201

¥ Sorted bridge -0 x|

Customer view E xecutive view

Antenor antelope collars - -
Bragz plated widgets E' F:J”Ed frammis ;I
Cetailed rat brushes ¢ R FE,000
Furled frammis BB Stecltoed wing-tips
Steeltoed wing-tips 45 BER
“Washable softwear]
ZFero-bazed hex dumps - Wwhashable softwear

e 789,000

=- Zero-bazed hex dumps

“ 0,000
‘| | »

Figure 15-4— Another display using aBridge to atreelist

Windows Forms as Bridges

The .NET visual control isitself an ideal example of a Bridge pattern
implementation. A Control is a reusable software component that can be
manipulated visualy in a builder tool. All of the C# controls support a
query interface that enables builder programs to enumerate their properties
and display them for easy modification. Figure 15-5 is a screen from
Visual Studio.NET displaying a panel with atext field and a check box.
The builder panel to the right shows how you can modify the properties of
either of those components using asimple visua interface.

Copyright © , 2002 by James W Cooper

202

|
[wimdows controls—— E
File Ithuu Swskerm. Windows. Forms, TextBosx ;i
% [5[E] 7|
Readonly False -
Right ToLeft Mo
ScrollBars Mone
Size 128, 20
TabInde:x 1]
TabsStop True
: Tag
o |+ @ Black | Text Greetings
{7 Green Textalign Left
ToolTip on tips
Yisible: True —
wardwwrap True LI
[il
==
=2

Figure 15-5— A screen from Visual Studio.NET showing a propertiesinterface. The
property lists are effectively implemented using a Bridge pattern.

In other words, all ActiveX controls have the same interface used by the
Builder program, and you can substitute any control for any other and still
manipulate its properties using the same convenient interface. The actual
program you construct uses these classes in a conventional way, each
having its own rather different methods, but from the builder’s point of
view, they all appear to be the same.

Consequences of the Bridge Pattern

1. The Bridge pattern is intended to keep the interface to your client
program constant while allowing you to change the actual kind of class
you display or use. This can prevent you from recompiling a
complicated set of user interface modules and only require that you
recompile the bridge itself and the actual end display class.

2. 'You can extend the implementation class and the bridge class
separately, and usually without much interaction with each other.

Copyright © , 2002 by James W Cooper

203

3. You can hide implementation details from the client program much
more easlly.

Thought Question
In plotting a stock’ s performance, you usually display the price and price-
earnings ratio over time, whereas in plotting a mutual fund, you usually
show the price and the earnings per quarter. Suggest how you can use a

Bridge to do both.

Programs on the CD-ROM
\ Bri dge\ Basi cBri dge bridge from list to grid
\ Bri dge\ Sort Bri dge sorted bridge

Copyright © , 2002 by James W Cooper

204

16. The Composite Pattern

Frequently programmers develop systems in which a component may be
either an individual object or a collection of objects. The Composite
pattern is designed to accommodate both cases. Y ou can use the
Composite to build part-whole hierarchies or to construct data
representations of trees. In summary, a composite is a collection of
objects, any one of which may be either a composite or just a primitive
object. In tree nomenclature, some objects may be nodes with additional
branches and some may be leaves.

The problem that develops is the dichotomy between having a single,
simple interface to access all the objects in a composite and the ability to
distinguish between nodes and leaves. Nodes have children and can have
children added to them, whereas leaves do not at the moment have
children, and in some implementations they may be prevented from
having children added to them.

Some authors have suggested creating a separate interface for nodes and
leaves where a leaf could have the methods, such as the following.

public string getNane();
public float getValue();

And a node could have the additional methods.

public ArrayList elenments();

publi c Node get Child(string nodeNane);
public void add(Object obj);

public void renmove(Object obj);

This then leaves us with the programming problem of deciding which
elements will be which when we construct the composite. However,
Design Patter ns suggests that each element should have the same
interface, whether it is a composite or a primitive element. This is easier to

Copyright © , 2002 by James W Cooper

205

accomplish, but we are |eft with the question of what the getChild
operation should accomplish when the object is actually a lesf.

C# can make this quite easy for us, since every node or leaf can return an
ArrayList of the child nodes. If there are no children, the count property
returns zero. Thus, if we simply obtain the ArrayList of child nodes from
each element, we can quickly determine whether it has any children by
checking the count property.

Just as difficult is the issue of adding or removing leaves from elements of
the composite. A nonleaf node can have child-leaves added to it, but a leaf
node cannot. However, we would like al of the components in the
composite to have the same interface. We must prevent attempts to add
children to aleaf node, and we can design the leaf node class to raise an
error if the program attempts to add to such a node.

An Implementation of a Composite

Let’s consider a small company. It may have started with a single person
who got the business going. He was, of course, the CEO, athough he may
have been too busy to think about it at first. Then he hired a couple of
people to handle the marketing and manufacturing. Soon each of them
hired some additional assistants to help with advertising, shipping, and so
forth, and they became the company’ s first two vice-presidents. As the
company’ s success continued, the firm continued to grow until it has the
organizational chart in Figure 16-1.

CHE

WF Moy W Pid

Salme mgr i eyt Pra mge

| Sals | Salus | Sy | Thip Sl | Shig | | Heme | Hapser
Ll

Copyright © , 2002 by James W Cooper

206

Figure 16-1 — A typical organizational chart

Computing Salaries
If the company is successful, each of these company members receives a
salary, and we could at any time ask for the cost of the control span of any
employee to the company. We define this control cost as the salary of that

person and those of al subordinates. Here is an ideal example for a
composite.

The cost of an individual employee is ssmply his or her salary (and
benefits).

The cost of an employee who heads a department is his or her salary
plus those of subordinates.

We would like a single interface that will produce the salary totals
correctly whether the employee has subordinates or not.

float getSal aries(); /1 get salaries of all

At this point, we redlize that the idea of all Composites having the same
standard method names in their interface is probably naive. We' d prefer
that the public methods be related to the kind of class we are actualy
developing. So rather than have generic methods like getValue, we'll use
getlaries.

The Employee Classes

We could now imagine representing the company as a Composite made up
of nodes: managers and employees. It would be possible to use asingle
classto represent al employees, but since each level may have different
properties, it might be more useful to define at least two classes:
Employees and Bosses. Employees are leaf nodes and cannot have
employees under them. Bosses are nodes that may have employee nodes
under them.

Copyright © , 2002 by James W Cooper

207

We'll start with the AbstractEmployee class and derive our concrete
employee classes from it.

public interface Abstract Enpl oyee {
float getSal ary(); //get current salary
string getNane(); /1 get name
bool islLeaf(); /ltrue if |eaf
void add(string nm float salary); /1 add subordi nate
voi d add(Abstract Enpl oyee enp); /1 add subordi nate
| Enuner at or get Subor di nat es() ; /' get subordi nates
Abst ract Enpl oyee get Chil d(); /1get child
float getSal aries(); /1 get sum of salaries

}

In C# we have a built-in enumeration interface called |Enumerator. This
interface consists of these methods.

bool MveNext () ; [/ False if no nore |eft
obj ect Current() /1 get current object
voi d Reset(); /move to first

So we can create an AbstractEmployee interface that returns an
Enumerator. Y ou move through an enumeration, allowing for the fact that
it might be empty, using the following approach.

e. Reset () ;

while (e.MveNext()) {
Emp = (Enpl oyee)e. Current();
/1..do conputation..

}

This Enumerator may, of course, be empty and can thus be used for both
nodes and leaves of the composite.

Our concrete Employee class will store the name and salary of each
employee and allow us to fetch them as needed.

public class Enpl oyee : Abstract Enpl oyee {
protected float sal ary;
protected string nane;
protected ArraylLi st subordinates;
[]------

Copyright © , 2002 by James W Cooper

208

public Enployee(string nm float salry) {
subordi nates = new ArraylList();
name = nm
salary = salry;

}

[]------

public float getSalary() {
return sal ary;

public string getNane() {
return nane;

}

[l------

public bool isLeaf() {
return subordinates. Count == 0;

}

[]------

public virtual AbstractEnployee getChild() {
return null;

}

The Employee class must have concrete implementations of the add,
remove, getChild, and subordinates classes. Since an Employeeis a ledf,
all of these will return some sort of error indication. The subordinates
method could return a null, but programming will be more consistent if
subor dinates returns an empty enumeration.

public | Enurer at or get Subordi nates() {
return subordi nates. Get Enunerator ();
}

The add and remove methods must generate errors, since members of the
basic Employee class cannot have subordinates. We throw an Exception if
you call these methods in the basic Employee class.

public virtual void add(string nm float salary) {
throw new Excepti on(
"No subordinates in base enpl oyee class");

}
[[=nn---

public virtual void add(Abstract Enpl oyee enp) {

Copyright © , 2002 by James W Cooper

209

t hrow new Excepti on(
"No subordinates in base enpl oyee class");

TheBossClass

Our Boss classis a subclass of Employee and allows us to store
subordinate employees as well. We'll store them in an ArrayList called
subordinates and return them through an enumeration. Thus, if a particular

Boss has temporarily run out of Employees, the enumeration will just be
empty.
public class Boss: Enmpl oyee {
public Boss(string nane, float sal ary):base(nane,salary) {}
[]-=-----
public override void add(string nm float salary) {
Abstract Enpl oyee enp = new Enpl oyee(nm sal ary);
subor di nat es. Add (enp);

public override void add(Abstract Enpl oyee emp){
subor di nat es. Add(enp) ;

If you want to get alist of employees of a given supervisor, you can obtain
an Enumeration of them directly from the ArrayList. Similarly, you can
use this same ArrayList to returns a sum of salaries for any employee and
his subordinates.

public float getSalaries() {
float sum
Abstract Enpl oyee esub;
/1 get the salaries of the boss and subordinates
sum = get Sal ary();
| Enuner at or enunBSub = subordi nat es. Get Enunerator() ;
whil e (enunSub. MoveNext ()) {
esub = (Abstract Enpl oyee) enunub. Current;
sum += esub. get Sal ari es();
}

return sum

Copyright © , 2002 by James W Cooper

210

}

Note that this method starts with the salary of the current Employee and
then callsthe getSalaries() method on each subordinate. Thisis, of course,
recursive, and any employees who have subordinates will be included. A
diagram of these classesis shown in Figure 16-2.

AbstraciEmplovee

getBalary
getHame
izLeaf

add

addEmp
getubordinates
PRINOTE
getChild
getlalaries
it

makeBoss
T -2y

Bn;s Exployee

Figure 16-2 — The AbstractEmployee class and how Employee and Boss are derived
from it

Building the Employee Tree
We start by creating a CEO Employee and then add his subordinates and
their subordinates, as follows.

private void buil dEmpl oyeeList () {

Copyright © , 2002 by James W Cooper

}

prez = new Boss("CEO', 200000);
mar ket VP = new Boss(" Marketing VP*, 100000);
prez. add(mar ket VP) ;
sal esMgr = new Boss("Sales Mygr", 50000);
advMgr = new Boss("Advt Mr", 50000);
mar ket VP. add(sal esMyr) ;
nmar ket VP. add(advMr) ;
prodVP = new Boss("Production VP", 100000);
prez. add(prodVP);
advMgr . add(" Secy", 20000);
//add sal esnen reporting to sal es nmanager
for (int i =1; i<=5; i++){

sal esMyr. add(" Sal es" + i.ToString(),

rand_sal (30000));

}

prodMgr = new Boss("Prod Myr", 40000);
shi pMyr = new Boss("Ship Myr", 35000);
pr odVP. add(pr odMyr) ;
pr odVP. add(shi pMyr) ;

for (int i =1; i<=3; i++){

211

shi pMgr. add(" Ship" + i.ToString(), rand_sal (25000));

for (int i =1; i<=4; i++){

prodMgr . add(" Manuf" + i.ToString(), rand_sal (20000));

Once we have constructed this Composite structure, we can load a visuad

TreeView list by starting at the top node and calling the addNode()
method recursively until al the leaves in each node are accessed.

private void buildTree() {

}

To smplify the manipulation of the TreeNode objects, we derive an
EmpNode class which takes an instance of Employee as an argument:

EnpNode nod;

nod = new EnpNode(prez);
root Node = nod,;

EnpTr ee. Nodes. Add(nod) ;
addNodes(nod, prez);

Copyright © , 2002 by James W Cooper

212

public class EnpNode: Tr eeNode {
private Abstract Enpl oyee enp;
publ i c EnmpNode(Abstract Enpl oyee aenp):
base(aenp. getName ()) {
enp = aenp;

public Abstract Enpl oyee get Enpl oyee() {
return enp;
}

}
The final program display is shown in Figure 16-3.

o

B I:.ED =
= Marketing /P
e ciles o

El P'_ru:u:luu:tiu:un WP
[+ Prod Mar
=l Ship Mgr

- Ship2 il

2203635

Figure 16-3 — The cor por ate organization shown in a TreeView control

In this implementation, the cost (sum of salaries) is shown in the bottom
bar for any employee you click on. This simple computation calls the
getChild() method recursively to obtain al the subordinates of that
employee.

private void EnpTree_AfterSel ect (object sender,

Copyright © , 2002 by James W Cooper

213

TreeVi ewEvent Args e) {
EnmpNode node;
node = (EnpNode) EnpTr ee. Sel ect edNode;
get NodeSun(node) ;

private void get NodeSun{ EnpNode node) ({
Abst ract Enpl oyee enp;
float sum

enp node. get Enpl oyee() ;
sum = enp. get Sal ari es();
| bSal ary. Text = sum ToString ();

Self-Promotion

We can imagine cases where a ssmple Employee would stay in his current
job but have new subordinates. For example, a Salesman might be asked
to supervise sales trainees. For such acase, it is convenient to provide a
method in the Boss class that creates a Boss from an Employee. We just
provide an additional constructor that converts an employee into a boss:

publ i c Boss(Abstract Enpl oyee enp):
base(enp. get Name() , enp.getSalary()) {

Doubly Linked Lists

In the preceding implementation, we keep a reference to each subordinate
in the Collection in each Boss class. This means that you can move down
the chain from the president to any employee, but there is no way to move
back up to find out who an employee’s supervisor is. Thisis easily
remedied by providing a constructor for each AbstractEmployee subclass
that includes a reference to the parent node.
public class Enpl oyee : Abstract Enpl oyee {

protected fl oat sal ary;

protected string nane;

protected Abstract Enpl oyee parent;
protected Arrayli st subordi nates;

Copyright © , 2002 by James W Cooper

214

Hl------
publ i c Empl oyee(Abstract Enpl oyee parnt,
string nm float salry) {
subordi nates = new ArraylList();
name = nm
salary = salry;
parent = parnt;
}

Then you can quickly walk up the tree to produce a reporting chain.

private void bt ShowBoss_Click(object sender, System EventArgs e) {

EnpNode node;
node = (EnpNode) EnpTr ee. Sel ect edNode;
Abstract Enpl oyee enp = node. get Enpl oyee ();
string bosses = "";
while(enp !'= null) {

bosses += enp.getNane () +"\n";

enp = enp. get Boss();

MessageBox. Show (nul |, bosses, "Reporting chain");
}
See Figure 16-4.
x| [Em——
- CED Salesz
E)- Marketing ¥F Sales Mor
- Sales Mar Marketing YP
© Lo Bales] CED
- Sales?
Sales3
Salesd
Salesh

-- At Magr
[+ Production VP

35146.35

Copyright © , 2002 by James W Cooper

215

Figure 16-4— Thetreelist display of the composite with a display of the parent nodes
on theright

Consequences of the Composite Pattern

The Composite pattern allows you to define a class hierarchy of simple
objects and more complex composite objects so they appear to be the same
to the client program. Because of this simplicity, the client can be that
much simpler, since hodes and leaves are handled in the same way.

The Composite pattern also makes it easy for you to add new kinds of
components to your collection, as long as they support a similar
programming interface. On the other hand, this has the disadvantage of
making your system overly genera. You might find it harder to restrict
certain classes where this would normally be desirable.

A Simple Composite
The intent of the Composite pattern isto allow you to construct atree of
various related classes, even though some have different properties than
others and some are leaves that do not have children. However, for very
simple cases, you can sometimes use just a single class that exhibits both
parent and leaf behavior. In the SimpleComposite example, we create an
Employee class that always contains the ArrayList subordinates. This
collection of employees will either be empty or populated, and this
determines the nature of the values that you return from the getChild and
remove methods. In this ssmple case, we do not raise errors and aways
allow leaf nodes to be promoted to have child nodes. In other words, we
always allow execution of the add method.

While you may not regard this automatic promotion as a disadvantage, in
systems where there are a very large number of leaves, it is wasteful to
keep a Callection initialized and unused in each leaf node. In cases where
there are relatively few leaf nodes, thisis not a serious problem.

Copyright © , 2002 by James W Cooper

216

Compositesin .NET

In .NET, you will note that the Node object class we use to populate the
TreeView isin fact just such a smple composite pattern. Y ou will also
find that the Composite describes the hierarchy of Form, Frame, and
Controlsin any user interface program. Similarly, toolbars are containers,
and each may contain any number of other containers.

Any container may then contain components such as Buttons,
Checkboxes, and TextBoxes, each of which is a leaf node that cannot have
further children. They may also contain ListBoxes and grids that may be
treated as leaf nodes or that may contain further graphical components.

Y ou can walk down the Composite tree using the Controls collection.

Other Implementation | ssues

Ordering components. In some programs, the order of the components
may be important. If that order is somehow different from the order in
which they were added to the parent, then the parent must do additional
work to return them in the correct order. For example, you might sort the
original collection alphabetically and return a new sorted collection.

Caching results. If you frequently ask for data that must be computed
from a series of child components, as we did here with salaries, it may be
advantageous to cache these computed results in the parent. However,
unless the computation is relatively intensive and you are quite certain that
the underlying data have not changed, this may not be worth the effort.

Thought Questions

1. A baseball team can be considered an aggregate of its individual
players. How could you use a composite to represent individual and
team performance?

2. The produce department of a supermarket needs to track its sales
performance by food item. Suggest how a composite might be helpful.

Copyright © , 2002 by James W Cooper

Programs on the CD-ROM

217

\ Conposite\ Conposite

composite shows tree

\ Conposite\ Dl i nkConposite

composite that uses both child links
and parent links

\ Conposite\Si npl eConposite

Simple composite of same
employee tree that allows any
employee to move from leef to
node.

Copyright © , 2002 by James W Cooper

218

17. The Decorator Pattern

The Decorator pattern provides us with away to modify the behavior of
individual objects without having to create a new derived class. Suppose
we have a program that uses eight objects, but three of them need an
additional feature. Y ou could create a derived class for each of these
objects, and in many cases this would be a perfectly acceptable solution.
However, if each of these three objects requires different features, this
would mean creating three derived classes. Further, if ore of the classes
has features of both of the other classes, you begin to create complexity
that is both confusing and unnecessary.

For example, suppose we wanted to draw a specia border around some of
the buttons in a toolbar. If we created a new derived button class, this
means that al of the buttonsin this new class would always have this
same new border when this might not be our intent.

Instead, we create a Decorator class that decorates the buttons. Then we
derive any number of specific Decorators from the main Decorator class,
each of which performs a specific kind of decoration. In order to decorate
a button, the Decorator has to be an object derived from the visual
environment so it can receive paint method calls and forward calls to other
useful graphic methods to the object that it is decorating. This is another
case where object containment is favored over object inheritance. The
decorator is agraphical object, but it contains the object it is decorating. It
may intercept some graphical method calls, perform some additional
computation, and pass them on to the underlying object it is decorating.

Decorating a CoolButton

Recent Windows applications such as Internet Explorer and Netscape
Navigator have arow of flat, unbordered buttons that highlight themselves
with outline borders when you move your mouse over them. Some
Windows programmers call this toolbar a CoolBar and the buttons
CoolButtons. There is no anaogous button behavior in C# controls, but

Copyright © , 2002 by James W Cooper

219

we can obtain that behavior by decorating a Panel and using it to contain a
button. In this case, we decorate it by drawing black and white border
lines to highlight the button, or gray lines to remove the button borders.

Let’s consider how to create this Decorator. Design Patter ns suggests that
Decorators should be derived from some general visual component class
and then every message for the actual button should be forwarded from the
decorator. Thisis not al that practical in C#, but if we use containers as
decorators, al of the events are forwarded to the control being contained.

Design Patterns further suggests that classes such as Decorator should be
abstract classes and that you should derive al of your actual working (or
concrete) decorators from the Abstract class. In our implementation, we
define a Decorator interface that receives the mouse and paint events we
need to intercept.
public interface Decorator

voi d nouseMdve(obj ect sender, MuseEventArgs e);

voi d nouseEnt er (obj ect sender, EventArgs e);

voi d mobuselLeave(obj ect sender, EventArgs e);

voi d paint (object sender, PaintEventArgs e);

}

For our actual implementation, we can derive a Cool Decorator from a
Pandl class, and have it become the container which holds the button we
are going to decorate.

Now, let’s look at how we could implement a CoolButton. All we really
need to do is to draw the white and black lines around the button area
when it is highlighted and draw gray lines when it is not. When a
MouseMove is detected over the button, the next paint event should draw
the highlighted lines, and when the mouse leaves the button area, the next
paint event should draw outlinesin gray. We do this by setting a
mouse_over flag and then forcing arepaint by calling the Refresh method.

public void npbuseMove(object sender, MuseEvent Args e){
nouse_over = true;

public void nmouseEnter(object sender, EventArgs e){

Copyright © , 2002 by James W Cooper

220

nouse_over = true;
this. Refresh ();

public void nouselLeave(object sender, EventArgs e){
nouse_over = fal se;
this. Refresh ();

The actual paint event is the following:

public virtual void paint(object sender, PaintEventArgs e){
//draw over button to change its outline
Graphics g = e. G aphi cs;
const int d = 1;
//draw over everything in gray first
g. DrawRect angl e(gPen, 0, 0, x2 - 1, y2 - 1);
/1 draw bl ack and white boundaries
/1if the nobuse is over
i f(rmouse_over) {
g. DrawLi ne(bPen, 0, 0, x2 - d, 0);
g. DrawLi ne(bPen, 0, 0, 0, y2 - 1);
g. DrawLi ne(wPen, 0, y2 - d, x2 - d, y2 - d);
g. DrawLi ne(wPen, x2 - d, 0, x2 - d, y2 - d);

}

Handling eventsin a Decor ator

When we construct an actual decorator containing the mouse and paint
methods we show above, we have to connect the event handling system to
these methods. We do this in the constructor for the decorator by creating
an EventHandler class for the mouse enter and hover events and a
MouseEventHandler for the move and leave events. It is important to note
that the events we are catching are events on the contained button, rather
than on the surrounding Panel. So, the control we add the handlersto is the

button itsalf.
public Cool Decorator(Control c) {
contl = c; //copy in control

// nouse over, enter handl er
Event Handl er evh = new Event Handl er (nouseEnter);

Copyright © , 2002 by James W Cooper

221

c. MouseHover += evh;

c. MbuseEnt er += evh;
/I mouse nove handl er
c. MouseMove += new MouseEvent Handl er (nbuselMove) ;
c. MbuseLeave += new Event Handl er (nmouseLeave) ;

Similarly, we create a PaintEventHandler for the paint event.

// pai nt handl er catches button's paint
c. Paint += new Pai nt Event Handl er (pai nt);

Layout Considerations

If you create a Windows form containing buttons, the GUI designer
automatically generates code to add that Control to the Controls array for
that Window. We want to change this by adding the button to the Controls
array for the new panel, adding the panel to the Controls array for the
Window, and removing the button from that array. Here is the code to add
the panel and remove the button in the Form initialization method:

//add outside decorator to the |ayout

/land renove the button fromthe |ayout

this. Control s. AddRange(new System W ndows. Forms. Control [] {cdec});
this. Control s. Remove (btButtonA);

and this is the code to add the button to the Decorator panel:

public Cool Decorator(Control c¢) {
contl = c; //copy in control
//add button to controls contained in panel
this. Control s. AddRange(new Control[] {contl});

Control Size and Position

When we decorate the button by putting it in a Panel, we need to change
the coordinates and sizes so that the Panel has the size and coordinates of
the button and the button has a location of (0, 0) within the pandl. This
also happens in the Cool Decorator constructor:

this. Location = p;

Copyright © , 2002 by James W Cooper

contl . Location =new Poi nt (0, 0);

this. Name = "deco"+cont!. Nane ;
this.Size = contl.Size;

x1 = c. Location. X - 1;
yl = c.Location.Y - 1;
X2 = c¢.Size. Wdt h;
y2 = c. Si ze. Hei ght ;

We also create instances of the Pens we will use in the Paint method in
this constructor:

//create the overwite pens

gPen = new Pen(c. BackCol or, 2); /lgray pen overwites borders

bPen new Pen(Col or.Black , 1);
wPen = new Pen(Col or. Wiite, 1);

Using a Decorator

This program is shown in Figure 17-1, with the mouse hovering over one
of the buttons.

R=

A buttan B buttan

Gt

Figure17-1 — The A button and B button are CoolButtons, which are outlined when
a mouse hovers over them. Herethe B button is outlined.
Multiple Decorators

Now that we see how a single decorator works, what about multiple
decorators? It could be that we' d like to decorate our Cool Buttons with
another decoration— say, adiagonal red line.

Copyright © , 2002 by James W Cooper

223

Thisis only dightly more complicated, because we just need to enclose
the Cool Decorator inside yet another decorator panel for more decoration
to occur. The only real change is that we not only need the instance of the
panel we are wrapping in another, but also the central object (here a
button) being decorated, since we have to attached our paint routines to
that central object’s paint method.

So we need to create a constructor for our decorator that has both the
enclosing panel and the button as Controls.

public class Cool Decorator :Panel, Decorator {

protected Control contl;
protected Pen bPen, wPen, gPen;

private bool nouse_ over;
protected float x1, yl, x2, y2;

publ i c Cool Decorator(Control c, Control baseC) {
//the first control is the one |ayed out
//the base control is the one whose paint nmethod we extend
//this allows for nesting of decorators
contl = c;
this. Controls. AddRange(new Control[] {contl});

Then, when we add the event handlers, the paint event handler must be
attached to the base control:

/I paint handl er catches button's paint
baseC. Pai nt += new Pai nt Event Handl er (paint);

We make the paint method virtual so we can override it as we see below.

public virtual void paint(object sender, PaintEventArgs e){
//draw over button to change its outline
Graphics g = e. G aphi cs;

It turns out that the easiest way to write our SlashDecorator, which draws
that diagonal red line, isto derive it from Cool Decorato directly. We can
reuse al the base methods and extend only the paint method from the
Cool Decorator and save alot of effort.

public class Sl ashDeco: Cool Decor at or {
private Pen rPen;

Copyright © , 2002 by James W Cooper

224

public Sl ashDeco(Control c, Control bc):base(c, bc) {
rPen = new Pen(Color.Red , 2);

public override void paint(object sender,
Pai nt Event Args e){

Graphics g = e. Gaphics ;
x1=0; y1=0;
x2=this.Size.Wdth ;
y2=thi s. Si ze. Hei ght ;
g. DrawLi ne (rPen, x1, y1, x2, y2);
}
}

This gives us a final program that displays the two buttons, as shown in
Figure Figure 17-2. The class diagram is shown in Figure 17-3

Bcool Decorator ————RTe[F

‘ &, ;QH [Laik

Figure17-2 — The A CoolButton is also decorated with a SlashDecor ator.

Copyright © , 2002 by James W Cooper

225

AhstractDecorator
DecoForm T
initC ontents
mougellp
1 mousellowt
1 mouseldove
refresh
deco | paint
getControl
77
De.curatnr
it
iI]i‘t. t.:l.l:k
mousehdove
mous el oy
mouzellp
paitt

Figure17-3—-The UML classdiagram for Decorators and two specific Decor ator
implementations

Nonvisual Decorators

Decorators, of course, are not limited to objects that enhance visud
classes. Y ou can add or modify the methods of any object in asimilar
fashion. In fact, nonvisual objects can be easier to decorate because there
may be fewer methods to intercept and forward. Whenever you put an
instance of a class inside another class and have the outer class operate on
it, you are essentially “decorating” that inner class. Thisis one of the most
common tools for programming available in Visua Studio.NET.

Copyright © , 2002 by James W Cooper

226

Decorators, Adapters, and Composites

As noted in Design Patterns, there is an essential smilarity among these
classes that you may have recognized. Adapters also seem to “decorate”

an existing class. However, their function is to change the interface of one
or more classes to one that is more convenient for a particular program.
Decorators add methods to particular instances of classes rather than to all
of them. Y ou could also imagine that a composite consisting of asingle
item is essentially a decorator. Once again, however, the intent is different.

Consequences of the Decor ator Pattern

The Decorator pattern provides a more flexible way to add responsibilities
to a class than by using inheritance, since it can add these responsibilities
to selected instances of the class. It dso allows you to customize a class
without creating subclasses high in the inheritance hierarchy. Design
Patter ns points out two disadvantages of the Decorator pattern. One is that
a Decorator and its enclosed component are not identical. Thus, tests for
object types will fail. The second is that Decorators can lead to a system
with “lots of little objects’ that al look alike to the programmer trying to
maintain the code. This can be a maintenance headache.

Decorator and Fagade evoke similar images in building architecture, but in
design pattern terminology, the Fagade is away of hiding a complex
system inside a simpler interface, whereas Decorator adds function by
wrapping a class. We' Il take up the Facade next.

Thought Questions

1. When someone enters an incorrect value in a cell of agrid, you might
want to change the color of the row to indicate the problem. Suggest
how you could use a Decorator.

2. A mutua fund isacollection of stocks. Each one consists of an array
or Collection of prices over time. Can you see how a Decorator can be
used to produce a report of stock performance for each stock and for
the whole fund?

Copyright © , 2002 by James W Cooper

Programs on the CD-ROM

227

\ Decor at or \ Cool decor at or

Ct#cool button decorator

\ Decor at or\ Redecor at or

C# cool button and slash decorator

Copyright © , 2002 by James W Cooper

228

18. The Facade Pattern

The Fagade pattern is used to wrap a set of complex classes into asimpler
enclosing interface. As your programs evolve and develop, they grow in
complexity. In fact, for al the excitement about using design patterns,
these patterns sometimes generate so many classes that it is difficult to
understand the program’s flow. Furthermore, there may be a number of
complicated subsystems, each of which has its own complex interface.

The Fagade pattern allows you to smplify this complexity by providing a
smplified interface to these subsystems. This simplification may in some
cases reduce the flexibility of the underlying classes, but it usually
provides all the function needed for all but the most sophisticated users.
These users can till, of course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an
example of where a Fagcade can be useful. C# provides a set of classes that
connect to databases, using an interface called ADO.Net. Y ou can connect
to any database for which the manufacturer has provided a ODBC
connection class—almost every database on the market. Let’stake a
minute and review how databases are used and a little about how they
work.

What |sa Database?

A database is a series of tables of information in some sort of file structure
that allows you to access these tables, select columns from them, sort
them, and select rows based on various criteria. Databases usualy have
indexes associated with many of the columns in these tables, so we can
access them as rapidly as possible.

Databases are used more than any other kind of structure in computing.
You'll find databases as central elements of employee records and payraoll
systems, in travel scheduling systems, and all through product
manufacturing and marketing.

Copyright © , 2002 by James W Cooper

229

In the case of employee records, you could imagine a table of employee
names and addresses and of salaries, tax withholding, and benefits. Let's
consider how these might be organized. Y ou can imagine one table of
employee names, addresses, and phone numbers. Other information that
you might want to store would include salary, salary range, last raise, next
raise, employee performance ranking, and so forth.

Should this all be in one table? Almost certainly not. Salary ranges for
various employee types are probably invariant between employees, and
thus you would store only the employee type in the employee table and the
salary ranges in another table that is pointed to by the type number.
Consider thedatain Table 18-1.

Key | Lastname | SalaryType SdlaryType | Min Max
1 Adams 2 1 30000 45000
2 Johnson |1 2 45000 60000
3 Smyth 3 3 60000 75000
4 Tully 1

5 Wolff 2

Table 18-1 — Employee Names and Salary Type Tables

The datain the sal ar yType column refers to the second table. We could
imagine many such tables for things like state of residence and tax values
for each state, health plan withholding, and so forth. Each table will have a
primary key column like the ones at the left of each table and several more
columns of data. Building tables in a database has evolved to both an art
and a science. The structure of these tables is referred to by their normal
form. Tables are said to be in first, second, or third normal form,
abbreviated as INF, 2NF, or 3NF.

First. Each cell in atable should have only one value (never an array
of values). (INF)

Copyright © , 2002 by James W Cooper

230

Second. INF and every nonkey column is fully dependent on the key
column. This means there is a one-to-one relationship between the
primary key and the remaining cells in that row. (2NF)

Third. 2NF and all non-key columns are mutually independent. This
means that there are no data columns containing values that can be
calculated from other columns’ data. (3NF)

Today, nearly al databases are constructed so that al tables are in third
normal form (3NF). This means that there are usualy afairly large
number of tables, each with relatively few columns of information.

Getting Data Out of Databases

Suppose we wanted to produce a table of employees and their salary
ranges for some planning exercise. This table doesn’'t exist directly in the
database, but it can be constructed by issuing a query to the database.
We'd like to have a table that looked like the datain Table 18-2.

| Name | Min | Max |
Adams $45,000.00 $60,000.00
Johnson $30.000.00 $45,000.00
Smyth $60,000.00 $75.000.00
Tullv $30.000.00 $45.000.00
Wolff $45,000.00 $60,000.00

Table 18-2 - Employee Salaries Sorted by Name

Maybe we want data sorted by increasing salary, as shown in Table 18-3.

| Name Min Max

Tully $30.000.00 $45.000.00
Johnson $30,000.00 $45,000.00
Wolff $45,000.00 $60.,000.00
Adams $45.000.00 $60.000.00
Smvth $60.000.00 $75.000.00

Table 18-3— Employee Salaries Sorted by Magnitude

Copyright © , 2002 by James W Cooper

231

We find that the query we issue to obtain these tables has this form.

SELECT DI STI NCTROW Enpl oyees. Nanme, Sal ar yRanges. M n,

Sal ar yRanges. Max FROM Enpl oyees | NNER JO N Sal ar yRanges ON
Enpl oyees. Sal aryKey = Sal ar yRanges. Sal ar yKey

ORDER BY Sal ar yRanges. M n;

This language is called Structured Query Language or SQL (often
pronounced “sequel”), and it is the language of virtually all databases
currently available. There have been several standards issued for SQL

over the years, and most PC databases support much of these ANSI
standards. The SQL-92 standard is considered the floor standard, and there
have been several updates since. However, none of these databases
support the later SQL versions perfectly, and most offer various kinds of
SQL extensions to exploit various features unique to their database.

Kinds of Databases

Since the PC became a mgjor office tool, there have beena number of
popular databases devel oped that are intended to run by themselves on
PCs. These include elementary databases like Microsoft Works and more
sophisticated ones like Approach, dBase, Borland Paradox, Microsoft
Access, and FoxBase.

Another category of PC databases includes that databases intended to be
accessed from a server by a number of PC clients. These include IBM
DB/2, Microsoft SQL Server, Oracle, and Sybase. All of these database
products support various relatively similar dialects of SQL, and thus all of
them would appear at first to be relatively interchangeable. The reason
they are not interchangeable, of course, is that each was designed with
different performance characteristics involved and each with a different
user interface and programming interface. While you might think that
since they al support SQL, programming them would be similar, quite the
opposite is true. Each database has its own way of receiving the SQL
gueries and its own way of returning the results. This is where the next
proposed level of standardization came about: ODBC.

Copyright © , 2002 by James W Cooper

232

ODBC

It would be nice if we could somehow write code that was independent of
the particular vendor’ s database that would alow us to get the same results
from any of these databases without changing our calling program. If we
could only write some wrappers for all of these databases so that they all
appeared to have similar programming interfaces, this would be quite easy
to accomplish.

Microsoft first attempted this feat in 1992 when they released a
specification called Object Database Connectivity. It was supposed to be
the answer for connection to all databases under Windows. Like al first
software versions, this suffered some growing pains, and another version
was released in 1994 that was somewhat faster as well as more stable. It
also was the first 32-bit version. In addition, ODBC began to move to
platforms other than Windows and has by now become quite pervasivein
the PC and Workstation world. Nearly every major database vendor
provides ODBC drivers.

Database Structure

At the lowest level, then, a database consists of a series of tables, each
having several named columns, and some relationships between these
tables. This can get pretty complicated to keep track of, and we would like
to see some simplification of this in the code we use to manipulate
databases.

C# and dl of VisualStudio.Net use a new database access model, called
ADO.NET, for ActiveX Data Objects. The design philosophy of
ADO.NET is one in which you define a connection betweenyour program
and a database and use that connection sporadically, with much of the
computation actually taking place in disconnected objects on your local
machine. Further, ADO.NET uses XML for definition of the objects that
are transmitted between the database and the program, primarily under the
covers, although it is possible to access this data description using some of
the built-in ADO.NET classes.

Copyright © , 2002 by James W Cooper

233

Using ADO.NET

ADO.NET asimplemented in C# consists of afairly large variety of
interrelated objects. Since the operations we want to perform are still the
same relatively ssimple ones, the Fagade pattern will be an ideal way to
manage them.

OleDbConnection—This object represents the actual connection
to the database. Y ou can keep an instance of this class available
but open and close the connection as needed. Y ou must
specificaly close it when you are done, before it is garbage
collected.

OleDbCommand—This class represents a SQL command you
send to the database, which may or may not return results.

OleDbDataAdapter—Provides a bridge for moving data between
adatabase and aloca DataSet. Y ou can specify an
OleDbCommand, a Dataset, and a connection.

DataSet—A representation of one or more database tables or
results from a query on your local machine.

DataT able—A single data table from a database or query

DataRow—A single row in a DataTable.

Connecting to a Database

To connect to a database, you specify a connection string in the
constructor for the database you want to use. For example, for an Access
database, your connection string would be the following.

string connectionString =
"Provider=M crosoft.Jet. OLEDB. 4. 0; " +
"Dat a Sour ce=" + dbNane;

and the following makes the actual connection.

A eDbConnection conn =
new O eDbConnecti on(connectionString);

Copyright © , 2002 by James W Cooper

234

Y ou actually open that connection by calling the open method. To make
sure that you don’t re-open an already open connection, you can check its
state first.

private void openConnection() {
if (conn.State == ConnectionState. d osed){

conn. Open ();
}
}

Reading Data from a Database Table

To read datain from a database table, you create an ADOCommand with
the appropriate Select statement and connection.

publ i c DataTabl e openTabl e (string tabl eNanme) {
A eDbDat aAdapt er adapter = new O eDbDat aAdapter ();
Dat aTabl e dtable = null;
string query = "Select * from" + tabl eNane;
adapt er . Sel ect Command = new O eDbComand (query, conn);

Then, you create a dataset object into which to put the results.
Dat aSet dset = new DataSet ("nydata");

Then, you simply tell the command object to use the connection to fill the
dataset. Y ou must specify the name of the table to fill in the FillDataSet
method, as we show here.

try {
openConnection();

adapter.Fill (dset);

}
catch(Exception e) {

Consol e. WiteLine (e. Message);
}

The dataset then contains at least one table, and you can obtain it by index
or by name and examine its contents.

Copyright © , 2002 by James W Cooper

235

//get the table fromthe dataset

dtabl e = dset. Tables [0];

Executing a Query

Executing a Select query is exactly identical to the preceding code, except
the query can be an SQL Select statement of any complexity. Here we
show the steps wrapped in a Try block in case there are SQL or other
database errors.

publ i c DataTabl e openQuery(string query) {
O eDbDat aAdapt er dsCnd = new O eDbDat aAdapter ();
Dat aSet dset = new DataSet ();
//create a dataset
Dat aTabl e dtable = nul|; //declare a data table
try {
//create the command
dsCnd. Sel ect Cormand =
new O eDbConmand(query, conn);
/1 open the connection
openConnection();
[1fill the dataset
dsCnd. Fill (dset, "mine");
//get the table
dt abl e = dset. Tabl es[0] ;
// al ways close it
cl oseConnection();
/land return it
return dtabl e;
}
catch (Exception e) {
Consol e. WiteLine (e. Message);
return null;

}

Deleting the Contents of a Table

Y ou can delete the contents of atable using the “Delete * from Table’
SQL statement. However, since thisis not a Select command, and there is

Copyright © , 2002 by James W Cooper

236

no local table to bridge to, you can simply use the ExecuteNonQuery
method of the OleDbCommand object.

public void delete() {

//deletes entire table
conn = db. get Connecti on();
openConn();
if (conn.State == ConnectionState. Open) {
A eDbComand adcnd =
new O eDbCommuand("Del ete * from" + tabl eName, conn);
try{
adcnd. Execut eNonQuery();
cl oseConn();

}
catch (Exception e) {

Consol e. WitelLine (e. Message);
}

}

Adding Rowsto Database Tables Using ADO.NET

The process of adding datato atableis closely related. You generally start
by getting the current version of the table from the database. If it is very
large, you can get only the empty table by getting just its schema. We
follow these steps.

1.

N o g s~ w DN

Create a DataTable with the name of the table in the database.
Add it to a dataset.

Fill the dataset from the database.

Get anew row object from the DataTable.

Fill in its columns.

Add the row to the table.

When you have added all the rows, update the database from the
modified DataT able object.

The process looks like this.
Dat aSet dset = new Dat aSet (t abl eNan®e) ; /lcreate the data set

Copyright © , 2002 by James W Cooper

237

dtabl e = new Dat aTabl e(t abl eNane) ; //and a dat at abl e
dset . Tabl es. Add(dt abl e) ; //add to collection
conn = db. get Connecti on();

openConn() ; /1 open the connection

A eDbDat aAdapt er adcnd = new O eDbDat aAdapter () ;
/1 open the table
adcnd. Sel ect Command =
new O eDbConmand(" Sel ect * from" + tabl eName, conn);
A eDbConmandBui | der ol ecb = new O eDbConmandBui | der (adcnd) ;
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl eNan®e);
//1oad current data into the |local table copy
adcnd. Fil | (dset, tabl eNane);
/1 get the Enumerator fromthe Hashtabl e
| Enumer at or i enum = nanes. Keys. Get Enuner at or () ;
/I move through the table, adding the nanes to new rows
while (ienum MoveNext()) {
string nane = (string)ienum Current;
row = dt abl e. NewRow() ; /1 get new rows
rowf col uymNane] = nane;
dt abl e. Rows. Add(row) ; //add into table

/I Now update the database with this table

try {
adcnd. Updat e(dset) ;
cl oseConn();
filled = true;

}

catch (Exception e) {
Consol e. WitelLine (e. Message);
}

It is this table editing ad update process that is central to the ADO style
of programming. Y ou get the table, modify the table, and update the
changes back to the database. Y ou use this same process to edit or delete
rows, and updating the database makes these changes as well.

Building the Fagade Classes

This description is the beginning of the new Fagade we are developing to
handle creating, connecting to, and using databases. In order to carry out
therest, let’s consider Table 18-4, grocery prices at three local stores.

Copyright © , 2002 by James W Cooper

St op and Shop,

St op and Shop,

St op and Shop,

Stop and Shop,

St op and Shop,

St op and Shop,

Stop and Shop,

Vil l age Market,

Vil l age Market,

Village Market,
Il age Market,
Il age Market,

Vil l age Market,
Il age Market,

Val dbaun s,

Val dbaun s,

Wal dbaun s,

Wal dbaumi s,

Val dbaum s,

Wal dbauni s,

Wal dbaumni s,

Appl es,

O anges,
Hanbur ger,
Butter,

M1k,

Col a,

Green beans,
Appl es,

O anges,
Hanbur ger,
Butter,

M1k,

Col a,

Green beans,
Appl es,

O anges,
Hanbur ger,
Butter,

M|k,

Col a,

G een beans,

Table 18-4- Grocery Pricing Data

It would be nice if we had this information in a database so we could
easily answer the question “Which store has the lowest prices for

P NP WNOONWRFEFNNOONNPEFENPEFPOO

.27
.36
.98
.39
.98
.65
.29
.29
.29
.45
.99
.79
.79
.19
.33
.47
.29
.29
.89
.99
.99

238

oranges?’ Such a database should contain three tables: the supermarkets,

the foods, and the prices. We aso need to keep the relations among the

three tables. One ssimple way to handle this is to create a Stores table with

StoreName and StoreK ey, a Foods table with a FoodName and a

FoodKey, and a Price table with a PriceKey, a Price, and references to the
StoreK ey and Foodkey.

In our Facade, we will make each of these three tablesits own class and
have it take care of creating the actual tables. Since these three tables are

so similar, we'll derive them all from the basic DBTable class.

Copyright © , 2002 by James W Cooper

239

Building the Price Query

For every food name, we'd like to get a report of which stores have the
cheapest prices. This means writing a ssmple SQL query against the
database. We can do this within the Price class and have it return a Dataset
with the store names and prices.

The final application smply fills one list box with the food names and
files the other list box with prices when you click on a food name, as
shown in Figure 18-1.

imi. MakeDB

Apples Stop and Shaop 198
Butter W aldbaum'z 229
Cola illage Market 245
[Green beans
‘Hamburger
kil
Oranges

Start |

Figure 18-1 — The grocery program using a Fagade pattern

Making the ADO.NET Facade
In the Fagade we will make for our grocery database, we start with an
abstract DBase class that represents a connection to a database. This
encapsulates making the connection and opening atable and an SQL
query.

public abstract class DBase {
protected O eDbConnecti on conn;

private void openConnection() {
if (conn.State == ConnectionState. d osed)

Copyright © , 2002 by James W Cooper

conn. Open ();

}
Hl------
private void closeConnection() {
if (conn.State == ConnectionState. Open){
conn. C ose ();

public DataTabl e openTabl e (string tableNane) {
A eDbDat aAdapt er adapter = new O eDbDat aAdapter ();
Dat aTabl e dtable = null;
string query = "Select * from" + tabl eNane;

adapt er. Sel ect Command = new O eDbCommand (query, conn);

Dat aSet dset = new DataSet ("nydata");
try {

openConnection();

adapter.Fill (dset);

dtabl e = dset. Tables [0];

}
catch(Exception e) {
Consol e. WiteLine (e. Message);

240

}
return dtabl e;
}
[]------
public DataTabl e openQuery(string query) {
QA eDbDat aAdapter dsCnd = new O eDbDat aAdapter ();
Dat aSet dset = new DataSet (); //create a dataset
Dat aTabl e dtable = null; //declare a data table
try {
/Il create the conmand
dsCnd. Sel ect Comrand = new O eDbCommand(query, conn);
openConnection(); // open the connection
//fill the dataset
dsCnd. Fil |l (dset, "mine");
/1get the table
dt abl e = dset. Tabl es[0];
cl oseConnection(); //always close it
return dtabl e; //and return it

}
catch (Exception e) {
Consol e. WitelLine (e. Message);

Copyright © , 2002 by James W Cooper

241

return null;

public void openConnection(string connectionString) {
conn = new O eDbConnecti on(connectionString);

public O eDbConnection get Connection() ({
return conn;
}

}

Note that this class is complete except for constructors. We'll make
derived classes that create the connection strings for various databases.
WEe'll make a version for Access.
public class AxsDatabase :Dbase {
public AxsDat abase(string dbName) {
string connectionString =
"Provider=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=" +
dbNane;
openConnect i on(connecti onString);
}
}
and another for SQL Server.

public class SQ.ServerDat abase: DBase {
string connectionString;

[]-----
public SQLServer Dat abase(Stri ng dbNane)
connectionString = "Persist Security Info = Fal se;" +
"Initial Catalog =" + dbName + ";" +
"Data Source = nyDataServer;User | D = nyName;" +
" passwor d=";
openConnect i on(connectionString);
}
[]-----

public SQ.ServerDat abase(string dbName, string serverNane,
string userid, string pwd) {

connectionString = "Persist Security Info = False;" +
“Initial Catalog =" + dbNane + ";" +
"Data Source =" + serverName + ";" +
"User ID =" + userid + ";" +

"password=" + pwd;

Copyright © , 2002 by James W Cooper

}
}

242

openConnecti on(connectionString);

The DBTable class

The other mgjor class we will need is the DBTable class. It encapsulates
opening, loading, and updating a single database table. We will also use
this class in this example to add the single values. Then we can derive
food and store classes that do this addition for each class.

public

cl ass DBTabl e {
protected DBase db;
protected string tabl eNaneg;
private bool filled, opened,;
private DataTabl e dtabl e;
private int row ndex;
private Hashtabl e nanes;
private string col utmNane;
private Dat aRow row;

private O eDbConnection conn;
private int index;

DBTabl e(DBase datab, string tb_Nanme) {
db = dat ab;

t abl eNane = tb_Nane;

filled =fal se;

opened = fal se;

names = new Hashtabl e();

voi d createTable() {

try {
dtabl e = new Dat aTabl e(t abl eNan®) ;

dt abl e. d ear () ;

catch (Exception e) {
Consol e. WiteLine (e. Message);
}

bool hasMoreEl ements() {
i f (opened)

return (rowl ndex < dtabl e. Rows. Count)
el se

Copyright © , 2002 by James W Cooper

return fal se;

}
[]-----
public int getKey(string nm string keynane){
Dat aRow r ow;
int key;
if(! filled)
return (int)names[nni;
el se {
string query = "select * from" + tableNanme + " where "

columName + "=\"" + nm+ "\'";
dt abl e = db. openQuery(query);
row = dtabl e. Rows[0] ;
key = Convert. Tol nt32 (row keynane].ToString());
return key;

public virtual void nakeTabl e(string cNane) {
/I shown bel ow

private void closeConn() {
if(conn.State == ConnectionState. Open) {
conn. Cl ose();

}
}
[]-----
private void openConn() {
if(conn.State == ConnectionState. dosed) {
conn. Qpen() ;
}
}
[]-----

public void openTabl e() {
dt abl e = db. openTabl e(t abl eNan®e) ;
rowl ndex = O;
if(dtable !'= null)
opened = true;

[]-----

public void delete() {
/I shown above
}

}

Copyright © , 2002 by James W Cooper

243

+

244

Creating Classesfor Each Table

We can derive the Store, Food, and Prices classes from DBTable and reuse
much of the code. When we parse the input file, both the Store and Food
classes will require that we create a table of unique names. store namesin
one class and food names in the other.

C# provides a very convenient way to create these classes using the
Hashtable. A Hashtable is an unbounded array where each element is
identified with a unique key. One way people use Hashtablesisto add
objects to the table with a short nickname as the key. Then you can fetch
the object from the table by using its nickname. The objects need not be
unique, but, of course, the keys must be unique.

The other place Hashtables are convenient isin making alist of unique
names. If we make the names the keys and some other number the
contents, then we can add names to the Hashtable and assure ourselves
that each will be unique. For them to be unique, the Hashtable must treat
attempts to add a duplicate key in a predictable way. For example, the
Java Hashtable simply replaces a previous entry having that key with the
new one. The C# implementation of the Hashtable, on the other hand,
throws an exception when we try to add a nonunique key value.

Now bearing in mind that we want to accumulate the entire list of names
before adding them into the database, we can use the following method to
add names to a Hashtable and make sure they are unique.

public void addTabl eVal ue(string nm {

[/ accurmul at es nanes in hash table

try {
nanmes. Add(nm i ndex++);
}

catch (Argunment Exception) {}
/1 do not allow duplicate names to be added

Copyright © , 2002 by James W Cooper

245

Then, once we have added all the names, we can add each of them to the
database table. Here we use the Enumerator property of the Hashtable to
iterate though all the names we have entered in the list.
public virtual void nakeTabl e(string cNane) {

col umNanme = cNane;

//stores current hash table values in data table
Dat aSet dset = new DataSet (tabl eNane); //create dataset

dt abl e = new Dat aTabl e(t abl eNane) ; //and a datatable
dset. Tabl es. Add(dt abl e); //add to collection
conn = db. get Connecti on();

openConn(); /1 open the connection

A eDbDat aAdapt er adcnd = new O eDbDat aAdapter () ;
//open the table
adcnd. Sel ect Conmand =
new O eDbCommand("Sel ect * from" + tabl eNanme, conn);
QA eDbConmandBui | der ol ecb = new O eDbCommuandBui | der (adcnd) ;
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl eNan®);
//1oad current data into the |ocal table copy
adcnd. Fi |l | (dset, tabl eNane);
//get the Enunerator fromthe Hashtable
| Enuner at or i enum = nanes. Keys. Get Enuner at or () ;
/I move through the table, adding the nanes to new rows
whil e (ienum MoveNext()) {
string nanme = (string)ienum Current;

row = dt abl e. NewRow() ; /] get new rows
rowf col uymNane] = nane;
dt abl e. Rows. Add(row) ; //add into table
}
/1 Now updat e the database with this table
try {
adcnd. Updat e(dset) ;
cl oseConn();
filled = true;
}

catch (Exception e) {
Consol e. WitelLine (e. Message);

}
}
This simplifies our derived Stores table to just the following.
public class Stores :DBTabl e {

public Stores(DBase db):base(db, "Stores"){

}

Copyright © , 2002 by James W Cooper

246

public void makeTabl e() {
base. nakeTabl e (" Storenane");
}

}

And it smplifies the Foods table to much the same thing.

public class Foods: DBTable {
publi ¢ Foods(DBase db): base(db, "Foods"){
}
[]-----

public void nakeTabl e() {
base. nakeTabl e (" Foodnane");

public string getValue() {
return base. getVal ue ("FoodNane");
}

}

The getValue method allows us to enumerate the list of names of Stores or
Foods, and we can put it in the base DBTable class.

public virtual string getValue(string cnane) {
/lreturns the next name in the table
/I assunmes that openTable has already been called
if (opened) {
Dat aRow row = dt abl e. Rows[r oM ndex++] ;
return rowf cnanme]. ToString(). Trim ()

}

el se
return ""

}
Note that we make this method virtual so we can override it where needed.

Building the Price Table

The Price table is a little more complicated because it contains keys from
the other two tables. When it is completed, it will look like Table 18-5.

| Pricekey | Foodkey | StoreKey | Price
1 1 1 0.27

Copyright © , 2002 by James W Cooper

© 00 NO OB WwN

=
o

PR R R R R R
W ~NOUNWN

= =
© =
oA WNRNOOOMNWWNRNOOOONWDN

W WWWWWMNDNNNNNMNNRRRPRPRERPREPRE

N
o

21

~
w

Table 18-5— The Price Tablein the Grocery Database

0.36
1.98
2.39
1.98
2.65
2.29
0.29
0.29
2.45
2.99
1.79
3.79
2.19
0.33
0.47
2.29
3.29
1.89
2.99
1.99

247

To create it, we have to reread the file, finding the store and food names,

looking up their keys, and adding them to the Price table. The DBTable
interface doesn’t include this final method, but we can add additional
specific methods to the Price class that are not part of that interface.

The Prices class stores a series of StoreFoodPrice objectsin an ArrayList

and then loads them all into the database at once. Note that we have
overloaded the classes of DBTable to take arguments for the store and

food key values as well as the price.

Each time we add a storekey, foodkey and price to the internal ArrayList

table, we create an instance of the StoreFoodPrice object and store it.

public class StoreFoodPrice {

Copyright © , 2002 by James W Cooper

private int storeKey, foodKey;

private float foodPrice;

[]-----

public StoreFoodPrice(int sKey, int fKey, float fPrice) {
st oreKey = sKey;
f oodKey = fKey;
foodPrice = fPrice;

public int getStore() {
return storekKey;

public int getFood() {
return foodKey;

public float getPrice() {
return foodPrice;

}
Then, when we have them all, we create the actual database table:

public class Prices : DBTable {
private Arraylist pricelList;
public Prices(DBase db) : base(db, "Prices") {
priceList = new ArrayList ();

public void nakeTabl e() {
//stores current array list values in data table
A eDbConnection adc = new O eDbConnection();

Dat aSet dset = new Dat aSet (t abl eNane) ;
Dat aTabl e dtabl e = new Dat aTabl e(t abl eNane) ;

dset . Tabl es. Add(dt abl e) ;
adc = db. get Connection();
if (adc. State == ConnectionState. C osed)

adc. Open() ;
A eDbDat aAdapt er adcnd = new O eDbDat aAdapt er () ;

[1fill in price table
adcnd. Sel ect Cormand =

Copyright © , 2002 by James W Cooper

248

249

new O eDbComand("Sel ect * from" + tabl eNane, adc);
A eDbComandBui | der cust CB = new

QA eDbConmandBui | der (adcnd) ;
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl eNan®e);
adcnd. Fil | (dset, tabl eNane);
| Enunmer at or i enum = priceli st. Get Enunerator ();
//add new price entries

whil e (ienum MoveNext ()) {
St or eFoodPrice fprice =
(St oreFoodPrice)i enum Current;

Dat aRow row = dt abl e. NewRow() ;

row "foodkey"] = fprice.getFood();

row "storekey"] = fprice.getStore();

row "price"] = fprice.getPrice();
dt abl e. Rows. Add(row) ; //add to table
}
adcnd. Updat e(dset); /Isend back to database
adc. C ose();
}
[]-----

public DataTable getPrices(string food) {

string query=
"SELECT Stores. StoreNane, " +
"Foods. Foodnanme, Prices.Price " +
"FROM (Prices INNER JO N Foods ON " +
"Prices. Foodkey = Foods. Foodkey) " +
"INNER JO N Stores ON " +
"Prices.StoreKey = Stores. StoreKey " +
"WHERE(((Foods. Foodnane) = \'" + food + "\')) " +
"ORDER BY Prices.Price";

return db. openQuery(query);

public void addRowi nt storeKey, int foodKey, float price)
pricelList.Add (
new St or eFoodPrice (storeKey,
f oodKey, price));

L oading the Database Tables

With all these classes derived, we can write a class to load the table from
the datafile. It reads the file once and builds the Store and Food database

Copyright © , 2002 by James W Cooper

250

tables. Then it reads the file again and looks up the store and food keys

and adds them to the array list in the Price class. Finally, it creates the
Price table.
public class Dataloader {

private csFile vfile;

private

Stores store;

private Foods fods;
private Prices price
private DBase db;

[1-----
public

while (

Dat aLoader (DBase dat ab) {
db = dat ab;

store = new Stores(db);

fods = new Foods (db);
price = new Prices(db);

void load(string dataFile) {

string sline;

int storekey, foodkey;

StringTokeni zer tok;

//delete current table contents

store.delete();

fods. del ete();

price.delete();

/I now read in new ones

vfile = new csFile(dataFile);

vfile. OpenFor Read();

sline = vfile.readLine();

while (sline !'= null){
tok = new StringTokenizer(sline, ",");
st ore. addTabl eVal ue(t ok. next Token()); //store
f ods. addTabl eVal ue(t ok. next Token()); //food
sline = vfile.readLine();

vfile.close();

/I construct store and food tables
store. makeTabl e();

f ods. nakeTabl e() ;

vfile. OpenFor Read();

sline = vfile.readLine();

sline !'=null) {
//get the gets and add to storefoodprice objects
tok = new StringTokenizer(sline, ",");

Copyright © , 2002 by James W Cooper

251

storekey = store. get Key(tok.next Token(), "Storekey");
f oodkey = fods. get Key(tok. next Token(), "Foodkey");
price. addRow st or ekey, foodkey,

Convert. ToSi ngl e (tok.neXtToken()));

sline = vfile.readLine();

//add all to price table
price. makeTabl e();
viile.close();

TheFinal Application
The program loads a list of food prices into alist box on startup.

private void | oadFoodTabl e() {
Foods fods =new Foods(db);
f ods. openTabl e();
whi | e (fods. hashvbr eEl enent s()){
| sFoods. | t ens. Add(f ods. get Val ue());
}

}
And it displays the prices of the selected food when you click on it.

private void | sFoods_Sel ect edl ndexChanged(obj ect sender,
System Event Args e) {
string food = |sFoods. Text;
Dat aTabl e dtable = prc. getPrices(food);

I sPrices.ltems.Cear();
foreach (DataRow rw in dtabl e. Rows) {
I sPrices.ltens. Add(rw "StoreNane"].ToString().Trim) +
"\t" + rw"Price"].ToString());
}

The final program is shown in Figure 18-2.

Copyright © , 2002 by James W Cooper

=10 x|

Cola W aldbaums 1.99
Oranges Yillage M arket 219
T Stop and Shop 2.23
kil

Applez

Butter

Harnburger

Load data |

Figure 18-2— The C# grocery database program
If you click on the “load data” button, it clears the database and reloads it

from the text file.

What Constitutesthe Facade?

The Facade in this case wraps the classes as follows.

Dbase

—Contains ADOConnection, Database, DataT able,
ADOCommand, ADODatasetCommand

DBTable

—Contains ADOCommand, Dataset, Datarow, Datatable,

ADODatasetCommand

252

Y ou can quickly see the advantage of the Fagade approach when dealing

with such complicated data objects.

Copyright © , 2002 by James W Cooper

253

Consequences of the Facade

The Fagade pattern shields clients from complex subsystem components
and provides a simpler programming interface for the general user.
However, it does not prevent the advanced user from going to the deeper,
more complex classes when necessary.

In addition, the Fagade allows you to make changes in the underlying
subsystems without requiring changes in the client code and reduces
compilation dependencies.

Thought Question

Suppose you had written a program with a FilejOpen menu, a text field,
and some buttons controlling font (bold and italic). Now suppose that you
need to have this program run from a line command with arguments,
Suggest how to use a Fagade pattern.

Programs on the CD-ROM

\ Fagade\ C# database Facade classes

Copyright © , 2002 by James W Cooper

254

19. The Flyweight Pattern

The Flyweight pattern is used to avoid the overhead of large numbers of
very similar classes. There are cases in programming where it seems that
you need to generate a very large number of small class instances to
represent data. Sometimes you can greatly reduce the number of different
classes that you need to instantiate if you can recognize that the instances
are fundamentally the same except for a few parameters. If you can move
those variables outside the class instance and pass them in as part of a
method call, the number of separate instances can be greatly reduced by
sharing them.

The Flyweight design pattern provides an approach for handling such
classes. It refers to the instance' s intrinsic data that makes the instance
unique and the extrinsic data that is passed in as arguments. The Flyweight
is appropriate for small, fine-grained classes like individual characters or
icons on the screen. For example, you might be drawing a series of icons
on the screen in awindow, where eachrepresents a person or datafileasa
folder, as shown in Figure 19-1.

Copyright © , 2002 by James W Cooper

255

[® Flyweight demo -0 =]

10
Adam Eill Charlie
el I 1 I 1

Dlave Edward Fred

T

|

George

Figure 19-1— A set of foldersrepresenting infor mation about various people. Since
these are so similar, they are candidates for the Flyweight pattern.

In this case, it does not make sense to have an individual class instance for
each folder that remembers the person’s name and the icon’s screen
position. Typically, these icons are one of afew similar images, and the
position where they are drawn is calculated dynamically based on the
window’s size in any case.

In another example in Design Patterns, each character in a document is
represented as a single instance of a character class, but the positions
where the characters are drawn on the screen are kept as external data, so
there only has to be one instance of each character, rather than one for
each appearance of that character.

Discussion

Flyweights are sharable instances of a class. It might at first seem thet
each classis a Singleton, but in fact there might be a small number of

Copyright © , 2002 by James W Cooper

256

instances, such as one for every character or one for every icon type. The
number of instances that are allocated must be decided as the class
instances are needed, and this is usually accomplished with a
FlyweightFactory class. This Factory class usually is a Singleton, since it
needs to keep track of whether a particular instance has been generated
yet. It then either returns a new instance or areference to one it has
already generated.

To decide if some part of your program is a candidate for using
Flyweights, consider whether it is possible to remove some data from the
class and make it extrinsic. If this makes it possible to greatly reduce the
number of different class instances your program needs to maintain, this
might be a case where Flyweights will help.

Example Code

Suppose we want to draw a small folder icon with a name under it for each
person in an organization. If thisis alarge organization, there could be a
large number of such icons, but they are actually all the same graphical
image. Even if we have two icons—one for “is Selected” and one for “not
Selected”—the number of different iconsis small. In such a system,
having an icon object for each person, with its own coordinates, name, and
selected state, is a waste of resources. We show two such iconsin Figure
19-2.

Copyright © , 2002 by James W Cooper

=k
L
Adam Eill Charlie
| [
Diave ward Fred
|
(zeorge

Figure 19-2— The Flyweight display with one folder selected

257

Instead, we'll create a FolderFactory that returns either the selected or the

unselected folder drawing class but does not create additional instances

once one of each has been created. Since thisis such asimple case, we just

create them both at the outset and then retur n one or the other.

public class Fol derFactory {
private Fol der sel Fol der, unsel Fol der;

[]-----
public Fol der Factory() {
/lcreate the two folders
sel Fol der = new Fol der (Col or. Brown) ;
unsel Fol der = new Fol der (Col or. Bi sque);
}
[1-----

public Fol der get Fol der (bool selected) {
i f(sel ected)
return sel Fol der;
el se
return unsel Fol der;

Copyright © , 2002 by James W Cooper

258

}

For cases where more instances could exist, the Factory could keep atable
of those it had already created and only create new ones if they weren’t
already in the table.

The unique thing about using Flyweights, however, is that we pass the
coordinates and the name to be drawn into the folder when we draw it.
These coordinates are the extrinsic data that allow us to share the folder
objects and, in this case, create only two instances. The complete folder
class shown here smply creates a folder instance with one background
color or the other and has a public draw method that draws the folder at
the point you specify.

public class Fol der
//Draws a folder at the specified coordinates
private const int w = 50;
private const int h = 30;
private Pen bl ackPen, whitePen;
private Pen grayPen;

private SolidBrush backBrush, blackBrush;
private Font fnt;
[l------
public Fol der (Col or col)
backBrush = new Sol i dBrush(col);
bl ackBrush = new Sol i dBrush(Col or. Bl ack);
bl ackPen = new Pen(Col or. Bl ack) ;
whi t ePen new Pen(Col or. Wi te);
grayPen = new Pen(Col or. G ay);
fnt = new Font("Arial", 12);

public void draw(Graphics g, int x, int y, string title) {
[/ col or folder
g. Fi Il Rect angl e(backBrush, x, vy, w, h);
//outline in black
g. DrawRect angl e(bl ackPen, x, vy, w, h);
//left 2 sides have white line
g. DrawLi ne(whitePen, x + 1, y +1, x +w - 1, y + 1);
g. DrawLi ne(whitePen, x + 1, y, x + 1, y + h);
//draw tab

Copyright © , 2002 by James W Cooper

g. DrawRect angl e(bl ackPen, x + 5, y - 5,

g. Fill Rectangl e(backBrush, x + 6, y - 4, 13, 6);

/lgray line on right and bottom
g. DrawLi ne(grayPen, x, y + h -

1, X + w,
g. DrawLi ne(grayPen, x +w - 1, y, X + w -

y +h - 1);
g.Drawstring(title, fnt, blackBrush, x,

y + h + 5);

259

- 1),

To use a Flyweight class like this, your main program must calculate the

position of each folder as part of its paint routine and then pass the

coordinates to the folder instance. Thisis actually rather common, since
you need a different layout, depending on the window’ s dimensions, and

you would not want to have to keep telling each instance where its new
location is going to be. Instead, we compute it dynamically during the

paint routine.

Here we note that we could have generated an ArrayList of folders at the

outset and simply scan through the array to draw each folder. Such an
array is not as wasteful as a series of different instances because it is
actually an array of references to one of only two folder instances.

However, since we want to display one folder as “selected,” and we would
like to be able to change which folder is selected dynamically, we just use

the FolderFactory itself to give us the correct instance each time.

There are two places in our display routine where we need to compute the
positions of folders. when we draw them, and when we check for a mouse
hovering over them. Thus, it is convenient to abstract out the positioning

code into a Positioner class:

public class Positioner {
private const int pLeft = 30;
private const int pTop = 30;
private const int HSpace = 70;
private const int VSpace = 80;
private const int rowhx = 2;

private int x, y, cnt;
[[-----

Copyright © , 2002 by James W Cooper

}

public

260

Posi tioner() {
reset();

void reset() {

X = plLeft;
y = pTop;
cnt = 0;

int nextX() {
return x;

void incr() {

cnt ++;

if (cnt >rowvax) { //reset to start new row
cnt = 0O;
X = plLeft;
y += VSpace;

el se {
X += HSpace;
}

int nextY() {
return vy,

Then we can write a much simpler paint routine:

private void picPaint(object sender, PaintEventArgs e) {
Graphics g = e. G aphi cs;
posn.reset ();

for(int

i = 0; i < nanes.Count; i++) {
fol = fol Fact. get Fol der (sel ect edNane. Equal s(
(string)nanmes[i]));
fol.draw(g, posn.nextX() , posn.nextY (),
(string)nanes[i]);
posn.incr();

Copyright © , 2002 by James W Cooper

261

The Class Diagram
The diagram in Figure 19-3 shows how these classes interact.

FolderFactory
Rectangle ‘
F
ect
%ele cted

Folder
1 %

Figure 19-3 — How Flyweights are gener ated

The FlyCanvas class is the main Ul class, where the folders are arranged
and drawn. It contains one instance of the FolderFactory and one instance
of the Folder class. The FolderFactory class contains two instances of
Folder: selected and unselected. One or the other of these is returned to the
FlyCanvas by the FolderFactory.

Selecting a Folder

Since we have two folder instances, selected and unselected, we'd like to
be able to select folders by moving the mouse over them. In the previous
paint routine, we simply remember the name of the folder that was
selected and ask the factory to return a “selected’ folder for it. Since the
folders are not individual instances, we can’t listen for mouse motion
within each folder instance. In fact, even if we did listen within a folder,
we' d need away to tell the other instances to deselect themselves.

Instead, we check for mouse motion at the Picturebox level, and if the
mouse is found to be within a Rectangle, we make that corresponding
name the selected name. We create a single instance of a Rectangle class

Copyright © , 2002 by James W Cooper

262

where the testing can be done as to whether afolder contains the mouse at
that instant. Note that we make this class part of the csPatterns namespace

to make sure it does not collide with the Rectangle classin the
System.Drawing namespace.

nanespace csPatterns {
public class Rectangle {
private int x1, x2, yl, y2;
private int w h;

public Rectangl e() { }
[l-----
public void init(int x, int y) {
X1l = X;
yl =vy;
X2 = X1 + w,
y2 =yl + h;
}
[l-----
public void setSize(int w_, int h_) {
W= W ;
h =h_;
}
[]-----

public bool contains(int xp, int yp) {
return (x1 <= xp) && (Xp <= x2) &&
(yl <= yp) && (yp <=y2);

}
}

This allows us to just check each name when we redraw and create a
selected folder instance where it is needed.

private void Pic_MuseMve(object sender, MuseEventArgs e) {
string ol dname = sel ectedNane; //save old nane
bool found = fal se;
posn.reset ();
int i =0;
sel ectedNane = "";
while (i < nanmes. Count && ! found) {
rect.init (posn.nextX() , posn.nextY ());
//see if a rectangle contains the nouse
if (rect.contains(e.X, e.Y)){

Copyright © , 2002 by James W Cooper

263

sel ectedName = (string)nanes[i];
found = true;

}

posn.incr ();

i ++;
}
/
i

/only refresh if nouse in new rectangle
f(

ol dnane. Equal s (sel ect edNane)) {
Pi c. Refresh();
}

Handling the M ouse and Paint Events

In C# we intercept the paint and mouse events by adding event handlers.
To do the painting of the folders, we add a paint event handler to the
picture box.

Pi c. Pai nt += new Pai nt Event Handl er (picPaint);

The picPaint handler we add draws the folders, as we showed above. We
added this code manually because we knew the signature of a paint
routine:

private void picPaint(object sender, PaintEventArgs e) {

While the mouse move event handler is very much analogous, we might
not remember its exact form. So, we use the Visua Studio IDE to generate
it for us. While displaying the form in design mode, we click on the
PictureBox and in the Properties window we click on the lightning bolt to
display the possible events for the PictureBox, as shown in Figure 19-4.

Copyright © , 2002 by James W Cooper

264

8 Flyweight demo =gl =]
T ; IPic System, wWindows , Forms, PictureBox L’
B | | =
ImeModeChanged ;l
Lawauk
LocationChanged
MaouseDown
MouseEnter
MauseHover
Mouseleave J
MouseMowve Pic_MouseMaove
Mousellp
Move
i i Paink
{3 ; ParentChanged ﬂ
NG LB o I]

Figure 19-4 — Selecting the M ouseM ove event from the Properties window.

Then we double click on MouseMove, and it generates the correct code
for the mouse move event and adds the event handler autometically. The
generated empty method is just:

private void Pic_MuseMve(object sender, MuseEventArgs e) {

}

and the code generated to add the event handler is inside the Windows
Form Designer generated section. It amounts to

Pi c. MouseMbve += new MouseEvent Handl er (Pi c_MousehMove) ;

Flyweight Usesin C#

Flyweights are not frequently used at the application level in C#. They are
more of a system resource management technique used at a lower level
than C#. However, there are a number of stateless objects that get created
in Internet programming that are somewhat analogous to Flyweights. It is
generally useful to recognize that this technique exists so you can use it if
you need it.

Some objects within the C# language could be implemented under the
covers as Flyweights. For example, if there are two instances of a String

Copyright © , 2002 by James W Cooper

265

constant with identical characters, they could refer to the same storage
location. Similarly, it might be that two integer or float constants that
contain the same value could be implemented as Flyweights, although
they probably are not.

Sharable Objects

The Smalltalk Companion points out that sharable objects are much like
Flyweights, although the purpose is somewhat different. When you have a
very large object containing a lot of complex data, such as tables or
bitmaps, you would want to minimize the number of instances of that
object. Instead, in such cases, you' d return one instance to every part of
the program that asked for it and avoid creating other instances.

A problem with such sharable objects occurs when one part of a program
wants to change some data in a shared object. Y ou then must decide
whether to change the object for all users, prevent any change, or create a
new instance with the changed data. If you change the object for every
instance, you may have to notify them that the object has changed.

Sharable objects are aso useful when you are referring to large data
systems outside of C#, such as databases. The DBase class we devel oped
previoudly in the Fagade pattern could be a candidate for a sharable object.
We might not want a number of separate connections to the database from
different program modules, preferring that only one be instantiated.
However, should several modules in different threads decide to make
gueries simultaneously, the Database class might have to queue the
gueries or spawn extra connections.

Copy-on-Write Objects
The Flyweight pattern uses just a few object instances to represent many
different objects in a program. All of them normally have the same base
properties as intrinsic data and a few properties that represent extrinsic
data that vary with each manifestation of the class instance. However, it
could occur that some of these instances eventually take on new intrinsic

Copyright © , 2002 by James W Cooper

266

properties (such as shape or folder tab position) and require a new specific

instance of the class to represent them.

Rather than creating these in

advance as specia subclasses, it is possible to copy the class instance and
change its intrinsic properties when the program flow indicates thet a new
separate instance is required. The class copies this itself when the change
becomes inevitable, changing those intrinsic properties in the new class.
We call this process “copy-on-write” and can build thisinto Flyweights as
well as anumber of other classes, such as the Proxy, which we discuss

next.

Thought Question

If Buttons can appear on several different tabs of a TabDialog, but each of
them controls the same one or two tasks, is this an appropriate use for a

Flyweight?
Programs on the CD-ROM

\ Fl ywei ght

C# folders

Copyright © , 2002 by James W Cooper

267

20. The Proxy Pattern

The Proxy pattern is used when you need to represent an object that is
complex or time consuming to create, by a simpler one. If creating an
object is expensive in time or computer resources, Proxy allows you to
postpone this creation until you need the actual object. A Proxy usually
has the same methods as the object it represents, and once the object is
loaded, it passes on the method calls from the Proxy to the actual object.

There are severa cases where a Proxy can be useful.
1. Anobject, such as alarge image, takes a long time to load.

2. Theresults of a computation take a long time to complete, and you
need to display intermediate results while the computation continues.

3. The object is on aremote machine, and loading it over the network
may be slow, especially during peak network load periods.

4. The object has limited access rights, and the proxy can validate the
access permissions for that user.

Proxies can aso be used to distinguish between requesting an instance of
an object and the actual need to access it. For example, program
initialization may set up a number of objects that may not al be used right
away. In that case, the proxy can load the real object only wheniitis
needed.

Let’s consider the case of alarge image that a program needs to load and
display. When the program starts, there must be some indication that an
image is to be displayed so that the screen lays out correctly, but the actual
image display can be postponed until the image is completely loaded. This
is particularly important in programs such as word processors and Web
browsers that lay out text around the images even before the images are
available.

Copyright © , 2002 by James W Cooper

268

An image proxy can note the image and begin loading it in the background
while drawing a simple rectangle or other symbol to represent the image’s
extent on the screen before it appears. The proxy can even delay loading
the image at al until it receives a paint request and only then begin the
process.

Sample Code

In this example, we create a ssimple program to display an image on a
Image control when it is loaded. Rather than loading the image directly,
we use a class we call ImageProxy to defer loading and draw arectangle
until loading is completed.

private void init() {
i ngProxy = new | mageProxy ();

public Formi() {
InitializeConponent();
init();

private void buttonl_C ick(object sender, EventArgs e) {
Pic.lmage = i ngProxy. getlmage ();
}

Note that we create the instance of the ImageProxy just as we would have
for an Image. The mageProxy class sets up the image loading and creates
an Imager object to follow the loading process. It returns a class that
implements the Imager interface.

public interface | mager {
I mge getlmge() ;
}

In this ssimple case, the ImageProxy class just delays five seconds and then
switches from the preliminary image to the final image. It does this using

Copyright © , 2002 by James W Cooper

269

an instance of the Timer class. Timers are handled using a TimerCallback
class that defines the method to be called when the timer ticks. Thisis
much the same as the way we add other event handlers. And this callback
method timerCall sets the done flag and turns off the timer.

public class | nmageProxy {
private bool done
private Tinmer tiner;
[]-----
public | mageProxy() {
//create a tinmer thread and start it
timer = new Tinmer (
new TinmerCal | back (tinerCall), this, 5000, 0);

//called when tinmer conpletes
private void timerCall (object obj) {
done = true;
tinmer. Di spose ();

}
[]-----
public I mage getlmage() {
| mager iny;
if (done)
img = new Finallmge ()
el se
img = new Qui ckl mage ();
return ing.getlmage ();
}

}

We implement the Imager interface in two tiny classes we called
Quicklmage and Finallmage. One gets a small gif image and the other a
larger (and presumably slower) jpeg image. In C#, Image is an abstract
class, and the Bitmap, Cursor, Icon, and Metafile classes are derived from
it. So the actua class we will return is derived from Image. The
Quicklmage class returns a Bitmap from a gif file, and the fina image a
JPEG file.

public class Quicklnmge : I mager {

public Quicklmage() {}
public | nage getlnage() {

Copyright © , 2002 by James W Cooper

270

return new Bitmap ("Box.gif");

}
N e
public class Finallmge :1mger {
public Finallmge() {}
public I mage getlmage() {
return new Bitmap("flowtree.jpg");
}

When you go to fetch an image, you initialy get the quick image, and
after five seconds, if you call the method again, you get the final image.
The program’ s two states are illustrated in Figure 20-1

. Image Proxy Display . Image P

Figure 20-1 — The proxy image display on the left is shown until the image loads as
shown on theright.

Proxiesin C#

Y ou see more proxy- like behavior in C# than in other languages, because
it is crafted for network and Internet use. For example, the ADO.Net
database connection classes are all effectively proxies.

Copyright © , 2002 by James W Cooper

271

Copy-on-Write

Y ou can also use proxies is to keep copies of large objects that may or
may not change. If you create a second instance of an expensive object, a
Proxy can decide there is no reason to make a copy yet. It smply uses the
origina object. Then, if the program makes a change in the new copy, the
Proxy can copy the original object and make the change in the new
instance. This can be a great time and space saver when objects do not
always change after they are instantiated.

Comparison with Related Patterns

Both the Adapter and the Proxy constitute a thin layer around an object.
However, the Adapter provides a different interface for an object, while
the Proxy provides the same interface for the object but interposes itself
where it can postpone processing or data transmission effort.

A Decorator aso has the same interface as the object it surrounds, but its
purpose is to add additional (sometimes visual) function to the original
object. A proxy, by contrast, controls access to the contained class.

Thought Question

Y ou have designed a server that connects to a database. If severa clients
connect to your server at once, how might Proxies be of help?

Programs on the CD-ROM

\ Proxy Image proxy

Copyright © , 2002 by James W Cooper

272

Summary of Structural Patterns

Part 3 covered the following structural patterns.

The Adapter pattern is used to change the interface of one class to that of
another one.

The Bridge pattern is designed to separate a class' s interface from its
implementation so you can vary or replace the implementation without
changing the client code.

The Composite pattern is a collection of objects, any one of which may be
either itself a Composite or just a leaf object.

The Decor ator pattern, a class that surrounds a given class, adds new
capabilities to it and passes all the unchanged methods to the underlying
class.

The Fagade pattern groups a complex set of objects and provides a new,
simpler interface to access those data.

The Flyweight pattern provides a way to limit the proliferation of small,
similar instances by moving some of the class data outside the class and
passing it in during various execution methods.

The Proxy pattern provides a simple placetolder object for a more
complex object that isin some way time consuming or expensive to
instantiate

Copyright © , 2002 by James W Cooper

273

Part 4. Behavioral Patterns

Behavioral patterns are most specifically concerned with communication
between objects. In Part 4, we examine the following.

The Chain of Responsibility allows a decoupling between objects by
passing a request from one object to the next in a chain until the request is
recognized.

The Command patter n utilizes simple objects to represent execution of
software commands and allows you to support logging and undoable
operations.

TheInterpreter pattern provides a definition of how to include language
elementsin a program.

Thelterator pattern formalizes the way we move through alist of data
within aclass.

The Mediator pattern defines how communication between objects can
be smplified by using a separate object to keep all objects from having to
know about each other.

The Memento pattern defines how you might save the contents of an
instance of aclass and restore it later.

The Observer pattern defines the way a number of objects can be
notified of achange,

The State pattern allows an object to modify its behavior when its
internal state changes.

The Strategy pattern encapsulates an agorithm inside a class.

The Template Method pattern provides an abstract definition of an
algorithm.

The Visitor pattern adds polymorphic functions to a class noninvasively.

Copyright © , 2002 by James W Cooper

274

21. Chain of Responsibility

The Chain of Responsibility pattern allows a number of classes to attempt
to handle a request without any of them knowing about the capabilities of
the other classes. It provides aloose coupling between these classes; the
only common link is the request that is passed between them. The request
is passed aong until one of the classes can handle it.

One example of such a chain pattern is a Help system like the one shown
inFigure 21-1. Thisis a smple application where different kinds of help
could be useful, where every screen region of an application invites you to
seek help but in which there are window background areas where more
generic help is the only suitable result.

_ioi x|
[Testfiles
File [" Binam files

Gt

Figure21-1 — A simple application where different kinds of help could be useful

When you select an area for help, that visual control forwardsits D or
name to the chain. Suppose you selected the “New” button. If the first
module can handle the New button, it displays the help message. If not, it
forwards the request to the next module. Eventually, the message is
forwarded to an “All buttons’ class that can display a general message
about how buttons work. If there is no general button help, the message is
forwarded to the genera help module that tells you how the system works

Copyright © , 2002 by James W Cooper

275

in general. If that doesn't exist, the message is lost, and no information is
displayed. Thisisillustrated in Figure 21-2

New button File button All buttons

General help

Figure21-2— A simple Chain of Responsibility

All controls

There are two significant points we can observe from this example: first,
the chain is organized from most specific to most general, and second,
there is no guarantee that the request will produce aresponsein all cases.
We will see shortly that you can use the Observer pattern to provide away
for a number of classesto be notified of a change,

Applicability
The Chain of Responsibility is a good example of a pattern that helps keep
knowledge separate of what each object in a program can do. In other
words, it reduces the coupling between objects so that they can act
independently. This also applies to the object that constitutes the main
program and contains instances of the other objects. Y ou will find this
pattern helpful in the following situations.

There are severa objects with similar methods that could be
appropriate for the action the program is requesting. However,
it is more appropriate for the objects to decide which oneisto
carry out the action than it is for you to build this decision into
the calling code.

Copyright © , 2002 by James W Cooper

276

One of the objects may be most suitable, but you don’t want to
build in a series of if-else or switch statements to select a
particular object.

There might be new objects that you want to add to the
possible list of processing options while the program is
executing.

There might be cases when more than one object will have to
act on arequest, and you don’t want to build knowledge of
these interactions into the calling program.

Sample Code

The help system we just described is a little involved for a first example.
Instead, let’s start with a ssmple visual command- interpreter program
(Figure 21-3) that illustrates how the chain works. This program displays
the results of typed-in commands. While this first case is constrained to
keep the example code tractable, we'll see that this Chain of
Responsibility pattern is commonly used for parsers and even compilers.

In this example, the commands can be any of the following.
Image filenames
Genera filenames
Color names
All other commands

In the first three cases, we can display a concrete result of the request, and
in the fourth case, we can only display the request text itself.

Copyright © , 2002 by James W Cooper

Send commands

Ihelp

277

=131]

Chain.exe
Chain.pdb

blotch
help

Figure 21-3— A simple visual command interpreter program that acts on one of four

panels, depending on the command you typein.

In the preceding example system, we do the following.

1. Wetypein “Mandrill” and see a display of the image Mandrill.jpg.

2. Thenwetypein “File” and that filename is displayed in the center list

box.

3. Next, wetypein “blue,” and that color is displayed in the lower center

panel.

Finaly, if we type in anything that is neither a filename nor a color, that
text is displayed in the find, right-hand list box. Thisis shown in Figure

22-4.

Image

Color >

name

File
name

Copyright © , 2002 by James W Cooper

General

278

Figure 21-4 — How the command chain worksfor the program in Figure 20-3

To write this simple chain of responsibility program, we start with an
abstract Chain class.

public abstract class Chain {
// describes how all chains work
private bool hasLink;
protected Chain chn
public Chain() {
hasLi nk = fal se;
}

/lyou nust inplenment this in derived cl asses
public abstract void sendToChai n(string nesg);
[]-----
public void addToChai n(Chain c) {

/' add new el enent to chain

chn = c;
hasLi nk = true; //flag existence
}
[]-----
public Chain getChain() {
return chn; //get the chain link
}
[]-----
public bool hasChain() ({
return hasLi nk; //true if linked to another
}
[]-----

protected void sendChai n(string nesg) {
// send nessage on down the chain
if(chn '= null)
chn. sendToChai n (nesg);

}

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically
and add additional classes in the middle of an existing chain. The
sendToChain method forwards a message to the next object in the chain.
And the protected sendChain method only sends the message down the
chain if the next link is not null.

Copyright © , 2002 by James W Cooper

279

Our main program assembles the Chain classes and sets a reference to a
control into each of them. We start with the ImageChain class, which takes
the message string and looks for a .jpg file of that name. If it finds one, it
displaysit in the Image control, and if not, it sends the command on to the
next element in the chain.

public class | mageChain : Chain {

Pi ct ur eBox pi cBox; //image goes here
[]-----
public | mageChai n(Pi ctureBox pc) {

pi cBox = pc; /| save reference
}
[]-----

public override void sendToChai n(string nesg) {

//put image in picture box
string fnane = nesg + ".jpg";
/lassunme jpg fil enane
csFile fI = new csFil e(fnane);
if(fl.exists())

pi cBox. | mage = new Bi t map(fnane);
el se{

if (hasChain()){ //send of f down chain

chn. sendToChai n(nmesg) ;
}

}

In asimilar fashion, the ColorChain class simply interprets the message as
acolor name and displaysit if it can. This example only interprets three
colors, but you could implement any number. Note how we interpret the
color names by using them as keys to a Hashtable of color objects whee
the string names are thekeys.

public class ColorChain : Chain {
private Hashtabl e col Hash; //color |ist kept here

private Panel panel; // col or goes here
[]-----
publ i c Col or Chai n(Panel pnl) {

panel = pnl; |/ save reference

//create Hash table to correlate col or nanes

Copyright © , 2002 by James W Cooper

280

//wth actual Col or objects

col Hash = new Hashtable ();

col Hash. Add ("red", Color.Red);

col Hash. Add ("green", Color.Geen);
col Hash. Add ("bl ue", Col or. Bl ue)

public override void sendToChai n(string nmesg) ({
nmesg = nesg. ToLower ()
try {
Col or ¢ = (Col or)col Hash[nesq] ;
/1if this is a color, put it in the pane
panel . BackCol or =c;

catch (Nul | Ref erenceException e) {
//send on if this doesn't work
sendChai n(nmesq) ;

}

ThelList Boxes

Both the file list and the list of unrecognized commands are ListBoxes. If
the message matches part of afilename, the filename is displayed in the
fileList box, and if not, the message is sent on to the NoComd chain
element.

public override void sendToChain(string nesg) {
/1if the string nmatches any part of a filenane
//put those filenames in the file list box
string[] files;
string fnane = mesg + "*.*";
files = Directory. GetFil es(
Directory. CGetCurrentDirectory(), fname);
/ladd themall to the |istbox
if (files.Length > 0){
for (int i =0; i<files.Length; i++) {
csFile vbf = new csFile(files[i]);
flist.ltemns. Add(vbf. get Root Nane());

el se {

Copyright © , 2002 by James W Cooper

281

if (hasChain()) {
chn. sendToChai n(mesg) ;
}

The NoCmd Chain classis very similar. It, however, has no class to which
to send data

public class NoCrd : Chain {

private ListBox |sNocnd; /I commands go here
[]-----
public NoCnd(ListBox IDb) {

I sNocnd = | b; /I copy reference
}
[]-----

public override void sendToChai n(string nmesg) {
// adds unknown commrands to |ist box
I sNocnd. | t ens. Add (nesg);

}

Finally, we link these classes together in the Form_Load routine to create
the Chain.

private void init() {
/' set up chains
Col or Chai n cl rChain = new Col or Chai n(pnl Col or);
Fil eChain fl Chain = new Fil eChai n(l sFil es);
NoCnd noChain = new NoCrd(| sNocnd) ;
//create chain |inks
chn = new | mageChai n(pi cl mage) ;
chn. addToChai n(cl r Chai n);
cl r Chai n. addToChai n(fl Chai n);
f I Chai n. addToChai n(nhoChai n) ;

Finally, we kick off the chain by clicking on the Send button, which takes
the current message in the text box and sends it along the chain.

private void btSend_Cick(object sender, EventArgs e) {
chn. sendToChai n (txComand. Text);

Copyright © , 2002 by James W Cooper

282

}
Y ou can see the relationship between these classes in the UML diagram in

Figure 21-5.
Chain
addChain
sendT oChain
getChain
setControl
hasChain
N TN
irhiy o
F o
Fht
- N y
| Img Chain| picChain File Chain ColorChain NoCmd

btZend Click
1 Form Load

Figure 21-5—- The class strcuture of the Chain of Responsibility program

The Sender classisthe initial class that implements the Chain interface. It
receives the button clicks and obtains the text from the text field. It passes
the command on to the Imager class, the FileList class, the Colorimage
class, and finally to the NoCmd class.

Programming a Help System

Aswe noted at the beginning of this discussion, help systems provide
good examples of how the Chain of Responsibility pattern can be used.
Now that we' ve outlined a way to write such chains, we'll consider a help

Copyright © , 2002 by James W Cooper

283

system for awindow with several controls. The program (Figure 21-6)
pops up a help dialog message when the user presses the F1 (help) key.
The message depends on which control is selected when the F1 key is
pressed.

[Eotet chain ~1of x|
| New N <
e [Tew
Select a file
File [Bina

Gt

I
Figure21-6 — A simple help demonstration

In the preceding example, the user has selected the Quit key, which does
not have a specific help message associated with it. Instead, the chain
forwards the help request to a general button help object that displays the
message shown on the right.

To write this help chain system, we begin with an abstract Chain class that
has handles Controls instead of messages. Note that no message is passed
into the sendToChain method, and that the current control is stored in the
class.

public abstract class Chain
// describes how all chains work
private bool hasLink;
protected Control control;
protected Chain chn;
protected string nmessage;

public Chain(Control c, string nesg) {
hasLi nk = fal se;
control = c; //save the control

Copyright © , 2002 by James W Cooper

284

message = nesg

public abstract void sendToChain();

public void addToChai n(Chain c) {
//add new el ement to chain
chn = c;
hasLi nk = true; /1flag existence

public Chain getChain() {
return chn; //get the chain link

}

[]-----

public bool hasChain() {
return hasLi nk; //true if linked to nother
}

[]-----

protected void sendChain() {
// send nessage on down the chain
if(chn '= null)
chn. sendToChain ();
}
}

Then you might create specific classes for each of the help message
categories you want to produce. As we illustrated earlier, we want help
messages for the following.

The New button

The File button

A general button

A generd visual control (covering the check boxes)

In C#, one control will always have the focus, and thus we don't really
need a case for the Window itself. However, we'll include one for
completeness. However, there is little to be gained by creating separate
classes for each message and assigning different controls to them. Instead,
we'll create a general ControlChain class and pass in the control and the

Copyright © , 2002 by James W Cooper

285

message. Then, within the class it checks to see if that control has the
focus, and if it does, it issues the associated help message:

public class Control Chain:Chain {

public Control Chain(Control c, string nesg):base(c, nmesg)
{}
public override void sendToChain() {

/1if it has the focus display the nessage

if (control.Focused) {

MessageBox. Show (nessage) ;
}

el se
/ /ot herwi se pass on down the chain
sendChai n();

Finally, we need one special case: the end of chain which will display a
message regardless of whether the control has the focus. Thisis the
EndChain class, and it is for completeness. Since one of the controls will
presumably always have the focus, it is unlikely ever to be caled:

public class EndChai n: Chain {
public EndChai n(Control c, string nmesg):base(c, nesg){}
//default message display class
public override void sendToChain() ({
MessageBox. Show (nessage) ;
}

}

We construct the chain in the form initializer as follows:

chn = new Control Chai n(bt New, "Create new files");

Chain fl =new Control Chain (btFile, "Select a file");

chn. addToChain (fl);

Chain bg = new Control Chain (btQuit, "Exit from program);
fl.addToChain (bq);

Chain cb =new Control Chain (ckBinary, "Use binary files");
bg. addToChai n (cb);

Chain ct = new Control Chain (ckText, "Use text files");
ch. addToChain (ct);

Chain ce = new EndChain (this, "General nessage");
ct.addToChain (ce);

Copyright © , 2002 by James W Cooper

286

Receiving the Help Command

Now we need to assign keyboard listeners to look for the F1 keypress. At
first, you might think we need five such listeners—for the three buttons
and the two check boxes. However, we can simply make asingle
KeyDown event listener and assign it to each of the controls:
KeyEvent Handl er keyev = new KeyEvent Handl er (For nil_KeyDown) ;

bt New. KeyDown += keyev;

bt Fi | e. KeyDown += keyev;

bt Qui t. KeyDown += keyev;

ckBi nary. KeyDown += keyev;

ckText . KeyDown += keyev;

Then, of course the key-down event launches the chain if the F1 key is
pressed:

private void Forml_KeyDown(obj ect sender, KeyEventArgs e) {
i f(e.KeyCode == Keys.F1)
chn. sendToChain ();
}

We show the complete class diagram for this help system in Figure 21-7.

Copyright © , 2002 by James W Cooper

287

Chain

i

* | addChain
sendT oChain
getChain
hasChain

Ltha LT A Ay

Izhry

fik Y

Il
s

5
chi

ButtonChain FileChain i ﬂ 3 *
TNewChain ControlChain

bt ew_ KeyDiow
callChain

ckBin KevDown
Form Load

Forml

Figure 21-7 — The class diagram for the Help system

A Chainor aTree?

Of course, a Chain of Responsibility does not have to be linear. The
Smalltalk Companion suggests that it is more generally atree structure

with a number of specific entry points all pointing upward to the most
general node, as shown in Figure 21-8..

Copyright © , 2002 by James W Cooper

288

General
help

T

Window
help

List box
help

Button help Menu help

Sl

OK Quit File New Files Colors

Figure 21-8— The chain of responsibility implemented asatreestructure

However, this sort of structure seens to imply that each button, or its
handler, knows where to enter the chain. This can complicate the design in
some cases and may preclude the need for the chain at all.

Another way of handling a tree-like structure isto have a single entry
point that branches to the specific button, menu, or other widget types and
then “unbranches,” as previoudly, to more genera help cases. Thereis
little reason for that complexity—you could align the classes into a single
chain, starting at the bottom, and going left to right and up arow at atime
until the entire system had been traversed, as shown in Figure 21-9.

Copyright © , 2002 by James W Cooper

289

General
help

:

Window
help

+

|
Button help———® Menu help ———» List box

help
#

OK [Quit }P File [New | Files —¥® Colors

Figure 21-9 — The same chain of responsibility implemented asalinear chain

Kinds of Requests

The request or message passed aong the Chain of Responsibility may well
be a great deal more complicated than just the string or Control that we
conveniently used on these examples. The information could include
various data types or a complete object with a number of methods. Since
various classes along the chain may use different properties of such a
request object, you might end up designing an abstract Request type and
any number of derived classes with additional methods.

Examplesin C#

Under the covers, C# form windows receive various events, such as
MouseMove, and then forward them to the controls the form contains.
However, only the final control ever receives the message in C# whereas
in some other languages, each containing control doesaswell. Thisisa

Copyright © , 2002 by James W Cooper

290

clear implementation of Chain of Responsibility pattern. We could also
argue that, in general, the C# class inheritance structure itself exemplifies
this pattern. If you call for a method to be executed in a deeply derived
class, that method is passed up the inheritance chain until the first parent
class containing that method is found. The fact that further parents contain
other implementations of that method does not come into play.

We will also see that the Chain of Responsibility isideal for implementing
Interpreters and use one in the Interpreter pattern we discuss later.

Consequences of the Chain of Responsibility

1. The main purpose for this pattern, like a number of others, is to reduce
coupling between objects. An object only needs to know how to
forward the request to other objects.

2. Each C# object in the chain is self-contained. It knows nothing of the
others and only need decide whether it can satisfy the request. This
makes both writing each one and constructing the chain very easy.

3. You can decide whether the fina object in the chain handles all
requests it receives in some default fashion or just discards them.
However, you do have to know which object will be last in the chain
for thisto be effective.

4. Finaly, since C# cannot provide multiple inheritance, the basic Chain
class sometimes needs to be an interface rather than an abstract class
so the individual objects can inherit from another useful hierarchy, as
we did here by deriving them al from Cortrol. This disadvantage of
this approach is that you often have to implement the linking, sending,
and forwarding code in each module separately or, as we did here, by
subclassing a concrete class that implements the Chain interface.

Thought Question

Suggest how you might use a Chain of Responsibility to implement an e-
malil filter.

Copyright © , 2002 by James W Cooper

201

Programs on the CD-ROM

\ Chai n\ Hel pChai n program showing how a help
system can be implemented

\ Chai n\ Chai n chain of file and image displays

Copyright © , 2002 by James W Cooper

292

22. The Command Pattern

The Chain of Responsibility forwards requests along a chain of classes,
but the Command pattern forwards a request only to a specific object. It
encloses a request for a specific action inside an object and givesit a
known public interface. It lets you give the client the ability to make
requests without knowing anything about the actual action that will be
performed and allows you to change that action without affecting the
client program in any way.

M otivation

When you build a C# user interface, you provide menu items, buttons,
check boxes, and so forth to allow the user to tell the program what to do.
When a user selects one of these controls, the program receives a clicked
event, which it receives into a specia routine in the user interface. Let's
suppose we build a very simple program that allows you to select the
menu items File | Open, and File | Exit, and click on a button marked Red
that turns the background of the window red. This program is shown in
Figure 22-1.

=

Figure22-1 — A simple program that receives events from the button and menu
items

Copyright © , 2002 by James W Cooper

293

The program consists of the File Menu object with the mnuOpen, and
mnuExit Menultems added to it. It also contains one button called btnRed.
During the design phase, clicking on any of these items creates alittle
method in the Form class that gets called when the control is clicked.

Aslong as there are only afew menu items and buttons, this approach
works fine, but when you have dozens of menu items and several buttons,
the Form module code can get pretty unwieldy. In addition, we might
eventually like the red command to be carried out both from the button
and a menu item.

Command Objects

One way to ensure that every object receives its own commands directly is
to use the Command pattern and create individua Command objects. A
Command object always has an Execute() method that is called when an
action occurs on that object. Most simply, a Command object implements
at least the following interface.

public interface Conmand {
voi d Execute();
}

One objective of using this interface is to separate the user interface code
from the actions the program must carry out, as shown here.
private void commandd i ck(object sender, EventArgs e) {

Conmmand cond = (Command) sender ;

cond. Execute ();
}

This event can be connected to every single user interface element that can
be clicked, and each will contain its own implementation of the Execute
method, by simply deriving a new clas from Button and Menuitem that
supports this Command interface.

Then we can provide an Execute method for each object that carries out
the desired action, thus keeping the knowledge of what to do inside the

Copyright © , 2002 by James W Cooper

294

object where it belongs, instead of having another part of the program
make these decisions.

One important purpose of the Command pattern is to keep the program
and user interface objects completely separate from the actions that they
initiate. In other words, these program objects should be completedy
separate from each other and should not have to know how other objects
work. The user interface receives a command and tells a Command object
to carry out whatever duties it has been instructed to do. The Ul does not
and should not need to know what tasks will be executed. This decouples
the Ul class from the execution of specific commands, making it possible
to modify or completely change the action code without changing the
classes containing the user interface.

The Command object can also be used when you need to tell the program
to execute the command when the resources are available rather than
immediately. In such cases, you are queuing commands to be executed
later. Finally, you can use Command objects to remember operations so
you can support Undo requests.

Building Command Objects

There are several ways to go about building Command objects for a
program like this, and each has some advantages. We'll start with the
simplest one: creating new classes and implementing the Command
interface in each In the case of the button that turns the background red,
we derive a RedButton class from Button and include an Execute method,
satisfying the Command interface.
public class RedButton : System W ndows. Forns. Button, Conmand {

/1A Command button that turns the background red

private System Conponent Model . Cont ai ner conponents = nul |;

[]-----

public void Execute() {

Control ¢ = this.Parent;

c. BackCol or =Col or. Red ;
t hi s. BackCol or =Col or. Li ght Gray

Copyright © , 2002 by James W Cooper

295

public RedButton() {
InitializeConponent();
}

In this implementation, we can deduce the background window by asking
the button for its parent, and setting that background to red. We could just
as easily have passed the Form in as an argument to the constructor.

Remember, to create a class derived from Button that you can use in the
IDE environment, you create a user control, and change its inheritance
from UserControl to Button and compile it. This adds an icon to the
toolbox that you can drag onto the Form1 window.

To create aMenultem that also implements the Command interface, you
could use the MainMenu control on the toolbar and name it MenuBar. The
designer is shown in Figure 22-2.

=10 %]

Figure 22-2— The menu designer interface

However, it isjust as easy to create the MainMenu in code as we see
below.

We derive the OpenMenu and ExitMenu classes from the Menultem class.

However, we have to add these in the program code, since there is no way
to add them in the Form Designer.
private void init() {

//create a main nenu and install it
Mai nMenu mai n = new Mai nMenu() ;

Copyright © , 2002 by James W Cooper

this. Menu =nmi n;

//create a click-event handl er
Event Handl er evh = new Event Handl er (commandd i ck);
bt Red. d i ck += evh; //add to existing red button

/lcreate a "File" top |level entry
Menultem file = new Menultem("File");

/lcreate File Qpen conmand

FileOpen mflo = new FileCpen ();

mfl o.dick += evh; // add same handl er
mai n. Menultens. Add (file);

/lcreate a File-Exit conmmand
FileExit fex = new FileExit(this);
file.Menultens. AddRange(new Menultenf]{ mflo, fex});

fex.dick += evh; // add sane handl er
}
Here is an example of the FileExit class.
public class FileExit :Menultem Comrand {
private Form form
R
public FileExit(Form frn) :base ("Exit") {
form=frm
}
I
public void Execute() {
formddose ();
}
}

Then the FilelExit command will call it when you call that items Execute
method. This certainly lets us smplify the user interface code, but it does
require that we create and instantiate a new class for each action we want
to execute.

Classes that require specific parameters to work need to have those
parameters passed in the constructor or in a set method. For example, the
File] Exit command requires that you pass it an instance of the Form object
S0 it can closeit.

//create a File-Exit conmand

Copyright © , 2002 by James W Cooper

297

FileExit fex = new FileExit(this);

Conseguences of the Command Pattern

The main disadvantage of the Command pattern seemsto be a
proliferation of little classes that clutter up the program. However, evenin
the case where we have separate click events, we usualy call little private
methods to carry out the actual function. It turns out that these private
methods are just about as long as our little classes, so there is frequently
little difference in complexity between building the command classes and
just writing more methods. The main difference is that the Command
pattern produces little classes that are much more readable.

The CommandHolder Interface

Now, while it is advantageous to encapsul ate the action in a Command
object, binding that object into the element that causes the action (such as
the menu item or button) is not exactly what the Command pattern is
about. Instead, the Command object really ought to be separate from the
invoking client so you can vary the invoking program and the details of
the command action separately. Rather than having the command be part
of the menu or button, we can make the menu and button classes
containers for a Command object that exists separately. We thus make
these Ul elements implement a CommandHolder interface.

public interface ComuandHol der {

Comand get Command() ;
voi d set Conmand(Conmand cnd) ;

}

This simple interface says that there is a way to put a command object into
aclass and away to retrieve it to execute it. Thisis particularly important
where we have several ways of calling the same action, such as when we
have both a Red button and a Red menu item. In such a case, you would
certainly not want the same code to be executed inside both the Menultem

Copyright © , 2002 by James W Cooper

298

and the Button classes. Instead, you should fetch references to the same
command object from both classes and execute that command.

Then we create CommandMenu class, which implements this interface.

public class ComrandMenu : Menultem ConmmandHol der {
private Comrand comrand;
publ i c CommandMenu(string nane):base(nane) {}
/]-----
public void set Conmand (Command cond) {
command = cond;

public Command get Commrand () {
return command;
}

This actually ssimplifies our program. We don’'t have to create a separate
menu class for each action we want to carry out. We just create instances
of the menu and pass them different labels and Command objects.

For example, our RedCommand object takes a Form in the constructor and
sets its background to red in the Execute method:

public class RedCommand : Conmand {
private Control w ndow,

publ i c RedComrand(Control wi n) {
wi ndow = win;

voi d Conmand. Execute () {
wi ndow. BackCol or =Col or. Red ;
}

}
We can sat an instance of this command into both the RedButton and the
red menu item objects, as we show below.
private void init() {
//create a nmain nenu and install it

Mai nMenu mai n = new Mai nMenu() ;
this. Menu =nmi n;

Copyright © , 2002 by James W Cooper

//create a click-event handl er
/I note: btRed was added in the |DE
Event Handl er evh = new Event Handl er (commandd i ck);

bt Red. d i ck += evh; //add to existing red button

RedCommand cRed = new RedCommand (this);

bt Red. set Command (cRed);

/lcreate a "File" top level entry

Menultem file = new CommandMenu("File");

mai n. Menultens. Add (file);

/lcreate File Open command

CommandMenu mmuFl o = new ConmandMenu(" Cpen");

muFIl o. set Command (new OGpenCommand ());

muFl o. d i ck += evh; / add sane handl er

//create a Red nenu item too

CommandMenu muRed = new ConmandMenu(" Red");

muRed. set Command(cRed) ;

muRed. d i ck += evh; // add same handl er

/lcreate a File-Exit command
CommandMenu mmuFex = new ConmandMenu("Exit");
muFex. set Command (new Exi t Conmand(this));
file.Menultens. AddRange(

new ConmandMenu[]{ muFl o, muRed, mmuFex});
muFex. d i ck += evh; // add sanme handl er

In the CommandHolder approach, we till have to create separate

Command objects, but they are no longer part of the user interface classes.

For example, the OpenCommand class is just this.

public class OpenConmmand : Comrand {
public OpenComrand()
{}

public void Execute() {
OpenFil eDial og fd = new OpenFileDialog ();
fd. ShowDi al og ();

Copyright © , 2002 by James W Cooper

300

Then our click event handler method needs to obtain the actual command
object from the Ul object that caused the action and execute that
command.

private void conmandC ick(object sender, EventArgs e) {

Conmand cond = ((CommrandHol der) sender) . get Command () ;
cond. Execute ();

}

Thisis only dightly nore complicated than our original routine and again
keeps the action separate from the user interface elements. We can see this
program in action in Figure 22-3:

% command Holder demo -10] =i

| File

Qpen

e

Figure22-3 — Menu part of Command pattern using CommandHolder interface.

We can see the relations between theses classes and interfaces clearly in
the UML diagram in Figure 22-4.

Copyright © , 2002 by James W Cooper

