URerily Network: Creating Custom.Nel Controls wth Gk
O’REI

= 7
—Y

: macromedia
Download the free developer version now. 4

NYOML3

“Published on The O'Reilly Network (http://www.oreillynet.com/)
“http://www.oreillynet.com/pub/a/dotnet/2002/03/18/customcontrols.html
See this if you're having trouble printing code examples

Creating Custom .NET Controls with C#

by Budi Kurniawan
03/18/2002

Windows programmers have awide variety of controlsto choose from in the Syst em W ndows. For ns
namespace in .NET's Framework class library. Y ou have controls as simple as Label , Text Box, and CheckBox,
aswell as controls as sophisticated as the Mont hCal endar and Col or Di al og controls. These Windows controls
are more than enough for most applications; however, sometimes you need controls that are not available from
the standard library. In these circumstances, you have to roll up your sleeves and write your own. This article
shows you how to develop a custom control with C# and presents a simple custom control.

Before you start writing the first line of code for your custom control, you should familiarize yourself with two
classesin the Syst em W ndows. For ns namespace: Cont rol and User Control . The Cont r ol classisimportant
because it is the parent class of Windows visual components. Y our custom class will be a descendent of the
Control classaswell. Your custom controls, however, don't normally inherit directly from the Cont r ol class.
Instead, you extend the User Cont r ol class. The first two sections of this article discuss these two classes. In
the final section, you'll build your own custom control, the RoundBut t on control.

The Control Class

The Control class provides very basic functionality required by classes that display information to the
Windows application user. This class handles user input through the keyboard and the mouse, as well as
message routing and security. More importantly, the Cont r ol class defines the bounds of a control (its position
and size), although it does not implement painting.

Windows forms controls use ambient properties, so child controls can appear like their surrounding
environment. In this context, "ambient”" means that the property is, by default, retrieved from the parent control.
If the control does not have a parent and the property is not set, the control tries to determine the value of the
ambient property through the Si t e property. If the control is not sited, if the site does not support ambient
properties, or if the property is not set on the Anbi ent Properti es object, the control uses its own default
values. Typically, an ambient property represents a characteristic of a control, such as BackCol or , that is
communicated to a child control. For example, by default a button will have the same BackCol or asits parent
form.

A number of the Cont r ol class's properties, methods, and events are carried through by its child classes without
any change.

The Control Class's Properties
The following are some of the Cont r ol class's most important properties:
BackColor

The background color of the control, represented by a Syst em Dr awi ng. Col or object. You can

programmatically assign a Syst em Dr awi ng. Col or object to this property using code like this:
control . BackCol or = System Draw ng. Col or. Red

Enabled

URerily Network: Creating Custom.Nel Controls wth Gk
A Boolean that indicates whether or not the control is enabled. The default valueis Tr ue.

L ocation
The position of the top-left corner of the control in its container, represented by a
Syst em Dr awi ng. Poi nt object.

Name
The name of the control.

Parent
Returns a reference to the container or parent of the control. For example, the parent of a control that is
added to aform isthe form itself; if we add But t on1 to aform, we can change the title of that form to
"Thank you": But t onl. Parent. Text = "Thank you"

Size
The size of the control, as represented by a Syst em Dr awi ng. Si ze object.

Text
The string that is associated with the control. For example, in alabel control, the text property isthe
string that appears on the label body.

The Methods of the Control Class
Some of the frequently used methods of the Cont r ol class are:

BringT oFront
Shows the entire control, in cases where some other control is overlaying it.

CreateGraphics
Obtainsthe Syst em Dr awi ng. G aphi cs object of the control, on which you can draw using the various
methods of the Syst em Drawi ng. Gr aphi cs class. For instance, the following code obtains the Gr aphi cs
object of abutton control called But t on1, and then draws a diagonal green line across the button's body:

| mports System Draw ng

Di m graphi cs As Graphics = Buttonl. CreateG aphics
Di m pen As Pen = New Pen(Col or. Green)
gr aphi cs. DrawLi ne(pen, 0, 0, _

Buttonl. Si ze. Wdth, Buttonl. Size. Hei ght)

Drawing on a control this way, however, does not result in "permanent” drawings. When the control is
repainted, asit is when the form containing the control is resized, the graphics will disappear. The section
"The RoundButton Control" below explains how to make the user interface redraw every time the control
IS repainted.

Focus
Givesthe focus to the control, making it the active control.

Hide
Set the control's Vi si bl e property to Fal se, so that it is not shown.

GetNextControl
Returns the next control in the tab order.

OnEvent
Raises the Event event; possible eventsinclude C i ck, Cont r ol Added, Cont r ol Renpved, Doubl eCl i ck,

URerily Network: Creating Custom.Nel Controls wth Gk 30

Dr agDr op, DragEnt er , DragLeave, DragOver , Ent er , Got Focus, KeyDown, KeyPr ess, KeyUp,

Lost Focus, MouseDown, MbuseEnt er , MouseHover , MouselLeave, MouseMove, MouseUp, Move, Pai nt |
Resi ze, and Text Changed. For example, calling the onCl i ck method of the control will trigger itsd i ck
event.

Show
Sets the control's Vi si bl e property to Tr ue, so that the control is shown.

The User Cont r ol Class

The User Cont rol class provides an empty control that can be used to create other controls. It is an indirect
child of the Cont rol class. The object hierarchy of this control is as follows.

Syst em Obj ect
Syst em Mar shal ByRef Obj ect
Syst em Conponent Model . Conponent
Syst em W ndows. For ns. Cont r ol
Syst em W ndows. For ns. Scr ol | abl eCont r ol
Syst em W ndows. For ns. Cont ai ner Cont r ol
Syst em W ndows. For ns. User Cont r ol

The User Cont rol classinherits all of the standard positioning and mnemonic-handling code from the
Cont ai ner Cont r ol class. This codeisneeded in auser control.

The RoundButton Control

With Cont rol and User Cont r ol , it isvery easy to develop a custom Windows control. Y our custom control
classinheritsthe User Cont r ol class and, because the User Cont r ol classis also a descendent of the Cont r ol
class, your custom control will also inherit all of the useful methods, properties, and events from the Cont r ol
class. Event handling, for example, is automatically inherited in your custom control, thanks to the Cont r ol
class.

How you draw the user interface is particularly important. Whatever shape your custom control has, be aware
that the control is repainted occasionally. Therefore, the user interface must be redrawn whenever your custom
control isrepainted. Considering that the Cont r ol class's OnPai nt method is called every time the control is
repainted, you can ensure that your custom control has a permanent look by overriding this method with a new
OnPai nt method that draws your custom control's user interface.

The code in Example 1 presents a custom control called RoundBut t on, which is abutton that is, um, round.
Figure 1 shows the RoundBut t on custom control on aform. The code for the form is given in Example 2.
Basically, al you need to do is override the OnPai nt method. The system passes a Pai nt Event Ar gs object to
this method, from which you can obtain the control's Syst em Dr awi ng. Gr aphi cs object. Y ou can then useits
methods to draw the user interface.

Listing 1: The RoundButton Control

usi ng System W ndows. For ns;
usi ng System Draw ng;

nanespace MyNanmespace {
public class RoundButton : UserControl {

public Col or backgroundCol or = Col or. Bl ue;
protected override void OnPaint (Pai nt Event Args e) {

URerily Network: Creating Custom.Nel Controls wth Gk

G aphi cs graphics = e. Graphics;

int penWdth = 4;
Pen pen = new Pen(Col or. Bl ack, 4);

int fontHeight = 10;
Font font = new Font("Arial", fontHeight);

Sol i dBrush brush = new Sol i dBrush(backgroundCol or);
graphics.Fill Ellipse(brush, 0, 0, Wdth, Height);
Sol i dBrush textBrush = new Sol i dBrush(Col or. Bl ack);

graphi cs. DrawEl | i pse(pen, (int) penWdth/2,
(int) penWdth/2, Wdth - penWdth, Height - penWdth);

graphics. Drawstri ng(Text, font, textBrush, penWdth,
Height / 2 - fontHeight);

4/0

The codein Listing 1isabit of asurprise, isn't it? It'stoo simple to be true. Y our class has only one method:

OnPai nt . In anutshell, this method passes a Pai nt Event Ar gs object, from which a

System Dr awi ng. Gr aphi c¢s object can be obtained. This G- aphi cs object represents the draw area of your

custom control. Draw whatever you want on this G- aphi cs object, and it will be displayed as the user interface

of your custom control.

In Windows programming, you need a pen to draw a shape, and sometimes a brush. To write text, you will also
need afont. The following code in the OnPai nt method creates a Syst em Dr awi ng. Pen object with atip width

of 4.

int penWdth = 4;
Pen pen = new Pen(Col or. Bl ack, 4);

It then creates a Aria Font object with aheight of 10.

int fontHeight = 10;
Font font = new Font("Arial", fontHeight);

The RoundButton control is shown in Figure 1.

=T

x|

Thank, wou.

Figure 1: The RoundBut t on control embedded in a form.

The last hit of preparation isto instantiate a Sol i dBr ush object having the same color as the value of the

URerily Network: Creating Custom.Nel Controls wth Gk J b

backgr oundCol or field.

Sol i dBrush brush = new Sol i dBrush(backgroundCol or);

Now you can start drawing. For the base, you use the G aphi cs class Fi | | El | i pse method. The width and
height of the circle are the same as the width and height of the control.

graphics.FillEllipse(brush, 0, 0, Wdth, Height);

Then, you instantiate another brush that you will use to draw text.

Sol i dBrush textBrush = new Sol i dBrush(Col or. Bl ack) ;

For the circle, you use the Dr awEl | i pse method of the G aphi c¢s class.

graphi cs. DrawEl | i pse(pen, (int) penWdth/2,
(int) penWdth/2, Wdth - penWdth, Height - penWdth);

Finally, you draw the text on the Gr aphi cs object using the Dr awst ri ng method.

graphi cs. DrawStri ng(Text, font, textBrush, penWdth,
Height / 2 - fontHeight);

Compile your control into a.dll file and it's ready for use. The code in Example 2 presents a Windows form
called MyFor mthat uses the RoundBut t on control.

Example 2: Using the RoundBut t on control

usi ng System W ndows. For ns;
usi ng System Draw ng;

usi ng System

usi ng MyNamespace;

public class MyForm: Form {

public MyForm() {

RoundButt on roundButton = new RoundButton();

Event Handl er handl er = new Event Handl er (roundButton_dl i ck);
roundButton. dick += handl er;

roundButton. Text = "Cick Here!";

roundBut t on. backgr oundCol or = System Draw ng. Col or. Wi te;
roundButton. Si ze = new System Drawi ng. Si ze(80, 80);
roundButt on. Locati on = new System Draw ng. Poi nt (100, 30);
this. Controls. Add(roundButton);

}

public void roundButton_Click(Cbject source, EventArgs e) {
MessageBox. Show(" Thank you.");

}

public static void Main() {
MyForm form = new MyForm();
Appl i cation. Run(form;

}

}

URerily Network: Creating Custom.Nel Controls wth Gk

The constructor instantiates a RoundBut t on object, creates an Event Handl er object, and assigns the handler to
the C i ck event of the RoundBut t on control.

RoundButt on roundButton = new RoundButton();
Event Handl er handl er = new Event Handl er (roundButton_Cl i ck);
roundButton. dick += handler;

Note that we did not define any event in the RoundBut t on class. Event-handling capability is inherited from the
Control class.

The next thing to do is to set some of the properties of the RoundBut t on control.

roundButton. Text = "Click Here!";

roundBut t on. backgr oundCol or = System Draw ng. Col or. Wi te;
roundButton. Si ze = new System Draw ng. Si ze(80, 80);
roundButt on. Locati on = new System Draw ng. Poi nt (100, 30);

And finally, add the control to the Cont r ol s collection of the form.

this. Control s. Add(roundButton);

The C i ck event, when invoked by the user clicking the control, callsther oundBut t on_d i ck event handler,
which simply displays a message box:

public void roundButton_Cick(Object source, EventArgs e) {
MessageBox. Show " Thank you.");

}
Conclusion

In this article, you have been introduced to the two important classesin the Syst em W ndows. For ns
namespace that you should understand when building a custom control: Cont r ol and User Cont r ol . You have
also learned to build your own custom control by directly extending the User Cont r ol class and how to use
your custom control in a Windows form.

Budi Kurniawan isan IT consultant specializing in Internet and object-oriented programming, and has taught
both Microsoft and Java technologies.

Return to the .NET DevCenter.

oreillynet.com Copyright ¢ 2000 O'Reilly & Associates, Inc.

