101

Person

riame

age

Perzoninm ag) {constructor
makeJdaki)

getioel)

splithames()

Figure 6-1— The Person class, showing private, protected, and public variables, and
static and abstract methods

The top part of the box contains the class name and package name (if any).
The second compartment lists the class's variables, and the bottom
compartment lists its methods. The symbols in front of the names indicate
that member’s visibility, where “+” means public, “-” means private, and
“#" means protected. Static methods are shown underlined. Abstract
methods may be shown in italics or, as shown in Figure Figure 6-1, with
an “{abstract}” labdl.

You can aso show al of the type information in aUML diagram where
that is helpful, asillustrated in Figure 6-2a.

Person Person
-mame: string MEIme:
-gcjeint a0E
+Perzoninm,agq) {constructor} Person
+makedabl 1 string makeJokb
+oetigel Tint et Lige
+zplitMames 1void splitMames
a b

Figure6-2 - The Person class UML diagram shown both with and without the
method types

UML does not require that you show all of the attributes of a class, and it
isusua only to show the ones of interest to the discussion at hand. For
example, in Figure 6-2 b, we have omitted some of the method details.

Copyright © , 2002 by James W Cooper

102

Inheritance

Let’s consider aversion of Person that has public, protected, and private
variables and methods, and an Employee class derived from it. We will
also make the getJob method abstract in the base Person class, which
means we indicate it with the MustOverride keyword.

public abstract class Person {

protected string nane;
private int age;

[]-----

public Person(string nm int ag) {
name = nm
age = ag;

}

public string makeJdob() {
return "hired";
}

public int getAge() {
return age;

}
public void splitNames() {

}
public abstract string getJob(); //nust override
}
We now derive the Employee class from it, and fill in some code for the
getJob method.

public class Enployee : Person {
public Enpl oyee(string nm int ag):base(nm ag){

public override string getJob() {
return "Worker";
}

}
Y ou represent inheritance using a solid line and a hollow triangular arrow.

For the smple Employee class that is a subclass of Person, we represent
thisin UML, as shown in Figure 6-3

Copyright © , 2002 by James W Cooper

103

L e e e s ' Employee
| +Person foonstructor)

| +makedob]
; +getige : +Employee {constructar }
repiitNames :qr +getdob {override }

U getiob fabstract] ;

Figure6-3— The UML diagram showing Employee derived from Person

Note that the name of the Employee class is not in italics because it is now
a concrete class and because it includes a concrete method for the formerly
abstract getJob method. While it has been conventional to show the
inheritance with the arrow pointing up to the superclass, UML does not
require this, and sometimes a different layout is clearer or uses space more
efficiently.

I nterfaces

An interface looks much like inheritance, except that the arrow has a
dotted line tail, as shown in Figure 6-4. The name <<interface>> may
also be shown, enclosed in double angle brackets, or guillamets.

FileExit

e : FileE:xit
» Execute q SR Execute

Figure 6-4 — ExitCommand implements the Command interface.

Composition
Much of the time, a useful representation of a class hierarchy must include
how objects are contained in other objects. For example, a small company
might include one Employee and one Person (perhaps a contractor).

Copyright © , 2002 by James W Cooper

104

public class Conpany {
private Enpl oyee enp;
private Person prs;
publ i c Conpany() {

}
}
We represent thisin UML, as shown in Figure 6-5.

Company

Person -

f 3

Enployee 1

Figure 6-5 — Company containsinstances of Person and Employee.

The lines between classes show that there can be 0 to 1 instances of Person
in Company and 0 to 1 instances of Employee in Company. The diamonds
indicate the aggregation of classes within Company.

If there can be many instances of a class inside another, such asthe array
of Employees shown here

public class Conpany {
private Enpl oyee[] enps;
private Enpoyee enp;
private Person prs;
public Conpany() {

}
}

we represent that object composition as a single line with either a“*” on it
or “0, *” onit, as shown in Figure 6-6.

Copyright © , 2002 by James W Cooper

Person

Enployee

Company

Figure 6-6 — Company contains any number of instances of Employee.

ettipl *

105

Some writers have used hollow and solid diamond arrowheads to indicate

containment of aggregates and circle arrowhead for single object

composition, but thisis not required.

Annotation

You will aso find it convenient to annotate your UML or insert comments
to explain which class calls a method in which other class. Y ou can place

a comment anywhere you want in a UML diagram. Comments may be
enclosed in a box with aturned corner or just entered as text. Text

comments are usually shown along an arrow line, indicating the nature of
the method that is called, as shown in Figure 6-7.

VacationVisitor

-

Eniployee

wisit(Me)

wisit

accept(w)

¥

accept

Vialbar viaikts Emgpslayas

Copyright © , 2002 by James W Cooper

106

Figure 6-7 — A comment is often shown in a box with a turned-down corner.

UML is quite a powerful way of representing object relationships in
programs, and there are more diagram features in the full specification.
However, the preceding brief discussion covers the markup methods we
usein thistext.

WithClassUML Diagrams

All of the UML programs in this book were drawn using the WithClass
program from MicroGold. This program reads in the actual compiled
classes and generates the UML class diagrams we show here. We have
edited many of these class diagrams to show only the most important
methods and relationships. However, the complete WithClass diagram
filesfor each design pattern are stored in that pattern’s directory. Thus,
you can run your demo copy of WithClass on the enclosed CD and read in
and investigate the detailed UML diagram starting with the same drawings
you see here in the book.

C#Project Files

All of the programsin this book were written as projects using Visual
Studio.NET. Each subdirectory of the CD-ROM contains the project file
for that project so you can load the project and compile it as we did.

Copyright © , 2002 by James W Cooper

107

7. Arrays, Files and Exceptions in C#

C# makes handling arrays and files extremely easy and introduces
exceptions to simplify error handling.

Arrays
In C#, all arrays are zero based. If you declare an array as

int[] x = new int[10];

such arrays have 10 elements, numbered from 0 to 9. Thus, arrays arein
line with the style used in C, C++ and Java.
const int MAX = 10;
float[] xy = new float[MAX];
for (int i =0; i < M i++) {
xy[i] =i}
}

Y ou should get into the habit of looping through arrays to the array
bounds minus one as we did in the above example.

All array variables have a length property so you can find out how large
the array is:
float[] z = new float[20];
for (int j =0; j< z.Length ; j++) {

z[j] =1J;
Arraysin C# are dynamic and space can be reallocated at any time. To
create areference to an array and allocate it later within the class, use the

Syntax:
float z[]; /I decl are here
z = new float[20]; [lcreate |ater

Copyright © , 2002 by James W Cooper

108

Collection Objects

The System.Collections namespace contains a number of useful variable
length array objects you can use to add and obtain items in several ways.

ArrayLists

The ArrayList object is essentially a variable length array that you can add
items to as needed. The basic ArrayList methods allow you to add
elements to the array and fetch and change individual elements:

float[] z = {1.0f, 2.9f, 5.6f};

ArraylList arl = new ArraylList ();

for (int j =0; j< z.Length ; j++) {
arl.Add (z[j1);

}

The ArrayList has a Count property you can use to find out how many
elements it contains. Y ou can then move from O to that count minus oneto
access these elements, treating the ArrayList just as if it were an array:

for (j =0; j < arl.Count ; j++) {
Console. WitelLine (arl[j]);
}

Y ou can aso access the members of ArrayList object sequentially using
the foreach looping construct without needing to create an index variable
or know the length of the ArrayList:

foreach (float a in arl) {
Consol e. WitelLine (a);
}

Y ou can aso use the methods of the ArrayList shown in Table 7-1.

Cl ear Clears the contents of the
ArrayList

Cont ai ns(obj ect) Returns true if the ArrayList
contains that value

CopyTo(array) Copies entire ArrayList into a

Copyright © , 2002 by James W Cooper

109

one-dimensional array.
I ndexC (obj ect) Returns the first index of the vaue
I nsert (index, object) Insert the element at the specified
index.
Renove(obj ect) Remove dement from list.
RermoveAt (i ndex) Remove element from specified
position
Sort Sort ArrayList

Table7-1- ArrayList methods

An object fetched from an ArrayList is aways of type object. This means
you usually need to cast the object to the correct type before using it:

float x = (float) arl[j];

Hashtables

A Hashtable is avariable length array where every entry can be referred to
by akey value. Typically, keys are strings of some sort, but they can be
any sort of object. Each element must have a unique key, although the
elements themselves need not be unique. Hashtables are used to allow
rapid access to one of alarge and unsorted set of entries, and can also be
used by reversing the key and the entry values to create a list where each
entry is guaranteed to be unique.

Hasht abl e hash = new Hashtable ();

float freddy = 12. 3f;

hash. Add ("fred", freddy); //add to table
//get this one back out

float tenp = (float)hash["fred"];

Copyright © , 2002 by James W Cooper

110

Note that like the ArrayList, we must cast the values we obtain from a
Hashtable to the correct type. Hashtables also have a count property and
you can obtain an enumeration of the keys or of the values.

SortedLists

The SortedList class maintains two internal arrays, so you can obtain the
elements either by zero-based index or by a phabetic key.

float sammy = 44.55f;

SortedList slist = new SortedList ();

slist.Add ("fred", freddy);

slist.Add ("sanm', samy);

/1 get by index

float newFred = (float)slist.GetBylndex (0);

/1 get by key

float newSam = (float)slist["sanl];

You will aso find the Stack and Queue objects in this namespace. They
behave much as you' d expect, and you can find their methods in the
system help documentation.

Exceptions

Error handling in C# is accomplished using exceptions instead of other
more awkward kinds of error checking. The thrust of exception handling is
that you enclose the statements that could cause errorsin atry block and
then catch any errors using a catch statement.

try {
// Statenments

}
catch (Exception e) {

//do these if an error occurs

}
finally {

/1 do these anyway

}

Copyright © , 2002 by James W Cooper

111

Typicaly, you use this approach to test for errors around file handling
statements, although you can aso catch array index out of range
statements and a large number of other error conditions. The way this
works is that the statements in the try block are executed and if there is no
error, control passes to the finally statements if any, and then on out of the
block. If errors occur, control passes to the catch statement, where you can
handle the errors, and then control passes on to the finally statements and
then on out of the block.

The following example shows testing for any exception. Since we are
moving one element beyond the end of the ArrayL.ist, an error will occur:

try {
//note- one too nany
for(int i =0; i <= arl.Count ; i++)
Console. WiteLine (arl[i]);
}
catch(Exception e) {
Consol e. WiteLine (e. Message);
}

This code prints out the error message and the calling locations in the
program and then goes on.

01234567891 ndex was out of range.
Must be non-negative and |l ess than the size of the collection.
Paranmet er nane: index

at System Col | ections. ArrayList.get_lten(Int32 index)

at arr.Forml..ctor() in forml.cs:line 58

By contrast, if we do not catch the exception, we will get an error message
from the runtime system and the program will exit instead of going on.

Some of the more common exceptions are shown in Table 6-2.

AccessException Error in accessing a method or
field of aclass.
Argunent Excepti on Argument to a method is not

Copyright © , 2002 by James W Cooper

112

vaid.

Argunment Nul | Excepti on Argument is null

ArithmeticException Overflow or underflow

Di vi deByZer oExcepti on Division by zero

I ndexQut Of RangeExcepti on Array index out of range

Fi | eNot FoundExcepti on File not found

EndOf St reanException Access beyond end of input
stream (such asfiles)

Di r ect or yNot FoundExcepti on Directory not found

Nul I Ref erenceException The object variable has not been
initialized to areal value.

Multiple Exceptions

You can aso catch a series of exceptions and handle them differently in a
series of catch blocks.

try {
for(int i =0; i<= arl.Count ; i++) {
int k= (int)(float)arl[i];
Console. Wite(i +" "+ k [/ i);
}

}
catch(Di vi deByZer oException e) {
printZErr(e);

}
cat ch(1 ndexQut O RangeException e) {
printCErr(e);

}

catch(Exception e) {
printErr(e);

}

This gives you the opportunity to recover from various errors in different
ways.

Copyright © , 2002 by James W Cooper

113

Throwing Exceptions

You don't have to deal with exceptions exactly where they occur: you can
pass them back to the calling program using the Throw statement. This
causes the exception to be thrown in the calling program:

try {
/] statenents

}
catch(Exception e) {

throw(e); //pass on to calling program
}

Note that C# does not support the Java syntax throws, that alows you to
declare that a method will throw an exception and that you therefore must
provide an exception handler for it.

File Handling

The file handling objects in C# provide you with some fairly flexible
methods of handling files.

The File Object

The File object represents afile, and has useful methods for testing for a
file's existence as well as renaming and deleting a file. All of its methods
are static, which means that you do not (and cannot) create an instance of
File using the new operator. Instead, you use its methods directly.

if (File.Exists ("Foo.txt"))
File.Delete ("foo.txt");

Y ou can also use the File object to obtain a FileStream for reading and
writing file data:
/lopen text file for reading

StreanReader ts = File.OpenText ("fool.txt");

//open any type of file for reading
FileStreamfs = File.OpenRead ("foo02.any");

Some of the more useful File methods are shown in the table below:

Copyright © , 2002 by James W Cooper

114

Static method Meaning
File.Fil eExists(filenane) trueif file exists
File.Del ete(fil enane) Delete the file
Fil e. AppendText (Stri ng) Append t ext

File.Copy(fronFile, toFile) | Copy a file

File. Move(froniile, toFile) | Mve a file, deleting old
copy

Fil e. Get Ext ensi on(fil enamne) Return file extension

Fil e. HasExtension(filenane) |true if file has an

ext ensi on.

Reading Text File
To read atext file, use the File object to obtain a StreamReader object.
Then use the text stream’ s read methods:

StreanReader ts = File.OpenText ("fool.txt");
String s =ts.ReadLine ();

Writing a Text File

To create and write atext file, use the CreateText method to get a
StreamWriter object.
/lopen for witing

StreamWiter sw= File.CreateText ("foo3.txt");
sw.WiteLine ("Hello file");

If you want to apperd to an existing file, you can create a StreamWriter
object directly with the Boolean argument for append set to true:

/lappend to text file
StreanWiter asw = new StreanWiter ("fool.txt", true);

Exceptionsin File Handling
A large number of the most commonly occurring exceptions occur in
handling file input and output. Y ou can get exceptions for illegal
filenames, files that do not exist, directories that do not exigt, illegal
filename arguments and file protection errors. Thus, the best way to

Copyright © , 2002 by James W Cooper

115

handle file input and output is to enclose file manipulation code in Try
blocks to assure yourself that all possible error conditions are caught, and
thus prevent embarrassing fatal errors. All of the methods of the various
file classes show in their documentation which methods they throw. Y ou
can assure yourself that you catch all of them by just catching the generad
Exception object, but if you need to take different actions for different
exceptions, you can test for them separately.

For example, you might open text files in the following manner:

try {

//open text file for reading
StreanReader ts = File.OpenText ("fool.txt");
String s =ts.ReadLine ();

}
catch(Exception e) {

Consol e. WiteLine (e. Message);
}

Testing for End of File

There are two useful ways of making sure that you do not pass the end of a
text file: looking for a null exception and looking for the end of a data
stream. When you read beyond then end of atext file, no error occurs and
no end of file exception is thrown. However, if you read a string after the
end of afile, it will return asanull value. You can use thisto create an
end-of-file function in afile reading class:

private StreanReader rf;

private bool eof;

[T

public String readLine () {
String s = rf.ReadLine ();

if(s == null)
eof = true;

return s;

}

R R

public bool fEof() {
return eof;

}

Copyright © , 2002 by James W Cooper

116

The other way for making sure you don't read past then end of afileisto
peek ahead using the Stream’s Peek method. This returns the ASCII code
for the next character, or a—1 if no characters remain.
public String read_Line() {

String s = ""

if (rf.Peek() > 0) {
s = rf.ReadLi ne ();

}
el se
eof =t r ue;
return s;
}
A csFile Class

It is sometimes convenient to wrap these file methods in a smpler class
with easy to use methods. We have done that here in the csFile class.
WEe Il be using this convenience class in some of the examplesin later
chapters.

Ee can include the filename and path in the constructor or we can passit in
using the overloaded OpenForRead and OpenForWrite statements.

public class csFile
{
private string fil eNane;
St reanReader ts;
StreanmWiter ws;
private bool opened, witeGCpened;

R

public csFile() {
init();

}

R

private void init() {
opened = fal se;
writeOpened = fal se;

public csFile(string file_nane) {

Copyright © , 2002 by James W Cooper

117

fileName = fil e_nane;
init();

We can open afile for reading using either of two methods, once including
the filename and one which uses a filename in the argument.

public bool OpenForRead(string file_namne){
fileName = fil e_nane;
try {
ts = new StreanReader (fileNane);
opened=tr ue;

cat ch(Fi | eNot FoundException e) {
return fal se;
}

return true,

public bool OpenForRead() {
return QpenFor Read(fil eNane);
}

Y ou can then read data from the text file using a readLine method:

public string readLine() {
return ts. ReadLine ();
}

Likewise, the following methods allow you to open afile for writing and
write lines of text to it.

public void writeLine(string s) {
ws. WiteLine (s);
}

e
public bool OpenForWite() {
return QpenForWite(fileNane);

public bool OpenForWite(string file_nane) {
try{
ws = new StreanmWiter (file_nane);
fileName = fil e_nane;
witeQpened = true;
return true;

Copyright © , 2002 by James W Cooper

118

}

cat ch(Fi | eNot FoundException e) {
return fal se;

}

WEe'll use this smplified file method wrapper class in some of the
following chapters, whenever we need to read in afile.

Copyright © , 2002 by James W Cooper

119

Part 2. Creational Patterns

With the foregoing description of objects, inheritance, and interfacesin
hand, we are now ready to begin discussing design patterns in earnest.
Recall that these are merely recipes for writing better object-oriented
programs. We have divided them into the Gang of Four’s three groups:
creational, structural and behavioral. We'll start out in this section with the
creational patterns.

All of the creational patterns deal with ways to create instances of objects.
This is important because your program should not depend on how objects
are created and arranged. In C#, of course, the simplest way to create an
instance of an object is by using the new operator.

Fred fredl = new Fred(); /linstance of Fred class

However, thisreally amounts to hard coding, depending on how you
create the object within your program. In many cases, the exact nature of
the object that is created could vary with the needs of the program, and
abstracting the creation process into a specia “creator” class can meke
your program more flexible and general.

The Factory M ethod patter n provides a simple decision-making class
that returns one of several possible subclasses of an abstract base class,
depending on the data that are provided. We'll start with the Simple
Factory pattern as an introduction to factories and then introduce the
Factory Method Pattern as well.

The Abstract Factory pattern provides an interface to create and return
one of severa families of related objects.

The Builder pattern separates the construction of a complex object from
its representation so that several different representations can be created,
depending on the needs of the program.

Copyright © , 2002 by James W Cooper

120

The Prototype patter n starts with an instantiated class and copies or
clones it to make new instances. These instances can then be further
tailored using their public methods.

The Singleton pattern is a class of which there can be no more than one
instance. It provides a single global point of access to that instance.

Copyright © , 2002 by James W Cooper

121

8. The Simple Factory Pattern

One type of pattern that we see again and again in OO programs is the
Simple Factory pattern. A Simple Factory pattern is one that returns an
instance of one of several possible classes, depending on the data
provided to it. Usually al of the classes it returns have a common
parent class and common methods, but each of them performs a task
differently and is optimized for different kinds of data. This Simple
Factory is not, in fact, one of the 23 GoF patterns, but it serves here as
an introduction to the somewhat more subtle Factory Method GoF
pattern we'll discuss shortly.

How a Simple Factory Works

To understand the Simple Factory pattern, let’s look at the diagram in
Figure 8-1.

X

dolt() XFactory

+getClass(as Integer):X
Produces different instances of X
XZ

dolt() dolt()

XY

Figure8-1- A Simple Factory pattern

In thisfigure, X isabase class, and classes XY and XZ are derived
from it. The XFactory class decides which of these subclasses to

return, depending on the arguments you give it. On the right, we define
agetClass method to be one that passes in some value abc and that
returns some instance of the class x. Which one it returns doesn't
matter to the programmer, since they all have the same methods but
different implementations. How it decides which oneto return is

Copyright © , 2002 by James W Cooper

entirely up to the factory. It could be some very complex function, but
it is often quite smple.

Sample Code

Let's consider a ssimple C# case where we could use a Factory class.
Suppose we have an entry form and we want to alow the user to enter
his name either as “firstname lastname’ or as “lastname, firstname.”
WEe Il make the further simplifying assumption that we will always be
able to decide the name order by whether there is a comma between the
last and first name.

Thisisapretty smple sort of decision to make, and you could make it
with asmple if statement in asingle class, but let'suse it hereto
illustrate how a factory works and what it can produce. We'll start by
defining a smple class that takes the name string in using the
constructor and allows you to fetch the names back.
// Base class for getting split nanes

public class Naner {

/I parts stored here
protected string frName, | Naneg;

/lreturn first nane
public string getFrnane()
return frNang;

}

//return | ast nane

public string getLnanme() {
return | Nane;

}

}
Note that our base class has no constructor.

TheTwo Derived Classes

Now we can write two very simple derived classes that implement that
interface and split the name into two parts in the constructor. In the
FirstFirst class, we make the simplifying assumption that everything
before the last space is part of the first name.
public class FirstFirst : Namer {

public FirstFirst(string nane) {

int i = nanme.|lndexOf (" ");

if(i >0) {

frNanme = nane. Substring (0, i).Trim();

Copyright © , 2002 by James W Cooper

123

| Name = nane. Substring (i + 1).Trim();

}

el se {
| Name = nane;
frName = ""
}

}

}
And in the LastFirst class, we assume that a comma delimits the | ast

name. In both classes, we aso provide error recovery in case the space
or comma does not exist.

public class LastFirst : Naner {
public LastFirst(string name) {
int i = nanme.|ndexO>t (",");
if(i >0 {

| Nane = nane. Substring (0, i);
frName = nane. Substring (i + 1).Trim();

}
}

In both cases, we store the split name in the protected IName and
frName variables in the base Namer class. Note that we don’t even
need any getFrname or getl.name methods, since we have aready
written them in the base class.

Building the Smple Factory

Now our Simple Factory classis easy to write. We just test for the
existence of acomma and then return an instance of one class or the
other.
public class NaneFactory {

public NameFactory() {}

public Naner getName(string nane) {

int i = nanme.|ndexO™t (",");
if(i > 0)

return new LastFirst (name);
el se

return new FirstFirst (nane);

Copyright © , 2002 by James W Cooper

124

Using the Factory
Let’s see how we put this together. In response to the Compute button
click, we use an instance of the NameFactory to return the correct

derived class.
private void bt Compute_dick(
obj ect sender, System EventArgs e) {
Namer nm = naneFact. get Nane (txNane. Text);
txFirst. Text = nmgetFrnane ();
txLast. Text = nm getLname ();

}

Then we call the getFrname and getL name methods to get the correct
splitting of the name. We don’'t need to know which derived class this
is. the Factory has provided it for us, and all we need to know is that it
has the two get methods.

The complete class diagram is shown in Figure 8-2.

NameClass NameFactory
+getFirst(1. String +gethlamerinm):MameClass
+yetlasti): String

FirstFirst LastFirst

+Mewrnm) +Mewrnm)

Figure 8-2— The Namer factory program

We have constructed a simple user interface that allows you to enter
the names in either order and see the two names separately displayed.
Y ou can see this program in Figure 8-3.

Copyright © , 2002 by James W Cooper

125

=

Enter name

|Sandy Smith

First ISand_'.'
Lazt
ISmith

Compute

Figure 8-3 —The Namer program executing

Y ou type in a name and then click on the Get name button, and the
divided name appears in the text fields below. The crux of this program
is the compute method that fetches the text, obtains an instance of a
Namer class, and displays the results.

And that’ s the fundamental principle of the Simple Factory pattern.

Y ou create an abstraction that decides which of several possible classes
to return, and it returns one. Then you call the methods of that class
instance without ever knowing which subclass you are actually using.
This approach keeps the issues of data dependence separated from the
classes useful methods.

Factory Patternsin Math Computation

Most people who use Factory patterns tend to think of them as tools for
simplifying tangled programming classes. Buit it is perfectly possible to
use them in programs that simply perform mathematical computations.
For example, in the Fast Fourier Transform (FFT), you evaluate the
following four equations repeatedly for a large number of point pairs

Copyright © , 2002 by James W Cooper

126

over many passes through the array you are transforming. Because of
the way the graphs of these computations are drawn, the following four
equations constitute one instance of the FFT “butterfly.” These are
shown as Equations 1-4.

R =R +R,co8(y)- I,sn(y) (D
R, =R - R,cog(y)+1,sn(y) (2
I, =1, +Rdn(y) +1,co8(y) (3)
I, =1, - R,sn(y) - 1,co8(y) (4
However, there are a number of times during each pass through the

data where the angley is zero. In this case, your complex math
evaluation reduces to Equations (5-8).

R=R+R,
R =R-R 9
=1,+1, @
Ié:|1' I2
(8)

We first define aclass to hold complex numbers:
public class Conpl ex {

float real;

float inmag;
R R
public Complex(float r, float i) {

real =r; img = i;
}
e
public void setReal (float r) { real =r;}
R e R R R TP PP
public void setlnmag(float i) {img=i;}
e R
public float getReal () {return real;}
e R T
public float getlmag() {return inmag;}
}

Our basic Buttefly classis an abstract class that can be filled in by one
of the implementations of the Execute command:

public abstract class Butterfly {

Copyright © , 2002 by James W Cooper

127

float vy;
public Butterfly() {

}
public Butterfly(float angle) {
y = angl e;

abstract public void Execute(Conplex x, Conplex y);
}

We can then make a simple addition Butterfly class which implements
the add and subtract methods of equations 5-8:

class addButterfly : Butterfly {
float oldrl, oldil;
public addButterfly(float angle) {
}

public override void Execute(Conplex xi, Conplex xj) {
oldrl = xi.getReal ();
oldil = xi.getlnmag();
xi.setReal (oldrl + xj.getReal ())
Xj.setReal (oldrl - xj.getReal ())
xi.setlmag(oldil + xj.getlmag())
Xj.setlmag(oldil - xj.getlmag())

}

}

The TrigBuitterfly class is analogous except that the Execute method
contains the actual trig functions of Equations 1-4:

public class TrigButterfly:Butterfly {
float y, oldrl, oldia3;
float cosy, siny;
float r2cosy, r2siny, i2cosy, i2siny;

public TrigButterfly(float angle) {
y = angl e;
cosy = (float) Math. Cos(y);
siny = (float)Math. Sin(y);

public override void Execute(Conplex xi, Conplex xj) {
oldrl = xi.getReal ();
oldil = xi.getlmg();

r2cosy = xj.getReal () * cosy;
r2siny = xj.getReal () * siny;
i 2cosy = Xj.getlnmag()*cosy;
i 2siny = xj.getlmag()*siny;

Xi.setReal (oldrl + r2cosy +i 2siny);
xi.setlmag(oldil - r2siny +i2cosy);
Xj .setReal (oldrl - r2cosy - i2siny);
Xj.setlmag(oldil + r2siny - i2cosy);

Copyright © , 2002 by James W Cooper

128

}
Then we can make a simple factory class that decides which class

instance to return. Since we are making Butterflies, we'll call our
Factory a Cocoon. We never really need to instantiate Cocoon, so we
will make its one method static:

public class Cocoon {
static public Butterfly getButterfly(float y) {
if (y!'=0)

return new TrigButterfly(y);
el se
return new addButterfly(y);

Programs on the CD-ROM

\ Fact or y\ Naner The name factory

\ Fact ory\ FFT A FFT example

Thought Questions

1. Consider apersona checkbook management program like Quicken.
It manages several bank accounts and investments and can handle
your bill paying. Where could you use a Factory pattern in
designing a program like that?

2. Suppose you are writing a progam to assist homeownersin
designing additions to their houses. What objects might a Factory
be used to produce?

Copyright © , 2002 by James W Cooper

129

9. The Factory Method

WEe've just seen a couple of examples of the ssimplest of factories. The
factory concept recurs all throughout object-oriented programming, and
we find afew examples embedded in C# itself and in other design patterns
(such asthe Builder pattern). In these cases a single class acts as atraffic
cop and decides which subclass of a single hierarchy will be instantiated.

The Factory Method pattern is a clever but subtle extension of this idea,
where no single class makes the decision as to which subclass to
instantiate. Instead, the superclass defers the decision to each subclass.
This pattern does not actually have a decision point where one subclass is
directly selected over another class. Instead, programs written to this
pattern define an abstract class that creates objects but lets each subclass
decide which object to create.

We can draw a pretty simple example from the way that swimmers are
seeded into lanes in a swim meet. When swimmers compete in multiple
heats in a given event, they are sorted to compete from slowest in the early
heats to fastest in the last heat and arranged within a heat with the fastest
swimmers in the center lanes. Thisis referred to as straight seeding.

Now, when swimmers swim in championships, they frequently swim the
event twice. During preliminaries everyone competes, and the top 12 or 16
swimmers return to compete against each other at finals. In order to make
the preliminaries more equitable, the top hesats are circle seeded: The
fastest three swimmers are in the center lane in the fastest three heats, the
second fastest three swimmers are in the next to center lane in the top
three heats, and so forth

So, how do we build some objects to implement this seeding scheme and
illustrate the Factory Method. First, let’s design an abstract Event class.

public abstract class Event {
protected i nt nunlianes;
protected ArraylList sw nmers;

Copyright © , 2002 by James W Cooper

130

public Event(string filename, int |anes) {
nunLanes = | anes;
swimers = new ArraylList();
/lread in swimers fromfile
csFile f = new csFile(filenane);
f. OpenFor Read ();
string s = f.readLine();
while (s !'= null) {
Swi nmer sw = new Swi nmer (s);
swi mers. Add (sw);
s = f.readLine();

f.close();

public abstract Seeding get Seedi ng();
public abstract bool isPrelim));
public abstract bool isFinal();
public abstract bool isTi medFinal();

}

Note that this classis not entirely without content. Since all the derived
classes will need to read data from afile, we put that code in the base
class.

These abstract methods simply show the rest of a complete
implementation of and Event class. Then we can implement concrete
classes from the Event class, called PrelimEvent and TimedFinal Event.
The only difference between these classes is that one returns one kind of
seeding and the other returns a different kind of seeding.

We also define an abstract Seeding class with the following methods.

public abstract class Seeding {
protected int nunLanes;
protected int[] | anes;

public abstract |Enunerator getSw mers();
public abstract int getCount();

public abstract int getHeats();

protected abstract void seed();
R
protected void cal cLaneOrder () {

// conpl ete code on CD

Copyright © , 2002 by James W Cooper

}

}
Note that we actually included code for the calcLaneOrder method but

131

omit the code here for simplicity. The derived classes then each create an
instance of the base Seeding class to call these functions.

We can then create two concrete seeding subclasses: StraightSeeding and

CircleSeeding. The PrelimEvent class will return an instance of

CircleSeeding, and the TimedFinalEvent class will return an instance of
StraightSeeding. Thus, we see that we have two hierarchies: one of Events

and one of Seedings.

Events

+Mew(Filename lanes)
+getSwimmers()
+sPrelim()
+isFinall)
+izTimedFinali)
+yetzeeding)

A“‘;\.

TimedFinalEvent

Prelimevent

' getSeeding
s getHeat

s getCount :
L seed
| getSwimmers
'getHeats :
Xelele}

» calclaneCrder
1 Maw

Figure 9-1 —Seeding diagram showing Seeding interface and derived classes.

Copyright © , 2002 by James W Cooper

StraighfSEeding

CircleSeeding

132

In the Events hierarchy, you will see that both derived Events classes
contain a getSeeding method. One of them returns an instance of
StraightSeeding and the other an instance of CircleSeeding. So you see,
there is no real factory decision point as we had in our smple example.
Instead, the decision as to which Event class to instantiate is the one that
determines which Seeding class will be instantiated.

While it looks like there is a one-to-one correspondence between the two
class hierarchies, there needn’t be. There could be many kinds of Events
and only afew kinds of Seeding used.

The Swimmer Class

We haven't said much about the Swimmer class, except that it contains a
name, club age, seed time, and place to put the heat and lane after seeding.
The Event class reads in the Swimmers from some database (a file in our
example) and then passes that collection to the Seeding class when you
call the getSeeding method for that event.

The Events Classes

We have seen the previous abstract base Events class. In actual use, we
use it to read in the swimmer data and pass it on to instances of the
Swimmer class to parse.

The base Event class has empty methods for whether the event is a prelim,
final, or timed fina event. We fill in the event in the derived classes.

Our PrelimEvent class just returns an instance of CircleSeeding.

public class PrelinEvent: Event {
public PrelinEvent(string filenanme, int |anes):
base(fil enane, | anes) {}
/lreturn circle seeding
public override Seedi ng get Seeding() {
return new Circl eSeedi ng(swi nrers, numnlLanes);

public override bool isPrelinm) {
return true

Copyright © , 2002 by James W Cooper

}
public override bool isFinal() {
return fal se;

public override bool isTinedFinal () {
return fal se;
}
}

Our TimedFinalEvent class returns an instance of StraightSeeding.

public class TinedFinal Event: Event {

public TinedFi nal Event (string fil enane,
int |anes):base(filenane, |anes) {}
/lreturn Straight Seeding cl ass
public override Seeding getSeeding() {
return new Strai ght Seedi ng(swi mrers, nunianes);
}

public override bool isPrelim) {
return false;
}

public override bool isFinal() {
return false;

public override bool isTinedFinal () {
return true;
}

}

In both cases our events classes contain an instance of the base Events
class, which we use to read in the data files.

Straight Seeding
In actually writing this program, we'll discover that most of the work is
done in straight seeding. The changes for circle seeding are pretty
minimal. So we instantiate our StraightSeeding class and copy in the
Collection of swimmers and the number of lanes.

protected override void seed() {
//loads the swirs array and sorts it
sort Upwar ds() ;

Copyright © , 2002 by James W Cooper

133

134

int | astHeat = count % nunianes;
if (lastHeat < 3)
| ast Heat = 3; /11 ast heat nust have 3 or nore
int |astLanes = count - | astHeat;
nunHeats = count / nunlanes;
if (lastLanes > 0)
nunHeat s++;
int heats = nunHeats;
/I place heat and | ane in each swi nmer's object
/1 Add in |ast partial heat
//copy fromarray back into Arrayli st
//details on CDROM

}
This makes the entire array of seeded Swimmers available when you call

the getSwimmers method.

Circle Seeding

The CircleSeeding class is derived from StraightSeeding, so it starts by
calling the parent class's seed method and then rearranges the top heats

protected override void seed() {
int circle;
base. seed(); //do straight seed as default
if (numHeats >= 2) {
if (nunHeats >= 3)
circle = 3;
el se
circle = 2;
int i = 0;
for (int j =0; j < nunLanes; j++) {
for (int k =0; k <circle; k++) {
swnrs[i].setlLane(lanes[j]);
swnr s[i ++] . set Heat (nunHeats - k);

Our Seeding Program

In this example, we took alist of swimmers from the Web who competed
in the 500-yard freestyle and the 100-yard freestyle and used them to build

Copyright © , 2002 by James W Cooper

our TimedFinalEvent and PrelimEvent classes. Y ou can see the results of

these two seedings in Figure 9-2. In the left box, the 500 Free event is

selected, and you can see that the swimmers are seeded in strainght seeing

135

from slowest to fastest. In the right box, the 100 Free event is selected and
is circle seeded, with the last 3 heats seeded in a rotating fashion.

1100 Free 12 AEmip Fam WRAT 45554 - 12 3Enly Hamgan MES 5113 -
12 diathipn Hiler Whw' 5.5 600 Free 11 3 Taep Thekn FEoY S
12 2 el abiza Scduoki Whhar BINLGE 10 3Linckay Hokama Her i
12 5 5amsh Bowmen COEY S0gad 12 d.Jen Fliman LY FE
12 1 Caitin Klich MHEH 50259 11 4 &nnie Golditein Q5% SR
12 i Caithn Hadley MWEM GEEE2 10 4kda Bus POy SR
11 3Kim Fichandwon b 1 12 2K.aki udiey Wit 5606
11 dBeth Halinmaski Har 50477 11 2 Lindsoy Woodward 055 53
11 2 Falicsa Frnery Wit GETR 10 2 angarst Ramesy WEM B6d4
11 S Cankn Bowman COEw 50573 12 S alkei sl FCSC S6E3
11 1 Kalie Hatin COEY 5067 11 5§ Teiesa Roselli DELM SETH
11 B Lawen Dudap it GREE 10 8 Ashly MoLalan COEY G
10 Lo Schuanhaersr W SI0E2 12 1 dmards McCathy WA S6.E6
10 dEmrrm Huzley MEH 512119 111 5amantha Kely Gyl S5E8
10 2 Erllp Wiffat B 1 = | _"',_J 101 Ealie Brackdedlal E0 SR _"'J

Figure 9-2— Straight seeding of the 500 free and cir cle seeding of the 100 free

Other Factories

Now one issue that we have skipped over is how the program that reads in
the swimmer data decides which kind of event to generate. We finese this
here by ssmply creating the correct type of event when we read in the data.
This code is in our init method of our form:

private void init() {
/lcreate array of events
events = new ArraylList ();
| sEvents. ltens. Add ("500 Free");
| sEvents.ltens. Add ("100 Free");
/land read in their data
events. Add (new Ti nedFi nal Event ("500free.txt", 6));
events. Add (new PrelinEvent ("100free.txt", 6));

Copyright © , 2002 by James W Cooper

136

Clearly, thisis an instance where an EventFactory may be needed to
decide which kind of event to generate. This revisits the simple factory
with which we began the discussion.

When to Use a Factory M ethod
Y ou should consider using a Factory method in the following situations.

A class can't anticipate which kind of class of objects it must create.

A class uses its subclasses to specify which objects it creates.

Y ou want to localize the knowledge of which class gets created.
There are severa variations on the factory pattern to recognize.

1. Thebase classis abstract and the pattern must return a complete
working class.

2. The base class contains default methods and these methods are called
unless the default methods are insufficient.

3. Parameters are passed to the factory telling it which of several class
types to return. In this case the classes may share the same method
names but may do something quite different.

Thought Question

Seeding in track is carried out from inside to outside lanes. What classes
would you need to develop to carry out tracklike seeding as well?

Programson the CD-ROM
\ Fact or yMet hod\ Seeder Seeding program

Copyright © , 2002 by James W Cooper

137

10. The Abstract Factory Pattern

The Abstract Factory pattern is one level of abstraction higher than the
factory pattern. You can use this pattern when you want to return one of
several related classes of objects, each of which can return several
different objects on request. In other words, the Abstract Factory isa
factory object that returns one of several groups of classes. Y ou might
even decide which class to return from that group using a Simple Factory.

Common thought experiment-style examples might include automobile
factories. Y ou would expect a Toyota factory to work exclusively with
Toyota parts and a Ford factory to use Ford parts. Y ou can consider each
auto factory as an Abstract Factory and the parts the groups of related
classes.

A GardenMaker Factory

Let’s consider a practical example where you might want to use the
abstract factory in your application. Suppose you are writing a program to
plan the layout of gardens. These could be gardens consisting of annuals,
vegetables, or perennials. However, no matter which kind of garden you
are planning, you want to ask the same questions.

1. What are good border plants?

2. What are good center plants?

3.What plants do well in partial shade?

(And probably alot more plant questions that we won’'t get into here.)

We want a base C# Garden class that can answer these questions as class
methods.

public class Garden {
protected Plant center, shade, border;
protected bool showCenter, showShade, showBorder;
/'l sel ect which ones to display
public void setCenter() {showCenter = true;}

Copyright © , 2002 by James W Cooper

138

public void setBorder() {showBorder =true;}
public void set Shade() {showShade =true;}
/1 draw each pl ant

public void draw(G aphics g) {
if (showCenter) center.draw (g, 100, 100);

if (showShade) shade.draw (g, 10, 50);
i f (showBorder) border.draw (g, 50, 150):

}
}

Our Plant object sets the name and draws itself when its draw method is
caled.

public class Plant {
private string nane;
private Brush br;
private Font font;

public Plant(string pname) {
nane = pnane; / / save nane
font = new Font ("Arial", 12);
br = new Sol i dBrush (Col or. Bl ack);

public void drawm Graphics g, int x, int y) {
g.Drawstring (name, font, br, x, y);
}

}
In Design Patterns terms, the Garden interface is the Abstract Factory. It

defines the methods of concrete class that can return one of several
classes. Here, we return central, border, and shade- loving plants as those
three classes. The abstract factory could aso return more specific garden
information, such as soil pH or recommended moisture content.

In areal system, each type of garden would probably consult an elaborate
database of plant information. In our simple example we'll return one kind
of each plant. So, for example, for the vegetable garden we ssmply write
the following.

public class Veggi eGarden : Garden {

public Veggi eGarden() {
shade = new Pl ant("Broccoli");
border = new Pl ant ("Peas");

Copyright © , 2002 by James W Cooper

center =

new Plant ("Corn");

139

In asimilar way, we can create Garden classes for Perennial Garden and
Annual Garden. Each of these concrete classes is known as a Concrete
Factory, since it implements the methods in the parent class. Now we have
a series of Garden objects, each of which creates one of several Plant
objects. Thisisillustrated in the class diagram in Figure 10-1.

Gardenmaker

Garden

GardenPic

gden

1

+ieww()
+zhovwCenter()
+zhowwBorder()
+zhovwShadel)
+clear])
+oranig)

P

bden

PerennialGarden

AnnualGarden

VYegetableGarden

Figure10-1 — The major objectsin the Gardener program

We can easily construct our Abstract Factory driver program to return one
of these Garden objects based on the radio button that a user selects, as
shown in the user interface in Figure 10-2.

Copyright © , 2002 by James W Cooper

140

ol

—Garden type
" Annual BEroccoli
i+ egetable
" Perennial Zorm

FPeas

v Center W Border W Shade

Figure 10-2 — The user interface of the Gardener program

Each time upi seject anew garden type, the screen is cleared and the check
boxes unchecked. Then, as you select each checkbox, that plant typeis
drawn in.

Remember, in C# you do not draw on the screen directly from your code.
Instead, the screen is updated when the next paint evert occurs, and you
must tell the paint routine what objects to paint.

Since each garden (and Plant) knows how to draw itsdlf, it should have a
draw method that draws the appropriate plant names on the garden screen.
And since we provided check boxes to draw each of the types of plants,
we set a Boolean that indicates that you can now draw each of these plant

types.
Our Garden object contains three set methods to indicate that you can
draw each plant.

public void setCenter() {showCenter = true;}
public void setBorder() {showBorder =true;}
public void setShade() {showShade =true;}

Copyright © , 2002 by James W Cooper

141

The PictureBox

We draw the circle representing the shady areainside the PictureBox and
draw the names of the plants inside this box as well. Thisis best
accomplished by deriving a new GardenPic class from PictureBox and
giving it the knowledge to draw the circle and the garden plant names,
Thus, we need to add a paint method not to the main GardenM aker
window class but to the PictureBox it contains. This thus overrides the
base OnPaint event of the underlying Control class.
public class GdPic : System W ndows. Fornms. Pi ct ureBox {

private Contai ner conponents = null;

private Brush br;

private Garden gden;

[T

private void init () {
br = new Sol i dBrush (Color.LightGay);

}

[leemm oo -

public GdPic() {
InitializeConponent();
init();

}

I

public void setGarden(Garden garden) {
gden = garden;
}

R
protected override void OnPaint (PaintEventArgs pe){
G aphics g = pe. G aphics;
g.FillEllipse (br, 5 5, 100, 100);
if(gden !'= null)
gden. draw (Q);
}

Note that we do not have to erase the plant name text each time because
OnPaint is only called when the whole picture needs to be repainted.

Copyright © , 2002 by James W Cooper

142

Handling the RadioButton and Button Events

When one of the three radio buttons is clicked, you create a new garden of
the correct type and pass it into the picture box class. Y ou also clear all the
checkboxes.

private void opAnnual _CheckedChanged(
obj ect sender, EventArgs e) {
set Garden(new Annual Garden ());

private void opVeget abl e_CheckedChanged(
obj ect sender, EventArgs e) {
set Garden(new Veggi eGarden ());

private void opPerenni al _CheckedChanged(
obj ect sender, EventArgs e) {
set Garden(new Perenni al Garden ());

}

[]-----

private void setGarden(Garden gd) {
garden = gd; // save current garden
gdPi cl. set Garden (gd); /1tell picture bos
gdPi cl. Refresh (); /lrepaint it
ckCent er. Checked =fal se; [lclear all
ckBor der. Checked = fal se; //check
ckShade. Checked = fal se; / I boxes

}

When you click on one of the check boxes to show the plant names, you
simply call that garden’s method to set that plant name to be displayed and
then call the picture box’s Refresh method to cause it to repaint.

private void ckCenter_CheckedChanged(
obj ect sender, System EventArgs e) {
garden. setCenter ();
gdPi cl. Refresh ();
}
[]-----
private void ckBorder_CheckedChanged(
obj ect sender, System EventArgs e) {
gar den. set Border () ;
gdPi cl. Refresh ();

Copyright © , 2002 by James W Cooper

143

}
[]-----

private voi d ckShade_CheckedChanged(
obj ect sender, System EventArgs e) {
gar den. set Shade ();
gdPi cl. Refresh ();

}
The final C# Gardener class UML diagram is shown in Figure 10-3.
Garden
+Hilew()
+showCenter()
Gardenmaker +showBorder()
- +showShade()
1 gden 17| +clear()
+irau()
GardenPic I
1—* den
PerennialGarden AnnualGarden VegetahleGarden
+hl e] +hlel +hlEl

Figure 10-3 — The UML diagram for the Gardener program.

Adding More Classes

One of the great strengths of the Abstract Factory is that you can add new
subclasses very easily. For example, if you needed a GrassGarden or a
WildFlowerGarden, you can subclass Garden and produce these classes.
The only real change you' d need to make in any existing code is to add
some way to choose these new kinds of gardens.

Copyright © , 2002 by James W Cooper

144

Conseguences of Abstract Factory

One of the main purposes of the Abstract Factory is that it isolates the
concrete classes that are generated. The actual class names of these classes
are hidden in the factory and need not be known at the client level at all.

Because of the isolation of classes, you can change or interchange these
product class families freely. Further, since you generate only one kind of
concrete class, this system keeps you from inadvertently using classes
from different families of products. However, it is some effort to add new
class families, since you need to define new, unambiguous conditions that
cause such a new family of classes to be returned.

While al of the classes that the Abstract Factory generates have the same
base class, there is nothing to prevent some subclasses from having
additional methods that differ from the methods of other classes. For
example, a BorsaiGarden class might have a Height or
WateringFrequency method that is not in other classes. This presents the
same problem that occurs in any subclass: Y ou don’'t know whether you
can call a class method unless you know whether the subclass is one that
allows those methods. This problem has the same two solutions as in any
similar case: You can either define all of the methods in the base class,
even if they don't aways have an actual function, or, you can derive a new
base interface that contains all the methods you need and subclass that for
al of your garden types.

Thought Question

If you are writing a program to track investments, such as stocks, bonds,
metal futures, derivatives, and the like, how might you use an Abstract
Factory?

Programs on the CD-ROM

\ Abst ract Fact or y\ Gar denPl anner | The Gardener program

Copyright © , 2002 by James W Cooper

145

11. The Singleton Pattern

The Singleton pattern is grouped with the other Creational patterns,
although it is to some extent a pattern that limits the creation of classes
rather than promoting such creation. Specifically, the Singleton assures
that there is one and only one instance of a class, and provides a global
point of access to it. There are any number of cases in programming
where you need to make sure that there can be one and only one
instance of a class. For example, your system can have only one
window manager or print spooler, or asingle point of accessto a
database engine. Y our PC might have several seria ports but there can
only be one instance of “COM1.”

Creating Singleton Using a Static Method

The easiest way to make a class that can have only one instance is to
embed astatic variable insde the class that we set on the first
instance and check for each time we enter the constructor. A static
variable is one for which there is only one instance, no matter how
many instances there are of the class. To prevent instantiating the class
more than once, we make the constructor private so an instance can
only be created from within the static method of the class. Then we
create amethod called getSpooler that will return an instance of
Spooler, or null if the class has aready been instantiated.

public class Spool er

private static bool instance_flag= fal se
private Spooler() {

}
public static Spool er getSpooler() {
if (! instance_flag)
return new Spooler ();
el se
return null

}
}
One mgjor advantage to this approach is that you don’t have to worry

about exception handling if the singleton already exists-- you simply
get a null return from the getSpooler method.

Spool er sp = Spool er. get Spool er () ;

Copyright © , 2002 by James W Cooper

146

if (sp!=null)

Console. WiteLine ("Got 1 spooler");
Spool er sp2 = Spool er. get Spool er ();
if (sp2 == null)

Console. WiteLine ("Can\'t get spooler");
}

And, should you try to create instances of the Spooler class directly,
this will fail at compile time because the constructor has been declared
asprivate.

/[/fails at conpiler tinme
Spool er sp3 = new Spooler ();

Finally, should you need to change the program to allow two or three
instances, this class is easily modified to alow this.

Exceptionsand | nstances

The above approach has the disadvantage that it requires the
programmer to check the getSpooler method return to make sure it is
not null. Assuming that programmers will always remember to check
errorsis the beginning of a dippery sope that many prefer to avoid.

Instead, we can create a class that throws an Exception if you attempt
to instantiate it more than once. This requires the programmer to take
action and is thus a safer approach. Let’s create our own exception
classfor this case:

public class SingletonException: Exception {

/I new exception type for singleton classes

public SingletonException(string s): base(s) {
} }
Note that other than calling its parent classes through the base
constructor, this new exception type doesn’t do anything in particular.
However, it is conveniert to have our own named exception type so
that the runtime system will warn us if this type of exception is thrown
when we attempt to create an instance of Spooler.

Copyright © , 2002 by James W Cooper

147

Throwing the Exception

Let’s write the skeleton of our PrintSpooler class-- we'll omit all of the
printing methods and just concentrate on correctly implementing the

Singleton pattern:

public class Spool er {
static bool instance_flag = false; //true if one instance
public Spooler() {
if (instance_fl ag)
t hrow new Si ngl et onExcepti on(
"Only one printer allowed");

el se {
i nstance_flag = true; /1set flag
Consol e. WiteLine ("printer opened");

}

Creating an Instance of the Class

Now that we' ve created our simple Singleton pattern in the
PrintSpooler class, let’s see how we use it. Remember that we must
enclose every method that may throw an exceptioninatry - catch
block.

public class singleSpooler
static void Main(string[] args) {
Spool er prl, pr2;
/1 open one printer--this should al ways work
Consol e. WitelLine ("Qpening one spooler");

try {
prl = new Spooler();

}
catch (Singl etonException e) {
Consol e. WitelLine (e. Message);

//try to open another printer --should fai
Consol e. WitelLine ("Opening two spool ers");
try {

}
catch (SingletonException e) {
Consol e. WitelLine (e. Message);
}

pr2 = new Spooler();

Then, if we execute this program, we get the following results:

Copyright © , 2002 by James W Cooper

148

Qpeni ng one spool er
printer opened

Openi ng two spool ers
Only one spool er all owed

where the last line indicates than an exception was thrown as expected.

Providing a Global Point of Accessto a Singleton

Since a Singleton is used to provide a single point of global accessto a
class, your program design must provide for away to reference the
Singleton throughout the program, even though there are no global
variables in C#.

One solution is to create such singletons at the beginning of the
program and pass them as arguments to the major classes that might
need to use them.

prl = i Spool er.Instance();
Cust oners cust = new Custoners(prl);

The disadvantage is that you might not need all the Singletons that you
create for a given program execution, and this could have performance
implications.

A more elaborate solution could be to create a registry of al the
Singleton classes in the program and make the registry generally
available. Each time a Singleton is instantiated, it notes that in the
Registry. Then any part of the program can ask for the instance of any
singleton using an identifying string and get back that instance
variable.

The disadvantage of the registry approach is that type checking may be
reduced, since the table of singletons in the registry probably keeps all
of the singletons as Objects, for example in a Hashtable object. And, of
course, the registry itself is probably a Singleton and must be passed to
all parts of the program using the constructor or various set functions.

Probably the most common way to provide a global point of accessis
by using static methods of a class. The class name is always available
and the static methods can only be called from the class and not from
its instances, so there is never more than one such instance no matter
how many places in your program call that method..

Copyright © , 2002 by James W Cooper

149

Other Consequences of the Singleton Pattern

1. It can bedifficult to subclass a Singleton, since this can only work
if the base Singleton class has not yet been instantiated.

2. You can easlly change a Singleton to allow a small number of
instances where this is allowable and meaningful.

Programson Your CD-ROM

\SingletonSinglePrinter Shows how print spooler could be
written thowing exception

\Singleton\I nstancePrinter Creates one instance or returns
null

Copyright © , 2002 by James W Cooper

150

12. The Builder Pattern

In this chapter we'll consider how to use the Builder pattern to construct
objects from components. We have already seen that the Factory pattern
returns one of several different subclasses, depending on the data passed in
arguments to the creation methods. But suppose we don’t want just a
computing algorithm but a whole different user interface because of the
data we need to display. A typical example might be your e-mail address
book. Y ou probably have both individual people and groups of peoplein
your address book, and you would expect the display for the address book
to change so that the People screen has places for first and last name,
company, e-mail address, and phone number.

On the other hand, if you were displaying a group address page, you'd like
to see the name of the group, its purpose, and alist of members and their
e-mail addresses. Y ou click on a person and get one display and on a
group and get the other display. Let’s assume that all e-mail addresses are
kept in an object called an Address and that people and groups are derived
from this base class, as shown in Figure 12-1.

Address

Person Group

Figure 12-1 — Both Person and Group are derived from Address.

Depending on which type of Address object we click on, we'd liketo see a
somewhat different display of that object’s properties. Thisis alittle more
than just a Factory pattern because we aren’t returning objects that are

Copyright © , 2002 by James W Cooper

151

simple descendants of a base display object but totally different user
interfaces made up of different combinations of display objects. The
Builder pattern assembles a number of objects, such as display controls, in
various ways, depending on the data. Furthermore, by using classes to
represent the data and forms to represent the display, you can cleanly
separate the data from the display methods into simple objects.

An Investment Tracker

Let’s consider a somewhat simpler case where it would be useful to have a
class build our Ul for us. Suppose we are going to write a program to keep
track of the performance of our investments. We might have stocks,

bonds, and mutual funds, and we'd like to display alist of our holdingsin
each category so we can select one or more of the investments and plot
their comparative performance.

Even though we can’t predict in advance how many of each kind of
investment we might own at any given time, we'd like to have a display
that is easy to use for either alarge number of funds (such as stocks) or a
small number of funds (such as mutual funds). In each case, we want some
sort of a multiple-choice display so that we can select one or more funds to
plot. If there are a large number of funds, we'll use a multichoice list box,
and if there are three or fewer funds, we'll use a set of check boxes. We
want our Builder class to generate an interface that depends on the number
of items to be displayed and yet have the same methods for returning the
results.

Our displays are shown in Figure 12-2. The top display contains alarge
number of stocks, and the bottom contains a small number of bonds.

Copyright © , 2002 by James W Cooper

=% Pick fund type

tAutual funds

I[=] E3

.i.a List of funds:

Cizco

Coca Cola

GE

Harley Davidson
|Bk

Micrazoft

&M Fick furid bype

=10]]

Stocks

Mutual funds

Pliat |

I CT G0 2005
[NY GO 22
[~ GE Corp Bonds

152

Figure 12-2- Stocks with the list interface and bonds with the check box interface

Copyright © , 2002 by James W Cooper

153

Now let’s consider how we can build the interface to carry out this
variable display. We'll start with a multiChoice interface that defines the
methods we need to implement.

public interface Milti Choice

{
Arrayli st getSel ected();

void clear();
Panel get W ndow();
}

The getWindow method returns a Panel containing a multiple-choice
display. The two display panels we're using here — a check box panel or
alist box panel — implement this interface.

public class CheckChoice: Mul ti Choi ce {
or

public class ListChoice:MiltiChoice {

C# gives us considerable flexibility in designing Builder classes, since we
have direct access to the methods that allow us to construct a window
from basic components. For this example, we'll let each builder construct
a Panel containing whatever components it needs. We can then add that
Panel to the form and position it. When the display changes, you remove
the old Panel and add a new one. In C#, a Pandl is just a unbordered
container that can hold any number of Windows components. The two
implementations of the Panel must satisfy the MultiChoice interface.

We will create a base abstract class called Equities and derive the stocks,
bonds, and mutual funds from it.

public abstract class Equities {
protected ArraylList array;
public abstract string toString();

public ArraylList getNames() {
return array;

public int count() {

Copyright © , 2002 by James W Cooper

154

return array. Count ;
}

Note the abstract toString method. We'll use this to display each kind of
equity in the list box. Now our Stocks class will just contain the code to
load the ArrayList with the stock names.

public class Stocks:Equities {

public Stocks() {
array = new ArraylList();

array. Add ("Cisco");

array. Add ("Coca Col a");
array. Add ("GE");

array. Add ("Harl ey Davidson");
array. Add ("IBM);

array. Add ("M crosoft");

public override string toString() {
return "Stocks";
}

}

All the remaining code (getNames and count) is implemented in the base
Equities class. The Bonds and Mutuals classes are entirely analogous.

The Stock Factory

We need a little class to decide whether we want to return a check box
panel or alist box panel. We'll call this class the StockFactory class.
However, we will never need more than one instance of this class, so we'll
create the class so its one method is static.

public class StockFactory {
public static MiultiChoice getBuilder(Equities stocks) {
if (stocks.count ()<=3) {
return new CheckChoi ce (stocks);
}

el se {
return new Li st Choi ce(stocks);
}

}

Copyright © , 2002 by James W Cooper

155

We never need more than one instance of this class so we make the
getBuilder method static so we can call it directly without creating a class
instance. In the language of Design Patterns, this simple factory classis
called the Director, and the actual classes derived from multiChoice are
each Builders.

The CheckChoice Class

Our Check Box Builder constructs a panel containing 0 to 3 check boxes
and returns that panel to the calling program.

/lreturns a panel of 0 to 3 check boxes
public class CheckChoice: Mul ti Choice {
private Arraylist stocks;
private Panel panel;
private Arrayli st boxes;

[]-=-----
public CheckChoi ce(Equities stks) {
stocks = stks.getNames ();
panel = new Panel ();
boxes = new ArraylList ();
//add the check boxes to the panel
for (int i=0; i< stocks.Count; i++) {
CheckBox ck = new CheckBox ();
//position them
ck. Location = new Point (8, 16 + i * 32);
string stk = (string)stocks[i];
ck. Text =stk;
ck.Size = new Size (112, 24);
ck. Tabl ndex =0;
ck. Text Align = Content Ali gnnent. M ddl eLeft ;
boxes. Add (ck);
panel . Control s. Add (ck);
}
}
}

The methods for returning the window and the list of selected names are
shown here. Note that we use the cast the object type returned by an
ArrayList to the Checkbox type the method actually requires.

[]-=-----
//uncheck all check boxes

Copyright © , 2002 by James W Cooper

156

public wvoid clear() {
for(int i=0; i< boxes.Count; i++) {
CheckBox ck = (CheckBox)boxes[i];
ck. Checked =fal se;

/lreturn Iist of checked itens
public ArraylList getSelected() {
ArraylLi st sels = new ArrayList ();
for(int i=0; i< boxes.Count ; i++) {
CheckBox ck = (CheckBox)boxes[i];
if (ck.Checked) {
sel s. Add (ck. Text);
}
}

return sels;
}
[]-=-----
//return panel of checkboxes
public Panel getWndow() {
return panel;
}

The ListboxChoice Class

This class creates a multisalect list box, inserts it into a Panel, and loads
the names into the list.

public class ListChoice: MiltiChoice {
private Arraylist stocks;
private Panel panel;
private ListBox list;
[]------
//constructor creates and |oads the |ist box
public ListChoice(Equities stks) {
stocks = stks.getNames ();
panel = new Panel ();
list = new ListBox ();
list.Location = new Point (16, 0);
list.Size = new Size (120, 160);
|ist.Sel ecti onMbde =Sel ecti onMbde. Mul ti Ext ended ;
i st. Tabl ndex =0;
panel . Control s. Add (list);

Copyright © , 2002 by James W Cooper

157

for(int i=0; i< stocks.Count ; i++) {
list.Items. Add (stocks[i]);
}

}
Since thisis amultiselect list box, we can get al the selected itemsin a

single Selectedl ndices collection. This method, however, only works for a
multiselect list box. It returns a—1 for asingle-select list box. We use it to
load the array list of selected names as follows.

//returns the Panel

public Panel getWndow() ({
return panel;

/lreturns an array of selected el enents
[l------
public ArrayList getSelected() {
ArraylList sels = new ArraylList ();
Li st Box. Sel ect edbj ect Col | ecti on
coll = list.Selectedltens
for(int i=0; i< coll.Count; i++) {
string item= (string)coll[i];
sels. Add (item);

return sels;

//clear selected el enents
public void clear() {

list.ltens.dear();
}

Using the Items Collection in the ListBox Control

You are not limited to populating a list box with strings in C#. When you
add data to the Items collection, it can be any kind of object that has a
toString method.

Since we created our three Equities classes to have a toString method, we
can add these classes directly to the list box in our main program’s
constructor.

public class WalthBuilder : Form {

Copyright © , 2002 by James W Cooper

158

private ListBox |sEquities;
private Container conponents = null;
private Button btPlot;
private Panel pnl;
private Milti Choice nthoice;
private void init() {
I sEquities.ltens. Add (new Stocks());
| sEquities.ltens. Add (new Bonds());
I sEquities.ltenms. Add (new Mutual s());

}

public Weal t hBui | der () {
InitializeConponent();
init();

}

Whenever we click on aline of the list box, the click method obtains that
instance of an Equities class and passes it to the MultiChoice factory,
which in turn produces a Panel containing the items in that class. It then
removes the old panel and adds the new one.
private void | sEquities_Sel ect edl ndexChanged(obj ect sender,
Event Args e) {

int i = |sEquities. Sel ectedlndex ;

Equities eq = (Equities)lsEquities.ltens[i];

nthoi ce= St ockFactory. getBuil der (eq);

this. Control s. Remove (pnl);

pnl = nthoi ce. get Wndow ();
set Panel ();

}

Plotting the Data

We don't really implement an actual plot in this example. However, we
did provide a getSelected method to return the names of stocks from either
MultiSelect implementation. The method returns an ArrayList of selected
items. In the Plot click method, we load these names into a message box
and display it:

private void btPlot_Cick(object sender, EventArgs e) {

//display the selected itens in a nessage box

if(nmchoice '= null) {
ArrayList ar = nthoice.getSelected ();

Copyright © , 2002 by James W Cooper

159

string ans = ""

for(int i=0; i< ar.Count ; i++) {
ans += (string)ar[i] +" "

}

MessageBox. Show (nul |l , ans,
"Sel ected equities", MessageBoxButtons. K);

The Final Choice

Now that we have created al the needed classes, we can run the program.
It starts with a blank panel on the right side, so there will aways be some
panel there to remove. Then each time we click on one of the names of the
Equities, that panel is removed and a new one is added in its place. We see
the three cases in Figure 12-3.

Tt Buier NT=TET =k
| LCEcn
Bond: onis L Loy
Pl bl Furd s Wl lunds GE
H-zrl=y D srvickon
|
Micizk

L — - .
Shockr
Wue e F Cran s T G0 2005, GE Corp bonds,
I~ MY GO 2mz
[1GE Coip bz

o

Copyright © , 2002 by James W Cooper

160

Figure 12-3- The WealthBuilder program, showingthelist of equitites, thelistbox,
the checkboxes and the plot panel.

Y ou can see the relationships between the classes in the UML diagram in

Figure 12-4.

...... e iMultiChoice]
Equities]
y : whBuilder ek e i
femoo - PR e ! HgetSelected!) Araylist |
P HoStng():String m +eleaif) :
vgethames)) Arraylist o mchaice 1 +getWindow) ;
vroount():integer e
____________ G ﬁ:z

! i ! | |

Bonds Mutuals Stocks ListChoice CheckChoice

Figure 12-4 — Theinheritance relationshipsin the Builder pattern

Consequences of the Builder Pattern

1. A Builder lets you vary the internal representation of the product it
builds. It also hides the details of how the product is assembled.

2. Each specific Builder is independent of the others and of the rest of the
program. This improves modularity and makes the addition of other
Builders relatively smple.

3. Because each Builder constructs the final product step by step,
depending on the data, you have more control over each final product
that a Builder constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that both
return classes made up of a number of methods and objects. The main
difference is that while the Abstract Factory returns a family of related
classes, the Builder constructs a complex object step by step, depending
on the data presented to it.

Copyright © , 2002 by James W Cooper

161

Thought Questions

1. Some word-processing and graphics programs construct menus
dynamically based on the context of the data being displayed. How
could you use a Builder effectively here?

2. Not al Builders must construct visual objects. What might you
construct with a Builder in the personal finance industry? Suppose you
were scoring a track meet, made up of five or six different events.
How can you use a Builder there?

Programs on the CD-ROM

\ Bui | der s\ St ocks Basic equities Builder

Copyright © , 2002 by James W Cooper

162

13. The Prototype Pattern

The Prototype pattern is another tool you can use when you can specify
the general class needed in a program but need to defer the exact class
until execution time. It is similar to the Builder in that some class decides
what componerts or details make up the final class. However, it differsin
that the target classes are constructed by cloning one or more prototype
classes and then changing or filling in the details of the cloned class to
behave as desired.

Prototypes can be used wherever you need classes that differ only in the
type of processing they offer—for example, in parsing of strings
representing numbers in different radixes. In this sense, the prototype is
nearly the same as the Examplar pattern described by Coplien (1992).

Let’s consider the case of an extensive database where you need to make a
number of queries to construct an answer. Once you have this answer as
result set, you might like to manipulate it to produce other answers
without issuing additional queries.

In a case like the one we have been working on, we'll consider a database
of alarge number of swimmersin aleague or statewide organization.
Each swimmer swims several strokes and distances throughout a season.
The “best times’ for swimmers are tabulated by age group, and even
within a single four- month season many swimmers will pass their
birthdays and fall into new age groups. Thus, the query to determine
which swimmers did the best in their age group that season is dependent
on the date of each meet and on each swimmer’s birthday. The
computational cost of assembling thistable of timesis therefore fairly
high.

Once we have a class containing this table sorted by sex, we could
imagine wanting to examine this information sorted just by time or by
actual age rather than by age group. It would not be sensible to recompute

Copyright © , 2002 by James W Cooper

163

these data, and we don’t want to destroy the original data order, so some
sort of copy of the data object is desirable.

Cloning in C#

The idea of cloning a class (making an exact copy) is not adesigned-in
feature of C#, but nothing actually stops you from carrying out such a
copy yourself. The only place the Clone method appearsin C#isin ADO
DataSet manipulation. Y ou can create a DataSet as a result of a database
guery and move through it arow at atime. If for some reason you need to
keep references to two places in this DataSet, you would need two
“current rows.” The simplest way to handle thisin C# isto clone the
DataSet.

Dat aSet cl oneSet;
cl oneSet = myDat aSet. Cl one();

Now this approach does not generate two copies of the data. It just
generates two sets of row pointers to use to move through the records
independently of each other. Any change you make in one clone of the
DataSet is immediately reflected in the other because there isin fact only
one data table. We discuss a similar problem in the following example.

Using the Prototype

Now let’s write a simple program that reads data from a database and then
clones the resulting object. In our example program, we just read these
data from afile, but the origina data were derived from alarge database,
as we discussed previoudy. That file has the following form.

Kristen Frost, 9, CAT, 26.31, F

Ki mberly Watcke, 10, CDEv, 27.37, F

Jaclyn Carey, 10, ARAC, 27.53, F
Megan Crapster, 10, LEHY, 27.68, F

WEe'll use the csFile class we developed earlier.

Copyright © , 2002 by James W Cooper

164

First, we create a class called Swimmer that holds one name, club name,
sex, and time, and read them in using the csFile class.

public class Sw nmer {
private string nane; /I name
private string | nane, frnane;//split nanes
private int age; /| age
private string club; /lclub initials
private float tinme; //tinme achieved
private bool fenale; /] sex

I

public Swimer(string line) {
StringTokeni zer tok = new StringTokenizer(line,",");
split Name(tok);
age = Convert. Tol nt 32 (tok.next Token());
club t ok. next Token();
time Convert. ToSi ngl e (tok. next Token());
string sx = tok.nextToken().ToUpper ();
femal e = sx. Equals ("F");

}
I
private void splitName(StringTokenizer tok) {
nanme = tok. next Token();
int i = name.|ndexOf (" ");
if(i >0) {
frname = nane. Substring (0, i);
I name = name. Substring (i+1).Trim();

public bool isFemale() {
return fenale;

}

[FEEEEE R

public int getAge() {
return age

}

[EEEE TR

public float getTine() {
return tine;

public string getNane() {
return nane;
}

Copyright © , 2002 by James W Cooper

public

}
}

string getd ub() {
return club;

165

Then we create a class called SwimData that maintains an ArrayL.ist of the

Swimmers we

read in from the database.

public class Sw nData {
protected ArrayLi st swdata;
private int index;

public

Swi nDat a(string fil enane) {
swdata = new ArraylList ();
csFile fI = new csFile(filenane);
fl.OpenForRead ();
string s = fl.readLine ();
while(s !'= null) {
Swi nmer sw = new Swi nmer (s);
swdat a. Add (sw);
s = fl.readLine ();
}

fl.close ();

void moveFirst() {
index = 0;

bool hasMoreEl enents() {
return (index < swdata.Count-1);

void sort() {

Swi mrer get Swi nmer () {
i f(index < swdata. Count)

return (Sw mrer)swdat af i ndex++] ;
el se

return null;

Copyright © , 2002 by James W Cooper

166

We can then use this class to read in the swimmer data and display it in a
list box.

private void init() {
swdata = new Swi nmData ("swi mers.txt");
rel oad();

private void reload() {
IsKids.ltens.Cear ();
swdat a. noveFirst ();
whi | e (swdat a. hasMbr eEl enents()) {
Swi nmer sw = swdat a. get Swi nmer () ;
I sKids.ltens. Add (sw. getName());
}
}
Thisisillustrated in Figure 13-1.

Esipleprototype ol

Frigten Frost -
Kimber W atcke

Jaclyn Carey

kegan Crapster

K.aitlyn Arment

Jackie Rogers

Erin MLaughlin e
Emnily Ferrier o
Aurora Lee

k.ate lszelee

Luke Mester

Stephen Cozme ;I

Figure 13-1 — A simple prototype program

When you click on the “->” button, we clone this class and sort the data
differently in the new class. Again, we clone the data because creating a
new class instance would be much slower, and we want to keep the data in
both forms.

Copyright © , 2002 by James W Cooper

private void btC one_Cick(object sender,
Swi nDat a newSd = (Sw nDat a) swdat a. d one ();

newsd. sort ();

whi | e(newsd. hasMor eEl emrents()) {

Swi mrer sw = (Swi nmrer) newSd. get Swi mmrer () ;

Event Args e) {

| sNewKi ds. I tems. Add (sw. get Name());

}

We show the sorted resultsin Figure 13-2

ﬂgﬁimple Prototype

Frigten Frost
Kimber W atcke
Jaclyn Carey
kegan Crapster
K.aitlyn Arment
Jackie Rogers
Erin MLaughlin
E mily Ferrier
Aurora Lee
k.ate lszelee
Luke Mester
Stephen Cozme

i

=10 x|

k.aitlyn Arment
Charlesz B aker
Jaclyn Carey
Stephen Cozme
kegan Crapster
b atthew Donch
Ernily Ferrier
Fristen Frost
k.ate |zzeles
Aurora Lee
David Liebovitz
Enn McLaughlin

Figure 13-2 — The sorted results of our Prototype program.

Cloning the Class
While it may not be strictly required, we can make the SwimData class

implement the |Cloneable interface.
public class Sw nData: | Cl oneabl e {

167

All this means is that the class must have a Clone method that returns an

object:

public object done() {

Copyright © , 2002 by James W Cooper

168

Swi nDat a newsd = new Sw nDat a(swdat a) ;
return newsd;

}

Of course, using this interface implies that we must cast the object type
back to the SwimData type when we receive the clone:

Swi mDat a newSd = (Swi nDat a) swdat a. Cl one () ;

as we did above.

Now, let’s click on the”< " button to reload the left-hand list box from the
origina data. The somewhat disconcerting result is shown in Figure 13-3.

=

K.aitlyn Amment
Charles B aker
Jaciyn Carey
Stephen Cosme
kegan Crapster
kd atthews Donich
Emily Ferrier
Krigten Frost
k.ate |zzelee
Aurora Lee
David Liebovvitz

K.aitlyn Amment
Charles B aker
Jaciyn Carey
Stephen Cosme
kegan Crapster
kd atthews Donich
Emily Ferrier
Krigten Frost
k.ate |zzelee
Aurora Lee
David Liebovvitz

Erin McLaughlin LI Erin McLaughlin LI

Figure 13-3 — The Prototype showing the disconcertin re-sort of the left list box.
Why have the names in the left-hand list box aso been re-sorted? Our sort
routine looks like this:

public void sort() {
/lsort using | Conparable interface of Sw mer
swdat a. Sort (0, swdata. Count ,null);

Copyright © , 2002 by James W Cooper

169

Note that we are sorting the actual ArrayList in place. This sort method
assumes that each element of the ArrayList implements the |Comparable
interface,

public class Sw mrer: | Conparabl e {

All this means is that it must have an integer CompareTo method which
returns—1, 0 or 1 depending on whether the comparison between the two
objects returns less than, equal or greater than. In this case, we compare
the two last names wsing the string class's CompareTo method and return
that:
public int ConpareTo(object swo) {

Swi nmrer sw = (Swi mrer) swo;

return | nane. ConpareTo (sw. getLNanme());

}
Now we can understand the unfortunate result in Figure 14-3. The origind

array is resorted in the new class, and there is really only one copy of this
array. This occurs because the clone method is a shallow copy of the
original class. In other words, the references to the data objects are copies,
but they refer to the same underlying data. Thus, any operation we
perform on the copied data will also occur on the original datain the
Prototype class.

In some cases, this shallow copy may be acceptable, but if you want to
make a deep copy of the data, you must write a deep cloning routine of
your own as part of the class you want to clone. In this smple class, you
just create anew ArrayList and copy the elements of the old class's
ArrayList into the new one.

public object Cone() {
/lcreate a new ArraylLi st
ArraylLi st swd = new ArrayList ();
//copy in sw nmer objects
for(int i = 0; i < swdata.Count ; i++)
swd. Add (swdataf[i]);
//create new Swi nData object with this array
Swi nDat a newsd = new Swi nData (swd);
return newsd;

Copyright © , 2002 by James W Cooper

170

Using the Prototype Pattern

Y ou can use the Prototype pattern whenever any of a number of classes
might be created or when the classes are modified after being created. As
long as all the classes have the same interface, they can actually carry out
rather different operations.

Let’'s consider a more elaborate example of the listing of swimmers we
just discussed. Instead of just sorting the swimmers, let’ s create subclasses
that operate on that data, modifying it and presenting the result for display
in alist box. We start with the same basic class SwimData.

Then it becomes possible to write different derived SwimData classes,
depending on the application’ s requirements. We always start with the
SwimData class and then clone it for various other displays. For example,
the SexSwimData class resorts the data by sex and displays only one sex.
Thisis shown in Figure 13-4.

_loix

Fristen Frost - = Fristen Frost
Kirnberh Watcke = Kirnberh Watcke
Jaclyn Carey Jaclyn Carey
began Crapster R began Crapster
K.aitlyn Arment v F K.aitlyn Arment
Jackie Rogers M Jackie Rogers
Enin McLaughlin Enin McLaughlin
E mily Ferrier T E mily Ferrier
Aurora Lee Aurora Lee
k.ate lzzelee

Luke Mester forn

Stephen Cozme _‘ﬂ

Figure 13-4 — The OneSexSwimData class displays only one sex on theright.

In the SexSwimData class, we sort the data by name but retur n them for
display based on whether girls or boys are supposed to be displayed. This
class has this polymorphic sort method.

Copyright © , 2002 by James W Cooper

171

public void sort(bool isFemale) {
ArrayLi st swd = new ArrayList();

for (int i =0; i < swdata.Count ; i++) {
Swi nmer sw =(Swi nmer) swdat ali];
if (isFemale == sw.isFemale()) {
swd. Add (sw);
}
}
swdata = swd;

}
Each time you click on the one of the sex option buttons, the classis given

the current state of these buttons.

private void btC one_Cick(object sender, System EventArgs e) {
SexSwi nDat a newSd = (SexSwi nmDat a) swdat a. Cl one ();
newSd. sort (opFenal e. Checked);
| sNewKi ds. Itens. Cl ear() ;
whi | e(newsd. hasMor eEl emrent s()) {
Swi mrer sw = (Swi mer) newSd. get Swi mmer () ;
| sNewKi ds. | tems. Add (sw. get Narme());

}

Note that the btClone_Click event clones the general SexSwimdata class
instance swdata and casts the result to the type SexSwimData. This means
that the Clone method of SexSwimData must override the general
SwimData Clone method because it returns a different data type:

public object Cone() {
//create a new Arrayli st
ArraylList swd = new ArraylList ();
/'l copy in sw nmer objects
for(int i=0; i< swdata.Count ; i++)
swd. Add (swdata[i]);
/lcreate new Swi nData object with this array
SexSwi nDat a newsd = new SexSwi nData (swd);
return newsd;

}

Thisis not very satisfactory, if we must rewrite the Clone method each
time we derive anew highly similar class. A better solution is to do away
with implementing the | Cloneable interface where each class has a Clone

Copyright © , 2002 by James W Cooper

172

method, and reverse the process where each receiving class clones the data
inside the sending class. Here we show arevised portion of the SwimData
class which contains the cloneMe method. It takes the data from another
instance of SwimData anc copiesit into the ArrayList inside this instance
of the class:

public class Sw nData {
protected ArrayLi st swdat a;
private int index;

public void cl oneMe(Swi nData swdat) {
swdata = new ArraylList ();
Arrayli st swd=swdat.getData ();
//copy in swi mmer objects
for(int i=0; i < swd.Count ; i++)
swdat a. Add (swd[i]);

}
This approach then will work for al child classes of SwimData without
having to cast the data between subclass types.

Dissimilar Classes with the Same Interface

Classes, however, do not have to be even that similar. The AgeSwimData
class takes the cloned input data array and creates a simple histogram by
age. If you click on “F,” you see the girls' age distribution and if you click
on “M,” you see the boys' age distribution, as shown in Figure 13-5

Copyright © , 2002 by James W Cooper

173

Eriglar Fio el

Enn el aighln

Emely Fanem
Le=

e |siefee

Luks Mesiz
ety Siadbun

Emeat Yemrico
Staphen Cosme

AT
Kinberdp Wacke CDEV

WA
HIMST
HMIL
FRLY
HKIL
D] Linbirdiz Wi
GrwD
Fpen Rprazemski 4050
SHES
Ok
Wlatthew Doncky PR

Fieliesh I

| ¥

& F
|

o ‘

Figure 13-5— The AgeSwimData class displays an age distribution.

Thisis an interesting case where the AgeSwimData class inherits the
cloneMe method from the base SwimData class, but overrides the sort
method with one that creates a proto-swimmer with a name made up of the
number of kidsin that age group.

public class AgeSw nDat a: Swi nDat a {
ArraylLi st swd;

public
}
[]-=---
public
public
[]-=---
public
}
[]-----
public

AgeSwi nData() {
swdata = new ArraylList ();

AgeSwi mDat a(string filenanme): base(fil enane){}
AgeSwi nDat a(ArrayLi st ssd): base(ssd){}
override void cloneMe(Sw nData swdat) {

swd = swdat.getData ();

override void sort() {
Swimer[] sws = new Swi mmrer[swd. Count];
//copy in swi nmer objects

for(int i=0; i < swd.Count ; i++) {
sws[i] = (Swi nmer)swd[i];
/lsort into increasing order

Copyright © , 2002 by James W Cooper

174

for(int i=0; i< sws.Length ; i++) {
for (int j =1i; j< sws.Length ; j++) {
if (sws[i].getAge ()>sws[j].getAge ())
Swi nmer sw = sws[i];
sws[i]=sws[]];
sws[]]=sw,

}
}
int age = sws[0].getAge ();
int agecount = O;
int kK = 0;
swdata = new ArraylList ();
bool quit = false;

while(k < sws.Length & ! quit) {
whi | e(sws[k].get Age() ==age && ! quit) {
agecount ++;
if(k < sws.Length -1)
k++;
el se
quit= true;
}
//create a new Swimer with a series of X's for a nane
/1 for each new age
string name = "";

for(int j = 0; j < agecount; j++)
name +="X";

Swi mmer sw = new Swi nmer (age. ToString() + " " +
nane + "," + age.ToString() +
", club,0,F);

swdat a. Add (sw);
agecount = 0;

if(quit)
age = 0;
el se
age = sws[Kk].getAge ();

}

Now, since our original classes display first and last names of selected
swimmers, note that we achieve this same display, returning Swimmer

Copyright © , 2002 by James W Cooper

175

objects with the first name set to the age string and the last name set to the

histogram.

I

SwimData

init

Clone
setData
sort
MoveFirst

hasMoreElements
getNextSwimmer

T~

SexSwimData

TimeSwimData

SwimData_Clone

SwimData_init
SwimData_MoveFirst
SwimData_setData
SwimData_sortb

SwimData_getNextSwimmer
SwimData_hasMoreElements

SwimData_Clone
SwimData_getNextSwimmer
SwimData_hasMoreElements
SwimData_init
SwimData_MoveFirst
SwimData_setData
SwimData_sort

Figure13-6 — The UML diagram for the various SwimData classes

¢ =

Swimmer

init
getTime
getSex
getName
getClub
getAgebb

The UML diagram in Figure 13-6 illustrates this system fairly clearly. The

Swiminfo classisthe main GUI class. It keeps two instances of
SwimData but does not specify which ones. The TimeSwimData and
SexSwimData classes are concrete classes derived from the abstract

Copyright © , 2002 by James W Cooper

176

SwimData class, and the AgeSwimData class, which creates the
histograms, is derived from the SexSwimData class.

Y ou should also note that you are not limited to the few subclasses we
demonstrated here. It would be quite ssimple to create additional concrete
classes and register them with whatever code selects the appropriate
concrete class. In our example program, the user is the deciding point or
factory because he or she simply clicks on one of several buttons. In a
more elaborate case, each concrete class could have an array of
characteristics, and the decision point could be a class registry or
prototype manager that examines these characteristics and selects the most
suitable class. You could also combine the Factory Method pattern with
the Prototype, where each of several concrete classes uses a different
concrete class from those available.

Prototype Managers

A prototype manager class can be used to decide which of severa concrete
classes to return to the client. It can also manage several sets of prototypes
at once. For example, in addition to returning one of several classes of
swimmers, it could return different groups of swimmers who swam
different strokes and distances. It could a'so manage which of severd
types of list boxes are returned in which to display them, including tables,
multicolumn lists, and graphical displays. It is best that whichever
subclass is returned, it not require conversionto a new class type to be
used in the program. In other words, the methods of the parent abstract or
base class should be sufficient, and the client should never need to know
which actual subclassit is dealing with.

Consequences of the Prototype Pattern

Using the Prototype pattern, you can add and remove classes at run time
by cloning them as needed. Y ou can revise the internal data representation

Copyright © , 2002 by James W Cooper

177

of aclass at run time, based on program conditions. Y ou can also specify
new objects at run time without creating a proliferation of classes.

One difficulty in implementing the Prototype pattern in C# is that if the
classes aready exist, you may not be able to change them to add the
required clone methods. In addition, classes that have circular references
to other classes cannot really be cloned.

Like the registry of Singletons discussed before, you can also create a
registry of Prototype classes that can be cloned and ask the registry object
for alist of possible prototypes. Y ou may be able to clone an existing class
rather than writing one from scratch.

Note that every class that you might use as a prototype must itself be
instantiated (perhaps at some expense) in order for you to use a Prototype
Registry. This can be a performance drawback.

Finaly, the idea of having prototype classes to copy implies that you have
sufficient access to the data or methods in these classes to change them
after cloning. This may require adding data access methods to these
prototype classes so that you can modify the data once you have cloned
the class.

Thought Question

An entertaining banner program shows a slogan starting at different places
on the screen at different times and in different fonts and sizes. Design the
program using a Prototype pattern.

Programs on the CD-ROM

\ Pr ot ot ype\ Agepl ot age plot

\ Pr ot ot ype\ DeepPr ot o deep prototype
\ Pr ot ot ype\ OneSex display by sex
\ Prot ot ype\ Si npl eProto shallow copy

Copyright © , 2002 by James W Cooper

178

\ Pr ot ot ype\ Twocl assAgePl ot age and sex display

Summary of Creational Patterns

The Factory pattern is used to choose and return an instance of a class
from a number of similar classes, based on data you provide to the factory.

The Abstract Factory pattern is used to return one of severa groups of
classes. In some cases, it actually returns a Factory for that group of
classes.

The Builder pattern assembles a number of objects to make a new object,
based on the data with which it is presented. Frequently, the choice of
which way the objects are assembled is achieved using a Factory.

The Prototype pattern copies or clones anexisting class, rather than
creating a new instance, when creating new instances is more expensive.

The Singleton pattern is a pattern that ensures there is one and only one
instance of an object and that it is possible to obtain global access to that
one instance.

Copyright © , 2002 by James W Cooper

179

Part 3. Structural Patterns

Structural patterns describe how classes and objects can be combined to
form larger structures. The difference between class patterns and object
patterns is that class patterns describe how inheritance can be used to
provide more useful program interfaces. Object patterns, on the other
hand, describe how objects can be composed into larger structures using
object composition or the inclusion of objects within other objects.

For example, we'll see that the Adapter pattern can be used to make one
class interface match another to make programming easier. We'll also
look at a number of other structural patterns where we combine objects to
provide new functionality. The Composite, for instance, is exactly that—a
composition of objects, each of which may be either smple or itself a
composite object. The Proxy pattern is frequently a simple object that
takes the place of a more complex object that may be invoked later—for
example, when the program runs in a network environment.

The Flyweight pattern is a pattern for sharing objects, where each
instance does not contain its own state but stores it externally. This allows
efficient sharing of objects to save space when there are many instances
but only afew different types.

The Fagade pattern is used to make a single class represent an entire
subsystem, and the Bridge pattern separates an object’s interface from its
implementation so you can vary them separately. Finaly, we'll look at the
Decorator pattern, which can be used to add responsibilities to objects
dynamically.

You'll seethat there is some overlap among these patterns and even some
overlap with the behavioral patterns in the next chapter. We'll summarize
these similarities after we describe the patterns.

Copyright © , 2002 by James W Cooper

180

14. The Adapter Pattern

The Adapter pattern is used to convert the programming interface of one
class into that of another. We use adapters whenever we want unrelated
classes to work together in a single program. The concept of an adapter is
thus pretty simple: We write a class that has the desired interface and then
make it communicate with the class that has a different interface.

There are two ways to do this: by inheritance and by object composition.
In the first case, we derive a new class from the nonconforming one and
add the methods we need to make the new derived class match the desired
interface. The other way is to include the original class inside the new one
and create the methods to trand ate calls within the new class. These two
approaches, called class adapters and object adapters, are both fairly easy
to implement.

Moving Data Between Lists

Let’s consider a simple program that allows you to select some names
from alist to be transferred to another list for a more detailed display of
the data associated with them. Our initial list consists of ateam roster, and
the second list the names plus their times or scores.

In this ssimple program, shown in Figure 14-1, the program readsin the
names from a roster file during initialization. To move names to the right-
hand list box, you click on them and then click on the arrow button. To
remove a name from the right-hand list box, click on it and then on
Remove. This moves the name back to the left- hand list.

Copyright © , 2002 by James W Cooper

181

iw. Adapter Display

Krizten Frost - K.aitlyr Amnent 28.20
Kimberly wWatcke 7| Jackie Rogers 2868
Sam Les Elizabeth MeLaughlin 28.80
Jaclyn Carey Ermily Ferrier 28.85
tegan Crapster Aurora Lee 28.88

K.aitlyrn Ament
Jackie Rogers
Elizabeth kcLaughliv

E il Ferrier |
m £ |

K.ate lzzeles

Luke Mester

Stephen Cozme

Jeffrey Sudbury _:l

Figure 14-1 — A simple program to choose names for display

Thisis avery simple program to write in C#. It consists of the visual
layout and action routines for each of the button clicks. When we read in
the file of team roster data, we store each child’s name and scorein a
Swimmer object and then store all of these objectsin an ArrayList
collection called swdata. When you select one of the names to display in
expanded form, you ssimply obtain the list index of the selected child from
the left-hand list and get that child’s data to display in the right-hand list.
private void btC one_Cick(object sender, EventArgs e) {
int i = |skids.Selectedl ndex ();

if(i >=0) {

Swi nmer sw = swdat a. get Swi nrer (i) ;

| snewKi ds. Item Add (sw. getNanme() +"\t"+sw. getTine ());
| ski ds. Sel ect edl ndex = -1;

}
}

In asimilar fashion, if we want to remove a name from the right-hand li<t,
we just obtain the selected index and remove the name.

private void putBack_Cick(object sender, EventArgs e) {
int i = |snewKids. Sel ectedl ndex ();
if(i >=0)

Copyright © , 2002 by James W Cooper

182

| sNewKi ds. | t ens. RenoveAt (i);
}
Note that we obtain the column spacing between the two rows using the

tab character. This works fine as long as the names are more or less the
same length. However, if one name is much longer or shorter than the
others, the list may end up using a different tab column, which is what
happened for the third name in the list.

Making an Adapter
Now it is alittle awkward to remember to use the Items collection of the
list box for some operations and not for others. For this reason, we might
prefer to have a class that hides some of these complexities and adaptsthe
interface to the ssimpler one we wish we had, rather like the list box
interface in VB6. We'll create a smpler interface in a ListAdapter class
which then operates on an instance of the ListBox class:

public class ListAdapter {

private ListBox |istbox; /'l operates on this one
public ListAdapter(ListBox |b) {
listbox = |b;
}
[]-----

public void Add(string s) {
listbox.Itens. Add (S);

public int Sel ectedl ndex() ({
return |istbox. Sel ect edl ndex;

public void dear() {
listbox.ltems.dear ();

}
[]-----
public void clearSelection() {
int i = Sel ectedl ndex();
if(i >=0) {
| i st box. Sel ect edl ndex =-1
}
}

Copyright © , 2002 by James W Cooper

183

Then we can make our program a little simpler:

private void btC one_Cick(object sender, EventArgs e) {
int i = |skids.Sel ectedlndex ();
if(i >=0) {
Swi nmer sw = swdat a. get Swi mmrer (i) ;
| snewKi ds. Add (sw. get Name() + "\t" + sw.getTine ());
| ski ds. cl ear Sel ection ();

}

Now, let’s recognize that if we are always adding swimmers and times
space apart like this, maybe there should be a method in our ListAdapter
that handles the Swimmer object directly:

public void Add(Swi mrer sw) {
listbox.ltenms. Add (sw. getNanme() + "\t" + sw getTinme());
}

This simplifies the click event handler even more:

private void btCl one_Cick(object sender, EventArgs e) {
int i = |skids.Selectedl ndex ();
if(i >=0) {
Swi mmer sw = swdat a. get Swi mrer (i);
| snewKi ds. Add (sw);
| skids. clearSelection ();

}

What we have done is create an Adapter class that contains a ListBox
class and simplifies how you use the ListBox. Next, we'll see how we can
use the same approach to create adapters for two of the more complex
visual controls.

Using the DataGrid

To circumvent the problem with the tab columns in the ssimple list box, we
might turn to a grid display. The grid table that comes with Visual
Studio.NET is called the DataGrid. It can be bound to a database or to an

Copyright © , 2002 by James W Cooper

184

in-memory data array. To use the DataGrid without a database, you create
an instance of the DataTable class and add DataColumns to it.
DataColumns are by default of string type, but you can define them to be
of any type when you create them. Here is the general outline of how you
create a DataGrid using a DataT able:

Dat aTabl e dTabl e = new Dat aTabl e("Ki ds");
dTabl e. M ni muntCapacity = 100;
dTabl e. CaseSensitive = fal se;

Dat aCol um col um =
new Dat aCol um(" Frnane", Syst em Type. Get Type(" System String"));
dTabl e. Col utms. Add(col umm) ;
colum = new Dat aCol um("Lnane",
System Type. Get Type("System String"));
dTabl e. Col utms. Add(col umm) ;
colum = new Dat aCol utm(" Age",
System Type. Get Type("System I nt16"));

dTabl e. Col utms. Add(col umm) ;

dGi d. Dat aSource = dTabl €;
dGid. CaptionVisible = fal se; /1 no caption
dG i d. RowHeadersVisible = false; //no row headers

dGid. Endlnit();

To add text to the DataTable, you ask the table for arow object and then
set the elements of the row object to the data for that row. If the types are
all String, then you copy the strings, but if one of the columnsis of a
different type, such as the integer age column here, you must be sure to
use that type in setting that column’s data. Note that you can refer to the
columns by name or by index number:

Dat aRow row = dTabl e. NewRow() ;

row "Frnane"] = sw. get Frnanme();

row 1] = sw. get LNane();

rowf 2] = sw.getAge(); //This one is an integer
dTabl e. Rows. Add(r ow) ;

dTabl e. Accept Changes();

Copyright © , 2002 by James W Cooper

However, we would like to be able to use the grid without changing our

code at all from what we used for the ssmple list box. We do this by
creating a GridAdapter which follows that same interface:

public interface LstAdapter {
voi d Add(Swi mer sw) ;
int Sel ectedl ndex()
void Clear() ;
voi d cl earSel ection() ;

}

The GridAdapter class implements this interface and is instantiated with

an instance of the grid.

public class GidAdapter: Lst Adapter {
private DataGid grid;
private DataTabl e dTabl e;
private int row,

public Gi dAdapter(DataGid grd) {
grid = grd;
dTabl e = (DataTabl e) gri d. Dat aSour ce;
gri d. MouseDown +=
new Syst em W ndows. For ms. MouseEvent Handl er
(Gid_dick);
row = -1;

public void Add(Swi mer sw) {
Dat aRow row = dTabl e. NewRow() ;
row "Frnanme"] = sw. get Frnane();
row 1] = sw get LName();
row 2] = sw.getAge(); //This one is an integer
dTabl e. Rows. Add(row) ;
dTabl e. Accept Changes() ;

public int Selectedlndex() {
return row

public void dear() {
int count = dTabl e. Rows. Count
for(int i=0; i< count; i++) {

Copyright © , 2002 by James W Cooper

186

dTabl e. Rows[i].Delete ();

public void clearSelection() {}

}

Detecting Row Selection

The DataGrid does not have a Selectedindex property and the rows do not
have Selected properties. Instead, you must detect a MouseDown event
with a MouseEvent handler and then get the HitTest object and see if the
user has clicked on a cell:

public void Gid_dick(object sender, MuseEventArgs e) {
DataGid.HtTestInfo hti = grid.H tTest (e.X e.Y);
if(hti.Type == DataGid.HitTestType.Cell){
row = hti.Row ;
}

}

Note that we can now simply call the GridAdapter class's Add method
when we click on the “->” button, regardless of which display control we

are using.

private void btC one_Click(object sender, System EventArgs e) {
int i = |skids.Sel ectedl ndex ();
if(i >=0) {

Swi nmer sw = swdat a. get Swi mrer (i) ;
| sNewKi ds. Add (sw);
| ski ds. cl ear Sel ection ();

}

Using a TreeView

If, however, you choose to use a TreeView control to display the data you
select, you will find that there is no convenient interface that you can use
to keep your code from changing.

For each node you want to create, you create an instance of the TreeNode
class and add the root TreeNode collection to another node. In our

Copyright © , 2002 by James W Cooper

187

example version using the TreeView, we'll add the swimmer’s name to
the root node collection and the swimmer’ s time as a subsidiary node.
Here is the entire TreeAdapter class.

public class TreeAdapter: Lst Adapter {
private TreeView tree;
[l------
public TreeAdapter(TreeView tr) {
tree=tr;
}
[]------

public void Add(Swi mrer sw) {

Tr eeNode nod;
//add a root node

nod = tree. Nodes. Add(sw. get Narme());
//add a child node to it
nod. Nodes. Add(sw. get Tine(). ToString ());
tree. ExpandAl | ();

public int Selectedlndex() {
return tree. Sel ect edNode. | ndex ;
}

[]-=-----
public void Cear() {
Tr eeNode nod,;
for (int i=0; i< tree.Nodes.Count ; i++) {
nod = tree. Nodes [i];
nod. Renove ();

}
}
[N EEEERE
public void clearSelection() {}
}

The TreeDemo program is shown in Figure 14-2.

Copyright © , 2002 by James W Cooper

188

i x|

Kristen Frost -

Kimberly '/ atcke = Kaitln Ament =
Sam Lee : L on

Jaclyn Carey : o *

tegan Crapster = EIT!I|_',' Ferrier

k.aitlyr Arnert - b 2BER

Jackie Rogers El ------ Jeffrey Sudbury

Elizabeth MecLaughlir P o om g

E mnily Ferrier 1] P :
TR o | | ©tueele =
Kate |zzelee e PR OAR

Luke Mester
Stephen Cozme
Jeffrey Sudbun ;I

Figure 14-2 — The TreeDemo program.

The Class Adapter

In the class adapter approach, we derive a new class from Listbox (or the
grid or tree control) and add the desired methods to it. In this class adapter
example, we create a new class called MyL.ist which is derived from the
Listbox class and which implements the following interface:
public interface ListAdapter {

void Add(Swi mer sw) ;

void Clear() ;
voi d cl ear Sel ection()

}
The derived MyList classis

public class MyList : System W ndows. Forns. Li st Box, ListAdapter {
private System Conponent Mbdel . Cont ai ner conponents = nul|;

[]-----
public MList() {
InitializeConponent();
}
1]-----

public void Add(string s) {

Copyright © , 2002 by James W Cooper

189

this.ltens. Add (s);

public void Add(Swi nmer sw) {
this.ltenms. Add (sw. get Name() +
"\t" + sw.getAge ().ToString ());

public void dear() {
this.Itenms.Oear ();

}

[]-----

public void clearSelection() {
this. Sel ectedl ndex = -1;

}

The class diagram is shown in Figure 14-3. The remaining code is much
the same as in the object adapter version.

Listhdapter -

Cadditenty T

s HListindesf) integer |

s +add Texd{sw) : i
e T System.Windows.Forms.Listhox
OurList LstClassDemo
+lewy 1 lIsMames 17 | init

+lispose FeadFile
HhnitializeComponent bioveit Click
+addText MY

+addltem ? lzkids 1‘ Dizpose
+Listindex InttializeComponent

Figure 14-3 — The class adapter approach to thelist adapter

Copyright © , 2002 by James W Cooper

190

There are also some differences between the class and the object adapter
approaches, although they are less significant than in C++.

The class adapter

Won't work when we want to adapt a class and al of its
subclasses, since you define the class it derives from when you
cregte it.

L ets the adapter change some of the adapted class's methods
but still allows the others to be used unchanged.

An object adapter

Could alow subclasses to be adapted by simply passing them
in as part of a constructor.

Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Two-Way Adapters
The two-way adapter is a clever concept that allows an object to be
viewed by different classes as being either of type ListBox or type
DataGrid. Thisismost easily carried out using a class adapter, since all of
the methods of the base class are automatically available to the derived
class. However, this can only work if you do not override any of the base
class s methods with any that behave differently.

Object Versus Class Adaptersin C#

The C# List, Tree, and Grid adapters we previoudly illustrated are al
object adapters. That is, they are all classes that contain the visual
component we are adapting. However, it is equally easy to write a List or
Tree Class adapter that is derived from the base class and contains the new
add method.

In the case of the DataGrid, thisis probably not a good idea because we
would have to create instances of DataTables and Columns inside the

Copyright © , 2002 by James W Cooper

191

DataGrid class, which makes one large complex class with too much
knowledge of how other classes work.

Pluggable Adapters

A pluggable adapter is one that adapts dynamically to one of several
classes. Of course, the adapter can only adapt to classes it can recognize,
and usually the adapter decides which class it is adapting based on
differing constructors or setParameter methods.

Thought Question

How would you go about writing a class adapter to make the DataGrid
look like a two-column list box?

Programs on the CD-ROM

\ Adapt er\ Tr eeAdapt er Tree adapter
\ Adapt er\ Li st Adapt er List adapter
\ Adapt er\ Gri dAdapt er Grid adapter
\ Adapt er\ Cl assAdapt er Class-based list adapter

Copyright © , 2002 by James W Cooper

192

15. The Bridge Pattern

At first sight, the Bridge pattern looks much like the Adapter pattern in
that a classis used to convert one kind of interface to another. However,
the intent of the Adapter pattern is to make one or more classes’ interfaces
look the same as that of a particular class. The Bridge pattern is designed
to separate a class s interface from its implementation so you can vary or
replace the implementation without changing the client code.

The participants in the Bridge pattern are the Abstraction, which defines
the class' s interface; the Refined Abstraction, which extends and
implements that interface; the Implementor, which defines the interface
for the implementation classes; and the Concretel mplementors, which are
the implementation classes.

Suppose we have a program that displays alist of products in a window.
The simplest interface for that display is a simple Listbox. But once a
significant number of products have been sold, we may want to display the
products in atable along with their sales figures.

Since we have just discussed the adapter pattern, you might think
immediately of the class-based adapter, where we adapt the interface of
the Listbox to our smpler needs in this display. In simple programs, this
will work fine, but as we'll see, there are limits to that approach.

Let’s further suppose that we need to produce two kinds of displays from
our product data: a customer view that is just the list of products we've
mentioned and an executive view that also shows the number of units
shipped. W€ Il display the product list in an ordinary ListBox and the
executive view in an DataGrid table display. These two displays are the
implementations of the display classes, as shown in Figure 15-1.

Copyright © , 2002 by James W Cooper

193

i, The VB Factory
Cuztomer wigw Executive view

Brazz plated widgets Product | Qhy

Furled frammis .

Dlataiad ral bk Brazs plated .wu:lgets 1.000,076

Zero-based hex dumps FurIeFI frarnmmiz Fh.000

Anterior antelope collars Detailed rat brughes 700

‘washable softwear Zero-bazed hes dumps 80,000

Steeltoed wing-tips &nterior antelope colla 578
W ashable softwear 83,000
Steel-toed wing-tips 456 666

Figure 15-1 — Two displays of the same information using a Bridge pattern

Now we want to define a single interface that remains the same regardless
of the type and complexity of the actual implementation classes. We'll
start by defining a Bridger interface.

//Bridge interface to display list classes

public interface Bridger {
voi d addDat a(ArraylLi st col);

}
This class just recelves an ArrayList of data and passesit on to the display

classes.

We also define a Product class that holds the names and quantities and
parses the input string from the data file.
public class Product : |Conparable {

private string quantity;
private string namg;

[l-----

public Product(string |ine) {
int i = line.lndexCf ("--");
name =line.Substring (0, i).Trim();
quantity = line.Substring (i+2).Trim();

Copyright © , 2002 by James W Cooper

194

public string getQuantity() {
return quantity;

public string getNane() {
return nane;
}

}

On the other side of the bridge are the implementation classes, which
usually have a more elaborate and somewhat lower-level interface. Here
we |l have them add the data lines to the display one at atime.
public interface VisList {

//add a line to the display

voi d addLi ne(Product p);

//renove a line fromthe display
voi d renoveLi ne(i nt nunj;

The bridge between the interface on the left and the implementation on the
right is the listBridge class, which instantiates one or the other of the list
display classes. Note that it implements the Bridger interface for use of the
application program.

public class ListBridge : Bridger {

protected VisList vis;

[]------

public ListBridge(VisList v) {
Vis = v;

}

[l-----

public virtual void addData(ArraylList ar) {
for(int i=0; i< ar.Count ; i++) {

Product p = (Product)ar[i];
vi s. addLi ne (p);

Copyright © , 2002 by James W Cooper

195

Note that we make the VisList variable protected and the addData method
virtual so we can extend the class later. At the top programming level, we
just create instances of atable and alist using the listBridge class.

private void init() {
products = new ArraylList ();
readFi | e(products); //read in the data file
/Il create the product |ist
prodLi st = new ProductList(lsProd);
//Bridge to product VisList
Bridger |br = new ListBridge (prodList);
//put the data into the product |ist
| br. addDat a (products);
/lcreate the grid VisList
gridList = new GridList(grdProd);
//Bridge to the grid |ist
Bridger gbr = new ListBridge (gridList);
/Iput the data into the grid display
gbr. addDat a (products);

}

TheVisList Classes

The two VisList classes are really quite similar. The customer version
operates on a ListBox and adds the names to it.

/1A VisList class for the ListBox

public class ProductlList : VisList {
private ListBox list;
[1-----
public ProductList(ListBox Ist) {
list = |st;
}
[1-----

public void addLi ne(Product p) {
list.ltens. Add (p.getNane());

public void renoveLine(int nun) {
if(num>=0 & & num < list.ltens. Count){
list.ltems. Renove (num;
}

Copyright © , 2002 by James W Cooper

196

The ProductTable version of the visList is quite similar except that it adds
both the product name and quantity to the two columns of the grid.
public class GidList: VisList {

private DataGid grid;

private DataTabl e dtabl e;
private Gi dAdapter gAdapter;

public GidList(DataGid grd) {
grid = grd;
dtabl e = new Dat aTabl e("Products");
Dat aCol umm col um = new Dat aCol um(" Pr odNane") ;
dt abl e. Col utms. Add(col umm) ;
colum = new Dat aCol um("Qy");
dt abl e. Col ums. Add(col um);
gri d. Dat aSour ce = dtabl e;
gAdapter = new Gi dAdapter (grid);

public void addLi ne(Product p) {
gAdapt er. Add (p);

The Class Diagram

The UML diagram in Figure 15-2 for the Bridge class shows the
separation of the interface and the implementation quite clearly. The
Bridger class on the left is the Abstraction, and the listBridge classis the
implementation of that abstraction. The visList interface describes the
public interface to the list classes productList and productTable. The
visList interface defines the interface of the Implementor, and the Concrete
Implementors are the productList and productTable classes.

Note that these two concrete implementors are quite different in their
specifics even though they both support the visList interface.

Copyright © , 2002 by James W Cooper

197

Bridger ListBridge
addData Bridger_addData
init Bridger_init
sl
visList
addLine
removelLine
init
ProductTable ProductL ist
gridList
tabval Vi sLlst_addL| ne
tahChar visList_init
visList_addLine visList_removeLine
visList_init
visList_removelLine

Figure15-2 — The UML diagram for the Bridge pattern used in the two displays of
product information

Extending the Bridge

Now suppose we need to make some changes in the way these lists
display the data. For example, maybe you want to have the products
displayed in aphabetical order. Y ou might think you'd need to either
modify or subclass both the list and table classes. This can quickly get to
be a maintenance nightmare, especialy if more than two such displays are
needed eventually. Instead, we ssimply derive anew SortBridgeclass
similar to the listBridge class.

Copyright © , 2002 by James W Cooper

198

In order to sort Product objects, we have the Product class implement the
| Comparable interface which means it has a CompareTo method:
public class Product : |Conparable {

private string quantity;
private string nang;

[]-----
public Product(string line) {
int i =line.lndexOF ("--");
name =line. Substring (0, i).Trim();
quantity = line.Substring (i+2).Trim{();
}
[l-----

public string getQuantity() {
return quantity;

public string getNanme() {
return narme;

public int ConpareTo(object p) {
Product prod =(Product) p;
return nane. ConpareTo (prod.getName ());

}
With that change, sorting of the Product objects is much easier:
public class SortBridge:ListBridge {

[leenes

public override void addData(ArrayList ar) {
int max = ar. Count ;
Product[] prod = new Product[nax];
for(int i=0; i< max ; i++) {
prod[i] = (Product)ar[i];

for(int i=0; i < max ; i++) {
for (int j=i; j < max; j++) {
if(prod[i]. ConpareTo (prod[j])>0) {
Product pt = prod[i];
prodli]= prod[j];
prod[j] = pt;

Copyright © , 2002 by James W Cooper

199

}
} }
for(int i = 0; i< max; i++) {
vi s. addLine (prod[i]);
}
}
}

Y ou can see the sorted result in Figure 15-3.

¥ sorted bridge - O] x|

Customer view E xecutive view

Antenar antelope collars Prodt ame | Gty

Brazz plated widgetz 5
Detailed rat brushes Anterior antel 578

Furled frammis Brazs plated 1.000076
Steeltoed wing tips Detslled rath 700
Washisbls solivieat Furled frammi 75,000

Zer-bazed her dumps

Steeltoed wi 456 BEE
W' ashable zof 789,000
Zero-bazed b 80,000

Figure 15-3 — The sorted list generated using SortBridge class

This clearly shows that you can vary the interface without changing the
implementation. The converse is also true. For example, you could create
another type of list display and replace one of the current list displays
without any other program changes as long as the new list also implements
the VisList interface. Here is the TreeList class:
public class TreeList: VisList {

private TreeView tree;

private TreeAdapter gAdapter;

1-----

public TreelList(TreeViewtre) {
tree = tre;

Copyright © , 2002 by James W Cooper

gAdapter = new TreeAdapter (tree);

public void addLi ne(Product p) {
gAdapt er. Add (p);
}

200

Note that we take advantage of the TreeAdapter we wrote in the previous

chapter, modified to work on Product objects:

public class TreeAdapter {
private TreeView tree;

[l------

public TreeAdapter(TreeView tr) {
tree=tr;

}

[]------

public void Add(Product p) {

Tr eeNode nod;
//add a root node
nod = tree. Nodes. Add(p. get Name());
//add a child node to it
nod. Nodes. Add(p. get Quantity ());
tree. ExpandAl |l ();

}

In Figure Figure 15-4, we have created a tree list component that

implements the VisList interface and replaced the ordinary list without any

change in the public interface to the classes.

Copyright © , 2002 by James W Cooper

