot represent the conventional electric and magnetic fields.
Here we develop an alternative based on the symmetrized fields P,N
discussed in Section IILF. Let the Maxwell-like symmetric fields P,N be
defined as
F* F~
P=——, N=-— (113)
e e
where the forces are given by Eqs. (108) and (109). Sources and currents
associated with fields P, N are implicitly defined by

ON  4mJV
P——— _ 114
VX Ou c (114)
oP  4nJ”
VxN= & 4 (115)
Ou c
VP =dnp” (116)
V -N = 4np" (117)

'Plane FAPP =plane for all practical purposes.
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Two identical continuity equations immediately obtain:

X
% o x=pN (118)

X
VJ+C6M ) )

Explicit values for currents and charge densities may be calculated from the
corresponding defining expressions, plus Egs. (113), and (108)—(110). For
instance, charge density p* follows from

xsin(@tp — kd,) — ycos (otp — kd,)

V-P=-2Crk &D, (119)
i tp — kd,) — tp — kd,
VN = 42yl )3 yeos (ot = kdo) (120)
d:D,

D, =d, + r/k(xsin(otp — kd,) — ycos (otp — kd,))

D, = dq + ryk(xsin(otp + kd,) — ycos (otp + kd,)) (121)
q+CAtest qch

C = — 1 _ 122
4me de  © (122)
Constant C was evaluated noticing that ¢ = +¢,q~ = —¢g and using Eq. (102).

Fields P, N are not orthogonal in general. Their magnitudes are

C e C e

‘P|:d_§:@’ |N|=%=d—5 (123)

From Eqgs. (111) and (112), in the far field the magnitudes of P, N are equal
FAPP:

(124)
This last result leads to the conventional orthogonality of the electromagnetic
field, as seen in next section.

E. Extended Maxwell Equations

Let us now define the conventional electromagnetic field as

JP—JN P _ N
E:T7 JE = 7 pf = P P (125)

2
JP+ pf + pV

B = B = 12
s d > P 5 (126)
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Simple manipulation of Eqgs. (114)—(117) leads to

OB 4nJ?
VXE=——-— 127
x Ou c (127)
OE 4nJf
VxB = E 4 (128)
Ou c
V -E = 4npt (129)
V -B = 4np? (130)
There are also two identical continuity equations:
X aop*
u

Explicit values for currents and charge densities may be calculated from the
corresponding defining expressions. Charge densities are as follows:

E__Crk xsin(otp — kd,) — ycos(otp — kd,)
4 nge
+xsin(0)tp + kd,) — y cos(wtp + kd,)
dD,
B_ Cryk (xsin(otp — kd,) — ycos(wtp — kd,)
P 4n d:D,
_ xsin(otp + kd,) — ycos(wtp + kd,)
dD,

(132)

(133)

In the far field it holds that d, =~ d, = D, = D, = R; then

k
E— Ze;} ~ cos (KR) (xsin (o1p) — ycos (o1p)) (134)
eryk

2nR4

pP =+

sin (kR)(xcos (wtp) + ysin (wtp)) (135)

On the z axis both charge densities are zero, but E, B fields are non solenoidal
elsewhere. The last two equations contain both advanced and retarded potentials.
These expressions may be constrasted with conventional results for electric
dipoles containing retarded potentials only; see, for instance, Panofsky and
Phillips [65, Chap. 14], and Born and Wolf [62, pp. 84-87].

Fields E,B are orthogonal if

E-B=0=P —N*=0 (136)
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As noted in Eq. (124), the condition is valid FAPP in the far field. However, in
the inner and the near-field regions, fields E, B are not orthogonal, except along
the z-axis.

In summary, the photon model proposed leads to an extended symmetric set
of Maxwell’s equations, that contains a magnetic source and a magnetic current,
both of electric origin. Conventional Maxwell’s equations appear as a limiting
case in far-field with both J® = 0, p? = 0.

VI. CONCLUDING REMARKS

The evidence against the existence of a preferred frame > was briefly reviewed in
Section II. It appears that there is no strong evidence against >. On the contrary,
there is mounting evidence on the existence of local anisotropies [59] that may be
interpreted as supporting the existence of ¥. Our own analysis of all experiments
of the Michelson—-Morley type supports 3, rather than Einstein’s second
postulate [57].

In Section III we reviewed our own work on the solutions of Maxwell’s
equations, which hint to the existence of non-conventional magnetic scalar
potentials in free space. The symmetrized set of Maxwell’s equations [87]
suggests the existence of two novel electromagnetic fields P, N, that lead to the
conventional fields E, B.

Section IV reviews our more recently developed 4D ether model [102-104],
which is based on the premise of the existence of X. Rest mass is associated to a
flow of primordial fluid (preons). This novel dynamic concept of mass solves at
once several longstanding difficulties; two of them are (1) the infinities
associated with electric and gravitational fields and (2) the stability of orbits
under Coulomb attraction. Indeed, there is a permanent flow of momentum
across a particle (source); the momentum flux is occasionally tapped by
interaction with a (test) particle. Such process does not change the total
momentum flux available at the source; hence, there is no loss of potential
energy as in the conventional interpretation. The total momentum that crosses a
source is, of course, infinite in an infinite time, but the source is always finite.

In Section V, the photon was described as an electron—positron pair in
rotation in Y. In the 4D ether, antiparticles are dynamic sinks, so that an
electron—positron pair has a zero net momentum flux, thus explaining the
photon rest mass. The photon is then a composite charge-neutral and mass-
neutral entity.

The primordial fluid propagates with a constant speed ¢ in X, originating the
Coulombian forcefield of the individual particles that constitute the photon. An
observer at rest in X sees a rotating field as the electron—positron pair rotates.
Photon spin and de Broglie’s energy relation correspond to the ground state of
the composite particle.
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The electromagnetic field of the composite photon contains advanced and
retarded components, without any causality breach. The forcefield of doublet is
described by the symmetric Maxwell’s equations [87b]. Three different regions
appear in the forcefield: inner, near-field, and far-field. Longitudinal compo-
nents of force are always present. However, in the far field, they dissapear for
practical purposes. In this sense, the equations developed contain the standard
set as a limiting case.

From the symmetric set, an extended set of Maxwell equations was exhibited
in Section V.E. This set contains currents and sources for both fields E, B. The
old conjecture of Dirac’s is vindicated, but the origin of charge density is always
electric (i.e., no magnetic monopole). Standard Maxwell’s equations are a
limiting case in far field.

Falaco solitons were reported [132] as pairs of solitons that exist on the
surface of a fluid (water), and are interconnected through the third spatial
dimension. Our model for the photon is a pair of 3D solitons interconnected
through the fourth dimension.

Theoretical issues to be pursued at some future time are

e Calculation of forcefield when the observer is in motion relative to 3.

e Calculation of forcefield in the (Lorentzian) relativistic case. The
equations given here are applicable up to about 100 keV photons.

e Connection between the equation of motion describing our 4D ether and
the Bohm—Vigier [133] relativistic hydrodynamics.

As always in science, empirical test is required to validate any theory. Some
testable matters are

e Experiments of the Michelson-Morley type may help confirm the
existence of X, thus disproving Einsteinian relativity. Or, the other way
around.

e Measurement of speed of propagation of energetic photons (1 MeV and
above) may confirm whether ¢ (in X or elsewhere) is frequency-depen-
dent. A revision of astrophysical data may be useful here, such as
comparison of speed of propagation of neutrinos and energetic gamma
rays in free space.

e Emission of light in external magnetic fields may be reinterpreted under
the photon model proposed here.

e Spin and velocity of photons from pair production and bremsstrahlung'’
may help decide between emission theories and (Lorentzian or
Einsteinian) relativistic theories.

!7Radiation emitted by accelerated charged particles.
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I. THE PARADIGM

A. Analytical Viewpoint

During the historical development, the notions of electrodynamics and the theory
of light have become complicated complexes of concepts [1]. And what is more,
nowadays they are incomplete, or in the worst case wholly confusing. The laws
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of electrodynamics in their present form are not valid in rotating and deforming
systems in general [2]. These turbulent notion complexes—which are inadequate
for the inner connections, as verified by experiments, measurement results, and
certain electrodynamical states and processes—have to be broken open, dis-
integrated, and then disjoined. Henceforth, we must search for those genuine,
pure, and simple electrodynamical ideas that can be joined in an imminent
natural and adequate manner. Consequently, progress can be achieved only by
careful analysis.

Some of the unsolved problems in contemporary electrodynamics draw
attention to deeper (more profound) evidence, new ideas and new theories or
equations. The aim of this historical introduction is to find the deeper evidence
and new basic concepts and connections. The guiding principle is the investi-
gation of light propagation.

B. Profound Evidence and Connections

The childhood of optics was in ancient religious Egypt. The first survived written
relics of the optics originates from antique Greek science. Euclid was regarded as
one of the founders of geometric optics because of his books on optics and
catoptrics (catoptric light, reflected from a mirror).

The geometric description of the light propagation and the kinetics descrip-
tion of motion were closely correlated in the history of science. Among the
main evidence of classical Newtonian mechanics is Euclidean geometry based
on optical effects. In Newtonian physics, space has an affine structure but time is
absolute. The basic idea is the inertial system, and the relations are the linear
force laws. The affine structure allows linear transformations in space between the
inertial coordinate systems, but not in time. This is the Galilean transformation:

X' =x+x0+ v, ! =t+1 (1)

This is a law of choice for any motion equation.

The revolution in physics at the end of nineteenth century was determined by
the new properties of light propagation and heat radiation. However, there
remain many unsolved problems in these fields [2].

The laws of sound propagation in different media include the concept of ether,
which is the hypothetical bearing substance of light and electromagnetic waves.

II. HISTORICAL OVERVIEW

A. The Main Experiments

The first measurement for the determination of velocity of sound was made by
Mersenne in 1636. In 1687 Newton gave a rough formula for the velocity of
sound. It was further developed by Laplace in 1816, based on the adiabatic
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changes of states for gases. In 1866 Kundt constructed the so-called Kundt tube,
which can determine the velocity of sound in liquids and solid materials. He
found that the velocity of sound grows because of the solidity of bearer materials.
In the framework of classical mechanics, this observation inspired the notion that
ether is an extremely solid substance.

The first attempt to determine the speed of light was made by Galileo in
1641. Descartes assumed an infinite speed of light based on the unsuccessful
Galilean measurement.

In 1676, after 20 years of observation of the motion of Jupiter’s Io moon,
Romer published his result about the speed of light, which was calculated as
¢ = 220,000 km/s [3].

In 1727 Bradley performed a much more precise experiment to determine the
speed of light. His measurements were based on the aberration of stars, and the
results of these measurements closely approximated today’s values.

Arago was the first to measure the speed of light under laboratory conditions
[4]. This measurement gave the Bradley’s value for the speed of light. In 1850
Arago’s followers Foucault [5], and Fizeau [6] proved that the speed of light is
higher in air than in liquid. These measurements closed down the old debate in
the spirit of the wave nature of light. In that time this seemed to verify the
concept of ether as the bearing substance of light.

The first experimental investigation for the magnitude of change in light
speed in moving media was made by Fizeau in 1851 [7]. His experiment proved
that the velocity of the propagation is greater in the direction of motion of the
medium than in the opposite direction; that is, the light is carried along with the
moving medium. This theory was developed and confirmed by Michelson and
Morley in 1886. In 1926 Michelson developed the Foucault’s rotating-mirror
experiment. The result of Michelson’s experiment [8] is ¢ = 2.99769 x 10% +
4 x 10° m/s [where ¢ is (longitudinal) speed of light].

B. The Turning Point: Michelson—-Morley Experiment

In 1867 Maxwell published his book on electromagnetism [9]. Maxwell’s work
has a basic importance, not only in the electromagnetism but also in optics. It
also provided a common frame of reference for the propagation of electromag-
netic and light waves.

The Maxwell equations are valid only in the unique inertial coordinate sys-
tem, but they are not invariant for the Galilean transformation (1). This means
that the Maxwell equations do not satisfy the requirements of classical equation
of motion. This problem was apparently solved by the introduction of the
concept of ether, the bearing substance of light. The challenge was to determine
ether as the unique inertial system, or earth’s motion in this ether.

Maxwell in another work [10] raised the question as to whether the trans-
lation motion of the earth relative to the ether can be observed experimentally.
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An electromagnetic inertial system could be found by measurement, which
could be used in astronomical calculations as well. Furthermore, space must be
provided for formulating an equation of motion that is less rigorous than that
used in Galilean relativity theory.

Numerous unsuccessful measurements were made to determine the motion
of earth in the ether. These measurements were not able to give results com-
patible within the framework of classical Newtonian mechanics, even though
that the earth has an orbital velocity v, ~ 30,000 m/s (where v, is velocity of the
earth to the ether). In 1887 Michelson and Morley also determined the earth’s
orbital velocity by their precision interferometer [11]. The updated arrangement
of Michelson-Morley experiment (M-M experiment) can be seen in Fig. 1.

According to classical mechanics, the traveling times of light 7 for the arms
d) and d, can be given as Follows:

2d, 1 2d, 1
Toaor = 1= 02A) Topor = TW (2)

Fitting the length of interferometer’s arms—according to the zero difference
of traveling times (zero interference)—it is given that AT = Tpgo — Toao = O.
Then the lengths of two arms can be determined exactly:

dy =doy[1— C—z) (3)

M2*

BS A

PD PD|

Figure 1. An up-to-date arrangement the of Michelson-Morley experiment. Here LASER
means the source of light, BS means beamsplitter, M1 and M2 are mirrors on the end of arms, PD is
the phase detector (interferometer), and v is the earth’s orbital velocity, which is regarded as the
inertial motion for short time periods.



SIGNIFICANCE OF THE SAGNAC EFFECT 391

According to classical physics, the difference of traveling times AT * and the
interference picture must be changed, turned around the instrument with 90°:

12

* * * 2
AT = TOBD’ - TOAO’ = W{dZ - d2 1-— (;) } (4)

Substituting Eq. (3) into Eq. (4) and arranging, the traveling time difference for
v s

2drc V?

AT" =

(5)

2 —v2c?

Their experiments proved that the travelling-times differences did not change
along the two arms AT* =0 for any turning round of instrument. In other
words, there was no change in phase relations or interference fringes. Thus, one
might suppose that the solar system moved relative to the ether possessing a
velocity that coincided with that of the orbital velocity of the earth, and, by
coincidence, the experiment was carried out during a period when the earth was
moving relative to the sun in the same direction as the ether. This experiments
essentially contradict classical Newtonian mechanics. The Michelson—-Morley
measurements, which resulted in a negative outcome, have had one of the
most remarkable influences on the development of twentieth-century physics. A
modern setup can be seen in Fig. 2.

C. The Sagnac-Type Experiments

The earth’s rotation around its axis can be seen from the apparent motion of the
stars. The rotation can also be observed by mechanical experiments carried out
on the surface of the earth, that is, with the help of Foucault’s pendulum, or by
observing of the motion of a rapidly rotating gyroscope. It is important that the
rotation of the earth can also be observed by closed optical experiments.

This effect was first demonstrated in 1911 by Harress and in 1913 by Sagnac,
so it is now often called the Sagnac effect. Sagnac determined a rotation by a
closed optical instrument [12]. Sagnac also fixed an interferometer onto a
rotating disc. A flowchart of the basic arrangement of the essential features in
the Sagnac experiment is shown in Fig. 3.

It is clear that the rotation occurs relative to the carrier of electromagnetic
waves; this is the observed rotation relative to the ether.

This measurement was improved by Michelson and Gale in 1925 using the
earth instead of rotating disk [13].

In 1926 the Michelson—Gale experiment was confirmed by Pogany [14], who
determined the surface velocity of the rotating earth by a closed optical
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Figure 2. An up-to-date setting of a M-M-type experiment.

M3 M2

Figure 3. Arrangement of Sagnac the experiment. Here, LASER represents the source of light,
the first mirror is a beamsplitter, M1-M3 are mirrors on the end of arms, and I represents the
interferometer.
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Figure 4. The CI laser-gyroscope arranged by Bilger et al. [15].

instrument, Vg ~ 300 m/s, in Budapest’s latitude. Because of its precision, this
experiment it is used in some military applications, such as in laser gyroscope
techniques. It is also commonly used today in guidance and navigation systems
for airlines, nautical ships, spacecraft, and in many other applications. A laser
gyroscope is shown in Fig. 4.

Because of the incredible precision of interferometric techniques, this
measured velocity is altogether one percent of the earth’s circumference velocity
derived from the orbital motion. Very-long-baseline interferometry (VLBI)—
which is an exhaustively improved Pogdny experiment—can detect Ao ~ 10~°
in the earth’s rotation.

Sagnac-type experiments are versatile and more accurate than the M-M-type
experiments, which cannot detect rotation. Sagnac-type experiments demon-
strated that the caused phase shift is proportional to the angular velocity ® and
the measure of the enclosed surface S in a rotating system.

III. ANALYSIS OF MICHELSON-MORLEY EXPERIMENT

A. The Least-Arbitrariness Principle: The Necessary Hidden Variables

In order to explain the negative result of the M-M-type experiments, a whole
series of hypotheses were proposed, all of which were eventually found to be
untenable. This first explanation consists in the assumption that the ether at the
earth’s surface is carried along by the earth, adhering to the earth like the earth’s
atmosphere. This explanation became very improbable in the light of Fizeau’s
experiment on light propagation in media with motion. This experiment
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suggested that the ether is not carried along or at most is only partially carried
along by moving medium [7,8].

Numerous researchers tried to determine the velocity of the earth motion to
the ether by electromagnetic and optical methods. These experiments predicted
that the earth with the experimental instruments always are standing in (or
moving along with) the ether, which really is a tenacious contradiction of
contemporary physics.

The physicists tried to solve this profound problem by the principle of least
arbitrariness or a fortiori [2c]. This principle means the optimum relation
among the introduced hidden variables, which are necessary to description of
the phenomena. (This maxim is well known and accepted in the scientific
community as (Occam’s razor.)

B. The Lorentz Interpretation of M-M Experiments

Lorentz [16] and his colleagues introduced a hidden variable: the contraction
form factor B = (1 —v*/c*)"/? in Eq. (3). In the case of d; = d», Eq. (3) provides
a simple solution of this contradiction. In Eq. (5) the difference in traveling times
can be eliminated if, for example, d depends on the velocity only:

d* = dp (6)

(where B is the contraction from factor).

Of course, in Eq. (6) the contraction form factor f is valid only in the arm
that is parallel to the velocity vector. Equation (6) was interpreted by Lorentz
and Fitz-Gerald as a real contraction [17]. It is important to see that in Eq. (6)
the hidden parameter 3 is only one possible solution for the contradiction, but
the result of the M-M experiment allows numerous other solutions based on the
inner properties and features of the light. The M-M experiment destroyed the
world picture of classical physics, and it required a new physical system of
paradigms. Thus, for example, the applicability of Galilean relativity principle
was rendered invalid.

One of the most important requirements for an axiomatic theory is to
determine the validity-round of the laws, and to verify of the self-consistency in
the theory. The M-M experiment proved that the prediction of the classical
physics was not valid for light propagation, or rather, for Maxwell’s theory of
electromagnetism. This is an applicability limit of Newtonian physics. Beyond
this limit, Newtonian physics becomes incomplete.

Lorentz, Fitz-Gerald, and others were able to formally explain the lack of
changing in interference fringes [1] using a hidden variable that is essentially
the quotient of the theoretical and the measured results. This method, combined
with the least-arbitrariness principle, obtained the optimal hidden parameter,
which was satisfied by the experiment. The operator of the optimal hidden
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parameters used in the description of the M-M experiment is the generalized
form factor, the so-called Lorentz transformation. Lorentz believed a fortiori
that this operator functions in connection with the ether’s wind, and that this
wind is the actual cause of the assumed bodies’ contractions. The merit of the
Lorentz transformation is the verification for the invariance in the Maxwell
equation. However, one disadvantage of the Lorentz interpretation is that the
contraction is independent of the material properties of bodies.

C. The Einstein Interpretation of M-M Experiments

Einstein created a tabula rasa in his 1905 paper titled ““On the electrodynamics of
moving bodies” [18]. He rejected the paradigm of ether as well as the classical
concepts of space and time, and founded a new physics by the exclusion of inner
forces called the special relativity theory. He stated two axioms: (1) the principle
of relativity and (2) the homogeneous and isotropic propagation of light in any
inertial coordinate system of the vacuum. The homogeneous isotropic light
propagation can be satisfied by the Lorentz-contracted spacetime. Of course,
without the concept of physical ether, the ether wind theory is meaningless.
Einstein refused the material explanation of Lorentz and Fitz-Gerald, but kept
the contraction form factor B without another material interpretation. It is clear
that the nonmaterial interpretation given by Einstein is high-handed, but it is still
questionable that it is the least arbitrary.

It is well known that Einstein’s interpretation for the Michelson—Morley-type
experiments was self-consistent in mathematical sense, although he lost the
genuine concepts and the traditional a priori and anthropic relations of space
and time forever. With this step the science left its childhood or rather, lost its
innocence. In this way Einstein created the opportunity for any extravagant
interpretations of strange experiments, and so any other physical concepts, for
example, the propagation theory, became illusory.

D. Interferometers: Standing-Wave Systems

As it was confirmed that the notions of electrodynamics and the theory of light
propagation have become complicated complexes of concepts and they are
wholly confusing. These inadequate notion complexes have to be broken open,
disintegrated, then disjoined.

Let us study the M-M- and the Sagnac-type experiments without any
preconceptions. We can then see that the interferometers are unable to measure
the traveling times; they can measure only the interference fringes of standing
waves. This means that description of the M-M experiment allows the use of the
wavelengths and phases, but not the traveling times and the speed of propa-
gation. In a strict sense, the Michelson—type the interferometers are unable to
measure the velocity of propagation and traveling times in the arms. Specifically
to measure traveling times, it an exact optical distance measurement theory and
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method would be necessary. (In connection with the restrictions of the least-
arbitrariness principle in the geometric optics, the principle of least action can
give the path of light as the distance.)

The fine distinction between traveling times and the shift in interference
fringes may not be clear from the point of view of Newtonian mechanics, which
predicts both to be changing. Finally, classical physics and the geometric optics
are refuted or restricted by experience, notwithstanding the fact that these are
self-consistent theories in their own right.

IV. ANALYSIS OF SAGNAC-TYPE EXPERIMENTS

A. The Classical Arrangements

Consider a disk of radius R rotating with an angular velocity ® around its axis
[1,12—14]. Suppose a large number of mirrors n are arranged on its periphery in
such a way that a light signal starting, say, from a point A of the periphery is
guided along a path very nearly coinciding with the edge of the disk. If the disk is
at rest, a signal starting at time t=0 from a point A on the periphery arrives back
into A at a time

_ R
76‘

r (7)

However, if the disk is rotating with a circumference velocity vg = ®R and the
light signal is moving in the direction of rotation, then, at time T = 2nR/c, it will
reach a point Ay located at the location that A had left at + = 0. The signal has to

catch up to point A, which is moving away; the signal will reach this location at a
later time T, so that ¢T = 2nR + vgT; therefore

2nR
7, =" S (8)
C — VR

(where vy is circumference velocity).

Now suppose that the light moves relative to the edge of the disk ¢
-according to classical physics and according to Eq. (8), in the direction of
velocity

Ci i =C— Vg 9)

(where c is speed of light in the direction of velocity).

Suppose that the velocity of the beam is relative to the disk but that we have
calculated the traveling time only and that the signal starting from A must again
catch up with point A, which is moving away.
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If the light signal moves in the opposite direction, it reaches A sooner that at
t = T as point A moves then toward the signal. In this case we find for the time
at which the signal reaches A

MR
- o7 (10)
c+ Vg

or we may assume that the speed of light traveling in the opposite direction is
velocity c_:

c_:=c+wg (11)

(c_ is speed of light opposite the velocity).

In the boundary transition (n — oo), the polygon—constructed by the
mirrors—becomes a circle with radius R, and the difference of the times needed
to circle around the disk in the opposite direction is thus

1 1 4R i\
AT =T, —T_ =2mR - TR AT (1)
c—Vvg c+vg 2—vy  ?

where S = nR? is the area of the disc circled round by the beams and  is angular
velocity.

Of course, according to the Section IIL.D, this calculation should really be
carried out at wavelengths A —s instead of traveling times T—s. The Sagnac-
type experiments are also standing-wave systems. Then the magnitude of shift
of the interference fringes with the above ®

Ax=x+—x:2nR(i_i> o 0 (13)

cy  c- c

which has been confirmed by experiments [12—-14] without any doubt.
Naturally this coincidence does not mean that the geometric optics added to
the classical physics could be used for the exact description of the light
propagation since the Michelson—Morley experiment refuted its validity forever.
It is evident that there are possible new mathematical definitions for c; and
c_ instead of the ordinary speed addition rule of the classical physics seen in
Egs. (9) and (11). These can be compatible with the experimental results as well.

B. The Relativistic Calculation

The major absurdity of the result of the Sagnac-type experiments is that the
calculation was carried out by the geometric optics exclusively. Of course, the
calculation should carried out using the special relativity theory exhaustively.
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The validity of a physical theory depends on, among other things, the certainty
and completeness by which the theory is ordered to the totality of experiences
[2c]. Consequently, the special relativity theory must also be confronted with
observation and experiment carried out on the physical system examined. In any
given case one has to clarify the mutuality of the special relativity and the Sagnac
effect. In this case, the second postulate of the special relativity theory must be
satisfied; that is, the speed of light must be the same in every direction

Cy=cCc_=c¢ (14)

by definition. Substituting Eq. (14) into Eq. (13) a zero shift of interference
fringes, we obtain. AL = A, — A_ = 0, which is contrary to the experiments.

This means that the special relativity theory does not predict any shift of
interference fringes that is contrary to the experiments. The standing-wave
approach of Sagnac-type experiments allows a freedom in the definition of ¢
and c_ instead of Egs. (9) and (11), but the second postulate of the special
relativity theory is out of this range.

Of course, the Sagnac-type experiments were not made in a perfect inertial
systems. The earth’s orbital motion around the sun is also a noninertial system.
But the circumference velocities in both cases are extremely low, v/c < 1,
and—in the first approximation—these frames of reference are almost inertial
systems.

The Sagnac-type experiments proved that the circumference velocity can be
detected by purely and closed optical instruments as well. The circumference
velocity of the rotating earth, vg ~ 300 m/s, is extremely low to the earth’s
orbital velocity, which is also a circumference velocity, with v, oc 100 X vg. In
both cases, Michelson—Morley and Sagnac wanted to determine the circum-
ference velocities. The M-M experiments were unable to determine the earth’s
orbital circumference velocity, but the Sagnac experiment determined the rota-
ting earth’s circumference velocity. On the basis of the Michelson—-Morley-type
experiments, Einstein postulated the constancy of the speed of light, so the
results of the Sagnac-type experiments—with different speeds of light—
contradict the special relativity theory.

In a strict sense, the classical Newtonian mechanics and the Maxwell’s
theory of electromagnetism are not compatible. The M-M-type experiments
refuted the geometric optics completed by classical mechanics. In classical
mechanics the inertial system was a basic concept, and the equation of motion
must be invariant to the Galilean transformation Eq. (1). After the M-M
experiments, Eq. (1) and so any equations of motion became invalid. Einstein
realized that only the Maxwell equations are invariant for the Lorentz trans-
formation. Therefore he believed that they are the authentic equations of motion,
and so he created new concepts for the space, time, inertia, and so on. Within
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this framework the Lorentz transformation is the law of choice for the equation
of motion. Sagnac’s result proved that Einstein’s method contradicts experience.
Besides, on a deeper level it is proved that Maxwell’s equations are not
applicable for the slowly rotating systems. So, in an authentic theory of light,
Maxwell’s equations must be changed to allow for a description of rotating and
deforming systems [19,20].

C. The Incompleteness of the Theory of Light

The classical theory of light—consisting in the complexes of concepts such as
light propagation and interference—employs geometric optics added to classical
physics and the Maxwell theory of electromagnetism. These turbulent notion
complexes suffered from logical inconsistencies. [For example, the Maxwell
equations are not invariant to the Galilean transformations (1) since those are not
equation of motion in the mechanical sense.] This conceptual conglomeration
was broken open by the Michelson—-Morley-type experiments. In the present
case, the incompleteness of classical light theory means that it cannot describe
and explain the M-M-type experiments within the frame of the theory. For a
complete, accurate description and explanation, a new theory was needed.
Einstein believed the new theory to be nonclassical, and so he created the special
relativity theory. The relativistic theory of light is similar in composition to the
classical one, except that classical mechanics is changed to the relativistic
mechanics. The relativistic theory of light—beside the explanation of the M-M-
type experiments—was free from the logical problem of the classical light theory
described above.

Eight years later Sagnac made a crucial experiment. The Sagnac-type exp-
eriments are broken open the complexes of concepts of relativistic light theory.
Thus it became an incomplete theory since its prediction of the shift of
interference is AL = Ay — A_ = 0, contrary to the Sagnac-type experiments.

We need to find a complete theory of light based on more profound evidence,
new basic concepts, and authentic connections.

V. SUMMARY

The complete theory of light should describe and explain the totality of
experiences, that is, the M-M- and Sagnac-type experiments simultaneously.

In the spirit of the standing-wave picture of Sagnac-type experiments, this
theory needs to recalculate the result of the Michelson-Morley experiment as
well. In the M-M experiment there is a new unknown hidden parameter c,,
which denotes the speed of light in the direction perpendicular to the earth’s
velocity. The traveled path of light in the perpendicular arm A, := 2Tc,
[dim{A}=meter]. [where ¢, is speed of light perpendicular to the velocity
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(transversal light speed)]. The difference of the paths traveled in the interfe-
rometer is

sx*x*++x*2x;d2<c+c) 2 & (15)
C

+ Cc_ Cp

It can be seen that the second postulate of special relativity theory [Eq. (14)]
leads to the form

cp=c_.=c¢p=c (16)

Substituting Eq. (16) into Eq. (15), we obtain a zero interference change,
corresponding to with the M-M experiment. The M-M experiments are only a
limited part of the totality of experiences.

The Michelson—Morley- and Sagnac-type experiments give only two indepen-
dent equations—Eqgs. (13) and (15)—for three unknown hidden parameters
¢y, c_, and ¢,. In the present case the incompleteness means that there are three
unknown parameters for two equations. A third equation is needed in the form
of a crucial experiment for the unique solutions. (Of course, this crucial experi-
ment must be independent of the M-M- and Sagnac-type experiments.) In this
manner we will be able to develop an authentic nonquantized (complete) theory
of light.

After the frequent metaphysical optimism of a century ago, we again return
to the fundamental questions.
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I. INTRODUCTION
Non-Abelian electrodynamics is an interesting proposal that electrodynamics has

a more general gauge structure. The basis advanced by Barrett, Harmuth, and
Evans proposes that electrodynamics has a more complex structure than one
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described by the U(1) gauge group. Initially it was advanced as an extension of
electrodynamics for the derivation of solutions to Maxwell’s equations. Later
Evans suggested that this extension may have physical implications. The
principal implication is the existence of the B() magnetic field. This field
emerges from the commutator of gauge potentials in the Yang—Mills equations.
This field is written most often as

B® — %A(l) « A® (1)

The particular gauge potentials are orthogonal to each other by complex
conjugation A® = A* with

AY =4, +ijA, (2)

The definition of the B®) field in this manner illustrates that the internal index
associated with the extended gauge group is identified with coordinates that are
orthogonal to the direction of propagation of the electromagnetic field. This has
various implications, which, if interpreted classically, mean that the Stokes
parameters of an electromagnetic field determine this field.

Few of the claims for classical effects in non-Abelian electrodynamics have
been conclusively demonstrated, but it may account for the Sagnac effect in
interferometry. This is a pure phase effect associated with rotating inter-
ferometers, which can be predicted according to non-Abelian electrodynamics.
However, as a purely phase effect this does not mean that the magnetic field,
called the B® field, has been directly measured as yet. If one regards the
electrodynamic field as quantum-mechanically composed of harmonic oscillator
states, this B®) field has not been demonstrated to have eigenstates according to
<B<3) . B<3)>. This does not mean that non-Abelian electrodynamics is false, but
rather suggests that the eigenstates of this 3-magnetic field do not present
themselves readily. Even if this magnetic field were absent, there would still
exist subtle phase effects, which would manifest themselves in the interaction of
electromagnetic fields and media. Classically, it appears as if this field should
appear with a field strength that depends on 1/w?, which means that for long
wavelength electromagnetic fields it should be quite large. If this field did occur
readily, it would be abundantly present in a microwave beam with a coherent
polarization, which would have certainly been discovered sometime during or
shortly after World War II with the rapid development of radar. One of the
purposes of this chapter is to address this matter.

There have been reports of the inverse Faraday effect that are predicted by
non-Abelian electrodynamics. However, these reports are comparatively dated,
and no updated results appear to have been reported. In 1998 the Varian
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Corporation attempted to measure the B®) field. However, the results were null,
and an inconclusive direct measurements of the B®) field still remains elusive.
On the theoretical front non-Abelian electrodynamics remains controversial and
not widely upheld. Some objections are not entirely reasonable. On the other
hand, Waldyr Rodriques objected to certain assumptions, proposed by M. W.
Evans, that relates coefficients in Whittaker’s 1904 paper on electrodynamics to
the putative existence of longitudinal modes in non-Abelian electromagnetic
waves in vacuum. Rodrigues’ objections appear reasonable. However, this
response was quite forceful and direct, and resulted in his refusal to consider
anything involving non-Abelian electrodynamics.

In order to address this question, it is requisite that the quantum field
theoretic aspects of non-Abelian electrodynamics must be considered. In fact,
theoretical reasons for the apparent paucity of the B®) field were discovered
through examination of non-Abelian electrodynamics at high energy and its
unification with the weak interactions. Non-Abelian electrodynamics at high
energy should emerge from an SU(2) gauge field theory, and this appears to
have an elegant duality with the weak interactions with which it is unified within
the TeV (teraelectronvolt) range in high-energy physics. This lead to the
prospect that if this putative theory were true, then there should exist an
additional Z-like boson, referred to as Z, which should appear with a mass in the
TeV range. The additional degrees of freedom in the field define the U(1) gauge
theory plus various non-Lagrangian symmetries. These curious non-Lagrangian
symmetries emerge from a Lagrangian that vanishes, and thus have no action or
dynamics. It is here that the B® field exists, or rather nonexists. This also
implies that the field is a vacuum effect that induces squeezed states and other
nonlinear effects. The definition of the B®) according to Egs. (1) and (2)
suggests that this is the case, as it is determined by the orthogonal polarization
directions of an electromagnetic field. The apparent immeasurablity of the B®)
field suggests that this field is a pseudofield that has subtle effects.

These results are somewhat at odds with the classical ideas of Evans;
however, the quantum field theoretic calculations performed in this section lead
to the conclusion that (B®) - B®)) = 0. This means that this 3-field simply is not
a classical effect, and that the classical calculations may be valid only as
formalistic tools. If <B(3) . B(3)> is demonstrated to exist, then this implies that
additional physics is involved that either generalizes the quantum-mechanical
results, or new physics that is involved with the quantum—classical transition.

Equally of interest in the prospects this may have for high-energy physics.
An extended SU(2) x SU(2) standard model has features of gauge field duality
proposed by Montenen and Olive. This theory further embeds into an SO(10)
grand unification scheme that includes the SU(3) gauge field for the strong
interactions. Also, since this field predicts the existence of additional Z bosons,
this also has an influence on the gauge hierarchy problem. Within the
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SU(2) x SU(2) extended standard model the two gauge groups are chiral with
opposite handedness. At low energy the weak angle mixes the two chrial fields
so that one field theory is chiral while the other is vector. The weak interactions
are the chiral fields, while electromagnetism on the physical vacuum is vectorial.
The result of this transition to low energy is the production of a massive A®)
field. This massive field is identified as the Z, boson. This massive neutral boson
has been recently suggested through deviations in neutrino production at LEP1.
Yet, this type of theory can be tested or falsified only in the multi-TeV range in
energy. Only until the Z, is directly produced and its existence is deduced
through its decay products can it be determined whether this dual theory of
electroweak interactions is acceptable.

This section will be broken into a number of discussions. The first will be on
a naive SU(2) x SU(2) extended standard model, followed by a more general
chiral theory and a discussion on the lack of Lagrangian dynamics associated
with the B® field. This will be followed by an examination of non-Abelian
QED at nonrelativistic energies and then at relativistic energies. It will conclude
with a discussion of a putative SO(10) gauge unification that includes the strong
interactions.

II. THE SU(2) x SU(2) EXTENDED STANDARD MODEL

If we are to consider the prospects for non-Abelian electrodynamics, it is best for
aesthetic reasons to consider what this implies for an SU(2) x SU(2) extended
standard model of electroweak interactions. This model has the pleasing quality
of gauge duality, and it can be examined to determine whether there are
inconsistencies with high-energy physics data at the TeV range in energy. It also
may indicate something of the appearance of electrodynamics at low energy. If
this is consistent with the abundant data, then the model is at least tentative. It
will be demonstrated that this leads to certain conclusions about the ontological
status of the B®) field.

Consider an extended standard model to determine what form the
electromagnetic and weak interactions assume on the physical vacuum defined
by the Higgs mechanism. Such a theory would then be SU(2) x SU(2). We will
at first consider such a theory with one Higgs field. The covariant derivative will
then be

P, =0, +igc-A,+igt-by (3)
where o and 7 are the generators for the two SU(2) gauge fields represented as

Pauli matrices and A,b are the gauge connections defined on the two SU(2)
principal bundles. There is an additional Lagrangian for the ¢* scalar field [8]:

Ly =31 TuOF ~ 5HIOF + P16 )

N —
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The expectation value for the scalar field is then

(bo) = (0\/19 (5)

for v =+/—p2/A. At this point the generators for the theory on the broken
vacuum are

o= (39)
tonjox = (i5.0) (6)

These hold similarly for the generators of the other SU(2) sector of the theory.
There is a formula for the hypercharge, due to Nishijima, that when applied
directly, would lead to an electric charge:

0lt) = 5 @ol(os +70) = (0 )

LA )
V2 V2
This would mean that there are two photons that carry a £ charge, respectively.

We are obviously treating the hypercharge incorrectly. It is then proposed that the
equation for hypercharge be modified as

1

Qo) =5 (bo)(m2 - T3 + 1y - 01) =0 (8)

where the vectors n; and n, are unit vectors on the doublet defined by the two
eigenstates of the vacuum. This projection onto &1 and 13 is an ad hoc change to
the theory that is required since we are using a single Higgs field on both bundles
on both SU(2) connections. This condition, an artifact of using one Higgs field,
will be relaxed later. Now the generators of the theory have a broken symmetry
on the physical vacuum. Therefore the photon is defined according to the G|
generator in one SU(2) sector of the theory, while the charged neutral current of
the weak interaction is defined on the 13 generator.

We now consider the role of the ¢* scalar field with the basic Lagrangian
containing the follwoing electroweak Lagrangians:

1 a ra 1 a a 2 1 2 1 2\2
gZ_ZvaF MV_Z qu W‘HQMM _EHZM)' +Z7‘(|¢|) (9)



408 LAWRENCE B. CROWELL

Here Gy, and Fj, are elements of the field strength tensors for the two SU(2)
principal bundles. So far the theory is entirely parallel to the basic standard
model of electroweak intereactions. In further work the Dirac and Yukawa
Lagrangians that couple the Higgs field to the leptons and quarks will be
included. It will then be pointed out how this will modify the B®) field. The ¢*
field may be written according to a small displacement in the vacuum energy:

(v+E&+iy)

¢/:¢+<¢0): \/E

(10)

The fields & and y are orthogonal components in the complex phase plane for the
oscillations due to the small displacement of the scalar field. The small
displacement of the scalar field is then completely characterized. The scalar field
Lagrangian then becomes

Lo == (0,E0ME — 21%E%) + = v(gA + gby

1 1 1 1
+ (—‘f‘T) pr) . (g/A” +gb“ + (—‘FT)GMX) (11)
g gV gv g

The Lie algebraic indices are implied. The Higgs field is described by the
harmonic oscillator equation where the field has the mass My ~ 1.0 TeV/c%. On
the physical vacuum the gauge fields are

l\)l'—'

1
g'Ay +gby — g'A, +gby, + g_vallx =gAy+gby (12)

which corresponds to a phase rotation induced by the transition of the vacuum to
the physical vacuum. Let us now break the Lagrangian, now expanded about the
minimum of the scalar potential, out into components:

2 ( WEME — 2u&)+ v x (¢%[B] + g2 (W + W)

+& A+ |A3+iIA2\2) (13)

where we have identified the charged weak gauge fields as

Wy = T(bl + ib7) (14)
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The masses of these two fields are then gv/2. From what is left, we are forced to
define the fields

1
Ay = ———(gA> +¢'b3, — gA]) (15a)
K 82 +g/2 [ " "
0 _ A3 Al
Z, = s (8'A; +8b3, +&'A) (15b)

In order to make this consistent with the SU(2) x U(1) electroweak inter-
action [4], theory we initially require that A%, = 0 everywhere on scales larger
than at unification. If this were nonzero, then Z; would have a larger mass or
there would be an additional massive boson along with the Z; neutral boson.
The first case is not been observed, and the second case is to be determined.
This assumption, while ad hoc at this point, is made to restrict this gauge
freedom and will be relaxed later in a more complete discussion of the 3-photon.
This condition is relaxed in the following discussion or chiral and vector fields.
This leads to the standard result that the mass of the photon is zero and that the
mass of the Z particle is

~ 2
MZo:Vg2+g’2§:”1+(g§> My (16)

The weak angles are defined trigonometrically by the terms g/(g> + g”) and
g'/(g* 4 ¢”*). This means that the field strength tensor F,, satisfies

e
Ffw = avAﬁ — QA3 — i [Ai,Aﬁ]
= iz [A},A] (17)

and further implies that the third component of the magnetic field in the SU(2)
sector is

3 _ w3
B =€ F

= —iz (A x A, (18)

This is the form of the B®) magnetic field. This also implies that the E®) electric
field is then

EY = ¢VF}, = 7,-%(1;1 x A%), (19)
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This demonstrates that E®) = B®) in naturalized units. This is leads to the
suspicion that the B(3) field is zero.

The duality between these electric and magnetic field means that the
Lagrangian vanishes. The vanishing of this Lagrangian on symmetry principles
means that no dynamics can be determined. This would indicate that this
particular model simply reproduces U(1) electrodynamics, plus additional non-
Lagrangian symmetries. Within this picture it appears as if the B®) =0, and
that it simply represents the occurrence of various non-Lagrangian symmetries,
but where there are no dynamics for the B®) field.

This result is a curious and troubling one for the prospect that there can be a
classical B®) field that has real dynamics. This would imply that non-Abelian
symmetry is determined by a Lagrangian of the form %(E32 — B32), where this
is automatically zero by duality. However, if this were the case, we would still
have non-Abelian symmetry as a nonLagrangian symmetry. This strongly
supports the possibility that the electrodynamic vacuum will continue to exhibit
non-Abelian symmetries, such as squeezed states, even if we impose
E’=B°=0.

However, it can be suggested that the B> = E® field duality is broken when
we consider the Lagrangian for the 3-field with the massive A®) field introduced
as

¥ = lFS F3pv + lHA3 A3p _ (l) -3 A3}L
T M o) w
(20)

1 52 32 1 5 3 1\ 5 3
$:§(E -B )+§“AMAH_ EJHAH

The middle term is a Proca Lagrangian for a massive photon. Here the mass of
this photon is assumed to be larger than the masses of the W* and W° bosons.
The current j u 18 determined by the charged fermions with masses given by the
Yukawa interactions with the Higgs field. These are yet to be explored. Now
consider the term in the Euler—Lagrange equation

oL
DA A, A (21a)

with covariant derivatives that enter into the Euler—Lagrange equation as
. € [ a
DAY = 3,A% + z(ﬁ) A%, A”) (21b)

and the subsequent setting of A> — 0. Then the full Euler-Lagrange equation

oL oL
- =
D Sy ~aaw =0 22)
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is

_OE’

V><B3+HZA3—J'3_F (23)

which is just a form of the Faraday—Maxwell equation. However, the Hodge—star
dual of this equation, the Maxwell equation, does not contain the current term,

o'

V x E? A = —
B ot

(24)

The nonvanishing A®) field at high energy will then break the duality between
the E® and B fields.

There is rub to this construction. This Proca equation is really only
applicable on a scale that approaches high-energy physics where the A®) boson
has appreciable influence. This will be only at a range of 10~'7 cm. On the scale
of atomic physics 1078 ¢cm, where quantum optics is applicable, this influence
will be insignificant. In effect on a scale where the A®) does not exist, as it has
decayed into pion pairs, the duality is established and there is no Lagrangian for
the B® field. This puts us back to square one, where we must consider non-
Abelian electrodynamics as effectively U(1) electrodynamics plus additional
nonLagrangian and nonHamiltonian symmetries.

It has been demonstrated that there is an SU(2) x SU(2) electroweak theory
that gives rise to the Zy, W* gauge vector bosons plus electromagnetism with
the photon theory with the cyclic condition for the B field. What has not been
worked out are the implications for quark and lepton masses by inclusion of
Yukawa coupling Lagrangians. However, that sector of the theory has little
bearing on this examination of the electromagnetic theory, with A3 = 0, that
emerges from the SU(2) x SU(2) gauge theory. We now have a theory for
electromagnetism on the physical vacuum that is

L = —(1AFFy — (/GG + 3 (B - (B)?)
+ MolZof? + My WP+ (08 - 2012 P)
+ Dirac Lagrangians + Yukawa [Fermi-Higgs] (25)
where Fy,, and G|, are the field tensor components for standard electromagnetic
and weak interaction fields, and the cyclic electric and magnetic fields define the

Lagrangian in the third term. The occurrence of the massive Zy and W+ particles
obviously breaks the gauge symmetry of the SU(2) weak interaction.
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III. THE THEORY AND ITS PROBLEMS AND THEIR REMEDIES

So here we have constructed, in some ways rather artificially, an SU(2) x SU(2)
gauge theory that is able to reproduce the standard model U(1) x SU(2) with the
additional cyclic magnetic field given by Eq. (19). However, we are left with two
uncomfortable conditions imposed on the theory to make this work. The first is
that the electric charge of gauge bosons is treated in an ad hoc fashion so that we
do not have photons A' and A” that carry a unit of electric charges +1. The
second problem is that we have, by hand, eliminated the A® vector potential. If
this were nonzero, we would have the following gauge potential:

oP=—8 43 (26)

This field would have a mass equal to y/g? + g?v/2 and would then contribute a
large decay signal at the same scattering transverse momenta where the Zj is
seen.

The problem is that we have a theory with two SU(2) algebras that both act
on the same Fermi spinor fields. We further are using one Higgs field to compute
the vacuum expectation values for both fields. The obvious thing to do is to first
consider that each SU(2) acts on a separate spinor field’s doublets. Next the
theory demands that we consider that there be two Higgs fields that compute
separate physical vacuums for each SU(2) sector independently. This means
that the two Higgs fields will give 2 x 2 vacuum expectations, which may be
considered to be diagonal. If two entries in each of these matrices are equal then
we conclude that the resulting massive fermion in each of the two spinor
doublets are the same field. Further, if the spinor in one doublet assumes a very
large mass then at low energies this doublet will appear as a singlet and the
gauge theory that acts on it will be O(3), with the algebra of singlets

€ = €ife;, €] (27)

This will leave a theory on the physical vacuum that involves transformations on
a singlet according to a broken O(3), gauge theory, and transformations on a
doublet according to a broken SU(2) gauge theory. The broken O(3), gauge
theory reflects the occurrence of a very massive A ) photon, but massless A! and
A? fields. This broken O(3) ,» gauge theory then reduces to electromagnetism with
the cyclicity condition. The broken SU(2) theory reflects the occurrence of
massive charged and neutral weakly interacting bosons. Further, since the
Lagrangian for the 3-fields is zero, this would further imply that the
electromagnetic gauge theory is U(1). This would mean that the electromagnetic
field singlets will not obey the algebra given, in equation 27.
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To take this theory further would be to embed it into an SU(4) gauge theory.
The gauge potentials are described by 4 x 4 traceless Hermitian matrices and
the Dirac spinor has 16 components. The neutrality of the photon is then given
by the sum over charges, which vanishes by the tracelessness of the theory. The
Higgs field is described by a 4 x 4 matrix of entries.

It is concluded within the ‘“‘toy model” above that the B®) field, or more
likely a pseudofield, is consistent with an extended SU(2) x SU(2) model of
electroweak interactions. A more complete formalism of the SU(2) x SU(2)
theory with fermion masses will yield more general results. A direct
measurement of B®) should have a major impact on the future of unified field
theory and superstring theories. The first such measurement was reported in
Ref. 14, (see also Refs. 6 and 7).

IV. CHIRAL AND VECTOR FIELDS IN SU(2) x SU(2)
ELECTROWEAK FIELD

The cyclic theory of electromagnetism has been demonstrated to be consistent
with a SU(2) x SU(2) theory of electroweak unification [15]. It has been
demonstrated that if we set A> = 0 on the physical vacuum that a cyclic theory of
electromagnetism is derived. This theory contains longitudinal E® and B®
fields that are dual E3> = B®), but where this duality is broken by current
interactions. By setting A* = 0 the transverse 3-modes of the theory have been
completely eliminated by this arbitrary restriction of this gauge freedom. The
elimination of these transverse 3-modes guarantees that photons are entirely
defined by the o' generators of the SU(2) theory of electrodynamics. Since the
field defined by the o® generators are longitudinal this means they are
irrotational V x E> =V x B?> =0 and thus time independent. According to
Maxwell’s equations, this means that there are no electromagnetic waves or
photons associated with this field.

V. AXIAL VECTOR SU(2) x SU(2) FIELDS: A FIRST LOOK

To start we examine a putative model of a chiral vector model at low energies to
determine what sorts of processes may be involved with the broken symmetry of
such a model. We start by naively considering a chiral vector model to see what
sorts of structure may emerge at low energy without explicit consideration of the
Higgs mechanism. The field theory starts out as a twisted bundle of two chiral
groups SU(2) x SU(2) and emerges as a theory that is an axial-vector theory at
low energy. We consider initially the situation where the theory is an axial vector
theory at low energy. We then consider the situation where there is a breakdown
of chiral symmetry. This is then used to set up the more complete situation that
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involves the breakdown of the chiral theory at high energy into an axial vector
theory at low energy.

Now we relax the condition that A*> = 0. This statement would physically
mean that the current for this gauge boson is highly nonconserved with a very
large mass so that the interaction scale is far smaller than the scale for the cyclic
electromagnetic field. In relaxing this condition we will find that we still have a
violation of current conservation.

With A% £ 0 we have the following fields [15]:

It 3 /1,3 1
Ay = s (gA, +&'by, —gA,)

1

0 _ 3 141

Zu - g2 T g’2 (gb” + gA”) (28)
/!

3 8 3

o = A’
/g2+g/2 S

One purpose here is to examine the > connection; which will have a chiral
component. This at first implies that the B®) field is partly chiral, or that it is
mixed with the chiral component of the other SU(2) chiral field in some manner
to remove its chirality.

The theory of SU(2) electromagnetism, at high energy, is very similar to the
theory of weak interactions in its formal structure. Further, it has implications
for the theory of leptons. The electromagnetic interaction acts upon a doublet,
where this doublet is most often treated as an element of a Fermi doublet of
charged leptons and their neutrinos in the SU(2) theory of weak interactions.

Following in analogy with the theory of weak interactions we let \y be a
doublet that describes an electron according to the 1 field and the 3 field. Here
we illustrate the sort of physics that would occur with a chiral theory. We start
with the free particle Dirac Lagrangian and let the differential become gauge
covariant,

L =Y(iy" D, — m)\
= Y(iy"0y — m)y — gAY o

= L + AL} (29)

where |y = \|JT’Y4. From here we decompose the current J ﬁ into vector and chiral
components:

T =Vl y, (1 +v5)0™y = Ve + o (30)
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This is analogous to the current algebra for the weak and electromagnetic
interactions between fermions. We have the two vector current operators [16]

a is a
VHZE\L”Y;[G 7"’ (31)
and the two axial vector current operators:
i-
X = 5 U5ty (32)

Here s = iy,Y,Y37V4, and 1 are Pauli matrices. These define an algebra of equal
time commutators:

Vi, Vi) = v

a tl C (33)
Vi, an) = =it
If we set 1 = 4, we then have the algebra
[Va, Ve = itV
and
Vi x5) = —it™ x5 (34)
If we set
1 a
QL = E(V + ) (35)
we then have the algebra
(04,0 = i Q5
[0*,0"] = it“”“Qi (36)
[09,0"] =

This can be seen to define the SU(2) x SU(2) algebra.
The action of the parity operator on Vf( and xﬁ due to the presence of v5 in the
axial vector current.

PViPt =V
o (37)
PYGPT = —y
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As such, one SU(2) differs from the other by the action of the parity operator and
the total group is the chiral group SU(2) x SU(2),. This illustrates the sort of
current that exists with chrial gauge theory, and what will exist with a right and
left handed chrial SU(2) x SU(2) theory.

We have, at low energy, half vector and half chiral vector theory
SU(2) x SU(2)p. On the physical vacuum, we have the vector gauge theory
described by A' = A?* and B®> = V x A’ + (ie/h)A' x A and the theory of
weak interactions with matrix elements of the form vy, (1 — vs)e and are thus
half vector and chiral on the level of elements of the left- and right-handed
components of doublets. We then demand that on the physical vacuum we must
have a mixture of vector and chiral gauge connections, within both the
electromagnetic and weak interactions, due to the breakdown of symmetry. This
will mean that the gauge potential A® will be massive and short-ranged.

One occurrence is a violation of the conservation of the axial vector current.
We have that the 1 and 2 currents are conserved and invariant. On the high-
energy vacuum we expect that currents should obey

o2 =0 (38)

where b € {1,2}, which are absolutely conserved currents. However, for the Ai
fields we have the nonconserved current equation [17]

auji = im\IJ‘JJ]LY4Y5C73‘J’ (39)

where inhomogeneous terms correspond to the quark—antiquark and lepton—
antilepton pairs that are formed from the decay of these particles. This breaks the
chiral symmetry of the theory. Then this current’s action on the physical vacuum
is such that when projected on a massive eigenstates for the 3-photon with
transverse modes

m2

([0 31 Xk) = (W

> <Xkr ‘Xk>€lkx (40)
The mass of the chiral {1,2} -bosons will then vanish, while the mass of the
chiral 3-boson will be m. So rather than strictly setting A> = 0, it is a separate
chiral gauge field that obeys axial vector nonconservation and only occurs at
short ranges.

Now that we have an idea of what nature may look like on the physical
vacuum, we need to examine how we in fact can have symmetry breaking and
an SU(2) x SU(2),p gauge theory that gives rise to some of the requirements of
0(3), electromagnetism mentioned above. A mixing of the two chiral SU(2)
bundles at low energy will effect the production of vector gauge bosons for the
electromagnetic interaction. It is apparent that we need to invoke the mixing of
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two chiral gauge bosons in such a manner as to produce a vector theory of
electromagnetism at low energy with a broken chiral theory of weak interactions.

VI. CHIRAL AND VECTOR GAUGE THEORY ON THE
PHYSICAL VACUUM FROM A GAUGE THEORY
WITH A CHIRAL TWISTED BUNDLE

The SU(2) x SU(2) theory should mimic the standard model with the addition of
the B® = (e/h)A" x A? field at low energies. This means that we demand that a
field theory that is completely chiral at high energy becomes a field theory that is
vector and chiral in separate sectors on the physical vacuum of low energies. This
means that a field theory that is chiral at high energy will combine with the other
chiral field in the twisted bundle to produce a vector field plus a broken chiral
field at low energy. Generally this means that a field theory that has two chiral
bundles at high energies can become vector and chiral within various
independent fields that are decoupled on physical vacuum at low energies.

We consider a toy model where there are two fermion fields \ and y, where
each of these fields consists of the two component right- and left-handed fields
Ry, Ly and R,, L,. These Fermi doublets have the masses m; and m,. We then
have the two gauge potentials A, and B, that interact respectively with the |
and y fields. In general, with more Fermi fields, this situation becomes more
complex, where these two Fermi fields are degeneracies that split into the
multiplet of fermions known. In this situation there are four possible masses for
these fields on the physical vacuum. These masses occur from Yukawa couplings
with the Higgs ﬁeld on the physical Vacuum These will give Lagrangians terms
of the form Y¢R ¢L, +H.C.and Yy, L yNRy +H.C., where we now have a two-
component ¢” ﬁeld for the Higgs mechamsm These two components assume
the minimal expectation values (¢,) and (n,) on the physical vacuum. We then
have the Lagrangian [18]

&L =iy (0 + igAy) — m) + X (iv* Oy + igBy) — ma)y,
— YoRL,OL, + H.C.— Y,LinR, + H.C. (41)

(where H.C. = higher contributions), which can be further broken into the left
and right two-component spinors:

& = R}ic"(3, + igAy)Ry + Lic* (3, + igAy )Ly
+ Rlic" (0, + igBy)R, + L}ic" (0, + igB,)L,
— mR},Ly — mL|,Ry, — myRiL, — myLIR,

— YoRLOL, + Y;LI¢"Ry — YoLinR, + Y;RIN'L,, (42)
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The gauge potentials A, and B, are 2 x 2 Hermitian traceless matrices and
the Higgs fields ¢ and y are also 2 x 2 matrices. These expectations are real
valued, and so we then expect that the non-zero contributions of the Higgs field
on the physical vacuum are given by the diagonal matrix entries [18]

w=( @) w=(% &) )

In a 1999 paper, these issues were not discussed [15]. There this matrix was
proportional to the identity matrix and the matrix nature of the Higgs field was
conveniently ignored. This means that the SU(2) x SU(2) electroweak theory
shares certain generic features with the SU(2) x U(1) theory. The values of the
vacuum expectations are such that at high energy the left-handed fields R, and
the right-handed doublet field Ly, couple to the SU(2) vector boson field By,
while at low energy the theory is one with a left-handed SU(2) doublet Ry, that
interacts with the right-handed doublet L, through the massive gauge fields A,.
Then the mass terms from the Yukawa coupling Lagrangians will then give

m = Yo(x') > m" =Yy (%) > (44)
m/// _ Y¢<(|)1> > m//// _ Y¢<(|)2> (45)

Further, if the SU(2) theory for B, potentials are right-handed chiral and the
SU(2) theory for A, potentials are left-handed chiral, then we see that a chiral
theory at high energies can become a vector theory at low energies. The converse
may also be true in another model.

In the switch between chirality and vectorality at different energies, there is
an element of broken gauge symmetry. So far we would have a theory of a
broken gauge theory at low energy. However, there is a way to express this idea
so that at low energy we have a gauge theory accompanied by a broken gauge
symmetry. To illustrate this let us assume we have a simple Lagrangian that
couples the left-handed fields \; to the right-handed boson A, and the right-
handed fields \, to the left handed boson B,

L = (iy* (0 + igAy) — m)Vy + U, (iy* (O + igBy) — mo)\y,
— YpUldU, — Y3uiny, (46)

If the coupling constant Yy is comparable to the coupling constant g, then the
Fermi expectation energies of the Fermions occur at the mean value for the Higgs
field (). In this case the vacuum expectation of the vacuum is proportional to
the identity matrix. This means that the masses acquired by the right chiral plus
left chiral gauge bosons A,, + B,, are zero, while the left chiral minus right chiral
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gauge bosons A, — B, acquires masses approximately Y (¢,). The theory at low
energies is a theory with an unbroken vector gauge theory plus a broken chiral
gauge theory [18]. It is also the case that we demand that the charges of the two
chiral fields A2, B! that add are opposite so that the resulting vector gauge
bosons are chargeless.

Just as we have gauge theories that can change their vector and chiral
character, so also do the doublets of the theory. In so doing this will give rise to
the doublets of leptons and quarks plus doublets of very massive fermions.
These massive fermions should be observable in the multi-TeV range of energy.

VII. THE OCCURRENCE OF 0(3), ELECTRODYNAMICS ON
THE PHYSICAL VACUUM

The two parts of the twisted bundle are copies of SU(2) with doublet fermion
structures. However, one of the fermions has the extremely large mass,
m' = Yy (x'), which is presumed to be unstable and is not observed at low
energies. So one sector of the twisted bundle is left with the same abelian
structure, but with a singlet fermion. This means that the SU(2) gauge theory will
be defined by the algebra over the basis elements ¢;,i € {1,2,3}:

[él‘, éj] = iEljkék (47)

We also need to examine the photon masses. We define the Higgs field by a small
expansion around the vacuum expectations ' = &' + (me) and n? = g2+ (n3).
The contraction of the generators 6! and 2 with the Higgs field matrix and right
and left fields gives

o' nR+c*-nL=0 (48)

which confirms that the charges of the A' and A fields are zero. These fields on
the low-energy vacuum can be thought of as massless fields composed of two
gauge bosons, with masses v/m' + m” > M7 and with opposite charges. These
electrically charged fields can be thought of as A* = A' + A%, These particles
cancel each other and gives rise to massless vector photon gauge fields. The field
A® also has this mass. This massive field is also unstable and decays into
particle pairs.

With the action of the more massive Higgs field we are left with the gauge
theory SU(2) x O(3), where the first gauge group acts on doublets and the last
gauge group acts on singlets. Further on a lower-energy scale, or equivalently
sufficiently long timescales, the field A® has decayed and vanished. At this
scale the second gauge group is then represented by 0(3)p meaning a partial
group. This group describes Maxwell’s equations along with the definition of
the field A' x A”.
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From this point we can then treat the action of the second Higgs field on this
group in a manner described in Ref. 15. If we set the second Higgs field to have
Zero-vacuum expectation <<|>2> =0, then the symmetry breaking mechanism
effectively collapses to this formalism, which is similar to the standard
SU(2) x U(1) model Higgs mechanism. We can the arrive at a vector electro-
magnetic gauge theory O(3) ,» Where p stands for partial, and a broken chiral
SU(2) weak interaction theory. The mass of the vector boson sector is in the
A®) boson plus the W* and Z° particles.

VIII. THE SU(4) MODEL

It is possible to consider the two SU(2) group theories as being represented as the
block diagonals of the larger SU(4) gauge theory. The Lagrangian density for the
system is then

L =Yt (0 + ighy) — )V — Yy (49)

The gauge potentials A, now have 4 x 4 traceless representations. The scalar
field theory that describes the vacuum will now satisfy field equations that
involve all 16 components of the gauge potential. By selectively coupling these
fields to the fermions, it should be possible to formulate a theory that recovers a
low-energy theory that is the standard model with the 0(3)p gauge theory of
electromagnetism.

What has been presented is an outline of an SU(2) x SU(2) electroweak
theory that can give rise to the non-Abelian O(3), theory of quantum electro-
dynamics on the physical vacuum. The details of the fermions and their masses
has yet to be worked through, as well as the mass of the A® boson. This vector
boson as well as the additional fermions should be observable within the 10-Tev
range of energy. This may be accessible by the CERN Large Hadron Collider in
the near future.

The principal purpose here has been to demonstrate what sort of electroweak
interaction physics may be required for the existence of an O(3), theory of
quantum electrodynamics on the low-energy physical vacuum. This demon-
strates that an extended standard model of electroweak interactions can support
such a theory with the addition of new physics at high energy.

IX. DUALITY IN GRAND UNIFIED FIELD
THEORY, AND LEP1 DATA

The preceding construction indicates that the electromagnetic and weak inter-
actions may be dual-field theories. If the preceding construction is experimen-
tally verified, then this would be the first empirical indication that the universe is
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indeed dual according to a theory along the lines of Olive-Montenen [ 11-13].
Within this theory there are coupling constants that have inverse relationships, or
convergences at high energy, so that one field is weak and the other is strong at
low energy. In this case the electromagnetic field is comparatively strong, but not
when compared to the nuclear force, and the other is very weak. It may be that
both field theories have coupling constants that are both lowered and diverge at
low energy within a grand unified theory (GUT). The examination of this
electroweak theory within such a construction has not been been done. Nonethe-
less, the experimental finding of the A® would bring a tremendous change in our
views on the foundations of physics.

It was recently suggested by Erler and Langacker [19] that an anomaly in Z
decay widths points to the existence of Z’' bosons. These are predicted to exist
with a mass estimate of 812 GeV'33) within an SO(10) GUT model and a
Higgs mass posited at 145 GeV ' %*. This suggests that a massive neutral boson
predicted by grand unified theories has been detected. Further, variants of string
theories predict the existence of a large number of these neutral massive bosons.

Analyses of the hadronic peak cross section data obtained at LEP1 [20]
implies a small amount of missing invisible width in Z decays. These data imply
an effective number of massless neutrinos, N = 2.985 £ 0.008, which is below
the prediction of 3 standard neutrinos by the standard model of electroweak
interactions. The weak charge Qy in atomic parity violation can be interpreted
as a measurement of the S parameter. This indicates a new Qy = —72.06 = 0.44
is found to be above the standard model prediction. This effect is interpreted as
due to the occurrence of the Z' particle, which will be refered to as the Z,
particle.

SO(10) has the six roots o,i = 1,...,6. The angle between the connected
roots are all 120°, where the roots o, a* are connected to each other and two
other roots. The Dynkin diagram is illustrated below:

Figure 1. Extended Dynkin diagram for SO(10).
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The decomposition of SO(10) — SU(5) x U(1) is performed by removing
the circles representing the roots o!>3% connected by a single branch. The
remaining connected graph describes the SU(5) group. However, by removing
the circle o* connected by three branches forces SO(10) to decompose into
SU(2) x SU(2) x SU(4). Here we have an SU(2) and a mirror SU(2) that
describe opposite-handed chiral gauge fields, plus an SU(4) gauge field. The
chiral fields are precisely the sort of electroweak structure above and proposed
in Ref. 15. Presumably since SU(4) can be represented by a 4 thatis 3 @ 1 and 4
as 3 @ 1, we can decompose this into SU(3) x U(1). Further, the neutrino short
fall is a signature of the opposite chiralities of the two “mirrored”” SU(2) gauge
fields [15].

The SU(2) x SU(2) — SU(2) x O(3), predicts the occurrence of a massive
photon. So it is possible that these data could corroborate the extended standard
model that expands the electromagnetic sector of the theory. What we really
understand empirically is QCD and electroweak standard model, and we may
have some idea about quantum gravity for at least we do have general relativity
and quantum mechanics. This leads to the strange situation where we have
reasonable data on low-TeV range physics and potential ideas about quantum
gravity at 10" GeV, with a void of greater ignorance in between. However,
these data and analyses suggest theoretical information about GUTs and cast
some light on this energy region.

These experimental data do suggest that non-Abelian electrodynamics is
tentatively a valid theory, at least as an extended theory that predicts
nonHamiltonian vacuum symmetries. It also suggests that at high energy,
electrodynamics and the weak interactions are dual-field theories. This duality
would then exist at energies that may be probed in the TeV range of energy. In
order to completely verify that this is the case experiments at the TeV range
need to be performed where the Z, and Higgs boson can be directly produced.

This leaves open the question about the nuclear interaction. It is tempting to
conjecture that there is a dual field theory to the SU(3) nuclear interaction or
quantum chromodynamics (QCD). It is easy to presume that such a construction
would proceed in a manner outlined above with the chiral SU(2) x SU(2)
electroweak field theory. This would then imply that there exists an additional
weak field in nature. If the field theory is similar in construction, then there may
exist some massive particle with weak coupling. It would then be tempting to
pursue calculations to predict the existence of such particles. However, it must
be stressed that this is rather speculative and has speculative implications for the
foundations of physics.

It is tempting to think that there may be a generalized SU(3) x SU(3) type of
theory for the strong interactions. As in the abovementiond SO(10) theory, we
see that the nuclear interactions are embedded in an SU(4) theory. This would
mean that there exist chiral colored gluons associated with QCD. This can most
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easily be seen if the U(1) group associated with QCD according to SU(4) =
SU(3) x U(1). The U(1) group describes local phase changes according to

V= ety (50)

We may assign this U(1) group to a chiral transformation, similar to a G parity
operator, according to

V- ety (51)
The Dirac Lagrangian would then assume the form
1 -
L =5 (W1 +v5)7,0") (52)

where at high energies, before the Higgs field has assigned masses to the quarks
through Yukawa couplings, the QCD sector would be chiral invariant. Once the
quarks acquire mass, there is chiral breaking. One may then have a field where
the dominant amplitudes favor vector gluons, but where there is a small
chromochiral amplitude. This would also mean that quarks would exhibit a small
chiral breaking. Further, if the coupling constants for the chiral component of the
chromofield are very weak then we have in effect a duality within QCD.

It is then apparent that the extension of electromagnetism to a higher symmetry
group, such as SU(2) at higher energy will have implications for the spectra of
elementary particles at high energy. In this way, even if electromagnetism at low
energy fails to demonstrate a B(3) field, the predictions of an extended electro-
magnetism may either be demonstrated or the theory falsified.

X. QUANTUM ELECTRODYNAMICS

In this section we discuss the nonrelativistic O(3), quantum electrodynamics.
This discussion covers the basic physics of U(1) electrodynamics and leads into
a discussion of nonrelativistic O(3), quantum electrodynamics. This discussion
will introduce the quantum picture of the interaction between a fermion and the
electromagnetic field with the B®) magnetic field. Here it is demonstrated that
the existence of the B®) field implies photon—photon interactions. In nonrela-
tivistic quantum electrodynamics this leads to nonlinear wave equations. Some
presentation is given on relativistic quantum electrodynamics and the occurrence
of Feynman diagrams that emerge from the B®®) are demonstrated to lead to new
subtle corrections. Numerical results with the interaction of a fermion, identical
in form to a 2-state atom, with photons in a cavity are discussed. This concludes
with a demonstration of the Lamb shift and renormalizability.

One of the oldest subjects of physical science is electrodynamics. The study
has its early origins in the study of optics by Willebrord Snellius and the studies
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of magnetism by William Gilbert in the sixteenth century [1]. It took nearly
three centuries for the theory of classical electromagnetism to reach fruition
with Maxwell [2]. This grand synthesis at first appeared to solve the most
fundamental questions of the day, but an historical retrospective shows that it
posed as many questions as it solved. The resolutions to these problems were
found in the theory of special relativity and in quantum theory. The first of these
was an answer to the problem of what is the speed of an electromagnetic wave
on any given reference frame, and the second was a resolution to the blackbody
radiation problem. The latter solution advanced by Planck assumed that light
existed in discrete packets of energy that were emitted and absorbed [3]. This
initiated the study of the interaction between quantized electromagnetic waves
and matter with discrete quantized energy levels. This theory is called quantum
electrodynamics.

The formalism of quantum electrodynamics may appear arcane to the
uninitiated, but in reality it is based on rather simple concepts. The first of these
is that the radiation field is described by a set of harmonic oscillators. The
harmonic oscillator is essentially a spring loaded with a mass or a pendulum that
swings through a small angle. The pendulum has an old history with physics
that began with Galileo. Early in the formalism of quantum mechanics this was
a system examined and quantized. An analysis with the Schrodinger wave
equation leads to some complexities with recurrence relations and Hermite
polynomials. However, with the Heisenberg formalism the quantum theory of
the harmonics oscillator reduces to a simple model with evenly spaced states
that have an associated energy (n + %) hio. Here the number n corresponds to the
number of photons with angular frequency ® = ck in the system. For n = 0, we
see that the absence of photons predicts that there is still an energy associated
with the vacuum. This nonzero value for the ground state of the harmonic
oscillator has been a source of controversy as well as profound physical insight.
A second assumption that is often made is that these photons exist within a
cavity. This allows for a simplification of the meaning to counting modes. The
third concept is that atoms that interact with these photons also have energy
levels. The simplest example would be atoms with two states. Here an atom that
absorbs a photon can only do so by changing its internal state from the lower
state to the excited state, and an atom can emit a photon only by changing its
internal state from the excited state to the lower state. These atomic interactions
with the electromagnetic field will change the photon number by +£1.

How does one proceed to take the classical theory of electromagnetism, or
Maxwell’s equations, and cast them in a quantum mechanical context? It is best
to start with the definitions of the electric and magnetic fields

10A
E=-V¢d-—_-—
\Y o (53)
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and
B=VxA (54)

The quantity A appears in these equations and is the vector potential of
electromagnetic theory. In a very elementary discussion of the static electric field
we are introduced to the theory of Coulomb. It is demonstrated that the electric
field can be written as the gradient of a scalar potential E = -V, d = kg/r. It
is also demonstrated that the addition of a constant term to this potential leaves
the electric field invariant. Where you choose to set the potential to zero is purely
arbitrary. In order to describe a time-varying electric field a time dependent
vector potential must be introduced A. If one takes any scalar function y and
uses it in the substitutions

A=A —«Vy, K = constant (55)

d)/ =d+ y%_):7 Y = constant (56)

it is easy to demonstrate that the electric and magnetic fields are left invariant.
This means that the analyst can choose the form of the vector potential in an
arbitrary fashion. This is defined as a choice of gauge that is described by either
writing an explicit form for the vector potential or by writing an auxiliary
differential equation. As an example we may then choose

A(r,t) = Ageexp (i(k - r — o))

57
b0 (57)
which is equivalent to stating that V - A = 0. It is then fitting that the Maxwell’s
equations are presented, as they are invariant under all possible gauge
transformations

oD 0B
H=j+— E=——
V x ,]-I-at, V x 3
V-D=p, V-B=0 (58)
D =¢E +P=¢E, B=pH+M)=pH

The connection to quantum theory is made with the recognition that this
transformation changes the phase of a wave function of a particle that interacts
with the electromagnetic field:

V= ety (59)
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The equation that describes the interaction of a nonrelativistic electron with the
electromagnetic field is the Pauli equation

Y)Y

where the |A|2 potential term is dropped in U(1) electrodynamics. Now consider
this equation under the phase shift \y — e~

V= V(e ™M) = e "V — iVye™s
61
= MV =iV oy

This means that the generalized momentum operator is
e p ; e
(G-(p——A))\I} —>e’x(6~(p—hVX——A))\JJ (62)
c ¢

which recovers the preceding gauge transformations for A as A — A — (e/c)Vy,
rendering the quantity in Eq. (62) is gauge-invariant.

We have our first connection between quantum mechanics and electro-
magnetism—a local phase shift in a wavefunction is coexistent with a local
gauge transformation in the vector and scalar potential for the electromagnetic
field. So far nothing has been changed with the formal description of the electric
and magnetic field. This is good news, for this means that the electromagnetic
field can be described by the classical equations of Maxwell. This can be stated
that the probability amplitude for the absorption or emission of a photon by an
atom is equal to the amplitude given by the absorption and emission of an
electromagnetic wave described by the classical electrodynamics of Maxwell’s
equations. This statement must be accompanied by the stipulation that the
classical wave is normalized. Then energy density of the wave is Z® times the
probability per unit volume for the occurrence of the photon, and the classical
wave is broken into two complex components e~ and e/’ that represent the
phase of an absorbed and emitted photon. These phases will, by the first
stipulation, be multiplied by the appropriate probability amplitudes for
absorption and emission. This sets us up for an examination of the semiclassical
theory of radiation and its interaction with quantized atoms.

We know that the electromagnetic field is described within a box. This means
that the number of states per unit volume is dependent on the number of discrete
modes per volume |k|*(2r)*Alk|. This can easily be carried over to the
continuous version if we let the wall of the cavity separate to arbitrary distances.
The density of states is then k2(2rc)’ (dk dS2)/hdw. This describes the density
of states that are available for an atom to interact with. We then have that if we
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have an atom in the state \; that it may then enter into the state i, with
respective energies E; and Ey. The probability per increment in time is
proportional to the transition probability for this event times the density of
states. Assume that the time over which this transition occurs is far larger than
the periodicity of the electromagnetic field. The transition probability is then
proportional to the modulus square of the vector potential when averaged over
many periods of the field. This then gives the Fermi Golden Rule [4]:

2

A 2, L[ ®
—Proby, .y, = = |A]"| ——= |42 63
Al‘ T \V, \|// hz | | ((ZTCC)3> ( )

This process is illustrated as

Atom
k__ Ef E]
h

Figure 2. The interaction between an electromagnetic field and a twostate atom.

All we need to do is to estimate the average of the potential. To do this, the
form of the electric and magnetic fields are used in the normalized energy
density of the electromagnetic field

1 A2?
8m 2

1
E=ho=—([E[" +[B]’) = (64)
8n
which gives the averaged potential as A = \/8nfic? /o this gives us the transition
probability per unit time

- Proby, .y, = —— (65)

This gives us an order-of-magnitude estimate for this transition. It assumes that
the potential is absorbed or emitted with no regard to its components e and
e~ As such, this can be regarded as only a rather crude estimate. However, we
are beginning to make progress in our understanding of how electromagnetic
fields interact quantum-mechanically with atoms.
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Returning to Eq. (2), we express this according to the matrix element Uj; that
will be determined explicitly:

2n |Uyl*w?

" (2mc)*d (66)

—Prob =
0 - =
At Vi

This matrix element is the expectation of a time-dependent perturbative or
interaction Hamiltonian, V = ¢'®U(r);

Us = | v, (67)

Since the Pauli—Schrodinger equation is of the form ih% = H\y, we may write
the wave functions as \;; = e’ i’ h\l/(O)if. We then have the transition matrix
element written as,

Uy = Jd3r\|1(0)jf U(E)W(0), exp (l@ + iwt) (68)

The initial and final states of the system are E; — fio» and E;. We expect that the

interaction occurs where E; — fio = E;. This means that we may set the phase
equal to zero and interactions that are slightly off resonant are ignored, and

s = | ruto);ue)u(o), (69)

The interaction Hamiltonian can be extracted from the Pauli Hamiltonian
plus a dipole interaction Hamiltonian

1 e \2 eh
H:—( ——A) ~ P 5 VA
2m P c 2mc0 v
1, e
&2 eh
——A-A+—0-VA 70
+2mc2 +2mc0 v (70)

The second and third terms are the interaction terms that couple the atom, here
modeled as a two-state system with Pauli matrices, to the electromagnetic field.
‘We consider the momentum to be the operator p = ?V and consider this operator
as not only operating on the vector potential but on the wavefunction. Hence we
find that

V x A = ik x ede™®T

p-A=A-(p+hk) )
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This leads to a more complete form of the interaction Hamiltonian

Up = — zil;wA Jd3r¢;ﬁ(0) (p-e+e-p—ihc-(kx e)e™)y,(0) (72)

This result is an exact expression for the transition matrix element. Physically we
have a dipole interaction with the vector potential and a dipole interaction with
the magnetic field modulated by a phase factor. The problem is that this integral
is difficult to compute. An approximation can be invoked. The wavevector has a
magnitude equal to 1/)A. The position r is set to the position of an atom and is on
the order of the radius of that atom. Thus K - r ~ a/\. So if the wavelength of the
radiation is much larger than the radius of the atom, which is the case with optical
radiation, we may then invoke the approximation e¢*T ~ 1+ ik -r. This is
commonly known as the Born approximation. This first-order term under this
approximation is also seen to vanish in the first two terms as it multiplies the term
p - e. A further simplification occurs, since the term & - (k x e) has only diagonal
entries, and our transition matrix evaluates these over orthogonal states. Hence,
the last term vanishes. We are then left with the simplified variant of the transition
matrix:

Us =~ o | 1} O)p - ,0)

———Alflpli) - e (73)

The element p;; - € = |py| cos (0), where 0 is the angle between these two vectors.
However this angle is /2 different from the coordinate angle evaluated in
d*r = r*drd sin(0)d¢d, so we set 0 — 0 + n/2. This means that the transition
probability per unit time assumes the form

l1/e

Uy =—= (—)2A Jn J2n ;i - e|’sin’(0)2d0 d¢ (74)
0

h \mc 0
Recognizing that p; = imory; and performing, the integration, we find that

A 462 (1)3 2
—Pi_,' = ———|I'5 75
AT = 3 (75)

As a final side note, the term o = ;—i ~ % is the fine-structure constant for the
electromagnetic interaction. This is a dimensionless quantity that gives the
interaction strength between photons and charged particles.

So far we have the transition probability per unit time. What is measured is

the transition probability over a given time as measured from a statistical
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ensemble of identical systems. A quantum operator, O, evolves in time
according to the Schrodinger equation

000

i
! ot

= [H, Oop] (76)

For the matrix Uj; defined at a time t, we have the solution to the Schrédinger
equation with this initial condition;

- T
aj(t) = — %L EY (1) e B dy (77)

The use of the symbol a;; is to indicate that this represents the absorption of a
photon by an atom. Further, the matrix Uy;(¢) = ¢ "' U;(0), and when placed
substituted into Eq. (77), we arrive at an expression for a;;(¢). Now, when a;;(r) is
multiplied by its complex conjugate, we have

4 sin®(AT/2h)

A2 |Uij(0)|27 A=E —E —ho (78)

jay|* =

This gives the probability for the absorption of a photon with a frequency ®
traveling along a particular angle pair in spherical coordinates. This must then be
integrated over by the solid angle df2 and evaluated.

So far considerable progress has been made. We have a fairly reasonable
understanding of how the electromagnetic field interacts with an atom, and have
in hand an expression that gives the transition probability for the absorption and
emission of a photon by an atom. This expression has been demonstrated to be
remarkably accurate in its description of the interaction of light with atomic
structure. Additional features may be included to account for the permutation
symmetry of various photons that interact with an atom. Explicit consideration
may also be given for the probability that the atoms may also emit a photon
once in the excited state. These considerations can be found in many textbooks
on quantum electrodynamics.

What has been presented here is a semiclassical theory of U(1) quantum
electrodynamics. Here the electromagnetic field is treated in a purely classical
manner, but where the electromagnetic potential has been normalized to include
one photon per some unit volume. Here the absorption and emission of a photon
is treated in a purely perturbative manner. Further, the field normalization is
done so that each unit volume contains the equivalent of n photons and that the
energy is computed accordingly. However, this is not a complete theory, for it is
known that the transition probability is proportional to n+ 1. So the semi-
classical theory is only appropriate when the number of photons is compa-
ratively large.
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A. The Physical Basis for Non-Abelian Electrodynamics

An initial study of electrodynamics was the practical art of optics and glass-
making. Through the middle ages, optics was a substudy of glassmaking, and
was done by artisans who learned through practical experience. The subject
reached it first measure of academic importance with Willebrord Snellius (1591—
1626). He spent years working on the principles of optics involved with the
process of vision; apparently the need for corrective eyewear was a growing
market, and somebody had to find a complete understanding of how optics could
assist the physician. In his treatise Di Optrice he laid down the first law of optical
refraction. He recognized that the angle of incidence, with respect to the normal
of a material surface, that a light ray hit a medium was related to the angle at
which that light ray went through the transparent medium. So the paths of light
outside and outside the glass with respect to the normal were related to each other
by a constant later called the index of refraction. This ushered in the law of sines.
He further went on to derive equations for curved thin lenses, based on this
principle that were able to determine the position at which an image would form.
This is the elementary lens maker’s formula learned in first-year physics. This
physics was extended by Newton when he demonstrated that the index of
refraction may have a dependency on the color of light. In this manner light could
be split by a prism.

The theory of light reached its second step forward with Huygens, who
demonstrated that light was a wave that obeyed various diffractive properties
[5]. Of course, there later came Faraday and then Maxwell, who brought in the
complete theory of classical electromagnetism. The wave aspect of light tended
to eclipse the older geometric optical view of light intellectually. However, the
art of geometric optics grew into a very refined art. Before the advent of
computers, it required dozens or hundreds of human “‘computers” to complete
the calculations required to characterize a particular optical system of lenses.
The issue of refractive optics appeared to be in a sort of state of completion and
was a matter of ““simple calculation” that could be done by a machine.

Reality is not so simple. Suppose that the index of refraction depends on the
intensity of the light, or in a modern setting the electromagnetic fields, that pass
through it. Suddenly we are confronted with having to revise our notion of the
index of refraction; it is not necessarily a constant. Snellius had to compute the
paths of rays that passed through a thin lens by considering the geometry in
the curvature of a lens. Today nonlinear optics is a study that has to consider the
variable index of refraction that was dependent on the field strengths of the
optical radiation being transmitted. This has become an important issue in
the modern world. Optical fibers that transmit information as pulses of light are
developed to transmit shorter pulses so that the date transmission rate can be
increased. An optical fiber with a constant index of refraction has serious
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limitations. The radiation transmitted will reflect off the sides of the fiber, but at
various angles. There will then be a spread in the optical pulse as it travels down
the optical fiber since various photons will be reflected at slightly different
angles. However, an optical fiber that has an index of refraction that is dependent
on the field strength will tend to ““bunch’ these photons into a single stream and
thus eliminate this unfortunate problem.

The laws of electromagnetism are based on the theory of gauge fields. The
electromagnetic vector potential defines components of a gauge connection 1-
form. This gauge connection defines a field strength 2-form:

dA=F (79)

In general this emerges because the differential operator d is gauge-covariant
when it acts on a section of the bundle, or physically when it acts on a wave
function d — d + gA. The application of this covariant differential operator
twice on a function gives

(d+gA) A (d+gA)WN =P NDYy
= q(dA + gA A A (80)

If the gauge connection is Abelian, then the term e¢A A A vanishes by the
antisymmetry of the wedge product. This means that 2%y = gdA\. This is an
example of an Abelian gauge theory, defined according to that vanishing of
commutators between gauge potentials.

In general gauge theories are such that there is more that one particular gauge
potential or connection coefficient A?, where a is an index that spans a Lie
algebra, such as SU(2) and SU(3), so that gA® A A’ is in general nonvanishing.
The gauge theories for the weak and nuclear interactions are such non-Abelian
gauge theories. Physically the occurrence of these antisymmetric terms means
that the gauge vector boson, the analog of the photon, carries a charge associated
with the field sources. This causes the field lines, analogous to the electric and
magnetic field lines, to attract each other. Thus the field lines between two
particles, that are themselves sources of the field, tend to clump into a tube-like
structure. If the coupling constant, the term analogous to the electric charge, is
very large, this tube becomes a very tightly bound structure. In the case of
quantum chromodynamics (QCD), mesons consist of two quarks as sources of
the field lines in such a flux tube of field lines, and baryons consist of three
quarks that sit in a bubble or bag of such self confined field lines.

It is, in general, difficult to obtain real solutions from such field theories.
These difficulties have two sources. The first is that in QCD you have three
quarks in the bubble, and such 3-body problems are not exactly solvable. This is
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further compounded by the fact that the virtual quanta are themselves carriers of
the various charges and so one essentially has a many-body problem as one
computes higher-order perturbative Feynman diagrams. The second is that if
the coupling constant is strong then the perturbation terms in the expansion
contribute equally to all orders. This means that in general one has to compute
an infinite number of such perturbation terms to determine anything about the
theory. Fortunately, in the case of QCD a process called quark antiscreening
implies that at sufficiently high energies the quarks behave more freely as the
coupling constant is renormalized to a smaller value and this problem is
ameliorated. This does mean that nobody knows precisely how to compute the
problem of a proton in free space with no interactions with other particles.
Lattice gauge methods have been written as algorithms and run on computers
and approximate answers have been garnered.

Electromagnetism is considered to be an Abelian gauge theory. This is most
often expressed according to Maxwell’s equations. This theory is remarkably
successful, but is called into question when one has nonlinear optical and
electromagnetic systems. This occurs when electric permitivities are themselves
a function of the electric field. So this term, most often treated as a constant,
contributes some term that is a function of the electric field to some power
greater than one. It is standard to consider these effects as phenomenology
associated with atoms within the medium. However, one can view the
occurrence of these atoms as effectively changing the electromagnetic vacuum,
and so this physics is ultimately electromagnetic. These nonlinear terms then
have the appearance as the magnitude of the elements of the 2-form gA A A.

This suggests that electromagnetism may in fact have a deeper non-Abelian
structure. In what follows it is assumed that the B®) field exists. It is likely that
the B® field exists only as a manifestation of nonlinear optics. This is an aspect
of non-Abelian electrodynamics that has been quite under studied. Later, a
discussion of squeezed state operators in connection to non-Abelian electro-
dynamics is mentioned. However, its role in nonlinear optics is an open topic
for work.

An illustration of this fact comes from the nonlinear Schrodinger
equation. This equation describes an electromagnetic wave in a nonlinear
medium, where the dispersive effects of the wave in that medium are
compensated for by a refocusing property of that nonlinear medium. The
result is that this electromagnetic wave is a soliton. Suppose that we have a
Fabry—Perot cavity of infinite extend in the x direction that is pumped with a
laser [6,7]. The modes allowed in that cavity can be expanded in a Fourier series
as follows:

E(x,y,2,1) = Y E(x,1)dy,(v,2)e ™ + H.C. (81)
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The fundamental wave equation to emerge from Maxwell’s equation is
@}J@ﬁEunzl@mxn (82)
2t ’ c? ’
If we input the mode expansion into this wave equation we arrive at the wave

equation

¢
2ko
+ inhomogenous driving and dissipation terms (83)

i0,6 = — =026 — wP(x, 1)

We will ignore these inhomogenous terms. The polarization vector is going to
have contributions from the linear electric susceptibility and the nonlinear
electric susceptibility due to the nonlinear response of the atoms:

P= Xlg(xﬂ t) + an|g|2§ (84)

With an appropriate redefinition of constants we arrive at the following wave
equation for the propagation of field &

c

0,6 = —
1O 2ko

0%6 — won| &) & (85)

The solution to this cubic Schrédinger equation is & = & sech (ix)e™, where
2k = ko+/n|&|?, which is a soliton wave.

It is noted that the derivation of this equation involves the phenomenological
concept of the nonlinear response of the atoms. This equation is derived on the
basis of the standard Abelian theory of electromagnetism, which is linear, and
where the nonlinearity obtains by imposing nonlinear material responses. The
physical underpinnings of these nonlinearities are not completely described.
This soliton wave corresponds to diphotons, or photon bunches.

It is then advanced that electromagnetism is expanded into a theory with
three vector potentials and the conjugate product that determines an additional
magnetic field,

mw:%Amwa (86)

where A is the complex vector potential field and A? = AW of the
electromagnetic field. This additional magnetic field B® has been described
through the physics of fermion resonance, and with empirical evidence for this
magnetic field as given by the optical conjugate product A x A [8]. This
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magnetic field may enter into Dirac’s theory of the electron so that the interaction
of a fermion with this field is

Ep = —~—0c% . B® (87)
m

A complete derivation involves a complete expansion of the Pauli Hamiltonian
and the recognition that for the two complexified vector potentials A and A(?)
that one has the term

(6-A)=A-A"+ic-A x A" (88)

This ansatz tends to conform to various data, and, as will be later pointed out,
gives predictions of various nonlinear optical effects as well as vortex effects and
photon bunching.

This 3-magnetic field has some striking effects. It is easy to see that there are
the complex valued electric fields E1?) = %—‘?(1‘2) = ®A(1?) So we then see that
the magnitude of the optical conjugate product is then I/w?* for I = |A x A*|
defined as the intensity of electromagnetic radiation or optical beam. An exact
expression for this magnetic field is then seen to be

(3) _ €Moc I
B = 2

I
e® =5.723 x 1077 —e® (89)
(02

where the constants are evaluated with SI unites. This has some rather aggregious
consequences. For visible light this effect is quite small. For a beam of 10 W/cm?
at the visible wavelength A = 500 nm the magnetic field is on the order of a
nanotesla. However, for a 10-MHz radiofrequency wave this magnetic field is
14.5 MT (megatesla). This apparently is a way of generating rather large
magnetic fields without the need of massive electromagnets.

The occurrence of the nonlinear Schrodinger equation is then a fairly generic
result. For the A" potential we have the magnetic field that is easily seen to be

BY =V x Al + (A + A%) x AV (90)

The last term vanishes since the A®) photon is found to be very massive in an
examination of this approach to electromagnetism embedded in an extended
standard model. These issues will be discussed later. This photon decays away
and so the A® potential is very short ranged ~ 10~'7 cm and is of no
consequence to quantum optics. Let V x A = Bél). Now compute Maxwell’s
equation, where 7 = V + (ie/h)(A) + A?) is a covariant form of V

7 x B! =V x B+ (A0 + A% x B (1)
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where V x B®) = 0. Now compute Z x 2 x B() to find the covariant wave
equation:

2
7% 7 xBY = VB + (2) (AV] + AP P)BY (92)
Now use [A1?)| = (1/k)|B"?)] to find
2
7% 7 x B = VB +2(.2) BB} (93)

Now Z x 7 x BV = (1/c*)Z*E} /o2, which means that we arrive at the
nonlinear equation

2 17723 D80
V2B 4+ z(é) BOPBY = e (94)

Now we write the same Fourier of expansion for the electric field and write
everything according to the magnetic field intensity H = ﬁB, and we find with
the case that (e/h)Ao ~ o the amplitude fixed to the wavelength as is the case for
some solitons, for Gaussian packets, we arrive at the same cubic Schrédinger
equation:

o
c ot

Ca2p o (MY ol VR ) —
o +2(kh) ol #VPx (95)

The solution to this equation is A sech (kx)e', which is a soliton solution. In the
case where we have nonlinear optics and the occurrence of the cyclic electro-
magnetic fields, the Maxwell equations for the propagation of an electromagnetic
wave are covariant and then give rise to soliton wave equations.

The difference this derivation has in comparison to the previous derivation of
the nonlinear Schrodinger equation is that the nonlinearity is more funda-
mentally due to the non-Abelian wavefunction rather than from material
coefficients. In effect these material coefficients and phenomenology behave as
they do because the variable index of refraction is associated with non-Abelian
electrodynamics. Ultimately these two views will merge, for the mechanisms on
how photons interact with atoms and molecules will give a more complete
picture on how non-Abelian electrodynamics participates in these processes.
However, at this stage we can see that we obtain nonlinear terms from a non-
Abelian electrodynamics that is fundamentally nonlinear. This is in contrast to
the phenomenological approach that imposes these nonlinearities onto a
fundamentally linear theory of electrodynamics.
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B. The Quantized U(1)-0(3), Electromagnetic Field

The electromagnetic field is quantized as a set of harmonic oscillators.
Maxwell’s equations, and the resulting wave equations, are described by partial
differential equations that formally have an infinite number of degrees of
freedom. Physically this means that the electromagnetic field is described by an
infinite number of harmonic oscillators, where one sits at every point in space.
The modes of the electromagnetic field are then completely described by this
ensemble of harmonic oscillators.

The harmonic oscillator has a long history in physics. Galileo noticed,
starting as a youth who watched a chandelier swing in the cathedral at Pisa, that
a mass attached to a lightweight string executed swings through a small angle
with a period that was independent of the mass. This oscillation was completely
understood with Newton’s laws by Robert Hooke. The Hamiltonian for this one
dimensional system is

H= %(p2 + 0’¢?) (96)

where p and g are the momentum and position variables of the system. Quantum-
mechanically, these variables are replaced by quantum operators p — p and
q — q. These variables are combined to form ladder operators known as the
“lowering” and “‘raising operators,” more often called absorption or annihila-
tion and emission or creation operators:

: (og + ip) f :
ip), a =
2ho TP 2ho

a =

(0g —ip) 97)

These operators allow for the description of the quantum harmonic oscillator that
is very parsimonious. The quantum harmonic oscillator has evenly spaced
eigenstates, and the state of the system may be changed according to

aln) = /nln — 1), alln) =vn+1n+1) (98)

It is easy to see that the number operator is written as N = a'a that are diagonal
with respect to the eigenvalues N|n) = n|n) and also define the energy levels for
the system since the Hamiltonian is

H:hw(N—&—%) =h0)<aTa+%> :hw<n—|—%) (99)

A curious aspect of this is that the n = 0 state is one that has a nonzero
energy 1 hio.
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Now consider an ensemble of harmonic oscillators in three dimensions. Each
of these harmonic oscillators has a different frequency ® = |k|c, their own
Hamiltonian and raising and lowering operators

1 1

A t O
ax = ——(0gy + ipy), ay = O — 1
k \/%( dx pk) k \/%( UIN pk)

(100)

We then have a description of an infinite number of harmonic oscillators with
every possible mode at every point in space. The electromagnetic field is
quantized in a cavity with a volume V by defining annihilation and creation
operators by redefining these raising and lower operators as

h h
ax — ,/mak, alt — 1/460‘/5111 (101)

This allows for the expansion of the vector potential into spacial eigenmodes

. h T ,—ikr ikr
A:zz;wz(%ve(a}ce kT are™T) (102)

Here € is the electric permittivity and o is the frequency of the eigenmodes. The
Abelian magnetic field is then defined by

h _ik- ik
B:Zk:\/mkxe(ale KT L are™T) (103)

and the electric field is defined by

n —ik- iK-
E= zk: \/ ZweVew(a}:e kT e T) (104)

This is the Abelian theory of quantum electrodynamics as a free field uncoupled
to charged particles and fermions.

Since there is a non-Abelian nature to this theory, we return to the
nonrelativistic equation that describes the interaction of a fermion with the
electromagnetic field. The Pauli Hamiltonian is modified with the addition of a
B®) interaction term 9]

2

e *
Hy) —H+ﬁ(G~A)(G-A ) (105)
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which may be rewritten according to the algebra of Pauli matrics

2

Hyo :;—m(A-A+i0~A><A*) (106)

If we write this interaction Hamiltonian according to creation and annihilation
operators, we find that this term can be written as

2
¢ 1y, 103 ]
Hp = eV Ek o aga + gq o, 'c! )(agak_q + aga;_,) (107)

This interaction Hamiltonian describes the exchange of a photon that results in
the change of the spin of the fermion. This process is equivalent to the absorption
of a photon in the atomic state transition i — j and the absorption of a photon in
the atomic transition j — i.

Normally one does not worry about the free Hamiltonian term %Bz, but in the
case of the B®®) field, we cannot afford this luxury. This term is written according
to the field operators as

e
Hpis =

m Z (a,twaka}:,_qak/) (108)
kk g
This term is crucial to the concept of non-Abelian electrodynamics. Essentially,
it describes the interaction between four photons. It describes the absorption of
photons with the modes k + g and k' — g and the emission of photons with the
modes k and k'. Physically this is a process where two photons mutually interact
and exchange momenta. A classical analog of this process is to think of two
photons as possessing B fields that are mutually coupled. This is one aspect of
non-Abelian electrodynamics that is different from standard electrodynamics.
An analogous situation occurs with gluons in quantum chromodynamics. Here
gluballs can exist that are self-bound states of gluons that are mutually inter-
acting. The non-Abelian electrodynamic effect is far simpler since there is no
issue of confinement, but the situation is one where photons can interact. This
effect is what is a part of the | # |2,%P term that counters the dispersive effects of
an electromagnetic wave as governed by the nonlinear or cubic Schrodinger
equation. This is a form of self-focusing or photon bunching that results from this
form of mutual interaction between photons.

This is the nature of non-Abelian electrodynamics in a nonrelativistic regime.
It leads to various predictions that appear to obtain for electromagnetic fields in
media. As yet there have not been the appearance of these types of effects for
fields in a vacuum. Just why it is that nonlinear optics appears to be associated
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with the B® field is unclear. A medium acts as a renormalized vacuum, and it is
possible that the appearance of atoms with charge separations acts to cause the
appearance of the B field. It appears that the B field vanishes in vacua, but it
may manifest itself in various media. On the other hand this could just be an
accident of nature. In this case the B field is simply a mathematical manifesta-
tion that permits the calculation of various nonlinear effects.

C. Relativistic O(3);, QED

Non-Abelian electrodynamics has been presented in considerable detail in a
nonrelativistic setting. However, all gauge fields exist in spacetime and thus
exhibits Poincaré transformation. In flat spacetime these transformations are
global symmetries that act to transform the electric and magnetic components of
a gauge field into each other. The same is the case for non-Abelian electro-
dynamics. Further, the electromagnetic vector potential is written according to
absorption and emission operators that act on element of a Fock space of states. It
is then reasonable to require that the theory be treated in a manifestly Lorentz
covariant manner.
The theory is defined by the Lagrangian density

1
L = = FuF™ (109)

with the stress—energy tensor components defined according to the gauge-
covariant derivative

Fuuv _ avAap. _ auAav 4 igeabc[AbV’Acu] (110)
where the spacial components of the 4-vector potential are Hermition A*'; = A%;,
i € {1,2,3}, and the temporal parts are anti-Hermitian A°fy = —A%;. Here g is
the coupling constant for the gauge theory. The upper Latin index refers to the

internal degrees associated with the gauge theory. The variational calculus with
this Lagrangian density leads to the field equation

O F™ + ige™ AP F W =0 (111)

From the field stress tensor components, we may write the electric and
magnetic field components as

E% = Fh = —A} — VA% + ige™ AP A% (112a)

€l BY = VA% — VA% + ige™ A" A (112b)
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The components of the vector potential are then expanded in a Fourier series of
modes with creation and annihilation operators that act on the Fock space of
states. If this is done according to a box normalization, in a volume V, with
periodic boundary conditions, we have

Aa u(k) 1kr+eaa|(k)efik-r) (113)

9=3 v

Here we are considering only the transverse components of the vector potential.
With these vector potential components written according to these operators, the
electric and magnetic fields within O(3),, electrodynamics are then

1 k ; k . .
Z (| |€ il (k)etkr +|c|eiaa|(k)etkr)

1 . .
kB, = ——— (kjeqa® (k)€™ + k.epeia® (k)e ™™ 114
v zk:\/m( eqa (k) peqeia™ (ke ™) (114)

+ l-geabc Z ejjeq (ab (k)eik-r + abT (k)eiik'r)( (k/) iK't ac‘T (k)’efik’-r)
kk'

It is then apparent that the Hamiltonian for this non-Abelian field theory is going
to contain quartic terms in addition to the quadratic terms seen in abelian field
theory, such as U(1) electromagnetism.

If we consider non-Abelian electromagnetism, we have a situation where the
vector potential component A3; vanish and where A); = A®*, The annulment
of the components A3; has been studied in the context of the unification of non-
Abelian electromagnetism and weak interactions, where on the physical vacuum
of the broken symmetry SU(2) x SU(2) the vector boson corresponding to A?; is
very massive and vanishes on low-energy scales. This means that the 3-compo-
nent of the magnetic field is then

B3:i%A1 x A2 (115)

It is apparent that for A%; = 0, the electric field component does not contain a
product of potential terms. In general the vanishing of this term occurs if there
are no longitudinal electric field components. Within the framework of most
quantum electrodynamic, or quantum optical, calculations this is often the case.
The B®® field then is a Fourier sum over modes with operators a';_,a,. The B®)
field is then directed orthogonal to the plane defined by A! and A2. The four-
dimensional dual to this term is defined on a time-like surface that has the
interpretation, under dyad—vector duality in three dimensions as, as an electric
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field or E®®). The vanishing of the E® can then be seen by the nonexistence of the
raising and lowering operators a,a’’, where the B®) exists solely due to the
occurrence of raising and lowering operators that A®) and A® are expanded
according to. This represents a breakdown of duality in four dimensions and the
requirement that B be a longitudinal field.

This non-Abelian gauge theory satisfies the usual transformation properties.
If ./Z is the base manifold in four dimensions, then the gauge theory is
determined by an internal set of symmetries described by a principal bundle. Let
U,, where oo = 1,2,...,n, be an atlas of charts on the .#. The transitions from
one chart to another is given by gy : Ug — U,, where these determine the
transition functions between sections on the principal bundle. The transform
between one section to another is given by

Sy = gupSp = €~ sp (116)

Figure 3. Transition functions between two charts on a manifold.

From this point we will suppress the chart indices to indicate sections and use
the notation s, s’ for the two charts with gs = 5. Now let the differential operator
d act on §

ds' = (gds + sdg) (117)
Now define g~'dg as a connection coefficient A on the section s:
ds' = g(ds + ig~'dg)s (118)
Now consider the action of g on (d + A)s which equals (d + A")s':

(d+A)s =g(d+A)s
=gld+A)g "gs = (d+gAg " +gdg™")s (119a)

This is a fundamental definition for how a gauge connection transforms:

A = gAg™! + gdg™! (119b)
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Now we consider the group element g to be defined by algebraic generators
so that g = ¢/X. Further consider the transformation to be sufficiently small so
that e ~ 1 + iX:

A's' = ((1+iX)A(1 — iX) — idX)s' = (A + i[X,A] — idX)s' (120)

If we are working with local gauge transformations where A is flat, we can work
with the pure gauge term (dg)d~! = idX as the gauge connection.

Now to get the fields from this definition, we are given the fact that the fields
are defined to be under a gauge transformation

dA' = d(gAg™" + (dg)g™") (121)
From this we find that
dA' = g(dA+ANA)g™! (122)

which means that the fields transform homogenously under local gauge
transformations. Just as the chart indices have been suppressed, so have the
indices for the internal symmetry space.

Now for non-Abelian electromagnetic field theory, we have the 3-Lie index
component of the field, and for the magnetic field B®), it equals

B = iA x A* (123)

where this is a component that emerges from the A A A term. We are working
here with 7 = ¢ = 1. Then under local gauge transformations we will have

B®) = ig(A x A*)g™! (124)

where g is the group element for the O(3),, theory. Then one can go on and write
g ~ 1+ iX and find that

B = i(1+iX)(A x A")(1 —iX) = iA x A* — [X,[A,A"]] + O(X?) (125)

This can be written according to Lie derivative, and if X is a generator for a global
gauge transformation, then this double commutator vanishes. We are then left
with

B = B®) — iLxB® (126)

where the last term is the Lie derivative of B®) with respect to the variable X,
here parameterized along a path.
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In the case of quantum field theory the section determines the Hilbert space
of states under a certain gauge. This choice of gauge then determines the unitary
representation of the Hilbert space. We may then replace the section with the
fermion field \, which acts on the Fock space of states. It is then apparent that a
gauge transformation A%, — A“, + 8A¢, is associated with a unitary transform
of the fermion field y — \ 4+ d\. The unitary transformation of the fermion
may be written according to /' = U\ where the unitary matrix is represented as
the line integral along a path

] rA dx*
U=ges] e (127)

where 7 is the time-ordering operator that arranges fields in a product in a time-
ordered sequence. The application of the differential operator d on the unitary
matrix gives

dU = —ig(A, — A’ )dx"U 128
i i

which leads to the result
Lutdu - Ut(A, — A')dx' U =0 (129)
8

This demonstrates the association between the unitary transformation of the
fermion field and the gauge theory.

More work is required to couple the gauge theory to the fermion. We have
the gauge field determined by its Lagrangian density, and the fermion field
determined by the Dirac Lagrangian density

Lp = V("o +m)y (130)

However, these two Lagrangian densities do not couple the two fields together.
This requires that the free-field equation for the gauge field becomes

OuF™ 4 ige™ AP FH =} (131)
Since this field equation is obtained by the Euler-Lagrange equation the
inhomogenous term is the result of

07
v
T A, (132)

this implies the addition of an interaction Lagrangian density &; = j*A,. The
current term is then determined by the Dirac field and is j¥ = yry¥\. The subject



NON-ABELIAN ELECTRODYNAMICS: PROGRESS AND PROBLEMS 445

of mass remormalization also requires that an additional interaction term be
included: \ry"\s8m, where dm is the difference between the physical mass and the
bare mass [3].

The total Lagrangian ¥ = %¢ + %p + Z; then involves the interaction
between fermions and the gauge field. The Dirac field will be generically
considered to be the electron and the gauge theory will be considered to be the
non-Abelian electromagnetic field. The theory then describes the interaction
between electrons and photons. A gauge theory involves the conveyance of
momentum form one particle (electron) to another by the virtual creation and
destruction of a vector boson (photon) that couples to the two electrons. The
process can be diagrammatically represented as

Elementary Scattering Process

Figure 4. Feynman tree diagram for electron-electron scattering.
The process py + p» — p3 + p4 then involves the conservation of momen-
tum, for there is no creation of any averaged momentum from the virtual

quantum fluctuation. This process can be examined within the Coulomb gauge
V - A = 0. The field equation is then

V-E = —V?Aq = ie\y° = ep (133)

which has the solution

_ 3 p(l'/,l‘)
Ao(r,t) = eJd r44n|r 7 (134)

The amplitude for this simple scattering process consists of the electro-
magnetic Hamiltonian and the interaction process. These two terms produce
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the amplitude

2
62

. 2 2 .
Ee Jd4x T = S0 ’2)

Jd“x d*¥j,G"(x —x)j,  (135)
where G*Y(x — x) is the propagator of the field that satisfies

—id(r— 1)

fA”AVG“V(x — x’) = m
wlr —

(136)

For the purely transverse field, the spacial components of the propagator are

i —i [ d'% [ KR\ aer

k

where k> = k* — k3. This is seen to be the Fourier transform of the propagator in
momentum space. The temporal components are then seen to be

1 eik-r 1
w5 = (138)

The amplitudes for the process are then evaluated on the initial and final
states of the electrons. This then results in the matrix elements

(_2 e Jd“x d4xl<p2|j“|p1>G”V(x . xl)<l74|jv|p3> (139)

for the amplitudes. The amplitudes (p,|ju|p1) and (p,|jv|p3) are then represented
as plane waves

(palinlp1) = € 7PX, (140a)
(P4 Uu Ip3) = ei(przu)ryu (140b)
where X, and Y, are independent of the position coordinates. By momentum

conservation we demand that k, = p1y — py, = p4y — p3u. The propagator acts
on these matrix elements to give the amplitude:

(—i)*e —i
7Jd4x d4x’ﬁX“YM (141)

Finally, this expression can be evaluated for many possible gauges according to

(-iye

5 Jd4x d4x’;—; (X;Y; — BXoYo)e™” (142)
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where for § = 0 this is evaluated in the Feynman gauge, and for § = —1 this is
evaluated in the Landau gauge.

This example, within U(1) electrodynamics can then be seen in the light of
non-Abelian electrodynamics. This may simply be seen by the replacement
A, — 1°A%,, where 1 is a structure constant th