

Copyright © , 2002 by James W Cooper

301

Figure 22-4 – Class diagram of CommandHolder appraoch

Providing Undo
Another of the main reasons for using Command design patterns is that
they provide a convenient way to store and execute an Undo function.
Each command object can remember what it just did and restore that state

Copyright © , 2002 by James W Cooper

302

when requested to do so if the computational and memory requirements
are not too overwhelming. At the top level, we simply redefine the
Command interface to have three methods.
public interface Command {
 void Execute();
 void Undo();
 bool isUndo();
}

Then we have to design each command object to keep a record of what it
last did so it can undo it. This can be a little more complicated than it first
appears, since having a number of interleaved Commands being executed
and then undone can lead to some hysteresis. In addition, each command
will need to store enough information about each execution of the
command that it can know what specifically has to be undone.

The problem of undoing commands is actually a multipart problem. First,
you must keep a list of the commands that have been executed, and
second, each command has to keep a list of its executions. To illustrate
how we use the Command pattern to carry out undo operations, let’s
consider the program shown in Figure 22-5 that draws successive red or
blue lines on the screen, using two buttons to draw a new instance of each
line. You can undo the last line you drew with the undo button.

Copyright © , 2002 by James W Cooper

303

Figure 22-5 – A program that draws red and blue lines each time you click the Red
and Blue buttons

If you click on Undo several times, you’d expect the last several lines to
disappear no matter what order the buttons were clicked in, as shown in
Figure 22-6.

Copyright © , 2002 by James W Cooper

304

Figure 22-6– The same program as in Figure 22-5 after the Undo button has been
clicked several times

Thus, any undoable program needs a single sequential list of all the
commands that have been executed. Each time we click on any button, we
add its corresponding command to the list.
private void commandClick(object sender, EventArgs e) {
 //get the command
 Command comd = ((CommandHolder)sender).getCommand ();
 undoC.add (comd); //add to undo list
 comd.Execute (); //and execute it
}

Further, the list to which we add the Command objects is maintained
inside the Undo command object so it can access that list conveniently.
public class UndoComd:Command {
 private ArrayList undoList;
 public UndoComd() {
 undoList = new ArrayList ();
 }
 //-----
 public void add(Command comd) {

Copyright © , 2002 by James W Cooper

305

 if(! comd.isUndo ()) {
 undoList.Add (comd);
 }
 }
 //-----
 public bool isUndo() {
 return true;
 }
 //-----
 public void Undo() { }
 //-----
 public void Execute() {
 int index = undoList.Count - 1;
 if (index >= 0) {
 Command cmd = (Command)undoList[index];
 cmd.Undo();
 undoList.RemoveAt(index);
 }
 }
}

The undoCommand object keeps a list of Commands, not a list of actual
data. Each command object has its unDo method called to execute the
actual undo operation. Note that since the undoCommand object
implements the Command interface, it, too, needs to have an unDo
method. However, the idea of undoing successive unDo operations is a
little complex for this simple example program. Consequently, you should
note that the add method adds all Commands to the list except the
undoCommand itself, since we have just defined undoing an unDo
command as doing nothing. For this reason, our new Command interface
includes an isUndo method that returns false for the RedCommand and
BlueCommand objects and true for the UndoCommand object.

The redCommand and blueCommand classes simply use different colors
and start at opposite sides of the window, although both implement the
revised Command interface. Each class keeps a list of lines to be drawn in
a Collection as a series of DrawData objects containing the coordinates of
each line. Undoing a line from either the red or the blue line list simply
means removing the last DrawData object from the drawList collection.

Copyright © , 2002 by James W Cooper

306

Then either command forces a repaint of the screen. Here is the
BlueCommand class.
public class BlueCommand :Command {
 protected Color color;
 private PictureBox pbox;
 private ArrayList drawList;
 protected int x, y, dx, dy;
//-----
 public BlueCommand(PictureBox pbx) {
 pbox = pbx;
 color = Color.Blue ;
 drawList = new ArrayList ();
 x = pbox.Width ;
 dx = -20;
 y = 0;
 dy = 0;
 }
 //-----
 public void Execute() {
 DrawData dl = new DrawData(x, y, dx, dy);
 drawList.Add(dl);
 x = x + dx;
 y = y + dy;
 pbox.Refresh();
 }
 //-----
 public bool isUndo() {
 return false;
 }
 //-----
 public void Undo() {
 DrawData dl;
 int index = drawList.Count - 1;
 if (index >= 0) {
 dl = (DrawData)drawList[index];
 drawList.RemoveAt(index);
 x = dl.getX();
 y = dl.getY();
 }
 pbox.Refresh();
 }
 //-----
 public void draw(Graphics g) {
 Pen rpen = new Pen(color, 1);

Copyright © , 2002 by James W Cooper

307

 int h = pbox.Height;
 int w = pbox.Width;
 for (int i = 0; i < drawList.Count ; i++) {
 DrawData dl = (DrawData)drawList[i];
 g.DrawLine(rpen, dl.getX(), dl.getY(),

dl.getX() + dx, dl.getDy() + h);
 }

 }
}
Note that the draw method in the drawCommand class redraws the entire
list of lines the command object has stored. These two draw methods are
called from the paint handler of the form.
public void paintHandler(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics ;
 blueC.draw(g);
 redC.draw (g);
}

We can create the RedCommand in just a few lines by deriving from the
BlueCommand:
public class RedCommand : BlueCommand {
 public RedCommand(PictureBox pict):base(pict) {
 color = Color.Red;
 x = 0;
 dx = 20;
 y = 0;
 dy = 0;
 }
}

The set of classes we use in this Undo program is shown in Figure 22-7

Copyright © , 2002 by James W Cooper

308

Figure 22-7– The classes used to implement Undo in a Command pattern
implementation

Copyright © , 2002 by James W Cooper

309

Figure 22-8– A class structure for three different objects that all implement the
Command interface and two that implement the CommandHolder interface

Thought Questions
1. Mouse clicks on list box items and on radio buttons also constitute

commands. Clicks on multiselect list boxes could also be represented
as commands. Design a program including these features.

2. A lottery system uses a random number generator constrained to
integers between 1 and 50. The selections are made at intervals
selected by a random timer. Each selection must be unique. Design
command patterns to choose the winning numbers each week.

Copyright © , 2002 by James W Cooper

310

Programs on the CD-ROM
\Command\ButtonMenu Buttons and menus using Command

pattern
\Command\UndoCommand C# program showing line drawing

and Undo
\Command\ComdHolder C# program showing

CommandHolder interface

Copyright © , 2002 by James W Cooper

311

23. The Interpreter Pattern

Some programs benefit from having a language to describe operations
they can perform. The Interpreter pattern generally describes defining a
grammar for that language and using that grammar to interpret statements
in that language.

Motivation
When a program presents a number of different but somewhat similar
cases it can deal with, it can be advantageous to use a simple language to
describe these cases and then have the program interpret that language.
Such cases can be as simple as the sort of Macro language recording
facilities a number of office suite programs provide or as complex as
Visual Basic for Applications (VBA). VBA is not only included in
Microsoft Office products, but it can be embedded in any number of third-
party products quite simply.

One of the problems we must deal with is how to recognize when a
language can be helpful. The Macro language recorder simply records
menu and keystroke operations for later playback and just barely qualifies
as a language; it may not actually have a written form or grammar.
Languages such as VBA, on the other hand, are quite complex, but they
are far beyond the capabilities of the individual application developer.
Further, embedding commercial languages usually require substantial
licensing fees, which makes them less attractive to all but the largest
developers.

Applicability
As the SmallTalk Companion notes, recognizing cases where an
Interpreter can be helpful is much of the problem, and programmers
without formal language/compiler training frequently overlook this

Copyright © , 2002 by James W Cooper

312

approach. There are not large numbers of such cases, but there are three
general places where languages are applicable.

1. When you need a command interpreter to parse user commands.
The user can type queries of various kinds and obtain a variety of
answers.

2. When the program must parse an algebraic string. This case is
fairly obvious. The program is asked to carry out its operations
based on a computation where the user enters an equation of some
sort. This frequently occurs in mathematical-graphics programs
where the program renders a curve or surface based on any
equation it can evaluate. Programs like Mathematica and graph
drawing packages such as Origin work in this way.

3. When the program must produce varying kinds of output. This case
is a little less obvious but far more useful. Consider a program that
can display columns of data in any order and sort them in various
ways. These programs are frequently referred to as Report
Generators, and while the underlying data may be stored in a
relational database, the user interface to the report program is
usually much simpler than the SQL language that the database
uses. In fact, in some cases, the simple report language may be
interpreted by the report program and translated into SQL.

A Simple Report Example
Let’s consider a simplified report generator that can operate on five
columns of data in a table and return various reports on these data.
Suppose we have the following results from a swimming competition.
Amanda McCarthy 12 WCA 29.28
Jamie Falco 12 HNHS 29.80
Meaghan O'Donnell 12 EDST 30.00
Greer Gibbs 12 CDEV 30.04
Rhiannon Jeffrey 11 WYW 30.04
Sophie Connolly 12 WAC 30.05
Dana Helyer 12 ARAC 30.18

Copyright © , 2002 by James W Cooper

313

The five columns are frname, lname, age, club and time. If we consider
the complete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name, or by age. Since
there are a number of useful reports we could produce from these data in
which the order of the columns changes as well as the sorting, a language
is one useful way to handle these reports.

We’ll define a very simple nonrecursive grammar of this sort.
Print lname frname club time Sortby club Thenby time

For the purposes of this example, we define these three verbs.
Print
Sortby
Thenby

And we’ll define the five column names we listed earlier.
Frname
Lname
Age
Club
Time

For convenience, we’ll assume that the language is case insensitive. We’ll
also note that the simple grammar of this language is punctuation free and
amounts in brief to the following.

Print var[var] [sortby var [thenby var]]

Finally, there is only one main verb, and while each statement is a
declaration, there is no assignment statement or computational ability in
this grammar.

Copyright © , 2002 by James W Cooper

314

Interpreting the Language
Interpreting the language takes place in three steps.

1. Parsing the language symbols into tokens.

2. Reducing the tokens into actions.

3. Executing the actions.

We parse the language into tokens by simply scanning each statement with
a StringTokenizer and then substituting a number for each word. Usually
parsers push each parsed token onto a stack we will use that technique
here. We implement the Stack class using an Arraylist—where we have
push, pop, top, and nextTop methods to examine and manipulate the stack
contents.

After parsing, our stack could look like this.

Type Token

Var Time <-top of stack
Verb Thenby
Var Club
Verb Sortby
Var Time
Var Club
Var Frname
verb Lname

However, we quickly realize that the “verb” Thenby has no real meaning
other than clarification, and it is more likely that we’d parse the tokens and
skip the Thenby word altogether. Our initial stack then, looks like this.
Time
Club
Sortby
Time
Club
Frname

Copyright © , 2002 by James W Cooper

315

Lname
Print

Objects Used in Parsing
In this parsing procedure, we do not push just a numeric token onto the
stack but a ParseObject that has the both a type and a value property.
public class ParseObject {
 public const int VERB=1000;
 public const int VAR=1010;
 public const int MULTVAR=1020;
 protected int value, type;
 //-----
 public ParseObject(int val, int typ) {
 value = val;
 type = typ;
 }
 //-----
 public int getValue() {
 return value;
 }
 //-----
 public int getType() {
 return type;
 }
}
These objects can take on the type VERB or VAR. Then we extend this
object into ParseVerb and ParseVar objects, whose value fields can take
on PRINT or SORT for ParseVerb and FRNAME, LNAME, and so on for
ParseVar. For later use in reducing the parse list, we then derive Print and
Sort objects from ParseVerb.

This gives us a simple hierarchy shown in Figure 23-1

Copyright © , 2002 by James W Cooper

316

ParseObject

getValue
getType
init
addArg
setData

ParseVarb

init
isLegal

Command

Execute

Printit Sort

Execute

ParseVerb

init
getVerb
addArg
isLegal
getArgs

Figure 23-1– A simple parsing hierarchy for the Interpreter pattern

The parsing process is just the following simple code, using the
StringTokenizer and the parse objects. Part of the main Parser class is
shown here.
public class Parser {
 private Stack stk;
 private ArrayList actionList;
 private Data dat;
 private ListBox ptable;
 private Chain chn;
 //-----
 public Parser(string line, KidData kd, ListBox pt) {
 stk = new Stack ();
 //list of verbs accumulates here
 actionList = new ArrayList ();
 setData(kd, pt);
 buildStack(line); //create token stack
 buildChain(); //create chain of responsibility
 }

Copyright © , 2002 by James W Cooper

317

 //-----
 private void buildChain() {
 chn = new VarVarParse(); //start of chain
 VarMultvarParse vmvp = new VarMultvarParse();
 chn.addToChain(vmvp);
 MultVarVarParse mvvp = new MultVarVarParse();
 vmvp.addToChain(mvvp);
 VerbMultvarParse vrvp = new VerbMultvarParse();
 mvvp.addToChain(vrvp);
 VerbVarParse vvp = new VerbVarParse();
 vrvp.addToChain(vvp);
 VerbAction va = new VerbAction(actionList);
 vvp.addToChain(va);
 Nomatch nom = new Nomatch (); //error handler
 va.addToChain (nom);
 }
 //-----
 public void setData(KidData kd, ListBox pt) {
 dat = new Data(kd.getData ());
 ptable = pt;
 }
 //-----
 private void buildStack(string s) {
 StringTokenizer tok = new StringTokenizer (s);
 while(tok.hasMoreElements ()) {
 ParseObject token = tokenize(tok.nextToken));
 stk.push (token); }
 }
 //-----
 protected ParseObject tokenize(string s) {
 ParseObject obj;
 int type;
 try {
 obj = getVerb(s);
 type = obj.getType ();
 }
 catch(NullReferenceException) {
 obj = getVar(s);
 }
 return obj;
 }
 //-----
 protected ParseVerb getVerb(string s) {
 ParseVerb v = new ParseVerb (s, dat, ptable);
 if(v.isLegal ())

Copyright © , 2002 by James W Cooper

318

 return v.getVerb (s);
 else
 return null;
 }
 //-----
 protected ParseVar getVar(string s) {
 ParseVar v = new ParseVar (s);
 if(v.isLegal())
 return v;
 else
 return null;
 }
}

The ParseVerb and ParseVar classes return objects with isLegal set to true
if they recognize the word.
public class ParseVerb:ParseObject {
 protected const int PRINT = 100;
 protected const int SORT = 110;
 protected const int THENBY = 120;
 protected ArrayList args;
 protected Data kid;
 protected ListBox pt;
 protected ParseVerb pv;
 //-----
 public ParseVerb(string s, Data kd, ListBox ls):

base(-1, VERB) {
 args = new ArrayList ();
 kid = kd;
 pt = ls;
 if(s.ToLower().Equals ("print")) {
 value = PRINT;
 }
 if(s.ToLower().Equals ("sortby")) {
 value = SORT;
 }
 }
 //------
 public ParseVerb getVerb(string s) {
 pv = null;
 if(s.ToLower ().Equals ("print"))
 pv =new Print(s,kid, pt);
 if(s.ToLower ().Equals ("sortby"))
 pv = new Sort (s, kid, pt);

Copyright © , 2002 by James W Cooper

319

 return pv;
 }
 //-----
 public void addArgs(MultVar mv) {
 args = mv.getVector ();
 }

Reducing the Parsed Stack
The tokens on the stack have this form.
Var
Var
Verb
Var
Var
Var
Var
Verb

We reduce the stack a token at a time, folding successive Vars into a
MultVar class until the arguments are folded into the verb objects, as we
show in Figure 23-2

Copyright © , 2002 by James W Cooper

320

Verb
Time

Var
Club

Verb
SortBy

Var
Time

Var
Club

Var
Frname

Var
Lname

MultVar

Verb

MultVar

MultVar

Verb

Figure 23-2– How the stack is reduced during parsing

When the stack reduces to a verb, this verb and its arguments are placed in
an action list; when the stack is empty, the actions are executed.

Creating a Parser class that is a Command object and executing it when
the Go button is pressed on the user interface carries out this entire
process.
private void btCompute_Click(object sender, EventArgs e) {
 parse();
}
private void parse() {
 Parser par = new Parser (txCommand.Text ,kdata, lsResults);

Copyright © , 2002 by James W Cooper

321

 par.Execute ();
}

The parser itself just reduces the tokens, as the preceding shows. It checks
for various pairs of tokens on the stack and reduces each pair to a single
one for each of five different cases.

Implementing the Interpreter Pattern
It would certainly be possible to write a parser for this simple grammar as
just a series of if statements. For each of the six possible stack
configurations, reduce the stack until only a verb remains. Then, since we
have made the Print and Sort verb classes Command objects, we can just
Execute them one by one as the action list is enumerated.

However, the real advantage of the Interpreter pattern is its flexibility. By
making each parsing case an individual object, we can represent the parse
tree as a series of connected objects that reduce the stack successively.
Using this arrangement, we can easily change the parsing rules without
much in the way of program changes: We just create new objects and
insert them into the parse tree.

According to the Gang of Four, these are the names for the participating
objects in the Interpreter pattern.:

• AbstractExpression—declares the abstract Interpret operation.

• TerminalExpression—interprets expressions containing any of the
terminal tokens in the grammar.

• NonTerminalExpression—interprets all of the nonterminal
expressions in the grammar.

• Context—contains the global information that is part of the parser—in
this case, the token stack.

• Client—Builds the syntax tree from the preceding expression types
and invokes the Interpret operation.

Copyright © , 2002 by James W Cooper

322

 The Syntax Tree
The syntax tree we construct to carry out the parsing of the stack we just
showed can be quite simple. We just need to look for each of the stack
configurations we defined and reduce them to an executable form. In fact,
the best way to implement this tree is using a Chain of Responsibility,
which passes the stack configuration along between classes until one of
them recognizes that configuration and acts on it. You can decide whether
a successful stack reduction should end that pass or not. It is perfectly
possible to have several successive chain members work on the stack in a
single pass. The processing ends when the stack is empty. We see a
diagram of the individual parse chain elements in Figure 23-3.

Figure 23-3– How the classes that perform the parsing interact.

Copyright © , 2002 by James W Cooper

323

In this class structure, we start with the AbstractExpression interpreter
class InterpChain.
public abstract class InterpChain:Chain {
 private Chain nextChain;
 protected Stack stk;
 private bool hasChain;
 //-----
 public InterpChain() {
 stk = new Stack ();
 hasChain = false;
 }
 //-----
 public void addToChain(Chain c) {
 nextChain = c;
 hasChain = true;
 }
 //-----
 public abstract bool interpret();
 //-----
 public void sendToChain(Stack stack) {
 stk = stack;
 if(! interpret()) { //interpret stack
 nextChain.sendToChain (stk); //pass along
 }
 }
 //-----
 public bool topStack(int c1, int c2) {
 ParseObject p1, p2;
 p1 = stk.top ();
 p2 = stk.nextTop ();
 try{

 return (p1.getType() == c1 && p2.getType() == c2);
 }
 catch(NullReferenceException) {
 return false;
 }
 }
 //-----
 public void addArgsToVerb() {
 ParseObject p = (ParseObject) stk.pop();
 ParseVerb v = (ParseVerb) stk.pop();
 v.addArgs (p);
 stk.push (v);
 }

Copyright © , 2002 by James W Cooper

324

 //-----
 public Chain getChain() {
 return nextChain;
 }

This class also contains the methods for manipulating objects on the stack.
Each of the subclasses implements the interpret operation differently and
reduces the stack accordingly. For example, the complete VarVarParse
class reduces two variables on the stack in succession to a single MultVar
object.
public class VarVarParse : InterpChain {
 public override bool interpret() {
 if(topStack(ParseVar.VAR , ParseVar.VAR)) {
 //reduces VAR VAR to MULTVAR
 ParseVar v1 = (ParseVar) stk.pop();
 ParseVar v2 = (ParseVar) stk.pop();
 MultVar mv = new MultVar (v2, v1);
 stk.push (mv);
 return true;
 }
 else
 return false;
 }
}

Thus, in this implementation of the pattern, the stack constitutes the
Context participant. Each of the first five subclasses of InterpChain are
NonTerminalExpression participants, and the ActionVerb class that moves
the completed verb and action objects to the actionList constitutes the
TerminalExpression participant.

The client object is the Parser class that builds the stack object list from
the typed- in command text and constructs the Chain of Responsibility
from the various interpreter classes. We showed most of the Parser class
above already. However, it also implements the Command pattern and
sends the stack through the chain until it is empty and then executes the
verbs that have accumulated in the action list when its Execute method is
called.

Copyright © , 2002 by James W Cooper

325

 //executes parse and interpretation of command line
public void Execute() {
 while(stk.hasMoreElements ()) {
 chn.sendToChain (stk);
 }
 //now execute the verbs
 for(int i=0; i< actionList.Count ; i++) {
 Verb v = (Verb)actionList[i];
 v.setData (dat, ptable);
 v.Execute ();
 }
}

The final visual program is shown in Figure 23-4.

Figure 23-4 – The Interpreter pattern operating on the simple command in the text
field

Copyright © , 2002 by James W Cooper

326

Consequences of the Interpreter Pattern
Whenever you introduce an interpreter into a program, you need to
provide a simple way for the program user to enter commands in that
language. It can be as simple as the Macro record button we noted earlier,
or it can be an editable text field like the one in the preceding program.

However, introducing a language and its accompanying grammar also
requires fairly extensive error checking for misspelled terms or misplaced
grammatical elements. This can easily consume a great deal of
programming effort unless some template code is available for
implementing this checking. Further, effective methods for notifying the
users of these errors are not easy to design and implement.

In the preceding Interpreter example, the only error handling is that
keywords that are not recognized are not converted to ParseObjects and
pushed onto the stack. Thus, nothing will happen because the resulting
stack sequence probably cannot be parsed successfully, or if it can, the
item represented by the misspelled keyword will not be included.

You can also consider generating a language automatically from a user
interface of radio and command buttons and list boxes. While it may seem
that having such an interface obviates the necessity for a language at all,
the same requirements of sequence and computation still apply. When you
have to have a way to specify the order of sequential operations, a
language is a good way to do so, even if the language is generated from
the user interface.

The Interpreter pattern has the advantage that you can extend or revise the
grammar fairly easily once you have built the general parsing and
reduction tools. You can also add new verbs or variables easily once the
foundation is constructed. However, as the syntax of the grammar
becomes more complex, you run the risk of creating a hard-to-maintain
program.

Copyright © , 2002 by James W Cooper

327

While interpreters are not all that common in solving general
programming problems, the Iterator pattern we take up next is one of the
most common ones you’ll be using.

Thought Question
Design a system to compute the results of simple quadratic expressions
such as

4x^2 + 3x –4
where the user can enter x or a range of x’s and can type in the equation.

Programs on the CD-ROM
\Interpreter C# interpreter

Copyright © , 2002 by James W Cooper

328

24. The Iterator Pattern

The Iterator is one of the simplest and most frequently used of the design
patterns. The Iterator pattern allows you to move through a list or
collection of data using a standard interface without having to know the
details of the internal representations of that data. In addition, you can also
define special iterators that perform some special processing and return
only specified elements of the data collection.

Motivation
The Iterator is useful because it provides a defined way to move through a
set of data elements without exposing what is taking place inside the class.
Since the Iterator is an interface, you can implement it in any way that is
convenient for the data you are returning. Design Patterns suggests that a
suitable interface for an Iterator might be the following.
public interface Iterator {
 object First();
 object Next();
 bool isDone();
 object currentItem();
}
Here you can move to the top of the list, move through the list, find out if
there are more elements, and find the current list item. This interface is
easy to implement and it has certain advantages, but a number of other
similar interfaces are possible. For example, when we discussed the
Composite pattern, we introduced the getSubordinates method
IEnumerator getSubordinates(); //get subordinates

to provide a way to loop through all of the subordinates any employee
may have. The IEnumerator interface can be represented in C# as
bool MoveNext();
void Reset();
object Current {get;}

Copyright © , 2002 by James W Cooper

329

This also allows us to loop through a list of zero or more elements in some
internal list structure without our having to know how that list is organized
inside the class.

One disadvantage of this Enumeration over similar constructs in C++ and
Smalltalk is the strong typing of the C# language. This prevents the
Current() property from returning an object of the actual type of the data
in the collection. Instead, you must convert the returned object type to the
actual type of the data in the collection. Thus, while this IEnumerator
interface is intended to be polymorphic, this is not directly possible in C#.

Sample Iterator Code
Let’s reuse the list of swimmers, clubs, and times we described earlier,
and add some enumeration capabilities to the KidData class. This class is
essentially a collection of Kids, each with a name, club, and time, and
these Kid objects are stored in an ArrayList.
public class KidData :IEnumerator {
 private ArrayList kids;
 private int index;
 public KidData(string filename) {
 kids = new ArrayList ();
 csFile fl = new csFile (filename);
 fl.OpenForRead ();
 string line = fl.readLine ();
 while(line != null) {
 Kid kd = new Kid (line);
 kids.Add (kd);
 line = fl.readLine ();
 }
 fl.close ();
 index = 0;
 }
To obtain an enumeration of all the Kids in the collection, we simply use
the methods of the IEnumerator interface we just defined.
public bool MoveNext() {
 index++;
 return index < kids.Count ;
}

Copyright © , 2002 by James W Cooper

330

//------
public object Current {
 get {
 return kids[index];
 }
}
//------
public void Reset() {
 index = 0;
}

Reading in the data and displaying a list of names is quite easy. We
initialize the Kids class with the filename and have it build the collection
of kid objects. Then we treat the Kids class as an instance of IEnumerator
and move through it to get out the kids and display their names.
private void init() {
 kids = new KidData("50free.txt");
 while (kids.MoveNext ()) {
 Kid kd = (Kid)kids.Current ;

lsKids.Items.Add (kd.getFrname()+ " "+ kd.getLname ());
 }
}

Fetching an Iterator
Another slightly more flexible way to handle iterators in a class is to
provide the class with a getIterator method that returns instances of an
iterator for that class’s data. This is somewhat more flexible because you
can have any number of iterators active simultaneously on the same data.
Our KidIterator class can then be the one that implements our Iterator
interface.
public class KidIterator : IEnumerator {
 private ArrayList kids;
 private int index;
 public KidIterator(ArrayList kidz) {
 kids = kidz;
 index = 0;
 }
 //------
 public bool MoveNext() {

Copyright © , 2002 by James W Cooper

331

 index++;
 return index < kids.Count ;
 }
 //------
 public object Current {
 get {
 return kids[index];
 }
 }
 //------
 public void Reset() {
 index = 0;
 }
}

We can fetch iterators from the main KidList class by creating them as
needed.
public KidIterator getIterator() {
 return new KidIterator (kids);
}

Filtered Iterators
While having a clearly defined method of moving through a collection is
helpful, you can also define filtered Iterators that perform some
computation on the data before returning it. For example, you could return
the data ordered in some particular way or only those objects that match a
particular criterion. Then, rather than have a lot of very similar interfaces
for these filtered iterators, you simply provide a method that returns each
type of enumeration with each one of these enumerations having the same
methods.

The Filtered Iterator
Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a special Iterator class that
has access to the data in the KidData class. This is very simple because the
methods we just defined give us that access. Then we only need to write
an Iterator that only returns kids belonging to a specified club.

Copyright © , 2002 by James W Cooper

332

public class FilteredIterator : IEnumerator {
 private ArrayList kids;
 private int index;
 private string club;
 public FilteredIterator(ArrayList kidz, string club) {
 kids = kidz;
 index = 0;
 this.club = club;
 }
 //------
 public bool MoveNext() {
 bool more = index < kids.Count-1 ;
 if(more) {
 Kid kd = (Kid)kids[++index];
 more = index < kids.Count;
 while(more && ! kd.getClub().Equals (club)) {
 kd = (Kid)kids[index++];
 more = index < kids.Count ;
 }
 }
 return more;
 }
 //------
 public object Current {
 get {
 return kids[index];
 }
 }
 //------
 public void Reset() {
 index = 0;
 }
}

All of the work is done in the MoveNext() method, which scans through
the collection for another kid belonging to the club specified in the
constructor. Then it returns either true or false.

Finally, we need to add a method to KidData to return this new filtered
Enumeration.
public FilteredIterator getFilteredIterator(string club) {
 return new FilteredIterator (kids, club);

Copyright © , 2002 by James W Cooper

333

}

This simple method passes the collection to the new Iterator class
FilteredIterator along with the club initials. A simple program is shown in
Figure 24-1 that displays all of the kids on the left side. It fills a combo
box with a list of the clubs and then allows the user to select a club and
fills the right-hand list box with those belonging to a single club. The class
diagram is shown in Figure 24-2. Note that the elements method in
KidData supplies an Enumeration and the kidClub class is in fact itself an
Enumeration class.

Figure 24-1 – A simple program-illustrated filtered enumeration

Copyright © , 2002 by James W Cooper

334

Figure 24-2– The classes used in the Filtered enumeration

Keeping Track of the Clubs
We need to obtain a unique list of the clubs to load the combo box in
Figure 25-1 with. As we read in each kid, we can do this by putting the
clubs in a Hashtable:
while(line != null) {
 Kid kd = new Kid (line);
 string club = kd.getClub ();
 if(! clubs.Contains (club)) {
 clubs.Add (club, club);
 }

Copyright © , 2002 by James W Cooper

335

 kids.Add (kd);
 line = fl.readLine ();
}

Then when we want to get the list of clubs, we can ask the Hashtable for
an iterator of its contents. The Hashtable class has a method
getEnumerator which should return this information. However, this
method returns an IdictionaryEnumerator, which is slightly different.
While it is derived from IEnumerator, it uses a Value method to return the
contents of the hash table. This, we load the combo box with the following
code:
IDictionaryEnumerator clubiter = kdata.getClubs ();
while(clubiter.MoveNext ()) {
 cbClubs.Items.Add ((string)clubiter.Value);
}

When we click on the combo box, it gets the selected club to generate a
filtered iterator and load the kidclub list box:
private void cbClubs_SelectedIndexChanged(object sender,

EventArgs e) {
string club = (String)cbClubs.SelectedItem ;

 FilteredIterator iter = kdata.getFilteredIterator (club);
 lsClubKids.Items.Clear ();
 while(iter.MoveNext()) {
 Kid kd = (Kid) iter.Current;
 lsClubKids.Items.Add (kd.getFrname() +" "+

kd.getLname ());
 }
}

 Consequences of the Iterator Pattern
1. Data modification. The most significant question iterators may raise is

the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element,
it is possible that an element might be added or deleted from the
underlying collection while you are moving through it. It is also

Copyright © , 2002 by James W Cooper

336

possible that another thread could change the collection. There are no
simple answers to this problem. If you want to move through a loop
using an Enumeration and delete certain items, you must be careful of
the consequences. Deleting or adding an element might mean that a
particular element is skipped or accessed twice, depending on the
storage mechanism you are using.

2. Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class so they can move through the data. If the data is stored
in an Arraylist or Hashtable, this is pretty easy to accomplish, but if it
is in some other collection structure contained in a class, you probably
have to make that structure available through a get operation.
Alternatively, you could make the Iterator a derived class of the
containment class and access the data directly.

3. External versus Internal Iterators. The Design Patterns text describes
two types of iterators: external and internal. Thus far, we have only
described external iterators. Internal iterators are methods that move
through the entire collection, performing some operation on each
element directly without any specific requests from the user. These
are less common in C#, but you could imagine methods that
normalized a collection of data values to lie between 0 and 1 or
converted all of the strings to a particular case. In general, external
iterators give you more control because the calling program accesses
each element directly and can decide whether to perform an operation
on it.

Programs on the CD-ROM
\Iterator\SimpleIterator kid list using Iterator
\Iterator\FilteredIterator filtered iterator by team name

Copyright © , 2002 by James W Cooper

337

25. The Mediator Pattern

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more
of these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more
each class needs to know about the methods of another class, the more
tangled the class structure can become. This makes the program harder to
read and harder to maintain. Further, it can become difficult to change the
program, since any change may affect code in several other classes. The
Mediator pattern addresses this problem by promoting looser coupling
between these classes. Mediators accomplish this by being the only class
that has detailed knowledge of the methods of other classes. Classes
inform the Mediator when changes occur, and the Mediator passes on the
changes to any other classes that need to be informed.

An Example System
Let’s consider a program that has several buttons, two list boxes, and a
text entry field, as shown in Figure 25-1.

Copyright © , 2002 by James W Cooper

338

Figure 25-1– A simple program with two lists, two buttons, and a text field that will
interact

When the program starts, the Copy and Clear buttons are disabled.

1. When you select one of the names in the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right-hand list box,
and the Clear button is enabled, as we see in Figure 25-2.

Copyright © , 2002 by James W Cooper

339

Figure 25-2 – When you select a name, the buttons are enabled, and when you click
on Copy, the name is copied to the right list box.

3. If you click on the Clear button, the right-hand list box and the text
field are cleared, the list box is deselected, and the two buttons are
again disabled.

User interfaces such as this one are commonly used to select lists of
people or products from longer lists. Further, they are usually even more
complicated than this one, involving insert, delete, and undo operations as
well.

Interactions Between Controls
The interactions between the visual controls are pretty complex, even in
this simple example. Each visual object needs to know about two or more
others, leading to quite a tangled relationship diagram, as shown in Figure
25-3.

Copyright © , 2002 by James W Cooper

340

name text Copy Clear

Kid list Picked list

Figure 25-3 – A tangled web of interactions between classes in the simple visual
interface we presented in and Figure 25-1 and Figure 25-2.

The Mediator pattern simplifies this system by being the only class that is
aware of the other classes in the system. Each of the controls with which
the Mediator communicates is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler
interaction scheme is illustrated in Figure 25-4.

Copyright © , 2002 by James W Cooper

341

name text Copy Clear

Kid list

Picked list

Mediator

Figure 25-4 – A Mediator class simplifies the interactions between classes.

The advantage of the Mediator is clear: It is the only class that knows of
the other classes and thus the only one that would need to be changed if
one of the other classes changes or if other interface control classes are
added.

Sample Code
Let’s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Mediator
class is that each class needs to be aware of the existence of the Mediator.
You start by creating an instance of your Mediator class and then pass the
instance of the Mediator to each class in its constructor.

med = new Mediator (btCopy, btClear, lsKids, lsSelected);
btCopy.setMediator (med); //set mediator ref in each control
btClear.setMediator (med);
lsKids.setMediator (med);
med.setText (txName); //tell mediator about text
box

Copyright © , 2002 by James W Cooper

342

We derive our two button classes from the Button class, so they can also
implement the Command interface. These buttons are passed to the
Mediator in its constructor. Here is the CpyButton class.
public class CpyButton : System.Windows.Forms.Button, Command {
 private Container components = null;
 private Mediator med;
 //-----
 public CpyButton() {
 InitializeComponent();
 }
 //-----
 public void setMediator(Mediator md) {
 med = md;
 }
 //-----
 public void Execute() {
 med.copyClicked ();
 }

It’s Execute method simply tells the Mediator lass that it has been clicked,
and lets the Mediator decide what to do when this happens. The Clear
button is exactly analogous.

We derive the KidList class from the ListBox class and have it loaded
with names within the Mediator’s constructor.
public Mediator(CpyButton cp, ClrButton clr, KidList kl,

ListBox pk) {
 cpButton = cp; //copy in buttons
 clrButton = clr;
 klist = kl; //copy in list boxes
 pkList = pk;
 kds = new KidData ("50free.txt"); //create data list class
 clearClicked(); //clear all controls
 KidIterator kiter = kds.getIterator ();
 while(kiter.MoveNext ()) { //load list box
 Kid kd = (Kid) kiter.Current ;
 klist.Items .Add (kd.getFrname() +" "+

kd.getLname ());
}

}

Copyright © , 2002 by James W Cooper

343

We don’t have to do anything special to the text field, since all its activity
takes place within the Mediator; we just pass it to the Mediator using as
setText method as we illustrated above.

The only other important part of our initialization is creating a single event
handler for the two buttons and the list box. Rather than letting the
development environment generate these click events for us, we create a
single event and add it to the click handlers for the two buttons and the list
box’s SelectIndexChanged event. The intriguing thing about this event
handler is that all it needs to do is call each control’s Execute method and
let the Mediator methods called by those Execute methods do all the real
work.

The event handler for these click events is simply
//each control is a command object
public void clickHandler(object obj, EventArgs e) {
 Command comd = (Command)obj; //get command object
 comd.Execute (); //and execute command
}

We show the complete Form initialization method that creates this event
connections below:
private void init() {
 //set up mediator and pass in referencs to controls
 med = new Mediator (btCopy, btClear, lsKids, lsSelected);
 btCopy.setMediator (med); // mediator ref in each control
 btClear.setMediator (med);
 lsKids.setMediator (med);
 med.setText (txName); //tell mediator about text box

 //create event handler for all command objects
 EventHandler evh = new EventHandler (clickHandler);
 btClear.Click += evh;
 btCopy.Click += evh;
 lsKids.SelectedIndexChanged += evh;
}

Copyright © , 2002 by James W Cooper

344

The general point of all these classes is that each knows about the
Mediator and tells the Mediator of its existence so the Mediator can send
commands to it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear, and Select
methods and has a register method for the TextBox. The two buttons and
the ListBox are passed in in the Mediator’s constructor. Note that there is
no real reason to choose setXxx methods over constructor arguments for
passing in references to these controls. We simple illustrate both
approaches in this example.
public class Mediator {
 private CpyButton cpButton; //buttons
 private ClrButton clrButton;
 private TextBox txKids; //text box
 private ListBox pkList; //list boxes
 private KidList klist;
 private KidData kds; //list of data from file

 public Mediator(CpyButton cp, ClrButton clr,

KidList kl, ListBox pk) {
 cpButton = cp; //copy in buttons
 clrButton = clr;
 klist = kl; //copy in list boxes
 pkList = pk;
 kds = new KidData ("50free.txt"); //create data list
 clearClicked(); //clear all controls
 KidIterator kiter = kds.getIterator ();
 while(kiter.MoveNext ()) { //load list box
 Kid kd = (Kid) kiter.Current ;
 klist.Items .Add (kd.getFrname() +

" "+kd.getLname ());
 }
 }
 //-----
 //get text box reference
 public void setText(TextBox tx) {
 txKids = tx;
 }
 //-----
 //clear lists and set buttons to disabled
 public void clearClicked() {
 //disable buttons and clear list

Copyright © , 2002 by James W Cooper

345

 cpButton.Enabled = false;
 clrButton.Enabled = false;
 pkList.Items.Clear();
 }
 //-----
 //copy data from text box to list box
 public void copyClicked() {
 //copy name to picked list
 pkList.Items.Add(txKids.Text);
 //clear button enabled
 clrButton.Enabled = true;
 klist.SelectedIndex = -1;
 }
 //-----
 //copy selected kid to text box
 //enable copy button
 public void kidPicked() {
 //copy text from list to textbox
 txK ids.Text = klist.Text;
 //copy button enabled
 cpButton.Enabled = true;
 }
}

Initialization of the System
One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these
states may change as the program evolves, we simply carry out this
initialization in the Mediator’s constructor, which sets all the controls to
the desired state. In this case, that state is the same as the one achieved by
the Clear button, and we simply call that method this.
 clearClicked(); //clear all controls

Mediators and Command Objects
The two buttons in this program use command objects. Just as we noted
earlier, this makes processing of the button click events quite simple.

Copyright © , 2002 by James W Cooper

346

In either case, however, this represents the solution to one of the problems
we noted in the Command pattern chapter: Each button needed knowledge
of many of the other user interface classes in order to execute its
command. Here, we delegate that knowledge to the Mediator, so the
Command buttons do not need any knowledge of the methods of the other
visual objects. The class diagram for this program is shown in Figure
25-5, illustrating both the Mediator pattern and the use of the Command
pattern.

Figure 25-5 – The interactions between the Command objects and the Mediator
object

Copyright © , 2002 by James W Cooper

347

Figure 25-6 – The UML diagram for the C# Mediator pattern

Consequences of the Mediator Pattern
1. The Mediator pattern keeps classes from becoming entangled when

actions in one class need to be reflected in the state of another class.

2. Using a Mediator makes it easy to change a program’s behavior. For
many kinds of changes, you can merely change or subclass the
Mediator, leaving the rest of the program unchanged.

Copyright © , 2002 by James W Cooper

348

3. You can add new controls or other classes without changing anything
except the Mediator.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become a “god class,” having too much knowledge
of the rest of the program. This can make it hard to change and
maintain. Sometimes you can improve this situation by putting more
of the function into the individual classes and less into the Mediator.
Each object should carry out its own tasks, and the Mediator should
only manage the interaction between objects.

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has
available. This makes it difficult to reuse Mediator code in different
projects. On the other hand, most Mediators are quite simple, and
writing this code is far easier than managing the complex object
interactions any other way.

Single Interface Mediators
The Mediator pattern described here acts as a kind of Observer pattern,
observing changes in each of the Colleague elements, with each element
having a custom interface to the Mediator. Another approach is to have a
single interface to your Mediator and pass to that method various objects
that tell the Mediator which operations to perform.

In this approach, we avoid registering the active components and create a
single action method with different polymorphic arguments for each of the
action elements.
public void action(MoveButton mv);
public void action(clrButton clr);
public void action(KidList klist);

Copyright © , 2002 by James W Cooper

349

Thus, we need not register the action objects, such as the buttons and
source list boxes, since we can pass them as part of generic action
methods.

In the same fashion, you can have a single Colleague interface that each
Colleague implements, and each Colleague then decides what operation it
is to carry out.

Implementation Issues
Mediators are not limited to use in visual interface programs; however, it
is their most common application. You can use them whenever you are
faced with the problem of complex intercommunication between a number
of objects.

Programs on the CD-ROM
\Mediator Mediator

Copyright © , 2002 by James W Cooper

350

26. The Memento Pattern

In this chapter, we discuss how to use the Memento pattern to save data
about an object so you can restore it later. For example, you might like
to save the color, size, pattern, or shape of objects in a drafting or
painting program. Ideally, it should be possible to save and restore this
state without making each object take care of this task and without
violating encapsulation. This is the purpose of the Memento pattern.

Motivation
Objects normally shouldn’t expose much of their internal state using
public methods, but you would still like to be able to save the entire
state of an object because you might need to restore it later. In some
cases, you could obtain enough information from the public interfaces
(such as the drawing position of graphical objects) to save and restore
that data. In other cases, the color, shading, angle, and connection
relationships to other graphical objects need to be saved, and this
information is not readily available. This sort of information saving
and restoration is common in systems that need to support Undo
commands.

If all of the information describing an object is available in public
variables, it is not that difficult to save them in some external store.
However, making these data public makes the entire system vulnerable
to change by external program code, when we usually expect data
inside an object to be private and encapsulated from the outside world.

The Memento pattern attempts to solve this problem in some languages
by having privileged access to the state of the object you want to save.
Other objects have only a more restricted access to the object, thus
preserving their encapsulation. In C#, however, there is only a limited
notion of privileged access, but we will make use of it in this example.

This pattern defines three roles for objects.

1. The Originator is the object whose state we want to save.

2. The Memento is another object that saves the state of the
Originator.

Copyright © , 2002 by James W Cooper

351

3. The Caretaker manages the timing of the saving of the state, saves
the Memento, and, if needed, uses the Memento to restore the state
of the Originator.

Implementation
Saving the state of an object without making all of its variables
publicly available is tricky and can be done with varying degrees of
success in various languages. Design Patterns suggests using the C++
friend construction to achieve this access, and the Smalltalk
Companion notes that it is not directly possible in Smalltalk. In Java,
this privileged access is possible using the package protected mode.
The internal keyword is available in C#, but all that means is that any
class method labeled as internal will only be accessible within the
project. If you make a library from such classes, the methods marked
as internal will not be exported and available. Instead, we will define a
property to fetch and store the important internal values and make use
of no other properties for any purpose in that class. For consistency,
we’ll use the internal keyword on these properties, but remember that
this linguistic use of internal is not very restrictive.

Sample Code
Let’s consider a simple prototype of a graphics drawing program that
creates rectangles and allows you to select them and move them around
by dragging them with the mouse. This program has a toolbar
containing three buttons—Rectangle, Undo, and Clear—as we see in
Figure 26-1

Copyright © , 2002 by James W Cooper

352

Figure 26-1 – A simple graphics drawing program that allows you to draw
rectangles, undo their drawing, and clear the screen

The Rectangle button is a toolbar ToggleButton that stays selected until
you click the mouse to draw a new rectangle. Once you have drawn the
rectangle, you can click in any rectangle to select it, as we see in Figure
26-2.

Figure 26-2– Selecting a rectangle causes “handles” to appear, indicating that it
is selected and can be moved.

Copyright © , 2002 by James W Cooper

353

Once it is selected, you can drag that rectangle to a new position, using
the mouse, as shown in Figure 26-3

Figure 26-3 – The same selected rectangle after dragging

The Undo button can undo a succession of operations. Specifically, it
can undo moving a rectangle, and it can undo the creation of each
rectangle. There are five actions we need to respond to in this program.

1. Rectangle button click

2. Undo button click

3. Clear button click

4. Mouse click

5. Mouse drag

The three buttons can be constructed as Command objects, and the
mouse click and drag can be treated as commands as well. Since we
have a number of visual objects that control the display of screen
objects, this suggests an opportunity to use the Mediator pattern, and
that is, in fact, the way this program is constructed.

We will create a Caretaker class to manage the Undo action list. It can
keep a list of the last n operations so they can be undone. The Mediator
maintains the list of drawing objects and communicates with the

Copyright © , 2002 by James W Cooper

354

Caretaker object as well. In fact, since there could be any number of
actions to save and undo in such a program, a Mediator is virtually
required so there is a single place to send these commands to the Undo
list in the Caretaker.

In this program, we save and undo only two actions: creating new
rectangles and changing the position of rectangles. Let’s start with our
visRectangle class, which actually draws each instance of the
rectangles.
 public class VisRectangle {
 private int x, y, w, h;
 private const int SIZE=30;
 private CsharpPats.Rectangle rect;
 private bool selected;
 private Pen bPen;
 private SolidBrush bBrush;
 //-----
 public VisRectangle(int xp, int yp) {
 x = xp; y = yp;
 w = SIZE; h = SIZE;
 saveAsRect();
 bPen = new Pen(Color.Black);
 bBrush = new SolidBrush(Color.Black);
 }
 //-----
 //used by Memento for saving and restoring state
 internal CsharpPats.Rectangle rects {
 get {
 return rect;
 }
 set {
 x=value.x;
 y=value.y;
 w=value.w;
 h=value.h;
 saveAsRect();
 }
 }
 //------
 public void setSelected(bool b) {
 selected = b;
 }
 //-----
 //move to new position
 public void move(int xp, int yp) {
 x = xp;
 y = yp;
 saveAsRect();

Copyright © , 2002 by James W Cooper

355

 }
 //-----
 public void draw(Graphics g) {
 //draw rectangle
 g.DrawRectangle(bPen, x, y, w, h);

 if (selected) { //draw handles
 g.FillRectangle(bBrush, x + w / 2, y - 2, , 4);
 g.FillRectangle(bBrush, x - 2, y + h / 2, 4, 4);
 g.FillRectangle(bBrush, x + (w / 2), y + h - 2, 4,);
 g.FillRectangle(bBrush, x + (w - 2),

y + (h / 2), 4, 4);
 }
 }
 //-----
 //return whether point is inside rectangle
 public bool contains(int x, int y) {
 return rect.contains (x, y);
 }
 //------
 //create Rectangle object from new position
 private void saveAsRect() {
 rect = new CsharpPats.Rectangle (x,y,w,h);
 }

We also use the same Rectangle class as we hace developed before,
that contains Get and Set properties for the x, y, w, and h values and a
contains method.

Drawing the rectangle is pretty straightforward. Now, let’s look at our
simple Memento class that we use to store the state of a rectangle.
public class Memento {
 private int x, y, w, h;
 private CsharpPats.Rectangle rect;
 private VisRectangle visRect;
 //------
 public Memento(VisRectangle vrect) {
 visRect = vrect;
 rect = visRect.rects ;
 x = rect.x ;
 y = rect.y;
 w = rect.w;
 h = rect.h;
 }
 //------
 public void restore() {
 rect.x = x;
 rect.y = y;

Copyright © , 2002 by James W Cooper

356

 rect.h = h;
 rect.w = w;
 visRect.rects = rect;
 }
}
When we create an instance of the Memento class, we pass it the
visRectangle instance we want to save, using the init method. It copies
the size and position parameters and saves a copy of the instance of the
visRectangle itself. Later, when we want to restore these parameters,
the Memento knows which instance to which it must restore them, and
it can do it directly, as we see in the restore() method.

The rest of the activity takes place in the Mediator class, where we
save the previous state of the list of drawings as an integer on the undo
list.
public void createRect(int x, int y) {
 unpick(); //make sure none is selected
 if (startRect) { //if rect button is depressed
 int count = drawings.Count;
 caretakr.Add(count); //Save list size

//create a rectangle
VisRectangle v = new VisRectangle(x, y);

 drawings.Add(v);//add element to list
 startRect = false; //done with rectangle
 rect.setSelected(false); //unclick button
 canvas.Refresh();
 }
 else

//if not pressed look for rect to select
 pickRect(x, y);

 }
}

On the other hand, if you click on the panel when the Rectangle button
has not been selected, you are trying to select an existing rectangle.
This is tested here.
public void pickRect(int x, int y) {
 //save current selected rectangle
 //to avoid double save of undo
 int lastPick = -1;
 if (selectedIndex >= 0) {
 lastPick = selectedIndex;
 }
 unpick(); //undo any selection

Copyright © , 2002 by James W Cooper

357

 //see if one is being selected
 for (int i = 0; i< drawings.Count; i++) {
 VisRectangle v = (VisRectangle)drawings[i];
 if (v.contains(x, y)) {

//did click inside a rectangle
 selectedIndex = i; //save it
 rectSelected = true;
 if (selectedIndex != lastPick) {

//but don't save twice
 caretakr.rememberPosition(v);
 }
 v.setSelected(true); //turn on handles
 repaint(); //and redraw
 }
 }
}

The Caretaker class remembers the previous position of the rectangle
in a Memento object and adds it to the undo list.
public void rememberPosition(VisRectangle vr) {
 Memento mem = new Memento (vr);
 undoList.Add (mem);
}

The Caretaker class manages the undo list. This list is a Collection of
integers and Memento objects. If the value is an integer, it represents
the number of drawings to be drawn at that instant. If it is a Memento,
it represents the previous state of a visRectangle that is to be restored.
In other words, the undo list can undo the adding of new rectangles and
the movement of existing rectangles.

Our undo method simply decides whether to reduce the drawing list by
one or to invoke the restore method of a Memento. Since the undo list
contains both integer objects and Memento objects, we cast the list
element to a Memento type, and if this fails, we catch the cast
exception and recognize that it will be a drawing list element to be
removed.
public void undo() {
 if(undoList.Count > 0) {
 int last = undoList.Count -1;
 object obj = undoList[last];
 try{
 Memento mem = (Memento)obj;
 remove(mem);
 }

Copyright © , 2002 by James W Cooper

358

 catch (Exception) {
 removeDrawing();
 }
 undoList.RemoveAt (last);
 }
}

The two remove methods either reduce the number of drawings or
restore the position of a rectangle.
public void removeDrawing() {
 drawings.RemoveAt (drawings.Count -1);
}
public void remove(Memento mem) {
 mem.restore ();
}

A Cautionary Note
While it is helpful in this example to call out the differences between a
Memento of a rectangle position and an integer specifying the addition
of a new drawing, this is in general an absolutely terrible example of
OO programming. You should never need to check the type of an
object to decide what to do with it. Instead, you should be able to call
the correct method on that object and have it do the right thing.

A more correct way to have written this example would be to have
both the drawing element and the Memento class both have their own
restore methods and have them both be members of a general Memento
class (or interface). We take this approach in the State example pattern
in the next chapter.

Command Objects in the User Interface
We can also use the Command pattern to help in simplifying the code
in the user interface. You can build a toolbar and create
ToolbarButtons in C# using the IDE, but if you do, it is difficult to
subclass them to make them into command objects. There are two
possible solutions. First, you can keep a parallel array of Command
objects for the RectButton, the UndoButton, and the Clear button and
call them in the toolbar click routine.

You should note, however, that the toolbar buttons do not have an
Index property, and you cannot just ask which one has been clicked by

Copyright © , 2002 by James W Cooper

359

its index and relate it to the command array. Instead, we can use the
GetHashCode property of each tool button to get a unique identifier for
that button and keep the corresponding command objects in a
Hashtable keyed off these button hash codes. We construct the
Hashtable as follows.
private void init() {
 med = new Mediator(pic); //create Mediator
 commands = new Hashtable(); //and Hash table
 //create the command objectsb
 RectButton rbutn = new RectButton(med, tbar.Buttons[0]);
 UndoButton ubutn = new UndoButton(med, tbar.Buttons[1]);
 ClrButton clrbutn = new ClrButton(med);
 med.registerRectButton (rbutn);
 //add them to the hashtable using the button hash values
 commands.Add(btRect.GetHashCode(), rbutn);
 commands.Add(btUndo.GetHashCode(), ubutn);
 commands.Add(btClear.GetHashCode(), clrbutn);
 pic.Paint += new PaintEventHandler (paintHandler);
}
Then the command interpretation devolves to just a few lines of code,
since all the buttons call the same click event already. We can use these
hash codes to get the right command object when the buttons are
clicked.
private void tbar_ButtonClick(object sender,

ToolBarButtonClickEventArgs e) {
 ToolBarButton tbutn = e.Button ;
 Command comd = (Command)commands[tbutn.GetHashCode ()];
 comd.Execute ();
}
Alternatively, you could create the toolbar under IDE control but add
the tool buttons to the collection programmatically and use derived
buttons with a Command interface instead. We illustrate this approach
in the State pattern.

The RectButton command class is where most of the activity takes
place.
public class RectButton : Command {
 private ToolBarButton bt;
 private Mediator med;
 //------
 public RectButton(Mediator md, ToolBarButton tb) {
 med = md;
 bt = tb;
 }

Copyright © , 2002 by James W Cooper

360

 //------
 public void setSelected(bool sel) {
 bt.Pushed = sel;
 }
 //------
 public void Execute() {
 if(bt.Pushed)
 med.startRectangle ();
 }
}

Handling Mouse and Paint Events
We also must catch the mouse down, up, and move events and pass
them on to the Mediator to handle.
private void pic_MouseDown(object sender, MouseEventArgs e) {
 mouse_down = true;
 med.createRect (e.X, e.Y);
}
//------
private void pic_MouseUp(object sender, MouseEventArgs e) {
 mouse_down = false;
}
//------
private void pic_MouseMove(object sender, MouseEventArgs e) {
 if(mouse_down)
 med.drag(e.X , e.Y);
}

Whenever the Mediator makes a change, it calls for a refresh of the
picture box, which in turn calls the Paint event. We then pass this back
to the Mediator to draw the rectangles in their new positions.

private void paintHandler(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics ;
 med.reDraw (g);
}

The complete class structure is diagrammed in Figure 26-4

Copyright © , 2002 by James W Cooper

361

Figure 26-4 – The UML diagram for the drawing program using a Memento

Consequences of the Memento
The Memento provides a way to preserve the state of an object while
preserving encapsulation in languages where this is possible. Thus,
data to which only the Originator class should have access effectively
remain private. It also preserves the simplicity of the Originator class
by delegating the saving and restoring of information to the Memento
class.

On the other hand, the amount of information that a Memento has to
save might be quite large, thus taking up fair amounts of storage. This
further has an effect on the Caretaker class that may have to design
strategies to limit the number of objects for which it saves state. In our
simple example, we impose no such limits. In cases where objects
change in a predictable manner, each Memento may be able to get by
with saving only incremental changes of an object’s state.

In our example code in this chapter, we have to use not only the
Memento but the Command and Mediator patterns as well. This
clustering of several patterns is very common, and the more you see of
good OO programs, the more you will see these pattern groupings.

Thought Question
Mementos can also be used to restore the state of an object when a
process fails. If a database update fails because of a dropped network

Copyright © , 2002 by James W Cooper

362

connection, you should be able to restore the data in your cached data
to their previous state. Rewrite the Database class in the Façade chapter
to allow for such failures.

Programs on the CD-ROM
\Memento Memento example

Copyright © , 2002 by James W Cooper

363

27. The Observer Pattern

In this chapter we discuss how you can use the Observer pattern to
present data in several forms at once. In our new, more sophisticated
windowing world, we often would like to display data in more than one
form at the same time and have all of the displays reflect any changes
in that data. For example, you might represent stock price changes both
as a graph and as a table or list box. Each time the price changes, we’d
expect both representations to change at once without any action on
our part.

We expect this sort of behavior because there are any number of
Windows applications, like Excel, where we see that behavior. Now
there is nothing inherent in Windows to allow this activity, and, as you
may know, programming directly in Windows in C or C++ is pretty
complicated. In C#, however, we can easily use the Observer Design
Pattern to make our program behave this way.

The Observer pattern assumes that the object containing the data is
separate from the objects that display the data and that these display
objects observe changes in that data. This is simple to illustrate, as we
see in Figure 27-1.

Graphic
Display

List
Display

Data

User

Figure 27-1– Data are displayed as a list and in some graphical mode.

Copyright © , 2002 by James W Cooper

364

When we implement the Observer pattern, we usually refer to the data
as the Subject and each of the displays as an Observer. Each of these
observers registers its interest in the data by calling a public method in
the Subject. Then each observer has a known interface that the subject
calls when the data change. We could define these interfaces as
follows.
public interface Observer {
 void sendNotify(string message);
//-----
public interface Subject {
 void registerInterest(Observer obs);
}

The advantages of defining these abstract interfaces is that you can
write any sort of class objects you want as long as they implement
these interfaces and that you can declare these objects to be of type
Subject and Observer no matter what else they do.

Watching Colors Change
Let’s write a simple program to illustrate how we can use this powerful
concept. Our program shows a display form containing three radio
buttons named Red, Blue, and Green, as shown in Figure 27-2.

Figure 27-2 – A simple control panel to create red, green, or blue “data”

Now our main form class implements the Subject interface. That
means that it must provide a public method for registering interest in
the data in this class. This method is the registerInterest method, which
just adds Observer objects to an ArrayList.

Copyright © , 2002 by James W Cooper

365

public void registerInterest(Observer obs) {
 observers.Add (obs);
}
Now we create two observers, one that displays the color (and its
name) and another that adds the current color to a list box. Each of
these is actually a Windows form that also implements the Observer
interface. When we create instances of these forms, we pass to them
the base or startup form as an argument. Since this startup form is
actually the Subject, they can register their interest in its events. So the
main form’s initialization creates these instances and passes them a
reference to itself.

ListObs lobs = new ListObs (this);
 lobs.Show ();
 ColObserver colObs = new ColObserver (this);
 colObs.Show();
Then, when we create our ListObs window, we register our interest in
the data in the main program.
public ListObs(Subject subj) {
 InitializeComponent();
 init(subj);
}
//------
public void init(Subject subj) {
 subj.registerInterest (this);
}

When it receives a sendNotify message from the main subject program,
all it has to do is to add the color name to the list.
public void sendNotify(string message){
 lsColors.Items.Add(message);
}

Our color window is also an observer, and it has to change the
background color of the picture box and paint the color name using a
brush. Note that we change the picture box’s background color in the
sendNotify event, and change the text in a paint event. The entire class
is shown here.
public class ColObserver : Form, Observer{
 private Container components = null;
 private Brush bBrush;
 private System.Windows.Forms.PictureBox pic;
 private Font fnt;

Copyright © , 2002 by James W Cooper

366

 private Hashtable colors;
 private string colName;
 //-----
 public ColObserver(Subject subj) {
 InitializeComponent();
 init(subj);
 }
 //-----
 private void init(Subject subj) {
 subj.registerInterest (this);
 fnt = new Font("arial", 18, FontStyle.Bold);
 bBrush = new SolidBrush(Color.Black);
 pic.Paint+= new PaintEventHandler (paintHandler);

//make Hashtable for converting color strings
 colors = new Hashtable ();

 colors.Add("red", Color.Red);
 colors.Add ("blue", Color.Blue);
 colors.Add ("green", Color.Green);
 colName = "";
 }
 //-----
 public void sendNotify(string message) {
 colName = message;
 message = message.ToLower ();

//convert color string to color object
 Color col = (Color)colors[message];
 pic.BackColor = col;
 }
 //-----
 private void paintHandler(object sender,

PaintEventArgs e) {
 Graphics g = e.Graphics ;
 g.DrawString(colName, fnt, bBrush, 20, 40)
 }

Note that our sendNotify event receives a string representing the color
name, and that we use a Hashtable to convert these strings to actual
Color objects.

Meanwhile, in our main program, every time someone clicks on one of
the radio buttons, it calls the sendNotify method of each Observer who
has registered interest in these changes by simply running through the
objects in the Observer’s Collection.
private void opButton_Click(object sender, EventArgs e) {
 RadioButton but = (RadioButton)sender;
 for(int i=0; i< observers.Count ; i++) {
 Observer obs = (Observer)observers[i];
 obs.sendNotify (but.Text);

Copyright © , 2002 by James W Cooper

367

 }
}
In the case of the ColorForm observer, the sendNotify method changes
the background color and the text string in the form Picturebox. In the
case of the ListForm observer, however, it just adds the name of the
new color to the list box. We see the final program running in Figure
27-3

Figure 27-3 – The data control panel generates data that is displayed
simultaneously as a colored panel and as a list box. This is a candidate for an
Observer pattern.

The Message to the Media
Now, what kind of notification should a subject send to its observers?
In this carefully circumscribed example, the notification message is the
string representing the color itself. When we click on one of the radio
buttons, we can get the caption for that button and send it to the
observers. This, of course, assumes that all the observers can handle
that string representation. In more realistic situations, this might not
always be the case, especially if the observers could also be used to
observe other data objects. Here we undertake two simple data
conversions.

Copyright © , 2002 by James W Cooper

368

1. We get the label from the radio button and send it to the
observers.

2. We convert the label to an actual color in the ColObserver.

In more complicated systems, we might have observers that demand
specific, but different, kinds of data. Rather than have each observer
convert the message to the right data type, we could use an
intermediate Adapter class to perform this conversion.

Another problem observers may have to deal with is the case where the
data of the central subject class can change in several ways. We could
delete points from a list of data, edit their values, or change the scale of
the data we are viewing. In these cases we either need to send different
change messages to the observers or send a single message and then
have the observer ask which sort of change has occurred.

Figure 28-4 – The Observer interface and Subject interface implementation of
the Observer pattern

Consequences of the Observer Pattern
Observers promote abstract coupling to Subjects. A subject doesn’t
know the details of any of its observers. However, this has the potential
disadvantage of successive or repeated updates to the Observers when
there are a series of incremental changes to the data. If the cost of these
updates is high, it may be necessary to introduce some sort of change
management so the Observers are not notified too soon or too
frequently.

Copyright © , 2002 by James W Cooper

369

When one client makes a change in the underlying data, you need to
decide which object will initiate the notification of the change to the
other observers. If the Subject notifies all the observers when it is
changed, each client is not responsible for remembering to initiate the
notification. On the other hand, this can result in a number of small
successive updates being triggered. If the clients tell the Subject when
to notify the other clients, this cascading notification can be avoided,
but the clients are left with the responsibility of telling the Subject
when to send the notifications. If one client “forgets,” the program
simply won’t work properly.

Finally, you can specify the kind of notification you choose to send by
defining a number of update methods for the Observers to receive,
depending on the type or scope of change. In some cases, the clients
will thus be able to ignore some of these notifications.

Programs on the CD-ROM
\Observer Observer example

Copyright © , 2002 by James W Cooper

370

28. The State Pattern

The State pattern is used when you want to have an object represent the
state of your application and switch application states by switching
objects. For example, you could have an enclosing class switch between a
number of related contained classes and pass method calls on to the
current contained class. Design Patterns suggests that the State pattern
switches between internal classes in such a way that the enclosing object
appears to change its class. In C#, at least, this is a bit of an exaggeration,
but the actual purpose to which the classes are applied can change
significantly.

Many programmers have had the experience of creating a class that
performs slightly different computations or displays different information
based on the arguments passed into the class. This frequently leads to
some types of select case or if-else statements inside the class that
determine which behavior to carry out. It is this inelegance that the State
pattern seeks to replace.

Sample Code
Let’s consider the case of a drawing program similar to the one we
developed for the Memento class. Our program will have toolbar buttons
for Select, Rectangle, Fill, Circle, and Clear. We show this program in
Figure 28-1

Copyright © , 2002 by James W Cooper

371

Figure 28-1 – A simple drawing program we will use for illustrating the State
pattern

Each one of the tool buttons does something rather different when it is
selected and you click or drag your mouse across the screen. Thus, the
state of the graphical editor affects the behavior the program should
exhibit. This suggests some sort of design using the State pattern.

Initially we might design our program like this, with a Mediator managing
the actions of five command buttons, as shown in Figure 28-2

Copyright © , 2002 by James W Cooper

372

Mediator

Pick

Rect

Fill

Circle

Clear

Screen

Mouse

Figure 28-2– One possible interaction between the classes needed to support the
simple drawing program

However, this initial design puts the entire burden of maintaining the state
of the program on the Mediator, and we know that the main purpose of a
Mediator is to coordinate activities between various controls, such as the
buttons. Keeping the state of the buttons and the desired mouse activity
inside the Mediator can make it unduly complicated, as well as leading to
a set of If or Select tests that make the program difficult to read and
maintain.

Further, this set of large, monolithic conditional statements might have to
be repeated for each action the Mediator interprets, such as mouseUp,
mouseDrag, rightClick, and so forth. This makes the program very hard to
read and maintain.

Instead, let’s analyze the expected behavior for each of the buttons.

1. If the Select button is selected, clicking inside a drawing
element should cause it to be highlighted or appear with

Copyright © , 2002 by James W Cooper

373

“handles.” If the mouse is dragged and a drawing element is
already selected, the element should move on the screen.

2. If the Rect button is selected, clicking on the screen should
cause a new rectangle drawing element to be created.

3. If the Fill button is selected and a drawing element is already
selected, that element should be filled with the current color. If
no drawing is selected, then clicking inside a drawing should
fill it with the current color.

4. If the Circle button is selected, clicking on the screen should
cause a new circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are
removed.

There are some common threads among several of these actions we should
explore. Four of them use the mouse click event to cause actions. One uses
the mouse drag event to cause an action. Thus, we really want to create a
system that can help us redirect these events based on which button is
currently selected.

Let’s consider creating a State object that handles mouse activities.
public class State {
 //keeps state of each button
 protected Mediator med;
 public State(Mediator md) {
 med = md; //save reference to mediator
 }
 public virtual void mouseDown(int x, int y) {}
 public virtual void mouseUp(int x, int y) { }
 public virtual void mouseDrag(int x, int y) {}
}
Note that we are creating an actual class here with empty methods, rather
than an interface. This allows us to derive new State objects from this
class and only have to fill in the mouse actions that actually do anything
for that case. Then we’ll create four derived State classes for Pick, Rect,
Circle, and Fill and put instances of all of them inside a StateManager

Copyright © , 2002 by James W Cooper

374

class that sets the current state and executes methods on that state object.
In Design Patterns, this StateManager class is referred to as a Context.
This object is illustrated in Figure 28-3.

StateManager

State

Pick Rect Fill Circle

currentState

Figure 28-3– A StateManager class that keeps track of the current state

A typical State object simply overrides those event methods that it must
handle specially. For example, this is the complete Rectangle state object.
Note that since it only needs to respond to the mouseDown event, we
don’t have to write any code at all for the other events.
public class RectState :State {
 public RectState(Mediator md):base (md) {}
 //-----
 public override void mouseDown(int x, int y) {
 VisRectangle vr = new VisRectangle(x, y);
 med.addDrawing (vr);

Copyright © , 2002 by James W Cooper

375

 }
}

The RectState object simply tells the Mediator to add a rectangle drawing
to the drawing list. Similarly, the Circle state object tells the Mediator to
add a circle to the drawing list.
public class CircleState : State {
 public CircleState(Mediator md):base (md){ }
 //-----
 public override void mouseDown(int x, int y) {
 VisCircle c = new VisCircle(x, y);
 med.addDrawing (c);
 }
}

The only tricky button is the Fill button because we have defined two
actions for it.

1. If an object is already selected, fill it.

2. If the mouse is clicked inside an object, fill that one.

In order to carry out these tasks, we need to add the selectOne method to
our base State interface. This method is called when each tool button is
selected.
public class State {
 //keeps state of each button
 protected Mediator med;
 public State(Mediator md) {
 med = md; //save reference to mediator
 }
 public virtual void mouseDown(int x, int y) {}
 public virtual void mouseUp(int x, int y) { }
 public virtual void mouseDrag(int x, int y) {}
 public virtual void selectOne(Drawing d) {}
}

The Drawing argument is either the currently selected Drawing or null if
none is selected. In this simple program, we have arbitrarily set the fill
color to red, so our Fill state class becomes the following.

Copyright © , 2002 by James W Cooper

376

public class FillState : State {
 public FillState(Mediator md): base(md) { }
 //-----
 public override void mouseDown(int x, int y) {
 //Fill drawing if you click inside one
 int i = med.findDrawing(x, y);
 if (i >= 0) {
 Drawing d = med.getDrawing(i);
 d.setFill(true); //fill drawing
 }
 }
 //-----
 public override void selectOne(Drawing d) {
 //fill drawing if selected
 d.setFill (true);
 }
}

Switching Between States
Now that we have defined how each state behaves when mouse events are
sent to it, we need to examine how the StateManager switches between
states. We create an instance of each state, and then we simply set the
currentState variable to the state indicated by the button that is selected.
public class StateManager {
 private State currentState;
 private RectState rState;
 private ArrowState aState;
 private CircleState cState;
 private FillState fState;

 public StateManager(Mediator med) {
 //create an instance of each state
 rState = new RectState(med);
 cState = new CircleState(med);
 aState = new ArrowState(med);
 fState = new FillState(med);
 //and initialize them
 //set default state
 currentState = aState;
 }

Copyright © , 2002 by James W Cooper

377

Note that in this version of the StateManager, we create an instance of
each state during the constructor and copy the correct one into the state
variable when the set methods are called. It would also be possible to
create these states on demand. This might be advisable if there are a large
number of states that each consume a fair number of resources.

The remainder of the state manager code simply calls the methods of
whichever state object is current. This is the critical piece—there is no
conditional testing. Instead, the correct state is already in place, and its
methods are ready to be called.
 public void mouseDown(int x, int y) {
 currentState.mouseDown (x, y);
 }
 public void mouseUp(int x, int y) {
 currentState.mouseUp (x, y);
 }
 public void mouseDrag(int x, int y) {
 currentState.mouseDrag (x, y);
 }
 public void selectOne(Drawing d) {
 currentState.selectOne (d);
 }

How the Mediator Interacts with the State Manager
We mentioned that it is clearer to separate the state management from the
Mediator’s button and mouse event management. The Mediator is the
critical class, however, since it tells the StateManager when the current
program state changes. The beginning part of the Mediator illustrates how
this state change takes place. Note that each button click calls one of these
methods and changes the state of the application. The remaining
statements in each method simply turn off the other toggle buttons so only
one button at a time can be depressed.
public class Mediator {
 private bool startRect;
 private int selectedIndex;

Copyright © , 2002 by James W Cooper

378

 private RectButton rectb;
 private bool dSelected;
 private ArrayList drawings;
 private ArrayList undoList;
 private RectButton rButton;
 private FillButton filButton;
 private CircleButton circButton;
 private PickButton arrowButton;
 private PictureBox canvas;
 private int selectedDrawing;
 private StateManager stMgr;
 //-----
 public Mediator(PictureBox pic) {
 startRect = false;
 dSelected = false;
 drawings = new ArrayList();
 undoList = new ArrayList();
 stMgr = new StateManager(this);
 canvas = pic;
 selectedDrawing = -1;
 }
 //-----
 public void startRectangle() {
 stMgr.setRect();
 arrowButton.setSelected(false);
 circButton.setSelected(false);
 filButton.setSelected(false);
 }
 //-----
 public void startCircle() {
 stMgr.setCircle();
 rectb.setSelected(false);
 arrowButton.setSelected(false);
 filButton.setSelected(false);
 }

The ComdToolBarButton
In the discussion of the Memento pattern, we created a series of button Command
objects paralleling the toolbar buttons and keep them in a Hashtable to be called
when the toolbar button click event occurs. However, a powerful alternative os to
create a ComdToolBarButton class which implements the Command interface as

Copyright © , 2002 by James W Cooper

379

well as being a ToolBarButton. Then, each button can have an Execute method
which defines its purpose. Here is the base class

public class ComdToolBarButton : ToolBarButton , Command {
 private System.ComponentModel.Container components = null;
 protected Mediator med;
 protected bool selected;
 public ComdToolBarButton(string caption, Mediator md)
 {
 InitializeComponent();
 med = md;
 this.Text =caption;
 }
 //------
 public void setSelected(bool b) {
 selected = b;
 if(!selected)
 this.Pushed =false;
 }
 //-----
 public virtual void Execute() {
 }

Note that the Execute method is empty in this base class, but is virtual so
we can override it in each derived class. In this case, we cannot use the
IDE to create the toolbar, but can simply add the buttons to the toolbar
programmatically:

private void init() {
 //create a Mediator
 med = new Mediator(pic);
 //create the buttons
 rctButton = new RectButton(med);
 arowButton = new PickButton(med);
 circButton = new CircleButton(med);
 flButton = new FillButton(med);
 undoB = new UndoButton(med);
 clrb = new ClearButton(med);
 //add the buttons into the toolbar
 tBar.Buttons.Add(arowButton);
 tBar.Buttons.Add(rctButton);
 tBar.Buttons.Add(circButton);
 tBar.Buttons.Add(flButton);
 //include a separator

Copyright © , 2002 by James W Cooper

380

 ToolBarButton sep =new ToolBarButton();
 sep.Style = ToolBarButtonStyle.Separator;
 tBar.Buttons.Add(sep);
 tBar.Buttons.Add(undoB);
 tBar.Buttons.Add(clrb);
 }

Then we can catch all the toolbar button click events in a single method and call
each button’s Execute method.
private void tBar_ButtonClick(object sender,

ToolBarButtonClickEventArgs e) {
 Command comd = (Command)e.Button ;
 comd.Execute ();
}

The class diagram for this program illustrating the State pattern in this
application is illustrated in two parts. The State section is shown in Figure
28-4

Figure 28-4 – The StateManager and the Mediator

Copyright © , 2002 by James W Cooper

381

The connection of the Mediator to the buttons is shown in Figure 28-5.

Figure 28-5 – Interaction between the buttons and the Mediator

Handling the Fill State
The Fill State object is only slightly more complex because we have to
handle two cases. The program will fill the currently selected object if one
exists or fill the next one that you click on. This means there are two State
methods we have to fill in for these two cases, as we see here.
public class FillState : State {
 public FillState(Mediator md): base(md) { }
 //-----
 public override void mouseDown(int x, int y) {
 //Fill drawing if you click inside one
 int i = med.findDrawing(x, y);
 if (i >= 0) {
 Drawing d = med.getDrawing(i);
 d.setFill(true); //fill drawing
 }

Copyright © , 2002 by James W Cooper

382

 }
 //-----
 public override void selectOne(Drawing d) {
 //fill drawing if selected
 d.setFill (true);
 }
}

Handling the Undo List
Now we should be able to undo each of the actions we carry out in this
drawing program, and this means that we keep them in an undo list of
some kind. These are the actions we can carry out and undo.

1. Creating a rectangle

2. Creating a circle

3. Moving a rectangle or circle

4. Filling a rectangle or circle

In our discussion of the Memento pattern, we indicated that we would use
a Memento object to store the state of the rectangle object and restore its
position from that Memento as needed. This is generally true for both
rectangles and circles, since we need to save and restore the same kind of
position information. However, the addition of rectangles or circles and
the filling of various figures are also activities we want to be able to undo.
And, as we indicated in the previous Memento discussion, the idea of
checking for the type of object in the undo list and performing the correct
undo operation is a really terrible idea.
 //really terrible programming approach
 object obj = undoList[last];
 try{
 Memento mem = (Memento)obj;
 remove(mem);
 }
 catch (Exception) {
 removeDrawing();
 }

Copyright © , 2002 by James W Cooper

383

Instead, let’s define the Memento as an interface.
public interface Memento {
 void restore();
}

Then all of the objects we add into the undo list will implement the
Memento interface and will have a restore method that performs some
operation. Some kinds of Mementos will save and restore the coordinates
of drawings, and others will simply remove drawings or undo fill states.

First, we will have both our circle and rectangle objects implement the
Drawing interface.
public interface Drawing {
 void setSelected(bool b);
 void draw(Graphics g);
 void move(int xpt, int ypt);
 bool contains(int x,int y);
 void setFill(bool b);
 CsharpPats.Rectangle getRects();
 void setRects(CsharpPats.Rectangle rect);
}

The Memento we will use for saving the state of a Drawing will be similar
to the one we used in the Memento chapter, except that we specifically
make it implement the Memento interface.
public class DrawMemento : Memento {
 private int x, y, w, h;
 private Rectangle rect;
 private Drawing visDraw;
 //------
 public DrawMemento(Drawing d) {
 visDraw = d;
 rect = visDraw.getRects ();
 x = rect.x;
 y = rect.y ;
 w = rect.w;
 h = rect.h;
 }
 //-----
 public void restore() {

Copyright © , 2002 by James W Cooper

384

 //restore the state of a drawing object
 rect.x = x;

 rect.y = y;
 rect.h = h;
 rect.w = w;
 visDraw.setRects(rect);
 }
 }

Now for the case where we just want to remove a drawing from the list to
be redrawn, we create a class to remember that index of that drawing and
remove it when its restore method is called.
public class DrawInstance :Memento {
 private int intg;
 private Mediator med;
 //-----
 public DrawInstance(int intg, Mediator md) {
 this.intg = intg;
 med = md;
 }
 //-----
 public int integ {
 get { return intg; }
 }
 //-----
 public void restore() {
 med.removeDrawing(intg);
 }
}
We handle the FillMemento in just the same way, except that its restore
method turns off the fill flag for that drawing element.
public class FillMemento : Memento {
 private int index;
 private Mediator med;
 //-----
 public FillMemento(int dindex, Mediator md) {
 index = dindex;
 med = md;
 }
 //-----
 public void restore() {

Copyright © , 2002 by James W Cooper

385

 Drawing d = med.getDrawing(index);
 d.setFill(false);
 }
}

The VisRectangle and VisCircle Classes
We can take some useful advantage of inheritance in designing our
visRectangle and visCircle classes. We make visRectangle implement the
Drawing interface and then have visCircle inherit from visRectangle. This
allows us to reuse the setSelected, setFill, and move methods and the rects
properties. In addition, we can split off the drawHandle method and use it
in both classes. Our new visRectangle class looks like this.
public class VisRectangle : Drawing {
 protected int x, y, w, h;
 private const int SIZE=30;
 private CsharpPats.Rectangle rect;
 protected bool selected;
 protected bool filled;
 protected Pen bPen;
 protected SolidBrush bBrush, rBrush;
 //-----
 public VisRectangle(int xp, int yp) {
 x = xp; y = yp;
 w = SIZE; h = SIZE;
 saveAsRect();
 bPen = new Pen(Color.Black);
 bBrush = new SolidBrush(Color.Black);
 rBrush = new SolidBrush (Color.Red);
 }
 //-----
 //used by Memento for saving and restoring state
 public CsharpPats.Rectangle getRects() {
 return rect;
 }
 //-----
 public void setRects(CsharpPats.Rectangle value) {
 x=value.x; y=value.y;
 w=value.w; h=value.h;
 saveAsRect();
 }

Copyright © , 2002 by James W Cooper

386

 //------
 public void setSelected(bool b) {
 selected = b;
 }
 //-----
 //move to new position
 public void move(int xp, int yp) {
 x = xp; y = yp;
 saveAsRect();
 }
 //-----
 public virtual void draw(Graphics g) {
 //draw rectangle
 g.DrawRectangle(bPen, x, y, w, h);
 if(filled)
 g.FillRectangle (rBrush, x,y,w,h);
 drawHandles(g);
 }
 //-----
 public void drawHandles(Graphics g) {
 if (selected) { //draw handles
 g.FillRectangle(bBrush, x + w / 2, y - 2, 4,);
 g.FillRectangle(bBrush, x - 2, y + h / 2, 4,);
 g.FillRectangle(bBrush, x + (w / 2),

y + h - 2, 4, 4);
 g.FillRectangle(bBrush, x + (w - 2),

y + (h / 2), 4, 4);
 }
 }
 //-----
 //return whether point is inside rectangle
 public bool contains(int x, int y) {
 return rect.contains (x, y);
 }
 //------
 //create Rectangle object from new position
 protected void saveAsRect() {
 rect = new CsharpPats.Rectangle (x,y,w,h);
 }
 public void setFill(bool b) {
 filled = b;
 }

Copyright © , 2002 by James W Cooper

387

However, our visCircle class only needs to override the draw method and
have a slightly different constructor.
public class VisCircle : VisRectangle {
 private int r;
 public VisCircle(int x, int y):base(x, y) {
 r = 15; w = 30; h = 30;
 saveAsRect();
 }
 //-----
 public override void draw(Graphics g) {
 if (filled) {
 g.FillEllipse(rBrush, x, y, w, h);
 }
 g.DrawEllipse(bPen, x, y, w, h);
 if (selected){
 drawHandles(g);
 }
 }
}
Note that since we have made the x, y, and filled variables Protected, we
can refer to them in the derived visCircle class without declaring them at
all.

Mediators and the God Class
One real problem with programs with this many objects interacting is
putting too much knowledge of the system into the Mediator so it becomes
a “god class.” In the preceding example, the Mediator communicates with
the six buttons, the drawing list, and the StateManager. We could write
this program another way so that the button Command objects
communicate with the StateManager and the Mediator only deals with the
buttons and the drawing list. Here, each button creates an instance of the
required state and sends it to the StateManager. This we will leave as an
exercise for the reader.

Copyright © , 2002 by James W Cooper

388

Consequences of the State Pattern
1. The State pattern creates a subclass of a basic State object for each

state an application can have and switches between them as the
application changes between states.

2. You don’t need to have a long set of conditional if or switch
statements associated with the various states, since each is
encapsulated in a class.

3. Since there is no variable anywhere that specifies which state a
program is in, this approach reduces errors caused by programmers
forgetting to test this state variable

4. You could share state objects between several parts of an application,
such as separate windows, as long as none of the state objects have
specific instance variables. In this example, only the FillState class has
an instance variable, and this could be easily rewritten to be an
argument passed in each time.

5. This approach generates a number of small class objects but in the
process simplifies and clarifies the program.

6. In C#, all of the States must implement a common interface, and they
must thus all have common methods, although some of those methods
can be empty. In other languages, the states can be implemented by
function pointers with much less type checking and, of course, greater
chance of error.

State Transitions
The transition between states can be specified internally or externally. In
our example, the Mediator tells the StateManager when to switch between
states. However, it is also possible that each state can decide automatically
what each successor state will be. For example, when a rectangle or circle
drawing object is created, the program could automatically switch back to
the Arrow-object State.

Copyright © , 2002 by James W Cooper

389

Thought Questions
1. Rewrite the StateManager to use a Factory pattern to produce

the states on demand.

2. While visual graphics programs provide obvious examples of
State patterns, server programs can benefit by this approach.
Outline a simple server that uses a state pattern.

Programs on the CD-ROM
\State state drawing program

Copyright © , 2002 by James W Cooper

390

29. The Strategy Pattern

The Strategy pattern is much like the State pattern in outline but a little
different in intent. The Strategy pattern consists of a number of related
algorithms encapsulated in a driver class called the Context. Your client
program can select one of these differing algorithms, or in some cases, the
Context might select the best one for you. The intent is to make these
algorithms interchangeable and provide a way to choose the most
appropriate one. The difference between State and Strategy is that the user
generally chooses which of several strategies to apply and that only one
strategy at a time is likely to be instantiated and active within the Context
class. By contrast, as we have seen, it is possible that all of the different
States will be active at once, and switching may occur frequently between
them. In addition, Strategy encapsulates several algorithms that do more or
less the same thing, whereas State encapsulates related classes that each do
something somewhat differently. Finally, the concept of transition
between different states is completely missing in the Strategy pattern.

Motivation
A program that requires a particular service or function and that has
several ways of carrying out that function is a candidate for the Strategy
pattern. Programs choose between these algorithms based on
computational efficiency or user choice. There can be any number of
strategies, more can be added, and any of them can be changed at any
time.

There are a number of cases in programs where we’d like to do the same
thing in several different ways. Some of these are listed in the Smalltalk
Companion.

• Save files in different formats.

• Compress files using different algorithms

Copyright © , 2002 by James W Cooper

391

• Capture video data using different compression schemes.

• Use different line-breaking strategies to display text data.

• Plot the same data in different formats: line graph, bar chart, or
pie chart.

In each case we could imagine the client program telling a driver module
(Context) which of these strategies to use and then asking it to carry out
the operation.

The idea behind Strategy is to encapsulate the various strategies in a single
module and provide a simple interface to allow choice between these
strategies. Each of them should have the same programming interface,
although they need not all be members of the same class hierarchy.
However, they do have to implement the same programming interface.

Sample Code
Let’s consider a simplified graphing program that can present data as a
line graph or a bar chart. We’ll start with an abstract PlotStrategy class and
derive the two plotting classes from it, as illustrated in Figure 29-1.

Plot
Strategy

LinePlot
Strategy

BarPlot
Strategy

Figure 29-1 – Two instance of a PlotStrategy class

Our base PlotStrategy class is an abstract class containing the plot routine
to be filled in in the derived strategy classes. It also contains the max and

Copyright © , 2002 by James W Cooper

392

min computation code, which we will use in the derived classes by
containing an instance of this class.
public abstract class PlotStrategy {
 public abstract void plot(float[] x, float[] y);
}
Then of the derived classes must implement a method called plot with two
float arrays as arguments. Each of these classes can do any kind of plot
that is appropriate.

The Context
The Context class is the traffic cop that decides which strategy is to be
called. The decision is usually based on a request from the client program,
and all that the Context needs to do is to set a variable to refer to one
concrete strategy or another.
public class Context {
 float[] x, y;
 PlotStrategy plts; //strategy selected goes here
 //-----
 public void plot() {
 readFile(); //read in data
 plts.plot (x, y);
 }
 //-----
 //select bar plot
 public void setBarPlot() {
 plts = new BarPlotStrategy ();
 }
 //-----
 //select line plot
 public void setLinePlot() {
 plts = new LinePlotStrategy();
 }
 //-----
 public void readFile() {
 //reads data in from data file

 }
}

Copyright © , 2002 by James W Cooper

393

The Context class is also responsible for handling the data. Either it
obtains the data from a file or database or it is passed in when the Context
is created. Depending on the magnitude of the data, it can either be passed
on to the plot strategies or the Context can pass an instance of itself into
the plot strategies and provide a public method to fetch the data.

The Program Commands
This simple program (Figure 29-2) is just a panel with two buttons that
call the two plots. Each of the buttons is a derived button class the
implements the Command interface. It selects the correct strategy and then
calls the Context’s plot routine. For example, here is the complete Line
graph command button class.

Figure 29-2 – A simple panel to call two different plots

public class LineButton : System.Windows.Forms.Button, Command
{
 private System.ComponentModel.Container components = null;
 private Context contxt;

 public LineButton() {
 InitializeComponent();
 this.Text = "Line plot";
 }
 public void setContext(Context ctx) {
 contxt = ctx;
 }
 public void Execute() {
 contxt.setLinePlot();
 contxt.plot();
 }

Copyright © , 2002 by James W Cooper

394

The Line and Bar Graph Strategies
The two strategy classes are pretty much the same: They set up the
window size for plotting and call a plot method specific for that display
panel. Here is the Line plot Strategy.
public class LinePlotStrategy : PlotStrategy {
 public override void plot(float[] x, float[] y) {
 LinePlot lplt = new LinePlot();
 lplt.Show ();
 lplt.plot (x, y);
 }
}
The BarPlotStrategy is more or less identical.

The plotting amounts to copying in a reference to the x and y arrays,
calling the scaling routine and then causing the Picturebox control to be
refreshed, which will then call the paint routine to paint the bars.
public void plot(float[] xp, float[] yp) {
 x = xp;
 y = yp;
 setPlotBounds(); //compute scaling factors
 hasData = true;
 pic.Refresh();
}

Drawing Plots in C#
Note that both the LinePlot and the BarPlot window have plot methods
that are called by the plot methods of the LinePlotStrategy and
BarPlotStrategy classes. Both plot windows have a setBounds method
that computes the scaling between the window coordinates and the x-y
coordinate scheme. Since they can use the same scaling function, we write
it once in the BarPlot window and derive the LinePlot window from it to
use the same methods.
public virtual void setPlotBounds() {

findBounds();
 //compute scaling factors
 h = pic.Height;
 w = pic.Width;

Copyright © , 2002 by James W Cooper

395

 xfactor = 0.8F * w / (xmax - xmin);
 xpmin = 0.05F * w;
 xpmax = w - xpmin;
 yfactor = 0.9F * h / (ymax - ymin);
 ypmin = 0.05F * h;
 ypmax = h - ypmin;
 //create array of colors for bars
 colors = new ArrayList();
 colors.Add(new SolidBrush(Color.Red));
 colors.Add(new SolidBrush(Color.Green));
 colors.Add(new SolidBrush(Color.Blue));
 colors.Add(new SolidBrush(Color.Magenta));
 colors.Add(new SolidBrush(Color.Yellow));
}
//-----
public int calcx(float xp) {
 int ix = (int)((xp - xmin) * xfactor + xpmin);
 return ix;
}
//-----
public int calcy(float yp) {
 yp = ((yp - ymin) * yfactor);
 int iy = h - (int)(ypmax - yp);
 return iy;
}

Making Bar Plots
The actual bar plot is drawn in a Paint routine that is called when a paint
event occurs.
protected virtual void pic_Paint(object sender, PaintEventArgs e)
{
 Graphics g = e.Graphics;
 if (hasData) {
 for (int i = 0; i< x.Length; i++){
 int ix = calcx(x[i]);
 int iy = calcy(y[i]);
 Brush br = (Brush)colors[i];

 g.FillRectangle(br, ix, h - iy, 20, iy);
 }
}

Copyright © , 2002 by James W Cooper

396

Making Line Plots
The LinePlot class is very simple, since we derive it from the BarPlot
class, and we need only write a new Paint method:
public class LinePlot :BarPlot {
 public LinePlot() {
 bPen = new Pen(Color.Black);
 this.Text = "Line Plot";
 }
 protected override void pic_Paint(object sender,

 PaintEventArgs e) {
 Graphics g= e.Graphics;
 if (hasData) {
 for (int i = 1; i< x.Length; i++) {
 int ix = calcx(x[i - 1]);
 int iy = calcy(y[i - 1]);
 int ix1 = calcx(x[i]);
 int iy1 = calcy(y[i]);
 g.DrawLine(bPen, ix, iy, ix1, iy1);
 }
 }
 }
}
The UML diagram showing these class relations is shown in Figure 29-3

Copyright © , 2002 by James W Cooper

397

Figure 29-3 – The UML Diagram for the Strategy pattern

The final two plots are shown in Figure 29-4.

Copyright © , 2002 by James W Cooper

398

Figure 29-4– The line graph (left) and the bar graph (right)

Consequences of the Strategy Pattern
Strategy allows you to select one of several algorithms dynamically. These
algorithms can be related in an inheritance hierarchy, or they can be
unrelated as long as they implement a common interface. Since the
Context switches between strategies at your request, you have more
flexibility than if you simply called the desired derived class. This
approach also avoids the sort of condition statements that can make code
hard to read and maintain.

On the other hand, strategies don’t hide everything. The client code is
usually aware that there are a number of alternative strategies, and it has
some criteria for choosing among them. This shifts an algorithmic
decision to the client programmer or the user.

Since there are a number of different parameters that you might pass to
different algorithms, you have to develop a Context interface and strategy
methods that are broad enough to allow for passing in parameters that are
not used by that particular algorithm. For example the setPenColor
method in our PlotStrategy is actually only used by the LineGraph
strategy. It is ignored by the BarGraph strategy, since it sets up its own list
of colors for the successive bars it draws.

Programs on the CD-ROM
\Strategy plot strategy

Copyright © , 2002 by James W Cooper

399

30. The Template Method Pattern

The Template Method pattern is a very simple pattern that you will find yourself
using frequently. Whenever you write a parent class where you leave one or more
of the methods to be implemented by derived classes, you are in essence using
the Template pattern. The Template pattern formalizes the idea of defining an
algorithm in a class but leaving some of the details to be implemented in
subclasses. In other words, if your base class is an abstract class, as often
happens in these design patterns, you are using a simple form of the Template
pattern.

Motivation
Templates are so fundamental, you have probably used them dozens of
times without even thinking about it. The idea behind the Template pattern
is that some parts of an algorithm are well defined and can be
implemented in the base class, whereas other parts may have several
implementations and are best left to derived classes. Another main theme
is recognizing that there are some basic parts of a class that can be
factored out and put in a base class so they do not need to be repeated in
several subclasses.

For example, in developing the BarPlot and LinePlot classes we used in
the Strategy pattern examples in the previous chapter, we discovered that
in plotting both line graphs and bar charts we needed similar code to scale
the data and compute the x and y pixel positions.
public abstract class PlotWindow : Form {
 protected float ymin, ymax, xfactor, yfactor;
 protected float xpmin, xpmax, ypmin, ypmax, xp, yp;
 private float xmin, xmax;
 protected int w, h;
 protected float[] x, y;
 protected Pen bPen;
 protected bool hasData;
 protected const float max = 1.0e38f;
 protected PictureBox pic;
 //-----

Copyright © , 2002 by James W Cooper

400

 protected virtual void init() {
 pic.Paint += new PaintEventHandler (pic_Paint);
 }
 //-----
 public void setPenColor(Color c){
 bPen = new Pen(c);
 }
 //-----
 public void plot(float[] xp, float[] yp) {
 x = xp;
 y = yp;
 setPlotBounds(); //compute scaling factors
 hasData = true;
 }
 //-----
 public void findBounds() {
 xmin = max;
 xmax = -max;
 ymin = max;
 ymax = -max;
 for (int i = 0; i< x.Length ; i++) {

 if (x[i] > xmax) xmax = x[i];
 if (x[i] < xmin) xmin = x[i];

 if (y[i] > ymax) ymax = y[i];
 if (y[i] < ymin) ymin = y[i];
 }
 }
 //-----
 public virtual void setPlotBounds() {
 findBounds();
 //compute scaling factors
 h = pic.Height;
 w = pic.Width;
 xfactor = 0.8F * w / (xmax - xmin);
 xpmin = 0.05F * w;
 xpmax = w - xpmin;
 yfactor = 0.9F * h / (ymax - ymin);
 ypmin = 0.05F * h;
 ypmax = h - ypmin;
 }
 //-----
 public int calcx(float xp) {
 int ix = (int)((xp - xmin) * xfactor + xpmin);
 return ix;
 }

Copyright © , 2002 by James W Cooper

401

 //-----
 public int calcy(float yp) {
 yp = ((yp - ymin) * yfactor);
 int iy = h - (int)(ypmax - yp);
 return iy;
 }
 //-----
 public abstract void repaint(Graphics g) ;
 //-----
 protected virtual void pic_Paint(object sender,

 PaintEvntArgs e) {
 Graphics g = e.Graphics;
 repaint(g);
 }
}

Thus, these methods all belong in a base PlotPanel class without any
actual plotting capabilities. Note that the pic_Paint event handler just calls
the abstract repaint method. The actual repaint method is deferred to the
derived classes. It is exactly this sort of extension to derived classes that
exemplifies the Template Method pattern.

Kinds of Methods in a Template Class
As discussed in Design Patterns, the Template Method pattern has four
kinds of methods that you can use in derived classes.

1. Complete methods that carry out some basic function that all the
subclasses will want to use, such as calcx and calcy in the preceding
example. These are called Concrete methods.

2. Methods that are not filled in at all and must be implemented in
derived classes. In C#, you would declare these as virtual methods.

3. Methods that contain a default implementation of some operations but
that may be overridden in derived classes. These are called Hook
methods. Of course, this is somewhat arbitrary because in C# you can
override any public or protected method in the derived class but Hook
methods, however, are intended to be overridden, whereas Concrete
methods are not.

Copyright © , 2002 by James W Cooper

402

4. Finally, a Template class may contain methods that themselves call
any combination of abstract, hook, and concrete methods. These
methods are not intended to be overridden but describe an algorithm
without actually implementing its details. Design Patterns refers to
these as Template methods.

Sample Code
Let’s consider a simple program for drawing triangles on a screen. We’ll
start with an abstract Triangle class and then derive some special triangle
types from it, as we see in Figure 30-1

Figure 30-1 – The abstract Triangle class and three of its subclasses

Our abstract Triangle class illustrates the Template pattern.

public abstract class Triangle {
 private Point p1, p2, p3;
 protected Pen pen;
 //-----
 public Triangle(Point a, Point b, Point c) {
 p1 = a;

Copyright © , 2002 by James W Cooper

403

 p2 = b;
 p3 = c;
 pen = new Pen(Color.Black , 1);
 }
 //-----
 public virtual void draw(Graphics g) {
 g.DrawLine (pen, p1, p2);
 Point c = draw2ndLine(g, p2, p3);
 closeTriangle(g, c);
 }
 //-----
 public abstract Point draw2ndLine(Graphics g,

Point a, Point b);
 //-----
 public void closeTriangle(Graphics g, Point c) {
 g.DrawLine (pen, c, p1);
 }
}

This Triangle class saves the coordinates of three lines, but the draw
routine draws only the first and the last lines. The all- important
draw2ndLine method that draws a line to the third point is left as an
abstract method. That way the derived class can move the third point to
create the kind of rectangle you wish to draw.

This is a general example of a class using the Template pattern. The draw
method calls two concrete base class methods and one abstract method
that must be overridden in any concrete class derived from Triangle.

Another very similar way to implement the triangle class is to include
default code for the draw2ndLine method.
public virtual void draw2ndLine(Graphics g,

Point a, Point b) {
 g.drawLine(a, b);
}

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Copyright © , 2002 by James W Cooper

404

Drawing a Standard Triangle
To draw a general triangle with no restrictions on its shape, we simply
implement the draw2ndLine method in a derived stdTriangle class.
public class StdTriangle :Triangle {
 public StdTriangle(Point a, Point b, Point c)

: base(a, b, c) {}
 //------
 public override Point draw2ndLine(Graphics g,

Point a, Point b) {
 g.DrawLine (pen, a, b);
 return b;
 }
}

Drawing an Isosceles Triangle
This class computes a new third data point that will make the two sides
equal in length and saves that new point inside the class.
public class IsocelesTriangle : Triangle {
 private Point newc;
 private int newcx, newcy;
 //-----
 public IsocelesTriangle(Point a, Point b, Point c) :

 base(a, b, c) {
 float dx1, dy1, dx2, dy2, side1, side2;

 float slope, intercept;
 int incr;

 dx1 = b.X - a.X;
 dy1 = b.Y - a.Y;
 dx2 = c.X - b.X;
 dy2 = c.Y - b.Y;

 side1 = calcSide(dx1, dy1);
 side2 = calcSide(dx2, dy2);

 if (side2 < side1)
 incr = -1;
 else
 incr = 1;
 slope = dy2 / dx2;
 intercept = c.Y - slope * c.X;

Copyright © , 2002 by James W Cooper

405

 //move point c so that this is an isoceles triangle
 newcx = c.X;
 newcy = c.Y;
 while (Math.Abs (side1 - side2) > 1) {

//iterate a pixel at a time until close
newcx = newcx + incr;

 newcy = (int)(slope * newcx + intercept);
 dx2 = newcx - b.X;
 dy2 = newcy - b.Y;
 side2 = calcSide(dx2, dy2);
 }
 newc = new Point(newcx, newcy);
 }
 //-----
 private float calcSide(float a, float b) {
 return (float)Math.Sqrt (a*a + b*b);
 }
}
When the Triangle class calls the draw method, it calls this new version of
draw2ndLine and draws a line to the new third point. Further, it returns that new
point to the draw method so it will draw the closing side of the triangle correctly.

 public override Point draw2ndLine(Graphics g,
Point b, Point c) {

 g.DrawLine (pen, b, newc);
 return newc;
 }

The Triangle Drawing Program
The main program simply creates instances of the triangles you want to
draw. Then it adds them to an ArrayList in the TriangleForm class.
private void init() {
 triangles = new ArrayList();
 StdTriangle t1 = new StdTriangle(new Point(10, 10),
 new Point(150, 50),
 new Point(100, 75));
 IsocelesTriangle t2 = new IsocelesTriangle(
 new Point(150, 100), new Point(240, 40),
 new Point(175, 150));
 triangles.Add(t1);
 triangles.Add(t2);
 Pic.Paint+= new PaintEventHandler (TPaint);

Copyright © , 2002 by James W Cooper

406

}

It is the TPaint method in this class that actually draws the triangles, by calling
each Triangle’s draw method.
private void TPaint (object sender,

 System.Windows.Forms.PaintEventArgs e) {
 Graphics g = e.Graphics;
 for (int i = 0; i< triangles.Count ; i++) {
 Triangle t = (Triangle)triangles[i];
 t.draw(g);
 }
}

A standard triangle and an isosceles triangle are shown in Figure 30-2.

Figure 30-2 – A standard triangle and an isosceles triangle

Templates and Callbacks
Design Patterns points out that Templa tes can exemplify the “Hollywood
Principle,” or “Don’t call us, we’ll call you.” The idea here is that methods

Copyright © , 2002 by James W Cooper

407

in the base class seem to call methods in the derived classes. The operative
word here is seem. If we consider the draw code in our base Triangle
class, we see that there are three method calls.

g.DrawLine (pen, p1, p2);
 Point c = draw2ndLine(g, p2, p3);
 closeTriangle(g, c);

Now drawLine and closeTriangle are implemented in the base class. However, as
we have seen, the draw2ndLine method is not implemented at all in the base
class, and various derived classes can implement it differently. Since the actual
methods that are being called are in the derived classes, it appears as though they
are being called from the base class.

If this idea makes you uncomfortable, you will probably take solace in
recognizing that all the method calls originate from the derived class and
that these calls move up the inheritance chain until they find the first class
that implements them. If this class is the base class—fine. If not, it could
be any other class in between. Now, when you call the draw method, the
derived class moves up the inheritance tree until it finds an
implementation of draw. Likewise, for each method called from within
draw, the derived class starts at the current class and moves up the tree to
find each method. When it gets to the draw2ndLine method, it finds it
immediately in the current class. So it isn’t “really” called from the base
class, but it does seem that way.

Summary and Consequences
Template patterns occur all the time in OO software and are neither
complex nor obscure in intent. They are a normal part of OO
programming, and you shouldn’t try to make them into more than they
actually are.

The first significant point is that your base class may only define some of
the methods it will be using, leaving the rest to be implemented in the
derived classes. The second major point is that there may be methods in

Copyright © , 2002 by James W Cooper

408

the base class that call a sequence of methods, some implemented in the
base class and some implemented in the derived class. This Template
method defines a general algorithm, although the details may not be
worked out completely in the base class.

Template classes will frequently have some abstract methods that you
must override in the derived classes, and they may also have some classes
with a simple “placeholder” implementation that you are free to override
where this is appropriate. If these placeholder classes are called from
another method in the base class, then we call these overridable methods
“Hook” methods.

Programs on the CD-ROM
\Template\Strategy plot strategy using Template

method pattern
\Template\Template plot of triangles

Copyright © , 2002 by James W Cooper

409

31. The Visitor Pattern

The Visitor pattern turns the tables on our object-oriented model and
creates an external class to act on data in other classes. This is useful when
you have a polymorphic operation that cannot reside in the class hierarchy
for some reason—for example, because the operation wasn’t considered
when the hierarchy was designed or it would clutter the interface of the
classes unnecessarily.

Motivation
While at first it may seem “unclean” to put operations inside one class that
should be in another, there are good reasons for doing so. Suppose each of
a number of drawing object classes has similar code for drawing itself.
The drawing methods may be different, but they probably all use
underlying utility functions that we might have to duplicate in each class.
Further, a set of closely related functions is scattered throughout a number
of different classes, as shown in Figure 31-1.

Figure 31-1 – A DrawObject and three of its subclasses

Instead, we write a Visitor class that contains all the related draw methods
and have it visit each of the objects in succession (Figure 31-2).

Copyright © , 2002 by James W Cooper

410

Figure 31-2 – A Visitor class (Drawer) that visits each of three triangle classes

The first question that most people ask about this pattern is “What does
visiting mean?” There is only one way that an outside class can gain
access to another class, and that is by calling its public methods. In the
Visitor case, visiting each class means that you are calling a method
already installed for this purpose, called accept. The accept method has
one argument: the instance of the visitor. In return, it calls the visit method
of the Visitor, passing itself as an argument, as shown in Figure 31-3.

Visitor Visited
instancev.visit(Me)

visited.accept(v)

Figure 31-3 - How the visit and accept methods interact

Copyright © , 2002 by James W Cooper

411

Putting it in simple code terms, every object that you want to visit must have the
following method.

 public virtual void accept(Visitor v) {
 v.visit(this);
 }

In this way, the Visitor object receives a reference to each of the instances, one
by one, and can then call its public methods to obtain data, perform calculations,
generate reports, or just draw the object on the screen. Of course, if the class does
not have an accept method, you can subclass it and add one.

When to Use the Visitor Pattern
You should consider using a Visitor pattern when you want to perform an
operation on the data contained in a number of objects that have different
interfaces. Visitors are also valuable if you have to perform a number of
unrelated operations on these classes. Visitors are a useful way to add
function to class libraries or frameworks for which you either do not have
the course or cannot change the source for other technical (or political)
reasons. In these latter cases, you simply subclass the classes of the
framework and add the accept method to each subclass.

On the other hand, as we will see, Visitors are a good choice only when
you do not expect many new classes to be added to your program.

Sample Code
Let’s consider a simple subset of the Employee problem we discussed in
the Composite pattern. We have a simple Employee object that maintains
a record of the employee’s name, salary, vacation taken, and number of
sick days taken. The following is a simple version of this class.
public class Employee {
 int sickDays, vacDays;
 float salary;
 string name;
 public Employee(string name, float salary,

int vDays, int sDays) {
 this.name = name;
 this.salary = salary;

Copyright © , 2002 by James W Cooper

412

 sickDays = sDays;
 vacDays = vDays;
}
//-----
public string getName() {
 return name;
}
public int getSickDays() {
 return sickDays;
}
public int getVacDays() {
 return vacDays;
}
public float getSalary() {
 return salary;
}
public virtual void accept(Visitor v) {
 v.visit(this);
}
}

Note that we have included the accept method in this class. Now let’s
suppose that we want to prepare a report on the number of vacation days
that all employees have taken so far this year. We could just write some
code in the client to sum the results of calls to each Employee’s
getVacDays function, or we could put this function into a Visitor.

Since C# is a strongly typed language, our base Visitor class needs to have
a suitable abstract visit method for each kind of class in your program. In
this first simple example, we only have Employees, so our basic abstract
Visitor class is just the following.
public abstract class Visitor {
 public abstract void visit(Employee emp);
 public abstract void visit(Boss bos);
}

Notice that there is no indication what the Visitor does with each class in
either the client classes or the abstract Visitor class. We can, in fact, write
a whole lot of visitors that do different things to the classes in our

Copyright © , 2002 by James W Cooper

413

program. The Visitor we are going to write first just sums the vacation
data for all our employees.
public class VacationVisitor : Visitor {
 private int totalDays;
 //-----
 public VacationVisitor() {
 totalDays = 0;
 }
 //-----
 public int getTotalDays() {
 return totalDays;
 }
 //-----
 public override void visit(Employee emp){
 totalDays += emp.getVacDays ();
 }
 //-----
 public override void visit(Boss bos){
 totalDays += bos.getVacDays ();
 }
}

Visiting the Classes
Now all we have to do to compute the total vacation days taken is go
through a list of the employees, visit each of them, and ask the Visitor for
the total.
for (int i = 0; i< empls.Length; i++) {
 empls[i].accept(vac); //get the employee
}
lsVac.Items.Add("Total vacation days=" +

vac.getTotalDays().ToString());

Let’s reiterate what happens for each visit.

1. We move through a loop of all the Employees.

2. The Visitor calls each Employee’s accept method.

3. That instance of Employee calls the Visitor’s visit method.

Copyright © , 2002 by James W Cooper

414

4. The Visitor fetches the vacation days and adds them into the
total.

5. The main program prints out the total when the loop is
complete.

Visiting Several Classes
The Visitor becomes more useful when there are a number of different
classes with different interfaces and we want to encapsulate how we get
data from these classes. Let’s extend our vacation days model by
introducing a new Employee type called Boss. Let’s further suppose that
at this company, Bosses are rewarded with bonus vacation days (instead of
money). So the Boss class has a couple of extra methods to set and obtain
the bonus vacation day information.
public class Boss : Employee {
 private int bonusDays;
 public Boss(string name, float salary,

int vdays, int sdays):
base(name, salary, vdays, sdays) { }

 public void setBonusDays(int bdays) {
 bonusDays = bdays;
 }
 public int getBonusDays() {
 return bonusDays;
 }
 public override void accept(Visitor v) {
 v.visit(this);
 }
}

When we add a class to our program, we have to add it to our Visitor as
well, so that the abstract template for the Visitor is now the following.
public abstract class Visitor {
 public abstract void visit(Employee emp);
 public abstract void visit(Boss bos);
}

Copyright © , 2002 by James W Cooper

415

This says that any concrete Visitor classes we write must provide polymorphic
visit methods for both the Employee class and the Boss class. In the case of our
vacation day counter, we need to ask the Bosses for both regular and bonus days
taken, so the visits are now different. We’ll write a new bVacationVisitor class
that takes account of this difference.

public class bVacationVisitor :Visitor {
 private int totalDays;
 public bVacationVisitor() {
 totalDays = 0;
 }
 //-----
 public override void visit(Employee emp) {
 totalDays += emp.getVacDays();
 try {
 Manager mgr = (Manager)emp;
 totalDays += mgr.getBonusDays();
 }
 catch(Exception){}
 }
 //-----
 public override void visit(Boss bos) {
 totalDays += bos.getVacDays();
 totalDays += bos.getBonusDays();
 }
 //-----
 public int getTotalDays() {
 return totalDays;
 }
}
Note that while in this case Boss is derived from Employee, it need not be
related at all as long as it has an accept method for the Visitor class. It is
quite important, however, that you implement a visit method in the Visitor
for every class you will be visiting and not count on inheriting this
behavior, since the visit method from the parent class is an Employee
rather than a Boss visit method. Likewise, each of your derived classes
(Boss, Employee, etc.) must have its own accept method rather than
calling one in its parent class. This is illustrated in the class diagram in
Figure 31-4.

Copyright © , 2002 by James W Cooper

416

Visitor

+visit(emp)
+visit(bos)

Boss

+New
+setBonusDays
+getBonusDays:Integer
+accept

Employee

+New
+getName
+getSalary
+getSickdays
+getVacDays
+acceptVacationVisitor

bVacationVisitor

Figure 31-4 – The two visitor classes visiting the Boss and Employee classes

Bosses Are Employees, Too
We show in Figure 31-5 a simple application that carries out both
Employee visits and Boss visits on the collection of Employees and
Bosses. The original VacationVisitor will just treat Bosses as Employees
and get only their ordinary vacation data. The bVacationVisitor will get
both.
for (int i = 0; i< empls.Length; i++) {
 empls[i].accept(vac); //get the employee
 empls[i].accept(bvac);
}
lsVac.Items.Add("Total vacation days=" +

vac.getTotalDays().ToString());
lsVac.Items.Add("Total boss vacation days=" +

Copyright © , 2002 by James W Cooper

417

bvac.getTotalDays().ToString());
The two lines of displayed data represent the two sums that are computed when
the user clicks on the Vacations button.

Figure 31-5 – A simple application that performs the vacation visits described

Catch-All Operations with Visitors
In the preceding cases, the Visitor class has a visit method for each
visiting class, such as the following.
public abstract void visit(Employee emp);
public abstract void visit(Boss bos);

However, if you start subclassing your visitor classes and adding new classes that
might visit, you should recognize that some visit methods might not be satisfied
by the methods in the derived class. These might instead “fall through” to
methods in one of the parent classes where that object type is recognized. This
provides a way of specifying default visitor behavior.

Copyright © , 2002 by James W Cooper

418

Now every class must override accept(v) with its own implementation so
the return call v.visit(this) returns an object this of the correct type and not
of the superclass’s type.

Let’s suppose that we introduce another layer of management into our
company: the Manager. Managers are subclasses of Employees, and now
they have the privileges formerly reserved for Bosses of extra vacation
days. Bosses now have an additional reward—stock options. Now if we
run the same program to compute vacation days but do not revise our
Visitor to look for Managers, it will recognize them as mere Employees
and count only their regular vacation and not their extra vacation days.
However, the catch-all parent class is a good thing if subclasses may be
added to the application from time to time and you want the visitor
operations to continue to run without modification.

There are three ways to integrate the new Manager class into the visitor
system. You could define a ManagerVisitor or use the BossVisitor to
handle both. However, there could be conditions when continually
modifying the Visitor structure is not desirable. In that case, you could
simply test for this special case in the EmployeeVisitor class.
public override void visit(Employee emp) {
 totalDays += emp.getVacDays();
 try {
 Manager mgr = (Manager)emp;
 totalDays += mgr.getBonusDays();
 }
 catch(Exception){}
}

While this seems “unclean” at first compared to defining classes properly, it can
provide a method of catching special cases in derived classes without writing
whole new visitor program hierarchies. This “catch-all” approach is discussed in
some detail in the book Pattern Hatching (Vlissides 1998).

Copyright © , 2002 by James W Cooper

419

Double Dispatching
No discussion on the Visitor pattern is complete without mentioning that
you are really dispatching a method twice for the Visitor to work. The
Visitor calls the polymorphic accept method of a given object, and the
accept method calls the polymorphic visit method of the Visitor. It is this
bidirectional calling that allows you to add more operations on any class
that has an accept method, since each new Visitor class we write can carry
out whatever operations we might think of using the data available in these
classes.

Why Are We Doing This?
You may be asking yourself why we are jumping through these hoops
when we could call the getVacationDays methods directly. By using this
“callback” approach, we are implementing “double dispatching.” There is
no requirement that the objects we visit be of the same or even of related
types. Further, using this callback approach, you can have a different visit
method called in the Visitor, depending on the actual type of class. This is
harder to implement directly.

Further, if the list of objects to be visited in an ArrayList is a collection of
different types, having different versions of the visit methods in the actual
Visitor is the only way to handle the problem without specifically
checking the type of each class.

Traversing a Series of Classes
The calling program that passes the class instances to the Visitor must
know about all the existing instances of classes to be visited and must
keep them in a simple structure such as an array or collection. Another
possibility would be to create an Enumeration of these classes and pass it
to the Visitor. Finally, the Visitor itself could keep the list of objects that it
is to visit. In our simple example program, we used an array of objects, but
any of the other methods would work equally well.

Copyright © , 2002 by James W Cooper

420

Consequences of the Visitor Pattern
The Visitor pattern is useful when you want to encapsulate fetching data
from a number of instances of several classes. Design Patterns suggests
that the Visitor can provide additional functionality to a class without
changing it. We prefer to say that a Visitor can add functionality to a
collection of classes and encapsulate the methods it uses.

The Visitor is not magic, however, and cannot obtain private data from
classes. It is limited to the data available from public methods. This might
force you to provide public methods that you would otherwise not have
provided. However, it can obtain data from a disparate collection of
unrelated classes and utilize it to present the results of a global calculation
to the user program.

It is easy to add new operations to a program using Visitors, since the
Visitor contains the code instead of each of the individual classes. Further,
Visitors can gather related operations into a single class rather than forcing
you to change or derive classes to add these operations. This can make the
program simpler to write and maintain.

Visitors are less helpful during a program’s growth stage, since each time
you add new classes that must be visited, you have to add an abstract visit
operation to the abstract Visitor class, and you must add an
implementation for that class to each concrete Visitor you have written.
Visitors can be powerful additions when the program reaches the point
where many new classes are unlikely.

Visitors can be used very effectively in Composite systems, and the boss-
employee system we just illustrated could well be a Composite like the
one we used in the Composite chapter.

Thought Question
An investment firm’s customer records consist of an object for each stock
or other financial instrument each investor owns. The object contains a
history of the purchase, sale, and dividend activities for that stock. Design

Copyright © , 2002 by James W Cooper

421

a Visitor pattern to report on net end-of-year profit or loss on stocks sold
during the year.

Programs on the CD-ROM
\Visitor\ Visitor example

Copyright © , 2002 by James W Cooper

422

32. Bibliography

Copyright © , 2002 by James W Cooper

423

Alexander, Christopher, Ishikawa, Sara, et. al. A Pattern Language, Oxford University
Press, New York, 1977.

Alpert, S. R., Brown, K., and Woolf, B. The Design Patterns Smalltalk Companion,
Addison-Wesley, Reading, MA, 1998.

Arnold, K., and Gosling, J. The Java Programming Language, Addison-Wesley,
Reading, MA, 1997.

Booch, G., Jacobson, I., and Rumbaugh, J. The Unified Modeling Language User Guide,
Addison-Wesley, Reading, MA, 1998.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. A System of
Patterns, John Wiley and Sons, New York, 1996.

Cooper, J. W. Java Design Patterns: A Tutorial. Addison-Wesley, Reading, MA, 2000.

Cooper, J. W. Principles of Object-Oriented Programming in Java 1.1 Coriolis
(Ventana), 1997.

Cooper, J.W. Visual Basic Design Patterns: VB6 and VB.NET, Addison-Wesley, Boston,
MA, 2001.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley,
Reading, MA, 1992.

Coplien, James O., and Schmidt, Douglas C. Pattern Languages of Program Design,
Addison-Wesley, Reading, MA, 1995.

Fowler, Martin, with Kendall Scott. UML Distilled, Addison-Wesley, Reading, MA,
1997.

Gamma, E., Helm, T., Johnson, R., and Vlissides, J. Design Patterns: Abstraction and
Reuse of Object Oriented Design. Proceedings of ECOOP ’93, 405—431.

Gamma, Eric, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Patterns.
Elements of Reusable Software, Addison-Wesley, Reading, MA, 1995.

Grand, Mark Patterns in Java, Volume 1, John Wiley & Sons, New York 1998.

Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programmng I(3)., 1988

Kurata, Deborah, “Programming with Objects,” Visual Basic Programmer’s Journal,
June, 1998.

Pree, Wolfgang, Design Patterns for Object Oriented Software Development, Addison-
Wesley, 1994.

Riel, Arthur J., Object-Oriented Design Heuristics, Addison-Wesley, Reading, MA, 1996

Vlissides, John, Pattern Hatching: Design Patterns Applied, Addison-Wesley, Reading,
MA, 1998

Copyright © , 2002 by James W Cooper

424

