THE EXPERT'S VOICE®

Beginning
ASP.NET 2.0 in C#

From Novice to Professional

Matthew MacDonald

Apress

Beginning ASP.NET 2.0
in G# 2005

From Novice to Professional

Matthew MacDonald

Apress*

Beginning ASP.NET 2.0 in C# 2005: From Novice to Professional
Copyright © 2006 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-572-5
ISBN-10 (pbk): 1-59059-572-6
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Contributor of Chapter 27: Julian Templeman

Lead Editor: Jonathan Hassell

Technical Reviewer: Ronald Landers

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan
Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager and Production Director: Grace Wong

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Pat Christenson

Proofreader: Nancy Riddiough

Indexer: Michael Brinkman

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

For my loving wife, Faria

Contents at a Glance

Aboutthe AUhoro XXV
About the Technical REVIBWET.t e XXvii
ACKNOWIEdgmMENtS. Xxviii
IMrOAUCTION ..ttt e e e e i e Xxix
PART 1 Introducing .NET
CHAPTER 1 Introducing the .NET Framework............................... 3
CHAPTER2 Learningthe CH#Language...............c.ovvrveierinnennnnn. 23
CHAPTER 3 Types, Objects, and Namespacescoevnnnn. 59
CHAPTER 4 Introducing Visual Studio 2005...................cccvvviennnn. 91
PART 2 Developing ASP.NET Applications
CHAPTER5 Web Form Fundamentals.................................... 125
CHAPTER6 Web ControlS.............ooviiriiii i 175
CHAPTER 7 Tracing, Logging, and Error Handling......................... 219
CHAPTER 8 Validation and Rich Controls................................. 267
CHAPTER9 State Management....................cciiiiiiiiiiinennns. 317
CHAPTER 10 Master Pagesand Themesoiiiinnen. 359
CHAPTER 11 Website Navigationccoiiiiiiiints, 389
CHAPTER 12 Deploying ASP.NET Applications 427
PART 3 Working with Data
CHAPTER 13 ADO.NET Fundamentalsccooviiiiiiiit, 471
CHAPTER14 DataBinding................coiiiiiiiiiiiiii i 539
CHAPTER15 TheDataControls...................coiiiiiiiiii i, 581
CHAPTER16 Filesand Streams.................cccoviiiiiiiii i 625
CHAPTER17 XML..... ..o e 655

PART 4

CHAPTER 18
CHAPTER 19
CHAPTER 20

PART 5

CHAPTER 21
CHAPTER 22
CHAPTER 23

PART 6

CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27

Website Security

Security Fundamentals..........................ooial 707
Membership.............o i 739
Profiles. 781

Web Services

Web Services Architectureccoiiines 813
CreatingWeb Servicescoviiiiiiiiiiinns, 831
EnhancingWeb Services ... 869
Advanced ASP.NET
Component-Based Programming............................. 903
Custom Controls...........oovviiii e 937
Caching and Performance Tuning............................ 985
Web Parts ... 1029
.. 1063

Contents

About the AUThOr XXvi
About the Technical Reviewer. i e XXVii
ACKNOWIEdgmMENtS. Xxviii
INtroduction Xxix

PART 1 Introducing .NET

CHAPTER1 Introducing the .NET Framework 3
The Evolution of Web Development................................. 3
HTMLand HTMLForms. ... 3
Server-Side Programming. ..ot 6
Client-Side Programming. ...t 7

The Problems with ASP i, 9

The NET Framework. ...t 10
C#, VB .NET, and the .NET Languagescoovevnn.. 12
The Intermediate Language.oiiiaa... 12
Other NET Languagescoviuinririiieeaaennn, 14

The Common Language Runtime 14
The NET Class Library. ..., 16
Visual Studio 17
NET 2.0 18
CH 2.0 . 18
ASP.INET 2.0. ... i 19
Visual Studio 2005t 20

The LastWord. ..o 21

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

Learning the C#Language 23
The NETLaAnQuagescoouiiiiii i 23
C#language BasiCs. ... 24
Case Sensitivity 24
Commenting. ..ot 25
Line Termination................ ... i, 26
Block Structures ... 26
Variablesand Data Types ..., 27
Assignment and Initializers.................. ...l 29
Strings and Escaped Characters. 30
AITAYS . o 31
Enumerations. 33
Variable Operations ... 35
AdvancedMath i 36
Type CONVErsioNSot 36
Object-Based Manipulation................. 39
The String Class ... 40
The DateTime and TimeSpan Classes......................... 42
The Array Classc.oooei e 44
Conditional Structuresoi i 44
TheifBloCK ... 45
The switch Block. 46
Loop Structures. ... 47
TheforBlockcooi i 48
Theforeach BIOCK. 49
ThewhileBlock.............coi i 50
Methodso 51
Parameters. ... 53
Method Overloading 53
Delegates 54
The LastWord. ... 57
Types, Objects, and Namespaces.......................... 59
The Basics About Classes.........c.ooviiiiiiii i 59
StaticMembers. ... 61

ASImple Class. ... 62

CHAPTER 4

CONTENTS

BuildingaBasic Classcooviiriiiii i 62
CreatingaLive Objectcc i, 63
Adding Properties 65
AddingaBasicMethodl 66
AddingaConstructor i 67
AddingaBasicEvent 68
Testing the Product Classoiiiii... 70

Value Types and Reference Types.cciviiiiiiiiia... 73
Assignment Operations ...t 73
Equality Testing.............coo i 74
Passing Parameters by Reference and by Value 74
Reviewing NETTypesoo i 76

Understanding Namespaces and Assemblies 78
Using NamesSpacesc.oviiii i 79
Importing Namespaces ..., 80
Assemblies. 81

Advanced Class Programmingocoiiiiiiiin... 82
Inheritance 83
Static Members. ... 84
Casting Objects 85
Partial Classes. 87
GBNEIICS . ..ot 89

The LastWord.o 90

Introducing Visual Studio2005............................ 91

The Promise of Visual Studio, 91

CreatingaWebsite.......... i 93
The Solution Explorert 96

DesigningaWebPage................ i 98
AddingWeb Controls ... 99
The PropertiesWindow it 101
Adding Ordinary HTML 102
HTMLTables ... e 104

Writing Code ... 105
Adding EventHandlers...............l 106
IntelliSense and Qutlining 107

Assembly References. ... 114

ix

CONTENTS

PART 2

CHAPTER 5

Visual Studio Debugging 115
Single-Step Debugging 116
Variable Watches. i 120

TheLastWord. ... 121

Developing ASP.NET Applications

Web Form Fundamentals.................................. 125
The Anatomy of an ASP.NET Application 125
ASP.NETFile TYpeS. . ..o 127
ASP.NET Application Directories.cooona... 128
ApplicationUpdatesc i 129
A Simple One-Page Applet 130
The ASP Solution—and Its Problems 133
The ASP.NET Solution; Server Controls....................... 133
HTML Server Controls.ot 134
ViewState. ... 136
The HTML Control Classes.ocoiiiiiin... 137
EventHandling................. i 142
Behind the Scenes with the CurrencyConverter 143
Improving the Currency Converter...........................o.... 146
Adding Multiple Currencies. ..., 146
Storing InformationintheList., 148
Adding Linked Images ... 149
Setting Styles. ... 151
A Deeper Look at HTML Control Classes 152
HTML Control Eventst 153
Advanced Events with the Htmllinputimage Control 154
The HtmliControl Base Classcooiinin.... 156
The HtmlContainerControl Class............................. 157
The HtmllnputControl Class. 158
The Page Classovivir i 158
The Controls Collectioncooiiiiia.. 159
The HttpRequest Class., 160
The HttpResponse Classccoiiiiiiiiiin... 161

The ServerUtility Classo i, 162

CHAPTER 6

CHAPTER 7

CONTENTS

ASP.NET Configuration.co i 165
The web.configFile.......... i i 165
Nested Configuration, 166
Storing Custom Settings in the web.configFile................ 167
Modifying web.config Settings Programmatically.............. 171
The Website Administration Tool (WAT) 172

TheLastWord. ... 174

WebControls... 175

SteppingUptoWeb Controlsccoiii it 175
Basic Web Control Classesccoooiiiiiiiint, 176
The Web Control Tagscoeiorii i, 177

Web Control Classescoveiriiii e 179
The WebControl Base Class 179
UNitS .o 181
Enumerated Values. L. 182
COlOrS ..o 182
FONtS . ..o 183
FOCUS. ..o 185
The DefaultButton i 185

ListControls. ... 186
Multiple-Select List Controls. ...t 187
The BulletedList Control...........................oiia.. 190

Table Controls........ ..o 191

AutoPostBack and Web Control Events............................ 197
How Postback Events Work................................. 201
The PageLifeCycle ..., 202

ASimple Web Page Applet 206
Improving the Greeting Card Applet.......................... 212
Generating the Cards Automatically.......................... 214

ThelastWord. ... 217

Tracing, Logging, and Error Handling 219

CommMON Ermors. ... 219

Exception Handling.............. .o 221
The Exception Classcooiiiii i, 222

The ExceptionChain......................o i, 224

Xi

Xii

CONTENTS

CHAPTER 8

Handling Exceptions. 225
Catching Specific Exceptions ...t 226
Nested ExceptionHandlers 227
Exception Handling in Action................................ 229
Mastering Exceptions............l 231

Throwing Your Own Exceptions...............coooiiiiiiiin.n.. 232

Logging Exceptions 236
Usingthe Eventlog Classcoviiiiiniinns 239
CUStOM LOGS .. 241
Retrieving Log Information 243

Error Pages ... 246
ErrorModes 248
ACustom ErrorPageccoiiiiiii 249
Specific Custom Error Pages. ...t 250

Page Tracingcooviii 252
EnablingTracing i 253
Tracing Information. 254
Writing Trace Information 259
Reading Trace Information 263
Application-Level Tracing ..., 264

ThelastWord.......... ... 266

Validation and Rich Controls.............................. 267

Validation. ... 267
The Validation Controls, 268
The Validation Process. ..., 269
Client-Side Validation..................... ...t 270
The Validator Classes..............cocoiiiiiiiiiiiin.... 270

A Simple Validation Examplel 271
Other Display Options. ..ot 274
Manual Validation i 276

Understanding Regular Expressions 278
Literals and Metacharacters 278
Finding a Regular Expression 279
AValidated Customer Form................................. 282
Validation Groups ... 288

RichControls. ... 290
The Calendar Control ..., 291

The AdRotator ...t 299

CHAPTER 9

CHAPTER 10

CONTENTS

Pages with Multiple Views 302
The MultiView Control i, 304
The Wizard Control 310
TheLastWord. ... 316
State Management .. 317
The ProblemofState.................. i 317
ViewState ... 318
AView State Example.................. i 318
Making View Sate Securel 320
Retaining Member Variables................................ 322
Storing Custom Objects.. ..., 324
Transferring Information 325
Cross-Page Posting. ... 325
The Query String ... 330
Custom COOKIES 334
ACookieExample.............. i 336
SessionState................ 337
Session Tracking. ..ot 338
Using SessionStatel 339
A Session State Examplel 340
Session State Configurationl 344
COOKIBIESS ...\t 344
Timeout. ... 347
Mode 348
Application State............. ... 352
An Overview of State Management Choices 354
The Global.asax Application Filecoiii... 356
ApplicationEvents............ 357
TheLastWord. ... 358
Master Pages and Themes................................ 359
Master Page Basics ... 359
A Simple Master Page and ContentPage..................... 360
How Master Pages and Content Pages Are Connected 364
A Master Page with Multiple Content Regions................. 366
Default Content it 369

Master Pages and Relative Paths............................ 370

xiii

Xiv CONTENTS

CHAPTER 11

CHAPTER 12

Advanced MasterPages 3n
Table-Based Layoutst 372
CodeinaMasterPage................cooiiiiiiiiiin.t, 375
Interacting with a Master Page Programmatically.............. 375

TREMES. .. 377
How ThemesWork 378
Applyinga Simple Theme, 380
Handling Theme Conflictst 381
Creating Multiple Skins for the Same Control 383
Skins with Templates and Images........................... 384

TheLastWord. ... 387

Website Navigation.. 389

Site MapS. 389
DefiningaSiteMapo i 391
Seeing a Simple Site Map inAction.......................... 395
Binding an Ordinary PagetoaSiteMap...................... 396
Binding a Master PagetoaSiteMap 397
Binding Portions of a SiteMap............................... 399
Navigating Programmatically 405
MappingURLS 407

The SiteMapPath Control., 409
Customizing the SiteMapPath............................... 410
Using SiteMapPath Styles and Templates 410
Adding Custom Site Map Information 412

The TreeView Control. i 413
TreeView Properties i 414
TreeView Styles. 415

The Menu Control. ... 420
MenuStyles 421
MenuTemplates................ i, 423

TheLastWord. ... 425

Deploying ASP.NET Applications 427

ASP.NET Applications and the Web Server 427
How Web Servers Work, 427
Web ApplicationURLS ... 429

Web Farms 431

PART 3

CHAPTER 13

CONTENTS

IS (Internet Information Services)ii... 433
Installing IS5 ... 433
Installing IS 6 ... 435
Registering the ASP.NET File Mappings 436
Verifying That ASP.NET Is Correctly Installed 438

Managing Websites with IS Manager............................. 439
Creating a Virtual Directoryt 439
Virtual Directories and Web Applications 442
Configuring an Existing Virtual Directory...................... 444
Adding a Virtual Directory to Your Neighborhood 451

Deployinga Simple Site. ... 453
Web Applications and Components.......................... 454
Other Configuration Stepst 455
The ASPNET Account ..., 456
Code Compilation i 459

Deploying with Visual Studio 2005 460
Creating a Virtual Directory for a New Project 460
CopyingaWebsite i 463
PublishingaWebsite 466

TheLastWord. ... 468

Working with Data

ADO.NET Fundamentals 471
ADO.NET and Data Management................................ 471
The Role of the Database. 472
Database Access in the InternetWorld 473
Introducing ADO.NET 474
SQL Server 2005 Express Edition............................ 475
Browsing and Modifying Databases in Visual Studio 476
SAL BaSICS. . ..ttt 478
Running Queries in Visual Studio 479
The Select Statement........... 481
The SQL Update Statement................................. 485
The SQL Insert Statement 486
The SQL Delete Statement 487
ADONET BaSICS ... vo ettt e et 487
Data Namespaces. ..o, 489

The Data Provider Objects.......................iia.. 490

Xv

Xvi CONTENTS

CHAPTER 14

DireCt Data ACCESSo\ttt 492
Importing the Namespaces........................cooiea.. 493
Creatinga Connection ..., 493
The Connection Stringcoo i, 495
Windows Authentication.................................... 495
Connection String Tips........ooviiii 496
Making the Connectiont 497
Defininga Select Command..........................coiiia... 500
Using a Command with a DataReader........................ 501
Putting It All Together..................... .. 502
Fillingthe ListBox...............co i 503
UpdatingData ... 507
Enhancing the AuthorPage................................. 507
Creating More Robust Commands........................... 512
Disconnected Data ACCESSt 518
Selecting DisconnectedData 519
Selecting Multiple Tables. ..., 521
Modifying DisconnectedData............................... 526
Adding InformationtoaDataSet. 527
Updating Disconnected Data 528
The CommandBuilder................ 528
Updatinga DataTable...........................oiia.. 529
Controlling Updates. ...t 530
A Disconnected Update Example 531
Concurrency Problems............... o 533
A Concurrency Example. ..., 535
ThelastWord.......... ... 538
DataBinding..................................... 539
Introducing DataBinding.................l 539
Types of ASP.NET DataBinding 540
How Data BindingWorks. ...l 540
Single-Value DataBinding. i 541
A Simple Data Binding Example............................. 542
Simple Data Binding with Properties......................... 545
Problems with Single-Value Data Binding 546

Using Code Instead of Simple Data Binding................... 547

CHAPTER 15

CONTENTS

Repeated-Value DataBinding. 547
Data Binding with Simple List Controls....................... 548
A Simple List Binding Example.............................. 549
Generic Collections. ...t 550
Multiple Binding.o 551
Data Binding and View State................................ 553
Data Binding with a Dictionary Collection..................... 553
Using the DataValueField Property........................... 555
Data Binding with ADO.NET. ..., 557
CreatingaRecord Editor 559
Data Source Controls.coii i 564
The Page Life Cycle with Data Binding 565
The SqlDataSource...........cooiiiri 566
Selecting Records. ...t 568
Parameterized Commands 570
Handling Errors 574
Updating Records ...t 574
ThelastWord.......... ... 578
The DataControls.. 581
The GridVIew 581
Automatically Generating Columns 582
Defining Columnso 584
Formatting the GridView 588
Formatting Fields 588
Using Styles 590
Formatting-SpecificValues................................. 593
Selecting a GridView ROW 595
Adding aSelectButton............... ... 596
Using Selection to Create a Master-Details Form 598
Editing with the GridView i 600
Sorting and Paging the GridView 603
SOMNG. ..o 603
Paging. ... 606
Using GridView Templatesiiiiiiiia.. 608
Using Multiple Templates 610
Editing Templates in Visual Studio........................... 611
Handling EventsinaTemplate.............................. 612

EditingwithaTemplate.................................... 613

Xvii

xviii

CONTENTS

CHAPTER 16

CHAPTER 17

The DetailsView and FormView ..., 618
The DetailsView. ... 618
TheFormView 621

TheLastWord. ... 623

FilesandStreams ... 625

Files and Web Applications............... iii... 625

File System Information..................l 626
The Directory and File Classesooini.... 627
The DirectoryInfo and Filelnfo Classes 633
The Drivelnfo Class. ... 635
ASample File Browser.ccovoiii i, 636

Reading and Writing with Streams 640
TextFiles ... 640
BinaryFiles. ... 642
Shortcuts for Reading and Writing Files 643
A Simple GuestBooK 645

Allowing File Uploads.cciii i 650
Dissectingthe Code..............cooiiiiiii it 653

TheLastWord. ... 654

XML, .. 655

XMLU’'s HiddenRolein NET it 655
Configuration Filescc oo 655
ADO.NET Data ACCeSSvvi e 656
Web Services. ... 656
Anywhere Miscellaneous Data Is Stored. 656

XMLEXplained. ... 656
Improving the Listwith XML 659
XML BaSICS.t 660
Attributes 662
Commentso 663

The XML CIaSSeSoouiriiii e 663
The XML TextWriter ... 664
The XML TextReader................. ...t 666
Working with XML Documents 673
Reading an XML Document.....................ocoiiiiat 677

Searchingan XML Document 680

PART 4

CHAPTER 18

CONTENTS

XML Validation. ... 681
XML Namespacescoovi it 681
XSD Documents. i 683
Validatingan XML File 684
XML Display and Transformst 687
The XmlWeb Control 690
XMLDataBinding..............ooii i 692
Nonhierarchical Binding.................................... 692
Hierarchical Binding with the TreeView....................... 695
Binding to XML Content from Other Sources 697
XMLIin ADONET . ..o 698
Accessing a DataSet ASXML ..., 699
Accessing XML Through the DataSet 701
TheLastWord. ... 702

Website Security

Security Fundamentals.................................... 707
Determining Security Requirements 707
Restricted File Types ... 708
Security Concepts. ... 708
The ASP.NET Security Model 709
Security Strategies 712
Certificates. ... 713
Secure Sockets Layer........... 715
Forms Authentication..................... il 716
Web.configSettings 718
Authorization Rules. i 719
The WAT 722
TheloginPagecoi i 726
Windows Authenticationl 729
NS Settings ... 730
Web.configSettingso 732
A Windows Authentication Test 734
Impersonation i 735
Programmatic Impersonation 737

The Last Word 738

Xix

XX

CONTENTS

CHAPTER 19

CHAPTER 20

Membership.. 739
The Membership Data Store..................cccoiiiiii ... 740
Membership with SQL Server 2005 Express M
Configuring the Membership Provider........................ 744
Manually Creating the Membership Tables 749
Creating Users withthe WATl 751
The Membership and MembershipUser Classes............... 753
Authentication with Membership 757
Disabled Accounts.ot 758
The Security Controls.t 759
The LoginControl ..., 760
The CreateUserWizard Control 766
The PasswordRecovery Control 770
Role-Based Security. ..o 773
Creating and AssigningRoles 773
Restricting Access BasedonRoles 777
The LoginView Control ..., 778
TheLastWord. ... 780
Profiles 781
Understanding Profiles.o i 782
Profile Performanceco i, 782
How Profiles Store Data.................................... 783
Using the SqlProfileProvider...................cco i, 785
Enabling Authentication................ 786
Profiles with SQL Server 2005 Express Edition................ 787
Configuring the Profile Provider to Use a Different Database 787
Manually Creating the Profile Tables......................... 789
The Profile Databases.ocooiiiial. 790
Defining Profile Properties. ..., 793
Using Profile Properties ...l 794
Profile Serialization.................l 796
Profile Groups ... 798
Profiles and Custom Data Types.coviiinent. 799
The Profile APl 804
Anonymous Profiles 807

The LastWord. ... 809

PART 5

CHAPTER 21

CHAPTER 22

CONTENTS

Web Services

Web Services Architecture................................ 813
Internet Programming Thenand Now............................. 813
The Era of Monolithic Applications........................... 813
Components and the COM Revolution........................ 814
Web Services and the Programmable Web 815
When Web Services Make Sense............................ 816
The Open-Standards Plumbing. 816
Web Services Description Language.c.ooevnn... 817
The <definitions>Element 818
The <types>Element.......................... 818
The <message>Elements 820
The <portType>Elements.................................. 821
The <binding>Elements................................... 821
The <service>Element.............. 823
SO . . 824
A Sample SOAP MesSSagecovviviiniieiaaan.. 824
Communicating withaWeb Servicecoon.. 825
Web Service DisCOVery 827
The DISCO Standard. ..., 827
Universal Description, Discovery, and Integration.............. 828
WS-Interoperability. L. 829
TheLastWord. 830
Creating Web Services 831
Web Service Basics ...t 831
Configuring a Web Service Project. 832
The StockQuote Web Service.................. 834
Understanding the StockQuote Service....................... 835
Web Services with Code-Behind 836
The ASP.NET Intrinsic Objects 837
Documenting Your Web Service., 838
Descriptions. 839
The XMLNamespaceoooviiiiiiiiiiiiiaann 840

Conformance Claimscoo v 840

XXi

XXii

CONTENTS

CHAPTER 23

Testing Your Web Service ... 842
The Web Service TestPage.cooiiiiiia... 842
Service Description. 843
Method Description. ... 845
TestingaMethod L. 845

Web Service Data Types ... 847
The StockQuote Service with a Data Object................... 848

Consuming aWeb Servicecooiiiiiiii, 853
Configuring a Web Service Client in Visual Studio. 853
The Role of the Proxy Class.ccooiiiiiini.... 854
Creating a Web Reference in Visual Studio 855
Creating a Proxy with WSDL.execcooiiiints 857
Dissectingthe Proxy Classc.ccooiiiiiiiias 859
Dynamic Web Service URLSccoiiiinininns 862

Usingthe Proxy Class ...t 863
Waitingand Timeouts.l 864
Web Service Errors 865
Connecting Through aProxy.............oooiiiiiiiiin.t, 866

TheLastWord. 867

Enhancing Web Services 869

State Management. ... 869
The StockQuote Service with State Management.............. 870
Consuming a Stateful Web Service 872

Web Service Security. 877
Windows Authentication with a Web Service.................. 878
Ticket-Based Authentication................................ 882
Ticket-Based Authentication with SOAP Headers 885
Using SOAP Headers inthe Client 888

Web Service Transactions. ..., 888

An Example with TerraServicet ... 891
Adding the Reference. ..., 892
Testingthe Client o . 893
Searching for More Information 895
DisplayingaTilecocoi i 896

Windows Clients. ... 898

The LastWord. ... 900

PART 6

CHAPTER 24

CHAPTER 25

CONTENTS

Advanced ASP.NET

Component-Based Programming......................... 903
Why Use Components? ...t 903
ComponentJargon............... i 905
Three-TierDesign. ... 905
Encapsulation. 907
Data Objects. 907
Business Objects. ... 907
Creating a Simple Componentoiiiiiiiiia... 908
The Component Class ...t 908
Classes and Namespacesc..ovoveevrineneenenananss 910
Adding a Reference to the Component. 912
Using the Component. ...t 914
Propertiesand State............... 916
A Stateful Account Class ..., 917
A Stateless AccountUtility Class 918
Database Components. ... 919
A Simple Database Component 920
Consuming the Database Component........................ 924
Enhancing the Component with Error Handling................ 927
Enhancing the Component with Aggregate Information......... 928
The ObjectDataSource. ..o, 930
Making Classes the Object Data Source Can Understand 930
Selecting Records. ...t 931
Using Method Parameters......................coiiiiia.. 932
UpdatingRecords ...t 933
TheLastWord. ... 936
CustomControls... 937
User Controls. ... 937
Creating a Simple User Control. 939
Independent User Controlsccoiiiiinininns M
Integrated User Controlsoiiiiiiiis, 943
User Control Events.t 946
Using Events with Parameters 949

User Control Limitations.o, 952

XXiii

XXiv CONTENTS

CHAPTER 26

Derived Custom Controls. ... 953
Creating a Simple Derived Control 953
Using a Derived Control ...t 955
Creating a Custom Control Library........................... 957
Custom Controls and Default Values......................... 958
Changing Control Rendering....................ocoiiii.l 961
Creating a Web Control from Scratch 964
Maintaining State Information............................... 967
Design-Time Support 969
Creating a Composite Control............................... 971
Custom Control Events and Postbacks 973

Dynamic Graphics. 977
BasicDrawing ... 978
Drawing Custom Text. ...t 980
Placing Custom Images Inside Web Pages.................... 981

TheLastWord. 983

Caching and Performance Tuning........................ 985

Designing for Performance............... 986
ASP.NET Code Compilation................................. 986
Server Controls ... 986
ADO.NET Database ACCESScoviririiiiiiiiiiannnn, 987
SessionState................. 989

Profiling ... 989
StressTesting 990
Performance Counters ...ttt 990

Caching ..o 994

Output Caching 995
Caching onthe ClientSide. 997
Caching and the Query String............................... 997
Caching with Specific Parameters........................... 998
A Multiple Caching Exampleoo..L. 999
Custom Caching Control 1001
Fragment Caching...............ccoiiiiiii .. 1002
CacheProfiles ... 1003

Output CachinginaWeb Service........................... 1004

CHAPTER 27

CONTENTS

DataCaching............c.oiiiii 1004
Adding ltemstothe Cache............................. ... 1005
ASimpleCacheTest................ o il 1006
Caching to Provide Multiple Views. 1007
Data CachinginaWeb Service............................. 1010
Caching with the Data Source Controls...................... 1012

Caching with Dependencies................cccoviiieiiiiiann... 1016
Cache Notifications in SQL Server 2000 or SQL Server 7 1019
Cache Notifications in SQL Server 2005..................... 1024

The LastWord.o 1027

WebParts ... 1029

Introducing Web Part Basics. L. 1030

UsingWebParts.............. i 1032
Getting Started. 1033
Adding Web PartstoaPage 1033
Controlling Page Modes.....................cooiiiiia... 1040
Making Pages Editable. 1044
Creating CustomWeb Parts 1051
ConnectingParts..................c i, 1056

The LastWord. ... 1061

... 1063

XXV

XXvi

About the Author

MATTHEW MACDONALD is an author, educator, and MCSD developer. He’s a regular contrib-
utor to programming journals and the author of more than a dozen books about .NET
programming, including Pro ASP.NET 2.0 in C# 2005 (Apress, 2005), Microsoft .NET
Distributed Applications (Microsoft Press, 2003), Programming .NET Web Services
(O’Reilly, 2002), and ASP.NET: The Complete Reference (Osborne McGraw-Hill, 2002). In a
dimly remembered past life, he studied English literature and theoretical physics. You can
read about his new books at http://www.prosetech.com.

About the Technical Reviewer

RONALD LANDERS is the president and senior technical consultant for
IT Professionals (ITP), a Los Angeles, California—based IT staffing,
development, and project services company. Mr. Landers has worked
in the IT field for the past 20 years specializing in database design and
implementation, application architecture and development, busi-
ness process engineering, and web-based technologies that include
web services, electronic commerce, and web portals.

In addition to his work at ITP, Mr. Landers has been teaching IT classes at UCLA
Extension for the past 13 years. Currently, his courses include beginning and advanced
classes in SQL Server, ASP.NET, web services, and object-oriented programming.

Xxvii

XXviii

Acknowledgments

No author could complete a book without a small army of helpful individuals. I'm deeply
indebted to the whole Apress team, including Grace Wong and Kelly Winquist, who
helped everything move swiftly and smoothly; Kim Wimpsett, who performed the copy
edit; Ronald Landers, who performed the most recent round of technical review; Julian
Templeman, who contributed Chapter 27; and many other individuals who worked
behind the scenes indexing pages, drawing figures, and proofreading the final copy. I owe
a special thanks to Gary Cornell, who always offers invaluable advice about projects and
the publishing world. He has helped build a truly unique company with Apress.

I'd also like to thank those who were involved with previous editions of this book. This
includes Emma Acker and Jane Brownlow at Osborne McGraw-Hill and previous tech
reviewers Gavin Smyth, Tim Verycruysse, and Julian Skinner. I also owe a hearty thanks to
all the readers who caught errors and took the time to report problems and ask good ques-
tions. Keep sending in the feedback—it helps make better books!

Finally, I'd never write anybook without the support of my wife and these special indi-
viduals: Nora, Razia, Paul, and Hamid. Thanks, everyone!

Introduction

ASP (Active Server Pages) is a relatively new technology that’s already leapt through
several stages of evolution. It was introduced about seven years ago as an easy way to add
dynamic content to ordinary web pages. Since then, it’s grown into something much more
ambitious: a platform for creating advanced web applications, including e-commerce
shops, data-driven portal sites, and just about anything else you can find on the Internet.

ASP.NET 2.0 s the latest version of ASP, and it represents the most dramatic change yet.
With ASP.NET, developers no longer need to paste together a jumble of HTML and script
code in order to program the Web. Instead, you can create full-scale web applications
using nothing but code and a design tool such as Visual Studio 2005. The cost of all this
innovation is the learning curve. Not only do you need to learn how to use an advanced
design tool (Visual Studio) and a toolkit of objects (the .NET Framework), you also need to
master a programming language such as C#.

Beginning ASP.NET 2.0 in C# 2005 assumes you want to master ASP.NET, starting from
the basics. Using this book, you'll build your knowledge until you understand the
concepts, techniques, and best practices for writing sophisticated web applications. The
journey is long, but it’s also satisfying. At the end of the day, you'll find that ASP.NET
allows you to tackle challenges that are simply out of reach on many other platforms.
You'll also become part of the fast-growing ASP.NET developer community.

About This Book

This book explores ASP.NET, which is a core part of Microsoft’s .NET Framework. The
.NET Framework is not a single application—it’s actually a collection of technologies
bundled into one marketing term. The .NET Framework includes languages such as

C# and VB .NET, an engine for hosting programmable web pages and web services
(ASP.NET), a model for interacting with databases (ADO.NET), and a class library stocked
with tools for everything from writing files to reading XML. To master ASP.NET, you need
to learn about each of these ingredients.

This book covers all these topics from the ground up. As a result, you'll find yourself
learning many techniques that will interest any .NET developer, even those who create
Windows applications. For example, you'll learn about component-based programming,
you'll discover structured error handling, and you'll see how to access files, XML, and rela-
tional databases. You'll also learn the key topics you need for web programming, such as

XXix

XXX

INTRODUCTION

state management, web controls, and web services. By the end of this book, you’ll be ready
to create your own rich web applications and make them available over the Internet.

Note This book has a single goal: to be as relentlessly practical as possible. | take special care not to leave
you hanging in the places where other ASP.NET books abandon their readers. For example, when encoun-
tering a new technology, you'll not only learn how it works but also why (and when) you should use it. | also
highlight common questions and best practices with tip boxes and sidebars at every step of the way. Finally,
if a topic is covered in this book, it's covered right. This means you won’t learn how to perform a task without
learning about potential drawbacks and the problems you might run into—and how you can safeguard your-
self with real-world code.

Who Should Read This Book

This book is aimed at anyone who wants to create dynamic websites with ASP.NET.
Ideally, you have experience with a previous version of a programming language such as
C or Java. If not, you should be familiar with basic programming concepts (loops, condi-
tional structures, arrays, and so on), whether you've learned them in Java, C, Pascal,
Turing, or a completely different programming language. This is the only requirement for
reading this book. Understanding HTML helps, but it’s not required. ASP.NET works at a
higher level, allowing you to deal with full-featured web controls instead of raw HTML.
You also don’t need any knowledge of XML, because Chapter 17 covers it in detail.

This book will also appeal to programmers who have some experience with C# and
.NET but haven’t worked with ASP.NET in the past. However, if you've used a previous
version of ASP.NET, you'll probably be more interested in a faster-paced look with a book
such as Pro ASP.NET 2.0 in C# 2005 (Apress, 2005) instead.

Note This book begins with the fundamentals: C# syntax, the basics of object-oriented programming,
and the philosophy of the .NET Framework. If you’ve never worked with C#, you can spend a little more time
with the syntax review in Chapter 2 to pick up everything you need to know. If you aren’t familiar with the ideas
of object-oriented programming, Chapter 3 fills in the blanks with a quick, but comprehensive, review of the
subject. The rest of the book builds on this foundation, from ASP.NET basics to advanced examples that show
the techniques you’ll use in real-world web applications.

What You Need to Use This Book

The main prerequisite for this book is a computer with Visual Studio 2005. You can also use
the scaled-down Visual Studio Web Developer 2005 Express Edition, but you'll run into a

INTRODUCTION

few minor limitations. Most significantly, you can’t use Visual Studio Web Developer to
create class libraries (separate components), a technique discussed in Chapter 24.
(However, you still use the sample code directly in your web projects.)

To run ASP.NET pages, you need Windows 2000 Professional, Windows XP
Professional, Windows 2000 Server, or Windows Server 2003. You also need to install IIS
(Internet Information Services), the web hosting software that’s part of the Windows oper-
ating system, if you want to try web services or test deployment strategies.

Finally, this book includes several examples that use SQL Server. You can use any
version of SQL Server to try these, including SQL Server 2005 Express Edition, which is
included with some versions of Visual Studio. If you use other relational database engines,
the same concepts will apply; you will just need to modify the example code.

Code Samples

To master ASP.NET, you need to experiment with it. One of the best ways to learn ASP.NET
is to try the code samples for this book, examine them, and dive in with your own modifi-
cations. To obtain the sample code, surfto http://www.prosetech.com or the publisher’s
website at http://www.apress.com. You'll also find some links to additional resources and
any updates or errata that affect the book.

Chapter Overview

This book is divided into six parts. Unless you've already had experience with the NET
Framework, the most productive way to read this book is in order from start to finish.
Chapters later in the book sometimes incorporate features that were introduced earlier in
order to create more well-rounded and realistic examples. On the other hand, if you're
already familiar with the .NET platform, C#, and object-oriented programming, you’ll
make short work of the first part of this book.

Part 1: Introducing .NET

You could start coding an ASP.NET application right away by following the examples in
the second part of this book. But to really master ASP.NET, you need to understand a few
fundamental concepts about the .NET Framework.

Chapter 1 sorts through the Microsoft jargon and explains what the .NET Framework
really does and why you need it. Chapter 2 introduces you to C# with a comprehensive
language reference, and Chapter 3 explains the basics of modern object-oriented
programming. Chapter 4 introduces the Visual Studio design environment.

XXXi

XXXii

INTRODUCTION

Part 2: Developing ASP.NET Applications

The second part of this book delves into the heart of ASP.NET programming and intro-
duces its new event-based model. In Chapters 5 and 6, you learn how to program a web
page’s user interface through a layer of objects called server controls.

Next, you'll explore the fundamentals of ASP.NET programming. Chapter 7 presents
different techniques for handling errors, and Chapter 8 introduces some of the most
remarkable ASP.NET controls, such as the input validators. Chapter 9 describes different
strategies for state management. Chapter 10 shows how you can standardize the appear-
ance of an entire website with master pages, and Chapter 11 shows you how to add
navigation to a website. Finally, Chapter 12 walks you through the steps for deploying your
application to a web server. Taken together, these chapters contain all the core concepts
you need to design web pages and create a basic ASP.NET website.

Part 3: Working with Data

Almost all software needs to work with data, and web applications are no exception. In
Chapter 13, you begin exploring the world of data by considering ADO.NET—Microsoft’s
new technology for interacting with relational databases. Chapters 14 and 15 explain how
to use data binding and the advanced ASP.NET data controls to create web pages that inte-
grate attractive, customizable data displays with automatic support for paging, sorting,
and editing.

Chapter 16 moves out of the database world and considers how to interact with files.
Chapter 17 broadens the picture even further and describes how ASP.NET applications
can use the XML support that’s built into the .NET Framework.

Part 4: Website Security

Every public website needs to deal with security—making sure that sensitive data cannot be
accessed by the wrong users. In Chapter 18, you'll start out learning how ASP.NET provides
different authentication systems for dealing with users. You can write your own custom
logic to verify user names and passwords, or you can use existing Windows account infor-
mation on your web server. In Chapter 19, you'll learn about a new model that extends the
basic authentication system with prebuilt security controls and objects that automate
common tasks. If you want, you can even get ASP.NET to create and manage a database with
user information automatically. Finally, Chapter 20 deals with another add-on—the profiles
model that lets you store information for each user automatically, without writing any data-
base code.

INTRODUCTION

Part 5: Web Services

Web services are a new feature of ASP.NET and are one of Microsoft’s most heavily
promoted new technologies. Using web services, you can share pieces of functionality on
your web server with other applications on other computers. Best of all, the whole process
works with open standards such as XML, ensuring that applications written in different
programming languages and running on different operating systems can interact without
a hitch.

Chapter 21 presents an overview of web service technology. Chapter 22 shows how to
create a basic web service and use it in a client. Chapter 23 shows you how to enhance
your web service with caching, security, and transactions.

Part 6: Advanced ASP.NET

This part includes the advanced topics you can use to take your web applications that
extra step. Chapters 24 and 25 cover how you can create reusable components and web
controls for ASP.NET applications. Chapter 26 demonstrates how careful use of caching
can boost the performance of almost any web application. Chapter 27 introduces the new
model for building advanced portal sites, called Web Parts.

Feedback

This book has the ambitious goal of being the best tutorial and reference for ASP.NET.
Toward that end, your comments and suggestions are extremely helpful. You can send
complaints, adulation, and everything in between directly to apress@prosetech.com. I
can’t solve your ASP.NET problems or critique your code, but I do benefit from informa-
tion about what this book did right and wrong (and what it may have done in an utterly
confusing way). You can also send comments about the website support for this book.

XXXiii

PART 1

ir.l.troducing NET

CHAPTER 1

Introducing
the .NET Framework

Microsoft has a time-honored reputation for creating innovative technologies and
wrapping them in buzzwords that confuse everyone. Now that developers are finally
sorting out ActiveX, COM (Component Object Model), and Windows DNA (Distributed
interNet Architecture), Microsoft has a whole new technology called .NET, with a whole
new set of technical jargon. So, exactly what does it all mean?

This chapter examines the technologies that underlie .NET. First, you'll take a quick
look at the history of web development and learn why the .NET Framework was created.
Next, you'll get a high-level overview of the different parts of .NET and see how ASP.NET
fits into the wider world of development. Finally, you’'ll see what new frills and features
ASP.NET adds to the programmer’s toolkit with version 2.0.

The Evolution of Web Development

The Internet began in the late 1960s as an experiment. Its goal was to create a truly
resilient information network—one that could withstand the loss of several computers
without preventing the others from communicating. Driven by potential disaster scenar-
ios (such as nuclear attack), the U.S. Department of Defense provided the initial funding.

The early Internet was mostly limited to educational institutions and defense contrac-
tors. It flourished as a tool for academic collaboration, allowing researchers across the
globe to share information. In the early 1990s, modems were created that could work over
existing phone lines, and the Internet began to open up to commercial users. In 1993, the
first HTML browser was created, and the Internet revolution began.

HTML and HTML Forms

It would be difficult to describe early websites as web applications. Instead, the first gen-
eration of websites often looked more like brochures, consisting mostly of fixed HTML
pages that needed to be updated by hand.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

A basic HTML page is a little like a word-processing document—it contains formatted
content that can be displayed on your computer, but it doesn’t actually do anything. The
following example shows HTML at its simplest, with a document that contains a heading
and single line of text:

<html>
<head>
<title>Sample Web Page</title>
</head>
<body>
<h1>Sample Web Page Heading</h1>
<p>This is a sample web page.</p>
</body>
</html>

An HTML document has two types of content: the text and the tags that tell the browser
how to format it. The tags are easily recognizable, because they occur inside angled brack-
ets (< >). HTML defines tags for different levels of headings, paragraphs, hyperlinks, italic
and bold formatting, horizontal lines, and so on. For example, <h1>Some Text</h1> tells
the browser to display Some Textin the Heading 1 style, which uses a large, bold font.
Figure 1-1 shows the simple HTML page in a browser.

& | Sample Web Page Heading - Microsoft Internet Explorer

File Edit Miew Favorites Tools Help o -] |ﬂ @ o
Address |@ Ci\Documents and SettingsiMatthew\Deskiopisample_web_page_heading.htm e |

Sample Web Page Heading

Thiz 15 a sample web page.

@ Done :) Iy Computer

Figure 1-1. Ordinary HTML: the “brochure” site

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

Tip You don’'t need to master HTML to program ASP.NET web pages, although it’s often useful. For a
quick introduction to HTML, refer to one of the excellent HTML tutorials on the Internet, such as
http://www.w3schools.com/html or http://archive.ncsa.uiuc.edu/General/Internet/
WWW/HTMLPrimer.html.

HTML 2.0 introduced the first seed of web programming with a technology called
HTML forms. HTML forms expand HTML so that it includes not only formatting tags but
also tags for graphical widgets, or controls. These controls include common ingredients
such as drop-down lists, text boxes, and buttons. Here’s a sample web page created with
HTML form controls:

<html>
<body>
<form>
<input type="checkbox">This is choice #1

<input type="checkbox">This is choice #2

<input type="submit" value="Submit">
</form>
</body>
</html>

In an HTML form, all controls are placed between the <form> and </form> tags. The pre-
ceding example includes two check boxes (represented by the <input type="checkbox">
tags) and a button (represented by the <input type="submit"> tag). In a browser, this page
looks like Figure 1-2.

@ Sample Web Page Heading - Microsoft Internet Explorer E]
File Edit Wiew Favorites Tools Help €] O -H R i -?,"
Address |@ CiiDocuments and SettingsiMatthew\Deskioplsample_web_page_heading. htm A |

[This is choice #1
[This is choice #2

@ Done :) Iy Computer

Figure 1-2. An HTML form

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

HTML forms allow web application developers to design standard input pages. When
the user clicks the Submit button on the page shown in Figure 1-2, all the data in the input
controls (in this case, the two check boxes) is patched together into one long string and
sent to the web server. On the server side, a custom application receives and processes the
data. Amazingly enough, the controls that were created for HTML forms more than ten
years ago are still the basic foundation that you'll use to build dynamic ASP.NET pages!
The difference is the type of application that runs on the server side. In the past, when the
user clicked a button on a form page, the information might have been e-mailed to a set
account or sent to an application on the server that used the challenging CGI (Common
Gateway Interface) standard. Today, you'll work with the much more capable and elegant
ASP.NET platform.

Server-Side Programming

To understand why ASP.NET was created, it helps to understand the problems of other
web development technologies. With the original CGI standard, for example, the web
server must launch a completely separate instance of the application for each web
request. If the website is popular, the web server must struggle under the weight of hun-
dreds of separate copies of the application, eventually becoming a victim of its own
success.

To counter this problem, Microsoft developed ISAPI (Internet Server Application
Programming Interface), a higher-level programming model. ISAPI solved the perfor-
mance problem but at the cost of significant complexity. Even after ISAPI developers
master the tricky C++ programming language, they still lie awake at night worrying about
confounding issues such as multithreading. ISAPI programming is definitely not for the
fainthearted.

ISAPI never really went away. Instead, Microsoft used it to build higher-level develop-
ment platforms, such as ASP and ASP.NET. Both of these technologies allow developers
to program dynamic web pages without worrying about the low-level implementation
details. For that reason, both platforms have become incredibly successful. The original
ASP platform garnered a huge audience of nearly one million developers. When ASP.NET
was first released, it generated even more interest as the centerpiece of the .NET Frame-
work. In fact, ASP.NET 1.0 was enthusiastically put to work in dozens of large-scale
commercial websites even when it was only in late beta.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

Despite having similar underpinnings, ASP and ASP.NET are radically different. ASP is
a script-based programming language that requires a thorough understanding of HTML
and a good deal of painful coding. ASP.NET, on the other hand, is an object-oriented pro-
gramming model that lets you put together a web page as easily as you would build a
Windows application. In many respects, it’s easier to learn ASP.NET than to master ASP,
even though ASP.NET is far more powerful.

Tip Don't let the version numbers confuse you. ASP.NET 1.xand ASP.NET 2.0 share the same underlying
plumbing and use essentially the same technology. Although they run on different versions of the .NET Frame-
work, the changes are evolutionary, not revolutionary. This similarity doesn’t hold for classic ASP, which is
based on older Microsoft technologies such as COM.

Client-Side Programming

At the same time that server-side web development was moving through an alphabet
soup of technologies, a new type of programming was gaining popularity. Developers
began to experiment with the different ways they could enhance web pages by embed-
ding multimedia and miniature applets built with JavaScript, DHTML (Dynamic HTML),
and Java code. These client-side technologies don’t involve any server processing.
Instead, the complete application is downloaded to the client browser, which executes it
locally.

The greatest problem with client-side technologies is that they aren’t supported
equally by all browsers and operating systems. One of the reasons that web development
is so popular in the first place is because web applications don’t require setup CDs, down-
loads, and other tedious (and error-prone) deployment steps. Instead, a web application
can be used on any computer that has Internet access. But when developers use client-
side technologies, they encounter a few familiar headaches. Suddenly, cross-browser
compatibility becomes a problem. Developers are forced to test their websites with differ-
ent operating systems and browsers, and they might even need to distribute browser
updates to their clients. In other words, the client-side model sacrifices some of the most
important benefits of web development.

For that reason, ASP.NET is designed as a server-side technology. All ASP.NET code
executes on the server. When the code is finished executing, the user receives an ordinary
HTML page, which can be viewed in any browser. Figure 1-3 shows the difference
between the server-side and client-side model.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

Request a web page

Run
server-side
application

(e]e)

o000 ooo
ooo oo
ooo oo
o000 ooo
o000 ooo
o000 ooo

Return an HTML document

Ll — | = -

Client

A Server-Side Web Application

o000 ooo
0000 ooo

o000 ooo

Server

Request a web page

[]l_

Client

client-side
application

Return an HTML document

Run (with embedded applet)

A Client-Side Web Application

00

oooo ooo

Server

Figure 1-3. Server-side and client-side web applications

These are some other reasons for avoiding client-side programming:

Isolation: Client-side code can’t access server-side resources. For example, a client-

side application has no easy way to read a file or interact with a database on the server
(at least not without running into problems with security and browser compatibility).

Security: End users can view client-side code. And once malicious users understand
how an application works, they can often tamper with it.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

Thin clients: As the Internet continues to evolve, web-enabled devices such as mobile
phones, palmtop computers, and PDAs (personal digital assistants) are appearing.
These devices can communicate with web servers, but they don’t support all the
features of a traditional browser. Thin clients can use server-based web applications,
but they won’t support client-side features such as JavaScript.

In some cases, ASP.NET allows you to combine the best of client-side programming
with server-side programming. For example, the best ASP.NET controls can intelligently
detect the features of the client browser. If the browser supports JavaScript, these controls
will return a web page that incorporates JavaScript for a richer, more responsive user
interface. However, no matter what the capabilities of the browser, your code is always
executed on the server.

The Problems with ASP

The original ASP became more popular than even Microsoft anticipated, and it wasn’t
long before it was being wedged into all sorts of unusual places, including mission-critical
business applications and highly trafficked e-commerce sites. Because ASP hadn’t been
designed with these uses in mind, a number of problems began to appear. What began as
asimple solution for creating interactive web pages became a complicated discipline that
required knowledge in several fields as well as some painful experience.

If you've programmed with ASP before, you may already be familiar with some or all of
these problems:

Scripting limitations: ASP applications rely on the VBScript language, which suffers
from a number of limitations, including poor performance. To overcome these prob-
lems, developers usually need to add separately developed components, which add a
new layer of complexity. In ASP.NET, web pages are designed in a modern .NET
language, not a scripting language.

No application structure: ASP code is inserted directly into a web page along with the
HTML markup. The resulting tangle of code and HTML has nothing in common with
today’s modern, object-oriented languages. As a result, web form code can rarely be
reused or modified without hours of effort.

Headaches with deployment and configuration: If you want to update a component
used in an ASP website, you often need to manually stop and restart the server. This
process just isn’t practical on a live website. Changing configuration options can be
just as ugly. Thankfully, ASP.NET includes a slew of features that allow websites to be
dynamically updated and reconfigured.

State limitations: To ensure optimum performance, the Web is built on stateless proto-
cols, which means as soon as a page is sent to a user, the connection is closed and any
user-specific information is discarded. ASP includes a session state feature that allows

10 CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

programmers to work around this problem. Using session state, a web application can
retain temporary information about each client in server memory. However, session
state is useless in scenarios where a website is hosted by several separate web servers.
In this scenario, a client might access server B while its session information is trapped
on server A and essentially abandoned. ASP.NET corrects this problem by allowing
state to be stored in a central repository, such as a separate process or a database that
all servers can access.

ASP.NET deals with these problems (and many more) by introducing a completely new
model for web pages. This model is based on a remarkable piece of technology called the
.NET Framework.

The .NET Framework

You should understand that the .NET Framework is really a cluster of several
technologies:

The .NET languages: These include C# and VB .NET (Visual Basic .NET), the object-
oriented and modernized successor to Visual Basic 6.0; these languages also include
JScript .NET (a server-side version of JavaScript), J# (a Java clone), and C++ with
Managed Extensions.

The CLR (Common Language Runtime): The CLR is the engine that executes all .NET
programs and provides automatic services for these applications, such as security
checking, memory management, and optimization.

The .NET Framework class library. The class library collects thousands of pieces of
prebuilt functionality that you can “snap in” to your applications. These features are
sometimes organized into technology sets, such as ADO.NET (the technology for
creating database applications) and Windows Forms (the technology for creating
desktop user interfaces).

ASP.NET: This is the engine that hosts web applications and web services, with almost
any feature from the .NET class library. ASP.NET also includes a set of web-specific
services.

Visual Studio: This optional development tool contains a rich set of productivity and
debugging features. The Visual Studio setup CDs (or DVD) include the complete .NET
Framework, so you won’t need to download it separately.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

Sometimes the division between these components isn’t clear. For example, the term
ASP.NETis sometimes used in a narrow sense to refer to the portion of the .NET class
library used to design web pages. On the other hand, ASP.NET also refers to the whole
topic of .NET web applications, which includes .NET languages and many fundamental
pieces of the class library that aren’t web-specific. (That’s generally the way we use the
term in this book. Our exhaustive examination of ASP.NET includes .NET basics, the C#
language, and topics that any .NET developer could use, such as component-based pro-
gramming and database access.)

Figure 1-4 shows the .NET class library and CLR—the two fundamental parts of .NET.

ADO.NET
Data Access

‘ XML ’{ File I/0 }{ (And So On) }

Core System Classes (Threading, Serialization, Reflection,
Collections, and So On)

The .NET Class Library

Web Forms Windows Forms

Compiler and Loader

Code Verification and Optimization

Memory Management and Garbage Collection

Code Access Security

TN NC N N
D A W A

(Other Managed Code Services)

The Common Language Runtime

Figure 1-4. The .NET Framework

1

12

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

C#, VB .NET, and the .NET Languages

This book uses C#, Microsoft’s .NET language of preference. C# is a new language that was
designed for .NET 1.0. It resembles Java and C++ in syntax, but no direct migration path
exists from Java or C++.

The other language that’s commonly used to create ASP.NET applications is Visual
Basic (VB). Somewhat schizophrenically, Microsoft renamed VB twice, calling it VB .NET
when .NET 1.0 hit the scene and renaming it as VB 2005 in .NET 2.0.! These name changes
can’t hide that the .NET versions of VB are dramatically different from the language that
classic VB 6 developers know. In fact, VB .NET is a redesigned language that improves on
traditional VB 6 and breaks compatibility with existing VB 6 applications. Migrating to
VB .NET is a stretch—and a process of discovery for the most seasoned VB developer.

Interestingly, C# and VB .NET are actually far more similar than Java and C# or than
VB 6 and VB .NET. Though the syntax is different, both C# and VB .NET use the .NET
class library and are supported by the CLR. In fact, almost any block of C# code can be
translated, line by line, into an equivalent block of VB .NET code. An occasional language
difference pops up (for example, C# supports a language feature called anonymous meth-
ods, while VB .NET doesn’t), but for the most part, a developer who has learned one .NET
language can move quickly and efficiently to another.

In short, both C# and VB .NET are elegant, modern languages that are ideal for creating
the next generation of web applications.

Note .NET 1.0 introduced completely new languages. However, the changes in the .NET 2.0 languages
are much more subtle. Both G# 2005 and VB 2005 add a few new features, but most parts of these languages
remain unchanged. As a result, any code written according to version 1.0 of the C# language will work iden-
tically with version 2.0. In Chapters 2 and 3, you’ll sort through the syntax of C# and learn the basics of object-
oriented programming. By learning the fundamentals before you start creating simple web pages, you’ll face
less confusion and move more rapidly to advanced topics such as database access and web services.

The Intermediate Language

All the .NET languages are compiled into another lower-level language before the code is
executed. This lower-level language is the MSIL (Microsoft Intermediate Language), or
just IL. The CLR, the engine of .NET, uses only IL code. Because all .NET languages are
designed based on IL, they all have profound similarities. This is the reason that the C#
and VB .NET languages provide essentially the same features and performance. In fact,

1. This chapter uses VB.NET to refer to the .NET versions of the VB language (either VB .NET 1.x or
VB 2005).

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

the languages are so compatible that a web page written with C# can use a VB .NET com-
ponent in the same way it uses a C# component, and vice versa.

The .NET Framework formalizes this compatibility with something called the CLS
(Common Language Specification). Essentially, the CLS is a contract that, if respected,
guarantees that a component written in one .NET language can be used in all the others.
One part of the CLS is the CTS (common type system), which defines data types such as
strings, numbers, and arrays that are shared in all .NET languages. The CLS also defines
object-oriented ingredients such as classes, methods, events, and quite a bit more. For the
most part, .NET developers don’t need to think about how the CLS works, even though
they rely on it every day.

Figure 1-5 shows how the .NET languages are compiled to IL. Every EXE or DLL file
that you build with a .NET language contains IL code. This is the file you deploy to other
computers.

Source Code in S Code in C# Source Code in Another
VB .NET ource tode In .NET Language
Y Y Y
4 N [N N\
VB .NET Compiler C# Compiler Appropriate
(vbc.exe) (csc.exe) Compiler
- AN /O J

Y

DLL or EXE File in IL
(Intermediate Language)
Code

The Common
Language
Runtime

|
J

JIT (Just-in-Time)
Compiler

\f/

Native Machine
Code

/—¢_\

Execute

|

Figure 1-5. Language compilation in .NET

13

14

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

The CLR runs only IL code, which means it has no idea which .NET language you orig-
inally used. Notice, however, that the CLR actually performs another compilation step—it
takes the IL code and transforms it to native machine language code that’s appropriate for
the current platform. This step occurs when the application is launched, just before the
code is actually executed. In an ASP.NET application, these machine-specific files are
cached while the web application is running so that they can be reused, ensuring opti-
mum performance.

Note You might wonder why .NET compilers don’t compile straight to machine code. The reason is that
the machine code depends on several factors, including the CPU. For example, if you create machine code for
a computer with an Intel processor, the compiler may be able to use Hyper-Threading to produce enhanced
code. This machine-specific version isn’t suitable for deployment to other computers, because no guarantee
exists that they’re using the same processor.

Other .NET Languages

C# and VB aren’t the only choices for ASP.NET development. Developers can also use J#
(alanguage with Java-like syntax). You can even use a .NET language provided by a third-
party developer, such as a .NET version of Eiffel or even COBOL. This increasing range of
language choices is possible thanks to the CLS, which defines basic requirements and
standards that allow other companies to write languages that can be compiled to IL.

Although you can use any .NET language to create an ASP.NET web application, some
of them do not provide the same level of design support in Visual Studio, and most
ASP.NET developers use C# or VB .NET. For more information about third-party .NET
languages, check out the website http://www.dotnetlanguages.net.

The Common Language Runtime

The CLR is the engine that supports all the .NET languages. Many modern languages use
runtimes. In VB 6, the runtime logic is contained in a DLL file named msvbvm60.dIlL In
C++, many applications link to a file named mscrt40.dll to gain common functionality.
These runtimes may provide libraries used by the language, or they may have the addi-
tional responsibility of executing the code (as with Java).

Runtimes are nothing new, but the CLR represents a radical departure from Microsoft’s
previous strategy. For starters, the CLR and .NET Framework are much larger and more
ambitious than the VB 6 or C++ runtime. The CLR also provides a whole set of related ser-
vices such as code verification, optimization, and garbage collection.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

Note The CLR s the reason that some developers have accused .NET of being a Java clone. The claim is
fairly silly. It's true that .NET is quite similar to Java in key respects (both use a special managed environment
and provide features through a rich class library), but it’s also true that every programming language “steals”
from and improves on previous programming languages. This includes Java, which adopted parts of the
C/C++ language and syntax when it was created. Of course, in many other aspects .NET differs just as radi-
cally from Java as it does from VBScript.

All .NET code runs inside the CLR. This is true whether you're running a Windows
application or a web service. For example, when a client requests an ASP.NET web page,
the ASP.NET service runs inside the CLR environment, executes your code, and creates a
final HTML page to send to the client.

The implications of the CLR are wide-ranging:

Deep language integration: C# and VB .NET, like all .NET languages, compile to IL. In
other words, the CLR makes no distinction between different languages—in fact, it has
no way of knowing what language was used to create an executable. This is far more
than mere language compatibility; it’s language integration.

Side-by-side execution: The CLR also has the ability to load more than one version of a
component at a time. In other words, you can update a component many times, and
the correct version will be loaded and used for each application. As a side effect,
multiple versions of the .NET Framework can be installed, meaning that you're able to
upgrade to new versions of ASP.NET without replacing the current version or needing
to rewrite your applications.

Fewer errors: Whole categories of errors are impossible with the CLR. For example, the
CLR prevents many memory mistakes that are possible with lower-level languages
such as C++.

Along with these truly revolutionary benefits, the CLR has some potential drawbacks.
Here are three issues that are often raised by new developers but aren’t always answered:

Performance: A typical ASP.NET application is much faster than a comparable ASP
application, because ASP.NET code is compiled natively. However, other .NET appli-
cations probably won’t match the blinding speed of well-written C++ code, because
the CLR imposes some additional overhead. Generally, this is a factor only in a few
performance-critical high-workload applications (such as real-time games). With
high-volume web applications, the potential bottlenecks are rarely processor-related
but are usually tied to the speed of an external resource such as a database or the web
server’s file system. With ASP.NET caching and some well-written database code, you
can ensure excellent performance for any web application.

15

16

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

Code transparency. IL is much easier to disassemble, meaning that if you distribute a
compiled application or component, other programmers may have an easier time
determining how your code works. This isn’t much of an issue for ASP.NET applica-
tions, which aren’t distributed but are hosted on a secure web server.

Questionable cross-platform support. No one is entirely sure whether .NET will be
adopted for use on other operating systems and platforms. Ambitious projects such as
Mono (a free implementation of .NET on Linux, Unix, and Windows) are currently
underway (see http://www.go-mono.com). However, .NET will probably never have the
wide reach of a language such as Java because it incorporates too many different
platform-specific and operating system-specific technologies and features.

Tip Aithough implementations of .NET are available for other platforms, they aren’t supported by Microsoft,
and they provide only a subset of the total range of features. The general consensus is that these implementa-
tions aren’t ideal for mission-critical business systems.

The .NET Class Library

The .NET class library is a giant repository of classes that provide prefabricated function-
ality for everything from reading an XML file to sending an e-mail message. If you've had
any exposure to Java, you may already be familiar with the idea of a class library. However,
the .NET class library is more ambitious and comprehensive than just about any other
programming framework. Any .NET language can use the .NET class library’s features by
interacting with the right objects. This helps encourage consistency among different . NET
languages and removes the need to install numerous components on your computer or
web server.

Some parts of the class library include features you'll never need to use in web applica-
tions (such as the classes used to create desktop applications with the Windows inter-
face). Other parts of the class library are targeted directly at web development, such as
those used for web services and web pages. Still more classes can be used in various pro-
gramming scenarios and aren’t specific to web or Windows development. These include
the base set of classes that define common variable types and the classes for data access,
to name just a few.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

You'll explore the .NET Framework throughout this book. In the meantime, here are
some general characteristics of the .NET Framework:

Open standards: Microsoft currently provides programming tools that allow you to
work with many open standards, such as XML (Extensible Markup Language). In .NET,
however, many of these standards are “baked in” to the framework. For example,
ADO.NET (Microsoft’s data access technology) uses XML natively, behind the scenes.
Similarly, web services work automatically through XML and HTTP (Hypertext
Transfer Protocol). This deep integration of open standards makes cross-platform
work much easier.

Emphasis on infrastructure: Microsoft’s philosophy is that it will provide the tedious
infrastructure so that application developers need only to write business-specific code.
For example, the .NET Framework automatically handles files, databases, and transac-
tions. You just add the logic needed for your specific application.

Performance and scalability. The .NET Framework emphasizes distributed and
Internet applications. Technologies such as ADO.NET are designed from the ground
up to be scalable even when used by hundreds or thousands of simultaneous users.

Visual Studio

The last part of .NET is the optional Visual Studio development tool, which provides arich
environment where you can rapidly create advanced applications. Some of the features of
Visual Studio include the following:

Page design: You can create an attractive page with drag-and-drop ease using Visual
Studio’s integrated web form designer. You don’t need to understand HTML.

Automatic error detection: You could save hours of work when Visual Studio detects
and reports an error before you run your application. Potential problems are under-
lined, just like the “spell-as-you-go” feature found in many word processors.

Debugging tools: Visual Studio retains its legendary debugging tools, which allow you
to watch your code in action and track the contents of variables. And you can test web
applications just as easily as any other application type, because Visual Studio has a
built-in web server that works just for debugging.

IntelliSense: Visual Studio provides statement completion for recognized objects and
automatically lists information such as function parameters in helpful tooltips.

17

18

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

You don’t need to use Visual Studio to create web applications. In fact, you might be
tempted to use the freely downloadable .NET Framework and a simple text editor to
create ASP.NET web pages and web services. However, in doing so you'll multiply your
work, and you'll have a much harder time debugging, organizing, and maintaining your
code. Chapter 4 provides a comprehensive look at the latest version of Visual Studio—
Visual Studio 2005.

.NET 2.0

ASP.NET is a resoundingly successful platform. Thousands of websites used it while it was
still in early beta, and today more than 50,000 public web servers rely on it every day.2 As
aresult of its dramatic rise, ASP.NET websites overtook JSP (Java Server Pages) websites
in a single year.

With .NET version 2.0, Microsoft aims to continue its success by refining and enhanc-
ing ASP.NET. The good news is that Microsoft hasn’t removed features, replaced
functionality, or reversed direction. Instead, almost all the changes add higher-level fea-
tures that can make your programming much more productive.

Note Officially, ASP.NET 2.0 is backward compatible with ASP.NET 1.0. In reality, 100 percent backward
compatibility is impossible, because correcting bugs and inconsistencies in the language can change how
existing code works. Microsoft maintains a list of the breaking changes (most of which are obscure) at
http://www.gotdotnet.com/team/changeinfo/Backwards1.1to2.0. However, you're unlikely to
ever run into a problem when migrating an ASP.NET 1.x project to ASP.NET 2.0. It’s much more likely that
you'll find some cases where the old way of solving a problem still works, but ASP.NET 2.0 introduces a much
better approach. In these cases, it’s up to you whether to defer the change or try to reimplement your web
application to take advantage of the new features.

The following sections introduce some of the most important changes in the different
parts of the .NET Framework.

C# 2.0

C# adds several new language features in version 2.0. Some of these are exotic features
that only a language aficionado will love, while others are more generally useful. All of
them are fairly technical, and you’ll need to sort through the language overview in
Chapter 2 before you're ready to tackle them.

2. All numbers come from the Internet research firm Netcraft. See http://www.netcraft.com.

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

The new features include the following:

Partial classes: Partial classes allow you to split a C# class into two or more source code
files. This feature is primarily useful for hiding messy details you don’t need to see.
Visual Studio uses partial classes in some project types to tuck automatically generated
code out of sight.

Generics: Generics allow you to create classes that are flexible enough to work with
different class types but still support strong type checking. For example, you could
code a collection class using generics that can store any type of object. When you
create an instance of the collection, you “lock it in” to the class of your choice so that
it can store only a single type of data. The important part in this example is that the
locking in happens when you use the collection class, not when you code it.

Anonymous methods: Anonymous methods allow you to define a block of code on the
fly, inside another method. You can use this technique to quickly hook up an event
handler.

Iterators: Iterators give you an easy way to create classes that support enumeration,
which means you can loop through the values they contain using the C# foreach
statement.

Chapter 3 describes partial classes and generics. Anonymous methods and iterators
are more specialized and aren’t described at all in this book (although you can learn more
about both language features by reading the article at http://www.ondotnet. com/pub/a/
dotnet/2004/04/05/csharpwhidbeypti.html).

ASP.NET 2.0

With ASP.NET 2.0, Microsoft set a bold goal—to help web developers dramatically reduce
the amount of code they need to write. To accomplish this, ASP.NET 2.0 introduces new
features for security, personalization, and data display. But instead of changing the exist-
ing features, ASP.NET 2.0 adds new, higher-level features that are built on top of the
existing infrastructure.

For the most part, this book won’t distinguish between the features that are new in
ASP.NET 2.0 and those that have existed since ASP.NET 1.0. However, here are highlights
of some of the new features:

Navigation: ASP.NET has a new higher-level model for creating site maps that describe
your website. Once you create a site map, you can use it with new navigation controls
to let users move comfortably around your website (see Chapter 11).

Master pages: Need to implement a consistent look across multiple pages? With master
pages, you can define a template and reuse it effortlessly. On a similar note, ASP.NET
themes let you define a standardized set of appearance characteristics for controls,

19

20

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

which you can apply across your website for a consistent look. Both features appear
in Chapter 10.

Data providers: Tired of managing the retrieval, format, and display of your data? With
the new data provider model, you can extract information from a database and control
howit’s displayed without writing a single line of code. ASP.NET 2.0 also adds new data
controls that are designed to show information with much less hassle (either in a grid
or in a browser view that shows a single record at a time). You'll learn more in Part 3.

Membership and profiles: ASP.NET adds a handful of new controls for managing
security, allowing users to log in, register, and retrieve passwords without needing any
custom code. Instead, you use the higher-level membership classes that ASP.NET
provides (see Chapter 19). Profiles offer a similar high-level approach to help you store
and retrieve user-specific information in your database, without writing any database
code (see Chapter 20).

Portals: One common type of web application is the portal, which centralizes different
information using separate panes on a single web page. Although you could create a
portal website in ASP.NET 1.x, you needed to do it by hand. In ASP.NET 2.0, a new Web
Parts feature makes life dramatically easier (see Chapter 27).

Administration: To configure an application in ASP.NET 1.x, you needed to edit a
configuration file by hand. Although this process wasn’t too difficult, ASP.NET 2.0
streamlines it with the WAT (Website Administration Tool), which works through a
web page interface. You'll be introduced to the WAT in Chapter 5.

And of course, ASP.NET 2.0 also contains bug fixes, performance improvements, and a
slew of minor enhancements you'll learn about throughout the book.

Visual Studio 2005

Microsoft provided two separate design tools for creating web applications with ASP.NET
1.x—the full-featured Visual Studio .NET and the free Web Matrix. Professional developers
strongly favored Visual Studio .NET, but Web Matrix offered a few innovative features of its
own. Because Web Matrix included its own scaled-down web server, programmers could
create and test web applications without needing to worry about configuring virtual direc-
tories on their computer using IIS (Internet Information Services).

With .NET 2.0, Web Matrix disappears, but Visual Studio steals some of its best fea-
tures, including the integrated web server, which lets you get up and running with a test
website in no time.

Another welcome change in Visual Studio 2005 is the support for different coding
models. While Visual Studio .NET 2003 locked developers into one approach, Visual
Studio 2005 supports a range of different coding models, making it a flexible, all-purpose
design tool. That means you can choose to put your HTML tags and event handling code

CHAPTER 1 INTRODUCING THE .NET FRAMEWORK

in the same file or in separate files without compromising your ability to use Visual Studio
and benefit from helpful features such as IntelliSense. You'll learn about this distinction
in Chapter 5.

Visual Studio 2005 is available in several editions. The Standard Edition has all the fea-
tures you need to build any type of application (Windows or web). The Professional
Edition and the Team Edition increase the cost and pile on more tools and frills (which
aren’t discussed in this book). For example, they incorporate features for managing
source code that’s edited by multiple people on a development team and running auto-
mated tests.

The scaled-down Visual Web Developer 2005 Express Edition is much cheaper than
any other Visual Studio edition, but it also has a few significant limitations. It gives you
full support for developing web applications, but it doesn’t support any other type of
application. This means you can’t use it to develop separate components for use in your
applications or to develop Windows applications that interact with web services. How-
ever, rest assured that Visual Web Developer is a bona fide version of Visual Studio, with a
similar set of features and development interface.

The Last Word

This chapter presented a high-level overview that gave you your first taste of ASP.NET and
the .NET Framework. You also looked at how web development has evolved, from the
basic HTML forms standard to the latest changes in .NET 2.0.

In the next chapter, you'll get a comprehensive overview of the C# language.

21

CHAPTER 2

Learning the G# Language

Before you can create an ASP.NET application, you need to choose a .NET language in
which to program it. If you're an ASP or VB developer, the natural choice is VB 2005. If
you're a longtime Java programmer or old-hand C coder, or you just want to learn the
official language of .NET, C# 2005 will suit you best.

This chapter presents an overview of the C# language. You'll learn about the data types
you can use, the operations you can perform, and the code you'll need to define functions,
loops, and conditional logic. This chapter assumes you've programmed before and you're
already familiar with most of these concepts—you just need to see how they’re imple-
mented in C#.

If you've programmed with a similar language such as Java, you might find that the most
beneficial way to use this chapter is to browse through it without reading every section.
This approach will give you a general overview of the C# language. You can then return to
this chapter later as a reference when needed. But remember, though you can program an
ASP.NET application without mastering all the language details, this deep knowledge is
often what separates the casual programmer from the legendary programming guru.

Note The examples in this chapter show individual lines and code snippets. You won’t actually be able
to use these code snippets in an application until you've learned about objects and .NET types. But don’t
despair—the next chapter builds on this information, fills in the gaps, and presents an ASP.NET example
for you to try.

The .NET Languages

The .NET Framework 2.0 ships with three core languages that are commonly used for
building ASP.NET applications: C#, VB, and J#. These languages are, to a large degree,
functionally equivalent. Microsoft has worked hard to eliminate language conflicts in the
.NET Framework. These battles slow down adoption, distract from the core framework
features, and make it difficult for the developer community to solve problems together

and share solutions. According to Microsoft, choosing to program in VB instead of C# is 23

24

CHAPTER 2 LEARNING THE C# LANGUAGE

just a lifestyle choice and won'’t affect the performance, interoperability, feature set,
or development time of your applications. Surprisingly, this ambitious claim is essen-
tially true.

.NET also allows other third-party developers to release languages that are just as
feature rich as C# or VB. These languages (which already include Eiffel, Pascal, Python,
and even COBOL) “snap in” to the .NET Framework effortlessly. In fact, if you want to
install another .NET language, all you need to do is copy the compiler to your computer
and add a line to register it in the machine.config configuration file (which is found in a
directory like c:\Windows\Microsoft. NET\Framework\v2.0.40607\Config). Typically, a
setup program would perform these steps for you automatically. Once installed, the new
compiler can transform your code creations into a sequence of IL (Intermediate Lan-
guage) instructions, just like the VB and C# compilers do with VB and C# code.

IL is the only language that the CLR (Common Language Runtime) recognizes. When
you create the code for an ASP.NET web form, it’s changed into IL using the C# compiler
(csc.exe), the VB compiler (vbc.exe), or the J# compiler (vjc.exe). You can perform the
compilation manually or let ASP.NET handle it automatically when a web page is
requested, as you'll learn in Chapter 5.

C# Language Basics

New C# programmers are sometimes intimidated by the quirky syntax of the language,
which includes special characters such as semicolons (;), curly braces {}, and backward
slashes (\). Fortunately, once you get accustomed to C#, these details will quickly melt
into the background. In the following sections, you'll learn about four general principles
you need to know about C# before you learn any other concepts.

Case Sensitivity

Some languages are case-sensitive, while others are not. Java, C, and C# are all examples
of case-sensitive languages. VB .NET is not. This difference can frustrate former VB pro-
grammers who don’t realize that keywords, variables, and functions must be entered with
the proper case. For example, if you try to create a conditional statement by entering If
instead of if; your code will not be recognized, and the compiler will flag it with an error
when you try to build your application.

C# also has a definite preference for lowercase words. Keywords—such as if, for,
foreach, while, typeof, and so on—are always written in lowercase letters. When you
define your own variables, it makes sense to follow the conventions used by other C#
programmers and the .NET Framework class library. That means you should give private
variables names that start with a lowercase letter and give public variables names that

CHAPTER 2 LEARNING THE C# LANGUAGE

start with an initial capital letter. For example, you might name a private variable
MyNumber in VB and myNumber in C#. Of course, you don’t need to follow this style
as long as you make sure you use the same capitalization consistently.

Note If you're designing code that other developers might see (for example, you're creating components
that you want to sell to other companies), coding standards are particularly important. The MSDN Help has
information about coding standards, and you can also get an excellent summary of best practices in a white
paper by Juval Lowy at http://www.idesign.net.

Commenting

Comments are descriptive text that is ignored by the compiler. C# provides two basic
types of comments. The first type is the single-line comment. In this case, the comment
starts with two slashes and continues for the entire current line. Optionally, C# program-
mers can also use multiple-line comments using the /* and */ comment brackets. This
trick is often used to quickly comment out an entire block of code. This way the code
won’t be executed, but it will still remain in your source code file if you need to refer to it
or use it later:

// A C# comment.
/¥ A multiline
C# comment. */

C# also includes an XML-based commenting syntax that you can use to describe your
code in a standardized way. With XML comments, you use special tags that indicate
whether your comment applies to a class, method, parameter, and so on. Here’s an
example of a comment that provides a summary for an entire application:

/// <summary>

/// This application provides web pages
/// for my e-commerce site.

/// </summary>

XML comments always start with three slashes. The benefit of XML-based comments
is that automated tools (including Visual Studio) can extract the comments from your
code and use them to build help references and other types of documentation. For more
information about XML comments, you can refer to an excellent MSDN article at
http://msdn.microsoft.com/msdnmag/issues/02/06/XMLC. And if you're new to XML
syntax in general, you'll learn about it in detail in Chapter 17.

25

26

CHAPTER 2 LEARNING THE C# LANGUAGE

Line Termination

C# uses a semicolon () as a line-termination character. Every line of C# code must end
with this semicolon, except when you're defining a block structure such as a method, a
conditional statement, or a looping construct. By omitting this semicolon, you can easily
split a line of code over multiple physical lines.

The following code snippet demonstrates four equivalent ways to perform the same
operation (adding three numbers together):

// A code statement split over two lines.
myValue = myValuel + myValue2 +
myValue3;

// A code statement split over three lines.
myValue = myValuel +

myValue2 +

myValue3;

// A code statement on a single line.
myValue = myValuel + myValue2 + myValue3;

// Two code statements in a row.
myValue = myValuel + myValue2;
myValue = myValue + myValue3;

Asyou can see in this example, the line-termination character gives you a wide range
of freedom to split your line in whatever way you want. The general rule of thumb is to
make your code as readable as possible. Thus, if you have a long line, split it so it’s easier
to read. On the other hand, if you have a complex code statement that performs several
operations at once, you can split the line or separate your logic into multiple code state-
ments to make it clearer.

Block Structures

The C#, Java, and C languages all rely heavily on curly braces—parentheses with a little
more attitude: {}. You can find the curly braces to the right of most keyboards (next to the
P key); they share a key with the square brackets: [].

Curly braces group multiple code statements together. Typically, the reason you'll
want to group code statements together is because you want them to be repeated in a
loop, executed conditionally, or grouped into a function. You'll see all these techniques in

CHAPTER 2 LEARNING THE C# LANGUAGE

this chapter. But in each case, the curly braces play the same role, which makes C#
simpler and more concise than other languages that need a specialized syntax for each
type of block structure:

{

// Code statements go here.

}

Variables and Data Types

Aswith all programming languages, you keep track of data in C# using variables. Variables
can store numbers, text, dates, and times, and they can even point to full-fledged objects.

When you declare a variable, you give it a name, and you specify the type of data it will
store. To declare a local variable, you start the line with the data type, followed by the
name you want to use. A final semicolon ends the statement:

// Create an integer variable named errorCode.

int errorCode;

// Create a string variable named myName.
string myName;

Note Remember, in C# the variables name and Name aren’t equivalent! To confuse matters even more,
C# programmers sometimes use this fact to their advantage—by using multiple variables that have the same
name but with different capitalization. Avoid this technique unless you have a good reason for using it.

Every .NET language uses the same variable data types. Different languages may
provide slightly different names (for example, a VB Integer is the same as a C# int), but the
CLR makes no distinction—in fact, they are just two different names for the same base
data type. This design allows for deep language integration. Because languages share the
same core data types, you can easily use objects written in one .NET language in an appli-
cation written in another .NET language. No data type conversions are required.

Note The reason all .NET languages have the same data types is because they all adhere to the CTS
(common type system), a Microsoft-designed ECMA standard that sets out the ground rules that all .NET
languages must follow when dealing with data.

27

CHAPTER 2 LEARNING THE C# LANGUAGE

To create this common data type system, Microsoft needed to iron out many of the
inconsistencies that existed between VBScript, VB 6, C++, and other languages. The solu-
tion was to create a set of basic data types, which are provided in the .NET class library.
Table 2-1 lists these core data types.

Table 2-1. Common Data Types

Class Library Name VB Name GC#Name Contains

Byte Byte byte An integer from 0 to 255.

Int16 Short short An integer from —32,768 to 32,767.

Int32 Integer int An integer from —2,147,483,648 to 2,147,483,647.

Int64 Long long An integer from about -9.2e18 to 9.2e18.

Single Single float A single-precision floating point number from
approximately —3.4e38 to 3.4e38.

Double Double double A double-precision floating point number from
approximately —1.8e308 to 1.8e308.

Decimal Decimal decimal A 128-bit fixed-point fractional number that
supports up to 28 significant digits.

Char Char char A single 16-bit Unicode character.

String String string A variable-length series of Unicode characters.

Boolean Boolean bool A true or false value.

DateTime Date * Represents any date and time from 12:00:00 AM,

January 1 of the year 1 in the Gregorian calendar,
to 11:59:59 PM, December 31 of the year 9999.
Time values can resolve values to 100 nanosecond
increments. Internally, this data type is stored as a
64-bit integer.

TimeSpan * * Represents a period of time, as in ten seconds or
three days. The smallest possible interval is 1 tick
(100 nanoseconds).

Object Object object The ultimate base class of all .NET types. Can

contain any data type or object.

* If the language does not provide an alias for a given type, you can just use the .NET class name.

You can also define a variable by using the type name from the .NET class library. This
approach produces identical variables. It’s also a requirement when the data type doesn’t
have an alias built into the language. For example, you can rewrite the earlier example
that used C# data type names with this code snippet that uses the class library names:

System.Int32 errorCode;
System.String myName;

CHAPTER 2 LEARNING THE C# LANGUAGE

This code snippet uses fully qualified type names that indicate that the Int32 type
is found in the System namespace (along with all the most fundamental types). In
Chapter 3, you'll learn about types and namespaces in more detail.

Assignment and Initializers

Once you've created your variable, you canfreely assign values to them, as long as these
values have the correct data type. Here’s the code that shows this two-step process:

// Define variables.
int errorCode;
string myName;

// Assign values.
errorCode = 10;
myName = "Matthew";

You can also assign a value to a variable in the same line that you create it. This
example compresses four lines of code into two:

int errorCode = 10;
string myName = "Matthew";

C# safeguards you from errors by restricting you from using uninitialized variables.
This means the following code will not succeed:

int number; // Number is uninitialized.
number = number + 1; // Error.

The proper way to write this code is to explicitly initialize the number variable to 0
before using it:

int number = 0; // Number now contains 0.
number = number + 1; // Number now contains 1.

C# also deals strictly with data types. For example, the following code statement won’t
work as written:

decimal myDecimal = 14.5;

The problem is that the literal 14.5 is automatically interpreted as a double, and you
can’t convert a double to a decimal without using casting syntax, which is described later
in this chapter. To get around this problem, C# defines a few special characters that you

29

30 CHAPTER 2 LEARNING THE C# LANGUAGE

can append to literal values to indicate their data type so that no conversion will be
required. These are as follows:

e M (decimal)
¢ D (double)
¢ F (float)

* L (long)

For example, you can rewrite the earlier example using the decimal indicator
as follows:

decimal myDecimal = 14.5M;

Strings and Escaped Characters

C# treats text a little differently than other languages such as VB. It interprets any embed-
ded backslash (\) as the start of a special character escape sequence. For example, \n
means add a new line (carriage return). The most useful character literals are as follows:

¢ \" (double quote)

¢ \n (newline)

¢ \t (horizontal tab)
* \\ (backward slash)

You can also insert a special character based on its hex code using the syntax \x123.
This inserts a single character with hex value 123.

WHAT’S IN A NAME? NOT THE DATA TYPE!

You'll notice that the preceding examples don’t use variable prefixes. Most C and VB programmers are in the
habit of adding a few characters to the start of a variable name to indicate its data type. In .NET, this practice
is discouraged, because data types can be used in a much more flexible range of ways without any problem,
and most variables hold references to full objects anyway. In this book, variable prefixes aren’t used, except
for web controls, in which it helps to distinguish lists, text boxes, buttons, and other common user interface
elements. In your own programs, you should follow a consistent (typically companywide) standard that may
or may not adopt a system of variable prefixes.

CHAPTER 2 LEARNING THE C# LANGUAGE

Note that in order to specify the actual backslash character (for example, in a directory
name), you require two slashes. Here’s an example:

// A C# variable holding the
// c:\MyApp\MyFiles path.
path = "c:\\MyApp\\MyFiles";

Alternatively, you can turn off C# escaping by preceding a string with an @ symbol, as
shown here:

path = @"c:\MyApp\MyFiles";

Arrays

Arrays allow you to store a series of values that have the same data type. Each individual
value in the array is accessed using one or more index numbers. It’s often convenient to
picture arrays as lists of data (if the array has one dimension) or grids of data (if the array
has two dimensions). Typically, arrays are laid out contiguously in memory.

All arrays start at a fixed lower bound of 0. This rule has no exceptions. When you create
an array in C#, you specify the number of elements. Because counting starts at 0, the
highest index is actually one less than the number of elements. (In other words, if you
have three elements, the highest index is 2.)

// Create an array with four strings (from index 0 to index 3).
// You need to initialize the array with the

// new keyword in order to use it.

string[] stringArray = new string[4];

// Create a 2x4 grid array (with a total of eight integers).
int[,] intArray = new int[2, 4];

By default, if your array includes simple data types, they are all initialized to default
values (0 or false), depending on whether you are using some type of number or a Boolean
variable. You can also fill an array with data at the same time that you create it. In this
case, you don’t need to explicitly specify the number of elements, because .NET can
determine it automatically:

// Create an array with four strings, one for each number from 1 to 4.
String[] StringArIay - {"1", "2", II3|I, Il4ll};
The same technique works for multidimensional arrays, except that two sets of curly

brackets are required:

// Create a 4x2 array (a grid with four rows and two columns).
int[)] i”tAHay = {{1) 2}: {31 4}) {51 6}) {7) 8}})

31

32 CHAPTER 2 LEARNING THE C# LANGUAGE

Figure 2-1 shows what this array looks like in memory.

1 2 <——— This is element (0, 1)
3 4
Four Rows <
5 6
7 8
N
Y

Two Columns

Figure 2-1. A sample array of integers

To access an element in an array, you specify the corresponding index number in
square brackets: []. Array indices are always zero-based. That means that myArray(0]
accesses the first cell in a one-dimensional array, myArray[1] accesses the second cell,
and so on:

// Access the value in row 0 (first row), column 1 (second column).
int element;
element = intArray[0, 1]; // Element is now set to 2.

The ArrayList

C# arrays do not support redimensioning. This means that once you create an array, you
can’t change its size. Instead, you would need to create a new array with the new size and
copy values from the old array to the new, which would be a tedious process. However, if
you need a dynamic arraylike list, you can use one of the collection classes provided to all
.NET languages through the .NET class library. One such class is the ArrayList, which
always allows dynamic resizing. Here’s a snippet of C# code that uses an ArrayList:

// Create the ArraylList. It's an object, not an array,
// so the syntax is slightly different.
Arraylist dynamiclist = new ArraylList();

CHAPTER 2 LEARNING THE C# LANGUAGE

// Add several strings to the list.

// The Arraylist is not strongly typed, so you can add any data type.
dynamicList.Add("one");

dynamiclList.Add("two");

dynamicList.Add("three");

// Retrieve the first string. Notice that the object must be converted to a
// string, because there's no way for .NET to be certain what it is.
string item = Convert.ToString(dynamicList[0]);

You'll learn more about the ArrayList and other collections in Chapter 3.

Tip In many cases, it’s easier to dodge counting issues and use a full-fledged collection rather than an
array. Collections are generally better suited to modern object-oriented programming and are used exten-
sively in ASP.NET. The .NET class library provides many types of collection classes, including simple
collections, sorted lists, key-indexed lists (dictionaries), and queues. You'll see examples of collections
throughout this book.

Enumerations

An enumeration is a group of related constants, each of which is given a descriptive name.
Every enumerated value corresponds to a preset integer. In your code, however, you can
refer to an enumerated value by name, which makes your code clearer and helps prevent
errors. For example, it’s much more straightforward to set the border of a label to the enu-
merated value BorderStyle.Dashed rather than the obscure numeric constant 3. In this
case, Dashed is a value in the BorderStyle enumeration, and it represents the number 3.

Note Just to keep life interesting, the word enumeration actually has more than one meaning. As
described in this section, enumerations are sets of constant values. However, programmers often talk about
the process of enumerating, which means to loop, or iterate, over a collection. For example, it's common to
talk about enumerating over all the characters of a string (which means looping through the string and exam-
ining each character in a separate pass).

33

34

CHAPTER 2 LEARNING THE C# LANGUAGE

Here’s an example of an enumeration that defines different types of users:

// Define an enumeration called UserType with three possible values.
enum UserType

{
Admin,
Guest,
Invalid
}

Now you can use the UserType enumeration as a special data type that is restricted to
one of three possible values. You assign or compare the enumerated value using the dot
notation shown in the following example:

// Create a new value and set it equal to the UserType.Admin constant.
UserType newUserType = UserType.Admin;

Internally, enumerations are maintained as numbers. In the preceding example, 0
is automatically assigned to Admin, 1 to Guest, and 2 to Invalid. You can set a number
directly in an enumeration variable, although this can lead to an undetected error if you
use a number that doesn’t correspond to one of the defined values.

In some scenarios, you might want to control what numbers are used for various values
in an enumeration. This technique is typically used when the number has some specific
meaning or corresponds to some other piece of information. For example, the following
code defines an enumeration that represents the error code returned by a legacy
component:

enum ErrorCode

{
NoResponse = 166,
TooBusy = 167,
Pass = 0

}

Now you can use the ErrorCode enumeration, which was defined earlier, with a func-
tion that returns an integer representing an error condition, as shown here:

ErrorCode err;

err = DoSomething();
if (err == ErrorCode.Pass)

{

// Operation succeeded.

CHAPTER 2 LEARNING THE C# LANGUAGE

Clearly, enumerations create more readable code. They also simplify coding, because
once you type in the enumeration name (ErrorCode) and add the dot (.), Visual Studio will
pop up a list of possible values using IntelliSense.

Tip Enumerations are widely used in .NET. You won’t need to create your own enumerations to use in
ASP.NET applications, unless you're designing your own components. However, the concept of enumerated
values is extremely important, because the .NET class library uses it extensively. For example, you set colors,
border styles, alignment, and various other web control styles using enumerations provided in the .NET
class library.

Variable Operations

You can use all the standard types of variable operations in C#. When working with
numbers, you can use various math symbols, as listed in Table 2-2. C# follows the conven-
tional order of operations, performing exponentiation first, followed by multiplication
and division and then addition and subtraction. You can also control order by grouping
subexpressions with parentheses:

int number;

number = 4 + 2 * 3;
// Number will be 10.

number = (4 + 2) * 3;
// Number will be 18.

Table 2-2. Arithmetic Operations

Operator Description Example
+ Addition 1+1=2.

- Subtraction (and to indicate negative numbers) 5-2=3.

* Multiplication 2*5=10.
/ Division 5/2=25.
% Gets the remainder left after integer division 7%3=1.

When dealing with strings, you can use the addition operator (+) to join two strings:

// Join three strings together.
myName = firstName + " " + lastName;

35

36

CHAPTER 2 LEARNING THE C# LANGUAGE

In addition, C# also provides special shorthand assignment operators. Here are a few
examples:

// Add 10 to myValue. This is the same as myValue = myValue + 10;
myValue += 10;

// Multiple myValue by 3. This is the same as myValue = myValue * 3;
myValue *= 3;

// Divide myValue by 12. This is the same as myValue = myValue / 12;
myValue /= 12;

Advanced Math

In the past, every language has had its own set of keywords for common math operations
such as rounding and trigonometry. In .NET languages, many of these keywords remain.
However, you can also use a centralized Math class that’s part of the .NET Framework.
This has the pleasant side effect of ensuring that the code you use to perform mathemat-
ical operations can easily be translated into equivalent statements in any .NET language
with minimal fuss.

To use the math operations, you invoke the methods of the System.Math class. These
methods are static, which means they are always available and ready to use. (The next
chapter explores the difference between static and instance members in more detail.)

The following code snippet shows some sample calculations that you can perform with
the Math class:

int myValue;

myValue = Math.Sqrt(81); // myValue = 9

myValue = Math.Round(42.889, 2); // myValue = 42.89

myValue = Math.Abs(-10); // myValue = 10

myValue = Math.lLog(24.212); // myValue = 3.18.. (and so on)
myValue = Math.PI; // myValue = 3.14..

The features of the Math class are too numerous to list here in their entirety. The pre-
ceding examples show some common numeric operations. For more information about
the trigonometric and logarithmic functions that are available, refer to the MSDN Help
reference for the Math class.

Type Conversions

Converting information from one data type to another is a fairly common programming
task. For example, you might retrieve text input for a user that contains the number you

CHAPTER 2 LEARNING THE C# LANGUAGE 37

want to use for a calculation. Or, you might need to take a calculated value and transform
it into text you can display in a web page.

Conversions are of two types: widening and narrowing. Widening conversions always
succeed. For example, you can always convert a number into a string, or you can convert
a 32-bit integer into a 64-bit integer. You won’t need any special code:

int mySmallValue;
long mylLargeValue;

mySmallValue = Int32.MaxValue;

// This always succeeds. No matter how large mySmallValue is,
// it can be contained in mylLargeValue.
mylLargeValue = mySmallValue;

On the other hand, narrowing conversions may or may not succeed, depending on the
data. If you're converting a 32-bit integer to a 16-bit integer, you could encounter an error
if the 32-bit number is larger than the maximum value that can be stored in the 16-bit data
type. All narrowing conversions must be performed explicitly. C# uses an elegant method
for explicit type conversion. To convert a variable, you simply need to specify the type in
parentheses before the expression you're converting.

The following code shows how to change a 32-bit integer to a 16-bit integer:

int count32 = 1000;
short count16;

// Convert the 32-bit integer to a 16-bit integer.
// If count32 is large, this could cause a problem.
count16 = (short)count32;

If you don’t use an explicit cast when you attempt to perform a narrowing conversion,
you'll receive an error when you try to compile your code. However, even if you perform
an explicit conversion, you could still end up with a problem. For example, consider the
code shown here, which causes an overflow:

int mySmallValue;
long mylLargeValue;

mylLargeValue = Int32.MaxValue;
mylLargeValue++;

// This will appear to succeed, but your data will be incorrect
// because mySmallValue cannot hold a value this large.
mySmallValue = (int)mylLargeValue;

38

CHAPTER 2 LEARNING THE C# LANGUAGE

The .NET languages differ in how they handle this problem. In VB, you'll always receive
an error that you must intercept and respond to. In C#, however, you'll simply wind up with
incorrect data in mySmallValue. To avoid this problem, you should either check that your
data is not too large before you attempt a conversion (which is always a good idea) or use the
checked block. The checked block enables overflow checking for a portion of code. If an
overflow occurs, you'll automatically receive an error, just like you would in VB:

checked
{

// This will cause an exception to be thrown.
mySmallvalue = (int)mylargeValue;

Tip Usually, you won't use the checked block, because it’s inefficient. The checked blocked catches the
problem (preventing a data error), but it throws an exception, which you need to handle using error handling
code, as explained in Chapter 7. Qverall, it’s easier just to perform your own checks with any potentially
invalid numbers before you attempt an operation. However, the checked block /s handy in one situation—
debugging. That way, you can catch unexpected errors while you're still testing your application and resolve
them immediately.

In C#, you can’t use casting to convert numbers to strings, or vice versa. In this case, the
data isn’t just being moved from one variable to another—it needs to be translated to a
completely different format. Thankfully, .NET has a number of solutions for performing
advanced conversions. One option is to use the static methods of the Convert class, which
support many common data types such as strings, dates, and numbers:

int count;
string countString = "10";

// Convert the string "10" to the numeric value 10.
count = Convert.ToInt32(countString);

// Convert the numeric value 10 into the string "10".
countString = Convert.ToString(count);

The second step (turning a number into a string) will always work. The first step (turn-
ing a string into a number) won’t work if the string contains letters or other non-numeric
characters, in which case an error will occur. Chapter 7 discusses error handling.

CHAPTER 2 LEARNING THE C# LANGUAGE

The Convert class is a good all-purpose solution, but you’ll also find other static
methods that can do the work, if you dig around in the .NET class library. The following
code uses the static Int32.Parse() method to perform the same task:

int count;
string countString = "10";

// Convert the string "10" to the numeric value 10.
count = Int32.Parse(countString);

You'll also find that you can use object methods to perform some conversions a little
more elegantly. The next section demonstrates this approach with the ToString() method.

Object-Based Manipulation

.NET is object-oriented to the core. In fact, even ordinary variables are really full-fledged
objects in disguise. This means that common data types have the built-in smarts to
handle basic operations (such as counting the number of letters in a string). Even better,
it means you can manipulate strings, dates, and numbers in the same way in C# and in VB.
This wouldn’t be true if developers used special keywords that were built into the C# or
VB language.

As an example, every type in the .NET class library includes a ToString() method. The
default implementation of this method returns the class name. In simple variables, a
more useful result is returned: the string representation of the given variable. The follow-
ing code snippet demonstrates how to use the ToString() method with an integer:

string myString;
int myInteger = 100;

// Convert a number to a string. myString will have the contents "100".
myString = myInteger.ToString();

To understand this example, you need to remember that all int variables are based on
the Int32 class in the .NET class library. The ToString() method is built into the Int32 class,
so it’s available when you use an integer in any language.

The next few sections explore the object-oriented underpinnings of the .NET data
types in more detail.

39

40

CHAPTER 2 LEARNING THE C# LANGUAGE

The String Class

One of the best examples of how class members can replace built-in functions is found
with strings. In the past, every language has defined its own specialized functions for
string manipulation. In .NET, however, you use the methods of the String class, which
ensures consistency between all .NET languages.

The following code snippet shows several ways to manipulate a string using its object
nature:

string myString = "This is a test string "5

myString = myString.Trim(); // = "This is a test string"
myString = myString.Substring(0, 4); // = "This"

myString = myString.ToUpper(); // = "THIS"

myString = myString.Replace("IS", "AT"); // = "THAT"

int length = myString.Length; /1 =4

The first few statements use built-in methods, such as Trim(), Substring(), ToUpper(),
and Replace(). These methods generate new strings, and each of these statements replaces
the current myString with the new string object. The final statement uses a built-in Length
property, which returns an integer that represents the number of letters in the string.

Tip Amethod is just a function or procedure that’s hardwired into an object. A property is similar to a vari-
able—it’s a piece of data that's associated with an object. You'll learn more about methods and properties in
the next chapter.

Note that the Substring() method requires a starting offset and a character length.
Strings use zero-based counting. This means that the first letter is in position 0, the
second letter is in position 1, and so on. You'll find this standard of zero-based counting
throughout the .NET Framework for the sake of consistency. You've already seen it at
work with arrays.

You can even use the string methods in succession in a single (rather ugly) line:

myString = myString.Trim.SubString(0, 4).ToUpper().Replace("IS", "AT");

Or, to make life more interesting, you can use the string methods on string literals just
as easily as string variables:

myString = "hello".ToUpper(); // Sets myString to "HELLO"

CHAPTER 2 LEARNING THE C# LANGUAGE

Table 2-3 lists some useful members of the System.String class.

Table 2-3. Useful String Members*

Member

Description

Length

ToUpper() and ToLower()
Trim(), TrimEnd(), and TrimStart()

PadLeft() and PadRight()

Insert()

Remove()

Replace()

Substring()

StartsWith() and EndsWith()

IndexOf() and LastIndexOf()

Split()

Join()

Returns the number of characters in the string (as an
integer).

Returns a copy of the string with all the characters
changed to uppercase or lowercase characters.

Removes spaces or some other characters from either (or
both) ends of a string.

Adds the specified character to either side of a string, the
number of times you indicate. For example, PadLeft(3, " ")
adds three spaces to the left side.

Puts another string inside a string at a specified (zero-
based) index position. For example, Insert(1, "pre") adds
the string pre after the first character of the current string.

Removes a specified number of strings from a specified
position. For example, Remove(0, 1) removes the first
character.

Replaces a specified substring with another string. For
example, Replace("a", "b") changes all a characters in a
string into b characters.

Extracts a portion of a string of the specified length at the
specified location (as a new string). For example,
Substring(0, 2) retrieves the first two characters.

Determines whether a string ends or starts with a
specified substring. For example, StartsWith("pre") will
return either true or false, depending on whether the
string begins with the letters prein lowercase.

Finds the zero-based position of a substring in a string.
This returns only the first match and can start at the end
or beginning. You can also use overloaded versions of
these methods that accept a parameter that specifies the
position to start the search.

Divides a string into an array of substrings delimited by a
specific substring. For example, with Split(".") you could
chop a paragraph into an array of sentence strings.

Fuses an array of strings into a new string. You can also
specify a separator that will be inserted between each
element.

* Remember, all the string methods that appear to change a string actually return a copy of the string that

has the changes.

4

42

CHAPTER 2 LEARNING THE C# LANGUAGE

The DateTime and TimeSpan Classes

The DateTime and TimeSpan data types also have built-in methods and properties. These
class members allow you to perform three useful tasks:

» Extract a part of a DateTime (for example, just the year) or convert a TimeSpan to
a specific representation (such as the total number of days or total number of minutes).

e Easily perform date calculations.

¢ Determine the current date and time and other information (such as the day of the
week or whether the date occurs in a leap year).

For example, the following block of code creates a DateTime object, sets it to the
current date and time, and adds a number of days. It then creates a string that indicates
the year that the new date falls in (for example, 2006):

DateTime myDate = DateTime.Now;
myDate = myDate.AddDays(100);
string dateString = myDate.Year.ToString();

The next example shows how you can use a TimeSpan object to find the total number
of minutes between two DateTime objects:

DateTime myDatel = DateTime.Now;
DateTime myDate2 = DateTime.Now.AddHours(3000);

TimeSpan difference;
difference = myDate2.Subtract(myDate1);

double numberOfMinutes;
numberOfMinutes = difference.TotalMinutes;

These examples give you an idea of the flexibility .NET provides for manipulating date
and time data. Tables 2-4 and 2-5 list some of the more useful built-in features of the
DateTime and TimeSpan objects.

CHAPTER 2 LEARNING THE C# LANGUAGE
Table 2-4. Useful DateTime Members
Member Description
Now Gets the current date and time.
Today Gets the current date and leaves time set to 00:00:00.

Year, Date, Day, Hour, Minute, Second,
and Millisecond

DayOfWeek

Add() and Subtract()

AddYears(), AddMonths(), AddDays(),
AddHours(), AddMinutes(),
AddSeconds(), AddMilliseconds()

DaysInMonth()
IsLeapYear()

ToString()

Returns one part of the DateTime object as an
integer. For example, Month will return 12 for any
day in December.

Returns an enumerated value that indicates the day
of the week for this DateTime, using the DayOfWeek
enumeration. For example, if the date falls on
Sunday, this will return DayOfWeek.Sunday.

Adds or subtracts a TimeSpan from the DateTime.

Adds an integer that represents a number of years,
months, and so on, and returns a new DateTime.
You can use a negative integer to perform a date
subtraction.

Returns the number of days in the month
represented by the current DateTime.

Returns true or false depending on whether the
current DateTime is in a leap year.

Changes the current DateTime to its string
representation. You can also use an overloaded
version of this method that allows you to specify a
parameter with a format string.

Table 2-5. Useful TimeSpan Members

Member

Description

Days, Hours, Minutes, Seconds,
Milliseconds

TotalDays, TotalHours, TotalMinutes,
TotalSeconds, TotalMilliseconds

Add() and Subtract()

FromDays(), FromHours(),
FromMinutes(), FromSeconds(),
FromMilliseconds()

ToString()

Returns one component of the current TimeSpan.
For example, the Hours property can return an
integer from 0 to 23.

Returns the total value of the current TimeSpan,
indicated as a number of days, hours, minutes, and
so on. For example, the TotalDays property might
return a number like 234.342.

Combines TimeSpan objects together.

Allows you to quickly specify a new TimeSpan. For
example, you can use TimeSpan.FromHours(24) to
define a TimeSpan object exactly 24 hours long.

Changes the current TimeSpan to its string
representation. You can also use an overloaded
version of this method that allows you to specify a
parameter with a format string.

43

44

CHAPTER 2 LEARNING THE C# LANGUAGE

The Array Class

Arrays also behave like objects in the new world of .NET. For example, if you want to find
out the size of an array, you can use the Array.GetUpperBound() method in any language.
The following code snippet shows this technique in action:

int[] myArray = {1, 2, 3, 4, 5};
int bound;
// Zero represents the first dimension of an array.

bound = myArray.CGetUpperBound(0); // bound = 4

Arrays also provide a few other useful methods, which allow you to sort them, reverse
them, and search them for a specified element. Table 2-6 lists some useful members of the
System.Array class.

Table 2-6. Useful Array Members

Member Description

Length Returns an integer that represents the total number of elements in all
dimensions of an array. For example, a 3x3 array has a length of 9.

GetLowerBound() Determines the dimensions of an array. As with just about everything in

and .NET, you start counting at zero (which represents the first dimension).

GetUpperBound()

Clear() Empties an array’s contents.

IndexOf() and Searches a one-dimensional array for a specified value and returns the

LastIndexOf() index number. You cannot use this with multidimensional arrays.

Sort() Sorts a one-dimensional array made up of comparable data such as

strings or numbers.

Reverse() Reverses a one-dimensional array so that its elements are backward,
from last to first.

Conditional Structures

In many ways, conditional logic—deciding which action to take based on user input,
external conditions, or other information—is the heart of programming.

All conditional logic starts with a condition: a simple expression that can be evaluated
to true or false. Your code can then make a decision to execute different logic depending
on the outcome of the condition. To build a condition, you can use any combination of
literal values or variables along with logical operators. Table 2-7 lists the basic logical
operators.

CHAPTER 2 LEARNING THE C# LANGUAGE

Table 2-7. Logical Operators

Operator Description

== Equal to

1= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

&& And (evaluates to true only if both expressions are true)

Il Or (evaluates to true if either expression is true)

You can use all the comparison operators with any numeric types. With string data
types, you can use only the equality operators (== and !=). C# doesn’t support other types
of string comparison operators—instead, you need to use the String.Compare() method.
The String. Compare() method deems that a string is “less than” another string if it occurs
earlier in an alphabetic sort. Thus, appleis less than attach. The return value from
String.Compare is 0 if the strings match, 1 if the first supplied string is greater than the
second, and -1 if the first string is less than the second. Here’s an example:

int result;

result = String.Compare("apple", "attach"); // result = -1
result = String.Compare("apple", "all"); // result =1
result = String.Compare("apple", "apple"); // result =0
// Another way to perform string comparisons.

string word = "apple";

result = word.CompareTo("attach"); // result = -1
The if Block

The if block is the powerhouse of conditional logic, able to evaluate any combination of
conditions and deal with multiple and different pieces of data. Here’s an example with an
if block that features two conditions:

if (myNumber > 10)

{
// Do something.

45

46

CHAPTER 2 LEARNING THE C# LANGUAGE

else if (myString == "hello")

{

// Do something.
}
else
{

// Do something.
}

Keep in mind that the if block matches one condition at most. For example, if
myNumber is greater than 10, the first condition will be met. That means the code in
the first conditional block will run, and no other conditions will be evaluated. Whether
myString contains the text hello becomes irrelevant, because that condition will not be
evaluated.

An if block can have any number of conditions. If you test only a single condition, you
don’t need to include any else blocks.

The switch Block

C# also provides a switch block that you can use to evaluate a single variable or expression
for multiple possible values. The only limitation is that the variable you're evaluating
must be an int, bool, char, string, or enumeration. Other data types aren’t supported.

In the following code, each case examines the myNumber variable and tests whether
it's equal to a specific integer:

switch (myNumber)
{
case 1:
// Do something.
break;
case 2:
// Do something.
break;
default:
// Do something.
break;

CHAPTER 2 LEARNING THE C# LANGUAGE

You'll notice that the C# syntax inherits the convention of C programming, which
requires that every conditional block of code is ended by a special break keyword. If you
omit this keyword, the compiler will alert you and refuse to build your application. The
only exception is if you choose to stack multiple case statements directly on top of each
other with no intervening code. This allows you to write one segment of code that handles
more than one case. Here’s an example:

switch (myNumber)
{
case 1:
case 2:
// This code executes if myNumber is 1 or 2.
break;
default:
// Do something.
break;

Unlike the if block, the switch block is limited to evaluating a single piece of informa-
tion at a time. However, it provides a leaner, clearer syntax than the if block for situations
in which you need to test a single variable.

Loop Structures

Loop structures allow you to repeat a segment of code multiple times. C# has three basic
types of loops. You choose the type of loop based on the type of task you need to perform.
Your choices are as follows:

* You can loop a set number of times with a for loop.
* You can loop through all the items in a collection of data using a foreach loop.
* You can loop until a certain condition is met, using a while loop.

The for and foreach blocks are ideal for chewing through sets of data that have known,
fixed sizes. The while block is a more flexible construct that allows you to continue pro-
cessing until a complex condition is met. The while block is often used with repetitive
tasks or calculations that don’t have a set number of iterations.

47

48

CHAPTER 2 LEARNING THE C# LANGUAGE

The for Block

The for block is a basic ingredient in many programs. It allows you to repeat a block of
code a set number of times, using a built-in counter. To create a for loop, you need to
specify a starting value, an ending value, and the amount to increment with each pass.
Here’s one example:

for (int i = 0; i < 10; i++)

{
// This code executes ten times.
System.Diagnostics.Debug.Write(i);

You'll notice that the for loop starts with brackets that indicate three important pieces
of information. The first portion, (int i = 0), creates the counter variable (i) and sets its
initial value (0). The third portion, (i++), increments the counter variable. In this example,
the counter is incremented by 1 after each pass. That means i will be equal to 0 for the first
pass, equal to 1 for the second pass, and so on. The middle portion, (i < 10), specifies the
condition that must be met for the loop to continue. This condition is tested at the start of
every pass through the block. Ifi is greater than or equal to 10, the condition will evaluate
to false, and the loop will end.

If you run this code using a tool such as Visual Studio, it will write the following
numbers in the Debug window:

023456789

It often makes sense to set the counter variable based on the number of items you're
processing. For example, you can use a for loop to step through the elements in an array
by checking the size of the array before you begin. Here’s the code you would use:

string[] stringArray = {"one", "two", "three"};

for (int i = 0; i <= stringArray.CGetUpperBound(0); i++)
{
System.Diagnostics.Debug.Write(stringArray[i] + " ");

This code produces the following output:

one two three

CHAPTER 2 LEARNING THE C# LANGUAGE

BLOCK-LEVEL SCOPE

If you define a variable inside some sort of block structure (such as a loop or a conditional block), the variable
is automatically released when your code exits the block. That means you will no longer be able to access it.
The following code demonstrates the problem:

int tempVariableA;
for (int i = 0; 1 < 10; i++)

{
int tempVariableB;
tempVariableA = 1;
tempVariableB = 1;
}

// You cannot access tempVariableB here.
// However, you can still access tempVariableA.

This change won’t affect many programs. It’s really designed to catch a few more accidental errors. If
you do need to access a variable inside and outside of some type of block structure, just define the variable
before the block starts.

The foreach Block

C# also provides a foreach block that allows you to loop through the items in a set of data.
With a foreach block, you don’t need to create an explicit counter variable. Instead, you
create a variable that represents the type of data for which you're looking. Your code will
then loop until you've had a chance to process each piece of data in the set.

The foreach block is particularly useful for traversing the data in collections and arrays.
For example, the next code segment loops through the items in an array using foreach.
This code is identical to the previous example but is a little simpler:

string[] stringArray = {"one", "two", "three"};

foreach (string element in stringArray)

{
// This code loops three times, with the element variable set to
// "one", then "two", and then "three".
Debug.Write(element + " ");

49

50

CHAPTER 2 LEARNING THE C# LANGUAGE

In this case, the foreach loop examines each item in the array and tries to convert it to
a string. Thus, the foreach loop defines a string variable named element. If you used a dif-
ferent data type, you'd receive an error.

The foreach block has one key limitation: it’s read-only. For example, if you wanted to
loop through an array and change the values in that array at the same time, foreach code
wouldn’t work. Here’s an example of some flawed code:

int[] intArray = {1,2,3};

foreach (int num in intArray)

{

num += 1;

In this case, you would need to fall back on a basic for block with a counter.

The while Block

Finally, C# supports a while structure that tests a specific condition after each pass
through the loop. When this condition evaluates to false, the loop is exited.

Here’s an example that loops ten times. At the beginning of each pass, the code
evaluates whether the counter (i) has exceeded a set value:

int i = 0;
while (i < 10)
{

i+=1;

// This code executes ten times.

You can also place the condition at the end of the loop using the slightly different
do...while syntax. In this case, the condition is tested at the end of each pass through
the loop:

int 1 = 0;
do
{

i+4=1;

// This code executes ten times.

}

while (i < 10);

CHAPTER 2 LEARNING THE C# LANGUAGE

Both of these examples are equivalent, unless the condition you're testing is false to
start. In that case, the while loop will skip the code entirely. The do...while loop, on the
other hand, will always execute the code at least once, because it doesn’t test the condi-
tion until the end.

Tip Sometimes you need to exit a loop in a hurry. In C#, you can use the break statement to exit any
type of loop.

Methods

Methods are the most basic building block you can use to organize your code. Ideally,
each method will perform a distinct, logical task. By breaking your code down into meth-
ods, you not only simplify your life, but you also make it easier to organize your code into
classes and step into the world of object-oriented programming.

The first decision you need to make when creating a method is whether you want to
return any information. A method can return, at most, one piece of data. When you
declare a method in C#, the first part of the declaration specifies the data type of the
return value, and second part indicates the method name. If your method doesn’t return
any information, you should use the void keyword instead of a data type at the beginning
of the declaration.

Here are two examples:

// This method doesn't return any information.
void MyMethodNoData()
{

// Code goes here.

// This method returns an integer.

int MyMethodReturnsData()

{
// As an example, return the number 10.
return 10;

Notice that the method name is always followed by parentheses, even if the method
doesn’t accept parameters. This allows Visual Studio to recognize that it's a method.

51

52

CHAPTER 2 LEARNING THE C# LANGUAGE

In this example, the methods don’t specify their accessibility. This is just a common
C# convention. You're free to add an accessibility keyword (such as public or private)
as follows:

private void MyMethodNoData()
{

// Code goes here.

The accessibility determines how different classes in your code can interact. Private
methods are hidden from view and are available only locally, whereas public methods can
be called by any other class in your application. The next chapter discusses accessibility in
more detail.

Tip If you don’t specify accessibility, the method is always private. The examples in this book always
include accessibility keywords, because they improve clarity. Most programmers agree that it’s a good
approach to explicitly spell out the visibility of your code.

Invoking your methods is straightforward—you simply type the name of method, fol-
lowed by parentheses. If your method returns data, you have the option of using the data
it returns or just ignoring it:

// This call is allowed.
MyMethodNoData();

// This call is allowed.
MyMethodReturnsData();

// This call is allowed.
int myNumber;
myNumber = MyMethodReturnsData();

// This call isn't allowed.
// MyMethodNoData() does not return any information.
myNumber = MyMethodNoData();

CHAPTER 2 LEARNING THE C# LANGUAGE 53

Parameters

Methods can also accept information through parameters. Parameters are declared in a
similar way to variables. By convention, parameter names always begin with a lowercase
letter in any language.

Here’s howyou might create a function that accepts two parameters and returns their sum:

peivate int AddNumbers(int numberi, int number2)

{

return (numberl + number2);

When calling a method, you specify any required parameters in parentheses or use an
empty set of parentheses if no parameters are required:

// Call a method with no parameters.
MyMethodNoData();

// Call a method that requires two integer parameters.
MyMethodNoData2(10, 20);

// Call a method with two integer parameters and an integer return value.
int returnValue = AddNumbers(10, 10);

Method Overloading

C# supports method overloading, which allows you to create more than one function

or method with the same name, but with a different set of parameters. When you call the
method, the CLR automatically chooses the correct version by examining the parameters
you supply.

This technique allows you to collect different versions of several functions together.
For example, you might allow a database search that returns an author name. Rather
than create three functions with different names depending on the criteria, such as
GetNameFromID(), GetNameFromSSN(), and GetNameFromBookTitle(), you could
create three versions of the GetCustomerName() function. Each function would have the
same name but a different signature, meaning it would require different parameters.

This example provides two overloaded versions for the GetProductPrice() method:

private decimal GetProductPrice(int ID)

{
// Code here.

54

CHAPTER 2 LEARNING THE C# LANGUAGE

private decimal GetProductPrice(string name)

{

// Code here.
}
// And so on...

Nowyou canlook up product prices based on the unique product ID or the full product
name, depending on whether you supply an integer or string argument:

decimal price;

// Get price by product ID (the first version).
price = GetProductPrice(1001);

// Get price by product name (the second version).
price = GetProductPrice("DVD Player");

You cannot overload a function with versions that have the same signature—that is, the
same number of parameters and parameter data types—because the CLR will not be able to
distinguish them from each other. When you call an overloaded function, the version that
matches the parameter list you supply is used. If no version matches, an error occurs.

Note .NET uses overloaded methods in most of its classes. This approach allows you to use a flexible
range of parameters while centralizing functionality under common names. Even the methods you’ve seen so
far (such as the String methods for padding or replacing text) have multiple versions that provide similar
features with various options.

Delegates

Delegates allow you to create a variable that “points” to a method. You can use this vari-
able at any time to invoke the method. Delegates help you write flexible code that can be
reused in many situations. They're also the basis for events, an important .NET concept
that you'll consider in the next chapter.

The first step when using a delegate is to define its signature. A delegate variable can
point only to a method that matches its specific signature. In other words, it must have the
same return type and the same parameter types. For example, if you have a method that
accepts a single string parameter and another method that accepts two string parameters,
you'll need to use a separate delegate type for each method.

CHAPTER 2 LEARNING THE C# LANGUAGE

DELEGATES ARE THE BASIS OF EVENTS

Wouldn't it be nice to have a delegate that could refer to more than one function at once and invoke
them simultaneously? This would allow the client application to have multiple “listeners” and notify the
listeners all at once when something happens.

In fact, delegates do have this functionality, but you’re more likely to see it in use with .NET events.
Events, which are described in the next chapter, are based on delegates but work at a slightly higher level.
In a typical ASP.NET program, you'll use events extensively, but you'll probably never work directly with
delegates.

To consider how this works in practice, assume your program has the following
function:

private string TranslateEnglishToFrench(string english)

{
// Code goes here.

This function returns a string and accepts a single string argument. With those two
details in mind, you can define a delegate that matches this signature. Here’s how you
would do it:

private delegate string StringFunction(string in);

Notice that the name you choose for the parameters and the name of the delegate
don’t matter. The only requirement is that the data types for the return value and param-
eters match exactly.

Once you've defined a type of delegate, you can create and assign a delegate variable at any
time. Using the StringFunction delegate type, you could create a delegate variable like this:

StringFunction functionReference;

Once you have a delegate variable, the fun begins. Using your delegate variable,
you can point to any method that has the matching signature. In this example, the
StringFunction delegate type requires one string parameter and returns a string.
Thus, you can use the functionReference variable to store a reference to the
TranslateEnglishToFrench() function you saw earlier. Here’s how to do it:

functionReference = TranslateEnglishToFrench;

55

56

CHAPTER 2 LEARNING THE C# LANGUAGE

Note When you assign a delegate in C#, you don’t use brackets after the function name. This indicates
that you are referring to the function, not attempting to execute it. If you added the brackets, the CLR would
attempt to run your function and convert the return value to the delegate type, which wouldn’t work (and
therefore would generate a compile-time error).

Now that you have a delegate variable that references a function, you can invoke the
function through the delegate. To do this, you just use the delegate name as though it
were the function name:

string frenchString;
frenchString = functionReference("Hello");

In the previous code example, the procedure that the functionReference delegate
points to will be invoked with the parameter value "Hello", and the return value will be
stored in the frenchString variable.

The following code shows all these steps—creating a delegate variable, assigning a
method, and calling the method—from start to finish:

// Create a delegate variable.
StringFunction functionReference;

// Store a reference to a matching method in the delegate.
functionReference = TranslateEnglishToFrench;

// Run the method that functionReference points to.
// In this case, it will be TranslateEnglishToFrench().
string frenchString = functionReference("Hello");

The value of delegates is in the extra layer of flexibility they add. It’s not apparent in
this example, because the same piece of code creates the delegate variable and uses
it. However, in a more complex application one method would create the delegate vari-
able, and another method would use it. The benefit in this scenario is that the second
method doesn’t need to know where the delegate points. Instead, it’s flexible enough
to use any method that has the right signature. In the current example, imagine a transla-
tion library that could translate between English and a variety of different languages,
depending on whether the delegate it uses points to TranslateEnglishToFrench(),
TranslateEnglishToSpanish(), TranslateEnglishToGerman(), and so on.

CHAPTER 2 LEARNING THE C# LANGUAGE

The Last Word

It’s impossible to do justice to an entire language in a single chapter. However, if you've
programmed before, you'll find that this chapter provides all the information you need to
get started with the C# language. As you work through the full ASP.NET examples in the
following chapters, you can refer to this chapter to clear up any language issues.

In the next chapter, you'll learn about more important language concepts and the
object-oriented nature of .NET.

57

CHAPTER 3

Types, Objects, and
Namespaces

Object-oriented programming has been a popular buzzword over the last several years.
In fact, one of the few places that object-oriented programming wasntemphasized was in
ordinary ASP pages. With .NET, the story changes considerably. Not only does .NET allow
you to use objects, it demands it. Almost every ingredient you’'ll need to use to create a
web application is, on some level, really a kind of object.

So how much do you need to know about object-oriented programming to write
.NET pages? It depends on whether you want to follow existing examples and cut and
paste code samples or have a deeper understanding of the way .NET works and gain more
control. This book assumes that if you're willing to pick up a thousand-page book, then
you're the type of programmer who excels by understanding how and why things work
the way they do. It also assumes you're interested in some of the advanced ASP.NET pro-
gramming tasks that will require class-based design, such as designing custom controls
(see Chapter 25) and creating your own components (see Chapter 24).

This chapter explains objects from the point of view of the .NET Framework. It won’t
rehash the typical object-oriented theory, because countless excellent programming
books cover the subject. Instead, you'll see the types of objects .NET allows, how they're
constructed, and how they fit into the larger framework of namespaces and assemblies.

The Basics About Classes

As a developer, you've probably already created classes or at least heard about them.
Classes are the code definitions for objects. The nice thing about a class is that you can use
it to create as many objects as you need. For example, you might have a class that repre-
sents an XML file, which can be used to read some data. If you want to access multiple
XML files at once, you can create several instances of your class, as shown in Figure 3-1.
These instances are called objects.

59

60 CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

The XmlFile Class

Create Create Create
SettingsFile1 SettingsFile2 SpecialConfigFile
(an XmlFile Object) (an XmlFile Object) (an XmlFile Object)

Figure 3-1. Classes are used to create objects.

Classes interact with each other with the help of three key ingredients:

¢ Properties: Properties allow you to access an object’s data. Some properties may be
read-only, so they cannot be modified, while others can be changed. For example,
the previous chapter demonstrated how you can use the read-only Length property
of a String object to find out how many letters are in a string.

¢ Methods: Methods allow you to perform an action with an object. Unlike properties,
methods are used for actions that perform a distinct task or may change the object’s
state significantly. For example, to open a connection to a database, you might call
an Open() method in a Connection object.

 Events: Events provide notification that something has happened. If you've ever
programmed an ordinary desktop application in Visual Basic, you know how
controls can fire events to trigger your code. For example, if a user clicks a button,
the Button object fires a Click event, which your code can react to. ASP.NET
controls also provide events.

In addition, classes contain their own code and internal set of private data. Classes
behave like black boxes, which means that when you use an object, you shouldn’t waste
any time wondering how it works or what low-level information it’s using. Instead, you
need to worry only about the public interface of a class, which is the set of properties,

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES 61

methods, and events that are available for you to use. Together, these elements are called
class members.

In ASP.NET, you'll create your own custom classes to represent individual web pages.
In addition, you'll create custom classes if you design separate components. For the most
part, however, you'll be using prebuilt classes from the .NET class library, rather than pro-
gramming your own.

Static Members

One of the tricks about .NET classes is that you really use them in two ways. You can use some
class members without creating an object first. These are called staticmembers, and they're
accessed by class name. For example, you can use the static property DateTime.Now to
retrieve a DateTime object that represents the current date and time. You don’t need to create
aDateTime object first.

On the other hand, the majority of the DateTime members require a valid instance. For
example, you can’t use the AddDays() method or the Hour property without a valid object.
These instance members have no meaning without a live object and some valid data to
draw on.

The following code snippet uses static and instance members:

// Get the current date using a static method.
// Note that you need to use the class name DateTime.
DateTime myDate = DateTime.Now;

// Use an instance method to add a day.
// Note that you need to use the object name myDate.
myDate = myDate.AddDays(1);

// The following code makes no sense.
// It tries to use the instance method AddDays with the class name DateTime!
myDate = DateTime.AddDays(1);

Both properties and methods can be designated as static. Static methods are a major part
of the .NET Framework, and you will use them frequently in this book. Remember, some
classes may consist entirely of static members (such as the Math class shown in the previous
chapter), and some may use only instance members. Other classes, like DateTime, provide
a combination of the two.

The next example, which introduces a basic class, will use only instance members. This
is the most common design and a good starting point.

62

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

A Simple Class
To create a class, you must define it using a special block structure:

public class MyClass
{

// Class code goes here.

}

You can define as many classes as you need in the same file. However, good coding
practices suggest that in most cases you use a single file for each class.

Classes exist in many forms. They may represent an actual thing in the real world
(as they do in most programming textbooks), they may represent some programming
abstraction (such as a rectangle or color structure), or they may just be a convenient way
to group related functionality (like with the Math class). Deciding what a class should rep-
resent and breaking down your code into a group of interrelated classes are part of the art
of programming.

Building a Basic Class

In the next example, you'll see how to construct a .NET class piece by piece. This class will
represent a product from the catalog of an e-commerce company. The Product class
will store product data, and it will include the built-in functionality needed to generate a
block of HTML that displays the product on a web page. When this class is complete,
you'll be able to put it to work with a sample ASP.NET test page.

Once you've defined a class, the first step is to add some basic data. The next example
defines three member variables that store information about the product, namely, its
name, price, and a URL that points to an image file:

public class Product

{
private string name;
private decimal price;
private string imageUrl;
}

Alocal variable exists only until the current procedure ends. On the other hand, a
member variable (or field) is declared as part of a class. It’s available to all the procedures
in the class, and it lives as long as the containing object lives.

When you create a member variable, you need to explicitly set its accessibility. The
accessibility determines whether other parts of your code will be able to read and alter
this variable. For example, if ObjectA contains a private variable, ObjectB will not be able

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

to read or modify it. Only ObjectA will have that ability. On the other hand, if ObjectA has
apublic variable, any other object in your application is free to read and alter the informa-
tion it contains. Local variables don’t support any accessibility keywords, because they
can never be made available to any code beyond the current procedure. Generally, in a
simple ASP.NET application, most of your variables will be private because the majority of
your code will be self-contained in a single web page class. As you start creating separate
components to reuse functionality, however, accessibility becomes much more impor-
tant. Table 3-1 explains the access levels you can use.

Table 3-1. Accessibility Keywords

Keyword Accessibility

public Can be accessed by any other class

private Can be accessed only by code procedures inside the current class

internal Can be accessed by code procedures in any of the classes in the current
assembly (the compiled code file)

protected Can be accessed by code procedures in the current class or by any class
that inherits from this class

protected internal Can be accessed by code procedures in the current application or by any
class that inherits from this class

The accessibility keywords don’t just apply to variables. They also apply to methods,
properties, and events, all of which will be explored in this chapter.

Tip By convention, all the public pieces of your class (the class name, public events, properties and proce-
dures, and so on) should use Pascal case. This means the name starts with an initial capital. (The function
name DoSomething() is one example of Pascal case.) On the other hand, private members can use any case
you want. Usually, private members will adopt camel case. This means the name starts with an initial lower-
case letter. (The variable name mylnformation is one example of camel case.) Some developers begin all
private member names with _ or m_ (for member), although this is purely a matter of convention.

Creating a Live Object

When creating an object, you need to specify the new keyword. The new keyword instan-
tiates the object, which means it creates a copy of the class in memory. If you define an
object but don’tinstantiate it, you'll receive the infamous “null reference” error when you
try to use the object. That’s because the object doesn’t actually exist yet, meaning your
reference points to nothing at all.

63

64

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

The following code snippet creates an object based on the Product class and then
releases it:

Product saleProduct = new Product();

// Optionally you could do this in two steps:
// Product saleProduct;
// saleProduct = new Product();

// Now release the class from memory.
saleProduct = null;

In .NET, you almost never need to use the last line, which releases the object. That’s
because objects are automatically released when the appropriate variable goes out of
scope. Objects are also released when your application ends. In an ASP.NET web page,
your application is given only a few seconds to live. Once the web page is rendered to
HTML, the application ends, and all objects are automatically released.

Tip Just because an object is released doesn’t mean the memory it uses is immediately reclaimed. The
CLR uses a long running service (called garbage collection) that periodically scans for released objects and
reclaims the memory they hold.

In some cases, you will want to define an object variable without using the new key-
word to create it. For example, you might want to assign an instance that already exists to
your object variable. Or you might receive a live object as a return value from a function.
The following code shows one such example:

// Define but don't create the product.
Product saleProduct;

// Call a function that accepts a numeric product ID parameter,
// and returns a product object.
saleProduct = FetchProduct(23);

In these cases, when you aren’t actually creating the class, you shouldn’t use the new
keyword.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Adding Properties

The simple Product class is essentially useless because your code cannot manipulate it.
All its information is private and unreachable. Other classes won’t be able to set or read
this information.

To overcome this limitation, you could make the member variables public. Unfortu-
nately, that approach could lead to problems because it would give other objects free
access to change everything, even allowing them to apply invalid or inconsistent data.
Instead, you need to add a “control panel” through which your code can manipulate
Product objects in a safe way. You do this by adding property accessors.

Accessors usually have two parts. The get accessor allows your code to retrieve data
from the object. The set accessor allows your code to set the object’s data. In some cases,
you might omit one of these parts, such as when you want to create a property that can be
examined but not modified

Accessors are similar to any other type of procedure in that you can write as much
code as you need. For example, your property set accessor could raise an error to alert the
client code of invalid data and prevent the change from being applied. Or, your property
set accessor could change multiple private variables at once, thereby making sure the
object’s internal state remains consistent. In the Product class example, this sophistica-
tion isn’t required. Instead, the property accessors just provide straightforward access to
the private variables.

Property accessors, like any other public piece of a class, should start with an initial
capital. This allows you to give the same name to the property accessor and the under-
lying private variable, because they will have different capitalization, and C# is a case-
sensitive language. (This is one of the rare cases where it’s acceptable to differentiate
between two elements based on capitalization.) Another option would be to precede the
private variable name with an underscore.

public class Product

{
private string name;
private decimal price;
private string imageUrl;

public string Name
{
get
{ return name; }
set
{ name = value; }

65

66

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

public decimal Price

{
get
{ return price; }
set
{ price = value; }
}
public string ImageUrl
{
get
{ return imageUrl; }
set
{ imageUrl = value; }
}

The client can now create and configure the class by using its properties and the famil-
iar dot syntax. For example, if the object is named SaleProduct, you can set the product
name using the SaleProduct.Name property. Here’s an example:

Product saleProduct = new Product();
saleProduct.Name = "Kitchen Garbage";
saleProduct.Price = 49.99M;

saleProduct.ImageUrl = "http://mysite/garbage.png";

You'll notice that the C# example uses an M to indicate that the literal number 49.99
should be interpreted as a decimal value, not a double.

Adding a Basic Method

The current Product class consists entirely of data. This type of class is often useful in an
application. For example, you might use it to send information about a product from one
function to another. However, it's more common to add functionality to your classes
along with the data. This functionality takes the form of methods.

Methods are simply procedures that are built into your class. When a method is called
on an object, your code responds to do something useful, such as return some calculated
data. In this example, we’ll add a GetHtml () method to the Product class. This method will
return a string representing a formatted block of HTML based on the current data in the
Product object. You could then take this block of HTML and place it on a web page to rep-
resent the product:

public class Product

{
// (Variables and properties omitted for clarity.)

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

public string GetHtml()

{
string htmlString;
htmlString = "<h1>" + name + "</hl>
";
htmlString += "<h3>Costs: " + price.ToString() + "</h3>
";
htmlString += "";
return htmlString;
}

All the GetHtml() method does is read the private data and format it in some attractive
way. This really targets the class as a user interface class rather than as a pure data class or
“business object.”

Adding a Constructor

Currently, the Product class has a problem. Ideally, classes should ensure that they are
always in a valid state. However, unless you explicitly set all the appropriate properties,
the Product object won’t correspond to a valid product. This could cause an error if you
try to use a method that relies on some of the data that hasn’t been supplied. To solve this
problem, you need to equip your class with one or more constructors.

A constructor is a method that automatically runs when the class is first created. In C#,
the constructor always has the same name as the name of the class. Unlike a normal
method, the constructor doesn’t define any return type, not even void.

The next code example shows a new version of the Product class. It adds a constructor
that requires the product price and name as arguments:

public class Product

{
// (Additional class code omitted for clarity.)

public Product(string name, decimal price)

{
// These parameters have the same name as the internal variables.
// The "this" keyword refers to the class variables.
// "this" refers to the current instance of the Product class.
this.name = name;
this.price = price;

}

67

68

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Here’s an example of the code you need to create an object based on the new Product
class, using its constructor:

Product saleProduct = new Product("Kitchen Garbage", 49.99M);

The preceding code is much leaner than the code that was required to create and ini-
tialize the previous version of the Product class. With the help of the constructor, you can
create a Product object and configure it with the basic data it needs in a single line.

If you don’t create a constructor, .NET supplies a default public constructor that does
nothing. If you create at least one constructor, .NET will not supply a default constructor.
Thus, in the preceding example, the Product class has exactly one constructor, which is
the one that is explicitly defined in code. To create a Product class, you must use this con-
structor. This restriction prevents a client from creating an object without specifying the
bare minimum amount of data that’s required:

// This will not be allowed, because there is
// no zero-argument constructor.
Product saleProduct = new Product();

Most of the classes you use will have constructors that require parameters. As with
ordinary methods, constructors can be overloaded with multiple versions, each providing
a different set of parameters. When creating an object, you can choose the constructor
that suits you best based on the information that you have available. The .NET Framework
classes use overloaded constructors extensively.

Adding a Basic Event

Classes can also use events to notify your code. To define an event in C#, you must first
create a delegate that defines the signature for the event you're going to use. Then you can
define an event based on that delegate using the event keyword.

As an illustration, the Product class example has been enhanced with a NameChanged
event that occurs whenever the Name is modified through the property procedure.
This event won't fire if code inside the class changes the underlying private name variable
without going through the property procedure:

public class Product

{
// (Additional class code omitted for clarity.)

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

// Define the delegate that represents the event.
public delegate void NameChangedEventHandler();

// Define the event.
public event NameChangedEventHandler NameChanged;

public string Name

{
get
{ return name; }
set

{

name = value;

// Fire the event, provided there is at least one listener.
if (NameChanged != null)

{
NameChanged();

To fire an event, you just call it by name. However, before firing an event, you must
check that at least one subscriber exists by testing whether the event reference is null.
If it isn’t null, it’s safe to fire the event.

It’s quite possible that you'll create dozens of ASP.NET applications without once
defining a custom event. However, you'll be hard-pressed to write a single ASP.NET web
page without handling an event. To handle an event, you first create a subroutine called
an event handler. The event handler contains the code that should be executed when the
event occurs. Then, you connect the event handler to the event.

To handle the Product class, you need to begin by creating an event handler in another
class. The event handler needs to have the same syntax as the event it’s handling. In the
Product example, the event has no parameters, so the event handler would look like the
simple subroutine shown here:

public void ChangeDetected()
{

// This code executes in response to the NameChanged event.

69

70

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

The next step is to hook up the event handler to the event. First, you create a delegate
that points to the event handler method. Then, you attach this delegate to the event using
the += operation:

Product saleProduct = new Product();

// This connects the saleProduct.NameChanged event to an event handling
// procedure called ChangeDetected.

// Note that ChangedDetected needs to match the NameChangedEventHandler
// delegate.

saleProduct.NameChanged += new NameChangedEventHandler(ChangeDetected);

// Now the event will occur in response to this code:
saleProduct.Name = "Kitchen Garbage";

It's worth noting that if you're using Visual Studio, you won’t need to manually hook up
event handlers for web controls at all. Instead, Visual Studio can add the code you need to
connect all the event handlers you create.

ASP.NET uses an event-driven programming model, so you'll soon become used to
writing code that reacts to events. But unless you're creating your own components, you
won’t need to fire your own custom events. For an example where custom events make
sense, refer to Chapter 25, which discusses how you can build your own controls.

Testing the Product Class

To learn a little more about how the Product class works, it helps to create a simple web
page. This web page will create a Product object, get its HTML representation, and then
display it in the web page. To try this example, you'll need to use the three files that are
provided with the online samples in the Chapter03 directory:

e Product.cs: This file contains the code for the Product class. It’s in the Code subdi-
rectory, which allows ASP.NET to compile it automatically (a trick you'll learn more
about in Chapter 5).

¢ Garbage.jpg This is the image that the Product class will use.

* Default.aspx: This file contains the web page code that uses the Product class.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

The easiest way to test this example is to use Visual Studio, because it includes an inte-
grated web server. Without Visual Studio, you would need to create a virtual directory for
this application using IIS, which is much more awkward.

Here are the steps you need to perform the test:

1. Start Visual Studio.
2. Select File » Open » Web Site from the menu.

3. Inthe Open Web Site dialog box, browse to the Chapter03 directory, select it, and
click Open. This loads your project into Visual Studio.

4. Choose Debug » Start Without Debugging to launch the website. Visual Studio will
open a new window with your default browser and navigate to the Default.aspx page.

When the Default.aspx page executes, it creates a new Product object, configures it, and
uses the GetHtml() method. The HTML is written to the web page using the Response. Write()
method. Here’s the code:

<%@ Page Language="CS" %>
<script runat="server">
private void Page Load(object sender, EventArgs e)
{
Product saleProduct = new Product("Kitchen Garbage", 49.99M);
saleProduct.ImageUrl = "garbage.jpg";
Response.Write(saleProduct.GetHtml());
}

</script>

<html>
<head runat="server">
<title>Product Test</title>
</head>
</html>

The <script> block holds a subroutine named Page_Load. This subroutine is triggered
when the page is first created. Once this code is finished, the HTML is sent to the client.
Figure 3-2 shows the web page you'll see.

7

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

a Kitchen Garbage - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz Help |J @ Back - @ - E @ '(h | p Search » a"
J Address I C:A\Documents and Settings'M atthew\Desktophaenerated_page.htm j
.
Kitchen Garbage
Costs: 49.99

=]
@ Done ’_ ’_ ’_ g_ Iy Computer v

Figure 3-2. Output generated by a Product object

Interestingly, the GetHtml() method is that it’s similar to how an ASP.NET web control
works, but on a much cruder level. To use an ASP.NET control, you create an object
(explicitly or implicitly) and configure some properties. Then ASP.NET automatically
creates a web page by examining all these objects and requesting their associated HTML
(by calling a hidden GetHtml() method or by doing something conceptually similar?). It
then sends the completed page to the user. The end result is that you work with objects,
instead of dealing directly with raw HTML code.

When using a web control, you see only the public interface made up of properties,
methods, and events. However, understanding how class code actually works will help
you master advanced development.

Now that you've seen the basics of classes and a demonstration of how you can use a
class, it’s time to introduce a little more theory about .NET objects and revisit the basic
data types introduced in the previous chapter.

1. Actually, the ASPNET engine calls a method named Render() in every web control.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES 73

Value Types and Reference Types

In Chapter 2, you learned how simple data types such as strings and integers are actually
objects created from the class library. This allows some impressive tricks, such as built-in
string handling and date calculation. However, simple data types differ from more com-
plex objects in one important way. Simple data types are value types, while classes are
reference types.

This means a variable for a simple data type contains the actual information you put in
it (such as the number 7). On the other hand, object variables actually store a reference
that points to a location in memory where the full object is stored. In most cases, .NET
masks you from this underlying reality, and in many programming tasks you won’t notice
the difference. However, in three cases you will notice that object variables act a little dif-
ferently than ordinary data types: in assignment operations, in comparison operations,
and when passing parameters.

Assignment Operations

When you assign a simple data variable to another simple data variable, the contents of
the variable are copied:

integerA = integerB; // integerA now has a copy of the contents of integerB.
// There are two duplicate integers in memory.

Objects work a little differently. Copying the entire contents of an object could slow
down an application, particularly if you were performing multiple assignments. With
objects, the default is to just copy the reference in an assignment operation:

objectA = objectB; // objectA and objectB now both point to the same thing.
// There is one object and two ways to access it.

In the preceding example, if you modify objectB by setting a property, objectA will be
automatically affected. In fact, objectA is objectB. To override this behavior, you would
need to manually create a new object and initialize its information to match the existing
object. Some objects provide a Clone() method that allows you to easily copy the object.
One example is the DataSet, which is used to store information from a database.

74

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Equality Testing

A similar distinction between objects and simple data types appears when you compare
two variables. When you compare simple variables, you're comparing the contents:

if (integerA == integerB)
{

// This is true as long as the integers have the same content.

When you compare object variables, you're actually testing whether they’re the
same instance. In other words, you're testing whether the references are pointing to
the same object in memory, not if their contents match:

if (objectA == objectB)

{
// This is true if both objectA and objectB point to the same thing.
// This is false if they are separate, yet identical, objects.

Note This rule has a special exception. When classes override the == operator, they can change what
type of comparison it performs. The only significant example of this technique in .NET is the String class. For
more information, read the sidebar “Would the Real Reference Types Please Stand Up?” later in this chapter.

Passing Parameters by Reference and by Value

You can create three types of procedure parameters. The standard type is pass-by-value.
When you use pass-by-value parameters, the procedure receives a copy of the parameter
data. That means that if the procedure modifies the parameter, this change won'’t affect
the calling code. By default, all parameters are pass-by-value.

The second type of parameter is pass-by-reference. With pass-by-reference, the proce-
dure accesses the parameter value directly. If a procedure changes the value of a pass-by-
reference parameter, the original variable is also modified.

To get a better understanding of the difference, consider the following code, which
shows a procedure that uses a parameter named number. This code uses the ref keyword
to indicate that number should be passed by reference. When the procedure modifies this
parameter (multiplying it by 2), the calling code is also affected:

private void ProcessNumber(ref int number)

{

number *= 2;

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

The following code snippet shows the effect of calling the ProcessNumber procedure.
Note that you need to specify the ref keyword when you define the parameter in the func-
tion and when you call the function. This indicates that you are aware that the parameter
value may change:

int num = 10;
ProcessNumber(ref num); // Once this call completes, Num will be 20.

This behavior is straightforward when you're using value types, such as integers. How-
ever, if you use reference types, such as a Product object or an array, you won't see this
behavior. The reason is because the entire object isn’t passed in the parameter. Instead,
it’s just the reference that’s transmitted. This is much more efficient for large objects (it
saves having to copy a large block of memory), but it doesn’t always lead to the behavior
you expect.

One notable quirk occurs when you use the standard pass-by-value mechanism. In this
case, pass-by-value doesn’t create a copy of the object, but a copy of the reference. This
reference still points to the same in-memory object. This means that if you pass a Product
object to a procedure, for example, the procedure will be able to alter your Product object,
regardless of whether you use pass-by-value or pass-by-reference.

OUTPUT PARAMETERS

C# also supports a third type of parameter: the output parameter. To use an output parameter, precede the
parameter declaration with the keyword out. Output parameters are commonly used as a way to return multi-
ple pieces of information from a single procedure.

When you use output parameters, the calling code can submit an uninitialized variable as a parameter,
which is otherwise forbidden. This approach wouldn’t be appropriate for the ProcessNumber() procedure,
because it reads the submitted parameter value (and then doubles it). If, on the other hand, the procedure used
the parameter just to return information, you could use the out keyword, as shown here:

private void ProcessNumber(int number, out int double, out int triple)
{

double = num * 2;

triple = num * 3;

Remember, output parameters are designed solely for the procedure to return information to your calling
code. In fact, the procedure won’t be allowed to retrieve the value of an out parameter, because it may be
uninitialized. The only action the procedure can take is to set the output parameter.

Here’s an example of how you can call the revamped ProcessNumber() procedure:

int num = 10;
int double, triple;
ProcessNumber(num, out double, out triple);

75

76

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Reviewing .NET Types

So far, the discussion has focused on simple data types and classes. The .NET class library
is actually composed of types, which is a catchall term that includes several objectlike
relatives:

Classes: This is the most common type in .NET Framework. Strings and arrays are two
examples of .NET classes, although you can easily create your own.

Structures: Structures, like classes, can include properties, methods, and events. Unlike
classes, they are value types, which alters the way they behave with assignment and
comparison operations. Structures also lack some of the more advanced class features
(such as inheritance) and are generally simpler and smaller. Integers, dates, and chars
are all structures.

Enumerations: An enumeration defines a set of integer constants with descriptive
names. Enumerations were introduced in the previous chapter.

Deleguates: A delegate is a function pointer that allows you to invoke a procedure indi-
rectly. Delegates are the foundation for .NET event handling and were introduced in
the previous chapter.

Interfaces: They define contracts to which a class must adhere. Interfaces are an
advanced technique of object-oriented programming, and they're useful when stan-
dardizing how objects interact. You'll learn about interfaces with custom control pro-
gramming in Chapter 25.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

WOULD THE REAL REFERENCE TYPES PLEASE STAND UP?

Occasionally, a class can override its behavior to act more like a value type. For example, the String type is a
full-featured class, not a simple value type. (This is required to make strings efficient, because they can con-
tain a variable amount of data.) However, the String type overrides its equality and assignment operations so
that these operations work like those of a simple value type. This makes the String type work in the way that
programmers intuitively expect. Arrays, on the other hand, are reference types through and through. If you
assign one array variable to another, you copy the reference, not the array (although the Array class also pro-
vides a Clone() method that returns a duplicate array to allow true copying).
Table 3-2 sets the record straight and explains a few common types.

Table 3-2. Common Reference and Value Types

Data Type Nature Behavior

Int32, Decimal, Value Type Equality and assignment operations work
Single, Double, with the variable contents, not a reference.
and all other basic

numeric types

DateTime, Value Type Equality and assignment operations work
TimeSpan with the variable contents, not a reference.

Char, Byte, and Value Type
Boolean

String Reference Type

Array Reference Type

Equality and assignment operations work
with the variable contents, not a reference.

Equality and assignment operations appear to
work with the variable contents, not a
reference.

Equality and assignment operations work
with the reference, not the contents.

77

78

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Understanding Namespaces and Assemblies

Whether you realize it at first, every piece of code in .NET exists inside a .NET type
(typically a class). In turn, every type exists inside a namespace. Figure 3-3 shows this
arrangement for your own code and the DateTime class. Keep in mind that this is an
extreme simplification—the System namespace alone is stocked with several hundred
classes. This diagram is designed only to show you the layers of organization.

—{Your Application’s Namespacef— ——4 The System Namespace F—- 5

e A Custom Web)
Page Class

I
I
I
I
:
I
: The DateTime Class
I
I
I
Button Click]|(Page.Load
Procedure Procedure
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Now The
AddDays ()
Property Metzod (Other Namespaces)

(Other Members)

(Other Classes)]

((Other Members) b
\ J

€ A Custom A Custom A
Web Page Web Page

(lass Class)

Figure 3-3. A look at two namespaces

Namespaces can organize all the different types in the class library. Without name-
spaces, these types would all be grouped into a single long and messy list. This sort of
organization is practical for a small set of information, but it would be impractical for the
thousands of types included with .NET.

Many of the chapters in this book introduce you new .NET classes and namespaces.
For example, in the chapters on web controls, you'll learn how to use the objects in the
System.Web.UI namespace. In the chapters about web services, you'll study the types in
the System.Web.Services namespace. For databases, you'll turn to the System.Data
namespace. In fact, you've already learned a little about one namespace: the basic System
namespace that contains all the simple data types explained in the previous chapter.

To continue your exploration after you've finished the book, you'll need to turn to the
MSDN reference, which painstakingly documents the properties, methods, and events of
every class in every namespace (see Figure 3-4). If you have Visual Studio installed, you
can view the MSDN Help by selecting Start » Programs » Microsoft Visual Studio 2005 »
Microsoft Visual Studio 2005 Documentation (the exact path depends on the version of
Visual Studio you've installed). You can find class reference information, grouped by
namespace, under the .NET Development » .NET Framework SDK » Class Library
Reference node.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

@ System Namespace - Microsoft Visual Studio 2005 Documentation - Microsoft Document Explorer

File Edt Wiew Tools window Help
QBack £ [l s A’ @ HowDol ~ Q Search | Index @Cnntents [E]Help Favorites | = (& @ %) ask & Question € LA -

I ~System Namespace - X
Filkered by: URL: ms-help:/fM3 ¥SCC »B0MMS, MSDMN w80/MS. NETDEVYFY, w20, enfcpref 2/htmliN_System.htm -
|-NET Framework V| \MET Frarnework Class Library

Development Tools and Languages A~ System Namespace
=~ .NET Development [Collapse all
~
- HET Framewark SDK The System namespace contains fundamental classes and base classes that define —
“MET Framewark Pragramming 5 | comnmonly-used value and reference data types, events and event handlers, interfaces,
= Class Library Reference attributes, and processing exceptions,
- { Default N 5 A 5
il a“.‘h.‘. amespace) COther classes provide services supporting data type conversion, method parameter
Accessibility manipulation, mathematics, remote and local program invocation, application environment
IEHost Execute rmanagernent, and supervision of managed and unrmanaged applications.
Micrasoft. Aspnet. Snapin
Microsoft,Build, BuildEngine -l Classes
Microsoft. Build. Framework,
MfcrnsnFt.Bu\Id.Tasks Class PG EEED
Microsoft,Build, Tasks, Deployment Boatstrap)
Microsoft,Build, Tasks, Deployment., ManifestU “¢ AccessViolationException The exception that is thrown when there
Microsaft.Euild, Tasks Hosting is an attemnpt to read or write protected
Microsoft. Build Utiities SRSl
M?UDSD&'CLRAdmi” ¢ ActivationContext Identifies the activation context for the
Microsoft.CSharp current application, This class cannot be
Microsoft.IE inherited.
Microsaft, JScript y i 3
Micrasoft JScr\Dt Vea \33 Activator Contains methods to create types of
3 2 [objects locally or remotely, or obtain
Microsoft. SqlServer. Server references to existing remote objects,
Micrasoft. VisualBasic This class cannot be inherited.
Microsoft, VisualBasic. ApplicationServices » i P i hich
? " N g . pp
Microsaft, VisualBasic, Compiler Services @ AppDomsin Represents an application domain, whic
i i iy ! is an isolated environment where
Microsoft. VisualBasic. Devices v applications execute, This class cannot be
T ¥
< | 3 inherited.
iy Contents (| 3Index |[]Help Faverites “g AppDomsinManager Provides a managed equivalent of an v
s s L o et)
Ready

Figure 3-4. The MSDN Class Library reference

Using Namespaces

Often when you write ASP.NET code, you'll just use the namespace that Visual Studio
creates automatically. If, however, you want to organize your code into multiple name-
spaces, you can define the namespace using a simple block structure, as shown here:

namespace MyCompany

{
namespace MyApp

{

public class Product

{
// Code goes here.

In the preceding example, the Product class is in the namespace MyCompany.MyApp.
Code inside this namespace can access the Product class by name. Code outside it needs
to use the fully qualified name, as in MyCompany.MyApp.Product. This ensures that you

79

80

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

can use the components from various third-party developers without worrying about a
name collision. If those developers follow the recommended naming standards, their
classes will always be in a namespace that uses the name of their company and software
product. The fully qualified name of a class will then almost certainly be unique.

Namespaces don’t take an accessibility keyword and can be nested as many layers
deep as you need. Nesting is purely cosmetic—for example, in the previous example, no
special relationship exists between the MyCompany namespace and the MyApp name-
space. In fact, you could create the namespace MyCompany.MyApp without using
nesting at all using this syntax:

namespace MyCompany.MyApp

{
public class Product
{
// Code goes here.
}
}

Unlike a class, you can declare the same namespace in various code files. In fact, more than
one project can even use the same namespace. Namespaces are really nothing more than a
convenient, logical container that helps you organize your classes.

Tip If you're using Visual Studio, all your code will automatically be placed in a projectwide namespace.
By default, this namespace has the same name as your project. For more information, refer to Chapter 4,
which tackles Visual Studio in detail.

Importing Namespaces

Having to type long, fully qualified names is certain to tire your fingers and create overly
verbose code. To tighten code up, it’s standard practice to import the namespaces you
want to use. When you import a namespace, you don’t need to type the fully qualified
name. Instead, you can use the object as though it were defined locally.

To import a namespace, you use the using statement. These statements must appear as
the first lines in your code file, outside of any namespaces or block structures:

using MyCompany.MyApp;
Consider the situation without importing a namespace:

MyCompany .MyApp.Product salesProduct = new MyCompany.MyApp.Product();

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES 81

It’s much more manageable when you import the MyCompany.MyApp namespace.
Once you do, you can use this syntax instead:

Product salesProduct = new Product();

Importing namespaces is really just a convenience. It has no effect on the performance
of your application. In fact, whether you use namespace imports, the compiled IL code
will look the same. That’s because the language compiler will translate your relative class
references into fully qualified class names when it generates an EXE or DLL file.

Assemblies

You might wonder what gives you the ability to use the class library namespacesin a .NET
program. Are they hardwired directly into the language? The truth is that all .NET classes
are contained in assemblies. Assemblies are the physical files that contain compiled code.
Typically, assembly files have the extension .exe if they are stand-alone applications or .dll
if they’re reusable components.

Tip The .dll extension is also used for code that needs to be executed (or hostea) by another type of
program. When your web application is compiled, it’s turned into a DLL file, because your code doesn'’t repre-
sent a stand-alone application. Instead, the ASP.NET engine executes it when a web request is received.

Asstrictrelationship doesn’t exist between assemblies and namespaces. An assembly can
contain multiple namespaces. Conversely, more than one assembly file can contain classes
in the same namespace. Technically, namespaces are a logical way to group classes. Assem-
blies, however, are a physical package for distributing code.

The .NET classes are actually contained in a number of assemblies. For example,
the basic types in the System namespace come from the mscorlib.dll assembly. Many
ASP.NET types are found in the System.Web.dll assembly. In addition, you might want
to use other, third-party assemblies. Often, assemblies and namespaces have the same
names. For example, you'll find the namespace System.Web in the assembly file
System.Web.dll. However, this is a convenience, not a requirement.

When compiling an application, you need to tell the language compiler what assem-
blies the application uses. By default, a wide range of .NET assemblies is automatically
supported by the compiler. (Technically, these default assemblies are defined in a
web.config configuration file that applies settings for the entire computer and is found in
a directory like c:\Windows\Microsoft. NET\Framework\v2.0.40607\Config, depending
on the version of the .NET Framework you have installed.) If you need to use additional
assemblies, you need to define them in a configuration file for your website. Visual Studio

82

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

makes this process seamless, letting you add assembly references to the configuration file
with a couple of quick mouse clicks.

Advanced Class Programming

Part of the art of object-oriented programming is determining class relations. For exam-
ple, you could create a Product object that contains a ProductFamily object or a Car object
that contains four Wheel objects. To create this sort of class relationship, all you need to
do is define the appropriate variable or properties in the class. This type of relationship is
called containment.

For example, the following code shows a ProductCatalog class, which holds an array of
Product objects:

public class ProductCatalog
{

private Product[] products;

// (Other class code goes here.)

In ASP.NET programming, you'll find special classes called collections that have no
purpose other than to group various objects. Some collections also allow you to sort and
retrieve objects using a unique name. In the previous chapter, you saw an example with
the ArrayList, which provides a dynamically resizable array. Here’s how you might use the
ArrayList to modify the ProductCatalog class:

public class ProductCatalog
{

private ArraylList products = new ArraylList();

// (Other class code goes here.)

This approach has benefits and disadvantages. It makes it easier to add and remove
items from the list, but it also removes a useful level of error checking, because the Array-
List supports any type of object. You'll learn more about this issue later in this chapter (in
the “Generics” section).

In addition, classes can have a different type of relationship known as inheritance.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES 83

Inheritance

Inheritance is a form of code reuse. It allows one class to acquire and extend the function-
ality of another class. For example, you could create a class called TaxableProduct that
inherits from Product. The TaxableProduct class would gain all the same methods, prop-
erties, and events of the Product class. You could then add additional members that relate
to taxation:

public class TaxableProduct : Product

{
private decimal taxRate = 1.15M;
public decimal TotalPrice
{
get
{
// The code can access the Price property because it's
// a public part of the base class Product.
// The code cannot access the private price variable, however.
return (Price * taxRate);
}
}
}

This technique appears much more useful than it reallyis. In an ordinary application, most
classes use containment and other relationships instead of inheritance, which can complicate
life needlessly without delivering many benefits. Dan Appleman, a renowned .NET program-
mer, once described inheritance as “the coolest feature you'll almost never use.”

In all honesty, you'll see inheritance at work in ASP.NET in one place. Inheritance
allows you to create a custom class that inherits the features of a class in the .NET class
library. For example, when you create a custom web form, you actually inherit from a
basic Page class to gain the standard set of features. Similarly, when you create a custom
web service, you inherit from the WebService class. You'll see this type of inheritance
throughout the book.

There are many more subtleties of class-based programming with inheritance. For
example, you can override parts of a base class, prevent classes from being inherited, or
create a class that must be used for inheritance and can’t be directly created. However,
these topics aren’t covered in this book, and they aren’t required to build ASP.NET
applications.

84

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Static Members

The beginning of this chapter introduced the idea of static properties and methods, which
can be used without a live object. Static members are often used to provide useful func-
tionality related to an object. The .NET class library uses this technique heavily (as with
the System.Math class explored in the previous chapter).

Static members have a wide variety of possible uses. Sometimes they provide basic
conversions and utility functions that support a class. To create a static property or
method, you just need to use the static keyword right after the accessibility keyword.

The following example shows a TaxableProduct class that contains a static TaxRate
property and private variable. This means there is one copy of the tax rate information,
and it applies to all TaxableProduct objects:

public class TaxableProduct : Product

{
// (Other class code omitted for clarity.)

private static decimal taxRate = 1.15M;

// Now you can call TaxableProduct.TaxRate, even without an object.
public static decimal TaxRate
{

get

{ return taxRate; }

set

{ taxRate = value; }

You can now retrieve the tax rate information directly from the class, without needing
to create an object first:

// Change the TaxRate. This will affect all TotalPrice calculations for any
// TaxableProduct object.
TaxableProduct.TaxRate = 1.24M;

Static data isn’t tied to the lifetime of an object. In fact, it’s available throughout the life
of the entire application. This means static members are the closest thing .NET program-
mers have to global data.

A static member can’t access an instance member. To access a nonstatic member, it
needs an actual instance of your object.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Tip You can create a class that’s entirely composed of static members. Just add the static keyword to the
declaration, as in the following:

public static class TaxableUtil

When you declare a class with the static keyword, you ensure that it can’t be instantiated.

Casting Objects

Objects can be converted with the same syntax that’s used for simple data types. How-
ever, an object can be converted only into three things: itself, an interface that it supports,
or a base class from which it inherits. You can’t convert an object into a string or an inte-
ger. Instead, you will need to call a conversion method, if it’s available, such as ToString()
or Parse().

For example, you could convert a TaxableProduct object into a Product object. You
wouldn’t actually lose any information, but you would no longer be able to access the
TotalPrice property—unless you converted the reference back to a TaxableProduct
object. This underscores an important point: when you convert an object, you don’t
actually change that object. The same object remains floating as a blob of binary data
somewhere in memory. What you change is the way you access that object. In other
words, you don’t change the object; you change the way your code “sees” that object.

For example, if you have a Product variable that references a TaxableProduct object,
your object really is a TaxableProduct object. However, you can use only the properties
and methods that are defined in the Product class. This is one of the subtleties of manip-
ulating objects, and it's demonstrated in the next example.

The following example creates a TaxableProduct object, converts it to a Product
reference, and then checks whether the object can be safely transformed back into a
TaxableProduct (it can). You'll notice that the actual conversion uses the syntax intro-
duced in the previous chapter, where the data type is placed in parentheses before the
variable that you want to convert:

// Define two empty variables (don't use the new keyword).
Product theProduct;
TaxableProduct theTaxableProduct;

// This works, because TaxableProduct derives from Product.
theProduct = new TaxableProduct();

85

86

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

// This will be true.

if (theProduct is TaxableProduct)

{
// Convert the object, and assign to the other variable.
theTaxableProduct = (TaxableProduct)theProduct;

decimal totalPrice;

// This works.
totalPrice = theTaxableProduct.TotalPrice;

// This won't work, even though theTaxableProduct and theProduct are the same
// object. The Product class doesn't provide a TotalPrice property.
totalPrice = theProduct.TotalPrice;

At this point, it might seem that being able to convert objects is a fairly specialized
technique that will be required only when you're using inheritance. This isn’t always true.
Object conversions are also required when you use some particularly flexible classes.

One example is the ArrayList class introduced in the previous chapter. The ArrayList is
designed in such a way that it can store any type of object. To have this ability, it treats all
objects in the same way—as instances of the root System.Object class. (Remember, all
classes in .NET inherit from System.Object at some point, even if this relationship isn’t
explicitly defined in the class code.) The end result is that when you retrieve an object
from an ArrayList collection, you need to cast it from a System.Object to its real type, as
shown here:

// Create the Arraylist.
Arraylist products = new Arraylist();

// Add several Product objects.
products.Add(productl);
products.Add(product2);
products.Add(product3);

// Retrieve the first item, with casting.
Product retrievedProduct = (Product)products[0];

// This works.
Respose.Write(retrievedProduct.GetHtml());

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

// Retrieve the first item, as an object. This doesn't require casting,
// but you won't be able to use any of the Product methods or properties.
Object retrievedObject = products[0];

// This generates a compile error. There is no Object.GetHtml() method.
Respose.Write(retrievedObject.GetHtml());

Asyou can seeg, if you don’t perform the casting, you won't be able to use the methods
and properties of the object you retrieve. You'll find many cases like this in .NET code,
where your code is handed one of several possible object types and it’s up to you to cast
the object to the correct type in order to use its full functionality.

Partial Classes

Partial classes give you the ability to split a single class into more than one source code
(.cs) file. For example, if the Product class became particularly long and intricate, you
might decide to break in into two pieces, as shown here:

// This part is stored in file Producti.cs.
public partial class Product
{

private string name;

private decimal price;

private string imageUrl;

public string Name

{
get
{ return name; }
set
{ name = value; }
}
public decimal Price
{
get
{ return price; }
set

{ price = value; }

87

88 CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

public string ImageUrl

{

get

{ return imageUrl; }
set

{ imageUrl = value; }

public Product(string name, decimal price)

{

// These parameters have the same name as the internal variables.
// The "this" keyword refers to the class variables.

// "this" refers to the current instance of the Product class.
this.name = name;

this.price = price;

// This part is stored in file Product2.cs.
public partial class Product

{

public string GetHtml()

{

Apartial class behaves the same as a normal class. This means every method, property,
and variable you've defined in the class is accessible everywhere, no matter which source
file contains it. When you compile the application, the compiler tracks down each piece
of the Product class and assembles it into a complete unit. It doesn’t matter what you

string htmlString;

htmlString = "<h1>" + name + "</h1>
";

htmlString += "<h3>Costs: " + price.ToString() + "</h3>
";
htmlString += "";

return htmlString;

name the source code files, so long as you keep the class name consistent.

Partial classes don’t offer much in the way of solving programming problems, but they
can be useful if you have extremely large, unwieldy classes. The real purpose of partial
classesin .NET is to hide automatically generated designer code by placing it in a separate
file from your code. Visual Studio uses this technique when you create web pages for a

web application and forms for a Windows application.

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

Generics

Generics are a more subtle and powerful feature than partial classes. Generics allow you
to create classes that are parameterized by type. In other words, you create a class tem-
plate that supports any type. When you instantiate that class, you specify the type you
want to use, and from that point on, your object is “locked in” to the type you chose.

To understand how this works, it’s easiest to consider some of the .NET classes that
support generics. In the previous chapter, you learned how the ArrayList class allows you
to create a dynamically sized collection that expands as you add items and shrinks as you
remove them. The ArrayList has one weakness, however—it supports any type of object.
This makes it extremely flexible, but it also means you can inadvertently run into an error.
For example, imagine you use an ArrayList to track a catalog of products. You intend to
use the ArrayList to store Product objects, but there’s nothing to stop a piece of misbehav-
ing code from inserting strings, integers, or any arbitrary object in the ArrayList. Here’s
an example:

// Create the Arraylist.
Arraylist products = new Arraylist();

// Add several Product objects.
products.Add(producti);
products.Add(product2);
products.Add(product3);

// Notice how you can still add other types to the Arraylist.
products.Add("This string doesn't belong here.");

The solution is a new List collection class. Like the ArrayList, the List class is flexible
enough to store different objects in different scenarios. But because it supports generics,
you can lock it into a specific type whenever you instantiate a List object. To do this, you
specify the class you want to use in angled brackets after the class name, as shown here:

// Create the List for storing Product objects.
List<Product> products = new List<Product>();

Now you can add only Product objects to the collection:

// Add several Product objects.
products.Add(productl);
products.Add(product2);
products.Add(product3);

// This line fails. In fact, it won't even compile.
products.Add("This string can't be inserted.");

89

90

CHAPTER 3 TYPES, OBJECTS, AND NAMESPACES

To figure out whether a class uses generics, look for the angled brackets. For example,
the List class is listed as List<T> in the .NET Framework documentation to emphasize that
it takes one type parameter. You can find this class, and many more collections that use
generics, in the System.Collections.Generics namespace. (The original ArrayList resides
in the System.Collections namespace.)

Note Now that you've seen the advantage of the List class, you might wonder why .NET includes the
ArrayList at all. In truth, the ArrayList is still useful if you really do need to store different types of objects in
one place (which isn’t terribly common). However, the real answer is that generics weren’t implemented in
.NET until version 2.0, so many existing classes don’t use them because of backward compatibility.

You can also create your own classes that are parameterized by type, like the List
collection. Creating classes that use generics is beyond the scope of this book, but you
can find a solid overview at http://www.ondotnet.com/pub/a/dotnet/2004/04/12/
csharpwhidbeypt2.html if you're still curious.

The Last Word

Atits simplest, object-oriented programming is the idea that your code should be organized
into separate classes. If followed carefully, this approach leads to code that’s easier to alter,
enhance, debug, and reuse. Now that you know the basics of object-oriented programming,
you can take a tour of the premier ASP.NET development tool: Visual Studio 2005.

CHAPTER 4

Introducing Visual Studio 2005

Before .NET was released, ASP developers overwhelmingly favored simple text editors
such as Notepad for programming web pages. Other choices were available, but each suf-
fered from its own quirks and limitations. Tools such as Visual InterDev and web classes
for Visual Basic were useful for rapid development, but often they made deployment
more difficult or obscured important features. The standard was a gloves-off approach
of raw HTML with blocks of code inserted wherever necessary.

Visual Studio changes all that. First, it’s extensible and can even work in tandem with
other straight HTML editors such as Microsoft FrontPage or Macromedia Dreamweaver.
Second, it inherits the best features from other code editors, such as the ability to drag and
drop web page interfaces into existence and troubleshoot misbehaving code. In its latest
release, Visual Studio gets even better—by finally allowing developers to create and test
websites without worrying about web server settings.

This chapter provides a lightning-fast tour that shows how to create a web application
in the Visual Studio environment. You'll also learn how IntelliSense can dramatically
reduce the number of errors you'll make and how to use the renowned single-step debug-
ger that lets you look under the hood and “watch” your program in action.

The Promise of Visual Studio

All NET applications are built from plain-text source files. C# code is stored in .cs files and
VB code is stored in .vb files, regardless of whether this code is targeted for the Windows
platform or the Web. Despite this fact, you'll rarely find C# or VB developers creating
Windows applications by hand in a text editor. The process is not only tiring, but it also
opens the door to a host of possible errors that could be easily caught at design time. The
same is true for ASP.NET programmers. Although you can write your web page classes
and code your web page controls manually, you'll spend hours developing and testing
your code.

91

92 CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Visual Studio is an indispensable tool for developers on any platform. It provides
several impressive benefits:

Integrated error checking Visual Studio can detect a wide range of problems, such as
data type conversion errors, missing namespaces or classes, and undefined variables.
Asyou type, errors are detected, underlined, and added to an error list for quick
reference.

The web form designer: To create aweb page in Visual Studio, you simply drag ASP.NET
controls to the appropriate location, resize them, and configure their properties. Visual
Studio does the heavy lifting: automatically creating the underlying .aspx template file
for you with the appropriate tags and attributes and adding the control variables to
your code-behind file.

An integrated web server: To host an ASP.NET web application, you need web server
software such as IIS (Internet Information Services), which waits for web requests and
serves the appropriate pages. Setting up your web server isn’t difficult, but it is incon-
venient. Thanks to the integrated development web server in Visual Studio, you can
run a website directly from the design environment.

Productivity enhancements: Visual Studio makes coding quick and efficient, with a
collapsible code display, automatic statement completion, and color-coded syntax.
You can even create sophisticated macro programs that automate repetitive tasks.

Fine-grained debugging Visual Studio’s integrated debugger allows you to watch code
execution, pause your program at any point, and inspect the contents of any variable.
These debugging tools can save endless headaches when writing complex code
routines.

Easy deployment. When you start an ASP.NET project in Visual Studio, all the files you
need are generated automatically, including a sample web.config configuration file.
When you compile the application, all your page classes are compiled into one DLL for
easy deployment.

Complete extensibility. You can add your own add-ins, controls, and dynamic help
plug-ins to Visual Studio and customize almost every aspect of its appearance and
behavior.

The latest version of Visual Studio is Visual Studio 2005.

Note Almost all the tips and techniques you learn in this chapter will work equally well with the Standard
Edition, Professional Edition, and Team Edition of Visual Studio 2005 as well as Visual Web Developer 2005
Express Edition.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Creating a Website

You start Visual Studio by selecting Start » Programs » Microsoft Visual Studio 2005 »
Microsoft Visual Studio 2005. When the IDE (integrated development environment) first
loads, it shows an initial start page. You can access various user-specific options from this
page and access online information such as recent MSDN articles.

To create your first Visual Studio application, follow these steps:

1. Select File » New Web Site from the Visual Studio menu. The New Web Site dialog
box (shown in Figure 4-1) will appear.

2. Next, you need to choose the type of application. In the New Web Site dialog box,
select the ASPNET Web Site template.

New Web Site

Templates: ||E|

¥isual Studio installed templates

2 2 2 @

ASP.MET Web ASP.MET Web Personal Web Emply Web
Site Service Site Starter Kit Site

My Templates

Search Online
Templates. ..

A blank ASP.NET Web site

Location: |D:'|,C0de'|,WebSitel v| [Erowse, ..,]

Language: Wisual C# N

Ok H Cancel]

Figure 4-1. The New Web Site dialog box

Note Visual Studio supports two types of basic ASP.NET applications: web applications and web service
applications. These applications are actually compiled and executed in the same way. In fact, you can add
web pages to a web service application and web services to an ordinary web application. The only difference
is the files that Visual Studio creates by default. In a web application, you’ll start with one sample web page
in your project. In a web service application, you'll start with a sample web service. Additionally, Visual Studio
includes more sophisticated templates for specific types of sites, with preconfigured pages.

93

94

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

3. Next, you need to choose a location for the website. The location specifies where

the website files will be stored. Typically, you'll choose File System and then use a
folder on the local computer (or a network path). You can type in a directory by
hand in the Location text box and skip straight to step 5. Alternatively, you can click
the Browse button, which shows the Choose Location dialog box (see Figure 4-2).

Choose Location

File System
Select the Folder you want to open, @ X
@ Desktop -~

% {5} My Documents
= :} My Computer
5 3% Floppy (A2

e‘) =g Applications {C:)
wd [=-=g# Documents (D)
FTP Site 503 Code L
% I ADO.NETZ
: = O
Remate Site {3 Chapter0z

I Chapter04
{2 Chapter0s
I Chapteré
I Chapter0?
I Chapter0s
{3 Chapter10
{3 Chapter11
I3 Chapter1z
-7 Chaoter1d

[£3

Folder: | D\ Cade|ASP.NET |

[Open H Cancel]

Figure 4-2. The Choose Location dialog box

. Using the Choose Location dialog box, browse to the directory where you want to

place the website. Often, you'll want to create a new directory for your web appli-
cation. To do this, select the directory where you want to place the subdirectory,
and click the Create New Folder icon (found just above the top-right corner of the
directory tree). Either way, once you've selected your directory, click Open. The
Choose Location dialog box also has options (represented by the buttons on the
left) for creating a web application on an IIS virtual directory or a remote web
server. You can ignore these options for now. In general, it’s easiest to develop your
web application locally and upload the files once they are perfect.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Tip Remember, the location where you create your website probably isn’t where you'll put it when you
deploy it. Don’t worry about this wrinkle—in Chapter 12 you'll learn how to take your development website
and put in on a live web server so it can be accessible to others over a network or the Internet.

5. Click OK to create the website. At this point, Visual Studio generates an empty website
with one file—a Default.aspx page. This page is the entry point for your website.

Unlike previous versions of Visual Studio, Visual Studio 2005 doesn’t create project and
solution files to track the contents of your projects. Instead, Visual Studio does its best to
keep the website directory clean and uncluttered, with only the files you actually need.
This change simplifies deployment, and it’s especially handy if you're developing with a
team of colleagues, because you can each work on separate pages without needing to syn-
chronize other project or solution files.

Occasionally, Visual Studio will prompt you to let it create additional files and directo-
riesif they’re needed. To see one example, select Debug » Start Debugging to launch your
website, and then surf to the default page using your computer’s web browser (typically
Internet Explorer). Before Visual Studio completes this step, it will inform you that you
need to add a configuration file that specifically allows debugging or modify the existing
configuration file (see Figure 4-3). When you click OK, Visual Studio will create a new file
named web.config and add it to the web application directory. (You'll learn about the
web.config file in Chapter 5.)

Debugging Not Enabled

The page cannot be run in debug mode because debugging is not enabled in the Web, config file.
‘what would you like to do?

JS Debugging should be disabled in the Web, config file before deployving the
‘Web site to a production environment.,

(O Run without debugging. (Equivalent ko Chrl+F5)

[Ok] [Cancel

Figure 4-3. Creating other files when needed

When you run a web application, Visual Studio starts its integrated web server. Behind the
scenes, ASP.NET compiles the code in the Default.aspx page, runsit, and then returns the final
HTML to the browser. Of course, seeing as you haven’t added anything to this page, all you'll
see is a blank web page!

95

96

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Note When you run a web page, you'll notice that the URL in the browser includes a port number.
For example, if you run a web application in a folder named OnlineBank, you might see a URL like
http://localhost:4235/0nlineBank/Default.aspx. This URL indicates that the web server is
running on your computer (localhost), so its requests aren’t being sent over the Internet. It also indicates that
all requests are being transmitted to port number 4235. That way, the requests won’t conflict with any other
applications that might be running on your computer and listening for requests. Every time Visual Studio starts
the integrated web server, it randomly chooses an available port.

The Solution Explorer

To take a high-level look at your website, you can use the Solution Explorer—the window
at the top-right corner of the design environment that lists all the files in your web appli-
cation directory (see Figure 4-4). The Solution Explorer reflects everythingthat’s in the
web application directory—no files are hidden. This means if you add a plain HTML file,
graphic, or a subdirectory in Windows Explorer, the next time you fire up Visual Studio
you'll see the new contents in the Solution Explorer. (If you add these same ingredients
while Visual Studio is open, you won’t see them right away, because Visual Studio scans
the directory only when you first open the project.)

Solution Explorer =

Z[6a] B W @
2P E:\Temp'Samplesite’,
3 App_Data
=] Default. aspx
MBS o dinaryHTML b
E]TestPage.aspx
,_::| ‘Web, Config

Figure 4-4. The Solution Explorer

Of course, the whole point of the Solution Explorer is to save you from resorting to
using Windows Explorer. Instead, it allows you to perform a variety of file management
tasks within Visual Studio. You can rename, delete, or copy files with a simple right-click.
And, of course, you can add new items by choosing Website » Add New Item.

You can add various types of files to your project, including web forms, web services,
stand-alone components, resources you want to track such as bitmaps and text files, and
even ordinary HTML files. Visual Studio event provides some basic designers that allowyou
to edit these types of files directly in the IDE. Figure 4-5 shows some of the file types you can
add to a web application.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Tip Inthe downloadable samples, you'll find that many of the web pages use a style sheet named Styles.css.
This style sheet applies the Verdana font to all elements of the web page. To learn more about the CSS
(Cascading Style Sheets) standard, you can refer to the tutorial at http: //www.w3schools.com/css.

CSS is a standard supported by almost all browsers.

Add New Item - E:\Temp\SampleSite}

Templates: ||EI

¥isual Studio installed templates

B O =5 o & &

>

Master Page ‘Web User HTML Page ‘Web Service Class Skyle Sheet Global

Control Applicati,

g & 8 & u & 9%

®ML File ¥ML Schema Text File Assembly SQL Database DatasSet GEneric

Configurati... Resource File Handler

= - S S
aa =" = == = a7 =
[T EES = Fr =Y 5

Site Map Mobile Web YBScript File Report J5cript File Mobile Wweb Mobile Web ¥SLT File
Farm User Control Configurati, ..

1£3

A Form For Web Applications

Mame: | DefaultZ, aspx

Language: |Visual c# v Place code in separate file
[5elect masker page

Add] [Cancel

Figure 4-5. Supported file types

When you add a new web form, Visual Studio gives you the choice of two coding
models. You can place all the code for the file in the same file as the HTML and control
tags, or you can separate these into two distinct files, one with the markup and the other
with your C# code. This second model is closest to earlier versions of Visual Studio, and
it's what you’ll use in this book. The key advantage of splitting the two components of a
web page into separate files is that it’'s more manageable when you need to work with
complex pages. However, both approaches give you the same performance and
functionality.

In Chapter 5, you'll explore the two code models in more detail. But for now, just select
the Place Code in Separate File check box in the Add New Item dialog box when you're
creating a web page. Your project will end up with two files for each web page: a page that
includes the HTML control tags (with the file extension .aspx) and a source code file (with
the same name and a file extension of .aspx.cs). To make the relationship clear, the Solu-
tion Explorer displays the code file underneath the .aspx file (see Figure 4-6).

98 CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

MIGRATING AN OLDER VISUAL STUDIO .NET PROJECT

If you have an existing web application created with Visual Studio .NET 2002 or 2003, you can open the project
or solution file using the File » Open Project command. When you do, Visual Studio opens a conversion
wizard.

The conversion wizard is exceedingly simple. It prompts you to choose whether to create a backup and,
if so, where it should be placed. If this is your only copy of the application, a backup is a good idea in case
some aspects of your application can’t be converted successfully. Otherwise, you can skip this option.

When you click Finish, Visual Studio performs an in-place conversion, which means it overwrites your
web page files with the new versions. This conversion won’t change the code you've written, but it does mod-
ify the web pages and code classes to use Visual Studio’s new code model and event handling approach. Any
errors and warnings are added to a conversion log, which you can display when the conversion is complete.
A typical conversion doesn’t produce any errors but generates a long list of warnings informing you of the
changes that were made.

Solution Explorer =

78] B | 5 @
;" E:', Temp'SampleSite’,
3 App_Data

=] Default.aspx

(%] ordinaryHTML htm
= IﬂTestPage.aspx

'ég TestPage.aspx.cs
i wieh. Config

I:‘g Solution Explorer Qg Class View

Figure 4-6. A code file for a web page

You can also add files that already exist by selecting Add » Add Existing Item. You can
use this technique to copy files from one project into another. Visual Studio leaves the orig-
inal file alone and simply creates a copy in your web application directory. However, don’t
use this approach with a web page that has been created in an older version of Visual Studio.
Instead, refer to the sidebar “Migrating an Older Visual Studio .NET Project.”

Designing a Web Page

Now that you understand the basic organization of Visual Studio, you can begin designing a
simple web page. To start, double-click the web page you want to design. (Start with
Default.aspx if you haven’t added any additional pages.) A blank designer page will appear.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005 99

Adding Web Controls

To add a web control, drag the control you want from the Toolbox on the left and drop it
onto your web page. The controls in the Toolbox are grouped in numerous categories
based on their functions, but you'll find basic ingredients such as buttons, labels, and text
boxes in the Standard tab.

Tip By default, the Toolbox is enabled to automatically hide itself when your mouse moves away from it,
somewhat like the AutoHide feature for the Windows taskbar. This behavior is often exasperating, so you may
want to click the pushpin in the top-right corner of the Toolbox to make it stop in its fully expanded position.

In aweb form, controls are positioned line by line, like in a word processor document. To
add a control, you need to drag and drop it to an appropriate place. To organize several con-
trols, you'll probably need to add spaces and carriage returns to position elements the way
you want them. Figure 4-7 shows an example with a TextBox, Label, and Button control.

Default.aspx* - X
B : B
vpe something here;

[E Source <body = || <div= || <asp:button#buttonl =

Figure 4-7. The Design view for a page

You'll find that some controls can’t be resized. Instead, they grow or shrink to fit the
amount of content in them. For example, the size of a Label control depends on how
much text you enter in it. On the other hand, you can adjust the size of a Button or TextBox
control by clicking and dragging in the design environment.

Asyou add web controls Visual Studio automatically adds the corresponding control
tags to your .aspx file. You can even look at the .aspx code or add server control tags and
HTML tags manually by typing them in. To switch your view, click the Source button at
the bottom of the web designer. You can click Design to revert to the graphical web form
designer.

100 CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

THE MISSING GRID LAYOUT FEATURE

If you've used previous versions of Visual Studio .NET, you may remember a feature called grid layout, which
allowed you to position elements with absolute coordinates by dragging them where you want them. Although
this model seems convenient, it really isn’t suited to most web pages because controls can’t adjust their posi-
tioning when the web page content changes. This leads to inflexible layouts (such as controls that overwrite
each other). To gain more control over layout, most web developers use tables.

That said, Visual Studio 2005 has a backdoor way to use grid layout. All you need to do is add a style
attribute that uses CSS to specify absolute positioning. This attribute will already exist in any pages you've cre-
ated with a previous version of Visual Studio .NET in grid layout mode.

Here’s an example:

<asp:Button id="cmd" style="POSITION: absolute; left: 100px; top: 50px;"
runat="server" ... />

Once you’ve made this change, you're free to drag the button around the window at will. Of course, you
shouldn’t go this route just because it seems closer to the Windows model. Few great Web pages rely on abso-
lute positioning, because it’s just too awkward and inflexible.

Figure 4-8 shows what you might see in the Source view for the page displayed in

Figure 4-7.
~ Default.aspx* s - X
| Client Objects & Events v | | (Mo Events) v |

<%@ Page Language="CH#" LutoEventWireup="trus" CDdeFile="DefaulT'
<!DOCTYPE html PUELIC "-//W3C//DTD XHTML 1.1//EN"™ "http://www.u

[<html ®mlns="http://vuw.w3.org/1999 xhtml™ >
f—] <head runat="server":

<titlerUntitled Page</titlex
F</head:>

-] <hody>

E <form id="forml" runat="server":

] <dive

<asp:Label ID="Lahell"™ runat="serwver" —
Text="Type something here:":></asp:Label>

<asp:TextBox ID="TextBoxl" runat="serwver":

</asp:TextBoxx

<br /»

<asp:Button ID="Buttonl"™ runat="server"

- Text="Button" /x</dive

- </ form:-

F</body>

- </ htmls

|

< |

L4 Design <html= || <body = || <Form#forml =

|

Figure 4-8. The Source view for a page

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Using the Source view, you can manually add attributes or rearrange controls. In fact,
Visual Studio even provides IntelliSense features that automatically complete opening
tags and alert you if you use an invalid tag. Whether you use the Design view or the Source
view is entirely up to you—Visual Studio keeps them both synchronized.

The Properties Window

To configure a control in Design view, you must first select it on the page or choose it by
name from the drop-down list at the top of the Properties window. Then, you can modify
any of its properties. Good ones to try include Text (the content of the control), ID (the
name you use to interact with the control in your code), and ForeColor (the color used for
the control’s text).

Every time you make a selection in the Properties window, Visual Studio translates
your change to the corresponding ASP.NET control tag attribute. Visual Studio even pro-
vides special “choosers” that allow you to select extended properties. For example, you
can select a color from a drop-down list that shows you the color (see Figure 4-9), and
you can configure the font from a standard font selection dialog box.

Properties E|
Labell System.web.UIWebControls,Label -

R EIEA=!

Enableviewstate True
Fant
ForeColor
Height:
SkinID
TabInde:x
Text
ToolTip
Visible
Wwidth

|

Cust0m| Wweb |System
[Transparent

|>

ForeColor
Color of the text within the contral,

Figure 4-9. Setting the Color property

Finally, you can select one object in the Properties window that needs some explana-
tion—the DOCUMENT object, which represents the web page itself. These settings have
different effects. Using this object, you can set various options for the entire, page, includ-
ing the title that will be displayed in the browser, linked style sheets, and support for other
features that are discussed later in this book (such as tracing and session state).

101

102

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Adding Ordinary HTML

Not everything in your web page needs to be a full-fledged web control. You can also add
the familiar HTML tags, such as paragraphs, headings, lists, divisions, and so on. To add

an HTML element, you can type it in using the Source view, or you can drag the element

you want from the HTML tab of the Toolbox.

Visual Studio also provides an indispensable style builder for formatting any static HTML
element. To test it, add a Div to your web page from the HTML tab of the Toolbox. Then,
right-click the panel, and choose Style. The Style Builder window (shown in Figure 4-10) will
appear, with options for configuring the colors, font, layout, and border for the element. As
you configure these properties, the web page HTML will be updated to reflect your settings.

Note ADivisa <div> tag, or division, which is an all-purpose HTML container. A <div> doesn’t have any
default representation in HTML. However, it's commonly used in conjunction with styles. Using a <div>, you
can group together several other elements. You can also specify a default font or color that will be applied to
all of them or add a border that will be displayed around that entire section of your web page.

Style Builder.
54 Font Font narne
) Background (%) Famnily: Verdana | E]
= Text () System Font:
I P
*‘E IS Font attributes
235 Layout Color: Italics: Small caps:
|+] Edges |Green v | E] | v | | v
3= Lists
Size Effects
e Other
(O specific: [uone
[underline
(&) absolute: =
[5trikethrough
O Relative: [overline
Bold Capitalization:
® absolute: | v
O Relative:

Sample text

[Ok] [Cancel

Figure 4-10. Building styles

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005 103

With the right changes, you can transform a <div> tag into a nicely shaded and bor-
dered box, as shown in Figure 4-11. You're then free to add other HTML and web controls
inside this box. This is a technique you'll see in the examples throughout this book.

‘A Untitled Page - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help <)) h

Address |@ http: fflocalhost: 2952 /SampleSite/Default, aspx b |

Type something here:

@ Daone \ﬁ Local intranet:

Figure 4-11. Using a styled division

Here’s the style that was built in the style builder for the example in Figure 4-10. Note
that the style attribute is split over several lines in a way that isn’t legal in HTML, just to fit
the bounds of the printed page.

<div style="border-right: 1px solid; padding-right: 5px; border-top: 1px solid;
padding-left: 5px; font-size: smaller; padding-bottom: 5px;

border-left: 1px solid; width: 318px; padding-top: 5px;

border-bottom: 1px solid;

font-family: Verdana; height: 100px; background-color: #ffffcc">

<asp:lLabel ID="Label1" runat="server"

Text="Type something here:" Width="144px"></asp:Label>
<asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>

<asp:Button ID="Button1" runat="server"

Text="Button" />

</div>

104

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Visual Studio also allows you to convert HTML elements into server controls. If you
want to configure the element as a server control so that you can handle events and inter-
act with it in code, you .need to right-click it and select Run As Server Control. This adds
the required runat="server" attribute to the control tag. Alternatively, you could switch to
Design view and type this in on your own. Keep in mind that HTML server controls are
really designed for backward compatibility, as you'll learn in Chapter 6. When creating
new interfaces, you're better off using the standardized web controls instead, which you'll
find on the Standard tab of the Toolbox.

HTML Tables

One convenient way to organize content in a web page is to place it in the different cells
of an HTML table using the <table> tag. In previous versions of Visual Studio, the design-
time support for this strategy was poor. But in Visual Studio 2005, life gets easier. To try t,
drag a table from the HTML tab of the Toolbox. You'll start off with a standard 3x3 table,
but you can quickly transform it using editing features that more closely resemble a word
processor than a programming tool. Here are some of the tricks you'll want to use:

¢ To move from one cell to another in the table, press the Tab key or use the arrow
keys. The current cell is highlighted with a blue border. Inside each cell you can type
in static HTML or drag and drop controls from the Toolbox.

¢ To add new rows and columns, right-click inside a cell, and choose from one of the
many options in the Insert submenu to insert rows, columns, and individual cells.

* Toresize a part of the table, just click and drag away.

¢ To format a cell, right-click inside it, and choose Style. This shows the same style
builder you saw in Figure 4-10.

* Towork with several cells at once, hold down Ctrl while you click each cell. You can
then right-click to perform a batch formatting operation.

* To merge cells together (in other words, change two cells into one cell that spans
two columns), just select the cells, right-click, and choose Merge.

Figure 4-12 shows a table in Visual Studio, complete with several controls in different
cells of the first row.

CHAPTER 4

TestPage.aspx®

-

E

Frest Label! F ||[Iﬁ Button ||

[l Source <body = || <div> || <table> || <tr=
Figure 4-12. Using an HTML table

INTRODUCING VISUAL STUDIO 2005

Once you get the hang of these conveniences, you might never need to resort to a
design tool such as Macromedia Dreamweaver or Microsoft FrontPage.

Writing Code

Many of Visual Studio’s most welcome enhancements appear when you start to write the
code that supports your user interface. To start coding, you need to switch to the code-
behind view. To switch back and forth, you can use two buttons that appear just above the
Solution Explorer window. The tooltips identify these buttons as View Code and View
Designer, respectively. Another approach that works just as well is to double-click either
the .aspx page in the Solution Explorer (for the designer) or the .aspx.cs page (for the code
view). The “code” in question is the C# code, not the HTML markup in the .aspx file.

When you switch to code view, you'll see the page class for your web page. Just before
your page class, Visual Studio imports a number of core .NET namespaces. These name-
spaces give you easy access to many commonly used ASP.NET classes:

using
using
using
using
using
using
using
using
using

System;

System.Data;

System.Configuration;

System.Web;

System.Web.Security;

System.Web.UI;
System.Web.UI.WebControls;
System.Web.UI.WebControls.WebParts;
System.Web.UI.HtmlControls;

105

106

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Inside your page class are methods, most of which are directly wired to control events.
The following section explains how you can create these event handlers.

Adding Event Handlers

Most of the code in an ASP.NET web page is placed inside event handlers that react to web
control events. Using Visual Studio, you have three ways to add an event handler to your code:

Type it in manually. In this case, you add the subroutine directly to the page class. You
must specify the appropriate parameters, and you'll need to connect the event handler
to the event using your own delegate code.

Double-click a control in Design view:. In this case, Visual Studio will create an event
handler for that control’s default event, if it doesn’t already exist. For example, if you
double-click the page, it will create a Page.Load event handler. If you double-click a
button or input control, it will create an event handler for the Click or Change event.

Choose the event from the Properties window. Just select the control, and click the light-
ning bolt in the Properties window. You'll see a list of all the events provided by that
control. Double-click next to the event you want to handle, and Visual Studio will auto-
matically generate the event handler in your page class. Alternatively, if you've already
created the event handler, just select the event in the Properties window, and click the
drop-down arrow at the right. You'll see alist that includes all the methods in your class
that match the signature this event requires. You can then choose a method from the
list to connect it. Figure 4-13 shows an example where the Button.Click event is con-
nected to the Buttonl_Click method in the page class.

Properties @
|Buttonl Syskem,Web, UL WebControls, Button j
w= [A

e

ES Button1_Click v

Command Page_Load
DataBinding M
Disposed
Inik
Load
PreRender
Unload j
Click
Fires when the button is clicked.

Figure 4-13. Creating or attaching an event handler

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005 107

For example, when you double-click a Button control, Visual Studio creates an event
handler like this:

protected void Buttoni Click(object sender, EventArgs e)
{

// Your code for reacting to the button click goes here.

When you use Visual Studio to attach or create an event handler, it adjusts the control
tag so that it’s linked to the appropriate event:

<asp:button ID="Buttoni" runat="server" text="Button" OnClick="Buttoni_Click" />

Inside your event handler, you can interact with any of the control objects on your web
page using their IDs. For example, if you've created a TextBox control named TextBox1,
you can set the text using the following line of code:

protected void Buttoni Click(object sender, EventArgs e)
{

TextBox1.Text = "Here is some sample text.";

This creates a simple event handler that reacts when Button1 is clicked by updating the
text in TextBox1. You'll learn much more about the ASP.NET web form model in the next
two chapters.

IntelliSense and Outlining

Visual Studio provides a number of automatic time-savers through its IntelliSense tech-
nology. They are similar to features such as automatic spell checking and formatting in
Microsoft Office applications. We introduce most of these features in this chapter, but
you’ll need several hours of programming before you’ll become familiar with all of Visual
Studio’s time-savers. We don’t have enough space to describe advanced tricks such as the
intelligent search-and-replace features and Visual Studio’s programmable macros. These
features could occupy an entire book of their own!

Outlining

Outlining allows Visual Studio to “collapse” a method, class, structure, namespace, or
region to a single line. It allows you to see the code that interests you while hiding unimpor-
tant code. To collapse a portion of code, click the minus (-) symbol next to the first line.
Click the box again, which will now have a plus (+) symbol, to expand it (see Figure 4-14).

108 CHAPTER 4

~Default.aspr.cs

INTRODUCING VISUAL STUDIO 2005

%

v||§°

[Fl using
using
using
using
using
using
using
using
using

System;
System.
System.
System.
System.
System.
System.
System.
System.

Data;

EINES L

Configuration;

Weh;
Weh.
Weh.
Weh.
Weh.
Weh.

Security;

UI:

UI.WehControls:
UI.WehControls.WebhParts:
UI.HtmlControls;

Epublic partial class Default : 3ystem.Web.UI.Page

{

= protected void Page Load{object sender, Eventirgs e)

i
+

private woid HyHethDd(][:j

f ¥

d

|
I£3

Figure 4-14. Collapsing code

You can hide any section of code you want. Simply select the code, right-click the selec-
tion, and choose Outlining » Hide Selection.

Member List

Visual Studio makes it easy for you to interact with controls and classes. When you type a
class or object name, it pops up a list of available properties and methods (see Figure 4-15).
It uses a similar trick to provide a list of data types when you define a variable or to provide
a list of valid values when you assign a value to an enumeration.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Default, aspx* »Default.aspx.cs® -

|J[g _Default w | | -jOPage_Load(object sender, Eventargs e)

Flusing System;
using System.Data;
using Systewm.Configuration;
using System.lWeb;
using System.Web.Iecurity;
using System.Web.UI;
using Systewm.Webh.UI.WebhControls;
using System.Webh.UI.WebhControls. WebParts;
using System.Web.UI.HomlControls;

N3k

Epublic partial class Default : 3ystem.Web.UI.Page
{
= protected void Page Load{object sender, Eventirgs)
{
if TextBDxl.FDr| —

H ig Equals -
@ FindCantrol
private void = Focus
i 5 Font

ForeColor
@ GetHashCode
iy GetType
5 Hasattributes
@ HasContrals

5 Height

| €

|€

<

|

Figure 4-15. IntelliSense at work

Tip Forgotten the names of the controls in your web page? You can get IntelliSense to help you. Just type
the this keyword followed by the dot operator (.) Visual Studio will pop up a list with all the methods and prop-
erties of the current form class, including the control variables.

Visual Studio also provides a list of parameters and their data types when you call a
method or invoke a constructor. This information is presented in a tooltip above the code
and appears as you type. Because the .NET class library uses function overloading a lot,
these methods may have multiple versions. When they do, Visual Studio indicates the
number of versions and allows you to see the method definitions for each one by clicking
the small up and down arrows in the tooltip. Each time you click the arrow, the tooltip dis-
plays a different version of the overloaded method (see Figure 4-16).

109

110 CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Default, aspx* »Default.aspx.cs® -

|J[g _Default w | | ?'OPage_Load(object sender, Eventargs e)

EINES kS

Flusing System;
using System.Data;
using Systewm.Configuration;
using System.Web;
using System.Web.3ecurity;
using System.Web.UI;
using System.Webh.UI.WebhControls;
using System.Webh.UI.WebhControls. ebParts;
using System.Web.UI.HomlControls;

Epublic partial class Default : 3ystem.Web.UI.Page

{
= protected void Page Load(object sender, Eventirgs e)

{

Page.Validate (| e
&1 of 2§, void Page.¥alidate ()
Instructs Swy validation controls included on the page to validate their assigned information,
private woid HyHethDd(]u

dore

|

<

|

Figure 4-16. IntelliSense with overloaded methods

Error Underlining

One of the code editor’s most useful features is error underlining. Visual Studio is able to
detect a variety of error conditions, such as undefined variables, properties, or methods;
invalid data type conversions; and missing code elements. Rather than stopping you to
alert you that a problem exists, the Visual Studio editor underlines the offending code.
You can hover your mouse over an underlined error to see a brief tooltip description of
the problem (see Figure 4-17).

Visual Studio won’t necessarily flag your errors immediately. But when you try to run
your application (or just compile it), Visual Studio will quickly scan through the code,
marking all the errors it finds. If your code contains at least one error, Visual Studio will
ask you whether it should continue. At this point, you'll almost always decide to cancel the
operation and fix the problems Visual Studio has discovered. (If you choose to continue,
you'll actually wind up using the last compiled version of your application, because Visual
Studio can’t build an application that has errors.)

Whenever you attempt to build an application that has errors, Visual Studio will display
the Error List window with a list of all the problems it detected, as shown in Figure 4-18.
You can then jump quickly to a problem by double-clicking it in the list.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

DeFauIt.aspx/VDefauIt.aspx.cs] - X
|0[3 _Default w | |_-§°Page_Load(object sender, Eventargs) w
Flusing System; ¥
using System.Data; =
using Systewm.Configuration;
using SIystem.Web;
using System.Web.3ecurity;
using System.Web.UI;
using Systewm.Webh.UI.WebhControls;
using System.Webh.UI.WebhControls. ebParts;
using System.Web.UI.HomlControls;
Epublic partial class Default : 3ystem.Web.UI.Page
{
= protected void Page Load{object sender, Eventirgs e)
{
TextBDxl.Ef‘ex = "Hello."; =
L=
' [5ystem. web, UL WebContrals, TextEox' does not contain a definition for Tex|
private woid HyHethDd(]lzl
i
A
< >
Figure 4-17. Highlighting errors at design time
Error List 5]
0 3 Errars _ﬁ 2 Warnings @ 0 Messages
Description File: Line Column | F |
Defaul, aspx.cs 15 9 i 0
AT
@ 5 Identifier expected Defaul, aspx.cs 15 13 i
AT

Figure 4-18. Build errors in the Error List

You may find that as you fix errors and rebuild your project, you discover more prob-
lems. That’s because Visual Studio doesn’t check for all types of errors at once. When you
try to compile your application, Visual Studio scans for basic problems such as unrecog-
nized class names. If these problems exist, they can easily mask other errors. On the other
hand, if your code passes this basic level of inspection, Visual Studio checks for more

subtle problems such as trying to use an unassigned variable.

mn

112

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Visual Studio may also generate warnings for the HTML content in the Source view of
your web pages. By default, Visual Studio will warn you when you use HTML that deviates
from the strict rules of XHTML. You can safely ignore these warnings, or you can hide
them altogether by switching the validation mode of your pages. To change the validation
mode, choose View » Toolbars » HTML Source Editing. Then, choose HTML 4.01 from
the drop-down box in the toolbar instead of XHTML 1.0 Transitional.

Note XHTML is a stricter form of HTML that will eventually replace it. You won’t gain much, if anything,
by using XHTML today. However, some companies and organization mandate the use of XHTML, namely, with
a view to future standards. In the future, XHTML will make it easier to design web pages that are adaptable
to a variety of different platforms, can be processed by other applications, and are extensible with new
markup features. (For example, you could use XSLT, another XML-based standard, to transform an XHTML
document into another form.) If you want to create pages that are XHTML-compliant, you can start with the
XHTML tutorial at http://www.w3schools.com/xhtml.

Automatically Importing Namespaces

Sometimes, you'll run into an error because you haven’t imported a namespace that you
need. For example, imagine you type a line of code like this:

FileStream fs = new FileStream("newfile.txt", FileMode.Create);

This line creates an instance of the FileStream class, which resides in the System.IO
namespace. However, if you haven’t imported the System.IO namespace, you'll run into
a compile-time error. Unfortunately, the error simply indicates no known class named
FileStream exists—it doesn’t indicate whether the problem is a misspelling or a missing
import, and it doesn’t tell you which namespace has the class you need.

Visual Studio offers an invaluable tool to help you in this situation. When you move the text
cursor to the unrecognized class name (FileStream in this example), a small box icon appears
underneath. If you hover over that location with the mouse, a page icon appears. Click the
page icon, and a drop-down list of autocorrect options appear (see Figure 4-19). Using these
options, you can convert the line to use the fully qualified class name or add the required
namespace import to the top of your code file, which is generally the cleanest option (partic-
ularly if you use classes from that namespace more than once in the same page).

The only case when this autocorrect feature won’t work is if Visual Studio can’t find the
missing class. This might happen if the class exists in another assembly, and you haven’t
added a reference to that assembly yet.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Default.aspx.cs* | Default, aspx -

“I4 _Default + || 3"¥Page_Load{object sender, Eventargs)

> || %

Flusing System;
using System.Data;
using Systewm.Configuration;
using System.lWeb;
using System.Web.Iecurity;
using System.Web.UI;
using Systewm.Web.UI.WebhControls;
using Systewm.Webh.UI.WebhControls. WebParts;
using System.Web.UI.HomlControls;

Epublic partial class Default @ 3ystem.Web.UI.FPage
{
protected void Page Load{object sender, Eventirgs e)
{
File3tre f= = new FileStream("newfile.txt™, FileM:c

} = -

ﬂh using Syskem,I0;

Syskem, IO, FileStream

< >

Figure 4-19. Build errors in the Error List

Auto Format and Color

Visual Studio also provides some cosmetic conveniences. It automatically colors your
code, making comments green, keywords blue, and normal code black. The result is much
more readable code. You can even configure the colors Visual Studio uses by selecting
Tools » Options and then choosing the Environment » Fonts and Colors section.

In additional, Visual Studio is configured by default to automatically format your code.
This means you can type your code lines freely without worrying about tabs and position-
ing. As soon as you insert a closing brace (the curly bracket: }), Visual Studio applies the
“correct” indenting. Fortunately, if you have a different preference, you can configure this
behavior—just select Tools » Options, make sure the Show All Settings check box is
checked, and then find the Text Editor » C# » Formatting group of settings.

113

114

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Assembly References

By default, ASP.NET makes a small set of commonly used .NET assemblies available to all
web pages. These assemblies (listed in Table 4-1) are configured through a special machine-
wide configuration file (called the machine.config). You don’t need to take any extra steps to
use the classes in these assemblies.

Table 4-1. Assemblies Available to All Web Pages

Assembly Description

mscorlib.dll and System.dll Includes the core set of .NET data types, common exception
types, and numerous other fundamental building blocks.

System.Configuration.dll Includes classes for reading and writing configuration
information in the web.config file, including your custom
settings.

System.Data.dll Includes the data container classes for ADO.NET, along with
the SQL Server data provider.

System.Drawing.dll Includes classes representing colors, fonts, and shapes. Also
includes the GDI+ drawing logic you need to build graphics on
the fly.

System.Web.dll Includes the core ASP.NET classes, including classes for
building web forms, managing state, handling security, and
much more.

System.Web.Services.dll Includes classes for building web services—units of code that
can be remotely invoked over HTTP.

System.Xml.dll Includes .NET classes for reading, writing, searching,
transforming, and validating XML.

System.EnterpriseServices.dll Includes .NET classes for COM+ services such as transactions.

System.Web.Mobile.dll Includes .NET classes for the mobile web controls, which are
targeted for small devices such as web-enabled cell phones.

Note Remember, assemblies can contain more than one namespace: For example, the System.Web.dIl
assembly includes classes in the System.Web namespace, the System.Web.Ul namespace, and many more
related namespaces.

If you want to use additional features or a third-party component, you may need to
import more assemblies. For example, if you want to use an Oracle database, you need to
add a reference to the System.Data.OracleClient.dll assembly.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

To add a reference, follow these steps:

1. Right-click the References item in the Solution Explorer, and choose Add Ref-
erence. This shows the Add Reference dialog box, with a list of assemblies that
are registered with Visual Studio.

2. In the Add Reference window;, select the component you want to use. If the com-
ponent isn't located in the centralized component registry on your computer
(known as the GAC, or global assembly cache), you'll need to click the Browse tab
and find the DLL file from the appropriate directory.

3. Once you've selected the DLL, click OK to add the reference to your web
application.

When you add a reference, Visual Studio modifies the web.config file to indicate that
you use this assembly. If you add a reference to an assembly that isn’t stored in the GAC,
Visual Studio will create a Bin subdirectory in your web application and copy the DLL into
that directory so it’s readily available. This step isn’t required for assemblies in the GAC
because they are shared with all the .NET applications on the computer. You'll learn more
about this model in Chapter 5.

Adding a reference isn’t the same as importing the namespace with the using statement.
The using statement allows you to use the classes in a namespace without typing the long,
fully qualified class names. However, if you're missing a reference, it doesn’t matter what
using statements you include—the classes won’t be available. For example, if you import
the System.Web.UI namespace, you can write Page instead of System.Web.UI.Page in your
code. But if you haven’t added a reference to the System.Web.dll assembly that contains
these classes, you still won’t be able to access the classes in the System.Web.UI namespace.

Tip You can create your own component assemblies. This technique allows you to share functionality
between several web applications or between several types of .NET applications. You'll learn more about this
feat in Chapter 24.

Visual Studio Debugging

Once you've created an application, you can compile and run it by choosing Debug »
Start Debugging from the menu or by clicking the Start Debugging button on the toolbar.
Visual Studio launches your default web browser and requests the page that’s currently
selected in the Solution Explorer. This is a handy trick—if you're in the middle of coding
SalesPagel.aspx, you'll see SalesPagel.aspx appear in the browser, not the Default.aspx
home page.

116 CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Visual Studio’s built-in web server also allows you to retrieve a file listing. This means
if you create a web application named MyApp, you can request in the form
http://localhost:port/MyApp (omitting the page name) to see a list of all the files in
your web application folder (see Figure 4-20). Then, just click the page you want to test.

& | Directory Listing -- /SampleSite/ - Microsoft Internet Explorer

. —~ »
File Edit Miew Favorites Tools Help OBack 2 1) |ﬂ @ _r,_ 4~ Search th
Address |@ http:/flocalhast: 2952 (SampleSite) v |

Directory Listing -- /SampleSite/

sunday, May 05, 2005 09:59 AM <dir> App_Data

Sunday, May 08, 2005 10:17 AM 0 New Text Document.txts
sunday, May 05, 2005 10:17 AM 505 OrdinaryHTML. htm
Sunday, May 08, 2005 01:59 PM 1,472 TestFade.aspx

Sunday, May 08, 2005 10:17 AM £95 TestPage.aspx.cs
Sunday, May 08, 2005 02:01 PM 1,062 TestFagez.aspx
Sunday, May 08, 2005 10:23 AM 406 TestPagez.aspx.cs

Saturday, May 07, 2005 02:47 FM 1,792 web.Config

¥Yersion Information: ASP.NET Developrent Server 8.0.0.0

@ \ﬁ Local intranet:

Figure 4-20. Choosing from a list of pages

This trick won’t work if you have a Default.aspx page. If you do, any requests that don’t
indicate the page you want are automatically redirected to this page.

Single-Step Debugging

Single-step debugging allows you to test your assumptions about how your code works
and see what's really happening under the hood of your application. It’s incredibly easy to
use. Just follow these steps:

1. Find alocation in your code where you want to pause execution, and start single-
stepping. (You can use any executable line of code but not a variable declaration,
comment, or blankline.) Click in the margin next to the line code, and a red break-
point will appear (see Figure 4-21).

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005 117

~TestPage.asps.cs*® -

|J[g TestPage R | | -joButtonl_CIick(object sender, Eventargs e)

Flusing System;
using System.Data;
using Systewm.Configuration;
using System.Collections;
using System.lWeb;
using System.Web.Iecurity;
using System.Web.UI;
using System.Webh.UI.WehControls;
using System.Webh.UI.WebhControls. WebParts;
using System.Web.UI.HomlControls;

EINENE

Flpublic partial class TestPage @ System.Web.UIL.Page

{
J—] protected void Page Load(object sender, Eventirgs)
{ =

- i

= protected void Buttonl Click({object sender, Eventirgs)
{

decimal wval;
0 if j(decimal.Try ge (TextBoxl.Text, out wval))

wval ¥= 2:
Labell.Text = wval.To3tring():

|l

<

|»

Figure 4-21. Setting a breakpoint

2. Now start your program as you would ordinarily (by pressing the F5 key or using
the Start button on the toolbar). When the program reaches your breakpoint, exe-
cution will pause, and you'll be switched to the Visual Studio code window. The
breakpoint statement won't be executed.

3. At this point, you have several options. You can execute the current line by pressing
F11. The following line in your code will be highlighted with a yellow arrow, indi-
cating that this is the next line that will be executed. You can continue like this
through your program, running one line at a time by pressing F11 and following
the code’s path of execution.

4. Whenever the code is in break mode, you can hover over variables to see their
current contents (see Figure 4-22). This allows you to verify that variables contain
the values you expect.

118 CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

- TestPage.aspx.cs -

|J[g TestPage A | | 20

=] *

Flpublic partial class TestPage @ System.Web.UIL.FPage

{
J—] protected void Page Load{object sender, Eventirgs e)

0 rse (TextBoxl.Text, out wval))

wval ¥= 2:

|€

<

|»

Figure 4-22. Viewing variable contents in break mode

5. You can also use any of the commands listed in Table 4-2 while in break mode.
These commands are available from the context menu by right-clicking the code
window or by using the associated hot key.

Table 4-2. Commands Available in Break Mode

Command (Hot Key) Description

Step Into (F11) Executes the currently highlighted line and then pauses. If the currently
highlighted line calls a procedure, execution will pause at the first
executable line inside the method or function (which is why this feature
is called stepping into).

Step Over (F10) The same as Step Into, except it runs procedures as though they are a
single line. If you select Step Over while a procedure call is highlighted,
the entire procedure will be executed. Execution will pause at the next
executable statement in the current procedure.

Step Out (Shift-F11) Executes all the code in the current procedure and then pauses at the
statement that immediately follows the one that called this method or
function. In other words, this allows you to step “out” of the current
procedure in one large jump.

CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Command (Hot Key) Description

Continue (F5) Resumes the program and continues to run it normally, without
pausing until another breakpoint is reached.

Run to Cursor Allows you to run all the code up to a specific line (where your cursor is
currently positioned). You can use this technique to skip a time-
consuming loop.

Set Next Statement Allows you to change the path of execution of your program while
debugging. This command causes your program to mark the current
line (where your cursor is positioned) as the current line for execution.
When you resume execution, this line will be executed, and the
program will continue from that point. Although this technique is
convenient for jumping over large loops and simulating certain
conditions, it’s easy to cause confusion and runtime errors by using it
recklessly.

Show Next Statement Brings you to the line of code where Visual Studio is currently halted.
(This is line of code that will be executed next when you continue.) This
line is marked by a yellow arrow. The Show Next Statement command
is useful if you lose your place while editing.

You can switch your program into break mode at any point by clicking the Pause
button in the toolbar or selecting Debug » Break All. This might not stop your code where
you expect, however, so you'll need to rummage around to get your bearings.

Advanced Breakpoints

Choose Debug » Windows » Breakpoints to see a window that lists all the breakpoints
in your current project. The Breakpoints window provides a hit count, showing you the
number of times a breakpoint has been encountered (see Figure 4-23). You can jump to
the corresponding location in code by double-clicking a breakpoint. You can also use the
Breakpoints window to disable a breakpoint without removing it. That allows you to keep
a breakpoint to use in testing later, without leaving it active. Breakpoints are automati-
cally saved with the Visual Studio project files, although they aren’t used when you
compile the application in release mode.

Breakpoints X
Tew >< fp “ i) ".!a Columns =
Mame Condition Hit: Count:
0 TestPage aspx.cs, line 22 character 3 [{gaRuyta i AN ol g v | ENE R CalTyg="yla N]
0 TestPage.aspx.cs, line 15 character 5 {no conditi... break always {currenthy 0)

Figure 4-23. The Breakpoints window

119

120 CHAPTER 4 INTRODUCING VISUAL STUDIO 2005

Visual Studio allows you to customize breakpoints so that they occur only if certain
conditions are true. To customize a breakpoint, right-click it, and select Breakpoint
Properties. In the window that appears, you can take one of the following actions:

¢ Click the Condition button to set an expression. You can choose to break when this
expression is true or when it has changed since the last time the breakpoint was hit.

¢ Click the Hit Count button to create a breakpoint that pauses only after a break-
point has been hit a certain number of times (for example, at least twenty) or a
specific multiple of times (for example, every fifth time).

Variable Watches

In some cases, you might want to track the status of a variable without switching into
break mode repeatedly. In this case, it's more useful to use the Autos, Locals, and Watch
windows, which allow you to track variables across an entire application. Table 4-3
describes these windows.

Table 4-3. Variable Watch Windows

Window Description

Autos Automatically displays variables that Visual Studio determines are important for the
current code statement. For example, this might include variables that are accessed
or changed in the previous line.

Locals Automatically displays all the variables that are in scope in the current procedure.
This offers a quick summary of important variables.

Watch Displays variables you have added. Watches are saved with your project, so you
can continue tracking a variable later. To add a watch, right-click a variable in your
code, and select Add Watch; alternatively, double-click the last row in the Watch
window, and type in the variable name.

Each row in the Autos, Locals, and Watch windows provides information about the
type or class of the variable and its current value. If the variable holds an object instance,
you can expand the variable and see its private members and properties. For example, in
the Locals window you'll see the variable this, which is a reference to the current page
class. If you click the plus (+) sign next to the word this, a full list will appear that describes
many page properties (and some system values), as shown in Figure 4-24.

CHAPTER 4

Locals

Mame Value
= @ this {ASP. TestPage_aspx}
@ [ASP.TestPage_aspx {ASP. TestPage_aspx}
@ base {ASP. TestPage_aspx}
' spplicationinstance {Systern.\Web,Httpapplication}

Buttonl {Text = "Button"}

forml {System.Web.ULHtmIControls. HimlFor m}

Labell {Text = "Label"}

#F Prafile {System.Web.Profile DefaultProfile}

= g TextBoxl {System.Web. ULWebControls, TextBox)}
@ base {System.Web. ULWebControls, TextBox}

= sutoCompleteTyp Mane
0 ALtoPostBack false
2 Causesvalidation false

2 Colurnng]
5 MaxLength]
5 ReadOnly false

it Static members
@ Mon-Public mermbe

:
= Textiode SingleLine System.web,ULVWebCon
= validationGroup " 3, ~ sfring L
5 \Wrap frue bl

INTRODUCING VISUAL STUDIO 2005

®

Tvpe

TestPage {ASP. TestPage
ASP. TestPage_aspx
System.web ULPage LA
System.Wweb Htpapplica
Systerm.web,ULWebCon
Systerm.Wweb,ULHtmICon
System.web,ULWebCon
System.web Profile.Defz
Systerm.web,UL\WebCon
System.web,ULWebCon
System.web,ULWebCon
bool

bool

int

int

bool

int

>

[

Figure 4-24. Viewing the current page class in the Locals window

If you are missing one of the Watch windows, you can show it manually by selecting it

from the Debug » Windows submenu.

Tip The Autos, Locals, and Watch windows allow you to change simple variables while your program is in
break mode. Just double-click the current value in the Value column, and type in a new value. This allows you
to simulate scenarios that are difficult or time-consuming to re-create manually and allows you to test specific
error conditions.

The Last Word

In this chapter, you took a quick look at Visual Studio 2005. If you've programmed with
earlier versions of Visual Studio, you’'ll appreciate the new cleaner project model, which
refrains from generating extra files you won’t want to manage. You'll also appreciate the
new built-in web server, which makes debugging a website painless on any computer.
In the next chapter, you'll start building simple web applications with Visual Studio.

121

PART 2

Developing ASP.NET
Applications

CHAPTER 5

Web Form Fundamentals

ASP.NET introduces a remarkable new model for creating web pages. In old-style ASP
development, programmers had to master the quirks and details of HTML markup before
being able to design dynamic web pages. Pages had to be carefully tailored to a specific
task, and additional content could be generated only by outputting raw HTML tags.

In ASP.NET, you can use a higher-level model of server-side web controls. These con-
trols are created and configured as objects and automatically provide their own HTML
output. Even better, ASP.NET allows web controls to behave like their Windows counter-
parts by maintaining state and even raising events that you can react to in code.

In this chapter, you'll learn some of the core topics that every ASP.NET developer must
master. You'll learn what makes up an ASP.NET application and what types of files it can
include. You'll also learn how server controls work and how you can use them to build
dynamic web pages.

The Anatomy of an ASP.NET Application

It’s sometimes difficult to define exactly what a web application is. Unlike a traditional
desktop program (which users start by running a stand-alone EXE file), ASP.NET applica-
tions are almost always divided into multiple web pages. This division means a user can
enter an ASP.NET application at several different points or follow a link from the applica-
tion to another part of the website or another web server. So, does it make sense to
consider a website as an application?

In ASP.NET, the answer is yes. Every ASP.NET application shares a common set of
resources and configuration settings. Web pages from other ASP.NET applications don’t
share these resources, even if they're on the same web server. Technically speaking, every
ASP.NET application is executed inside a separate application domain. Application domains
are isolated areas in memory, and they ensure that even if one web application causes a fatal
error, it's unlikely to affect any other application that is currently running on the same com-
puter. Similarly, application domains restrict a web page in one application from accessing
the in-memory information of another application. Each web application is maintained sep-
arately and has its own set of cached, application, and session data.

125

126 CHAPTER 5 WEB FORM FUNDAMENTALS

The standard definition of an ASP.NET application describes it as a combination of files,
pages, handlers, modules, and executable code that can be invoked from a virtual directory
(and, optionally, its subdirectories) on a web server. In other words, the virtual directory is

the basic grouping structure that delimits an application. Figure 5-1 shows a web server that
hosts four separate web applications.

IIS Web Server

Application Domain Application Domain

Web Configuration Web Configuration
Pages Files Pages Files
Web Application and Web Application and
Services Session Data Services Session Data

Application Domain Application Domain

Web Configuration Web Configuration
Pages Files Pages Files
Web Application and Web Application and
Services Session Data Services Session Data

Figure 5-1. ASP.NET applications

CHAPTER 5 WEB FORM FUNDAMENTALS

ASP.NET File Types

ASP.NET applications can include many types of files. Table 5-1 introduces the essential
ingredients.

Table 5-1. ASP.NET File Types

File Name Description

Ends with .aspx These are ASP.NET web pages (the .NET equivalent of the .asp file in an ASP
application). They contain the user interface and, optionally, the underlying
application code. Users request or navigate directly to one of these pages to
start your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to web pages,
except that they can’t be accessed directly. Instead, they must be hosted
inside an ASP.NET web page. User controls allow you to develop a small
piece of user interface and reuse it in as many web forms as you want
without repetitive code. You'll learn about user controls in Chapter 25.

Ends with .asmx These are ASP.NET web services, which are described in Part 5 of this book.
Web services work differently than web pages, but they still share the same
application resources, configuration settings, and memory.

web.config This is the XML-based configuration file for your ASP.NET application. It
includes settings for customizing security, state management, memory
management, and much more. This file is referred to throughout the book.

global.asax This is the global application file. You can use this file to define global
variables (variables that can be accessed from any web page in the web
application) and react to global events (such as when a web application first
starts).

Ends with .cs These are code-behind files that contain C# code. They allow you to separate
the application from the user interface of a web page. We’'ll introduce the
code-behind model in this chapter and use it extensively in this book.

In addition, your web application can contain other resources that aren’t special
ASP.NET files. For example, your virtual directory can hold image files, HTML files, or
CSS files. These resources might be used in one of your ASP.NET web pages, or they might
be used independently. A website could even combine static HTML pages with dynamic
ASP.NET pages.

Most of the file types in Table 5-1 are optional. You can create a legitimate ASP.NET
application with a single web page (.aspx file) or web service (.asmx file).

127

128

CHAPTER 5 WEB FORM FUNDAMENTALS

WHAT ABOUT ASP FILES?

ASP.NET doesn’t use any of the same files as ASP (such as .asp pages and the global.asa file). If you have a
virtual directory that contains both .aspx and .asp files, you really have two applications: an ASP.NET web
application and a legacy ASP application.

In fact, the process that manages and renders .asp files and the ASP.NET service that compiles and
serves .aspx files are two separate programs that don’t share any information. This design has a couple of
important implications:

¢ You can’t share state information between ASP and ASP.NET applications. The Session and Application
collections, for example, are completely separate.

¢ You specify ASP and ASP.NET configuration settings in different ways. If you specify an ASP setting, it
won’t apply to ASP.NET, and vice versa.

Generally, you should keep ASP and ASP.NET files in separate virtual directories to avoid confusion.
However, if you're migrating a large website, you can safely use both types of files as long as they don’t try to
share resources.

ASP.NET Application Directories

Every web application should have a well-planned directory structure. For example, you'll
probably want to store images in a separate folder from where you store your web pages. Or,
you might want to put public ASP.NET pages in one folder and restricted ones in another so
you can apply different security settings based on the directory. (See Chapter 18 for more
about how to create authorization rules like this.)

Along with the directories you create, ASP.NET also uses a few specialized subdirectories,
which it recognizes by name (see Table 5-2). Keep in mind that you won't see all these direc-
tories in a typical application. Visual Studio will prompt you to create them as needed.

Table 5-2. ASP.NET Directories

Directory Description

Bin Contains all the compiled .NET components (DLLs) that the ASP.NET
web application uses. For example, if you develop a custom database
component (see Chapter 24), you'll place the component here.
ASP.NET will automatically detect the assembly, and any page in the
web application will be able to use it. This seamless deployment model
is far easier than working with traditional COM components, which
must be registered before they can be used (and often reregistered
when they change).

CHAPTER 5 WEB FORM FUNDAMENTALS

Directory

Description

App_Code

App_GlobalResources

App_LocalResources
App_WebReferences

App_Data

App_Browsers

Contains source code files that are dynamically compiled for use in
your application. You can use this directory in a similar way to the Bin
directory; the only difference is that you place source code files here
instead of compiled assemblies.

This directory stores global resources that are accessible to every page
in the web application. This directory is used in localization scenarios,
when you need to have a website in more than one language.
Localization isn’t covered in this book, although you can refer to Pro
ASP.NET 2.0 in C# (Apress, 2005) for more information.

This directory serves the same purpose as App_GlobalResources,
except these resources are accessible to a specific page only.

Stores references to web services that the web application uses. You'll
learn about web services in Part 5.

This directory is reserved for data storage, including SQL Server 2005
Express Edition database files and XML files. Of course, you're free to
store data files in other directories.

This directory contains browser definitions stored in XML files. These
XML files define the capabilities of client-side browsers for different
rendering actions. Although ASP.NET defines different browsers and
their capabilities in a computerwide configuration file, this directory
allows you to distinguish browsers according to different rules for a
single application.

App_Themes Stores the themes that are used by your web application. You'll learn
about themes in Chapter 10.
Application Updates

One of the most useful features of ASP.NET has nothing to do with new controls or

enhanced functionality. Instead, the so-called zero-touch deployment and application
updating means you can modify your ASP.NET application easily and painlessly without

needing to restart the server.

Page Updates

If you modify a code file or a web form, ASP.NET automatically recompiles an updated
version for the next client request. This means new client requests always use the most

recent version of the page. ASP.NET even compiles the page automatically to native
machine code and caches it to improve performance.

129

130

CHAPTER 5 WEB FORM FUNDAMENTALS

Component Updates

You can replace any assembly in the Bin directory with a new version, even if it's currently
in use. The file will never be locked (except for a brief moment when the application first
starts). As a result, you can also add or delete assembly files without any problem. ASP.NET
continuously monitors the Bin directory for changes. When a change is detected, it creates
anew application domain and uses it to handle any new requests. Existing requests are
completed using the old application domain, which contains a cached copy of all the old
versions of the components. When all the existing requests are completed, the old applica-
tion domain is removed from memory.

This automatic rollover feature, sometimes called shadow copy, allows you to pain-
lessly update a website without taking it offline, even if it uses separate components.

Configuration Changes

In the somewhat painful early days of ASP programming, configuring a web application
was no easy task. You needed to either create a script that modified the IIS metabase or
use IIS Manager. Once a change was made, you would often need to stop and start the IIS
web service (again by using IIS Manager or the iisreset utility). Sometimes you would even
need to reboot the server before the modification would take effect.

Fortunately, these administrative headaches are no longer required for ASP.NET,
which manages its own configuration independently from IIS. The configuration of an
ASP.NET web application is defined using the web.config file. The web.config file stores
information in a plain-text XML format so that you can easily edit it with a tool such as
Notepad. If you change a web.config setting, ASP.NET uses the same automatic rollover
as it does when you update a component. Existing requests complete with the original
settings and new requests are served by a new application domain that uses the new
web.config settings. Once again, modifying live sites is surprisingly easy in ASP.NET.
You'll learn more about ASP.NET configuration and the web.config file later in the
“ASP.NET Configuration” section.

A Simple One-Page Applet

The first example you’'ll see demonstrates how server-based controls work using a single-
page applet. This type of program, which combines user input and the program output on
the same page, is used to provide popular tools on many sites. Some examples include
calculators for mortgages, taxes, health or weight indices, and retirement savings plans;
single-phrase translators; and stock-tracking utilities.

The page shown in Figure 5-2 allows the user to convert a number of U.S. dollars to the
equivalent amount of euros.

CHAPTER 5 WEB FORM FUNDAMENTALS 131

‘A Currency Converter - Microsoft Internet Explorer,

File Edit Miew Favorites Tools Help QBack - E] @ _/,_ i ?,'
Address @ http: fflocalhost: 2040/ Chapter0s) CurrencyConverter aspx b |
Corwert: | | U.s. dollars to Euros.
@ Daone ‘j Local intranet:

Figure 5-2. A simple currency converter

The following listing shows the HTML for this page. To make it as clear as possible,
we’ve omitted the style attribute of the <div> tag used for the border. This page has two
<input> tags: one for the text box and one for the submit button. These elements are
enclosed in a <form> tag, so they can submit information to the server when the button is
clicked. The rest of the page consists of static text:

<html>
<head>
<title>Currency Converter</title>
</head>
<body>
<form method="post">
<div>
Convert:
<input type="text"> U.S. dollars to Euros.

<input type="submit" value="OK">
</div>
</form>
</body>
</html>

As it stands, this page looks nice but provides no functionality. It consists entirely of the
user interface (HTML tags) and contains no code.

132

CHAPTER 5 WEB FORM FUNDAMENTALS

THE LEAST YOU NEED TO KNOW ABOUT HTML

If your HTML is a little rusty, a few details in the previous web page might look a little perplexing. To help
understand it, review the basic rules of HTML:

Anything enclosed in angled brackets (< >) is a tag, which is interpreted by the browser. For example,
in the currency converter page, the Convert text is displayed directly, but the <input> tags represents
something else—a text box and a button, respectively.

HTML documents always start with an <html> tag and end with an </html> tag.

Inside the HTML document, you can place code, additional information such as the web page title, and the
actual web page content. The web page content is always placed between <body> and
</body> tags. The web page title is part of the information between the <head> and </head> tags.

Controls, the graphical widgets that users can click and type into, must always be placed inside a form.
Otherwise, you won’t be able to access the information the user enters. In ASP.NET, every control needs
to go inside the <form> tag.

The <div> tag, on its own, doesn’t do anything. However, it's useful to use a <div> tag to group portions
of your page that you want to format in a similar way (for example, with the same font, background
color, or border). That way, you can apply style settings to the <div> tag, and they’ll cascade down into
every tag it contains. (The <div> formatting isn’t shown in this example, because it’s too long. However,
you can check out the online currency converter example to see the full list of style settings.)

Whitespace is ignored in HTML. This means spaces, line breaks, and so on, are collapsed. If you need
to explicitly insert additional spaces, you can use the character entity (which stands for
nonbreaking space). To insert line breaks, you can use the break tag:
.

Technically, you don’t need to understand HTML to program ASP.NET web pages—although having

some basic HTML knowledge certainly helps you get up to speed. For a quick primer, you can refer to one
of the excellent HTML tutorials on the Internet, such as http://www.w3schools.com/html or
http://archive.ncsa.uiuc.edu/General/Internet/WWW/HTMLPxrimex.html.

CHAPTER 5 WEB FORM FUNDAMENTALS

The ASP Solution—and Its Problems

In many older web programming platforms, you’'d add the currency conversion function-
ality to this page by examining the posted form values and manually writing the result to
the end of the page. In classic ASP, you’d write this dynamic information using the
Response.Write() command.

This approach works well for a simple page, but it encounters the following difficulties
as the program becomes more sophisticated:

“Spaghetti” code: You need to generate the page output in the order it appears, which
often isn’t the natural order in your code. If you want to tailor different parts of the out-
put based on a single condition, you'll need to reevaluate that condition at several
places in your code.

Lack of flexibility. Once you've perfected your output, it’s difficult to change it. If you
decide to modify the page several months later, you have to read through the code,
follow the logic, and try to sort out numerous details.

Combining content and formatting Depending on the complexity of your user inter-
face, you may need to add HTML tags and style attributes on the fly. This encourages
programs to tangle formatting and content details together, making it difficult to
change just one or the other at a later date.

Complexity. Your code becomes increasingly intricate and disorganized as you add dif-
ferent types of functionality. For example, it could be extremely difficult to track the
effects of different conditions and different rendering blocks if you created a combined
tax/mortgage/interest calculator. Before you know it, you'll be forced to write the
application using separate web pages.

Quite simply, an old-style ASP application that needs to create a sizable portion of inter-
face using Response.Write() commands encounters the same dilemmas that a Windows
program would find if it needed to manually draw its text boxes and command buttons on
an application window in response to every user action.

The ASP.NET Solution: Server Controls

In ASP.NET, you can still use Response.Write() to create a dynamic web page. But ASP.NET
provides a better approach. It allows you to turn static HTML tags into objects—called
server controls—that you can program on the server.

133

134

CHAPTER 5 WEB FORM FUNDAMENTALS

ASP.NET provides two sets of server controls:

HTML server controls: These are server-based equivalents for standard HTML ele-
ments. These controls are ideal if you're a seasoned web programmer who prefers to
work with familiar HTML tags (at least at first). They are also useful when migrating
existing ASP pages to ASP.NET, because they require the fewest changes. You'll learn
about HTML server controls throughout this chapter.

Web controls: These are similar to the HTML server controls, but they provide a richer
object model with a variety of properties for style and formatting details. They also
provide more events and more closely resemble the controls used for Windows devel-
opment. Web controls also feature some user interface elements that have no direct
HTML equivalent, such as the GridView, Calendar, and validation controls. You'll learn
about web controls in the next chapter.

HTML Server Controls

HTML server controls provide an object interface for standard HTML elements. They
provide three key features:

They generate their own interface: You set properties in code, and the underlying HTML
tag is updated automatically when the page is rendered and sent to the client.

They retain their state: Because the Web is stateless, ordinary web pages need to go to a
lot of work to store information between requests. For example, every time the user
clicks a button on a page, you need to make sure every control on that page is refreshed
so that it has the same information the user saw last time. With ASP.NET, this tedious
task is taken care of for you. That means you can write your program the same way you
would write a traditional Windows program.

They fire events: Your code can respond to these events, just like ordinary controls in a
Windows application. In ASP code, everything is grouped into one block that executes
from start to finish. With event-based programming, you can easily respond to individ-
ual user actions and create more structured code. If a given event doesn’t occur, the
event handler code won'’t be executed.

The easiest way to convert the currency converter to ASP.NET is to start by generating
anew web form in Visual Studio. To do this, select Website » Add New Item. In the Add
New Item dialog box, choose Web Form (the first item in the list), type a name for the new
page (such as CurrencyConverter.aspx), and click OK to create the page. Finally, copy all
the content from the original HTML page into the new ASP.NET web form.

CHAPTER 5 WEB FORM FUNDAMENTALS

When you paste your HTML content, this should overwrite everything that’s currently
in the page, except the page directive. The page directive gives ASP.NET basic information
about how to compile the page. It indicates the language you're using for your code and
the way you connect your event handlers. If you're using the code-behind approach,
which is recommended, the page directive also indicates where the code file is located
and the name of your custom page class.

Here’s the web form, with the page directive (in bold) followed by the HTML content
that’s copied from the original page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>
<html>
<head>
<title>Currency Converter</title>
</head>
<body>
<form method="post">
<div>
Convert:
<input type="text"> U.S. dollars to Euros.

<input type="submit" value="OK">
</div>
</form>
</body>
</html>

Now you need to add the attribute runat="server" to each tag that you want to trans-
form into a server control. You should also add an id attribute to each control that you
need to interact with in code. The id attribute assigns the unique name that you'll use to
refer to the control in code.

Tip The quickest way to add the runat="server" attribute is to use Visual Studio. First, add your HTML
page to a website. Then, select each HTML tag separately on the design surface of the page. Right-click, and
choose Run As Server from the menu to transform it into a server control.

135

136

CHAPTER 5 WEB FORM FUNDAMENTALS

In the currency converter application, you can change the input text box and submit
button into server controls. In addition, the <form> element must also be processed as a
server control to allow ASP.NET to access the controls it contains, as shown here:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>
<html>
<head>
<title>Currency Converter</title>
</head>
<body>
<form method="post" runat="server">
<div>
Convert:
<input type="text" id="US" runat="server">
 U.S. dollars to Euros.

<input type="submit" value="OK" id="Convert" runat="server">
</div>
</form>
</body>
</html>

Note ASP.NET controls are always placed inside the <form> tag of the page. The <form> tag is a part of
the standard for HTML forms, and it allows the browser to send information to the web server.

The web page still won’t do anything when you run it, because you haven’t written any
code. However, now that you've converted the static HTML elements to HTML server
controls, you're ready to work with them.

View State

To try this page, launch it in Visual Studio. Then, select View » Source in your browser to
look at the HTML that ASP.NET sent your way.

The first thing you'll notice is that the HTML that was sent to the browser is slightly
different from the information in the .aspx file. First, the runat="server" attributes are

CHAPTER 5 WEB FORM FUNDAMENTALS 137

stripped out (because they have no meaning to the client browser, which can’t interpret
them). Second, and more important, an additional hidden field has been added to the
form, as shown here:

<html>
<head>
<title>Currency Converter</title>
</head>
<body>
<form method="post" runat="server">
<input type="hidden" name="__VIEWSTATE" value="dDw3NDg2NTI5MDg70z4=" />
<div>
Convert:
<input type="text" id="US" runat="server"> U.S. dollars to Euros.

<input type="submit" value="OK" id="Convert" runat="server"»
</div>
</form>
</body>
</html>

This hidden field stores information, in a compressed format, about the state of every
control in the page. It allows you to manipulate control properties in code and have the
changes automatically persisted. This is a key part of the web forms programming model.
Thanks to view state, you can often forget about the stateless nature of the Internet and
treat your page like a continuously running application.

Even though the currency converter program doesn’t yet include any code, you'll
already notice one change. If you enter information in the text box and click the submit
button to post the page, the refreshed page will still contain the value you entered in the
text box. (In the original example that uses ordinary HTML elements, the value will be
cleared every time the page is posted back.) This change occurs because ASP.NET con-
trols automatically retain state.

The HTML Control Classes

Before you can continue any further with the currency converter, you need to know about
the control objects you've created. All the HTML server controls are defined in the
System.Web.UL HtmlControls namespace. Each kind of control has a separate class.
Table 5-3 describes the basic HTML server controls and shows you the related HTML
element.

138

CHAPTER 5

WEB FORM FUNDAMENTALS

Table 5-3. The HTML Server Control Classes

Class Name

HTML Tag Represented

Description

HtmlAnchor

HtmlButton

HtmlForm

HtmlImage

HtmlInputButton,
HtmlInputSubmit, and
HtmlInputReset

HtmlInputCheckBox

HtmlInputFile

HtmlInputHidden

HtmlInputlmage

HtmlInputRadioButton

HtmlInputText and
HtmlInputPassword

HtmlSelect

HtmlTable,
HtmlTableRow, and
HtmlTableCell

<a>

<button>

<form>

<input type="button">,
<input type="submit">,
and <input type="reset">

<input type="checkbox">

<input type="file">

<input type="hidden">

<input type="image">

<input type="radio">

<input type="text"> and

<input type="password">

<select>

<table>, <tr>, <th>, and
<td>

A hyperlink that the user clicks to jump
to another page.

A button that the user clicks to perform
an action. This is not supported by all
browsers, so HtmlInputButton is usually
used instead. The key difference is that
the HtmlButton is a container element.
As aresult, you can insert just about
anything inside it, including text and
pictures. The HtmlInputButton, on the
other hand, is strictly text-only.

The form wraps all the controls on a web
page. Controls that appear inside a form
will send their data to the server when
the page is submitted.

Alink that points to an image, which will
be inserted into the web page at the
current location.

A button that the user clicks to perform
an action (often it’s used to submit all
the input values on the page to the
server).

A check box that the user can check or
clear. Doesn’t include any text of its own.

A Browse button and text box that can be
used to upload a file to your web server,
as described in Chapter 16.

Contains text-based information that
will be sent to the server when the page
is posted back but won’t be visible to
the user.

Similar to the tag, but it inserts a
“clickable” image that submits the page.

Aradio button that can be selected in
a group. Doesn’t include any text of
its own.

A single-line text box where the user can
enter information. Can also be displayed
as a password field (which displays
asterisks instead of characters to hide
the user input).

A drop-down or regular list box, where
the user can select an item.

A table that displays multiple rows and
columns of static text.

CHAPTER 5 WEB FORM FUNDAMENTALS

Class Name HTML Tag Represented Description
HtmlTextArea <textarea> Alarge text box where the user can type
multiple lines of text.

HtmlGenericControl Any other HTML element. This control can represent a variety of
HTML elements that don’t have
dedicated control classes.

HtmlHead and <head> and <title> Represents the header information for

HtmlTitle the page. You can use this to dynamically
change the title or connect style sheets
(as explained in Chapter 10).

So far, the currency converter defines three controls, which are instances of the Html-
Form, HtmlInputText, and HtmlInputButton classes, respectively. It's important that you
know the class names, because you need to define each control class in the code-behind
file if you want to interact with it. (Visual Studio simplifies this task: whenever you add a
control using its web designer, the appropriate tag is added to the .aspx file, and the
appropriate variables are defined in the code-behind class.) Table 5-4 gives a quick over-
view of some of the most important control properties.

Table 5-4. Important HTML Control Properties

Control Most Important Properties
HtmlAnchor Href, Target, Title
HtmlImage and Src, Alt, Width, and Height
HtmlInputImage

HtmlInputCheckBoxand Checked
HtmlInputRadioButton

HtmlInputText Value

HtmlSelect Items (collection)
HtmlTextArea Value
HtmlGenericControl InnerText

To actually add some functionality to the currency converter, you need to add some
ASP.NET code. Web forms are event-driven, which means every piece of code acts inresponse
to a specific event. In the simple currency converter page example, the most useful event
occurs when the user clicks the submit button (named Convert). The HtmlInputButton allows
you to react to this action by handling the ServerClick event.

Before you continue, it makes sense to add another control that can display the result of
the calculation. In this case, you can use a <div> tag named Result. The <div> tag is one way

to insert a block of formatted text into a web page. Here’s the line of HTML that you’ll need:

<div style="font-weight: bold" id="Result" runat="server">

139

140

CHAPTER 5 WEB FORM FUNDAMENTALS

The style attribute applies the CSS properties used to format the text. In this example,
it merely applies a bold font.
The example now has the following four server controls:

Aform (HtmlForm object). This is the only control you do not need to access in your
code-behind class.

¢ An input text box named US (HtmlInputText object).
¢ A submit button named Convert (HtmlInputButton object).
¢ A <div> tag named Result (HtmlGenericControl object).

Listing 5-1 shows the revised web page (CurrencyConverter.aspx), and Listing 5-2
shows the code-behind class (CurrencyConverter.aspx.cs), which calculates the currency
conversion and displays the result.

Listing 5-1. CurrencyConverter.aspx

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>
<html>
<head>
<title>Currency Converter</title>
</head>
<body>
<form method="post" runat="server">
<div>
Convert:
<input type="text" id="US" runat="server"> U.S. dollars to Euros.

<input type="submit" value="OK" id="Convert" runat="server"
OnServerClick="Convert ServerClick">

<div style="font-weight: bold" id="Result" runat="server"></div>
</div>
</form>
</body>
</html>

CHAPTER 5 WEB FORM FUNDAMENTALS

Listing 5-2. CurrencyConverter.aspx.cs

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

public partial class CurrencyConverter : System.Web.UI.Page

{
protected void Convert ServerClick(Object sender, EventArgs e)
{
decimal USAmount = decimal.Parse(US.Value);
decimal euroAmount = USAmount * 0.85M;
Result.InnerText = USAmount.ToString() + " U.S. dollars = ";
Result.InnerText += euroAmount.ToString() + " Euros.";
}
}
The code-behind class is a typical example of an ASP.NET page. You'll notice the fol-
lowing conventions:

It starts with several using statements. This provides access to all the important
namespaces. This is a typical first step in any code-behind file.

The page class is defined with the partial keyword. That’s because your class code is
merged with another code file that you never see. This extra code, which ASP.NET
generates automatically, defines all the server controls that are used on the page.
This allows you to access them by name in your code.

The page defines a single event handler. This event handler retrieves the value from
the text box, multiplies it by a preset conversion ratio (which would typically be
stored in another file or a database), and sets the text of the <div> tag. You'll notice
that the event handler accepts two parameters (sender and e). This is the .NET stan-
dard for all control events. It allows your code to identify the control that sent the
event (through the sender parameter) and retrieve any other information that may
be associated with the event (through the e parameter). You'll see examples of these
advanced techniques in the next chapter, but for now, it’s important to realize that
youwon'’t be allowed to handle an event unless your event handler has the correct,
matching signature.

141

142

CHAPTER 5 WEB FORM FUNDAMENTALS

¢ The event handler is connected to the control event using the OnServerClick attrib-
ute in the <input> tag for the button. You'll learn more about how this hookup
works in the next section.

¢ The event handler uses ToString() to convert the decimal value to text. Remember,
C# is notoriously strict about data type conversions. Before you can display your
information in the page, you need to convert the decimal value to a string so that it
can be added to the InnerText property.

You can launch this page to test your code. When you enter a value and click the OK
button, the page is resubmitted, the event handling code runs, and the page is returned to
you with the conversion details (see Figure 5-3).

‘A Currency Converter - Microsoft Internet Explorer,

File Edit Wiew Favorites Tools Help OBack @) |ﬂ @ _r,_ th
Address |@ http: fflocalhost: 2040/ Chapter0s) CurrencyConverter aspx e |
Conwert: [278 | U.s. dollars to Euros.

275 U.S. dollars = 233.75 Euros.

@ Daone \ﬁ Local intranet:

Figure 5-3. The ASP.NET currency converter

Event Handling

This example works using a technique called automatic event wireup. To use this
approach, you use an attribute in the control tag to connect your event handler.

For example, if you want to handle the ServerClick method of the Convert button,
you simply need to set the OnServerClick attribute in the control tag with the name of
the event handler you want to use:

<input type="submit" value="OK" id="Convert"
OnServerClick="Convert_ServerClick" runat="server">

CHAPTER 5 WEB FORM FUNDAMENTALS

ASP.NET controls always use this syntax and give the attribute the event name pre-
ceded by the word On. For example, if you want to handle an event named ServerChange,
you’d set an attribute in the control tag named OnServerChange. You don’t need to
connect a small set of page events through a control tag, such as Page.Load event. Every-
thing else is hooked up using the control tag. When you double-click a control in Visual
Studio, this change takes place automatically, so you never need to hook up your event
handlers manually.

ASP.NET allows you to use another technique, called manual event wireup, which was
used in previous versions of Visual Studio .NET. With manual event wireup, every event
handler is connected with code that uses delegates, just as you saw in Chapter 3.

For example, here’s the delegate code that’s required to hook up the ServerClick event
of the Convert button using manual event wireup:

Convert.ServerClick += new EventHandler(this.Convert ServerClick);

Essentially, this code creates a new delegate using the EventHandler type and attaches
it to the ServerClick event. The EventHandler delegate defines the signature that the
ServerClick event handler must match. As you'll see later, some events pass additional
information to your event handlers and have a different signature. In this case, you need
to use a different delegate.

Seeing as Visual Studio handles event wireup, why should ASP.NET 2.0 developers care
that they have two ways to hook up an event handler? Well, most of the time you won’t
worry about it. But the manual event wireup technique is useful in certain circumstances.
The most common example is if you want to create a control object and add it to a page
dynamically at runtime. In this situation, you can’t hook up the event handler through the
control tag, because there isn’t a control tag. Instead, you need to create the control and
attach its event handlers using code. (The next chapter has an example of howyou can use
dynamic control creation to fill in a table.)

Behind the Scenes with the CurrencyConverter

So, what really happens when ASP.NET receives a request for the CurrencyConverter.aspx
page? The process actually unfolds over several steps:

1. First, therequest for the page is sent to the web server. If you're running a live site, the
web server is almost certainly IIS, which you'll learn more about in Chapter 12. If
you're running the page in Visual Studio, the request is sent to the built-in test server.

2. The web server determines that the .aspx file extension is registered with ASPNET
and passes it to the ASPNET worker process. If the file extension belonged to
another service (as it would for .asp files), ASPNET would never get involved.

143

144

CHAPTER 5 WEB FORM FUNDAMENTALS

3. Ifthisis the first time a page in this application has been requested, ASPNET
automatically creates the application domain and a special application object (tech-
nically, an instance derived from the .NET class System.Web.HttpApplication).

4. ASPNET considers the specific .aspx file. If it has never been executed, ASPNET
compiles and caches the page in the directory c:\[WinDir\Microsoft. NET\
Framework\[Version]\Temporary ASPNET Files, where [Version] is the version
number of the .NET Framework. If this task has already been performed (for
example, someone else has already requested this page) and the file hasn't been
changed, ASPNET will use the compiled version.

5. The compiled CurrencyConverter acts like a miniature program. It starts firing
events (most notably, the Page.Load event). However, you haven't created an event
handler for that event, so no code runs. At this stage, everything is working
together as a set of in-memory .NET objects.

6. When the code is finished, ASPNET asks every control in the web page to render
itself into the corresponding HTML tags.

Tip Infact, ASP.NET performs alittle sleight of hand and may customize the output with additional client-side
JavaScript or DHTML if it detects that the client browser supports it. In the case of CurrencyConverter.aspx, the
output of the page is too simple to require this type of automatic tweaking.

7. The final page is sent to the user, and the application ends.

The description is lengthy, but it’s important to start with a good understanding of
the fundamentals. When you click a button on the page, the entire process repeats itself.
However, in step 5 the ServerClick event fires for HtmlInputButton right after the Page.Load
event, and your code runs.

Figure 5-4 illustrates the stages in a web page request.

CHAPTER 5 WEB FORM FUNDAMENTALS 145

Web Request

1IS Is the file registered
to ASP.NET?
y | Handle the request internally,
NO |l or pass it to another service.
YES

- J

4)
ASP . NET Y Has the application

instance been
created?

Instantiate the application,
» create global variables, and
NO fire global events.

<

Has the requested
page been
compiled?

»| Compile and cache the page.

NO

Instantiate the page, fire
page events, and run the
event handling code.

v

Render the page to HTML,
one control at a time.

Y

Web Response

Figure 5-4. The stages in an ASP.NET request

146

CHAPTER 5 WEB FORM FUNDAMENTALS

The most important detail is that your code works with objects. The final step is to
transform these objects into the appropriate HTML output. A similar conversion from
objects to output happens with a Windows program in C#, but it’s so automatic that pro-
grammers rarely give it much thought. Also, in those environments, the code always runs
locally. In an ASP.NET application, the code runs in a protected environment on the
server. The client sees the results only once the web page processing has ended and the
program has been released from memory.

Improving the Currency Converter

Now that you've looked at the basic server controls, it might seem that their benefits are
fairly minor compared with the cost of learning a whole new system of web programming.
In the next section, you'll start to extend the currency converter applet. You'll see howyou
can “snap in” additional functionality to the existing program in an elegant, modular way.
As the program grows, ASP.NET handles its complexity easily, steering you away from the
tangled and intricate code that would be required in old-style ASP applications.

Adding Multiple Currencies

The first task is to allow the user to choose a destination currency. In this case, you need
to use a drop-down list box. In HTML, a drop-down list is represented by a <select>
element that contains one or more <option> elements. Each <option> element corre-
sponds to a separate item in the list.

To reduce the amount of HTML in the currency converter, you can define a drop-down
list without any list items by adding an empty <select> tag. As long as you ensure that this
<select> tagis a server control (by giving it a name and adding the runat="server" attribute),
you'll be able to interact with it in code and add the required items when the page loads.

Here’s the revised HTML for the CurrencyConverter.aspx page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>
<html>
<head>
<title>Currency Converter</title>
</head>
<body>
<form method="post" runat="server">
<div>
Convert:
<input type="text" id="US" runat="server"> U.S. dollars to
<select id="Currency" runat="server"></select>

CHAPTER 5 WEB FORM FUNDAMENTALS 147

<input type="submit" value="OK" id="Convert"
OnServerClick="Convert ServerClick" runat="server">

<div style="font-weight: bold" id="Result" runat="server"></div>
</div>
</form>
</body>
</html>

The currency list can now be filled using code at runtime. In this case, the ideal event is
the Page.Load event, because this is the first event that occurs when the page is executed.
Here’s the code you need to add to the CurrencyConverter page class:

protected void Page Load(Object sender, EventArgs e)

{
if (this.IsPostBack == false)
{
Currency.Items.Add("Euro");
Currency.Items.Add("Japanese Yen");
Currency.Items.Add("Canadian Dollar");
}
}
Dissecting the Code...

This example illustrates two important points:

* You can use the Items property to get items in a list control. This allows you to
append, insert, and remove <option> elements. Remember, when generating
dynamic content with a server control, you set the properties, and the control
creates the appropriate HTML tags.

* Before adding any items to this list, you need to make sure this is the first time the
page is being served. Otherwise, the page will continuously add more items to the
list or inadvertently overwrite the user’s selection every time the user interacts with
the page. To perform this test, you check the this.IsPostBack property. The this
keyword points to the current instance of the page class. In other words, IsPostback
is a property of the CurrencyConverter class, which CurrencyConverter inherited
from the generic Page class. If IsPostBack is false, the page is being created for the
first time, and it’s safe to initialize it.

148

CHAPTER 5 WEB FORM FUNDAMENTALS

Storing Information in the List

Of course, if you're a veteran HTML coder, you know that a select list also provides a value
attribute that you can use to store additional information. Because the currency converter
uses a short list of hard-coded values, this is an ideal place to store the conversion rate.

To set the value tag, you need to create a ListItem object and add that to the
HtmlInputSelect control. The ListItem class provides a constructor that lets you specify
the text and value at the same time that you create it, thereby allowing condensed code
like this:

protected void Page Load(Object sender, EventArgs e)

{
if (this.IsPostBack == false)
{
// The HtmlInputSelect control accepts text or ListItem objects.
Currency.Items.Add(new ListItem("Euros", "0.85"));
Currency.Items.Add(new ListItem("Japanese Yen", "110.33"));
Currency.Items.Add(new ListItem("Canadian Dollars", "1.2"));
}
}

To complete the example, you must rewrite the calculation code to take the selected
currency into account, as follows:

protected void Convert ServerClick(object sender, EventArgs e)

{

decimal amount = Decimal.Parse(US.Value);

// Retrieve the select ListItem object by its index number.
ListItem item = Currency.Items[Currency.SelectedIndex];

decimal newAmount = amount * Decimal.Parse(item.Value);

Result.InnerText = amount.ToString() + " U.S. dollars = ";
Result.InnerText += newAmount.ToString() + " " + item.Text;

Figure 5-5 shows the revamped currency converter.

Allin all, this is a good example of how you can store information in HTML tags using the
value attribute. However, in a more sophisticated application, you probably wouldn’t store
the currency rate. Instead, you would just store some sort of unique identifying ID value.
Then, when the user submits the page, you would retrieve the corresponding conversion
rate from a database or some other storage location (such as an in-memory cache).

CHAPTER 5 WEB FORM FUNDAMENTALS 149

‘A Currency Converter - Microsoft Internet Explorer,

r 3

File Edit Wiew Favorites Tools Help GBack A > | @ @ _(._ '?,"

Address @ http: fflocalhost: 2040/ Chapter0s) CurrencyConverter aspx M |
Convert: U.S. dollars to

275 U.S. dollars = 30340.75 Japanese Yen

@ Daone \3 Local intranet:

Figure 5-5. The multicurrency converter

Adding Linked Images

Adding other functionality to the currency converter is just as easy as adding a new button.

For example, it might be useful for the utility to display a currency conversion rate graph. To

provide this feature, the program would need an additional button and image control.
Here’s the revised HTML:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>
<html>
<head>
<title>Currency Converter</title>
</head>
<body>
<form method="post" runat="server">
<div>
Convert:
<input type="text" id="US" runat="server"> U.S. dollars to
<select id="Currency" runat="server"></select>

<input type="submit" value="OK" id="Convert"
OnServerClick="Convert ServerClick" runat="server">
<input type="submit" value="Show Graph" id="ShowGraph" runat="server">

150

CHAPTER 5 WEB FORM FUNDAMENTALS

<div style="font-weight: bold" id="Result" runat="server"></div>
</div>
</form>
</body>
</html>

Asit’s currently declared, the image doesn’t refer to a picture. For that reason, it makes
sense to hide it when the page is first loaded by using this code:

protected void Page Load(Object sender, EventArgs e)

{
if (this.IsPostBack == false)
{
// The HtmlInputSelect control accepts text or ListItem objects.
Currency.Items.Add(new ListItem("Euros", "0.85"));
Currency.Items.Add(new ListItem("Japanese Yen", "122.33"));
Currency.Items.Add(new ListItem("Canadian Dollars", "1.48"));
}
Graph.Visible = false;
}

Interestingly, when a server control is hidden, ASP.NET omiits it from the final HTML page.

Now you can handle the click event of the new button to display the appropriate pic-
ture. The currency converter has three possible picture files—pic0.png, picl.png, and
pic2.png—depending on the selected currency:

protected void ShowGraph ServerClick(Object sender, EventArgs e)
{

Graph.Src = "Pic" + Currency.SelectedIndex.ToString() +
Graph.Alt = "Currency Graph";

Graph.Visible = true;

'.png";

You need to make sure you link to the event handler through the button:

<input type="submit" value="Show Graph" id="ShowGraph"
OnServerClick="ShowGraph ServerClick" runat="server">

Already the currency converter is beginning to look more interesting, as shown in
Figure 5-6.

CHAPTER 5 WEB FORM FUNDAMENTALS

‘A Currency Converter - Microsoft Internet Explorer,

File Edit Miew Favorites Tools Help @Back T I_ﬂ @ /,k /'3 Search

Address @ http: fflocalhost: 2040/ Chapter0s) CurrencyConverter aspx

Convert; .5, dollars to | Canadian Dollars |+
Show Graph

USDCAD=%

1.59
W USDCAD=K

Aug@? Augz? Sepld Oct@s

http: - ofinance. vahoo. coms

375 U.S. dollars = 450.0 Canadian Dollars

@ Daone ‘3 Local intranet:

Figure 5-6. The currency converter with an image control

Setting Styles

In addition to a limited set of properties, each HTML control also provides access to the CSS
style attributes through its Style collection. To use this collection, you need to specify the
name of the CSS style attribute and the value you want to assign to it. Here’s the basic syntax:

ControlName.Style["AttributeName"] = "AttributeValue";

For example, you could use this technique to emphasize an invalid entry in the cur-
rency converter with the color red. In this case, you'll also need to reset the color to its
original value for valid input, because the control uses view state to remember all its set-
tings, including its style properties:

protected void Convert ServerClick(object sender, EventArgs e)

{

decimal amount = Decimal.Parse(US.Value);

if (amount <= 0)

151

152

CHAPTER 5 WEB FORM FUNDAMENTALS

{
Result.Style["color"] = "Red";
Result.InnerText = "Specify a positive number";
}
else
{
Result.Style["color"] = "Black";
// Retrieve the select ListItem object by its index number.
ListItem item = Currency.Items[Currency.SelectedIndex];
decimal newAmount = amount * Decimal.Parse(item.Value);
Result.InnerText = amount.ToString() + " U.S. dollars = ";
Result.InnerText += newAmount.ToString() + " " + item.Text;
}

The only problem with this example is that it generates an error if the user doesn’t
cooperate and types in a non-numeric value. To get around this problem, you can (and
should) use error handling, as described in Chapter 7.

Tip The Style collection sets the style attribute in the HTML tag with a list of formatting options such as
font family, size, and color. But if you aren’t familiar with CSS styles, you don’t need to learn them now.
Instead, you should use the web control equivalents, which provide higher-level properties that allow you to
configure their appearance and automatically create the appropriate style attributes. You'll learn about web
controls in the next chapter.

This concludes the simple currency converter applet, which now boasts automatic cal-
culation, linked images, and dynamic formatting. In the following sections, you’ll look at
the building blocks of ASP.NET interfaces more closely.

A Deeper Look at HTML Control Classes

Related classes in the .NET Framework use inheritance to share functionality. For exam-
ple, every HTML control inherits from the base class HtmlControl. The HtmlControl class
provides essential features every HTML server control uses. Figure 5-7 shows the inherit-
ance diagram.

CHAPTER 5 WEB FORM FUNDAMENTALS 153

[System.Object |
[

[System.UI.Web.Control]

System.Web.UI.HtmlControls

——{ HtmlControl
[HtmlInputControl | [HtmlContainerControl] HtmlImage |
HtmlLink |
H HtmlInputButton H HtmlAnchor HtmlTitle |
I

[Htm1InputSubmit
H HtmlInputReset
| HtmLInputCheckBox
H HtmlInputFile
— HtmlInputHidden
—{ HtmlInputImage
- HtmlInputRadioButton
H HtmlInputText
L[HtmlInputPassword

|

H Htm1Button |

H Htm1Form |
H HtmlGenericControl | HtmlHead

|

|

|

|

|

| HtmlSelect

- [HtmlTable

H HtmlTableCell
- Htm1TableRow
L HtmlTextArea

Figure 5-7. HTML control inheritance

The next few sections dissect the ASP.NET classes that are used for HTML server con-
trols. You can use this material to help understand the common elements that are shared
by all HTML controls. For the specific details about each HTML control, you can refer to
the class library reference in the Visual Studio Help.

HTML server controls generally provide properties that closely match their tag attributes.
For example, the HtmlImage class provides Align, Alt, Border, Src, Height, and Width proper-
ties. For this reason, users who are familiar with HTML syntax will find that HTML server
controls are the most natural fit. Users who aren’t as used to HTML will probably find that
web controls (described in the next chapter) have a more intuitive set of properties.

HTML Control Events

HTML server controls also provide one of two possible events: ServerClick or ServerChange.
The ServerClick is simply a click that is processed on the server side. It’s provided by most
button controls, and it allows your code to take immediate action. This action might over-
ride the expected behavior. For example, if you intercept the click event of a hyperlink
control (the <a> element), the user won't be redirected to a new page unless you provide
extra code to forward the request.

154

CHAPTER 5 WEB FORM FUNDAMENTALS

The ServerChange event responds when a change has been made to a text or selection con-
trol. This event isn’t as useful as it appears because it doesn’t occur until the page is posted
back (for example, after the user clicks a submit button). At this point, the ServerChange event
occurs for all changed controls, followed by the appropriate ServerClick. The Page.Load event
is the first to fire, but you have no way to know the order of events for other controls.

Table 5-5 shows which controls provide a ServerClick event and which ones provide a
ServerChange event.

Table 5-5. HTML Control Events

Event Controls That Provide It

ServerClick HtmlAnchor, HtmlForm,
HtmlButton,
HtmlInputButton,
HtmlInputImage

ServerChange HtmlInputText,
HtmlInputCheckBox,
HtmlInputRadioButton,
HtmlInputHidden,
HtmlSelect,
HtmlTextArea

Advanced Events with the HtmlInputImage Control

Chapter 4 introduced the .NET event standard, which dictates that every event should
pass exactly two pieces of information. The first parameter identifies the object (in this
case, the control) that fired the event. The second parameter is a special object that can
include additional information about the event.

In the examples you've looked at so far, the second parameter (e) has always been used
to pass an empty System.EventArgs object. This object doesn’t contain any additional
information—it’s just a glorified placeholder. Here’s one such example:

protected void Convert ServerClick(Object sender, EventArgs e)

{ ...}

In fact, only one HTML server control sends additional information: the HtmlInputimage
control. It sends an ImageClickEventArgs object (from the System.Web.UI namespace) that
provides X and Y properties representing the location where the image was clicked. You'll
notice that the definition for the HtmlInputImage.ServerClick event handler is a little different
from the event handlers used with other controls:

protected void ImgButton ServerClick(Object sender, ImageClickEventArgs e)
{ ...}

CHAPTER 5 WEB FORM FUNDAMENTALS

Using this additional information, you can replace multiple button controls and image
maps with a single, intelligent HtmlInputImage control. The sample ImageTest.aspx page
shown in Figure 5-8 puts this feature to work with a simple graphical button. Depending
on whether the user clicks the button border or the button surface, a different message
is displayed.

‘A Untitled Page - Microsoft Internet Explorer

q ") . p 5 . »
File Edit View Favorites Tools Help QBack - O EIRER A ?,'

Address @ http: fflocalhost: 2040/ Chapter0s/ImageTest, aspx M |

Click on the Immage

Tou clicked at (204, 123 Tou clicked the button border.

@ Daone ‘ﬂ Local intranet:

Figure 5-8. Using an HtmlInputImage control

The page code examines the click coordinates provided by the ImageClickEventArgs
object and displays them in another control. Here’s the page code you need:

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

public partial class ImageTest : System.Web.UI.Page
{
protected void ImgButton ServerClick(Object sender,
ImageClickEventArgs e)
{
Result.InnerText = "You clicked at (" + e.X.ToString() +
", "+ e.Y.ToString() + "). ";

155

156 CHAPTER 5 WEB FORM FUNDAMENTALS

if ((e.Y < 100) 8& (e.Y > 20) && (e.X > 20) & (e.X < 275))

{

Result.InnerText += "You clicked on the button surface.";

}

else

{

Result.InnerText += "You clicked the button border.";

Note that the InitializeComponent() method uses the ImageClickEventHandler
delegate instead of the generic EventHandler delegate when it connects your event han-
dler. That’s because the ImageClickEventHandler defines a special signature for the
ImageClick event. This signature includes the ImageClickEventArgs parameter that con-
tains the additional information about where the user clicked.

The HtmlControl Base Class

Every HTML control inherits from the base class HtmlControl. This relationship means
that every HTML control will support a basic set of properties and features. Table 5-6
shows these properties.

Table 5-6. HtmlControl Properties

Property

Description

Attributes

Controls

Disabled

EnableViewState

Provides a collection of all the tag attributes and their values. Rather than
setting an attribute directly, it’s better to use the corresponding property.
However, this collection is useful if you need to add or configure a custom
attribute or an attribute that doesn’t have a corresponding property.

Provides a collection of all the controls contained inside the current control.
(For example, a <div> server control could contain an <input> server
control.) Each object is provided as a generic System.Web.UI.Control object
so that you may need to cast the reference to access control-specific
properties.

Set this to true to disable the control, thereby ensuring that the user cannot
interact with it and its events will not be fired.

Set this to false to disable the automatic state management for this control.
In this case, the control will be reset to the properties and formatting
specified in the control tag every time the page is posted back. If this is set to
true (the default), the control uses a hidden input field to store information
about its properties, thereby ensuring that any changes you make in code
are remembered.

CHAPTER 5 WEB FORM FUNDAMENTALS

Property Description

Page Provides a reference to the web page that contains this control as a
System.Web.UI.Page object.

Parent Provides a reference to the control that contains this control. If the control is
placed directly on the page (rather than inside another control), it will return
areference to the page object.

Style Provides a collection of CSS style properties that can be used to format the
control.

TagName Indicates the name of the underlying HTML element (for example, img
or div).

Visible When set to false, the control will be hidden and will not be rendered to the

final HTML page that is sent to the client.

The HtmlControl class also provides built-in support for data binding, which you’ll
examine in Chapter 14.

The HtmlContainerControl Class

Any HTML control that requires a closing tag also inherits from the HtmlContainer control.
For example, elements such as <a>, <form>, and <div> always use a closing tag, because
they can contain other HTML elements. On the other hand, and <input> are used
only as stand-alone tags. Thus, the HtmlAnchor, HtmlForm, and HtmlGenericControl
classes inherit from HtmlContainerControl, while HtmlImage and HtmlInput do not.

The HtmlContainer control adds two properties, as described in Table 5-7.

Table 5-7. HtmlContainerControl Properties

Property Description

InnerHtml The HTML content between the opening and closing tags of the control.
Special characters that are set through this property will not be converted to
the equivalent HTML entities. This means you can use this property to apply
formatting with nested tags such as , <i>, and <h1>.

InnerText The text content between the opening and closing tags of the control. Special

characters will be automatically converted to HTML entities and displayed like
text (for example, the less-than character (<) will be converted to < and will be
displayed as < in the web page). This means you can’t use HTML tags to apply
additional formatting with this property. The simple currency converter page used
the InnerText property to enter results into a <div> tag.

157

158

CHAPTER 5 WEB FORM FUNDAMENTALS

PROPERTIES CAN BE SET IN CODE OR IN THE TAG

To set the initial value of a property, you can configure the control in the Page.Load event handler, or you can
adjust the control tag in the .aspx file by adding special attributes. Note that the Page.Load event occurs after
the page is initialized with the default values and the tag settings. This means your code can override the prop-
erties set in the tag (but not vice versa).

The following Htmlimage control is an example that sets properties through attributes in the control tag.
The control is automatically disabled and will not fire any events.

Remember, if you set control properties in the Properties window, you are using the control tag approach.
As you make your changes, Visual Studio updates the control tag in the .aspx file.

The HtmlInputControl Class

This control defines some properties (shown in Table 5-8) that are common to all the
HTML controls that are based on the <input> tag, including the <input type="text">,
<input type="submit">, and <input type="file"> elements.

Table 5-8. HtmlInputControl Properties

Property Description

Type Provides the type of input control. For example, a control based on <input
type="file"> would return file for the type property.

Value Returns the contents of the control as a string. In the simple currency converter,
this property allowed the code to retrieve the information entered in the text input
control.

The Page Class

One control we haven’t discussed in detail yet is the Page class. As explained in the previ-
ous chapter, every web page is a custom class that inherits from System.Web.UI.Page. By
inheriting from this class, your web page class acquires a number of properties that your
code can use. These include properties for enabling caching, validation, and tracing,
which are discussed throughout this book.

Table 5-9 describes some of the more fundamental properties, including the traditional
built-in objects that ASP developers often used, such as Response, Request, and Session.

CHAPTER 5

Table 5-9. Basic Page Properties

WEB FORM FUNDAMENTALS

Property

Description

Application and
Session

Cache
Controls

EnableViewState

IsPostBack

Request

Response

Server

User

These collections hold state information on the server. Chapter 9 discusses
this topic.

This collection allows you to store objects for reuse in other pages or for
other clients. Chapter 26 discusses caching.

Provides a collection of all the controls contained on the web page. You can
also use the methods of this collection to add new controls dynamically.

When set to false, this overrides the EnableViewState property of the
contained controls, thereby ensuring that no controls will maintain state
information.

This Boolean property indicates whether this is the first time the page is
being run (false) or whether the page is being resubmitted in response to a
control event, typically with stored view state information (true). This
property is often used in the Page.Load event handler, thereby ensuring that
basic setup is performed only once for controls that maintain view state.

Refers to an HttpRequest object that contains information about the current
web request, including client certificates, cookies, and values submitted
through HTML form elements. It supports the same features as the built-in
ASP Request object.

Refers to an HttpResponse object that allows you to set the web response or
redirect the user to another web page. It supports the same features as the
built-in ASP Response object, although it’s used much less in .NET
development.

Refers to an HttpServerUtility object that allows you to perform some
miscellaneous tasks, such as URL and HTML encoding. It supports the
same features as the built-in ASP Server object.

If the user has been authenticated, this property will be initialized with user
information. Chapter 18 describes this property in more detail.

The Controls Collection

The Page.Controls collection includes all the controls on the current web form. You can

loop through this collection and access each control. For example, the following code
writes the name of every control on the current page to a server control called Result:

Result.InnerText = "List of controls: ";

foreach (Control ctrl in this.Controls)

{

Result.InnerText += " " + ctrl.ID;

159

160

CHAPTER 5 WEB FORM FUNDAMENTALS

You can also use the Controls collection to add a dynamic control. The following code
creates a new button with the caption Dynamic Button and adds it to the bottom of the page:

HtmlButton ctrl = new HtmlButton();
ctrl.InnerText = "Dynamic Button";
ctrl.ID = "DynamicButton";
this.Controls.Add(ctrl);

The best place to generate new controls is in the Page.Load event handler. This ensures
that the control will be created each time the page is served. In addition, if you're adding
an input control that uses view state, the view state information will be restored to the
control after the Page.Load event fires. This means a dynamically generated text box will
retain its text over multiple postbacks, just like a text box that is defined in the .aspx file.
Dynamically created controls are difficult to position, however. By default, they appear at
the bottom of the page. The only way to change this behavior is to create a container
control that acts as a placeholder, such as a server-side <div> tag. You can then add the
dynamic control to the Controls collection of the container control.

The HttpRequest Class

The HttpRequest class encapsulates all the information related to a client request for a
web page. Most of this information corresponds to low-level details such as posted-back
form values, server variables, the response encoding, and so on. If you're using ASP.NET
to its fullest, you'll almost never dive down to that level. Other properties are generally
useful for retrieving information, particularly about the capabilities of the client browser.
Table 5-10 provides a quick look at its most frequently used properties.

Table 5-10. HttpRequest Properties

Property Description

ApplicationPath and ApplicationPath gets the ASP.NET application’s virtual directory
PhysicalPath (URL), while PhysicalPath gets the “real” directory.

Browser Provides a link to an HttpBrowserCapabilities object that contains

properties describing various browser features, such as support for
ActiveX controls, cookies, VBScript, and frames. This replaces the
BrowserCapabilities component that was sometimes used in ASP
development.

ClientCertificate An HttpClientCertificate object that gets the security certificate for
the current request, if there is one.

CHAPTER 5 WEB FORM FUNDAMENTALS 161

Property Description

Cookies Gets the collection cookies sent with this request. Chapter 9 discusses
cookies in more detail.

Headers and Provides a name/value collection of HTTP headers and server

ServerVariables variables. You can get the low-level information you need if you know
the corresponding header or variable name.

IsAuthenticated and Returns true if the user has been successfully authenticated and if the

IsSecureConnection user is connected over SSL (also known as the Secure Sockets Layer).

QueryString Provides the parameters that were passed along with the query string.

Chapter 9 discusses how you can use the query string to transfer
information between pages.

Url and UrlReferrer Provides a Uri object that represents the current address for the page
and the page where the user is coming from (the previous page that
linked to this page).

UserAgent A string representing the browser type. Internet Explorer provides the
value MSIE for this property.

UserHostAddress and Gets the IP address and the DNS name of the remote client. You

UserHostName could also access this information through the ServerVariables
collection.

UserLanguages Provides a sorted string array that lists the client’s language
preferences. This can be useful if you need to create multilingual
pages.

The HttpResponse Class

The HttpResponse class allows you to send information directly to the client. In tradi-
tional ASP development, the Response object was used heavily to create dynamic pages.
Now, with the introduction of the new server-based control model, these relatively crude
methods are no longer needed.

The HttpResponse does still provide some important functionality, namely, caching
support, cookie features, and the Redirect method, which allows you to transfer the user
to another page:

// You can redirect to a file in the current directory.
Response.Redirect("newpage.aspx");
// You can redirect to another website.

Response.Redirect("http://www.prosetech.com");

Table 5-11 lists the most commonly used members of the HttpResponse class.

162

CHAPTER 5 WEB FORM FUNDAMENTALS

Table 5-11. HttpResponse Members

Member Description

BufferOutput When set to true (the default), the page isn’t sent to the client until it’s
completely rendered and ready, as opposed to being sent piecemeal.

Cache References an HttpCachePolicy object that allows you to configure
how this page will be cached. Chapter 26 discusses caching.

Cookies The collection of cookies sent with the response. You can use this

Write(), BinaryWrite(),
and WriteFile()

Redirect()

property to add cookies, as described in Chapter 9.

These methods allow you to write text or binary content directly to the
response stream. You can even write the contents of a file. These
methods are de-emphasized in ASP.NET and shouldn’t be used in
conjunction with server controls.

This method transfers the user to another page in your application or
a different website.

The ServerUtility Class

The ServerUtility class provides some miscellaneous helper methods, as listed in Table 5-12.

Table 5-12. ServerUtility Methods

Method Description

CreateObject() Creates an instance of the COM object that is identified by its
programmatic ID (progID). This is included for backward
compatibility, because it will generally be easier to interact with
COM objects using the .NET Framework services.

HtmlEncode() and Changes an ordinary string into a string with legal HTML characters

HtmlDecode() and back again.

UrlEncode() and Changes an ordinary string into a string with legal URL characters and

UrlDecode() back again.

MapPath() Returns the physical file path that corresponds to a specified virtual
file path on the web server.

Transfer() Transfers execution to another web page in the current application.

This is similar to the Response.Redirect() method but is slightly faster.
It cannot be used to transfer the user to a site on another web server
or to a non-ASP.NET page (such as an HTML page or a ASP page).

CHAPTER 5 WEB FORM FUNDAMENTALS

Out of these methods, the most commonly used are UrlEncode()/UrlDecode() and
HtmlEncode()/HtmlDecode(). These functions change a string into a representation that
can safely be used as part of a URL or displayed in a web page. For example, imagine you
want to display this text on a web page:

Enter a word <here>

If you try to write this information to a page or place it inside a control, you end up with
this instead:

Enter a word

The problem is that the browser has tried to interpret the <here> as an HTML tag. A
similar problem occurs if you actually use valid HTML tags. For example, consider this text:

To bold text use the tag.

Not only will the text not appear, but the browser will interpret it as an instruction
to make the text that follows bold. To circumvent this automatic behavior, you need to
convert potential problematic values to their special HTML equivalents. For example,
< becomes &t; in your final HTML page, which the browser displays as the < character.

You can perform this transformation on your own, or you can circumvent the problem
by using the InnerText property. When you set the contents of a control using InnerText,
any illegal characters are automatically converted into their HTML equivalents. However,
this won't help if you want to set a tag that contains a mix of embedded HTML tags and
encoded characters. It also won't be of any use for controls that don’t provide an InnerText
property, such as the Label web control you'll examine in the next chapter. In these cases,
you can use the HtmlEncode() method to replace the special characters. Here’s an example:

// Will output as "Enter a word &1t;heredgt;" in the HTML file, but the
// browser will display it as "Enter a word <here>".
ctrl.InnerHtml = Server.HtmlEncode("Enter a word <here>");

Or consider this example, which mingles real HTML tags with text that needs to be
encoded:

ctrl.InnerHtml = "To bold text use the ";
ctrl.InnerHtml += Server.HtmlEncode("") + " tag.";

Figure 5-9 shows the results of successfully and incorrectly encoding special HTML
characters. You can refer to the HtmlEncodeTest.aspx page included with the examples
for this chapter.

163

164 CHAPTER 5 WEB FORM FUNDAMENTALS

‘A Untitled Page - Microsoft Internet Explorer

File Edit Miew Favorites Tools Help

O - HE® i

Address |@ http: fflocalhost: 2040/ Chapter0SHimlEncodeTest, aspx

Properly encoded:

To bold text use the tag.

Incorrectly encoded:

To bold text use the tag.

@ Done

\ﬁ Local intranet:

Figure 5-9. Encoding special HTML characters

The HtmlEncode() method is particularly useful if you're retrieving values from a data-
base and you aren’t sure whether the text is valid HTML. You can use the HtmlDecode()
method to revert the text to its normal form if you need to perform additional operations
or comparisons with it in your code. Table 5-13 lists some special characters that need to

be encoded.

Table 5-13. Common HTML Special Characters

Result Description

Encoded Entity

Nonbreaking space
< Less-than symbol
> Greater-than symbol
& Ampersand
" Quotation mark

Similarly, the UrlEncode() method changes text into a form that can be used in a URL.
Generally, this allows information to work as a query string variable, even if it contains
spaces and other characters that aren’t allowed in a URL. You'll see this technique dem-

onstrated in Chapter 9.

CHAPTER 5 WEB FORM FUNDAMENTALS

ASP.NET Configuration

The last topic you'll consider in this chapter is the ASP.NET configuration file system.

Every web server starts with some basic settings that are defined in two configuration
files in the c:\[WinDir]\Microsoft.NET\Framework\ [Version] \Config directory, where
[Version] is the version number of the .NET Framework. These two files are machine.config
and web.config. Generally, you won't edit either of these files manually, because they affect
the entire computer. Instead, you'll create a web.config in your web application folder.
Using that file, you can set additional settings or override the defaults that are configured
elsewhere.

The .config files have several advantages over traditional ASP configuration:

They are never locked: As described in the beginning of this chapter, you can update
web.config settings at any point, and ASP.NET will smoothly transition to a new appli-
cation domain.

They are easily accessed and replicated: Provided you have the appropriate network
rights, you can change a web.config file from a remote computer. You can also copy
the web.config file and use it to apply identical settings to another application or
another web server that runs the same application in a web farm scenario.

The settings are easy to edit and understand: The settings in the web.config file are
human-readable, which means they can be edited and understood without needing a
special configuration tool. In the future, it’s likely that Microsoft will provide a graphi-
cal tool that automates web.config changes. Even without it, you can easily add or
modify settings using a text editor such as Notepad.

Note With ASP.NET, you don’t need to worry about the IIS metabase. However, you still can’t perform a
few tasks with a web.config file. For example, you can’t create or remove a virtual directory. Similarly, you
can’t change file mappings. If you want the ASP.NET service to process requests for additional file types (such
as HTML or a custom file type you define), you must use IS Manager, as described in Chapter 12.

The web.config File

The web.config file uses a predefined XML format. The entire content of the file is nested
in aroot <configuration> element. This element contains a <system.web> element, which
is used for ASP.NET settings. Inside the <system.web> element are separate elements for
each aspect of configuration.

165

166

CHAPTER 5 WEB FORM FUNDAMENTALS

Here’s the basic skeletal structure of the web.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<!-- Configuration sections go here. -->
</system.web>
</configuration>

This example adds a comment in the place where you'd normally find additional settings.
XML comments are bracketed with the <!-- and --> character sequences, as shown here:

<!-- This is the format for an XML comment. -->

Tip To learn more about XML, the format used for the web.config file, you can refer to Chapter 17.

You can include as few or as many configuration sections as you want. For example, if
you need to specify special error settings, you could add just the <customError> group.
Note that the web.config file is case-sensitive, like all XML documents, and starts every
setting with a lowercase letter. This means you cannot write <CustomErrors> instead of
<customErrors>.

If you want an at-a-glance look at all the available settings, head to the
c:\[WinDir] \Microsoft. NET\Framework\ [Version] \Config directory, and look at the
web.config.comments file. This file consists of XML comments that show the available
options for every possible setting. You can also look up individual tag names in the
index of the MSDN Help. We'll describe individual configuration sections in this book
when discussing the related topic. For example, in Chapter 9, we’ll describe the settings
in the <sessionState> group.

Nested Configuration

ASP.NET uses a multilayered configuration system that allows you to use different set-
tings for different parts of your application. To use this technique, you need to create
additional subdirectories inside your virtual directory. These subdirectories can contain
their own web.config files with additional settings.

Subdirectories inherit web.config settings from the parent directory. For example,
imagine you create a website in the directory c:\ASP.NET\TestWeb. Inside this directory,
you create a folder named Secure. Pages in the c:\ASP.NET\TestWeb\Secure directory
can acquire settings from three files, as shown in Figure 5-10.

CHAPTER 5 WEB FORM FUNDAMENTALS

Machine.config (applies to all web applications on the server)

Web A

b pp

Heb App c:\ASP.Net\TesthWeb\web.config
(applies to all pages in TestlWeb)

Web App
HelloWorld.aspx
c:\ASP.NET\TestWeb\Secure\
web.config
Web App HelloWorld2.aspx | | (aPplies to pages in Secure directory)
SecureHelloWorld.aspx
Web App

Figure 5-10. Configuration inheritance

Any machine.config or web.config settings that aren’t explicitly overridden in the
c:\ASP.NET\TestWeb\Special \web.config file will still apply to the SecureHelloWorld.aspx
page. In this way, subdirectories can specify just a small set of settings that differ from the
rest of the web application. One reason you might want to use multiple directories in an
application is to apply different security settings. Files that need to be secured would
then be placed in a dedicated directory with a web.config file that defines more stringent
security settings.

Storing Custom Settings in the web.config File

ASP.NET also allows you to store your own settings in the web.config file, in an element called
<appSettings>. Note that the <appSettings> element is nested in the root <configuration>
element, not the <system.web> element, which contains the other groups of predefined set-
tings. Here’s the basic structure:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<!-- Custom application settings go here. -->
</appSettings>

167

168 CHAPTER 5 WEB FORM FUNDAMENTALS

<system.web>
<!-- Configuration sections go here. -->

</system.web>

</configuration>

The custom settings that you add are written as simple string variables. You might want
to use a special web.config setting for several reasons:

To centralize an important setting that needs to be used in many different pages. For
example, you could create a variable that stores a database query. Any page that needs
to use this query can then retrieve this value and use it.

To make it easy to quickly switch between different modes of operation: For example,
you might create a special debugging variable. Your web pages could check for this
variable, and if it’s set to a specified value, output additional information to help you
test the application.

To set some initial values: Depending on the operation, the user might be able to
modify these values, but the web.config file could supply the defaults.

You can enter custom settings using an <add> element that identifies a unique variable
name (key) and the variable contents (value). The following example adds two special
variables, one that contains a database connection string and one that defines a suitable
SQL statement for retrieving sales records:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="ConnectionString"
value="Data Source=localhost;Initial Catalog=Pubs;User ID=sa"/>
<add key="SelectSales" value="SELECT * FROM Sales"/>
</appSettings>

<system.web>
<!-- Configuration sections go here. -->
</system.web>
</configuration>

Note It's a good idea to always use the same database connection string in all your pages, because
this ensures that SQL Server can reuse connections for different clients. (The technical term for this
performance-enhancing feature is connection pooling.) This design is so important that ASP.NET actually
defines a <connectionStrings> section in the web.config file, which you can use as an alternative to creating
a custom application setting. You’ll see this technique in action in Chapter 13.

CHAPTER 5 WEB FORM FUNDAMENTALS

You can create a simple test page to query this information and display the results,
as shown in the following example (which is provided with the sample code as
ShowsSettings.aspx and ShowSettings.aspx.cs). You retrieve custom application settings
from web.config by key name, using the WebConfigurationManager class, which is found
in the System.Web.Configuration namespace. This class provides a static property called
AppSettings with a collection of application settings.

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Configuration;

public partial class ShowSettings : System.Web.UI.Page

{
protected void Page Load()
{
1blTest.Text = "This app will connect with";
1blTest.Text += "the connection string:
";
1blTest.Text +=
WebConfigurationManager.AppSettings["ConnectionString"];
1blTest.Text += "

";
1b1Test.Text += "And will execute the SQL Statement:
";
1blTest.Text += "";
1blTest.Text += WebConfigurationManager.AppSettings["SelectSales"];
1blTest.Text += "";
}
}
Dissecting the Code...

This example introduces a few new details:

* The System.Web.Configuration namespace is imported to make it easier to access
the WebConfigurationManager class.

* The +=operator is used to quickly add information to the label. This is equivalent to
writing IblTest.Text = IblText. Text + "[extra content]".

* Afew HTML tags are added to the label, including bold tags () to emphasize
certain words and a line break (
) to split the output over multiple lines.

Later, in Part 3 of this book, you’ll learn how to use connection strings and SQL
statements with a database. For now, the simple application just displays the custom
web.config settings, as shown in Figure 5-11.

169

170

CHAPTER 5 WEB FORM FUNDAMENTALS

‘A Untitled Page - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help QBbak - O EIRE o

Address @ http: fflocalhost: 2040/ Chapter0s)ShowSettings, aspx

Thiz app will connect withthe connection string:
Data Sowrce=localhost;Initial Catalog=Pubs;User ID=sa

And will execute the 3QL Statement:
SELECT * FROM Sales

@ Daone ‘ﬂ Local intranet:

Figure 5-11. Displaying custom application settings

Developers commonly ask whether the web.config file constitutes a potential security
risk. Unlike code files, the web.config file can’t be deployed in a compiled form. For that
reason, it might seem like a potential security risk to store information such as a database
access password in plain text. However, ASP.NET is configured, by default, to deny any
requests for .config files. This means a remote user will not be able to access the file
through IIS. Instead, they’ll receive the error message shown in Figure 5-12.

A This type of page is not served. - Microsoft Internet Explorer

File Edit View Favorites Tools Help QBack - O EIRE o 2 search

Address @ http: fflocalhost: 2040/ ChapterdSiweb, config

Server Error in '/Chapter05' Application.

This type of page is not served.

Description: The type of page you have requested iz not served hecause it has been explicitly forbidden. The
extension '.config' may be incorrect. Please reviews the URL helow and make sure that it is spelled correctly.

Requested URL: iChapter0siweb config

Yersion Information: Microsoft MET Framework Yersion:2.0.50215 44; A5P NET Version:2.0.50215.44

@ Daone ‘ﬂ Local intranet:

Figure 5-12. Requests for web.config are denied.

CHAPTER 5 WEB FORM FUNDAMENTALS

Modifying web.config Settings Programmatically

ASP.NET also allows you to change configuration file settings (including custom applica-
tion settings and any other configuration detail).

However, you need to think twice before you use these features. The web.config file is
never a good solution for state management. Instead, it makes sense as a way to occasion-
ally update a setting that, under normal circumstances, almost never changes. That’s
because changing a configuration setting has a significant cost. In web server terms, file
access is slow, especially when multiple people could be updating the web.config at once
(using the same page simultaneously). However, the real problem is that every time a web
application’s configuration settings change, an entirely new application domain is cre-
ated, as discussed at the beginning of this chapter. Not only does this add overhead, it
also dumps out useful optimization information, such as cached data (which you’ll learn
about in Chapter 26) and application state (Chapter 9). As a rule of thumb, never store fre-
quently changed values in a configuration file—instead, use a database or one of the state
management techniques in Chapter 9.

Now that you know not to abuse this feature, you're ready to see it in action. However, to
make it work, you need to use a slightly more complex approach. First, you need to use the
WebConfigurionManager.OpenWebConfiguration() method to retrieve a Configuration
object for the current web application. Then, you can use this object to read or change
values. When you want to commit your changes, you simply call Configuration.Save().

Here’s some code that rewrites the application setting example shown earlier so that it
updates one of the settings after reading it:

protected void Page Load(object sender, EventArgs e)

{
1b1Test.Text = "This app will connect with";
1b1Test.Text += "the connection string:
";
1blTest.Text +=

WebConfigurationManager.AppSettings["ConnectionString"];

1blTest.Text += "

";
1blTest.Text += "And will execute the SQL Statement:
";
1blTest.Text += "";
1blTest.Text += WebConfigurationManager.AppSettings["SelectSales"];
1blTest.Text += "";

// Get the configuration information for this web application.
Configuration config =
WebConfigurationManager.OpenWebConfiguration(Request.ApplicationPath);

1

172

CHAPTER 5 WEB FORM FUNDAMENTALS

// Make the change.
config.AppSettings.Settings["SelectSales"].Value =
"SELECT Price FROM Sales";

// Save all the changes you've made since retrieving the configuration
// information.
config.Save();

Notice that when you use OpenWebConfiguration(), you supply a path. You get the
configuration information for this path. In this example, the code gets the configuration
for the root web application directory, because it uses the Request.ApplicationPath prop-
erty when calling the OpenWebConfiguration() method.

The first time you request this page, you'll see the initial setting "SELECT * FROM
Sales". However, the web page has already updated this value. The second time you
request the page, you'll see the new setting "SELECT Price FROM Sales". You'll notice
that the second request takes a little longer, because the page needs to be compiled and
cached all over again; the effect of changing a setting in the web.config file has forced the
application domain to restart.

The Website Administration Tool (WAT)

You might wonder why the ASP.NET team went to all the trouble of creating a sophisti-
cated tool like the WebConfigurationManager that performs too poorly to be used in a
typical web application. The reason is because the WebConfigurationManager isn’t really
intended to be used in your web pages. Instead, it’s designed to allow developers to build
custom configuration tools that simplify the work of configuring web applications.
ASP.NET even includes a graphical configuration tool that’s entirely based on the
WebConfigurationManager, although you’d never know it unless you dived into the code.

This tool is called the WAT (Website Administration Tool), and it lets you configure
various parts of the web.config file using a web page interface. To run the WAT to config-
ure the current web project in Visual Studio, select Website » ASP.NET Configuration. A
web browser window will appear (see Figure 5-13). Internet Explorer will automatically
log you on under the current Windows user account, allowing you to make changes.

You can use the WAT to automate the web.config changes you made in the previous
example. To try this, click the Application tab. Using this tab, you can edit or remove
application settings (select the Manage Application Settings link) or create a new setting
(click the Create Application Settings link). Figure 5-14 shows how you can edit the appli-
cation settings you added by hand in the previous example.

CHAPTER 5 WEB FORM FUNDAMENTALS

ASP.Net Web Application Administration - Microsoft Internet Explorer

File Edit Wew Favorites Tools Help & Back O - ¥ A | P search & #

ASP Web Site Administration Tool

Home] [Security] [Application] [Provider

l

Welcome to the Web Site Administration Tool

Application:/Chapter0s
Current User Name:MATTHEWMYMAT THEW

Enables you to set up and edit users, roles, and access
Security permissions for your site,
Site is using windows authentication for user management,

Application Enables you to manage your application's configuration
Configuration settings.

Provider Enables you to specify where and how to store
Configuration administration data used by your Web site,

‘13 Local intranet:

File Edit View Favorites Tools Help QBack - O EIRE .‘/h 9 search i #

ASP Web Site Administration Tool

[Home:] [Security] [Application] [Provider]

Use this page to specify application-specific values that
you do not want to hard-code into your pages. Values are
stored as name-value pairs.

Application Setting

MName: |Se|ectSaIes |

value: [SELECT * FROM Sales |

Save

@ Daone ‘a Local intranet:

Figure 5-14. Editing an application setting with the WAT

173

174

CHAPTER 5 WEB FORM FUNDAMENTALS

This is the essential idea behind the WAT. You make your changes using a graphical
interface (a web page), and the WAT generates the settings you need and adds them to the
web.config file for your application behind the scenes. Of course, the WAT has a number
of settings for configuring more complex ASP.NET settings, and you'll see it at work
throughout this book.

The Last Word

This chapter presented you with your first look at web applications, web pages, and con-
figuration. You should now understand how to create an ASP.NET web page and use
HTML server controls.

HTML controls are a compromise between web controls and traditional ASP.NET pro-
gramming. They use the familiar HTML elements but provide a limited object-oriented
interface. Essentially, HTML controls are designed to be straightforward, predictable, and
automatically compatible with existing programs. With HTML controls, the final HTML
page that is sent to the client closely resembles the original .aspx page.

In the next chapter, you'll learn about web controls, which provide a more sophisti-
cated object interface that abstracts away the underlying HTML. If you're starting a new
project or need to add some of ASP.NET’s most powerful controls, web controls are the
best option.

CHAPTER 6

Web Controls

The previous chapter introduced the event-driven and control-based programming
model of ASP.NET. This model allows you to create programs for the Web using the same
object-oriented, modern code you would use to write a Windows application.

However, HTML server controls really show only a glimpse of what is possible with
ASP.NET’s new server control model. To see some of the real advantages, you need to dive
into the richer and more extensible web controls. In this chapter, you’ll explore the basic
web controls and their class hierarchy. You'll also delve deeper into ASP.NET’s event han-
dling, learn the details of the web page life cycle, and put your knowledge to work by
creating a web page for designing greeting cards.

Stepping Up to Web Controls

Now that you've seen the new model of server controls, you might wonder why you need
additional web controls. But in fact, HTML controls are much more limited than server
controls need to be. For example, every HTML control corresponds directly to an HTML
tag, meaning you're bound by the limitations and abilities of HTML. Web controls, on the
other hand, have no such restriction. They emphasize the future of web design.

These are some of the reasons you should switch to web controls:

They provide a rich user interface: Aweb control is programmed as an object but
doesn’t necessarily correspond to a single element in the final HTML page. For
example, you might create a single Calendar or GridView control, which will be
rendered as dozens of HTML elements in the final page. When using ASP.NET
programs, you don’t need to know anything about HTML. The control creates the
required HTML tags for you.

They provide a consistent object model: HTML is full of quirks and idiosyncrasies. For
example, a simple text box can appear as one of three elements, including <textarea>,
<input type="text">, and <input type="password">. With web controls, these three
elements are consolidated as a single TextBox control. Depending on the properties
you set, the underlying HTML element that ASP.NET renders may differ. Similarly, the
names of properties don’t follow the HTML attribute names. For example, controls

175

176

CHAPTER 6 WEB CONTROLS

that display text, whether it’s a caption or a text box that can be edited by the user,
expose a Text property.

They tailor their output automatically. ASP.NET server controls can detect the type of
browser and automatically adjust the HTML code they write to take advantage of
features such as support for JavaScript. You don’t need to know about the client
because ASP.NET handles that layer and automatically uses the best possible set of
features.

They provide high-level features: You'll see that web controls allow you to access addi-
tional events, properties, and methods that don’t correspond directly to typical HTML
controls. ASP.NET implements these features by using a combination of tricks.

Throughout this book, you'll see examples that use the full set of web controls. To
master ASP.NET development, you need to become comfortable with these user-
interface ingredients and understand all their abilities. HTML server controls, on the
other hand, are less important for web development, unless you need to have fine-grained
control over the HTML code that will be generated and sent to the client. They are
de-emphasized in .NET.

Basic Web Control Classes

If you've ever created a Windows application before, you’re probably familiar with the
basic set of standard controls, including labels, buttons, and text boxes. ASP.NET provides
web controls for all these standbys. (And if you've created .NET Windows applications,
you'll notice that the class names and properties have many striking similarities, which
are designed to make it easy to transfer the experience you acquire in one type of applica-
tion to another.)

Table 6-1 lists the basic control classes and the HTML elements they generate. Some
controls (such as Button and TextBox) can be rendered as different HTML elements. In this
case, ASP.NET uses the element that matches the properties you've set. Also, some controls
have no real HTML equivalent. For example, the CheckBoxList and RadioButtonList con-
trols output as a <table> that contains multiple HTML check boxes or radio buttons.
ASP.NET exposes them as a single object on the server side for convenient programming,
thus illustrating one of the primary strengths of web controls.

Table 6-1. Basic Web Controls

Control Class Underlying HTML Element

Label

Button <input type="submit"> or <input type="button">

TextBox <input type="text">, <input type="password">, or <textarea>

CheckBox <input type="checkbox">

CHAPTER 6 WEB CONTROLS

Control Class Underlying HTML Element

RadioButton <input type="radio">

Hyperlink <a>

LinkButton <a>with a contained tag

ImageButton <input type="image">

Image

ListBox <select size="X"> where X is the number of rows that are visible at once
DropDownlList <select>

CheckBoxList Alist or <table> with multiple <input type="checkbox"> tags
RadioButtonList Alist or <table> with multiple <input type="radio"> tags
BulletedList An ordered list (numbered) or unordered list (bulleted).
Panel <div>

Table, TableRow, and <table>, <tr>, and <td> or <th>
TableCell

This table omits some of the more specialized controls used for data, navigation, secu-
rity, and web portals. You'll see these controls as you learn about the corresponding
feature throughout this book.

The Web Control Tags

ASP.NET tags have a special format. They always begin with the prefix asp: followed by
the class name. If there is no closing tag, the tag must end with />. (This syntax convention
is borrowed from XML, which you'’ll learn about in much more detail in Chapter 17.)
Each attribute in the tag corresponds to a control property, except for the runat="server"
attribute, which signals that the control should be processed on the server.

The following, for example, is an ASP.NET TextBox:

<asp:TextBox id="txt" runat="server" />

When a client requests this .aspx page, the following HTML is returned. The name is a
special attribute that ASP.NET uses to track the control.

<input type="text" name="ctrl" />

Alternatively, you could place some text in the TextBox, set its size, make it read-only,
and change the background color. All these actions have defined properties. For example,
the TextBox.TextMode property allows you to specify SingleLine (the default), MultiLine
(for a textarea type of control), or Password (for an input control that displays all asterisks
when the user types in a value). You can adjust the color using the BackColor and

177

178

CHAPTER 6 WEB CONTROLS

ForeColor properties. And you can tweak the size of the TextBox using the Rows property.
Here’s an example of a customized TextBox:

<asp:TextBox id="txt" BackColor="Yellow" Text="Hello World"
ReadOnly="true" TextMode="MultilLine" Rows="5" runat="server" />

The resulting HTML uses the textarea element and sets all the required style attributes.
Figure 6-1 shows it in the browser.

<textarea name="txt" rows="5" readonly="readonly" id="txt"
style="background-color:Yellow;">Hello World</textarea>

2l Untitled Page - Microsoft Internet Explorer |: _' :

" . 2 ? o oS mn
File Edit Wew Favorites Tools H €] E

Address |@ http: fflocalhost: 2215 WebControls/ TextBoxTest. aspx v |

Hello World

&] Dare & Local intranet

Figure 6-1. A customized text box

Clearly, it’s easy to create a web control tag. It doesn’t require any understanding of
HTML. However, you willneed to understand the control class and the properties that are
available to you.

CASE-SENSITIVITY IN ASP.NET FORMS

The .aspx layout portion of a web page tolerates different capitalization for tag names, property names, and
enumeration values. For example, the following two tags are equivalent, and both will be interpreted correctly
by the ASP.NET engine, even though their case differs:

<asp:Button id="Button1" runat="server"

Enabled="False" Text="Button" Font-Size="XX-Small" />
<asp:button id="Button2" runat="server"

Enabled="false" tExT="Button" font-size="xx-SMALL" />

This design was adopted to make .aspx pages behave more like ordinary HTML web pages, which ignore
case completely. However, you can’t use the same looseness in your C# code or in the tags that apply settings
in the web.config file or the machine.config file. Here, case must match exactly.

CHAPTER 6 WEB CONTROLS 179

Web Control Classes

Web control classes are defined in the System.Web.UI.WebControls namespace. They
follow a slightly more tangled object hierarchy than HTML server controls, as shown in
Figure 6-2.

[System.Object
|

[System.UI.Web.Control |

System.Web.UI.WebControls

[WebControl | BaseBoundControl |
H Literal | A DataBloundControl ————
CompositeDataBoundControl |
H Calendar | [DetailsView
{ XmL | [FormView | [HierarchicalDataBoundControl]
ImageButton | [ValidationSummary | [Gridview = Menu |
ImageMap [Basevalidator]
- BaseCompareValidator |
RadioButtonList
-{RegularExpressionValidator]|
L{RequiredFieldvalidator |

Figure 6-2. The web control hierarchy

This inheritance diagram includes some controls that you won’t study in this chapter,
including the data controls, such as the GridView and DetailsView, and the validation
controls. You'll explore these controls in later chapters.

The WebControl Base Class

All web controls begin by inheriting from the WebControl base class. This class defines
the essential functionality for tasks such as data binding and includes some basic proper-
ties that you can use with any control, as described in Table 6-2.

180

CHAPTER 6

WEB CONTROLS

Table 6-2. WebControl Properties

Property

Description

AccessKey

BackColor, BorderColor,

and ForeColor

BorderWidth
BorderStyle

Controls

Enabled

EnableViewState

Font
Height and Width
Page

Parent

TabIndex

ToolTip

Visible

Specifies the keyboard shortcut as one letter. For example, if you
set this to Y, the Alt+Y keyboard combination will automatically
change focus to this web control. This feature is supported only on
Internet Explorer 4.0 and higher.

Sets the colors used for the background, foreground, and border
of the control. In most controls, the foreground color sets the text
color.

Specifies the size of the control border.

One of the values from the BorderStyle enumeration, including
Dashed, Dotted, Double, Groove, Ridge, Inset, Outset, Solid,
and None.

Provides a collection of all the controls contained inside
the current control. Each object is provided as a generic
System.Web.UI.Control object, so you will need to cast the
reference to access control-specific properties.

When set to false, the control will be visible, but it will not be able
to receive user input or focus.

Set this to false to disable the automatic state management for this
control. In this case, the control will be reset to the properties and
formatting specified in the control tag every time the page is posted
back. If this is set to true (the default), the control uses the hidden
input field to store information about its properties, ensuring that
any changes you make in code are remembered.

Specifies the font used to render any text in the control as a special
System.Drawing.Font object.

Specifies the width and height of the control. For some controls,
these properties will be ignored when used with older browsers.

Provides a reference to the web page that contains this control as a
System.Web.UIPage object.

Provides a reference to the control that contains this control. If
the control is placed directly on the page (rather than inside
another control), it will return a reference to the page object.

A number that allows you to control the tab order. The control with
a TabIndex of 0 has the focus when the page first loads. Pressing
Tab moves the user to the control with the next lowest TabIndex,
provided it is enabled. This property is supported only in Internet
Explorer 4.0 and higher.

Displays a text message when the user hovers the mouse above the
control. Many older browsers don’t support this property.

When set to false, the control will be hidden and will not be
rendered to the final HTML page that is sent to the client.

CHAPTER 6 WEB CONTROLS

The next few sections describe some of the common concepts you'll use with almost
any web control, including how to set properties that use units and enumerations and
how to use colors and fonts.

Units

All the properties that use measurements, including BorderWidth, Height, and Width,
require the Unit structure, which combines a numeric value with a type of measurement
(pixels, percentage, and so on). This means when you set these properties in a control tag,
you must make sure to append px (pixel) or % (for percentage) to the number to indicate
the type of unit.

Here’s an example with a Panel control that is 300 pixels wide and has a height equal to
50 percent of the current browser window:

<asp:Panel Height="300px" Width="50%" id="pnl" runat="server" />

If you're assigning a unit-based property through code, you need to use one of the static
methods of the Unit type. Use Pixel() to supply a value in pixels, and use Percentage() to
supply a percentage value:

// Convert the number 300 to a Unit object
// representing pixels, and assign it.
pnl.Height = Unit.Pixel(300);

// Convert the number 50 to a Unit object
// representing percent, and assign it.
pnl.Width = Unit.Percentage(50);

You could also manually create a Unit object and initialize it using one of the supplied
constructors and the UnitType enumeration. This requires a few more steps but allows
you to easily assign the same unit to several controls:

// Create a Unit object.
Unit myUnit = new Unit(300, UnitType.Pixel);

// Assign the Unit object to several controls or properties.
pnl.Height = myUnit;
pnl.Width = myUnit;

181

182

CHAPTER 6 WEB CONTROLS

Enumerated Values

Enumerations are used heavily in the .NET class library to group a set of related constants.
For example, when you set a control’s BorderStyle property, you can choose one of several
predefined values from the BorderStyle enumeration. In code, you set an enumeration
using the dot syntax:

ctrl.BorderStyle = BorderStyle.Dashed;

In the .aspx file, you set an enumeration by specifying one of the allowed values as a
string. You don’t include the name of the enumeration type, which is assumed
automatically.

<asp:Label BorderStyle="Dashed" Text="Border Test" id="ctrl"
Tunat="server" />

Figure 6-3 shows the label with the altered border.

2 Untitled Page - Microsoft Internet Explorer |._||E |
. ; ; : » > m
File Edit View Favorites Tools H €] iy
Address |@ http:/flocalhost: 2915/ WebControls/ TextBoxTest. aspx v |
----- ™
Eorder Test,
----- ol
&] Dare & Local intranet

Figure 6-3. Modifying the border style

Colors

The Color property refers to a Color object from the System.Drawing namespace. You can
create color objects in several ways:

Using an ARGB (alpha, red, green, blue) color value: You specify each value as an
integer from 0 to 255. The alpha component represents the transparency of a color,
and usually you'll use 255 to make the color completely opaque.

Using a predefined .NET color name: You choose the correspondingly named read-only
property from the Color class. These properties include the 140 HTML color names.

Using an HTML color name: You specify this value as a string using the ColorTranslator
class.

CHAPTER 6 WEB CONTROLS

To use any of these techniques, you must import the System.Drawing namespace,
as follows:

using System.Drawing;
The following code shows several ways to specify a color in code:

// Create a color from an ARGB value
int alpha = 255, red = 0, green = 255, blue = 0;
ctrl.ForeColor = Color.FromARGB(alpha, red, green, blue);

// Create a color using a .NET name
ctrl.ForeColor = Color.Crimson;

// Create a color from an HTML code
ctrl.ForeColor = ColorTranslator.FromHtml("Blue");

When defining a color in the .aspx file, you can use any one of the known color names:
<asp:TextBox ForeColor="Red" Text="Test" id="txt" runat="server" />

The HTML color names that you can use are listed in the MSDN Help. Alternatively, you
can use a hexadecimal color number (in the format #<red><green><blue>) as shown here:

<asp:TextBox ForeColor="#ff50ff" Text="Test"
id="txt" runat="server" />

Fonts

The Font property actually references a full FontInfo object, which is defined in the
System.Drawing namespace. Every FontInfo object has several properties that define its
name, size, and style (see Table 6-3).

Table 6-3. FontInfo Properties

Property Description
Name A string indicating the font name (such as Verdana).
Size The size of the font as a FontUnit object. This can represent an

absolute or relative size.

Bold, Italic, Strikeout, Boolean properties that apply the given style attribute.
Underline, and Overline

183

184

CHAPTER 6 WEB CONTROLS

In code, you can assign a font by setting the various font properties using the familiar
dot syntax:

ctrl.Font.Name = "Verdana";
ctrl.Font.Bold = true;

You can also set the size using the FontUnit type:
// Specifies a relative size.
ctrl.Font.Size = FontUnit.Small;
// Specifies an absolute size of 14 pixels.

ctrl.Font.Size = FontUnit.Point(14);

In the .aspxfile, you need to use a special “object walker” syntax to specify object properties
such as Font. The object walker syntax uses a hyphen (-) to separate properties. For example,
you could set a control with a specific font (Tahoma) and font size (40 point) like this:

<asp:TextBox Font-Name="Tahoma" Font-Size="40" Text="Size Test" id="txt"
runat="server" />

Or you could set a relative size like this:

<asp:TextBox Font-Name="Tahoma" Font-Size="Large" Text="Size Test"
id="txt" runat="server" />

Figure 6-4 shows the altered TextBox in this example.

2 Untitled Page - Microsoft Internet Explorer |._||E||Z|
. . : : 2 Ly ™
File Edit View Favorites Tools Hr €] o

Address |@ http: fflocalhost: 2915 WebControls) TextBox Test, aspx e |
|Size Test

@ Daone \ﬁ Local intranet:

Figure 6-4. Modifying a control’s font

CHAPTER 6 WEB CONTROLS

Focus

Unlike HTML server controls, every web control provides a Focus() method. The Focus()
method affects only input controls (controls that can accept keystrokes from the user).
When the page is rendered in the client browser, the user starts in the focused control.

For example, if you have a form that allows the user to edit customer information, you
might call the Focus() method on the first text box in that form. That way, the cursor
appears in this text box immediately when the page first loads in the browser. If the text
box is partway down the form, the page even scrolls down to it automatically. The user
can then move from control to control using the time-honored Tab key.

If you're a seasoned HTML developer, you know there isn’t any built-in way to give
focus to an input control. Instead, you need to rely on JavaScript. This is the secret to
ASP.NET’s implementation. When your code is finished processing and the page is ren-
dered, ASP.NET adds an extra block of JavaScript code to the end of your page. This
JavaScript code simply sets the focus to the last control that used the Focus() method. If
you haven’t called Focus() at all, this code isn’t added to the page. If you've called it for
more than one control, the JavaScript code set the focus to the last control that called
Focus().

Rather than call the Focus() method programmatically, you can set a control that
should always be focused by setting the DefaultFocus property of the <form> tag:

<form id="Form1" DefaultFocus="TextBox2" runat="server">

You can override the default focus by calling the Focus() method in your code.

Another way to manage focus is using access keys. For example, if you set the AccessKey
property of a TextBox to A, pressing Alt+A focus will switch to the TextBox. Labels can also
get into the game, even though they can’t accept focus. The trick is to set the Label.Associ-
atedControlID property to specify a linked input control. That way, the label transfers focus
to a nearby control.

For example, the following label gives focus to TextBox2 when the keyboard combina-
tion Alt+2 is pressed:

<asp:Label AccessKey="2" AssociatedControlID="TextBox2" runat="server">
TextBox2:</asp:Label><asp:TextBox runat="server" ID="TextBox2" />

Focusing and access keys are also supported in non-Microsoft browsers, including
Firefox.

The Default Button

Along with control focusing, ASP.NET also allows you to designate a default button on a
web page. The default button is the button that is “clicked” when the user presses the
Enter key. For example, if your web page includes a form, you might want to make the

185

186

CHAPTER 6 WEB CONTROLS

submit button into a default button. That way, if the user hits Enter at any time, the page
is posted back and the Button.Click event is fired for that button.

To designate a default button, you must set the HtmlForm.DefaultButton property
with the ID of the respective control, as shown here:

<form id="Form1" DefaultButton="cmdSubmit" runat="server">

The default button must be a control that implements the IButtonControl interface.
The interface is implemented by the Button, LinkButton, and ImageButton web controls
but not by any of the HTML server controls.

In some cases, it makes sense to have more than one default button. For example, you
might create a web page with two groups of input controls. Both groups may need a dif-
ferent default button. You can handle this by placing the groups into separate panels. The
Panel control also exposes the DefaultButton property, which works when any input
control it contains gets the focus.

List Controls

The list controls include the ListBox, DropDownList, CheckBoxList, RadioButtonList, and
BulletedList. They all work in essentially the same way but are rendered differently in the
browser. The ListBox, for example, is a rectangular list that displays several entries, while
the DropDownList shows only the selected item. The CheckBoxList and RadioButtonList
are similar to the ListBox, but every item is rendered as a check box or option button,
respectively. Finally, the BulletedList is the odd one out—it’s the only list control thatisn’t
selectable. Instead, it renders itself as a sequence of numbered or bulleted items.

All the selectable list controls provide a SelectedIndex property that indicates the
selected row as a zero-based index (just like the HtmlSelect control you used in the previ-
ous chapter). For example, if the first item in the list is selected, the SelectedIndex will be
0. Selectable list controls also provide an additional SelectedItem property, which allows
your code to retrieve the ListItem object that represents the selected item. The Listltem
object provides three important properties: Text (the displayed content), Value (the
hidden value from the HTML markup), and Selected (true or false depending on whether
the item is selected).

In the previous chapter, you used code like this to retrieve the selected ListItem object
from an HtmlSelect control called Currency, as follows:

ListItem item;
item = Currency.Items(Currency.SelectedIndex);

CHAPTER 6 WEB CONTROLS

With a web control, you can simplify this with a clearer syntax:

ListItem item;
item = Currency.SelectedItem;

Multiple-Select List Controls

Some list controls can allow multiple selections. This isn’t allowed for the DropDownList or
RadioButtonList, but it is supported for a ListBox, provided you have set the SelectionMode
property to the enumerated value ListSelectionMode.Multiple. The user can then select
multiple items by holding down the Ctrl key while clicking the items in the list. With the
CheckBoxList, multiple selections are always possible.

If you have a list control that supports multiple selections, you can find all the selected
items by iterating through the Items collection of the list control and checking the
ListItem.Selected property of each item. Figure 6-5 shows a simple web page example. It
provides a list of computer languages and indicates which selections the user made when
the OK button is clicked.

‘A CheckBoxTest - Microsoft Internet Explorer

- 3
File Edit Wiew Favorites Tools Help OBack - '

Address |@ http: fflocalhost: 2915 wWebControls/CheckBox Test, aspx b |

Choose your favorite programuming languages:

Oc

Oc+

MC#

[OVisual Basic 6.0
VB NET
OPascal

Tou chose:
C#
VB.NET

@ Daone \ﬂ Local intranet:

Figure 6-5. A simple CheckListBox test

187

188

CHAPTER 6 WEB CONTROLS

The .aspx file for this page defines CheckListBox, Button, and Label controls, as
shown here:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CheckListTest.aspx.cs" Inherits="CheckListTest" %>
<html>
<head runat="server">
<title>CheckBoxTest</title>
</head>
<body>
<form method="post" runat="server">
Choose your favorite programming languages:

<asp:CheckBoxList id="chklst" runat="server" />

<asp:Button id="cmdOK" Text="0K" OnClick="cmdOK Click" runat="server" />

<asp:Label id="1lblResult" runat="server" />
</form>
</body>
</html>

The code adds items to the CheckListBox at startup and iterates through the collection
when the button is clicked:

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

public partial class CheckBoxTest : System.Web.UI.Page
{
protected void Page Load(object sender, System.EventArgs e)
{
if (!this.IsPostBack)
{
chklst.Items.Add("C");
chklst.Items.Add("C++");
chklst.Items.Add("C#");
chklst.Items.Add("Visual Basic 6.0");
chklst.Items.Add("VB.NET");
chklst.Items.Add("Pascal");

CHAPTER 6 WEB CONTROLS 189

protected void cmdOK Click(object sender, System.EventArgs e)

{
1blResult.Text = "You chose:";

foreach (ListItem lstItem in chklst.Items)

{
if (lstItem.Selected == true)

{
// Add text to label.

1bIResult.Text += "
" + lstItem.Text;

}
1bIResult.Text += "";

CONTROL PREFIXES

When working with web controls, it’s often useful to use a three-letter lowercase prefix to identify the type of
control. The preceding example (and those in the rest of this book) follows this convention to make user inter-
face code as clear as possible. Some recommended control prefixes are as follows:

e Button: cmd

e CheckBox: chk
e Image: img

o Label: Ibl

o List control: Ist
e Panel: pnl

¢ RadioButton: opt
o TextBox: txt

If you’re a veteran programmer, you’ll also notice that this book doesn’t use prefixes to identify data
types. This is in keeping with the new philosophy of .NET, which recognizes that data types can often change
freely and without consequence and that variables often point to full-featured objects instead of simple data
variables.

190

CHAPTER 6 WEB CONTROLS

The BulletedList Control

The BulletedList control is a server-side equivalent of the (unordered list) and
(ordered list) elements. As with all list controls, you set the collection of items that should
be displayed through the Items property. Additionally, you can use the properties in
Table 6-4 to configure how the items are displayed.

Table 6-4. Added BulletedList Properties

Property Description

BulletStyle Determines the type of list. Choose from Numbered (1, 2, 3...),
LowerAlpha (a, b, c...) and UpperAlpha (A, B, C...), LowerRoman
@, ii, iii...) and UpperRoman (I, II, I1I...), and the bullet symbols Disc,
Circle, Square, or CustomImage (in which case you must set the
BulletStyleImageUrl property).

BulletStylelmageUr]l If the BulletStyle is set to Custom, this points to the image that is placed
to the left of each item as a bullet.

FirstBulletNumber In an ordered list (using the Numbered, LowerAlpha, UpperAlpha,
LowerRoman, and UpperRoman styles), this sets the first value. For
example, if you set FirstBulletNumber to 3, the list might read 3, 4, 5 (for
Numbered) or C, D, E (for UpperAlpha).

DisplayMode Determines whether the text of each item is rendered as text (use Text,
the default) or a hyperlink (use HyperLink).

If you choose to set the DisplayMode to use hyperlinks, you can react to the
Button.Click event to determine which item was clicked. Here’s an example:

protected void BulletedlList1l Click(object sender, BulletedlListEventArgs e)

{
string itemText = BulletedlList1.Items[e.Index].Text;

Label1.Text = "You choose item" + itemText;

Figure 6-6 shows multiple BulletedList controls with different DisplayMode values.

CHAPTER 6 WEB CONTROLS 191

‘A Untitled Page - Microsoft Internet Explorer |:

I »
File Edit Wew Favorites Tools Help OBack < '.',"

Address |@ http: fflocalhost: 2915 webControls/BulletedList, asp: v |

Bullet styles:

MetZet
HMumbered
LowerAlpha
Tpperdlpha
LewerBoman
TpperBoman
Disc

Circle

Square
Custemlmage

e PR e D T

@ Daone \ﬁ Local intranet:

Figure 6-6. Various BulletedList styles

Table Controls

Essentially, the Table control is built out of a hierarchy of objects. Each Table object con-
tains one or more TableRow objects. In turn, each TableRow object contains one or more
TableCell objects. Each TableCell object contains other ASP.NET controls of HTML
content that displays information. If you're familiar with the HTML table tags, this rela-
tionship (shown in Figure 6-7) will seem fairly logical.

192

CHAPTER 6 WEB CONTROLS

A Sample Table Object
(2 Rows, 3 Columns)

TableRow

TableCell

TableCell

TableCell

HTML or Server

HTML or Server

HTML or Server

Controls Controls Controls
TableRow
TableCell TableCell TableCell

HTML or Server

Controls

HTML or Server
Controls

HTML or Server
Controls

Figure 6-7. Table control containment

To create a table dynamically, you follow the same philosophy as you would for any
other web control. First, you create and configure the necessary ASP.NET objects. Then,
ASP.NET converts these objects to their final HTML representation before the page is sent
to the client.

Consider the example shown in Figure 6-8. It allows the user to specify a number of
rows and columns as well as whether cells should have borders.

CHAPTER 6

‘A Table Test - Microsoft Internet Explorer

File Edit View Favorites Tools Help OBack e E @ .QJ

Address @ http: fflocalhost: 1405 WebControls TablePictures, aspx

Rows: |‘1 | Cols: |3 |

Put Border Arcund Cells

@ Daone ‘ﬂ Local intranet:

Figure 6-8. The table test options

WEB CONTROLS

When the user clicks the generate button, the table is filled dynamically with sample

data according to the selected options, as shown in Figure 6-9.

‘A Table Test - Microsoft Internet Explorer

File Edit View Favorites Tools Help QBbak - O EIRE u‘/ﬂ s .
Address @ http: fflocalhost: 1405 WebControls TablePictures, aspx v |
Rows: |4 | Cols: |3 |
[Put Border Around Cells

[Example Cell (0,0) [Example Cell (0,1) Example Cell (0,2)
[Example Cell (1,0) [Example Cell (1,1) Example Cell (1,2)
[Example Cell (2,0) [Example Cell (2,1) Example Cell (2,2)
[Example Cell (3,0) [Example Cel (3,1) Example Cell (3,2)

@ Daone ‘ﬂ Local intranet:

Figure 6-9. A dynamically generated table

193

194

CHAPTER 6 WEB CONTROLS

The .aspx code creates the TextBox, CheckBox, Button, and Table controls:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="TableTest.aspx.cs" Inherits="TableTest" %>
<html>
<head runat="server">
<title>Table Test</title>
</head>
<body>
<form method="post" runat="server">
Rows:
<asp:TextBox id="txtRows" runat="server" />
Cols:
<asp:TextBox id="txtCols" runat="server" />

<asp:CheckBox id="chkBorder" runat="server"
Text="Put Border Around Cells" />

<asp:Button id="cmdCreate" OnClick="cmdCreate Click" runat="server"
Text="Create" />

<asp:Table id="tbl" runat="server" />
</form>
</body></html>

You'll notice that the Table control doesn’t contain any actual rows or cells. To make a
valid table, you would need to nest several layers of tags. The following example creates
a table with a single cell that contains the text A Test Row.

<asp:Table id="tbl" runat="server">
<asp:TableRow id="row" runat="server">
<asp:TableCell Text="A Test Row" id="cell" runat="server">
<!-- Instead of using the Text property, you could add other ASP.NET
control tags here. -->
</asp:TableCell>
</asp:TableRow>
</asp:Table>

The table test web page doesn’t have any nested elements. This means the table will be
created as a server-side control object, but unless the code adds rows and cells, the table
will not be rendered in the final HTML page.

CHAPTER 6 WEB CONTROLS

The TablePage class uses two event handlers. When the page is first loaded, it adds a
border around the table. When the button is clicked, it dynamically creates the required
TableRow and TableCell objects in a loop:

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

public partial class TableTest : System.Web.UI.Page
{
protected void Page Load(object sender, System.EventArgs e)
{
// Configure the table's appearance.
// This could also be performed in the .aspx file
// or in the cmdCreate Click event handler.
tbl.BorderStyle = BorderStyle.Inset;
tbl.BorderWidth = Unit.Pixel(1);

protected void cmdCreate Click(object sender, System.EventArgs e)
{
// Remove all the current rows and cells.
// This is not necessary if EnableViewState is set to false.
tbl.Controls.Clear();

int rows = Int32.Parse(txtRows.Text);
int cols = Int32.Parse(txtCols.Text);
TableCell cellNew = null;
for (int row = 0; TOW < TOWS; TOW++)
{
// Create a new TableRow object.
TableRow rowNew = new TableRow();

// Put the TableRow in the Table.
tbl.Controls.Add(rowNew);

195

196 CHAPTER 6 WEB CONTROLS

for (int col = 0; col < cols; col++)

{
// Create a new TableCell object.
cellNew = new TableCell();
cellNew.Text = "Example Cell (" + row.ToString() + ",";
cellNew.Text += col.ToString + ")";
if (chkBorder.Checked)
{
cellNew.BorderStyle = BorderStyle.Inset;
cellNew.BorderWidth = Unit.Pixel(1);
}
// Put the TableCell in the TableRow.
rowNew.Controls.Add(cellNew);
}

This code uses the Controls collection to add child controls. Every container control
provides this property. You could also use the TableCell.Controls collection to add web
controls to each TableCell. For example, you could place an Image control and a Label
control in each cell. In this case, you can’t set the TableCell. Text property. The following
code snippet uses this technique, and Figure 6-10 displays the results:

// Create a new TableCell object.
cellNew = new TableCell();

// Create a new Label object.

Label 1blNew = new Label();

1bINew.Text = "Example Cell (" + row.ToString() + "," + col.ToString() +
"“Y
";

System.Web.UI.WebControls.Image imgNew = new System.Web.UI.WebControls.Image();
imgNew.ImageUrl = "cellpic.png";

CHAPTER 6 WEB CONTROLS

// Put the label and picture in the cell.
cellNew.Controls.Add(1blNew);
cellNew.Controls.Add(imgNew);

// Put the TableCell in the TableRow.
rowNew.Controls.Add(cellNew);

‘A Table Test - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help Qrxk - O - ¥ A @ it -"'
Address |@ http: fflocalhost: 1405 WebControls TablePictures, aspx M |
Rows: |‘1 | Cols: |3 |
Put Border Around Cells

Ezxample Cell (0,00 Example Cell (0,1} Example Cell {0,2)
@ @ @
Ezxample Cell (1,00 Example Cell (1,1} Example Cell {1,2)
@ @ @
Ezxample Cell (2,00 Example Cell (2,10 Example Cell (2,23
@ @ @

Ezxample Cell (3,00 Example Cell (3,10 Example Cell {3,2)
@ @ @

@ Daone \ﬂ Local intranet:

Figure 6-10. A table with contained controls

The real flexibility of the table test page is that each Table, TableRow, and TableCell is
a full-featured object. If you want, you can give each cell a different border style, border
color, and text color by setting the corresponding properties.

AutoPostBack and Web Control Events

The previous chapter explained that one of the main limitations of HTML server controls is
their limited set of useful events—they have exactly two. HTML controls that trigger a post-
back, such as buttons, raise a ServerClick event. Input controls provide a ServerChange
event that doesn’t actually fire until the page is posted back.

Server controls are really an ingenious illusion. You'll recall that the code in an
ASP.NET page is processed on the server. It’s then sent to the user as ordinary HTML.
Figure 6-11 illustrates the order of events in page processing.

197

198

CHAPTER 6 WEB CONTROLS

ASP.NET creates page
object from .aspx code

2

ASP.NET runs the
Page.Load event handler

v

HTML Output Returned Final page is rendered

Web Page Request

<

Web Client

ASP.NET creates page
object from .aspx code

v

ASP.NET runs the
Page.Load event handler

v

ASP.NET runs any other
triggered event handlers

v

< HTML Output Returned Final page is rendered

Page Postback

Y

Figure 6-11. The page processing sequence

This is the same in ASP.NET as it was in traditional ASP programming. The question is,
how can you write server code that will react to an event that occurs on the client? The
answer is a new innovation called the automatic postback.

The automatic postback submits a page back to the server when it detects a specific user
action. This gives your code the chance to run again and create a new, updated page. Con-
trols that support automatic postbacks include almost all input web controls. Table 6-5
provides a basic list of web controls and their events.

CHAPTER 6 WEB CONTROLS 199

Table 6-5. Web Control Events

Event Web Controls That Provide It

Click Button, ImageButton

TextChanged TextBox (fires only after the user changes the focus to another control)
CheckChanged CheckBox, RadioButton

SelectedIndexChanged DropDownlist, ListBox, CheckBoxList, RadioButtonList

If you want to capture a change event for a web control, you need to set its AutoPost-
Back property to true. This means that when the user clicks a radio button or check box,
the page will be resubmitted to the server. The server examines the page, loads all the
current information, and then allows your code to perform some extra processing before
returning the page back to the user.

In other words, every time you need to update the web page, it’s actually being sent to
the server and re-created (see Figure 6-12). However, ASP.NET makes this process so
transparent that your code can treat your web page like a continuously running program
that fires events.

This postback system isn’t ideal for all events. For example, some events that you may
be familiar with from Windows programs, such as mouse movement events or key press
events, aren’t practical in an ASP.NET application. Resubmitting the page every time a key
is pressed or the mouse is moved would make the application unbearably slow and
unresponsive.

200 CHAPTER 6 WEB CONTROLS

Page object is created from
.aspx file

Page.Init event occurs

v

Controls are repopulated with

information from view state

Page.Load event occurs

v

All other events occurs
(like Click and Change events)

v

Page.PreRender event occurs

v

Control information is stored in
view state

v

HTML for page is rendered

(and can no longer be changed)

v

Page.Unload event occurs

v

Page object is released
from memory

Figure 6-12. The postback processing sequence

CHAPTER 6 WEB CONTROLS 201

How Postback Events Work

Chapter 1 explained that not all types of web programming use server-side code like
ASP.NET. One common example of client-side web programming is JavaScript, which uses
simple code that’s limited in scope and is executed by the browser. ASP.NET uses the client-
side abilities of JavaScript to bridge the gap between client-side and server-side code.

Here’s how it works: If you create a web page that includes one or more web controls
that are configured to use AutoPostBack, ASP.NET adds a special JavaScript function to
the rendered HTML page. This function is named __doPostBack(). When called, it triggers
a postback, sending data back to the web server.

ASP.NET also adds two additional hidden input fields that are used to pass information
back to the server. This information consists of the ID of the control that raised the event
and any additional information that might be relevant. These fields are initially empty, as
shown here:

<input type="hidden" name="_ EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" value="" />

The __doPostBack() function has the responsibility for setting these values with the
appropriate information about the event and then submitting the form. A sample
__doPostBack() function is shown here:

<script language="javascript">
<!--
function _ doPostBack(eventTarget, eventArgument) {
var theform = document.Formi;
theform. EVENTTARGET.value = eventTarget;
theform. EVENTARGUMENT.value = eventArgument;
theform.submit();
}
/l-->
</script>

Remember, ASP.NET generates the __doPostBack() function automatically, provided
at least one control on the page uses automatic postbacks. This code grows lengthier as
you add more AutoPostBack controls to your page, because the event data must be set for
each control.

Finally, any control that has its AutoPostBack property set to true is connected to the
__doPostBack() function using the onclick or onchange attributes. These attributes indi-
cate what action the browser should take in response to the client-side JavaScript events
onclick and onchange.

The following example shows the tag for a list control named IstBackColor, which posts
back automatically. Whenever the user changes the selection in the list, the client-side

202

CHAPTER 6 WEB CONTROLS

onchange event fires. The browser then calls the __doPostBack() function, which sends
the page back to the server.

<select id="1stBackColor" onchange="__doPostBack('lstBackColor',"")"
language="javascript">

In other words, ASP.NET automatically changes a client-side JavaScript event into
a server-side ASP.NET event, using the __doPostBack() function as an intermediary.
Figure 6-13 shows this process.

Q
O:H
HTML Page

Server-Side

oooo ooog

ooo |
oooo ooo
0000 goog
Ooooo ooog
O0Ooo ooo
Ooooo ooog
oooo oog
O0Ooo ooo

Event

=] JavaScript Event

- :§(| \j

__doPostBack() \w Web page is posted back
Function S —

Client Server

Figure 6-13. An automatic postback

If you're a seasoned ASP developer, you may have manually created a solution like this
for traditional ASP web pages. ASP.NET handles these details for you automatically, sim-
plifying life a great deal.

The Page Life Cycle

To understand how web control events work, you need to have a solid understanding of
the page life cycle. Consider what happens when a user changes a control that has the
AutoPostBack property set to true:

1. On the client side, the JavaScript __doPostBack event is invoked, and the page is
resubmitted to the server.

2. ASPNET re-creates the Page object using the .aspx file.

CHAPTER 6 " WEB CONTROLS
3. ASPNET retrieves state information from the hidden view state field and updates
the controls accordingly.
4, The Page.Load event is fired.

5. The appropriate change event is fired for the control. (If more than one control has
been changed, the order of change events is undetermined.)

6. The Page.Unload event fires, and the page is rendered (transformed from a set of
objects to an HTML page).

7. The new page is sent to the client.

To watch these events in action, it helps to create a simple event tracker application
(see Figure 6-14). All this application does is write a new entry to a list control every time
one of the events it's monitoring occurs. This allows you to see the order in which events
are triggered.

File Edit Wiew Favorites Tools Help oBack @ ¥ o
Address |§1 http:/flocalhostChapter0S/Event Tracker . aspx v |
~

List of events:

chk Changed
opt1 Changed

DEtZ Chanied

Controls being monitored for change events:

|hello |

(OO}

&] Dare % Local intranet

Figure 6-14. The event tracker

203

204 CHAPTER 6 WEB CONTROLS

Listing 6-1 shows the markup code for the event tracker, and Listing 6-2 shows the
code-behind class that makes it work.

Listing 6-1. EventTracker.aspx

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="EventTracker.aspx.cs" Inherits="EventTracker
<html>
<head runat="server"»
<title>Event Tracker</title>
</head>
<body>
<form method="post" runat="server">
<h3>Controls being monitored for change events:</h3>
<asp:TextBox id=txt runat="server" AutoPostBack="true"
OnTextChanged="Ctr1Changed" />

<asp:CheckBox id=chk runat="server" AutoPostBack="true"
OnCheckedChanged="CtrlChanged"/>

<asp:RadioButton id=optl runat="server" GroupName="Sample"
AutoPostBack="true" OnCheckedChanged="CtrlChanged"/>
<asp:RadioButton id=opt2 runat="server" GroupName="Sample
AutoPostBack="true" OnCheckedChanged="Ctr1Changed"/>

<h3>List of events:</h3>
<asp:ListBox id=1stEvents runat="server" Width="355px"
Height="505px" />

(L)

0>

</form>
</body></html>

Listing 6-2. EventTracker.cs

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

CHAPTER 6 WEB CONTROLS 205

public partial class EventTracker : System.Web.UI.Page

{
protected void Page Load(object sender, System.EventArgs e)
{
Log("<< Page Load >>");
}

protected void EventTracker PreRender(object sender, System.EventArgs e)
{

// When the Page.Unload event occurs, it is too late

// to change the list.

Log("Page PreRender");

}
protected void CtrlChanged(Object sender, EventArgs e)
{
// Find the control ID of the sender.
// This requires converting the Object type into a Control class.
string ctrlName = ((Control)sender).ID;
Log(ctrlName + " Changed");
}
private void Log(string entry)
{
1stEvents.Items.Add(entry);
// Select the last item to scroll the list so the most recent
// entries are visible.
lstEvents.SelectedIndex = lstEvents.Items.Count - 1;
}

206 CHAPTER 6 WEB CONTROLS

Dissecting the Code...

The following points are worth noting about this code:

¢ The code writes to the ListBox using a private Log() subroutine. The Log() subrou-
tine adds the text and automatically scrolls to the bottom of the list each time a new
entry is added, thereby ensuring that the most recent entries remain visible.

* All the change events are handled by the same subroutine, CtrlChanged(). The
event handling code uses the source parameter to find out what control sent
the event, and it incorporates that information in the log string.

A Simple Web Page Applet

Now that you've had a whirlwind tour of the basic web control model, it’s time to put it to
work with the second single-page utility. In this case, it’s a simple example for a dynamic
e-card generator. You could extend this sample (for example, allowing users to store
e-cards to the database or using the techniques in Chapter 16 to mail notification to card
recipients), but even on its own, this example demonstrates basic control manipulation
with ASP.NET.

The web page is divided into two regions. On the left is an ordinary <div> tag contain-
ing a set of web controls for specifying card options. On the right is a Panel control
(named pnlCard), which contains two other controls (IblGreeting and imgDefault) that
are used to display user-configurable text and a picture. This text and picture represents
the greeting card. When the page first loads, the card hasn’t yet been generated and the
right portion is blank (as shown in Figure 6-15).

Tip The <div> tag is useful when you want to group text and controls and apply a set of formatting prop-
erties (such as a color or font) to all of them. The <div> tag is used in many of the examples in this book, but
it can safely be omitted—the only change will be the appearance of the formatted page.

CHAPTER 6 WEB CONTROLS

A http:#localhost: 3352/GreetingCar dMaker/GreetingCardMaker.aspx - Microsoft Internet Explorer |

. ¥
File Edit Miew Favorites Tools Help & Back O - @ @ I‘_AIJ pSearch 'f?Favorites £ ;ﬂ'

Address @ http/ localhost: 3352 GreetingCardMaker (GreetingCardMaker , aspx v |

Choose a background color:
[white ~|

Choose a font:
|Times MNew Roman v|

Specify a numeric font size:

Choose a border style:
@ MNone

O Double

O salid

[Jadd the Default Picture

Enter the greeting text below:

@ Daone ‘ﬂ Local intranet:

Figure 6-15. The e-card generator

Whenever the user clicks the OK button, the page is posted back and the “card” is
updated (see Figure 6-16).

207

208

CHAPTER 6

A http:#localhost: 3352/GreetingCar dMaker/GreetingCardMaker.aspx - Microsoft Internet Explorer | I

WEB CONTROLS

File

Edit Wiew Favorites Tools Help

@Back -~) EIRE 3 D search 57 Favorites 42

Address @ http: fflocalhost: 3352} GreetingCardMaker fareetingCardMaker , aspix

Choose a background color:

|Ye|l0w v|

Choose a font:

|Verdana v|

Specify a numeric font size:

25 |

Choose a border style:
O MNone

@ Double

O salid

[¥] 4dd the Default Picture

Enter the greeting text below:

Happy Birthday, and many
more

Happy

Birthday, and

many more

@ Done

\3 Local intranet:

Figure 6-16. A user-configured greeting card

The .aspx layout code is straightforward. Of course, the sheer length of it makes it diffi-
cult to work with efficiently. This is an ideal point to start considering Visual Studio, which
will handle the .aspx details for you automatically and won’t require you to painstakingly
format and organize the user interface markup tags. Here’s the code:

<%@ Page Language="C#" AutoEventWireup="true"
Inherits="GreetingCardMaker" CodeFile="GCreetingCardMaker.aspx.cs" %>
<html>

<head runat="server">

<title>Greeting Card Maker</title>

</head>

CHAPTER 6 WEB CONTROLS

<body>
<form method="post" runat="server">
<!-- div style attribute left out for clarity. --»>
<div>
<!-- Here are the controls: -->
Choose a background color:

<asp:DropDownList id="lstBackColor" runat="server" Width="194px"
Height="22px"/>

Choose a font:

<asp:DropDownList id="lstFontName" runat="server" Width="194px"
Height="22px" />

Specify a numeric font size:

<asp:TextBox id="txtFontSize" runat="server" />

Choose a border style:

<asp:RadioButtonList id="1stBorder" runat="server" Width="177px"
Height="59px" />

<asp:CheckBox id="chkPicture" runat="server"
Text="Add the Default Picture"></asp:CheckBox>

Enter the greeting text below:

<asp:TextBox id="txtGreeting" runat="server" Width="240px" Height="85px"
TextMode="Multiline" />

<asp:Button id="cmdUpdate" OnClick="cmdUpdate Click"
runat="server" Width="71px" Height="24px" Text="Update" />
</div>

<!-- Here is the card: -->
<asp:Panel id="pnlCard" style="Z-INDEX: 101; LEFT: 313px; POSITION:
absolute;
TOP: 16px" runat="server" Width="339px" Height="481px"
HorizontalAlign="Center">

<asp:Label id="1blGreeting" runat="server" Width="256px"
Height="150px" />

<asp:Image id="imgDefault" runat="server" Width="212px"
Height="160px" />
</asp:Panel>
</form>
</body></html>

The code follows the familiar pattern with an emphasis on two events: the Page.Load
event, where initial values are set, and the Button.Click event, where the card is generated.

209

210 CHAPTER 6 WEB CONTROLS

The using statements are omitted from the following listing, because the basic set of
required namespaces should be familiar to you by now:

public partial class GreetingCardMaker : System.Web.UI.Page
{

protected void Page Load(object sender, System.EventArgs e)

{
if (!this.IsPostBack)

{
// Set color options.
1stBackColor.Items.Add("White");
1stBackColor.Items.Add("Red");
1stBackColor.Items.Add("Green");
1stBackColor.Items.Add("Blue");
1stBackColor.Items.Add("Yellow");

// Set font options.
1stFontName.Items.Add("Times New Roman");
1stFontName.Items.Add("Arial");
1stFontName.Items.Add("Verdana");
1stFontName.Items.Add("Tahoma");

// Set border style options by adding a series of
// ListItem objects.
ListItem item = new ListItem();

// The item text indicates the name of the option.
item.Text = BorderStyle.None.ToString();

// The item value records the corresponding integer
// from the enumeration. To obtain this value, you
// must cast the enumeration value to an integer,
// and then convert the number to a string so it

// can be placed in the HTML page.

item.value = ((int)BorderStyle.None).ToString();

// Add the item.
1stBorder.Items.Add(item);

CHAPTER 6 WEB CONTROLS

// Now repeat the process for two other border styles.
item = new ListItem();

item.Text = BorderStyle.Double.ToString();

item.Value = ((int)BorderStyle.Double).ToString();
1stBorder.Items.Add(item);

item = new ListItem();

item.Text = BorderStyle.Solid.ToString();
item.Value = ((int)BorderStyle.Solid).ToString();
1stBorder.Items.Add(item);

// Select the first border option.
1stBorder.SelectedIndex = 0;

// Set the picture.
imgDefault.ImageUrl = "defaultpic.png”;

protected void cmdUpdate Click(object sender, System.EventArgs e)

{
// Update the color.

pnlCard.BackColor = Color.FromName(lstBackColor.SelectedItem.Text);

// Update the font.
1blGreeting.Font.Name = lstFontName.SelectedItem.Text;

if (Int32.Parse(txtFontSize.Text) > 0)

{
1blGreeting.Font.Size =

FontUnit.Point(Int32.Parse(txtFontSize.Text));

// Update the border style. This requires two conversion steps.
// First, the value of the list item is converted from a string
// into an integer. Next, the integer is converted to a value in

// the BorderStyle enumeration.
int boderValue = Int32.Parse(lstBorder.SelectedItem.Value);
pnlCard.BorderStyle = (BorderStyle)borderValue;

211

212 CHAPTER 6 WEB CONTROLS

// Update the picture.
if (chkPicture.Checked)

{

imgDefault.Visible = true;
}
else
{

imgDefault.Visible = false;
}

// Set the text.
1blGreeting.Text = txtGreeting.Text;

Asyou can see, this example limits the user to a few preset font and color choices. The
code for the BorderStyle option is particularly interesting. The IstBorder control has a list
that displays the text name of one of the BorderStyle enumerated values. You'll remember
from the introductory chapters that every enumerated value is really an integer with a
name assigned to it. The IstBorder also secretly stores the corresponding number so that
the code can retrieve the number and set the enumeration easily when the user makes a
selection and the cmdUpdate_Click event handler fires.

Improving the Greeting Card Applet

ASP.NET pages have access to the full .NET class library. With a little exploration, you'll
find classes that might help the greeting-card maker, such as tools that let you retrieve all
the known color names and all the fonts installed on the web server.

For example, you can fill the IstFontName control with a list of fonts using the special
System.Drawing.Text.InstalledFontCollection class. Here’s the code you'll need:

// Get the list of available fonts, and add them to the font list.
System.Drawing.Text.InstalledFontCollection fonts;

fonts = new System.Drawing.Text.InstalledFontCollection();
foreach (FontFamily family in fonts.Families)

{
1stFontName.Items.Add(family.Name);

Figure 6-17 shows the resulting font list.

CHAPTER 6 WEB CONTROLS

Choose a font name:
Academy Engraved LET
-dde]

olus
Agency FB

Alba

Alba Matter

Alba Super

Algerian

Allegro BT

Alrmanac MT

AmerType Md BT

Andale Mano IPA
AnzeigenGroT

Avrial

Arial Black

Arial Narrow

Arial Rounded MT Bold

Arial Unicode M3
BernhardFashion BT hd

Figure 6-17. The font list

You can also get a list of color names from the System.Drawing. KnownColor enumera-
tion. To do this, you use one of basic enumeration features: the static Enum.GetNames/()
method, which inspects an enumeration and provides an array of strings, with one string
for each value in the enumeration. A minor problem with this approach is that it includes
system environment colors (for example, Active Border) in the list. It may not be obvious
to the user what colors these values represent. Still, this approach works well for this
simple application.

// Get the list of colors.

string[] colorArray = Enum.GetNames(typeof(System.Drawing.KnownColor));
1stBackColor.DataSource = colorArray;

1stBackColor.DataBind();

This web page can then use data binding to automatically fill the list control with infor-
mation from the ColorArray. You'll explore data binding in much more detail in Chapter 14.
You can use a similar technique to fill in BorderStyle options:

// Set border style options.

string[] borderStyleArray = Enum.GetNames(typeof(BorderStyle));
1stBorder.DataSource = borderStyleArray;

1stBorder.DataBind();

This code raises a new challenge: how do you convert the value that the user selects
into the appropriate constant for the enumeration? When the user chooses a border style
from the list, the SelectedItem property will have a text string like "Groove". But to apply
this border style to the control, you need a way to determine the enumerated constant
that matches this text.

213

214

CHAPTER 6 WEB CONTROLS

You can handle this problem in a few ways. (Earlier, you saw an example in which the
enumeration integer was stored as a value in the list control.) In this case, the most direct
approach involves using an advanced feature called a TypeConverter. A TypeConverter is
a special class that is able to convert from a specialized type (in this case, the BorderStyle
enumeration) to a simpler type (such as a string), and vice versa.

To access this class, you need to import the System.ComponentModel namespace:

using System.ComponentModel;
You can then add the following code to the cmdUpdate_Click event handler:

// Find the appropriate TypeConverter for the BorderStyle enumeration.
TypeConverter cnvrt = TypeDescriptor.GetConverter(typeof(BorderStyle));

// Update the border style using the value from the converter.
pnlCard.BorderStyle = cnvrt.ConvertFromString(
1stBorder.SelectedItem.Text);

Don’t worry if this example introduces a few features that look entirely alien! These fea-
tures are more advanced (and aren’t tied specifically to ASP.NET). However, they show
you some of the flavor that the full .NET class library can provide for a mature application.

Generating the Cards Automatically

The last step is to use ASP.NET’s automatic postback events to make the card update
dynamically every time an option is changed. The OK button could now be used to submit
the final, perfected greeting card, which might then be e-mailed to a recipient or stored in
a database.

To configure the controls so they automatically trigger a page postback, simply add the
AutoPostBack="true" attribute to each user input control. An example is shown here:

Choose a background color:

<asp:DropDownlist id="1lstBackColor" AutoPostBack="true" runat="server"
Width="194px" Height="22px"/>

Next, you need to create an event handler that can handle the change events. To save a
few steps, you can use the same event handler for all the input controls. All the event
handler needs to do is call the update routine that regenerates the greeting card.

protected void ControlChanged(object sender, System.EventArgs e)
{

// Refresh the greeting card (because a control was clicked).
UpdateCard();

CHAPTER 6 WEB CONTROLS

protected void cmdUpdate Click(object sender, System.EventArgs e)

{
// Refresh the greeting card (because the button was clicked).

UpdateCard();

}
protected void UpdateCard()
{
// (The code that draws the greeting card goes here.)
}

Next, alter the control tags so that the changed event of each input control is connected
to the ControlChanged event handler. You'll notice that the name of the change event
depends on the control. For example, the TextBox provides a TextChanged event, the
ListBox provides a SelectedIndexChanged event, and so on.

With these changes, it’s easy to perfect the more extensive card-generating program
shown in Figure 6-18. The full code for this application is provided with the online
samples.

Tip Automatic postback isn’t always best. Sometimes an automatic postback can annoy a user, especially
when the user is working over a slow connection or when the server needs to perform a time-consuming
option. For that reason, it’s sometimes best to use an explicit submit button and not enable AutoPostBack for
most input controls.

A WORD ABOUT CONVENTIONS

From this point on, the examples will adopt a few conventions designed to make code examples more concise
and readable:

e The .aspx layout file is rarely shown with an example, unless it requires special coding (such as the
creation of a template or data-binding syntax, two topics you’ll explore in Part 3 of this book). The .aspx
files are really nothing more than an ordering of standard control tags.

e The using statements in the code-behind file are omitted, unless they reference an unusual namespace
that hasn’t been identified. Generally, you’ll reuse the same standard block of using statements for each
code-behind file.

These changes won't affect you if you're using an IDE such as Visual Studio, which generates the .aspx
file, control variables, and most using statements automatically. And if you want to see the full details, you'll
find them in the downloadable code.

215

216 CHAPTER 6 WEB CONTROLS

2 http:#localhost: 3352/GreetingCar dMaker/GreetingCardMaker2.aspx - Microsoft Internet Explorer, :”E”X|

; ; »
File Edit Wew Favorites Tools Help @Back A > | E‘] @ .‘/.k_,):)Search 'f?Favorites £ ;ﬂ'

Address @ httpfflocalhost: 3352 GreetingCardMaker /GreetingCardMaker 2, aspe v |

Choose a background color:

[LightGoldenrad ¥ellaw ~| 1
Happy

Choose a foreground (text) color:

o 1 Birthday!

Choose a font name:
|Academy Engraved LET v|

Specify a font size:
[40 |

Choose a border style:
OMotset ODouble
O Mone O Groove
CODotted @ Ridge
O Dashed Olnset
O solid O outset

[¥] 4dd the Default Picture

Enter the greeting text below:

Happy Birthday!

@ Daone ‘ﬂ Local intranet:

Figure 6-18. A more extensive card generator

CHAPTER 6 WEB CONTROLS 217

The Last Word

This chapter introduced you to web controls and their object interface. As you continue
through this book, you’ll learn more about the web controls. The following highlights are
still to come:

* In Chapter 8, you'll learn about advanced controls such as the AdRotator, the
Calendar, and the validation controls. You'll also learn about specialized container
controls, like the MultiView and Wizard.

* In Chapter 11, you'll learn about navigation controls like the TreeView and Menu.

* In Chapter 15, you'll learn about the GridView, DetailsView, and FormView—
high-level web controls that let you manipulate a complex table of data from any
data source.

* In Chapter 25, you'll learn how you can use .NET inheritance to create your own
customized web controls.

For a good reference that shows each web control and lists its important properties,
refer to the MSDN Help.

CHAPTER 7

Tracing, Logging, and Error
Handling

N o software can run free from error, and ASP.NET applications are no exception. Sooner
or later your code will be interrupted by a programming mistake, invalid data, unexpected
circumstances, or even hardware failure. Novice programmers spend sleepless nights
worrying about errors. Professional developers recognize that bugs are an inherent part
of software applications and code defensively, testing assumptions, logging problems,
and writing error handling code to deal with the unexpected.

In this chapter, you'll learn the error handling and debugging practices that can defend
your ASP.NET applications against common errors, can track user problems, and can
help you solve mysterious issues. You'll learn how to use structured exception handling,
how to use logs to keep a record of unrecoverable errors, and how to configure custom
web pages for common HTTP errors. You'll also learn how to use page tracing to see diag-
nostic information about ASP.NET pages.

Common Errors

Errors can occur in a variety of situations. Some of the most common causes of errors
include attempts to divide by zero (usually caused by invalid input or missing informa-
tion) and attempts to connect to a limited resource such as a file or a database (which can
fail if the file doesn’t exist, the database connection times out, or the code has insufficient
security credentials).

219

220

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Another infamous type of error is the null reference exception, which usually occurs
when a program attempts to use an uninitialized object. As a .NET programmer, you'll
quickly learn to recognize and resolve this common but annoying mistake. The following
code example shows the problem in action:

SqlConnection conOne;

// The next line will fail and generate a null reference exception.
// You cannot modify a property (or use a method) of an object that
// doesn't exist!

conOne.ConnectionString = "...";

SqlConnection conTwo = new SqlConnection();

// This works, because the object has been initialized
// with the new keyword.
conTwo.ConnectionString = "...";

When an error occurs in your code, .NET checks to see whether any active error han-
dlers appear in the current scope. If the error occurs inside a function, .NET searches for
local error handlers and then checks for any active error handlers in the calling code. If no
error handlers are found, the page processing is aborted, and an error page is displayed in
the browser. Depending on whether the request came from the local computer or a
remote client, the error page may show a detailed description (as shown in Figure 7-1) or
a generic message. You'll explore this topic a little later in the “Error Pages” section of this
chapter.

Even if an error is the result of invalid input or the failure of a third-party component,
an error page can shatter the professional appearance of any application. The application
users end up with a feeling that the application is unstable, insecure, or of poor quality—
and they're at least partially correct.

If an ASP.NET application is carefully designed and constructed, an error page will
almost never appear. Errors may still occur because of unforeseen circumstances, but
they will be caught in the code and identified. If the error is a critical one that the applica-
tion cannot solve on its own, it will report a more useful (and user-friendly) page of
information that might include a link to a support e-mail or phone number where the cus-
tomer can receive additional assistance. You'll look at those techniques in this chapter.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

-2 Object reference not set to an instance of an object. - Microsoft Internet Explorer

Fle Edit View Favorites Tools Help)) ¥ [@» O search o'r Favories 42 v = ﬂ

Address éj http:f flocalhost: 1435/ErrorHandlingDef aulk, asp: ~

Server Error in '/ErrorHandling’ Application.

Object reference not set to an instance of an object.

Description: An unhandled exception occurred during the execution of the current web reguest. Please review the stack trace for more information
ahout the errar and where it originated in the code.

Exception Details: System NulReferenceException: Object reference not =et to an instance of an object.

Source Error:

Line 18: /¢ You cannot modify a property (or use a method) of an object that
Line 19: // doesn't exist!

Line 20: condne.ConnectionString = "...";
Line 21:

Line 22: T

Source File: e\Code'Beginning ASP MET 2 0Chapter07 ErrorHandling'Default aspx.ca Line: 20

Stack Trace:

[Mul1ReferenceException: Object reference not set to an instance of an ohject.]
_pefault.Page_Load(Object sender, EwventArgs e) in e:Code“Beginning ASP.NET 2.0%ChapterOssErrorHandlingyDe
System.Web. Uti1.CalliHelper.EventArgFunctionCal ler{IntPtr fp, Object o, Object t, EventhArgs e) +31
System.Web.Uti1.CalliEventHandlerDel egateProxy.Callback (Object sender, Ewentirgs e) +68
System.Web.UI.Control.0OnLoad (EventArgs e) +88
System.Web.UI.Control.LoadRecursivel) +7
System.wWeb.UI. Page. Pr‘ocessRequestMa'ln(BDD'Iean includeStagesBeforefsyncPoint, Boolean includeStagesAfterisy

Yersion Information: Microsoft MWET Framework Yersion:2 0. 50727 26, ASP NET Yersion:2.0.50727 26

<

@j Done & Local intranet

Figure 7-1. A sample error page

Exception Handling

Most .NET languages support structured exception handling. Essentially, when an error

occurs in your application, the .NET Framework creates an exception object that represents

the problem. You can catch this object using an exception handler. However, if you fail to

use an exception handler, your code will be aborted, and the user will see an error page.
Structured exception handling provides several key features:

Exceptions are object-based. Each exception provides a significant amount of diag-
nostic information wrapped into a neat object, instead of a simple message and error
code. These exception objects also support an InnerException property that allows you
to wrap a generic error over the more specific error that caused it. You can even create
and throw your own exception objects.

221

222

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Exceptions are caught based on their type: This allows you to streamline error handling
code without needing to sift through obscure error codes.

Exceptions handlers use a modern block structure: This makes it easy to activate and
deactivate different error handlers for different sections of code and handle their errors
individually.

Exception handlers are multilayered: You can easily layer exception handlers on top of
other exception handlers, some of which may check only for a specialized set of errors.

Exceptions are a generic part of the .NET Framework: This means they’re completely
cross-language compatible. Thus, a .NET component written in C# can throw an
exception that you can catch in a web page written in VB.

The Exception Class

Every exception object derives from the base class System.Exception. The Exception class
includes the essential functionality for identifying any type of error. Table 7-1 lists its most
important members.

Table 7-1. Exception Properties

Member Description

HelpLink Alink to a help document, which can be a relative or fully qualified URL
(uniform resource locator) or URN (uniform resource name), such as
file:///C:/ACME/MyApp/help.html#Err42. The .NET Framework doesn’t
use this property, but you can set it in your custom exceptions if you want
to use it in your web page code.

InnerException A nested exception. For example, a method might catch a simple file IO
(input/output) error and create a higher-level “operation failed” error.
The details about the original error could be retained in the
InnerException property of the higher-level error.

Message Contains a text description with a significant amount of information
describing the problem.

Source The name of the assembly where the exception was raised.

StackTrace A string that contains a list of all the current method calls on the stack, in
order of most to least recent. This is useful for determining where the
problem occurred.

TargetSite A reflection object (an instance of the System.Reflection.MethodBase

class) that provides some information about the method where the error
occurred. This information includes generic method details such as the
procedure name and the data types for its parameter and return value. It
doesn’t contain any information about the actual parameter values that
were used when the problem occurred.

GetBaseException() This method is useful for nested exceptions that may have more than one
layer. It retrieves the original (deepest nested) exception by moving to the
base of the InnerException chain.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

When you catch an exception in an ASP.NET, it won’t be an instance of the generic
System.Exception class. Instead, it will be an object that represents a specific type of error.
This object will be based on one of the many classes that inherit from System.Exception.
These include diverse classes such as DivideByZeroException, ArithmeticException,
System.IO.IOException, System.Security.SecurityException, and many more. Some of
these classes provide additional details about the error in additional properties.

Visual Studio provides a useful tool to browse through the exceptions in the .NET class
library. Simply select Debug » Exceptions from the menu (you’ll need to have a project
open in order for this work). The Exceptions dialog box will appear. Expand the Common
Language Runtime Exceptions group, which shows a hierarchical tree of .NET exceptions
arranged by namespace (see Figure 7-2).

Break when an exception is:
Mame Thrown User-unhandled | #
|
+- C++ Exceptions D
=- Common Language Runtime Exceptions D
+|- Java Language Exceptions D D
+|- J5cripk Exceptions D D
=l Syskem D
Syskem, AccessYiolationException D
Syskem, AppDomainUnloadedException O |
Syskem. ApplicationException D
Syskem. ArgumentException O
Syskem, ArgumentMullException |
Syskem. ArgumentOutOfRangeException D
Syskem, ArithmeticException D
Syskem, ArrayTypeMismatchException D v

Figure 7-2. Visual Studio’s exception viewer

The Exceptions dialog box allows you to specify what exceptions should be handled by
your code when debugging and what exceptions will cause Visual Studio to enter break
mode immediately. That means you don’t need to disable your error handling code to
troubleshoot a problem. For example, you could choose to allow your program to handle
a common FileNotFoundException (which could be caused by an invalid user selection)
but instruct Visual Studio to pause execution if an unexpected DivideByZero exception
occurs.

To set this up, add a check mark in the Thrown column next to the entry for the
DivideByZero exception. This way, you'll be alerted as soon as the problem occurs. If you
don’tadd a check mark to the Thrown column, your code will continue, run any exception
handlers it has defined, and try to deal with the problem. You'll be notified only if an error
occurs and no suitable exception handler is available.

223

224

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

The Exception Chain

Figure 7-3 shows how the InnerException property works. In this case, a
FileNotFoundException led to a NullReferenceException, which led to a custom
UpdateFailedException. The code returns an UpdateFailedException that references the
NullReferenceException, which references the original FileNotFoundException.

Message Message Message
Source Source Source
StrackTrace StrackTrace StrackTrace
TargetSite TargetSite TargetSite
Helplink HelpLink HelplLink
ExceptionData ExceptionData ExceptionData
InnerException InnerException InnerException
(Nothing) P P

FileNotFoundException

NullReferenceException

UpdateFailedException

Figure 7-3. Exceptions can be chained together.

The InnerException property is an extremely useful tool for component-based pro-
gramming. Generally, it's not much help if a component reports alow-level problem such
as a null reference or a divide-by-zero error. Instead, it needs to communicate a more
detailed message about which operation failed and what input may have been invalid.
The calling code can then often correct the problem and retry the operation.

On the other hand, sometimes you're debugging a bug that lurks deep inside the com-
ponent itself. In this case, you need to know precisely what caused the error—you don’t
want to replace it with a higher-level exception that could obscure the root problem.
Using an exception chain handles both these scenarios: you receive as many linked
exception objects as needed, which can specify information from the least to the most
specific error condition.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 225

Handling Exceptions

The first line of defense in an application is to check for potential error conditions before
performing an operation. For example, a program can explicitly check whether the divisor
is 0 before performing a calculation or if a file exists before attempting to open it:

if (divisor != 0)

{
// It's safe to divide some number by divisor.
}
if (System.IO.File.Exists("myfile.txt"))
{
// You can now open the myfile.txt file.
// However, you should still use exception handling because a variety of
// problems can intervene (insufficient rights, hardware failure, etc.).
}

Even if you perform this basic level of “quality assurance,” your application is still vul-
nerable. For example, you have no way to protect against all the possible file access
problems that occur, including hardware failures or network problems that could arise
spontaneously in the middle of an operation. Similarly, you have no way to validate a user
ID and password for a database before attempting to open a connection—and even if
there were, that technique would be subject to its own set of potential errors. In some
cases, it may not be practical to perform the full range of defensive checks, because they
may impose a noticeable performance drag on your application. For all these reasons, you
need a way to detect and deal with errors when they occur.

The solution is structured exception handling. To use structured exception handling,
you wrap potentially problematic code in the special block structure shown here:

try

{
// Risky code goes here (such as opening a file or
// connecting to a database).

}
catch
{
// An error has been detected. You can deal with it here.
}
finally
{

// Time to clean up, regardless of whether there was an error or not.

226

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

The try statement enables error handling. Any exceptions that occur in the following
lines can be “caught” automatically. The code in the catch block will be executed when an
error is detected. And either way, whether a bug occurs or not, the finally section of the
code will be executed last. This allows you to perform some basic cleanup, such as closing
a database connection. The finally code is important because it will execute even if an
error has occurred that will prevent the program from continuing. In other words, if an
unrecoverable exception halts your application, you'll still have the chance to release
resources.

The act of catching an error neutralizes it. If all you want to do is render a specific error
harmless, you don’t even need to add any code in the catch block of your error handler.
Usually, however, this portion of the code will be used to report the error to the user or log
it for future reference. In a separate component (such as a business object), this code
might handle the exception, perform some cleanup, and then rethrow it to the calling
code, which will be in the best position to remedy it or alert the user. Or, it might actually
create a new exception object with additional information and throw that.

Catching Specific Exceptions

Structured exception handling is particularly flexible because it allows you to catch
specific types of exceptions. To do so, you add multiple catch statements, each one iden-
tifying the type of exception (and providing a new variable to catch it in), as follows:

try
{
// Risky database code goes here.
}
catch (System.Data.SqlException err)
{
// Catches common problems like connection errors.
}
catch (System.NullReferenceException err)
{

// Catches problems resulting from an uninitialized object.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

An exception will be caught as long as it’s of the same class or if it’s derived from the
indicated class. In other words, if you use this statement:

catch (Exception err)

you will catch any exception, because every exception object is derived from the
System.Exception base class.

Exception blocks work a little like the switch block structure. This means as soon as a
matching exception handler is found, the appropriate catch code is invoked. Therefore,
you should organize your catch statements from most specific to least specific:

try
{
// Risky database code goes here.
}
catch (System.Data.SqlException err)
{
// Catches common problems like connection errors.
}
catch (System.NullReferenceException err)
{
// Catches problems resulting from an uninitialized object.
}
catch (System.Exception err)
{
// Catches any other errors.
}

Ending with a catch statement for the generic Exception class is often a good idea to
make sure no errors slip through. However, in component-based programming, you
should make sure you intercept only those exceptions you can deal with or recover from.
Otherwise, it’s better to let the calling code catch the original error.

Nested Exception Handlers

When an exception is thrown, .NET tries to find a matching catch statement in the current
procedure. If the code isn’t in a local structured exception block, or if none of the catch
statements matches the exception, the CLR will move up the call stack one level at a time,
searching for active exception handlers.

227

228

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Consider the example shown here, where the Page.Load event handler calls a private
DivideNumbers() function:

protected void Page Load(Object sender, EventArgs e)

{
try
{
DivideNumbers(5, 0);
}
catch (DivideByZeroException err)
{
// Report error here.
}
}

private decimal DivideNumbers(decimal number, decimal divisor)

{

return number/divisor;

In this example, the DivideNumbers() function lacks any sort of exception handler.
However, the DivideNumbers() function call is made inside an exception handler, which
means the problem will be caught further upstream in the calling code. This is a good
approach because the DivideNumbers() routine could be used in a variety of circum-
stances (or if it’s part of a component, in a variety of different types of applications). It
really has no access to any kind of user interface and can’t directly report an error. Only
the calling code is in a position to determine whether the problem is a serious or minor
one, and only the calling code can prompt the user for more information or report error
details in the web page.

You can also overlap exception handlers in such a way that different exception han-
dlers filter out different types of problems. Here’s one such example:

protected void Page Load(Object sender, EventArgs e)

{
try
{
decimal average = GetAverageCost(DateTime.Now);
}
catch (DivideByZeroException err)
{
// Report error here.
}

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 229

private decimal GetAverageCost(Date saleDate)

{
try
{
// Use Database access code here to retrieve all the sale records
// for this date, and calculate the average.
}
catch (SqlException err)
{
// Handle a database related problem.
}
finally
{
// Close the database connection.
}
}
Dissecting the Code...

You should be aware of the following points:

* Ifan SqlException occurs during the database operation, it will be caught in the
GetAverageCost() function.

* Ifa DivideByZeroException occurs (for example, the function attempts to calculate
an average based on a DataSet that contains no rows), the exception will be caught
in the calling Page.Load event handler.

e Ifanother problem occurs (such as a null reference exception), no active exception
handler exists to catch it. In this case, .NET will search through the entire call stack
without finding a matching catch statement in an active exception handler and will
generate a runtime error, end the program, and return a page with exception
information.

Exception Handling in Action

You can use a simple program to test exceptions and see what sort of information is
retrieved. This program allows a user to enter two values and attempts to divide them.
It then reports all the related exception information in the page (see Figure 7-4).

230 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

2} Untitled Page - Microsoft Internet Explorer E”E”X'
File Edit View Favorites Tools Help Qbxk - O - ¥ @ R . 'I;,"
Address |§1 http: fflocalhost: 1435 ErrorHandling/ErrorHandling Test asp:x i |
A |5 |
B! |D |
Divide &/ B

Message: Attempted to divide by zero.
Source: mscorlib

Stack Trace: at System.Decimal.FCallDivide{Decimal& result, Decimal d1,
Decimal d2) at System.Decimal.Divide{Decimal d1, Decimal d2) at
System.Decimal.op_Division{Decimal d1, Decimal d2) at
ErrorHandlingTest.Buttonl1_Click{Object sender, EventArgs e) in
e:\Code\Beginning ASP.NET 2.0\ChapterD?
\ErrorHandling\ErrorHandlingTest.aspx.cs:line 26

&] Dare &J Local intranet

Figure 7-4. Catching and displaying exception information

Obviously, you can easily avoid this problem with extra code-safety checks or elegantly
resolve it using the validation controls. However, this code provides a good example of
how you can deal with the properties of an exception object. It also gives you a good idea
about what sort of information will be returned.

Here’s the page class code for this example:

public partial class ErrorHandlingTest : Page

{
protected void cmdCompute Click(Object sender, EventArgs e)
{
try
{

decimal a, b, result;

a = Decimal.Parse(txtA.Text);

b = Decimal.Parse(txtB.Text);

result = a / b;

1blResult.Text = result.ToString();

1blResult.ForeColor = Color.Black;
}

catch (Exception err)

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 231

{
1blResult.Text = "Message: " + err.Message;
1bIResult.Text += "

";
1bIResult.Text += "Source: " + err.Source;
1bIResult.Text += "

";
1bIResult.Text += "Stack Trace: " + err.StackTrace;
1blResult.ForeColor = Color.Red;

}

Note that as soon as the error occurs, execution is transferred to an exception handler.
The code in the try block isn’t completed. It’s for that reason that the result for the label is
set in the try block. These lines will be executed only if the division code runs error-free.

You'll see many more examples of exception handling throughout this book. The data
access chapters in Part 3 of this book show the best practices for exception handling when
accessing a database.

Mastering Exceptions
Keep in mind these points when working with structured exception handling:

Break down your code into multiple try/catch blocks: If you put all your code into one
exception handler, you'll have trouble determining where the problem occurred. You
have no way to “resume” the code in a try block. This means that if an error occurs at
the beginning of a lengthy try block, you'll skip a large amount of code. The rule of
thumb is to use one exception handler for one related task (such as opening a file and
retrieving information).

Use ASP.NET'’s error pages during development. During development, you may not
want to implement portions of your application’s error handling code because it may
mask easily correctable mistakes in your application.

Don'’t use exception handlers for every statement. Simple code statements (assigning a
constant value to a variable, interacting with a control, and so on) may cause errors
during development testing but will not cause any future problems once perfected.
Error handling should be used when you're accessing an outside resource or dealing
with supplied data that you have no control over (and thus may be invalid).

232

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Throwing Your Own Exceptions

You can also define and create your own exception objects to represent special error con-
ditions. All you need to do is create an instance of the appropriate exception class and
then use the throw statement.

The next example introduces a modified DivideNumbers() function. It explicitly
checks whether the specified divisor is 0 and then manually creates and throws an
instance of the DivideByZeroException class to indicate the problem, rather than attempt
the operation. Depending on the code, this pattern can save time by eliminating some
unnecessary steps, or it can prevent a task from being initiated if it can’t be completed
successfully.

protected void Page Load(Object sender, EventArgs e)

{
try
{
DivideNumbers(5, 0);
}
catch DivideByZeroException err
{
// Report error here.
}
}

private decimal DivideNumbers(decimal number, decimal divisor)

{

if (divisor == 0)

{
DivideByZeroException err = new DivideByZeroException();
throw err;

}

else

{
return number/divisor;

}

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 233

Alternatively, you can create a .NET exception object and specify a custom error
message by using a different constructor:

private decimal DivideNumbers(decimal number, decimal divisor)

{
if (divisor == 0)
{
DivideByZeroException err = new DivideByZeroException(
"You supplied 0 for the divisor parameter. You must be stopped.");
throw err;
}
else
{
return number/divisor;
}
}

In this case, any ordinary exception handler will still catch the DivideByZeroException.
The only difference is that the error object has a modified Message property that contains
the custom string. Figure 7-5 shows the resulting exception.

A You supplied 0 for the divisor parameter. You must be stopped. - Microsoft Internet Explorer,

- N » g

File Edit View Favorites Tools Help €} > IR ENE| D D search % Favarites 49 hd ;;‘

Address |@I] http: fflocalhost: 1435/ErrorHandlingfDefault, aspx M |
A~

Server Error in '/ErrorHandling’ Application.

You supplied 0 for the divisor parameter. You must be stopped.

Description: &nunhandled exception occurred during the execution of the current web request. Please review the stack trace for more
information about the error and where it originated in the code.

Exception Details: System DivideBy ZeroException: You zupplied 0 for the divisor parameter. You must be stopped.

Source Error:

Line 17: DivideByZeroException err = new DivideByZeroException(

Line 18: "You supplied O for the diwvisor parameter. ¥ou must be stopped.");
Line 19: throw err;

Line 20:

Line 21:

Source File: e\Code'Beginning ASP NET 2 0WChapter07 ErrorHanding'Default aspx.cs Line: 19

£ >
&] Dare & Local intranet

Figure 7-5. Standard exception, custom message

234

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Throwing an error is most useful in component-based programming. In component-
based programming, your ASP.NET page is creating objects and calling methods from a
class defined in a separately compiled assembly. In this case, the class in the component
needs to be able to notify the calling code (the web application) of any errors. The compo-
nent should handle recoverable errors quietly and not pass them up to the calling code.
On the other hand, if an unrecoverable error occurs, it should always be indicated with an
exception and never through another mechanism (such as a return code). For more infor-
mation about component-based programming, refer to Chapter 24.

If you can find an exception in the class library that accurately reflects the problem that
has occurred, you should throw it. If you need to return additional or specialized informa-
tion, you can create your own custom exception class.

Custom exception classes should always inherit from System.ApplicationException,
which itself derives from the base Exception class. This allows .NET to distinguish
between two broad classes of exceptions—those you create and those that are native to
the .NET Framework.

When you create an exception class, you can add properties to record additional infor-
mation. For example, here is a special class that records information about the failed
attempt to divide by zero:

public class CustomDivideByZeroException : ApplicationException

{
// Add a variable to specify the "other" number.

// This might help diagnose the problem.
public decimal DividingNumber;

You can throw this custom error like this:

private decimal DivideNumbers(decimal number, decimal divisor)

{

if (divisor == 0)

{
CustomDivideByZeroException err = new CustomDivideByZeroException();
err.DividingNumber = number;
throw err;
}
else
{
return number/divisor;
}

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 235

To perfect the custom exception, you need to supply it with the three standard con-
structors. This allows your exception class to be created in the standard ways that every
exception supports:

* On its own, with no arguments
* With a custom message
» With a custom message and an exception object to use as the inner exception

These constructors don’t actually need to contain any code. All these constructors
need to do is forward the parameters to the base class (the constructors in the inherited
ApplicationException class) using the base keyword, as shown here:

public class CustomDivideByZeroException : ApplicationException

{
// Add a variable to specify the "other" number.
decimal DividingNumber;
public CustomDivideByZeroException() : base()
}
public CustomDivideByZeroException(string message) : base(message)
8
public CustomDivideByZeroException(string message, Exception inner) :
base(message, inner)
8
}

The third constructor is particularly useful for component programming. It allows
you to set the InnerException property with the exception object that caused the original
problem. The next example shows how you could use this constructor with a component
class called ArithmeticUtility:

public class ArithmeticUtilityException : ApplicationException

{
public ArithmeticUtilityException() : base()

{}

public ArithmeticUtilityException(string message) : base(message)

(}

236 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

public ArithmeticUtilityException(string message, Exception inner) :
base(message, inner)

{
}
public class ArithmeticUtility
{
private decimal Divide(decimal number, decimal divisor)
{
try
{
return number/divisor;
}
catch (Exception err)
{
// Create an instance of the specialized exception class,
// and place the original error in the InnerException property.
ArithmeticUtilityException errNew =
new ArithmeticUtilityException(err);
// Now "rethrow" the new exception.
throw errNew;
}
}
}

Remember, custom exception classes are really just a standardized way for one class to
communicate an error to a different portion of code. If you aren’t using components or
your own utility classes, you probably don’t need to create custom exception classes.

Logging Exceptions

In many cases, it’s best not only to detect and catch errors but to log them as well. For
example, some problems may occur only when your web server is dealing with a particu-
larly large load. Other problems might recur intermittently, with no obvious causes. To
diagnose these errors and build a larger picture of site problems, you need to log errors
automatically so they can be reviewed later.

The .NET Framework provides a wide range of logging tools. When certain errors occur,
you can send an e-mail, add a database record, or create and write to a file. We describe
many of these techniques in other parts of this book. However, you should keep your

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

logging code as simple as possible. For example, you'll probably run into trouble if you try
to log a database error to another table in the database.

One of the best logging tools is provided in the Windows event logs. To view these logs,
select Settings » Control Panel » Administrative Tools » Event Viewers from the Start
menu. By default, you'll see three logs, as shown in Figure 7-6. You can right-click a log to
clear the events in the log, save log entries, and import an external log file. Table 7-2
describes the logs.

File Action Wiew Help
e~ | o @
Ev

ent. Viewer {Local) Application 1,819 eventis)
Type | Date | Time Source Cateqary b
gj;t';::’ M\ warning 10/7/2005 4:18:19FM ASP.NET2.0.50727.0 Web Event
- &Warning 10{7(2005 4:05:01 PM ASP.NET 2.0.50727.0 ‘Wb Event
Warning 10/7/2005 35343 PM Visual Studio - YsTempl... Mone
@ Information 10{7{2005 12:43:19 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:19 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:19 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:19 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:19 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:18 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:16 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:16 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:16 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:16 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:16 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:16 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:15 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 12:43:15 PM MSSQLESOLEXPRESS ()
@) Information 10{7{2005 124313 PM MSSQLESOLEXPRESS ()
Enformation 10{7{2005 124313 PM MSSQLESOLEXPRESS (2) v
< ¥

Figure 7-6. The Event Viewer

Table 7-2. Windows Event Logs

Log Name Description

Applicationlog Used to track errors or notifications from any application. Generally, you'll
use this log or create your own.

Security log Used to track security-related problems but generally used exclusively by the
operating system.
System log Used to track operating system events.

Each event record identifies the source (generally, the application or service that
created the record), the type of notification (error, information, warning), and the time
it was left. You can also double-click a record to view additional information such as a text

237

238

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

description. Figure 7-7 shows an example with an unhandled error that occurred in an
ASP.NET page, which ASP.NET chooses to log.

Ewent

D ate: 10, i Souwrcer ASP.MET 2.0.50727.0 +
Time: 418:19PM Category: ‘Web Event

Type: Warning EwentID: 1309 +

Uszer: WA
Computer: MATTHE WM

Description:

Process information: »~
Process [D: 180
Process name: WebDev WebS erver EXE
Account name: MAT THE WM atthew

Exception information:

Exception type: DivideByZerok kception

Exception message: Y'ou supplied 0 for the divizor parameter. You
must be stopped.

[Ok] [Cancel

Figure 7-7. Event information

One of the potential problems with event logs is that they’re automatically overwritten
when the maximum size is reached (typically half a megabyte) as long as they're of at least
a certain age (typically seven days). This means application logs can’t be used to log criti-
cal information that you need to retain for a long period of time. Instead, they should be
used to track information that is valuable only for a short amount of time. For example,
you can use event logs to review errors and diagnose strange behavior immediately after
it happens, not a month later.

You do have some ability to configure the amount of time a log will be retained and
the maximum size it will be allowed to occupy. To configure these settings, right-click the
application log, and select Properties. You'll see the Application Properties window
shown in Figure 7-8.

Generally, you should not disable automatic log deletion, because it could cause a
large amount of wasted space and slow performance if information isn’t being regularly
removed. Instead, if you want to retain more log information, set a larger disk space limit.

CHAPTER 7

General | Filter

Dizplay name:
Log name:
Size:

Created:
Modified:
Accessed:

Log size

b aimnurn log size | 512 S| KB

Wwhen maximum log size is reached:
(O Ovenwrite events as needed
; -
(@ Ovenwrite events olderthan |7 % | days

(O Do nat avenarite events
[clear log manually]

[Using a low-speed connectian

2 pplication)
LMD OMWS hapsten 32hconfighdppE vent E vt

512.0 KB [524.288 bytes)

Sunday, September 25, 2005 12:28:46 AM
Friday, October 07, 2005 12:41:58 P
Friday, October 07, 2005 12:41:58 PM

Restore Defaults
Clear Log

H Cancel]

[ok

Figure 7-8. Log properties

Using the EventLog Class

TRACING, LOGGING, AND ERROR HANDLING

You can interact with event logs in an ASP.NET page by using the classes in the
System.Diagnostics namespace. Import the namespace at the beginning of your code-

behind file:

using System.Diagnostics;

The following example rewrites the simple ErrorTest page to use event logging:

public partial class ErrorTestlog : Page

{

protected void cmdCompute Click(Object sender, EventArgs e)

{
try

{

decimal a, b, result;

a = Decimal.Parse(txtA.Text);
b = Decimal.Parse(txtB.Text);
result = a / b;

1blResult.Text = result.ToString();
1blResult.ForeColor = Color.Black;

239

240 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

catch (Exception err)

{
1blResult.Text = "Message: " + err.Message + "

";
1blResult.Text += "Source: " + err.Source + "

";
1blResult.Text += "Stack Trace: " + err.StackTrace;
1blResult.ForeColor = Color.Red;
// Write the information to the event log.
EventLog log = new Eventlog();
log.Source = "DivisionPage";
log.WriteEntry(err.Message, EventLogEntryType.Error);

}

EVENT LOG SECURITY

This logging code will run without a hitch when you try it in Visual Studio. However, when you deploy your
application to a web server (as described in Chapter 12), you might not be so lucky. The problem is that the
ASP.NET service runs under a Windows account that has fewer privileges than an average user. If you’re using
IS 5, this user is the account named ASPNET, which ordinarily won’t have the permissions to create event log
entries.

To remedy this problem, you can use a different account (as explained in Chapter 12), or you can grant
the required permissions to the account that ASP.NET is already using (like the ASPNET account). To do the
latter, you need to modify the registry as described in these steps:

1. Run regedit.exe, either by using a command-line prompt or by choosing Run from the Start menu.

2. Browse to the HKEY_Local_Machine\SYSTEM\CurrentControlSet\Services\EventLog section of the
registry.

3. Select the EventlLog folder if you want to give ASPNET permission to all areas of the event log.
Or, select a specific folder that corresponds to the event log ASPNET needs to access.

4, Choose Security » Permissions.

5. Add the account that ASPNET is using to the list. If you’re using IIS 5, this is the ASPNET account.
To add it, click the Add button, type in ASPNET, and then click OK.

6. Give the ASPNET account Full Control for this section of the registry by selecting the Allow check
box next to Full Control.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 24

The event log record will now appear in the Event Viewer utility, as shown in Figure 7-9.
Note that logging is intended for the system administrator or developer. It doesn’t replace
the code you use to notify the user and explain that a problem has occurred.

File Action Wiew Help

0 AN EFDBR @

Event Viewer (Local) Application 1,819 eventis)
ﬁJ Application Tyvpe Date Tirne Source Category |
3| Security Frar 10472005 4:24:04 PM DivisionPage Mone
| System M warring 10/7/2005 4:18:19PM ASP.MET 2.0.50727.0 Web Event
Warning 10{7(2005 4:05:01 PM ASP.NET 2.0.50727.0 ‘Wb Event
&Warning 10/7/2005 35343 PM Visual Studio - YsTempl... Mone

@ Information 10{7{2005 12:43:19 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:19 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:19 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:19 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:19 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:18 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:16 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:16 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:16 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:16 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:16 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:16 PM M5SQLESQLEXPRESS ()

@) Information 10{7{2005 12:43:15 PM M5SQLESQLENPRESS ()

@) Information 10{7{2005 12:43:15 PM M5SQLESQLENPRESS ()
Enformation 10{7{2005 12:43:13 M M5SQLESQLEXPRESS (2) v
< >

Figure 7-9. A custom event

Custom Logs

You can also log errors to a custom log. For example, you could create a log with your
company name and add records to it for all your ASP.NET applications. You might even
want to create an individual log for a particularly large application and use the Source
property of each entry to indicate the page (or web service method) that caused the
problem.

Accessing a custom log is easy—you just need to use a different constructor for the
EventLog class to specify the custom log name. You also need to register an event source
for the log. This initial step needs to be performed only once—in fact, you'll receive an
error if you try to create the same event source. Typically, you'll use the name of the appli-
cation as the event source.

242

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Here’s an example that uses a custom log named MyNewlLog and registers the event
source MyNewLog:

// Register the event source if needed.
if (!Eventlog.SourceExists("ProseTech"))

{
// This registers the event source and creates the custom log,
// if needed.
Eventlog.CreateEventSource("DivideByZeroApp", "ProseTech");

}

// Open the log. If the log doesn't exist,

// it will be created automatically.

Eventlog log = new Eventlog("ProseTech");

log.Source = "DivideByZeroApp";
log.WriteEntry(err.Message, EventlogEntryType.Error);

If you specify the name of a log that doesn’t exist when you use the CreateEventSource()
method, the system will create a new, custom event log for you the first time you write an
entry.

Figure 7-10 shows the new log.

B Event Viewer

File Action Wiew Help

e - @l @
Event Viewer (Local) ProseTech 1 eventis)
Application Tyvpe Date Tirne Source Cateq
4:28:41 PM o

10{7 12005

gil| ProseTech

Figure 7-10. A custom log

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Tip Event logging uses disk space and takes processor time away from web applications. Don’t store
unimportant information, large quantities of data, or information that would be better off in another type of
storage (such as a relational database). Generally, you should use an event log to log unexpected conditions
or errors, not customer actions or performance-tracking information.

Retrieving Log Information

One of the disadvantages of the event logs is that they're tied to the web server. This can
make it difficult to review log entries if you don’t have a way to access the server (although
you can read them from another computer on the same network). This problem has
several possible solutions. One interesting technique involves using a special administra-
tion page. This ASP.NET page can use the EventLog class to retrieve and display all the
information from the event log.

The following example retrieves all the entries that were left by the ErrorTestCustomLog
page and displays them in a simple web page (shown in Figure 7-11). The results are shown
using a label in a scrollable panel (a Panel control with the Scrollbars property set to Verti-
cal). Amore sophisticated approach would use similar code but one of the data controls
discussed in Chapter 15 instead.

2} Untitled Page - Microsoft Internet Explorer

=13
@ Back -) EIRE o search i :f

Address @;‘] http: fflocalhost: 1435 /ErrorHandlingEventReviewPage, aspx 4

File Edit View Favorites Tools Help

Ewent Log: |ProseTech [l Get all entries far this log

Source:

Entry Type: Error »~
Message: Attempted to divide by zero,
Time Generated: 10/7/2005 4:28:41 PM

Entry Type: Error
Message: Attempted to divide by zero,
Time Generated: 10/7/2005 4:39:41 PM

Entry Type: Error
Message: Attempted to divide by zero,

o o TR R P N W o LYY= P = PO E= =LY

&] Dare & Local intranet

Figure 7-11. A log viewer page

243

244

CHAPTER 7

public partial class EventReviewPage :

{

TRACING, LOGGING, AND ERROR HANDLING

Here’s the web page code you'll need:

Page

protected void cmdGet Click(Object sender, EventArgs e)

{

1blResult.Text = "";

// Check if the log exists.
if (!EventlLog.Exists(txtLog.Text))

{

}

else

{

1blResult.Text = "The event log " + txtlog.Text ;
1blResult.Text += " doesn't exist.";

Eventlog log = new Eventlog(txtlLog.Text);
foreach (EventlLogEntry entry in log.Entries)

{

// Write the event entries to the page.
if (chkAll.Checked ||
txtSource.Text)

{

entry.Source

1bIResult
1bIResult
1bIResult
1bIResult
1bIResult
1bIResult
1bIResult

.Text
.Text
.Text
.Text
.Text
.Text
.Text

"Entry Type: ";
entry.EntryType.ToString();
"
Message: ";
entry.Message;

"
Time Generated:
entry.TimeGenerated;

"

";

)

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

protected void chkAll CheckedChanged(Object sender,
EventArgs e)

{
// The chkAll control has AutoPostback = true.
if (chkAll.Checked)
{
txtSource.Text = "";
txtSource.Enabled = false;
}
else
{
txtSource.Enabled = true;
}
}

If you choose to display all the entries from the application log, the page will perform
slowly. Two factors are at work here. First, it takes time to retrieve each event log entry,
and a typical application log can easily hold several thousand entries. Second, the code
used to append text to the Label control is inefficient. Every time you add a new piece of
information to the Label. Text property, .NET needs to generate a new string object. A
better solution is to use the specialized System.Text.StringBuilder class, which is designed
to handle intensive string processing with a lower overhead by managing an internal
buffer or memory.

Here’s the more efficient way you could write the string processing code:

// For maximum performance, join all the event

// information into one large string using the

// StringBuilder.

System.Text.StringBuilder sb = new System.Text.StringBuilder();

EventlLog log = new EventlLog(txtlLog.Text);
foreach (EventlLogEntry entry in log.Entries)
{
// Write the event entries to the StringBuilder.
if (chkAll.Checked ||
entry.Source == txtSource.Text)

245

246 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

sb.Append("Entry Type: ");
sb.Append(entry.EntryType.ToString());
sb.Append("
Message: ");
sb.Append(entry.Message);
sb.Append("
Time Generated: ");
sb.Append(entry.TimeGenerated);
sb.Append("

");

}

// Copy the complete text to the web page.

1blResult.Text = sb.ToString();

Tip You can get around some of the limitations involved with the event log by using your own custom
logging system. All the ingredients you need are built into the common class library. For example, you could
store error information in a database using the techniques described in Chapter 13.

Error Pages

Asyou create and test an ASP.NET application, you'll become familiar with the rich infor-
mation pages that are shown to describe unhandled errors. These pages are extremely
useful for diagnosing problems during development, because they contain a wealth of
information. Some of this information includes the source code where the problem
occurred (with the offending line highlighted), the type of error, and a detailed error
message describing the problem. Figure 7-12 shows a sample rich error page.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Security Exception - Microsoft Internet Explorer,

File Edit View Favorites Tools Help ¢) lﬂ lg'] A) Search 7 Favorites 42 - i@ = ;l 3 |'f

fddress | @] hibp: fflocalhost: 1435 ErrorHanding M

Server Error in '/ErrorHandling’ Application.

Security Exception

Description: The application attempted to perform an operation not allowed by the security policy. To grant this application the reguired permission please cortact your
system administrator or change the spplication's trust level inthe configurstion file

Exception Details: System Security SecurityException:. Security error,

Source Error:

Line 14: protected woid Page_Load{object sender, Ewentirgs e)
Line 15:

Line 16: throw new System.Security.SecurityException();
Line 17: 1

Line 18: }

Source File: e\CodeBeginning ASP MET 2.0Chapter07 ErrorHandling\Default aspx.cs Line: 16

Stack Trace:

[SecurityException: Security error.]
_Default.Page_Load{Object sender, Eventfrgs e) in e:“Code\Eeginning ASP.MET 2. O\ChaptErO?\ErmrHandhng\Defau'It aspx.cs:
System.web.Uti1.CalliHelper.EventArgFunctionZaller {IntPtr fp, Object o, Object t, Ewventhrgs e) +3
System.web.Util.CalliEventHandlerDelegateProxy.CalTback{Object sender, Ewventhrgs e) +68
System.web. UL, Contral.OnLoad(EventArgs e) +88
System.Web.UI.Control.LoadRecursive() +74
System.Web.UIL.Page. ProcessRequestMain({Boolean includeStagesBeforefsyncPoint, Boolean includeStagesAfterAsyncPoint) +5914
System.web.UI.Page.ProcessRequest{Boolean includeStagesBeforefAsyncPoint, BDD'IEan includestagesafterfisyncPoint) +188
System.web. UL, Page. ProcessRequest () +112
System.web. UL, Page. ProcessRequestiWithNoAssert (Httplontext context) +37
System.Weh.UI.Page. ProcessRequest (Httplontext context) +135
ASP.default_aspx.ProcessRequest{HttpContext context) in c:AWINDOWS\Microsoft. NETYFrameworkywz.0.507 27 \Temporary ASP.NET |
System.web.CallHandlerExecutionsStep. System.Web. HttpApplication. IExecutionStep. Execute{) +01
System,wWeb. Httpapplication, ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +117

Yersion Information: Micrasoft MET Framework Version:2.0 50727 26, RSP NET Yersion 2 0.50727 26
< >
&] Done & Local intranet

Figure 7-12. A rich ASP.NET error page

This error page is shown only for local requests that access the ASP.NET application
through the http://localhost domain. (This domain always refers to the current com-
puter, regardless of its actual server name or Internet address.) ASP.NET doesn’t create a
rich error page for requests from other computers, which receive the rather unhelpful
generic page shown in Figure 7-13.

247

248 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

) Runtime Enror - Microsoft Internet Explarer

File Edit Miew Favorites Tools Help € 3] li'] lg'] b D search 7 Favorites 49 @ = ;1 3 :f

Address 2:] http:fflocalhost: 1435/ErrorHandling)

Server Error in '/ErrorHandling’ Application.

Runtime Error

Description: An spplication error occurred on the server. The current custom error settings for this spplication prevent the details of the application error from being viewed.

Details: To enable the details of this specific error message to be viewable on the local server maching, please create a =customErroras tag within & "web config”
configurstion file located in the root directory of the current web application. This <customErrors= tag should then have its "mode" sttribute set to "RemoteOnly”. To enable the
details to be viewakle on remote machines, please set "mode” to "0,

el-- Web.Config Configuration File --»

cconfigurations
cxystem. webs
ccustomErrors mode="Remotednly" />
o /sy stem webs
c/configurations

Notes: The current error page you are seeing can be replaced by a custom error page by moditying the "defsutRedirect” attribute of the application's <customErrars=
configurstion tag to pairt to 5 custom error page URL

el-- Web.Config Configuration File --»

<configuration:
cxystem. webs
ccustomErrors mode="0n" defaultRedirect="mycustompage. htm" />
o /sy stem webs
e/configurations

Ej Done . Local intranet

Figure 7-13. A generic client error page

This generic page lacks any specific details about the type of error or the offending
code. Sharing this information with end users would be a security risk (potentially expos-
ing sensitive details about the source code), and it would be completely unhelpful,
because clients are never in a position to modify the source code themselves. Instead,

the page includes a generic message explaining that an error has occurred and describing
how to enable remote error pages.

Error Modes

Remote error pages remove this restriction and allow ASP.NET to display detailed infor-
mation for problems regardless of the source of the request. Remote error pages are
intended as a testing tool. For example, in the initial rollout of an application beta, you
might use field testers. These field testers would need to report specific information about
application errors to aid in the debugging process. Similarly, you could use remote error
pages if you're working with a team of developers and testing an ASP.NET application

from a live web server. In this case, you might follow the time-honored code/compile/
upload pattern.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 249

To change the error mode, you need to modify the <customErrors> section in the
web.config file. By default, Visual Studio creates a web.config with this section but com-
ments it out. However, the default settings are equivalent to this:

<configuration>
<system.web>
<customErrors mode="RemoteOnly" />

</system.web>
</configuration>

Table 7-3 lists the options for the mode attribute.

Table 7-3. Error Modes

Error Mode

Description

RemoteOnly

Off

On

This is the default setting, which uses rich ASP.NET error pages only when the
developer is accessing an ASP.NET application on the current machine.

This configures rich error pages (with source code and stack traces) for all
unhandled errors, regardless of the source of the request. This setting is helpful
in many development scenarios but should not be used in a deployed
application.

ASP.NET error pages will never be shown. When an unhandled error is
encountered, a corresponding custom error page will be shown if one exists.
Otherwise, ASP.NET will show the generic message explaining that application
settings prevent the error details from being displayed and describing how to
change the configuration.

A Custom Error Page

In a deployed application, you should use the On or RemoteOnly error mode. Any errors
in your application should be dealt with through error handling code, which can then
present a helpful and user-oriented message (rather than the developer-oriented code
details in ASP.NET’s rich error messages).

However, it isn’t possible to catch every possible error in an ASP.NET application.
For example, a hardware failure could occur spontaneously in the middle of an ordinary
code statement that could not normally cause an error. More commonly, the user might
encounter an HTTP error by requesting a page that doesn’t exist. ASP.NET allows you to
handle these problems with custom error pages.

250 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

You can implement custom error pages in two ways. You can create a single generic error
page and configure ASP.NET to use it by modifying the web.config file as shown here:

<configuration>
<system.web>
<customErrors defaultRedirect="DefaultError.aspx" />
</system.web>
</configuration>

ASP.NET will now exhibit the following behavior:

o If ASP.NET encounters an HTTP error while serving the request, it will forward the
user to the DefaultError.aspx web page.

¢ If ASP.NET encounters an unhandled application error and it isn’t configured to
display rich error pages, it will forward the user to the DefaultError.aspx. Remote
users will never see the generic ASP.NET error page.

¢ If ASP.NET encounters an unhandled application error and it is configured to
display rich developer-targeted error pages, it will display the rich error page
instead.

Note What happens if an error occurs in the error page itself? If an error occurs in a custom error page
(in this case, DefaultError.aspx), ASP.NET will not be able to handle it. It will not try to reforward the user to
the same page. Instead, it will display the normal client error page with the generic message.

Specific Custom Error Pages

You can also create error pages targeted at specific types of HTTP errors (such as the infa-
mous 404 Not Found error, or Access Denied). This technique is commonly used with
websites to provide friendly equivalents for common problems. Figure 7-14 shows how
one site handles this issue.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

2} News: 404 Error - Microsoft Internet Explorer,

File Edit “iew Favorites Tools Help (D Back = EiRE o search < Favorites 42 L=

\ \—{m Where Technology Means Business
v |

Alerts | Newsletters | RSS Feeds

We were unable to find the page you requested.

If you arrived here by typing a URL, please make sure the spelling, capitalization, and punctuation are correct,
then reload the page by hitting the Enter or Return key on your keyboard.

You have landed on a 404 error page - the result of a broken link. The information you were seeking may be available on
ZDMet, but 1t is not at the location specified. If you were looking for a specific product, recent news story, ar general topic,
you ray find it by entering one or more key words in our search engine above.

‘four ather aptions are: return to the ZDMet hame page, contact Customer Service, or click your browser's Back buttan to
return to the previous page.

Help | Advertisements | Feedback | Reprints | Newsletters

o | EnNET Busi ‘hite F'i}n-‘l |Tr-‘| h Jobs | Dan FiIL e
HNew site: Monitor all the tech news at Technology.Updates.com

ENET | CNET.com | CHET Channel | CNET Download.com | CNET Newes.com | CHET Rewviews | CNET Shopper.com Computer Shopper b7,

Done & Internet

Figure 7-14. A sample custom error page

To define an error-specific custom page, you add an <error> element to the
<customErrors> element. The <error> element identifies the HTTP error code and the
redirect page.

<configuration>
<system.web>
<customErrors defaultRedirect="DefaultError.aspx">
<error statusCode="404" redirect="404.aspx" />
<customErrors>
</system.web>
</configuration>

In this example, the user will be redirected to the 404.aspx page when requesting an
ASP.NET page that doesn't exist. This custom error page may not work exactly the way
you expect, because it comes into effect only if ASP.NET is handling the request.

251

252

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

For example, if you request the nonexistent page whateverpage.aspx, you'll be redi-
rected to 404.aspx, because the .aspx file extension is registered to the ASP.NET service.
However, if you request the nonexistent page whateverpage.html, ASP.NET will not
process the request, and the default redirect setting specified in IIS will be used. Typically,
this means the user will see the page c:\[WinDir]\Help\IISHelp\common\404b.htm. You
could change the set of registered ASP.NET file types to include .html and .htm files, but
this will slow down performance. Optionally, you could change your ASP.NET application
to use the custom IIS error page:

<configuration>
<system.web>
<customErrors defaultRedirect="/defaulterror.aspx">
<error statusCode="404" redirect="/Errors/404b.htm" />
<customkerrors>
</system.web>
</configuration>

When an error occurs that isn’t specifically addressed by a custom <error> element, the
default error page will be used.

Page Tracing

ASP.NET’s detailed error pages are extremely helpful when you're testing and perfecting
an application. However, sometimes you need more information to verify that your appli-
cation is performing properly or to track down logic errors, which may produce invalid
data but no obvious exceptions. In traditional ASP development, programmers often
resorted to using Response.Write() to display debug information directly on the web page.
Unfortunately, this technique is fraught with problems:

Code entanglement. 1t’s difficult to separate the ordinary code from the debugging
code. Before the application can be deployed, you need to painstakingly search
through the code and remove or comment out all the Response.Write() statements.

No single point of control: If problems occur later down the road, you have no easy way
to “reenable” the write statements. Response.Write() statements are tightly integrated
into the code.

User interface problems: Response.Write() outputs information directly into the page.
Depending on the current stage of page processing, the information can appear in just
about any location, potentially scrambling your layout.

You can overcome these problems with additional effort and some homegrown solu-
tions. However, ASP.NET provides a far more convenient and flexible method built into
the framework services. It’s called tracing.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 253

Enabling Tracing

To use tracing, you need to explicitly enable it. There are several ways to switch on tracing.
One of the easiest ways is by adding an attribute to the Page directive in the .aspx portion
of your page:

<%@ Page Trace="true" ... %>

You can also enable tracing using the built-in Trace object (which is an instance of the
System.Web.TraceContext class). Here’s an example of how you might turn tracing on in
the Page.Load event handler:

protected void Page Load(Object sender, EventArgs e)
{

Trace.IsEnabled = true;

This technique is particularly useful because it allows you to enable or disable tracing
for a page programmatically. For example, you could examine the query string collection
and enable tracing only if a special Tracing variable is received. This could allow develop-
ers to run tracing diagnostics on deployed pages, without revealing that information for
normal requests from end users.

protected void Page Load(Object sender, EventArgs e)

{
if (Request.QueryString("Tracing") == "On")
{
Trace.IsEnabled = true;
}
}

Note that by default, once you enable tracing it will only apply to local requests. That
prevents actual end users from seeing the tracing information. If you need to trace a web
page from an offsite location, you should use a technique like the one shown previously
(for query string activation). You'll also need to change some web.config settings to
enable remote tracing. Information about modifying these settings is found at the end of
this chapter, in the “Application-Level Tracing” section.

WHAT ABOUT VISUAL STUDIO?

Visual Studio provides a full complement of debugging tools that allow you to set breakpoints, step through
code, and view the contents of variables while your program executes. Though you can use Visual Studio in
conjunction with page tracing, you probably won’t need to do so. Instead, page tracing will become more use-
ful for debugging problems after you have deployed the application to a web server. Chapter 4 discussed
Visual Studio debugging.

254 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Tracing Information

ASP.NET tracing automatically provides a lengthy set of standard, formatted information.
For example, Figure 7-15 shows a rudimentary ASP.NET page with a label and button.

2} Untitled Page - Microsoft Internet Explorer |Z||E|r>__<|

B - »
File Edit ‘View Favorites Tools Help o O - ¥ [) P search .',"

Address |§1 http: fflocalhost: 1435/ErrorHandling/SimpleTrace, aspx 4 |

A Sinple Tracing Example

&] Dare &J Local intranet

Figure 7-15. A simple ASP.NET page

On its own, this page does very little, displaying a single line of text. When you click the

button to enable tracing, however, you end up with a lot of extra diagnostic information,
as shown in Figure 7-16.

CHAPTER 7

2} Untitled Page - Microsoft Internet Explorer

TRACING, LOGGING, AND ERROR HANDLING

File Edit View Favorites Tools Help

() Back -

Address \Q http: fflocalhost: 1435/ErrorHandling) SimpleTrace, asps

M &

») search

A Sinple Tracing Example

Trace

Request Details
Session Id: cvtkgwzovb5s30blp325g03)
Time of Request: 10/7/2005 4:49: 52 PM
Request Encoding: Unicode (UTF-2

Trace Information

Request Type:
Status Code:
Response Encoding:

Category
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page

<
@ Done

Message

End Raise PostBackEvent
Begin LoadComplete

End LoadComplete

Begin PreRender

End PreRender

Begin PreRenderComplete
End PreRenderComplete
Begin SaveState

End SaveState

Begin SaveStateComplete
End SaveStateComplete
Begin Render

From First(s)

5.41968322739628E-05
0.000101688901801765
0.000140800017879367
0.00019080637343573
0.000230755584857852
0.000267352414901894
0.00104370806904229
0.00122557475880314
0.00126943508183303
0.00130742873745127
0.00134486366283983

From Last{s)

0.000054
0.000047
0.000039
0.000050
0.000040
0.000037
0.000776
0.000182
0.000044
0.000038
0.000037

aspx.page End Render 0.0020002542222545 0.000655
Control Tree v

& Local intranet

>

Figure 7-16. Tracing the simple ASP.NET page

Tracing information is provided in several different categories, which are described in
the following sections. Depending on your page, you may not see all the sections. For
example, if the page request didn’t supply any query string parameters, you won't see the
QueryString collection. Similarly, if there’s no data currently being held in application or
session state, you won't see those sections either.

Tip If you're using style sheets, your rules may affect the formatting and layout of the trace information,
potentially making it difficult to read. If this becomes a problem, you can use application-level tracing, as
described later in this chapter (see the “Application-Level Tracing” section).

255

256

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Request Details

This section includes some basic information such as the current session ID, the time the
web request was made, and the type of web request and encoding (see Figure 7-17).

Request Details

Session Id: va22245szjcs545kriprads Request Type: POST
Time of Request: 11-12-2001 6:49:35 PM Status Code: 200
Request Encoding: Unicode {UTF-8) Response Encoding: Unicode (UTF-8)

Figure 7-17. Request details

Trace Information

This section shows the different stages of processing the page went through before being
sent to the client (see Figure 7-18). Each section has additional information about how
long it took to complete, as a measure from the start of the first stage (From First) and as
a measure from the start of the previous stage (From Last). If you add your own trace mes-
sages (a technique described shortly), they will also appear in this section.

Trace Information

Category Message From First(s) From Last{s)
aspx.page Begin ProcessPostData Second Try

aspx.page End ProcessPostData Second Try 0.000164 0.000164
aspx.page Begin Raise ChangedEvents 0.000320 0.000156
aspx.page End Raise ChangedEvents 0.000455 0.000134
aspx.page Begin Raise PostBackEvent 0.000586 0.000131
aspx.page End Raise PostBackEvent 0.003737 0.003152
aspx.page Begin PreRender 0.004063 0.000326
aspx.page End PreRender 0.004235 0.000173
aspx.page Begin SaveviewState 0.007149 0.002914
aspx.page End SaveViewState 0.007771 0.000621
aspx.page Begin Render 0.007975 0.000204
aspx.page End Render 0.011350 0.003375

Figure 7-18. Trace information

Control Tree

The control tree shows you all the controls on the page, indented to show their hierarchy
(which controls are contained inside other controls), as shown in Figure 7-19. In this
simple page example, the only explicitly created controls are the label (IblMessage) and
the web page. However, ASP.NET adds literal controls automatically to represent spacing
and any other static elements that aren’t server controls (such as text or ordinary HTML
tags). One useful feature of this section is the Viewstate column, which tells you how many
bytes of space are required to persist the current information in the control. This can help
you gauge whether enabling control state is detracting from performance, particularly
when working with data-bound controls such as the GridView.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 257

Control Tree

Render Size Yiewstate
Bytes Size Bytes

Eontiol Type (including ({excluding
children) children)
_ PAGE ASP. TraceExample_aspx 1691 24
ctrlo System.\Web UI.ResourceBasedLiteralContral 427 0
Farml System.\Web, UL.HtmIControls.HtmlForm 1236 0
ctril System.\Web UL LiteralControl 137 0
cmdWrite System.\Web, UL WebControls.Button 201 0
ctrl2 System.\Web UL LiteralControl 2 0
Labell System.\Web UL WebControls.Label 113 0
ctrl3 System.\Web UL LiteralControl 2 0
cmdwWriteCategory System.Web UL WebControls. Button 232 0
ctri4 System.\Web UL LiteralControl 2 0
cmdErrar System.\Web, UL WebControls.Button 203 0
ctrls System.\Web UL LiteralControl 2 0
cmdSession System.\Web, UL WebControls.Button 171 0
ctrlg System.\Web UL LiteralControl 14 0
ctrl? System.\Web UL LiteralControl 28 0

Figure 7-19. Control tree

Session State and Application State

These sections display every item that is in the current session or application state.
(Figure 7-20 shows the Session State section.) Each item in the appropriate state collec-
tion is listed with its name, type, and value. If you're storing simple pieces of string
information, the value is straightforward—it’s the actual text in the string. If you're storing
an object, .NET calls the object’s ToString() method to get an appropriate string represen-
tation. For complex objects that don’t override ToString() to provide anything useful, the
result may just be the class name.

Session State

Session Key Type Yalue
Test System.String This is just a string
MyDataSet System.Data.DataSet System.Data.DataSet

Figure 7-20. Session state

Cookies Collection

This section displays all the cookies that are sent with the response and the content and
size of each cookie in bytes (see Figure 7-21). Even if you haven’t explicitly created a
cookie, you'll see the ASP.NET _Sessionld cookie, which contains the current session ID.
If you're using forms-based authentication, you'll also see the security cookie.

Cookies Collection

Name Yalue Size
ASP.NET_Sessionld va22245szjcs545kriprads 42

Figure 7-21. Cookies collection

258

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Headers Collection

This section lists all the HTTP headers (see Figure 7-22). Generally, you don’t need to use
this information, although it can be useful for troubleshooting unusual network problems.

Headers Collection

Name Yalue
Cache-
control no-cache
Connection Keep-alive
Content-
Length =
Content- application/s-www-form-urlencoded
Type pp
image/qgif, image/s-sbitmap, imagefjpeq, image/pjpeg, application/vnd. ms-excel,
Accept A T -
application/msword, application/pdf, */
:rfgsgiag gzip, deflate
Accept-
en-us
Language
Host fariamat
Referer http: //fariamat/ASP.NET/Chapterl1/ErrorHandling/TraceExample, aspx
User-Agent Mozilla/4.0 {compatible; MSIE 6.0; Windows NT 5.1; \NET CLR 1.0.2914)

Figure 7-22. Headers collection

Form Collection

This section lists the posted-back form information (see Figure 7-23).

Form Collection

Name Yalue

_ VIEWSTATE dDwthMjASNDAROTALOTS7Pg==
cmdSession Add Session Item

Figure 7-23. Form collection

Query String Collection

This section lists the variables and values submitted in the query string (see Figure 7-24).
Generally, you'll be able to see this information directly in the address box in the browser,
so you won't need to refer to the information here.

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING 259

Querystring Collection

Name Yalue
search cat
style full

Figure 7-24. Query string collection

Server Variables

This section lists all the server variables and their contents. You don’t generally need

to examine this information. Note also that if you want to examine a server variable
programmatically, you can do so by name with the built-in Request.ServerVariables col-
lection or by using one of the more useful higher-level properties from the Request object.

Writing Trace Information

The default trace log provides a set of important information that can allow you to
monitor some important aspects of your application, such as the current state contents
and the time taken to execute portions of code. In addition, you'll often want to generate
your own tracing messages. For example, you might want to output the value of a variable
at various points in execution so you can compare it with an expected value. Similarly,
you might want to output messages when the code reaches certain points in execution
so you can verify that various procedures are being used (and are used in the order you
expect).

To write a custom trace message, you use the Write() method or the Warn() method
of the built-in Trace object. These methods are equivalent. The only difference is that
Warn() displays the message in red lettering, which makes it easier to distinguish from
other messages in the list. Here’s a code snippet that writes a trace message when the user
clicks a button:

protected void cmdWrite Click(Object sender, EventArgs e)

{
Trace.Write("About to place an item in session state.");
Session["Test"] = "Contents";
Trace.Write("Placed item in session state.");

}

These messages appear in the trace information section of the page, along with the
default messages that ASP.NET generates automatically (see Figure 7-25).

260

CHAPTER 7

TRACING, LOGGING, AND ERROR HANDLING

2} Untitled Page - Microsoft Internet Explorer

File Edit View

Favorites Tools Help

() Back -

Address @j http: fflocalhost: 1435/ErrorHandling) TraceExample. aspx

MR

Search

7 Favarites 42 -,

3 n

v

Category
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page
aspx.page

aspx.page
aspx.page
aspx.page
aspx.page
£

@ Done

Message

Begin Prelnit

End Prelnit

Begin Init

End Init

Begin InitComplete

End InitComplete

Begin LoadState

End LoadState

Begin ProcessPostData

End ProcessPostData

Begin PreLoad

End PreLoad

Begin Load

End Load

Begin ProcessPostData Second Try
End ProcessPostData Second Try
Begin Raise ChangedEvents

End Raise ChangedEvents

Begin Raise PostBackEvent

About to place an item in session state.

Placed item in session state.

End Raise PostBackEvent
Begin LoadComplete

End LoadComplete

Begin PreRender

Trace Information b

From First(s)

o e e e e e e e e e e e e e e e e e s Y |

78285787 71883E-05

000103365092490805
000156444464310408
00019332065946929

000264558763753494
000304507975175616
000446934183744023
000496152443955866
000561523580828429
000600914362020871
000638628652524273
000676622308142515
0007176238980023997
000754565175182879
000791720735456601
000829155660845163
000867428681578245
000905701702311327
000993422348371092
00105013346668361

00109175886879473

00112975252441302

00116774618003126

00121328269375018

From Last{s)

0.000058
0.000046
0.000053
0.000037
0.000071
0.000040
0.000142
0.000049
0.000065
0.000039
0.000038
0.000038
0.000041
0.000037
0.000037
0.000037
0.000038
0.000038
0.000088
0.000057
0.000042
0.000038
0.000038
0.000046 v

& Local intranet

Figure 7-25.

You can also use an overloaded method of Write() or Warn() that allows you to specify
the category. A common use of this field is to indicate the current procedure, as shown in

Custom trace messages

Figure 7-26.

protected void cmdWriteCategory Click(Object sender, EventArgs e)

{

Trace.Write("Page Load", "About to place an item in session state.");
Session["Test"] = "Contents";
Trace.Write("Page_Load", "Placed item in session state.");

CHAPTER 7

=3 Untitled Page - Microsoft Internet Explorer

TRACING, LOGGING, AND ERROR HANDLING

File Edit View Favorites Tools Help

() Back -

Address @j http: fflocalhost: 1435/ErrorHandling) TraceExample. aspx

Category Message

aspx.page Begin Prelnit

aspx.page End Prelnit

aspx.page Begin Init

aspx.page End Init

aspx.page Begin InitComplete

aspx.page End InitComplete

aspx.page Begin LoadState

aspx.page End LoadState

aspx.page Begin ProcessPostData
aspx.page End ProcessPostData

aspx.page Begin PreLoad

aspx.page End PreLoad

aspx.page Begin Load

aspx.page End Load

aspx.page Begin ProcessPostData Second Try
aspx.page End ProcessPostData Second Try
aspx.page Begin Raise ChangedEvents
aspx.page End Raise ChangedEvents

aspx.page Begin Raise PostBackEvent
Page_Load About to place an item in session state,
Page_Load Placed item in session state,

aspx.page End Raise PostBackEvent
aspx.page Begin LoadComplete
aspx.page End LoadComplete
aspx.page Begin PreRender
£

@ Done

¥ [2] tn O search <7 Favorites & ?]',’
v
From First(s) From Last{s)

EO301671022434E-05 0.000066
000112304776165686 0.000046
000166222243329809 0.000054
000203377803603531 0.000037
000241650824336612 0.000038
0002779682809265815 0.000036
000421003228063902 0.000143
000465142916208624 0.000044
000E52995E5622851508 0.000065
O0057540213657043 0.000046
000614044522418352 0.000039
000652038178036594 0.000038
000693104849918076 0.000041
000730260410191798 0.000037
00076769533558036 0.000037
000205409626083762 0.000038
000243682646816844 0.000038
000881955667540026 0.000038
000970793774069051 0.000089
00102610806680737 0.0000585
00106689537357402 0.000041
00111019696637422 0.000043
00114819062199246 0.000038

00118702237295522 0.000039 w

>

& Local intranet

o e e e e e e e e e e e e e e e e e s]

Trace Information b

Figure 7-26. A categorized trace message

Alternatively, you can supply category and message information with an exception
object that will automatically be described in the trace log, as shown in Figure 7-27:

protected void cmdError Click(Object sender, EventArgs e)

{
try

{

DivideNumbers(5, 0);

}

catch (Exception err)

{

Trace.Warn("cmdError Click", "Caught Error", err);

261

262 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

private decimal DivideNumbers(decimal number, decimal divisor)

{

return number/divisor;

2} Untitled Page - Microsoft Internet Explorer

File Edit View Favorites Tools Help Back - EIRE 2) search 7 Favorites 42 ? ;'f
Address @j http: fflocalhost: 1435/ErrorHandling) TraceExample. aspx b
Trace Information -
q From
Category Message From First(s) Last(s)

aspx.page Begin Prelnit

0007947937517198410.000038
0008333461375677640.000039
0008713397931860060.000038

aspx.page Begin Raise ChangedEvents
aspx.page End Raise ChangedEvents
aspx.page Begin Raise PostBackEvent
Caught Error
attempted to divide by zero,
at System.Decimal FCallDivide{Decimalg: result,
Decimal d1, Decimal d2)
at System.Decimal.Divide{Decimal d1, Decimal d2)
at System.Decimal.op_Division{Decimal d1, Decimal
dz
cmdError_Click at TraceExample.DivideMumbers{Decimal number, 0.0144940208881296 0.013623
Decimal divisor) in e:\CodekBeginning ASP.NET 2.0
YChapter0?ErrorHandlingy TraceExample. aspx.csline
46
at TraceExample.cmdError_Click{Object sender,
Eventargs &) in e:\CodekBeginning ASP.NET 2.0
YChapter0?ErrorHandlingy TraceExample. aspx.csline
22

£ >
&] Dare & Local intranet

asps.page End Prelnit 5.61523880828429E-050.000056
asps.page Begin Init 0.0001005714413424050.000044
asps.page End Init 0.0001536508131620080.000053
aspx.page Begin InitComplete 0.00019080637343573 0.000037
aspx.page End InitComplete 0.0002285206639391320,000038
asps.page Begin LoadState 0.0002653968590980140.000037
asps.page End LoadState 0.0004109460839296610.000146
asps.page Begin ProcessPostData 0.0004548064069595440,000044
asps.page End ProcessPostData 0.0005268826065882670.000072
asps.page Begin PreLoad 0.00056599372266587 0.000039
asps.page End PreLoad 0.0006042667433989520.000038
asps.page Begin Load 0.0006419810339023530.000038
asps.page End Load 0.0006830477057838360.000041
asps.page Begin ProcessPostData Second Try 0.0007202032660575580.000037
asps.page End ProcessPostData Second Try 0.00075707946121644 0.000037

o

o.

o

Figure 7-27. An exception trace message

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

By default, trace messages are listed in the order they were written by your code. Alter-
natively, you can specify that messages should be sorted by category using the TraceMode
attribute in the Page directive:

<%@ Page Trace="true" TraceMode="SortByCategory" %>
or the TraceMode property of the Trace object in your code:

Trace.TraceMode = TraceMode.SortByCategory;

Reading Trace Information

ASP.NET also allows you to interact with the trace messages programmatically. This
feature isn’t used too often, but it can be useful if you want to capture the trace informa-
tion and log it to another source (such as a database or the event log). You could save the
entire trace log or search for important trace messages.

Trace messages aren’t available at any time. If you want to access them, you need to
wait until the trace log is completed. At this point, the Trace object fires a TraceFinished
event, which you can handle. Here’s a sample event handler that loops through all the
trace messages and writes them to page with no additional formatting:

private void OnTraceFinished(object sender, TraceContextEventArgs e)

{

foreach (TraceContextRecord r in e.TraceRecords)

{

Response.Write(r.Category + + r.Message + "
");

It’s up to you to hook up your trace event handler. One good place to perform this task
is in the Page.Load event handler. Here’s an example:

protected void Page Load(object sender, EventArgs e)

{

Trace.TraceFinished += new TraceContextEventHandler(OnTraceFinished);

263

264

CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

Application-Level Tracing

Application-level tracing allows you to enable tracing for an entire application. To do this,
you need to modify settings in the web.config file, as shown here:

<configuration>
<system.web>
<trace enabled="true" requestLimit="10" pageOutput="false"
traceMode="SortByTime" localOnly="true" />
</system.web>
</configuration>

Table 7-4 lists the tracing options.

Table 7-4. Tracing Options

Attribute Values Description

Enabled true, false Turns application-level tracing on or off.

requestLimit Any integer (for example, 10) This is the number of HTTP requests for which
tracing information will be stored. Unlike page-
level tracing, this allows you collect a batch of
information from multiple requests. When the
maximum is reached, the information for the
oldest request is abandoned every time a new
request is received.

pageOutput true, false Determines whether tracing information will be
displayed on the page (as it is with page-level
tracing). If you choose false, you'll still be able to
view the collected information by requesting
trace.axd from the virtual directory where your
application is running.

traceMode SortByTime, SortByCategory Determines the sort order of trace messages.

localOnly true, false Determines whether tracing information will
be shown only to local clients (clients using
the same computer) or can be shown to remote
clients as well. By default, this is true and
remote clients cannot see tracing information.

mostRecent true, false If true, ASP.NET keeps only the most recent trace
messages. When the requestLimit maximum is
reached, the information for the oldest request is
abandoned every time a new request is received.
If false (the default), ASP.NET stops collecting
new trace messages when the limit is reached.

CHAPTER 7

TRACING, LOGGING, AND ERROR HANDLING

To view tracing information, you request the trace.axd file in the web application’s root
directory. This file doesn’t actually exist; instead, ASP.NET automatically intercepts the
request and interprets it as a request for the tracing information. It will then list the most
recent collected requests, provided you're making the request from the local machine or
have enabled remote tracing (see Figure 7-28).

2 http:Hlocalhost: 1435/ErrorHandling/trace.axd - Microsoft Internet Explorer,

File Edit Wiew Favorites

Tools

Help

-") Back -

Address @j http: fflocalhost: 1435/ErrorHandlingftrace, axd

CF

#

Search 5.7 Favorites 42 -,

3 n

~Z
2

i = TR (Y ¥y [N T (N

€l

[clear current trace]
Physical Directory: E:\CodeiBeginning ASP.NET 2.0%Chapter07\ErrorHandling',

Time of Request
10/7/2005 4:59:
10/7/2005 4:59:
10/7/2005 4:59:
10/7/2005 4:59:
10/7/2005 4:59:
10/7/2005 5:00:
10/7/2005 5:00:
10/7/2005 5:00:
10/7/2005 5:00:
u] 10/7/2005 5:00:

46 PM
49 PM
49 PM
50 PM
58 PM
00 PM
39 PM
40 PM
40 PM
43 PM

Application Trace
ErrorHandling

Requests to this Application

File
/TraceExample. aspx
/TraceEsample. aspx
/TraceExample. aspx
/TraceEsample. aspx
/SimpleTrace, aspx
/SimpleTrace, aspx
/SimpleTrace, aspx
/SimpleTrace, aspx
/SimpleTrace, aspx
/SimpleTrace, aspx

Status Code VYerb

200
200
200
200
200
200
200
200
200
200

POST
POST
POST
POST
GET
POST
GET
GET
GET
POST

Microsoft \MET Framework Yersion:2.0.50727.26; ASP.MET Yersion:2.0.50727.26

Remaining: 0

Yiew Details
Yiew Details
Yiew Details
Yiew Details
Yiew Details
Yiew Details
Yiew Details
Yiew Details
Yiew Details
Yiew Details

& Local intranet

Figure 7-28. Traced application request

You can see the detailed information for any request by clicking the View Details link.
This provides a useful way to store tracing information for a short period of time and
allows you to review it without needing to see the actual pages (see Figure 7-29). It also
works best if you're using Visual Studio’s grid layout, which uses absolute positioning that
can conflict with the tracing display and lead to overwritten or obscured text.

265

266 CHAPTER 7 TRACING, LOGGING, AND ERROR HANDLING

2} http:/localhost: 1435/ErrorHandlingfMrace.axd?id=0 - Microsoft Internet Explorer,

File Edit View Favorites Tools Help -J Back - .ﬂ .E'] : - Search * Favorites 4 » 3',’
Address \Q http: fflocalhost: 1435/ErrorHandling/ Trace, axdrid=0 i
-
Request Details
Request Details
Session Id: zowE54h5Skhbxxgzomgpjgynz Request Type: POST
Time of Request: 10/7/2005 4:59: 45 PM Status Code: 200
Request Encoding: Unicode (UTF-8) Response Encoding: Unicode (UTF-8)
Category Message From First(s) From Last{s)
aspx.page Begin Prelnit
asps.page End Prelnit 0.00692937230849172 0.006929
aspx.page Begin Init 0.00779400733892157 0.000865
asps.page End Init 0.014439265325621 0.006645
aspx.page Begin InitComplete 0.0145024018415748 0.000063
aspx.page End InitComplete 0.0148507701397803 0.000348
aspx.page Begin LoadState 0.015546389275732 0.000696
asps.page End LoadState 0.0608147124844079 0.045268
aspx.page Begin ProcessPostData 0.0608865093189218 0.000072
asps.page End ProcessPostData 0.068726611901792 0.007340
aspx.page Begin PreLoad 0.0687375134968271 0.000061
asps.page End PreLoad 0.0691411897322146 0.000354
aspx.page Begin Load 0.0691716405297321 0.000030
asps.page End Load 0.0711772026891686 0.002006
aspx.page Begin ProcessPostData Second Try 0.0712300026958734 0.000053
asps.page End ProcessPostData Second Try 0.0712548661910941 0.000025
aspx.page Begin Raise ChangedEvents 0.071277774130511 0.000023
aspx.page End Raise ChangedEvents 0.0718038186417548 0.000526
aspx.page Begin Raise PostBackEvent 0.0718351075346168 0.000031
Page_Load About to place an item in session state, 0.0842889249890698 0.012454
Page_Load Placed item in session state. 0.08669174434130883 0.002403 b
£ >
&] Dare & Local intranet

Figure 7-29. Request trace information

The Last Word

The difference between an ordinary website and a professional web application is often in
how it deals with errors. In this chapter, you learned the different lines of defense you can
use in .NET, including structured error handling, logging, custom error pages, and tracing.

In the next chapter, you'll consider how you can store information in between page
requests.

CHAPTER 8

Validation and Rich Controls

This chapter looks at some of the real promise of ASP.NET and the web control model.
First, you'll learn about ASP.NET’s validation controls. These controls take a previously
time-consuming and complicated task—verifying user input and reporting errors—and
automate it with an elegant, easy-to-use collection of validators. You'll learn how to add
these controls to an existing page and use regular expressions, custom validation func-
tions, and manual validation. And as usual, you'll peer under the hood to see how
ASP.NET implements these features.

Next, you'll consider two controls that have no equivalent in the ordinary HTML world:

the Calendar and AdRotator controls. These controls demonstrate how the web control
model can invent new types of web page user interfaces without breaking browser com-
patibility. The Calendar and AdRotator controls are only two of several rich controls
included with ASP.NET; you'll explore the others throughout this book.

Finally, you'll consider how you can create more sophisticated pages with multiple
views using advanced container controls such as the MultiView and Wizard controls.
These controls allow you to pack a miniature application into a single page. Using them,
you can handle a multistep task without redirecting the user from one page to another.

Validation

As a seasoned developer, you probably realize users will make mistakes. What's particu-

larly daunting is the range of possible mistakes that users can make, such as the following:

* Users might ignore an important field and leave it blank.

¢ Users might try to type a short string of nonsense to circumvent a required field
check, thereby creating endless headaches on your end, such as invalid e-mail
addresses that cause problems for your automatic mailing programs.

267

268

CHAPTER 8 VALIDATION AND RICH CONTROLS

¢ Users might make an honest mistake, such as entering a typing error, entering a
nonnumeric character in a number field, or submitting the wrong type of informa-
tion. They might even enter several pieces of information that are individually
correct but when taken together are inconsistent (for example, entering a Master-
Card number after choosing Visa as the payment type).

A web application is particularly susceptible to these problems, because it relies on
basic HTML input controls that don’t have all the features of their Windows counterparts.
For example, a common technique in a Windows application is to handle the KeyPress
event of a text box, check to see whether the current character is valid, and prevent it from
appearing ifitisn’t. This technique is commonly used to create text boxes that accept only
numeric input.

In web applications, however, you don’t have that sort of fine-grained control. To handle
a KeyPress event, the page would have to be posted back to the server every time the user
types a letter, which would slow down the application hopelessly. Instead, you need to per-
form all your validation at once when a page (which may contain multiple input controls) is
submitted. You then need to create the appropriate user interface to report the mistakes.
Some websites report only the first incorrect field, while others use a special table, list, or
window that describes them all. By the time you have perfected your validation routines, a
considerable amount of fine-tuned effort has gone into writing validation code.

ASP.NET aims to save you this trouble and provide you with a reusable framework of
validation controls that manages validation details by checking fields and reporting on
errors automatically. These controls can even use client-side DHTML and JavaScript to
provide a more dynamic and responsive interface while still providing ordinary validation
for older browsers (often referred to as down-level browsers).

The Validation Controls

ASP.NET provides five validator controls, which are described in Table 8-1. Four are tar-
geted at specific types of validation, while the fifth allows you to apply custom validation
routines.

Table 8-1. Validator Controls

Control Class Description

RequiredFieldValidator Validation succeeds as long as the input control doesn’t contain
an empty string.

RangeValidator Validation succeeds if the input control contains a value within a

specific numeric, alphabetic, or date range.

CompareValidator Validation succeeds if the input control contains a value that
matches the value in another, specified input control.

CHAPTER 8 VALIDATION AND RICH CONTROLS

Control Class Description

RegularExpressionValidator ~ Validation succeeds if the value in an input control matches a
specified regular expression.

CustomValidator Validation is performed by a user-defined function.

Each validation control can be bound to a single input control. In addition, you can
apply more than one validation control to the same input control to provide multiple
types of validation.

If you use the RangeValidator, CompareValidator, or RegularExpressionValidator, vali-
dation will automatically succeed if the input control is empty, because there is no value
to validate. If this isn’t the behavior you want, you should add a RequiredFieldValidator to
the control. This ensures that two types of validation will be performed, effectively
restricting blank values.

Like all other web controls, you add a validator as a tag in the form
<asp:ControlClassName />. The other validation control, ValidationSummary,
doesn’t perform any actual control checking. Instead, you can use it to provide a
list of all the validation errors for the entire page.

The Validation Process

You can use the validator controls to verify a page automatically when the user submits it
or manually in your code. The first approach is the most common.

When using automatic validation, the user receives a normal page and begins to fill in
the input controls. When finished, the user clicks a button to submit the page. Every but-
ton has a CausesValidation property, which can be set to true or false. What happens
when the user clicks the button depends on the value of the CausesValidation property:

e If CausesValidation is false, ASP.NET will ignore the validation controls, the page
will be posted back, and your event handling code will run normally.

* If CausesValidation is true (the default), ASP.NET will automatically validate the
page when the user clicks the button. It does this by performing the validation for
each control on the page. If any control fails to validate, ASP.NET will return the
page with some error information, depending on your settings. Your click event
handling code may or may not be executed—meaning you’ll have to specifically
check in the event handler whether the page is valid.

Based on this description, you'll realize that validation happens automatically when
certain buttons are clicked. It doesn’t happen when the page is posted back because of a
change event (such as choosing a new value in an AutoPostBack list) or if the user clicks
a button that has CausesValidation set to false. However, you can still validate one or

269

270

CHAPTER 8 VALIDATION AND RICH CONTROLS

more controls manually and then make a decision in your code based on the results.
You'll learn about this process in more detail a little later (see the “Manual Validation”
section).

Note Many other buttonlike controls that can be used to submit the page also provide the CausesValidation
property. Examples include the LinkButton, ImageButton, and BulletedList.

Client-Side Validation

In most modern browsers (including Internet Explorer 5 or later and any version of
Firefox), ASP.NET automatically adds JavaScript code for client-side validation. In this
case, when the user clicks a CausesValidation button, the same error messages will appear
without the page needing to be submitted and returned from the server. This increases
the responsiveness of the application.

However, even if the page validates successfully on the client side, ASP.NET still reval-
idates it when it’s received at the server. This is because it’s easy for an experienced user
to circumvent client-side validation. For example, a malicious user might delete the block
of JavaScript validation code and continue working with the page. By performing the val-
idation at both ends, ASP.NET makes sure your application can be as responsive as
possible while also remaining secure.

The Validator Classes

The validation control classes are found in the System.Web.UIL.WebControls namespace
and inherit from the BaseValidator class. This class defines the basic functionality for a
validation control. Table 8-2 describes its properties.

Table 8-2. Properties of the BaseValidator Class

Property Description

ControlToValidate Identifies the control that this validator will check. Each
validator can verify the value in one input control.

ErrorMessage, ForeColor, and Display If validation fails, the validator control can display a
text message (set by the ErrorMessage property). The
Display property allows you to configure whether this
error message will be added dynamically as needed
(Dynamic) or whether an appropriate space will be
reserved for the message (Static). Static is useful when
the validator is in a table and you don’t want the width
of the cell to collapse when no message is displayed.

CHAPTER 8 VALIDATION AND RICH CONTROLS 2N

Property Description

IsValid After validation is performed, this returns true or
false depending on whether it succeeded or failed.
Generally, you'll check the state of the entire page by
looking at its IsValid property instead to find out if all
the validation controls succeeded.

Enabled When set to false, automatic validation will not be
performed for this control when the page is submitted.

EnableClientSideScript If set to true, ASP.NET will add JavaScript and DHTML
code to allow client-side validation on browsers that
support it.

When using a validation control, the only properties you need to implement are
ControlToValidate and ErrorMessage. In addition, you may need to implement the prop-
erties that are used for your specific validator. Table 8-3 outlines these properties.

Table 8-3. Validator-Specific Properties

Validator Control Added Members

RequiredFieldValidator None required

RangeValidator MaximumValue, MinimumValue, Type
CompareValidator ControlToCompare, Operator, Type, ValueToCompare

RegularExpressionValidator ~ ValidationExpression

CustomValidator ClientValidationFunction, ServerValidate event

Later in this chapter (in the “A Validated Customer Form” section), you'll see a cus-
tomer form example that demonstrates each type of validation.

A Simple Validation Example

To understand how validation works, you can create a simple web page. This test uses a
single Button web control, two TextBox controls, and a RangeValidation control that vali-
dates the first text box. If validation fails, the RangeValidation control displays an error
message, so you should place this control immediately next to the TextBox it’s validating.
Figure 8-1 shows the appearance of the page after a failed validation attempt.

272

CHAPTER 8 VALIDATION AND RICH CONTROLS

A Validation Test - Microsoft Internet Explorer

File Edit Miew Favorites Tools Help

v

O W@ G st

Address @ http: fflacalhost: 2210/ Chapter0gfyalidationTest. aspx

A number (1 to 10): |‘12 | This Mumber Is 1ot In The Range
Mot validated: |‘12 |
@ Daone \3 Local intranet:

Figure 8-1. Failed validation

In addition, place a Label control at the bottom of the form. This label will report when
the page has been successfully posted back and the event handling code has executed.
Disable its EnableViewState property to ensure that it will be cleared every time the page

is posted back.

The layout code defines a RangeValidator control, sets the error message, identifies the
control that will be validated, and requires an integer from 1 to 10. These properties are set
in the .aspx file, but they could also be configured in the event handler for the Page.Load
event. The Button automatically has its CauseValidation property set to true, because this

is the default.

<html><body>

<form method="post" runat="server">

A number (1 to 10):

<asp:TextBox id=txtValidated runat="server" />
<asp:RangeValidator id="RangeValidator" runat="server"

ErrorMessage="This Number Is Not In The Range"

ControlToValidate="txtValidated"
MaximumValue="10" MinimumValue="1"

Type="Integer" />

Not validated:

<asp:TextBox id=txtNotValidated runat="server" />

<asp:Button id=cmdOK runat="server" Text="OK" />

<asp:Label id=1blMessage runat="server"
EnableViewState="false" />

</form>
</body></html>

CHAPTER 8 VALIDATION AND RICH CONTROLS

Finally, here is the code that responds to the button click:

protected void cmdOK_Click(Object sender, EventArgs e)

{
1bIMessage.Text = "cmdOK Click event handler executed.";

}

If you're testing this web page in a modern browser (such as Internet Explorer 5 or later),
you'll notice an interesting trick. When you first open the page, the error message is hidden.
But if you type an invalid number (remember, validation will succeed for an empty value) and
press the Tab key to move to the second text box, an error message will appear automatically
next to the offending control. This is because ASP.NET adds a special JavaScript function that
detects when the focus changes. This code uses the special WebUIValidation.js script library
file that is installed on your server with the .NET Framework (in the c:\Inetpub\wwwroot\
aspnet_client\system_web\[Version] directory) and is somewhat complicated. However,
ASP.NET handles all the details for you automatically. If you try to click the OK button with an
invalid value in txtValidated, your actions will be ignored, and the page won’t be posted back.

These features are relatively high-level, because they combine DHTML and JavaScript.
Clearly, not all browsers will support this client-side validation. To see what will happen
on adown-level browser, set the RangeValidator.EnableClientScript property to false, and
rerun the page. Now error messages won't appear dynamically as you change focus. How-
ever, when you click the OK button, the page will be returned from the server with the
appropriate error message displayed next to the invalid control.

The potential problem in this scenario is that the click event handling code will still
execute, even though the page is invalid. To correct this problem and ensure that your
page behaves the same on modern and older browsers, you must specifically abort the
event code if validation hasn’t been performed successfully.

protected void cmdOK _Click(Object sender, EventArgs e)

{

// Abort the event if the control isn't valid.

if (!RangeValidator.IsValid) return;

1bIlMessage.Text = "cmdOK Click event handler executed.";
}

This code solves the current problem, but it isn’t much help if the page contains multi-
ple validation controls. Fortunately, every web form provides its own IsValid property.
This property will be false if any validation control has failed. It will be true if all the vali-
dation controls completed successfully or if validation was not performed (for example, if
the validation controls are disabled or if the button has CausesValidation set to false).

273

274

CHAPTER 8 VALIDATION AND RICH CONTROLS

protected void cmdOK Click(Object sender, EventArgs e)

{

// Abort the event if the page isn't valid.

if (!this.IsValid) return;

1blMessage.Text = "cmdOK Click event handler executed.";
}

Remember, client-side validation is just nice frosting on top of your application. Server-
side validation will always be performed, ensuring that crafty users can’t “spoof” pages.

Other Display Options

In some cases, you might have already created a carefully designed form that combines
multiple input fields. Perhaps you want to add validation to this page, but you can’t refor-
mat the layout to accommodate all the error messages for all the validation controls. In
this case, you can save some work by using the ValidationSummary control.

To try this, set the Display property of the RangeValidator control to None. This
ensures the error message will never be displayed. However, validation will still be per-
formed and the user will still be prevented from successfully clicking the OK button if
some invalid information exists on the page.

Next, add the ValidationSummary in a suitable location (such as the bottom of the page):

<asp:ValidationSummary id="Errors" runat="server" />

When you run the page, you won'’t see any dynamic messages as you enter invalid
information and tab to a new field. However, when you click the OK button, the
ValidationSummary will appear with a list of all error messages, as shown in Figure 8-2.
In this case, it retrieves one error message (from the RangeValidator control). However,
if you had a dozen validators, it would retrieve all their error messages and create a list.

The ValidationSummary control also provides some useful properties you can use to
fine-tune the error display. You can set the HeaderText property to display a special title
at the top of the list (such as Your page contains the following errors:). You can also change
the ForeColor and choose a DisplayMode. The possible modes are BulletList (the default),
List, and Paragraph.

CHAPTER 8 VALIDATION AND RICH CONTROLS

‘A Validation Summary - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help & Back) E‘] @ ._/,_

Address @ http: fflocalhost: 22 10fChapter0avalidationSummary, aspix

A number (1 to 10): [42 |

Mot validated: | |

s The First Mumber Iz Mot In The Eange

@ Daone ‘ﬂ Local intranet:

Figure 8-2. The validation summary

Finally, you choose to have the validation summary displayed in a pop-up dialog box
instead of on the page (see Figure 8-3). This approach has the advantage of leaving the
user interface of the page untouched, but it also forces the user to dismiss the error mes-
sages by closing the window before being able to modify the input controls. If users will
need to refer to these messages while they fix the page, the inline display is better.

To show the summary in a dialog box, set the ValidationSummary.ShowMessageBox
property to true.

‘A Validation Summary - Microsoft Internet Explorer

File Edit Miew Favorites Tools Help & Back) E‘] @ ._/,_

Address @ http: fflocalhost: 22 10fChapter0avalidationSummary, aspix

A number (1 to 10): [42

Mot validated:

Microsoft Internet Explorer.

| : - The First Mumber Is Mot In The Range
.

s The First Mumber Iz Mot In The Eange

@ Daone ‘ﬂ Local intranet:

Figure 8-3. A message box summary

275

276

CHAPTER 8 VALIDATION AND RICH CONTROLS

Manual Validation

Your final option is to disable validation and perform the work on your own, with the help

of the validation controls. This allows you to take other information into consideration or

create a specialized error message that involves other controls (such as images or buttons).
You can create manual validation in one of three ways:

¢ Use your own code to verify values. In this case, you won’t use any of the ASP.NET
validation controls.

¢ Disable the EnableClientScript property for each validation control. This allows an
invalid page to be submitted, after which you can decide what to do with it depend-
ing on the problems.

¢ Add a button with CausesValidation set to false. When this button is clicked, manu-
ally validate the page by calling the Page.Validate method. Then examine the
IsValid property, and decide what to do.

The next example uses the second approach. Once the page is submitted, it examines
all the validation controls on the page by looping through the Page.Validators collection.
Every time it finds a control that hasn’t validated successfully, it retrieves the invalid value
from the input control and adds it to a string. At the end of this routine, it displays a mes-
sage that describes which values were incorrect, as shown in Figure 8-4.

‘2 Manual Validation - Microsoft Internet Explorer,

File Edit Miew Favorites Tools Help o Back =) |ﬂ @ ,\ h
Address |@ http: fflocalhost: 2210/ Chapter0giManualvalidation, aspx b |
A number (1 to 10): |‘12 | This Mumber Is 1ot In The Range
Mot validated: | |
Mistakes found:
Thuz Mumber Is Mot In The Eange

* Problem iz with this mput: 42

@ Daone \ﬁ Local intranet:

Figure 8-4. Manual validation

CHAPTER 8 VALIDATION AND RICH CONTROLS 277

This technique adds a feature that wouldn’t be available with automatic validation,
which uses the static ErrorMessage property. In that case, it isn’t possible to include the
actual incorrect values in the message.

Here’s the event handler that checks for invalid values:

protected void cmdOK_Click(Object sender, EventArgs e)

{
string errorMessage = "Mistakes found:
";
// Create a variable to represent the input control.
TextBox ctrlInput;
// Search through the validation controls.
foreach (BaseValidator ctrl in this.Validators)
{
if (lctrl.Isvalid)
{
errorMessage += ctrl.ErrorMessage + "
";
// Find the corresponding input control, and change the
// generic Control va