I’m;_;rdmmrsr to Prngrdmmw

Professional

.NET 2.0
Generics

Tod Golding

Updates, source code, and Wrox technical support at WwWw.Wrox.com

Professional .NET 2.0 Generics

Tod Golding

WILEY

Wiley Publishing, Inc.

Professional .NET 2.0 Generics

Tod Golding

WILEY

Wiley Publishing, Inc.

Copyright © 2005 by Wiley Publishing Inc. All rights reserved.
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355,0r online at http:/ /www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTIC-
ULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOT
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, and Programmer to Programmer
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data
ISBN-13: 978-0-7645-5988-4

ISBN-10: 0-7645-5988-5

Printed in the United States of America

10 9 87 6 5 43 21

About the Author

Tod Golding has 20 years of experience as a software developer, lead architect, and development man-
ager for organizations engaged in the delivery of large-scale commercial and internal solutions. He has
an extensive background leveraging .NET, J2EE, and Windows DNA technologies, which has allowed
him to become equally skilled with C#, Java, and C++. Tod has worked and consulted at a variety of
companies, including stints with Microsoft and Borland.

Tod has a B.S. in Computer Science from California State University, Sacramento. He started his writing
career as a journalist for the Sacramento Bee daily newspaper. Prior to this book, he was also a contributing
author for the XML Programming Bible, another Wiley publication. Tod currently resides in Sacramento,
California, where he owns and operates Blue Puma Software.

Credits

Vice President and Executive Group Publisher: Development Editor:
Richard Swadley Sharon Nash

Vice President and Publisher: Production Editor:

Joseph B. Wikert Felicia Robinson
Acquisitions Editor: Technical Editor:

Jim Minatel Mark A. Strawmyer

Editorial Manager: Text Design & Composition:
Mary Beth Wakefield Wiley Composition Services

Senior Production Editor:
Tim Tate

Acknowledgments

Even though my name stands alone on the cover of this book, it certainly couldn’t have come to life
without the support, encouragement, hard work, and creative input of many others.

My family has to be at the top of the list of those that deserve thanks. The sacrifices made by my wife,
Janine, during the past year were nothing short of heroic. Her support never waned, and I could not
have finished this project without her. Thanks, too, to my children, Chelsea and Ryan, who always
showed interest in my progress. Their smiling faces were always a great source of inspiration.

I'd also like to thank everyone at Wiley Publishing. Without Jim Minatel’s insight and guidance, this
book could not have gotten off the ground. His flexibility and willingness to work with a moving target
provided me with the freedom this topic needed. I also can’t go without mentioning Wiley’s Sharon Nash
and Felicia Robinson, who managed all the logistics associated with editing this book. Thanks, too, to
Mark A. Strawmyer for all of his contributions on the technical editing front.

There are also all those who helped push me along during the genesis of this book. My long-time friend,
Bill Clark, provided perspective and creative influence that helped shape my approach to generics.

Finally, special thanks go to Mike Cohn, who has always pushed me to take on new challenges. His early
prodding and mastery of the 100-hour workweek clearly had the single greatest impact on getting me
moving on this project.

Contents

Acknowledgments v
Introduction XV
Chapter 1: Generics 101 1
Why Generics? 1
Enter Generics 7
Hello Generics 10

A More Conceptual View 12
Terminology 14
Type Parameters 14
Open Types 15
Constructed Types 15
Type Arguments 15
Open and Closed Constructed Types 15
Generic Methods 16
Type Instantiation 16
Arity 17
Generic Types 17
Bringing It All Together 17
Summary 17
Chapter 2: Valuing Type Safety 19
Motivation 19
Least Common Denominator Programming 20
A Basic Example 21
Applying Generics 26
Casting Consequences 29
Interface Type Safety 31
Scratching the Surface 32
Safety vs. Clarity 32
Summary 33
Chapter 3: Generics # Templates 35
Shared Concepts 35
Run-Time vs. Compile-Time 36

Contents

viii

Compile-Time Instantiation (Templates) 36
Run-Time Instantiation (Generics) 37
Lost in Translation 38
The Brouhaha 42
Code Bloat 42
Assemblies and Type Equivalence 42
Templates Extras 43
Template Specialization 43
Non-Type Parameters 44
Type Parameter Inheritance 44
Cross-Language Support 44
Debugging 44
Mix and Match Nirvana 44
Summary 45
Chapter 4: Generic Classes 47
Parameterizing Types 47
Type Parameters 49
Overloaded Types 50
Static Constructors 51
Inheritance 52
Protected Members 55
Fields 56
Static Fields 57
Constructed Fields 59
Methods 60
Overloading Methods 61
Overriding Methods 63
Arrays of Type Parameters 65
Operator Overloading 66
Nested Classes 67
Consuming Generic Classes 69
Accessibility 70
The Default Keyword 73
System.Nullable<T> 74
Accessing Type Info 76
Indexers, Properties, and Events 77
Generic Structs 80
Generic Interfaces 81
Summary 82

Contents

Chapter 5: Generic Methods 83
The Basics 83
A Deeper Look 85
Apply Constraints 87
Type Parameter Names 88
Overloading Generic Methods 88

Unigueness with Generic Classes 90

Constraints and Unigueness 91
Overriding Generic Methods 92
Type Inference 95
Generic Methods and Delegates 96
Type-Safe Database Access Example 97
Summary 98

Chapter 6: Generic Delegates 929
Delegate Basics 99
Adding Generics to the Equation 102
Event Handling 105
Generic Delegates with Generic Methods 106
Delegates in the Framework 106

Action<T> 106
Comparison<T> 107
Converter<T, U> 107
Predicate<T> 107
Choosing Your Delegates 107
Type Coercion 107
Applying Constraints 108
Delegates and Anonymous Methods 109
Summary 109

Chapter 7: Generic Constraints 111
Overview 111
Constraint Types 115

Interface Constraints 115
Class Constraints 116
Generic Types as Constraints 117
Constructor Constraints 118
Boxing and Constraints 119

Contents

Using Multiple Constraints 122
Ambiguous Constraints 123
Ambiguity When Mixing Classes and Interfaces 124

Generic Delegate and Method Constraints 125

Inheritance and Constraints 126

Are Generics Generic? 127

Summary 128

Chapter 8: BCL Generics 129

Motivation 129

The Big Picture 130
Generic Collection Interfaces 130
Classes 132
System.Collections.ObjectModel 133
Enumerators 133
Using Delegates 134

Generic Collection Classes 134
Collection<T> 134
Comparer<T> 147
Dictionary<TKey, TValue> 149
EqualityComparer<T> 157
KeyedCollection<TKey, Tltem> 159
LinkedList<T> 160
LinkedListNode<T> 161
List<T> 162
Queue<T> 175
ReadOnlyCollection<T> 177
SortedDictionary<TKey, TValue> 179
SortedList<TKey, TValue> 182
Stack<T> 183
BindingList<T> 184

Testing Equality 184

Null Collection Elements 185

More to Come 185

Summary 185

Chapter 9: Reflection, Serialization, and Remoting 187

Reflection 187
Working with Open and Closed Types 188
Extending System.Type 188
Determining if a Type Is Generic 188

Contents

Creating Open and Closed Types with Reflection 189
Converting Closed Types to Open Types 194
Examining Parameters and Arguments 195
Reflection and Generic Inheritance 198
Reflecting on Generic Methods 199
Obfuscation Reminder 201
Serialization 202
Serialization Basics 202
Custom Serialization 204
Serialization with Web Services 208
Remoting 211
Summary 215
Chapter 10: Generics Guidelines 217
An Evolving List 217
Defining Guidelines 217
Organization 218
Identifying Generic Opportunities 218
Iltem 1: Use Generic Collections 218
Item 2: Replace Objects with Type Parameters 219
Item 3: Replace System.Type with Type Parameters 219
Item 4: Use Type Parameters for Ref Types (C# Only) 220
Iltem 5: Genericize Types That Vary Only by a Data Type 221
Balancing Readability with Expressiveness 227
Item 6: Use Expressive, Consistent
Type Parameter Names 228
Iltem 7: Use Aliasing for Complex or Frequently Used Types 231
Iltem 8: Don’t Use Constructed Types as Type Arguments 232
Item 9: Don’t Use Too Many Type Parameters 233
Item 10: Prefer Type Inference with Generic Methods 233
Iltem 11: Don’t Mix Generic and
Non-Generic Static Methods 234
Using BCL Generic Types 235
Iltem 12: Custom Collections Should Extend Collection<T> 235
Item 13: Use the Least Specialized Interface in Your APIs 235
Iltem 14: Enable “for each” Iteration with IEnumerable<T> 236
Applying Constraints 236
Item 15: Select the Least Restrictive Constraints 236
Iltem 16: Don’t Impose Hidden Constraints 237
Iltem 17: Avoid Multiple Constraint Ambiguity 237
Item 18: Provide Parameterless Constructors 238

Xi

Contents

The Kitchen Sink 239
Iltem 19: Use Static Data Members with Caution 239
Iltem 20: Use Interfaces in Lieu of Classes 240
ltem 21: Use Comparer<T> for All Type Comparisons 241
ltem 22: Use Nullable<T> for Optional Values 241
Iltem 23: Use EventHandler<T> for All Events 241

Summary 242

Chapter 11.: Under the Hood 243

Overview 243

Assumptions 244

High-Level Goals 244
Validate at Declaration 244
Simplicity 244
Platform Conformity 245
Language Agnostic Generics 245
No Boxing 245
No Meta-Programming 245

IL Representation of Generic Types 246

Specialization and Sharing 248
Code Specialization 248
Code Sharing 248
The .NET Hybrid Model 248
Just-in-Time Specialization 249

Exact Run-Time Types 254

Support for Polymorphic Recursion 256

NGen and Generic Types 257

Performance 259

Memory Footprint 261

Backward Compatibility 262

Summary 262

Chapter 12: Using Generics with C++ 263

Templates or Generics? 263

Blurring the Lines 264

No Limits 264

Generic Classes in C++ 264
Consuming Generic Classes 265
Inheritance 266
Nested Classes 267

Xii

Contents

Methods in Generic Classes 268
Default Types 268
Generic Methods in C++ 268
Generic Interfaces in C++ 270
Constraints 271
Generic Delegates in C++ 273
Mixing Generics and Templates 274
STL.NET 277
Summary 278
Chapter 13: Using Generics with J# 279
J# Generic Limitations 279
Migrating from Java Generics 280
Consuming Generic Types 280
Leveraging Cross-Language Support 281
Working with Interfaces 283
Complying with Constraints 285
Calling Generic Methods 287
Java Type Arguments 288
Calling Generic Delegates 289
Arrays of Generic Types 289
Summary 290
Chapter 14: Power Collections 291
A Little History 291
The Big Picture 292
Base Classes 292
Containers 293
Algorithms Class 295
Generic Structures 295
Delegates 296
Class Reference 296
Algorithms 296
Bag<T> 321
BigList<T> 332
BinaryPredicate<T> (Delegate) 336
CollectionBase<T> 336
Deque<T> 337
DictionaryBase<TKey, TValue> 341
ListBase<T> 342

Xiii

Contents

MultiDictionary<TKey, TValue>
MultiDictionaryBase<TKey, TValue>
OrderedBag<T>

OrderedBag<T>.View
OrderedDictionary<TKey, TValue>
OrderedDictionary<TKey, TValue>.View
OrderedMultiDictionary<TKey, TValue>
OrderedMultiDictionary<TKey, TValue>.View
OrderedSet<T>

OrderedSet<T>.View

Pair<TFirst, TSecond >
ReadOnlyCollectionBase<T>
ReadOnlyDictionaryBase<TKey, TValue>
ReadOnlyListBase<T>
ReadOnlyMultiDictionary<TKey, TValue>
Set<T>

Triple<TFirst, TSecond, TThird>

Additional Libraries
Summary

Index

Xiv

343
345
346
349
350
354
354
355
355
358
358
358
359
360
361
362
366
367
367

369

Introduction

Although generics are new to .NET platform, the concepts that motivated their introduction have been
around for years. However, while their value was often acknowledged, they were frequently stereotyped
as being highly complex, unwieldy, and unapproachable. This reputation always seemed to obscure
their value and limit their ability to capture the mindshare of the broader population of developers. The
real truth here, though, is that generics simply couldn’t become truly mainstream without first having
more languages and environments add support for generics. And, prior to version 2.0 of the NET
Framework, Visual Basic, C# and J#, developers were unable to use any generic constructs. As a result,
many of these developers remained unaware of the power and value of generics. You can’t miss some-
thing if you’ve never had it.

Now, with .NET Framework adding full support for generics, this dynamic will certainly change. And,
as generics begin to move out of the shadows and into the limelight, you're going to want to be in a
position to maximize their value in your own solutions. To get to that point, though, you'll need to
understand all the nuances associated with creating and consuming generics, how they reach their way
into and influence the fabric of the NET Framework.

The overriding goal of this book, then, is to provide a soup-to-nuts blend of basic syntax, key concepts,
and examples of generic libraries that will provide you with a foundation that will help you determine
how and when you might want to start leveraging generics. And, as you get more familiar with generics
and you start understanding some of their obvious—and not so obvious—implications, it’s likely you'll
also find yourself leveraging generics much more heavily than you may have ever expected.

Not Just Syntax Candy

Developers often look at new language features with a bit of skepticism. Every time some new twist is
added to a language, there are those who seem to want to minimize its impact. You can look at nearly
any language feature and pick it apart. Do you really need overloaded methods, for example? You cer-
tainly could create separate method names for each signature and achieve the same result. That’s not the
point, though. To reduce the argument to that level is to miss the underlying relevance of the feature.
The presence of overloaded methods impacts the way clients interact with your class and has a direct
impact on the readability, usability, and maintainability of your code.

XV

Introduction

This same logic should be applied when considering generics. Do you really have to use generic contain-
ers? No. All the old System.Collections types, with all their glaring type-safety and efficiency flaws,
are still right there for you to use. The question is: why would you continue to use them in the presence
of generics? Perhaps there are compatibility issues or other forces that may require you to use non-generic
types. Those conditions aside, though, there’s no real valid argument for using a non-generic container
in place of its generic equivalent.

My point here is that generics are more than just some new, optional way to parameterize your types. If
you drink the Kool-Aid (and you should), you'll find generics influencing your entire approach to how
you create and consume types. At a minimum, you'll find yourself raising your type-safety expectations.

Overcoming Stereotypes

C++ templates, perhaps the most widely used generic implementation, have a reputation among many
developers for adding complexity and reducing readability. This reputation, justified or not, seems to
lead some to conclude that supporting generics in any language somehow compromises the syntactic
elegance of that language. There’s this notion that generics makes your code appear as though it has
been run through an encryption algorithm.

So, as generics were coming onto the scene, there were many who seemed to be of this mindset. They
mapped C++ templates onto generics and immediately assumed that the addition of parameterized
types somehow has undermined the quality of some of the .NET languages. This, from my perspective,
seems to be an unfair mapping.

The NET implementation of generics certainly shares some syntactic elements with C++ templates. As
you look at generics in more detail, you should find that generics—by their very nature—do not pro-
mote the same level of obfuscation that is sometimes found within C++ templates. This limits their
power, but it also limits their impact on readability and maintainability.

Approaching Generics

A number of different approaches can be taken when tackling a topic of this nature. Some books will
take a more specification-oriented angle where topics are tackled from an almost lexical perspective.
Others books will take a more conceptual view and focus more on providing examples of what’s valid
without trying to recite, precisely, which syntax patterns are valid.

For this book, I definitely lean more toward the conceptual model. My goal here is to expose you to all
the elements of generics without necessarily exploring every permutation of syntax that is possible. My
goal here is to get developers to see the broader implications of generics, and that will be most success-
fully achieved through a detailed examination of the key conceptual aspects associated with creating
and consuming generic types.

What Does This Book Cover?

Professional .NET 2.0 Generics represents a soup-to-nuts, detailed look at all the facets of generics, provid-
ing developers with a comprehensive view of what can be achieved through the application of generics.

XVi

Introduction

The contents of the book fall into some logical categories. The book starts out with a series of chapters
that are focused primarily on the conceptual aspects of generics. Although these chapters use NET
generics to convey these concepts, they're really more broadly applicable to anyone who might be inter-
ested in understanding the overall value of using generics.

Beyond the conceptual, the book then moves on to a series of chapters that are dedicated to exploring
the specific syntactic mechanics of using .NET generics. These chapters look at all the ways generics are
applied to classes, methods, delegates, and so on and explore all the rules that govern their declaration
and consumption.

Once coverage of the mechanics are completed, the book then turns its attention to those libraries that
will provide you with some of the fundamental, out-of-the-box types that typically come with any envi-
ronment that supports generics. The book addresses this with two chapters that explore the BCL generic
types that are included with the NET Framework and a third-party library that provides even more
standard generic types that you're likely to find yourself leveraging in your own code.

To round things out, the book also examines some of the broader generic issues, including generic guide-
lines, a comparison with C++ templates, and a peek under the hood of the .NET generics implementation.

Who Is This Book For?

This book is targeted at a fairly wide spectrum of developers. Certainly, its broadest appeal will be those
developers who are first-time generic programmers. That population of developers will extract the most
benefit from the full range of topics I'm targeting here, spanning everything from the basic introduction
to syntax and concepts to the libraries and discussion of the underlying mechanics of generics.

The next tier of likely readers are those developers who might be transitioning from C++ templates or
even Java generics. If you fall into this category, you might find yourself more interested in diving
directly into the syntax and reference materials.

Overall, this book should be of value to anyone who wants a more comprehensive understanding of the
features and characteristics of the NET implementation of generics. Even if you're not a .NET developer,
you may find generic topics here that are of value to you.

While this book is targeted at a fairly broad audience, it is not likely to be appropriate for anyone that is
relatively new to the field of computer science. Generics will simply be too difficult to tackle if you don’t
have a firm handle on basic object-oriented programming concepts and techniques.

Language Considerations

As a CLS-compliant feature, generics are supported under C#, Visual Basic, C++, and J#. And, as is the
case for many .NET authors, there is always the issue of how to address a technology that spans all these
languages without diving deeply into the syntactic nuances of each one. This is especially true with
something like generics, where the generic syntax between, say, VB and C#, varies quite a bit.

These realities, coupled with my strong belief that you need to see examples in your language of prefer-
ence, led me down the path of showing examples in both Visual Basic and C#. My logic was based on

XVii

Introduction

the fact that these two languages appear to be two of the more popular among .NET developers and
are also likely to be the languages where there will be the largest population of first-time generics
programmers.

Throughout this book, then, you will notice that I have provided side-by-side examples in both Visual
Basic and C#. And, to round things out, I've also included separate chapters on C++ and J#, pointing out
the specifics of each of these two languages. C++ is especially interesting, because it allows you to lever-
age a combination of both templates and generics.

Synopsis

The sections that follow give you an overview of each of the chapters of the book, providing a snapshot
of the fundamental role each chapter plays in the overall landscape of the book. This breakdown should
provide you with a clear view of what the book covers and what materials are best targeted at your spe-
cific needs.

Chapter 1: Generics 101

This chapter is a basic generics primer. It lays out all the fundamental building blocks of generic con-
cepts, allowing first-time generics developers to establish a solid generics foundation that serves as the
basis for much of what appears in the ensuing chapters. The focus of this chapter is more on the under-
lying concepts that make generics necessary and less on the detailed mechanics of working with generic
types. If generics are completely new to you, you need to start here.

Chapter 2: Valuing Type Safety

This book is littered with references to the value and importance of type safety. To appreciate generics is
to appreciate type safety. This chapter builds on the concepts that are established in Chapter 1, exploring
the basic elements of type safety that we’ve all been forced to live with outside the world of generics.
The goal here is to provide a clear illustration of how and why developers should value type safety and
explain how generics can improve the overall type safety profile of their code.

Chapter 3: Generics # Templates

Generics are often confused with C++ templates and, although they share some common heritage and
goals, they are most certainly different. And, before digging into the syntax of generics, it is important to
clarify how generics differ from templates. Naturally, if you've never dealt with templates before (and
never plan to) this distinction will be of little value. However, if you’ve come from a C++ background,
you’ll want to be very clear about how these differences might affect your overall approach to the NET
generics implementation.

Chapter 4: Generic Classes

A big part of the value of generics is having the ability to introduce your own generic types (or extend
existing generic types). As such, it’s vital that you have a good grasp of what is involved in the defini-
tion of generic classes. This chapter’s look at generic classes should help to crystallize the true power of

xviii

Introduction

what can be achieved with generics. It explores all the facets of how generics influence the signature and
implementation of a type. Overall, this chapter should cover all the traditional topics that are associated
with non-generic classes, including a look at how inheritance and polymorphism are implemented using
generic types.

Chapter 5: Generic Methods

With generic classes out of the way, the book then turns its attention to the more subtle, less complex
area of generic methods. This chapter is focused on highlighting the overall utility and power that can be
achieved through making a method generic. In fact, some of the most immediate and useful applications
of generics will likely be made through the use of generic methods. So, even though they’re relatively
straightforward, it’s important to see what, conceptually, they enable.

Chapter 6: Generic Delegates

Delegates are one of the more heavily used features of the NET platform, and they are also one of the
most obvious areas where generics allow you to simplify your code. This chapter looks at how the con-
cept of delegates is naturally extended through generics, allowing single delegates to replace all the
various permutations of delegates you might have previously required. Once you've been exposed to
the simplicity and type safety of generic delegates, you may never use a non-generic delegate again.

Chapter 7: Generic Constraints

At this stage in the book, you already will have been exposed to many common applications of generics.
You will now be at a point where you'll need to consider how to add more specificity to the parameters
that are supplied to your generic classes, methods, delegates, and so on. This chapter provides a detailed
view of how constraints are applied to your type parameters to achieve this goal. Constraints are a core
concept to .NET generics, and they have significant influence on how you will approach the design and
interface of your type hierarchies.

Chapter 8: BCL Generics

This chapter provides a comprehensive view of all the generic types that are included as part of the
.NET Framework’s Base Class Library (BCL). Although this chapter largely serves as a reference, it also
provides a conceptual view of the namespace. This conceptual view will give you a much better under-
standing of how and when each of these generic types can be employed in your own solutions. As part
of this, the chapter also discusses how you might extend these classes and introduce your own, deriva-
tive types. The chapter is filled with examples that exercise many of the key features of each type.
Because you're likely to be using many of these classes in place of the old, non-generic versions, it’s
important to familiarize yourself with the basics of this library.

Chapter 9: Reflection, Serialization, and Remoting

Generics also reach into other areas of the .NET platform. This chapter looks at three key areas of the
platform that were modified or improved via generics. Specifically, the chapter examines how .NET’s
reflection, remoting, and serialization are influenced by generics. The generic elements of each of these
areas are explored with examples that highlight the key areas that deserve special, generic attention.

Xix

Introduction

Chapter 10: Generics Guidelines

With the introduction of any new language feature also comes the need for guidelines that provide some
rules and conventions for how that feature should be applied. Generics are no different. They, too, come
with an ever-growing list of guidelines that shape their usage. This chapter looks at this evolving area,
providing developers with a compilation of those guidelines that are emerging in the area of generics.
The chapter provides a point-by-point breakdown of each guideline and explains the rationale that moti-
vated its creation.

Chapter 11: Under The Hood

Understanding the syntax and concepts of generics isn’t really enough. If you're really going to under-
stand their efficiencies and behavior, you'll need to dig deeper. That deeper, “under the hood view” of
generics is the focus of this chapter. The chapter looks at how the CLR manages all aspects of generic
types and explains how .NET is able to represent generic types at run-time. This discussion also includes
a look at some basic benchmarks that highlight the run-time efficiencies that can be achieved with
generic types.

Chapter 12: Using Generics with C++

The examples throughout the other chapters in this book are focused entirely on using generics with
Visual Basic and C#. However, the concepts in these chapters apply to any of the .NET languages that
can create or consume generic types. And, each of these other languages includes its own set of generic
nuances. This chapter looks, specifically, at how the C++ language can be used with generic types. This
chapter also discusses how generic types can be mixed with C++ templates in a way that offers C++
developers the best of both worlds.

Chapter 13: Using Generics with J#

Just as Chapter 12 looked at the nuances of C++ with generic types, this chapter looks at how developers
can employ generics as part of the J# code. It looks at how all the fundamental types are used with J#,
explaining the syntax variations and exploring some of the generic limitations imposed within J#.

Chapter 14: Power Collections

Since the introduction of generics, developers have been scrambling to create new, third-party libraries,
many with overlapping goals. Among these, the Power Collections library appears to have the most
momentum and support and, as such, is likely to continue to be a key player in the generic library space.
Given this reality, it made sense to include a complete chapter that provides conceptual and reference
information for this library. Much like Chapter 8, this library includes comprehensive coverage of all the
types in the library along with examples that exercise its more interesting interfaces.

Conventions

Throughout this book, you will find that the text conforms to a common set of conventions. This follow-
ing represent some of the examples of conventions that I have followed accompanied by an explanation
of their meaning:

XX

Introduction

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

All code examples are highlighted with a gray background with a heading that
designates the language being employed in the example.

As for styles in the text:

Q Any code that appears within text or any reference to a namespace is shown as follows:
MyClass<T> or System.Collections.Generic.

Q Emphasized words are shown in italics.

Q All generic types appearing within the text use the C# representation. So, a generic class would
appear as: MyClass<T>.

Source Code

All of the source code for this book is available at the Wrox Press Web site, which is located at
http://www.wrox.com. This site should provide you with a clear path to source code for all the
Wrox books. Just locate the title of this book and you should be all set.

Generally speaking, the examples should match precisely what you see in the book. You'll also come
across some scenarios where the example directories have a superset of what’s in the book. These exam-
ples typically just represent additional scenarios that were outside the scope of what ended up being
included in the text.

Errata

I'd like to think this book is 100% bug free. However, as a developer, I know just how unlikely that is.
There are certainly going to be mistakes that find there way into any book. And, while I hope the list of
issues is short, there still needs to be a centralized location for capturing these errors so they can be
shared with the rest of the development community.

For Wrox books, this information is all captured through the www.wrox . com Web site. Simply look up
this book and, once you locate it, select the “errata” link. This will allow you to both report and view the
errata for this book.

p2p.wrox.com

In the true spirit of the programmer-to-programmer motto, Wrox maintains a series of forums at
p2p.wrox.com where members of the development community share ideas and opinions. You'll dis-
cover everyone from authors to editors contributing content and generally interacting in these forums.
They provide a great avenue for exchanging ideas.

XXi

Generics 101

For many programmers, generics will be an entirely new language feature. As such, it is important
to establish a foundation of concepts that will clarify the role and significance of generics in the
overall scheme of the NET platform. This chapter provides this fundamental, conceptual view of
generics that should provide you with a solid base of ideas that can be built upon in the chapters
that follow. Along the way, you'll get the opportunity build your first generic types and get some
exposure to the basic mechanics of generic types. This chapter also introduces a set of new terms
that are used when referring to common generic concepts. You'll need to have a clear understanding
of these terms because they are used throughout the book. Naturally, if you're already comfortable
with the basics of generics, you may want to skip over this chapter.

Why Generics?

Most programmers can point to that one moment in their career where the light of abstraction or
generalization went off in their head. If you have a background in structured programming, this
might have been uncovered during a foray into the world of function pointers. Or, maybe it just
occurred to you one day when you discovered you could extend the functionality of one of your
methods by parameterizing some aspect of its behavior. If you're from the OO crowd, this proba-
bly happened one day when you stumbled upon your first real good use for polymorphism. At
that moment, whenever it was, you realized that goal of generality, extensibility, and reusability
that everyone had been evangelizing.

Now, with generics, you have an opportunity to wrap your brain around another form of general-
ization. This new brand of generalization will provide you with a host of new concepts to toss into
your proverbial bag of coding and design techniques. And, once you’'ve mastered generics, you
may find yourself wondering how you lived without them for so long.

To understand the fundamental value of generics, you really need to see a compelling example.
Let’s start with a sample of some code that you might write without generics. Suppose you've

Chapter 1

decided to write your own Pyramid Manager product that will allow you to track the relationships
between each of the salespeople in a pyramid scheme. You need to start with a basic domain object that
will hold the common attributes of each of salesperson. The object is as follows:

[VB code]

Public Class SalesPerson
Private _id As Integer
Private _name As String

Public Sub New(ByVal id As Integer, ByVal name As String)
Me._id = id
Me._name = name

End Sub

Public ReadOnly Property Id() As Integer
Get
Return Me._id
End Get
End Property

Public ReadOnly Property Name() As String
Get
Return Me._name
End Get
End Property

Public Overrides Function ToString() As String
Return Me._name
End Function
End Class

[C# code]

public class SalesPerson {
private int _id;
private string _name;

public SalesPerson(int id, string name) {
this._id = id;
this. name = name;

public int Id {
get { return this._id; }

public string Name {
get { return this._name; }

public override string ToString() {
return this._name;

Generics 101

Now that you have an object to hold each salesperson, you'll want to place these salespeople into some
form of hierarchical data structure where each SalesPerson can be associated with one or more “child”
SalesPerson objects. Fortunately, you already have a tree structure that will let you represent just such
a structure (this is an extremely simplified variant of the existing BCL TreeNode):

[VB code]
Imports System.Collections

Public Class TreeNode
Private _nodeData As Object
Private _childNodes As ArrayList

Public Sub New(ByVal nodeData As Object)
Me._nodeData = nodeData
Me._childNodes = New ArrayList

End Sub

Public ReadOnly Property Data() As Object
Get
Return Me._nodeData
End Get
End Property

Public ReadOnly Property Children() As TreeNode ()
Get
Return Me._childNodes.ToArray ()
End Get
End Property

Default Public ReadOnly Property Item(ByVal index As Int32) As TreeNode
Get
Return Me._childNodes (index)
End Get
End Property

Public Function AddChild(ByVal nodeData As Object) As TreeNode
Dim newNode As New TreeNode (nodeData)
Me._childNodes.Add (newNode)
Return newNode

End Function

Overrides Function ToString() As String
Return Me._nodeData.ToString ()
End Function
End Class

[C# codel
using System.Collections;

public class TreeNode {
private object _nodeData;

private ArrayList _childNodes;

public TreeNode (object nodeData) ({

Chapter 1

this._nodeData = nodeData;
this._childNodes = new ArrayList();
}

public object Data {
get { return this._nodeData; }
}

public TreeNode[] Children {
get { return (TreeNode[])this._childNodes.ToArray (typeof (TreeNode)); 1}

}

public TreeNode this[int index] {
get { return (TreeNode)this._childNodes[index]; }

}

public TreeNode AddChild(object nodeData) {
TreeNode newNode = new TreeNode (nodeData) ;
this._childNodes.Add (newNode) ;
return newNode;

}

public override string ToString() {
return this._nodeData.ToString() ;

}

As you can see, your tree uses the least common denominator type of object to represent each of the
items it manages. The result could certainly be considered a generic data container in that it can be popu-
lated with any data type. In this case, you're going to want to populate this structure with instances of
your SalesPerson class. Here’s some simple code that demonstrates how you would go about building
a simple instance of your pyramid structure:

[VB code]

Dim rootNode, childl As TreeNode

rootNode = New TreeNode (New SalesPerson(111l, "Head Honcho"))
childl = rootNode.addChild (New SalesPerson (222, "Big Cheese"))
rootNode.addChild (New SalesPerson (333, "Top Dog"))
childl.addChild (New SalesPerson (444, "Big Enchilada"))
childl.AddChild (New SalesPerson (555, "Mr. Big"))

[C# code]

TreeNode rootNode = new TreeNode (new SalesPerson(l1l1l, "Head Honcho")) ;
TreeNode childl = rootNode.AddChild(new SalesPerson (222, "Big Cheese"));
rootNode.AddChild (new SalesPerson (333, "Top Dog"));

childl.AddChild (new SalesPerson (444, "Big Enchilada"));
childl.AddChild (new SalesPerson (555, "Mr. Big"));

So, your pyramid is set now and you're ready to start rolling in the dough. But wait, as you might expect
with any pyramid scheme, there’s a catch. As you begin to work more intimately with your tree, you're
going to discover that it has a significant flaw. Imagine a scenario where you’ve navigated to a specific

Generics 101

node in the tree and you want to access the information about the SalesPerson associated with that
node in the tree. The code to retrieve the instance of the SalesPerson would appear as follows:

[VB code]
Dim aSalesPerson As SalesPerson
aSalesPerson = DirectCast(childl(0).Data, SalesPerson)

[C# code]
SalesPerson aSalesPerson = (SalesPerson)child[0].Data;

As you can see, in order to get your SalesPerson object out of the TreeNode, you are forced to cast

the object type to the correct type. What's the big deal with that, you say? Well, if you value type safety
in your code at all—and you should —you will find this cast a necessary evil that you’d much rather
avoid. Later, in Chapter 2, “Valuing Type Safety,” you see just how problematic this really is. If you're
not already repulsed by this, you will be by the time you're more acclimated to generics.

The other downside you need to consider here, which may be even more significant, is the efficiency of
this structure. Each time you put an item into your tree, it must be represented as an object. In this
example, the SalesPerson was already an object, so no extra overhead was needed to make it con-
form to the requirements of your tree. However, to protect the innocent, let’s assume you're going to
eliminate the use of the SalesPerson type and simply populate the tree with sales totals for each per-
son. So, your code to populate would be modified as follows:

[VB code]

Dim rootNode, childl As TreeNode
rootNode = New TreeNode (3000.23)
childl = rootNode.AddChild(1403.43)
rootNode.AddChi1d (943.94)
childl.AddChild (5123.94)
childl.AddChi1d (94994.0)

[C# code]

TreeNode rootNode = new TreeNode (3000.23);
TreeNode childl = rootNode.AddChild(1403.43);
rootNode.AddChild (943.94) ;
childl.AddChild(5123.94) ;

childl.AddChi1d (94994.00) ;

In order to represent these numbers in your tree structure, each number will end up being boxed so it
can be represented as an object. And, as you are probably aware, this process of boxing is going to
introduce more overhead. This may seem negligible. However, you need to remember that containers of
this nature can be populated with relatively large numbers of objects, which means any extra overhead
associated with processing each item will impact performance exponentially.

At this stage, you’d probably agree that you’'d like to overcome some of these shortcomings. What
options are available to you? The typical solution to this dilemma is to create a type-safe version of the
container that will support direct references to the type you want contained. For the Pyramid Manager
example, creating a tree that accepts and returns SalesPerson objects would achieve this. Here’s what
the revised, type-safe version looks like:

Chapter 1

[VB code]
Imports System.Collections

Public Class SalesPersonNode
Private _nodeData As SalesPerson
Private _childNodes As ArrayList

Public Sub New(ByVal nodeData As SalesPerson)
Me._nodeData = nodeData
Me._childNodes = New ArrayList

End Sub

Public ReadOnly Property Data() As SalesPerson
Get
Return Me._nodeData
End Get
End Property

Public ReadOnly Property Children() As Array
Get
Return Me._childNodes.ToArray ()
End Get
End Property

Default Public ReadOnly Property Item(ByVal index As Long) As SalesPersonNode
Get
Return Me._childNodes (index)
End Get
End Property

Public Function AddChild(ByVal nodeData As SalesPerson) As SalesPersonNode
Dim newNode As SalesPersonNode = New SalesPersonNode (nodeData)
Me._childNodes.Add (newNode)

Return newNode

End Function

Overrides Function ToString() As String
Return Me._nodeData.ToString ()
End Function
End Class

[C# code]
using System.Collections;

public class SalesPersonNode {
private SalesPerson _nodeData;
private ArrayList _childNodes;

public SalesPersonNode (SalesPerson nodeData) {

this._nodeData = nodeData;
this._childNodes = new ArrayList();

public SalesPerson Data {

Generics 101

get { return this._nodeData; }

}

public SalesPerson[] Children {
get {
return (SalesPerson[])this._childNodes.ToArray (typeof (SalesPerson)) ;

}
}

public SalesPerson this[int index] {
get { return (SalesPerson)this._childNodes[index]; }

}

public SalesPersonNode AddChild(SalesPerson nodeData) {
SalesPersonNode newNode = new SalesPersonNode (nodeData) ;
this._childNodes.Add (newNode) ;
return newNode;

}

public override string ToString() {
return this._nodeData.ToString() ;
}

This new SalesPersonNode gives you a very type-safe approach to building your pyramid. It also
allows you to introduce more domain-specific operations to the collection without fear of breaking its
generality. The biggest problem with this, though, is that it forces you to create a separate class for every
data type you want to contain. For example, if you want to go back to the previous example where the
tree held only numbers, you'd need to make a DoubleTreeNode. And, for the most part, that’s what
developers have often done. They essentially end up bloating their overall code size to support each of
these type-specific structures. Or, they’ve ended up living with some of the downside of the less type-
safe solutions (blech). Neither approach is all that appealing.

Enter Generics

As you can imagine by now, the problems pointed out in these examples are at the very core of the ratio-
nale for introducing generics. With generics, you can finally strike a balance between type safety and
generality while, at the same time, eliminating the need to overpopulate your libraries with a gaggle of
unnecessary classes. Let’s look at how generics would be applied to the Pyramid Manager example.
Making this change will mostly involve rewriting the TreeNode class. The SalesPerson object will
remain unscathed as part of this conversion.

[VB code]
Imports System.Collections

Public Class TreeNode (Of T)
Private _nodeData As T
Private _childNodes As ArraylList

Public Sub New(ByVal nodeData As T)
Me._nodeData = nodeData
Me._childNodes = New ArrayList

Chapter 1

End Sub

Public ReadOnly Property Data() As T
Get
Return Me._nodeData
End Get
End Property

Public ReadOnly Property Children() As TreeNode(Of T) ()
Get
Return Me._childNodes.ToArray ()
End Get
End Property

Default Public ReadOnly Property Item(ByVal index As Long) As TreeNode (Of T)
Get
Return Me._childNodes (index)
End Get
End Property

Public Function AddChild(ByVal nodeData As T) As TreeNode (Of T)
Dim newNode As TreeNode (Of T) = New TreeNode (Of T) (nodeData)
Me._childNodes.Add (newNode)

Return newNode

End Function

Overrides Function ToString() As String
Return Me._nodeData.ToString ()
End Function
End Class

[C# code]
using System.Collections;

public class TreeNode<T> {
private T _nodeData;
private ArrayList _childNodes;

public TreeNode (T nodeData) {
this. nodeData = nodeData;
this._childNodes = new ArrayList();

public T Data {
get { return this._nodeData; }

public TreeNode<T>[] Children {
get { return (TreeNode<T>[])this._childNodes.ToArray (typeof (TreeNode<T>)) ;}

public TreeNode<T> this[int index] {
get { return (TreeNode<T>)this._childNodes[index]; }

Generics 101

}

public TreeNode<T> AddChild (T nodeData) ({
TreeNode<T> newNode = new TreeNode<T> (nodeData) ;
this._childNodes.Add (newNode) ;
return newNode;

}

public override string ToString() {
return this._nodeData.ToString() ;

}

The first thing you should notice here is how the declaration of TreeNode changed. The class name now
has some additional information appended to it, which indicates that it is a generic type. As such, your
TreeNode will now accept a type as a parameter. This means that you can officially abandon your need
to cling to the object data type as the means of genericizing your TreeNode. Instead, you can use this
incoming parameter T to represent the specific type of object that will be contained by your tree node.

The other change you’ll notice is that all the references to the object data type have been replaced with
a type parameter, T. In reality, as you look at this class now, it doesn’t seem all that different from the
non-generic version. You've essentially just modified it to accept a parameter that is used as a place-
holder for the data type that will end up being substituted at run-time.

Now that you have a new generic type, you need to figure out how to populate it with data. As a consumer
of a generic type, you should find that working with a generic type doesn’t introduce any significant new
concepts. Mostly, you just need to provide the additional type parameter to the class when you declare
each new instance of the TreeNode. This will provide the compiler and the CLR all the information they
need to successfully construct the run-time representation of your generic class. Here’s the generic ver-
sion of the code that is used to populate the tree:

[VB code]

Dim rootNode, childl As TreeNode (0Of SalesPerson)

rootNode = New TreeNode (Of SalesPerson) (New SalesPerson(1l1ll, "Head Honcho"))
childl = rootNode.AddChild (New SalesPerson (222, "Big Cheese"))
rootNode.AddChild (New SalesPerson (333, "Top Dog"))

childl.AddChild (New SalesPerson (444, "Big Enchilada"))

childl.AddChild (New SalesPerson (555, "Mr. Big"))

[C# code]
TreeNode<SalesPerson> rootNode =

new TreeNode<SalesPerson> (new SalesPerson(l111l, "Head Honcho")) ;
TreeNode<SalesPerson> childl =

rootNode.AddChild (new SalesPerson (222, "Big Cheese"));
rootNode.AddChild (new SalesPerson (333, "Top Dog"));
childl.AddChild (new SalesPerson (444, "Big Enchilada"));
childl.AddChild (new SalesPerson(555, "Mr. Big")):;

Notice that, as each TreeNode is constructed, it must be provided with a data type. In this example,
a SalesPerson data type is provided, which then forces all references to the type parameter T to be
replaced, at run-time, with the type SalesPerson. And, as you access the contents of your tree, it’s able

Chapter 1

to return you these SalesPerson instances without requiring those unappealing casts that you were
forced to employ in the previous example.

Although this example only provides a small glimpse into the functionality of a generic type, it should
make it apparent that generics are going to find their way into your code. With generics, I cannot imag-
ine any scenario where you’d ever want to compromise and use any kind of data container that wasn’t
type safe.

Hello Generics

10

Every programming book known to man seems to include the obligatory “Hello World” example. It’s
the de facto standard that is used to provide a quick, minimal glimpse of a functioning program. And,
with the generics rationale out of the way, it only seems fair to offer up my own “Hello Generics” exam-
ple that takes the classic version and spruces it up with a slight generics twist. This example will also
give you another opportunity to see generics in action.

[VB code]
Public Class HelloGenerics (Of T)
Private _thisTalker As T

Public Property Talker() As T
Get
Return Talker
End Get
Set (ByVal value As T)
Me._thisTalker = value
End Set
End Property

Public Sub SayHello()
Dim helloWorld As String

helloWorld = _thisTalker.ToString ()
Console.WriteLine (helloWorld)
End Sub
End Class
[C# code]

public class HelloGenerics<T> {
private T _thisTalker;

public T Talker {
get { return this._thisTalker; }
set { this._thisTalker = value; }
}

public void SayHello() {
string helloWorld = _thisTalker.ToString() ;
Console.WriteLine (helloWorld) ;

Generics 101

The first step is to create a new generic type, HelloGenerics, that accepts a single type parameter. The
idea here is to build a generic type can accept any object type and ask it to say “Hello World”. So, instead
of having the limitation of saying hello in a single language, the generic type is going to be used to pro-
vide a more dynamic, more worldly solution that says hello in a variety of tongues. After all, if it’s going
to say hello to the world, it should not expect that everyone is going to understand English.

The next step is to create a pool of objects that can be passed as parameters to the HelloGenerics type,
each with its own language-specific variation on how to say hello. You should notice that these can be
objects of any type and they are not required to share any common base class that provides a virtual
interface for saying hello. Although valid, that would be the pure OO way to do this and would not
demonstrate the generic approach to this problem. The lineup of international objects is as follows:

[VB code]
Public Class GermanSpeaker
Public Overrides Function ToString() As String
Return "Hallo Welt!"
End Function
End Class

Public Class SpanishSpeaker
Public Overrides Function ToString() As String
Return "Hola Mundo!"
End Function
End Class

Public Class EnglishSpeaker
Public Overrides Function ToString() As String
Return "Hello World!"
End Function
End Class

Public Class APLSpeaker
Public Overrides Function ToString() As String
Return "!dlroW olleH"
End Function
End Class

[C# code]
public class GermanSpeaker {
public override string ToString() {
return "Hallo Welt!";
}
}

public class SpanishSpeaker ({
public override string ToString() {
return "Hola Mundo!";
}
}

public class EnglishSpeaker ({
public override string ToString() {
return "Hello World!";

11

Chapter 1

12

}

public class APLSpeaker {
public override string ToString() {
return "!dlroW olleH";

}

Two random observations stood out after I put these classes together. First, I fully expected the German
version of this to be much longer. Every international translation of software I ever worked on for
Germany seemed to double the length of every string. Also, I tossed APL in here because, as a program-
ming language, it always seemed foreign to me.

The next step in this process is to get this generic type actually speaking. This is accomplished by con-
structing a few instances of HelloGenerics. The following code will take care of this last bit of work:

[VB code]

Dim talkerl As New HelloGenerics (Of GermanSpeaker) ()
talkerl.Talker = New GermanSpeaker ()
talkerl.SayHello()

Dim talker2 As New HelloGenerics (Of SpanishSpeaker) ()
talker2.Talker = New SpanishSpeaker ()
talker2.SayHello ()

[C# code]

HelloGenerics<GermanSpeaker> talkerl = new HelloGenerics<GermanSpeaker> () ;
talkerl.Talker = new GermanSpeaker () ;

talkerl.SayHello();

HelloGenerics<SpanishSpeaker> talker2 = new HelloGenerics<SpanishSpeaker> () ;
talker2.Talker = new SpanishSpeaker () ;
talker2.SayHello() ;

All that’s left now is to run this code and you’'ll see the multilingual “Hello World” break through all
new international barriers. Although not all that practical (what “hello world” app is?), this example
does help to clarify the basic steps that are involved in building and consuming a simple generic type.

More Conceptual View

At this stage, it’s my hope that you have a much better feeling for why the term generics was coined to
describe this language feature. Generics bring a new level of generality to your types, which allows you
to separate the behavior of a class from the data types that it operates on. This is, in essence, precisely
what makes the type generic. Through generics, you are able to add parameters to your types much like
you would add parameters to your methods to extend their generality. And, just as parameters for your
methods allow you to alter the nature of your method, so too do generic type parameters allow you to
alter the representation of your classes, methods, and so on.

The beauty of generics, as you see in more detail in the ensuing chapters, is that this mechanism allows
you to build more adaptable, more general versions of your code. Your classes, methods, and interfaces

Generics 101

are able to take on this new dimension of generality while still allowing you to write more robust, more
type-safe code. The truth is, the type-safety benefits — on their own—make generics worth the cost of
admission.

So, as you begin to work with generics, you should try to be more than a consumer of the standard
generic types. You should look for opportunities to construct your own generic types, introduce generic
methods, or leverage any number of the generic mechanisms that are covered in the scope of this book.
Once you get comfortable with the concepts, you're likely to find yourself infusing generics into your
approach to a much wider spectrum of solutions than you may have initially envisioned.

Parametric Polymorphism

While I'm being conceptual, it’s important to introduce the idea of parametric polymorphism. The term is
often used to describe the flavor of polymorphism that can be achieved with generic types. To under-
stand the concept, let’s turn back the time machine and look at the classic example that is used to convey
the root concept of polymorphism. The diagram in Figure 1-1 shows a basic object hierarchy with a
Shape base class and a series of specialized shape types.

H Methods
\ == Draw h
B GGEEEEE .
/Rectangle \ /Oval \ /Line \
Class Class Class
— Shape —> Shape — Shape
El Methods E Methods El Methods
== Draw == Draw == Draw
o % o % o %

Figure 1-1

This example demonstrates how behavior can be generalized to a base class (Shape) and, through poly-
morphism, provides a specific implementation of a Draw method for each type of shape. The beauty of
polymorphism is that you can introduce new, specialized behaviors for a Shape without altering any-
thing about the client’s fundamental view of a Shape. If you decide you want to add a Square, you can
add it and it will immediately be on equal footing with any other Shape in the system.

This little trip down polymorphic memory lane illustrates the fundamental idea behind polymorphism.
So, what is parametric polymorphism? Well, instead of achieving polymorphism through inheritance,
generics allow you to achieve the functional equivalent by allowing you to parameterize your types.
Where regular polymorphism might use a virtual method table to override the methods of a parent
object, parametric polymorphism achieves a similar result by allowing a single class to dynamically

13

Chapter 1

substitute the types referenced in its internal implementation. This ability to alter a class’s behavior via
a type parameter is seen simply as an alternative form of polymorphism, thus the name parametric
polymorphism.

While I think it would be incomplete to discuss generics without including parametric polymorphism,
it's also fair to say that the .NET implementation of generics imposes some constraints that limit the
amount of polymorphic behavior it can achieve. C++ and other compile-time approaches to generics, as
discussed in Chapter 3, “Generics # Templates,” provide developers with a richer set of polymorphic
possibilities.

Terminology

In addition to nailing down generic concepts, it’s important to establish a clear set of terms that are used
to describe the different facets of generics. It’s also important for you to have some precision in your
generic vocabulary, because many of these terms are referenced heavily throughout the remainder of
this book.

First, I'll start by building the shell of a simple generic type that can be referenced as part of this explo-
ration of generic terminology. The following generic Stack type should serve that purpose well:

[VB.NET Example]

Public Class Stack(Of T)
Private items() as T
Private count As Integer

Public Sub Push(item as T)
End Sub
Public Function Pop() as T

End Function
End Class

[C# Example]

public class Stack<T> {
private T[] items;
private int count;

public void Push(T item) {...}
public T Pop() {...}

Type Parameters

14

A type parameter refers to the parameter that is used in the definition of your generic type. In the Stack
example, the class accepts one type parameter, T. Each generic type can accept one or more type parame-
ters, and this list of parameters will define the signature of your type. The names used for these parameters
are then referenced throughout the implementation of your new type. For the Stack, you can see where

multiple references have been added to the Stack’s type parameter, T.

Generics 101

Although type parameters can be applied to classes, structs, and interfaces, they cannot be directly
applied to indexers, properties, or events. So, when you invoke a property of an object, for example, you
cannot supply any type arguments. This is not to say that these constructs have no awareness of type
parameters. Indexers, properties, and events can all reference type parameters in their signatures; they
simply can’t explicitly accept their own type arguments. Instead, those types must be defined as part of
the surrounding class.

Open Types

Although stack shares many of the characteristics of any class you might declare, its ability to accept a
type parameter as part of its declaration means you need to further qualify the existing naming conven-
tion to accurately describe this new construct. Instead of referring to this as a class, generics consider the
Stack<T> an “open type.” My assumption here is that the term “open” is meant to convey the idea that
the type is not fully defined and is “open” to taking on multiple concrete representations. If you have
some exposure to C++ templates, you may be more comfortable referring to this as a parameterized
type. For the sake of this discussion, though, we will stick with the accepted .NET generics terminology.

Constructed Types

Open types and type parameters are all about defining the structure of your generic type. A constructed
type, on the other hand, represents a concrete instance of one of your open types. To create a constructed
type from your open Stack type, you'd execute the following code:

[VB code]
Dim myStringStack As New Stack(Of String)

[C# code]
Stack<sting> myStringStack;

This constructed type shares many of the attributes of traditional .NET types. They do, however, have
some distinguishing syntactic characteristics worth exploring.

Type Arguments

Type arguments are likely the simplest concept to explain. Whenever you instantiate a constructed type,
you must provide specific types for each of the type parameters required by the given open type you are
constructing. So, when you declared the constructed type Stack<string> in the preceding section, the
string type passed in would be considered a type argument.

Open and Closed Constructed Types

When creating a constructed type, you are not always required to provide a type argument. Take a
look at the following snippet of a generic type declaration, which illustrates a scenario where this
would be valid:

15

Chapter 1

[VB.NET Example]

Public Class MyType (Of T)
Private constructedTypel As MyOtherTypel (Of Integer)
Private constructedType2 As MyOtherType (Of T)

End Class
[C# Example]
public class MyType<T> {

private constructedTypel<Integer> memberl;
private constructedType2<T> member?2;

This example creates an open type MyType, which has two data members that are constructed types. The
first data member, constructedTypel, is considered a closed constructed type because its type argu-
ment is fixed or “closed” to further definition. Its type argument will always be an Integer. The other
data member, constructedType2, throws in a new twist. Instead of passing a concrete type as its type
argument, it passes a type argument of T, which is the type parameter defined for the generic type.
Despite this variation, the type is still considered a constructed type. However, because its parameter is
still open to run-time definition, it is referred to as an open constructed type.

Generic Methods

So far, the examples of generic types have been limited to generic classes. However, generics can also be
applied to individual methods. The following is a very simple example of a generic method:

[VB.NET Example]
Public Function CalculateValue (Of T) (myParaml as T, myParam2 as Integer) As T
Dim varl As T

End Function

[C# Example]
public T CalculateValue<T> (T myParaml, int myParam2) {
T varl;

Like open types, generic methods also accept a type parameter. And, like open types, generic methods
can reference this parameter as part of their signature or implementation. In fact, this example loads up
the references to the type parameter to illustrate this point. The return type, one of its parameters, and a
local variable all reference the type parameter T. Chapter 5, “Generic Methods,” looks more closely at
the details of generic methods.

Type Instantiation

The first time the Just-In-Time (JIT) compiler comes across a constructed type in your code, it must trans-
form that type into the appropriate IL representation. During this process, it will examine each of the
incoming type arguments and substitute each of the open type’s parameters with the data types of these

16

Generics 101

arguments. The result will be the accurate run-time representation of your constructed type. This
transformation process is considered “type instantiation” because it yields an actual instance of the
constructed type.

Arity

Arity simply refers to the number of type parameters that are used by a generic type. So, if your type has
three type parameters, it is said to have an arity of 3. And, just to be complete, a type that has no type
parameters has an arity of zero. You'll often find this term used in scenarios where you are using reflec-
tion to examine the characteristics of generic types.

Generic Types

Generic types is probably the most heavily used term referenced throughout this book. It is the all-
encompassing term that is intended to describe any class, struct, event, or delegate that accepts one or
more type parameters. This term is not really part of any formally accepted generics terminology and is
somewhat synonymous with the idea of an open type. However, it’s often a more useful term to invoke
when attempting to describe the broadest definition of any type that supports generic behavior.

Bringing It All Together

So, now that you're equipped with generics terminology, let’s take it out for a spin. When you declare a
generic type, that type is referred to as an open type (MyType<T>). And, when you declare an instance of
that type by passing type arguments into the type parameters (MyType<int>), you form a constructed
type. Whew. That was a mouthful. Still, it’s just that kind of phrasing that’s sure to make you a hit at the
next Christmas party.

Summary

The goal of this chapter was to introduce the basic concepts associated with constructing and consuming
generic types. It started out by examining a simple non-generic solution. As part of that example, you
looked at some of the pitfalls that are typically associated with using these non-generic types. With that
as a backdrop, you then went on to explore how generics can be applied to overcome the issues that are
highlighted in these examples. The chapter also touched, briefly, on some of the higher-level conceptual
aspects of generics, which should give you a better idea of how generics concepts can be applied when
constructing your own types. To round things out, the chapter also included a “Hello Generics” example
that provides a generic version of the traditional “Hello World” application. Finally, the chapter wrapped
up with a look at generic terminology. Understanding this terminology is fundamental to concepts that
appear throughout this book. Collectively, these topics should give you a reasonable starting point for
learning more about generics.

17

|

Valuing Type Safety

This book is filled with references to the importance of type safety. The term gets thrown around
very loosely inside and outside the world of generics. So much so, that it seems like its meaning is
often lost in the shuffle as a core value for many developers. Now, with generics, it’s worth reex-
amining the value of type safety because it’s one of the motivating factors that influenced the
introduction of this new language feature. This chapter revisits the origins of type safety and dis-
cusses some of the unsafe trends that have become a common occurrence. Certainly, this is an area
where there may be some disagreement. However, it’s an area that needs to be discussed as part of
sharpening your awareness and understanding the impact generics will have on your everyday
approach to designing and building solutions.

Motivation

Types have to matter. With every class you write, you need to be focused on how that class repre-
sents itself to clients. Each time clients touch the interfaces of your class, they are binding to the
specific types exposed in the signature of that interface. As such, you need to be concerned about
the type-safety implications that accompany each of these interactions. Does your interface pro-
vide a clear set of types that make every attempt to eliminate ambiguity, or does your interface
favor generality at the expense of type safety?

From my perspective, a great deal of what generics has to offer is focused squarely on allowing
you to achieve a much greater level of type safety without having to compromise on generality

(or bloat your code with more specialized classes). Generics should, in some respects, force you to
apply a higher standard to the classes you write and consume. They should put you in a position
where you look at the type safety of each interface with a significantly higher level of scrutiny than
you might have in the pre-generics era.

As best I can tell, this fundamental mindset is sometimes lost in the discussions surrounding
generics. Whenever developers look at a new language feature, they often ask, “What new func-
tionality can I build with this feature that I couldn’t build before?” Though generics do enable new

Chapter 2

capabilities, that’s not the point. Generics aren’t just about doing something new — they’re about doing
something better. Through generics, you should be able to bring a new dimension of type safety and
expressiveness to your code that will undoubtedly improve its quality, usability, and maintainability.

The goal, then, as you move through this chapter, is to bring some light to how generics can influence
the type safety of your code. There are simply too many permutations of type-safety scenarios to address
them all. That’s not my approach. I just want to provide enough insight to establish a theme that I hope
influences how you look at applying generics to your new and existing solutions.

The truth is, though, if you don’t see code and value its ability to adequately convey and constrain its
types, you are likely to miss out on one of the key benefits of generics.

Least Common Denominator Programming

20

In the early days of Java, I remember discussing templates with a few of the C++ converts. Whenever the
conversation turned to templates (the C++ variation of generics), they usually said: “I don’t need templates
because everything in Java descends from an object.” And, I'm assuming this same train of thought has
actually carried forward into some segment of the NET community, where every class is also rooted in a
common object type.

This general mindset has always puzzled me. I understand that having everything rooted in a single
object hierarchy enables some generality. It even makes sense to me that a number of classes would
leverage this reality. At the same time, I don’t think it would be accurate to view this feature as somehow
replacing or offsetting the need for generics.

The Object data type, in fact, can end up being quite a crutch. Developers will leverage it in a number
of situations where they want to provide a highly generalized interface that accepts any number of dif-
ferent data types. ArrayList is the great example of a class that takes this approach. As a data container,
it needs to be able to hold any type of object. So, it’s forced to use the Object data type to represent the
types it holds. You'll also see situations where developers will accept or return Object parameters in an
interface that needs to handle a wide variety of unrelated objects.

This use of the Object type is natural and expected. If ArrayList and other classes didn’t leverage

this mechanism, they would be forced to introduce class after class of specialized types to support each
unique type they needed to manage. I wouldn’t want to see DoubleArrayList, StringArrayList, and
so on. That would often be too high of a price to pay for type safety.

So, as you code, you constantly face this question of deciding when it might be appropriate to leverage
the object data type and, each time you make the compromise, you also compromise the type safety of
your code. With generics, the idea is to break this pattern of least common denominator coding. For exam-
ple, the BCL now replaces those non-generic, type-safety-hating classes from the System.Collections
namespace with new, type-safe versions in the System.Collections.Generic namespace.

In many respects, I see a generic type, T, as the direct replacement for an Object data type. By using T,
you are still indicating that any type (value or reference) can be accepted, which allows you to retain the
generality you needed. At the same time, unlike the Object, T will represent a binding to a very specific
data type. So, you get the best of both worlds.

Valuing Type Safety

A Basic Example

Type safety is likely a term you happened upon quite frequently in your travels as an object-oriented
programmer. And, for you, the concept may already be crystallized. That said, I want to be sure we’re on
equal footing before examining some of the broader issues surrounding type safety and generics. So, to
establish some common ground, let’s look at a simple scenario that provides a very basic example of the
importance of type safety.

The example you'll construct here consists of an object hierarchy with a Person class at the root and two
descendant classes, Customer and Employee. The Person class provides an abstraction of those
attributes that are common to every person. In this example, these shared attributes are represented by
the Id, Name, and Status properties of the Person class.

The Customer and Employee classes also add their own specializations and behavior. Specifically, each
of these classes also has a one-to-many relationship with another class. A Customer is associated with
one or more Orders and an Employee contains references to one or more “child” Employee objects that
represent those employees that are managed by a specific person.

Now, in working with these Customer and Employee objects, assume you've identified several places
in your code that are providing general-purpose handling of Person objects. To further promote this
generality, you've decided you also would like to allow clients of your Person class to access the items
associated with a Person. To accommodate this, you've moved one more property, Items, up into your
Person class.

Unfortunately, because the classes associated with each Person don’t necessarily share a common base
class, you are forced to represent this new property as an Object type. The beauty of this approach is
that your Person class now exposes a generalized approach to exposing an interface all clients can use
to retrieve the items associated with any type of Person.

Here’s how this Person object might be represented:

[VB Code]

Public Class Person
Public Const ACTIVE_STATUS As Int32 = 1
Public Const INACTIVE_STATUS As Int32 =
Public Const NEW_STATUS As Int32 = 3

2

Private _name As String
Private _id As String
Private _status As Int32
Private _items As ArrayList

Public Sub New(ByVal Id As String, ByVal Name As String, ByVal Status As Int32)
Me._id = Id
Me._name = Name
Me._status = Status
Me._items = New ArrayList()
End Sub

Public ReadOnly Property Id() As String
Get

21

Chapter 2

22

Return Me._id
End Get
End Property

Public ReadOnly Property Name() As String
Get
Return Me._name
End Get
End Property

Public ReadOnly Property Status() As Int32
Get
Return Me._status
End Get
End Property

Public ReadOnly Property Items() As Object ()
Get
Return Me._items.ToArray ()
End Get
End Property

Public Sub AddItem(ByVal newItem As Object)
Me._items.Add (newItem)
End Sub

End Class

[C# code]
public class Person {

public const int ACTIVE_STATUS = 1;
public const int INACTIVE_STATUS = 2;
public const int NEW_STATUS = 3;

private string _id;
private string _name;
private int _status;
private ArrayList _items;

public Person(String Id, String Name, int Status)
this._id = Id;
this._name = Name;
this._status = Status;
this._items = new ArrayList();

public string Id {
get { return this._id; }

public string Name {
get { return this._name; }

{

Valuing Type Safety

public int Status {
get { return this._status; }

}

public Object[] Items {
get { return this._items.ToArray(); }
}

public void AddItem(Object newItem) {
this._ items.Add (newItem) ;
}

On the surface, there’s nothing glaringly wrong with this class. Its interface is intuitive enough. It does
have some type-safety issues, though. Some are obvious and some not.

The status property represents the simplest form of type-safety violation and likely falls into the “obvi-
ous” bucket. Even though constants are used to define the valid range of values that can be assigned to
this property, you cannot prevent clients from setting it to any valid integer value. By making this property
an integer, you've really limited your ability to enforce any kind of compile- or run-time type checking
of this value. I guess you could actually validate it against the known range at run-time, but that’s awk-
ward at best. The real type-safe solution here would be to make your property an Enum.

So, the status provides a simple, clean example of why type safety is important. However, that sce-
nario didn’t require generics to be resolved. To see where generics would be applied, you must first
assemble some sample code that exercises the Person object. Let’s start with some simple code that
creates a Customer object and populates it with some orders (the code for the Customer object is not
shown here, but it is available as part of the complete examples that can be downloaded from the Wrox
Web site).

[VB code]
Public Function PopulateCustomerCollection() As ArrayList
Dim custColl As New ArrayList()

Dim cust As New Customer ("1", "Ron Livingston", 1)
cust.AddItem(New Order (DateTime.Parse("10/1/2004"), "SL", "Swingline Stapler"))
cust.AddItem(New Order (DateTime.Parse("10/03/2004"), "XR", "Xerox Copier"))
cust.AddItem(New Order (DateTime.Parse("10/07/2004"), "FX", "Fax Paper"))

(

custColl.Add (cust)

cust = New Customer ("2", "Milton Waddams", 2)

cust.AddItem(New Order (DateTime.Parse("11/04/2004"), "PR-061", "Printer"))

cust.AddItem(New Order (DateTime.Parse("11/07/2004"), "3H-24", "3-hole punch"))

cust.AddItem(New Order (DateTime.Parse("12/12/2004"), "DSK-36", "CDRW Disks"))
(

custColl.Add (cust)

cust = New Customer ("3", "Bill Lumberg", 3)

cust.AddItem(New Order (DateTime.Parse("10/01/2004"), "WST4", "Waste basket"))
custColl.Add (cust)

Return custColl
End Function

23

Chapter 2

[C# code]
public ArrayList PopulateCustomerCollection() {
ArrayList custColl = new ArrayList();

Customer cust = new Customer("l", "Ron Livingston", 1);
cust.AddItem(new Order (DateTime.Parse("10/1/2004"),"SL", "Swingline Stapler"));
cust.AddItem(new Order (DateTime.Parse("10/03/2004"), "XR", "Xerox Copier"));
cust.AddItem(new Order (DateTime.Parse("10/07/2004"), "FX", "Fax Paper"));

(

custColl.Add (cust) ;

cust = new Customer ("2", "Milton Waddams", 2);

cust.AddItem(new Order (DateTime.Parse("11/04/2004"), "PR-061", "Printer"));

cust.AddItem(new Order (DateTime.Parse("11/07/2004"), "3H-24", "3-hole punch"));

cust.AddItem(new Order (DateTime.Parse("12/12/2004"), "DSK-36", "CD-RW Disks"));
(

custColl.Add (cust) ;

cust = new Customer ("3", "Bill Lumberg", 3);
cust.AddItem(new Order (DateTime.Parse("10/01/2004"), "WST4", "Waste basket"));
custColl.Add (cust) ;

return custColl;

Now, you're thinking, what’s wrong with this? The answer is: nothing. This code is perfectly fine as it is.
However, think about what the interface of the Person object enables here. Imagine if you were to change
this same code to the following;:

[VB code]
Dim cust As New Customer ("1", "Ron Livingston", 1)
cust.AddItem(New Dog("Sparky", "Mutt"))

[C# code]
Customer cust = new Customer ("1", "Ron Livingston", 1);
cust.AddItem(new Dog("Sparky", "Mutt"));

Instead of associating orders with your Customer, you've now associated a set of Dog objects with your
Customer. Because the interface of your class must accept Objects as its incoming type, there’s nothing
that prevents you from adding any flavor of object to your Customer —even if the implied rules of your
Customer indicate this is invalid. It's not until someone starts to consume your Customer object that
they will catch the error that this introduces.

In fact, let’s look at some of the type-safety issues that this class represents from the consumer’s perspec-
tive. The following example creates a method that iterates over a list of customers, dumping out the
information for each customer and their associated orders:

[VB code]
Public Sub DisplayCustomers (ByVal customers As ArrayList)
For custIdx As Int32 = 0 To (customers.Count - 1)
Dim cust As Customer = customers (custIdx)
Console.Out.WriteLine ("Customer-> ID: {0}, Name: {1}", cust.Id, cust.Name)
Dim orders() As Object = DirectCast(cust.Items, Object())

For orderIdx As Int32 = 0 To (orders.Length - 1)
Dim ord As Order = DirectCast (orders (orderIdx), Order)

24

Valuing Type Safety

Console.Out.WriteLine(" Order-> Date: {0}, Item: {1}, Desc: {2}", _
ord.OrderDate, ord.ItemId, ord.Description)
Next
Next
End Sub
[C# code]

public void DisplayCustomers (ArrayList customers) ({
for (int custIdx = 0; custIdx < customers.Count; custIdx++) {
Customer cust = (Customer)customers|[custIdx];
Console.Out.WriteLine ("Customer-> ID: {0}, Name: {1}", cust.Id, cust.Name);

Object[] orders = (Object[])cust.Items;
for (int orderIdx = 0; orderIdx < orders.Length; orderIdx++) {
Order ord = (Order)orders[orderIdx];
Console.Out.WriteLine(" Order-> Date: {0}, Item: {1}, Desc: {2}",

ord.OrderDate, ord.ItemId, ord.Description);

Now, in looking at these methods, you can see where moving your items collection up into the Person
class is causing some real type-safety concerns. Its declaration starts everything off on the wrong foot. It
uses an ArrayList to hold the incoming list of customers and, because ArrayLists can only represent
their contents as objects, you're required to cast each object to a Customer as it comes out of the list. So,
if a client happens to pass in an ArrayList of employees, your method will accept it and then toss an
exception when you attempt to cast one of its items to a Customer. Strike one.

The other area of concern is centered on the processing of the orders associated with each Customer.
You'll notice here that, as you get the array of orders from the Items property of the Customer, you are
required to cast the returned array to an array of Objects. That’s right —because the Items property
returns an array of Objects, you cannot directly cast this to an array of orders, which is what you really
want. Strike two.

Finally, because you're dealing with an array of Objects here, you're forced to cast each object to an
Order as it is extracted from this array. Strike three.

As you look at this line of thought, I imagine you might have a few reactions. First, you might take the
position that this is just the cost of generality and that, as long as you're careful, a few casts here and
there aren’t exactly dangerous. Still, it seems to defeat the purpose of representing your customers and
orders with these fairly expressive interfaces, only to push the value and safety that comes with this
aside to achieve some higher level of generality. The introduction of these casts also creates yet one more
area for producing errors and maintenance overhead.

The other angle here might be to suggest that you could avoid a great deal of this casting by adding spe-
cific interfaces in your Customer and Employee classes that returned the appropriate types. This would
allow you to keep the generality in your base class and would simply cast the items to their specific
types on the way out to a client. This is a reasonable compromise and is likely how many people have
historically addressed a problem of this nature. It certainly limits each client’s exposure to the Object
representation of the Items property. Still, using Objects to represent these items is troubling from a
pure type-safety perspective.

25

Chapter 2

Applying Generics

26

The question that remains is, how can generics be applied to overcome some of the type-safety problems
illustrated in this example? You still want your Person class to expose an interface for retrieving each of
its items, but you want the types of those items to be safe. Because generics give you a way to parame-
terize your types, you can use them, in this scenario, to parameterize your Person class, allowing it to
accept a type parameter that will specify the type of the elements collected by the Items property. The
resulting, generically improved Person class now appears as follows:

[VB code]
Public Class Person(Of T)
Public Enum StatusType
Active = 1
Inactive = 2
IsNew = 3
End Enum

Private _name As String
Private _id As String

Private _status As StatusType
Private _items As List (Of T)

Public Sub New(ByVal Id As String, ByVal Name As String,
ByVal Status As StatusType)
Me._id = Id
Me._name = Name
Me._status = Status
Me._items = New List(Of T)
End Sub

Public ReadOnly Property Id() As String
Get
Return Me._id
End Get
End Property

Public ReadOnly Property Name() As String
Get
Return Me._name
End Get
End Property

Public ReadOnly Property Status() As StatusType
Get
Return Me._status
End Get
End Property

Public ReadOnly Property Items() As T()
Get
Return Me._items.ToArray ()
End Get
End Property

Valuing Type Safety

Public Sub AddItem(ByVal newItem As T)
Me._items.Add (newlItem)
End Sub
End Class

[C# code]
public class Person<T> {
public enum StatusType {
Active = 1,
Inactive = 2,
IsNew = 3
b5

private string _id;

private string _name;
private StatusType _status;
private List<T> _items;

public Person(String Id, String Name, StatusType Status) {
this._id = I4d;
this._name = Name;
this._status = Status;
this._items = new List<T>();

}

public string Id {
get { return this._id; }
}

public string Name {
get { return this._name; }
}

public StatusType Status {
get { return this._status; }

}

public T[] Items {
get { return this._items.ToArray(); }

}

public void AddItem(T newItem) {
this._items.Add(newItem) ;
}

That’s only step one in the purification of this class. You also need to change the internal representation
of the items data member. Instead of clinging to that old, type-ignorant ArrayList, you can use one of
the new generic List collections (from the System.Collections.Generic namespace described in
Chapter 8, “BCL Generics”) to bring a greater level of type safety to this data member. To be complete,
the status property is also changed from an integer to an enum type.

Finally, to round out this transformation, you'll notice that the parameterization of the Person class
allows you to change the AddItem () method to enforce type checking. Now, each object type that gets

27

Chapter 2

added must match the type of the type parameter, T, to be considered valid. No more adding dogs to
customers.

An added bonus associated with this approach is that clients are still not required to have any awareness
of the fact that you've applied generics to solve this problem. The Customer and Employee classes,
which descend from Person, simply specify the type of their related items as part of their inheritance
declarations. Here’s a snippet of these class declarations to clarify this point:

[VB code]
Public Class Customer
Inherits Person(Of Order)

End Class
Public Class Employee
Inherits Person(Of Employee)

End Class
[C# code]
public class Customer : Person<Order> ({

}
public class Employee : Person<Employee> {

}

As you can see, even though you’ve leveraged generics to add type safety to your Person class, these
two classes retain the same interface they supported under the non-generic version. In fact, the client
code used to populate the Customer and Employee structures would not require any modifications
(with the exception of the change that was introduced to make Status an enum).

Although the code to populate the Customer and Employee classes was unscathed as a result of making
Person generic, the code that was used earlier to dump information about customers does require
changes (all of them for the better). Here’s how the new version of the DisplayCustomers () method
has been influenced as a result:

[VB code]
Public Sub DisplayCustomers (ByVal customers As List (Of Customer))
For custIdx As Int32 = 0 To (customers.Count - 1)
Dim cust As Customer = customers (custIdx)
Console.Out.WriteLine("Customer-) ID: {0}, Name: {1}", cust.Id, cust.Name)

Dim orders() As Order = cust.Items
For orderIdx As Int32 = 0 To (orders.Length - 1)
Dim ord As Order = orders (orderIdx)
Console.Out.WriteLine(" Order-> Date: {0}, Item: {1}, Desc: {2}", _
ord.OrderDate, ord.ItemId, ord.Description)
Next
Next
End Sub

28

Valuing Type Safety

[C# code]
public void DisplayCustomers (List<Customer> customers) {
for (int custIdx = 0; custIdx < customers.Count; custIdx++) {
Customer cust = customers[custIdx];
Console.Out.WriteLine("Customer-> ID: {0}, Name: {1}", cust.Id, cust.Name);

Order[] orders = cust.Items;
for (int orderIdx = 0; orderIdx < orders.Length; orderIdx++) {
Order ord = orders|[orderIdx];
Console.Out.WriteLine(" Order-> Date: {0}, Item: {1}, Desc: {2}",
ord.OrderDate, ord.ItemId, ord.Description);

This type safety work, as you can see, has yielded some nice benefits. Though the code isn’t smaller (that
wasn'’t the goal anyway), it is certainly much safer. Gone are the plethora of casts that muddied the prior
version of this class.

Casting Consequences

In the previous example, you saw how using the Object data type forced the client code to use a series
of casts to convert the Object to the appropriate data type. This need to cast has a number of implica-
tions in terms of the general type safety of your code. Consider the following example:

[VB code]
Dim custList As ArrayList = CustomerFinder.GetCustomers ()
For idx As Int32 = 0 To (custList.Count - 1)
Dim cust As Customer = DirectCast (custList (idx), Customer)
Next

[C# code]

ArrayList custList = CustomerFinder.GetCustomers() ;

for (int idx = 0; idx < custList.Count; idx++) {
Customer cust = (Customer)custList[idx];

Certainly, as discussed earlier, the casts that you see in this example are anything but type-safe. However,
there’s more wrong here than just the absence of type safety. First, the cast that is applied here will have
an impact on performance. Although the added overhead is not large, it could still be significant in sce-
narios where you might need a tight, high-performing loop.

The larger issue, though, is centered more around the fact that casts may not always succeed. And a
failed cast can mean unexpected failures in your application. In this example, this code simply presumes
that the collection contains Customer objects and that each of these casts never throws an exception.
This approach just assumes that, as the code evolves, it will never alter the representation of the objects
returned by this GetCustomers () call. Creating this blind-faith, implied contract between a client and
method is dangerous and prone to generating unexpected errors.

29

Chapter 2

You can attempt to manage this through exception handling. This would be achieved by adding the fol-
lowing exception handling block:

[VB code]
Try
Dim custList As ArrayList = CustomerFinder.GetCustomers ()
For idx As Int32 = 0 To (custList.Count - 1)
Dim cust As Customer = DirectCast (custList (idx), Customer)
Next
Catch ex As InvalidCastException
Console.Out.WriteLine (ex.Message)
End Try

[C# code]
try {

ArraylList custList = CustomerFinder.GetCustomers() ;
for (int idx = 0; 1dx < custList.Count; idx++) {
Customer cust = (Customer)custList[idx];

}
} catch (InvalidCastException ex) {
Console.Out.WriteLine (ex.Message) ;

}

This modification ensures that you'll catch the casting errors. This is certainly the appropriate action to
take and will, at minimum, allow you to easily detect when the errors occur. Because there’s likely no
appropriate action to take in response to this error, it will likely result, in most cases, in some form of
hard error. It’s really the only option you have.

You might think you could use the for each construct to make this problem go away. Suppose you were
to change the loop to the following;:

[VB codes]
For each cust As Customer in custCollection

Next

[C# code]
foreach (Customer cust in custCollection) {

This seems, on the surface, like safer code. After all, it does eliminate the need for a cast. While it would
seem as though this solves the problem, it’s probably obvious why it really doesn’t. Even though you
don’t explicitly do a cast in this situation, the resulting code still does. So, if your custCollection
doesn’t contain Customer objects, it too will yield an InvalidCastException. In many respects, this
loop actually causes more problems than the prior example. If you happen to capture an exception here,
and you want to continue processing additional items, you cannot use the continue construct.

This whole idea of trying to adopt a strategy for dealing with the occurrence of InvalidCastExceptions

seems like it’s focusing on the wrong dimension of the problem. If you weren’t forced to use unsafe types,
you wouldn’t be in a position of having to coerce them to another type with the hope that the conversion

30

Valuing Type Safety

is successful. Although I'm not saying casting should be eliminated, I am saying it’s something you
should attempt to avoid.

Fortunately, with generics, this entire discussion is moot. There wouldn’t be any casting in these exam-
ples if they leveraged generics and, therefore, there won’t be any need to worry about strategies for
dealing with failed casts (at least in this scenario).

Interface Type Safety

An interface lets you define a signature for a type entirely separate from any implementation of that
type. And, because a number of classes might be implementing your interfaces, you should be especially
diligent about ensuring their type safety. To clarify this point, let’s start by looking at the ICloneable
interface you may have already been using;:

[VB code]

Public Interface ICloneable
Function Clone() As Object

End Interface

[C# code]

Interace ICloneable ({
Public object Clone() ;

}

By now;, it should be clear that there’s absolutely nothing type-safe about this interface. Any class that
implements this interface is free to return any object type in its implementation of the Clone () method.
Once again, each client is left to their own devices to figure out how to handle the possible fallout of an
invalid type being returned from this method.

So, as you can imagine, interfaces are one of the most natural places to leverage the benefits of generics.
With one minor modification, this once type-unfriendly interface can become fully type-safe. The generic
version would appear as follows:

[VB code]

Public Interface ICloneable(Of T)
Function Clone() As T

End Interface

[C# code]

Interace ICloneable<T> {
Public T Clone();

}

Each class that implements this interface will be required to return a type T from its Clone () method. If

any code attempts to return any other type, the compiler will now capture this condition and throw an
error —a much better alternative than entrusting your safety to run-time detection of type collisions.

31

Chapter 2

Scratching the Surface

The preceding examples represent just a few of the countless permutations of how the type safety of
your solutions can be improved through the application of generics. The goal here isn’t to point out
every way generics can be leveraged to improve the type safety of your code. Instead, the idea here is to
simply scratch the generic surface enough to expose the impact generics can have on the general type
safety of your code.

Once you get in this mindset, you'll find yourself looking at your interfaces in a new light. As you do,
you'll find that generics actually provide solutions for a broad spectrum of issues, including interfaces,
methods, delegates, classes, and so on. Ultimately, you should find yourself wondering why generics
weren't part of the language sooner. If you're in that camp, you're going to have a greater appreciation
for the value of generics and are likely to see the more global implications of applying generics to your
existing solutions.

Safety vs. Clarity

32

There’s a lot of debate in the .NET development community about the influence of generics on the read-
ability of code. Some view the introduction of generics as an abomination that muddies the syntactic
qualities of each language they touch. I find this perspective puzzling. I don’t know if this is rooted in
the complexity of C++ templates or if the objection is made on some more general basis. Whatever the
reason, I still have trouble understanding the fundamental logic behind this mindset.

Although generics add some verbosity to your code, that very verbosity is what enables generics to
bring clarity to your code. Consider these two contrasting examples:

[VB code]
Public Function FindCustomers (searchParams As HashTable) As ArrayList

Public Function FindCustomers (searchParams As Dictionary (Of string, Int32)) _
As List (Of Customer)

[C# code]
public ArrayList FindCustomers (ArrayList searchParams) ;

public List<Customer> FindCustomers (Dictionary<string, int> searchParams) ;

This example includes non-generic and generic versions of a FindCustomers () method. Although the
non-generic version is certainly shorter than its generic counterpart, it tells you nothing about the types
required for the incoming parameters or the type of objects being returned. If you put aside the obvious
type-safety problems here and focus solely on the expressive qualities of these two declarations, you’'d
have to favor the generic version. Its signature tells you precisely what data types are used for your
incoming key/value parameter pairs. It also is very explicit about the type of objects that will be held in
the returned list.

So, when I look at these two examples, I see the added syntax introduced by generics as a blessing. I
don’t see it as muddying the profile of my method. Instead, I see it as adding a much-needed means of
qualifying, in detail, the nature of my types.

Valuing Type Safety

The truth is, generics should allow you to demand much more from the APIs you consume and expose.
When an API hands you back an ArrayList, what is it really telling you? It’s as if it’s saying: “Here’s a
collection of objects; now you go figure out what it contains.” It then becomes your job to track down,
sometimes through multiple levels of indirection, the code that created and populated the ArrayList
to determine what it contains. You are then forced to couple, through casting or some other mechanism,
your code to the types contained in the collection with the expectation that the provider of the collection
won’t change its underlying representation. This whole mechanism of passing out untyped parameters
and then binding to their representations creates a level of indirect coupling that can end up being both
error-prone and a maintenance headache.

When I look at an interface, I don’t want there to be any ambiguity about what it accepts or what it
returns. There shouldn’t be room for interpretation. Through generics, you are provided with new tools
that can make your interfaces much more expressive. And, although this expressiveness makes the syn-
tax more verbose and may rarely make your code run faster, it should still represent a significant factor
in measuring the quality of your code.

As developers get more comfortable with generics, any objections to the syntactic impact of this new
language feature are likely to subside. The benefits they bring to your code are simply too significant to
be brushed aside simply because they tend to increase the verbosity of your declarations.

Summary

Type safety is one of the key value propositions of generics. As such, it is vital for you to have a good
grasp on how generics can be applied in ways that will enhance the overall type safety of your solutions.
The goal of this chapter was to try and expose some of the type-safety compromises developers have
been traditionally forced to make and discuss how generics can be employed to remedy these problems.
The chapter looked at how types have been required to use least common denominator object types to
achieve some level of generality and, in doing so, accept the overhead and safety issues that accompany
that approach. As part of exploring these type-safety issues, the chapter also looked at how generics
could be applied to eliminate a great deal of these type-safety problems. You also learned how generics
bring a new level of expressiveness to your code and how generics can improve the quality and main-
tainability of your solutions. Overall, the chapter should give you a real flavor for how generics will
influence the expectations you place on the signatures of the types you create and consume.

33

ﬁ

Generics = Templates

In the early stages of introducing generics, there was a fair amount of confusion surrounding the
scope and capabilities of this new language feature. Many developers jumped to the conclusion
that generics would be the functional equivalent of C++ templates. And, while these two con-
structs share common heritage, they definitely cannot be viewed — in any respect—as being one
in the same. It’s important, especially for those with a template orientation, to understand how
generics and templates differ. This information may also be helpful, in a more conceptual sense, to
anyone transitioning to generics. Overall, after reading this chapter, you should come away with a
much clearer picture of the fundamental differences that exist between generics and templates

implementations.

Shared Concepts

There’s no doubt that generics and templates are trying to solve similar problems. Certainly, as the
architects sidled up to the whiteboard in Redmond to create the generics specification, they knew
they would be borrowing heavily from the concepts that had long existed in the world of templates.
You will discover that generics actually have a great deal of conceptual overlap with templates,
offering the familiar generic classes, methods, and so on that many have already been exposed to
in the world of C++ templates.

Syntactically, if you are already familiar with C++ templates, you're likely to find the transition to
generics fairly painless. The use of type parameters and their application throughout the classes
and methods mirrors the patterns employed by templates.

As you move through this chapter and focus on the differences between generics and templates, it’s
important that you don’t lose sight of that emphasis. The goal here is to simply point out key differ-
ences that can help those familiar templates better understand the fundamental differences — for
better or worse — that come with the .NET implementation of generics.

Chapter 3

R

un-Time vs. Compile-Time

Generics and C++ templates take very different approaches to how and when objects are instantiated.
Generics are instantiated at run-time by the CLR, and templates are instantiated at compile-time. This
fundamental difference is at the root of almost every point of variation between generics and templates.
And, as you will see, these variations end up creating a fairly significant ideological divide between
these two technologies.

In the sections that follow you'll be exposed to the specific implications of run-time and compile-time
instantiation. Understanding the mechanics of these two varying approaches will provide a good foun-
dation for the rest of this discussion.

Compile-Time Instantiation (Templates)

36

The term “templates” does an excellent job of conveying how a compiler processes templates. When
you declare a template in C++, the code you write is providing a series of type placeholders that will be
replaced with actual types at compile time. Let’s look at a simple declaration of a C++ template class to
see how the compiler will process it:

template <class T>
class Stack {
public:
Stack(int = 10) ;
~Stack() { delete [] stackPtr; }
int push(const T&);
int pop(T&) ;
int isEmpty() const { return top == -1; }
int isFull() const { return top == size - 1; }
private:
int size;
int top;
T* stackPtr;
Iy

This class defines a Stack template that can be used to perform all the basic operations to maintain the
state of a stack container. As a template, this stack can be used to contain a variety of different data types.
The code that would be used to create instances of this Stack might appear as follows:

Stack<char> charStack;
Stack<long> longStack;
Stack<double> doubleStack;
Stack<int> intStack;

Each of these instances of the stack template is being used to store a different data type. When you com-
pile this code, the compiler will actually generate separate code for each instance you see here. During
this process, it will replace every occurrence of the type parameter T with the supplied type. The result,
from the preceding example, ends up yielding four different instances of Stack. In the end, it’s as if you
decided to write four separate stack classes, one for each data type. The template syntax ends up being
more like custom tags that tell the compiler to generate the code you would’ve had to write yourself.
That'’s the basic, compile-time mentality associated with writing templates.

Generics # Templates

The key idea here is that all the classes that are generated from your template are processed and gener-
ated by the compiler in advance of executing any code. And, as long as the type substitution yields valid
code, the compiler will deem your new type as being valid. It also means the run-time environment is
not required to supply any new functionality to support templates. The code generated through this pro-
cess is no different than code you might write yourself.

Run-Time Instantiation (Generics)

The run-time instantiation model that is employed by generics takes a very different approach to sup-
porting generics. In fact, version 2.0 of the NET Framework has introduced a series of extensions to the
CLR to add run-time support for generics.

In the .NET implementation, generic specializations are created on demand. Each instance of these
generated specializations will share their underlying code wherever possible. To understand this better,
consider a sample Stack class and the underlying IL that is generated by the compiler. For a non-generic
implementation of the Stack, the IL is devoid, as you would expect, of any generic mechanisms. The
generated IL for its Pop () method would appear as follows:

.method public hidebysig instance object Pop() cil managed
{

// Code Size: 29 byte(s)

.maxstack 4

.locals (

object objl,
int32 numl)

L_0000: ldarg.o0

L_0001: 1dfld object[] NonGenericStack::_data

L_0006: ldarg.o0

L_0007: dup

L_0008: 1dfld int32 NonGenericStack::_posIdx

L_000d: 1dc.i4.1

L_000e: sub

L_000f: dup

L_0010: stloc.1l

L_0011: stfld int32 NonGenericStack::_posIdx

L_0016: ldloc.1

L_0017: ldelem.ref

L_0018: stloc.0

L_0019: br.s L_001b

L_001b: 1dloc.0

L_00lc: ret

There aren’t any real surprises here. Because the non-generic Stack is forced to use objects to represent
each item in the Stack, its IL looks like any other IL you might have seen before. Now, consider what
this method would look like as a generic implementation that was required to support generics at run-
time. The Pop () method for your generic version must be able to represent the same generic model
your class does, where types are represented by type parameters that serve as placeholders for the type
arguments that will be used as you instantiate each variation of the class. Here’s a look at how the IL
achieves this:

37

Chapter 3

.method public hidebysig instance !0 Pop() cil managed
{
// Code Size: 33 byte(s)
.maxstack 4
.locals (
10 locall,
int32 numl)
L_0000: ldarg.0
L_0001: 1dfld !'0[] Stack'1<!0>::_data
L_0006: ldarg.0
L_0007: dup
L_0008: 1dfld int32 Stack'1<!0>::_posIdx
L_000d: 1dc.id.1
L_000e: sub
L_000f: dup
IL_0010: stloc.1l
L_0011: stfld int32 Stack'1<!0>::_posIdx
L_0016: 1ldloc.1
L_0017: ldelem.any !0
L_00lc: stloc.0
L_001d: br.s L_001f
IL_001f: 1dloc.0
L_0020: ret
}

Notice that the generics concepts are carried forward into the generated IL. There are now the equivalent
of type parameters, each of which is identified with a pre-pended “!”, angle brackets for the class decla-
ration, and a new IL opcode (1delem. any), all here to support the CLR’s ability to instantiate generic
types at run-time. The key point here is that a generic type will be compiled and placed in an assembly
before any instances of that generic type are created. The generic type exists at run-time completely sepa-
rate from any instances of that type.

Personally, I think this is one of the most interesting achievements of the .NET generics implementation.
It introduces the opportunity for a series of optimizations and reduces your code bloat significantly.
That, and it’s just plain cool seeing generics represented in IL.

If you're interested in examining the IL of your own code, you can access the same
information shown here with the ILDASM tool that comes with Visual Studio 2005.

Lost in Translation

38

So, the question is: How does this difference in compile-time and run-time instantiation end up influenc-
ing what can be achieved with templates and generics? To understand this, you have to step back and
consider what requirements these two approaches impose on the compiler as it translates your generic
code into executable instructions. The following scenario will serve as the basis for considering how
compile-time and run-time solutions process code differently:

Generics # Templates

[VB code]
Public Class Gun
Public Sub Fire()
Console.Out.WriteLine ("Gun->Fire")
End Sub
End Class

Public Class Rocket
Public Sub Fire()
Console.Out.WriteLine ("Rocket->Fire")
End Sub
End Class

Public Class Shooter (Of T)
Dim _shooterItem As T

Public Sub New(ByVal shooterItem As T)
Me._shooterItem = shooterItem
End Sub

Public Sub ShootIt()
Me._shooterItem.Fire()
End Sub
End Class

Public Sub TestShooter ()
Dim aRocket As New Shooter (Of Rocket) (New Rocket())
Dim aGun As New Shooter (Of Gun) (New Gun())
aRocket.ShootIt ()
aGun.ShootIt()

End Sub

[C# code]
public class Gun {
public void Fire() {
Console.Out.WriteLine ("Gun->Fired") ;

public class Rocket {
public void Fire() {
Console.Out.WriteLine ("Rocket->Fired") ;

public class Shooter<T> {
private T _shooterItem;

public Shooter (T shooterItem) {

this._shooterItem = shooterItem;

public void ShootIt() {
this._shooterItem.Fire() ;

39

Chapter 3

40

}

public void TestShooter () {
Shooter<Rocket> aRocket = new Shooter<Rocket>(new Rocket());
Shooter<Gun> aGun = new Shooter<Gun> (new Gun()) ;
aRocket.ShootIt () ;
aGun.ShootIt() ;

}

This example creates two simple classes: Gun and Rocket. Both of these classes happen to include

a Fire () method, but they aren’t specializations of any particular shared base class. They are, for the
purposes of this discussion, two standalone, unrelated classes that just happen to share a common
method name.

Now, with the Gun and Rocket classes in place, the example introduces a Shooter class that will accept
these types as parameters. You should pay special attention to its ShootIt () method, which invokes the
Fire () method on the supplied types. Given the idea that type parameters are simply substituted with
type arguments and that Gun and Rocket objects both have a Fire () method, you’d think the compiler
would be able to resolve this and everything would be fine. And, in a compile-time, template-based
environment this concept works (with C++ syntax, of course).

Because the compiler will preprocess every instance of a template before it is executed, it can determine if
the Fire () method can be resolved for every instance and throw a compile-time error if the method
cannot be resolved. Basically, templates perform pure substitution without concern for the nature or
heritage of their type parameters. If the signature compiles, templates are happy. This approach is some-
times referred to as “lazy structural constraints,” implying that the compiler is supporting a more
relaxed model for constraining these types.

With a run-time environment, the story is quite different. Remember, in run-time generic environments,
each generic type is not instantiated until run-time. And, with this run-time model, all of your run-time
instances of a given type will attempt to share their code at run-time. Given this delay, the run-time envi-
ronment cannot be as free-wheeling as the template environment. It must have assurances —ahead of
time — that all of the invocations on the type parameter can be resolved without any awareness of what
generic instances might end up being declared within your application. In essence, this means that the
compiler must verify that every operation that is performed on your type parameters is valid for every
possible type argument that could be supplied to your class.

To resolve this issue, the .NET languages have added the concept of “constraints” to the declaration of
your generic types. These constraints allow you to qualify the type of your type parameters. This allows
you to limit the scope of type parameters to a set of types that conform to a specific interface. It also
solves the CLR’s run-time instantiation problem because it can now be assured, by the compiler, that all
operations performed on your type parameters are valid.

So, given this perspective, let’s turn your attention back to the genetics portion of the previous example.
When the compiler attempts to process this code, it’s going to complain about the call to Fire () in the
Shooter class. That's because, as you now know, the type parameter supplied to the class is not con-
strained by an interface that guarantees that these type parameters will support a Fire () method. To add
this constraint, you must force your Gun and Rocket classes to implement a common interface and use this
interface as a constraint on your type parameter declaration in the Shooter class. The result is as follows:

Generics # Templates

[VB code]

Public Interface IShooter
Sub Fire()

End Interface

Public Class Gun
Implements IShooter

Public Sub Fire() Implements IShooter.Fire
Console.Out.WriteLine ("Gun->Fire")
End Sub
End Class

Public Class Rocket
Implements IShooter

Public Sub Firel() Implements IShooter.Fire
Console.Out.WriteLine ("Rocket->Fire")
End Sub
End Class

Public Class Shooter (0Of T As IShooter)
Dim _shooterItem As T

Public Sub New(ByVal shooterItem As T)
Me._shooterItem = shooterItem
End Sub

Public Sub ShootIt()
Me._shooterItem.Fire()
End Sub
End Class

[C# code]
public interface IShooter {
void Fire();

public class Gun : IShooter {
public void Fire() {
Console.Out.WriteLine ("Gun->Fired") ;

public class Rocket : IShooter {
public void Fire() {
Console.Out.WriteLine ("Rocket->Fired") ;

public class Shooter<T> where T : IShooter ({
private T _shooterItem;

public Shooter (T shooterItem) {

41

Chapter 3

this._shooterItem = shooterItem;

}

public void ShootIt() {
this._shooterItem.Fire();
}
}

You can now see how the compiler can process this code and still allow run-time instantiation of the
Shooter class. By the time you're instantiating types at run-time, the compiler will have already verified
that every type argument that could be supplied to Shooter implements the IShooter interface.

The Brouhaha

The run-time nature of generics and the presence of constraints don’t sit well with some members of the
development community. This is especially prominent among the C++ template diehards, who view
constraints as too limiting. I believe that, for that segment of the population that leverages the meta-
programming capabilities of templates, generics will often fall short of their expectations. Generics
simply aren’t trying to fill that void — at least not yet. And, based on their run-time nature, it seems
unlikely they ever will. Still, this should not detract from their overall value.

Code Bloat

Although the compile-time nature of templates allows for a greater degree of flexibility, this flexibility
also comes at a cost. Because every template instance must be preprocessed by the compiler, the code for
every type must also be generated in advance. Now, there are certainly optimizations that attempt to
limit the general bloat that accompanies this approach, but they still fall well short of the size and effi-
ciency of the run-time model employed by generics.

Although code bloat is worth mentioning, it’s also fair to say that most C++ programmers do not view
this bloat as a pressing concern. Still, in some scenarios, the ability of generics to represent a generic type
at run-time and share this type among many instances does have its benefits. And, if you're trying to
conserve every last byte of memory and you can accept some of the constraints associated with generics,
this issue may carry more weight with you.

Assemblies and Type Equivalence

42

Whenever you compile a .NET class, it is placed in an assembly. Now, given that simple reality, consider
what happens in this model where the compiler must instantiate all templates at compile-time. Suppose
you have a stack template and you have declared an instance of Stack<char> in assembly A1 and you
have also declared an instance of Stack<char> in assembly A2.

When the compiler preprocesses these instances, it must qualify each type with the name of the assem-
bly that “owns” that type. If you drill into the underlying IL, in fact, you'll see that these assembly
qualifiers have been pre-pended to your types. For this scenario, then, you’ll end up with two types
being generated for your templates: [Al]Stack<char> and [A2]Stack<char>. Here you can see that,
even though these stacks are really the same type, the compiler will end up generating separate types
for each assembly.

Generics # Templates

This may seem harmless on the surface. However, consider a scenario where there is some interaction
between these two assemblies centered on your Stack<char> type. Perhaps assembly A2 calls into a
method of class in assembly A1 that returns a Stack<char>. It would seem like this wouldn’t cause any
problems. But, if you consider the fact that the Stack<char> type in A2 is actually seen as a completely
different type than the Stack<char> found in A1, it might be clear why this is going to cause a problem.
You might as well have called a method that returns a double and tried to shove it into a string.

This problem is a byproduct of the compile-time nature of templates. When you compile stack<char>,
the compiler is going to generate a new type that is the conceptual equivalent of your having created
your own StackChar class. By the time the compiler is done with your template, the idea that it started
out as a template is completely abandoned and a new, generated type exists in its place. This compiled
class is then placed in an assembly. And, this type will not be treated as being equivalent to any instance
of Stack<char> that might get compiled into another assembly.

In contrast, the run-time nature of generics allow them to bypass this problem entirely. Because each
generic type is compiled separately from the specializations of that type, the generic type is allowed to
exist in an assembly as a type that can then be specialized and referenced from a variety of different
assemblies.

Templates Extras

A handful of features that are part of templates are not part of generics. The following sections provide
a brief overview of each of these areas. If you are part of the generics-only crowd, this will help you
understand what additional features are available to you in the world of templates. If you are template-
aware, this section will further qualify those features that are not currently supported by generics.

Template Specialization

With templates, developers are allowed to create specializations of a template that provide alternative
implementations based on a type argument. Consider the following example of a Stream template class
that includes a specialization for the long type argument:

template <class T>
class stream {
public:
void foo() { cout << "Called stream<T>::foo()" << endl; }
¥

template <>
class stream<long> {
public:
void foo() { cout << "Called stream<long>::foo()" << endl; }
¥

int main() {

stream<char> charStream;
stream<long> longStream;
return 0;

}

43

Chapter 3

You'll notice in this example that two stream templates are declared, each with its own implementation
of the foo () method. The first of these two templates will be used for the majority of type arguments.
The second template will only be invoked if you supply a 1ong type argument. The idea here is that you
can provide specializations for any number of data types. Generics have no equivalent to this concept.

Non-Type Parameters

Templates support the ability to accept what are labeled “non-type” parameters. A non-type is considered
a type that is neither a reference nor a value parameter. It's essentially a numeric constant or a literal
string and is sometimes used in numeric-focused template libraries. They are also used in combination
with other features as part of the overall “meta-programming” model that is employed by some template
programmers.

Type Parameter Inheritance

Templates allow you to define a class that descends directly from a type parameter. This is a very power-
ful feature that C++ developers have used to build what are called “mix-ins.” This pattern occurs when
you mix-in the implementation of another type through inheritance. Inheriting implementation isn’t all
unique. What’s unique here is that what’s being “mixed in” is determined at compile-time based on the
type argument you supply when specializing a template. This, I believe, is viewed as a fairly powerful
aspect of templates that can only be achieved in the compile-time model employed by templates. Some
attempts have been made to emulate this pattern with generics, but the results appear to have been,
well, mixed.

Cross-Language Support

Generics are part of the CLS specification. This reality means that developers can build multilanguage
solutions that make heavy use of generics. This is one of the distinguishing characteristics of the generics
implementation and represents an important advantage over templates, which are limited to use within
the C++ language.

Debugging

If you've ever worked with templates, you know that debugging templates is almost impossible. This is
true of any environment where there’s preprocessing of the code. This is one area where generics offer a
significant productivity advantage over templates. Generics are essentially treated like first-class citizens
within the IDE’s debugging environment.

Mix and Match Nirvana

C++ programmers really aren’t limited to an all or nothing decision. Generics are available to C++ pro-
grammers as part of the .NET Framework and, as such, you really have the opportunity to leverage any

44

Generics # Templates

mix of templates and generics that you deem appropriate. In fact, Chapter 12, “Using Generics with
C++,” discusses how you can use generics with C++. To me, this makes most of the discussions of pros
and cons moot.

Summary

The chapter had a two-fold purpose. One goal was to provide a clear delineation between templates and
generics, explaining the main areas where these two technologies diverge. Along these lines, time was
devoted to explaining the side effects of the compile-time and run-time models employed by templates
and generics, respectively. The other goal here was to expose those unfamiliar with templates to some of
the features that are supported exclusively by templates. This background should round out your over-
all generics perspective and allow you to see some of what'’s available to you should you decide to step
into the world of templates. Ultimately, the overriding theme here should be that templates and generics
share a common heritage with diverging approaches, each with its own strengths and weaknesses.

45

Generic Classes

Many developers will view themselves primarily as consumers of generics. However, as you get
more comfortable with generics, you're likely to find yourself introducing your own generic classes
and frameworks. Before you can make that leap, though, you'll need to get comfortable with all the
syntactic mutations that come along with creating your own generic classes. The goal of this chap-
ter, then, is to dig into all of the details associated with building generic classes, explaining how
generics extend the existing rules for defining and consuming classes. Fortunately, as you move
through this chapter, you'll notice that the syntax rules for defining generic classes follow many of
the same patterns you’ve already grown accustomed to with non-generic types. So, although there
are certainly plenty of new generic concepts you'll need to absorb, you're likely to find it quite easy
to make the transition to writing your own generic types.

Parameterizing Types

In a very general sense, a generic class is really just a class that accepts parameters. As such, a
generic class really ends up representing more of an abstract blueprint for a type that will, ulti-
mately, be used in the construction of one or more specific types at run-time. This is one area
where, I believe, the C++ term femplates actually provides developers with a better conceptual
model. This term conjures up a clearer metaphor for how the type parameters of a generic class
serve as placeholders that get replaced by actual data types when a generic class is constructed.
Of course, as you might expect, this same term also brings with it some conceptual inaccuracies
that don’t precisely match generics.

The idea of parameterizing your classes shouldn’t seem all that foreign. In reality, the mindset
behind parameterizing a class is not all that different than the rationale you would use for parame-
terizing a method in one of your existing classes. The goals in both scenarios are conceptually very
similar. For example, suppose you had the following method in one of your classes that was used
to locate all retired employees that had an age that was greater than or equal to the passed-in
parameter (minAge):

Chapter 4

[VB code]
Public Function LookupRetiredEmployees (ByVal minAge As Integer) As IList
Dim retVal As New ArrayList
For Each emp As Employee In masterEmployeeCollection
If ((emp.Age >= minAge) And (emp.Status = EmpStatus.Retired)) Then
retVal.Add (emp)
End If
Next
Return retval
End Function

[C# code]
public IList LookupRetiredEmployees (int minAge) {
IList retVal = new ArrayList();
foreach (Employee emp in masterEmployeeCollection) {
if ((emp.Age >= minAge) && (emp.Status == EmpStatus.Retired))
retVal.Add (emp) ;
}

return retVal;

Now, at some point, you happen to identify a handful of additional methods that are providing similar
functionality. Each of these methods only varies based on the status (Retired, Active, and so on) of the
employees being processed. This represents an obvious opportunity to refactor through parameteriza-
tion. By adding status as a parameter to this method, you can make it much more versatile and eliminate
the need for all the separate implementations. This is something you've likely done. It’s a simple, com-
mon flavor of refactoring that happens every day.

So, with this example in mind, you can imagine applying this same mentality to your classes. Classes, like
methods, can now be viewed as being further generalized through the use of type parameters. To better grasp
this concept, let’s go ahead and build a non-generic class that will be your candidate for further generalization:

[VB code]

Public Class CustomerStack
Private _items() As Customer
Private _count As Integer
Public Sub Push(item as Customer)
End Sub
Public Function Pop() As Customer

End Function

End Class

[C# code]

public class CustomerStack {
private Customer[] _items;

private int _count;

public void Push(Customer item) {...}
public Customer Pop() {...}

48

Generic Classes

This is the classic implementation of a type-safe stack that has been created to contain collections of
Customers. There’s nothing spectacular about it. But, as should be apparent by now, this class is the
perfect candidate to be refactored with generics. To make your stack generic, you simply need to add a
type parameter (T in this example) to your type and replace all of your references to the Customer with
the name of your generic type parameter. The result would appear as follows:

[VB code]

Public Class Stack(Of T)
Private _items() As T
Private _count As Integer
Public Sub Push(item As T)
End Sub
Public Function Pop() As T

End Function

End Class

[C# code]

public class Stack<T> {
private T[] _items;

private int _count;

public void Push(T item) {...}
public T Pop() {...}
}

Pretty simple. It’s really not all that different than adding a parameter to a method. It’s as if generics
have just allowed you to widen the scope of what your classes can parameterize.

Type Parameters

By now, you should be comfortable with the idea of type parameters and how they serve as a type place-
holder for the type arguments that will be supplied when your generic class is constructed. Now let’s
look at what, precisely, can appear in a type parameter list for a generic class.

First, let’s start with the names that can be assigned to type parameters. The rules for naming a type
parameter are similar to the rules used when defining any identifier. That said, there are guidelines that
you should follow in the naming of your type parameters to improve the readability and maintainability
of your generic class. These guidelines, and others, are discussed in Chapter 10, “Generics Guidelines.”

A generic class may also accept multiple type parameters. These parameters are provided as a delimited
list of identifiers:

[VB code]
Public Class Stack(0of T, U, V)

[C# code]
public class Stack<T, U, V>

49

Chapter 4

As you might suspect, each type parameter name must be unique within the parameter list as well as
within the scope of the class. You cannot, for example, have a type parameter T along with a field that
is also named T. You are also prevented from having a type parameter and the class that accepts that
parameter share the same name. Fortunately, the names you're likely to use for type parameters and
classes will rarely cause collisions.

In terms of scope, a type parameter can only be referenced within the scope of the generic class that
declared it. So, if you have a child generic class B that descends from generic class 3, class B will not be
able to reference any type parameters that were declared as part of class A.

The list of type parameters may also contain constraints that are used to further qualify what type argu-
ments can be supplied of a given type parameter. Chapter 7, “Generic Constraints,” will look into the
relevance and application of constraints in more detail.

Overloaded Types

50

The NET implementation of generics allows programmers to create overloaded types. This means that
types, like methods, can be overloaded based on their type parameter signature. Consider the declara-
tions of the following types:

[VB code]
Public Class MyType

End'éiass

Public Class MyType(Of T)
End éiéss

Public Class MyType(Of T, U)
End éiéss

[C# Code]

public class MyType {

}

public class MyType<T> {

}

public class MyType<T, U> {

}

Three types are declared here and they all have the same name and different type parameter lists. At first
glance, this may seem invalid. However, if you look at it from an overloading perspective, you can see
how the compiler would treat each of these three types as being unique. This can introduce some level
of confusion for clients, and this is certainly something you’ll want to factor in as you consider building
your own generic types. That said, this is still a very powerful concept that, when leveraged correctly,
can enrich the power of your generic types.

Generic Classes

Static Constructors

All classes support the idea of a static (shared) constructor. As you might expect, a static constructor is a
constructor that can be called without requiring clients to create an instance of a given class. These con-
structors provide a convenient mechanism for initializing classes that leverage static types.

Now, when it comes to generics, you have to also consider the accessibility of your class’s type parame-
ters within the scope of your static constructor. As it turns out, static constructors are granted full access

to any type parameters that are associated with your generic classes. Here’s an example of a static con-
structor in action:

[VB code]
Imports System.Collections.Generic

Class MySampleClass (Of T)
Private Shared _values As List (Of T)

Shared Sub New ()
If (GetType(T).IsAbstract = False) Then
Throw New Exception ("T must not be abstract")

Else
_values = New List(Of T) ()
End If
End Sub
End Class
[C# code]

using System.Collections.Generic;

public class MySampleClass<T> {
private static List<T> _values;

static MySampleClass() {
if (typeof (T).IsAbstract == false)
throw new Exception("T must not be abstract");
else

_values = new List<T>();

This example creates a class that accepts a single type parameter, T. The class has a data member that is
used to hold a static collection of items of type T. However, you want to be sure, as part of initialization,
that T is never abstract. In order to enforce this constraint, this example includes a static constructor that
examines the type information about T and throws an exception if the type of T is abstract. If it’s not
abstract, the constructor proceeds with the initialization of its static collection.

This is just one application of static constructors and generic types. You should be able to see, from this
example, how static constructors can be used as a common mechanism for initializing any generic class
that has static data members.

51

Chapter 4

Inheritance

Generic concepts, of course, are not constrained to a single class declaration. The type parameters that
are supplied with a generic class declaration can also be applied to all the objects that participate in an
object hierarchy. Here’s a simple example that creates a generic base class and subclasses it with another
generic class:

[VB code]
Public Class MyBaseClass (Of U)
Private _parentData As U

Public Sub New/()

End Sub

Public Sub New(ByVal val As U)
Me._parentData = val

End Sub
End Class

Public Class MySubClass(Of T, U)
Inherits MyBaseClass (0f U)
Private _myData As T

Public Sub New()

End Sub

Public Sub New(ByVal vall As T, ByVal val2 As U)
MyBase.New (val2)
Me._myData = vall

End Sub
End Class

[C# code]
public class MyBaseClass<U> {
private U _parentData;

public MyBaseClass() {}

public MyBaseClass (U val) {
this._parentData = val;
}
}

public class MySubClass<T, U> : MyBaseClass<U> {
private T _myData;

public MySubClass() {}
public MySubClass (T vall, U val2) : base(val2) {

this._myData = vall;
}

52

Generic Classes

Notice here that you have MyBaseClass, which accepts a single type parameter. Then, you subclass
MyBaseClass with MySubClass, which accepts two type parameters. The key bit of syntax to notice
here is that one of the type parameters used in the declaration of MySubClass was also referenced in the
declaration of the parent class, MyBaseClass.

Although this example simply passed the type parameters from the subclass to the base class, you can
also use type arguments when inheriting from another class or implementing a generic interface. In this
case, your generic class declarations could appear as follows:

[VB code]
Public Class

MyBaseClass (Of U)

End Class

Public Class
Inherits

MySubClass (Of T)
MyBaseClass (Of Integer)
End Class

[C# code]
public class

}

MyBaseClass<U> {

public class MySubClass<T> : MyBaseClass<int> {

}

The subclass has been altered here and now only accepts a single type parameter. And, in place of the
type parameter U that was being passed to MyBaseClass, you now pass the type argument Integer.
After looking at these two examples, it should be clear that your classes can subclass another class using
both open and constructed types (and some variations in between). It’s probably obvious at this stage,
but I should point out that your generic classes can also subclass non-generic, closed base classes as well.

Now that you know what works, let’s take a quick look at some of the combinations of inheritance pat-
terns that will not work. Suppose you have a closed type that inherits from a generic class:

[VB code]

Public Class
End Class

Public Class
Inherits

End Class

Public Class
Inherits

End Class

[C# code]
public class

public class

public class

MyBaseClass (0Of T, U)

MySubClassl
MyBaseClass (Of T, U)

MySubClass2
MyBaseClass (Of Int32,

String)
MyBaseClass<T, U> { }
MySubClassl

: MyBaseClass<T, U> { }

MySubClass2 : MyBaseClass<int, string> { }

53

Chapter 4

In this example, you have two closed types that inherit from a generic class. MySubClass1 attempts to
inherit using an open type and MySubClass2 inherits as a constructed type. When you attempt to com-
pile this code, you're going to notice that MySubClass1 will generate an error. The compiler has no point
of reference that allows it to resolve the types of T and U. As a constructed type, MySubClassl doesn’t
accept any type parameters and, therefore, has no parameters that can be used because it inherits from
MyBaseClass<T, U>. MySubClass2 doesn’t accept type parameters either, but it still compiles because it
uses type arguments and forms a constructed type as part of its inheritance declaration.

There’s one more inheritance scenario that’s worth discussing here. Let’s look at an example where you
use a constructed type as a type argument in the declaration of your inherited class:

[VB code]
Imports System.Collections.Generic

Public Class MyBaseClass(Of T, U)
End Class

Public Class MySubClassl (Of T)

Inherits MyBaseClass (Of List(Of T), T)
End Class
Public Class MySubClass2 (Of T)

Inherits MyBaseClass (0Of List (Of T), Stack(Of T))
End Class

[C# code]
using System.Collections.Generic;

public class MyBaseClass<T, U> { }
public class MySubClassl<T> : MyBaseClass<List<T>, T> { }

public class MySubClass2<T> : MyBaseClass<List<T>, Stack<T>> { }

If you look at this example closely, you'll discover that it’s really just a variation on one of the earlier
examples of inheritance. The key difference here is that a mixture of constructed types and type parame-
ters are used where the constructed types end up leveraging the type parameter from the subclass. The
goal here is just to get you comfortable with the possibilities and to get you to view a constructed type
like any other type argument you might pass when inheriting from a generic class.

Finally, it’s worth noting that a generic class cannot use one of its type parameters as its inherited type. It
must descend from an existing closed or open type. For example, the following would not be legal:

[VB code]

Public Class MyType(Of T)
Inherits Of T

End Class

[C# code]

public class MyType<T> : T {

}

54

Generic Classes

At this stage, after looking at all these examples, you should have a much better idea for how the
mechanics of generic inheritance work. The rules that govern inheritance are fairly logical and don’t
really fall outside what you might expect. The main idea to take away here is that you can use both
type parameters and type arguments as parameters when subclassing a generic class.

Protected Members

Any discussion of inheritance would be incomplete without also examining the accessibility of protected
members. First, I should make it clear that all the rules that govern access to protected members are
unchanged for closed types. Things get a bit more interesting when you look at protected members that
appear within a generic class. These members are accessible too. In fact, they are accessible in some ways
you might not expect.

Here’s an example that declares a base class with a protected, generic field that will then be referenced in
a descendant class:

[VB code]
Public Class MyBaseClass (Of T)
Protected _varl As T

Public Sub New(ByVal varl As T)
Me._varl = varl
End Sub
End Class

Public Class MySubClass(Of T, U)
Inherits MyBaseClass (Of T)
Private _var2 As U

Public Sub New(ByVal varl As T, ByVal var2 As U)
MyBase.New(varl)
Me._var2 = var2

End Sub

Private Sub Fool ()
Dim localVar as T = Me._varl
End Sub

Private Sub Foo2 ()
Dim subl As New MySubClass (0f Integer, String) (1, "12")
Dim vall As Integer = subl._varl
Dim sub2 As New MySubClass (0Of Double, Double) (1.0, 5.8)
Dim val2 As Double = sub2._varl
End Sub
End Class

[C# code]
using System;

public class MyBaseClass<T> {
protected T _varl;

public MyBaseClass (T varl) {

55

Chapter 4

this._varl = _varl;
}

public class MySubClass<T, U> : MyBaseClass<T> ({
private U _var2;

public MySubClass (T varl, U var2) : base(varl) {
this._var2 = var2;

}

private void Fool() {
T localVar = this._varl;
}

private void Foo2 () {
MySubClass<int, String> subl = new MySubClass<int, String>(1, "12");
int vall = subl._varl;
MySubClass<Double, Double> sub2 = new MySubClass<Double, Double> (1.0, 5.8);
Double val2 = sub2._varl;

This example actually ends up illustrating two key points. It includes a protected field in the base class,
varl, that is then accessed by the subclass. The method Fool () accesses varl successfully, much like it
would any other inherited, protected data member. The method Foo2 () is the more interesting example.
It constructs two separate instances of MySubClass and, because it’s in the scope of the descendant
class, it is able to access the protected member varl via these constructed types.

Fields

The fields of a generic class follow all the same syntax rules that are applied to non-generic fields. The
primary incremental change here is the ability to reference type parameters in the declaration of your
class’s fields. Here’s an example where this is applied:

[VB code]
Public Class MyType(Of T, U)
Private _myFirstDataMember As T
Private _mySecondDataMember As U
Public Sub New(ByVal vall As T, ByVal val2 As U)
Me._myFirstDataMember = vall
Me._mySecondDataMember = val2
End Sub

Public Function GetFirstDataMember () As T
Return Me._myFirstDataMember

End Function

Public Function GetSecondDataMember () As U
Return Me._mySecondDataMember

56

Generic Classes

End Function
End Class

Public Class MyApp
Shared Sub Main()
Dim testType As New MyType (Of String, String) ("vall", "val2")
Console.WriteLine (testType.GetFirstDataMember ())

Console.WriteLine (testType.GetSecondDataMember ())
End Sub
End Class

[C# code]
using System;

class MyType<T, U> {
private T _myFirstDataMember;
private U _mySecondDataMember;

public MyType (T vall, U val2) {
this._myFirstDataMember = vall;
this._mySecondDataMember = val2;

public T GetFirstDataMember () {
return this._myFirstDataMember;

}

public U GetSecondDataMember () {
return this._mySecondDataMember;

}

class MyApp {
static void main(String[] args) {
MyType<string, string> testType =
new MyType<string, string>("vall", "val2");
Console.WriteLine (testType.GetFirstDataMember ()) ;
Console.WriteLine (testType.GetSecondDataMember ()) ;

As you can see, the generic class is able to create a pair of fields that reference the type parameters that
are part of the class declaration. In fact, the type of any field declared in your generic class can reference

any type parameter that is passed into your class. You'll also notice that the constructor initializes these
fields using the same syntax you would use for any non-generic field.

Static Fields

Although type parameters can be used in the place of most types in a class, they cannot be applied to
any static field. In fact, the behavior of static fields does not change within a generic class. Consider the
following implementation of an object cache:

57

Chapter 4

[VB code]
Imports System.Collections.Generic

Public Class MyCache (Of K, V)
Private Shared _objectCache As New Dictionary (Of K, V)

Public Sub New ()
End Sub

Public Function FindValueInDB (ByVal key As K) As V
'findvalue (not shown) would lookup the key in
'a repository, add it to our cache, and return the value
End Function

Public Function LookupValue (ByVal key As K) As V
Dim retVal As V
If (_objectCache.ContainsKey (key) = True) Then
_objectCache.TryGetValue (key, retVal)
Else
retVal = FindValueInDB (key)
End If
Return retvVal
End Function
End Class

Public Class MyApp
Public Shared Sub Main()
Dim cachel As New MyCache(Of String, String) ()
Dim vall As String = cachel.LookupValue ("keyl")

Dim cache2 As New MyCache(Of String, String) ()
Dim val2 As Integer = cache2.LookupValue ("keyl")
End Sub
End Class

[C# code]
using System.Collections.Generic;

class MyCache<K, V> {
private static Dictionary<K, V> _objectCache;

public MyCache() {
MyCache<K, V>._objectCache = new Dictionary<K, V>();

private V findValueInDB (K key) {
// findvValue (not shown) would lookup the key in
// a repository, add it to our cache, and return the value
return default (V) ;

public V lookupValue (K key) {

V retval;

if (_objectCache.ContainsKey (key) == true) {
_objectCache.TryGetValue (key, out retval);

} else {

58

Generic Classes

// findvalue (not shown) would lookup the key in
// a repository, add it to our cache, and return the value
retVal = findvValueInDB (key) ;

}

return retvVal;
}

class MyApp {
public static void main(String[] args) {
MyCache<string, string> cachel = new MyCache<string, string>();
string vall = cachel.lookupValue ("keyl");

MyCache<string, int> cache2 = new MyCache<string, int>();
int val2 = cache2.lookupValue ("keyl") ;

This example defines a generic class, MyCache, that employs a static field to hold a set of keys and their
corresponding values. It represents a simple wrapper for the generic Dictionary class, adding a single
lookupValue method. Each time this method is called, it will determine if the provided key already
exists in the cache. If the key is found, the corresponding value will be returned. If the key is not found,
the code class will look it up in a database, place it in the cache, and return it to the client.

The goal here was to construct a simple cache that could make this added lookup capability available to
a wide variety for data types. You could, for example, leverage this class to hold a cache strings and turn
around and reuse it, as I did here, to manage a separate cache of integers. And, in that regard, it delivers
what I had intended. The problem comes in when two constructed types use the same type arguments.

In these instances, your constructed types actually end up sharing more than their implementation —they
also share their static fields. So, although it seemed as though your two constructed types represented
unique instances, they did not. They both shared a single instance from the static objectcCache field.

You can only imagine what this does to your cache. If you declare two constructed types with matching
type arguments and you want them treated entirely separately, it won’t be possible. The static cache
being maintained by the class will end up being shared by these two instances.

In general, this aspect of static fields shouldn’t be viewed as a limitation. It's mostly significant and
worth discussing because the behavior may not match what you're expecting. It could also be the source
of a few difficult-to-locate bugs. If nothing else, this is at least something you’ll want to keep in mind
whenever you opt to include static data in one of your generic classes.

Constructed Fields

It should go without saying that constructed generic types can also be used throughout the implementa-
tion of your generic classes. Specifically, you are allowed to have fields that are open or closed constructed
types. Here’s a quick look at a simple example:

[VB code]
Imports System.Collections.Generic

Public Class MyType (Of T)

59

Chapter 4

Private _myList As New List (Of T)
Private _myStrings As New List (Of String)

Public Function GetItem(ByVal paraml As List (Of Integer)) As T
Dim localVar As New List (Of T)
Return _myList(0)
End Function
End Class

[C# code]
using System.Collections.Generic;

class MyType<T> {
private List<T> _myList;
private List<string> _myStrings;

public T getItem(List<int> paraml) ({
List<T> localVar;
return _myList[0];

}

You'll notice the class is littered with open and closed constructed types. After you're familiar with
generics, these constructed types will start to look like any other data type you might reference in your
class. The syntax variations for generics seem to just fade into the background.

Methods

Methods represent your primary point of contact with clients. As such, their flexibility, expressiveness,
and general type safety should be of a great deal of importance to you. You want to make your client’s
life as simple as possible and, because you may likely be both the producer and the consumer of these
methods, you're also likely to be especially motivated to build a good interface.

With generics, you actually have the opportunity to build a set of interfaces that are likely to last more
than a few days. If you think about it, generics allow you to be 100% vague about types that are sup-
ported by your interfaces. It’s as if every parameter and every return type is of the type object. All that,
and you still get a type-safe interface.

Okay, that may be a bit extreme. But, if you consider that your type parameters can essentially appear
anywhere within the signature of a method, it doesn’t seem like that big of a stretch. At the same time,
while you feel this extra degree of freedom in defining your interface, the consumers of your interface
get to work with specific types without dealing with casting or conversion.

For this chapter, my focus is exclusively on generic classes. And, for that reason, the dis-
cussion of methods is intentionally constrained to how type parameters influence the
methods of your class. Chapter 5, “Generic Methods,” looks at generic methods that can
exist entirely outside the scope of a generic class and have their own set of dynamics.

60

Generic Classes

Let’s take a quick look at a sample class that illustrates a few variations on how you might go about
using type parameters in the interface of your generic class:

[VB code]

Class MyType (Of V)

End Class

MustInherit Class MyShape (Of T, U)
Public Sub New()
End Sub

MustOverride Sub Draw ()
MustOverride Function GetIndexes() As T()

Overridable Function
Addvalue (ByVal index As T, ByVal value As MyType(Of U)) As Boolean

End Function
Overridable Function GetValue(ByVal index As T) As MyType (Of U)

End Function
End Class

[C# code]
class MyType<V> {}

abstract class MyShape<T, U> {
public MyShape() {}

public abstract void draw() ;
public abstract T[] GetIndexes();

public virtual bool AddvValue (T index, MyType<U> value) {

public virtual MyType<U> GetValue (T index) {

In this class you define a set of methods, both abstract and virtual, that leverage the type parameters
used in the declaration of your generic class. For both the abstract and virtual methods, you are free to
include type parameters and open types wherever you would place traditional types. As you can see,
very few limitations are imposed on the methods of your class. And, fortunately, most of the concepts
you’ve become accustomed to with non-generic methods will still apply to your methods.

Overloading Methods

Whenever you define a method — especially an overloaded method — you need to understand how the
compiler will evaluate the signature of that method. Specifically, you need to have a firm grasp on how

61

Chapter 4

62

the compiler evaluates the uniqueness of a given generic method. For example, consider how the com-
piler will evaluate the following two methods:

[VB code]
Class MyType (Of T)
Public Function Foo() As Boolean
End Function

Public Function Foo() As T
End Function
End Class

[C# code]

class MyType<T> {
public bool Foo() { ... }
public T Foo() { ... }

While these two methods would seem to have different signatures, the compiler has no means by which
it can uniquely identify these two methods because they only differ by their return types — one of which
is a type parameter. This is not especially surprising because non-generic methods also fail when they
only differ by their return types. Here’s a less obvious example:

[VB code]

Class MyType(Of T)
Public Function Foo(ByVal myString As String) As Boolean
End Function

Public Function Foo(ByVal myValue As T) As Boolean
End Function
End Class

[C# code]

class MyType<T> {
public bool Foo(String myString) { }
public bool Foo (T myValue) { }

On the surface, it would seem as though the compiler would not be able to distinguish between these
two methods. However, this is one where C# and VB vary in their implementations. The C# generics
specification only requires a method’s signature to be unique prior to the class’s instantiation. So, given
these constraints, the C# compiler is able to view these two methods as being unique. VB, on the other
hand, isn’t so kind. It continues to throw an error and complain about the uniqueness of the method’s
signature.

Although the C# language may support this syntax, it still creates a situation that could cause some level
of confusion for clients of your method. As such, relying on this mechanism may not be a good idea—
especially given the overriding generic theme of providing clear, expressive interfaces for your types.

The name you assign to your type parameters can also create some confusion when you are trying to
evaluate the signature of a method. Typically, you look at the name of a type to determine if two types

Generic Classes

match. For example, in the next snippet of code you have two Integer parameters in the signature of
two separate methods:

[VB code]

Class MyType (Of T)
Public Sub Foo(vall As Integer, val2 As Integer)
End Sub

Public Sub Foo(vall As Integer, val2 As Integer)
End Sub
End Class

[C# code]

class MyType<T> {
public void Foo(int vall, int val2)
public void Foo(int vall, int val2)

{
{
To most developers going to be, it’s clear that these two methods are going to collide and throw a com-
pile-time error. Now, let’s take that same concept and use type parameters instead of native types:

[VB code]

Class MyType(Of T, U, V)
Public Sub Foo(ByVal vall As T, ByVal val2 As V)
End Sub

Public Sub Foo(ByVal vall As U, ByVal val2 As V)

End Sub

End Class

[C# code]

class MyType<T, U, V> {
public void Foo (T vall, V val2) { ... }
public void Foo (U vall, V val2) { ... }

}

These two methods, based on type parameter names alone, would appear to have unique signatures.
There are certainly scenarios where, with different permutations of type arguments, these signatures
would be deemed unique. At the same time, it’s also true that there could be combinations of type argu-
ments that could create collisions.

It turns out the VB and C# take different approaches to verifying the uniqueness of these signatures.

VB says if there can be at least one combination of type arguments that could cause these methods to be
duplicates, then the compiler will throw an error. This will be true even if there are no constructed types
in your code that create a collision. C#, on the other hand, takes the more optimistic approach. It allows
this class to compile because there are combinations of type arguments that could be valid.

Overriding Methods

Now that you have a better idea of how type parameters influence the signature of methods, you need
to consider how type parameters are applied when you override methods in a generic class. First, it’s
important to point out that, if your generic class descends from a closed type, you can still override the
parent methods just as you would in any non-generic class.

63

Chapter 4

64

Where this gets more interesting is when your base class is generic class (open or constructed type). For
this scenario, you can still override methods from your generic base class. However, there are some
nuances you must keep in mind. Let’s start by looking at the common, simple case:

[VB code]
Public Class MyBaseClass (Of T)
Overridable Sub Foo (ByVal val As T)
Console.WriteLine("In BaseClass")
End Sub
End Class

Public Class MySubClassl (Of T, U)
Inherits MyBaseClass (Of T)

Overrides Sub Foo(ByVal val As T)
Console.WriteLine("In SubClass")
End Sub
End Class

Public Class MySubClass2 (Of T, U)
Inherits MyBaseClass (0Of Integer)

Overrides Sub Foo(ByVal val As T)
Console.WriteLine("In SubClass")
End Sub
End Class

[C# code]
public class MyBaseClass<T> ({

public virtual void Foo(T val) { }
}

public class MySubClassl<T, U> : MyBaseClass<T> {
public override void Foo(T val) { }

}

public class MySubClass2<T, U> : MyBaseClass<int> {
public override void Foo(T val) { }

}

This example declares a generic base class (MyBaseClass) that includes one overridable method, Foo. It
then implements two generic subclasses that both override the Foo method. On the surface, there doesn’t
appear to be any issues. Both of these classes provide identical signatures for the method. So, why does
MySubClass?2 fail to compile? Well, if you look more closely, you'll notice that MySubClass2 uses a
constructed type in its inheritance declaration. Meanwhile, MySubClass1 uses an open type for its
declaration. This one point of difference is crucial. With MySubClass1, the type parameter T used inher-
itance declaration and the overridden method can be guaranteed to match. That doesn’t hold true for
MySubClass2. The type of T can, and likely will, differ from the integer type, which is what is provided
to the parent’s T type parameter. As you might expect, the compiler is going to detect this and throw an
error during the compilation of MySubClass2.

Generic Classes

The theme here is that the type parameters and type arguments supplied to an inherited generic class
play a significant role in defining what’s legal when overriding a method. As type parameters are refer-
enced in overridable methods of the parent class, those type parameters must be resolvable to the same
type of the overriding base class. Here’s one more example to solidify this point:

[VB code]
Public Class MyBaseClass (Of T, U)
Overridable Sub Foo (ByVal vall As T, ByVal val2 As U)
Console.WriteLine("In BaseClass")
End Sub
End Class

Public Class MySubClassl (Of T, U, V)
Inherits MyBaseClass (Of T, V)

Overrides Sub Foo(ByVal vall As T, ByVal val2 As U)
Console.WriteLine("In SubClass")
End Sub
End Class

[C# code]
public class MyBaseClass<T, U> {

public virtual void Foo(T vall, U val2) { }
}

public class MySubClassl<T, U, V> : MyBaseClass<T, V> {
public override void Foo(T val2, U val2) { }

}

Once again, the signatures of the methods seem to match. And, once again, the compiler isn’t happy. The
mismatch here is that the subclass supplies T and V as type arguments to the parent’s corresponding T
and U type parameters. This means that the U type parameter in the base class actually maps to the v
type parameter in the subclass. So, when you reference the T and U parameters in the overriding
method, the U parameter actually represents v and causes a compile error.

The rules for overriding in generic classes aren’t much more involved than that. You won't find yourself
getting tripped up by this too often. And, when you do, the compiler does a reasonable job detecting and
reporting errors in this scenario.

Arrays of Type Parameters

The methods within your generic class may also include arrays of type parameters. This gives you the
ability to pass type-safe arrays to your methods. This syntax is as follows:

[VB code]

Class MyType (Of T)
Shared Sub Foo(ByVal params As T())
End Sub

End Class

Public Class MyTest
Public Shared Sub Test ()

65

Chapter 4

MyType (Of Integer) .Foo (New Integer () {123, 321})
MyType (Of String) .Foo(New String() {"TEST1", "TEST2", "TEST3"})
End Sub
End Class

[C# code]
public class MyType<T> {
public static void Foo (T[] parms) { }
}
public class MyTest ({
public static void Test() {
MyType<int>.Foo (new int[] { 123, 321 });
MyType<string>.Foo(new string[] { "TEST1", "TEST2", "TEST3" });

This works exactly as you might expect. In fact, the syntax matches that of any other array you may pass
to a method.

Operator Overloading

For some reason, operator overloading seems particularly interesting when it comes to generics. Here
you have this new generic class and now you're allowed to define operations on that class without any
awareness of the types it will be managing. Not sure why, but that’s just plain cool to me. It’s as if you
can define all these semantics of your generic types at an all new level of abstraction.

The other thing to be excited about here is the enhanced operator overloading support in Visual Studio
2005. Specifically, Visual Basic finally has real support for operator overloading that allows Visual Basic
to define operators that are more in line with the traditional model that has been historically provided as
part of other languages.

All that said, the important part here is to understand the syntax rules that govern the definition and
invocation of overloaded operators within generic classes.

[VB code]
Public Class MyType(Of T)
Public Shared Operator +(ByVal op As MyType(Of T)) As MyType(Of T)
Console.WriteLine ("In unary ++ operator")
Return New MyType (Of T) ()
End Sub
End Class

[C# code]
using System;

public class MyType<T> {
public static MyType<T> operator ++ (MyType<T> op) {
Console.WriteLine("In ++ operator");
return new MyType<T>();

66

Generic Classes

This example implements the + unary operator. You can see here that this example simply substitutes the
generic open type, MyType, in the appropriate locations in the signature of the operator method. This is a
requirement for your overloaded generic operators. In fact, all unary operations must take one parame-
ter of the instance type.

Any time there’s a discussion of operator overloading, it must also be accompanied by discussion of
type conversion. It makes sense. After all, operator overloading is what enables you to provide specific
conversion operators that determine how one type can be converted to another. For example, if you cast
MyTypel to MyType2, an overloaded operator could be used to define the behavior of this conversion
(assuming you want this to be a valid conversion).

In the world of generics, you can’t really define conversion from one concrete type to another. There’s
nothing concrete about your types at all. That’s the whole point. The syntax of generics, however, does
provide you with the mechanisms you’ll need to express these conversions in a generic fashion. Here’s a
quick example of an overloaded operator that provides type conversion:

[VB code]
Public Class MyType (Of T)
Public Shared Widening Operator CType (ByVal source As MyType(Of T)) _
As MyType (Of String)

Console.WriteLine ("In unary string conversion operator")
Return New MyType (Of T) ()
End Sub
End Class

[C# code]
public class MyType<T> {
public static implicit operator MyType<String> (MyType<T> source) {
Console.WriteLine("In unary string conversion operator");
return new MyType<String>();

This example provides an operator that will convert instances of MyType to constructed type of
MyType (Of String). This can be fairly handy and provides an excellent alternative to providing
operator overloads for every possible source type.

There are a few gotchas you'll want to plant in your memory when providing conversion operators.
First, you cannot perform conversions if your source and target conversion types are in the same object
hierarchy. Also, it’s important to note that your conversion operators may end up overloading a conver-
sion operator that is already defined. If this turns out to be the case, your overloaded conversion operator
will never end up getting called.

Nested Classes

Generic classes do not fundamentally change the nature of nested classes. Of course, by definition, any
class that’s nested inside a generic class is also deemed “generic” in that the overall constructed type
cannot be created without someone providing type parameters.

67

Chapter 4

That said, generics also extend the functionality of existing nested classes, allowing them to have full
access to the type parameters of their outer class. In addition, you also have the option of making your
nested classes be generic. Following is an example where a nested class references the type parameters
of its outer class:

[VB code]
Imports System.Collections.Generic

Public Class OuterClass(Of T, U)
Public varl As New Dictionary(Of T, U)

Public Class InnerClass
Private varl As T
Private var2 As New List (Of U)
End Class
End Class

[C# code]
using System.Collections.Generic;

public class OuterClass<T, U> {
public Dictionary<T, U> varl;

public class InnerClass {
private T varl;
private List<U> var2;

As you can see, the declaration of your inner class matches that of any other nested class. However,
within your inner class, you'll notice that the example declares a few data members that use the type
parameters from your outer class. In fact, the example declares a number of different constructed types
from the pool of type parameters that were supplied to your generic class.

This gets a little more interesting when you make your inner class accept its own type parameters.
Here’s an example that does just that:

[VB code]
Imports System.Collections.Generic

Public Class OuterClass(0Of T, U, V)

Public Class InnerClass(Of T, V)
Private varl As New Dictionary(Of T, V)
Private var2 As U
End Class
End Class

[C# code]
using System.Collections.Generic;

public class OuterClass<T, U, V> {

public class InnerClass<T, V> {
private Dictionary<T, V> varl;

68

Generic Classes

private U var2;
}

The outer class for this example accepts three type parameters: T, U, and V. Your inner class also accepts
type parameters named T and V. So, the question is, what will happen with the var1 data member that
you've declared in your inner class? Will it share the same types that are supplied to the outer class for
the T and v type parameters? Nope. Once you used these type parameter names for your inner class,
you effectively lost all ability to reference the type parameters from your outer class. They are inaccessi-
ble. Meanwhile, the other data member in your inner class, var2, is able to successfully reference the U
type parameter from the outer class. This is possible because U was not included in the type parameter
list of the inner class.

This problem would mostly be chalked up to bad habits. As a rule of thumb, the creator of an inner class
should never reuse the type parameter names of its outer class as part of its declaration. Otherwise, you
will be forever and unnecessarily prevented from accessing the type parameters of your outer class. You
don’t want to live with that kind of guilt.

Consuming Generic Classes

Okay, you've had a good long look at what goes into defining a generic class. Now, it’s time to explore
those rules that govern constructed types. First, it should be clear by now that a constructed type shares
all the freedoms as any other type and can be placed in any syntactical context that would be used for
non-generic types. Once you marry a type argument to the open type, they are conceptually “merged” to
form a specific concrete type. The sooner you're comfortable with that notion, the sooner you'll begin to
view constructed types on equal ground with Strings and Integers (actually, given my bias, I would
tend to view them as generally superior to these types on the sheer merit of their constitution).

A number of variations exist on how you might declare a constructed type. The simplest variety is what
is considered a closed constructed type. It’s simple because the type arguments supplied are of simple,
concrete types. Open constructed types use the type parameters from their surrounding generic class as
part of their declaration. These two types are likely familiar by now. However, Chapter 1, “Generics
101,” provides examples if you want a more detailed explanation.

In addition to accepting all the primitive types as type arguments, a constructed type can also be created
using other constructed types as type arguments. For example:

[VB code]
Dim myGenericTypel As New MyType (Of List (Of Integer))
Dim myGenericType2 As New MyType2 (Of Dictionary(Of Integer, String), String)

[C# code]
MyTypel<List<int>> myGenericTypel;
MyType2<Dictionary<int, string>, string> myGenericType?2;

This fits with the theme that a constructed type is just like any other type and, as such, can behave like
any other type argument. You also have the option of using type parameters in these declarations, which
would simply make your declaration an open constructed type (because its type will be determined at
run-time). It’s also worth noting that these types can also be passed as arrays by applying the array
modifier to these arguments.

69

Chapter 4

Accessibility

Whenever you look at introducing new syntax for types, you must also look at the rules that govern
accessibility for these new types. Each time you declare a constructed type, the accessibility of that type’s
parameters must be taken into consideration. Here’s a basic example that highlights how accessibility
can influence a constructed type:

[VB code]
Public Class MyType(Of T)

End Class

Public Class AccessTest
Private Class PrivateClass
End Class

Public Function GetMyType() As MyType (Of PrivateClass)
End Function
End Class

[C# code]
public class MyType<T> {}

public class AccessTest {
private class PrivateClass {}
public MyType<PrivateClass> getMyType() { }

This example creates a closed class, AccessTest, which contains a nested class (PrivateClass) as well
as a public method. You'll notice that this method actually returns a constructed type, MyType, which
was constructed using PrivateClass as a type argument.

The problem with this implementation is that PrivateClass, which has private accessibility, is being
used in the construction of the publicly accessible return type of the method getMyType (). As you
might suspect, the compiler catches and throws an error when you attempt to compile this example.
This same brand of error would also apply in situations where you attempt to use a protected type as a
parameter to a publicly accessible constructed type.

The rule of thumb here is that the accessibility of any class’s constructed types is constrained by the
accessibility of the type arguments passed to that constructed type. Let’s look at another example:

[VB code]
Public Class MyType(Of T)
End Class

Public Class AccessTest
Public class PublicClass
End Class
Protected class ProtectedClass
End Class
Private class PrivateClass
End Class

Public Function Fool() As MyType (Of ProtectedClass)

70

Generic Classes

End Function

Protected Function Foo2 As MyType (Of ProtectedClass)
End Function

Protected Function Foo3 As MyType (Of PublicClass)
End Function

Private Function Foo4 As MyType (Of PrivateClass)
End Function
End Class

[C# code]

class MyType<T> {}

class AccessTest {
public class PublicClass {}
protected class ProtectedClass {}
private class PrivateClass {}
public MyType<ProtectedClass> Fool() { }
protected MyType<ProtectedClass> Foo2() { }
protected MyType<PublicClass> Foo3 () { }
private MyType<PrivateClass> Food () { }

In this example, three classes are declared — PublicClass, ProtectedClass, and PrivateClass —
and they are passed as type arguments to construct return value types for four different methods. The
first method, Fool (), passes a ProtectedClass to a constructed type with public accessibility, which,
as you might expect, yields a compile error. This publicly accessible method cannot return a constructed
type that has been constructed with a protected type. The remaining methods will all successfully com-
pile because the accessibility of their type arguments do not “exceed” the accessibility of each method.

These scenarios seem pretty straightforward. However, there’s one more variation that’s worth exploring.
What happens in the instances where you have multiple type arguments being passed to your constructed
type, each with varying levels of accessibility? Consider the following example:

[VB code]
Public Class AType(Of T, U)
End Class

Public Class MyType
Public Class PublicClass
End Class
Protected Class ProtectedClass
End Class
Protected Friend Class ProtectedFriendClass
End Class
Private Class PrivateClass
End Class

Public Function Fool() As AType(Of PublicClass, PublicClass)

End Function

Protected Function Foo2 () As AType (Of ProtectedClass, ProtectedFriendClass)
End Function

Protected Friend Function Foo3 () As AType (Of PublicClass, ProtectedFriendClass)

71

Chapter 4

72

End Function

Friend Function Foo4 () As AType (Of PublicClass, PublicClass)
End Function

Private Function Foo5() As AType (Of PublicClass, PrivateClass)
End Function

Public Function Foo6() As AType(Of ProtectedClass, PublicClass)
End Function
Protected Function Foo7() As AType (Of ProtectedClass, PrivateClass)
End Function
Protected Friend Function Foo8() As AType (Of ProtectedClass, PublicClass)
End Function
End Class

[C# code]
class AType<T, U> {}
class MyType {
public class PublicClass {}
protected class ProtectedClass {}
protected internal class ProtectedInternalClass {}
private class PrivateClass {}

public AType<PublicClass, PublicClass> Fool() {}

protected AType<ProtectedClass, ProtectedInternalClass> Foo2() {1}
protected internal AType<PublicClass, ProtectedInternalClass> Foo3 () {}
internal AType<PublicClass, PublicClass> Food () {}

private AType<PublicClass, PrivateClass> Foo5() {}

public AType<ProtectedClass, PublicClass> Foo6 () {}
protected AType<ProtectedClass, PrivateClass> Foo7() {}
protected internal AType<ProtectedClass, PublicClass> Foo8() {}

For the most, there are no major surprises here. As you might expect, the “least” accessible type argu-
ment will determine the accessibility of each constructed type. Following this logic, you will find that
the first five methods will all successfully compile. Method Foo3 (), for example, is valid because both
protected and protected internal type arguments conform to the accessibility of the method
(which is protected in this case). The final three methods will all generate errors at compile time
because each one violates these same accessibility rules. In reality, because private methods have no
outside accessibility, they can be constructed with arguments that support every flavor of accessibility.

The following table provides a more complete breakdown of the accessibility rules that cover all the per-
mutations of accessibility.

VB Accessibly C# Accessibility Valid Type Arguments

Public public public

Protected protected protected, protected friend/internal, public
protected friend protected internal protected internal, public

Generic Classes

VB Accessibly C# Accessibility Valid Type Arguments

Friend internal internal, protected friend /internal, public

Private private public, protected, protected friend/internal,
friend /internal, private

This list covers all the cases for methods declared within a class. However, these rules change somewhat
if you declare your methods within the scope of an internal class. The following table calls out accessibil-
ity rules for an internal class.

VB Accessibly C# Accessibility Valid Type Arguments

Public public public, protected friend/internal, friend /internal

Protected protected protected, protected friend /internal, friend/
internal, public

protected friend protected internal public, protected, protected internal, internal

Friend internal friend/ internal, protected friend /internal, public

Private private public, protected, protected friend/internal,

friend/internal, private

The Default Keyword

When you're dealing with the implementation of a generic class, you may come across situations where

you’d like to assign or access default values for your type parameters. However, because the actual type
of your type parameter is unknown at the point of implementation, you have no way of knowing what’s
a valid default value for any given type parameter. To address this need, the generics specification intro-
duced a new “default” keyword. This keyword was needed to allow you to determine the default value

for generic types.

The language specification identifies a set of rules for the default values that will be returned for specific
types of type parameters. These rules are as follows:
1. Ifatype parameter is s reference type, it will always return a default value of nu11.

2. Ifa type parameter is one of the built-in types, the default value will be assigned to whatever
default is already defined for that type.

3. Ifatype parameter is a struct type, the default value will be the predefined default value for
each of the fields defined in that struct.

This mechanism is essential in the implementation of some class types. Here’s a simple example that
demonstrates one application of the default keyword:

[C# code]
using System.Collections.Generic;

public class MyCache<K, V> {

73

Chapter 4

private Dictionary<K, V> _cache;
public V LookupItem(K key) {

V retval;

if (_cache.ContainsKey (key) == true)
_cache.TryGetValue (key, out retval);

else

retVal = default (V) ;
return retVal;

}

This example provides the shell of the implementation of a cache. It includes a LookupItem () method
that looks for a specific key in the cache and returns a default value if it’s not found. This is a basic appli-
cation of the default mechanism. You could also use this feature to initialize the values of type parameters
in advance of using them.

You'll notice that I did not provide an example of how to use the default keyword
with Visual Basic. That’s because Visual Basic does not currently support the default
keyword in this context. In VB, the closet equivalent to this concept would be to set
an instance of a type parameter equal to nothing.

System.Nullable<T>

With the introduction of version 2.0 of the NET Framework, developers are finally provided with a
solution to the age-old problem of dealing with nullable types. The basic issue here is that not all data
types provide a mechanism for determining if they have a “null” value. Clearly, with objects, there’s a
well-defined means of making this determination. However, with an int data type, there’s no predefined
value that could be used to determine if that int has been assigned a value. To resolve this, Visual Studio
2005 is introducing a new Nullable type that provides a uniform way of determining if a value is null.

Although nullable types are not exactly a generics concept, they are implemented using generics. A type
is made nullable using the built-in Nullable generic class (which is in the System namespace). This
generic class will be used to keep track of when its underlying type is assigned a value. Consider this
example:

[VB code]
Public Class MyTest
Public Shared Sub NullableTest (ByVal intVall As Nullable(Of Int32), _
ByVal intVal2 As Int32)

If (intVall.HasValue() = True) Then
Console.WriteLine(intVall)
Else
Console.WriteLine("Valuel is NULL")
End If

If (intval2 > 0) Then
Console.WriteLine(intVal2)
Else

74

Generic Classes

Console.WriteLine("Value2 is Null?"
End If
End Sub
End Class

[C# code]
using System;

public class MyTest {
public static void NullableTest (Nullable<int> intVall, int intval2) {
if (intVall.HasValue == true)
Console.WriteLine (intVall) ;
else
Console.WriteLine("Valuel is NULL");

if (intval2 > 0)
Console.WriteLine(intVal2);

else
Console.WriteLine("Value2 is Null?");

This example declares a method that accepts two integer variables, one of which is nullable and one
which is not. The body of this method then attempts to write out the value of each of these parameters to
the console. Of course, you want your method to detect if either parameter has been actually assigned

a value and only write that value out to the console. If it hasn’t been assigned a value, you just dump a
message indicating that no value exists. Simple enough.

Because the intvall parameter was declared as a nullable type, you can easily detect if it is null by
checking the HasValue property. Meanwhile, the intval2 parameter is never assigned a value, leaving
you with no definitive means of determining if it's null. As a compromise, you could artificially decide
that if it’s greater than 0 it will be treated as non-null. However, that’s an arbitrary rule you've defined in
your code. Using the Nullable class gives you a universal, absolute definition for null that you can use
throughout your code. It should be noted that the Nullable class only holds value types (int, double,
and so on).

While the Nullable<T> type might look and behave like any other generic data container you'll find in
the .NET framework, it is actually afforded special treatment by the CLR. As developers were initially
trying out the Nullable<T> type, they discovered a few scenarios that yielded unexpected results.
Consider the following example:

[VB code]

Dim intVal As New Nullable(Of Int32)
intval = Nothing

Dim refVal As Object

refval = intval

If refval Is Nothing Then
Console.Out.WriteLine("Value is null")

End If

75

Chapter 4

[C# code]
Nullable<int> intVal = null;
object refval;

refval = intVal;
if (refval == null)
Console.Out.WriteLine("Value is null");

This example declares a Nullable<int> instance before assigning that instance to refval, which is an
object data type. By making this assignment, you end up forcing your nullable integer type to be
boxed. Now, if Nullable<T> were just another generic type, this boxing would have caused the null
state of the value type to be lost during the boxing process. As you can imagine, this was not exactly the
intended behavior.

To overcome this problem, the CLR was forced to make the nullable type a true runtime intrinsic. It was
only at this level that runtime could provide behavior that would be more in line with what developers
were expecting. So, as the CLR processes the un-boxing of the nullable types, it provides special han-
dling to ensure that the null state of the value is not lost in translation.

By adding this capability, the CLR also added support for explicitly un-boxing a reference directly into a
Nullable<T> type. The end result is a nullable type that is more directly supported by the CLR, which
ultimately translates into a type that behaves much more intuitively.

C# provides an alternative syntax for declaring nullable types. By simply appending
a ? to your type (int?) you will have the equivalent of Nullable<int>. This mecha-
nism provides developers with a shorthand way of declaring nullable types. While
the declaration is certainly shorter, this syntax could be seen as impacting the read-
ability of your code. In the end, it's more a matter of preference.

Accessing Type Info

Now that you're actively building and consuming generic types, you might have an occasion when
you’ll want to access the specific type information for your generic types. Here’s a simple example that
dumps type information for a few generic classes:

[VB code]
Public Class OneParamType (Of T)
End Class

Public Class TwoParamType (Of T, U)
End Class

Public Class TypeDumper (Of T, U, V)
Shared Sub DumpTypeInfo()
Console.WriteLine (GetType (T))
Console.WriteLine (GetType (U))
Console.WriteLine (GetType (V))
Console.WriteLine (GetType (OneParamType (Of String)))
Console.WriteLine (GetType (OneParamType (Of T)))
Console.WriteLine (GetType (TwoParamType (Of U, Integer)))

76

Generic Classes

Console.WriteLine (GetType (TwoParamType (Of T, V)))
End Sub

Public Sub ShowTypeInfo ()
TypeDumper (Of String, Integer, Double) .DumpTypeInfo ()
End Sub
End Class

[C# code]
using System;

public class OneParamType<T> {}
public class TwoParamType<T, U> {}

public class TypeDumper<T, U, V> {

public static void DumpTypeInfo() {
Console.WriteLine (typeof (T));
Console.WriteLine (typeof (U)) ;
Console.WriteLine (typeof (V)) ;
Console.WriteLine (typeof (OneParamType<String>)) ;
Console.WriteLine (typeof (OneParamType<T>)) ;
Console.WriteLine (typeof (TwoParamType<U, int>));
Console.WriteLine (typeof (TwoParamType<T, V>));

public static void ShowTypeInfo() {
TypeDumper<String, int, Double>.DumpTypeInfo () ;
}

This example creates a TypeDumper class that accepts three type arguments and includes a
DumpTypeInfo () method that displays type information about each of these parameters in different con-
texts. Then, to see this method in action, the example includes a ShowTypeInfo () method that supplies
string, int, and double type arguments. The output of calling this method will appear as follows:

System.String
System.Int32

System.Double
OneParamType 1
OneParamType " 1
TwoParamType " 2
TwoParamType " 2

System.String]

System.String]

System.Int32, System.Int32]
System.String, System.Double]

It’s mostly what you’d expect. The one piece of information you might not have expected here is the
number that appears after OneParamType and TwoParamType. That number represents the “arity” of
the type, which corresponds to the number of type parameters that were used to construct the type.

Indexers, Properties, and Events

For the most part, generics represent a graceful extension to the languages of the NET platform. That
said, there are some areas of classes where generics cannot be applied. Specifically, generics cannot be
applied to the indexers, properties, or events that appear in your classes. Each of these members can

77

Chapter 4

reference type parameters in their signature. However, they are not allowed to directly accept type
parameters. That distinction may not be clear. Following is a quick example that will help clarify this
point. Let’s start with an example that would be considered valid:

78

[VB code]
Imports System.Collections.Generic

Public Delegate Sub PersonEvent (Of T) (ByVal sender As Object, ByVal args As T)

Public Class Person(Of T)
Private _children As List (Of T)

Public Sub New()
Me._children = new List (Of String) ()
End Sub

Public Property Children() As List (Of T)
Get
Return Me._children
End Get
Set (ByVal value As List(Of T))
Me._children = value
End Set
End Property

Default Property Item(ByVal index As Long) As T

Get
Return Me._children (index)
End Get
Set (ByVal value As T)
Me._children (index) = value
End Set

End Property

Event itemEvent As PersonEvent (Of T)
End Class

[C# code]
using System.Collections.Generic;

public delegate void PersonEvent<T>(object sender, T args);

public class Person<T> ({
private List<T> _children;

public Person() {
this._children = new List<String>();

public List<T> Children {
get { return this._children; }
set { this._children = value; }

Generic Classes

public T this[int index] {
get { return this._children[index]; }
set { this._children[index] = value; }

}

event PersonEvent<T> itemEvent;

You'll notice that this example includes references to its type parameter T in the declaration of a prop-
erty, an indexer, and an event. In all of these cases, however, these members are referencing a type
parameter that was supplied to the class. The difference is that none of these members can directly
accept their own type parameters. So, the following would not be considered legal:

[VB code]
Public Class MySampleClass

Public Sub New()
End Sub

Public ReadOnly Property Children(Of T) () As String
Get

End Get
End Property

Default Property Item(Of T) (ByVal index As Long) As String
Get

End Get
Set (ByVal value As String)
End Set

End Property

Event (Of T) itemEvent As SampleEvent
End Class

[C# codel
using System.Collections.Generic;

public class MySampleClass {
public MySampleClass() {}
public String Children<T> {
get { ... }
set { ... }

}

public String this<T>[int index] {
get {0)

79

Chapter 4

set { ... }
}

Event<T> SampleEvent itemEvent;

This is an example where the property, indexer, and event all accept their own type arguments. None of
these forms of declarations will be deemed acceptable. Fortunately, this same constraint is not applied to
methods.

Generic Structs

Classes and structs, for the most part, are synonymous. Essentially, whatever you can do with a class
you can also do with a struct. Knowing this, you would be correct in assuming that all the same generic
concepts you've seen applied to generic classes are also applicable to structs. Just to round things out,
let’s look at a simple example of a generic struct:

[VB code]
Imports System.Collections.Generic

Public Structure SampleStruct (Of T)
Private _items As List (Of T)

Public Function GetValue (ByVal index As Int32) As T
Return Me._items (index)
End Function

Public Sub AddItem(ByVal value As T)
Me._items.Add(value)
End Sub

Public Function ValidateItem(Of T) (ByVal value As Object) As Boolean
Dim retVal As Boolean = False
If (GetType(T).ToString.Equals(value)) Then

retVal = True

End If
Return retVal

End Function

End Structure

[C# code]
using System.Collections.Generic;

public struct SampleStruct<T> {
private List<T> _items;

public T GetValue (int index) {
return this._items[index];

}

public void AddItem (T value) {

80

Generic Classes

this._items.Add(value) ;
}

public bool ValidateItem<T> (object value) {
bool retvVal = false;
if (typeof(T).ToString() == value.ToString())
retVal = true;
return retvVal;

The generic syntax you see here conforms, precisely, to the patterns that you've seen applied to generic
classes. So, everything you’ve seen in this chapter regarding generic classes should be applied, univer-
sally, to generic structs.

Generic Interfaces

As part of looking at generic classes, it also makes sense to look at how generics can also be applied to
the interfaces that are implemented by generic (or non-generic) classes. In many respects, generic inter-
faces actually conform to the same set of rules that govern the definition and usage of their non-generic
counterparts. Here’s a simple generic interface just to demonstrate the fundamentals of the syntax:

[VB code]

Public Interface SimpleInterface(Of T)
Function IsValid(ByVal val As T) As Boolean
Function GetValue() As T
Function GetAllValues() As List(Of T)

End Interface

Public Interface ExtendedInterface(Of T)
Inherits SimpleInterface(Of T)
Sub Refresh()

End Interface

Public Class TestClass(Of T)
Implements ExtendedInterface(Of T)

End Class

[C# code]

public interface SimpleInterface<T> ({
bool IsValid(T wval);
T GetValue();
List<T> GetAllvValues() ;

}

public interface ExtendedInterface<T> : SimplelInterface<T> {

81

Chapter 4

void Refresh() ;
}

public class TestClass<T> : ExtendedInterface<T> {

}

If you're already familiar with working with interfaces, this should be fairly trivial. You can see here that
the interface accepts a type parameter that is then littered, in different forms, through the methods sup-
plied by the interface. This also includes an example of generic interface inheritance so you can see type
parameters used in that context. Finally, to make this complete, the example adds a class that implements
that interface. There should be nothing particularly surprising here.

You should keep a few simple things in mind when working with generic interfaces. First, you should
understand that each class that implements a generic interface can implement one and only one instance
of generic interface. In the preceding example, suppose TestClass actually accepted two type parame-
ters. In that scenario, it could not implement ExtendedInterface<T> and ExtendedInterface<U>.In
this case, there would be instances where the compiler would not be able to resolve which method to call.

In some instances where you've implemented multiple interfaces, it may be necessary to qualify your
method calls to be able to explicitly call out a method that’s associated with a given interface. This can be
achieved by simply pre-pending the interface declaration to a method.

Summary

82

Allin all, you should come away from this chapter feeling like generic classes are not all that different
their non-generic counterparts. Throughout this chapter, you have been exposed to each of the elements
of a class and learned how generics are used to extend this model and make your classes more versatile,
type-safe, and efficient. This included looking at constructors, inheritance, fields, methods, overloading,
and all the constructs that are influenced by the introduction of generics. The chapter also looked at
some of the rules that govern accessibility of generic classes. Finally, the chapter examined a series of
other aspects of working with generic classes, including generic interfaces, generic structs, nullable
generic types, and the default keyword. Equipped with this knowledge, you're likely to find plenty of
new opportunities to leverage generic classes as part of your own solutions.

Generic Methods

As developers get acclimated to generics, they tend to focus their attention squarely on generic
classes. And, although generic classes may represent a big part of what generics bring to the table,
they only represent one facet of what can be achieved with generics. As an example, the .NET
generics implementation also allows you to create individual generic methods. These methods
employ the same concepts that are associated with generic classes. And, as you will see in this chap-
ter, this ability to leverage generics at this finer level of granularity can come in quite handy. As part
of looking at generic methods, this chapter covers all the basic mechanics associated with declaring
and consuming a generic method. Along the way, you'll also see a few examples that illustrate dif-
ferent patterns for introducing generic methods into your existing solutions.

The Basics

To illustrate the fundamental value of generic methods, let’s start with the simplest of examples.
Suppose you have a Max () function that accepts two double values, compares them, and returns
the greater of the two values. This function might appear as follows:

[VB code]
Public Function Max(ByVal vall As Double, ByVal val2 As Double) As Double

Return IIf(val2 < vall, vall, val2)
End Function

[C# code]
public double Max(double vall, double val2) {
return (val2 < vall) ? vall : val2;

}

This method is handy for number-crunching applications. However, once you decide you want to
apply this same Max () function to additional data types, you have a problem. This method can

Chapter 5

84

only be applied to double data types. You only have a few real, type-safe options that you can use to
resolve this problem. One approach would be to create specific versions of this method to support each
data type. However, doing that would force you to bloat your namespace with MaxString, MaxInt, and
MaxLong methods. Not good. To get around the bloat issue, you might consider going back to using an
object-based interface and tossing all type safety to the wind. Your last option here would be to pro-
vide several overloaded versions of Max () that accepted different types. That might represent some
measure of improvement, but it’s still not ideal.

This discussion of taking on bloat or compromising type safety is probably starting to sound like a bro-
ken record at this point. You see the same patterns over and over again in your code. You start out with a
nice, general-purpose class or method only to find that, as you attempt to broaden its applicability, you
find that you actually have few good options to extrapolate that generality to additional data types. The
dilemma is right in the sweet spot of generics.

So, let’s look at how generics can be applied to the Max () method. The following code represents the
generic version of the Max () method:

[VB code]
Public Function Max(Of T As IComparable) (ByVal vall As T, ByVal val2 As T) As T
Dim retVal As T = val2
If (val2.CompareTo(vall) < 0) Then
retvVal = vall
End If
Return retvVal
End Function

[C# code]
public T Max<T>(T vall, T val2) where T : IComparable ({
T retVal = val2;
if (val2.CompareTo(vall) < 0)
retval = vall;
return retVal;

The syntax and concepts here are right in line with what you’ve already seen with generic classes. The
Max () method, like a parameterized type, now accepts one or more type parameters as part of its signa-
ture. Once you've outfitted your method with a type parameter, you can then proceed to reference that
type parameter throughout the scope of your function. Method parameters, return types, and types
appearing in the body of your methods may all reference the type parameters that are supplied to your
generic methods.

For this example to work properly, I was required to apply a constraint to my type
parameter, indicating that each T must implement IComparable. Constraints are
addressed in detail in Chapter 7, “Generic Constraints.”

All that remains at this stage is to start making some calls to this new, generic Max () method. Let’s take
a quick look at how clients would invoke the Max () method with a few different type arguments:

Generic Methods

[VB code]

Dim doubleMax As Double = Max(Of Double) (3939.99, 39999.99)

Dim intMax As Int32 = Max(Of Double) (339, 23)

Dim stringMax As String = Max(Of String) ("AAAA", "BBBBBB")

[C# code]

double doubleMax = Max<double>(3939.99, 39999.99);
int intMax = Max<int> (339, 23);

string stringMax = Max<string>("AAAA", "BBBBBB") ;

Calling a generic method, as you can see, is not all that different than calling a non-generic method. The
only new wrinkle here is the introduction of a type argument immediately following the name of your

method.

A Deeper Look

With that syntactical introduction behind us, let’s now consider some more detailed examples of generic
methods. The following class defines a class, SimpleClass, which declares a series of generic methods
that illustrate some of the variations that are available to you when creating your own generic methods.
To make things more interesting, all of these generic methods in this example are placed within a generic

class. The code for the class is as follows:

[VB code]

Public Class SimpleClass(Of T, U)
Private _outerVall As T
Private _outerVal2 As U

Public Sub New(ByVal vall As T, ByVal val2 As U)
Me._outerVall = vall
Me._outerVal2 = val2

End Sub

Public Sub Fool (Of I) (ByVal innerVal As I)

Console.Out.WriteLine ("Method Param Type : {0}",
Console.Out.WriteLine("Class Param Type(T): {0}",
End Sub

Public Function Foo2 (0Of I) (ByVal innerVal As I) As U

innerVal.GetType())
_outerVall.GetType())

Console.Out.WriteLine ("Method Param Type : {0}", innerVal.GetType())
Console.Out.WriteLine ("Method Return Type(U): {0}", _outerVall.GetType())

Return _outervVal2
End Function

Public Sub Foo3 (0Of T) (ByVal innerVal As T)

Console.Out.WriteLine ("Method Param Type : {0}",

End Sub

Public Shared Function Food (0Of I, J) (ByVal vall As I,

innerVal.GetType())

ByVal val2 As J, _

ByVal outer As U) As Nullable(Of T)

Dim retVal As New Nullable(Of T)
Console.Out.WriteLine("Static Method Paraml Type

{0}", vall.GetType())

85

Chapter 5

Console.Out.WriteLine("Static Method Param2 Type : {0}", val2.GetType())
Console.Out.WriteLine("Static Method Param3 Type : {0}", outer.GetType())
Console.Out.WriteLine ("Static Method Return Type : {0}", retVal.GetType())
Return retvVal
End Function
End Class

[C# code]

public class SimpleClass<T, U> {
private T _outerVall;
private U _outerVal2;

public SimpleClass(T vall, U val2) {
this._outerVall = vall;
this._outerVal2 = val2;

public void Fool<I>(I innerVal) {
Console.Out.WriteLine ("Method Param Type : {0}", innerVal.GetType());
Console.Out.WriteLine("Class Param Type(T): {0}", _outerVall.GetType());
}

public U Foo2<I>(I innerVal) {
Console.Out.WriteLine ("Method Param Type : {0}", innerVal.GetType()):;
Console.Out.WriteLine ("Method Return Type(U): {0}", _outerVall.GetType());
return _outerVal2;

}

public void Foo3<T>(T innerVal) {
Console.Out.WriteLine ("Method Param Type : {0}", innerVal.GetType());
}

public static Nullable<T> Foo4<I, J>(I vall, J val2, U outer) {
Nullable<T> retVal = default(T);
Console.Out.WriteLine ("Static Method Paraml Type : {0}", vall.GetType()
Console.Out.WriteLine ("Static Method Param2 Type : {0}", val2.GetType()
Console.Out.WriteLine("Static Method Param3 Type : {0}", outer.GetType (
Console.Out.WriteLine ("Static Method Return Type : {0}", retVal.GetType
return retval;

) 5
) 5
))
())

This generic class accepts two type parameters, T and U, and implements four different generic methods.

Let’s start by looking at the Fool () method, which accepts a single type parameter I. What's slightly
different here is that this method also accesses the T type parameter that belongs to the surrounding
class. The goal here is simply to illustrate the accessibility of the surrounding class’s type parameters.
Every generic method declared in this class may, within any part of its implementation, reference the
type parameters that are associated with that class. To keep things simple, this particular example just
includes a line of code that writes out the type of the class’s T type parameter.

From the perspective of a generic method, type parameters should be treated like any other type that
would traditionally be declared within the scope of your class. The rules that govern your method’s
ability to reference type parameters conform to the same rules that govern the use of non-generic type
parameters. The Foo2 () method demonstrates one more variation on this theme, referencing the type

86

Generic Methods

parameter U as its return type. The idea here is that you shouldn’t limit your view of type parameters to
just those supplied in the declaration of your method. Leveraging the type parameters of your class and
your method in tandem broadens the scope of what can be achieved within a generic method.

The Foo3 () method exposes another issue you need to consider when using generic methods within a
generic class. The type parameter it accepts shares the same name, T, as a type parameter used by the
surrounding class. At a minimum, this creates some confusion. It's not clear what type T will ultimately
be assigned. As it turns out, the T you've used for Foo3 () will actually take precedent over the T that’s
available from your generic class. This, in effect, ends up preventing this method from making any use
of the T type parameter that is part of SimpleClass. Clearly, this practice limits the versatility of your
generic methods and should be discouraged. Even if your class doesn’t need to leverage the type param-
eters from the class, it would still create some degree of confusion to have these type parameters share
the same name. Fortunately, the compiler will generate a warning in this scenario. So, if you happen to
do this unintentionally, you'll be notified.

Generic methods may also be static, as demonstrated by the Foo4 () method of this example. This
method actually illustrates a few separate points. First, it’s static and, as such, can be invoked without
requiring clients to create an instance of SimpleClass. Even though it’s static, it can still reference the
type parameters from the class. At first glance, that may seem wrong. However, remember that the type
parameters do not reference instance data, they simply define types. This means they can be littered
freely throughout your static methods. For this method, U is used as the type of the third parameter and
T as part of the return type. Finally, for one last bit of variety, this method also illustrates the use of mul-
tiple type parameters.

Calling this static method follows the same conventions as you've seen with calling static methods

on generic classes. The only exception is the addition of the new type arguments that accompany the
method. Let’s look at a small snippet of code that calls the static Foo4 () method to see what this might
look like:

[VB code]
SimpleClass (Of DateTime, String).Foo4 (Of Int32, Double) (42, 323.3234, "A Param")

[C# code]
SimpleClass<DateTime, String>.Food<int, double> (42, 323.3234, "A Param");

You'll notice that this combination of a static generic method within a generic class, both of which accept
two type parameters, gets a little unwieldy. Still, it can’t be accused of lacking expressiveness or type
safety.

Apply Constraints

Anywhere you're allowed to create a generic type, you are also allowed to qualify that type with constraints.
For a generic method, the application of constraints to the incoming type parameters is relatively simple.
Chapter 7 looks at constraints in detail, but here’s a quick peek at the mechanics of how constraints are
applied to the type parameters of your generic methods:

[VB code]

Public Sub Foo(Of I As IComparable) (ByVal vall As I)
End Sub

87

Chapter 5

[C# code]
public void Foo<I>(I vall) where I : IComparable {}

As you can see, the syntax here leverages the same approach that you may have seen applied to generic
classes. You simply add the interface qualifier for a given type parameter and that will allow you to treat
any reference to that the type parameter as conforming to the supplied interface.

Type Parameter Names

The introduction of generic methods can create a problem in terms of naming your type parameters.

As a rule of thumb, you should typically use a common naming scheme for your type parameters. For
example, a key/value pair of type parameters would typically be assigned TKey and Tvalue as parame-
ter names. As discussed earlier, this approach brings consistency to your naming and, in turn, improves
the general readability and maintainability of your classes.

This general approach can complicate the naming of your type parameters for generic methods. Consider
a situation in which you have a generic class that accepts key/value type parameters and, within that
class, you also have a method that accepts its own key/value pair of type parameters. If you're trying to
use consistent naming, you’d want to use the TKey and TvValue parameter names for your class and your
method. However, following this naming scheme also causes your class and method parameter names to
collide. The type for TKey and TValue essentially become ambiguous. In fact, as you saw in the previous
example, using the same type parameter names for a method and class ends up hiding your class’s type
parameters from your method.

For these scenarios, you may want to consider adopting an alternative naming scheme for your generic
method’s type parameters that can achieve uniformity while minimizing its potential to collide with the
type parameter names being used by your generic classes. Naturally, this is only an issue for generic
methods that are part of a generic class. Still, you're likely to want your generic methods in non-generic
classes to comply with the same standard. This is more a matter of style but is something you should
keep in mind as you begin to introduce more generic methods into your solutions.

Overloading Generic Methods

When working with generic methods, it’s important to understand how the introduction of type param-
eters impacts the uniqueness of your method’s signature. This is especially significant if you're creating
overloaded versions of your method. Fortunately, for the most part, generic methods conform to the
same rules as non-generic methods. The addition of type parameters, however, does create a few new
wrinkles that are worth considering.

The following examples of generic method declarations illustrate how the compiler will go about evaluat-
ing your methods. This first set of declarations looks at uniqueness for a mix of generic and non-generic
methods:

[VB code]
Public Sub Foo(ByVal myStrParam As String)
End Sub

Public Sub Foo(Of I) (ByVal myStrParam As String)
End Sub

88

Generic Methods

[C# code]
public void Foo (string myStrParam) {}

public void Foo<I>(string myStrParam) {}

The two methods declared here share much in common. They both have the same name, Foo, and they
have identical parameter signatures. Well, kind of. The second declaration is a generic method that intro-
duces an additional parameter, a type parameter. This additional parameter, as you might suspect,
becomes part of the method’s overall signature and creates a point of distinction that allows the com-
piler to treat each of these method declarations as being unique.

It’s worth noting that the return type of a method can never be used as a distinguishing characteristic of
your method’s interface. This rule, which applies to non-generic methods, also applies to their generic
counterparts. The following example illustrates this rule applied in a generic setting:

[VB code]
Public Foo(Of I, J) (ByvVal vall As I, ByVal val2 As List(Of J)) As List(Of I)
End Function

Public Sub Foo(Of K, L) (ByVal vall As K, ByVal val2 As List(Of L))
End Sub

[C# code]
public List<I> Foo<I, J>(I vall, List<Jd> val2) {}

public void Foo<K, L>(K vall, List<L> vall) {}

Now, when you initially look at this pair of methods, it’s natural to think they’re unique. They have dif-
ferent type parameter names and different return types. However, as it turns out, this is not enough to
make these methods different in a way that can be distinguished by calling clients. The fact that the type
parameter names are different means little, because these parameters will simply be replaced by actual
types at run-time. If you consider this and you know return types don’t influence the uniqueness of a
method’s signature, then you’ll understand why this example will report a collision at compile-time. If
you think about it, it makes sense.

Although type parameter names, on their own, do not directly influence the uniqueness of your generic
method’s signature, the application of those type parameters to form new types definitely plays a role in
shaping the signature of your methods. Consider the signatures of the following methods:

[VB code]
Public Sub Foo(Of I) (ByVal val2 As Collection(Of I), ByVal val2 As I)
End Sub

Public Sub Foo(Of I) (ByVal val2 As Collection(Of I), ByVal val2 As List(Of I))
End Sub

[C# code]
public void Foo<I>(Collection<I> vall, I val2) {}

public void Foo<I>(Collection<I> vall, List<I> val2) {}

89

Chapter 5

This example has two methods with the same name and the same type parameter name. Still, this does
not cause a collision because the types of the incoming parameters are different. In this case, the type
parameter I was used to shape a new open type, which is what the compiler ultimately uses in eval-
uating the signature of the method. Once you're comfortable with viewing a type parameter as a type
placeholder for any incoming type, the logic behind evaluating method signatures becomes very
straightforward.

Uniqueness with Generic Classes

The type parameters used by a generic class can also influence uniqueness of its generic methods. The
preceding section touched on one aspect of this, but let’s dig a little deeper and look at some permuta-
tions of method signatures that leverage the type parameters of their surrounding class:

[VB code]

Public Class TestClass(Of T, U)
Public Sub Foo(Of K, L) (ByVal vall As K, ByVal val2 As L)
End Sub

Public Sub Foo(Of U, T) (ByVal vall As T, ByVal val2 As U)
End Sub

Public Sub Foo(Of A, B) (ByVal vall As T, ByVal val2 As U)
End Sub
End Class

[C# code]
public class TestClass<T, U> {
public void Foo<K, L>(K vall, L val2) {}

public void Foo<U, T>(T vall, U val2) {}

public void Foo<A, B>(T vall, U val2) {}

This example offers up a few things for you to consider. First, you should notice that all three methods
declared here accept two type parameters, each with its own variation on how it declares the signature
of its incoming parameters. And, although it may not initially look like it, all three of these methods
are deemed unique by the compiler. The first two are different simply because of the ordering of their
parameters. The second method just inverts the order of the parameters in the signature of the method
and that’s enough to make it different from the first method. The third method is unique because it does
not reference its type parameters (a and B) in its signature. Instead, it references the T and U type param-
eters from the class. So, although methods two and three look the same, their type parameters are different
and account for the difference that enables the compiler to succeed.

It’s important to note that the T and U parameters referenced in the second method do not have any rela-
tion to the T and U that were supplied in the class declaration. As discussed earlier, if you use a name for
a method type parameter that is already employed by the class, this just hides the method’s awareness
of the type parameters provided by the class. In this scenario, T and U are completely disconnected from
the T and U of the class. Thus, they do not collide with the T and U references in the last method, because
those types are referencing the type parameters of the surrounding class.

20

Generic Methods

As part of thinking about the uniqueness of your methods, you must keep in mind the fact that the com-
piler, in evaluating your methods, must be able to verify that every permutation of the signature is valid.
So, in some subtle cases where you think you may have a unique signature, you may run into a few
compiler errors. For example:

[VB code]

Public Class TestClass(0f T, U)
Public Sub Foo(Of I) (ByVal vall T, ByVal val2 As I, ByVal val3 as U)
End Sub

Public Sub Foo(Of I) (ByVal vall U, ByVal val2 As T, ByVal val3 as I)
End Sub
End Class

[C# code]
public class TestClass<T, U> {
public void Foo<I>(T vall, I val2, U val3) {}

public void Foo<I>(U vall, T val2, I val3) {}

Although these signatures are certainly unique as declared here, they are not truly unique if you con-
sider the permutations of the type parameters that can be supplied to these type parameters. If you pass
your method and class all the same type argument, say a String, there will be no means of differentiat-
ing between the signatures of these two methods. The result would be a compile-time error.

Constraints and Uniqueness

Constraints qualify the interface of your type parameters. Given this reality, it would seem logical that
constraints would have some influence over the uniqueness of your generic methods. For example, con-
sider the following two generic method declarations:

[VB code]
Public Sub Foo(Of I As IMyInterfacel) (ByVal vall As I)
End Sub

Public Sub Foo(Of I As IMyInterface2) (ByVal vall As I)
End Sub

[C# code]
public void Foo<I>(I vall) where I : IMyInterfacel {}

public void Foo<I>(I vall) where I : IMyInterface2 {}

In looking at these two methods, you will notice that they both have identical signatures with the exception
of the constraints that are applied to their type parameters. The first method constrains its type parameter
to the IMyInterfacel type and the second constrains its type parameter to the IMyInterface2 type.
And, while you might expect that to allow these two methods to be considered unique, it doesn’t. The com-
piler ignores constraints when it is evaluating the uniqueness of a generic method'’s signature. The result is
a compile-time error when processing these two methods.

91

Chapter 5

Overriding Generic Methods

Generic methods may also be overridden by descendant classes. In fact, generic methods introduce sur-
prisingly few new facets when it comes when overriding methods. The syntax for overriding generic
methods follows the same pattern as non-generic methods where the overriding method must match,
precisely, the parameters of the parent method. With a generic method, the only difference is that the
parameters can be expressed as type parameters. Here’s a simple example:

92

[VB code]

Public Class Person(Of
Public Overridable
End Sub

Public Overridable
End Sub

Public Overridable
End Sub

Public Overridable
End Sub

Public Overridable
End Sub

Public Overridable
End Function

End Class

T, U)
Sub Fool (Of I) (ByVal vall As T)

Sub Fool (0Of I) (ByVal vall As Int32)

Sub Foo2 (0f I, J) (ByVal vall As U)

Sub Foo3 (0f I, U) (ByVal vall As I, ByVal val2 As U)

Sub Foo4 (0f D, E, F) (ByVal vall As D, ByVal val2 As E)

Function Foo5(0f I As IComparable) (ByVal vall As I) As I

Public Class Employee(Of T, U)

Inherits Person (Of

String, U)

'"Error: can't verify this is unique for all permutations
Public Overrides Sub Fool (Of I) (ByVal vall As Int32)

End Sub

Public Overrides Sub Foo2 (0f I, J) (ByVal vall As U)

End Sub

Public Overrides Sub Foo3 (0f I, U) (ByVal vall As I, ByVal val2 As U)

End Sub

Public Overrides Sub Foo4 (0Of A, B, C) (ByVal vall As A, ByVal val2 As B)

End Sub
End Class

[C# code]
public class Person<T,

U> {

public virtual void Fool<I>(T vall) {}

public virtual void Fool<I>(int vall) {}

public virtual void Foo2<I, J>(U vall) {}

public virtual void Foo3<I, U>(I vall, U val2) {}

Generic Methods

public virtual void Foo4<D, E, F>(D vall, E val2) {}
public virtual I Foo5<I>(I vall) where I : IComparable ({
return default(I);
}
}

public class Employee<T, U> : Person<string, U> {
public override void Fool<I>(int vall) {}
public override void Foo2<I, J>(U vall) {}
public override void Foo3<I, U>(I vall, U val2) {}
public override void Food4<A, B, C>(A vall, B val2) {}

A series of examples are shown in this section, each of which attempts to override a generic method. The
goal here is to provide a sampling of permutations so you can have a better feel for what’s possible. This
example sets things up by declaring a generic class, Person, and creating a descendant generic Employee
class that overrides a handful of its parent’s virtual, generic methods.

Most of the overrides, at this stage, are just as you would expect. The overriding method simply matches
the signature of its parent. You should pay particular attention the role type parameters play in this
example. In some instances, the type parameters of the surrounding class are referenced and, in others,
the generic methods reference their own type parameters. The Foo2 () method, for example, accepts
type parameters of I and J and references the U type parameter that is part of the class declaration.

The other method here that offers a slight twist is Foo4 () . This method matches the parent’s signature
but uses entirely different type parameter names. This is only meant to demonstrate that—even in an
overriding scenario — the names of the type parameters are still just placeholders. The fact that these
names are different in the base class does not prevent you from successfully overriding it with alternate
type parameter names.

This first example (and those that follow) demonstrates a few areas where VB and C# diverge in their
approach to overriding generic methods. In this first set of examples, C# compiles both of these classes
successfully. However, VB throws an error on the Fool () here. It preemptively determines that there are
instances where the type for the T parameter can make overloaded versions of Fool () that collide.

The next example takes this a little further and adds another class that changes the inheritance scheme.
The following generic Customer class also extends the Person class and overrides two of its generic
methods:

[VB code]
Public Class Customer (Of T, U)
Inherits Person(Of T, U)

'Error: can't verify this is unique for all permutations
Public Overrides Sub Fool (Of I) (ByVal vall As T)
End Sub

Public Overrides Function Foo5(0f I As IComparable) (ByVal vall As I) As I

End Function
End Class

93

Chapter 5

94

[C# code]
public class Customer<T, U> : Person<T, U> {
public override void Fool<I>(T vall) {}

public override I Foob5<I>(I vall) {
return default(I);
}
}

In contrast with the previous example, this class uses the T and U type parameters in its inheritance dec-
laration. By referencing the same type parameter for T in both the base and descendant class, you are
able to override the Fool () method that references the T parameter in the base class. This is only possi-
ble because the T in both classes is guaranteed to reference the same type. Of course, Fool () fails in the
VB example again for the same reasons discovered in the previous example.

The other override here, the Foo5 () method, demonstrates how constraints factor into the signature of
a generic method that’s being overridden. Here, you might think that Foo5 () would not successfully
override the declaration in its parent, because the Person class included a constraint as part of its decla-
ration. For C#, the inclusion of the matching constraint would actually generate a compile-time error
here. When constraints are part of the base class in C#, the overriding method always inherits the con-
straints and cannot alter them. The opposite is true in VB, where the overriding method is required to
include the constraint as part of the method’s signature. The rationale behind this inconsistency is not
clear.

There’s one final scenario worth exploring. You'll notice that the Person class actually includes an over-
loaded method, Fool (). This method has one version that accepts a T type parameter and the other
accepts an integer. Now, consider this example where the T type argument supplied to the parent is
an integer:

[VB code]
Public Class Vendor (Of T, U)
Inherits Person(Of Int32, U)

Public Overrides Sub Fool (0f I) (ByVal vall As Int32)
End Sub
End Class

[C# code]
public class Vendor<T, U> : Person<int, U> {
public override void Fool<I>(int vall) {}

}

This class would seem to be valid. Its declaration of the Fool () method certainly matches that of the
parent class. The problem here isn’t that the method doesn’t match —it’s that two methods from the
Person class both match this signature. This issue is caused by the use of an integer in its inheritance
from the Person class. That integer causes that the Fool (T vall) method to collide with the other
Fool () declaration.

As noted earlier, this is one area where VB and C# vary in their handling of the Fool () method. VB
identifies this error at the point of declaration, whereas C# won’t throw the error until a type argument
is supplied that creates a situation where the signatures of the overloaded methods collide.

Generic Methods

Type Inference

One really handy aspect of generic methods is their ability to examine the types of incoming arguments
and infer which method should be invoked. This eliminates the need to explicitly specify type arguments
when calling a generic method. Consider the following method declaration and corresponding calls:

[VB code]
Public Sub InferParams (0Of I, J) (ByVal vall As I, ByVal val2 As J)

Console.Out.WriteLine("I: {0}, J: {1}", vall.GetType(), val2.GetType())
End Sub

InferParams (Of Int32, String) (14, "Test")
InferParams ("Paraml", 3939.39)
InferParams (93, "Param2")

[C# code]
public void InferParams<I, J>(I vall, J val2) {

Console.Out.WriteLine("I: {0}, J: {1}", vall.GetType(), val2.GetType());
}

InferParams<int, string> (14, "Test");
InferParams ("Paraml", 3939.39);
InferParams (93, "Param2");

This example declares a generic method that accepts two type parameters and provides three examples
of calls to that method. The first call provides explicit type arguments. In this case, the types of the sup-
plied parameter must match the types specified in the type parameter list. The next two examples both
successfully call the InferParams () method without supplying any type arguments. They both use
type inference, where the type is inferred from the types of the supplied arguments.

Leveraging this mechanism makes sense in most situations. However, in instances where you've over-
loaded a method, you may encounter some degree of ambiguity. Suppose you were to add the following
overloaded method to the preceding example:

[VB code]
Public Sub InferParams(Of I, J) (ByVal vall As Int32, ByVal val2 As String)

Console.Out.WriteLine("I: {0}, J: {1}", vall.GetType(), val2.GetType())
End Sub

[C# code]

public void InferParams<I, J>(int vall, string val2) {
Console.Out.WriteLine("I: {0}, J: {1}", vall.GetType(), val2.GetType());

}

This method overloads the previous InferParams () method, adding a version that includes specific
integer and string types in its parameter list. Now, when you execute the sample calls to this
method, it’s not clear, from looking at the code, which method will get called. As it turns out, the exam-
ple that supplied explicit type parameters would get you into this new method, and the version that
infers the parameter types will get you into the other version of this method. Still, if you're overloading
like this, it’s probably not wise to rely on inference for your type parameters.

95

Chapter 5

Generic Methods and Delegates

Delegates leverage references to methods. And, generic methods are no exception to that rule. They can
participate in the definition of a delegate like any other non-generic method. However, given their abil-
ity to accept type parameters, you have a few additional factors to keep in mind when using a generic
method for a delegate. This next set of examples demonstrate how generic methods can be used as part
of a delegate. To get started, you'll need to create the following delegate and generic methods:

[VB code]
Public Delegate Sub MyDelegate (ByVal vall As Int32, ByVal val2 As Double, _
ByVal z As String)

Public Sub DelegateMethodl (Of I, J, K) (ByVal vall As I, ByVal val2 As J, _
ByVal val3 As K)
End Sub

Public Sub DelegateMethod2 (Of I, J, K) (ByVal vall As Int32, ByVal val2 As Double, _
ByVal val3 As String)
End Sub

Public Sub DelegateMethod3 (Of I, J, K) ()
End Sub

[C# code]
public delegate void MyDelegate(int vall, double val2, string val3);

public void DelegateMethodl<I, J, K>(I vall, J val2, K val3) {}
public void DelegateMethod2<I, J, K>(int vall, double val2, string val3) { }
public void DelegateMethod3<I, J, K>() { }

This example declares a single delegate that has a signature of integer, double, and string, respec-
tively. It also has three variations of generic methods that it attempts to this delegate. The following
declarations declare four separate instances of MyDelegate, each of which uses a flavor of the generic
methods declared above:

[VB code]

Dim dl As New MyDelegate
Dim d2 As New MyDelegate
Dim d3 As New MyDelegate
Dim d4 As New MyDelegate

AddressOf DelegateMethodl)

AddressOf DelegateMethodl (Of Int32, Double, String))
AddressOf DelegateMethod2 (long, DateTime, Int32))
AddressOf DelegateMethod3 (0Of Int32, Double, String))

[C# code]

MyDelegate dl = new MyDelegate (DelegateMethodl) ;

MyDelegate d2 = new MyDelegate (DelegateMethodl<int, double, string>);
MyDelegate d3 = new MyDelegate (DelegateMethod2<long, DateTime, int>);
MyDelegate d4 = new MyDelegate (DelegateMethod3<int, double, string>);

For the first delegate here, d1, the example supplies DelegateMethodl as its method. The declaration of

DelegateMethodl indicates that it requires three type parameters. However, even though you've sup-
plied no type arguments here, this delegate still compiles. By leaving off the arguments, you've simply

96

Generic Methods

indicated that this method will rely upon type inference to resolve its type parameters. In contrast, the
next two delegate declarations, a2 and d3, supply specific type parameters. For these methods to be
valid, their signatures must match that of the delegate precisely. In the case of d2, you achieve this match
by providing matching type arguments (integer, double, and string). The d3 delegate, on the other
hand, would appear to be a mismatch. However, if you look at the declaration of DelegateMethod2
more closely, you'll discover that— even though it accepts three type parameters —none of those
parameters are referenced in the signature of the method. So, in reality, this method will accept three
parameters of any type.

The last delegate here actually causes a compile error. Its signature appears to match that of the delegate.
However, MyDelegateMethod3 that is used here does not include any parameters. Thus, even though
three matching types are supplied as type parameters, those type parameters are not referenced in the
method’s signature.

Type-Safe Database Access Example

With generic methods, you can bring an additional dimension to the implementation of type safety and
abstraction to your methods. Specifically, through type parameters, you can express information about
the types operated on within your method and the types returned by your methods. You can imagine
that, through the application of type parameters, you'll also identify opportunities where a generic
method might be used in the place of multiple non-generic methods.

Consider a simple scenario where a generic method could be used to satisfy some of these objectives.
In this example, the goal is to create a general Get Items () method that could retrieve a collection of
objects from a database. This method might return Person, Customer, Employee, or Order objects.
And, with generics, you expect the list returned to be a type-safe collection. The following generic
method achieves these goals:

[VB code]

Imports System.Data.OleDb

Imports System.Collections.Generic
Imports System.Collections.ObjectModel

Public Class GetDatabaseItems
Dim dbConn As New OleDbConnection("")

Public Function GetItems (Of T) (ByVal sgl As String) As Collection(Of T)
Dim selectCmd As New OleDbCommand (sqgl, dbConn)
Dim retVal As New Collection(Of T)
Dim dataReader As OleDbDataReader = selectCmd.ExecuteReader ()

While (dataReader.Read() = True)
retVal.Add (DirectCast (dataReader (0), T))
End While

Return retVal
End Function
End Class

97

Chapter 5

[C# code]

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel
using System.Data.OleDb;

public class GetDatabaseItems ({
OleDbConnection dbConn = new OleDbConnection("");

public Collection<T> GetItems<T> (String sqgl) {
0OleDbCommand selectCmd = new OleDbCommand(sgl, dbConn) ;
Collection<T> retVal = new Collection<T>();
OleDbDataReader dataReader = selectCmd.ExecuteReader() ;
while (dataReader.Read() == true)
retVal.Add((T)dataReader[0]) ;

return retVal;

Here, within the implementation of this method, you execute a SQL statement and place each item
returned from the query into a generic collection. So, clients of this method will get back a collection that
matches their expectations. This allows you to eliminate the need to pollute your code with a series of
specialized methods that return the appropriate collection type.

There’s nothing earth-shattering about what this method achieves. However, it does provide one simple
example of what can be accomplished with generic methods.

Summary

The goal of this chapter was to explore all the syntactic variations associated with defining and consuming
generic methods. As part of this effort, you looked at the rules that govern overloading and overriding
generic methods. The injection of type parameters into method signatures required a closer look at how
those type parameters influenced the overall signature and uniqueness of methods spanning a number
of scenarios. You also saw how generic methods could be used as part of delegates. Ultimately, in the
bigger picture, this chapter should have provided you good insight into the value and general applica-

bility of generic methods.

98

Generic Delegates

Delegates represent one of those subtle, helper mechanisms that can easily get overshadowed by
some of the bigger concepts found in the NET Framework. However, they play an important role in
the grand scheme of the framework and, given their nature, they were a natural fit to be extended
and enhanced via generics. This chapter looks at all the facets of generic delegates as well as the
advantages generic delegates have to offer over their non-generic counterparts. The chapter also
explores how generics can be leveraged as part of other classes that are included in the framework.
Overall, you should come away from this with a better grasp of the fundamental tools you need to
consume and build your own generic delegates.

Delegate Basics

You may already be familiar with the non-generic delegates. However, for the sake of cohesiveness
and to better understand the value generics bring to delegates, it may be useful to first establish a
clear view of the general role of delegates in the .NET platform. By first examining the basics of
delegates, you’'ll have a better foundation for understanding how generics have been applied to
enhance their overall functionality.

Fundamentally, a delegate is meant to serve as a type-safe reference to a method. When you declare
a delegate, you are only declaring the signature of a method without any corresponding implemen-
tation. That delegate is given a name and can then be referenced like any other type. Now, whenever
you declare a method with a signature that matches the signature of your delegate, that method
(and its implementation) can be passed as a parameter to any method that references your delegate
type. So, you could have three different methods that all match your delegate signature and, at run-
time, pass any one of these methods as a parameter to another method that includes your delegate
in its signature. This essentially gives you an alternative form of polymorphism.

That may still be a bit abstract. Here’s a more concrete example to solidify this concept. Suppose
you introduce the following delegate declaration, which serves as a delegate that is used to update
Employee objects:

Chapter 6

[VB code]
Public Delegate Sub UpdateEmployee (ByVal val As Employee)

[C# code]
public delegate void UpdateEmployee (Employee val) ;

This declaration now provides you with a delegate type, UpdateEmployee, which can be referenced
throughout your application and can be used to call alternative implementations of this method. For
example, the following two methods could be created and referenced as implementations of your dele-

gate type:

[VB code]
Public Sub UpdateSickStatus (ByVal emp As Employee)
If (emp.LastSickDate.CompareTo (DateTime.Parse("12/31/2003")) <= 0) Then
emp.Status = "Refund"
Else
emp.Status = "No Action"
End If
End Sub

Public Sub UpdateVacationDays (ByVal emp As Employee)

If (emp.HireDate.CompareTo (DateTime.Parse("1/1/2000")) <= 0) Then
emp.VacationDays = emp.VacationDays + 5
End If
End Sub
[C# code]
public static void UpdateSickStatus (Employee emp) {
if (emp.LastSickDate.CompareTo (DateTime.Parse("12/31/2003")) <= 0)
emp.Status = "Refund";
else
emp.Status = "No Action";

}

public static void UpdateVacationDays (Employee emp) {
if (emp.HireDate.CompareTo (DateTime.Parse("1/1/2000")) <= 0)
emp.VacationDays = emp.VacationDays + 5;

These two methods are meant to operate on an Employee object. The first method, UpdateSickStatus (),
will set the status of each employee based on their last sick date. If they haven’t been sick since 12/31/2003,
they get a status of “Refund.” The second method, UpdateVacationDays (), gives five extra vacation days
to any employee that was hired by the company on or before 1/1,/2000.

Although these two methods serve distinctly different purposes, they both serve as valid implementa-
tions of your delegate because they both match its signature. That’s really the only requirement that’s
applied when determining if a method meets the requirements of a delegate. With these two implemen-
tations in place, you can now pass references around to either of these two methods via your delegate
type. For example, the following method will accept either implementation of these two methods:

100

Generic Delegates

[VB code]
Public Sub TestNonGenericDelegates (ByVal updater As UpdateEmployee)
Dim empList As New ArrayList ()

empList.Add (New Employee ("John Cleese", DateTime.Parse("12/1/2003"),
DateTime.Parse("1/1/2001")))
empList.Add (New Employee ("Eric Idle", DateTime.Parse("2/6/2004"),
DateTime.Parse("3/2/1999")))
empList.Add (New Employee ("Michael Palin", DateTime.Parse("9/8/2003"),
DateTime.Parse("4/7/1992")))

For Each emp As Employee In empList
updater (emp)
Next
End Sub

[C# code]
public void TestNonGenericDelegates (UpdateEmployee updater) {
ArraylList empList = new ArrayList();

empList.Add (new Employee ("John Cleese", DateTime.Parse("12/1/2003"),
DateTime.Parse("1/1/2001")));
empList.Add (new Employee ("Eric Idle", DateTime.Parse("2/6/2004"),
DateTime.Parse("3/2/1999")));
empList.Add (new Employee ("Michael Palin", DateTime.Parse("9/8/2003"),
DateTime.Parse("4/7/1992")));

foreach (Employee emp in empList)
updater (emp) ;

You'll notice that this method accepts the delegate you declared as a parameter, iterating over a list of
employee objects and invoking this delegate on each employee in the list. The advantage here is that you
can now call this method with any number of different delegate implementations, each of which will
perform its own, custom operation on each Employee.

The last step in this process is to create some calls to this method so you can see it in action. Here’s some
sample code that calls this method, passing each of the two delegates declared earlier:

[VB code]
Sub Main /()
TestNonGenericDelegates (AddressOf UpdateSickStatus)
TestNonGenericDelegates (AddressOf UpdateVacationDays)
End Sub

[C# code]

static void Main(string[] args) {
Program testProg = new Program() ;
testProg.TestNonGenericDelegates (UpdateSickStatus) ;
testProg.TestNonGenericDelegates (UpdateVacationDays) ;

101

Chapter 6

After looking at this example, you should have a better understanding of how delegates provide you
with a mechanism for expressing the signature of a method as a type and how different methods can be
represented as being of that “delegate type.”

This concept certainly wasn’t new to the world of programming when it was introduced as part of the
.NET framework. Developers have been tossing around pointers to methods for years. However, previous
approaches tended to pass method pointers around without any verification of the method signature,
which, as you can imagine, was anything but type-safe. Delegates eased this pain by checking the signa-
ture of each method at compile-time, eliminating any chance of an invalid method being supplied to a
caller.

Adding Generics to the Equation

As the previous example demonstrates, the types that appear in the signature of each delegate are funda-
mental to their usage. With the declaration of each delegate you create, you are conveying a signature that
dictates the types that must be used by each method that chooses to implement that delegate. That bind-
ing to specific types in these delegate interface declarations comes with some baggage. At a minimum, it
requires you to create a separate delegate for each combination of types you want to appear in the signa-
ture of a given delegate.

Suppose that somewhere within your domain objects, you also have an Order class that has no relation
to the Employee that was part of the previous example. In working with this 0rder class, you have
determined that you have a similar delegate requirement. That is, you need to be able to have a delegate
that can be used to update information about an order. To achieve this, you're required to introduce yet
another delegate:

[VB code]
Public Delegate Sub UpdateOrder (ByVal val As Order)

[C# code]
public delegate void UpdateOrder (Byval val As Order) ;

This seems silly, though. In reality, this delegate is only required because its signature has introduced a
new type. However, conceptually, it’s no different than the UpdateEmployee () delegate you saw ear-
lier. In seeing this reality, many programmers will opt to eliminate this redundancy, sacrifice type safety,
and use an Object data type here. The resulting delegate signature would get altered as follows:

[VB code]
Public Delegate Sub Update(ByVal val As Object)

[C# code]
public delegate void Update(Byval val As Object);

Although this may seem like a logical choice, it does come at a cost. Consider, for a moment, what this
new delegate signature imposes upon each delegate implementation. Within the implementation of each
of these methods, you would be required to cast the incoming parameter to the appropriate type and
then reference that type throughout the remainder of the delegate.

102

Generic Delegates

This approach creates a situation in which developers —instead of the compiler —must assume respon-
sibility for ensuring that the methods consuming the delegate will always supply the appropriate object
type for each invocation of the delegate. Once you’ve placed an Object type in your signature, you've
basically decided to take on this added burden.

This problem with delegates is consistent with the themes you’ve seen with classes, methods, and so on.
You continually face this dilemma of trading generality for type safety. And, as with other areas, generics
end up providing the solution that doesn’t require you to compromise on either front. Through generic
delegates, you have the opportunity to use type parameters to define the signature of your delegates.

So, instead of defining separate delegates for each data type, you can use a delegate template to identify
the type placeholders for your delegate’s signature.

This means you can now introduce a single delegate that can be applied to any number of data types
that accept a single type parameter. The declaration of this new delegate could appear as follows:

[VB code]
Public Delegate Sub UpdateItem(Of T) (ByVal val As T)

[C# code]
public delegate void UpdateItem<T> (T val);

As you can see, your delegate has now taken on a type parameter. This type parameter is then referenced
within your parameter list, allowing each implementation to supply its own type argument without
requiring a separate delegate declaration for each type being processed by that delegate. Lets’ take a
quick look at how this generic type ends up influencing the implementation of the two delegate meth-
ods that were used in the previous example:

[VB code]
Public Sub TestGenericDelegate (updater As UpdatelItem(Of Employee))
Dim empList As New MyList (Of Employee) ()

empList.Add (New Employee ("John Cleese", DateTime.Parse("12/1/2003"),
DateTime.Parse("1/1/2001")))
empList.Add (New Employee ("Eric Idle", DateTime.Parse("2/6/2004"),
DateTime.Parse("3/2/1999")))
empList.Add (New Employee ("Michael Palin", DateTime.Parse("9/8/2003"),
DateTime.Parse("4/7/1992")))

empList.Updateltems (updater)
End Sub

[C# code]
public void TestGenericDelegate (Updateltem<Employee> updater) {
MyList<Employee> empList = new MyList<Employee> () ;

empList.Add (new Employee ("John Cleese", DateTime.Parse("12/1/2003"),
DateTime.Parse("1/1/2001")));
empList.Add (new Employee ("Eric Idle", DateTime.Parse("2/6/2004"),
DateTime.Parse("3/2/1999")));
empList.Add (new Employee ("Michael Palin", DateTime.Parse("9/8/2003"),
DateTime.Parse("4/7/1992"))) ;

empList.Updateltems (updater) ;

103

Chapter 6

On the surface, this doesn’t look all that different than the non-generic version of this method. You'll
notice that it now takes advantage of the new UpdateItem generic delegate as the incoming parameter.
What’s more significant here is not in what was added but, rather, what was removed. You'll notice that
this example now updates the entire list contents by simply invoking the UpdateItems () method on
the list, passing the delegate as a parameter to this method. To support this behavior, you must intro-
duce a new generic class, MyList, that descends from the framework’s supplied List class and adds
this one method. The implementation of this new list is as follows:

[VB code]
Public Class MyList (Of T)
Inherits List (Of T)

Public Sub UpdatelItems (ByVal updater As UpdateItem(Of T))
Dim items As List(Of T).Enumerator = Me.GetEnumerator ()

While (items.MoveNext () = True)
updater (items.Current)
End While
End Sub
End Class
[C# code]

public class MyList<T> : List<T> {
public void UpdateItems (Updateltem<T> updater) {
List<T>.Enumerator items = this.GetEnumerator();
while (items.MoveNext () == true)
updater (items.Current) ;

The UpdateItems () method included in this new list takes the UpdateItem generic delegate as its
only parameter. It iterates over the contents of the list, invoking the supplied delegate on each member
of the list.

In looking at this, you might easily overlook the value being added here. You might conclude that all
you’ve done here is move the processing of individual items out of your client and into the list. You
could have done the equivalent with the non-generic version by creating a new ArrayList class that
includes an operation to update the contents of the list using a delegate. Assume you decided to take
that path. The resulting method, within the array list, might look similar to the following;:

[VB code]
Public Delegate Sub Updateltem(ByVal val As Object)

Public Class MyArrayList
Inherits ArrayList

Public Sub UpdatelItems (ByVal updater As Updateltem)
Dim items As IEnumerator = Me.GetEnumerator ()

While (items.MoveNext () = True)
updater (items.Current)
End While
End Sub
End Class

104

Generic Delegates

[C# code]
public delegate void UpdateItem(Object wval) ;

public class MyArrayList : ArrayList {
public void Updateltems (Updateltem updater) {
IEnumerator items = this.GetEnumerator () ;
while (items.MoveNext () == true)
updater (items.Current) ;

}

This certainly compiles. However, because you don’t want to create a separate list class for every type
that will be using this delegate, you're also forced to change your UpdateItem() delegate’s interface,
removing the Employee type and replacing it with an object. Still, if this works, what's the big deal?
Well, this change doesn’t just impact the new list that was introduced here. It also impacts all of the
methods that implement this UpdateItem() delegate. They are all required to convert to Object-based
interfaces. And, of course, this means that you're stuck, once again, with a scenario that requires each
delegate implementation to cast its incoming Object parameter to the appropriate type.

Now, contrast these negatives of this non-generic approach with the generic version. Because the
MyList class descended from a generic list type, that list includes a type parameter that allows the
UpdateItems () method to work with the specific type being managed by the list. No casts are needed
within the implementation of the method, no object data types need to be used in the delegate’s inter-
faces, and no casting is required in the methods that implement the delegate. Overall, this represents a
significant improvement.

So, within this one little method call, the major underlying weakness of the non-generic delegates is
exposed. You should also see how, in using these generic delegates in combination with other generic
types, you get a double bonus — all that simply because you're able to add type parameters to your
delegates.

Event Handling

Event handlers are often forced to take a less than type-safe approach to handling messages. For this
reason and others, they make excellent candidates for applying generic delegates. Imagine situations in
which you have a non-generic event handler that accepts an Object type to represent each event sender.
The declaration of that delegate might appear as follows:

[VB code]
Public Delegate Sub EventHandler (ByVal sender As Object, ByVal args As EventArgs)

[C# code]
public delegate void EventHandler (Object sender, EventArgs args);

This usage of an Object type as the type for each sender is no longer necessary with a delegate version
of this interface. In fact, with delegates, you can actually create event handling signatures that support
the specific models required by your application. If you need another parameter for the event, you can
just create a new delegate that adds another type parameter. A generic replacement for this example
would be represented as follows:

105

Chapter 6

[VB code]
Public Delegate Sub EventHandler (Of I, J) (ByVal sender As I, ByVal args As J)

[C# codel
public delegate void EventHandler<I, J>(I sender, J args);

Now, with this declaration, the implementers of this delegate will be able to eliminate any overhead or
baggage that was associated with dealing with the 0bject type that was leveraged in the non-generic
version of the delegate.

Generic Delegates with Generic Methods

Even though generic delegates allow you to reduce the number of delegates you must declare and
they certainly add a modicum of type safety, they do not reduce the number of delegate methods you
need. In some respects, this seems to reduce the enthusiasm one might have about the value of generic
delegates.

Where generic delegates really shine is when they are used in combination with generic methods.
Because generic methods allow you to use type parameters in the signature of the implemented method,
your delegate implementations can take on an additional dimension of generality on their own. In lever-
aging generic methods for your delegates, you may find opportunities to reduce the number of methods
needed to meet all the requirements of your delegate’s functionality.

For examples of how this can be applied, look at the discussion in Chapter 5, “Generic Methods.”

Delegates in the Framework

Given the nature of generic delegates, you can imagine that it is now easier to predefine a series of
general-purpose delegates that can service the needs of a wide variety of situations. In fact, as part of
introducing generics into the .NET Framework, Microsoft has added a series of generic delegate types
into the System namespace that are leveraged by the BCL (covered in Chapter 8, “BCL Generics”). These
same delegate types are also likely to be of use to you in your own solutions. The goal of this section is
to briefly introduce each of these delegate types so you might have a better awareness of what’s avail-
able out-of-the-box.

This section uses the C# notation (delegate<T>) to identify each delegate type.
Although these delegates are supported by other .NET languages, the documenta-
tion seems to most frequently be standardized around the C# notation.

Action<T>

The Action<T> delegate is generally used in situations where you want to perform some action on an
object. As an example, the List<T> class directly leverages this delegate as part of its ForEach () method,

106

Generic Delegates

allowing you to invoke a delegate on all the items in the list with a single call. This delegate, in fact, would
likely be used in place of the delegate that was created in the previous example.

Comparison<T>

No delegate list would be complete without a generic type that supports the comparison of two objects.
The framework fills this void via the Comparison<T> delegate which accepts and compares two objects
that must both be of type T. It returns an integer value indicating if the first object is greater than, less
than, or equal to the second object.

Converter<T, U>

Converter<T, U>is used to convert an object from one type to another. The type being converted from
is represented by T parameter and the type being converted to is represented by the U parameter. As an
example, the List<T> class uses this delegate as part of its Covertall () method to covert each mem-
ber of the list to a new type. This delegate returns the converted type, U, as its result.

Predicate<T>

The Predicate<T> delegate is a highly useful delegate. It is meant to be used in situations where you
want to determine if an item of type T meets a set of criteria. Implementers of this delegate must return
true if the item meets the criteria and false if it does not. You can imagine using this in a variety of
forms to express the criteria you might want applied to retrieve, delete, or otherwise process a specific
set of items in a collection. The List<T> class, in fact, employs this delegate in a number of its different
methods.

Choosing Your Delegates

I should point out that there are no hard-and-fast rules for how and when these delegates should be
used. Instead, they represent placeholders for concepts that you should generally try to conform to in
your own solutions. If you have a need, for example, to introduce some delegate behavior that doesn’t
map well to any of these predefined delegates, you should create a new delegate from scratch. The num-
ber of type parameters and signatures are not meant to be the sole criteria used in determining which
delegate you should choose.

Type Coercion

There may be instances where you have a method in a generic class that doesn’t precisely match the sig-
nature of your delegate. For example, assume you have the following class declared:

[VB code]

Public Class SimpleClass (Of T)
Public Sub TestMethod(ByVal t As T, ByVal val As Int32)
End Sub

End Class

107

Chapter 6

[C# code]
public class SimpleClass<T> {
public void TestMethod(T t, int val) {

}

This class is a very simple class that has a single method that uses the type parameter T and an integer
as its parameters. Elsewhere in your code, outside this class, you have a delegate defined that has the

following signature:

[VB code]
Public Delegate Sub TestDelegate(Of T) (ByVal t As T, ByVal val As Int32)

[C# code]
public delegate void TestDelegate<T>(T t, int wval);

Now, consider a scenario in which you have declared an instance of your class (SimpleClass) and
you’ve declared an instance of this delegate. In constructing both of these items, you supply a type argu-
ment of Employee. The question is, can the TestMethod from SimpleClass be treated as a match for
this delegate? Technically, if you take the type argument into consideration, these two instances certainly
have the same signature. However, TestMethod gets its type for T from its surrounding class. To resolve
this, let’s consider execution of the following code:

[VB code]

Dim empDelegate As TestDelegate (Of Employee)
Dim testClass As New SimpleClass (Of Employee)
empDelegate = AddressOf testClass.TestMethod

[C# code]
TestDelegate<Employee> empDelegate;
SimpleClass<Employee> testClass = new SimpleClass<Employee> () ;

empDelegate = testClass.TestMethod;

So, will the delegate assignment in this example succeed? The answer is: yes. The compiler will actually
recognize that these two signatures match and will “coerce” this method into being deemed valid for

assignment to the delegate you have declared here.

Applying Constraints

Like every other generic type, delegates also support the ability to apply constraints to their type param-
eters. This allows the methods that implement your delegate to invoke type-specific operations on the
supplied type arguments. The syntax for declaring a delegate with constraints is fairly straightforward.
The following code provides an example of a delegate with constraints applied:

[VB code]
Public Delegate Sub TestDelegate(Of T As Employee) (ByVal val As T)

108

Generic Delegates

[C# code]
public delegate void TestDelegate<T> (T val) where T : Employee;

With this constraint added to your declaration, you'll find that the compiler will now only allow you to
create instances of this delegate using an Employee type (or one of its descendant types).

Delegates and Anonymous Methods

As part of Visual Studio 2005, C# 2.0 added support for anonymous methods. This new language feature
is particularly useful when it comes to implementing delegate methods. Instead of requiring you to write
separate, standalone methods for each delegate, anonymous methods allow you to employ a “shorthand”
technique where the delegate’s implementation and the consumer of that delegate are declared in tandem.

Here’s a simple example that declares a method that requires a delegate and the anonymous method
that implements that delegate all in one pass:

[C# code]
collCustList.Sort (delegate (Customer custl, Customer cust2) {
return Comparer<Customer>.Default.Compare(custl, cust2);

1)

In this example, you have a generic list that contains customers and you want to sort this list using the
list’s Sort () method, which accepts a Comparer delegate. Instead of declaring a method that conforms
to the Comparer signature, you've simply declared an anonymous method that implements the delegate
as part of the call. This method will get created and supplied to the Sort () method all in one, semishort
bit of text. In some respects, this improves the readability and maintainability of your code in that it mar-
ries the delegate implementation directly to the method using it. It should be very clear, as you read this,
how the comparison is going to be performed. If this weren’t an anonymous method, you would have to
determine what delegate implementation was supplied by the caller.

Of course, this approach presumes that your Sort () method will only need to leverage a single delegate
implementation, which will be valid for many scenarios.

Summary

Generic delegates represent one of those areas where a subtle change to a type can have a significant
impact to the overall framework. On their own, generic delegates are just delegates that take type
parameters. But in the overall generics scheme where delegates are leveraged by other generic types,
their value suddenly goes up. You saw, in this chapter, how generic delegates allow you to create much
more abstract representations of your delegates where the signature of your delegate is no longer so
tightly bound to specific data types. As part of this discussion, you also saw how other generic types
can leverage the generic nature of your delegates in a way that wasn’t achievable without generics.

109

Generic Constraints

Generic constraints represent a key component of the .NET generics implementation, allowing you
to constrain your type parameters to specific interfaces. Knowing the strengths and limitations
that are associated with using constraints is vital to broadening your understanding of what can
ultimately be achieved with generic types. This chapter looks at all the different mechanisms that
are available to you when deciding how, when, and what types of constraints you want to apply to
your type parameters. It also looks at each of the constraint types and discusses some of the rami-
fications associated with combining constraints. The chapter also considers some of the broader
implications that accompany the application of constraints.

Overview

To understand the role of generic constraints, you must first have a clear picture of why they’re
needed and how they are applied. With that as goal in mind, let’s get started by building a sample
that simply extends an existing generic type. For this scenario, let’s assume you’ve decided to
introduce your own DataObjectCollection that will descend from the List<T> collection and
will invoke operations on the data objects being managed by the collection. This new class is
implemented as follows:

[VB code]
Public Class DataObjectCollection(Of T)
Inherits List (Of T)

Public Sub Print ()
Dim coll As List (Of T).Enumerator = GetEnumerator ()
While (coll.MoveNext())
Console.Out.WriteLine(coll.Current.ToString)
End While
End Sub

Public Function Lookup (ByVal lookupValue As String) As T

Chapter 7

Dim retvVal As T
Dim coll As List (Of T).Enumerator = GetEnumerator ()
While (coll.MoveNext())

If (coll.Current.ToString().Equals(lookupValue) = True) Then
retVal = coll.Current
Exit While
End If
End While

Return retvVal
End Function
End Class

[C# code]
public class DataObjectCollection<T> : List<T> {
public void Print () {
List<T>.Enumerator coll = GetEnumerator();
while (coll.MoveNext()) {
Console.Out.WriteLine (coll.Current.ToString()) ;

}
public T Lookup (string lookupValue) {

T retVal = default(T);
List<T>.Enumerator coll = GetEnumerator();

while (coll.MoveNext ()) {
if (coll.Current.ToString().Equals(lookupValue) == true) {
retVal = coll.Current;
break;

}
}

return retVal;

The DataObjectCollection class shown here includes a Print () method that dumps the contents of
the collection. It’s also equipped with a Lookup () method, which takes a single parameter and locates
any data object that matches the value of that parameter. Although the example is a bit contrived, you
can imagine how it might be extended to offer a set of operations that could operate, somewhat globally,
on a set of domain or database objects. And, in the spirit of generics, it certainly achieves all of this in a
type-safe manner.

Now, suppose you want to introduce a new method into this class that will be used to determine if all the
items held by the collection are considered valid. To achieve this, the method will iterate over all the items
in the collection, calling the validate () method for each item. The new method appears as follows:

[VB code]

Public Function IsValid() As Boolean
Dim retVal As Boolean = False
Dim coll As List(Of T).Enumerator = GetEnumerator ()
While (coll.MoveNext ())

Dim dataObj As T = coll.Current
If (dataObj.validate() = True) Then
retVal = False

112

Generic Constraints

Exit While
End If
End While
Return retVal
End Function

[C# code]
public bool IsValid() {
bool retval = false;
List<T>.Enumerator coll = GetEnumerator();

while (coll.MoveNext()) {
T dataObj = coll.Current;
if (dataObj.validate() == false) {
retVal = false;
break;

}
}

return retvVal;

This method, on the surface, appears to be a perfectly valid addition to the DataObjectCollection
class. However, it fails during compilation. If you look closely, you'll notice that the Isvalid () method
makes an explicit call to validate () as it processes each object in the collection.

The problem here revolves around the fact that this collection can accept type arguments of any type
and, although validate () may be an acceptable method for some type arguments, it certainly cannot
be treated as valid for every possible type argument. If you construct DataObjectCollection as a col-
lection of integers, for example, the integers will not be able to support a validate () method as part

of their interface. This means that, as implemented here, your collection can only call methods that are
valid for all objects. Although this limitation might be fine for data containers that never invoke specific
operations on their contained objects, there are certainly times when you will want to overcome this lim-
itation. And, as you might have guessed, constraints represent the construct that allows you to remedy
this situation.

Through constraints, you are allowed to add additional qualifiers to your generic declarations, each of
which is used to specify the interfaces that must be supported by a given type parameter. In this exam-
ple, assume that you have an Ivalidator interface that includes a validate () method. Now, if you
add this interface as a constraint on your class, the Isvalid () method in the preceding code will suc-
cessfully compile. The modified declaration appears as follows:

[VB code]

Public Interface IValidator
Function Validate() As Boolean
Function ToString() As String

End Interface

Public Class DataObjectCollection(Of T As IValidator)

End Class

113

Chapter 7

[C# code]

public interface IValidator ({
bool Validate() ;

}

public class DataObjectCollection<T> : List<T> where T : IValidator {

With a constraint, the Isvalid () method can now resolve its reference to the validate () method. The
addition of this constraint also forces all consumers of this generic class to supply type arguments that
implement the Ivalidator interface.

As you can see, the introduction of constraints is, well, constraining. Each time you apply constraints to
a type parameter you are narrowing the applicability of your generic class, method, and so on. And, in
fact, if the constraints become too narrow, you have to ask yourself whether generics really represent a
good fit for the problem you're trying to solve. For example, if you have a Person object that imple-
ments an IPerson interface, would it make sense to create the following generic type?

[VB code]
Public Class DataObjectCollection(Of T As IPerson)

End Class

[C# code]
public class DataObjectCollection<T> : List<T> where T : IPerson {

}

In this scenario, assume for a moment that Person is a standalone type that is not participating in any
object hierarchy. If that’s the case, how is this generic declaration any more valuable than the following
non-generic declaration?

[VB code]
Public Class PersonCollection
Inherits ArrayList

Public Sub Add(ByVal person As IPerson)
MyBase.Add (person)
End Sub

Public Function Lookup (ByVal lookupValue As String) As IPerson

End Function
End Class

[C# code]
public class PersonCollection : ArrayList ({
public void Add(IPerson person) {
base.Add (person) ;
}

114

Generic Constraints

public IPerson Lookup(string lookupValue) {

}
}

If you think about it—even though this class doesn’t employ generics —it is really no more restrictive
than the generic version you created earlier. The generic version gives you a slight boost of type safety in
that it represents your true type in its internal collection. However, that’s really its only advantage. As
soon as you attached IPerson as a constraint on your type parameter, you have essentially eliminated
much of its generic-ness.

This might have you thinking that the addition of any constraint makes your generic types useless.
That’s not the case. Plenty of scenarios certainly exist in which the application of a type parameter con-
straint still leaves you with a very generic representation. Even in the preceding example, your generic
collection could have had value if the Person object was at the base of some larger object hierarchy.
Then, even though you're still constrained, your collection would be able to provide a more type-safe
approach to managing all the types that descend from the Person object. You may also find yourself
leveraging generic types with significant constraints simply to capture performance gains.

The more valuable examples show up in situations where your constraints fall into that pool of broader,
more general-purpose interfaces that can be applied to any number of unrelated types. IComparable,
for example, is an interface that is applied to any number of different data types. Adding IComparable
doesn’t, by itself, impose any huge restrictions on the types that can be managed by your generic class.
It certainly narrows the population of what can be supplied as a type argument, but not in a way that
makes you question the fundamental value of making your class generic.

Constraint Types

You can express the constraints that will be applied to your type parameters in a number of different
ways. If a type exposes any kind of public interface, that interface can typically be used to constrain the
signature of your type parameters. The sections that follow look at all the different approaches you can
take when constraining your type parameters. Specifically, you'll look at how you can use interfaces,
classes, and generic types as constraints. You'll also examine the use of a constructor constraint, which is
required to enable applying the new operator to your type parameters. Understanding the implications
associated with each of these different constraint types is key to grasping all the nuances of applying
constraints.

Interface Constraints

Because, in most cases, you are expected to use interfaces as a way of separating an object’s interface
from its implementation, an interface provides you with the most natural mechanism for constraining a
type. Interfaces also make a nice vehicle for expressing constraint because they allow your generic types
to accept any type argument that happens to implement that interface without binding to any single
concrete type. The previous examples leveraged this approach, using the Ivalidator and IPerson
interfaces to constrain their type parameters. You can also imagine how many of the standard frame-
work interfaces might make good candidates to be applied as general-purpose constraints.

115

Chapter 7

Class Constraints

Whereas interfaces may be the preferred model for constraining types, it is not considered invalid to use
a class as constraint type. If you were to use a class as a constraint, the public interface of that class will
be used to determine which operations will be deemed valid for your type parameters. So, suppose you
have the following DataObject class defined:

[VB code]
Public Class DataObject
Private _name As String

Public Property Name() As String
Get
Return Me._name
End Get
Set (ByVal value As String)
Me._name = value
End Set
End Property

Public Sub Update()
End Sub

Private Sub Convert ()

End Sub
End Class

[C# code]
public class DataObject {
private string _name;

public DataObject () {
}

public string Name {
get { return this._name; }
set { this._name = value; }

}
public bool Update() {
return false;

}

private void Convert () {
}

This class exposes a public property of Name and a public method of Update (). It also includes a private
convert () method. Now, apply this class as a constraint on generic class as follows:

116

Generic Constraints

[VB code]
Public Class MyConstrainedClass (Of T As DataObject)
Public Sub New(ByVal val As T)
val.Update ()
val.Name = "Test Name"
End Sub
End Class

[C# code]
public class MyConstrainedClass<T> where T: DataObject {
public MyConstrainedClass (T val) {
val.Update() ;
val .Name = "Test Name";

With Dataobject applied as a constraint, you can see that you have full access to the public interface of
the class. If you were to attempt to access the private Convert () method here, though, you would get a
compiler error. You also have the option of mixing interfaces with classes in your type constraints. See
the section “Using Multiple Constraints” later in the chapter for additional information on that topic.

Generic Types as Constraints

Constraints are not limited to non-generic types. In fact, any open or constructed type can be used as a
constraint. In reality, generic interfaces and generic classes really just represent another variation on the
interface and class constraints discussed earlier. The rules that govern them are mostly identical. The
upside here is that the type parameters passed to your generic types can also be applied in the declara-
tion of your constraints. The following sample declarations should give you a better feel for how they
might be used:

[VB code]
Public Class MyClassl (Of T As IValidator (Of T))
End Class

Public Class MyClass2 (Of T As IValidator (Of Int32))
End Class

Public Class MyClass3 (Of T As DataObject (Of T))
End Class

Public Class MyClass4 (Of K As IValidator(Of V), V As IValidator (Of K))
End Class

[C# code]

public class MyClassl<T> where T : IValidator<T> {}

public class MyClass2<T> where T : IValidator<int> { }

public class MyClass3<T> where T : DataObject<T> { }

public class MyClass4<K, V> where K : IValidator<V> where V : IValidator<K> { }

117

Chapter 7

These declarations employ generic interface and class constraints. The first two classes, MyClass1 and
MyClass2, use the generic interface Ivalidator<T>. MyClassl uses an open type and MyClass2 uses a
constructed type. The third class here uses a generic class as a constraint. And, finally, MyClass4 illus-
trates the application of separate constraints for two different type parameters.

After looking at this example, it should be clear that using generic types is not all that different than the
non-generic examples you've already seen. They conform to the same set of basic syntax patterns. At the
same time, the ability to leverage generics in this role provides you with the opportunity to express your
type constraints in a much more generic-friendly, dynamic manner.

I should also point out that a type parameter cannot, on its own, be used as a constraint. For example,
the following would be considered invalid:

[VB code]
Public Class MyClass(0f K, V As K)

[C# code]
public class MyClass<K, V> where V : K { }

This example tries to apply the type parameter K as one of the constraints on type parameter v. That
won't fly with the compiler.

Constructor Constraints

Constructor constraints don’t really fit the same mold as the other constraint types you’ve seen so far. In
fact, for many, this constraint may easily get overlooked. Consider the following, unconstrained generic
class declaration:

[VB code]
Public Class MyClass (Of T)
Private _value As T

Public Sub New()
Me._value = New T()
End Sub
End Class

[C# code]
public class MyClass<T> {
private T _value;

public MyClass() {
this. value = new T();
}
}

For the sake of this example, suppose you really wanted to keep this class completely general and free
from any constraints. At first glance, it would seem as though this class would achieve that objective. It
certainly doesn’t appear to attempt to access any methods or properties of its type parameter. Still, when
you compile this, the line of code that attempts to construct an instance of T throws an error.

118

Generic Constraints

It’s possible that the disconnect that happens here may be related to the fact that construction isn’t always
viewed as invoking an operation on your object. Maybe it’s just because you see the new operator as one
of those universal operations you expect the compiler to be able to resolve, much like it can identify the
Object interface (ToString (), GetType (), and so on) for the type parameter T without the assistance of
any constraints.

Expectations aside, the compiler still isn’t going to allow you to construct an unconstrained type. Instead,
your class declaration must be amended with a constructor constraint to make your default constructor
accessible within your generic type. The new, amended declaration appears as follows:

[VB code]
Public Class MyClass (Of T As New)

End Class

[C# code]
public class MyClass<T> where T : new() {

}

This works and, at the same time, gives rise to a new set of questions. Specifically, you may be wonder-
ing if this same mechanism can be used to supply constructor constraints that have parameters in their
signature. Although this isn’t odd to expect, it is not supported at this stage. So, if you expect to be con-
structing types within your generic classes, make sure they always supply a default constructor.

Boxing and Constraints

In some cases, the application of type constraints will allow you to eliminate the need to box types as
you work with them. Suppose, for example, you had the following interface and structure that you
wanted to use to manage stock prices:

[VB code]

Public Interface IPriceTicker
Sub UpdatePrice (ByVal newPrice As Double)
Function ToString() As String

End Interface

Public Structure Stock
Implements IPriceTicker
Private currentPrice As Double

Public Sub UpdatePrice(ByVal newPrice As Double) _
Implements IPriceTicker.UpdatePrice
Console.Out.WriteLine ("Updating With Price: {0}", newPrice)
currentPrice = newPrice
End Sub

Public Overrides Function ToString() As String Implements IPriceTicker.ToString
Return currentPrice.ToString ()

End Function

End Structure

119

Chapter 7

[C# code]
public interface IPriceTicker {
void UpdatePrice (double newPrice) ;

public struct Stock : IPriceTicker {
Private double currentPrice;

public void UpdatePrice (double newPrice) {
Console.Out.WriteLine ("Updating With Price: {0}", newPrice);
currentPrice = newPrice;

public override string ToString() {
return currentPrice.ToString() ;

The stock structure introduced here is meant to represent a simple value type that, through its imple-
mentation of the IPriceTicker interface, allows clients to change the value of a stock. Now, put
together a couple of clients that will create a Stock and feed it some new prices:

[VB code]
Public Class PriceTest

Public Sub ProcessPricesl (Of T As New) (ByVal prices As Double())
Dim item As New T

For idx As Int32 = 0 To (prices.Length - 1)
DirectCast (item, IPriceTicker) .UpdatePrice(prices(idx))

Console.Out.WriteLine ("Updated Stock Price: {0}", item.ToString())
Next

End Sub

Public Sub ProcessPrices2 (0f T As {IPriceTicker,New}) (ByVal prices As Double())
Dim item As New T

For idx As Int32 = 0 To (prices.Length - 1)
item.UpdatePrice (prices (idx))

Console.Out.WriteLine ("Updated Stock Price: {0}", item.ToString())
Next

End Sub
End Class

[C# code]
public class PriceTest ({
public void ProcessPricesl<T>(double[] prices) where T : new() {

T item = new T();
for (int idx = 0; idx < prices.Length; idx++) {

((IPriceTicker)item) .UpdatePrice (prices[idx]) ;
Console.Out.WriteLine ("Updated Stock Price: {0}", item.ToString()) ;

public void ProcessPrices2<T>(double[] prices) where T : IPriceTicker, new() {

120

Generic Constraints

T item = new T();

for (int idx = 0; idx < prices.Length; idx++) {
item.UpdatePrice(prices[idx]) ;
Console.Out.WriteLine ("Updated Stock Price: {0}", item.ToString());

These two methods are very similar. They both take an array of prices and iterate over that array calling
the UpdatePrice () method with each new price. The only real difference between these two is the use
of constraints. The first method only applies the new constraint to its type parameter, whereas the second
method constrains its type parameter with the IPriceTicker interface.

The absence of a more specific constraint on the first method forces each item to be cast to an
IPriceTicker type in order to gain access to its UpdatePrice () method. The cast is bad enough, but
there’s a bigger problem here. When you call this method and provide it with a Stock type argument,

that value type is going to get boxed as a result of your cast. In contrast, the second method —with its
IPriceTicker constraint—is able to call UpdatePrice () without any cast or boxing of your value types.

The boxing that occurs here also impacts the state of your Stock objects. Suppose you were to execute
the following code:

[VB code]
Public Sub BoxingTest ()
Dim testPrices As New PriceTest ()
testPrices.ProcessPricesl (Of Stock) (New Double() {93.33, 321.33, 193.42})
testPrices.ProcessPrices2 (0Of Stock) (New Double() {93.33, 321.33, 193.42})
End Sub

[C# code]

public void BoxingTest () {
PriceTest testPrices = new PriceTest();
testPrices.ProcessPricesl<Stock>(new double[] { 93.33, 321.33, 193.42 });
testPrices.ProcessPrices2<Stock> (new double[] { 93.33, 321.33, 193.42 });

When you call the first method, the Stock object writes out its price as it’s being set. It also displays the
value assigned to the Stock object once it has returned from the UpdatePrice () method. The output
from calling each of these two methods is as follows:

Unconstrained Method:
Updating With Price: 93.33
Updated Stock Price: 0
Updating With Price: 321.33
Updated Stock Price: 0
Updating With Price: 193.42
Updated Stock Price: 0

Constrained Method:

Updating With Price: 93.33
Updated Stock Price: 93.33

121

Chapter 7

Updating With Price: 321.33
Updated Stock Price: 321.33
Updating With Price: 193.42
Updated Stock Price: 193.42

Notice that, with the unconstrained method, your object never actually got updated. Meanwhile, the
constrained version, as you would expect, was successfully modified.

Using Multiple Constraints

Though the examples used so far have all applied a single constraint to each type parameter, you actu-
ally have the option (within some boundaries) of applying multiple constraints to a type parameter.
Suppose, for example, you wanted to apply the IVisitor constraint to one of your type parameters
and, at the same time, you also wanted to provide your class with access to the default constructor for
that same type parameter. The syntax for expressing these two constraints together appears as follows:

[VB code]
Public Class MyClass(Of T As {IVisitor, New})

End Class

[C# code]
public class MyClass<T> where T : IVisitor, new() {

}

You will notice, from this example, that this is one area where VB and C# have taken fairly different
approaches to their syntax. Personally, VB'’s use of curly brackets seems to feel more like a syntactic
afterthought. Still, it gets the job done.

Now, as you start to work with multiple constraints, the only issue you're likely to run into is determin-
ing what combinations of constraint types are valid. For interfaces, you're actually allowed to apply any
number of interfaces to your type parameters. The compiler will simply verify that every attempt to
access a member in your generic type can be resolved via at least one of the interfaces provided in your
list of constraints. The following provides a simple example where multiple interface constraints are
applied to a single type parameter:

[VB code]
Public Class MyClass(Of T As {IVisitor, IComparable(Of T), IInspector})

End Class

[C# code]
public class MyClass<T> where T : IVisitor, IComparable<T>, IInspector {

}

In this scenario, your class would only be allowed to accept type arguments that implement each of the

interfaces referenced in this constraint list. You can also mix class constraints in with these interface con-
straints. However, with class constraints, you are limited to referencing a single class in your constraints
list. As you might expect, this same rule also applies to constructor constraints. So, although it might be
unlikely pairing, the following would be considered a valid combination of constraints:

122

Generic Constraints

[VB code]

Public Class MyClass(Of T As {Person(Of T), IComparable(Of T), IInspector, New})

End Class

[C# code]

public class MyClass<T> where T : Person<T>, IComparable<T>, IInspector, new()

}

This code mixes a class constraint (Person<T>), two interface constraints (IComparable<T>,

IInspector), and a constructor constraint. Now, this is anything but a practical example. However, it
does provide a clear picture of what’s possible when applying multiple constraints to a type parameter.

For C#, the order of these constraints is also significant. C# requires class constraints to always appear first
in the list of constraints. It also requires constructor constraints to appear at the end of any constraint list.

VB, on the other hand, does not appear to impose any ordering requirements on its constraints.

Ambiguous Constraints

When you're working with multiple constraints, it is possible to end up with constraints that introduce
ambiguity problems. If two constraints expose identical members, the compiler will be unable to deter-

mine which of these members should be invoked and, as a result, will throw a compile-time error.

Suppose, for example, you have defined the following two interfaces:

[VB code]

Public Interface A
Sub Fool ()
Sub Foo2 ()

End Interface

Public Interface B
Sub Fool ()
Sub Foo3 ()
Sub Food4 ()

End Interface

[C# code]

public interface A {
void Fool();
void Foo2();

}

public interface B {
void Fool();
void Foo3 () ;
void Foo4 () ;

Now, take these two interfaces and apply them as constraints to a simple class along with a constructor

constraint. The code to achieve this is as follows:

123

Chapter 7

[VB code]
Public Class TestClass(Of T As {A, B, New})
Public Sub New()
Dim aClass As New T()

aClass.Foo2 ()
aClass.Fool ()
End Sub
End Class

[C# code]
public class TestClass<T> where T : A, B, new() {
public TestClass() {
T aClass = new T();

aClass.Foo2 () ;
aClass.Fool () ;

In this example, the constructor you've implemented first leverages the constructor constraint and cre-
ates a new instance of the type T. Then, it proceeds to attempt to make calls to the Foo2 () and Fool ()
methods. Although these are valid methods for the constraints you’ve included in your class declaration,
the compiler throws an error when it encounters the call to Fool (). If you look at the two interfaces that
are declared in the example, you'll notice that both of these interfaces include a Fool () method. This
creates a problem of ambiguity for the compiler, because it cannot determine which Fool () it should
call here.

It is possible to overcome this error. You certainly could remedy this by casting the object to a specific
interface type. However, if you're in a generic mindset, casting is not going to leave a bad taste in your
mouth. At the same time, it’s your only option if you really need to use constraints with signatures that
collide.

Ambiguity When Mixing Classes and Interfaces

Using class and interface constraints in tandem can also cause ambiguity issues. In this scenario, the
compiler will always defer to the members of the class and hide any members from an interface that
might overlap with those exposed by the class constraint. Here’s a simple example that exhibits this
behavior:

[VB code]

Public Class C
Public Sub Fool ()
End Sub

Public Sub Foo3 ()
End Sub
End Class

Public Class TestClass2(0f T As {C, A, B, New})
Public Sub New()
Dim aClass As New T()

124

Generic Constraints

aClass.Fool
aClass.Foo3
aClass.Foo2
aClass.Foo4d
End Sub
End Class

[C# code]
public class C {
public void Fool ()

{}
public void Foo3 () { }

}

public class TestClass2<T> where T : C, A, B, new() {
public TestClass2() {
T aClass = new T();

aClass.Fool ()
aClass.Foo3 () ;
()
()

’

i

aClass.Foo2
aClass.Foo4d

’

This example introduces a new class, C, and uses that class as a constraint in combination with the inter-
faces that were supplied in the previous example. It then attempts to invoke methods that are associated
with each of these constraints.

You'll notice here that the Fool () and Foo3 () methods of your class constraint overlap with methods
from your interface constraints. And, based on the error in the previous example, you might think this
would also generate a similar error. However, with a class constraint, the compiler just resolves this
ambiguity in favor of the class constraint. At the same time, the C# version of this class is still able to
invoke the Foo2 () method from interface A and the Foo4 () method from interface B. So, in cases where
there wasn’t overlap and there is no ambiguity, you are still able to access the methods exposed by these
interfaces.

VB’s approach to this problem is slightly different. When it encounters a class constraint, it completely
hides all members associated with the interface constraints, making them virtually useless, it would
seem. In general, VB appears to take a much less lenient approach when using class constraints in com-
bination with interface constraints.

Generic Delegate and Method Constraints

Every generic construct in the .NET Framework provides a mechanism for qualifying its type parame-
ters with constraints. And, from the previous discussion, you've gotten to see plenty of examples where
constraints were included as part of a generic class declaration. However, so far, you haven’t really seen
how constraints are applied to the remaining generic constructs. There’s a reason for this. The con-
straints syntax for each of the remaining constructs is very similar to what you've already seen with
generic classes. To illustrate this point, take a quick look at some simple generic delegates and methods
with constraints applied to their type parameters:

125

Chapter 7

[VB code]
Public Class MyClass
Public Delegate Sub MyDelegate (Of T As IValidator) (ByVal val As Int32)

Public Sub Foo(Of T As IValidator) (ByVal val As T)
End Sub
End Class

[C# code]
public class MyClass {
public delegate void MyDelegate<T> (int val) where T : IValidator;

public void Foo<T> (T val) where T : IValidator {}

This probably appears just as you would expect. The C# examples offer a bit more variation, but nothing
that’s all that different than what you saw with generic classes.

Inheritance and Constraints

Constraints must also be factored into your object hierarchies. The constraints that are applied to your
base class directly influence the constraints that must be applied to your descendent classes. Consider,
for example, the following two class declarations:

[VB code]
Public Class BaseClass (0Of K As {IValidator, New}, V)
Public Sub New()
Dim val As New K()
End Sub
End Class

Public Class SubClassl (0Of K, V)
Inherits BaseClass(0f K, V)

Public Sub New()
MyBase.New ()
End Sub
End Class

[C# code]
public class BaseClass<K, V> where K : IValidator, new() {
public BaseClass() {
K val = new K();
}
}

public class SubClassl<K, V> : BaseClass<K, V> {
public SubClassl() : base() {
K val = new K();

}

126

Generic Constraints

In the declaration of BaseClass here, you'll notice that some constraints have been applied to the first
type parameter, XK. The example then subclasses this class with SubClass1 and, within the constructor
of this subclass, attempts to create a new instance of K. Because K already had a constructor constraint
added to it as part of the parent class, you might assume that constraint would simply be inherited and
applied to your subclass. However, if you attempt to compile this example, you'll discover that the com-
piler is unhappy with this declaration. The problem here is that, whenever your base class imposes
constraints on its type parameters, those same constraints are applied to your type arguments as part

of your subclass declaration. In this case, the K that is being supplied as the first type argument to the
BaseClass must guarantee that it will meet the constraints that are declared for that parameter as part
of the base class. To resolve this, you would change the declaration of the subclass as follows:

[VB code]

Public Class SubClassl(0f K As {IValidator, New}, V)

End Class

[C# codel

public class SubClassl<K, V> : BaseClass<K, V> where K : IValidator, new() {

}

With this declaration, any constructed type for subClass1 will be required to implement IvVisitor and
provide a parameterless constructor for its first type parameter, K. Now, suppose you created a second
subclass of BaseClass that declared its inheritance as follows:

[VB code]
Public Class SubClass2 (0f K As IComparable, V)
Inherits BaseClass (0f Customer, String)

End Class

[C# code]

public class SubClass2<K, V> : BaseClass<Customer, string> where K : IComparable {
public SubClass2() : base() { }

}

Here, you'll notice that the constraints are no longer necessary because K is not being passed through to
BaseClass as part of the inheritance declaration. Instead, because K isn’t even visible to the base class, it
gets an entirely different constraint (IComparable) applied to it. At the same time, the constraints in the
base class are applied to the incoming Customer type argument. And, because it implements Ivalidator
and supplies a default constructor, it successfully satisfies the constraints.

Are Generics Generic?

Some would say that the introduction of constraints makes the .NET generics implementation anything
but generic. As best as I can tell, this argument seems to emanate primarily from those who have strong
ties to templates. And, from that perspective, where a type parameter is truly a placeholder for any type,
I can see how that would lead one to conclude that constraints somehow detract from the broader defini-
tion of a generic type. In that context, being a generic type means having no constraints on your type

127

Chapter 7

parameters and the freedom to view those types as being completely devoid of any rules that would
impose requirements on their shape or structure. If you share this view, you are likely to believe that
generics aren’t generic.

The NET implementation of generics introduced constraints as a tradeoff. Supporting the existing C++
templates model for generics would have required generics to support a compile-time model, where each
constructed type would be created as part of compilation. This would have been the only way to retain
these fully generic types and still verify that each instance of parameter substitution was fully resolvable.
This was certainly a valid option. However, it also brought with it the baggage that is associated with
the templates model, including code bloat (see Chapter 3 “Generics # Templates,” for a complete com-
parison of generics and templates). The generics designers wanted to overcome some of the traditional
templates-related issues by introducing the concept of run-time generic types. Instead of precompiling
all the types, generic types would be introduced into the CLR and each generic instance would be created
as it was used at run-time.

This goal of having run-time generic types has lots of upsides. At the same time, with each constructed
type being created at run-time, there must also be some way of prevalidating that these types are valid.
This is where constraints come in. Through constraints, the compiler is able to guarantee that the opera-
tions performed on any supplied type argument can be resolved.

So, the question is, does this idea of requiring constraints to support the run-time model somehow make
generics not generic? From my perspective, there is no absolute answer to this question. It really depends
on how you want to define the concept of a generic type. If you're looking to the NET generic implemen-
tation as a direct replacement for the generic, metaprogramming concepts that have been traditionally
associated with C++ templates, you're likely to conclude that generics aren’t generic. However, if you
loosen that definition some, and you look at what the generics implementation enables, you might come
to a different conclusion. For better or worse, this is how generics are and are likely to be for some time,
and whether or not they are truly generic is less important than whether or not they add value. And, in
that light, I think most would agree that they add value to the .NET platform.

Summary

The goal of the chapter was to provide some clear indication of how constraints can be applied to your
generic types. As part of this discussion, the chapter looked at how interface, class, and constructor con-
straints all separately influence the implementation of a generic type. You also saw how these constraint
types could be leveraged in combinations. Along the way, you examined some of the side effects of
using multiple constraints for your type parameters and explored some scenarios where these con-
straints could introduce ambiguity. After looking at all the implications of constraints, you should have
a much clearer idea about how constraints are likely to influence the choices you make when creating
your own generic types.

128

BCL Generics

The potential and power of generics is most fully realized in the implementation of container frame-
works. Given this reality, it only made sense that the introduction of generics would also be accom-
panied by the introduction of a pool of new generic types. In version 2.0 of the .NET Framework,
the Base Class Library (BCL) introduces two new namespaces, System.Collections.Generics
and System.Collections.ObjectModel, both of which include generic representations of many
of the non-generic containers that already existed in the System.Collections namespace long
before generics came along. The goal of this chapter is to provide you with an overview of the
classes that appear in these namespaces, along with a roadmap for how and when you might want
to apply each of these generic types. It also covers many of the key methods and properties that
are associated with each of these new types.

Motivation

Most .NET developers are likely to have some degree of familiarity with the existing collection
types. In fact, I suspect that a significant portion of the development community has grown quite
comfortable with the idea of collections that manage Object data types. Casting, boxing, and
unboxing have, for many, become the necessary evils that accompany working with these collec-
tions. This was a natural dynamic. There simply weren’t any attractive alternatives that didn’t also
introduce a high degree of code bloat.

My expectation is that generics will trigger a reversal of this trend. After seeing all the advantages
of generics, it should be clear why you should favor using generic collections wherever possible.
That’s not to say that you should consider the contents of the System.Collections namespace
as being deprecated. It is likely that there are still some scenarios where these classes can and
should be applied. At the same time, to make these non-generic types your default choice would
be a mistake. The efficiency, expressiveness, and type safety of generics is simply too compelling to
be ignored.

Chapter 8

The Big Picture

Before you start looking at the behavior of individual generic classes and interfaces, you need to take a
step back and consider the higher-level factors that have influenced the shape and structure of the
System.Collections.Generic and System.Collections.ObjectModel namespaces. If you're
going to be able to take full advantage of these types, you really need to have a firm grasp on the role
each class and interface plays in the overall scheme. If you understand these concepts, you'll be much
better equipped to determine how each of these generic types should be applied in your own solutions.

The section that follows explores the basic organization of the interfaces and types that are part of the
BCL. Along the way, it will point out any broader concepts that might be of value to you as a consumer
of these generic types.

If you are familiar with the System.Collections namespace, you should be able to see all the similar-
ities between the generic types and their non-generic counterparts. In fact, in some cases, the generic
versions of these types will have interfaces that closely mirror the non-generic versions. Even with these
similarities, it’s important for you to see how generics have influenced the overall mechanics and signa-
tures of each type.

Generic Collection Interfaces

The best place to start your exploration of the generics namespace is with interfaces, because they define
the signature of what will ultimately be possible with the library’s concrete types. The generics names-
pace currently consists of a fairly compact list of interfaces. Each of these interfaces has a well-defined
role that, ultimately, influences the scope and purpose of what appears in the resulting classes.

At the root of the BCL’s generic collection interface hierarchy (shown in Figure 8-1) is the IEnumerable<T>
interface. This interface is as basic as they come. It is limited to supporting iteration over a collection of
items and nothing more. You'll also notice that IEnumerable<T> extends the non-generic IEnumerable
interface. This may cause some concern, because the IEnumerable interface deals with object data types,
which is precisely what you're trying to avoid. While this may feel a bit unnatural, it turns out it’s not all
that limiting. In reality, including this interface for your collections only means that you'll also support a
GetEnumerator () call that can return objects. Because IEnumerable only iterates over and retrieves data,
it doesn’t introduce any signatures that would compromise type-safety.

The broader question is: Why is IEnumerable even needed in this hierarchy? Isn’t IEnumerable<T>
adequate? Well, the rationale here is targeted more at the interoperability of your generic and non-
generic types. Because generics need to live alongside their non-generic counterparts (IList,
ICollection, IEnumerable, and so on), it’s fair to expect that you’d like them to play nicely. It would
be nice, for example, to have an IList data type be treated as compatible with an IList<T> where an
IList parameter may willingly accept an IList<T> data type. This, of course, ends up being mostly a
fantasy. Because the IList<T> interface supports methods that mutate the collection (via 2dd (T), for
example), they cannot achieve this direct interoperability with the non-generic IList interface. IList
simply wouldn’t have any means of enforcing the type-safety that is declared with IList<T>. If you
started out with an IList<double> and assigned that collection to an IList data type, there would
be nothing that prevented you from adding, for example, a double type to the collection that wasn’t a
double.

130

BCL Generics

IEnumerator IEnumerable IComparer<T>
Interface Interface Generic Interface
IEnumerator<T> IEnumerable<T> IEqualityComparer<T>
Generic Interface Generic Interface Generic Interface

—> IEnumerator —P>|Enumerable

ICollection<T>
Generic Interface
—> IEnumerable<T>

i

IList<T>) IDictionary<TKey, TValue>

Generic Interface Generic Interface
—>ICollection<T> —DICollection<TKey>

Figure 8-1

Okay, if that’s the case then, you might be wondering why is IEnumerable<T> allowed to extend
IEnumerable? And, as you might suspect, the only thing that allows this is the fact that IEnumerable is
a one-way interface. It only allows data to be returned from the collection. As a result, it never needs to
deal with the issues that you saw with the IList example. So, even though it would have been nice for
all the interfaces to support this added interoperability between generic and non-generic types, it turns
out that IEnumerable represents the only class where this can be achieved.

Now, as you move down the interface hierarchy, you'll notice that each of the interfaces that extend
IEnumerable<T> adds additional functionality. The ICollection<T> interface, for example, provides
members that allow clients to add and remove items from the collection. This, I should note, is not true
for the non-generic version of this interface. While ICollection<T> adds some basic add/remove
operations, is still does not retain any specific ordering to its items. More specifically, it does not provide
any index-based access to its items. That, as you probably figured by now, is what is added by the
IList<T> interface. IList<T> includes the idea of an indexer that will allow you to randomly access
items based on an index.

Throughout this section, the C# angle bracket syntax is used to express the names
of each interface and class. This follows the convention that has been used in the
Visual Studio 2005 documentation. If you’re more comfortable with the VB syntax,
just mentally replace each instance of <T> with VB’s (Of T) syntax.

131

Chapter 8

Finally, no discussion of collection interfaces would be complete without a dictionary interface. The
generics namespace provides the classic IDictionary<TKey, TValue> interface that allows you to
store items in a collection, each of which is associated with a key. This key can then be used to randomly
access the elements of a dictionary.

Somewhat on their own, but no less important, are the ITEnumerator<T>, IEqualityComparer<T>,
and IComparer<T> interfaces. The IEnumerator<T> interface simply provides a type-safe signature for
iterating over a collection of items. This interface also represents the other half of the TEnumerable<T>
interface. By implementing the IEnumerable<T> interface, a generic class is essentially enabling iteration
via the IEnumerator<T> interface. You'll get a look at this interface in more detail later, but it’s important
to point it out because it plays such a key role in the implementation of any class that wants to support
the standard iteration mechanisms.

The IEqualityComparer<T> interface is used to test the equality of two objects via an Equals () com-
parison. Similarly, the IComparer<T> interface introduces the common set of operations that are used to
compare two objects. The key difference here is that IEqualityComparer<T> will only return a boolean
result that indicates whether two objects are equal, while IComparer<T> yields a numeric result that
indicates whether an item is greater than, less than, or equal to another item. Both these interfaces are
small but heavily used interfaces that provide standard, generic mechanisms for comparing and sorting
objects.

Classes

Now that you have a clearer picture of the generic interfaces exist and what roles they play, it’s time

to look at the framework classes that use these interfaces. As you will see, the framework assigns very
specific roles to each class in the library, and these roles are certainly influenced by the interfaces they
implement. And, as someone who's likely to be traversing the library in search of the right class, you'll
want to have a firm grasp of the functionality and purpose associated with each generic class in the BCL.

The List<T> class probably represents the best place to start off this subject. It certainly stands out as
one of the most popular and heavily used generic classes. This class, which is the type-safe, functional
replacement for ArrayList, provides you with a powerful set of operations for managing and accessing
index-based collections. It is also used, internally, as part of the implementation of some of the other BCL
types. In fact, you're likely to find yourself making heavy use of List<T> within the implementation of
many of your own classes.

Although the List<T> class is certainly powerful, its implementation was targeted primarily at perfor-
mance and flexibility. And, as a result, much of its implementation is sealed. This isn’t a problem if
you're not going to introduce your own custom specializations of this class. However, if you need to
subclass any collection, you're going to want to leverage the collection-based classes. Specifically, the
Collection<T>, ReadOnlyCollection<T>, and KeyedCollection<TKey, TItem> classes are meant
to play this role. They include much more “open” interfaces via a series of protected methods that
allows you to override and modify the default behaviors of these collections.

The BCL also includes a small set of classes that are implementations of the IDictionary<TKey,
TValue> interface. The first of these, Dictionary<TKey, TValue>, is meant to represent the functional
equivalent of the non-generic HashTable. However, some important differences exist between the
Dictionary<TKey, TValue> and HashTable classes. You'll get a chance to explore the differences later
in this chapter. The other dictionary-based class is SortedDictionary<TKey, TValue>. This class, as

132

BCL Generics

its name implies, gives you the best of both worlds in that you get the random access of a

dictionary in conjunction with some of the behaviors of an ordered list. The BCL also includes the
SortedList<TKey, TValue> collection, which provides you with a hybrid of index-based access and
a SortedDictionary<TKey, TValue>, where items in the container may be accessed by keys and/or
by a numeric index.

Of course, no container library would be complete without some of the classic container types. Along
these lines, the BCL adds Queue<T>, Stack<T>, and LinkedList<T> classes, which bring the type-
safety of generics to these fundamental data structures. The behavior of these classes is very much a
direct mapping of the non-generic versions of these classes.

System.Collections.ObjectModel

The KeyedCollection<TKey, TItem>, ReadOnlyCollection<T>, and Collection<T> classes are
not in the System.Collections.Generic namespace. These classes were moved to the System.
Collections.ObjectModel namespace late in the development of version 2.0 of the .NET Framework.
The rationale behind this move seemed to come about as a result of concern about creating some confusion
for VB developers. The default Microsoft.VisualBasic namespace already included a Collection
class, which meant making the System.Collections.Generic namespace a default message would
cause IntelliSense to display two separate collection types for VB developers. To resolve this, the BCL team
had the choice of renaming the Collection<T> class or moving it to a new namespace. This is what gave
rise to the new System.Collections.ObjectModel namespace.

Moving these classes to this namespace did not come without great debate. Many believe that the ratio-
nale behind moving these classes was not exactly sound. In fact, some believe the BCL’s organization is
being compromised by a desire to reduce confusion for VB6 programmers. And, even if you're okay
with the move, there’s an even bigger audience that can’t understand the thinking behind using the
name ObjectModel for this new namespace. There’s plenty of rationalization behind choosing this
name, but I haven’t seen anything that brings any clarity to the meaning behind this name. Instead, it
feels more like they needed a name in a hurry and just picked one. Still, it’s the name we’re all left to
work with.

Enumerators

For the most part, each of the generic collection classes provided in the BCL is also accompanied by one
or more enumerators. The enumerators provide a standard mechanism for enumerating the contents of
each collection. Each collection class achieves this by implementing the IEnumerable<T> interface.

In doing so, these classes all end up providing a common interface for retrieving an instance of an
IEnumerator<T> object that supports all the basic set of navigation methods.

For a simple container, the BCL typically just provides an implementation of the IEnumerable<T>
interface that returns a type-safe IEnumerator<T>. You'll notice, for example, that Stack<T> includes
a Stack<T>.Enumerator thatis used to iterate over its items. The same holds true for List<T>,
Collection<T>, and so on. The basic idea here is that if a container is managing a single type, it will
typically provide a corresponding enumerator.

Now, when you look at some classes in the BCL, you’ll find that this basic approach isn’t quite adequate.
And, in these situations, the BCL has provided more specific enumeration mechanisms for acquiring the

133

Chapter 8

contents of a container. The main example of this is the Dictionary<TKey, TValue>-related contain-
ers. Because these containers manage two different collections of data (keys and values), they require the
addition of a few more mechanisms for acquiring a container’s data.

In the most general sense, a dictionary is actually managing a collection of KeyValuePair<TKey,
TValue> objects. And, for this reason, the Dictionary<TKey, TValue>.Enumerator implementation
returns an Enumerator<T> that contains KeyValuePair<TKey, TValue> objects. This is what you
would expect. However, at times you’ll still want the ability to access the keys and values independently.
For these cases, the Dictionary<TKey, TValue> class adds two additional mechanisms. The
Dictionary.KeyCollection<TKey, TValue> class provides you with access to a separate collection
that just contains the set of keys being managed by the dictionary. And, as you might suspect, the corre-
sponding Dictionary.ValueCollection<TKey, TValue> class provides access to the values that

are managed by the dictionary. Each of these dictionary types provides an implementation of
IEnumerable<T> that is used to get an enumerator that will be used to iterate over the keys or values.
This same approach is also applied to the SortedDictionary<TKey, TValue> class.

This general approach to handling enumeration for containers is clean and consistent. Certainly, if you
were to consider introducing your own container or specializations of these containers, it would make
sense to continue to comply with this scheme.

The other question you might have is: Why do I need to support IEnumerable<T> for my own contain-
ers? Well, without support for this interface, you would prevent your C# and VB clients from using the
“for each” construct to process the items in your collection. This construct makes a client’s life much
easier and, in my opinion, makes your code much more readable. If that reason isn’t enough to convince
you, you may simply want to support IEnumerable<T> simply to remain consistent with the BCL.

Using Delegates

As you look more carefully at the generic classes in the BCL, you'll find a number of methods that take del-
egates as parameters. If you haven’t done much work with delegates, you may want to brush up on some
of the basic concepts. As you walk through the examples, this knowledge will make it easier for you to
have a broader understanding of how delegates are being applied. The information provided on generic
delegates in Chapter 6 also provides more details on the specific delegates that are leveraged by the BCL.

Generic Collection Classes

Now that you have a high-level view of the generics namespaces, it’s time to look at the nuts-and-bolts
details of each individual class. The idea here is to go through the members of every class and provide
an overview of the purpose and usage of each member. Each class in this section is also accompanied by
samples that illustrate some of the key concepts associated with that specific class.

Collection<T>

The Collection<T> class is an index-based, dynamically sized collection that provides you with all the
fundamental interfaces you need to add, remove, and randomly access the elements of a collection. Its
purpose is to provide a lightweight interface for constructing and maintaining a collection that can also
serve as the base class for any user-defined, custom collections. The following table shows a complete
list of methods and properties for Collection<T>.

134

BCL Generics

Method or Property Name Description

Add () Adds the provided object to the end of the collection.
Clear () Removes all the items from the collection.

Contains () Attempts to find an object in the collection equal to the

passed in object. If a matching object is found, the method
returns true.

CopyTo () Copies the contents of the collection to an Array.

Count Returns the number of items currently stored in the
collection.

GetEnumerator () Gets the IEnumerator<T> enumerator for your collection.

IndexOf () Finds the index of the object equal to the object supplied as
a parameter. If no matching object is found, this method
returns —1.

Insert () Inserts a new object into the collection at the specified

index. If an invalid index is provided, the class throws
an ArgumentOutOfRangeException.

Item Indexer that provides index-based access to the elements of
collection. If an invalid index is provided, the class throws
an ArgumentOutOfRangeException

Remove () Searches for an object that is equal to the supplied object
and removes it. If the object is found and removed, the func-
tion returns true. Otherwise, it returns false.

RemoveAt () Removes the object at the specified index. If an
invalid index is provided, the class throws an
ArgumentOutOfRangeException.

All of the generic collections included in the BCL use a zero-based indexing scheme.

Constructing a Collection<T>

The Collection<T> class supports two different modes of construction. Clients can use the default con-
structor or they can use the overloaded constructor that accepts a list of items. The following snippets of
code provide examples of both of these constructors in action:

[VB code]
Dim intCollection As New Collection(Of Int32) ()

Dim strList As New List (Of String) ()

strList.Add("vall")
strList.Add("val2")

135

Chapter 8

Dim strCollection As New Collection(Of String) (strList)

For Each strVall As String In strCollection
System.Console.WriteLine(strVall)
Next

strList (0) = "Val Changed"

For Each strVal2 As String In strList
System.Console.WriteLine (strVal2)
Next

[C# code]
Collection<int> intCollection = new Collection<int>();

List<String> strList = new List<String>();
strList.Add("vall");
strList.Add("val2");

Collection<String> strCollection = new Collection<String>(strList) ;
foreach (String strVall in strCollection)
System.Console.WriteLine (strVall) ;

strList[0] = "Val Changed";

foreach (String strvVal2 in strCollection)
System.Console.WriteLine (strvVal2) ;

In this example you start by constructing a simple collection of integers to demonstrate use of the default
constructor. Then, you construct an instance of a Collection<T> class, passing in your list of strings.

At this point, you write out the contents of the new collection to demonstrate that it was correctly popu-
lated with the contents of the source list.

Once the collection has been populated from the list, you modify the original list to point out a particu-
lar pitfall you may not be expecting. You'll notice that the example changes the value of the first item in
your original list to “Val Changed". Now, because you only modified your original list, you would
expect this to have no impact on your collection. However, when you look at the contents of
strCollection, you'll discover that the change made to strList also modified strCollection.

The problem here is that the reference to the list you supplied was retained by the collection during
construction. So, while you might have expected a deep copy in this scenario, you didn’t get one. And,
given this reality, it should be clear that any changes you make to the items in your original list are also
going to be reflected in the new collection. They both share the same references so any change to one
will impact the other.

Adding and Updating Items

The Collection<T> class supports a series of methods that allow you to populate and maintain the
state of your collection. The class’s interface gives you the option of modifying the collection via indexed
and non-indexed interfaces.

136

BCL Generics

Naturally, in addition to these methods and properties, the Collection<T> class also inherits all the
methods every class inherits from the object class. The Collection<T> class does not define any
alternative implementations of these methods. So, if you want to add your own definition of equality
or supply your own definition for a hash code, it will be your responsibility to extend the class and add
your own implementation of these items.

Now that that’s out of the way, let’s build an example that demonstrates some of these methods.
Specifically, let’s start by looking at how you can populate and update your Collection<T> class.
Before you can do that, though, you'll need an object to put in your collection (collections of integers
and strings get old in a hurry). The following code implements a Customer class that will be used by
various generic containers throughout this chapter:

[VB Code]

Public Clas
Impleme
Private
Private
Private
Private

Public
Asc
Des
End Enu

Public
Me.
End Sub

Public
Me.
Me.
Me.
End Sub

Public
Get

End
Set

End
End Pro

Public
Get

End
Set

End
End Pro

s Customer

nts System.IComparable
_id As Int32

_name As String
_rating As String

Shared _order As SortOrder

Enum SortOrder
ending = 0
cending = 1

m

Sub New(ByVal id As Int32,
New (id, name, "Other")

Sub New (ByVal id As Int32,
_id = id

_name = name

_rating = rating

Property Id() As Int32

Return Me._id

Get

(ByVal value As Int32)
Me._id = value

Set
perty

Property Name () As String

Return Me._name

Get

(ByVal value As String)
Me._name = value

Set
perty

ByVal name As String)

ByVal name As String, ByVal rating As String)

137

Chapter 8

Public Property Rating() As String
Get
Return Me._rating
End Get
Set (ByVal value As String)
Me._rating = value
End Set
End Property

Public Shared Property Order () As SortOrder
Get
Return _order
End Get
Set (ByVal value As SortOrder)
_order = value
End Set
End Property

Public Overrides Function Equals (ByVal obj As Object) As Boolean
Dim retVal As Boolean = False
If (Not obj Is Nothing) Then
Dim custObj As Customer = DirectCast (obj, Customer)
If ((custObj.Id = Me._id) And _
(custObj._name.Equals (Me.Name)) And _

(custObj._rating.Equals (Me.Rating))) Then
retVal = True
End If

End If
Return retval
End Function

Public Overrides Function ToString() As String
Return CStr(Me._id) + ": " + Me._name
End Function

Public Function CompareTo (ByVal obj As Object) As Integer Implements
IComparable.CompareTo

Select Case _order
Case SortOrder.Ascending
Return Me.Name.CompareTo (CType (obj, Customer) .Name)
Case SortOrder.Descending
Return (CType (obj, Customer) .Name).CompareTo (Me.Name)
Case Else
Return Me.Name.CompareTo (CType (obj, Customer) .Name)
End Select
End Function

End Class

[C# Code]

public class Customer : System.IComparable ({
private int _id;
private string _name;
private string _rating;

138

BCL Generics

private static SortOrder _order;

public enum SortOrder {
Ascending = 0,
Descending = 1

public Customer (int id, string name) : this(id, name, "Other") {

}

public Customer (int id, string name, string rating) {
this._id = id;
this._name = name;
this._rating = rating;

public int Id {
get { return this._id; }
set { this._id = value; }

public string Name {
get { return this._name; }
set { this._name = value; }

public string Rating {
get { return this._rating; }
set { this._rating = value; }

public static SortOrder Order {
get { return _order; }
set { _order = value; }

public override bool Equals (Object obj) {
bool retvVal = false;
if (obj != null) {
Customer custObj = (Customer)obj;
if ((custObj.Id == this.Id) &&
(custObj.Name.Equals (this.Name) &&
(custObj.Rating.Equals(this.Rating))))
retVal = true;
}

return retVal;

public override string ToString() {
return this._id + ": " + this._name;

public int CompareTo (Object obj) {

139

Chapter 8

switch (_order) {
case SortOrder.Ascending:
return this.Name.CompareTo (((Customer)obj) .Name) ;
case SortOrder.Descending:
return (((Customer)obj).Name) .CompareTo (this.Name) ;
default:
return this.Name.CompareTo (((Customer)obj) .Name) ;

Okay, you now have a basic Customer domain object. It holds a customer’s id, name, and rating
attributes and supplies overrides of the Equals () and ToString () methods. You'll also notice that it
implements the System. IComparable interface. Overall, it’s a very simple class, but it gives you a nice,
self-contained object to put in your collection. And, it’s likely to be a simplified representation of the
kinds of objects you'll be tossing into your own collections.

From here, you can construct a Collection<T> class and start filling it with instances of Customer
objects. The following code demonstrates a few of the approaches you can take to placing items in your
collection:

[VB code]

Public Sub AddCollectionItemsTest ()
Dim custColl As New Collection(Of Customer) ()
custColl.Add (New Customer (1, "Sponge Bob"))
custColl.Add (New Customer (2, "Kim Possible"))
custColl.Add (New Customer (3, "Test Person"))

custColl.Insert (1, New Customer (4, "Inserted Person"))
custColl(3) = New Customer (9, "Fat Albert")

For Each cust As Customer In custColl
Console.Out.WriteLine (cust)
Next
End Sub

[C# Code]

public void AddCollectionItemsTest () {
Collection<Customer> custColl = new Collection<Customer>();
custColl.Add (new Customer (1, "Sponge Bob"));
custColl.Add (new Customer (2, "Kim Possible"));
custColl.Add (new Customer (3, "Test Person"));

custColl.Insert(l, new Customer (4, "Inserted Person"));
custColl[3] = new Customer (9, "Fat Albert");

foreach (Customer cust in custColl)
Console.Out.WriteLine (cust) ;

140

BCL Generics

This example demonstrates the three separate mechanisms that can be used to place items into an
instance of a Collection<T> class. It starts out by adding three customers using the Add () method.
This method simply adds each new item to the end of the list, dynamically increasing the overall size
of the collection as needed. You'll typically use this method to initially populate your collection.

The second approach to adding items to the collection is to use the Insert () method. This method
takes a zero-based index and inserts the passed-in object at that specified position in the collection. All
the objects below this new item will automatically have their indexes adjusted to account for the inserted
item. If you attempt to insert an item with an index that is outside the currently valid range, the method
will throw an exception. There is one slight twist on this, though. You are allowed to insert an item in the
last position, essentially appending a new item to the end of the collection. In that instance, you can use
an index value that is one greater than the index of the last item in the collection.

Finally, the last method shown in the example uses an indexer, which leverages the underlying Items
property to randomly access items in the collection as if it were an array. For this example, you assign a
new customer, Fat Albert, to the fourth position in your collection. The indexer’s approach varies slightly
from the Insert () method in that it cannot be used to add new items to your collection. It can only be
used to modify an existing item in the collection or retrieve its value. As you might expect, if you supply
an index that is out of the collection range of valid items, the class will throw an exception.

Removing Items

The Collection<T> class also provides a series of methods that let you remove items from the collec-
tion. The following represents some sample code that exercises these interfaces:

[VB Code]

Public Sub RemoveCollectionItemsTest ()
Dim custColl As New Collection(Of Customer) ()
custColl.Add (New Customer (1, "Sponge Bob"))
custColl.Add (New Customer (2, "Kim Possible"))

custColl.Add (New Customer (3, "George Jetson"))

custColl.Add (New Customer (4, "Fred Flintstone"))

Dim success As Boolean = custColl.Remove (New Customer (4, "Bob Smith"))

custColl.RemoveAt (1)

For Each cust As Customer In custColl
Console.Out.WriteLine (cust)
Next

custColl.Clear ()

For Each cust As Customer In custColl
Console.Out.WriteLine (cust)
Next
End Sub

[C# code]

public void RemoveCollectionItemsTest () {
Collection<Customer> custColl = new Collection<Customer> () ;
custColl.Add (new Customer (1, "Sponge Bob"));
custColl.Add (new Customer (2, "Kim Possible"));

141

Chapter 8

custColl.Add (new Customer (3, "George Jetson"));
custColl.Add (new Customer (4, "Fred Flintstone"));

bool success = custColl.Remove (new Customer (4, "Bob Smith"));
custColl.RemoveAt (1) ;

foreach (Customer cust in custColl)
Console.Out.WriteLine (cust) ;

custColl.Clear () ;

foreach (Customer cust in custColl)
Console.Out.WriteLine (cust) ;

This example demonstrates the three methods that are used to remove data from an instance of a
Collection<T> class. This example populates a collection with an initial set of customers. Then, it
attempts to remove an item from the collection using the Remove () method. This method accepts a
Customer object and searches for a matching Customer in the collection. If a match is found, it is
removed and the method returns true. For this specific scenario, you supplied a Customer that did not
exist in the collection, so the method returns false. Note that your Customer object supplies an imple-
mentation of the Equals () method that ends up being used to determine the equality of Customer
objects.

The code also employs the Removeat () method to delete an item from its collection using an index. It
removes the second item from the list, passing an index of 1 (remember, the collection uses a zero-based
index). Whereas Remove () returns a boolean status, the Removeat () method throws an exception if you
supply an invalid index.

The last removal mechanism, Clear (), is used to remove all items from a collection.

Accessing and Inspecting Items

The collection<T> class also includes a variety of methods and properties that can be used to access
the data in the collection and obtain information about the state of the collection. The following example
demonstrates each of these methods and properties:

[VB code]

Public Sub AccessingCollectionItemsTest ()
Dim custColl As New Collection(Of Customer) ()
custColl.Add (New Customer (1, "Sponge Bob"))
custColl.Add (New Customer (2, "Kim Possible"))
custColl.Add (New Customer (3, "George Jetson"))
custColl.Add (New Customer (4, "Fred Flintstone"))

Dim custEnum As IEnumerator (Of Customer) = custColl.GetEnumerator()
While (custEnum.MoveNext ())
Dim cust As Customer = custEnum.Current
Console.Out.WriteLine(cust)
End While

Dim custl As New Customer (9, "Fred Rodgers")
If (custColl.Contains(custl)) Then

142

BCL Generics

custColl.Remove (custl)
End If

Dim custIndex As Int32 = custColl.IndexOf (New Customer (3, "George Jetson"))
If (custIndex >= 0) Then

custColl.RemoveAt (custIndex)
End If

Dim custArray(custColl.Count) As Customer
custColl.CopyTo (custArray, 0)

For Each cust As Customer In custColl
Console.Out.WriteLine (cust)
Next
End Sub

[C# code]

public void AccessingCollectionItemsTest () {
Collection<Customer> custColl = new Collection<Customer> () ;
custColl.Add (new Customer (1, "Sponge Bob"));
custColl.Add (new Customer (2, "Kim Possible"));
custColl.Add (new Customer (3, "George Jetson"));
custColl.Add (new Customer (4, "Fred Flintstone"));

IEnumerator<Customer> custEnum = custColl.GetEnumerator () ;
while (custEnum.MoveNext ()) {
Customer cust = custEnum.Current;
Console.Out.WriteLine (cust) ;

Customer custl = new Customer (9, "Fred Rodgers");
if (custColl.Contains(custl))
custColl.Remove (custl) ;

int custIndex = custColl.IndexOf (new Customer (3, "George Jetson")) ;
if (custIndex >= 0)
custColl.RemoveAt (custIndex) ;

Customer[] custArray = new Customer[custColl.Count];

custColl.CopyTo (custArray, 0);

foreach (Customer cust in custColl)
Console.Out.WriteLine (cust) ;

In order to maximize the coverage of the Collection<T> interface, this example employs both the
Contains () and IndexOf () methods to look up items in a collection. The first section of code invokes
the Contains () method to determine if the collection includes a reference to the “Fred Rodgers”
Customer object. If the object is found (and it’s not), it would be removed from the collection. The alter-
native approach, using the IndexOf () method, is also employed. This method searches for a matching
object and returns the index for the item that is found. If no match is found, the method returns -1.

Collection<T> also supports two different modes for enumerating the items in your collection. The

most common of these, the “for each” mechanism, provides the fastest and simplest means of iterating
over the items in a collection. In rare instances, you may also want to work directly with the underlying

143

Chapter 8

enumerator. The example demonstrates both of these approaches. The more manual approach starts by
calling the GetEnumerator () method, which returns an instance of an IEnumerator<T> object. Then
that enumerator interface is used to iterate over the initially loaded set of Customer objects. At the end
of the example, the “for each” construct is used to dump the final contents of the collection. This second
option is clearly cleaner and more readable.

Of course, because this is an indexed-based collection, you also have the additional option of using the
indexer to grab one or more items out of your collection.

Specializing Collection<T>

Although the collection<T> class will frequently support most of your basic collection needs, there
will still be times when you'll need to extend its functionality. The Collection<T> was built with this
in mind, offering you a series of protected members that allow you to modify or extend the behavior of
this class.

With this in mind, let’s look at a simple example that examines specializing the Collection<T> class.
The following code introduces a new HistoryCollection that intercepts any changes made to the col-
lection and records the collection’s “recently deleted” history:

[VB code]
Public Class HistoryCollection(Of T)
Inherits Collection(Of T)
Private _deletedHistory As Collection(Of T)

Public Sub New ()
_deletedHistory = New Collection(Of T)
End Sub

Protected Overrides Sub InsertItem(ByVal index As Integer, ByVal item As T)
Console.Out.WriteLine ("Added--> " + item.ToString())
MyBase.InsertItem(index, item)

End Sub

Protected Overrides Sub RemoveItem(ByVal index As Integer)
If ((index >= 0) And (index < Me.Count)) Then
Dim item As T = Me (index)
Console.Out.WriteLine ("Removed--> " + item.ToString())
_deletedHistory.Insert (0, item)
MyBase.RemoveItem (index)
End If
End Sub

Protected Overrides Sub ClearItems ()
For Each item As T In Me
_deletedHistory.Insert (0, item)
Next

Console.Out.WriteLine ("All Items Removed")
MyBase.ClearItems ()
End Sub

Protected Overrides Sub SetItem(ByVal index As Integer, ByVal item As T)

144

BCL Generics

Console.Out.WriteLine ("New Value-->", item)
MyBase.SetItem(index, item)
End Sub

Public ReadOnly Property DeletionHistory () As Collection(Of T)
Get
Return Me._deletedHistory
End Get
End Property
End Class

[C# code]
public class HistoryCollection<T> : Collection<T> ({
private Collection<T> _deletedHistory;

public HistoryCollection() {
_deletedHistory = new Collection<T>();

protected override void InsertItem(int index, T item) {
Console.Out.WriteLine ("Added--> " + item);
base.InsertItem(index, item);

protected override void RemoveItem(int index) {
if ((index >= 0) && (index < this.Count)) {
T item = this[index];
Console.Out.WriteLine ("Removed--> " + item);
_deletedHistory.Insert (0, item);
base.Removeltem(index) ;

protected override void ClearItems () {
foreach (T item in this)
_deletedHistory.Insert (0, item);

Console.Out.WriteLine("All Items Removed") ;

base.ClearItems() ;

protected override void SetItem(int index, T item) {
Console.Out.WriteLine ("New Value-->", item);
base.SetItem(index, item);

public Collection<T> DeletionHistory {
get { return this._deletedHistory; }

145

Chapter 8

This HistoryCollection overrides each of the protected methods that are exposed by the
Collection<T> class and adds logic to keep track of each item as it is deleted. It also writes out infor-
mation about the state of the collection each time it is modified. This is achieved by inserting code into
the RemoveItem() and ClearItems () methods, each of which intercepts deletion calls and places the
deleted items into the deletedHistory field that holds the list of all items that have been removed
(with the most recently deleted items placed at the top of the list). Clients are allowed to access this list
via the DeletionHistory property.

Now that you have this new collection, you can put together a simple example that will exercise its
interface:

[VB code]

Public Sub HistoryCollectionTest ()
Dim custColl As New HistoryCollection (Of Customer)
custColl.Add (New Customer (1, "Sponge Bob"))

custColl.Add (New Customer (2, "Kim Possible"))
custColl.Add (New Customer (3, "George Jetson"))
custColl.Add (New Customer (4, "Fred Flintstone"))
custColl.Add (New Customer (5, "Barney Rubble"))

custColl.RemoveAt (1)
custColl.RemoveAt (3)

Console.Out.WriteLine(""
Console.Out.WriteLine("Deletion History")
Console.Out.WriteLine("=================")
For Each cust As Customer In custColl.DeletionHistory
Console.Out.WriteLine (cust)
Next
End Sub

[C# code]

public void HistoryCollectionTest() {
HistoryCollection<Customer> custColl = new HistoryCollection<Customer> () ;
custColl.Add (new Customer (1, "Sponge Bob"));
custColl.Add (new Customer (2, "Kim Possible"));

((
custColl.Add (new Customer (3, "George Jetson"));
custColl.Add (new Customer (4, "Fred Flintstone"));
custColl.Add (new Customer (5, "Barney Rubble"));

custColl.RemoveAt (1) ;
custColl.RemoveAt (3) ;

Console.Out.WriteLine ("\nDeletion History");

Console.Out.WritelLine ("=================");

foreach (Customer cust in custColl.DeletionHistory)
Console.Out.WriteLine(cust);

You'll notice that this example declares an instance of your HistoryCollection<T> and adds five
items to the collection. Then, to show off the collection’s ability to track deleted items, it removes two
items from the collection. Finally, the example dumps out the contents of the deleted items history. After
running this example, the following output is shown on the console:

146

BCL Generics

Added--> 1: Sponge Bob
Added--> 2: Kim Possible
Added--> 3: George Jetson
Added--> 4: Fred Flintstone

Added--> 5: Barney Rubble
Removed--> 2: Kim Possible
Removed--> 5: Barney Rubble

Deletion History

5: Barney Rubble
2: Kim Possible

This is a very simple example. However, it illustrates the basic mechanics of creating your own special-
ization of the Collection<T> class. It also points out those protected methods that are available to you
when creating a descendant collection.

Comparer<T>

When dealing with collections of objects, you need to have a general-purpose mechanism that allows
you to compare objects. The BCL achieves this via the Comparer<T> class, which provides a default
implementation of the IComparer<T> interface.

You can imagine how having this functionality broken out of the individual collections can come in
handy. By separating out this concept, you have the opportunity to provide a variety of different com-
parison implementations. So, if you want the comparison to be case insensitive, for example, you could
create your own implementation of the IComparer<T> interface that supplies this new definition of
object equality.

The Comparer<T> class really only has two members that deserve your attention — the Default prop-
erty and the Compare () method. The Default property is used in determining the default mode of
comparing two objects. In fact, the Default property is itself an instance of a Comparer<T> class.

When you invoke the Compare () method, it consults this Default property to determine how it should
go about comparing two objects. As part of this process, the default comparer will determine if the type
parameter, T, implements IComparable<T>. If it does, that mechanism will be used to perform the com-
parison. However, if T does not implement this interface, the default comparer will then attempt to use
the non-generic IComparable interface to complete the comparison. It is possible that T won’t imple-
ment either of these interfaces. If this is the case, Compare () will throw an exception.

Now, take a look at how this class might work in a more practical example. In your Customer class,
you'll notice that it had the forethought to implement the System. IComparable interface. In doing so,
the class was also required to provide an implementation of the CompareTo () method. That method
allows you to sort the customers by name in ascending or descending order. Without having provided
this interface, the Comparer would have no direct means of sorting Customer objects. You could use a
Comparer to sort individual attributes of the customer (Id, Name, and so on), but not the Customer
object itself.

Now that you're aware of the Customer object’s support for comparisons, here’s a look at how Comparer
can be applied to sort a collection of customers:

147

Chapter 8

148

[VB Code]
Public Class ComparerTest
Public Function NameSortDelegate (ByVal custl As Customer,

ByVal cust2 As Customer) As Integer

Return Comparer (Of Customer) .Default.Compare(custl, cust2)
End Function

Public Sub NameSortTest ()
Dim collCustList As New List (Of Customer) ()

collCustList.Add (New Customer (99, "Happy Gillmore", "Platinum"))

(
collCustList.Add (New Customer (77, "Billy Madison", "Gold"))
collCustList.Add (New Customer (55, "Bobby Boucher", "Gold"))
collCustList.Add (New Customer (88, "Barry Egan", "Platinum"))
collCustList.Add (New Customer (11, "Longfellow Deeds", "Other"))

Console.Out.WriteLine ("Before Sort:")

For Each cust As Customer In collCustList
Console.Out.WriteLine (cust)

Next

Customer.Order = Customer.SortOrder.Ascending
collCustList.Sort (AddressOf NameSortDelegate)

Console.Out.WriteLine ("After Ascending Sort:")

For Each cust As Customer In collCustList
Console.Out.WriteLine(cust)

Next

Customer.Order = Customer.SortOrder.Descending
collCustList.Sort (AddressOf NameSortDelegate)
Console.Out.WriteLine ("After Descending Sort:")
For Each cust As Customer In collCustList
Console.Out.WriteLine (cust)

Next

End Sub

End Class

[C# Code]
public class ComparerTest {
public void NameSortTest () {

List<Customer> collCustList = new List<Customer> () ;
collCustList.Add (new Customer (99
collCustList.Add (new Customer (77
collCustList.Add (new Customer (55, "Bobby Boucher", "Gold"));
collCustList.Add (new Customer (88
collCustList.Add (new Customer (11

Console.Out.WriteLine("Before Sort:");
foreach (Customer cust in collCustList)
Console.Out.WriteLine (cust) ;

Customer.Order = Customer.SortOrder.Ascending;
collCustList.Sort (delegate (Customer custl, Customer cust2)

return Comparer<Customer>.Default.Compare(custl, cust2);

1)

"Happy Gillmore", "Platinum"));
"Billy Madison", "Gold"));

"Barry Egan", "Platinum"));
"Longfellow Deeds", "Other"));

BCL Generics

Console.Out.WriteLine ("After Ascending Sort:");
foreach (Customer cust in collCustList)
Console.Out.WriteLine (cust) ;

Customer.Order = Customer.SortOrder.Descending;
collCustList.Sort (delegate (Customer custl, Customer cust2) {

return Comparer<Customer>.Default.Compare (custl, cust2);
1)

Console.Out.WriteLine ("After Descending Sort:");
foreach (Customer cust in collCustList)
Console.Out.WriteLine (cust) ;

This example uses the List<T> collection that is described in great detail later in this chapter. It popu-
lates the list and then proceeds to sort it first in ascending order and then, once again, in descending
order. For each call to the Sort () method, you supply an instance of Comparer<Customer> that ends
up calling the CompareTo () method of your Customer object. CompareTo () then consults the
Customer .Order property to determine what sorting scheme should be applied. The output of this
example is as follows:

Before Sort:

99: Happy Gillmore
77: Billy Madison
55: Bobby Boucher
88: Barry Egan

11: Longfellow Deeds

After Ascending Sort:
88: Barry Egan

77: Billy Madison

55: Bobby Boucher

99: Happy Gillmore
11: Longfellow Deeds

After Descending Sort:
11: Longfellow Deeds
99: Happy Gillmore

55: Bobby Boucher

77: Billy Madison

88: Barry Egan

Although the Comparer class is not particularly difficult to understand, it should be viewed as a funda-
mental type that you're likely to leverage anywhere you might be comparing objects. As part of this, it
should also be clear that you're going to need to consider implementing the System. IComparable
interface for many of your own data types.

Dictionary<TKey, TValue>

The Dictionary<TKey, TValue> class is used to map keys to values in a collection. These keys, each of
which must be unique, will then allow you randomly access the values that are stored in the collection.
As you can imagine, the efficiency and general behavior of the Dictionary<TKey, TValue> class makes
it a priceless tool that has countless applications.

149

Chapter 8

If you’ve been working with the System.Collections namespace, you've probably already been using
the HashTable class. In the generics namespace, the Dictionary<TKey, TValue> class is the functional
equivalent of the HashTable. However, even though it inherits most of the concepts from the HashTable,
it represents a mostly revamped implementation. As such, its performance characteristics will not neces-
sarily match those of the HashTable.

The following table summarizes the methods and properties that are part of the Dictionary<TKey,
TValue> class.

Method or Property Name Description

Add () Adds the supplied key and value to the dictionary.

Clear () Removes all the items from the dictionary.

ContainsKey () Determines if the supplied key exists in the current dictionary,
returning true if it is found.

ContainsValue () Determines if the supplied value exists in the current dictio-
nary, returning true if it is found.

Count Returns the number of items currently stored in the dictionary.

GetEnumerator () Returns an enumerated collection of KeyValuePair objects
corresponding to the items in the dictionary.

GetObjectData () Retrieves a serialized representation of the dictionary.

Item Indexer property that uses keys to add or update items in the
dictionary.

Keys Returns a Dictionary.KeyCollection containing all the
keys in the dictionary.

OnDeserialization () Called when deserialization has completed.

Remove () Finds the items that matche the passed-in key and removes it.
If the item is found, the method returns true.

TryGetValue () Attempts to get the value that corresponds to the supplied
key. If the value is found, it is returned. Otherwise, the default
value for the value parameter is returned.

Values Returns a Dictionary.ValuesCollection containing all the
values in the dictionary.

Constructing a Dictionary<TKey, TValue>

Of all the generic classes found in the BCL, the Dictionary<TKey, TValue> class offers the largest
menu of overloaded constructors. Of particular interest are those constructors that allow you to provide
different Comparer<T> implementations that can be used to customize how keys are evaluated and
compared by the dictionary. Here’s a simple example that illustrates the use of a few of the
Dictionary<TKey, TValue> constructors:

150

BCL Generics

[VB code]
Public Sub ConstuctorTest ()
Dim custDict As New Dictionary(Of Int32, Customer) (Comparer (Of Int32).Default)
custDict (99) New Customer (99, "Happy Gillmore", "Platinum")
custDict (77) = New Customer (77, "Billy Madison", "Gold")
custDict (55) = New Customer (55, "Bobby Boucher", "Silver")
custDict (88) = New Customer (88, "Barry Egan", "Platinum")

Dim copyDict As New Dictionary(Of Int32, Customer) (custDict)
copyDict (55) = New Customer (55, "Longfellow Deeds", "Other")

Dim custValues As Dictionary(Of Int32, Customer) .ValueCollection = _
custDict.Values
For Each cust As Customer In custValues
Console.Out.WriteLine (cust)
Next

custValues = copyDict.Values

For Each cust As Customer In custValues
Console.Out.WriteLine (cust)

Next

Dim capacityDict As New Dictionary(Of Int32, Customer) (100)
End Sub

[C# Code]
public void ConstuctorTest() {
Dictionary<int, Customer> custDict =
new Dictionary<int, Customer>(Comparer<int>.Default) ;

custDict[99] = new Customer (99, "Happy Gillmore", "Platinum");
custDict[77] = new Customer (77, "Billy Madison", "Gold");
custDict[55] = new Customer (55, "Bobby Boucher", "Silver");
custDict[88] = new Customer (88, "Barry Egan", "Platinum");

Dictionary<int, Customer> copyDict = new Dictionary<int, Customer> (custDict);
copyDict[55] = new Customer (55, "Longfellow Deeds", "Other");

Dictionary<int, Customer>.ValueCollection custValues = custDict.Values;
foreach (Customer cust in custValues)
Console.Out.WriteLine(cust) ;

custValues = copyDict.Values;
foreach (Customer cust in custValues)
Console.Out.WriteLine (cust) ;

Dictionary<int, Customer> capacityDict = new Dictionary<int, Customer>(100);

This example starts out by declaring an instance of Dictionary<TKey, TValue> that supplies a
Comparer as one of the parameters provided to the constructor. This Comparer is simply the default
Comparer for the integer data type and, as such, it doesn’t buy you anything over the default comparer
you would have gotten without providing this parameter. It's primarily here to convey the idea that you
have the option of supplying your own custom Comparer whenever you construct a

151

Chapter 8

Dictionary<TKey, TValue> class. This can be very handy if you have a complex key for your dictio-
nary. However, in many instances, you'll probably be able to leverage the default Comparer for your key.

Once the initial dictionary is populated, the example then constructs yet another dictionary, this time
supplying the previously constructed dictionary as a parameter. This new dictionary will take this
incoming parameter and copy its contents into the new dictionary instance. Now, the question is, does
the Dictionary<TKey, TValue> class make a deep copy of the incoming dictionary? Well, to determine
this, the example modifies one of the items in the new dictionary and dumps the contents of both the
original and the new dictionaries. From the output, you'll discover that the original source dictionary
was not affected by the changes to the new dictionary, which means the copy was deep.

Finally, the last constructor example includes a parameter for capacity. This parameter allows you to
have more control over the initial allocation of the size of items you expect the dictionary to hold. If
you're expecting the dictionary to be quite large, you may want to pre-allocate the capacity using this
parameter. By pre-setting the capacity, you'll improve the overall performance of your large dictionaries.
However, regardless of how this value is set, your dictionary instances will continually grow to accom-
modate new items.

Although this example covers the highlights of constructing Dictionary<TKey, TValue> classes, there
are also a few additional permutations of overloaded constructors that simply represent variations on
the themes covered here.

Adding and Updating Items

Maintaining the contents of a Dictionary<TKey, TValue> class doesn’t follow the same patterns you
saw with the collection classes. With dictionaries, your collection has no order. Your items are “poked”

somewhere into its internal collection with no guarantee for where they are placed. As such, all of your
interactions with a dictionary are achieved through a key that represents the unique index of any given
value that has been placed in the dictionary.

The set of methods or properties that are allowed to modify the contents of a dictionary is fairly small.
The following example demonstrates these methods and properties in action:

[VB code]
Public Sub AddUpdateRetrieveItems ()
Dim custDict As New Dictionary(Of Int32, Customer) ()
custDict (99) = New Customer (99, "Happy Gillmore", "Platinum")

custDict (77) = New Customer (77, "Billy Madison", "Gold")
custDict (55) = New Customer (55, "Bobby Boucher", "Silver")
custDict (88) = New Customer (88, "Barry Egan", "Platinum")
custDict.Add (11, New Customer (11, "Longfellow Deeds", "Other"))
custDict.Add (77, New Customer (77, "Test Person", "Gold"))
custDict (55) = New Customer (55, "Bobby Boucher", "Gold")

Dim tmpCust As Customer = custDict(88)
tmpCust.Rating = "Other"
End Sub

152

BCL Generics

[C# code]

public void AddUpdateRetrieveltems () {
Dictionary<int, Customer> custDict = new Dictionary<int, Customer> () ;
custDict[99] new Customer (99, "Happy Gillmore", "Platinum");

custDict[77] = new Customer (77, "Billy Madison", "Gold");
custDict[55] = new Customer (55, "Bobby Boucher", "Silver");
custDict[88] = new Customer (88, "Barry Egan", "Platinum");
custDict.Add (11, new Customer (11, "Longfellow Deeds", "Other"));
custDict.Add (77, new Customer (77, "Test Person", "Gold"));
custDict[55] = new Customer (55, "Bobby Boucher", "Gold");

Customer tmpCust = custDict[88];
tmpCust.Rating = "Other";
}

Whenever you're populating a dictionary, you'll always be expected to supply both a key and a value
parameter. This example adds items to your dictionary using both the indexer and the Add () method.
With the indexer, you simply provide the key as the index value and assign a value to that key. The
result is that the item that gets assigned to that index (key) is inserted into your dictionary. The 2dd ()
method achieves this in the old-fashioned way, accepting key and value parameters and inserting the
new item into the dictionary.

So, the question is, why two methods that essentially do the same thing? Well, that’s where understand-
ing the difference between the indexer and the Add () method is critical. The indexer can actually be
used to both add and update items in a collection. If you assign a value to a key that already exists, the
indexer will simply replace the current item with the new value. The Add () method, on the other hand,
can only be used to add items to a collection. So, if you call 2dd () and provide a key for an item that
already exists in the dictionary, the supplied value will not be placed in the collection.

In the example, you'll notice 2dd () is used to attempt to add two new customers to a dictionary. The
first customer, with the index of 11, gets added successfully. However, the next line throws an exception
because it attempts to add an item with a key that has already been inserted into the dictionary. If you
want to update an existing item, you must use the indexer. An example of how that is done is shown in
the next line of code, where you update the value for an existing customer by assigning the key of 55 a
new customer reference.

Although there are no hard-and-fast rules that surround using indexers and the Add () method, the
variation in their behavior would suggest that the indexer might best be reserved for retrieving and
updating existing dictionary values and the Add () method, of course, would only be used to add items
(because that’s all it can do anyway). This indexer is too prone to introducing ambiguity because you
can never be certain if it's adding or updating an item.

The last bit of the example is focused on pointing out how reference types held by a dictionary are man-
aged as, well, reference types. That is to say that if you extract an item from your dictionary that is a
reference, any modification of that reference is also modifying the dictionary’s reference to that same
item. So, when you retrieve the Customer with they key of 88 in the example, you are working directly
with the same reference that is being held by the dictionary.

153

Chapter 8

Looking Up Items

The Dictionary<TKey, TValue> class includes methods that allow you to determine if specific keys
or values already exist in your dictionary. As you can imagine, methods of this nature play a key role in
your management of a dictionary’s content.

Here’s a simple example of these methods in action. For this next set of sample code, assume there’s a
class that has a dictionary, myDictionary, which was pre-populated with the following Customer
objects:

Customer (99, "Happy Gillmore", "Platinum")
Customer (77, "Billy Madison", "Gold"));
Customer (55, "Bobby Boucher", "Silver")
Customer (88, "Barry Egan", "Platinum")
Customer (11, "Longfellow Deeds", "Other")

Now, with this as your current list of customers, you're going to call a series of methods that will be
used to determine if items already exist in the collection of customers referenced here. The list you're
going to pass into each of these methods contains the following Customer objects:

Customer (33, "Marvin Hagler", "Platinum")
Customer (11, "Buster Douglas", "Other")
Customer (55, "Bobby Boucher", "Silver")
Customer (51, "Mike Tyson", "Gold")
Customer (77, "Ray Leonard", "Silver")

Okay, the stage is finally set. All that’s left now is to introduce a set of methods that will operate on these
two populations of customers. These methods all use different techniques to locate customers, each with

its own approach to locating a value in a dictionary:

[VB code]
Public Sub AddCustomersByID (ByVal customers As Collection(Of Customer))
For Each cust As Customer In customers

If (myDictionary.ContainsKey(cust.Id) = False) Then
myDictionary.Add(cust.Id, cust)
Else
Console.Out.WriteLine ("Dupe Customer Id: {0}", cust.Id)
End If
Next

End Sub

Public Sub AddCustomersByValue (ByVal customers As Collection(Of Customer))
For Each cust As Customer In customers

If (myDictionary.ContainsValue(cust) = False) Then
If (myDictionary.ContainsKey (cust.Id) = True) Then
myDictionary (cust.Id) = cust
Else
myDictionary.Add(cust.Id, cust)
End If
Else
Console.Out.WriteLine ("Dupe Customer Value: {0}", cust.Id)
End If
Next

154

BCL Generics

End Sub

Public Function FindDupeCustomers (ByVal customers As Collection(Of Customer))
As Collection(Of Customer)
Dim retVal As New Collection(Of Customer) ()
For Each cust As Customer In customers
Dim tmpCust As New Customer (0, "New")
If (myDictionary.TryGetValue (cust.Id, tmpCust) = True) Then
retVal.Add (tmpCust)
Console.Out.WriteLine ("Dupe Customer Found: {0}", cust.Id)
End If
Next
Return retval
End Function

[C# code]
public void AddCustomersByID(Collection<Customer> customers) {
foreach (Customer cust in customers) {
if (myDictionary.ContainsKey (cust.Id) == false)
myDictionary.Add(cust.Id, cust);
else
Console.Out.WriteLine ("Dupe Customer Id: {0}", cust.Id);

public void AddCustomersByValue (Collection<Customer> customers) {
foreach (Customer cust in customers) {

if (myDictionary.ContainsValue(cust) == false) {
if (myDictionary.ContainsKey (cust.Id) == true)
myDictionary[cust.Id] = cust;
else
myDictionary.Add(cust.Id, cust);
} else {

Console.Out.WriteLine ("Dupe Customer Value: {0}", cust.Id);

public Collection<Customer> FindDupeCustomers (Collection<Customer> customers) {
Collection<Customer> retVal = new Collection<Customer>();
foreach (Customer cust in customers) {
Customer tmpCust = new Customer (0, "New");
if (myDictionary.TryGetValue(cust.Id, out tmpCust) == true) {
retVal.Add (tmpCust) ;
Console.Out.WriteLine ("Dupe Customer Found: {0}", cust.Id);

}

return retvVal;

The first method, AddcustomersById (), takes your second set of customers as a parameter and
attempts to add any new incoming customers to your internal dictionary (myDictionary). It calls the
ContainsKey () method on myDictionary to look up each customer’s Id from the incoming list and, if

155

Chapter 8

the Id of the items is not found, the customer is added to the list. Otherwise, if the Id already exists, a
message is written to the console.

The next method, AddCustomersByValue (), takes a slightly different approach. It requires the
Customer objects to match on more than their Ids to be considered a true match. As it processes each
Customer from the incoming list, it calls the Containsvalue () method on the dictionary, which
searches the dictionary for a matching Customer object. If a matching object is not found, the method
will decide if it needs to update an existing item or add a new one. This approach allows you to update
customers who may have the same Id but have changed one or more of their other attributes.

Finally, the last method in this example, FindDupeCustomers (), leverages the TryGetMethod () to
illustrate one last way to extract information from a dictionary. The method simplifies the process of
fetching an item from a dictionary in that it eliminates the need to surround your method call with any
exception handling or pre-validation logic. From this example, which builds and returns a list of dupli-
cate customers, you can see how this method is used to both check for the existence of a customer and
retrieve its contents all in one call and with no need for any exception handling.

So, what happens when you run each of these methods with the data supplied earlier in this section?
Well, the AddCustomersById () method locates three duplicate customer Ids (11, 55, and 77). The next
example, AddCustomersByValue (), only reports one duplicate, customer 55. That’s because, although
11 and 77 are duplicate Ids, the rest of their data did not match. As such, they were updated and not
reported as true duplicates. The FindDupeCustomers () method, which serves a slightly different pur-
pose, ends up returning a collection with customers 11, 55, and 77.

Retrieving Keys and Values

Ultimately, at some point, you're going to want to extract all the information from your
Dictionary<TKey, TValue> objects. Given that you have both keys and values in your dictionary,
you'll need specific methods that will allow you to access the collection of keys, the collections of values,
as well as the collection of key/value pairs. Fortunately, the Dictionary<TKey, TValue> class equips
you with all the methods you need to access all of this information. The following example provides a
quick view of how you can access each of these different collections of data:

[VB code]
Public Sub GetContents ()
Dim custDict As New Dictionary(Of Int32, Customer) ()

custDict (55) = New Customer (55, "Bobby Boucher", "Silver")
custDict (88) = New Customer (88, "Barry Egan", "Platinum")
custDict (11) = New Customer (11, "Longfellow Deeds", "Other")

Dim custKeys As Dictionary(Of Int32, Customer).KeyCollection = custDict.Keys
Dim custValues As Dictionary(Of Int32, Customer) .ValueCollection = _
custDict.Values

Dim custEnum As Dictionary (Of Int32, Customer) .Enumerator = _
custDict.GetEnumerator ()
While (custEnum.MoveNext ())

Dim custKVP As KeyValuePair (Of Int32, Customer) = custEnum.Current
Console.Out.WriteLine (custKVP.Value)
End While

End Sub

156

BCL Generics

[C# code]

public void GetContents() {
Dictionary<int, Customer> custDict = new Dictionary<int, Customer> () ;
custDict[55] = new Customer (55, "Bobby Boucher", "Silver");
custDict[88] = new Customer (88, "Barry Egan", "Platinum");
custDict[11] new Customer (11, "Longfellow Deeds", "Other");

Dictionary<int, Customer>.KeyCollection custKeys = custDict.Keys;
Dictionary<int, Customer>.ValueCollection custValues = custDict.Values;

Dictionary<int, Customer>.Enumerator custEnum = custDict.GetEnumerator () ;
while (custEnum.MoveNext()) ({
KeyValuePair<int, Customer> custKVP = custEnum.Current;
Console.Out.WriteLine (custKVP.Value) ;

As you can see, the Dictionary<TKey, TValue> class provides you with some specific classes that
are used to hold its keys and values. This example simply demonstrates how to extract each one of these
items from an existing, populated dictionary. It accesses both the Keys and Values properties and places
their results into a collection that you can iterate over like any other collection. It also retrieves the dictio-
nary’s enumerator with a call to the GetEnumerator () and iterates over the results.

Notice that for each of these items you accessed —key, values, and the enumerator — the dictionary
returned a specific corresponding construct, Dictionary<TKey, TValue>.KeyCollection,
Dictionary<TKey, TValue>.ValueCollection, and IEnumerator<KeyValuePair<TKey,
TValue>>.

Removing Items

The interface for removing items from a Dictionary<TKey, TValue> is as simple as they come.
Because all keys in the dictionary must be unique, you really only need one method, Remove (), to sup-
port the deletion of an individual item. This method looks up the passed-in key and removes the item
from the collection if it is found. It returns true if the removal was successful. The class also includes a
Clear () method that can be used to remove all items from the dictionary.

Null Keys

One requirement of the HashTable is that all of its keys and values must be represented as objects.
This fact means that it could accept null values for both the key and value parameters. With
Dictionary<TKey, TValue> this is not possible. As part of being generic, the Dictionary<TKey,
TValue> class must accept both value and reference types. To get around this problem, you can use the
Nullable<T> class, which will allow you to supply the dictionary with null values for both value and
reference types.

EqualityComparer<T>

When working with generics, you may run into situations where you want to test the equality of two
type parameters. Although you might expect this to work, the NET Framework does not allow you to
explicitly compare the equality of two generic parameters. For example, suppose you had the following
generic class:

157

Chapter 8

[VB code]
Public Class EqualityTest (Of T)
Private _value As T

Public Sub New(ByVal value As T)
If value <> Me._value Then
Me._value = value
End If
End Sub
End Class

[C# code]
public class EqualityTest<T> {
private T _value;

public EqualityTest (T value) {
if (value != this._value)
this. value = value;

This example looks simple enough. However, the equality test that is performed in your constructor will
fail because the compiler will not let you directly test the equality of two type parameters. If you think
about it, it makes sense that this would be a problem for the compiler. Because type parameters can be
both value and reference types, there’s no default behavior that equality can apply here to resolve this
expression. This is what gave rise to the need for the EqualityComparer<T> class. Take a look at how
this class can be applied to resolve this problem:

[VB code]
Public Class EqualityTest (Of T)
Private _value As T

Public Sub New(ByVal value As T)

If (EqualityComparer (Of T).Equals(value, Me._value) = False) Then
Me._value = value
End If
End Sub
End Class

[C# code]
public class EqualityTest<T> {
private T _value;

public EqualityTest (T value) {

if (EqualityComparer<T>.Equals(value, this._value) == false)
this. value = value;

The application of the EqualityComparer<T> class allows you to successfully compare the two type
parameters. This is a simple generic helper, but it’s an essential tool for implementing many generic types.

158

BCL Generics

KeyedCollection<TKey, Titem>

The KeyedCollection<TKey, TItem> class plays the same role, at least conceptually, as the
Dictionary<TKey, TValue> class. Much like the dictionary, it allows you to map a key to an item in
the collection. So, the next question is: Why do you need the KeyedCollection<TKey, TItem> class
at all? Why not just use the dictionary?

To answer this, you have to think back to the discussion of the role of the Collection<T> class. If you
recall, the Collection<T> class provided a number of protected methods and attributes and, as such, it
was meant to play the role of the programmer-extensible collection. In contrast, List<T> offers minimal
extensibility. So, although you might use List<T> classes extensively, the BCL is expecting you to favor
using Collection<T> classes as the primary class you’'d hand off to clients.

Now, with this as a backdrop, you have to look at KeyedCollection<TKey, TItem> and
Dictionary<TKey, TValue> in the same light. KeyedCollection<TKey, TItem> offers up a pool of
protected properties and methods that allow you to extend and customize the behavior of the collection,
whereas Dictionary<TKey, TValue> includes a very minimal set of protected members.

As you look at the following list of properties and methods supported by the KeyedCollection<TKey,
TItem>, you'll notice that the majority of its functionality is inherited from the collection<T> class.

Method or Property Name Description

Add () Adds the provided object to the end of the collection.
Clear() Remove all the items from the collection.
Contains () * Attempts to find an object in the collection equal to the passed-in

object. If a matching object is found, the method returns true.

CopyTo () Copies the contents of the collection to an Array.

Count Returns the number of items currently stored in the collection.
GetEnumerator () Gets the IEnumerator<T> enumerator for your collection.
IndexOf () Finds the index of the object equal to the object supplied as a

parameter. If no matching object is found, this method returns —1.

Insert () Inserts a new object into the location at the specified index.
If an invalid index is provided, the class throws an
ArgumentOutOfRangeException.

Item* Indexer that provides index-based access to the elements of
collection. If an invalid index is provided, the class throws an
ArgumentOutOfRangeException.

Remove () * Searches for an object that is equal to the supplied object and
removes it. If the object is found and removed, the function
returns true. Otherwise, it returns false.

RemoveAt () Removes the object at the specified index. If an invalid index is
provided, the class throws an ArgumentOutOfRangeException.

159

Chapter 8

Although this interface mirrors that of the Collection<T> class, you'll notice that some of the methods
and properties (those with an asterisk) have been modified to accommodate the introduction of a key.
So, the Remove () method, for example, now supports removing items by their key.

If you should decide to create your own specialized KeyedCollection<TKey, TItem> class, you'll find
that the exposed protected methods allow you to easily extend and modify the default behavior of this
class. You'll also notice that the class actually uses a dictionary as one of its protected properties.

LinkedList<T>

The LinkedList<T> class is one of the staple Computer Science 101 data structures that you’ve proba-
bly implemented yourself at one time or another. Instead of employing an indexed-based approach to
accessing the collection’s items, the LinkedList<T> maintains —for each item in the list— a reference
to the next item in the stream. Thus, the only way to retrieve items from a linked list is to traverse this
linked structure. Because the structure is maintained as a series of references, it is allowed to grow and
shrink arbitrarily.

In the BCL, the LinkedList<T> implementation allows you to easily construct a doubly linked list. This
means that any given item in the list will have references to both its parent and its child nodes, which
allows this list to be traversed in either direction.

The methods and properties of LinkedList<T> are oriented around this concept linkage where you're
either inserting or adding a node relative to the position of another node in the list. The following table
shows the exposed list of methods and properties for this class.

Method or Property Name Description

AddAfter () Adds a new node in the position after the specified node.
AddBefore () Adds a new node in the position before the specified node.
AddFirst () Adds a new node to the start of the list.

AddHead () Adds a new node to the start of the list.

AddLast () Adds a new node to the end of the list.

AddTail () Adds a new node to the end of the list.

Clear () Removes all the nodes from the list.

Contains () Determines if the supplied node exists in the list and returns

true if it’s found.

CopyTo () Copies the contents of the list to an Array.
Count Returns the number of nodes in the list.
Find () Searches the list for a specific node and returns it as a

LinkedList<T> if it’s found.

FindLast () Searches the list for the last node that matches the specific node
and returns it as a LinkedList<T> if it’s found.

First Returns a reference to the first node in the list.

160

BCL Generics

Method or Property Name Description

GetEnumerator () Returns an instance of a LinkedList<T>.Enumerator that
can used to iterate over all the items in your list.

GetObjectData () Retrieves a serialized representation of the dictionary.

Head Returns a reference to the first node in the list.

Last Returns a reference to the last node in the list.
OnDeserialization() Called when deserialization has completed.

Remove () Finds the node that matches the passed-in node and removes it

from the list. If the item is found, the method returns true.

RemoveFirst () Removes the node that is currently at the head of the list and
makes the next node the new head.

RemoveHead () Removes the node that is currently at the head of the list and
makes the next node the new head.

RemoveLast () Removes the node that is currently at the tail of the list and
makes the previous node the new tail.

RemoveTail () Removes the node that is currently at the tail of the list and
makes the previous node the new tail.

Tail Returns a reference to the last node in the list.

You'll find that some of the methods of this class provide overloaded versions that reference the
LinkedListNode<T> class. This class, which is described in the next section, wraps up each item
and provides properties for managing the references that are used in traversing instances of
LinkedList<T>. All items that are supplied to a linked list are ultimately represented, internally, as a
LinkedListNode<T>.

LinkedListNode<T>

LinkedListNode<T> is simply a type-safe wrapper for any node that might appear in any implementa-
tion of a linked list. If, for example, you were to decide to build your own linked list implementation,
you might still be able to leverage this class to represent the nodes in your list. Overall, though, this class
primarily exists to support the needs of the BCL's LinkedList<T> class.

The following table lists the properties that are exposed by the LinkedListNode<T> class.

Property Name Description

List If a node is owned by a LinkedList<T>, this property will hold a
reference to that list.

Next Holds a reference to the next node in the linked list.

Previous Holds a reference to the previous node in the linked list.

Value Returns the value (T) that is associated with this node.

161

Chapter 8

List<T>

Whereas the Collection<T> class was designed to be the extensible base class for your custom collec-
tions, the List<T> collection represents the highly optimized workhorse of the collection classes. It was
built from the ground up with an eye on maximizing performance. Just as with the Collection<T>
class, the List<T> class shares a rather obvious heritage with the non-generic ArrayList.

The following table summarizes the methods and properties that are part of the List<T> class.

Method or Property Name Description

Add () Adds the provided object to the end of the collection.

AddRange () Appends an IEnumerable<T> collection to the end of the cur-
rent collection.

AsReadOnly () Returns a read-only copy of the current collection.

BinarySearch () Performs a binary search on a sorted list and returns the index
of the found out. If no match is found, the method returns -1.

Capacity Sets the expected maximum number of items in the collection.

Clear () Removes all the items from the collection.

Contains () Attempts to find an object in the collection equal to the passed-
in object. If a matching object is found, the method returns true.

ConvertAll<U> Converts the collection to another type.

CopyTo () Copies the contents of the collection to an Array.

Count Returns the number of items currently stored in the collection.

Exists() Determines if one or more objects in the collection match the
supplied criteria. Returns true if a match is found.

Find() Searches for the first object that matches the supplied criteria. If
a match is found, the matching object is returned. If no item is
found, the default value for T is returned.

Findall () Finds all objects that match the supplied criteria and returns
them as a List<T>. If no items are found, the resulting collec-
tion will be empty.

FindIndex () Searches for the first object that matches the supplied criteria. If
a match is found, the zero-based index of the object is returned.
If no item is found, an index of -1 is returned.

FindLast () Returns the last item that matches the passed-in search criteria.

FindLastIndex () Returns the index of the last item that matches the passed-in
search criteria. If no matching item is found, an index of -1 is
returned.

162

BCL Generics

ForEach ()

GetEnumerator ()

GetRange ()

IndexOf ()

Insert ()
InsertRange ()

Item

LastIndexOf ()

Remove ()

RemoveAll ()

RemoveAt ()

RemoveRange ()

Reverse ()

Sort ()

ToArray ()

TrimExcess ()

TrueForAll ()

Applies the specified Action<T> to each item in the collection.
Returns the IEnumerator<T> for this collection.
Gets a shallow copy of a subset of items from the collection.

Returns the zero-based index of the first item that matches the
passed-in item. If no matching item is found, -1 is returned.

Inserts the supplied item at the specified, zero-based index.
Inserts a list of items at the specified index.

Indexer property used to retrieve or edit objects in the collec-
tion using an index.

Returns the zero-based index of the last item that is equal to
the passed-in item. If no matching item is found, -1 is returned.

Removes the supplied item from the collection. If the item is
not found, false is returned.

Removes all the items that match the passed-in criteria and
returns a count of the number of items removed.

Removes the item at the supplied zero-based index.

Removes a set of items from the collection starting at the
supplied, zero-based index and removes the number of items
specified.

Reverses the order of the items in the collection.

Sorts the list using the criteria provided by one of its over-
loaded methods.

Coverts the list to an array of items of type T.

Sets the capacity of the collection to the actual capacity if the
list is less than 90% full.

Returns true if all the items in the collection match the supplied
criteria.

As you can see, this is a very complete class, offering you a wide variety of mechanisms for maintaining,
ordering, and searching your list. About the only thing that’s missing here is an eventing model that
fires events as the list changes state (that’s found in BindingList<T> described later in this chapter).

The sections that follow provide you with some examples of how to use most of these methods and
properties. The goal here is to touch on the basic concepts of most of these items. I've attempted to
cluster the methods into logical categories of functionality to make it easier to locate specific kinds of
operations.

163

Chapter 8

Size Matters

Although the List<T> collection is a dynamic list, there may be times when you would like to pre-allocate
the size of the list. This is achieved via the Capacity property, which sets the expected capacity of the
list. In situations where you're expecting the list to be quite large, you might want to consider using the
Capacity property. Or, you may set the capacity at the time of construction.

Even if you completely ignore capacity, though, the collection still maintains a value for capacity internally.
However, as you hit specific thresholds, the class will dynamically increase the capacity to accommodate
additional growth. Naturally, if you want to inspect this property at any time, you can. You can also
retrieve the total number of items in the collection via the Count property.

As your list is growing and the capacity is being continually grown in chunks, you may reach a point
at which you want to trim back the extra items and make the capacity precisely match the count of the
items in your collection. This is achieved by applying the TrimExcess method to your collection.

The following code demonstrates some of the size-related methods and properties in action:

[VB code]
Public Sub SizeTest()
Dim capacity As Int32 = 2
Dim custList As New List (Of Customer) (capacity)

For idx As Int32 = 1 To 12

custList.Add (New Customer (idx, "Customer" + CStr(idx)))

If (custList.Capacity > capacity) Then
Console.Out.WriteLine("Current Count: {0}", custList.Count)
Console.Out.WriteLine ("0ld Capacity : {0}", capacity)
Console.Out.WriteLine ("New Capacity : {0}", custList.Capacity)
Console.Out.WriteLine("")
capacity = custList.Capacity

End If
Next
Console.Out.WriteLine("Final Count : {0}", custList.Count)
Console.Out.WriteLine("Final Capacity : {0}", custList.Capacity)

custList.TrimExcess ()
Console.Out.WriteLine ("After TrimExcess: {0}", custList.Capacity)
End Sub

[C# code]
public void SizeTest() {
int capacity = 2;
List<Customer> custList = new List<Customer> (capacity) ;

for (int i1dx = 1; idx <= 12; idx++) {

custList.Add (new Customer (idx, "Customer" + idx));

if (custList.Capacity > capacity) {
Console.Out.WriteLine("Current Count: {0}", custList.Count);
Console.Out.WriteLine("0ld Capacity : {0}", capacity);
Console.Out.WriteLine("New Capacity : {0}", custList.Capacity);
Console.Out.WriteLine("");
capacity = custList.Capacity;

164

BCL Generics

}

Console.Out.WriteLine("Final Count : {0}", custList.Count);
Console.Out.WriteLine("Final Capacity : {0}", custList.Capacity);
custList.TrimExcess () ;

Console.Out.WriteLine ("After TrimExcess: {0}", custList.Capacity);

This example constructs a list with an initial capacity of two. Then, it proceeds to add 50 items to the list
and, along the way, spits out information about how these additions end up influencing the capacity of
the collection. The output is as follows:

Current Count: 3
0ld Capacity : 2
New Capacity : 4

Current Count: 5
0ld Capacity : 4
New Capacity : 8

Current Count: 9
0ld Capacity : 8
New Capacity : 16

You should notice that the capacity just doubles each time the list reaches capacity. Finally, after you
reach the end, the example calls TrimExcess () and dumps out the size of capacity before and after
this call. The output is:

Final Count : 12
Final Capacity : 16
After TrimExcess: 12

Your final capacity ended up at 16 and, after you trimmed, it was adjusted back down to 12 to match the
count of items in your collection. If you're working with large collections, setting the capacity can repre-
sent an effective means of optimizing your collection’s performance. The pre-allocation of the collection’s

contents and the elimination of the need to continually resize the collection will allow you to reduce the

overall overhead associated with populating your class.

The TrimExcess () method will only trim the list if the list is less than 90 percent full. The idea here is that
the benefits of executing the trim operation may not be realized if list is already nearly full.

Adding and Updating Items

The List<T> collection offers you a variety of methods that can be used to populate it with data or mod-
ify the representation of a given item in the collection. In contrast with Collection<T>, this class also
offers methods that will allow you to insert or append ranges of objects into your collection. These bulk
operations can make it much easier to manage the content of your collection. The following sample code
illustrates some of these mechanisms:

165

Chapter 8

[VB code]

Public Sub AddItemsTest ()
Dim collCustList As New Collection (Of Customer) ()
collCustList.Add (New Customer (99, "Happy Gillmore"))
collCustList.Add (New Customer (77, "Billy Madison"))

Dim rangeList As New List (Of Customer) ()
rangeList.Add (New Customer (55, "Bobby Boucher"))
rangeList.Add (New Customer (44, "Robbie Hart"))

Dim masterList As New List (Of Customer) (collCustList)
masterList.AddRange (rangeList)

masterList.Insert (2, New Customer (33, "Longfellow Deeds")
masterList(3) = New Customer (88, "Sonny Koufax")

For Each cust As Customer In masterList
Console.Out.WriteLine (cust)
Next
End Sub

[C# code]

public void AddItemsTest () {
Collection<Customer> collCustList = new Collection<Customer>();
collCustList.Add (new Customer (99, "Happy Gillmore"));
collCustList.Add (new Customer (77, "Billy Madison"));

List<Customer> rangeList = new List<Customer> () ;
rangeList.Add (new Customer (55, "Bobby Boucher")) ;
rangeList.Add (new Customer (44, "Robbie Hart"));

List<Customer> masterList = new List<Customer> (collCustList);
masterList.AddRange (rangelList) ;

masterList.Insert (2, new Customer (33, "Longfellow Deeds"));
masterList[3] = new Customer (88, "Sonny Koufax");

foreach (Customer cust in masterList)
Console.Out.WriteLine(cust) ;

In this example you start out by constructing two separate lists. Your first list, col1CustList, assembles
a handful of your Customer objects using the Collection<T> class. The example also builds an addi-
tional list of customers in the rangeList using an instance of the List<T> class. Because both
Collection<T> and List<T> implement the IEnumerable<T> interface, they can be used as parame-
ters to all of your range-based methods. This scenario passes your collection in as one of the parameters
to your constructor and it adds the items to your list. The other list, rangeList, ends up being added
via the AddRange () method. This method takes the incoming list of items and appends them to the end
of the overall collection.

Once the list is fully populated, you can then insert a new item into the middle of the list using the
Insert () method. This method accepts a zero-based index as one of its parameters and inserts the
new item at that specified position. Finally, the indexer is used to update item three in the list, replacing
the Customer at that position in the list with a new Customer instance in the list, which appends the
passed-in list to your overall collection.

166

BCL Generics

Removing Items

If you're going to put data into your list, you're also going to want to be able take it out. The List<T>
collection is equipped with the standard set of methods that are used to remove its items. Along with the
index-based methods, the class also provides methods that support more complex rules for determining
what items are removed from your collection. Here’s a simple example:

[VB Code]

Public Function FindGoldDelegate (ByVal cust As Customer) As Boolean
Return cust.Rating.Equals("Gold")

End Function

Public Sub RemoveltemsTest ()
Dim collCustList As New List (Of Customer) ()
collCustList.Add (New Customer (99, "Happy Gillmore", "Platinum"))
collCustList.Add (New Customer (77, "Billy Madison", "Gold"))
collCustList.Add (New Customer (55, "Bobby Boucher", "Gold"))
collCustList.Add (New Customer (44, "Robbie Hart", "Other"))
collCustList.Add (New Customer (22, "Henry Roth", "Deluxe"))
collCustList.Add (New Customer (88, "Barry Egan", "Platinum"))
collCustList.Add (New Customer (11, "Longfellow Deeds", "Other"))

collCustList.RemoveAt (6)
collCustList.RemoveRange (3, 2)

Dim numRemoved As Int32 = collCustList.RemoveAll (AddressOf FindGoldDelegate)
For Each cust As Customer In collCustList

Console.Out.WriteLine (cust)
Next

collCustList.Clear ()
End Sub

[C# Code]

public void RemoveItemsTest () {
List<Customer> collCustList = new List<Customer> () ;
collCustList.Add (new Customer (99, "Happy Gillmore", "Platinum"));
collCustList.Add (new Customer (77, "Billy Madison", "Gold"));
collCustList.Add (new Customer (55, "Bobby Boucher", "Gold"));
collCustList.Add (new Customer (44, "Robbie Hart", "Other"));
collCustList.Add (new Customer (22, "Henry Roth", "Deluxe"));
collCustList.Add (new Customer (88, "Barry Egan", "Platinum"));
collCustList.Add (new Customer (11, "Longfellow Deeds", "Other"));

collCustList.RemoveAt (6) ;
collCustList.RemoveRange (3, 2);

int numRemoved = collCustList.RemoveAll (delegate (Customer cust) {
return cust.Rating.Equals("Gold") ;

1)

foreach (Customer cust in collCustList)
Console.Out.WriteLine (cust) ;

collCustList.Clear() ;

167

Chapter 8

This example exercises each of the methods that can be used to remove data from a List<T> collection.
The first two methods it calls, RemoveAt () and RemoveRange (), are very straightforward index-based
operations. RemoveAt () simply removes the items at the indicated index, and RemoveRange () starts at
the specified index and removes the number of items specified by its second parameter. List<T> also
supports an overloaded version of the Remove () method that takes an object, looks it up, and removes it
if it’s found.

The Removeall () method shown here offers a more flexible approach to deleting items from the collec-
tion. It actually accepts a generic delegate (Predicate<T>) as one of its parameters. This predicate gives
you a more powerful, more type-safe mechanism for describing a filter that can be applied when remov-
ing items from the collection.

The Predicate<T> delegate is defined as taking a single parameter of type T and returning a boolean
that indicates if the supplied parameter meets your criteria. When you call the Removeall () method,
this delegate is called once for each item in your collection and, if the delegate returns true, the method
will remove that item. It is the responsibility for your delegate’s implementation to supply the rules that
will determine which items meet the criteria of your search. For the purpose of this example, your delegate
will return true for every Customer that has a rating of “Gold,” causing all customers with this rating to
be removed from the collection.

You'll notice some variation here between how the VB and C# examples supply their delegates. The C#
example uses an anonymous method (new to VS 2005) for its delegate implementation. This approach
was taken here to point out how handy this mechanism can be, allowing you to place the method’s
implementation directly within the method that’s using it. VB, on the other hand, does not support
anonymous methods and, as such, must implement a standalone method (FindGoldDelegate) that
complies with the signature of the predicate interface. Both are very workable. However, I tend to favor
the readability of the C# syntax.

As you look at the rest of the List<T> class methods, you'll see how generic delegates are actually used
in a variety of roles throughout the class. They primarily serve as type-safe means of expressing the filter
criteria that are used to delete, find, or operate upon the items in your list. This application of generic
delegates actually serves as a nice example of how you might want to leverage the combination of
generics and delegates as part of your own classes.

Finally, as part of looking at how items are removed from a List<T> collection, you should consider
how removing items might influence the Capacity property of your collections. You saw earlier in this
chapter how the Capacity property was continually doubled to accommodate growth in your collec-
tion. So, does it shrink as you remove items? No. If you add 999 items to your list and then remove 998
of them, the Capacity property will remain at 999 despite the fact that you only have 1 item remaining
in your collection. This is not of concern, but something you will want to keep in mind if you are main-
taining lists that may be growing and shrinking by large increments. If you ever decide you want to
adjust the capacity, you could simply use the TrimExcess () method to reduce the overall capacity of
the collection.

Searching for Items

Although this List<T> collection is an index-based collection, it also includes a series of useful methods
that allow you to generally search the contents of your collection. Most of these methods employ dele-
gates to express the criteria that are used when searching the collection. You'll notice that these methods

168

BCL Generics

have similar behavior. They only vary by their return type or the scope of their search. Overall, though,
the interface for these methods is largely the same.

The following is a sample program that will give you a brief glimpse of how each of these methods
works in practice:

[VB Code]
Public Class ListTest
Dim targetId As Int32

Public Function FindGoldDelegate (ByVal cust As Customer) As Boolean
Return cust.Rating.Equals("Gold")
End Function

Public Function FindPlatinumDelegate (ByVal cust As Customer) As Boolean
Return cust.Rating.Equals("Platinum")
End Function

Public Function FindIdDelegate (ByVal cust As Customer) As Boolean
Return (cust.Id = targetId)
End Function

Public Sub SearchTest ()
Dim collCustList As New List (Of Customer) ()
collCustList.Add (New Customer (99, "Happy Gillmore", "Platinum"))
collCustList.Add (New Customer (77, "Billy Madison", "Gold"))
collCustList.Add (New Customer (55, "Bobby Boucher", "Gold"))
collCustList.Add (New Customer (44, "Robbie Hart", "Other"))
collCustList.Add (New Customer (22, "Henry Roth", "Deluxe"))
collCustList.Add (New Customer (88, "Barry Egan", "Platinum"))
collCustList.Add (New Customer (11, "Longfellow Deeds", "Other"))

targetId = 22
Dim cust22 As Customer = collCustList.Find(AddressOf FindIdDelegate)
Console.Out.WriteLine ("Find Customer Id 22: {0}", cust22.Name)

Dim custIndex As Int32 = collCustList.FindIndex (AddressOf FindIdDelegate)
Console.Out.WriteLine("Find Customer Id 22 Index: {0}", custIndex)

Dim goldCustomers As List (Of Customer) =
collCustList.FindAll (AddressOf FindGoldDelegate)
For Each cust As Customer In goldCustomers
Console.Out.WriteLine("Gold Customer Found: {0}", cust)
Next

Dim platCust As Customer =
collCustList.FindLast (AddressOf FindPlatinumDelegate)
Console.Out.WriteLine("Find Last Platinum Customer: {0}", platCust)

Dim rangeCust As IEnumerable (Of Customer) = collCustList.GetRange (3, 3)
For Each cust As Customer In rangeCust
Console.Out.WriteLine ("Range Customer: {0}", cust)
Next
End Sub
End Class

169

Chapter 8

[C# Code]

public void SearchTest () {
List<Customer> collCustList = new List<Customer> () ;
collCustList.Add (new Customer (99, "Happy Gillmore", "Platinum"));
collCustList.Add (new Customer (77, "Billy Madison", "Gold"));
collCustList.Add (new Customer (55, "Bobby Boucher", "Gold"));
collCustList.Add (new Customer (44, "Robbie Hart", "Other"));
collCustList.Add (new Customer (22, "Henry Roth", "Deluxe"));
collCustList.Add (new Customer (88, "Barry Egan", "Platinum"));
collCustList.Add (new Customer (11, "Longfellow Deeds", "Other"));

int targetId = 22;

Customer cust22 = collCustList.Find(delegate (Customer cust) {
return cust.Id == targetId;

)

Console.Out.WriteLine("Find Customer Id 22: {0}", cust22.Name);

int custIndex = collCustList.FindIndex(delegate (Customer cust) {
return cust.Id == targetId;

)

Console.Out.WriteLine("Find Customer Id 22 Index: {0}", custIndex);

List<Customer> goldCustomers = collCustList.FindAll (delegate(Customer cust) {
return cust.Rating.Equals("Gold") ;
})i

foreach (Customer cust in goldCustomers)
Console.Out.WriteLine ("Gold Customer Found: {0}", cust);

Customer platCust = collCustList.FindLast (delegate (Customer cust) {
return cust.Rating.Equals("Platinum") ;
})

Console.Out.WriteLine ("Find Last Platinum Customer: {0}", platCust);

IEnumerable<Customer> rangeCust = collCustList.GetRange(3, 3);
foreach (Customer cust in rangeCust)
Console.Out.WriteLine ("Range Customer: {0}", cust);

Four different flavors of Find methods are demonstrated in this example, each of which uses the
Predicate<T> delegate to filter the list of items that are returned by the operation. The Find (),
FindLast (), and FindIndex () methods are all used to locate a single item in your collection. The
Find () and FindLast () methods both return an instance of a Customer object, and the FindIndex ()
method, as its name implies, returns the zero-based index.

As shown here, the Find () and FindIndex () methods will find the first matching item in the collec-
tion, whereas FindLast () will find the last matching item in the collection. However, the FindIndex ()
method provides three overloaded implementations that let you further qualify the range of items to be
searched. One version allows you to indicate a starting index, and the other allows you to provide a
starting and ending index range for the search.

170

BCL Generics

The last method that is demonstrated here is GetRange (), which uses an index to retrieve a collection of
items. It uses the first parameter to determine the starting point for retrieving items and uses the second
parameter to determine how many items to return.

Transforming List<T> Contents

At times, you may need to transform the contents of your List<T> collection to another representation.
The List<T> class provides a set of methods that allow you to either copy or covert its contents. The
CopyTo () method is especially useful in that there are plenty of situations where you may want to cre-
ate a copy of some or all of the items in a List<T> collection. The key to the CopyTo () method is that it
makes a deep copy of the collection. Here’s an example of the CopyTo () and the Convertall () meth-
ods used in conjunction:

[VB Code]
Public Function NameRatingsDelegate (ByVal cust As Customer) As String
Dim retVal As String = cust.Name
If (cust.Rating.Equals("Platinum")) Then
retVal = cust.Name + " ****v
ElseIf (cust.Rating.Equals("Gold")) Then
retVal = cust.Name + " ***"

ElseIf (cust.Rating.Equals("Other")) Then
retVal = cust.Name + " **"
End If

Return retvVal
End Function

Public Sub UpperCustDelegate (ByVal cust As Customer)
cust.Name = cust.Name.ToUpper ()
End Sub

Public Sub TransformContentsTest ()
Dim collCustList As New List (Of Customer) ()
collCustList.Add (New Customer (99, "Happy Gillmore", "Platinum"))
collCustList.Add (New Customer (77, "Billy Madison", "Gold"))
collCustList.Add (New Customer (55, "Bobby Boucher", "Gold"))
collCustList.Add (New Customer (88, "Barry Egan", "Platinum"))
collCustList.Add (New Customer (11, "Longfellow Deeds", "Other"))

Dim custNames As List (Of String) =
collCustList.ConvertAll (Of String) (AddressOf NameRatingsDelegate)
For Each custName As String In custNames
Console.Out.WriteLine (custName)
Next

Dim deepNameCopy (custNames.Count) As String

custNames.CopyTo (deepNameCopy)

custNames (0) = "CHANGED NAME"

For Each custName As String In custNames
Console.Out.WriteLine (custName)

Next

For Each custName As String In deepNameCopy

171

Chapter 8

Console.Out.WriteLine (custName)
Next

collCustList.ForEach (AddressOf UpperCustDelegate)

For Each cust As Customer In collCustList
Console.Out.WriteLine (cust.Name)
Next
End Sub

[C# Code]

public void TransformContentsTest () {
List<Customer> collCustList = new List<Customer>();
collCustList.Add (new Customer (99, "Happy Gillmore", "Platinum"));
collCustList.Add (new Customer (77, "Billy Madison", "Gold"));
collCustList.Add (new Customer (55, "Bobby Boucher", "Gold"));
collCustList.Add (new Customer (88, "Barry Egan", "Platinum"));
collCustList.Add (new Customer (11, "Longfellow Deeds", "Other"));

List<string> custNames =
collCustList.ConvertAll<string> (delegate (Customer cust)
string retvVal = cust.Name;
if (cust.Rating.Equals ("Platinum"))
retVal = cust.Name + " ****";
else if (cust.Rating.Equals("Gold"))
retVal = cust.Name + " **x";
else if (cust.Rating.Equals("Other"))
retVal = cust.Name + " **";
return retvVal;

)

foreach (string custName in custNames)
Console.Out.WriteLine (custName) ;

string[] deepNameCopy = new string[custNames.Count];
custNames.CopyTo (deepNameCopy) ;
custNames[0] = "CHANGED NAME";

foreach (String custName in custNames)
Console.Out.WriteLine (custName) ;

foreach (string custName in deepNameCopy)
Console.Out.WriteLine (custName) ;

collCustList.ForEach(delegate (Customer cust) {
cust.Name = cust.Name.ToUpper () ;

)

foreach (Customer cust in collCustList)
Console.Out.WriteLine (cust.Name) ;

172

BCL Generics

The convertall () method introduces yet another application of generic delegates. In this case, the
Convertall () method accepts a Converter<T, U> delegate as one of its parameters. The T parameter
is used as the source type you are converting from and corresponds to the T that is being managed by
the List<T> collection. The U type parameter corresponds to the type that you are coverting to. For this
example, a delegate is provided that converts from Customer objects to strings. It takes each incoming
Customer and creates a string that contains the Customer name with a series of asterisks appended that
are derived from the customer’s rating. So, when you run this example, it yields a collection of customer
names that appear as follows:

Happy Gillmore ****
Billy Madison ***
Bobby Boucher ***
Barry Egan ****
Longfellow Deeds **

After converting the names, you use the CopyTo () method to make a deep copy of the new list of
names. Whenever you retrieve a collection of items, you should pay attention to whether that collection
contains a shallow or a deep copy. If the copy is shallow, any modifications you make to the returned list
will also result in changes to the original collection. Obviously, plenty of scenarios exist where this may
not be the desired result. In the example, you prove that the copy is deep by modifying the returned col-
lection, setting the value of the first item in the deepNameCopy array to “CHANGED NAME”. Now, to
confirm that your change didn’t impact the original source collection, you dump the contents of both
lists. The resulting output is as follows:

CHANGED NAME

Billy Madison ***
Bobby Boucher ***
Barry Egan ****
Longfellow Deeds **

Happy Gillmore ****
Billy Madison ***
Bobby Boucher ***
Barry Egan ****
Longfellow Deeds **

One more method, ForEach (), can be used to operate on the items in a collection. This method lever-
ages the Action<T> delegate to specify an action that is to be performed on each item. The Action<T>
delegate is a simple function that takes just a single parameter and, unlike most of the other delegates
you’ve looked at, returns no value. Instead, this delegate simply defines a function that will operate —in
place —on the supplied item. For the example, your Action<T> delegate just converts the name of each
Customer to uppercase.

Sorting Items

The List<T> class provides two methods that can be used to sort the contents of the collection. The first
of these two, the sort () method, includes a set of overloaded versions that support varying approaches
to sorting this collection. The second method, Reverse (), allows you to invert the order of the collec-
tion’s items. The following example demonstrates both of these methods:

173

Chapter 8

[VB Code]
Public Function SortDelegate(ByVal cl As Customer, ByVal c2 As Customer) As Integer
Return Comparer (Of Int32) .Default.Compare(cl.Id, c2.Id)
End Function

Public Sub SortTest()
Dim collCustList As New List (Of Customer) ()
collCustList.Add (New Customer (99, "Happy Gillmore", "Platinum"))
collCustList.Add (New Customer (77, "Billy Madison", "Gold"))
collCustList.Add (New Customer (55, "Bobby Boucher", "Gold"))
collCustList.Add (New Customer (88, "Barry Egan", "Platinum"))
collCustList.Add (New Customer (11, "Longfellow Deeds", "Other"))

Console.Out.WriteLine("Before:")

For Each cust As Customer In collCustList
Console.Out.WriteLine (cust)

Next

collCustList.Sort (AddressOf SortDelegate)

Console.Out.WriteLine("After:")

For Each cust As Customer In collCustList
Console.Out.WriteLine(cust)

Next

collCustList.Reverse ()

Console.Out.WriteLine ("Reversed:")
For Each cust As Customer In collCustList
Console.Out.WriteLine (cust)
Next
End Sub

[C# Code]

public void SortTest() {
List<Customer> collCustList = new List<Customer>();
collCustList.Add (new Customer (99, "Happy Gillmore", "Platinum"));
collCustList.Add (new Customer (77, "Billy Madison", "Gold"));
collCustList.Add (new Customer (55, "Bobby Boucher", "Gold")):;
collCustList.Add (new Customer (88, "Barry Egan", "Platinum"));
collCustList.Add (new Customer (11, "Longfellow Deeds", "Other"));

Console.Out.WriteLine("Before:");
foreach (Customer cust in collCustList)
Console.Out.WriteLine(cust);

collCustList.Sort (delegate (Customer custl, Customer cust2) ({
return Comparer<int>.Default.Compare (custl.Id, cust2.Id);

2

Console.Out.WriteLine("After:");

foreach (Customer cust in collCustList)

Console.Out.WriteLine (cust) ;

collCustList.Reverse() ;

174

BCL Generics

Console.Out.WriteLine ("Reversed:") ;
foreach (Customer cust in collCustList)
Console.Out.WriteLine (cust) ;
}

This example uses the overloaded version of the Sort () method that accepts a Comparer<T> class. To
simplify the example, it uses a default Comparer implementation to compare the Customer Ids, which
are integers. Naturally, if you had a more complex data type to sort on, you could provide your own
implementation of Comparer.

Three other variants of the Sort () method exist that aren’t shown here. A “default” version is included.
It takes no parameters and uses the default Comparer to determine how to compare the values for the
type T. If T implements IComparable<T>, it will be used to compare the items. If it doesn’t implement
this generic interface, the class will attempt to use the non-generic IComparable interface. If T doesn’t
implement either of these interfaces, an InvalidOperationException is thrown.

The remaining two implementations of Sort () are similar to the version you saw in the preceding
example. One uses the Comparison<T> delegate to perform the sorting of each item. The other allows
you to provide a starting and ending index along with an IComparer<T> instance to perform the com-
parisons.

Queue<T>

The Queue<T> class is unlike many of the collections you've seen in this chapter. Most of the collections
you've seen so far are very centered around indexed or keyed access to the items in your collections.
These types of collections have no concern for how the items were originally placed into the collection.

In contrast, the Queue<T> class is much more sensitive to the order items are inserted into the queue.
The queue’s interfaces reflect that fact. Gone are all those index-oriented methods and properties you
saw with Collection<T> and List<T>. Instead, with the Queue<T> class, you're now provided with a
small set of first-in-first-out operations that are used to enqueue and dequeue items.

The following table is a breakdown of the methods and properties that are exposed by the Queue<T> class.

Method or Property Name Description

Clear () Removes all the items from the queue.

Contains () Attempts to find an item in the collection equal to the passed-
in object. If a match is found, the method returns true.

CopyTo () Copies the contents of the queue to an Array.

Count Returns the number of items in the queue.

Dequeue () Removes an item from the beginning of the queue.

Engqueue () Adds the supplied item to the end of the queue.

Table continued on following page

175

Chapter 8

Method or Property Name Description

GetEnumerator () Retrieves an instance of Queue<T> . Enumerator that can be
used to iterate over the contents of the queue.

Peek () Retrieves the item at the beginning of the queue without
removing it from the queue.

TrimExcess () Reduces the capacity of the queue so that it is equal to the
number of items currently in the queue, if the queue is less
than 90% full.

As you can see, there’s not much to the interface for this class. The following is an example that demon-
strates some of these methods:

[VB code]

Dim custQueue As New Queue (Of Customer) ()

custQueue.Enqueue (New Customer (99, "Happy Gillmore", "Platinum"))
custQueue.Enqueue (New Customer (77, "Billy Madison", "Gold"))
custQueue.Enqueue (New Customer (55, "Bobby Boucher", "Silver"))
custQueue.Enqueue (New Customer (88, "Barry Egan", "Platinum"))

Dim tmpCust as Customer = custQueue.Dequeue ()
Console.Out.WriteLine ("Dequeued: {0}", tmpCust)

For Each cust As Customer In custQueue
Console.Out.WriteLine("Queue Item: {0}", cust)

Next

tmpCust = custQueue.Peek()
Console.Out.WriteLine ("Queue Peek: {0}", tmpCust)

custQueue.Enqueue (New Customer (88, "Barry Egan", "Platinum"))

For Each cust As Customer In custQueue
Console.Out.WriteLine("Queue Item: {0}", cust)

Next

[C# code]

Queue<Customer> custQueue = new Queue<Customer> (100) ;
custQueue.Enqueue (new Customer (99, "Happy Gillmore", "Platinum"));
custQueue.Enqueue (new Customer (77, "Billy Madison", "Gold"));
custQueue.Enqueue (new Customer (55, "Bobby Boucher", "Silver"));
custQueue.Enqueue (new Customer (88, "Barry Egan", "Platinum"));

Customer tmpCust = custQueue.Dequeue() ;
Console.Out.WriteLine ("Dequeued: {0}", tmpCust);

foreach (Customer cust in custQueue)

176

BCL Generics

Console.Out.WriteLine("Queue Item: {0}", cust);

tmpCust = custQueue.Peek();
Console.Out.WriteLine ("Queue Peek: {0}", tmpCust);

custQueue.Enqueue (new Customer (88, "Barry Egan", "Platinum"));

foreach (Customer cust in custQueue)
Console.Out.WriteLine("Queue Item: {0}", cust);

This example starts by inserting a series of Customer objects using the Enqueue () method. Then, it calls
Dequeue (), which removes a Customer from the start of the queue. At that point, it dumps the contents
of the queue to verify that the item was actually removed. Finally, it calls the Peek () method to examine
the item that is currently at the start of the queue before dumping the list once more to verify that the
peek operation did not alter the contents of the queue.

ReadOnlyCollection<T>

In some instances, when you're returning a collection to a client, you want to ensure that the client has
no ability to modify your original collection. You can approach this in two ways. First, you could make a
copy of the collection and return that to the client. And, for small collections, that may be an acceptable
approach. However, imagine scenarios where you're managing a large set of items. In those situations, it
may be prohibitive to make a copy.

To address this need, the BCL includes the ReadonlyCollection<T> class. This class, as its name
implies, restricts the client’s ability to modify the collection. The methods and properties it exposes are
listed in the following table.

Method or Property Name Description
Count Returns the number of items in the collection.
Contains () Attempts to find an item in the collection equal to the passed-

in object. If a match is found, the method returns true.
CopyTo () Copies the contents of the collection to an Array.

GetEnumerator () Retrieves an instance of IEnumerator<T> that can be used to
iterate over the contents of the collection.

IndexOf () Finds the index of the supplied item. If no item is found, this
method returns -1.

Item Read-only indexer that fetches individual items from the
collection.

You can see that this interface removes any methods or properties that would allow you to add, update,
or otherwise modify the contents of the collection. Here’s some sample code that illustrates the usage of
the ReadonlyCollection<T> class:

177

Chapter 8

[VB code]
Public Sub BuildReadOnlyCollection /()

Dim collCustList As New List (Of Customer) ()

collCustList.
collCustList.
collCustList.
collCustList.
collCustList.

Customer (99,
Customer (77,
Customer (55,
Customer (88,
Customer (11,

"Happy Gillmore", "Platinum"))
"Billy Madison", "Gold"))
"Bobby Boucher", "Gold"))
"Barry Egan", "Platinum"))

"Longfellow Deeds", "Other"))

Dim roCustColl As New ReadOnlyCollection(Of Customer) (collCustList)

Dim tmpCust As Customer =
tmpCust .Name = "NAME CHANGED"

roCustColl (1)

For Each cust As Customer In roCustColl

Console.Out.WriteLine (cust)
Next
End Sub

[C# code]

public void BuildReadOnlyCollection/()
List<Customer> collCustList = new
collCustList.Add (new Customer (99
collCustList.Add (new Customer (77
collCustList.Add (new Customer (55,
collCustList.Add (new Customer (88
collCustList.Add (new Customer (11

{

List<Customer> () ;

"Happy Gillmore", "Platinum"));
"Billy Madison", "Gold"));
"Bobby Boucher", "Gold"));
"Barry Egan", "Platinum"));
"Longfellow Deeds", "Other"));

ReadOnlyCollection<Customer> roCustColl =
new ReadOnlyCollection<Customer>(collCustList) ;

Customer tmpCust = roCustColl[1l];
tmpCust.Name = "NAME CHANGED";

foreach
Console.Out.WriteLine(cust);

(Customer cust in roCustColl)

Notice here that the example starts out by constructing a list of customers, which are then passed as a
parameter to your ReadOnlyCollection<T> class. Because the class is read-only, the only way to popu-

late it is via this constructor.

Because collections often contain references, they cannot be viewed as being completely read-only. In
this example, in fact, you obtain an item from the collection and modify its Name property. And, as you
might suspect, this change also changes the Customer reference held by the collection. The idea of
“read-only” for this collection is only meant to indicate that items cannot be added, removed, or
replaced in the collection. So, if your collection contains references, you are allowed to modify the state
of those references. At the same time, the class does prevent you from replacing any reference held by
the collection with a new reference. This means the following line of code would be invalid:

[VB code]

roCustColl(l) = New Customer (99, "New

178

Customer")

BCL Generics

[C# code]
roCustColl[1l] = New Customer (99, "New Customer")

The indexer for the ReadonlyCollection<T> class is implemented as a read-only property and, as
such, will prevent you from modifying or adding a new item.

SortedDictionary<TKey, TValue>

The Dictionary<TKey, TValue> class is quite useful on its own. However, as indicated earlier, the
client of the Dictionary<TKey, TValue> class has absolutely no control over the order of the items in
its collection. And, as long as you're sticking with key-based access to the dictionary, this really never
ends up being of any concern.

The problem is that there are times when you want your dictionary to behave like a collection,

allowing you to reliably traverse the dictionary’s items in specific order. This is where the
SortedDictionary<TKey, TValue> class comes in. This class, which is somewhat akin to the
SortedList class from the System.Collections namespace, offers very much the same interface

you saw with the Dictionary<TKey, TValue> class earlier in this chapter (in fact, they both implement
the IDictionary<TKey, TValue> interface). However, a few subtle differences were introduced into
SortedDictionary<TKey, TValue> to facilitate ordering of the dictionary.

The following table is a breakdown of the methods and properties that are exposed by the
SortedDictionary<TKey, TValue> class.

Method or Property Name Description

Add() Adds the supplied key and value to the dictionary.

Capacity A count of the maximum number of items allocated for the dic-
tionary. This will automatically resize when the maximum is
reached.

Clear () Removes all the items from the dictionary.

Comparer Holds the Comparer<T> instance that will be used to sort the

keys in the dictionary.

ContainsKey () Determines if the supplied key exists in the current dictionary,
returning true if it is found.

ContainsValue () Determines if the supplied value exists in the current dictio-
nary, returning true if it is found.

CopyTo () Copies the KeyValuePair<TKey, TValue> item from the dic-
tionary to an array starting at the specified index.

Count Returns the number of items currently stored in the dictionary.

GetEnumerator () Returns an enumerated collection of KeyValuePair objects

corresponding to the items in the dictionary.

Item Indexer property that uses keys to add or update items in the
dictionary.

Table continued on following page

179

Chapter 8

Method or Property Name Description

Keys Returns a List<T> collection containing all the keys in the
dictionary.

Remove () Finds the item that matches the passed-in key and removes it.
If the item is found, the method returns true.

TryGetValue () Attempts to get the value that corresponds to the supplied key.
If the value is found, it is returned. Otherwise, the default
value for the value parameter is returned.

Values Returns a List<T> collection containing all the values in the
dictionary.

This class is mostly a mirror image of the Dictionary<TKey, TValue> class. So, instead of
rehashing (no pun intended) all these methods and properties that are essentially duplicates of the
Dictionary<TKey, TValue> class, I'll just focus on they key points of difference. In reality, the only
real variation here shows up in the Comparer and Keys properties. Because this dictionary supports
sorting, this also means the collection associated with the Keys property must be sorted. The order of
these keys is determined by the value you end up assigning to the Comparer property.

The following is a quick example that uses a few of these new methods and properties:

[VB code]

Public Sub BuildSortedDictionary ()
Dim custDict As New Dictionary (Of Int32, Customer) ()

custDict (99) = New
custDict (77) = New
custDict (55) = New
custDict (88) = New

Dim unsortedvValues

Customer (99, "Happy Gillmore", "Platinum")
Customer (77, "Billy Madison", "Gold")
Customer (55, "Bobby Boucher", "Silver")
Customer (88, "Barry Egan", "Platinum")

As Dictionary(Of Int32, Customer).ValueCollection

unsortedvalues = custDict.Values
For Each cust As Customer In unsortedValues
Console.Out.WriteLine ("Customer Name: {0}", cust.Name)

Next

Dim sortedDict As New SortedDictionary (Of Int32, Customer) (custDict)

Dim sortedValues As SortedDictionary (Of Int32, Customer) .ValueCollection
sortedvValues = sortedDict.Values
For Each cust As Customer In sortedValues

Console.Out.WriteLine ("Customer->{0}", cust.Name)

Next

sortedDict.Remove (88)

sortedvalues = sortedDict.Values
For Each cust As Customer In sortedvValues
Console.Out.WriteLine ("Customer->{0}", cust.Name)

Next
End Sub

180

BCL Generics

[C# code]

public void BuildSortedDictionary () {
Dictionary<int, Customer> custDict = new Dictionary<int, Customer> () ;
custDict[99] = new Customer (99, "Happy Gillmore", "Platinum");
custDict[77] = new Customer (77, "Billy Madison", "Gold");
custDict[55] = new Customer (55, "Bobby Boucher", "Silver");
custDict[88] = new Customer (88, "Barry Egan", "Platinum");

Dictionary<int, Customer>.ValueCollection unsortedValues = custDict.Values;
foreach (Customer cust in unsortedvalues)
Console.Out.WriteLine ("Customer Name: {0}", cust.Name);

SortedDictionary<int, Customer> sortedDict;
sortedDict = new SortedDictionary<int, Customer> (custDict);

SortedDictionary<int, Customer>.ValueCollection sortedvalues;

sortedvValues = sortedDict.Values;

foreach (Customer cust in sortedvalues) {
Console.Out.WriteLine ("Customer->{0}", cust.Name);

sortedDict.Remove (88) ;

sortedValues = sortedDict.Values;
foreach (Customer cust in sortedvalues) ({
Console.Out.WriteLine("Customer->{0}", cust.Name) ;

To demonstrate some of the new functionality offered by the SortedDictionary<TKey, TValue> class,
this example starts out with a regular, unsorted dictionary. This dictionary is populated with a series of
customers before the contents are dumped to the console. The output of this first step appears as follows:

Customer Name: Happy Gillmore
Customer Name: Billy Madison
Customer Name: Bobby Boucher
Customer Name: Barry Egan

As you can see, the values returned from the Dictionary<TKey, TValue> class are not sorted. Now,
you create a SortedDictionary<TKey, TValue> instance and populate it with the contents of your
dictionary, passing the existing dictionary as a parameter to the constructor. Your dictionary should now
be sorted and, to verify that, you dump the contents of your new sorted dictionary. The output of this
step is:

Customer->Bobby Boucher
Customer->Billy Madison
Customer->Barry Egan

Customer->Happy Gillmore

Notice that your list is now sorted by Customer Id. To top it off, the example then employs the Remove ()

method to remove the item at with a key value of 88. And, to confirm that your operation removed the
item you expected, you dump the contents one last time, which yields the following output:

181

Chapter 8

Customer->Bobby Boucher
Customer->Billy Madison
Customer->Happy Gillmore

Sure enough, the item you expected to be removed is now gone. So, this should give you a feel for how
SortedDictionary<TKey, TValue> allows you to create an ordered dictionary, while retaining keyed,
random access to its values.

SortedList<TKey, TValue>

The sortedbDictionary<TKey, TValue> class will likely meet most of your needs if you simply want
to sort your dictionary based on its key. However, if you’d like some additional index-based access to
your collection, you’ll want to consider using the SortedList<TKey, TValue> class. This class essen-
tially gives you a semi-hybrid of the List<T> and SortedDictionary<TKey, TValue> classes. In fact,
if you’'ve worked with the non-generic SortedList class, this class will probably look familiar to you.

One key difference between this SortedList<TKey, TValue> and SortedDictionary<TKey,
TValue> classes is the interfaces they use to access the container’s keys and collections. The
SortedList<TKey, TValue> class does not employ the KeyCollection<TKey, TValue> or
ValueCollection<TKey, TValue> classes. Instead, keys and values are simply returned as IList<T>
collections.

The following table is a breakdown of the methods and properties that are exposed by the
SortedList<TKey, TValue> class.

Method or Property Name Description
Add() Adds the supplied key and value to the list.
Capacity A count of the maximum number of items allocated for the list.

This will automatically resize when the maximum is reached.

Clear () Removes all the items from the list.
Comparer The comparer<T> that will be used to sort the list’s keys.
ContainsKey () Determines if the supplied key exists in the current list, return-

ing true if it is found.

ContainsValue () Determines if the supplied value exists in the current list,
returning true if it is found.

Count Returns the number of items currently stored in the list.
Clear () Removes all the items from the list.
GetEnumerator () Returns an enumerated collection of KeyValuePair objects

corresponding to the items in the list.

IndexOfKey () Returns the zero-based index of the first item that matches the
passed-in key. A value of -1 is returned if no match is found.

182

BCL Generics

Method or Property Name Description

IndexOfValue () Returns the zero-based index of the first item that matches the
passed-in value. A value of -1 is returned if no match is found.

Item Indexer property that uses keys to add or update items in
the list.

Keys Returns a List<T> collection containing all the keys in the list.

Remove () Finds the item that matches the passed-in key and removes it.
If the item is found, the method returns true.

RemoveAt () Removes the item at the specified index. An
ArgumentOutOfRangeException is thrown if the index
is not valid.

TrimExcess () Sets the capacity of the list to the number of items in the list if
the number of items is less than 90% of the capacity.

TryGetValue () Attempts to get the value that corresponds to the supplied key.
If the value is found, it is returned. Otherwise, the default
value for the value parameter is returned.

values Returns a List<T> collection containing all the values in the list.

You'll notice that this class essentially adds a set of index-based members that were not available in the
SortedDictionary<TKey, TValue> class. For example, you may now use the IndexOfKey () and
IndexOfValue () functions to retrieve the index of a specific key or value. The Removeat () method
also provides an index-based mechanism for removing items from this container.

Stack<T>

The stack<T> class falls into the same category as the other classic data structures (LinkedList<T> and
Queue<T>) that were discussed earlier in this chapter. It implements a simple last-in-first-out mecha-
nism. As each item is inserted into the list it is “pushed” onto the stack, and as each item is accessed, it

is “popped” off the stack. If you understand that concept, you will have mastered all there is to know
about the stack<T> class. The following table lists the properties and methods that are exposed by the

Stack<T> class.

Method or Property Name Description

Clear () Removes all the items from the stack.

Contains Returns true if the stack contains an item that matches the
supplied parameter.

Count Returns the number of items currently stored in the stack.

CopyTo () Copies the current contents of the stack to an Array.

Table continued on following page

183

Chapter 8

Method or Property Name Description

GetEnumerator () Returns a Stack<T>.Enumerator that can be used to iterate
over all the items in the stack.

Peek () Returns the item at the top of the stack without popping it off
the stack.

Pop () Pops an item off the top of the stack.

Push () Pushes an item onto the top of the stack.

ToArray () Returns an array of items of type T.

TrimExcess () Reduces the capacity of the stack to make it match the number
of items in the stack if the number of items is less than 90% of
the capacity.

BindingList<T>

So far, all of the generic types you've looked at have lived in the System.Collections.Generic and
System.Collections.ObjectModel namespaces. However, there is one straggler that didn’t quite fit in
these namespaces. The BindingList<T> generic class, which implements the non-generic IBindingList
interface, is found in the System. ComponentModel.Collections.Generic namespace. This class allows
you to have a generic list that can be bound to the various components (DataGrid, DataGridview, and so
on) that are part of the BCL. This ends up being a very helpful addition to the pool of available generics,
because developers are very likely to want to bind their generic collections to the existing Ul components.

The BindingList<T> is implemented as a descendant of the Collection<T> class and, as such, inher-
its a great deal of its implementation from that class. It then adds additional methods and properties to
support the rest of what’s needed to make it conform to the methods imposed by the IBindingList
interface. Of particular interest is the introduction of support for events that will notify you when items
are added and removed from the collection.

The BindingList<T> class is a much more heavyweight class compared to the List<T> class. So, unless
you really need the extended capabilities offered by BindingList<T>, you're better off keeping all the
optimization that’s offered by the List<T> class.

Testing Equality

Many of the collections described in this chapter include methods that take an object as a parameter and
search the collection for a matching object. As an example, the Collection<T> class employs a series of
methods (Remove (), Contains (), and so on) that take objects (instead of indexes) as parameters. For
these kinds of methods, you may discover that you do not always get the behavior you're expecting.
Objects you expect to match sometimes won't.

184

BCL Generics

The confusion surrounding these methods typically stems from the fact that these methods use equality
to search for matching objects. Clients of these methods, though, you may not always be aware of how
this equality check is being performed. As a result, you may end up expecting objects to match that
don’t. To eliminate this confusion, you should be certain you have a firm grasp on how your objects are
actually being compared. Between Comparers and specialized implementations of IComparable, you
can end up with plenty of unexpected side effects.

Null Collection Elements

Prior to the introduction of generics, the BCL collection classes represented their elements as objects.
As such, developers were able to store and retrieve null values from their collections. However, with
generics, you now have the luxury of using value types in your collections.

For clients of generic collections, this means you are no longer allowed to supply “null” values when
populating your collection. Well, at least not as directly as you're used to. Instead, you'll need to lever-
age the Nullable<T> type that you saw in Chapter 4. The end result is that you still have a way to use
null values in your collections. And you're allowed to get that null behavior without requiring any box-
ing or unboxing of the elements of your collections.

More to Come

I think it’s fair to assume that the generic classes found in the BCL only represent the tip of the iceberg. I
fully expect Microsoft to continue to extend and evolve this namespace, slowly folding in all the generic
types the development community will come to demand. In the interim, a groundswell of third-party
activity is already focused on the creation of new generic libraries. Many of these libraries are evolving
out of the STL-wannabe space where developers who are accustomed to STL are trying to drag all their
favorite types forward into the NET environment. You'll actually get a look at one of these libraries,
Power Collections, in detail in Chapter 14. Looking at libraries of this nature serves two purposes. First,
it allows you to supplement your generic tool bag with a set of additional generic types. Second, it gives
you yet another concrete set of examples for how generics can be applied.

Summary

The goal of this chapter was to provide a detailed view of the generic types that have been added to the
BCL. To meet that objective, this chapter started out by providing a high-level overview of all the classes,
interfaces, and enumerators that are part of the library. It also supplied examples and reference informa-
tion for each of the new generic classes that are part of the BCL. The main idea was to equip you some
insight into the basic mechanics of each of these classes. Beyond these mechanics, this chapter also tried
to provide some context for how and when you might apply each of these generic types.

185

Reflection, Serialization,
and Remoting

The introduction of generics, in some respects, represents an extension of the existing .NET type
system. And, of course, whenever types inherit new behavior, the APIs that interact with those
types must also evolve to support those concepts. This chapter looks at three specific areas of the
.NET Framework —reflection, serialization, and remoting — that are directly influenced by the
introduction of generic types. The bulk of this chapter focuses on reflection, describing how
generic types are created, examined, and manipulated dynamically via the reflection APIL. The
chapter also looks at how generic types are serialized and the role they can play in solutions that
use remoting. Along the way, you’ll also see a few scenarios where generics can be applied to cre-
ate more type-safe interactions with these APIs.

Reflection

Reflection is one of the more powerful tools that developers can take advantage of as part of the
NET platform. As its name implies, reflection is meant to capture the set of functionality that allows
clients to explore all the details about a data type. The most powerful aspect of reflection is its abil-
ity to allow programmers to use late-binding to create types on-the-fly at run-time. Developers
leverage these reflection mechanisms as the backbone of a whole host of creative solutions.

As you can imagine, reflection is a fairly broad topic that is outside the scope of this book. At the
same time, generics represent a fairly significant enhancement of the existing .NET type system
and, as such, it’s important for developers to understand how to provide specific insight into
inspecting, creating, and manipulating generic types via the reflection APIs. Generics definitely
throw some new concepts into the mix. The sections that follow explore each of these generic con-
structs in detail.

Chapter 9

Working with Open and Closed Types

The interfaces for creating, inspecting, and manipulating generic types are loosely divided into those
that operate on open types and those that operate on closed types. Chapter 1, “Generics 101,” talked
about how open types were the conceptual equivalent of a class, whereas closed types could be viewed
as objects that are instances of those open types. It’s helpful to keep this conceptual view in mind as you
look at the reflection interfaces for generics. So, if you're not feeling comfortable with this terminology,

I suggest you revisit Chapter 1 to refresh your memory.

Extending System.Type

A generic type, as you've seen, inherits most of the same behaviors as non-generic types. So, when it
comes to reflection, it only makes sense that the generic characteristics of a type be introduced as exten-
sions of the existing System. Type class. All of your interactions with reflection, then, are managed
through the members associated with this class (and its subordinate classes). This will certainly simplify
your transition to using reflection with generic types.

In addition to the members that have been added to System. Type to support specific generic character-
istics, you'll also find that many of the existing methods and fields can be directly applied to generic
types. For example, the Type.GetType () method that is used to create non-generic types can also be
used in the creation of generic types.

Determining if a Type Is Generic

Generic types, as you might suspect, throw some new wrinkles into your traditional reflection code. As
a result, you certainly run into scenarios where you might need to provide separate logic for processing
your generic types, which also means you'll need some way to determine if a given type is generic. This
is achieved through the IsGenericType property shown here:

[VB code]

Public Sub TestIsGenericType ()
Dim dict As New Dictionary (Of Int32, Int32) ()
Dim myString As String = "Test"

Dim testGeneric As Type = dict.GetType ()
If (testGeneric.IsGenericType = True) Then
Console.Out.WriteLine("Is a generic type")

testGeneric = myString.GetType ()
If (testGeneric.IsGenericType = True) Then
Console.Out.WriteLine("Is a generic type")
End If
End If
End Sub

[C# code]
public void TestIsGenericType () {
Dictionary<int, int> dict = new Dictionary<int, int>();

String myString = "Test";

Type testGeneric = dict.GetType();

188

Reflection, Serialization, and Remoting

if (testGeneric.IsGenericType == true)
Console.Out.WriteLine("Is a generic type");

testGeneric = myString.GetType () ;
if (testGeneric.IsGenericType == true)
Console.Out.WriteLine("Is a generic type");

For this example, you just create two types — one generic and one not. Then, you inspect the
IsGenericType property for each of these types. If that method returns True, you know the type
is generic.

Creating Open and Closed Types with Reflection

Developers frequently use reflection to load types at run-time. The basic idea here is that a type can be
loaded dynamically based on its name. This mechanism provides developers with a great deal of flexi-
bility, allowing compiled solutions to be extended at run-time via dynamically loaded types.

Fortunately, generic types are also able to participate in this dynamic scheme. In fact, with the exception
of a few twists, you should find that generic types are created very much like non-generic types. Still, it’s
worth seeing what subtle nuances are introduced by generic types. To see this concept in action, let’s cre-
ate a GenericsFactory class that includes a few static methods for dynamically creating generic types.
The code for this factory is as follows:

[VB code]

Public Class GenericsFactory
Private Sub New()
End Sub

Public Shared Function CreateOpenType (ByVal typeName As String) As Type
Dim retVal As Type
Dim charIdx As Int32 = typeName.IndexOf (" ")
If ((charIdx >= 0) And (charIdx < (typeName.Length - 1))) Then
Dim arityStr As String
arityStr = typeName.Substring(charIdx+1l, (typeName.Length-charIdx) - 1)
Dim arityNum As Int32
If (Int32.TryParse(arityStr, arityNum) = True) Then
retVal = Type.GetType (typeName)
End If
End If

Return retval
End Function

Public Shared Function CreateOpenType (ByVal typeName As String, _
ByVal arity As Int32) As Type
typeName = typeName + "'" + CStr(arity)
Return Type.GetType (typeName)
End Function

189

Chapter 9

Public Shared Function CreateClosedType (ByVal typeName As String,
ByVal typeArgs As List (Of String)) As Type
Dim retVal As Type
Dim openType As Type
openType = GenericsFactory.CreateOpenType (typeName, typeArgs.Count)

If ((IsDBNull (openType) = False) And _
(openType.IsGenericTypeDefinition = True)) Then
Dim typeArgTypes As New List (Of Type) (typeArgs.Count)

For Each argTypeName As String In typeArgs
typeArgTypes .Add (Type.GetType (argTypeName))
Next

retVal = openType.MakeGenericType (typeArgTypes.ToArray ())
End If

Return retval
End Function
End Class

[C# code]
public class GenericsFactory {
private GenericsFactory () { }

public static Type CreateOpenType (string typeName) {

Type retVal = null;

int charIdx = typeName.IndexOf (" ");

if ((charIdx >= 0) && (charIdx < (typeName.Length - 1))) {
string arityStr;
arityStr = typeName.Substring(charIdx+l, (typeName.Length-charIdx)-1);
int arityNum;
if (int.TryParse(arityStr, out arityNum) == true)

retVal = Type.GetType (typeName) ;

return retVal;

public static Type CreateOpenType (string typeName, int arity) {
typeName = typeName + " " + arity;
return Type.GetType (typeName) ;

public static Type CreateClosedType (string typeName, List<String> typeArgs) {

Type retVal = null;
Type openType = GenericsFactory.CreateOpenType (typeName, typeArgs.Count) ;

if ((openType != null) && (openType.IsGenericTypeDefinition == true)) {
List<Type> typeArgTypes = new List<Type> (typeArgs.Count) ;

foreach (String argTypeName in typeArgs)
typeArgTypes .Add (Type.GetType (argTypeName)) ;

190

Reflection, Serialization, and Remoting

retVal = openType.MakeGenericType (typeArgTypes.ToArray()) ;
}

return retvVal;
}

As you can see, this example introduces three methods for creating both open and closed types. Let’s
start by looking at the methods that support the creation of open types. Typically, when you're creating

a non-generic type dynamically, you need only supply the fully qualified type name. However, with
generic types, you can “overload” a generic class name by defining separate versions that accept varying
numbers of type parameters. So, if you have MyType<T> and MyType<T, U>, you have two types with
the same name. The number of parameters for these types (their arity) is what uniquely distinguishes
each type. So, where you might have typically just called Type.GetType ("MyType") to create this type
at run-time, you must now include some additional qualifiers with your type name to indicate which
generic type you want created.

For .NET generics, this type-naming issue is resolved by appending the “*” character to each type name
along with the number of parameters it accepts. So, MyType " 1 is considered the type name for MyType<T>
and MyType" 2 is the type name for MyType<T, U>. In fact, if you examine these types within the debugger,
these are the exact names you’ll see associated with your types. It’s not exactly elegant, but it works.

Now, with this knowledge, let’s examine the two implementations of the CreateOpenType () method
that are part of the GenericsFactory class. The first version accepts a single string that represents the
type name of the generic type to be created. This method assumes that the client has provided a fully
qualified name that includes the arity for the type. In fact, the bulk of this method is dedicated to vali-
dating that this information is included as part of the type name. If it’s not, it will not attempt to create
the type and will return nul1l.

The second version of this method accepts a type name and a parameter that represents the number of
type parameters that exist for the type that is to be created. The idea for this method is that the client
need only supply the name and the number of parameters and the method will use this information to
assemble a valid type name. This method doesn’t add lots of value, but does eliminate the client’s need
to include the “*” character as part of their type names.

The last method in this class, CreateClosedType (), is somewhat more involved. It employs a two-step
process that starts with the creation of an open type. Once the open type is created, the type is made
“closed” by binding type arguments to its parameters. You'll also notice that the type names supplied to
this method cannot include the arity in the name. This is intentional. The list of type arguments that are
supplied to this method are used to determine how many type parameters are needed and that number
is used to create the appropriate open type.

Let’s finish this topic off by assembling a look at a few examples that exercise the methods of this gener-
ics factory. First, you'll create a few calls that are used to create generic open types:

[VB code]

Public Class SampleType (Of T)
End Class

Public Class SampleType(Of T, U)
End Class

191

Chapter 9

Public Sub DumpGenericArguments (ByVal genericType As Type)
If (genericType.IsGenericType = True) Then
Console.Out.WriteLine("Type : {0}", genericType.Name)
For Each arg As Type In genericType.GetGenericArguments ()
Console.Out.WriteLine("{0,-30} : {1}", arg.Name + _
"->IsGenericParameter", arg.IsGenericParameter)
Next
End If
End Sub

Public Sub TestOpenTypeCreation ()
Dim openType As Type
openType = GenericsFactory.CreateOpenType ("Reflection.SampleType 1")
Console.Out.WriteLine ("IsGenericType ={0}", openType.IsGenericType)
DumpGenericArguments (openType)

openType = GenericsFactory.CreateOpenType ("Reflection.SampleType", 2)
Console.Out.WriteLine ("IsGenericType ={0}", openType.IsGenericType)
DumpGenericArguments (openType)

End Sub

[C# code]
Public class SampleType<T> {}
Public class SampleType<T, U> {}

public void DumpGenericArguments (Type genericType) {
if (genericType.IsGenericType == true) {
Console.Out.WriteLine ("\nType : {0}", genericType.Name) ;
foreach (Type arg in genericType.GetGenericArguments ())
Console.Out.WriteLine("{0,-30} : {1}", arg.Name +
"->TsGenericParameter", arg.IsGenericParameter) ;

public void TestOpenTypeCreation() {
Type openType = GenericsFactory.CreateOpenType ("Reflection.SampleType 1");
Console.Out.WriteLine ("IsGenericType={0}", openType.IsGenericType) ;
DumpGenericArguments (openType) ;

openType = GenericsFactory.CreateOpenType ("Reflection.SampleType", 2);
Console.Out.WriteLine ("IsGenericType={0}", openType.IsGenericType) ;
DumpGenericArguments (openType) ;

This example calls both variations of the CreateOpenType () method. You'll notice the first call supplies
a fully qualified name that includes “*1” as part of the class name, indicating that it should create the
version of SampleType that accepts a single type parameter. The second block of code creates a version
of sampleType that accepts two parameters, passing the simplified type name and a parameter that
indicates how many parameters are required. From looking at this, you can see that the second method
is somewhat superfluous. Still, I can see how some developers might want to avoid including the “*”.

192

Reflection, Serialization, and Remoting

The creation of an open type only creates type definitions. These definitions, by themselves, cannot be
constructed. Instead, you would primarily only use an open type to inspect the general characteristics of
the type. Or, you might use these type definitions as the basis for creating one or more closed types. The
last option would be to create your closed types with one call to the GenericsFactory. The following
code demonstrates how the factory could be used to create closed types:

[VB code]
Public Sub TestClosedTypeCreation ()
Dim args As New List (Of String) (1)
args.Add("System.Int32")
Dim closedTypel As Type
closedTypel = GenericsFactory.CreateClosedType ("Reflection.SampleType", args)
DumpGenericArguments (closedTypel)
Dim newTypel As Object = Activator.CreateInstance(closedTypel)

args.Clear ()
args.Add("System.Int32")
args.Add("System.String")
Dim closedType2 As Type
closedType2 = GenericsFactory.CreateClosedType ("Reflection.SampleType", args)
DumpGenericArguments (closedType?2)
Dim newType2 As Object = Activator.CreateInstance (closedType2)
End Sub

[C# code]
public void TestClosedTypeCreation() {
List<String> args = new List<String>(1);
args.Add("System.Int32");
Type closedTypel;
closedTypel = GenericsFactory.CreateClosedType ("Reflection.SampleType", args);
DumpGenericArguments (closedTypel) ;
Object newTypel = Activator.CreateInstance (closedTypel) ;

args.Clear();

args.Add("System.Int32");

args.Add("System.String") ;

Type closedType?2;

closedType2 = GenericsFactory.CreateClosedType ("Reflection.SampleType", args);
DumpGenericArguments (closedType?2) ;

Object newType2 = Activator.CreateInstance(closedType?2) ;

This example achieves the equivalent of constructing SampleType<int> and SampleType<int, String>.
To pull this off dynamically, it must first create a list of arguments that will then be supplied to the factory.
The factory will take these parameters, create the appropriate open type, bind the parameters to the open
type, and spit out a closed type. The closed type that is returned from the factory can then be instantiated
via the Activator.CreateInstance () call. And there you have it, a dynamically loaded generic type.

If you are already familiar with reflection, you will likely find this application of generic flavor of reflec-
tion to be very familiar. The truth is, the only real twist introduced by generics here is the variations on
the type name based on the number of type parameters. Other than that, the mechanics follow the same
themes that are supported for non-generic types.

193

Chapter 9

Converting Closed Types to Open Types

There may be scenarios in which you are given a closed type and want to have access to the open
type that is the basis for your closed type. In these situations, you can use the reflection API’s
GetGenericTypeDefinition () to achieve this result. The following provides an example of how
this would work:

[VB code]
Public Function CovertToOpenType (ByVal aType As Type) As Type
Dim retvVal As Type
If (aType.IsGenericType = True) Then
retVal = aType.GetGenericTypeDefinition ()
End If
Return retval
End Function

Public Sub TestClosedToOpenConversion ()
Dim doubleList As New List (Of Double) ()
Dim doubleListType As Type = doubleList.GetType()
Console.Out.WriteLine (doubleListType.Name + ".IsOpenType : {0}",
doubleListType.IsGenericTypeDefinition)
DumpGenericArguments (doubleListType)

Dim openType As Type = CovertToOpenType (doubleList.GetType())
Console.Out.WriteLine (openType.Name + ".IsOpenType : {0}",
openType.IsGenericTypeDefinition)
DumpGenericArguments (openType)
End Sub

[C# code]
public Type CovertToOpenType (Type aType) {
Type retVal = null;
if (aType.IsGenericType == true)
retVal = aType.GetGenericTypeDefinition() ;
return retvVal;

public void TestClosedToOpenConversion () {
List<Double> doublelList = new List<Double> () ;
Type doubleListType = doubleList.GetType() ;
Console.Out.WriteLine (doubleListType.Name + ".IsOpenType : {0}",
doubleListType.IsGenericTypeDefinition) ;
DumpGenericArguments (doubleListType) ;

Type openType = CovertToOpenType (doubleList.GetType());
Console.Out.WriteLine (openType.Name + ".IsOpenType : {0}",

openType.IsGenericTypeDefinition) ;
DumpGenericArguments (openType) ;

This example starts out by creating a List<Double> closed type and dumping the information about
that type. It then calls CovertToOpenType (), a helper method that checks to see if the supplied type is
generic before calling GetGenericTypeDefinition (). This last method call returns the type definition

194

Reflection, Serialization, and Remoting

of List<T> that is the underlying type that was used to create the closed type. The resulting open type
can then be bound to a different parameter to form a new closed type.

Examining Parameters and Arguments

The introduction of type parameters required a new set of members to be added to the reflection APL
These new methods and properties allow clients to acquire and examine the parameters or arguments
that are associated with a given generic type. Here’s an example where the APl is used to explore the

parameters of a generic type:

[VB code]
Public Sub DumpParamProperties (ByVal aType As Type)
For Each arg As Type In aType.GetGenericArguments ()
If (arg.IsGenericParameter = True) Then
Console.Out.WriteLine ("Type Param Name : {0}, Position {1}", arg.Name,
CStr (arg.GenericParameterPosition))
Dim cn As GenericParameterAttributes
cn = arg.GenericParameterAttributes & _
GenericParameterAttributes.SpecialConstraintMask

If ((cn & GenericParameterAttributes.DefaultConstructorConstraint) <> 0) Then
Console.Out.WriteLine ("Has constructor constraint")
End If

If ((cn & GenericParameterAttributes.ValueTypeConstraint) <> 0) Then
Console.Out.WriteLine("Has value constraint")
End If

If ((cn & GenericParameterAttributes.ReferenceTypeConstraint) <> 0) Then
Console.Out.WriteLine ("Has reference constraint")
End If
Else
Console.Out.WriteLine ("Argument Name : {0}", arg.Name)
End If

For Each intface As Type In arg.GetInterfaces()
Console.Out.WriteLine ("Parameter Interface : {0}", intface.Name)
Next
Next
End Sub

[C# code]
public void DumpParamProperties (Type aType) {
foreach (Type arg in aType.GetGenericArguments()) {
if (arg.IsGenericParameter == true) {
Console.Out.WriteLine("Type Param Name : {0}, Position {1}",
arg.Name, arg.GenericParameterPosition);
GenericParameterAttributes cn;
cn = arg.GenericParameterAttributes &
GenericParameterAttributes.SpecialConstraintMask;

if ((cn & GenericParameterAttributes.DefaultConstructorConstraint) != 0)
Console.Out.WriteLine ("Has constructor constraint");

195

Chapter 9

if ((cn & GenericParameterAttributes.ValueTypeConstraint) != 0)
Console.Out.WriteLine("Has value constraint");

if ((cn & GenericParameterAttributes.ReferenceTypeConstraint) != 0)
Console.Out.WriteLine ("Has reference constraint");
} else {

Console.Out.WriteLine ("Argument Name : {0}", arg.Name) ;

}

foreach (Type intface in arg.GetInterfaces())
Console.Out.WriteLine ("Parameter Interface : {0}", intface.Name) ;

This example creates a DumpParamProperties () method that is used to display the properties associated
with any type parameter or type argument. This method first retrieves a list of the arguments by calling the
GetGenericArguments () method on the passed-in type. It then iterates over all the items returned from
this call, inspecting and displaying the information about each parameter/argument it finds.

The IsGenericParameter property is used here to determine whether each parameter is a type param-
eter or a type argument. For type parameters, you can inspect the constraints associated with each
parameter via the GenericParameterAttributes mask. These attributes allow you to get much more
detailed information about the characteristics of a parameter, including its position in the parameter list
as well as any constraints that may be attached to it. If the argument is a type argument, the example
simply displays the parameter’s type name.

With this method in place, all that remains is to exercise it with a few different generic types. The
following example declares some basic generic types and then passes each of those types into the
DumpParamProperties () method:

[VB code]
Public Interface IValidator
End Interface

Public Interface ITransformer
End Interface

Public Class Person
End Class

Public Class Employee
Inherits Person
Implements IValidator
Implements ITransformer

Public Sub New/()
End Sub
End Class

Public Class PersonCollection(Of T As {Person, IValidator, ITransformer, New})
End Class

196

Reflection, Serialization, and Remoting

Public Class PersonCollection(Of T As {Person, IValidator, ITransformer, New},
U As {IEnumerable(0Of U), IComparable})
End Class

Public Sub TestParameterProperties ()
Dim dict As New Dictionary (Of String, Long) ()
Dim aType As Type = dict.GetType()
DumpParamProperties (aType)

aType = GenericsFactory.CreateOpenType ("Reflection.PersonCollection 1")
DumpParamProperties (aType)

aType = GenericsFactory.CreateOpenType ("Reflection.PersonCollection 2")
DumpParamProperties (aType)
End Sub

[C# code]
public interface IValidator { }

public interface ITransformer { }
public class Person { }

public class Employee : Person, IValidator, ITransformer ({
public Employee() { }

public class PersonCollection<T> where T : Person, IValidator, ITransformer, new()

{1

public class PersonCollection<T, U> where T : Person,IValidator,ITransformer, new/()
where U : IEnumerable<U>, IComparable {}

public void TestParameterProperties() {
Dictionary<String, long> dict = new Dictionary<String, long>();
Type aType = dict.GetType();
DumpParamProperties (aType) ;

aType = GenericsFactory.CreateOpenType ("Reflection.PersonCollection 1");
DumpParamProperties (aType) ;

aType = GenericsFactory.CreateOpenType ("Reflection.PersonCollection 2");
DumpParamProperties (aType) ;

You'll notice that the types declared here include various permutations of constraints. These are
included to exercise some of the different paths supported by the DumpParamProperties () method.
The first call in the test program uses a constructed type. When it’s processed, its type arguments
(string and long) are displayed. The next two examples use open types with varying constraints.
When DumpParamProperties () is called for these types, you'll get information regarding the position
of each parameter and its constraints. The output of running this example is as follows:

Processing Type : Dictionary 2

Argument Name : String
Parameter Interface : IComparable

197

Chapter 9

Parameter Interface : ICloneable
Parameter Interface : IConvertible
Parameter Interface : IEnumerable
Parameter Interface : IComparable'l

Argument Name : Int64

Parameter Interface : IComparable
Parameter Interface : IFormattable
Parameter Interface : IConvertible
Parameter Interface : IComparable' 1l

Processing Type : PersonCollection'1

Type Param Name : T, Position 0
Has constructor constraint

Has value constraint

Has reference constraint

Parameter Interface : ITransformer
Parameter Interface : IValidator

Processing Type : PersonCollection'2

Type Param Name : T, Position 0
Has constructor constraint

Has value constraint

Has reference constraint

Parameter Interface : ITransformer
Parameter Interface : IValidator

Type Param Name : U, Position 1

Has constructor constraint

Has value constraint

Has reference constraint

Parameter Interface : IComparable
Parameter Interface : IEnumerable' 1l

Reflection and Generic Inheritance

When using reflection with inherited types, you may encounter some unexpected behavior. In the fol-
lowing example, you'll create a subclass of a generic type and see how that might influence what is
returned by the reflection AP

[VB code]

Public Class MyCollection(Of T)

End Class

Public Class MyDictionary (Of K, V)
Inherits MyCollection (Of V)

End Class

Public Sub TestSubclassedTypes ()

198

Reflection, Serialization, and Remoting

Dim openType As Type
openType = GenericsFactory.CreateOpenType ("Reflection.MyDictionary 2")
Dim baseClassType As Type = openType.BaseType
Console.Out.WriteLine("{0}->IsGenericTypeDefinition :{1}", baseClassType.Name,_
baseClassType.IsGenericTypeDefinition)
DumpGenericArguments (baseClassType)
End Sub

[C# code]
public class MyCollection<T> {}

public class MyDictionary<K, V> : MyCollection<V> {}

public void TestSubclassedTypes () {
Type openType;
openType = GenericsFactory.CreateOpenType ("Reflection.MyDictionary 2");
Type baseClassType = openType.BaseType;
Console.Out.WriteLine("{0}->IsGenericTypeDefinition : {1}", baseClassType.Name,
baseClassType.IsGenericTypeDefinition) ;
DumpGenericArguments (baseClassType) ;

This example introduces the MyDictionary<TKey, TValue> type that inherits from MyCollection<T>,
using its type parameter Tvalue in the inheritance declaration. This would not be an atypical pattern of
inheritance. The question is: What will the reflection APIs tell you about this base class? From looking at it,
you might assume it would be treated as a type definition. After all, it doesn’t appear to have any bound
arguments here and it’s created like any other open type.

To determine how this base class is represented, you first use reflection to create MyDictionary<TKey,
TValue> as an open type. You then retrieve its base type and inspect the IsGenericTypeDefinition
property to determine if this base class is truly “open.” This property ends up returning False. Even
though no type arguments are supplied here, the inherited type is bound indirectly to the Tvalue param-
eter of the subclass. It’s not free to accept any type — only those types that are supplied to its subclass.
So, via this constraint, the base class is not considered an “open” type.

Reflecting on Generic Methods

Generic methods also create the need for some new members in the reflection API. They share many of
the same themes that you've already seen with generic classes. However, they obtain the bulk of their
information about a generic method from the MethodInfo type. Here’s an example that explores some
of the nuances of reflecting on generic methods:

[VB code]

Public Sub DumpMethodProperties (ByVal aMethod As MethodInfo)
If (aMethod.IsGenericMethodDefinition = True) Then
Console.Out.WriteLine("Is a generic method")

End If

If (aMethod.ContainsGenericParameters = True) Then

Console.Out.WriteLine ("Method has generic parameters")
End If

199

Chapter 9

If (aMethod.IsGenericMethod = True) Then
Console.Out.WriteLine ("Method has generic arguments")
For Each param As Type In aMethod.GetGenericArguments ()
DumpParamProperties (param)
If (param.IsGenericParameter = True) Then
Console.Out.WriteLine("Param is unbound : {0}", param.Name)
Else
Console.Out.WriteLine("Param is bound : {0}", param.Name)
End If
Next
End If
End Sub

Public Sub TestGenericMethod ()
Dim aSample As New SampleType (Of String)
Dim aMethodType As Type = aSample.GetType ()
Dim aMethod As MethodInfo = aMethodType.GetMethod ("GetItems")
DumpMethodProperties (aMethod)

aMethodType = GenericsFactory.CreateOpenType ("Reflection.SampleType 1")
aMethod = aMethodType.GetMethod("GetItems")
DumpMethodProperties (aMethod)

Dim typeArgs() As Type = New Type() {GetType(Int32), GetType (Double)}
aMethod = aMethod.MakeGenericMethod (typeArgs)
DumpMethodProperties (aMethod)

aMethod = aMethod.GetGenericMethodDefinition ()
DumpMethodProperties (aMethod)

End Sub

[C# code]

public void DumpMethodProperties (MethodInfo aMethod) {
if (aMethod.IsGenericMethodDefinition == true)

Console.Out.WriteLine("Is a generic method") ;

if (aMethod.ContainsGenericParameters == true)
Console.Out.WriteLine ("Method has generic parameters");

if (aMethod.IsGenericMethod == true) {
Console.Out.WriteLine ("Method has generic arguments");
foreach (Type param in aMethod.GetGenericArguments()) {
DumpParamProperties (param) ;
if (param.IsGenericParameter == true)
Console.Out.WriteLine ("Param is unbound : {0}", param.Name) ;
else
Console.Out.WriteLine("Param is bound : {0}", param.Name) ;

public void TestGenericMethod() {
SampleType<String> aSample = new SampleType<String>();
Type aMethodType = aSample.GetType() ;

200

Reflection, Serialization, and Remoting

MethodInfo aMethod = aMethodType.GetMethod("GetItems") ;
DumpMethodProperties (aMethod) ;

aMethodType = GenericsFactory.CreateOpenType ("Reflection.SampleType 1");
aMethod = aMethodType.GetMethod("GetItems") ;
DumpMethodProperties (aMethod) ;

Typel[] typeArgs = { typeof (int), typeof (double) };
aMethod = aMethod.MakeGenericMethod (typeArgs) ;
DumpMethodProperties (aMethod) ;

aMethod = aMethod.GetGenericMethodDefinition() ;
DumpMethodProperties (aMethod) ;
}

This example creates a DumpMethodProperties () method that will take a MethodInfo parameter
and examine all the generic characteristics of that method. You can see that the general set of
generic-focused members added to MethodInfo mimic those found on System. Type. For
example, the IsGenericMethodDefinition property referenced here maps conceptually to the
IsGenericTypeDefinition property that was used in the earlier example for generic classes.

This same theme also carries through to the processing of generic parameters. You call
GetGenericArguments () on the MethodInfo type and it returns an array of types that correspond
to each of the type parameters associated with a method. From there, the handling and inspection of
these parameters is identical to what can be done with parameters from a generic class. In fact, the
example actually calls the same DumpParamProperties () method here that was used earlier in the
chapter to display information about the attributes for each parameter.

In order to illustrate some of the different attributes that can be associated with a generic method, this
example also creates a series of open and closed methods with varying characteristics. These examples
also allow you to see how the reflection API can be used to detect bound and unbound parameters for a
generic method.

Finally, I should also point out the use of the MakeGenericMethod () method here. This call binds type
arguments to the type parameters of an open generic method and gives you the option of calling the
Invoke () method on this dynamically constructed method.

Obfuscation Reminder

If you're working with dynamically loaded types, you’d normally expect these type names to also be
provided at run-time. If your code is referencing the fully qualified name at compile-time, you have to
ask yourself why you're even using reflection. Still, there are times when you may end up using literal
strings in your code to construct part or all of a type name. And, whenever you use any literal strings to
create your open types, the names you reference must be precisely matched at run-time.

So what's the big deal? Well, in environments where you're not obfuscating your code, using these names
is perfectly acceptable. However, for obfuscated environments, using these literal strings at compile-time
may create a problem. When the Reflection.MyType" 1 class gets processed by the obfuscator, it and
all of its references may get renamed to, say, AAA.BBB" 1, which will make your embedded literal string
invalid. This problem is usually resolved by forcing the obfuscator to be more selective about what names

201

Chapter 9

are obfuscated. It also means you'll typically need to be more strategic about organizing your types into
those that may be exposed to via reflection and those that are not.

These obfuscation issues actually apply to any solution that’s using reflection — with or without generic
types. It’s just a point that needs to be reiterated as part of any discussion that includes reflection.

Serialization

If you’ve been working with objects —on any platform — you’ve likely already been exposed to the con-
cept of serialization. If you're moving types between systems or you're just persisting a representation of a
type, you're likely to be leveraging some form of serialization. Many of the .NET types, in fact, implement
the ISerializable interface that allows them to be used in combination with the platform’s serialization
classes to extract (serialize) or reconstitute (deserialize) the state of your objects from a stream.

Although serialization can be a fairly in-depth topic, the goal here is to focus specifically on how generic
types participate in the existing .NET serialization scheme. You need to understand how a generic type
is serialized, and you need to consider how generics might be applied to improve your general interac-
tions with the serialization APIL The sections that follow address both of these topics.

Serialization Basics

First, let’s start by looking at how basic serialization will work with your generic types. You need to begin
by introducing a type that can be successfully serialized. In this case, let’s create a SampleCollection<T>

class that extends this existing list type. The code for this class is as follows:

[VB code]
<Serializable()> _
Public Class SampleCollection(Of T)

202

Inherits List (Of T)

Private _intData As Int32
Private _stringData As String

Public Sub New(ByVal intData As Int32, ByVal stringData As String)
Me._intData = intData
Me._stringData = stringData

End Sub

Public ReadOnly Property IntVal() As Int32
Get
Return Me._intData
End Get
End Property

Public ReadOnly Property StrVal() As String
Get
Return Me._stringData
End Get
End Property

End Class

Reflection, Serialization, and Remoting

[C# code]

[Serializable]

public class SampleCollection<T> : List<T> {
private int _intData;
private string _stringData;

public SampleCollection(int intData, string stringData) {
this._intData = intData;
this._stringData = stringData;

public int IntVal ({
get { return this._intData; }

public string Strval ({
get { return this._stringData; }

To participate in serialization, this type need only add the [Serializable] attribute to its declaration.
For this particular class, the example also adds a data member that helps illustrate how its data will get
serialized along with the rest of your class. With this class created, let’s now consider how clients would
go about serializing and deserializing this type. The following example creates an instance of this class,
serializes its contents to a stream, and deserializes it in a separate instance:

[VB code]

Public Sub TestBasicSerialization/()
Dim strList As New SampleCollection(Of String) (111, "Valuel")
strList.Add("vall™")
strList.Add("val2")

Dim stream As New MemoryStream()

Dim formatter As New BinaryFormatter ()
formatter.Serialize(stream, strList)
stream.Seek (0, SeekOrigin.Begin)

Dim newList As SampleCollection(Of String)
newList = DirectCast (formatter.Deserialize(stream),h SampleCollection(Of String))

Console.Out.WriteLine ("Int Data Member : {0}", newList.IntVal)
Console.Out.WriteLine("String Data Member : {0}", newList.StrVal)

For Each listValue As String In newList
Console.Out.WriteLine("Value : {0}", listValue)
Next
End Sub

[C# code]

public void TestBasicSerialization() {
SampleCollection<string> strList =
strList.Add("vall") ;
strList.Add("val2");

new SampleCollection<string> (111, "Valuel");

203

Chapter 9

MemoryStream stream = new MemoryStream() ;
BinaryFormatter formatter = new BinaryFormatter();
formatter.Serialize(stream, strList);
stream.Seek (0, SeekOrigin.Begin) ;

SampleCollection<string> newList;

newList = (SampleCollection<string>)formatter.Deserialize (stream);
Console.Out.WriteLine ("Int Data Member : {0}", newList.IntVal);
Console.Out.WriteLine ("String Data Member : {0}", newList.StrVal);

foreach (string listValue in newList)
Console.Out.WriteLine("Value : {0}", listValue);

You'll notice that the deserialization of your stream into your generic type requires a cast to the specific
constructed type that was used when this type was originally serialized. This is consistent with the
theme that you’ve seen elsewhere, where the marriage of a generic type and its type arguments repre-
sents a unique type. So, in this example, you could not serialize a SampleCollection<Double> and
then turn around and attempt to deserialize its stream into a SampleCollection<String>. That would
be the conceptual equivalent of serializing a Double and trying to deserialize it into a String. When
serializing generic types, the constructed serialized type must always match the constructed type being
used for deserialization.

Custom Serialization

At times you may want more explicit control over the serialization of your types. To take control over
the serialization process, you must have your generic type implement the ISerializable interface.
Through this interface, you'll be allowed to intercept the calls to serialize/deserialize your type and cre-
ate your own custom serialization stream. Naturally, the stream produced by the serialization process
must match, precisely, the stream consumed in the deserialization process.

Again, no special infrastructure was added to the platform to support generic types. It wasn’t necessary.
Generic types are first-class citizens and can be serialized like any other type in the system. Still, the
mechanics of serializing a generic type within the existing framework may not be entirely clear. In the
following example, you'll create your own generic type that supports custom serialization to see this
mechanism in action:

[VB code]

<Serializable()> _

Public Class CustomClass (Of T)
Implements ISerializable

Private _intData As Int32
Private _stringData As String
Private _genericData As T

Public Sub New()
End Sub

Private Sub New(ByVal serInfo As SerializationInfo, _

ByVal context As StreamingContext)
Dim objValue As Object

204

Reflection, Serialization, and Remoting

objVvalue
_intData

objVvalue

_stringData

objVvalue

serInfo.GetValue("_intData", GetType (Int32))
DirectCast (objValue, System.Int32)

serInfo.GetValue("_stringData", GetType(String))
= DirectCast (objValue, System.String)

serInfo.GetValue("_genericData", GetType(T))

_genericData = DirectCast (objvalue, T)

End Sub

Public Sub New(ByVal intData As Int32, ByVal stringData As String,

Me._intData

ByVal genericType As T)
= intData

Me._stringData = stringData
Me._genericData = genericType

End Sub

Public Sub GetObjectData (ByVal serInfo As SerializationInfo,

ByVal context As StreamingContext)
Implements ISerializable.GetObjectData

serInfo.AddValue("_intData", _intData)

serInfo.AddvValue ("_stringData", _stringData)

serInfo.Addvalue ("_genericData", _genericData, _genericData.GetType())
End Sub

Public ReadOnly Property IntVal() As Int32

Get

Return Me._intData

End Get
End Property

Public ReadOnly Property StrVal() As String

Get

Return Me._stringData

End Get
End Property

Public ReadOnly Property Genericval() As T

Get

Return Me._genericData

End Get
End Property
End Class

[C# code]
[Serializable]

public class CustomClass<T> : ISerializable {
private int _intData;
private string _stringData;
private T _genericData;

public CustomClass() { }

private CustomClass(SerializationInfo serInfo, StreamingContext context) ({

_intData

(int) serInfo.GetValue("_intData", typeof (int));

205

Chapter 9

_stringData = (string)serInfo.GetValue("_stringData", typeof (string));
_genericData = (T)serInfo.GetValue("_genericData", typeof(T));
}

public CustomClass(int intData, string stringData, T genericType) {
this._intData = intData;
this._stringData = stringData;
this._genericData = genericType;

}

public void GetObjectData(SerializationInfo serInfo, StreamingContext context)

serInfo.AddValue ("_intData", _intData);
serInfo.Addvalue ("_stringData", _stringData) ;
serInfo.AddValue ("_genericData", _genericData, _genericData.GetType());

}

public int IntVal ({
get { return this._intData; }

}

public string StrVal ({
get { return this._stringData; }
}

public T GenericVal {
get { return this._genericData; }

}

Two new elements were added to this class to make it support custom serialization. First, the
GetObjectData () method was added to support serialization of the object. Its responsibility is to
place each of the object’s properties you want serialized into the SerializationInfo class. This class
is passed in by the framework during the serialization process. You then call the Addvalue () method
for each property of your class, supplying a name and a data type. And, because the type of your
_genericData member is of type T, you must call GetType () at run-time to acquire its type.

To support deserialization, you must supply a constructor that accepts SerializationInfo and
StreamContext parameters. Then, within this constructor, you must call Getvalue () on
SerializationInfo to extract the value for each piece of data that is serialized by your object.

Now, while this default approach certainly works, some elements of how this mechanism can really ben-
efit from the application of generics. If you look closely at the SerializationInfo class, you'll find
that it includes a large collection of addvalue () overloads to support each data type that can be serial-
ized. Of more significance is its GetValue () method, which must return Object data types that are
then cast to the appropriate types on the way out. This class represents the perfect example of a class
that could improve the type safety and clarity of its interface through the application of generics.

Consider how you might morph the behavior of the SerializationInfo class to eliminate some of the
type-safety issues that have shown up in the preceding example. Your first thought might be to subclass
the serializationInfo class and add your own members. The class is sealed, though, so that approach
is out. Instead, a better solution would be to create a simple TypeSafeSerializer class with a set of static
methods for adding and getting serialized values. The code for this helper class is as follows:

206

Reflection, Serialization, and Remoting

[VB code]

Public Class TypeSafeSerializer
Private Sub New()
End Sub

Public Shared Sub Addvalue (Of T) (ByVal name As String, ByVal value As T,
ByVal serInfo As SerializationInfo)
serInfo.AddvValue (name, value)
End Sub

Public Shared Function GetValue(Of T) (ByVal name As String,
ByVal serInfo As SerializationInfo) As T
Dim retVal As T = DirectCast (serInfo.GetValue (name, GetType(T)), T)
Return retvVal
End Function
End Class

[C# code]
public class TypeSafeSerializer {
private TypeSafeSerializer() { }

public static void Addvalue<T> (String name, T value,SerializationInfo serInfo) {
serInfo.Addvalue (name, value);

public static T GetValue<T>(String name, SerializationInfo serInfo) {
T retVal = (T)serInfo.GetValue(name, typeof(T));
return retvVal;

The generic Addvalue () and GetValue () methods provided here are meant to replace the correspond-
ing methods that are part of SerializationInfo. They still take SerializationInfo as a parameter
and use it to call Addvalue () and GetValue (), but their interface shields you from some of the type
issues that surround using this interface directly. To back that point up, take a look at how the construc-
tor and the GetObjectData () members of your previous class would be changed by the inclusion of
this new helper class. The new implementation of these methods is as follows:

[VB code]
Private Sub New(ByVal serInfo As SerializationInfo,
ByVal context As StreamingContext)

_intData = TypeSafeSerializer.GetValue(Of Int32) ("_intData", serInfo)

_stringData = TypeSafeSerializer.GetValue(Of String) ("_stringData", serInfo)

_genericData = TypeSafeSerializer.GetValue(Of T) ("_genericData", serInfo)
End Sub

Public Sub GetObjectData (ByVal serInfo As SerializationInfo,
ByVal context As StreamingContext)
Implements ISerializable.GetObjectData

TypeSafeSerializer.AddValue (Of Int32) ("_intData", _intData, serInfo)

TypeSafeSerializer.Addvalue (Of String) ("_stringData", _stringData, serInfo)

TypeSafeSerializer.AddValue (Of T) ("_genericData", _genericData, serInfo)
End Sub

207

Chapter 9

[C# code]

private CustomClass(SerializationInfo serInfo, StreamingContext context) {
_intData = TypeSafeSerializer.GetValue<int>("_intData", serInfo);
_stringData = TypeSafeSerializer.GetValue<string>("_stringData", serInfo);
_genericData = TypeSafeSerializer.GetValue<T> ("_genericData", serInfo);

}

public void GetObjectData(SerializationInfo serInfo, StreamingContext context) {

TypeSafeSerializer.AddValue<int>("_intData", _intData, serInfo);
TypeSafeSerializer.AddValue<string> ("_stringData", _stringData, serInfo);
TypeSafeSerializer.AddValue<T> ("_genericData", _genericData, serInfo);

For the Adavalue () method, you can see how your generic data type now participates on equal footing
with its non-generic counterparts. It no longer requires a separate call to acquire its types. The real bene-
factor here, though, is Getvalue (). The generic Getvalue () method of the TypeSafeSerializer
class lets you extract the serialized values for generic and non-generic types without any casting. For
both of these cases, the type of the incoming type parameter ends up driving which underlying method
of serializationInfo gets called, which means there’s no need for a series of methods that are over-
loaded on type.

This example should illustrate how custom types are serialized and how generics can be applied to make
the serialization a more type-safe experience. This pattern may also help you identify similar scenarios
where generics can be leveraged to improve your existing classes.

Serialization with Web Services

Whenever you're working with web services, you must consider how types will be transported to and
from a service. And, with the introduction of generics, you must also consider how generic types will
participate in your web service APIs. Specifically, you'll need to think about how a Web service will seri-
alize each generic type and transform it into a type that can be represented in a SOAP construct.

In this section you'll create a simple web service that includes references to a few generic types to demon-
strate how a generic type will be brokered by a service. The following code represents the implementation
of a basic web service:

[VB code]
<WebServiceBinding (ConformanceClaims:=WsiClaims.BP10, EmitConformanceClaims:=True)>_
Public Class SampleService
<XmlType ("My{T}List")> _
Public Class MyList (Of T)
Inherits List (Of T)
End Class

<XmlType ("My{T}Collection")> _
Public Class MyCollection(Of T)

Inherits Collection(Of T)
End Class

<WebMethod ()> _

Public Function GetListValuesl () As MyList (Of String)
Dim list As New MyList (Of String)

208

Reflection, Serialization, and Remoting

list.Add("vall")
list.Add("val2")
Return list

End Function

<WebMethod ()> _

Public Function GetListValues2 () As MyList (Of Double)
Dim list As New MyList (Of Double)
list.Add(3223.54)
list.Add(6436.65)
list.Add(76.54)
list.Add (8664.24)

Return list

End Function

<WebMethod ()> _

Public Function GetCollectionValues() As MyCollection(Of Int32)
Dim coll As New MyCollection (Of Int32)
coll.Add(123)
coll.Add (456)
coll.Add(789)
Return coll

End Function

End Class

[C# code]
[WebServiceBinding (ConformanceClaims=WsiClaims.BP10, EmitConformanceClaims = true)]
public class SampleService ({

[Xm]1Type ("My{T}List")]

public class MyList<T> : List<T> {

}

[Xm1Type ("My{T}Collection")]
public class MyCollection<T> : Collection<T> {

}

[WebMethod]

public MyList<string> GetListValuesl () {
MyList<string> list = new MyList<string>();
list.Add("vall");
list.Add("val2");
return list;

[WebMethod]

public MyList<double> GetListValues2 () {
MyList<double> list = new MyList<double> () ;
list.Add(3223.54);
list.Add(6436.65) ;
list.Add(76.54);
list.Add(8664.24) ;
return list;

209

Chapter 9

[WebMethod]

public MyCollection<int> GetCollectionValues() {
MyCollection<int> coll = new MyCollection<int>();
coll.Add(123);
coll.Add (456) ;
coll.Add(789) ;
return coll;

This example exposes three web service methods (GetListValuesl (), GetListValues2 (), and
GetCollectionValues ()), each of which returns a different generic type. To be able to cross the web
service boundary, each of these types must support serialization. In this case, your types all subclass
generic types that already support serialization, which means they can be used as-is.

Now, take a look at how these types end up getting serialized into XML as you call each of these meth-
ods. The following represents the XML that would be returned from the calls to the three methods
exposed by your web service:

<?xml version="1.0" encoding="utf-8" ?>
<MystringList xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="http://tempuri.org/">
<string>Vall</string>
<string>Val2</string>
</MystringList>

<?xml version="1.0" encoding="utf-8" 2>
<MydoubleList xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="http://tempuri.org/">
<double>3223.54</double>
<double>6436.65</double>
<double>76.54</double>
<double>8664.24</double>
</MydoubleList>

<?xml version="1.0" encoding="utf-8" ?>
<MyintCollection xmlns:xsi=http://www.w3.o0rg/2001/XMLSchema-instance
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="http://tempuri.org/">
<int>123</int>
<int>456</int>
<int>789</int>
</MyintCollection>

These three message responses all include XML serialized representations of the generic types that were
populated and returned from each of your web service calls. You'll notice the names of the tags for each
of these types are derived from the attribute naming scheme applied to each of your generic types. For
example, the attribute for MyList<T> in your web service declaration is represented as [My{T}List],
where {T} is replaced with the type of the supplied type argument. So, as an example, the XML tag that
gets generated for the MyList<String> constructed type will be MystringList.

210

Reflection, Serialization, and Remoting

Remoting

Generics can also be incorporated into solutions that access remote objects. In fact, generics have some
fairly useful applications for remoting solutions. Consider, for example, the interfaces you define for your
remote types. The application of generic interfaces to these types allows you to have a single interface
that can support a much broader range of types. So, instead of building separate interfaces or overload-
ing methods heavily, your generic interface can support a wider spectrum of possible data types with a
single interface.

To illustrate this point, let’s assemble a simple example that employs a generic remote interface. The first
step in this process is to create a generic interface that will become the interface you’ll use for interacting
with a remote object:

[VB code]
Namespace RemoteGenericInterfaces
Public Interface IRemoteGenericInterface(Of T)
Function RemoteMethod (ByVal param As T) As T
End Interface
End Namespace

[C# code]
namespace RemoteGenericInterfaces {
public interface IRemoteGenericInterface<T> {
T RemoteMethod (T param) ;

This generic interface exposes a single method that accepts a parameter of type T and returns a value of
type T. As you can see, this interface is the same as any other generic interface you might have seen.
There’s certainly nothing you need to do to make it usable for remote objects. Now, let’s look at a class
that will implement this class on a remote server:

[VB code]
Namespace RemoteGenerics
Friend Class RemoteClass(Of T)
Inherits MarshalByRefObject
Implements IRemoteGenericInterface(Of T)

Public Sub New()
Console.Out.WriteLine ("RemoteClass created.")
End Sub

Public Function RemoteMethod (ByVal param As T) As T _
Implements IRemoteGenericInterface(Of T).RemoteMethod
Console.Out.WriteLine ("Processing request")
Console.Out.WriteLine ("Param Type : {0}", param.GetType().ToString())
Console.Out.WriteLine("Param Value : {0}", param.ToString())
Return param
End Function
End Class
End Namespace

211

Chapter 9

[C# code]
namespace RemoteGenerics {
internal class RemoteClass<T> : MarshalByRefObject, IRemoteGenericInterface<T>{
public RemoteClass() {
Console.Out.WriteLine ("RemoteClass created.");

T IRemoteGenericInterface<T>.RemoteMethod (T param) {
Console.Out.WriteLine ("Processing request");
Console.Out.WriteLine ("Param Type : {0}", param.GetType().ToString());
Console.Out.WriteLine ("Param Value : {0}", param.ToString());
return param;

This class serves two purposes. First, its constructor displays a message each time an instance of this
object is created. Then, as clients make calls to its RemoteMethod () method, it will display information
about the type that it is supplied and the value assigned to that type. Finally, on the server side, you
must provide an application that registers instances of this method that will be available to consumers.
The code for this console application is as follows:

[VB code]
Namespace RemoteGenerics
Public Class RemoteGenericServer
<STAThread()> _
Public Shared Sub Main()
Dim remoteType As Type
Dim mode As WellKnownObjectMode = WellKnownObjectMode.SingleCall

remoteType = GetType (RemoteClass (0Of Double))
RemotingConfiguration.RegisterWellKnownServiceType (remoteType,
"RemoteDouble.rem", mode)

remoteType = GetType (RemoteClass (0f Int32))
RemotingConfiguration.RegisterWellKnownServiceType (remoteType,
"RemoteInt.rem", mode)

remoteType = GetType (RemoteClass (0Of String))
RemotingConfiguration.RegisterWellKnownServiceType (remoteType, _
"RemoteString.rem", mode)

Dim channel As New IpcChannel ("RemoteServer")
ChannelServices.RegisterChannel (channel)

Console.Out.WriteLine ("Connection Established. Waiting for clients.")
Console.ReadLine ()
End Sub
End Class
End Namespace

[C# code]
namespace RemoteGenerics {
class RemoteGenericServer ({
[STAThread]

212

Reflection, Serialization, and Remoting

static void Main(string[] args) {
Type remoteType;
WellKnownObjectMode mode = WellKnownObjectMode.SingleCall;

remoteType = typeof (RemoteClass<Double>) ;
RemotingConfiguration.RegisterWellKnownServiceType (remoteType,
"RemoteDouble.rem", mode) ;

remoteType = typeof (RemoteClass<Int32>);
RemotingConfiguration.RegisterWellKnownServiceType (remoteType,
"RemoteInt.rem", mode) ;

remoteType = typeof (RemoteClass<string>);
RemotingConfiguration.RegisterWellKnownServiceType (remoteType,
"RemoteString.rem", mode) ;

IpcChannel channel = new IpcChannel ("RemoteServer") ;
ChannelServices.RegisterChannel (channel) ;

Console.Out.WriteLine ("Connection Established. Waiting for clients.");
Console.ReadLine () ;

If you've worked with remoting at all, this should look fairly familiar. This example makes a series of
calls to RegisterWellKnownServiceType () and, for each method you want to expose, it assigns a
name that clients must use when binding to your class. You'll notice that you are required to register
specific constructed types during this process. This means that your server will only be able to accept
calls for those constructed types. In this case, the RemoteClass<Double>, RemoteClass<int>, and
RemoteClass<string> types are all registered. Once each of these instances of RemoteClass are
registered, you can then create a channel with a port name and register that channel. After these steps
are completed, your server is ready to start receiving requests.

With the server up, all that remains is to create a client that will access these registered RemoteClass
types. The following code provides an example of some basic client calls to the remote server:

[VB code]
Public Class GenericClient
Private Const _svr = "ipc://RemoteServer/"

<STAThread()> _
Public Shared Sub Main()
Dim remoteType As Type

remoteType = GetType (IRemoteGenericInterface (Of Double))

Dim remoteDoubleObj As Object

remoteDoubleObj = Activator.GetObject (remoteType, _svr + _
"RemoteDouble.rem")

remoteType = GetType (IRemoteGenericInterface(Of Int32))

Dim remoteIntObj As Object
remoteIntObj = Activator.GetObject (remoteType, _svr + "RemoteInt.rem")

213

Chapter 9

remoteType = GetType (IRemoteGenericInterface(Of String))

Dim remoteStringObj As Object

remoteStringObj = Activator.GetObject (remoteType, _svr + _
"RemoteString.rem")

Dim remoteDouble As IRemoteGenericInterface(Of Double)
remoteDouble = remoteDoubleObj

Dim remoteInt As IRemoteGenericInterface (Of Int32)
remoteInt = remoteIntObj

Dim remoteString As IRemoteGenericInterface(Of String)
remoteString = remoteStringObj

Console.Out.WriteLine("Call to remote double: {0}", _
remoteDouble.RemoteMethod (323.443) .ToString())

Console.Out.WriteLine("Call to remote int : {0},
remoteInt.RemoteMethod (423) .ToString())

Console.Out.WriteLine("Call to remote string: {0}",
remoteString.RemoteMethod("Called Remote Server"))

End Sub
End Class

[C# code]
public static class GenericClient {
private const string _svr = "ipc://RemoteServer/";

[STAThread]
public static void Main(string[] args) {
Type remoteType;

remoteType = typeof (IRemoteGenericInterface<double>) ;
object remoteDoubleObj;
remoteDoubleObj = Activator.GetObject (remoteType, _svr+"RemoteDouble.rem");

remoteType = typeof (IRemoteGenericInterface<int>);
object remoteIntObj;
remoteIntObj = Activator.GetObject (remoteType, _svr + "RemoteInt.rem");

remoteType = typeof (IRemoteGenericInterface<string>);
object remoteStringObj;

remoteStringObj = Activator.GetObject (remoteType, _svr+"RemoteString.rem");

IRemoteGenericInterface<double> remoteDouble;
remoteDouble = remoteDoubleObj as IRemoteGenericInterface<double>;

IRemoteGenericInterface<int> remotelnt;
remoteInt = remoteIntObj as IRemoteGenericInterface<int>;

IRemoteGenericInterface<string> remoteString;
remoteString = remoteStringObj as IRemoteGenericInterface<string>;

Console.Out.WriteLine("Call to remote double: {0}",
remoteDouble.RemoteMethod (323.443) .ToString()) ;

214

Reflection, Serialization, and Remoting

Console.Out.WriteLine("Call to remote int : {0},
remoteInt.RemoteMethod (423) .ToString()) ;

Console.Out.WriteLine("Call to remote string: {0}",
remoteString.RemoteMethod("Called Remote Server")) ;

}

This sample client calls Activator.GetObject () for each of the constructed types that are supported by
the remote server. This method call returns an Object type. So, before the client can call your method,
this object must be converted to an IRemoteGenericInterface<T> reference. You then proceed to make
calls to RemoteMethod () for each of the three argument types, Double, integer, and String.

After looking at this code, you might also notice that these remoting interfaces can also benefit from the
application of generics. You can imagine how you could create a wrapper for the Activator to make a
generic version of the GetObject () method that would improve readability and general type safety of
this client code.

Summary

The goal of this chapter was to look at how reflection, serialization, and remoting have all been impacted
by the introduction of generics. The chapter explored, in detail, how reflection can be used to create open
and closed generic types. As part of looking at reflection, the chapter explored techniques for examining
the attributes of generic types. It also looked at generic serialization, explaining how to serialize generic
types and, more specifically, how to implement custom serialization for generic types. Finally, the chap-
ter finished off with a look at how generic interfaces can be used in remoting-based solutions.

215

10

Generics Guidelines

With each significant new language feature also comes a set of guidelines that dictate how and
when that feature should be applied. Generics are no different. This chapter assembles a set of
guidelines that attempt to address some of the common practices that should be applied or given
consideration when consuming or constructing generic types. As part of this effort, it provides an
item-by-item breakdown of the guidelines and, where necessary, digs into the pros and cons asso-
ciated with a given guideline. The goal here is to bring together, in one place, all those generics
practices that are being discussed, debated, and adopted by the development community.

An Evolving List

Although generics can’t be classified as new, they certainly will be showing up on the desktops

of a whole new group of programmers with the release of Visual Studio 2005. With generics being
unfolded to a broader audience and with .NET introducing its own new variations on the generics
theme, it’s easy to see why generics require the introduction of some new guidelines. It’s also fair
to assume that this list of guidelines is very much in its infancy. Once developers are using gener-
ics in full force, I would expect the list of generics guidelines to continue to grow and mature.

To kick-start this process, Microsoft has been assembling a preliminary list of items that shape
much of the thinking on guidelines at this stage. The goal of this chapter is to distill that list, add
new items, and generally provide a more thorough examination of rationale behind applying these
guidelines. Overall, this effort will produce a more formalized look at the factors that are likely to
influence some aspects of your generic thinking.

Defining Guidelines

As guidelines, I would also expect there to be some level of disagreement about these items. If you
can’t get programmers to agree on tabs versus spaces, you're certainly not going to get them to

Chapter 10

reach consensus on areas that have even higher levels of grey matter. So, as you review this list, you
need to keep in mind that these are only guidelines and are not being represented as rules that are set in
stone. Guidelines can and should be violated under certain circumstances. They exist purely to help you
define the rules that should shape your general process for deciding how and when to use a generic type.
When you find exceptions to the rule, by all means — violate the rule. Just be sure that you can defend each
violation and, if you can, you'll be fulfilling the spirit of what the guideline is trying to achieve.

Organization

In general, when you're assembling a list of guidelines, they don’t always fall into natural categories.
However, as I looked at the list I had, I did see some items fitting into specific clusters that seemed to
conform to a specific theme. Within each cluster, I simply list each item with a number, which provides
me with a simple mechanism for referencing each item individually.

Identifying Generic Opportunities

This first set of guidelines is focused on describing a specific set of scenarios where you should consider
leveraging generics. These items represent areas where you would want to consider refactoring existing
code or they may just be patterns you’ll want to consider when you're introducing new code. Some of
these may be somewhat obvious based on other topics covered elsewhere in this book. However, the
goal is to assemble all of these items in one place as a list that you can easily consult as you're working
with generics.

Item 1: Use Generic Collections

Data collections are typically one of the most heavily used data types. You likely already have ArrayLists
and HashTables strewn throughout your existing code. You were also likely —before generics —to make
heavy use of these System.Collections data structures in new code you would be writing. However,
with generics, there’s really no good reason to continue to use the collections from this namespace.

If there is one area where generics add unquestionable value, it is in the area of collections. Without
generics, producers and consumers of non-generic collections were forced to represent contained types
as objects. This, of course, meant your code was littered with casts and general type coercion to covert
each object to its actual type. It also meant that value types needed to be boxed to be represented as
object types. Even in cases where you may have tried to limit the impact of non-generic collections, you
were still typically forced to bloat your code with type-specific collection wrappers. For these reasons
and a hundred others sprinkled throughout this book, it should be clear that there are few compelling
reasons to cling to these old, non-generic collections. In fact, I would argue that generic collections repre-
sent the single most compelling usage of generics and, if you're not sold on the value of using generic
collections, you're not likely to be sold on any of the value generics can bring to your code.

Although I think the arguments for using generic collections are compelling, not every solution may
have the luxury of fully replacing non-generic collections with their generic counterparts. If you expose
a public API and have clients that currently bind to that non-generic API, you're going to need to figure
out how to transition your API to generics. In these instances, it would still seem valuable to leverage
generic collections within your implementation and, over time, ease generics into your APL

218

Generics Guidelines

Item 2: Replace Objects with Type Parameters

Before generics, programmers in search of generality typically found themselves relying on the object
type as the universal solution to achieving generality. If you had a class or methods that had common
functionality that could be applied to disparate types, you had few options at your disposal. If you
didn’t have a common base class or interface, your only alternative was to use a least common denomi-
nator type, the object type. For example, suppose you had the following method to send messages:

[VB code]
Public Function SendMsg(ByVal sender As Object, ByVal param As Object) as Object
End Function

[C# code]
public object SendMsg(object sender, object param) {}

This method provides a very general-purpose mechanism for sending a message from any object type
with any parameter type and any return type. By using the object type throughout this method, you've
allowed this method to be used with a wide spectrum of types. Of course, you've also completely traded
off type safety for generality here.

As you can imagine, generics are a perfect fit for solving the type-safety issues introduced by this
method. Through generics, you can strike a balance between type safety and generality, which is exactly
what you're looking for in this scenario. The generic version of this method would appear as follows:

[VB code]
Public Function SendMsg(Of I, J, K) (ByVal sender As I, ByVal param As J) as K
End Function

[C# code]
public K SendMsg<I, J, K>(I sender, J param) {}

You can see here that the SendMsg () method has been converted into a generic method that uses type
parameters in each of the slots where it had previously used object types.

This example illustrates just one instance where object types can be made type-safe through the use of
generics. You may be using object data types in a variety of different contexts and, for each of those,
you should be considering swapping out these object types with some flavor of generic solution.

The basic rule of thumb here is that, with generics, there should be a much lower incidence of object
types showing up in your code. Wherever you spot an object you should be asking yourself if generics
can be applied to eliminate the dependency on this object type. Generics should make least common
denominator programming the anomaly instead of the norm.

Item 3: Replace System.Type with Type Parameters

In some instances, you may have used references to System. Type in the signature of your methods,
allowing you to alter the behavior of your method based on a supplied type. For example, it wouldn’t be
all that uncommon in the pre-generic era to find a method that used a type parameter as follows:

[VB code]
Public Function FindPerson (ByVal personType As Type, ByVal Int32 As id) As Object
End Function

219

Chapter 10

[C# code]
public object FindPerson (Type personType, int id) {}

This method takes a System. Type type as an incoming parameter and searches for people that have an
id that matches the supplied id. If it finds a match, it will construct an object that corresponds to the
supplied type (Customer, Employee, and so on) and return that as the output of this function call. This
method might come in handy in scenarios where you have specialized Person objects, each of which
has a unique id. It allows you to find and construct any descendant Person type without requiring sep-
arate methods to support each type.

Before generics, this would not have been an unreasonable piece of code to find. However, with generics,
you shouldn’t find yourself needing to rely on the System. Type nearly as much. In fact, this method could
be made much cleaner by making it a generic method and retrofitting it with type parameters as follows:

[VB code]
Public Function FindPerson (Of T) (ByVal personType As T, ByVal Int32 As id) As T
End Function

[C# code]
public T FindPerson<T> (T personType, int id) {}

This makes for a cleaner interface and likely reduces the complexity of this method’s implementation. It
also means that consumers of this method won’t be forced to cast this method’s return value to a specific

type.

Item 4: Use Type Parameters for Ref Types (C# Only)

Item 2 talked about the general strategy of replacing object types with type parameters. There is one
variant of this rule that seems relevant enough to warrant the introduction of a new item. For this item,
the focus is on the use of object data types as reference parameters. With C#, a reference parameter
will only accept references that match, exactly, the type identified by the reference parameter. Consider,
for example, the following method that accepts a reference parameter:

[C# code]
public void Sort(ref object paraml, ref object param2) {}

This method was created to sort objects of any type. And, as such, it took the least common denominator
approach of using an object type as the reference it accepts for its two parameters. The fact that these
two parameters are identified as object types wouldn’t seem like a real problem. Here’s a look at what
happens when you construct two Person objects and call this Sort () method:

[C# code]

public void processItems () {
Person personl = new Person(424);
Person person2 = new Person(190);

Sort (ref personl, ref person2);

}

On the surface, this would appear to be fine. The Person objects, which are rooted in object, will simply
get cast to an object and passed successfully as parameters to this method. And, if this method didn’t

220

Generics Guidelines

specify these parameters as reference types, that logic would be fine. However, as mentioned earlier, with
reference types the compiler will require the supplied parameters to match the precise type that is called
out in the signature of the method. And, in this example, Person will not match object.

Now, you could solve this with a handy dandy cast, casting each Person object to an object type.
However, that’s not necessary. You can resolve this problem by making your Sort () method generic
and using type parameters in place of the object types. The new version would appear as follows:

[C# code]
public void Sort<T>(ref T paraml, ref T param2) {}

This change makes your types match exactly and, because types can be inferred, the previous sample
client code for this method can remain untouched.

VB seems to handle this scenario more gracefully. It does not appear to require the incoming types to
match the precise signature of the types declared in the method. Still, even with VB, you should see that
it still makes sense to use a generic method here. In the spirit of Item 2, you should still be looking for
opportunities to rid your code of object types.

In many respects, this rule may appear to be a duplicate of Item 2. And, in the general sense, it is a dupli-
cate. However, the added twist associated with using reference types seems to stand out as one more
variation that’s worth considering in isolation.

Item 5: Genericize Types That Vary Only by a Data Type

If you look across all of your existing classes, interfaces, delegates, and methods, you are likely to identify
code that varies primarily by the types it contains and/or manages. In these cases, you need to consider
whether generics can be applied, allowing a single implementation to service the needs of multiple data
types. Applying generics in these scenarios can produce a variety of positive side effects, including reduc-
ing code size, improving type safety, and so on. The following sections provide examples of some of
these refactoring themes.

Eliminating Redundant Data Containers

By far, data containers represent one of the most common, straightforward areas where you will want to
do some generic refactoring. Most solutions have at least one or two examples where, in your distaste
for the compromised type safety of an ArrayList, you created your own type-safe wrapper classes. It
would not be uncommon, for example, to find pre-generic code that might appear as follows:

[VB code]
Public Class PersonCollection
Private _persons As ArrayList

Public Sub New/()
_persons = New ArrayList()
End Sub

Public Sub Add(ByVal person As Person)

_persons.Add (person)
End Sub

221

Chapter 10

Public ReadOnly Property Item(ByVal Index As Int32) As Person
Get

Return DirectCast (_persons (Index), Person)
End Get
End Property
End Class

Public Class OrderCollection
Private _orders As ArraylList

Public Sub New ()
_orders = New ArrayList()
End Sub

Public Sub Add(ByVal Order As Order)
_orders.Add (Order)
End Sub

Public ReadOnly Property Item(ByVal Index As Int32) As Order
Get

Return DirectCast (_orders (Index), Order)
End Get
End Property
End Class

[C# code]
public class PersonCollection ({
private ArrayList _persons;

public PersonCollection() ({

_persons = new ArrayList();

public void Add(Person person) {
_persons.Add (person) ;

public Person this[int index] {
get { return (Person)_persons[index]; }

public class OrderCollection {
private ArrayList _orders;

public OrderCollection() {
_orders = new ArrayList();

public void Add(Order order) {
_orders.Add (order) ;

222

Generics Guidelines

public Order this[int index] {
get { return (Order)_orders[index]; }
}

These two classes wrap an ArrayList and expose a type-safe interface that shields clients from the
object-reality that comes along with using a non-generic container. After looking at these two classes,
it should be obvious that they are perfect candidates for generic refactoring. And, while each of these
classes can be improved through the application of generics, there are broader issues to consider here.

Outside of the data types being managed here, Person and Order, there’s nothing different in their
actual implementation. And, whenever this is the case, you know you have a situation that is crying

out for the application of generics. In fact, the Collection<T> container that is provided as part of
System.Collections.Generic would eliminate the need for any of this code to exist. By simply
declaring Collection<Person> and Collection<Order>, you would get all the type safety and func-
tionality that’s provided in the preceding example.

If your collection classes had introduced functionality that was not directly supported by Collection<T>,
you would still simply create a new class that subclassed Collection<T> and added any new custom
members.

This example is straight out of the Generics 101 bible. As such, it may have already been evident. Still, to
overlook this scenario in the context of generic guidelines would be a mistake — especially because this
should be one of the areas where generics will deliver the most value.

Identifying Candidate Methods

Finding methods that are candidates for generic refactoring is a more subtle, less exact science. The fun-
damentals are still the same. You essentially want to look for sets of methods that vary, primarily by the
data type they are processing. The most common examples that seem to show up here are those methods
that perform very basic operations on whole objects without calling specific methods. The following
examples fall into this category:

[VB code]
Public Shared Sub Swap (ByRef vall As String, ByRef val2 As String)
Dim tmpObj As String = val2

val2 = vall
vall = tmpObj
End Sub

Public Shared Sub Swap (ByRef vall As Double, ByRef val2 As Double)
Dim tmpObj As Double = val2

val2 = vall
vall = tmpObj
End Sub

Public Shared Function Max (ByVal vall As Int32, ByVal val2 As Int32) As Int32
Dim retVal As Int32 = vall
If (val2 > vall) Then
retVal = val2
End If
Return retval
End Function

223

Chapter 10

Public Shared Function Max(ByVal vall As String, ByVal val2 As String) As String
Dim retvVal As String = vall
If (val2.CompareTo(vall) > 0) Then
retvVal = val2
End If
Return retvVal
End Function

[C# code]

public static void Swap(ref String vall, ref String val2) {
String tmpObj = val2;
val2 = vall;
vall = tmpObj;

public static void Swap(ref Double vall, ref Double val2) {
Double tmpObj = val2;
val2 = vall;
vall = tmpObj;

public static int Max(int vall, int val2) {
int retval = vall;
if (val2 > wvall)
retval = val2;
return retVal;

}

public static String Max(String vall, String val2) {
String retval = vall;
if (val2.CompareTo(vall) > 0)
retvVal = val2;
return retval;

These examples include implementations of the Swap () and Max () methods. Methods of this nature are
meant to invoke a general-purpose operation on an object without concern for its interface. Swap (), for
example, simply causes two objects to trade places. Max () just determines and returns the maximum
value of the two supplied parameters. However, in order to maintain type safety and avoid any boxing
overhead for your value types, you are required to provide a series of overloaded versions of each of the
methods.

In looking at these two methods, it’s clear that expanding your list of overloads to embrace all types
would be time consuming, would bloat your code, and would introduce maintenance overhead.
However, using object types here would also be a mistake. It would introduce a host of other prob-
lems. It would also violate the spirit of Item 2.

This, of course, means the best option here is to make generic versions of these methods. The following
represents generic implementations of the Swap () and Max () methods:

[VB code]

Public Shared Sub Swap (Of T) (ByRef vall As T, ByRef val2 As T)
Dim tmpObj As T = val2
val2 = vall

224

Generics Guidelines

vall = tmpObj
End Sub

Public Shared Function Max(Of T) (ByVal vall As T, ByVal val2 As T) As T
Dim retvVal As T = vall
If (Comparer (Of T).Default.Compare(vall, val2) < 0) Then
retVal = val2
End If
Return retvVal
End Function

[C# code]

public static void Swap<T>(ref T vall, ref T val2) {
T tmpObj = val2;
val2 = vall;
vall = tmpObj;

}

public static T Max<T>(T vall, T val2) {
T retvVal = vall;
if (Comparer<T>.Default.Compare(vall, val2) < 0)
retvVal = val2;
return retvVal;

There’s nothing earth-shattering about how generics make these methods better. These examples are only
intended to represent a sample of a pattern you're going to want to look for in your own code. Essentially,
anytime you find yourself overloading a method’s signature to support variations of parameter types, you
have to ask yourself if that method might be better implemented as a generic method. You'll also want to
look at the body of these methods to determine how tightly they are coupled to the types that appear in
their parameter lists.

As part of considering whether to make methods of this nature generic, you should also consider how
constraints might be used to expose some minimal interfaces of your type parameters. If, for example,
you were to constrain a method using IComparable<T>, you would be allowing the method to access
the comparable interface without significantly narrowing the capabilities of the method. If your objects
implement many of these general-purpose interfaces, these interfaces can then be leveraged as constraints
and further expose the capabilities of your type parameters.

The thrust here, though, is to focus your energy on making cleaner, more type-safe replacements of exist-
ing methods. Any time you can reduce the size of code and simultaneously improve its type-safety, you
need to seize the opportunity.

Replacing Multiple Delegates with One Generic Delegate

The introduction of generic delegates should fundamentally change how and when you create your own
delegates. Delegates represent one of the most fundamental and natural applications of generics. As
such, I have trouble imagining any situation where you would ever want to use a non-generic delegate.
It is also possible that you may already have delegates in your code that could be improved via generics.
Suppose, for example, you had the following non-generic delegates in your application:

225

Chapter 10

[VB code]

Public Delegate
Public Delegate
Public Delegate

Public Delegate
Public Delegate

[C# code]

public delegate
public delegate
public delegate

public
public

delegate
delegate

Sub MyDell (ByVal x As Int32, ByVal y As String)

Sub MyDel2 (ByVal x As Int32, ByVal y As Double)

Sub MyDel3 (ByVal x As Int32, ByVal y As Long)

Sub MyDeld (ByVal x As Int32, ByVal y As String, ByVal z As Double)
Sub MyDelb (ByVal x As Int32, ByVal y As Double, ByVal z As Double)
void MyDell (int x, string vy);

void MyDel2 (int x, double y);

void MyDel3 (int x, long Vy);

void MyDel4 (int x, string y, double z);

void MyDel5 (int x, double y, double z);

Here you have two sets of delegate signatures. The first set accepts two parameters and varies only by
the type of the second parameter. The second set has three parameters and also varies only by its second
parameter. Now, with these delegates in place, you can start declaring methods that implement these
delegates. The question is, do you really need all of these declarations? No. You can actually replace all
of these declarations with the following pair of generic delegates:

[VB code]
Public Delegate
Public Delegate

[C# code]
public delegate
public delegate

Sub MyDel (Of T, U) (ByVal x As T, ByVal y As U)
Sub MyDel (Of T, U, V) (ByVal x As T, ByVal y As U, ByVal z As V)

void MyDel<T, U>(T x, U y);
void MyDel<T, U, V>(T x, Uy, V z);

These two generic delegate declarations will accept any permutation of types for your two- and three-
parameter delegates, eliminating the need to declare a new delegate for each new method signature.
This also improves the expressive qualities of those methods that accept delegates. The following code
provides a few simple examples of how these generic delegates impact your interactions with methods
that accept delegates:

226

[VB code]

Public Sub Funcl (ByVal x As Int32,

End Sub

Public Sub Func4 (ByVal x As Int32,

ByVal y As String)

ByVal y As String, ByVal z As Double)

End Sub

Public Sub AcceptDelegate (ByVal MyDel As MyDel (Of Int32, String))

End Sub

Public Sub AcceptDelegate (ByVal MyDel As MyDel (Of Int32, String, Double))

End Sub

Public Sub CallwWithDelegate()
AcceptDelegate (AddressOf Funcl)
AcceptDelegate (AddressOf Funcd)

End Sub

Generics Guidelines

[C# code]
public void Funcl (int x, string y) {}
public void Funcé4 (int x, string y, double z) { }

public void AcceptDelegate (MyDel<int, string> MyDel) { }
public void AcceptDelegate (MyDel<int, string, double> MyDel) { }

public void CallWithDelegate() {
this.AcceptDelegate (Funcl) ;
this.AcceptDelegate (Funcd) ;
}

Here, in your AcceptDelegate () method, you can see how your generic delegate is used to express the
signature of methods that it will accept. This, from my perspective, clearly identifies the kinds of meth-
ods that can be supplied and makes it easier for you to change delegate method signatures directly at the
spot where they are being used. In a non-generic model, you’d have to hunt down the delegate signature
elsewhere to modify it.

The main idea here is that, for your existing code, you may have delegates that can be removed and
replaced with generic delegates. There are certainly upsides here —especially in scenarios where you're
looking for an approach that allows you to more clearly convey the signature of a delegate at the point
where it is referenced.

Using Generic Methods as Delegate Methods

The methods that you supply as the implementation of a delegate may also be generic. These two
constructs —used in combination — offer you a number of opportunities to reshape your approach to
how you define and implement delegates in your solutions. At a minimum, as you look at each method
that implements a given delegate, you should also consider whether a collection of delegate methods
could be replaced by a single generic method. If this is the case, this would represent yet another oppor-
tunity to use generics to reduce the size and improve the maintainability of your delegate methods. It
also puts you in a position where your delegate is prepared to support a broader set of types without
any additional enhancement. Less can certainly translate into more in this scenario.

Introducing Generic Interfaces

Because interfaces don’t contain implementation, they can represent a very natural target for applying
generic concepts. The basic idea here, as it has been throughout this section, is to make more abstract
representations of your interfaces that allows them to be applied to a broader set of data types. This is
especially useful with interfaces that are more general in nature. In your own code, you should be look-
ing for any interfaces that might benefit from the application of generics. Any interface that varies only
by the type it leverages may be a candidate for generic refactoring.

The IComparable<T> and IEnumerable<T> interfaces make great examples of small, focused interfaces
that leverage generics while remaining globally applicable to a wide variety of types. This characteristic
also makes these same interfaces excellent candidates for being applied as constraints.

Balancing Readability with Expressiveness

Some view the syntactic constructs introduced by generics as a welcome addition to the language. This
crowd looks at the type arguments that accompany a generic declaration and sees them as providing a

227

Chapter 10

very precise, undeniably clear definition of each data type. For them, generics eliminate any confusion
that might have been associated with using non-generic APIs.

Meanwhile, another population views generics as imposing on the readability of their code. They see
type parameters and constraints and new keywords as muddying the image of what was an otherwise
perfectly clean, uncluttered block of code. Many in this group see generics as undermining the general
usability and maintainability of their code.

The challenge here is striking a balance between these two groups. If everyone can agree on the general
value of generics, the only issue that remains is how to introduce them without creating code that is so
confusing that it requires a decoder ring to decipher the text. The goal of this section is to offer up some
guidelines that can establish some fundamental boundaries that give developers the freedom to leverage
generics without leaving behind a trail of unreadable code.

Item 6: Use Expressive, Consistent
Type Parameter Names

During the beta cycle for Visual Studio 2005, early adopters focused a significant portion of venom and
debate on naming conventions for type parameters. Because type parameters are littered throughout
your generic types, it makes sense that developers would be concerned about how these type parame-
ters could be named in a manner that could accurately convey their intended use.

There are basically two camps of thought on this subject. One camp prefers single-letter type parameter
names simply because they reduce the overall size of the signature of your generic declarations. This is
a model that is employed by most C++ template libraries, which may contribute to the mindset of those
who prefer to continue this tradition. The other camp finds these one-letter type parameters simply too
terse. They don’t see how a single letter can really adequately convey the nature of a type parameter.
This group, as you might suspect, prefers lengthier, more expressive naming conventions. The following
declarations illustrate the tradeoffs that are associated with these competing mindsets:

[VB code]
Public Class Dictionary(Of K, V)
End Class

Public Class Dictionary(Of TKey, TValue)
End Class

[C# code]
public class Dictionary<K, V> {}
public class Dictionary<TKey, TValue>

The first declaration is short and sweet, but hardly expressive. The second option uses full names, pre-
pending a T to each name to designate it as a type parameter. In this scenario, the second of these two
options seems like it might be the preferred model. However, consider this same approach as it might be
applied to a generic method or delegate declaration with constraints applied. An example of this nature
might appear as follows:

[VB code]

228

Generics Guidelines

Public Function Foo (Of TKey As IComparable, TValue) (ByVal key As TKey, _
ByVal val As TValue) As TValue
End Function

Public Function Foo (Of K As IComparable, V) (ByVal key As K, ByVal val As V) As V
End Function

[C# code]
public TValue Foo<TKey, TValue>(TKey key, TValue val) where TKey : IComparable {}
public TValue Foo<K, V>(K key, V val) where K : IComparable {}

In this example, the longer names can get slightly more unwieldy. Naturally, the opposition would say
the second of these two starts to resemble more of an algebraic equation than a method. At the same
time, the full names certainly make this feel more like the signatures conform to a pattern that you might
be more comfortable digesting.

The Naming Compromise

As you can imagine, there’s no one guideline I can suggest that will suddenly resolve the preferences of
either of these approaches. In the end, it’s mostly subjective. Do you like spaces or tabs in your files? Do
you indent your code two spaces or four? It almost falls into that area of debate that really ends up being
more a matter of personal preference. Still, there are some guidelines in this area that should, at a mini-
mum, establish some parameters for how you might standardize your approach.

The best compromise appears to be to use single-letter type parameters when a single letter adequately
captures the nature of your type parameter. If, for example, you have a generic collection, the name
MyCollection<T> would be considered acceptable. The use of T in this scenario is adequate, because
a longer name can’t really convey anything extra about the type parameter’s intent or role. The truth is,
in any scenario where you have a single un-constrained type parameter, the single-letter use of T will
likely suffice.

However, cases exist where you have multiple type parameters playing specific, identifiable roles. In
these situations, you should select longer, more expressive names that clearly convey the role of each
type parameter. With a generic dictionary class, for example, you know its first type parameter repre-
sents a key and its second parameter represents a value. Given these roles, the guidelines suggest that
you should declare this dictionary as Dictionary<TKey, TValue>. Here, you've added meaning to
the names and conformed to the standard of pre-pending a T to each type parameter name.

Using Constraints to Qualify Names

If you're using constraints with your generic types, those constraints provide more information about the
nature of the type parameters they constrain. Suppose, for example, you have the following declaration:

[VB code]

Public Class TestClass(Of T As IValidator)
Private _myType As T

End Class

[C# code]

public class TestClass<T> where T : IValidator {
private T _myType;

}

229

Chapter 10

This example has a single type parameter that is constrained as being of the type Ivalidator. Now, as
you reference the type parameter in the body of your class, the references to the type parameter as T
does little to convey the fact that T is being used as an 1validator type. To remedy this, you should
make the constraint name part of the type parameter name. The new, improved version of this declara-
tion would appear as follows:

[VB code]

Public Class TestClass(0f Tvalidator As IValidator)
Private _myType As TValidator

End Class

[C# code]

public class TestClass<T> where TValidator : IValidator {
private TValidator _myType;

}

Now, as you reference your type parameter in the body of your class, the type parameter name provides
significantly more insight into its nature. This will work for a number of scenarios. However, if you're
using multiple constraints, you may opt to stick with a simple T as your type parameter name.

Generic Methods in Generic Classes

One area that seems to get left out of the naming debate is the name of type parameters for generic
methods that appear within a generic class. Consider the following simple example:

[VB code]
Public Class TestClass(Of T)
Public Sub Foo(Of T) (ByVal val As T)
Dim localVar As T
End Sub
End Class

[C# code]
public class TestClass<T> {
public void Foo<T>() {
T localVar;
}
}

In conforming to the “use T when you have a single parameter” guideline, you have used T as the name
of the type parameter for your class and you've used T as the type parameter for the method that appears
within your class. Although this compiles, using the same type parameter name for both your class and
the Foo () method creates a situation where your method will not be able to access the type parameter
from its surrounding class.

This calls for another naming guideline that requires method type parameters to always be named in

a consistent manner that will prevent methods from hiding access to the type parameters of their sur-
rounding class. In cases where your method accepts a single parameter, I suggest that you use a consistent
replacement for T that will be used across all your generic methods.

Being Consistent

Though I can espouse the value of naming conventions, I often doubt whether the masses can be per-
suaded to adopt a universal approach. That said, I do think there’s room for agreement on the topic of
consistency. No matter what scheme you adopt, it’s essential that you be consistent with that theme

230

Generics Guidelines

throughout your code. Consistency will contribute as much to the readability of your generic types as
any guideline. Of course, if you're exposing your generic types as part of a public API, your choice of
naming convention schemes gets more complicated. Ideally, you’d like your generic signatures and
documentation to conform to a broader standard. This will simplify matters for the consumers of your
APL. So, in that light, you should place added value on making sure your naming conventions are keep-
ing up with what, at this stage, is likely to continue to be a bit of a moving target.

Item 7: Use Aliasing for Complex or Frequently Used Types

In some cases, you may have a rather lengthy generic type declaration that is used heavily throughout a
block of code. In these situations, you may find the bulky nature of your generic type as imposing on the
overall readability of the rest of your code. Consider, for example, the following code:

[VB code]
Public Sub ProcessItem(ByVal value As MyTypel (Of Long, Double, String), _
ByVal status As Int32)
Dim x As New MyTypel (Of Long, Double, String)
If (status = 1) Then
Dim y As MyTypel (Of Long, Double, String) = value
Else
Dim z As New Nullable (Of MyTypel (Of Long, Double, String))
End If
End Sub

[C# code]
public void ProcessItem(MyTypel<long, double, string> value, int status) ({
MyTypel<long, double, string> x = new MyTypel<long, double, string>();

if (status == 1) {
MyTypel<long, double, string> y = value;
} else {

Nullable<MyTypel<long, double, string>> z =
new Nullable<MyTypel<long, double, string>>();

}

This method continually references the generic type MyTypel and, with its three type arguments, it starts
polluting the esthetics of your code in a hurry. Fortunately, for scenarios like this, you have the option

of creating an alias that can act as a placeholder for these more heavyweight declarations. This detracts
some from the expressiveness of your types but is worth it if the readability of your code is being com-
promised. Here’s a quick look at how the aliased version of this function would improve the situation:

[VB code]
Imports MType = MyTypel (Of Long, Double, String)

Public Class Aliasing
Public Sub ProcessItem(ByVal value As MType, ByVal status As Int32)
Dim x As New MType
If (status = 1) Then
Dim y As MType = value
Else
Dim z As New Nullable (Of MType)
End If
End Sub
End Sub

231

Chapter 10

[C# code]
using MType = MyTypel<long, double, string>;

public void ProcessItem(MType value, int status) {
MType x = new MType() ;

if (status == 1) {
MType y = value;
} else {

Nullable<MType> z = new Nullable<MType> () ;

An aliasing statement is added to the top of this example that now declares MType, which serves as a
placeholder for the full generic declaration of MyTypel throughout the implementation of your code.
The result is certainly a more readable version of your method.

Item 8: Don’t Use Constructed Types as Type Arguments

Although you may be embracing the splendor of generics, you still need to make sure you're not going
overboard with your generic types. You can, if you choose, introduce generic types that can make con-
struction a less than graceful process. Consider, for example, a generic type that accepts two constructed
types as parameters:

[VB code]
Public Class MyComplexType (Of T, U)
End Class

Public Class MyType2 (0Of T, U, V)
End Class

Public Class MyType3 (Of T, U)
End Class

Public Class TestClass
Public Sub fool()
Dim x As New MyComplexType (Of MyType2 (Of Int32, String, Double), MyType3 (Of
String, String))
End Sub
End Class

[C# code]
public class MyComplexType<T, U> { }

public class MyType2<T, U, V> { }
public class MyType3<T, U> { }
public class TestClass {

public void foo() {

MyComplexType<MyType2<int, string, double>, MyType3<string, string>> x =
new MyComplexType<MyType2<int, string, double>, MyType3<string, string>>();

232

Generics Guidelines

This example declares a generic class, MyComplexClass, which takes two type parameters. It also cre-
ates a couple of additional generic types that are then used as type arguments in the construction of an
instance of MyComplexClass. You can see, from looking at this, that using constructed types as type
arguments has a serious impact on the readability of your code. As a rule of thumb, you should avoid
scenarios of this nature. This is not to say that you should completely abandon passing constructed
types as parameters. It just means you should construct some intermediate representation and pass that
declared type as your parameter. It’s all about making your code more readable —not limiting what
types can be used as parameters.

Item 9: Don’t Use Too Many Type Parameters

The more type parameters you add to your generic types, the more difficult they will be to use and
maintain. The reality is that there probably aren’t too many situations where you will need to leverage
more than two type parameters. This fact and the reality that using more than two type parameters is
likely to negatively impact the usability of your generic types would suggest that, as a guideline, it
would make sense to generally constrain the number of type parameters you use to two or less.

Item 10: Prefer Type Inference with Generic Methods

One of the best features of generic methods is their ability to infer the types of their type parameters.
This feature eliminates the need to explicitly provide type arguments for each call to a generic method
and, as a result, has a significant impact on the overall maintainability and readability of your code. The
following example illustrates type inference in action:

[VB code]

Public Class TypeInference
Public Sub MyInferenceMethod(Of I, J) (ByVal paraml As I, ByVal param2 As J)
End Sub

Public Sub MakeInferenceCall ()
MyInferenceMethod ("TestVal", 122)
MyInferenceMethod (122, "TestVal")
MyInferenceMethod (New Order (), 833.22)

End Sub

End Class

[C# code]
public class TypelInference {
public void MyInferenceMethod<I, J>(I paraml, J param2) { }

public void MakeInferenceCall () {
MyInferenceMethod ("TestVal", 122);
MyInferenceMethod (122, "TestVal");
MyInferenceMethod (new Order (), 833.22);

}

From this example you can see how type inference makes the generic-ness of your method completely
transparent. Each call that is made here is no different than the calls you might make to a non-generic
method. It’s as if you've overloaded this method with every combination of possible data types. Given
this upside, it’s only natural to have a guideline that suggests that consumers of generic methods should,
as a rule of thumb, always prefer type inference to explicitly specified type arguments.

233

Chapter 10

There are also times when the declaration of your generic methods will prohibit you from inferring the
types of your parameters. Consider the following:

[VB code]
Public Function MyNonInferenceMethod(Of I, J) () As I

End Function

[C# code]
public I MyNonInferenceMethod<I, J>() { }

The absence of references to type parameters in the signature of this method means there’s no way to
supply types that could then be used to infer type information for your type parameters. This isn’t nec-
essarily wrong or even common. However, you should still be aware of the fact that clients of this
method will not be able to leverage type inference when making their calls.

Item 11: Don’t Mix Generic and
Non-Generic Static Methods

If you are using static methods in a generic class that also includes static generic methods, you may end
up creating some ambiguity in the interface of your class. The following example illustrates a simple
case where this could be a problem:

[VB code]

Public Class TestClass(Of T)
Public Shared Sub Foo ()
End Sub

Public Shared Sub Foo (Of T) ()
End Sub
End Class

[C# code]

public class TestClass<T> {
public static void Foo() {}
public static void Foo<T>() {}

} Okay - MAS

You'll notice that this generic class includes a static method Foo () in addition to a static generic method
also named Foo (). Given these two methods, imagine the confusion this would generate for consumers
of this class. The following provides an example of calls to both of these methods:

[VB code]
TestClass (0Of String) .Foo()
TestClass.Foo (Of String) ()

[C# code]
TestClass<string>.Foo() ;
TestClass.Foo<string> () ;

The presence of both of these static methods, as you can see, ends up creating some general confusion.
Fortunately, you're not likely to end up in many scenarios like this one. Or, if you do, you could easily

overcome this by altering your method names.

234

Generics Guidelines

Using BCL Generic Types

The System.Collections.Generic and System.Collections.ObjectModel namespaces introduce
a whole host of out-of-the-box generic types. Chapter 8, “BCL Generics,” looks at each of these types in
great detail. However, there are also some simple guidelines you need to keep in mind as you work with
these types. The items that follow point out a few key areas you’ll want to consider as part of working
with this set of types.

Item 12: Custom Collections Should Extend Collection<T>

At some point you're likely to want to introduce your own generic custom collections. These collections
are typically implemented as extensions to one of the existing collection classes. This allows them to
inherit all the behavior of the existing collection and supplement or amend that functionality with new
operations that are targeted at addressing the specific requirements of your solution.

In these situations, you may be tempted to have your custom collections be implemented as an extension
of the List<T> class. List<T> is certainly the most robust and powerful of the containers found in the
System.Collections.Generic namespace. However, to achieve its optimizations, this class also pre-
vents clients from overriding or altering most of its behavior. Suppose, for example, you wanted to
amend the list class and record some additional data each time an item was added to or removed from a
list. With the List<T> class, you would not be allowed to override the methods that clients use to add
and remove items.

So, although List<T> may be one of your favorite classes to consume, it is not intended to serve as

the base class for your custom collections. Instead, the Collection<T> class is meant to play this role.
Although it doesn’t have all the capabilities of List<T>, it exposes a key set of protected members that
you can freely override in your descendent types.

The System.Collections.ObjectModel namespace provides two additional collection implementations
that should be lumped into this category with the Collection<T> class. The ReadOnlyCollection<T>
and KeyedCollection<TKey, TItem> classes provide specific variations of the Collection<T> class and
both are intentionally open to further specialization. The theme here is that this family of xxxxCollection
classes are all meant to serve as the common foundation for any custom collection classes you might want
to introduce. This, I believe, is part of the rationale behind having these types appear in their own, separate
namespace.

As you create specializations of these collection classes, you should attempt to apply a naming scheme
that allows each new collection class to continue to convey the nature of the class. A descendant of
KeyCollection<TKey, TItem>, for example, might be called MyKeyedCollection<TKey, TItem>.
This makes the role of the collection very explicit to consumers of that collection.

Item 13: Use the Least Specialized Interface in Your APIs

The collections included in the System.Collections.Generic namespace implement a series of
different interfaces that provide varying levels of support for interacting with and managing your
collections. When using these types in your own APIs, you should give special consideration to which
interface best suits your requirements. As a rule of thumb, you should select the least specialized
interface in these scenarios. If, for example, you're just going to iterate over the collection’s items sequen-
tially, you only need the IEnumerable<T> interface. However, if you want index-based access, you

235

Chapter 10

may want to consider using IList<T>. If you'll be modifying the state of the collection, you may need
to consider using ICollection<T>.

The basic idea here is that, by choosing the least specialized interfaces, you're able to limit the constraints
placed on the clients of your types. You should always factor this into your thinking when selecting a
generic interface for inclusion in your own APIs. This guideline is really a more general, OOP guideline.
However, it seems worth highlighting again in the context of generics.

Item 14: Enable “for each” Iteration with IEnumerable<T>

The system.Collections.Generic namespace includes an IEnumerable<T> interface. This interface
provides a standard mechanism for iterating over the items in a collection. However, its role is more sig-
nificant than the other collection-based interfaces that are part of the framework. This interface is what
enables, indirectly, the mechanism that is employed by the foreach construct.

In general, the foreach construct is often viewed as the preferred mechanism for sequentially process-
ing the items in a collection, providing a cleaner, more readable approach to processing the items in a
collection. Given these realities, it’s fair to assume that consumers of your custom collections are going
to expect you to provide support for foreach-based iteration. So, as a general rule of thumb, you should
always consider implementing the IEnumerable<T> interface on any custom type that needs to support
iteration.

Applying Constraints

Anytime you choose to apply constraints to your generic types, you're narrowing the applicability and
reusability of that type. And, via constraints, you're also influencing heavily the scope of what can be
achieved within the implementation of your generic types. The next set of items point out some specific
topics you’ll want to consider as you apply constraints to your type parameters.

Item 15: Select the Least Restrictive Constraints

In selecting an appropriate constraint for a type parameter, you should attempt to choose the constraint
that gives you the minimum level of accessibility you need without imposing any unneeded, additional
constraints on your type parameters. Here’s a quick example that illustrates how a constraint might be
overly restrictive:

[VB code]

Public Interface IPerson
Sub Validate()

End Interface

Public Interface ICustomer
Inherits IPerson
End Interface

Public Interface IEmployee

Inherits IPerson
End Interface

236

Generics Guidelines

Public Class TestClass(Of T As ICustomer)
Public Sub New(ByVal val As T)
val.Validate()
End Sub
End Class

[C# code]

public interface IPerson {
void validate();

}

public interface ICustomer : IPerson { }
public interface IEmployee : IPerson { }

public class TestClass<T> where T : ICustomer {
public TestClass(T val) {
val.Validate();
}
}

In this example, you have a hierarchy of interfaces where IPerson is at the base and has descendent
interfaces for ICustomer and IEmployee. Now, in your TestClass, you're currently expecting it to pri-
marily work with Customer types and, because you need to call validate () on each customer in the
constructor, you've applied the ICustomer constraint to your type parameter to enable access to this
method.

This certainly works. However, it also overly constrains your type parameter. Because all you're access-
ing at this point is the validate () method and that method is part of the IPerson interface, you should
have used IPerson to constrain your type parameter. That opens up your type to support other types
that implement IPerson. The rule of thumb here is that you want to select the least constraining inter-
face that still allows you to satisfy the compile-time validation of your type. If you need to be more
restrictive, you can always alter the constraints as your solution evolves.

Item 16: Don’t Impose Hidden Constraints

Even though you may have a type that does not include any constraints in its declaration, that does not
mean that your type can’t impose “hidden” constraints within its implementation. You can imagine how,
through a cast or through calls to the GetType () method, you could create code within your generic
type that builds in some assumptions about the nature of its type parameters. In these situations, you are
still imposing, indirectly, constraints on your type parameter — they’re just not being explicitly declared.
In the end, these are still viewed as constraints and they’re still considered a bad idea.

Item 17: Avoid Multiple Constraint Ambiguity

When you're working with constraints, you have the option of applying multiple constraints to any type
parameter. In fact, you can combine a single class constraint with multiple interface constraints. As you
start to mix and match multiple constraints, you can end up introducing ambiguity within the scope of
your generic type. Consider the following example:

237

Chapter 10

[VB code]

Public Interface I
Sub Fool ()
Sub Foo3 ()

End Interface

Public Class C
Public Sub Fool ()
End Sub

End Class

Public Class TestClass(Of T As C, I)
End Class

[C# code]

public interface I {
void Fool();
void Foo3 () ;

}

public class C {
public void Fool() {}
}

public class TestClass<T> where T : C, I { }

This example declares a class that employs class and interface constraints, both of which share a common
method, Fool (). Though rules exist that will essentially force the class constraints to take precedence
over the interface constraints here, this situation is still ambiguous at best. From my perspective, this
represents a scenario you should attempt to avoid. Fortunately, applying constraints that are likely to
overlap in this manner should be rare.

Item 18: Provide Parameterless Constructors

Whenever you're introducing your own types, you want to consider how those types will behave when
used as a type argument. Obviously, the interfaces you choose to implement will play a key role in how
that type can be constrained. At a minimum, every type you want to use as a type argument should
include support for parameterless construction. By supporting this constraint, you enable your type to
be supplied as a type argument to any generic type that includes a constructor constraint.

Plenty of instances exist where supporting parameterless construction adds value to your interface — for
generic and non-generic solutions. If you've worked at all with any variant of the factory pattern, you've
probably already provided a parameterless constructor. And, with generics, the list of scenarios where
this adds value just gets longer. Suppose, for example, you had the following generic method that
retrieved a collection of items from the database:

[VB code]
Public Function GetDataObjects(Of T As New) () As IEnumerable(Of T)

End Function

[C# code]
public IEnumerable<T> GetDataObjects() where T : new() {}

238

Generics Guidelines

This method looks up data objects and returns them in a generic collection. It leverages the incoming
type parameter to populate this collection with specific types. However, it would not be able to achieve
this without being able to apply the constructor constraint to your incoming type parameter. So, any
type you want to use with this method must support a parameterless constructor.

The Kitchen Sink

In addition to the guidelines discussed previously, a handful of items also exist that don’t necessarily fit
into any specific categories. The items that appear in the sections that follow fall into this grab bag of
miscellaneous items.

Item 19: Use Static Data Members with Caution

Outside of generics, the behavior of static data members is well understood. Basically, when a data
member is static, this indicates that there is one and only one instance of that data member for all
instances of that class. This is where the VB “shared” keyword almost conveys the concept better than
“static” in that these members are actually shared by all instances of the class.

With generics, the behavior of static data members may not actually match what you're expecting. Take
a look at a small example that illustrates how generics manage static data:

[VB code]
Public Class StaticData (Of T)
Private Shared _staticData As Int32 = 0

Public Sub IncrementCount ()
_staticDhata = _staticData + 1
End Sub
End Class

Public Sub TestStaticData ()
Dim instancel As New StaticData (Of String) ()
instancel.IncrementCount ()

Dim instance2 As New StaticData (Of Int32) ()
instance2.IncrementCount ()

Dim instance3 As New StaticData (Of String) ()
instance3.IncrementCount ()
End Sub

[C# code]
public class StaticData<T> {
private static int _staticData = 0;

public void IncrementCount () {

_staticData++;

}

239

Chapter 10

public void TestStaticData() {
StaticData<String> instancel = new StaticData<String>();
instancel.IncrementCount () ;

StaticData<int> instance2 = new StaticData<int>();
instance2.IncrementCount () ;

StaticData<String> instance3 = new StaticData<String>();
instance3.IncrementCount () ;

This example uses a simple generic class that has a static data member. In the TestStaticData ()
method, you declare three separate instances of this class and increment the count held by the static data
member. Now, for a non-generic class, the static data member would end up being shared among all
instances of the StaticData class. At the end of executing this code, the static data member would have
been incremented to a value of 3.

With generic types, though, static data members are static for all constructed types that have the same
type arguments. Looking back at the example, you’ll notice that instancel uses a string type argu-
ment and instance2 supplies an integer type argument. So, these two instances each have their own
static data member and, therefore, their values are also incremented separately.

The last instance declared here, instance3, uses the same type argument as instancel. In this case,
because the type arguments of these two instances match, they will end up sharing a common static data
member. This means the increment performed on instance3 will bump the count up to 2.

Once you understand what’s going on here, it makes sense. At the same time, if you just look at the
code, this side effect may not always be anticipated. And, if you distribute these calls out across a larger
body of more complex code, you can imagine scenarios in which this could introduce some difficult-to-
detect bugs. I'm not sure if it’s completely accurate to classify this as a guideline. However, in the spirit
of “good practices,” you're likely to want to be especially careful about how you use static data members
with generic types.

Item 20: Use Interfaces in Lieu of Classes

The non-generic APIs you've constructed and consumed have probably relied heavily on the use of
interfaces. It’s a common practice. An interface allows you to express the signature of a type without
binding to any specific implementation of that type. As such, an interface is especially useful in terms of
how it shapes your API, enabling its types to be expressed in the manner that allows a single signature
to accept multiple implementations.

This pre-existing idea of preferring interfaces to classes in your APIs carries forward into the world of
generics. Consider, for example, the following scenario:

[VB code]

Public Class DataAccessMgr (Of T, U)
Public Function FindItems (ByVal id As Int32) As List(Of T)
End Function

Public Sub AddChildren (ByVal parent As T, ByVal dataObjects As List (Of U))
End Function
End Class

240

Generics Guidelines

[C# code]
public class DataAccessMgr<T, U> {

public List<T> FindItems (int id) {}

public void AddChildren (T parent, List<U> dataObjects) {}
}

There’s nothing outright wrong with the methods in this class. However, you'll notice that this class
makes the mistake of referencing the List<T> in its interface. Using List<T> here forces all clients of
this class to use List<T> classes in their interactions with the API.

If, within the body of the Addchildren () method, you're just iterating over the items in the list, you
don’t really need to be bound directly to the concrete List<T> class. Instead, you can change the signa-
ture of this method to use one of the generic collection interfaces, say IEnumerable<T>, and still have
no impact on the internal implementation of this method. This allows your method to accept multiple
implementations of IEnumerable<T> without restricting what can be achieved within the implementa-
tion of your method.

The real focus here is on providing API interfaces that allow type safety without somehow imposing
artificial restrictions on your API. You should familiarize yourself with all the interfaces that are part of
the System.Collections.Generic namespace so you'll have a better feel for which interfaces convey
the meaning you want expressed by your API. You should also keep this general guideline in mind as
you create your own generic interfaces.

Item 21: Use Comparer<T> for All Type Comparisons

Comparer<T> is one of those nice, type-safe utility classes that you almost get for free when you add
generics to a language. Comparer<T> should be viewed as the replacement for all the previous modes
of type comparison that have been historically used in the pre-generic era.

Item 22: Use Nullable<T> for Optional Values

When working with value types, there’s no standard that defines a state that represents “empty” or
“null.” Each solution is left to its own devices for defining this state. As discussed before, Nullable<T>
allows you to overcome this, providing you with a standardized mechanism for determining if a value
type has actually been assigned a value.

As a guideline, it’s fair to say that you should consider using Nullable<T> for any value type where
you may need to determine its null state. A variety of common scenarios exist where this type can be
applied. When working with databases, for example, you might want to use Nullable<T> to determine
if a column is empty or null. Or, if you're working with a list of properties, you may apply Nullable<T>
to accurately capture the state of a given property. These are just a couple of the more obvious applica-
tions of this type. I'm sure, from your own experiences, you can imagine a whole host of situations
where you could see yourself leveraging this type.

Item 23: Use EventHandler<T> for All Events

Item 5 talked about the general value of using a single generic delegate as a replacement for many sepa-
rate, non-generic delegate declarations. And, because delegates are used as part of eventing, this same
idea ends up generating a related guideline around the use of the EventHandler<T> type. This type

241

Chapter 10

will allow you to declare event handler delegates without having to create one-off declarations for each
delegate. This solution is much cleaner than using non-generic event handlers and should be used as the
default for all event handling declarations.

Summary

The goal of this chapter was to introduce a series of guidelines that could help provide some general
rules that would help refine your approach to consuming or constructing generic types. This chapter
looked at some specific patterns where generics might be applied as alternatives to existing, non-generic
solutions. It also looked at guidelines in the areas of usability, applying constraints, and using BCL
generic types. It’s important to note that these guidelines are just that— guidelines. They are not
accepted standards or hard-and-fast rules. Instead, they represent suggestions for common themes you
want to consider as you begin to exercise generic types. As generics mature, however, you can expect
these guidelines to evolve, grow, and ultimately become more widely accepted as industry standards.

242

11

Under the Hood

If you're going to be working with generics, you're also likely to have some interest in under-
standing how they’re managed by the CLR. This chapter looks at all the inner workings of generic
types. It examines how generic types are instantiated at run-time, how they’re represented in IL,
and how the CLR attempts to optimize their size and performance. It also explores some of the key
motivating factors that influenced the overall design characteristics employed as part of the NET
generics implementation. The chapter wraps up by looking at some of the performance gains that
can be achieved through the use of generics. By the time you reach the end, you should have a
much better feeling for the underlying concepts that directly influence how you go about creating
and consuming generics.

Overview

The .NET generics implementation clearly borrows from the many generic implementations that
have preceded it. At the same time, it also introduces some new concepts and strategies that have
not been employed as part of any prior implementation.

Certainly, being in a single-vendor, managed environment gave the .NET generics visionaries a
fair amount of latitude in determining how they could best go about introducing generics into the
platform. The .NET Framework’s support for true multilanguage development provided Microsoft
with the rare chance to bite off a generics solution that could span multiple languages and achieve
a degree of interoperability around generic types that had never been fully realized before.

The sections that follow look at some of the key characteristics that distinguish the NET generics
implementation. By understanding these details, you're likely to get a much better sense of factors
that shaped the resulting implementation. This view of generics should also provide you with a
clearer picture of the trade-offs that were made as part of the .NET generics implementation.
Although understanding generics at this level is not vital, having this broader view does help
frame some of the rules that govern the definition and consumption of generic types.

Chapter 11

Assumptions

The following sections explore the details of how generic types are represented in IL as well as probe the
internal representation of generic types. Though I don’t view this material as being overly advanced, it
can be daunting if you’ve never devoted any time to poking your way around in IL and basic CLR con-
cepts. So, if you really want to maximize your understanding of the concepts that follow, you may want
to first familiarize yourself with some of the fundamentals of the CLR and how code is transformed into
IL at run-time.

High-Level Goals

When the generics gurus sat down to spell out a strategy for their generics implementation, they estab-
lished some very key high-level goals that, in a more general sense, shaped some of the resulting,
fundamental structure of generics. The following is a brief breakdown of the guiding principles that
appear to have played a key role in influencing the overall design of .NET generics.

Validate at Declaration

For any generics implementation, you must choose between validating generic types at their point of
declaration or at their point of instantiation. So, if you define a List<T> generic type and you choose to
validate it at the point of declaration, you essentially need to be able to verify that the List<T> generic
type will be valid for all type arguments that it could ultimately be supplied as a type parameter.

In contrast, if you choose to validate at the point where each type is used, you are only required to verify
that each individual specialization can be successfully compiled. Even if there are declarations that could
be invalid, they are not factored into the validation of the class at compile-time. Only instances that are
actually declared in code will be considered. Although this approach offers a somewhat broader palette
of possibilities, it also requires the precompilation of all the existing instances in advance of their use.

For .NET generics, the decision was made to require validation at the point of declaration. The rationale
behind this choice will be clearer as you get more familiar with the run-time capabilities and efficiencies
that were enabled as a result of choosing this option.

Simplicity
Generic technologies have historically had a bad reputation in terms of their general complexity. Some
developers almost instinctively cringe when they think about the possibility of using or creating gener-
ics. Generics have this baggage attached to them that seems to suggest that any generic solution must
require developers to mangle their code with cryptic symbols and compile-time code expansion that can
make debugging a true nightmare.

I believe this stereotype of complexity was likely, or at least partially, an influencing factor that had some
degree of impact on what ultimately became .NET generics. While maximum power and flexibility certainly
has its place, the .NET generics approach favors trading a modicum of power for marked improvement in
readability and maintainability. There’s no clear-cut, objective means by which you can measure the extent
to which this is achieved. However, as developers get comfortable with generics, I believe they will find
them to be significantly more usable than prior offerings.

244

Under the Hood

Platform Conformity

Generics are a fundamental construct that are likely to be used on an ever-increasing basis throughout
the .NET platform. At the same time, generics needed to be introduced without requiring any significant
changes to the existing framework. It was essential that .NET generics be created as a natural extension
of the existing concepts that were already part of the platform. The key point here is that the CLR needed
to evolve to add support for generics while, at the same time, continuing to support all the existing code
that was running against prior versions of the CLR. In looking at the resulting implementation, I think
it’s fair to say that this goal was achieved.

Language Agnostic Generics

Supporting generics is a great achievement for the .NET platform. However, if this feature had been
introduced as a language-specific solution, it would have violated the basic goals of language inte