 Contmand :
| Execute |
Ay
ExtCommand [~~~""""""""""""77 0 bttty a7 T 1= oY ittt [RedComimignid'
form i wincioyy
: Eommanc
ExitCommand p RedCommand
4] C d
Execute BEN:OINman Command Execute
OpenCamimand
Execute
. ComdButton 1
CommandiMenu Ezms_::;?_zms
d
Eomman ComdButton
Commandkenu setCommand
setCommand getCommancd
getZommand Dizpoze
T InttializeComponent
: i
PP P N R A e S e H
 Commandfolder |
Dy H
| getCommand !
E setCarmmand '

Figure 22-4 — Class diagram of CommandHolder appraoch

Providing Undo

Another of the main reasons for using Command design patterns is that
they provide a convenient way to store and execute an Undo function.
Each command object can remember what it just did and restore that state

Copyright © , 2002 by James W Cooper

302

when requested to do so if the computational and memory requirements
are not too overwhelming. At the top level, we simply redefine the
Command interface to have three methods.
public interface Conmmand {

voi d Execute();

voi d Undo();

bool isUndo();
}

Then we have to design each command object to keep arecord of what it
last did so it can undo it. This can be a little more complicated than it first
appears, since having a number of interleaved Commands being executed
and then undone can lead to some hysteresis. In addition, each command
will need to store enough information about each execution of the
command that it can know what specifically has to be undone.

The problem of undoing commands is actually a multipart problem. First,
you must keep alist of the commands that have been executed, and
second, each command has to keep alist of its executions. To illustrate
how we use the Command pattern to carry out undo operations, let’s
consider the program shown in Figure 22-5 that draws successive red or
blue lines on the screen, using two buttons to draw a new instance of each
line. You can undo the last line you drew with the undo button.

Copyright © , 2002 by James W Cooper

_iBix

Red [Inda

Figure22-5— A program that drawsred and bluelines each timeyou click the Red
and Blue buttons

If you click on Undo several times, you' d expect the last severd linesto
disappear no matter what order the buttons were clicked in, as shown in
Figure 22-6.

Copyright © , 2002 by James W Cooper

_iBix

Red

Blue |

Figure 22-6— The same program asin Figure 22-5 after the Undo button has been
clicked several times

Thus, any undoable program needs a single sequential list of all the
commands that have been executed. Each time we click on any button, we
add its corresponding command to the list.

private void commandd ick(object sender, EventArgs e) {
/1 get the comrand
Conmmand cond = ((CommrandHol der) sender) . get Comrand () ;
undoC. add (cond); //add to undo li st
cond. Execute (); /land execute it

}
Further, the list to which we add the Command objects is maintained
inside the Undo command object so it can access that list conveniently.

public class UndoConmd: Cormand {
private ArraylList undolLi st;
publ i ¢ UndoCond() {
undoLi st = new ArraylList ();

public void add(Comrand cond) {

Copyright © , 2002 by James W Cooper

305

if(! cond.isUndo ()) {
undolLi st. Add (cond);

public bool isUndo() {
return true;

public void Undo() { }
[]-----
public void Execute() {
int index = undoList.Count - 1,
if (index >= 0) {
Command cnd = (Conmand) undoli st [i ndex] ;
cnd. Undo() ;
undoLi st . RenoveAt (i ndex) ;

The undoCommand object keeps alist of Commands, not alist of actua
data. Each command object has its unDo method called to execute the
actual undo operation. Note that since the undoCommand object
implements the Command interface, it, too, needs to have an unDo
method. However, the idea of undoing successive unDo operationsis a
little complex for this simple example program. Consequently, you should
note that the add method adds all Commands to the list except the
undoCommand itself, since we have just defined undoing an unDo
command as doing nothing. For this reason, our new Command interface
includes an isUndo method that returns false for the RedCommand and
BlueCommand objects and true for the UndoCommand object.

The redCommand and blueCommand classes simply use different colors
and start at opposite sides of the window, athough both implement the
revised Command interface. Each class keeps alist of lines to be drawn in
a Collection as a series of DrawData objects containing the coordinates of
each line. Undoing a line from either the red or the blue line list smply
means removing the last DrawData object from the drawList collection.

Copyright © , 2002 by James W Cooper

Then either command forces a repaint of the screen. Here is the

BlueCommand class.

public class Bl ueConmand : Comrand {
protected Col or color;
private PictureBox pbox;
private ArraylList drawlist;
protected int x, y, dx, dy;

publ i c Bl ueConmand(Pi ct ureBox pbx) {
pbox = pbx;
color = Col or. Bl ue ;
drawLi st = new ArraylList ();
X = pbox. Wdth ;

dx = -20;
y =0;
dy = 0;
}
[]-----

public void Execute() {

DrawbData dl = new DrawbData(x, y, dx, dy);

drawLi st. Add(dl);
X = X + dx;

y =y + dy;
pbox. Refresh();

public bool isUndo() {
return fal se;

}
[]-----
public void Undo() {
DrawDat a dl ;
int index = drawlList. Count - 1;
if (index >= 0) {
dl = (Drawbat a)drawLi st[index];
drawli st . RenoveAt (i ndex) ;
x = dl.getX();
y = dl.getY();
}
pbox. Refresh();
}
[]-----

public void draw Graphics g) {
Pen rpen = new Pen(color, 1);

Copyright © , 2002 by James W Cooper

307

int h = pbox. Hei ght;
int w= pbox. Wdth;
for (int i =0; i < drawList.Count ; i++) {
DrawData dl = (DrawData)drawList[i];
g. DrawLi ne(rpen, dl.getX(), dl.getY(),
dl .getX() + dx, dl.getDy() + h);

}
}
Note that the draw method in the drawCommand class redraws the entire
list of lines the command object has stored. These two draw methods are
called from the paint handler of the form.
public void paintHandl er (obj ect sender, PaintEventArgs e) {
Graphics g = e. Gaphics ;

bl ueC. draw g) ;
redC. draw (Qg);

}

We can create the RedCommand in just a few lines by deriving from the
BlueCommand:
public class RedConmand : Bl ueCommand {
publ i ¢ RedCommand(Pi ct ureBox pict): base(pict) {

col or = Col or. Red;

X = 0;

dx = 20;

y =0;

dy = 0;

}

The set of classes we use in this Undo program is shown in Figure 22-7

Copyright © , 2002 by James W Cooper

Elue Cnml.ma.mi

drawlist
X

pic

itnit

drawr

Comunand Execute
Command isUndo
Comunand UTndo

he

Command

Execute
Tndo
isIndo

L
T

itit

add
Counatid Execute
Command isUndo
Comunatd Tndo

h

lad

)

it

Comunand Execute
Comtand isTndo
Comnand Tndo
draw

undoForm

huttons

<r>— btDraw Click

Form Load
Form Paint

h

kC

Figure 22-7— The classes used to implement Undo in a Command pattern

implementation

Copyright © , 2002 by James W Cooper

Command
Bution CommandHolder Menultem
c-h Execute
FR— getC omemand
: ; Fy & Iy
: i :
: ExitCommand ;
' Cmdhenu
: A Execute
: ! zetConunand
i Red Command RedBution | E ‘
i Execute ZetCommand
i
File Command
Execute
Fe
Dpen
ComdHolder
Euit
maity

Figure 22-8— A class structurefor three different objectsthat al implement the
Command interface and two that implement the CommandHolder interface

Thought Questions

1. Mouse clicks on list box items and on radio buttons also constitute
commands. Clicks on multiselect list boxes could aso be represented
as commands. Design a program including these features.

2. A lottery system uses a random number generator constrained to
integers between 1 and 50. The selections are made at intervals
selected by a random timer. Each selection must be unique. Design
command patterns to choose the winning numbers each week.

Copyright © , 2002 by James W Cooper

Programs on the CD-ROM

310

\ Command\ But t onMenu

Buttons and menus using Command
pattern

\ Command\ UndoCommand

C# program showing line drawing
and Undo

\ Command\ CondHol der

C# program showing
CommandHolder interface

Copyright © , 2002 by James W Cooper

311

23. The Interpreter Pattern

Some programs benefit from having a language to describe operations
they can perform. The Interpreter pattern generally describes defining a
grammar for that language and using that grammar to interpret statements
in that language.

M otivation

When a program presents a number of different but somewhat similar
cases it can deal with, it can be advantageous to use a simple language to
describe these cases and then have the program interpret that language.
Such cases can be as simple as the sort of Macro language recording
facilities a number of office suite programs provide or as complex as
Visua Basic for Applications (VBA). VBA is not only included in
Microsoft Office products, but it can be embedded in any number of third-
party products quite simply.

One of the problems we must deal with is how to recognize when a
language can be helpful. The Macro language recorder simply records
menu and keystroke operations for later playback and just barely qualifies
as alanguage; it may not actually have a written form or grammar.
Languages such as VBA, on the other hand, are quite complex, but they
are far beyond the capabilities of the individual application developer.
Further, embedding commercial languages usually require substantial
licensing fees, which makes them less attractive to all but the largest
developers.

Applicability
Asthe Small Talk Companion notes, recognizing cases where an

Interpreter can be helpful is much of the problem, and programmers
without formal language/compiler training frequently overlook this

Copyright © , 2002 by James W Cooper

312

approach. There are not large numbers of such cases, but there are three
genera places where languages are applicable.

1. When you need a command interpreter to parse user commands.
The user can type queries of various kinds and obtain a variety of
answers.

2. When the program must parse an algebraic string. This caseis
fairly obvious. The program is asked to carry out its operations
based on a computation where the user enters an equation of some
sort. This frequently occurs in mathematical- graphics programs
where the program renders a curve or surface based on any
equation it can evaluate. Programs like Mathematica and graph
drawing packages such as Origin work in this way.

3. When the program must produce varying kinds of output. This case
is alittle less obvious but far more useful. Consider a program that
can display columns of datain any order and sort them in various
ways. These programs are frequently referred to as Report
Generators, and while the underlying data may be stored in a
relational database, the user interface to the report programis
usually much simpler than the SQL language that the database
uses. In fact, in some cases, the simple report language may be
interpreted by the report program and trandated into SQL.

A Simple Report Example

Let’s consider a simplified report generator that can operate on five
columns of datain atable and return various reports on these data.
Suppose we have the following results from a swimming competition.

Amanda McCart hy 12 WCA 29. 28
Jam e Fal co 12 HNHS 29. 80
Meaghan O Donnel | 12 EDST 30. 00
Greer G bbs 12 CDEV 30.04
Rhi annon Jeffrey 11 Ww 30. 04
Sophi e Connol |y 12 WAC 30. 05
Dana Hel yer 12 ARAC 30. 18

Copyright © , 2002 by James W Cooper

313

The five columns are frname, Iname, age, club and time. If we consider
the compl ete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name, or by age. Since
there are a number of useful reports we could produce from these datain
which the order of the columns changes as well as the sorting, alanguage
is one useful way to handle these reports.

WEe'll define a very simple nonrecursive grammar of this sort.

Print I nane frnanme club time Sortby club Thenby tine

For the purposes of this example, we define these three verbs.

Print
Sort by
Thenby

And we'll define the five column names we listed earlier.

Fr nane
Lnane
Age
Cl ub
Ti me

For convenience, we'll assume that the language is case insensitive. We'll
also note that the simple grammar of this language is punctuation free and
amounts in brief to the following.

Print var[var] [sortby var [thenby var]]

Finaly, there is only one main verb, and while each statement is a
declaration, there is no assignment statement or computational ability in
this grammar.

Copyright © , 2002 by James W Cooper

314

Inter preting the Language
Interpreting the language takes place in three steps.
1. Parsing the language symbols into tokens.
2. Reducing the tokens into actions.
3. Executing the actions.

We parse the language into tokens by simply scanning each statement with
a StringTokenizer and then substituting a number for each word. Usually
parsers push each parsed token onto a stack we will use that technique
here. We implement the Stack class using an Arraylist—where we have
push, pop, top, and nextTop methods to examine and manipulate the stack
contents.

After parsing, our stack could look like this.

Type Token

Var Ti me <-top of stack
Ver b Thenby

Var C ub

Verb Sort by

Var Ti ne

Var Cl ub

Var Fr name

verb Lnane

However, we quickly realize that the “verb” Thenby has no rea meaning
other than clarification, and it is more likely that we' d parse the tokens and
skip the Thenby word altogether. Our initia stack then, looks like this.

Ti me

Cl ub

Sort by

Ti me

Cl ub

Fr name

Copyright © , 2002 by James W Cooper

315

Lnanme
Pri nt

Objects Used in Parsing

In this parsing procedure, we do not push just a numeric token onto the
stack but a ParseObject that has the both a type and a value property.

public class Parse(bject {
public const int VERB=1000;
public const int VAR=1010;
public const int MILTVAR=1020;
protected i nt val ue, type;

[]-----

public ParseCbject(int val, int typ) {
val ue = val ;
type = typ;

}

[]-----

public int getValue() {
return val ue;

public int getType() {
return type;
}
}

These objects can take on the type VERB or VAR. Then we extend this
object into ParseVerb and ParseVar objects, whose vaue fields can take
on PRINT or SORT for ParseVerb and FRNAME, LNAME, and so on for
ParseVar. For later use in reducing the parse list, we then derive Print and
Sort objects from ParseVerb.

This gives us a smple hierarchy shown in Figure 23-1

Copyright © , 2002 by James W Cooper

Par seObject

Command
getValue
getType Execute

init
addArg
setData

Figure23-1- A simple parsing hierarchy for the Interpreter pattern

The parsing process is just the following ssmple code, using the

StringTokenizer and the parse objects. Part of the main Parser classis

shown here.

public class Parser {

private Stack stk;

private Arraylist actionList;

private Data dat;

private ListBox ptable;

private Chain chn

[]-----

public Parser(string line, KidData kd, ListBox pt)
stk = new Stack ();
/11ist of verbs accunul ates here
actionList = new ArrayList ();
set Data(kd, pt);
bui | dSt ack(li ne); /lcreate token stack

ParseVarb ParseVerb Printit Sort
init init Execute
isLegal getVerb

addArg

isLegal

getArgs

316

bui | dChai n(); /lcreate chain of responsibility

Copyright © , 2002 by James W Cooper

317

private void buildChain() {
chn = new VarVarParse(); //start of chain
Var Mul t var Parse vnvp = new Var Mul t var Par se() ;
chn. addToChai n(vnvp) ;
Mul t Var Var Par se nvvp = new Ml t Var Var Par se() ;
vvp. addToChai n(mvvp) ;
Ver bMul t var Parse vrvp = new Ver bMul t var Parse();
nmvvp. addToChai n(vrvp);
Ver bVar Par se vvp = new Ver bVar Parse();
vrvp. addToChai n(vvp) ;
Ver bAction va = new VerbAction(actionList);
vvp. addToChai n(va) ;
Nonmat ch nom = new Nonmatch (); [l error handl er
va. addToChai n (nom;

public void setData(KidData kd, ListBox pt) {
dat = new Data(kd.getData ());
ptable = pt;

private void buildStack(string s) {
StringTokeni zer tok = new StringTokenizer (s);
whi | e(t ok. hasMbor eEl enents ()) {
Parsehj ect token = tokenize(tok. next Token));
stk. push (token);

protected ParseChject tokenize(strings) {
Par seChj ect obj ;
int type;
try {
obj = getVerb(s);
type = obj.getType ();

cat ch(Nul | Ref erenceException) {
obj = getVar(s);
}

return obj;

protected ParseVerb getVerb(string s) {
ParseVerb v = new ParseVerb (s, dat, ptable);
if(v.isLegal ())

Copyright © , 2002 by James W Cooper

318

return v.getVerb (s);
el se
return null;

protected ParseVar getVar(string s) {
ParseVar v = new ParseVar (s);
if(v.isLegal ())
return v;
el se
return null;

}

The ParseVerb and ParseVar classes return objects with isLegal set to true
if they recognize the word.

public class ParseVerb: Parse(hj ect {
protected const int PRI NT = 100;
protected const int SORT = 110;
protected const int THENBY = 120;
protected ArraylList args;
protected Data ki d;
protected ListBox pt;
protected ParseVerb pv;
[]-----
public ParseVerb(string s, Data kd, ListBox Is):
base(-1, VERB) {
args = new ArraylList ();
kid = kd;
pt =1s;
i f(s.ToLower().Equals ("print")) {
val ue = PRI NT;

i f(s.ToLower().Equals ("sortbhy")) {
val ue = SORT;

}

}

[]-=-----

public ParseVerb getVerb(string s) {
pv = null;

i f(s.ToLower ().Equals ("print"))
pv =new Print(s,kid, pt);

i f(s.ToLower ().Equals ("sorthy"))
pv = new Sort (s, kid, pt);

Copyright © , 2002 by James W Cooper

319

return pv;

public void addArgs(MiltVar nmv) {
args = mv.getVector ();
}

Reducing the Par sed Stack
The tokens on the stack have this form.

Var
Var
Ver b
Var
Var
Var
Var
Ver b

We reduce the stack a token at atime, folding successive Varsinto a
MultVar class until the arguments are folded into the verb objects, as we
show in Figure 23-2

Copyright © , 2002 by James W Cooper

320

Verb
Time

Multvar

"

Var
Club

Verb

Verb
SortBy

Var
Time

Var

Club

MultVar

MultVar

var | P —|_'

Frname

Verb

Var
Lname

Figure 23-2— How the stack isreduced during parsing

When the stack reduces to a verb, this verb and its arguments are placed in
an action list; when the stack is empty, the actions are executed.

Creating a Parser class that is a Command object and executing it when

the Go button is pressed on the user interface carries out this entire

process.

private void bt Conpute_Click(object sender, EventArgs e) ({
parse();

}

private void parse() {
Parser par = new Parser (txCommand. Text ,kdata, |sResults);

Copyright © , 2002 by James W Cooper

321

par. Execute ();
}

The parser itsalf just reduces the tokens, as the preceding shows. It checks
for various pairs of tokens on the stack and reduces each pair to asingle
one for each of five different cases.

I mplementing the Interpreter Pattern

It would certainly be possible to write a parser for this simple grammar as
just aseries of if statements. For each of the six possible stack
configurations, reduce the stack until only a verb remains. Then, since we
have made the Print and Sort verb classes Command objects, we can just
Execute them one by one as the action list is enumerated.

However, the real advantage of the Interpreter pattern is its flexibility. By
making each parsing case an individual object, we can represent the parse
tree as a series of connected objects that reduce the stack successively.
Using this arrangement, we can easily change the parsing rules without
muchin the way of program changes: We just create new objects and
insert them into the parse tree.

According to the Gang of Four, these are the names for the participating
objects in the Interpreter pattern.:

AbstractExpression—declares the abstract I nterpret operation.

Terminal Expr ession—interprets expressions containing any of the
terminal tokens in the grammar.

NonTer minal Expression—interprets all of the nonterminal
expressions in the grammar.

Context—contains the global information that is part of the parser—in
this case, the token stack.

Client—Builds the syntax tree from the preceding expression types
and invokes the Interpret operation.

Copyright © , 2002 by James W Cooper

322

The Syntax Tree

The syntax tree we construct to carry out the parsing of the stack we just
showed can be quite smple. We just need to look for each of the stack
configurations we defined and reduce them to an executable form. In fact,
the best way to implement this tree is using a Chain of Responsibility,
which passes the stack configuration along between classes until one of
them recognizes that configuration and acts on it. Y ou can decide whether
a successful stack reduction should end that pass or not. It is perfectly
possible to have several successive chain members work on the stack in a
single pass. The processing ends when the stack is empty. We seea
diagram of the individual parse chain elementsin Figure 23-3.

Chain

addChain(c)
sendToChain(stk)
getChain():Chain
hasChain():Boolean

.......

InterpChain

nextChai 1 T nextChain

ALy
=3 e}{?&ain

'
MultVarvarParse
? % . VerbMultvVarP
‘VerhVarParse ‘ |‘u"erhActiun ‘ VarMultVarParse

Figure 23-3— How the classes that perform the parsing interact.

Copyright © , 2002 by James W Cooper

In this class structure, we start with the AbstractExpression interpreter

class InterpChain.

public abstract class InterpChain:Chain {
private Chain nextChain
protected Stack stk;
private bool hasChain;
[]-----
public | nterpChain()
stk = new Stack ();
hasChain = fal se

public void addToChai n(Chain c) {
nextChain = ¢
hasChain = true

public abstract bool interpret();

public void sendToChai n(Stack stack) {
stk = stack;

if(! interpret()) { /linterpret stack
/| pass al ong

next Chai n. sendToChai n (stk);
}

public bool topStack(int cl, int c2) {
Par sethj ect pl, p2;
pl = stk.top ();
p2 = stk.nextTop ();
try{

return (pl.getType() == cl && p2.get Type()

}

cat ch(Nul | Ref erenceException) {
return fal se;

}

public void addArgsToVerb() {
Parseoj ect p = (ParseCbject) stk.pop();
ParseVerb v = (ParseVerb) stk.pop();
v. addArgs (p);
st k. push (v);

Copyright © , 2002 by James W Cooper

323

c2);

324

public Chain getChain() {
return next Chain;
}

This class aso contains the methods for manipulating objects on the stack.
Each of the subclasses implements the interpret operation differently and
reduces the stack accordingly. For example, the complete VarVarParse
class reduces two variables on the stack in succession to asingle MultVar
object.

public class VarVarParse : InterpChain {

public override bool interpret() {
i f(topStack(ParseVar. VAR , ParseVar.VAR)) {

//reduces VAR VAR to MILTVAR
ParseVar vl = (ParseVar) stk.pop();
ParseVar v2 = (ParseVar) stk.pop();
Mul tVar nmv = new Mul tVar (v2, vl);
stk. push (nv);
return true;

el se
return fal se;

}

Thus, in this implementation of the pattern, the stack congtitutes the
Context participant. Each of the first five subclasses of InterpChain are
NonTerminal Expression participants, and the ActionVerb class that moves
the completed verb and action objects to the actionList constitutes the
Terminal Expression participant.

The client object is the Parser class that builds the stack object list from
the typed-in command text and constructs the Chain of Responsibility
from the various interpreter classes. We showed most of the Parser class
above aready. However, it also implements the Command pattern and
sends the stack through the chain until it is empty and then executes the
verbs that have accumulated in the action list when its Execute method is
caled.

Copyright © , 2002 by James W Cooper

/I executes parse and interpretation of command |ine
public void Execute() {
whi | e(st k. hasMoreEl enents ()) {
chn. sendToChai n (stk);
}

/I now execute the verbs

for(int i=0; i< actionList.Count ; i++) {
Verb v = (Verb)actionList[i];
v.setData (dat, ptable);
v. Execute ();

The final visual program is shown in Figure 23-4.

R=IE

Iprint frnarne Iname time sartby time

Compute
Amanda MeCarthy zZ9.Z8 s
Jamie Falco z23.8

Meaghan 0'Donnell 20

Greesr Gibb=s 30.04

Phiannon Jeffrey 30.04

Sophie Connolly 30.05

Dana Helwyer 30.12

Lindsay Marotto 20.Z3 ;I

325

Figure23-4 — The Interpreter pattern operating on the simple command in the text

field

Copyright © , 2002 by James W Cooper

326

Conseguences of the Interpreter Pattern

Whenever you introduce an interpreter into a program, you need to
provide a smple way for the program user to enter commands in that
language. It can be as ssimple as the Macro record button we noted earlier,
or it can be an editable text field like the one in the preceding program.

However, introducing a language and its accompanying grammar aso
requires fairly extensive error checking for misspelled terms or misplaced
grammatical elements. This can easily consume a great deal of
programming effort unless some template code is available for
implementing this checking. Further, effective methods for notifying the
users of these errors are not easy to design and implement.

In the preceding Interpreter example, the only error handling is that
keywords that are not recognized are not converted to ParseObjects and
pushed onto the stack. Thus, nothing will happen because the resulting
stack sequence probably cannot be parsed successfully, or if it can, the
item represented by the misspelled keyword will not be included.

You can aso consider generating a language automatically from a user
interface of radio and command buttons and list boxes. While it may seem
that having such an interface obviates the necessity for alanguage at all,
the same requirements of sequence and computation still apply. When you
have to have a way to specify the order of sequential operations, a
language is a good way to do so, even if the language is generated from
the user interface.

The Interpreter pattern has the advantage that you can extend or revise the
grammar fairly easily once you have built the genera parsing and
reduction tools. You can aso add new verbs or variables easily once the
foundation is constructed. However, as the syntax of the grammar
becomes more complex, you run the risk of creating a hard-to- maintain

program.

Copyright © , 2002 by James W Cooper

327

While interpreters are not all that common in solving genera
programming problems, the Iterator pattern we take up next is one of the
most common ones you'll be using.

Thought Question

Design a system to compute the results of simple quadratic expressions
such as

4x"N2 + 3x -4
where the user can enter x or arange of x’s and can type in the equation.

Programs on the CD-ROM

\Interpreter C# interpreter

Copyright © , 2002 by James W Cooper

328

24. The Iterator Pattern

The Iterator is one of the smplest and most frequently used of the design
patterns. The Iterator pattern allows you to move through alist or
collection of data using a standard interface without having to know the
details of the internal representations of that data. In addition, you can also
define special iterators that perform some special processing and return
only specified elements of the data collection.

M otivation

The Iterator is useful because it provides a defined way to mowve through a
set of data elements without exposing what is taking place inside the class.
Since the Iterator is an interface, you can implement it in any way that is
convenient for the data you are returning. Design Patter ns suggests that a
suitable interface for an Iterator might be the following.
public interface Iterator {

object First();

obj ect Next();

bool isDone();
object currentltem();

}
Here you can move to the top of the list, move through the list, find out if

there are more elements, and find the current list item. This interface is
easy to implement and it has certain advantages, but a number of other
similar interfaces are possible. For example, when we discussed the
Composite pattern, we introduced the getSubordinates method

| Enuner at or get Subor di nat es() ; /I get subordi nat es

to provide away to loop through all of the subordinates any employee
may have. The IEnumerator interface can be represented in C# as

bool MveNext () ;
voi d Reset();
obj ect Current {get;}

Copyright © , 2002 by James W Cooper

329

This aso allows us to loop through alist of zero or more elements in some
interna list structure without our having to know how that list is organized
inside the class.

One disadvantage of this Enumeration over similar constructs in C++ and
Smalltalk is the strong typing of the C# language. This prevents the
Current() property from returning an object of the actual type of the data
in the collection. Instead, you must convert the returned object type to the
actual type of the data in the collection. Thus, while this |Enumerator
interface is intended to be polymorphic, thisis not directly possible in C#.

Samplelterator Code

Let’sreuse the list of swimmers, clubs, and times we described earlier,
and add some enumeration capabilities to the KidData class. Thisclassis
essentially a collection of Kids, each with a name, club, and time, and
these Kid objects are stored in an ArrayList.

public class KidData :|Enunerator {
private Arraylist kids;
private int index;
public KidbData(string fil enanme) {
kids = new ArrayList ();
csFile fl = new csFile (filenane);
fl.OpenForRead ();
string line = fl.readLine ();
while(line '=null) {
Kid kd = new Kid (line)
ki ds. Add (kd);
line = fl.readLine ();

fl.close ();
index = 0;
}
To obtain an enumeration of al the Kids in the collection, we simply use

the methods of the |Enumerator interface we just defined.

public bool MoveNext () {
i ndex++;
return i ndex < kids. Count ;

Copyright © , 2002 by James W Cooper

[]------
public object Current {

get {

return kids[index];
}

}
[l------
public void Reset() {

index = 0;
}

Reading in the data and displaying alist of names is quite easy. We
initialize the Kids class with the filename and have it build the collection
of kid objects. Then we treat the Kids class as an instance of |Enumerator
and move through it to get out the kids and display their names.
private void init() {

kids = new Ki dData("50free.txt");

while (kids.MoveNext ()) {

Kid kd = (Kid)kids.Current ;
I sKids.ltens. Add (kd.getFrnane()+ " "+ kd.getLnane ());

}
}

Fetching an Iterator

Another dightly more flexible way to handle iterators in a classis to
provide the class with a getlterator method that returns instances of an
iterator for that class's data. Thisis somewhat more flexible because you
can have any number of iterators active simultaneously on the same data.
Our Kidlterator class can then be the one that implements our Iterator
interface.

public class Kidlterator : |Enunerator {

private Arraylist kids;
private int index;

public Kidlterator(ArrayList kidz) {
ki ds = ki dz;
i ndex = 0;

}

[l------

public bool MveNext () {

Copyright © , 2002 by James W Cooper

331

i ndex++;
return i ndex < kids. Count ;

public object Current {
get {
return kids[index];

public void Reset() {
i ndex = 0;
}

}

We can fetch iterators from the main KidList class by creating them as
needed.

public Kidlterator getlterator() {
return new Kidlterator (kids);
}

Filtered Iterators

While having a clearly defined method of moving through a collection is
helpful, you can also define filtered Iterators that perform some
computation on the data before returning it. For example, you could return
the data ordered in some particular way or only those objects that match a
particular criterion. Then, rather than have alot of very similar interfaces
for these filtered iterators, you smply provide a method that returns each
type of enumeration with each one of these enumerations having the same
methods.

The Filtered lterator

Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a specia Iterator class that
has access to the data in the KidData class. Thisis very simple because the
methods we just defined give us that access. Then we only need to write
an Iterator that only returns kids belonging to a specified club.

Copyright © , 2002 by James W Cooper

332

public class Filteredlterator : |Enumnerator {
private Arraylist kids
private int index;
private string club
public Filteredlterator(ArrayList kidz, string club) {

ki ds = kidz;
index = 0;
this.club = club;
}
[]------
public bool MyveNext () {
bool nore = index < kids.Count-1 ;
if(rmore) {
Kid kd = (Kid)Kkids[++i ndex];
nore = index < kids. Count;
while(more && ! kd.getC ub().Equals (club)) {
kd = (Kid)Kkids[index++];
nore = index < kids.Count ;
}
}
return nore;
}
[]------
public object Current {
get {
return kids[index];
}
}
[]------
public void Reset() {
index = 0;
}

}

All of the work is done in the MoveNext() method, which scans through
the collection for another kid belonging to the club specified in the
constructor. Then it returns either true or false.

Finally, we need to add a method to KidData to return this new filtered
Enumeration.

public Filteredlterator getFilteredlterator(string club) {
return new Filteredlterator (kids, club);

Copyright © , 2002 by James W Cooper

}

This smple method passes the collection to the new Iterator class
Filteredlterator along with the club initials. A ssmple program is shown in
Figure 24-1 that displays all of the kids on the left side. It fills a combo
box with alist of the clubs and then allows the user to select a club and
fills the right-hand list box with those belonging to a single club. The class
diagram is shown in Figure 24-2. Note that the el ements method in
KidData supplies an Enumeration and the kidClub classisin fact itself an
Enumeration class.

C®Filtered Iterator demo =101 x|
Jamie Falco - Im vI

keaghan 0'Dannel
Greer Gibbs

Rhiannar Jeffreyp Saphie Connally
Sophie Connolly Azhley McEntes
Drana Helver K.ate Olzhefzki
Lindzay Marotto “wette Landwehr
Sarah Treichel Krigten Skroski
Aghley McEntes F.atie D uffy

Rachel Brookman
Michelle Ducharme
F.arleen Danaiz

kegan Loock

K.aitlyr Ament

Tara Schoen _:I

Figure24-1 — A simple program-illustrated filtered enumeration

Copyright © , 2002 by James W Cooper

Tierator

moveFirst])
hashloreElements()
riextElement])
S
Kids 2
HidList KidClublterator
ndex index
init(Filename) kilList
getlteratorn) club
getClublteratonclh) 1 init(col,clb)
/ .
Kid
init(line)
getiige()
getTime()
getFrname)
getlname)

Figure 24-2— Theclasses used in the Filtered enumeration

Keeping Track of the Clubs

We need to obtain a unique list of the clubs to load the combo box in

Figure 25-1 with. Aswe read in each kid, we can do this by putting the
clubs in a Hashtable:

while(line '=null) {
Kid kd = new Kid (line);
string club = kd.getd ub ();
if(! clubs.Contains (club)) {
clubs. Add (club, club);
}

Copyright © , 2002 by James W Cooper

ki ds. Add (kd);
line = fl.readLine ();

}

Then when we want to get the list of clubs, we can ask the Hashtable for
an iterator of its contents. The Hashtable class has a method
getEnumerator which should return this information. However, this
method returns an IdictionaryEnumerator, which is slightly different.
While it is derived from |Enumerator, it uses a VValue method to return the
contents of the hash table. This, we load the combo box with the following
code:

I DictionaryEnunerator clubiter = kdata.getd ubs ();

whi | e(cl ubiter. MveNext ()) {
cbd ubs. ltens. Add ((string)clubiter.Value);
}

When we click on the combo box, it gets the selected club to generate a
filtered iterator and load the kidclub list box:
private void cbd ubs_Sel ect edl ndexChanged(obj ect sender,
Event Args e) {
string club = (String)cbd ubs. Sel ectedltem ;
Filteredlterator iter = kdata.getFilteredlterator (club);
| sClubKids.Itens.C ear ();
whil e(iter. MoveNext ()) {
Kid kd = (Kid) iter.Current;
| sC ubKi ds. | tems. Add (kd. get Frname() +" "+
kd. getLnane ());

Consequences of the Iterator Pattern
1. Data modification. The most significant question iterators may raise is
the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element,
it is possible that an element might be added or deleted from the
underlying collection while you are moving through it. It is aso

Copyright © , 2002 by James W Cooper

336

possible that another thread could change the collection. There are no
simple answers to this problem. If you want to move through a loop
using an Enumeration and delete certain items, you must be careful of
the consequences. Deleting or adding an element might mean that a
particular element is skipped or accessed twice, depending on the
storage mechanism you are using.

Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class so they can move through the data. If the datais stored
in an Arraylist or Hashtable, thisis pretty easy to accomplish, but if it
isin some other collection structure contained in a class, you probably
have to make that structure available through a get operation.
Alternatively, you could make the Iterator a derived class of the
containment class and access the data directly.

External versus Internal Iterators. The Design Patterns text describes
two types of iterators. external and internal. Thus far, we have only
described external iterators. Interna iterators are methods that move
through the entire collection, performing some operation on each
element directly without any specific requests from the user. These
are less common in C#, but you could imagine methods that
normalized a collection of data valuesto lie between 0 and 1 or
converted all of the strings to a particular case. In general, external
iterators give you more control because the calling program accesses
each element directly and can decide whether to perform an operation
on it.

Programs on the CD-ROM

\Iterator\Sinplelterator kid list using Iterator

\lterator\Filteredlterator filtered iterator by team name

Copyright © , 2002 by James W Cooper

337

25. The Mediator Pattern

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more
of these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more
each class needs to know about the methods of another class, the more
tangled the class structure can become. This makes the program harder to
read and harder to maintain. Further, it can become difficult to change the
program, since any change may affect code in several other classes. The
Mediator pattern addresses this problem by promoting looser coupling
between these classes. Mediators accomplish this by being the only class
that has detailed knowledge of the methods of other classes. Classes
inform the Mediator when changes occur, and the Mediator passes on the
changes to any other classes that need to be informed.

An Example System

Let’s consider a program that has several buttons, two list boxes, and a
text entry field, as shown in Figure 25-1.

Copyright © , 2002 by James W Cooper

ol

|| [Eomy | Clear |

Jamie Falco -
teaghan O0'Daonnell

Greer Gibbs

Rhiannon Jeffrey

Sophie Connolly

Dlana Helver

Lindzay Maratta

Sarah Treichel

Aghley McEntee

Rachel Brookman

Michelle Ducharme
k.arleen Danais ;I

Figure 25-1—- A simple program with two lists, two buttons, and atext field that will
interact

When the program starts, the Copy and Clear buttons are disabled.

1. When you select one of the names in the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right- hand list box,
and the Clear button is enabled, aswe seein Figure 25-2.

Copyright © , 2002 by James W Cooper

339

o

ILinl:lsa_l,I b arotto Copy | Clear |

moaes = Sophie Connolly
teaghan 0'Donnel

Greer Gibbs
Rhiannon Jeffrey
Sophie Connally
D ana Helyer
‘Lindzay Marotto
Sarah Treichel
Azhley McEntee

R achel Brookman

Michels Ducharme
F.arleen Danaiz _‘ﬂ

Figure 25-2 — When you select a hame, the buttons are enabled, and when you click
on Copy, the nameis copied to theright list box.

3. If you click on the Clear button, the right-hand list box and the text
field are cleared, the list box is deselected, and the two buttons are
again disabled.

User interfaces such as this one are commonly used to select lists of
people or products from longer lists. Further, they are usually even more

complicated than this one, involving insert, delete, and undo operations as
well.

I nter actions Between Controls

The interactions between the visual controls are pretty complex, evenin
this simple example. Each visua object needs to know about two or more

others, leading to quite atangled relationship diagram, as shown in Figure
25-3.

Copyright © , 2002 by James W Cooper

name text (’ Copy 1__’ Clear

Kid list Picked list

Figure 25-3 — A tangled web of interactions between classesin the simple visual
interface we presented in and Figure 25-1 and Figure 25-2.

The Mediator pattern simplifies this system by being the only class that is
aware of the other classes in the system. Each of the controls with which
the Mediator communicates is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler
interaction scheme is illustrated in Figure 25-4.

Copyright © , 2002 by James W Cooper

341

name text Copy Clear

Mediator

Kid list
Picked list

Figure25-4 — A Mediator class simplifiestheinteractions between classes.

The advantage of the Mediator is clear: It isthe only class that knows of
the other classes and thus the only one that would need to be changed if
one of the other classes changes or if other interface control classes are

added.

Sample Code

Let’s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Mediator
classisthat each class needs to be aware of the existence of the Mediator.
Y ou start by creating an instance of your Mediator class and then pass the
instance of the Mediator to each class in its constructor.

ned = new Medi ator (btCopy, btCl ear, |sKids, |sSelected);

bt Copy. set Medi ator (med); //set nediator ref in each control
bt C ear . set Medi at or (ned);

| sKi ds. set Medi at or (ned);

med. set Text (txNane); //tell mediator about text
box

Copyright © , 2002 by James W Cooper

342

We derive our two button classes from the Button class, so they can also
implement the Command interface. These buttons are passed to the
Mediator in its constructor. Here is the CpyButton class.

public class CpyButton : System W ndows. Forms. Button, Conmmand {
private Contai ner conponents = null;
private Mediator ned;
[]-----
public CpyButton() {
InitializeConponent();

}

[]-----

public void setMedi at or (Medi ator nd) {
med = nd;

}

[]-----

public void Execute() {
med. copyd i cked ();
}

It's Execute method simply tells the Mediator lass that it has been clicked,
and lets the Mediator decide what to do when this happens. The Clear
button is exactly analogous.

We derive the KidList class from the ListBox class and have it loaded
with names within the Mediator’s constructor.

public Mediator(CpyButton cp, CrButton clr, KidList ki,

Li st Box pk) {
cpButton = cp; //copy in buttons
clrButton = clr;
klist = kl; /lcopy in |list boxes
pkLi st = pk;
kds = new KidData ("50free.txt"); //create data |ist class
cleardicked(); /lclear all controls
Kidlterator kiter = kds.getlterator ();
whi |l e(kiter.MveNext ()) { [/l oad |ist box

Kid kd = (Kid) kiter.Current ;
klist.ltemrs .Add (kd.getFrname() +" "+
kd. get Lname ());

Copyright © , 2002 by James W Cooper

343

We don't have to do anything special to the text field, since all its activity
takes place within the Mediator; we just passit to the Mediator using as
setText method as we illustrated above.

The only other important part of our initiaization is creating a single event
handler for the two buttons and the list box. Rather than letting the
development environment generate these click events for us, we create a
single event and add it to the click handlers for the two buttons and the list
box’ s SelectlndexChanged event. The intriguing thing about this event
handler is that all it needs to do is call each control’ s Execute method and
let the Mediator methods called by those Execute methods do all the real
work.

The event handler for these click eventsis simply

//each control is a command obj ect

public void clickHandl er (object obj, EventArgs e) {
Conmmand conmd = (Conmand) obj ; /1 get command obj ect
cond. Execute (); /' and execute command

}

We show the complete Form initialization method that creates this event
connections below:

private void init() {
//set up nmediator and pass in referencs to controls
ned = new Medi ator (bt Copy, btC ear, |sKids, |sSelected);
bt Copy. set Medi ator (med); // mediator ref in each control
bt C ear . set Medi at or (ned);
| sKi ds. set Medi ator (ned);
ned. set Text (txNane); //tell mediator about text box

/lcreate event handler for all command objects
Event Handl er evh = new Event Handl er (clickHandl er);
btdear.dick += evh;

bt Copy. dick += evh;

| sKi ds. Sel ect edl ndexChanged += evh;

Copyright © , 2002 by James W Cooper

The general point of all these classes is that each knows about the

Mediator and tells the Mediator of its existence so the Mediator can send

commands to it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear, and Select
methods and has a register method for the TextBox. The two buttons and
the ListBox are passed in in the Mediator’ s constructor. Note that there is
no real reason to choose setXxx methods over constructor arguments for

passing in references to these controls. We simple illustrate both
approaches in this example.

public class Mediator {

private CpyButton cpButton; // buttons

private CrButton clrButton;

private TextBox txKids; //text box

private ListBox pkList; /11ist boxes

private KidList klist;

private Ki dData kds; //list of data fromfile

public Mediator(CpyButton cp, drButton clr,
Ki dLi st kI, ListBox pk) {
cpButton = cp; //copy in buttons
clrButton = clr;
klist = kI; //copy in list boxes
pkLi st = pk;

kds = new KidData ("50free.txt"); //create data |i st

cleardicked(); //clear all controls
Kidlterator kiter = kds.getlterator ();

whi | e(kiter.MveNext ()) { //load |ist box

Kid kd = (Kid) kiter.Current
klist.ltems .Add (kd.getFrname() +
" "+kd. getLnanme ());

/1 get text box reference
public void setText(TextBox tx) {
txKids = tx;

//clear lists and set buttons to di sabl ed
public void cleardicked() {
// di sabl e buttons and clear |ist

Copyright © , 2002 by James W Cooper

cpButton. Enabl ed = fal se;
cl rButton. Enabl ed = f al se;
pkList. ltems.Cear();

/lcopy data fromtext box to list box
public void copydicked() {
// copy name to picked |ist
pkList.ltens. Add(txKi ds. Text);
/'l clear button enabl ed
clrButton. Enabl ed = true;
klist. Sel ectedl ndex = -1;

//copy selected kid to text box
/l enabl e copy button
public void kidPicked() {
//copy text fromlist to textbox
t xK ids. Text = klist. Text;
// copy button enabl ed
cpButton. Enabl ed = true;

}

Initialization of the System

One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these
states may change as the program evolves, we simply carry out this
initialization in the Mediator’ s constructor, which sets all the controls to
the desired state. In this case, that state is the same as the one achieved by
the Clear button, and we smply call that method this.

cleardicked(); //clear all controls

Mediatorsand Command Objects

The two buttons in this program use command objects. Just as we noted
earlier, this makes processing of the button click events quite simple.

Copyright © , 2002 by James W Cooper

346

In either case, however, this represents the solution to one of the problems
we noted in the Command pattern chapter: Each button needed knowledge
of many of the other user interface classes in order to execute its
command. Here, we delegate that knowledge to the Mediator, so the
Command buttons do not need any knowledge of the methods of the other
visual objects. The class diagram for this program is shown in Figure
25-5, illustrating both the Mediator pattern and the use of the Command

pattern.

Command
Execute() Mediaior
e
; registerCopylcpBut)
copyClicked!)
i : register”lean clrBut)
CopyCommand ' cleatClicked)
': tegisterT extitat)
ity ; isterFidList(klist)
iritmd, cpBut) ; registeth |
Command Execute!) 1_“ *: med | Eesgtésﬁziisé{;d@hstj
1 ClearCommand init()
e 1 h
rpyCmd init¢md, clrBut)
1 e
cliCimd
MedForm 1 *
btClear Click)
btCopy_ Click)
Form Load()
lsEids Click()

Figure 25-5 — The interactions between the Command objects and the M ediator
obj ect

Copyright © , 2002 by James W Cooper

Command
L +Execute()|
______ I GonE
CopyB utton ClearButton
1 T T
cpButton clrButton
btCapy $$ btC
Mediator
K
Ined

"

MedForm

Figure25-6 — The UML diagram for the C# Mediator pattern

Consequences of the M ediator Pattern

1. The Mediator pattern keeps classes from becoming entangled when
actions in one class need to be reflected in the state of another class.

2. Using aMediator makes it easy to change a program’s behavior. For
many kinds of changes, you can merely change or subclass the
Mediator, leaving the rest of the program unchanged.

Copyright © , 2002 by James W Cooper

347

348

3. You can add new controls or other classes without changing anything
except the Mediator.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become a“god class,” having too much knowledge
of the rest of the program. This can make it hard to change and
maintain. Sometimes you can improve this situation by putting more
of the function into the individual classes and less into the Mediator.
Each object should carry out its own tasks, and the Mediator should
only manage the interaction between objects.

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has
available. This makesit difficult to reuse Mediator code in different
projects. On the other hand, most Mediators are quite smple, and
writing this code is far easier than managing the complex object
interactions any other way.

Single Interface Mediator s

The Mediator pattern described here acts as a kind of Observer pattern,
observing changes in each of the Colleague elements, with each element
having a custom interface to the Mediator. Another approach isto have a
single interface to your Mediator and pass to that method various objects
that tell the Mediator which operations to perform.

In this approach, we avoid registering the active components and create a
single action method with different polymorphic arguments for each of the
action elements.

public void action(MveButton nv);

public void action(clrButton clr);
public void action(KidList klist);

Copyright © , 2002 by James W Cooper

349

Thus, we need not register the action objects, such as the buttons and
source list boxes, since we can pass them as part of generic action
methods.

In the same fashion, you can have a single Colleague interface that each
Colleague implements, and each Colleague then decides what operation it

isto carry out.
Implementation | ssues

Mediators are not limited to use in visual interface programs, however, it
is their most common application. You can use them whenever you are

faced with the problem of complex intercommunication between a number
of objects.

Programs on the CD-ROM
\ Medi at or Mediator

Copyright © , 2002 by James W Cooper

26. The Memento Pattern

In this chapter, we discuss how to use the Memento pattern to save data
about an object so you can restore it later. For example, you might like
to save the color, size, pattern, or shape of objects in a drafting or
painting program. ldeally, it should be possible to save and restore this
state without making each object take care of this task and without
violating encapsulation. Thisis the purpose of the Memento pattern.

M otivation

Objects normally shouldn’t expose much of their interral state using
public methods, but you would till like to be able to save the entire
state of an object because you might need to restore it later. In some
cases, you could obtain enough information from the public interfaces
(such as the drawing position of graphical objects) to save and restore
that data. In other cases, the color, shading, angle, and connection
relationships to other graphical objects need to be saved, and this
information is not readily available. This sort of information saving
and restoration is common in systems that need to support Undo
commands.

If al of the information describing an object is available in public
variables, it is not that difficult to save them in some external store.
However, making these data public makes the ertire system vulnerable
to change by external program code, when we usually expect data
inside an object to be private and encapsulated from the outside world.

The Memento pattern attempts to solve this problem in some languages
by having privileged access to the state of the object you want to save.
Other objects have only a more restricted access to the object, thus
preserving their encapsulation. In C#, however, thereis only alimited
notion of privileged access, but we will make use of it in this example.

This pattern defines three roles for objects.
1. TheOriginator is the object whose state we want to save.

2. TheMemento is another object that saves the state of the
Originator.

Copyright © , 2002 by James W Cooper

351

3. The Caretaker manages the timing of the saving of the state, saves
the Memento, and, if needed, uses the Memento to restore the state
of the Originator.

I mplementation

Saving the state of an object without making all of its variables
publicly availableis tricky and can be done with varying degrees of
success in various languages. Design Patterns suggests using the C++
friend construction to achieve this access, and the Smalltalk
Companion notes that it is not directly possible in Smalltalk. In Java,
this privileged access is possible using the package protected mode.
Theinternal keyword is available in C#, but al that means is that any
class method labeled as internal will only be accessible within the
project. If you make a library from such classes, the methods marked
asinternal will not be exported and available. Instead, we will define a
property to fetch and store the important internal values and make use
of no other properties for any purpose in that class. For consistency,
we'll use the internal keyword on these properties, but remember that
thislinguistic use of internal is not very restrictive.

Sample Code

Let’s consider a simple prototype of a graphics drawing program that
creates rectangles and alows you to select them and move them around
by dragging them with the mouse. This program has a tool bar
containing three buttons—Rectangle, Undo, and Clear—aswe seein
Figure 26-1

Copyright © , 2002 by James W Cooper

352

i%. Memento Drawing ! o [m] |

I Rect Undo | Clear|

Figure 26-1 — A simple graphics drawing program that allows you to draw
rectangles, undo their drawing, and clear the screen

The Rectangle button is a toolbar ToggleButton that stays selected until
you click the mouse to draw a new rectangle. Once you have drawn the
rectangle, you can click in any rectangle to select it, as we see in Figure
26-2.

. Memento Drawing N o |E||ﬂ

Reck |Llnd0 | Clear|

Figure 26-2— Selecting a rectangle causes “handles’ to appear, indicating that it
isselected and can be moved.

Copyright © , 2002 by James W Cooper

Once it is selected, you can drag that rectangle to a new position, using
the mouse, as shown in Figure 26-3

&. Memento Drawing 3 o]

Rect |Und0 | Clear|

Figure 26-3 — The same selected rectangle after dragging

The Undo button can undo a succession of operations. Specifically, it
can undo moving arectangle, and it can undo the creation of each
rectangle. There are five actions we need to respond to in this program.

Rectangle button click
Undo button click
Clear button click
Mouse click

o A~ D

Mouse drag

The three buttons can be constructed as Command objects, and the
mouse click and drag can be treated as commands as well. Since we
have a number of visual objects that control the display of screen
objects, this suggests an opportunity to use the Mediator pattern, and
that is, in fact, the way this program is constructed.

We will create a Caretaker class to manage the Undo action list. It can
keep alist of the last n operations so they can be undone. The Mediator
maintains the list of drawing objects and communicates with the

Copyright © , 2002 by James W Cooper

Caretaker object as well. In fact, since there could be any number of
actions to save and undo in such a program, a Mediator is virtually
required so there is a single place to send these commands to the Undo
list in the Caretaker.

In this program, we save and undo only two actions: creating new
rectangles arnd changing the position of rectangles. Let’s start with our
visRectangle class, which actually draws each instance of the
rectangles.

public class VisRectangle {
private int x, y, w, h;
private const int SIZE=30;
private CsharpPats. Rectangle rect;
private bool selected;
private Pen bPen;
private SolidBrush bBrush;
I-----

public VisRectangle(int xp, int yp) {
X = Xp; y =Yyp
w = Sl ZE; h = S| ZE;

saveAsRect () ;
bPen = new Pen(Col or. Bl ack) ;
bBrush = new Sol i dBrush(Col or. Bl ack);

/lused by Menento for saving and restoring state
i nternal CsharpPats. Rectangle rects {

get {
return rect;
set {
x=val ue. X;
y=val ue.y;
w=val ue. w,
h=val ue. h;
saveAsRect () ;
}

public void setSel ected(bool b) {
sel ected = b;

/Il move to new position

public void nove(int xp, int yp) {
X = Xp;
y =Yp
saveAsRect () ;

Copyright © , 2002 by James W Cooper

public void drawm G aphics g) {
//draw rectangl e
g. DrawRect angl e(bPen, x, y, w, h);

if (selected) { / 1 draw handl es

g. Fil Il Rectangl e(bBrush, x + w/ 2, y - 2, , 4);
g. Fill Rectangl e(bBrush, x - 2, y + h/ 2, 4, 4);
g. Fi Il Rect angl e(bBrush, +(w/ 2), y+h-2 4,);

X
X+(W_ 2)1
y +(h/ 2), 4, 4);

g. Fi | | Rect angl e(bBrush,

[/return whether point is inside rectangle

public bool contains(int x, int y) {
return rect.contains (x, y);

}

[]-=-e--
/'l create Rectangle object from new position
private void saveAsRect() {

rect = new CsharpPats. Rectangle (x,y,w, h);
}

We also use the same Rectangle class as we hace devel oped before,
that contains Get and Set properties for the x, y, w, and h values and a

contains method.

Drawing the rectangle is pretty straightforward. Now, let’s look at our
simple Memento class that we use to store the state of a rectangle.

public class Menento {

private int x, y, w, h;

private CsharpPats. Rectangle rect;

private VisRectangl e visRect;

Hf------

public Memento(Vi sRectangl e vrect) {
vi sRect = vrect;
rect = visRect.rects ;

X = rect.x ;
y = rect.y;
W =rect.w
h = rect. h;
}
[]------

public void restore() {
rect.x = x;
rect.y =y,

Copyright © , 2002 by James W Cooper

rect.h h;
rect.w = w,
vi sRect.rects = rect;

}
}
When we create an instance of the Memento class, we passit the

visRectangle instance we want to save, using the init method. It copies
the size and position parameters and saves a copy of the instance of the
visRectangle itself. Later, when we want to restore these parameters,
the Memento knows which instance to which it must restore them, and
it can do it directly, as we see in the restore() method.

The rest of the activity takes place in the Mediator class, where we
save the previous state of the list of drawings as an integer on the undo
list.

public void createRect(int x, int y) {

unpi ck(); /I make sure none is selected

if (startRect) { //if rect button is depressed
i nt count = draw ngs. Count;
caretakr. Add(count); //Save list size
/lcreate a rectangle
Vi sRectangl e v = new Vi sRectangl e(x, Yy);

drawi ngs. Add(v);//add elenent to |ist

startRect = fal se; /1 done with rectangle
rect.set Sel ected(false); /Tunclick button
canvas. Refresh();

}

el se
/1if not pressed look for rect to select
pi ckRect (x, VY);

}

}

On the other hand, if you click on the panel when the Rectangle button
has not been selected, you are trying to select an existing rectangle.
Thisis tested here.
public void pickRect(int x, int y) {

//save current selected rectangle

//to avoi d doubl e save of undo

int lastPick = -1;

if (selectedlndex >= 0) {

| ast Pi ck = sel ect edl ndex;

unpi ck(); //undo any sel ection

Copyright © , 2002 by James W Cooper

357

//see if one is being selected
for (int i = 0; i< drawi ngs. Count; i++) {
Vi sRectangl e v = (VisRectangl e)drawi ngs[i];
if (v.contains(x, y)) {
//did click inside a rectangle

sel ectedl ndex = i; //save it
rect Sel ected = true;
if (selectedlndex != lastPick) {

//but don't save twice
car et akr. remenber Posi tion(v);

}
v. set Sel ected(true); //turn on handl es
repaint(); //and redraw

}

The Caretaker class remembers the previous position of the rectangle
in a Memento object and adds it to the undo list.
public void renmenberPosition(VisRectangle vr) {

Merment o nmem = new Menmento (vr);
undoLi st. Add (nmem;

}

The Caretaker class manages the undo list. Thislist is a Collection of
integers and Memento objects. If the value is an integer, it represents
the number of drawings to be drawn at that instant. If it is a Memento,
it represents the previous state of a visRectangle that is to be restored.
In other words, the undo list can undo the adding of new rectangles and
the movement of existing rectangles.

Our undo method simply decides whether to reduce the drawing list by
one or to invoke the restore method of a Memento. Since the undo list
contains both integer objects and Memento objects, we cast the list
element to a Memento type, and if thisfails, we catch the cast
exception and recognize that it will be a drawing list element to be
removed.
public void undo() {

i f(undoList. Count > 0) {

int last = undoList. Count -1;

obj ect obj = undoList[last];

try{
Menent o mem = (Menent 0) obj ;
remove(mem ;

Copyright © , 2002 by James W Cooper

catch (Exception) {
removeDr awi ng() ;

}
undoLi st . RenoveAt (| ast);
}

The two remove methods either reduce the number of drawings or
restore the position of arectangle.

public void removeDraw ng() {
dr awi ngs. RenoveAt (draw ngs. Count -1);

public void renove(Menento nem {
memrestore ();
}

A Cautionary Note

Whileit is helpful in this example to call out the differences between a
Memento of arectangle position and an integer specifying the addition
of anew drawing, thisisin general an absolutely terrible example of
OO programming. Y ou should never need to check the type of an
object to decide what to do with it. Instead, you should be able to call
the correct method on that object and have it do the right thing.

A more correct way to have written this example would be to have
both the drawing element and the Memento class both have their own
restore methods and have them both be members of a general Memento
class (or interface). We take this approach in the State example pattern
in the next chapter.

Command Objectsin the User Interface

We can aso use the Command pattern to help in ssmplifying the code
in the user interface. Y ou can build atoolbar and create
ToolbarButtons in C# using the IDE, but if you do, it is difficult to
subclass them to make them into command objects. There are two
possible solutions. First, you can keep aparallel array of Command
objects for the RectButton, the UndoButton, and the Clear button and
call them in the toolbar click routine.

Y ou should note, however, that the toolbar buttons do not have an
Index property, and you cannot just ask which one has been clicked by

Copyright © , 2002 by James W Cooper

359

itsindex and relate it to the command array. Instead, we can use the
GetHashCode property of each tool button to get a unique identifier for
that button and keep the corresponding command objectsin a
Hashtable keyed off these button hash codes. We construct the
Hashtable as follows.

private void init() {
med = new Medi at or (pic); [/ create Mediator
commands = new Hashtabl e(); //and Hash table
//create the comand objectsb
Rect Button rbutn new Rect Button(mnmed, tbar.Buttons[0]);
UndoButt on ubutn new UndoButton(ned, tbar.Buttons[1]);
CrButton clrbutn = new O rButton(med);
nmed. r egi st er Rect Button (rbutn);
//add themto the hashtabl e using the button hash val ues
commands. Add(bt Rect . Get HashCode(), rbutn);
conmands. Add(bt Undo. Get HashCode(), ubutn);
conmands. Add(bt C ear. Get HashCode(), clrbutn);
pi c. Pai nt += new Pai nt Event Handl er (pai nt Handl er);

}
Then the command interpretation devolves to just a few lines of code,

since all the buttons call the same click event already. We can use these
hash codes to get the right command object when the buttons are
clicked.
private void tbar_ButtonC ick(object sender,
Tool BarButtonCl i ckEvent Args e) {
Tool BarButton tbutn = e.Button ;

Command cond = (Command) conmands|t but n. Get HashCode ()];
cond. Execute ();

}
Alternatively, you could create the toolbar under IDE control but add

the tool buttons to the collection programmatically and use derived
buttons with a Command interface instead. We illustrate this approach
in the State pattern.

The RectButton command class is where most of the activity takes
place.

public class RectButton : Conmand {
private Tool BarButton bt;
private Mediator mned;
[]=------

public RectButton(Mediator nd, Tool BarButton tbh) {
med = nd;
bt = tb;

}

Copyright © , 2002 by James W Cooper

f------
public void setSel ected(bool sel) {
bt. Pushed = sel;

public void Execute() {
i f(bt.Pushed)
med. st art Rectangle ();

}

Handling M ouse and Paint Events

We aso must catch the mouse down, up, and move events and pass
them on to the Mediator to handle.

private void pic_MuseDown(object sender, MuseEventArgs e) {
nmouse_down = true;
nmed. createRect (e. X, e.Y);

}
[]--=---

private void pic_MuseUp(object sender, MuseEventArgs e) {
mouse_down = fal se;

private void pic_MuseMve(object sender, MuseEventArgs e) {
i f (mouse_down)
med. drag(e. X , e.VY);

Whenever the Mediator makes a change, it calls for arefresh of the
picture box, which in turn calls the Paint event. We then pass this back
to the Mediator to draw the rectangles in their new positions.

private void paintHandl er (obj ect sender, PaintEventArgs e) {
Graphics g = e.Gaphics ;
med. rebDraw (Qg);

}

The complete class structure is diagrammed in Figure 26-4

Copyright © , 2002 by James W Cooper

361

cinterfaces Caretaker
Command Mediator 0.1 (rom defaul]
firom defaul] 0.1 from defaul -caretaker - drawings
q Z_l\)‘ E:? el 1 -undoList
/ | AN
|

N

undo list consistsgmm_
~, 0. \selectedRectangle of Mementos

i AN -
ClearButton RectButton UndoButton visRectangle
from default) from default) firom default) from default)

vect TiA N Memento
firotn defaulf)

{local to package}

+hlemento
+rastore

Figure26-4 — The UML diagram for the drawing program using a Memento

Consequences of the Memento

The Memento provides away to preserve the state of an object while
preserving encapsulation in languages where this is possible. Thus,
data to which only the Originator class should have access effectively
remain private. It aso preserves the smplicity of the Originator class
by delegating the saving and restoring of information to the Memento
class.

On the other hand, the amount of information that a Memento has to
save might be quite large, thus taking up fair amounts of storage. This
further has an effect on the Caretaker class that may have to design
strategies to limit the number of objects for which it saves state. In our
simple example, we impose no such limits. In cases where objects
change in a predictable manner, each Memento may be able to get by
with saving only incremental changes of an object’s state.

In our example code in this chapter, we have to use not only the
Memento but the Command and Mediator patterns as well. This
clustering of several patternsis very common, and the more you see of
good OO programs, the more you will see these pattern groupings.

Thought Question

Mementos can also be used to restore the state of an object when a
process fails. If a database update fails because of a dropped network

Copyright © , 2002 by James W Cooper

362

connection, you should be able to restore the data in your cached data
to their previous state. Rewrite the Database class in the Fagade chapter
to alow for such failures.

Programs on the CD-ROM

\ Menent o Memento example

Copyright © , 2002 by James W Cooper

27. The Observer Pattern

In this chapter we discuss how you can use the Observer pattern to
present data in several forms at once. In our new, more sophisticated
windowing world, we often would like to display datain more than one
form at the same time and have al of the displays reflect any changes
in that data. For example, you might represent stock price changes both
asagraph and as atable or list box. Each time the price changes, we'd
expect both representations to change at once without any action on

our part.

We expect this sort of behavior because there are any number of
Windows applications, like Excel, where we see that behavior. Now
there is nothing inherent in Windows to allow this activity, and, as you
may know, programming directly in Windows in C or C++ is pretty
complicated. In C#, however, we can easily use the Observer Design
Pattern to make our program behave this way.

The Observer pattern assumes that the object containing the datais
separate from the objects that display the data and that these display
objects observe changes in that data. Thisis simple to illustrate, as we
seein Figure 27-1.

Graphic List
Display Display

Data

User

Figure 27-1- Data are displayed as a list and in some graphical mode.

Copyright © , 2002 by James W Cooper

When we implement the Observer pattern, we usualy refer to the data
as the Subject and each of the displays as an Observer. Each of these
observers registers its interest in the data by calling a public method in
the Subject. Then each observer has a known interface that the subject
calls when the data change. We could define these interfaces as
follows.
public interface Cbserver {

voi d sendNotify(string nessage);

public interface Subject {
void registerlnterest(Qoserver obs);
}

The advantages of defining these abstract interfacesis that you can
write any sort of class objects you want as long as they implement
these interfaces and that you can declare these objects to be of type
Subject and Observer no matter what else they do.

Watching Colors Change

Let's write a simple program to illustrate how we can use this powerful
concept. Our program shows a display form containing three radio
buttons named Red, Blue, and Green, as shown in Figure 27-2.

=T

— Colors

{~ Green
" Blue

Figure27-2 — A simple control panel to createred, green, or blue “data”

Now our main form class implements the Subject interface. That
means that it must provide a public method for registering interest in
the data in this class. This method is the registerInterest method, which
just adds Observer objectsto an ArrayList.

Copyright © , 2002 by James W Cooper

public void registerlnterest(Qoserver obs) {
observers. Add (obs);
}

Now we create two observers, one that displays the color (and its
name) and another that adds the current color to alist box. Each of
these is actually a Windows form that also implements the Observer
interface. When we create instances of these forms, we pass to them
the base or startup form as an argument. Since this startup form is
actually the Subject, they can register their interest in its events. So the
main form’ s initialization creates these instances and passes them a
reference to itself.

Li st Obs | obs = new ListObs (this);

| obs. Show ();
Col Gbserver col Cbs = new Col Cbserver (this);

col Gbs. Show() ;
Then, when we create our ListObs window, we register our interest in
the data in the main program.
public ListQbs(Subject subj) {

InitializeConponent();
init(subj);

public void init(Subject subj) {
subj .registerlinterest (this);
}

When it receives a sendNotify message from the main subject program,
all it hasto do is to add the color name to the lit.

public void sendNotify(string nmessage){
| sCol ors. | tens. Add(nessage) ;
}

Our color window is also an observer, and it has to change the
background color of the picture box and paint the color name using a
brush. Note that we change the picture box’ s background color in the
sendNotify event, and change the text in a paint event. The entire class
is shown here.
public class Col Cbserver : Form OCbserver{

private Container conponents = null;

private Brush bBrush;

private System W ndows. Forns. Pi ct ur eBox pi c;
private Font fnt;

Copyright © , 2002 by James W Cooper

private Hashtable col ors;
private string col Nane;

public Col Cbserver (Subject subj) {
InitializeConponent();
init(subj);

}

[]-----

private void init(Subject subj) {
subj.registerinterest (this);
fnt = new Font("arial", 18, FontStyle.Bold);
bBrush = new Sol i dBrush(Col or. Bl ack);
pi c. Pai nt += new Pai nt Event Handl er (pai nt Handl er);
// make Hashtable for converting color strings
colors = new Hashtable ();
colors. Add("red", Color.Red);
colors. Add ("blue", Color.Blue);
colors. Add ("green", Color.Geen);

col Nane = "";

public void sendNotify(string nessage) {
col Nane = nessage;
nmessage = nessage. ToLower ();
//convert color string to col or object
Col or col = (Col or)col ors[message];
pi c. BackCol or = col;

private void paintHandl er (obj ect sender,
Pai nt Event Args e) {
Graphics g = e. Graphics ;
g. Drawst ri ng(col Nanme, fnt, bBrush, 20, 40)
}

Note that our sendNotify event receives a string representing the color
name, and that we use a Hashtable to convert these strings to actual
Color objects.

Meanwhile, in our main program, every time someone clicks on one of
the radio buttons, it calls the sendNotify method of each Observer who
has registered interest in these changes by simply running through the

objects in the Observer’s Collection.

private void opButton_dick(object sender, EventArgs e) {

Radi oButton but = (Radi oButton)sender;

for(int i=0; i< observers.Count ; i++) {
bserver obs = ((Qbserver)observers[i];
obs. sendNoti fy (but. Text);

Copyright © , 2002 by James W Cooper

367

}
}

In the case of the ColorForm observer, the sendNotify method changes
the background color and the text string in the form Picturebox. In the
case of the ListForm observer, however, it just adds the name of the
new color to the list box. We see the fina program running in Figure
27-3

Figure27-3 — The data control panel generates data that is displayed
simultaneously asa colored panel and asa list box. Thisisa candidate for an
Observer pattern.

TheMessagetothe Media

Now, what kind of notification should a subject send to its observers?
In this carefully circumscribed example, the notification message is the
string representing the color itself. When we click on one of the radio
buttons, we can get the caption for that button and send it to the
observers. This, of course, assumes that all the observers can handle
that string representation. In more realistic situations, this might not
always be the case, especialy if the observers could also be used to
observe other data objects. Here we undertake two simple data
Conversions.

Copyright © , 2002 by James W Cooper

1. We get the label from the radio button and send it to the
observers.

2. We convert the label to an actual color in the ColObserver.

In more complicated systems, we might have observers that demand
specific, but different, kinds of data. Rather than have each observer
convert the message to the right data type, we could use an
intermediate Adapter class to perform this conversion.

Another problem observers may have to deal with is the case where the
data of the central subject class can change in several ways. We could
delete points from alist of data, edit their values, or change the scale of
the data we are viewing. In these cases we either need to send different
change messages to the observers or send a single message and then
have the observer ask which sort of change has occurred.

| Subject : Observer |
| Fregisterintersst{obs) | [¥senalotirmesg) |
_______________________________ . e
I i]

ObsForm listOhs ColrForm

Figure 28-4 — The Observer interface and Subject interface implementation of
the Observer pattern

Consequences of the Observer Pattern

Observers promote abstract coupling to Subjects. A subject doesn’t
know the details of any of its observers. However, this has the potential
disadvantage of successive or repeated updates to the Observers when
there are a series of incremental changes to the data. If the cost of these
updates is high, it may be necessary to introduce some sort of change
management so the Observers are not notified too soon or too
frequently.

Copyright © , 2002 by James W Cooper

369

When one client makes a change in the underlying data, you need to
decide which object will initiate the notification of the change to the
other observers. If the Subject notifies al the observers when it is
changed, each client is not responsible for remembering to initiate the
notification. On the other hand, this can result in a number of small
successive updates being triggered. If the clients tell the Subject when
to notify the other clients, this cascading notification can be avoided,
but the clients are left with the responsibility of telling the Subject
when to send the notifications. If one client “forgets,” the program
simply won't work properly.

Finally, you can specify the kind of notification you choose to send by
defining a number of update methods for the Observers to receive,
depending on the type or scope of change. In some cases, the clients
will thus be able to ignore some of these notifications.

Programs on the CD-ROM

\ Cbserver Observer example

Copyright © , 2002 by James W Cooper

370

28. The State Pattern

The State pattern is used when you want to have an object represent the
state of your application and switch application states by switching
objects. For example, you could have an enclosing class switch between a
number of related contained classes and pass method calls on to the
current contained class. Design Patter ns suggests that the State pattern
switches between internal classes in such away that the enclosing object
appearsto changeitsclass. In C#, at least, thisis abit of anexaggeration,
but the actual purpose to which the classes are applied can change
significantly.

Many programmers have had the experience of creating a class that
performs sightly different computations or displays different information
based on the arguments passed into the class. This frequently leads to
some types of select case or if-else statements inside the class that
determine which behavior to carry out. It is this inelegance that the State
pattern seeks to replace.

Sample Code

Let’s consider the case of a drawing program similar to the one we
developed for the Memento class. Our program will have toolbar buttons
for Select, Rectangle, Fill, Circle, and Clear. We show this program in
Figure 28-1

Copyright © , 2002 by James W Cooper

371

=

Figure28-1 — A simple drawing program we will use for illustrating the State
pattern

Each one of the tool buttons does something rather different when it is
selected and you click or drag your mouse across the screen. Thus, the
state of the graphical editor affects the behavior the program should
exhibit. This suggests some sort of design using the State pattern.

Initially we might design our program like this, with a Mediator managing
the actions of five command buttons, as shown in Figure 28-2

Copyright © , 2002 by James W Cooper

372

Pick

—» Mediator

Fill

Circle

Clear

Figure 28-2— One possible interaction between the classes needed to support the
simple drawing program

However, thisinitial design puts the entire burden of maintaining the state
of the program on the Mediator, and we know that the main purpose of a
Mediator is to coordinate activities between various controls, such as the
buttons. Keeping the state of the buttons and the desired mouse activity
inside the Mediator can make it unduly complicated, as well as leading to
aset of If or Select tests that make the program difficult to read and
maintain.

Further, this set of large, monoalithic conditional statements might have to
be repeated for each actionthe Mediator interprets, such as mouseUp,
mouseDrag, rightClick, and so forth. This makes the program very hard to
read and maintain.

Instead, let’ s analyze the expected behavior for each of the buttons.

1. If the Select button is selected, clicking inside adrawing
element should cause it to be highlighted or appear with

Copyright © , 2002 by James W Cooper

373

“handles.” If the mouse is dragged and a drawing element is
aready selected, the element should move on the screen.

2. If the Rect button is selected, clicking on the screen should
cause a new rectangle drawing element to be created.

3. If the Fill button is selected and a drawing element is already
selected, that element should be filled with the current color. If
no drawing is selected, then clicking inside a drawing should
fill it with the current color.

4. If the Circle button is selected, clicking on the screen should
cause a hew circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are
removed.

There are some common threads among severa of these actions we should
explore. Four of them use the mouse click event to cause actions. One uses
the mouse drag event to cause an action. Thus, we really want to create a
system that can help us redirect these events based on which button is
currently selected.

Let’s consider creating a State object that handles mouse activities.

public class State {
| keeps state of each button
protected Mediator ned;
public State(Mediator nmd) {
med = nd; |/ save reference to nediator
}

public virtual void nmouseDown(int x, int y) {}
public virtual void nouseUp(int x, int y) { }
public virtual void nouseDrag(int x, int y) {}

}

Note that we are creating an actual class here with empty methods, rather
than an interface. This allows us to derive new State objects from this
class and only have to fill in the mouse actions that actually do anything
for that case. Then we'll create four derived State classes for Pick, Rect,
Circle, and Fill and put instances of all of them inside a StateM anager

Copyright © , 2002 by James W Cooper

374

class that sets the current state and executes methods on that state object.

In Design Patterns, this StateManager classis referred to as a Context.
This object isillustrated in Figure 28-3.

StateManager
currentState
[L
Pick Rect Fill Circle
State

Figure 28-3— A StateM anager classthat keepstrack of the current state

A typical State object simply overrides those event methods that it must
handle specially. For example, this is the complete Rectangle state object.

Note that since it only needs to respond to the mouseDown event, we
don’'t have to write any code at al for the other events.

public class RectState :State

public Rect State(Mediator md):base (rmd) {}
[]-----

public override void nouseDown(int x,

Copyright © , 2002 by James W Cooper

Vi sRectangl e vr = new Vi sRect angl e(x,
nmed. addDrawi ng (vr);

375

}

The RectState object ssimply tells the Mediator to add a rectangle drawing
to the drawing list. Similarly, the Circle state object tells the Mediator to
add acircle to the drawing list.
public class CircleState : State {
public CircleState(Mediator nd):base (md){ }
I-----
public override void nouseDowmn(int x, int y) {
VisCrcle ¢ = new VisCrcle(x, y);
nmed. addDrawi ng (c);

}

The only tricky button is the Fill button because we have defined two
actions for it.

1. If an object is already selected, fill it.
2. If the mouseis clicked inside an object, fill that one.

In order to carry out these tasks, we need to add the selectOne method to
our base State interface. This method is called when each tool button is
selected.

public class State {
| keeps state of each button
protected Medi at or ned;
public State(Mediator nmd) {
nmed = nd; // save reference to nedi ator
}

public virtual void nouseDown(int x, int y) {}
public virtual void nmouseUp(int x, int y) { }
public virtual void nouseDrag(int x, int y) {}
public virtual void selectOne(Drawing d) {}

}

The Drawing argument is either the currently selected Drawing or null if
none is selected. In this ssmple program, we have arbitrarily set the fill
color to red, so our Fill state class becomes the following.

Copyright © , 2002 by James W Cooper

376

public class Fill State : State {
public Fill State(Medi ator nmd): base(nd) { }

[l-----
public override void nouseDowmn(int x, int y) {
/IFill drawing if you click inside one
int i = med.findDraw ng(x, VY);
if (i >=0) {
Drawi ng d = med. get Drawi ng(i);
d.setFill(true); //fill draw ng
}
}
[]-----
public override void selectOne(Drawing d) {
/1fill drawing if selected
d.setFill (true);
}

Switching Between States

Now that we have defined how each state behaves when mouse events are
sent to it, we need to examine how the StateManager switches between
states. We create an instance of each state, and then we simply set the
currentState variable to the state indicated by the button that is selected.

public class StateManager {
private State current State;
private RectState rState;
private ArrowState aState;
private CircleState cState;
private Fill State fState;

public StateManager (Medi at or ned) {
//create an instance of each state

rState = new Rect St at e(ned);
cState = new CircleState(ned);
aState = new ArrowState(ned);
fState = new Fill State(ned);

//and initialize them
//set default state
currentState = aState;

Copyright © , 2002 by James W Cooper

377

Note that in this version of the StateManager, we create aninstance of
each state during the constructor and copy the correct one into the state
variable when the set methods are called. It would aso be possible to
create these states on demand. This might be advisable if there are alarge
number of states that each consume a fair number of resources.

The remainder of the state manager code simply calls the methods of
whichever state object is current. Thisis the critical piece—thereis no
conditional testing. Instead, the correct state is already in place, and its
methods are ready to be called.

public void nouseDown(int x, int y) {
current St at e. mouseDown (X, y);

public void nouseUp(int x, int y) {
current State. nouseUp (x, y);

public void nouseDrag(int x, int y) {
current St at e. mouseDrag (X, Vy);
}

public void sel ectOne(Drawi ng d) {
current State. sel ect One (d);
}

How the Mediator I nteractswith the State Manager

We mentioned that it is clearer to separate the state management from the
Mediator’ s button and mouse event management. The Mediator is the
critical class, however, since it tells the StateManager when the current
program state changes. The beginning part of the Mediator illustrates how
this state change takes place. Note that each button click calls one of these
methods and changes the gate of the application. The remaining
statements in each method simply turn off the other toggle buttons so only
one button at atime can be depressed.

public class Mediator {
private bool startRect;
private int sel ectedlndex;

Copyright © , 2002 by James W Cooper

private RectButton rectb;
private bool dSel ected;

private ArrayList draw ngs;
private ArraylList undoli st;
private RectButton rButton;
private FillButton filButton;
private CircleButton circButton;
private PickButton arrowButton;
private PictureBox canvas;
private int sel ectedDraw ng;
private StateManager stMr;

[]-----

public Medi at or (Pi ctureBox pic)
startRect = fal se;
dSel ected = fal se;
drawi ngs = new ArraylList();
undoLi st = new ArraylList();
stMgr = new St at eManager (this);
canvas = pic;
sel ectedDrawi ng = -1;

}

[]-----

public void startRectangle() {
st Myr. set Rect () ;
arrowButt on. set Sel ect ed(fal se);
circButton. set Sel ect ed(fal se);
filButton. set Sel ected(fal se);

public void startCGrcle() {
stMgr.setCircle();
rectb. set Sel ected(fal se);
arrowButt on. set Sel ected(fal se);
filButton. setSel ected(fal se);

The ComdToolBarButton

378

In the discussion of the Memento pattern, we created a series of button Command
objects paraleling the toolbar buttons and keep them in a Hashtable to be caled

when the toolbar button click event occurs. However, a powerful alternative osto
create a ComdT ool BarButton class which implements the Command interface as

Copyright © , 2002 by James W Cooper

379

well as being a ToolBarButton. Then, each button can have an Execute method
which defines its purpose. Here is the base class

public class CondTool BarButton : Tool BarButton , Command {
private System Conponent Model . Cont ai ner conponents = nul |;
protected Mediator ned;
protected bool selected,;
public CondTool BarButton(string caption, Mediator nd)

{
InitializeConponent();
med = nd;
this. Text =caption;

}

[]------

public void setSel ected(bool b) {
sel ected = b;
i f(!selected)
this. Pushed =fal se;

public virtual void Execute() {

}

Note that the Execute method is empty in this base class, but is virtual so
we can override it in each derived class. In this case, we cannot use the
IDE to create the toolbar, but can simply add the buttons to the tool bar
programmatically:

private void init() {
/lcreate a Medi ator
med = new Medi at or (pic);
//create the buttons
rctButton = new Rect Button(ned);
arowButton = new Pi ckButton(ned);
circButton = new Gircl eButton(ned);
flButton = new Fill Button(ned);
undoB = new UndoButt on(nmed);
clrb = new O earButton(ned);
//add the buttons into the tool bar
t Bar . But t ons. Add(ar owBut t on) ;
t Bar. Buttons. Add(rctButton);
t Bar. Buttons. Add(ci rcButton);
t Bar. Butt ons. Add(f | Butt on);
/linclude a separator

Copyright © , 2002 by James W Cooper

Tool BarButton sep =new Tool Bar Button();
sep. Styl e = Tool BarButtonStyl e. Separ at or;
t Bar. Butt ons. Add(sep);

t Bar . Butt ons. Add(undoB) ;

t Bar. Buttons. Add(cl rb);

}

Then we can catch al the toolbar button click eventsin a single method and call
each button’ s Execute method.

private void tBar_Buttondick(object sender,
Tool Bar Butt onCl i ckEvent Args e) {
Conmand cond = (Command)e. Button ;
cond. Execute ();

}

The class diagram for this program illustrating the State pattern in this
application isillustrated in two parts. The State section is shown in Figure
28-4

State
fromn defaul)
+mouselown
+mouselrag

+mousellp
+select \

ArrowState CircleState FillState RectState
from defaut) firorin dlefaut firom defaul] frorn defauti

fState/D.J rStatefD.J

AState \0_1 \\cstate 0.1

) ed
ED?\:I n{mled
-med Mediator

0 " fromdefaulf
sthigr

StateManager
firorn default)

Figure 28-4 — The StateM anager and the Mediator

Copyright © , 2002 by James W Cooper

381

The connection of the Mediator to the buttons is shown in Figure 28-5.

| , -
! , D . .
ClearButton RectButton * FillButton -~ bikBution
fromn defauf] frorn defaul] from defaulf

ffrom defautt)

;J .
! \
UndoButton CircleButton
firorn defauli frarn defaulf]

0.1 ‘\l.{nﬁd?)j}l mecd
Mediator
firom defauly

Figure 28-5 — Interaction between the buttons and the Mediator

Handling the Fill State

The Fill State object is only dightly more complex because we have to
handle two cases. The program will fill the currently selected object if one
exists or fill the next one that you click on. This means there are two State
methods we have to fill in for these two cases, as we see here.

public class Fill State : State {
public Fill State(Medi ator nmd): base(nmd) { }

[1-----
public override void nouseDown(int x, int y) {
/IFill drawing if you click inside one
int i = nmed.findDraw ng(x, y);
if (i >=0) {
Drawi ng d = med. get Drawi ng(i);
d.setFill(true); //fill draw ng
}

Copyright © , 2002 by James W Cooper

382

public override void selectOne(Drawing d) {
/1fill drawing if selected
d.setFill (true);

Handling the Undo List

Now we should be able to undo each of the actions we carry out in this
drawing program, and this means that we keep them in an undo list of
some kind. These are the actions we can carry out and undo.

1. Creating arectangle

2. Creating acircle

3. Moving arectangle or circle
4. Filling arectangle or circle

In our discussion of the Memento pattern, we indicated that we would use
a Memento object to store the state of the rectangle object and restore its
position from that Memento as needed. This is generaly true for both
rectangles and circles, since we need to save and restore the same kind of
position information. However, the addition of rectangles or circles and
the filling of various figures are also activities we want to be able to undo.
And, aswe indicated in the previous Memento discussion, the idea of
checking for the type of object in the undo list and performing the correct
undo operation is aredly terrible idea.

[lreally terrible progranm ng approach

obj ect obj = undoList[last];

try{
Memento nem = (Menent o) obj ;
renmove(men ;

catch (Exception) {
r enoveDr awi ng() ;
}

Copyright © , 2002 by James W Cooper

Instead, let’ s define the Memento as an interface.

public interface Menmento {
void restore();
}

Then all of the objects we add into the undo list will implement the
Memento interface and will have a restore method that performs some
operation. Some kinds of Mementos will save and restore the coordinates
of drawings, and others will smply remove drawings or undo fill states.

First, we will have both our circle and rectangle objects implement the
Drawing interface.

public interface Drawing {
voi d set Sel ect ed(bool b);
voi d draw Graphi cs Q);
void nove(int xpt, int ypt);
bool contains(int x,int y);
voi d setFill (bool b);
Cshar pPat s. Rect angl e get Rects();
voi d set Rect s(Cshar pPats. Rectangl e rect);

}

The Memento we will use for saving the state of a Drawing will be similar
to the one we used in the Memento chapter, except that we specifically
make it implement the Memento interface.
public class Drawienento : Menento {

private int x, y, w, h;

private Rectangle rect;
private Draw ng visDraw,

[]-=-----

public DrawMenent o(Draw ng d) {
vi sDraw = d;
rect = visDraw getRects ();
X = rect.x;
y =rect.y ;
w = rect.w
h = rect.h;

}

[]-----

public void restore() {

Copyright © , 2002 by James W Cooper

//restore the state of a draw ng object
rect.x = x;

rect.y =vy;

rect.h h;

rect.w = w

vi sDraw. set Rects(rect);

Now for the case where we just want to remove a drawing from the list to
be redrawn, we create a class to remember that index of that drawing and

remove it when its restore method is called.

public class Drawl nstance : Menmento {
private int intg;
private Mediator ned;
[1-----
public Draw nstance(int intg, Mediator nd)
this.intg = intg;

med = nd;
}
[]-----
public int integ {
get { return intg; }
}
[l-----

public void restore() {
nmed. r eroveDr awi ng(i nt Q) ;
}

}

We handle the FillMemento in just the same way, except that its restore

method turns off the fill flag for that drawing element.

public class Fill Menento : Menento {
private int index;
private Mediator ned;
[]-----
public Fill Memento(int dindex, Mediator md) {
i ndex = di ndex;
med = nd;

public void restore() {

Copyright © , 2002 by James W Cooper

Drawi ng d = med. get Dr awi ng(i ndex) ;
d.setFill(fal se);

The VisRectangle and VisCircle Classes

We can take some useful advantage of inheritance in designing our
visRectangle and visCircle classes. We make visRectangle implement the
Drawing interface and then have visCircle inherit from visRectangle. This
allows us to reuse the setSelected, setFill, and move methods and the rects
properties. In addition, we can split off the drawHandle method and use it
in both classes. Our new visRectangle class looks like this.

public class VisRectangle : Draw ng {
protected int x, y, w, h;
private const int SIZE=30;
private CsharpPats. Rectangle rect;
protected bool selected;
protected bool filled;
protected Pen bPen;
protected SolidBrush bBrush, rBrush;

[]-----

public VisRectangle(int xp, int yp) {
X = Xp; y = Yps
w = Sl ZE; h = Sl ZE;
saveAsRect () ;
bPen = new Pen(Col or. Bl ack);
bBrush = new Sol i dBrush(Col or. Bl ack) ;
rBrush = new Sol i dBrush (Color.Red);

}

[]-----

/lused by Menento for saving and restoring state
public CsharpPats. Rectangl e get Rects() {
return rect;

}
[]-----
public void setRects(CsharpPats. Rectangle val ue) {
x=val ue. Xx; y=val ue.y;
w=val ue. w; h=val ue. h;
saveAsRect () ;
}

Copyright © , 2002 by James W Cooper

public void setSel ected(bool b) {
selected = b;

/I nove to new position

public void nove(int xp, int yp) {
X = Xp; y =yp;
saveAsRect () ;

public virtual void draw(G aphics g) {
/ldraw rectangl e
g. DrawRect angl e(bPen, x, y, w, h);
if(filled)
g.Fill Rectangle (rBrush, x,y,w h);
dr awHandl es(g) ;
}
[]-----
public void drawHandl es(G aphics g) {
if (selected) { /I draw handl es
g. Fill Rectangl e(bBrush, x + w/ 2, vy
g. Fill Rectangl e(bBrush, x - 2, y + h
g. Fi | | Rectangl e(bBrush, x + (w/ 2),
y +h- 2 4, 4);
g. Fil Il Rectangl e(bBrush, x + (w - 2),
y +(h/ 2), 4, 4);

-2, 4,);
/2, 4,);

/lreturn whether point is inside rectangle
public bool contains(int x, int y) {
return rect.contains (x, y);

/'l create Rectangle object from new position
protected void saveAsRect () {
rect = new CsharpPats. Rectangle (x,y,w h);

}

public void setFill(bool b) {
filled = b;

}

Copyright © , 2002 by James W Cooper

387

However, our visCircle class only needs to override the draw method and
have a dlightly different constructor.
public class VisCircle : VisRectangle {
private int r;
public VisGrcle(int x, int y):base(x, y) {
r = 15; w= 30; h = 30;
saveAsRect () ;

public override void draw G aphics g) {
if (filled) {
g.FillEllipse(rBrush, x, y, w, h);

}
g. Drawkl | i pse(bPen, x, y, w, h);
if (selected){

dr awHandl es(g) ;

}

}
}
Note that since we have made the x, y, and filled variables Protected, we
can refer to them in the derived visCircle class without declaring them at
al.

M ediatorsand the God Class
One real problem with programs with this many objects interacting is
putting too much knowledge of the system into the Mediator so it becomes
a“god class.” In the preceding example, the Mediator communicates with
the six buttons, the drawing list, and the StateManager. We could write
this program another way so that the button Command objects
communicate with the StateManager and the Mediator only deals with the
buttons and the drawing list. Here, each button creates an instance of the
required state and sends it to the StateManager. This we will leave as an
exercise for the reader.

Copyright © , 2002 by James W Cooper

Consequences of the State Pattern

1.

The State pattern creates a subclass of a basic State object for each
state an application can have and switches between them as the
application changes between states.

Y ou don’'t need to have along set of conditional if or switch
statements associated with the various states, since each is
encapsulated in aclass.

Since there is no variable anywhere that specifies which state a
program is in, this approach reduces errors caused by programmers
forgetting to test this state variable

Y ou could share state objects between several parts of an application,
such as separate windows, as long as none of the state objects have
specific instance variables. In this example, only the Fill State class has
an instance variable, and this could be easily rewritten to be an
argument passed in each time.

This approach generates a number of small class objects but in the
process simplifies and clarifies the program.

In C#, dl of the States must implement a common interface, and they
must thus al have common methods, although some of those methods
can be empty. In other languages, the states can be implemented by
function pointers with muchless type checking and, of course, greater
chance of error.

State Trangtions

The transition between states can be specified internally or externally. In
our example, the Mediator tells the StateManager when to switch between
states. However, it is aso possible that each state can decide automatically
what each successor state will be. For example, when arectangle or circle
drawing object is created, the program could automatically switch back to
the Arrow-object State.

Copyright © , 2002 by James W Cooper

389

Thought Questions

1. Rewritethe StateManager to use a Factory pattern to produce
the states on demand.

2. While visua graphics programs provide obvious examples of
State patterns, server programs can benefit by this approach.
Outline a simple server that uses a state pattern.

Programs on the CD-ROM
\State state drawing program

Copyright © , 2002 by James W Cooper

390

29. The Strategy Pattern

The Strategy pattern is much like the State pattern in outline but a little
different in intent. The Strategy pattern consists of a number of related
algorithms encapsulated in a driver class called the Context. Your client
program canselect one of these differing algorithms, or in some cases, the
Context might select the best one for you. The intent is to make these
algorithms interchangeable and provide a way to choose the most
appropriate one. The difference between State and Strategy is that the user
generally chooses which of severa strategies to apply and that only one
strategy at atimeislikely to be instantiated and active within the Context
class. By contrast, as we have seen, it is possible that all of the different
States will be active at once, and switching may occur frequently between
them. In addition, Strategy encapsulates several agorithms that do more or
less the same thing, whereas State encapsulates related classes that each do
something somewhat differently. Finally, the concept of transition

between different states is completely missing in the Strategy pattern.

M otivation

A program that requires a particular service or function and that has
several ways of carrying out that function is a candidate for the Strategy
pattern. Programs choose between these algorithms based on
computational efficiency or user choice. There can be any number of

strategies, more can be added, and any of them can be changed at any
time.

There are a number of casesin programs where we'd like to do the same
thing in severa different ways. Some of these are listed in the Smalltalk
Companion.

Save files in different formats.

Compress files using different algorithms

Copyright © , 2002 by James W Cooper

391

Capture video data using different compression schemes.
Use different line-breaking strategies to display text data.

Plot the same data in different formats:. line graph, bar chart, or
pie chart.

In each case we could imagine the client program telling a driver module
(Context) which of these strategies to use and then asking it to carry out
the operation.

The idea behind Strategy is to encapsulate the various strategies in asingle
module and provide a simple interface to allow choice between these
strategies. Each of them should have the same programming interface,
although they need not all be members of the same class hierarchy.
However, they do have to implement the same programming interface.

Sample Code

Let’s consider a simplified graphing program that can present data as a
line graph or a bar chart. We'll start with an abstract PlotStrategy class and
derive the two plotting classes from it, as illustrated in Figure 29-1.

Plot
Strategy

o

LinePlot BarPlot
Strategy Strategy

Figure29-1 — Two instance of a PlotStrategy class

Our base PlotStrategy class is an abstract class containing the plot routine
to befilled in in the derived strategy classes. It also contains the max and

Copyright © , 2002 by James W Cooper

392

min computation code, which we will use in the derived classes by
containing an instance of this class.

public abstract class PlotStrategy {
public abstract void plot(float[] x, float[] vy);
}

Then of the derived classes must implement a method called plot with two
float arrays as arguments. Each of these classes can do any kind of plot
that is appropriate.

The Context

The Context class is the traffic cop that decides which strategy is to be
called. The decision is usually based on a request from the client program,
and all that the Context needs to do isto set a variable to refer to one
concrete strategy or another.

public class Context {

float[] x, vV;
PlotStrategy plts; //strategy sel ected goes here

[l-----

public void plot() {
readFil e(); /lread in data
plts.plot (x, y);

}

[]-----

/I sel ect bar plot
public void setBarPlot() {
plts = new BarPl ot Strategy ();

//select line plot
public void setLinePlot() {
plts = new Li nePl ot Strategy();

public void readFile() {

//reads data in fromdata file

}

Copyright © , 2002 by James W Cooper

393

The Context class is also responsible for handling the data. Either it
obtains the data from afile or database or it is passed in when the Context
is created. Depending on the magnitude of the data, it can either be passed
on to the plot strategies or the Context can pass an instance of itself into
the plot strategies and provide a public method to fetch the data.

The Program Commands

This simple program (Figure 29-2) is just a panel with two buttons that
call the two plots. Each of the buttons is a derived button class the
implements the Commard interface. It selects the correct strategy and then
calls the Context’s plot routine. For example, here is the complete Line
graph command button class.

=

Line plat B ar plat |

Figure29-2 — A simple panel to call two different plots

public class LineButton : System W ndows. Forns. Button, Command

{

private System Conponent Model . Cont ai ner conponents = nul |;
private Context contxt;

public LineButton() {
InitializeConponent();
this. Text = "Line plot";

}

public void setContext(Context ctx) {
contxt = ctx;

}

public void Execute() {

cont xt . set Li nePl ot () ;
contxt.plot();

Copyright © , 2002 by James W Cooper

3A

TheLineand Bar Graph Strategies

The two strategy classes are pretty much the same: They set up the
window size for plotting and call a plot method specific for that display
pandl. Here is the Line plot Strategy.
public class LinePlotStrategy : PlotStrategy

public override void plot(float[] x, float[] y) {

LinePlot Iplt = new LinePlot();
I plt. Show ();

Iplt.plot (x, y);
}
}

The BarPlotStraegy is more or less identical.

The plotting amounts to copying in areference to the x and y arrays,
calling the scaling routine and then causing the Picturebox control to be
refreshed, which will then call the paint routine to paint the bars.

public void plot(float[] xp, float[] yp) {

X = Xp;
y = Yp;
set Pl ot Bounds(); /I compute scaling factors

hasData = true;
pi c. Refresh();

}

Drawing Plotsin C#

Note that both the LinePlot and the BarPlot window have plot methods
that are called by the plot methods of the LinePlotStrategy and
BarPlotStrategy classes. Both plot windows have a setBounds method
that computes the scaling between the window coordinates and the x-y
coordinate scheme. Since they can use the same scaling function, we write
it once in the BarPlot window and derive the LinePlot window from it to
use the same methods.
public virtual void setPlotBounds() {

fi ndBounds() ;

/I compute scaling factors

h = pic. Hei ght;
w = pic. Wdt h;

Copyright © , 2002 by James W Cooper

395

xfactor = 0.8F * w/ (xmax - xmn);
xpmn = 0.05F * w;
Xpmax = w - xpm n;
yfactor = 0.9F * h / (ymax - ymin);
ypmin = 0.05F * h;
ypmax = h - ypmn;

/lcreate array of colors for bars

colors = new ArraylList();

col ors. Add(new Sol i dBrush(Col or.
col ors. Add(new Sol i dBrush(Col or.

col ors. Add(new Sol i dBrush(Col or

col ors. Add(new Sol i dBr ush(Col or

}

[]-----

public int calcx(float xp) {
int ix = (int)((xp - xmn)
return ix;

}

[]-----

public int calcy(float yp) {
yp = ((yp - ymin) * yfactor);
int iy =h - (int)(ypmax - yp);
return iy;

}

Making Bar Plots

Red));
Green));

.Blue));
col ors. Add(new Sol i dBrush(Col or.

Magent a)) ;

.Yellow));

* xfactor + xpmn);

The actual bar plot isdrawn in a Paint routine that is called when a paint

Pai nt Event Args e)

i++){

- iy, 20, iy);

event occurs.
protected virtual void pic_Paint(object sender,
{ Graphics g = e. Gaphics;
if (hasbData) {
for (int i = 0; i< x.Length;
int ix = calcex(x[i]);
int iy = calcy(y[i]l);
Brush br = (Brush)colors[i];
g.Fill Rectangl e(br, ix, h
}
}

Copyright © , 2002 by James W Cooper

39%

Making Line Plots
The LinePlot class is very simple, since we derive it from the BarPlot
class, and we need only write a new Paint method:

public class LinePlot :BarPlot {
public LinePlot() {
bPen = new Pen(Col or. Bl ack);
this. Text = "Line Plot";
}
protected override void pic_Paint(object sender,
Pai nt Event Args e) {
Graphics g= e. Graphics;
if (hasbData) {
for (int i =1; i< x.Length; i++) {
int ix = calcex(x[i - 1]);
int iy = calcy(y[i - 1]);
int ix1l = calcx(x[i]);
int iyl = calcy(y[i]);
g. DrawLi ne(bPen, ix, iy, ix1, iyl);

}
}
The UML diagram showing these class relations is shown in Figure 29-3

Copyright © , 2002 by James W Cooper

397

LinePlotSirategy BarPlotSirategy
Command " ; ‘1 ‘1 - :
LARE N Itz ,’/
et i o < \'\. E:llt' zf
Line Cmd BarChd “u } /1 P
PloiSirategy
‘ ’
1
poltz
ottt
coptit
1.[1
Context | *
Figure29-3 — The UML Diagram for the Strategy pattern
The final two plots are shown in Figure 29-4.
o/ JRETEY

Copyright © , 2002 by James W Cooper

398

Figure 29-4— Theline graph (left) and the bar graph (right)

Consequences of the Strategy Pattern

Strategy allows you to select one of several agorithms dynamically. These
algorithms can be related in an inheritance hierarchy, or they can be
unrelated as long as they implement a common interface. Since the
Context switches between strategies at your request, you have more
flexibility than if you simply called the desired derived class. This
approach also avoids the sort of condition statements that can make code
hard to read and maintain.

On the other hand, strategies don’t hide everything. The client code is
usualy aware that there are a number of alternative strategies, and it has
some criteria for choosing among them. This shifts an algorithmic
decision to the client programmer or the user.

Since there are a number of different parameters that you might pass to
different algorithms, you have to develop a Context interface and strategy
methods that are broad enough to allow for passing in parameters that are
not used by that particular algorithm. For example the setPenColor
method in our PlotStrategy is actually only used by the LineGraph
strategy. It isignored by the BarGraph strategy, since it sets up its own list
of colors for the successive bars it draws.

Programs on the CD-ROM

\ St r at egy plot strategy

Copyright © , 2002 by James W Cooper

399

30. The Template Method Pattern

The Template Method pattern is a very simple pattern that you will find yourself
using frequently. Whenever you write a parent class where you leave one or more
of the methods to be implemented by derived classes, you are in essence usng
the Template pattern. The Template pattern formalizes the idea of defining an
agorithm in a class but leaving some of the details to be implemented in
subclasses. In other words, if your base classis an abstract class, as often

happens in these design patterns, you are using a simple form of the Template
pattern.

M otivation

Templates are so fundamental, you have probably used them dozens of
times without even thinking about it. The idea behind the Template pattern
isthat some parts of an algorithm are well defined and can be
implemented in the base class, whereas other parts may have severd
implementations and are best |eft to derived classes. Another main theme
is recognizing that there are some basic parts of a class that can be
factored out and put in a base class so they do not need to be repeated in
several subclasses.

For example, in developing the BarPlot and LinePlot classes we used in
the Strategy pattern examples in the previous chapter, we discovered that
in plotting both line graphs and bar charts we needed similar code to scale
the data and compute the x and y pixel positions.

public abstract class PlotWndow : Form {
protected float ymn, ymax, xfactor, yfactor;
protected float xpmn, xpmax, ypnmn, ypnmax, Xp, Yp;
private float xmn, xmax;
protected int w, h;
protected float[] x, v;
protected Pen bPen;
protected bool hasDat a;
protected const float max = 1. 0e38f;
protected PictureBox pic;
[]-----

Copyright © , 2002 by James W Cooper

protected virtual void init() {
pi c. Pai nt += new Pai nt Event Handl er (pic_Paint);

public void setPenCol or(Col or c){
bPen = new Pen(c);

}
[]-----
public void plot(float[] xp, float[] yp) {
X = Xp;
y = Yps
set Pl ot Bounds(); /I compute scaling factors
hasData = true;
}
[]-----
public void findBounds() {
Xmn = max;
Xmax = -nax;
ymn = max;
ymax = -nmax;
for (int i =0; i< x.Length ; i++) {
if (x[i] > xmax) xmax = x[i];
if (x[i] <xmn) xmn=Xx[i];
if (y[i] > ymax) ymax = y[i];
it (y[i] <ymn) ymn =y[i];
}
}
[]-----

public virtual void setPl otBounds() {
fi ndBounds() ;
/I compute scaling factors
h = pic. Hei ght;
w = pic. Wdth;

xfactor = 0.8F * w/ (xmax - xmn);
xpmn = 0.05F * w;
Xpmax = w - xpmn;
yfactor = 0.9F * h / (ymax - ymin);
ypmin = 0.05F * h;
ypmax = h - ypm n;

}

[1-----

public int calcx(float xp) {
int ix = (int)((xp - xmn) * xfactor + xpmn);
return ix;

Copyright © , 2002 by James W Cooper

401

public int cal cy(floa}t yp) {
yp = ((yp - ymin) * yfactor);
int iy =h - (int)(ypmax - yp);
return iy;

protected virtual void pic_Paint(object sender,
Pai nt Evnt Args e) {
Graphics g = e. G aphi cs;
repaint(g);

}

Thus, these methods all belong in a base PlotPanel class without any
actual plotting capabilities. Note that the pic_Paint event handler just calls
the abstract repaint method. The actual repaint method is deferred to the
derived classes. It is exactly this sort of extension to derived classes that
exemplifies the Template Method pattern.

Kindsof Methodsin a Template Class

As discussed in Design Patterns, the Template Method pattern has four
kinds of methods that you can use in derived classes.

1. Complete methods that carry out some basic function that all the
subclasses will want to use, such as calcx and calcy in the preceding
example. These are called Concrete methods.

2. Methods that are not filled in at all and must be implemented in
derived classes. In C#, you would declare these as virtual methods.

3. Methods that contain a default implementation of some operations but
that may be overridden in derived classes. These are called Hook
methods. Of course, thisis somewhat arbitrary because in C# you can
override any public or protected method in the derived class but Hook
methods, however, are intended to be overridden, whereas Concrete
methods are not.

Copyright © , 2002 by James W Cooper

402

4. Finally, a Template class may contain methods that themselves call
any combination of abstract, hook, and concrete methods. These
methods are not intended to be overridden but describe an agorithm
without actually implementing its details. Design Patterns refers to
these as Template methods.

Sample Code

Let’s consider a simple program for drawing triangles on a screen. We'll
start with an abstract Triangle class and then derive some specia triangle

types from it, as we see in Figure 30-1

Triangle

L Fofraw
' Forawling

| HdrawZndLine: Foint
' +olose Thangle

IsocelesTriangle

--------- bl

| ahstract methuﬂ

StdTriangle

Figure30-1 - The abstract Triangle class and three of its subclasses

Our abstract Triangle class illustrates the Template pattern.
{

public abstract class Triangle
private Point pil,

p2, p3;

protected Pen pen;

[]=-----

public Triangle(Point a, Point b, Point c)

pl = a;

Copyright © , 2002 by James W Cooper

{

b;
C,
n = new Pen(Col or.Black , 1);

p2
p3
pe

public virtual void draw(G aphics g) {
g. DrawLi ne (pen, pl, p2);
Poi nt ¢ = draw2ndLi ne(g, p2, p3);
cl oseTriangl e(g, c);

public abstract Point draw2ndLi ne(G aphics g,
Poi nt a, Point b);

public void closeTriangl e(Gaphics g, Point c) {
g. DrawLi ne (pen, c, pl);

This Triangle class saves the coordinates of three lines, but the draw
routine draws only the first and the last lines. The all-important
draw2ndLine method that draws a line to the third point is |eft as an
abstract method. That way the derived class can move the third point to
create the kind of rectangle you wish to draw.

Thisis ageneral example of a class using the Template pattern. The draw
method calls two concrete base class methods and one abstract method
that must be overridden in any concrete class derived from Triangle.

Another very similar way to implement the triangle class is to include
default code for the draw2ndLine method.
public virtual void draw2ndLi ne(G aphics g,
Point a, Point b) {
g.drawLi ne(a, b);
}

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Copyright © , 2002 by James W Cooper

Drawing a Standard Triangle

To draw a genera triangle with no restrictions on its shape, we simply
implement the draw2ndLine method in a derived stdTriangle class.

public class StdTriangle :Triangle {
public StdTriangl e(Point a, Point b, Point c)
base(a, b, c) {}

public override Point draw2ndLi ne(G aphics g,
Point a, Point b) {
g. DrawLi ne (pen, a, b);
return b;

}

Drawing an Isosceles Triangle

This class computes a new third data point that will make the two sides
equal in length and saves that new point inside the class.

public class IsocelesTriangle : Triangle {
private Point newc;
private int newcx, newcy;

public Isocel esTriangl e(Point a, Point b, Point c)
base(a, b, ¢) {
float dx1, dyl, dx2, dy2, sidel, side2;
float slope, intercept;

int incr;

dx1l = b. X - a. X

dyl = b.Y - a.y,;

dx2 = ¢c. X - b. X

dy2 = ¢c.Y - b.Y;

sidel cal cSi de(dx1, dyl);

side2 = cal cSide(dx2, dy2);

if (side2 < sidel)

incr = -1;
el se
incr = 1;
sl ope = dy2 / dx2;
intercept = c.Y - slope * c. X

Copyright © , 2002 by James W Cooper

405

//move point ¢ so that this is an isoceles triangle
newcx c. X
newcy c.Y,
while (Math. Abs (sidel - side2) > 1) {
/literate a pixel at a time until close
newcx = newcx + incr;
newcy = (int)(slope * newcx + intercept);
dx2 = newcx - b. X;
dy2 = newcy - b.Y;
side2 = cal cSi de(dx2, dy2);

newc = new Poi nt (newcx, newcy);

private float cal cSide(float a, float b) {
return (float)Math.Sgrt (a*a + b*b);
}

When the Triangle class calls the draw method, it calls this new version of
draw2ndLine and draws a line to the new third point. Further, it returns that new
point to the draw method so it will draw the closing side of the triangle correctly.

public override Point draw2ndLi ne(G aphics g,
Point b, Point c¢) {
g. DrawLi ne (pen, b, newc);
return newc;

The Triangle Drawing Program

The main program simply creates instances of the triangles you want to
draw. Then it adds them to an ArrayList in the TriangleForm class.

private void init() {

triangles = new ArraylList();

StdTriangle t1 = new StdTri angl e(new Poi nt (10, 10),
new Poi nt (150, 50),
new Poi nt (100, 75));

Isocel esTriangle t2 = new |socel esTri angl e(
new Poi nt (150, 100), new Point (240, 40),
new Poi nt (175, 150));

triangl es. Add(t1);

triangl es. Add(t2);

Pi c. Pai nt += new Pai nt Event Handl er (TPai nt);

Copyright © , 2002 by James W Cooper

}

It is the TPaint method in this class that actually draws the triangles, by calling
each Triangle' s draw method.
private void TPaint (object sender,

Syst em W ndows. For ns. Pai nt Event Args e) {
Graphics g = e. Gaphi cs;

for (int i =0; i< triangles.Count ; i++) {
Triangle t = (Triangle)triangles[i];
t.draw(g);

}

A standard triangle and an isosceles triangle are shown in Figure 30-2.

RI=TES

Figure 30-2 — A standard triangle and an isoscelestriangle

Templates and Callbacks

Design Patterns points out that Templates can exemplify the “Hollywood
Principle,” or “Don’'t call us, we'll call you.” The idea here is that methods

Copyright © , 2002 by James W Cooper

407

in the base class seem to call methods in the derived classes. The operative
word here is seem. If we consider the draw code in our base Triangle
class, we see that there are three method calls.

g. DrawLi ne (pen, pl, p2);

Poi nt ¢ = draw2ndLi ne(g, p2, p3);
closeTriangl e(g, c);

Now drawLine and closeTriangle are implemented in the base class. However, as
we have seen, the draw2ndLine method is not implemented at al in the base
class, and various derived classes can implement it differently. Since the actua
methods that are being called are in the derived classes, it appears as though they
are being called from the base class.

If this idea makes you uncomfortable, you will probably take solace in
recognizing that all the method calls originate from the derived class and
that these calls move up the inheritance chain until they find the first class
that implements them. If this class is the base class—fine. If not, it could
be any other class in between. Now, when you call the draw method, the
derived class moves up the inheritance tree until it finds an
implementation of draw. Likewise, for each method called from within
draw, the derived class starts at the current class and moves up the tree to
find each method. When it gets to the draw2ndLine method, it finds it
immediately in the current class. Soitisn't “really” called from the base
class, but it does seem that way.

Summary and Consequences

Template patterns occur al the time in OO software and are neither
complex nor obscure in intent. They are a normal part of OO
programming, and you shouldn’t try to make them into more than they
actually are.

The first significant point is that your base class may only define some of
the methods it will be using, leaving the rest to be implemented in the
derived classes. The second major point is that there may be methods in

Copyright © , 2002 by James W Cooper

408

the base class that call a sequence of methods, some implemented in the
base class and some implemented in the derived class. This Template
method defines a general agorithm, although the details may not be
worked out completely in the base class.

Template classes will frequently have some abstract methods that you
must override in the derived classes, and they may also have some classes
with asimple “placeholder” implementation that you are free to override
where thisis appropriate. If these placeholder classes are called from
another method in the base class, then we call these overridable methods
“Hook” methods.

Programs on the CD-ROM

\ Tenpl at e\ St r at egy plot strategy using Template
method pattern
\ Tenpl at e\ Tenpl ate plot of triangles

Copyright © , 2002 by James W Cooper

31. The Visitor Pattern

The Visitor pattern turns the tables on our object-oriented model and
creates an externa class to act on data in other classes. Thisis useful when
you have a polymorphic operation that cannot reside in the class hierarchy
for some reason—for example, because the operation wasn't considered
when the hierarchy was designed or it would clutter the interface of the
classes unnecessarily.

M otivation

While at first it may seem “unclean” to put operations inside one class that
should be in arother, there are good reasons for doing so. Suppose each of
anumber of drawing object classes has similar code for drawing itself.
The drawing methods may be different, but they probably al use
underlying utility functions that we might have to duplicatein each class.
Further, a set of closely related functions is scattered throughout a number
of different classes, as shown in Figure 31-1.

DrawOhject
Triangle Circle Rectangle |
draw) draw) draw)

Figure31-1 — A DrawObject and three of its subclasses

Instead, we write a Visitor class that contains al the related draw methods
and have it visit each of the objects in succession (Figure 31-2).

Copyright © , 2002 by James W Cooper

410

DrawOhject
Triangle Circle Rectangle |
accept!) accept]) accept()
I
\ v.accept(hﬂejj/
Visitor Drawer
wrigit]) drawi)
wigit)

Figure31-2 — A Visitor class (Drawer) that visits each of threetriangle classes

The first question that most people ask about this pattern is “What does
visiting mean?’ Thereis only one way that an outside class can gain
access to another class, and that is by calling its public methods. In the
Vigitor case, visiting each class means that you are calling a method
already installed for this purpose, called accept. The accept method has
one argument: the instance of the visitor. In return, it calls the visit method
of the Visitor, passing itself as an argument, as shown in Figure 31-3.

&isited.accept(v)
Visitor _ .V|S|ted
. v.visit(Me) instance

Figure 31-3 - How the visit and accept methods interact

Copyright © , 2002 by James W Cooper

411

Putting it in simple code terms, every object that you want to visit must have the
following method.

public virtual void accept(Visitor v) {
v.visit(this);
}

In thisway, the Visitor object receives a reference to each of the instances, one
by one, and can then cdl its public methods to obtain data, perform calculations,
generate reports, or just draw the object on the screen. Of coursg, if the class does
not have an accept method, you can subclass it and add one.

When to Usethe Vidgitor Pattern

Y ou should consider using a Visitor pattern when you want to perform an
operation on the data contained in a number of objects that have different
interfaces. Visitors are aso valuable if you have to perform a number of
unrelated operations on these classes. Visitors are a useful way to add
function to class libraries or frameworks for which you either do not have
the course or cannot change the source for other technical (or political)
reasons. In these latter cases, you simply subclass the classes of the
framework and add the accept_method to each subclass.

On the other hand, as we will see, Visitors are a good choice only when
you do not expect many new classes to be added to your program.

Sample Code

Let’s consider a ssmple subset of the Employee problem we discussed in
the Composite pattern. We have a smple Employee object that maintains
arecord of the employee' s name, salary, vacation taken, and number of
sick days taken. The following is a simple version of this class.

public class Enpl oyee {
int sickDays, vacDays;
float sal ary;
string nane;
public Enpl oyee(string nane, float salary,
int vDays, int sDays) {
t his. nane = nane;
this.salary = salary;

Copyright © , 2002 by James W Cooper

412

si ckDays = sDays;
vacDays = vDays;

public string getName() ({
return nane;

}
public int getSickDays() {
return sickbDays;

public int getVacDays() {
return vacDays;

public float getSalary() {
return sal ary;
}

public virtual void accept(Visitor v) {
v.visit(this);
}

}

Note that we have included the accept method in this class. Now let's
suppose that we want to prepare a report on the number of vacation days
that all employees have taken so far this year. We could just write some
code in the client to sum the results of calls to each Employee's
getVacDays function, or we could put this function into a Visitor.

Since C# isastrongly typed language, our base Visitor class needs to have
asuitable abstract visit method for each kind of class in your program. In
thisfirst simple example, we only have Employees, so our basic abstract
Vigitor class is just the following.

public abstract class Visitor {

public abstract void visit(Enmployee enp);
public abstract void visit(Boss bos);

}

Notice that there is no indication what the Visitor does with each classin
either the client classes or the abstract Visitor class. We can, in fact, write
awhole lot of visitors that do different things to the classesin our

Copyright © , 2002 by James W Cooper

413

program. The Visitor we are going to write first just sums the vacation
data for all our employees.

public class VacationVisitor : Visitor {
private int total Days;
[]-----
public VacationVisitor() {
total Days = 0;

public int getTotal Days() {
return total Days;

public override void visit(Enpl oyee enp){
t ot al Days += enp. get VacDays ();

public override void visit(Boss bos){
t ot al Days += bos. get VacDays ();
}

Vidgting the Classes
Now al we have to do to compute the total vacation days taken is go

through alist of the employees, visit each of them, and ask the Visitor for
the totdl.

for (int i = 0; i< enpls.Length; i++) {
enpl s[i].accept(vac); /1 get the enpl oyee
}

| sVac. I tens. Add(" Total vacati on days=" +
vac. get Tot al Days() . ToString());

Let’s reiterate what happens for each visit.
1. We move through aloop of al the Employees.
2. TheVisitor cals each Employee’ s accept method.
3. That instance of Employee calls the Visitor’s visit method.

Copyright © , 2002 by James W Cooper

414

4. The Vigtor fetches the vacation days and adds them into the
total.

5. The main program prints out the total when the loop is
complete.

Visiting Several Classes

The Visitor becomes more useful when there are a number of different
classes with different interfaces and we want to encapsulate how we get
data from these classes. Let’s extend our vacation days model by
introducing a new Employee type called Boss. Let’s further suppose that
at this company, Bosses are rewarded with bonus vacation days (instead of
money). So the Boss class has a couple of extra methods to set and obtain
the bonus vacation day information.
public class Boss : Enpl oyee {

private int bonusDays;

public Boss(string nanme, float salary,

int vdays, int sdays):
base(nanme, sal ary, vdays, sdays) { }

public void setBonusDays(int bdays) {
bonusDays = bdays;
}

public int getBonusDays() {
return bonusbDays;

public override void accept(Visitor v) {
v.visit(this);
}

}

When we add a class to our program, we have to add it to our Visitor as
well, so that the abstract template for the Visitor is now the following.

public abstract class Visitor {
public abstract void visit(Enployee enp);
public abstract void visit(Boss bos);

Copyright © , 2002 by James W Cooper

415

This says that any concrete Visitor classes we write must provide polymorphic
visit methods for both the Employee class and the Boss class. In the case of our
vacation day counter, we need to ask the Bosses for both regular and bonus days
taken, so the vigits are now different. We'll write anew bVacationVisitor class
that takes account of this difference.

public class bVacationVisitor :Visitor {
private int total Days;
public bVacationVisitor() {
total Days = O;

public override void visit(Enmployee enp) ({
tot al Days += enp. get VacDays();

try {
Manager nmgr = (Manager)enp;
t ot al Days += ngr. get BonusDays();

}
cat ch(Exception){}

public override void visit(Boss bos) {
t ot al Days += bos. get VacDays();
t ot al Days += bos. get BonusDays();

public int getTotal Days() {
return total Days;
}

}
Note that while in this case Boss is derived from Employee, it need not be

related at al aslong as it has an accept method for the Visitor class. It is
quite important, however, that you implement a visit method in the Visitor
for every class you will be visiting and not count on inheriting this
behavior, since the visit method from the parent class is an Employee
rather than a Boss visit method. Likewise, each of your derived classes
(Boss, Employee, etc.) must have its own accept method rather than
caling onein its parent class. Thisisillustrated in the class diagram in
Figure 31-4.

Copyright © , 2002 by James W Cooper

416

Visitor
Employee
+visit(emp)
+visit(bos) +New
4% +getName
+getSalary
+getSickdays
- L +getVacDays
VacationVisitor +accept
Boss
+New
bVacationVisitor +setBonusDays
+getBonusDays:Integer
+accept

Figure 31-4 — The two visitor classes visiting the Boss and Employee classes

Bosses Are Employees, Too

We show in Figure 31-5 asimple application that carries out both
Employee visits and Boss visits on the collection of Employees and
Bosses. The origina VacationVisitor will just treat Bosses as Employees
and get only their ordinary vacation data. The bVacationVisitor will get
both.

for (int i =0; i< enpls.Length; i++) {
enpl s[i].accept(vac); /1 get the enpl oyee
enmpl s[i].accept (bvac);
}
I svVac. | tens. Add(" Total vacation days=" +
vac. get Tot al Days(). ToString());

| sVac. I tens. Add(" Tot al boss vacati on days=" +

Copyright © , 2002 by James W Cooper

417

bvac. get Tot al Days() . ToString());
The two lines of displayed data represent the two sums that are computed when
the user clicks on the Vacations button.

=

Tatal vacation days=101
Total bosz vacation days=130

Compuite

.

Figure 31-5— A simple application that performs the vacation visits described

Catch-All Operationswith Visitors
In the preceding cases, the Visitor class has a visit method for each
visiting class, such as the following.

public abstract void visit(Enployee enp);
public abstract void visit(Boss bos);

However, if you start subclassing your visitor classes and adding new classes that
might visit, you should recognize that some visit methods might not be satisfied
by the methods in the derived class. These might instead “fal through” to
methods in one of the parent classes where that object type is recognized. This
provides away of specifying default visitor behavior.

Copyright © , 2002 by James W Cooper

418

Now every class must override accept(v) with its own implementation so
the return call v.visit(this) returns an object this of the correct type and not
of the superclass's type.

Let’s suppose that we introduce another layer of management into our
company: the Manager. Managers are subclasses of Employees, and now
they have the privileges formerly reserved for Bosses of extra vacation
days. Bosses now have an additional reward—stock options. Now if we
run the same program to compute vacation days but do not revise our
Visitor to look for Managers, it will recognize them as mere Employees
and count only their regular vacation and not their extra vacation days.
However, the catch-all parent class is a good thing if subclasses may be
added to the application from time to time and you want the visitor
operations to continue to run without modification.

There are three ways to integrate the new Manager class into the visitor
system. Y ou could define a ManagerVisitor or use the BossVisitor to
handle both. However, there could be conditions when continually
modifying the Visitor structure is not desirable. In that case, you could
simply test for this specia case in the EmployeeVisitor class.

public override void visit(Enpl oyee enp) {

tot al Days += enp. get VacDays();

try {
Manager mgr = (Manager)enp;
t ot al Days += ngr. get BonusDays();

cat ch(Exception){}
}

While this seems “unclean” at first compared to defining classes properly, it can
provide a method of catching special casesin derived classes without writing
whole new visitor program hierarchies. This “catch-al” approach is discussed in
some detail in the book Pattern Hatching (Vlissides 1998).

Copyright © , 2002 by James W Cooper

419

DoubleDispatching

No discussion on the Visitor pattern is complete without mentioning that
you are really dispatching a method twice for the Visitor to work. The
Visitor calls the polymorphic accept method of a given object, and the
accept method calls the polymorphic visit method of the Visitor. It isthis
bidirectional calling that allows you to add more operations on any class
that has an accept method, since each new Visitor class we write can carry
out whatever operations we might think of using the data available in these
classes.

Why AreWe Doing This?

You may be asking your self why we are jJumping through these hoops
when we could call the getVacationDays methods directly. By using this
“callback” approach, we are implementing “double dispatching.” Thereis
no requirement that the objects we visit be of the same or even of related
types. Further, using this callback approach, you can have a different visit
method called in the Visitor, depending on the actual type of class. Thisis
harder to implement directly.

Further, if the list of objects to be visited in an ArrayList is acollection of
different types, having different versions of the visit methods in the actual
Visitor is the only way to handle the problem without specifically
checking the type of each class.

Traversing a Seriesof Classes

The calling program that passes the class instances to the Visitor must
know about al the existing instances of classes to be visited and must
keep them in a simple structure such as an array or collection. Another
possibility would be to create an Enumeration of these classes and pass it
to the Visitor. Finally, the Visitor itself could keep the list of objects that it
isto visit. In our simple example program, we used an array of objects, but
any of the other methods would work equally well.

Copyright © , 2002 by James W Cooper

420

Conseguences of the Vigtor Pattern

The Visitor pattern is useful when you want to encapsulate fetching data
from a number of instances of several classes. Design Patterns suggests
that the Visitor can provide additional functionality to a class without
changing it. We prefer to say that aVisitor can add functionality to a
collection of classes and encapsulate the methods it uses.

The Visitor is not magic, however, and cannot obtain private data from
classes. It is limited to the data available from public methods. This might
force you to provide public methods that you would otherwise not have
provided. However, it can obtain data from a disparate collection of
unrelated classes and utilize it to present the results of a global calculation
to the user program.

It is easy to add new operations to a program using Visitors, since the
Visitor contains the code instead of each of the individual classes. Further,
Visitors can gather related operations into a single class rather than forcing
you to change or derive classes to add these operations. This can make the
program simpler to write and maintain.

Visitors are less helpful during a program’s growth stage, since each time
you add new classes that must be visited, you have to add an abstract visit
operation to the abstract Visitor class, and you must add an
implementation for that class to each concrete Visitor you have written.
Visitors can be powerful additions when the program reaches the point
where many new classes are unlikely.

Visitors can be used very effectively in Composite systems, and the boss-
employee system we just illustrated could well be a Composite like the
one we used in the Composite chapter.

Thought Question

An investment firm’s customer records consist of an object for each stock
or other financial instrument each investor owns. The object contains a
history of the purchase, sale, and dividend activities for that stock. Design

Copyright © , 2002 by James W Cooper

421

a Visitor pattern to report on net end-of-year profit or loss on stocks sold

during the year.

Programs on the CD-ROM

\Visitor\

Vigitor example

Copyright © , 2002 by James W Cooper

32. Bibliography

422

Copyright © , 2002 by James W Cooper

423

Alexander, Christopher, Ishikawa, Sara, €t. al. A Pattern Language, Oxford University
Press, New York, 1977.

Alpert, S. R., Brown, K., and Woolf, B. The Design Patterns Smalltalk Companion,
AddisonWesley, Reading, MA, 1998.

Arnold, K., and Gosling, J. The Java Programming Language, Addison-Wesley,
Reading, MA, 1997.

Booch, G., Jacobson, I., and Rumbaugh, J. The Unified Modeling Language User Guide,
AddisonWesley, Reading, MA, 1998.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., ard Stal, M. A System of
Patterns, John Wiley and Sons, New Y ork, 1996.

Cooper, J. W. Java Design Patterns: A Tutorial. AddisonWesley, Reading, MA, 2000.

Cooper, J. W. Principles of Object-Oriented Programming in Java 1.1 Coriolis
(Ventana), 1997.

Cooper, JW. Visual Basic Design Patterns. VB6 and VB.NET, AddisonWesley, Boston,
MA, 2001.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley,
Reading, MA, 1992.

Coplien, James O., and Schmidt, Douglas C. Pattern Languages of Program Design,
Addison-Wesley, Reading, MA, 1995.

Fowler, Martin, with Kendall Scott. UML Distilled, Addison-Wesley, Reading, MA,
1997.

Gamma, E., Helm, T., Johnson, R., and Vlissides, J. Design Patterns: Abstraction and
Reuse of Object Oriented Design. Proceedings of ECOOP ' 93, 405—431.

Gamma, Eric, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Patterns.
Elements of Reusable Software, AddisonWedey, Reading, MA, 1995.

Grand, Mark Patternsin Java, Volume 1, John Wiley & Sons, New Y ork 1998.

Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programmng 1(3)., 1988

Kurata, Deborah, “Programming with Objects,” Visual Basic Programmer’s Journal,
June, 1998.

Pree, Wolfgang, Design Patterns for Object Oriented Software Development, Addison
Wedley, 1994,

Riel, Arthur J., Object-Oriented Design Heuristics, AddisonrWedley, Reading, MA, 1996

Vlissides, John, Pattern Hatching: Design Patterns Applied, Addison-Wesey, Reading,
MA, 1998

Copyright © , 2002 by James W Cooper

424

Copyright © , 2002 by James W Cooper

