

Contents

Overview 1

Classes and Objects 2
Using Encapsulation 10

C# and Object Orientation 21

Lab 7: Creating and Using Classes 39

Defining Object-Oriented Systems 53

Review 62

Module 7: Essentials of
Object-Oriented
Programming

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwi se noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 7: Essentials of Object-Oriented Programming 1

Overview

n Classes and Objects

n Using Encapsulation

n C# and Object Orientation

n Defining Object-Oriented Systems

C# is an object-oriented programming language. In this section, you will learn
the terminology and concepts required to create and use classes in C#.

After completing this module, you will be able to:

n Define the terms object and class in the context of object-oriented
programming.

n Define the three core aspects of an object: identity, state, and behavior.

n Describe abstraction and how it helps you to create reusable classes that are
easy to maintain.

n Use encapsulation to combine methods and data in a single class.

n Explain the concepts of inheritance and polymorphism.

n Create and use classes in C#.

2 Module 7: Essentials of Object-Oriented Programming

u Classes and Objects

n What Is a Class?

n What Is an Object?

n Comparing Classes to Structs

n Abstraction

The whole structure of C# is based on the object-oriented programming model.
To make the most effective use of C# as a language, you need to understand the
nature of object-oriented programming.

In this section, you will learn about the basics of object-oriented programming.
You will examine classes and objects in the context of object-oriented
programming. You will then learn the how to apply the concept of abstraction.

 Module 7: Essentials of Object-Oriented Programming 3

What Is a Class?

n For the Philosopher…

l An artefact of human classification!

l Classify based on common behavior or attributes

l Agree on descriptions and names of useful classes

l Create vocabulary; we communicate; we think!

n For the Object-Oriented Programmer…

l A named syntactic construct that describes common
behavior and attributes

l A data structure that includes both data and functions

CAR?

The root word of classification is class. Forming classes is an act of
classification, and it is something that all human beings (not just programmers)
do. For example, all cars share common behavior (they can be steered, stopped,
and so on) and common attributes (they have four wheels, an engine, and so on).
You use the word car to refer to all of these common behaviors and properties.
Imagine what it would be like if you were not able to classify common
behaviors and properties into named concepts! Instead of saying car, you would
have to say all the things that car means. Sentences would be long and
cumbersome. In fact, communication would probably not be possible at all. As
long as everyone agrees what a word means, that is, as long as we all speak the
same language, communication works well— we can express complex but
precise ideas in a compact form. We then use these named concepts to form
higher-level concepts and to increase the expressive power of communication.

All programming languages can describe common data and common functions.
This ability to describe common features helps to avoid duplication. A key
motto in programming is “Don’t repeat yourself.” Duplicate code is
troublesome because it is more difficult to maintain. Code that does not repeat
itself is easier to maintain, partly because there is just less of it! Object-oriented
languages take this concept to the next level by allowing descriptions of classes
(sets of objects) that share structure and behavior. If done properly, this
paradigm works extremely well and fits naturally into the way people think and
communicate.

Classes are not restricted to classifying concrete objects (such as cars); they can
also be used to classify abstract concepts (such as time). However, when you
are classifying abstract concepts, the boundaries are less clear, and good design
becomes more important.

The only real requirement for a class is that it helps people communicate.

4 Module 7: Essentials of Object-Oriented Programming

What Is an Object?

n An Object Is an Instance of a Class

n Objects Exhibit

l Identity: Objects are distinguishable from one another

l Behavior: Objects can perform tasks

l State: Objects store information

The word car means different things in different contexts. Sometimes we use
the word car to refer to the general concept of a car: we speak of car as a class,
meaning the set of all cars, and do not have a specific car in mind. At other
times we use the word car to mean a specific car. Programmers use the term
object or instance to refer to a specific car. It is important to understand this
difference.

The three characteristics of identity, behavior, and state form a useful way to
think about and understand objects.

Identity
Identity is the characteristic that distinguishes one object from all other objects
of the same class. For example, imagine that two neighbors own a car of exactly
the same make, model, and color. Despite the obvious similarities, the
registration numbers are guaranteed to be unique and are an outward reflection
that cars exhibit identity. The law determines that it is necessary to distinguish
one car object from another. (How would car insurance work without car
identity?)

 Module 7: Essentials of Object-Oriented Programming 5

Behavior
Behavior is the characteristic that makes objects useful. Objects exist in order to
provide behavior. Most of the time you ignore the workings of the car and think
about its high-level behavior. Cars are useful because you can drive them. The
workings exist but are mostly inaccessible. It is the behavior of an object that is
accessible. The behavior of an object also most powerfully determines its
classification. Objects of the same class share the same behavior. A car is a car
because you can drive it; a pen is a pen because you can write with it.

State
State refers to the inner workings of an object that enable it to provide its
defining behavior. A well-designed object keeps its state inaccessible. This is
closely linked to the concepts of abstraction and encapsulation. You do not care
how an object does what it does; you just care that it does it. Two objects may
coincidentally contain the same state but nevertheless be two different objects.
For example, two identical twins contain exactly the same state (their DNA) but
are two distinct people.

6 Module 7: Essentials of Object-Oriented Programming

Comparing Classes to Structs

n A Struct Is a Blueprint for a Value

l No identity, accessible state, no added behavior

n A Class Is a Blueprint for an Object

l Identity, inaccessible state, added behavior

struct Time class BankAccount
{ {

public int hour; ...
public int minute; ...

} }

struct Time class BankAccount
{ {

public int hour; ...
public int minute; ...

} }

Structs
A struct, such as Time in the preceding code, has no identity. If you have two
Time variables both representing the time 12:30, the program will behave
exactly the same regardless of which one you use. Software entities with no
identity are called values. The built-in types described in Module 3, “Using
Value-Type Variables,” in Course 2124A: Introduction to C# Programming for
the Microsoft .NET Platform (Prerelease), such as int, bool, decimal, and all
struct types, are called value types in C#. Value types contain accessible state
and have no added behavior (no methods).

Variables of the struct type are allowed to contain methods, but it is
recommended that they do not. They should contain only data. However, it is
perfectly reasonable to define operators in structs. Operators are stylized
methods that do not add new behavior; they only provide a more concise syntax
for existing behavior.

 Module 7: Essentials of Object-Oriented Programming 7

Classes
A class, such as BankAccount in the preceding code, has identity. If you have
two BankAccount objects, the program will behave differently depending on
which one you use. Software entities that have identity are called objects.
(Variables of the struct type are also sometimes loosely called objects, but
strictly speaking they are values.) Types represented by classes are called
reference types in C#. In contrast to structs, nothing but methods should be
visible in a well-designed class. These methods add extra high-level behavior
beyond the primitive behavior present in the lower-level inaccessible data.

Value Types and Reference Types
Value types are the types found at the lowest level of a program. They are the
elements used to build larger softw are entities. Value types can be freely copied
and exist on the stack as local variables or as attributes inside the objects they
describe.

Reference types are the types found at the higher levels of a program. They are
built from smaller software entities. Reference types generally cannot be copied,
and they exist on the heap.

8 Module 7: Essentials of Object-Oriented Programming

Abstraction

n Abstraction Is Selective Ignorance

l Decide what is important and what is not

l Focus and depend on what is important

l Ignore and do not depend on what is unimportant

l Use encapsulation to enforce an abstraction

The purpose of abstraction is not to be vague, but to create a
new semantic level in which one can be absolutely precise.

Edsger Dijkstra

The purpose of abstraction is not to be vague, but to create a
new semantic level in which one can be absolutely precise.

Edsger Dijkstra

Abstraction is the tactic of stripping an idea or object of its unnecessary
accompaniments until you are left with its essential, minimal form. A good
abstraction clears away unimportant details and allows you to focus and
concentrate on the important details.

Abstraction is an important software principle. A well-designed class exposes a
minimal set of carefully considered methods that provide the essential behavior
of the class in an easy-to-use manner. Unfortunately, creating good software
abstractions is not easy. Finding good abstractions usually requires a deep
understanding of the problem and its context, great clarity of thought, and
plenty of experience.

Minimal Dependency
The best software abstractions make complex things simple. They do this by
ruthlessly hiding away unessential aspects of a class. These unessential aspects,
once truly hidden away, cannot then be seen, used, or depended upon in any
way.

It is this principle of minimal dependency that makes abstraction so important.
One of the few things guaranteed in software development is that the code will
need to be changed. Perfect understanding only comes at the end of the
development process, if it comes at all; early decisions will be made with an
incomplete understanding of the problem and will need to be revisited.
Specifications will also change when a clearer understanding of the problem is
reached. Future versions will require extra functionality. Change is normal in
software development. The best you can do is to minimize the impact of change
when it happens. And the less you depend on something, the less you are
affected when it changes.

 Module 7: Essentials of Object-Oriented Programming 9

Related Quotes
To illustrate the principle of minimal dependency that makes abstraction so
important, here are some related quotes:

The more perfect a machine becomes, the more they are invisible behind their
function. It seems that perfection is achieved not when there is nothing more to
add, but when there is nothing more to take away. At the climax of its evolution,
the machine conceals itself entirely.

— Antoine de Saint-Exupéry, Wind, Sand and Stars

The minimum could be defined as the perfection that an artifact achieves when
it is no longer possible to improve it by subtraction. This is the quality that an
object has when every component, every detail, and every junction has been
reduced or condensed to the essentials. It is the result of the omission of the
inessentials.

— John Pawson, Minimum

The main aim of communication is clarity and simplicity. Simplicity means
focused effort.

— Edward de Bono, Simplicity

10 Module 7: Essentials of Object-Oriented Programming

u Using Encapsulation

n Combining Data and Methods

n Controlling Access Visibility

n Why Encapsulate?

n Object Data

n Using Static Data

n Using Static Methods

In this section, you will learn how to combine data and methods in a single
capsule. You will learn how to use encapsulation within a class, and you will
also learn how to use static data methods in a class.

 Module 7: Essentials of Object-Oriented Programming 11

Combining Data and Methods

n Combine the Data and Methods in a Single Capsule

n The Capsule Boundary Forms an Inside and an Outside

Withdraw()

Deposit()

balance

Withdraw()

Deposit()

balance

BankAccount ?BankAccount ?

There are two important aspects to encapsulation:

n Combining data and functions in a single entity (covered in the slide)

n Controlling the accessibility of the entity members (covered in the next slide)

Procedural Programming
Traditional procedural programs written in languages such as C essentially
contain a lot of data and many functions. Every function can access every piece
of data. For a small program this highly coupled approach can work, but as the
program grows larger it becomes less feasible. Changing the data representation
causes havoc. All functions that use (and hence depend upon) the changed data
fail. As the program becomes larger, making any change becomes more
difficult. The program becomes more brittle and less stable. The separate data-
function approach does not scale. It does not facilitate change, and as all
software developers know, change is the only constant.

There is another serious problem with keeping the data separated from the
functions. This technique does not correspond to the way people naturally think,
in terms of high-level behavioral abstractions. Because people (the ones who
are programmers) write programs, it is much better to use a programming
model that approximates the way people think rather than the way computers
are currently built.

12 Module 7: Essentials of Object-Oriented Programming

Object-Oriented Programming
Object-oriented programming arose to alleviate these problems. Object-oriented
programming, if understood and used wisely, is really person-oriented
programming because people naturally think and work in terms of the high-
level behavior of objects.

The first and most important step away from procedural programming and
towards object-oriented programming is to combine the data and the functions
into a single entity.

 Module 7: Essentials of Object-Oriented Programming 13

Controlling Access Visibility

n Methods Are Public, Accessible from the Outside

n Data Is Private, Accessible Only from the Inside

Withdraw()

Deposit()

balance

BankAccount ?

Withdraw()

Deposit()

balance

BankAccount

ûû

In the graphic on the left, Withdraw, Deposit, and balance have been grouped
together inside a “capsule.” The slide suggests that the name of the capsule is
BankAccount. However, there is something wrong with this model of a bank
account: the balance data is accessible. (Imagine if real bank account balances
were directly accessible like this; you could increase your balance without
making any deposits!) This is not how bank accounts work: the problem and its
model have poor correspondence.

You can solve this problem by using encapsulation. Once data and functions are
combined into a single entity, the entit y itself forms a closed boundary,
naturally creating an inside and an outside. You can use this boundary to
selectively control the accessibility of the entities: some will be accessible only
from the inside; others will be accessible from both the inside and the outside.
Those members that are always accessible are public, and those that are only
accessible from the inside are private. It is not possible to have members that
are only accessible from the outside.

To make the model of a bank account closer to a real bank account, you can
make the Withdraw and Deposit methods public, and the balance private.
Now the only way to increase the account balance from the outside is to deposit
some money into the account. Note that Deposit can access the balance
because Deposit is on the inside.

14 Module 7: Essentials of Object-Oriented Programming

C#, like many other object-oriented programming languages, gives you
complete freedom when choosing whether to make members accessible. You
can, if you want, create public data. However, it is recommended that data
always be marked private. (Some programming languages enforce this
guideline.)

Types whose data representation is completely private are called abstract data
types (ADTs). They are abstract in the sense that you cannot access (and rely on)
the private data representation; you can only use the behavioral methods.

The built- in types such as int are, in their own way, ADTs. When you want to
add two integer variables together, you do not need to know the internal binary
representation of each integer value; you only need to know the name of the
method that performs addition: the addition operator (+).

When you make members accessible (public), you can create different views of
the same entity. The view from the outside is a subset of the view from the
inside. A restricted view relates closely to the idea of abstraction: stripping an
idea down to its essence.

A lot of design is related to the decision of whether to place a feature on the
inside or on the outside. The more features you can place on the inside (and still
retain usability) the better.

 Module 7: Essentials of Object-Oriented Programming 15

Why Encapsulate?

n It Allows Control

l Use of the object
is solely through the
public methods

n It Allows Change

l Use of the object
is unaffected if the
private data type
changes

Withdraw()

Deposit()

dollars 12

Withdraw()

Deposit()

balance 12.56

cents 56

ûû

Two reasons to encapsulate are:

n To control use.

n To minimize the impact of change.

Encapsulation Allows Control
The first reason to encapsulate is to control use. When you drive a car, you
think only about the act of driving, not about the internals of the car. When you
withdraw money from an account, you do not think about how the account is
represented. You can use encapsulation and behavioral methods to design
software objects so that they can only be used in the way you intend.

Encapsulation Allows Change
The second reason to encapsulate follows from the first. If an object’s
implementation detail is private, it can be changed and the changes will not
directly affect users of the object (who can only access the public methods). In
practice, this can be tremendously useful. The names of the methods typically
stabilize well before the implementation of the methods.

The ability to make internal changes links closely to abstraction. Given two
designs for a class, as a rule of thumb, use the one with fewer public methods.

In other words, if you have a choice about whether to make a method public or
private, make it private. A private method can be freely changed and perhaps
later promoted into a public method. But a public method cannot be demoted
into a private method without destroying client code.

16 Module 7: Essentials of Object-Oriented Programming

Object Data

n Object Data Describes Information for Individual
Objects

l For example, each bank account has its own balance. If
two accounts have the same balance, it is only a
coincidence.

Withdraw()

Deposit()

balance 12.56

owner "Bert"

Withdraw()

Deposit()

balance 12.56

owner "Fred"

Most items of data inside an object describe information about that individual
object. For example, each bank account has its own balance. It is, of course,
perfectly possible for many bank accounts to have the same balance. However,
this would only be a coincidence.

The data inside an object is held privately, and is accessible only to the object
methods. This encapsulation and separation means that an object is effectively
self-contained.

 Module 7: Essentials of Object-Oriented Programming 17

Using Static Data

n Static Data Describes Information for All Objects of a
Class

l For example, suppose all accounts share the same
interest rate. Storing the interest rate in every account
would be a bad idea. Why?

Withdraw()

Deposit()

balance 12.56

interest 7%

Withdraw()

Deposit()

balance 99.12

interest 7%ûû ûû

Sometimes it does not make sense to store information inside every object. For
example, if all bank accounts always share the same interest rate, then storing
the rate inside every account object would be a bad idea for the following
reasons:

n It is a poor implementation of the problem as described: “All bank accounts
share the same interest rate.”

n It needlessly increases the size of each object, using extra memory resources
when the program is running and extra disk spac e when it is saved to disk.

n It makes it difficult to change the interest rate. You would need to change
the interest rate in every account object. If you needed to make the interest
rate change in each individual object, an interest rate change might make all
accounts inaccessible while the change took place.

n It increases the size of the class. The private interest rate data would require
public methods. The account class is starting to lose its cohesiveness. It is
no longer doing one thing and one thing well.

18 Module 7: Essentials of Object-Oriented Programming

To solve this problem, do not share information that is common between
objects at the object level. Instead of describing the interest rate many times at
the object level, describe the interest rate once at the class level. When you
define the interest rate at the class level, it effectively becomes global data.

However, global data, by definition, is not stored inside a class, and therefore
cannot be encapsulated. Because of this, many object-oriented programming
languages (including C#) do not allow global data. Instead, they allow data to
be described as static.

Declaring Static Data
Static data is physically declared inside a class (which is a static, compile -time
entity) and benefits from the encapsulation the class affords, but it is logically
associated with the class itself and not with each object. In other words, static
data is declared inside a class as a syntactic convenience and exists even if the
program never creates any objects of that class.

 Module 7: Essentials of Object-Oriented Programming 19

Using Static Methods

n Static Methods Can Only Access Static Data

l A static method is called on the class, not the object

InterestRate()

interest 7%

Withdraw()

Deposit()

balance 99.12

owner "Fred"

An account object
The account class

Classes contain static data and
static methods

Objects contain object data and
object methods

ûû

ûû
üü

You use static methods to encapsulate static data. In the example in the slide,
the interest rate belongs to the account class and not to an individual account
object. It therefore makes sense to provide methods at the class level that can be
used to access or modify the interest rate.

You can declare methods as static in the same way that you would declare data
as static. Static methods exist at the class level. You can control accessibility
for both static methods and static data can by using access modifiers such as
public and private. By choosing public static methods and private static data,
you can encapsulate static data in the same way that you can encapsulate object
data.

A static method exists at the class level and is called against the class and not
against an object. This means that a static method cannot use this, the operator
that implicitly refers to the object making an object method call. In other words,
a static method cannot access non-static data or non-static methods. The only
members of a class that a static method can access are static data and other
static methods.

20 Module 7: Essentials of Object-Oriented Programming

Static methods retain access to all private members of a class and can access
private non-static data by means of an object reference. The following code
provides an example:

class Time
{
 ...
 public static void Reset(Time t)
 {
 t.hours = 0; // Okay
 t.minutes = 0; // Okay
 hour = 0; // compile-time error
 minute = 0 // compile-time error
 }
 private int hour, minute;
}

 Module 7: Essentials of Object-Oriented Programming 21

u C# and Object Orientation

n Hello, World Revisited

n Defining Simple Classes

n Instantiating New Objects

n Using the this Operator

n Creating Nested Classes

n Accessing Nested Classes

In this section, you will re-examine the original Hello, World program.

The structure of the program will be explained from an object-oriented
perspective. You will then learn about the mechanisms that enable one object to
create another in C#. You will also learn how to define nested classes.

22 Module 7: Essentials of Object-Oriented Programming

Hello, World Revisited

using System;

class Hello
{

public static int Main()
{

Console.WriteLine("Hello, World");
return 0;

}
}

using System;

class Hello
{

public static int Main()
{

Console.WriteLine("Hello, World");
return 0;

}
}

The code for Hello, World is shown in the slide. There are some questions that
can be asked and answered:

n How does the runtime invoke a class?

n Why is Main static?

How Does the Runtime Invoke a Class?
If there is a single Main method, the compiler will automatically make it the
program entry point. The following code provides an example:

// OneEntrance.cs
class OneEntrance
{
 static void Main()
 {
 ...
 }
}
// end of file

c:\> csc OneEntrance.cs

The entry point of a C# program must be Main with a capital “M.”
The signature of Main is also important.

Warning

 Module 7: Essentials of Object-Oriented Programming 23

However, if there are several methods called Main, one of them must explicitly
be designated as the program entry point (and that Main must also be explicitly
public) The following code provides an example:

// TwoEntries.cs
using System;
class EntranceOne
{
 public static void Main()
 {
 Console.Write("EntranceOne.Main()");
 }
}
class EntranceTwo
{
 public static void Main()
 {
 Console.Write("EntranceTwo.Main()");
 }
}
// End of file

c:\> csc /main:EntranceOne TwoEntries.cs
c:\> twoentries.exe
EntranceOne.Main()
c:\> csc /main:EntranceTwo TwoEntries.cs
c:\> twoentries.exe
EntranceTwo.Main()
c:\>

Note that the command-line option is case sensitive. If the name of the class
containing Main is EntranceOne (with a capital E and a capital O) then the
following will not work:

c:\> csc /main:entranceone TwoEntries.cs

24 Module 7: Essentials of Object-Oriented Programming

If there is no Main method in the project, you cannot create an executable
program. However, you can create a dynamic -link library (DLL) as follows:

// NoEntrance.cs
class NoEntrance
{
 public static void NotMain()
 {
 Console.Write("NoEntrance.NotMain()");
 }
}
// End of file

c:\> csc /target:library NoEntrance.cs
c:\> dir
...
NoEntrance.dll
...

Why Is Main Static?
Making Main static allows it to be invoked without the runtime needing to
create an instance of the class.

Non-static methods can only be called on an object, as shown in the following
code:

class Example
{
 void NonStatic() { ... }
 static void Main()
 {
 Example eg = new Example();
 eg.NonStatic(); // Compiles
 NonStatic(); // compile-time error
 }
 ...
}

This means that if Main is non-static, as in the following code, the runtime
needs to create an object in order to call Main.

class Example
{
 void Main()
 {
 ...
 }
}

In other words, the runtime would effectively need to execute the following
code:

Example run = new Example();
run.Main();

 Module 7: Essentials of Object-Oriented Programming 25

Defining Simple Classes

n Data and Methods Together Inside a Class

n Methods Are Public, Data Is Private

class BankAccount
{

public void Withdraw(decimal amount)
{ ... }
public void Deposit(decimal amount)
{ ... }
private decimal balance;
private string name;

}

class BankAccount
{

public void Withdraw(decimal amount)
{ ... }
public void Deposit(decimal amount)
{ ... }
private decimal balance;
private string name;

}

Public methods
describe
accessible
behaviour

Public methods
describe
accessible
behaviour

Private fields
describe
inaccessible
state

Private fields
describe
inaccessible
state

Although classes and structs are semantically different, they do have syntactic
similarity. To define a class rather than a struct:

n Use the keyword class instead of struct.

n Declare your data inside the class exactly as you would for a struct.

n Declare your methods inside the class.

n Add access modifiers to the declarations of your data and methods. The
simplest two access modifiers are public and private. (The other three will
be covered later in this course.)

It is up to you to use public and private wisely to enforce encapsulation.
C# does not prevent you from creating public data.

The meaning of public is “access not limited.” The meaning of private is
“access limited to the containing type.” The following example clarifies this:

class BankAccount
{
 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 private decimal balance;
}

Note

26 Module 7: Essentials of Object-Oriented Programming

In this example, the Deposit method can access the private balance because
Deposit is a method of BankAccount (the type that contains balance). In other
words, Deposit is on the inside. From the outside, private members are always
inaccessible. In the following example, the expression underAttack.balance
will fail to compile.

class BankRobber
{
 public void StealFrom(BankAccount underAttack)
 {
 underAttack.balance -= 999999M;
 }
}

The expression underAttack.balance will fail to compile because the
expression is inside the StealFrom method of the BankRobber class. Only
methods of the BankAccount class can access private members of
BankAccount objects.

To declare static data, follow the pattern used by static methods (such as Main),
and prefix the data declaration with the keyword static. The following code
provides an example:

class BankAccount
{
 public void Deposit(decimal amount) { ... }
 public static void Main() { ... }
 ...
 private decimal balance;
 private static decimal interestRate;
}

 Module 7: Essentials of Object-Oriented Programming 27

If you do not specify an access modifier when declaring a class member, it will
default to private. In other words, the following two methods are semantically
identical:

class BankAccount
{
 ...
 decimal balance;
}

class BankAccount
{
 ...
 private decimal balance;
}

It is considered good style to explicitly write private even though it is not
strictly necessary.

The order in which members of a class are declared is not significant to the C#
compiler. However, it is considered good style to declare the public members
(methods) before the private members (data). This is because a class user only
has access to the public members anyway, and declaring public members before
private members naturally reflects this priority.

Tips

28 Module 7: Essentials of Object-Oriented Programming

Instantiating New Objects

n Declaring a Class Variable Does Not Create an Object

l Use the new operator to create an object

class Program
{

static void Main()
{

Time now;
now.hour = 11;
BankAccount yours = new BankAccount();
yours.Deposit(999999M);

}
}

class Program
{

static void Main()
{

Time now;
now.hour = 11;
BankAccount yours = new BankAccount();
yours.Deposit(999999M);

}
}

hour
minute

now

yours ...
...

new
BankAccount
object

Consider the following code examples:

struct Time
{
 public int hour, minute;
}
class Program
{
 static void Main()
 {
 Time now;
 now.hour = 11;
 now.minute = 59;
 ...
 }
}

Variables of the struct type are value types. This means that when you declare a
struct variable (such as now in Main), you create a value on the stack. In this
case, the Time struct contains two ints, so the declaration of now creates two
ints on the stack, one called now.hour and one called now.minute. These two
ints are not, repeat not, default initialized to zero. Hence the value of now.hour
or now.minute cannot be read until they have been assigned a definite value.
Values are scoped to the block in which they are declared. In this example, now
is scoped to Main. This means that when the control flow exits Main (either
through a normal return or because an exception has been thrown), now will go
out of scope; it will cease to exist.

 Module 7: Essentials of Object-Oriented Programming 29

Classes are completely different as shown in the following code:

class Time // NOTE: Time is now a class
{
 public int hour, minute;
}
class Program
{
 static void Main()
 {
 Time now;
 now.hour = 11;
 now.minute = 59;
 ...
 }
}

When you declare a class variable, you do not create an instance or object of
that class. In this case, the declaration of now does not create an object of the
Time class. Declaring a class variable creates a reference that is capable of
referring to an object of that class. This is why classes are called reference types.
This means that if the runtime were allowed to run the preceding code, it would
be trying to access the integers inside a non-existent Time object. Fortunately,
the compiler will warn you about this error. If you compile the preceding code,
you will get the following error message:

error CS0165: Use of possibly unassigned local variable 'now'

30 Module 7: Essentials of Object-Oriented Programming

To fix this error, you must create a Time object (using the new keyword) and
make the reference variable now actually refer to the newly created object, as in
the following code:

class Program
{
 static void Main()
 {
 Time now = new Time();
 now.hour = 11;
 now.minute = 59;
 ...
 }
}

Recall that when you create a local struct value on the stack, the fields are not,
repeat not, default initialized to zero. Classes are different: when you create an
object as an instance of a class, as above, the fields of the object are default
initialized to zero. Hence the following code compiles cleanly:

class Program
{
 static void Main()
 {
 Time now = new Time();
 Console.WriteLine(now.hour); // writes 0
 Console.WriteLine(now.minute); // writes 0
 ...
 }
}

 Module 7: Essentials of Object-Oriented Programming 31

Using the this Operator

n The this Operator Refers to the Object Used to Call the
Method

l Useful when identifiers from different scopes clash

class BankAccount
{

...
public void SetName(string name)
{

this.name = name;
}
private string name;

}

class BankAccount
{

...
public void SetName(string name)
{

this.name = name;
}
private string name;

}

If this statement were
name = name;

What would happen?

The this operator implicitly refers to the object that is making an object method
call.

In the following code, the statement name = name would have no effect at all.
This is because the identifier name on the left side of the assignment does not
resolve to the private BankAccount field called name. Both identifiers resolve
to the method parameter, which is also called name.

class BankAccount
{
 public void SetName(string name)
 {
 name = name;
 }
 private string name;
}

The C# compiler does not emit a warning for this bug.

Using the this Keyword
You can solve this reference problem by using the this keyword, as illustrated
on the slide. The this keyword refers to the current object for which the method
is called.

Static methods cannot use this as they are not called by using an object.

Warning

Note

32 Module 7: Essentials of Object-Oriented Programming

Changing the Parameter Name
You can also solve the reference problem by changing the name of the
parameter, as in the following example:

class BankAccount
{
 public void SetName(string newName)
 {
 name = newName;
 }
 private string name;
}

Using this when writing constructors is a common C# idiom. The
following code provides an example:

struct Time
{
 public Time(int hour, int minute)
 {
 this.hour = hour;
 this.minute = minute;
 }
 private int hour, minute;
}

Tip

 Module 7: Essentials of Object-Oriented Programming 33

The this operator is also used to implement call chaining. Notice in the
following class that both methods return the calling object:

class Book
{
 public Book SetAuthor(string author)
 {
 this.author = author;
 return this;
 }
 public Book SetTitle(string title)
 {
 this.title = title;
 return this;
 }
 private string author, title;
}

Returning this allows method calls to be chained together, as follows:

class Usage
{
 static void Chained(Book good)
 {
 good.SetAuthor(“Fowler”).SetTitle(“Refactoring”);
 }
 static void NotChained(Book good)
 {
 good.SetAuthor(“Fowler”);
 good.SetTitle(“Refactoring”);
 }
}

A static method exists at the class level and is called against the class and
not against an object. This means that a static method cannot use the this
operator.

Tip

Note

34 Module 7: Essentials of Object-Oriented Programming

Creating Nested Classes

n Classes Can Be Nested Inside Other Classes

class Program
{

static void Main()
{

Bank.Account yours = new Bank.Account();
}

}
class Bank
{

... class Account { ... }
}

class Program
{

static void Main()
{

Bank.Account yours = new Bank.Account();
}

}
class Bank
{

... class Account { ... }
}

The full name of the nested
class includes the name of
the outer class

The full name of the nested
class includes the name of
the outer class

There are five different kinds of types in C#:

n class

n struct

n interface

n enum

n delegate

You can nest all five of these inside a class or a struct.

You cannot nest a type inside an interface, an enum, or a delegate.

Note

 Module 7: Essentials of Object-Oriented Programming 35

In the code above, the Account class is nested inside the Bank class. The full
name of the nested class is Account . Bank, and this name must be used when
naming the nested type outside the scope of Bank. The following code provides
an example:

// Program.cs
class Program
{
 static void Main()
 {
 Account yours = new Account(); // compile-time error
 }
}
// end of file
c:\> csc Program.cs
error CS0234: The type...'Account' does not exist in the
class...'Program'

In contrast, just the name Account can be used from inside of Bank , as in the
following example:

class Bank
{
 class Account() { ... }

 Account OpenAccount()
 {
 return new Account();
 }
}

See the next topic for a more thorough examination of the example.

Nested classes offer several useful features:

n Nested classes can be declared with specific accessibility. This is covered in
the next topic.

n Using nested classes removes fewer names from the global scope or the
containing namespace.

n Nested classes allow extra structure to be expressed in the grammar of the
language. For example, the name of the class is Bank . Account (three
tokens) rather than BankAccount (one token).

Note

36 Module 7: Essentials of Object-Oriented Programming

Accessing Nested Classes

n Nested Classes Can Also Be Declared As Public or
Private

class Bank
{

public class Account { ... }
private class AccountNumberGenerator { ... }

}
class Program
{

static void Main()
{

Bank.Account accessible;
Bank.AccountNumberGenerator inaccessible;

}
}

class Bank
{

public class Account { ... }
private class AccountNumberGenerator { ... }

}
class Program
{

static void Main()
{

Bank.Account accessible;
Bank.AccountNumberGenerator inaccessible;

}
}

ûû
üü

You control the accessibility of data and methods by declaring them as public
or private. You control the accessibility of a nested class in exactly the same
way.

Public Nested Class
A public nested class has no access restrictions. It is declared to be publicly
accessible. The full name of a nested c lass must still be used when outside the
containing class.

Private Nested Class
A private nested class has exactly the same access restrictions as private data or
methods. A private nested class is inaccessible from outside the containing class,
as the following example shows:

class Bank
{
 private class AccountNumberGenerator()
 {
 ...
 }
}
class Program
{
 static void Main()
 {
 // Compile time error
 Bank.AccountNumberGenerator variable;
 }
}

 Module 7: Essentials of Object-Oriented Programming 37

In this example, Main cannot use Bank.AccountNumberGenerator because
Main is a method of Program and AccountNumberGenerator is private and
hence only accessible to its outer class, Bank .

A private nested class is accessible only to members of the containing class as
the following examples shows:

class Bank
{
 public class Account
 {
 public void Setup()
 {
 NumberSetter.Set(this);
 balance = 0M;
 }

 private class NumberSetter
 {
 public static void Set(Account a)
 {
 a.number = nextNumber++;
 }
 private static int nextNumber = 2311;
 }

 private int number;
 private decimal balance;
 }
}

In this code, note that the Account.Setup method can access the
NumberSetter class because, although NumberSetter is a private class, it is
private to Account, and Setup is a method of Account.

38 Module 7: Essentials of Object-Oriented Programming

Notice also that the Account.NumberSetter.Set method can access the private
balance field of the Account object a. This is because Set is a method of class
NumberSetter, which is nested inside Account. Hence NumberSetter (and its
methods) have access to the private members of Account.

The default accessibility of a nested class is private (as it is for data and
methods). In the following example, the Account class defaults to private:

class Bank
{
 class Account() { ... }

 public Account OpenPublicAccount()
 {
 Account opened = new Account();
 opened.Setup();
 return opened;
 }

 private Account OpenPrivateAccount()
 {
 Account opened = new Account();
 opened.Setup();
 return opened;
 }
}

The Account class is accessible to OpenPublicAccount and
OpenPrivateAccount because both methods are nested inside Bank. However,
the OpenPublicAccount method will not compile. The problem is that
OpenPublicAccount is a public method, usable as in the following code:

class Program
{
 static void Main()
 {
 Bank b = new Bank();
 Bank.Account opened = b.OpenPublicAccount();
 ...
 }
}

This code will not compile because Bank.Account is not accessible to
Program.Main, Bank.Account is private to Bank, and Main is not a method
of Bank . The following error message appears:

error CS0050: Inconsistent accessibility: return type
'Bank.Account' is less accessible than method
'Bank.OpenPublicAccount'

The accessibility rules for a top-level class (that is, a class that is not nested
inside another class) are not the same as those for a nested class. A top-level
class cannot be declared private and defaults to internal accessibility. (Internal
access is covered fully in a later module.)

 Module 7: Essentials of Object-Oriented Programming 39

Lab 7: Creating and Using Classes

Objectives
After completing this lab, you will be able to:

n Create classes and instantiate objects.

n Use non-static data and methods.

n Use static data and methods.

Prerequisites
Before working on this lab, you must be familiar with the following:

n Creating methods in C#

n Passing arguments as method parameters in C#

Estimated time to complete this lab: 45 minutes

40 Module 7: Essentials of Object-Oriented Programming

Exercise 1
Creating and Using a Class

In this exercise, you will take the bank account struct that you developed in a
previous module and convert it into a class. You will declare its data members
as private but provide non-static public methods for accessing the data. You
will build a test harness that creates an account object and populates it with an
account number and balance that is specified by the user. Finally, you will print
the data in the account.

å To change BankAccount from a struct to a class

1. Open the CreateAccount.sln project in the install folder\
Labs\Lab07\Starter\CreateAccount folder.

2. Study the program in the BankAccount.cs file. Notice that BankAccount is a
struct type.

3. Compile and run the program. You will be prompted to enter an account
number and an initial balance. Repeat this process to create another account.

4. Modify BankAccount in BankAccount.cs to make it a class rather than a
struct.

5. Compile the program. It will fail to compile. Open the CreateAccount.cs file
and view the CreateAccount class. The class will look as follows:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created;
 ...
 created.accNo = number; // Error here

 ...
 }
 ...
}

6. The assignment to created.accNo compiled without error when
BankAccount was a struct. Now that it is a class, it does not compile! This
is because when BankAccount was a struct, the declaration of the created
variable created a BankAccount value (on the stack). Now that
BankAccount is a class, the declaration of the created variable does not
create a BankAccount value; it creates a BankAccount reference that does
not yet refer to a BankAccount object.

 Module 7: Essentials of Object-Oriented Programming 41

7. Change the declaration of created so that it is initialized with a newly
created BankAccount object, as shown:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();
 ...
 created.accNo = number;

 ...
 }
 ...
}

8. Save your work.

9. Compile and run the program. Verify that the data entered at the console is
correctly read back and displayed in the CreateAccount.Write method.

å To encapsulate the BankAccount class

1. All the data members of the BankAccount class are currently public.
Modify them to make them private, as shown:

class BankAccount
{
 private long accNo;
 private decimal accBal;
 private AccountType accType;
}

2. Compile the program. It will fail to compile. The error occurs in the
CreateAccount class as shown::

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();
 ...
 created.accNo = number; // Error here again

 ...

 }
 ...
}

42 Module 7: Essentials of Object-Oriented Programming

3. The BankAccount data member assignments now fail to compile because
the data members are private. Only BankAccount methods can access the
private BankAccount data members. You need to write a public
BankAccount method to do the assignments for you. Perform the following
steps:

Add a non-static public method called Populate to BankAccount. This
method will return void and expect two parameters: a long (the bank
account number) and a decimal (the bank account balance). The body of this
method will assign the long parameter to the accNo field and the decimal
parameter to the accBal field. It will also set the accType field to
AccountType.Checking as shown:

class BankAccount
{
 public void Populate(long number, decimal balance)
 {
 accNo = number;
 accBal = balance;
 accType = AccountType.Checking;
 }

 private long accNo;
 private decimal accBal;
 private AccountType accType;
}

4. Comment out the three assignments to the created variable in the
CreateAccount.NewbankAccount method. In their place, add a statement
that calls the Populate method on the created variable, passing number and
balance as arguments. This will look as follows:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();
 ...
 // created.accNo = number;
 // created.accBal = balance;
 // created.accType = AccountType.Checking;

 created.Populate(number, balance);

 ...
 }
 ...
}

5. Save your work.

 Module 7: Essentials of Object-Oriented Programming 43

6. Compile the program. It will fail to compile. There are still three statements
in the CreateAccount.Write method that attempt to directly access the
private BankAccount fields. You need to write three public BankAccount
methods that return the values of these three fields. Perform the following
steps:

a. Add a non-static public method to BankAccount called Number. This
method will return a long and expect no parameters. It will return the
value of the accNo field as shown:

class BankAccount
{
 public void Populate(...) ...

 public long Number()
 {
 return accNo;
 }
 ...
}

b. Add a non-static public method to BankAccount called Balance, as
shown in the following code. This method will return a decimal and
expect no parameters. It will return the value of the accBal field.

class BankAccount
{
 public void Populate(...) ...

 ...
 public decimal Balance()
 {
 return accBal;
 }
 ...
}

c. Add a non-static public method called Type to BankAccount, as shown
in the following code. This method will return an AccountType and
expect no parameters. It will return the value of the accType field.

class BankAccount
{
 public void Populate(...) ...

 ...
 public AccountType Type()
 {
 return accType;
 }
 ...
}

44 Module 7: Essentials of Object-Oriented Programming

d. Finally, replace the three statements in the CreateAccount.Write
method that attempt to directly access the private BankAccount fields
with calls to the three public methods you have just created, as shown:

class CreateAccount
{
 ...
 static void Write(BankAccount toWrite)
 {
 Console.WriteLine("Account number is {0}",
ÊtoWrite.Number());
 Console.WriteLine("Account balance is {0}",
ÊtoWrite.Balance());
 Console.WriteLine("Account type is {0}",
ÊtoWrite.Type().Format());
 }
}

7. Save your work.

8. Compile the program and correct any other errors. Run the program. Verify
that the data entered at the console and passed to the
BankAccount.Populate method is correctly read back and displayed in the
CreateAccount.Write method.

 Module 7: Essentials of Object-Oriented Programming 45

å To further encapsulate the BankAccount class

1. Change the BankAccount.Type method so that it returns the type of the
account as a string rather than as an AccountType enum, as shown:

class BankAccount
{
 ...
 public string Type()
 {
 return accType.Format();
 }
 ...
 private AccountType accType;
}

2. Change the last WriteLine statement in the CreateAccount.Write method
so that it no longer calls the Format method, as shown:

class CreateAccount
{
 ...
 static void Write(BankAccount acc)
 {
 Console.WriteLine("Account number is {0}",
Êacc.Number());
 Console.WriteLine("Account balance is {0}",
Êacc.Balance());
 Console.WriteLine("Account type is {0}",
Êacc.Type());
 }
}

3. Save your work.

4. Compile the program and correct any errors. Run the program. Verify that
the data entered at the console and passed to the BankAccount.Populate
method is correctly read back and displayed in the CreateAccount.Write
method.

46 Module 7: Essentials of Object-Oriented Programming

Exercise 2
Generating Account Numbers

In this exercise, you will modify the BankAccount class from Exercise 1 so
that it will generate unique account numbers. You will accomplish this by using
a static variable in the BankAccount class and a method that increments and
returns the value of this variable. When the test harness creates a new account,
it will call this method to generate the account number. It will then call the
method of the BankAccount class that sets the number for the account, passing
in this value as a parameter .

å To ensure that each BankAccount number is unique

1. Open the project UniqueNumbers.sln in the install folder\
Labs\Lab07\Starter\UniqueNumbers folder.

This project is the same as the completed CreateAccount project from
Exercise 1.

2. Add a private static long called nextAccNo to the BankAccount class, as
shown:

class BankAccount
{
 ...
 private long accNo;
 private decimal accBal;
 private AccountType accType;

 private static long nextAccNo;
}

3. Add a public static method called NextNumber to the BankAccount class,
as shown in the following code. This method will return a long and expect
no parameters. It will return the value of the nextAccNo field in addition to
incrementing this field.

class BankAccount
{
 ...
 public static long NextNumber()
 {
 return nextAccNo++;
 }

 private long accNo;
 private decimal accBal;
 private AccountType accType;

 private static long nextAccNo;
}

Note

 Module 7: Essentials of Object-Oriented Programming 47

4. Comment out the statement in the CreateAccount.NewBankAccount
method that writes a prompt to the console asking for the bank account
number, as shown:

 //Console.Write("Enter the account number: ");

5. Replace the initialization of number in the
CreateAccount.NewBankAccount method with a call to the
BankAccount.NextNumber method you have just created, as shown:

//long number = long.Parse(Console.ReadLine());
long number = BankAccount.NextNumber();

6. Save your work.

7. Compile the program and correct any errors. Run the program. Verify that
the two accounts have account numbers 0 and 1.

8. Currently, the BankAccount.nextAccNo static field has a default
initialization to zero. Explicitly initialize this field to 123.

9. Compile and run the program. Verify that the two accounts created have
account numbers 123 and 124.

48 Module 7: Essentials of Object-Oriented Programming

å To further encapsulate the BankAccount class

1. Change the BankAccount.Populate method so that it expects only one
parameter— the decimal balance. Inside the method, assign the accNo field
by using the BankAccount.NextNumber static method, as shown:

class BankAccount
{
 public void Populate(decimal balance)
 {
 accNo = NextNumber();
 accBal = balance;
 accType = AccountType.Checking;
 }
 ...
}

2. Change BankAccount.NextNumber into a private method, as shown:

class BankAccount
{
 ...
 private static long NextNumber() ...
}

3. Comment out the declaration and initialization of number in the
CreateAccount.NewBankAccount method. Change the created.Populate
method call so that it only passes a single parameter, as shown:

class CreateAccount
{
 ...
 static BankAccount NewBankAccount()
 {
 BankAccount created = new BankAccount();

 //long number = BankAccount.NextNumber();
 ...
 created.Populate(balance);
 ...
 }
 ...
}

4. Save your work.

5. Compile the program and correct any errors. Run the program. Verify that
the two accounts still have account numbers 123 and 124.

 Module 7: Essentials of Object-Oriented Programming 49

Exercise 3
Adding More Public Methods

In this exercise, you will add two methods to the Account class: Withdraw and
Deposit.

Withdraw will take a decimal parameter and will deduct the given amount
from the balance. However, it will check first to ensure that sufficient funds are
available, since accounts are not allowed to become overdrawn. It will return a
bool value indicating whether the withdrawal was successful.

Deposit will also take a decimal parameter whose value it will add to the
balance in the account. It will return the new value of the balance.

å To add a Deposit method to the BankAccount class

1. Open the project MoreMethods.sln in the install folder\
Labs\Lab07\Starter\MoreMethods folder.

This project is the same as the completed UniqueNumbers project
from Exercise 2.

2. Add a public non-static method called Deposit to the BankAccount class,
as shown in the following code. This method will also take a decimal
parameter whose value it will add to the balance in the account. It will
return the new value of the balance.

class BankAccount
{
 ...
 public decimal Deposit(decimal amount)
 {
 accBal += amount;
 return accBal;
 }
 ...
}

Note

50 Module 7: Essentials of Object-Oriented Programming

3. Add a public static method called TestDeposit to the CreateAccount class,
as shown in the following code. This method will return void and expect a
BankAccount parameter. The method will write a prompt to the console
prompting the user for the amount to deposit, capture the entered amount as
a decimal, and then call the Deposit method on the BankAccount
parameter, passing the amount as an argument.

class CreateAccount
{
 ...
 public static void TestDeposit(BankAccount acc)
 {
 Console.Write("Enter amount to deposit: ");
 decimal amount = decimal.Parse(Console.ReadLine());
 acc.Deposit(amount);
 }
 ...
}

4. Add to CreateAccount.Main statements that call the TestDeposit method
you have just created, as shown in the following code. Ensure that you call
TestDeposit for both account objects. Use the CreateAccount.Write
method to display the account after the deposit takes place.

class CreateAccount
{
 static void Main()
 {
 BankAccount berts = NewBankAccount();
 Write(berts);
 TestDeposit(berts);
 Write(berts);

 BankAccount freds = NewBankAccount();
 Write(freds);
 TestDeposit(freds);
 Write(freds);
 }
}

5. Save your work.

6. Compile the program and correct any errors. Run the program. Verify that
deposits work as expected.

If you have time, you might want to add a further check to Deposit to
ensure that the decimal parameter passed in is not negative.

Note

 Module 7: Essentials of Object-Oriented Programming 51

å To add a Withdraw method to the BankAccount class

1. Add a public non-static method called Withdraw to BankAccount, as
shown in the following code. This method will expect a decimal parameter
specifying the amount to withdraw. It will deduct the amount from the
balance only if sufficient funds are available, since accounts are not allowed
to become overdrawn. It will return a bool indicating whether the
withdrawal was successful.

class BankAccount
{
 ...
 public bool Withdraw(decimal amount)
 {
 bool sufficientFunds = accBal >= amount;
 if (sufficientFunds) {
 accBal -= amount;
 }
 return sufficientFunds;
 }
 ...
}

2. Add a public static method called TestWithdraw to the CreateAccount
class, as shown in the following code. This method will return void and will
expect a BankAccount parameter. The method will write a prompt to the
console prompting the user for the amount to withdraw, capture the entered
amount as a decimal, and then call the Withdraw method on the
BankAccount parameter, passing the amount as an argument. The method
will capture the bool result returned by Withdraw and write a message to
the console if the withdrawal failed.

class CreateAccount
{
 ...
 public static void TestWithdraw(BankAccount acc)
 {
 Console.Write("Enter amount to withdraw: ");
 decimal amount = decimal.Parse(Console.ReadLine());
 if (!acc.Withdraw(amount)) {
 Console.WriteLine("Insufficient funds.");
 }
 }
 ...
}

52 Module 7: Essentials of Object-Oriented Programming

3. Add to CreateAccount.Main statements that call the TestWithdraw
method you have just created, as shown in the following code. Ensure that
you call TestWithdraw for both account objects. Use the
CreateAccount.Write method to display the account after the withdrawal
takes place.

class CreateAccount
{
 static void Main()
 {
 BankAccount berts = NewBankAccount();
 Write(berts);
 TestDeposit(berts);
 Write(berts);
 TestWithdraw(berts);
 Write(berts);

 BankAccount freds = NewBankAccount();
 Write(freds);
 TestDeposit(freds);
 Write(freds);
 TestWithdraw(freds);
 Write(freds);
 }
 }

4. Save your work.

5. Compile the program and correct any errors. Run the program. Verify that
withdrawals work as expected. Test successful and unsuccessful
withdrawals.

 Module 7: Essentials of Object-Oriented Programming 53

u Defining Object-Oriented Systems

n Inheritance

n Class Hierarchies

n Single and Multiple Inheritance

n Polymorphism

n Abstract Base Classes

n Interfaces

n Early and Late Binding

In this section, you will learn about inheritance and polymorphism. You will
learn how to implement these concepts in C# in later modules.

54 Module 7: Essentials of Object-Oriented Programming

Inheritance

n Inheritance Specifies an “Is a Kind of" Relationship

l Inheritance is a class relationship

l New classes specialize existing classes

Musician

Violin
Player

Base class

Derived class

Generalization

Specialization Is this a good
example of
inheritance ?

Inheritance is a relationship that is specified at the class level. A new class can
be derived from an existing class. In the slide above, the ViolinPlayer class is
derived from the Musician class. The Musician class is called the base class
(or, less frequently, the parent class, or the superclass); the ViolinPlayer class
is called the derived class (or, less frequently, the child class, or subclass). The
inheritance is shown by using the Unified Modeling Language (UML) notation.
More UML notation will be covered in later slides.

Inheritance is a powerful relationship because a derived class inherits
everything from its base class. For example, if the base class Musician contains
a method called TuneYourInstrument, this method is automatically a member
of the derived ViolinPlayer class.

A base class can have any number of derived classes. For example, new classes
(such as FlutePlayer, or PianoPlayer) could all be derived from the Musician
class. These new derived classes would again automatically inherit the
TuneYourInstrument method from the Musician base class.

A change to a base class is automatically a change to all derived classes.
For example, if a field of type MusicalIntrument was added to the Musician
base class, then every derived class (ViolinPlayer, FlutePlayer, PianoPlayer,
and so on) would automatically acquire a field of type MusicalInstrument. If a
bug is introduced into a base class, it will automatically become a bug in every
derived class. (This is known as the fragile base class problem.)

Note

 Module 7: Essentials of Object-Oriented Programming 55

Understanding Inheritance in Object-Oriented
Programming
The graphic on the slide shows a man, a woman, and a small girl riding a
bicycle. If the man and the woman are the biological parents of the girl, then
she will inherit half of her genes from the man and half of her genes from the
woman.

But this is not an example of class inheritance. It is implementation mechanism!

The classes are Man and Woman. There are two instances of the Woman class
(one with an age attribute of less than 16) and one instance of the Man class.
There is no class inheritance. The only possible way there could be class
inheritance in this example is if the Man class and the Woman class share a
base class Person.

56 Module 7: Essentials of Object-Oriented Programming

Class Hierarchies

n Classes Related by Inheritance Form Class Hierarchies

Musician

???

String
Musician

Violin???

Musical
Instrument

plays

plays

playsViolin
Player

Stringed
Instrument

Classes that derive from base classes can themselves be derived from. For
example, in the slide the StringMusician class is derived from the Musician
class but is itself a base class for the further derived ViolinPlayer class. A
group of classes related by inheritance forms a structure known as a class
hierarchy. As you move up a hierarchy, the classes represent more general
concepts (generalization); as you move down a hierarchy the classes represent
more specialized concepts (specialization).

The depth of a class hierarchy is the number of levels of inheritance in the
hierarchy. Deeper class hierarchies are harder to use and harder to implement
than shallow class hierarchies. Most programming guidelines recommend that
the depth be limited to between five and seven classes.

The slide depicts two parallel class hierarchies: one for musicians and another
for musical instruments. Creating class hierarchies is not easy: classes need to
be designed as base classes from the start. Inheritance hierarchies are also the
dominant feature of frameworks— models of work that can be built on and
extended.

 Module 7: Essentials of Object-Oriented Programming 57

Single and Multiple Inheritance

n Single Inheritance: Deriving from One Base Class

n Multiple Inheritance: Deriving from Two or More Base
Classes

Stringed
Instrument

Violin

Musical
Instrument

Stringed
Instrument

Pluckable

Violin has a single direct
base class

Stringed Instrumenthas
two direct base classes

Single inheritance occurs when a class has a single direct base class. In the
example in the slide, the Violin class inherits from one class,
StringedInstrument, and is an example of single inheritance.
StringedInstrument derives from two classes, but that is not relevant to the
Violin class. Single inheritance can still be difficult to use wisely. It is well
known that inheritance is one of the most powerful software modeling tools,
and at the same time one of the most misunderstood and misused.

Multiple inheritance occurs when a class has two or more direct base classes. In
the example in the slide, the StringedInstrument class derives directly from
two classes, MusicalInstrument and Pluckable, and provides an example of
multiple inheritance. Multiple inheritance offers multiple opportunities to
misuse inheritance! C#, like most modern programming languages (but not
C++), restricts the use of multiple inheritance: you can inherit from as many
interfaces as you want, but you can only inherit from one non-interface (that is,
at most one abstract or concrete class). The terms interface, abstract class, and
concrete class are covered later in this module.

Notice that all forms of inheritance, but multiple inheritance in particular, offer
many views of the same object. For example, a Violin object could be used at
the Violin class level, but it could also be used at the StringedInstrument class
level.

58 Module 7: Essentials of Object-Oriented Programming

Polymorphism

n The Method Name Resides in the Base Class

n The Method Implementations Reside in the Derived
Classes

String Musician

TuneYourInstrument()

Guitar Player

TuneYourInstrument()

Violin Player

TuneYourInstrument()

A method with no
implementation is
called an operation

A method with no
implementation is
called an operation

Polymorphism literally means many forms or many shapes. It is the concept that
a method declared in a base class can be implemented in many different ways in
the different derived classes.

Consider the scenario of an orchestra of musicians all tuning their instruments
as they get ready for a concert. Without polymorphism, the conductor needs to
visit each musician in turn, seeing what kind of instrument the musician plays,
and giving detailed instructions about how to tune that particular kind of
instrument. With polymorphism, the conductor just tells each musician, “tune
your instrument.” The conductor does not need to know which particular
instrument each musician plays, just that each musician will respond to the
same request for behavior in a manner appropriate to their particular instrument.
Rather than the conductor being responsible for the knowledge of how to tune
all of the different kinds of instruments, the knowledge is partitioned across the
different kinds of musicians as appropriate: a guitar player knows how to tune a
guitar, a violin player knows how to tune a violin. In fact, the conductor does
not know how to tune any of the instruments. This decentralized allocation of
responsibilities also means that new derived classes (such as DrumPlayer) can
be added to the hierarchy without necessarily needing to modify existing
classes (such as the conductor).

There is one problem though. What is the body of the method at the base-class
level? Without knowing which particular kind of instrument a musician plays, it
is impossible to know how to tune the instrument. To manage this, only the
name of the method (and no body) can be declared in the base class. A method
name with no method body is called an operation. One of the ways of denoting
an operation in UML is to use italics, as is shown in the slide.

 Module 7: Essentials of Object-Oriented Programming 59

Abstract Base Classes

n Some Classes Exist Solely to Be Derived From

l It makes no sense to create instances of these classes

l These classes are abstract

Stringed Musician
{ abstract }

Guitar Player
« concrete »

Violin Player
« concrete »

You can create instances
of concrete classes

You can create instances
of concrete classes

You cannot create instances
of abstract classes

You cannot create instances
of abstract classes

In a typical class hierarchy, the operation (the name of a method) is declared in
the base class, and the method is implemented in different ways in the different
derived classes. The base class exists solely to introduce the name of the
method into the hierarchy. In particular, the base class operation does not
require an implementation. This makes it vital that the base class not be used as
a regular class. Most importantly, you must not be allowed to create instances
of the base class: if you could, what would happen if you called the operation
that had no implementation? A mechanism is required that makes it impossible
to create instances of these base classes: the base class needs to be marked
abstract.

In a UML design, you can constrain a class as abstract by writing the name of
the class in italics or by placing the word abstract within braces ({ and }). In
contrast, you can use the word concrete or class between guillemets (<< and >>)
as a stereotype to denote in UML a class that is not abstract, a class that can be
used to create instances. This is shown in the slide. All object-oriented
programming languages have grammatical constructs that implement an
abstract constraint. (Even C++ can use protected constructors.)

Sometimes the creation of an abstract base class is more retrospective: duplicate
common features in the derived classes are factored into a new base class.
However, once again, the base class should be marked abstract because its
purpose is to be derived from, and not to create instances.

60 Module 7: Essentials of Object-Oriented Programming

Interfaces

n Interfaces Contain Only Operations, Not Implementation

String Musician
{ abstract }

Violin Player
« concrete »

Musician
« interface »

Nothing but operations.
You cannot create instances of an
interface.

Nothing but operations.
You cannot create instances of an
interface.

May contain some implementation.
You cannot create instances of an
abstract class.

May contain some implementation.
You cannot create instances of an
abstract class.

Must implement all inherited
operations. You can create
instances of a concrete class.

Must implement all inherited
operations. You can create
instances of a concrete class.

Abstract classes and interfaces are alike in that neither can be used to instantiate
objec ts. However, they differ in that an abstract class may contain some
implementation whereas an interface contains no implementation of any kind;
an interface contains only operations (the names of methods). You could say
that an interface is even more abstract than an abstract class!

In UML, you can depict an interface by using the word interface between
guillemets (<< and >>). All object-oriented programming languages have
grammatical constructs that implement an interface.

Interfaces are important constructs in object-oriented programs. In UML,
interfaces have specific notation and terminology. When you derive from an
interface, it is said that you implement that interface. UML depicts this with a
dashed line called realization. When you derive from a non-interface (an
abstract class or a concrete class) it is said that you extend that class. UML
depicts this with a solid line called generalization/specialization.

Place your interfaces at the top of a class hierarchy. The idea is simple: if you
can program to an interface— that is, if you use only those features of an object
that are declared in its interface— your program loses all dependence on the
specific object and its concrete class. In other words, when you program to an
interface, many different objects of many different classes can be used
interchangeably. It is this ability to make changes with no impact that leads to
the object-oriented maxim, “Program to an interface and not to an
implementation.”

 Module 7: Essentials of Object-Oriented Programming 61

Early and Late Binding

n Normal Method Calls Are Resolved at Compile Time

n Polymorphic Method Calls Are Resolved at Run Time

TuneYourInstrument()

TuneYourInstrument()

Musician
« interface »

Violin Player
« concrete »

Late Binding

Early Binding

runtime

When you make a method call directly on an object, that is, not through a base
class operation, the method call is resolved at compile time. This is also known
as early binding or static binding.

When you make a method call indirectly on an object— that is, through a base
class operation— the method call is resolved at run time. This is also known as
late binding or dynamic binding.

An example of late binding occurs when a conductor tells all of the musicians
in an orchestra to tune their instruments. By working at the interface level, the
conductor does not need to know (and hence be dependent on) the specific
different kinds of concrete musicians (such as ViolinPlayer). The conductor is
also freed from needing to know when a new class is added to the hierarchy for
a new kind of musician (for example, HarpPlayer).

The flexibility of late binding comes with a physical price and a logical price:

n Physical price

Late bound calls are slightly slower than early bound calls. In effect, the
extra work that must be performed as a result of a late bound call is to
discover the class of the calling object. This is done in an efficient manner
(you would not be able to do it faster yourself), but it is extra work.

n Logical price

With late binding, derived classes can be substituted for their base classes.
An operation call can be made through an interface, and at run time the
derived class object will correctly have its method called. In other words, all
derived classes that implement an interface can act as substitutes for the
interface type. Newcomers to object-oriented programming often fail to
fully appreciate the substitutability aspect of inheritance.

62 Module 7: Essentials of Object-Oriented Programming

Review

n Classes and Objects

n Using Encapsulation

n C# and Object Orientation

n Defining Object-Oriented Systems

1. Explain the concept of abstraction and why it is important in software
engineering.

2. What are the two principles of encapsulation?

 Module 7: Essentials of Object-Oriented Programming 63

3. Describe inheritance in the context of object-oriented programming.

4. What is polymorphism? How is it related to early and late binding?

5. Describe the differences between interfaces, abstract classes, and concrete
classes.

THIS PAGE INTENTIONALLY LEFT BLANK

