C#Today - Your Just-In-Time Resource for C# Code and Techniques

1/16

Programme

Search C#Today
Living Book

@ Index O Full Text

Advanced

Wrox

|CATEG0R|ES ;' » HOME F SITE MAP B SEARCH B REFERENCE F FORUM k FEEDBACK B ADVERTISE B SU
The C#Today Article Previous article - Next art
August 21, 2001 August 20, 2001 August .

Building an Online Shopping Cart using C# and ASP.NET
Part 1

by Juan Martinez

CATEGORY: Application Development ‘

ARTICLE TYPE: Tutorial Reader Comments
In this article Juan Martinez discusses and implements the building blocks of an online shopping cart - Usefu
covering in this part item catalogs, item details, a cart and a checkout system. This acts as the
foundation for further articles, where Juan covers other functionality like administration pages and Innov
setting up credit card payments. i
Inforn
Sy
15 resg

Buy thiz Article

Article Discussion Rate this article Related Links Index Entries

ARTICLE

Editor's Note: This article's code has been updated to work with the final release of the .Net framework.

As web developers we are required to face a wide variety of application needs. Each web site developed is unique
and furnished according to each client's specific needs. The fact is that websites are indeed fabricated for each
client with different specifications but every site shares some common characteristics. Those parts of the site that
share functionality features can be treated as separate applications to be reused.

In this case we will address the development cycle for one of the common blocks in today's websites - an Online
Shopping Cart.

We will analyze the development of a shopping cart as a group of components described clearly before we
implement them, thus allowing us to use this knowledge in areas other than ASP.NET. After a description of each
component the implementation will be explained using C#.

The application will be designed to work with a SQLServer database for storage. Application logic will be done
within the Web Form and presented to the user through the web browser. Core logic will reside in a separate C#
component using the code behind technique. It will also be .NET framework Beta 2 compliant.

It is assumed that you have regular knowledge of the C# language, web development knowledge and database
design basics.

Setting up the basis

First we will take some time to understand how a simple shopping cart works. From this knowledge we will draw
some conclusions and state our requirements. From these requirements the database design will emerge.

http://www.csharptoday.com/content/articles/20010821.asp?WROXE...

2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 2/16

After these steps we will have a clear path of development and be ready to implement our online shopping cart in
the C# language.

Digging in the Online Shopping Cart Model

We will first take a look at a simplified diagram of an Online Shopping Cart. These are the functionality blocks to
be discussed.

ltem
Details
ttem [Add Item / See basket Shﬂpﬂng
ca
cetalog module
Shop more |
 E)
=
o
-
!
ot
fL
]
Checkout
module

We then have four basic modules:

Item Catalog - Here we display the options to our clients in an organized way.

Item Details - Here we show the client as much info as we can to show off our product.

Shopping Cart - Here we manage the user's selected items.

Checkout System - Here we save the items selected and the client's information to close the transaction.

These are the basic blocks to be implemented in our online store. It includes the indispensable functionality that
will be described in detail later. These blocks could be enriched further with more features, which will be covered

in later articles.
Defining requirements

As in every software development cycle, we need to define our requirements first so we can design software
capable of giving satisfaction to our customers.

Our online shopping cart application should do the following:

Have a list of categories and subcategories.

Items should be arranged in its corresponding subcategory.

Items could be selected for category and home promotion.

Each product should have an id, name, short and long descriptions, small and large images, stock and price.
Users should be able to add products to the basket and remove them.

The user should be given an order number and will be able to track it through an order tracking system.

Generating our database model

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques

From our requirements we define the database schema. The tables are shown as a conceptual model, with all

tables used in this version of the shopping cart.

catalogSection

catalogSectionld LI
catalogSectionMame WAE0

catalogSedtionbescription WAZa5

1,1

catalogSubSection

catalogSubSectionld LI

shoppingCart

shoppingCantSessionld WASOH
shoppingCathemQuantity |

shoppingCartld LI
=

1
=detion has several subse-::ti?rg_:

catalogSubSectionMame "-._-"AEEI
o.n catalogSubSectionDescription WAZSS
o.n
subsection hag several items
1.1
item
itern|d LI
itemMame WARDS
item5Shotbescription TXT
itemLongDescription TxT
I—itemSmalllmage WVAZSS
11 o.n itemLargelmage WAZES
! itemPrice hAMNS 2
item is contained in sewveral shopping cars !temStndc :
itemPromoteCategory BL
itemPromote Site BL
o.n

arderbetail

orderbetailld
orderbetailShippingName
orderbetailShippingEmail
orderbetailShippingaddress
orderbetailShippingCity
orderbetailShippingState
orderbetailShippingZipCode
orderbetailShippingCountry
arderbetailBillingHame
orderbetailBillingAddress
orderbetailBilling ity
orderbetailBillingState
orderbetailBillingZipCode
orderbetailBillingCountry
orderbetailBillingCard
orderbetailBillingCardMumber

orderbetailBillingCardExpiration WA20

item iz includgd in orderltem

1.1
arderltem
orderltem LI
ordertemQuantity |
orderltemPrice Mg .2
v !
WAZES 1,
WAZES
WARSE order has sevefal order items
WAZES o.n
WAZES
E::;gﬁ 0.1 orderlrata
WAZES B order has details I S L
VAPES 14 orderbrate [
WAZES 1
VAZES o.n
WA arder has prggress details
WAZES
VAZES PR 1.1
vAsd orderFrogress
arderProgress u
orderProgressT axt Le2&s
orderProgressbescription TXT
orderProgresshate]

The tables are grouped as follows:

Sky blue - Item details.

Catalog Section

The green part corresponds to the catalog section. It is composed of two tables. This is a very simple
arrangement in which the subsection table inherits the section Id. This way we can display the items in a

http://www.csharptoday.com/content/articles/20010821.asp?WROXE...

Green - The catalog part of our application.

Orange - Shopping cart basket.
Yellow - The checkout system.

3716

2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 4/ 16

section/subsection approach. As this approach will work in most cases, you could improve this to a completely
flexible design using recursive sections, which will inherit a parent Id.

Item Details

The item details part of our model is a trimmed down version of an item details design. We have only one table in
which we save the vital information of the item such as description, price and images. We have a couple of
Boolean values that are used to specify if the item should be displayed as a home or section item.

Shopping cart basket

The shopping basket is a simple table that is used temporarily to store the items selected by the user. We just
save the session 1d, the item id and the quantity. We will implement this as an in-memory data table and
hold our selected items in a session variable. This table is shown to show you're the information that needs to be
retained during our session.

Checkout system

This is the most complicated part or our system. Upon checkout we create an order Id in the order table. Then the
items stored in the shopping basket are transferred and saved in our order Items table. The user information is
stored in the order details table. These two tables inherit the order Id. We have a fourth table which also inherits
the order Id. This is the order Progress table and it is used for order tracking. As progress is done, the online shop
administrator should add a record to this table indicating the progress done to date. This is then checked by the
buyer.

Let the coding begin

As our design basis is done, we are all set to start our coding. The architecture will be based on simple Web Forms
calling custom User Controls. Core logic will be done in separate components using the code behind technique.

Application framework

We start by setting our basic framework. We make use of our web. conf i g file to save important application
information such as our connection string. This is how our configuration file will look:

<configurati on>
<appSettings>
<add key="connString" val ue="server=(l ocal)\ Net SDK; dat abase=Shoppi ngCart; Trust ed_Con
</ appSettings>
</ confi guration>

To retrieve this information we use the following code snippet.

String connString = ConfigurationSettings. AppSettings["connString"];

As you can see, this is a very easy and convenient way to store application wise data.
Category List Block

All being set, we have our first task which is to display a list of products which will be filtered by section and
subsection if selected.

The first task is to set up the workspace of our Web Forms. We set up our language and add the appropriate
namespaces for our code to work.. We set C# as our language and import the Syst emnamespace for general
purposes. We then add the Syst em Dat a and Syst em Dat a. O eDb since we will be using SQLServer as our
database engine. We should set the debug flag to false once we deliver this application to the real world.

<%@® Page Language="C#" Debug="true" %

<%@ | nport Nanespace="Systen!' %

<%@ | nport Nanespace="System Data" %

<%@ | nport Nanespace="System Data.Sqldient " %

We now set our references to our custom User Controls.

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 5/16

<%@ Regi ster TagPrefix="SC'" TagNanme="Site" Src="uc_header. ascx" %

<%@® Regi st er TagPrefix="SC'" TagName="Section" Src="uc_catal og_section.ascx" %

<%@ Regi st er TagPrefix="SC'" TagNanme="SubSection" Src="uc_catal og_subsection. ascx" %
<%@® Regi st er TagPrefix="SC' TagName="ProductList" Src="uc_catal og_product _|ist.ascx" %

We reference our controls by embedding them into the aspx file.

<SC: Site runat="server" />
This will be our complete catalog WebForm, the cat al 0g. aspx file.

<%@® Page Language="C#" Debug="true" %

<%@ Regi st er TagPrefix="SC' TagNanme="Site" Src="uc_header. ascx" %

<%@ Regi st er TagPrefix="SC'" TagName="Section" Src="uc_catal og_section.ascx" %

<% Regi st er TagPrefix="SC' TagName="SubSecti on" Src="uc_catal og_subsection. ascx" %
<%@ Regi st er TagPrefix="SC" TagNanme="ProductList"” Src="uc_catal og_product_I|ist.ascx" %
<htm >

<head>

<title>Shopping Cart in C# - Catalog</title>

<link rel ="styl esheet" href="style.css">

</ head>

<body>

<f orm runat =server >

<SC: Site runat="server" />

<t abl e wi dt h="800" cel | spaci ng="0" cel | paddi ng="3" border="0" styl e="border-col or: Bl ack;
<tr>

<td wi dt h="800" align="right" bgcol or ="#CCCCCC'>ltem Cat al og</sp
</[tr>

</t abl e>
<t abl e wi dt h="800" cel | spaci ng="0" cel | paddi ng="0" border="0">
<tr>

<td w dt h="200" hei ght="100% rowspan="2" valign="top"><SC:. Section runat="server" /></td
<td wi dt h="600" hei ght="10" valign="top"><SC: SubSecti on runat ="server" /></td>

</[tr>

<tr>

<td w dt h="600" hei ght ="100% ><SC: Product Li st runat="server" /></td>

</tr>

</ tabl e>

</forme

</ body>

</htm >

We have used four custom user controls in our first Web Form. We shall now go towards implementing these
custom controls, most of which, will be reused through out the site.

Lets start by implementing the simplest of our user controls, uc_header . ascx. This file contains the "logo" of

the site and a couple of links. We encapsulate this into a control since it will be repeated through the whole site.
This is the code:

<t abl e w dt h="800" cel | spaci ng="0" cel | paddi ng="3" border="0" styl e="border-col or: Bl ack;
<tr>

<td w dt h="400">Shoppi ng Cart Site
<td width="400" align="right">View Cart </ a>

| Track your order</td>

</tr>

</t abl e>

As you can see this is just a static table, reminiscent of old style include files. Next we code a more complex user
control, uc_cat al og_secti on. ascx which displays the list of sections available on the site. This is done by

binding a data retrieval codebehind class to the user control.
This is our User Control Code:

<%@ Cont rol Language="C#" Debug="true" Inherits="CodeBehind. UcSection" %
<%@ | nport Nanespace="System Data" %
<%@ | nport Nanespace="System Data. Sql Cdient" %

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 6/16

<htm >
<head>
<title></title>
<script |anguage="C#" runat="server"></script>
</ head>
<body>

<asp: Dat aLi st id="M/SectionList" runat="server"
Bor der Col or =" bl ack"
Bor der W dt h="1"
Gi dLi nes="Bot h"
Cel | Paddi ng="3"
Font - Nane="Ver dana"
Font - Si ze="8pt "
W dt h="200px"
Header St yl e- BackCol or =" #aaaadd"
Sel ect edl t entt yl e- BackCol or =" Gai nsbor 0"
>
<Header Tenpl at e>
Sections
</ Header Tenpl at e>
<l tenTenpl at e>
<a href="cat al 0og. aspx?secti onl d=<%# Dat aBi nder. Eval (Cont ai ner. Dataltem "ca
§ i onl ndex=<%tCont
<%t Dat aBi nder. Eval (Contai ner.Dataltem "catal 0ogS
</ItenmTenpl at e>
<Sel ect edl t enTenpl at e>
<%t Dat aBi nder. Eval (Contai ner.Dataltem "catal ogSecti onNane") %
</ Sel ect edl t enTenpl at e>
</ asp: Dat aLi st >

</ body>
</htm >

We place some more html into the control and we drop a Datalist object to handle the rendering of the
information. The <% Dat aBi nder . Eval (Cont ai ner. Dat altem "catal ogSecti onNane") % code is

used to select specific information from the bound data and put it in place.

In our codebehind class we first have to declare our Datalist as protected. We then do some database work. Once
we have the information we need ready from our database, we bind this data to our Web Control, the DataList.

Our User Control inherits the code behind class and that way they can work together. It is important to declare
your shared variables (such as Web Form Controls) as protected so that the can be reached within the code
behind class.

public class UcSection : UserControl {
protected Datali st MySectionLi st;
protected Label MLabel;

protected voi d Page_Load(object sender, EventArgs e) {
if (!lsPostBack) {
Bi nd_MySecti onLi st ();

}

if (Request. QueryString["sectionlndex"] !'= null) {
MySecti onLi st. Sel ect edl ndex = | nt32. Parse(Request. QueryString["sectionl ndex"]);
}
}

protected void Bind_M/SectionList() {
String connString = ConfigurationSettings. AppSettings["connString"];
Sgl Connecti on nyConnecti on = new Sql Connecti on(connString);
Sql Dat aAdapt er myComand = new Sql Dat aAdapt er (" SELECT cat al ogSecti onl d, catal ogSecti
FROM cat al ogSecti on ORDER BY cat al ogSecti onNanme", nyConnec
Dat aSet ds = new Dat aSet () ;
myCormmand. Fi | | (ds, "catal ogSection");

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 7/ 16

MySecti onLi st. Dat aSource = new Dat aVi ew(ds. Tabl es[0]);
MySecti onLi st . Dat aBi nd() ;
}
}

We then have to implement our subsection user control. This control will do a similar task to the section
control. We will just add a filter to the Query applied to the database. We will select subsections corresponding to
the selected section. The rest is pretty much the same.

"SELECT cat al ogSubSectionl d, catal ogSubSecti onNane FROM cat al ogSubSecti on WHERE cat al ogS
sectionld + " ORDER BY catal ogSu

We then need to display our product list. We have three types of products:

® Site Products: These are shown if no section is selected
® Section Products: These are shown if a section is selected but no subsection is selected.
e Normal Products: These are products that belong to the selected subsection.

We need to filter the three possibilities and create the proper query. This is done in the UcPr oduct Li st class

with this code. After we have our query we bind it to a DataGrid Web Control to display the items in a table
arrangement.

string SQLQuery = "SELECT item d, itenNane, itentBhortDescription, itenSnalllnmage, itenPr
FROM i tem WHERE it enPr onot eSi t e=1 ORDER

int nmysectionld = 0;
if (Request. QeryString["sectionld"] !'= null) {
nysectionld = I nt32. Parse(Request. QueryString["sectionld"]);
}
i

f (mysectionld !'= 0) {
/11f we have a section selected we filter products for this section
SQLQuery = "SELECT itemitemd, itemitenmNanme, itemitentBhortDescription, itemitentSm
FROM (cat al ogSection I NNER JO N cat al ogSubSecti on ON cat al ogSecti on. cat al ogSecti onl
INNER JO N item ON cat al ogSubSecti on. cat al og
VWHERE (((catal ogSecti on. catal ogSectionld)=" + nysectionld + "

}
int nmysubsectionld = O;
if (Request. QeryString["subsectionld"] !'= null) {
nmysubsectionld = I nt32. Parse(Request. QueryString["subsectionld"]);

}
if (nysubsectionld !'= 0) {
/11f we have a subsection selected we filter products for this subsection
SQ Query = "SELECT item d, itenmNane, itentBhortDescription, itenBmalllnmage, itenPrice,
WHERE cat al ogSubSecti onl d=" + mysubsectionld + " ORDER BY itenNane";

}

This concludes our catalog presentation layer which consists of four main user controls.

® The first control is responsible for displaying a list of sections.
® The second control is responsible for the subsection list.

® The third control is responsible for displaying a grid of items. This list of items is retrieved from one of three sql
queries depending on the situation.
o A final control renders the top of the page.

All the controls work together to form cat al 0g. aspx. The user controls make use of codebehind classes for
database access and bind the Datalists in our page.

Our cat al 0g. aspx file should yield something like this:

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 8/16

a Shopping Cart in C# - Catalog - Microsoft Internet Explorer

J File Edit Wiew Faworites Tools Help

J EBack ~ = - @ [2] 23 | ‘Qhsearch []Favorites & @History ||%, =N | K D

J Address @ http:/f127.0.0.1:8011 /catalog. aspex?sectionld=1&s=ectionIndex=0&subsectionId=22=ubsectionIndex=1

Shopping Cart Site

Sections Subsections
Section 1 SubSection 1.1 SubSection 1.2 Su
Sech 2
= fDn Product 4
sechion 3 Short Description
Section 4

Price: $22.00
Stock: 1

Itern Details | Add To Cart It

Product 6
Short Description

Price: $11.99
Stock: 7

Itern Details | &dd To Cart

&]

Item Details

Our next step in building our shopping cart is to show off the item details. We first will use some of the code done
for the catalog presentation before. We will take the basic html framework and three user controls. We will reuse
the header, section and subsection control.

The difference here will be to replace the item list control with a new item details control. We will use a data list
Web Control to display the items characteristics as well as its corresponding class in our code behind repository.

The code to do this simple task is as follows for the user control:

<%@ Cont r ol Language="C#" Debug="true" Inherits="CodeBehind. UcltenDetails" %
<%@ | nport Nanespace="System Data" %
<%@ | nport Nanespace="System Data. Sql Cient" %

<script |anguage="C#" runat="server"></script>

<asp: DataLi st id="M/ltenDetails" runat="server"
Bor der Col or =" bl ack"
Bor der W dt h="1"
Gri dLi nes="Bot h"
Cel | Paddi ng="3"
Font - Nane=" Ver dana"
Font - Si ze="8pt "
W dt h="600px"
Header St yl e- BackCol or =" #aaaadd"
Sel ect edl t entSt yl e- BackCol or =" Gai nsbor 0"
RepeatDirection = "Hori zontal "
Repeat Col ums = " 1"

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 9/16

>
<l tenTenpl at e>
<t abl e>
<tr>
<td valign="top">
<ing src="images/ <%t Dat aBi nder. Eval (Cont ai ner. Dataltem "itemnlLargel mage") %"
</td>
<td valign="top">

<% DataBi nder. Eval (Contai ner.Dataltem "itemNane") %</sp

<%t Dat aBi nder. Eval (Cont ai ner. Dataltem "itenLongDescriptio

Price: <%t (DataBi nder.Eval (Container.Dataltem "itenPrice"

St ock: <%t Dat aBi nder. Eval (Contai ner.Dataltem "itenttock")

<a href="cat al og. aspx?secti onl d=<%secti onl d%§i onl ndex=<%secti onl ndex%&subs
&subsecti onl ndex=<%subsect i onl nde

 |
<a href="cart.aspx?cartActi on=1& t em d=<%* Dat aBi nder. Eval (Cont ai ner. Dat al tem
</td>
</[tr>
</tabl e>
</ItenmTenpl at e>
</ asp: Dat aLi st >

And our code behind class:

protected void Bind_IltenDetails() {
int nyltemd = 0;
if (Request. QueryString["itemd"] != null) {
nyltem d = I nt32. Parse(Request. QueryString["itemd"]);

}
string SQLQuery = "SELECT item d, itenNane, itenlongDescription, itenlLargel mage, itenP

FROM i tem WHERE iteml d

String connString = ConfigurationSettings. AppSettings["connString"];
Sql Connecti on nmyConnecti on = new Sql Connecti on(connString);

Sql Dat aAdapt er myCommand = new Sql Dat aAdapt er (SQLQuery, nyConnection);
Dat aSet ds = new Dat aSet () ;

nmyConmmand. Fi I | (ds, "item);

Ml t emDet ai | s. Dat aSour ce = new Dat aVi ew(ds. Tabl es[0]) ;
Ml tenDetail s. Dat aBi nd();

Further enhancements can be done to this simple module. This form shows the stored details of the item and can
be enriched with user reviews and related item lists.

Our resulting screen should look as follows:

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 10/ 16

Shopping Cart in C# - Catalog - Microsoft Internet Explorer

j File Edit Wiew Fawaorites Tools Help

| Back = = -) (2] 74} | Qisearch [EFavortes CHHstory | Eh- S0 5 [B

J Address ﬁj http:/f127.0.0.1:801 1 fitem, aspx?sectionld=18=ectionIndex=0&subsectionld=28=ubsectionIndex=1&iternId=4

Shopping Cart Site

Sections Subsections
Section 1 SubSection 1.1 SubSection 1.2 Su
Sech 2
= fDn Product 4
=echion 3 Long Description
Section 4

Price: $22.00
Stock: 1

Keep On Shopping! | Add To Cart

|&] Done

Shopping cart basket

The shopping cart basket implements the majority of the functionality. It should provide ways to add, edit and
delete items from it. The basket is merely a temporal storage area for the user to group the items of interest. We
then need some session management to be able to recognize which items belong to each client in its own session.

ASP.NET, as in previous asp applications, provides the necessary objects to work with sessions. In this case we
will take advantage of the Session object. We will store a DataTable object as a Session variable therefore all
shopping cart basket operations are done in memory. This is a very fast approach but will need to be provided
with enough memory to handle concurrent clients.

The shopping basket module comprises two fundamental parts. The first involves managing the items that the
user wants to have in the basket. The second is in charge of displaying the items currently in the basket. We will
see the details now.

We instruct our Web Form to add an item to the cart with querystring variables. We just add an item to the
DataTable. To implement the update and delete methods we bind the DataTable to the Datalist Web Control and
perform the operations.

voi d Page_Load(Obj ect Sender, EventArgs E) {
if (Request.QueryString["cartAction"] !'= null) {
this.cartAction = Int32. Parse(Request. QueryString["cartAction"]);
}

i f (Session["ShoppingCart"] == null) {
Cart = new Dat aTabl e();
Cart. Col ums. Add(new Dat aCol uim("ltem d", typeof(string)));
Cart. Col ums. Add(new Dat aCol uim("Itent, typeof(string)));
Cart. Col ums. Add(new Dat aCol unm(" Qy", typeof(string)));
Cart. Col ums. Add(new Dat aCol utm(" Price", typeof(string)));
Sessi on[" Shoppi ngCart"] = Cart;

el se {

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 11/ 16

Cart = (DataTabl e) Sessi on[" Shoppi ngCart"];

}
CartView = new DataView(Cart);
CartView Sort = "ltent;

if (!'lsPostBack) {
/1 Add new entry to the shopping cart
int myCartAction = 0;
if (Request.QueryString["cartAction"] != null) {
myCart Action = | nt32. Parse(Request. QueryString["cartAction"]);
}

if (nyCartAction==1) ({
[/ Take the itens details fromthe database
string nyltemd = "0";
if (Request.QueryString["itemd"] !'= null) {
nyltem d = Request. QueryString["item d"];

}
string SQLQuery = "SELECT itenNane, itenPrice FROMitem WHERE itemd = " + nylt
String connString = ConfigurationSettings. AppSettings["connString"];

Sql Connecti on nmyConnecti on = new Sql Connecti on(connStri ng);
Sql Conmand nmyCommand = new Sgl Command(SQLQuery, nyConnecti on);
nmyConnecti on. Open() ;
Sql Dat aReader dr2 = nyConmand. Execut eReader () ;

if (dr2.Read()) {
Dat aRow dr = Cart. NewRow();

dr[0] = nyltem d,
dr[1] = dr2. GetString(0);
dr[2] = "1";

dr[3] = dr2. Get Sql Money(1). ToString();
Cart. Rows. Add(dr);

}

Bi ndCart List();
Bi ndTot al Li st ();

The functions to update and delete data are as follows:

protected void DataCartList_Del et eConmandl(Gbj ect Sender, DatalLi st ConmandEvent Args e
string item= ((Label)e.ltem FindControl ("Label 4")). Text;
CartView RowFilter = "ltenr "+itemt""'";
if (CartView. Count > 0) //itemexists in cart
Cart Vi ew. Del et e(0);
CartView RowFilter = "";

CartList.Editltem ndex = -1;
Bi ndCart List();

Bi ndTot al Li st ();

}

protected void DataCartList_Edit Conmandl(Obj ect Sender, Datali st ConmandEvent Args e)
CartList.Editltem ndex = (int)e.ltemIten ndex;
Bi ndCart List();
Bi ndTot al Li st();
}

protected void DataCartList_Cancel Commandl(bj ect Sender, Datali st CommandEvent Args e
CartlList.Editltem ndex = -1,
Bi ndCart List();
Bi ndTot al Li st();

}

protected void DataCartList_Updat eCommandl(Gbj ect Sender, DatalLi st CommandEvent Args e
string itemd = ((Label)e.ltem FindControl ("Label 1")). Text;
string item = ((Label)e.ltem Fi ndControl ("Label 2")). Text;

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 12/ 16

string qty = ((TextBox)e.ltem FindControl ("Text1")). Text;
string price = ((Label)e.ltem FindControl ("Label 3")). Text;

/1 with a database, we'd use an update command. Since we're using an in-menory

/1 DataTable, we'll delete the old row and replace it with a new one
//renove old entry
CartView RowFilter = "ltem "+item"'";

if (CartView. Count > 0) //itemexists in cart
Cart Vi ew. Del et e(0);
CartView RowFilter = "";

//add new entry
Dat aRow dr = Cart. NewRow() ;
dr[0] = itemd;
dr[1] item
dr[2] = qty;

dr[3] = price;
Cart. Rows. Add(dr);

CartList.Editltem ndex = -1;
Bi ndCart List();
Bi ndTot al Li st();

}

Finally we need to calculate the subtotal, tax and total cost of the order. We use the Bi ndTot al Li st () function
to generate content and bind it to another Web Control in our page.

protected void BindTotal List() {
doubl e nySubTotal = O;
doubl e nyTaxRate = 0. 15;
doubl e nyTax = O;
doubl e nyTotal = 0;

Dat aTabl e Cart Tabl e = (Dat aTabl e) Sessi on[" Shoppi ngCart"];

foreach(Dat aRow myRow i n Cart Tabl e. Rows) {
Doubl e tenpPrice = Doubl e. Parse(nyRow 3].ToString());
Int32 tempQy = I nt32. Parse(nyRow 2].ToString());
nySubTotal += tenpPrice * tenpQy;

}

myTax = nmySubTotal * nyTaxRate;
nyTotal = nySubTotal + nyTax;

Cart Total = new DataTabl e();
Cart Tot al . Col utms. Add(new Dat aCol um(" SubTotal ", typeof(string)));
Cart Tot al . Col utms. Add(new Dat aCol um(" Tax", typeof(string)));
Cart Tot al . Col utms. Add(new Dat aCol um(" Total ", typeof(string)));

Dat aRow dr Total = Cart Tot al . NewRow() ;

drTotal [0] = nySubTotal.ToString();
drTotal [1] = nyTax. ToString();
drTotal [2] = nyTotal . ToString();

Cart Tot al . Rows. Add(dr Total) ;

Cart Total Vi ew = new Dat aVi ew(Cart Total) ;
Cart Tot al Li st. Dat aSource = Cart Total Vi ew,
Cart Tot al Li st. Dat aBi nd() ;

The shopping cart screen looks like this:

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 13/ 16

a Shopping Cart in C# - Catalog - Microsoft Internet Explorer

J File Edit Wiew Faworites Tools Help

J Back ~ = -~ &3 A | ‘Qhsearch [E]Favorites £ AHistory ||%.. =N n

J.ﬁ.gldress @ http:/f127.0.0.1:8011 fcart. aspx

Shopping Cart Site
Sections Item # Item Quantity Pri
Zection 1 4 Product 4 1 2z
Section 2 5 Product & 1 49
Zection 3
Sectian 4 SubTotal Tax Total

71.59 10,7535 82,6735

Checkout --=

|@ Done

Checkout System

The checkout system has the responsibility of saving the client info and selected items for processing. We use
three tables to save the client info. These are the following:

o orderData - Stores the date of the order and generates the order Id.
e orderltem - List of items bought, it also saves the price at the time of purchase.
o orderDetail - Saves shipping and billing information for the order.

We divide our process into three steps:

® Shipping and Billing Information - Here we get the shipping information. With this info we can calculate the
shipping costs. This should be done accordingly to each store's necessities. We validate credit card information
also. This should be done using a specific provider like paypal.

o Confirmation - Here we present a summary of the information received and show the list of items to be bought,
as well as the grand total of the order. The user is asked to submit the information if it is correct.

® Summary - We finish the transaction and show the user the order number.

We post the info from the first to the second step. We then use Web Form Controls to ask for confirmation. If the
info is correct, then we register the order for our client.

We do need to implement some form validation before posting the information and implement some credit card
validation through an external provider or your own software.

Tracking your order

The final part of our online shopping cart application is the tracking system. We will implement a basic tracking
system which will ask the user for their email and order number. The system will then show a list of milestones
registered in the tracking database.

We use a single table to save the tracking information. It consists of the order id and the information of the goals
achieved. Upon valid email and order number we display the list of events below.

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 14/ 16

a Shopping Cart in C# - Catalog - Microsoft Internet Explorer

J File Edit Wiew Faworites Tools Help
J EBack ~ = ~ &) i | ‘@hsearch [&]Favorites ¢ @History | Eat =N | D
J.ﬁ.gldress @ htkpff127.0.0.1:801 1 fkracking, aspx
Shopping Cart Site
Sections
Section 1 Please input your ermail and your order number below to see your arder
cection 2 progress,
Section 3
Section 4 Ermail: IEr‘nElil
Order Number: I'I G
Yiew Progress
Events
Order Received
Your order has been received and will be delivered shortly, Thanlks for y
1141900 12:00:00 AM
|@ Cone

This is the code required:

protected void ButtonView Cick(object Source, EventArgs e) {
/1 Look for order id with provided enmail and order nunber
String connString = ConfigurationSettings. AppSettings["connString"];
string strSelect = "SELECT orderld FROM orderDetail WHERE orderld=" + orderl dBox. Text
AND or der Det ai | Shi ppi ngEmai | =" " + emai | Box. Text + "'";
Sgl Connecti on myConnecti on = new Sgl Connecti on(connString);
Sql Conmand nmyCommand = new Sgl Command(str Sel ect, myConnecti on);

nmyConnecti on. Open() ;
Sql Dat aReader dr = nyConmand. Execut eReader () ;
int newdderld = 0;
if (dr.Read()) {
// emai | Box. Text = "Encontranos!!!";
Bi nd_Tr acki ngLi st () ;
}
myConnecti on. d ose();

}

protected void Bind_Tracki ngList() {
string SQLQuery = "SELECT orderProgressText, orderProgressDescription, orderProgressD
VWHERE orderld = " + orderl dBox. Text;
String connString = ConfigurationSettings. AppSettings["connString"];

Sgl Connecti on nmyConnecti on = new Sgl Connection(connString);
Sql Dat aAdapt er myCommand = new Sgl Dat aAdapt er (SQLQuery, nyConnecti on);

Dat aSet ds = new Dat aSet () ;
nyComand. Fi | | (ds, "orderProgress");

My Tr acki ngLi st . Dat aSour ce = new Dat aVi ew(ds. Tabl es[0]) ;
My Tr acki ngLi st . Dat aBi nd() ;

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques 15/ 16

Deployment of the site

Deployment of this particular application is very simple.

Create a new database in SQLServer

Once we have created the database we need to run the database creation script provided.
Create a new site in your IIS administration program

Copy the web.config file to the wwwroot folder.

Copy the Web Forms and User controls to the wwwroot folder.

Copy the codebehind.dll into your wwwroot/bin directory (no registration required!).

Improvements to our online shopping cart application

The shopping cart we just made takes a basic approach to the application providing the central framework of an
online shopping cart. Further enhancements can be made and will be the responsibility of the reader. These
enhancements should be made to enrich the shopping cart application give a better service to the online
community. Some ideas are presented here.

Feature improvements

Recursive sections for n levels of profundity
Item reviews

Item related items

User accounts and management

Mailing list to customers

Specific shipping costs calculations

Technical improvements

Build based on components for performance and possible code reuse
Migrate to SQL Server database using stored procedures for performance
Implement SSL in your server (a must but out of scope!)

Implement real time credit card processing and charging.

Conclusions

The system presented shows the basis of a working online shopping cart. It involves the main aspects of an online
store which are the catalog of items, the item detail module, the shopping cart basket and the checkout module.
Every shopping cart online today must implement these basic parts to be functional. Hopefully this article has
given you the knowledge to build your own with ease and to add new functionality to meet your needs as ideas for
improvement have been given.

In future articles, we will cover some of the important requirements of a real - world shopping cart that have been
left out of this article for the sake of brevity - a management console to add, modify and delete categories, items
and orders; item reviews; SSL for credit card payments; and a discussion of working with a credit card processing
provider.

RATE THIS ARTICLE USEFUL LINKS

Please rate this article (1-5). Was this article... Related Tasks:

Useful? No - ¢ ¢ C (Yes, Very ® Download the support material f_or this
® Enter Technical Discussion on this Artic
® Technical Support on this article - support(

Innovative? No ~ ¢ ¢ C Yes, Very
® See other articles in the Application Develc

Informative? No ~ ¢ ¢ ¢ (Yes Very ® See other Tutorial articles

’ ® Reader Comments on this article
e Go to Previous Article
® Go to Next Article

Brief Reader Comments? |

Your Name:

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

C#Today - Your Just-In-Time Resource for C# Code and Techniques

(Optional)

16/ 16

Index Entries in this Article

C# °
checkout system

code behind technique
contents, displaying
contents, updating
creating

database design
DataGrid

Datalist control
Search the C#Today Living Book DataTable object
I designing

item catalog
@ Index ' Full Text Advanced

HOME | SITEMAP | INDEX | SEARCH | REFERENCE | FEEDBACK |

Related Sources
® asplOl: http://www.aspl0l.com/samples/shopping.asp

® Payment Online: http://www.paymentonline.com/

® Power Designer:
http://www.sybase.com/products/enterprisemodeling/powerdesigner

e Pay Pal: www.paypal.com

Ecommerce Performance Security Site Design XML

Data Access/ADO.NET Application

Web Services Graphics/Games Mobile
Development

Other Technologies

item detai
online stoi
persistenc
session ve
sessions

shopping ¢
SQL Serve
tracking s
user contr
web contr
web forms
web.confi¢

ADVERTIS

SC

C#Today is brought to you by Wrox Press (www.wrox.com). Please see our terms and conditions and privac

C#Today is optimised for Microsoft Internet Explorer 5 browsers.

Please report any website problems to webmaster@csharptoday.com. Copyright © 2002 Wrox Press. All Rights

http://www.csharptoday.com/content/articles/20010821.asp?WROXE... 2002-07-04

