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Foreword 2004:
the Annals edition

The publication of this new edition of Algorithmic Graph Theory and
FPrrjoed Graphs marks vaenly three years since its firsr appesrance. by orieinal
motivation tor writing the book was to collect and uniby the topic to sel az 4
gprng board for researchers, and especially praduate students, to pursue new
dieections of investigation. The ensuing years have heen an amazingly fruitful
perod of research m this area. To my preat satisfaction, the number af relevant
journal arlicles i the lieratore has grown cenfold. [ can hardly express vy
admiration to all these suthors {or creating 2 success slory [or algorithmic graph
theory tar beyond my own imamnaton,

The world of perfect graphs hasz grown to include over 2{H) special graph
classes. The Venn dingrams that T usad to show some af the inclosions betwaen
clazses i the Fimt Gencraton, for cxample Figure 99 (on page 212}, have
viclded to Hasse diagrams for the Sceond Oencration, like the one [fom
Golumbic and Trerk [2004 ] reprinted in Figure 13.3 at the ood of this wlition,

Purnaps the most impertunl new develupment in the theocy of petleet graphs
it the mecent provf of the Strong Perleol Gmph Conjueture by Chudnovsky,
Fobertson, Sevnour and Thomas, ammownced in May 2002, News of this was im-
mediately passad on o Claude Barge, w20 sadly passed away on June 30, 2002,

On the algevithmic stde, many of the problems which were open in 1980
hiare aubsequently been settled, and algorithms on new classes ol perfect grophs
have been studied, For cxample, tolernee graphs generalize both interval graphs
and pormutation graphs, and celoning wolerance praphs in polynemial time is
impoertant in solving scheduling problems where @ measure of flexibility or
tolerance 1s allowed [or sharmg of relinguishing eesources when total eaclusivily
prevents 4 solution,

At the end of this new adition, [ have added a short chaprer cafled

4[]



xiv Foreword

Epdlogiee 2004 in which T survey a few of my favorite results and research

directions from the Second Generation. Its intension 25 to whet the appetite.
Six books have appeaced recently which cover advanced research Dn this arsa

They have thankfully relisved me fom a pressing need tooweite my ow: encyclo-

pedia sequel, They are the following, and are a must for amy graph theory libeary,

* A Brandsadi, V.3 Le and 1P Spmead, “Graph Clossey: 4 Swrpan™, STAM,
Philudeiphia [1999], 12 an extensive and iovatuable cormpendinm of the currenc
gtutus of complexiy snd methemalical resulte on bundeeds oo fooilies of
graphs. Tt is comprebensive with respest o detinitions and theoroms, citing
over | 100 raferencas.

o PiC. Tishburn, “faterca! Chiders and Trterpgl Crapher 4 Studv of Pastially
Orglecreed Sets”, Tohn Wiley & Sons, New Yok [1985], gives o comprehensive
loalks gl the research on thiz ¢lass of ordesed sets.

o MO, Golumbic and AN, Trenk, “Talerance Gruphs”, Cambwidpe Univessity
Press [2(W34]. 45 the youngect addition to the perfect graph bookshelf Tt
cottains the first thorough sauly of telerance graphs ard tolerance orders, and
inciudes prools of the wajar results which have not appeared befare in boacks.

» MVER Mahadey and TN Peled, “Theechold Guaple and Relared Tomics™,
North-Holland [1995], iz a thorough aad exlensive treatnent of all research
done in the pust years on thiresheld graphs (chapler 10 of my book), threshald
dimension und crlers, and 4 doren new coneepls which 2ave emerped,

= TA. McKee and FR. Mebards, “Topicr i Jwterscction Graph Theon™,
STAM, Philadelphia 11999, is a fovused monoymaph on slructlumal properiies,
presenting definitions, major theorenw with proofs and muny upplications,

» WT. Trotter, "Combiinatotcs and Bavtialhy Ovderod Seds”, Johns Hophkins,
Raltimore [1992], is the book to which 1 retermed ul the bottom ol page 136,
Tt convers new directions of investigation and gues Lar beyond rusl dimension
problents on ordered sels.

Algarithmic Graph Theory and FPerfect (naphs has now beeome the classic
ieeduction to the field, Tt continues to convey the message that intersceton
eraph models are o necesswry and Logoriant tesl for solving real-world problems.
Solutions w the algorithmic probloms on these special praph classes arc
contimwally inlegraled o systains for a large varety of application arcas,
from VL1 civcuit design to scheduling, ffom tesource allocation 1o phvsical
mapping o DRA, from remporal reasoning in acaficial inkelligenee to pavement
delerivration analysis, Oa the wademaical side, perfect graph classes have
provided rich soil for dioep theoreticu] resclts. In shorl, 1L remmsios o sleppicg stons
from whish the reader may erburk on one ol uny fascinating research teails,

Martin Charies Golumbic
Elaifa, lseael



Foreword

Ruescarch in graph theory and s applivalivos has nsreased considerably in
ecenl years, Typically, the elaboration of new theotetical souctiures has moti-
vated a search for new alpotithms compatible with those siructores, Rather than
the ardupus and sy swematic study ol every new coneept delinable with o grouplh,
the nain task for the mathemarician s o ellninae the often arbinary and cum-
bersome detnitions, keeping only the “deep™™ mathemaical problems,

Of course. the deep problemns may well be elusive: lndead, there have been
many delinitions (from Diewdonne , armong athers) ol what a deep problem is, In
graph thoary, il should relale o a varicly of ofber combinatorial stcueleres and
musk therefiwre be comnecled with many difficult praciical problems. Among
these will be protlerns that classcal akgebea is not ahle to salve completely ot
that the compater scienist woold ool alack by bimself.

This book. by Martin Golumbis, s ended as an inteoduction o graph theony
thronagh just these praclical problerns. nearly all of them related t the structure of
permulation graphs, interval graphs, circle graphs, threshold graehs, perfect
eraphs, and others.

The reader will oot find motivations deawn feom number theory, as is 0stal tor
mast of the extremial graph proeblems, of from such retinements of old riddles as
the four-color problem and the Hamiltenian wuor, fnstead, Golumbic has sclecled
praclical problems that eccur in operations esearch, scheduling, econometrics,
amd even genehics or ecology.

The author's point of view has also enjoved increasing favor in the areg of
complexity analysis. Each fime 4 new simcture appaars, the author immediately
devotes some effort to 4 descriprion of efficient algoriduns, il any aee known o
exisl, and to a determinalion ol whether a proposed algorithen is able 1o solve the
problem within & teasonable amount of timea.



xvi Foraward

Certainly a wealth of literature on graph theory has devaloped by now. Yetitis
clear that this book brings a new point of view and desarves a special place in the
[iteranire.

CLALDE BERGE



Preface

The notion of a “"pertect™ gruph wuas introduced by Clavde Berge ot the birth
of the 1960z, Since that time many classes ol praphs, interesting in theic own
right, bave been shown to be perfect. Research, in the meantime, has proceeded
along twa lines. The first ling of investigation has included the proof of the
perfect graph theorem (Theorem 3.3), anempts at proving the strong perfect
pruph conjeciure, siudics of critically uonperfect graphs, and other aspects of
pertect graphs. The second line ol approach has been W discover mathematical
and zlgonthmic properties of special classes of porfect graphs: comparabilipy
graphs, iriwngolated graphs, and interval graphs, to name jost a few. Bany ol
these graphs arise quite naturaily in real-world applications. For example, uses
include optimizstion of computer sterage, analysis of genetic strucmure, synchro-
nization of parallel processes, and certain scheduling problems.

Recenily it appeared 1o me that the ome was ripe 10 assernble and organize the
many results on perlect graphs that are scattered throughout the literamre, some
of which are difficolt to locate. A senious atrernpt has been made to coordinate
the métange of worme 200 pupers refercncad hera 1n a manner that would make the
subject more zcrcesible 1o those intercsied in algonithmic and algebmaic graph
theory, [ have tried 1o inchude el of the important cesults thal are currently
known, [n addithon, a fow now resulis and new proofs of old results appear
throuphout the text. In particular, Chapter 9, an superperfect graphs, containg
results due 1o Alan J. Holfman, Eliis Johnson, Lamy I Stockmever. and myself
that are appearing in prme for the frst dme,

The amphasis of any book naturally reflects the bias of the author, As amathe-
matician and cormpuotar scientist, [am doubly biased. Firs, I have tied o present
a ignrous and coberent theory. Proofs are constiruetive and are streamlined as
much ax possible. The notation has been chosen to facililate these matters, Sec-
ond, | have directed moch attention fo he algorithinie aspects of every problem.

Xvii



xviil Preface

Algorithins e expressed o e munmer (et will make their adaptadion o g parlic-
ular progranning lanpuage relatively easy. The complexity of every algorithm is
artiyend so thal sime measure ol #s clliciency in he deternined.

These two approaches cnhance one anether very well. By explaiting the math-
ernarical peopertics satishied a priori by 4 structure, one is often able to reduce the
tithe or space complexity reguircd to salve @ problem. Conversely, the al-
gorithmic gpproach often leads 1o startling theoretical resulis. To iflushrate this
poini, consider the fact thar cenain NP-complete problems become tractable
when restricted o cempin classes of pertect graphs. wherezs the aleorthm for
recognizing comparability graphs pives rise o a mateold associared with tha
graph.

A glance at the tahle of contents will provide o rough ontline of the fopics i he
discussed. The first two chapters ate iniroductoty o e sense that they provide
the foundations, respectively, of the graph thearctic notions and the algorthmic
desipn and analyvsis rechniques that will be nsed o the remaining chapters The
roader may wish Lo read these two chapters quickty and refer to them as teeded,
The chapters arc strwetired in soch a way that the book will be suitable as a
texthopok in & course on algorithmic combinatorics, graph theory, ot porfoet
graphs. Tn addifion, the book will be very wseful for applied mathe maticians and
comypiuter scientists at the reszarch level . Many applications of the theoratical and
computational aspects of the subject are described throughout the texe. Af the cnd
of each chapter there are numerous excreises to lest the ceader s understanding
wied Lo introdoee [urther results, An cxtensive bibliography follows each chuapter,
and, when possible, the Mathematical Reviews ouinber 15 incloded for further
relerence.

The topics covered in this book have been chosen to Gl 4 vacuum in the
iitersure, and their inlemrelation and importunce will become svident as early as
Section 1.3, Since the intersection of this volume with the traditional walerial
covered by most gruph (heory books has been designed to be smull, it is highly
recorunended that the serions stodent augment his sudics with one of these
excellent textbucks, A ome-year vourse with two concurrent leals is suggested,

MARTIM CHARLES GOILUMBIC
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Corrections and Errata to:
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and Pearfect Graphs,

the original 1980 edition

We apologize 3 Prof, George Loeker for misspelling his family name
throwgheut the text, Hence all ocourrences “Lenker™ should be “Lusker”.

Fape 15, The graph i Figare 1,07 i a cocular-are geap,
Page 48: Exercize 21 is fale,
I'age 49: {(iarey and |ohnson [1973] add “MREDg 680507

Bage 7% Bland, et al, [1979]: add “RIRE0g: 050337
Chrvatgl, et al, [1979]: add “BMRE1 bS04
de Werra [1978]: add “hMRR La0S052"
Greenwell [L978] add “BMREOZ05044™

Page 79 Olaru [1977]: add "ME38#34117

Page B:  Partbwsucathy aod Ravindra | 197Y): add “MRE0m:05G45™
Protecl | D99 add "MESOd 060037
Tucker [1979]: add *“BRELc:0E041"
Wagon [1978]: add “MRI0LOSOTE"

[age 85: l'igure 4.5 The edge (5, ) is missing,
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Page 102:

Page 104:

Paac 15%;

Page 145
Tape [46:
Papge 147

Page 156

Page 163:

[age 170

Fage 190:

Corrections and Errata

Exercise 24: The claim in the first sentenee 1% false, For exorple,
i ogam use a8 many 45 7 oeclors on the graph &y, in Figure 4.1,
A different tcchnigue can be wsed to ohtam g lingar tirne coloring
algonlhm for fianpulated graphs, which is due to Martn Farher,
Linc 21: change “Asf{w)" o “ddi{a)"

Cavril [1978]: add “NER [gn3054”

Wagen [ 1978]: add “MREM:05078"

The sccond footnowe can be updsted since M. Yarnakakis has now
proved that the coraplexity ot determining if 2 peset has dimengion
3 is WP-complate.

Preczel [1973] add “MRE0D 002"
Gysin [1977]: add "MBEE#5305"
Rabinovitch | 1978b]: add “MBSE#S424

Burkard and Huraner f1977): change o the following:
[F9B0] A note oo Heanitlonisn splil graphs, £ Combie. Theory 5 18,
245344, MBEe05095

A necessary conditdon for the existence of 4 Hamiltonlan cycle in
splil graphs v proved,

Erdos and Gallat |- 960]: change ~2727 o “2747

Foldes and TTamimer [1978]: add "MREQDEIILT

Huwmrner, Ibaraki. and Simeone [ 1978 change 1o the lolewios:
V19T | Depree sequencs of thresheld grephs, Froe. 0t Soxtheastorr
Conll on Cumbineorics, Geapi Dreory wrd Compufing Con-
pressus Numeratium 11, Wilitas Math, Winnipeg, Man , 329-355,
MEB0:05084.

Thare should be edges between 3 4 and & T (corrected in $0is
edition).

Figure 8.7: The second tec on the dght saould have its ightinos
leaf " rather than *F7. The leaves should read from left to nght as
follows: BCLADFE

lime & chunge “will appeat in Twcker [1979]" o "appears in Tucker
[L9R0
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Page 1497:

Paga 158;

Pazc |99

Pawge 20.:

Page 202:

Bage 203:

Page 2o

Page X3

Page 234

line X5 change “Criggs and Woat 19797 oo “Grges and West
{1980]"
Abhett and Katchalski [1979]: add “MRS0L:0503E”

Haoth and Lucker (1974 add “MWMRISR6032™

Griggs [1979]: add “MRSh:05083b"

Grrigges and Wear change w the following:

[1980] Extrema] vatues of the intesval number of a graph, S5ddd A
Algebraic Dhscretz Methody 1, 1-7. MRETh:05083a,

Roberts [1979a]: add “MRBE1e:)51 20
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line 17: add the following:
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Fipure 9.9:

([} The nonsuparperfect, interval praph with the chotdless 3-cycle
shoald have two chords conrecting the top tewn vertices o the
bottom vertex. [t will then be the same as the “hulls head” graph
on page 6, (corrected o this edition).

(2] The noncomparzbility, nontrianpulated comparability graph oo
7 vertices has too many edges. The two vertical sdges should
be removed, feomeeted in this edition),

{3) The aonsuperperiedt, wntrval graph which hes 5 \Dangles. is, i
fact, superpecfect; ir should be moved inte the superperizct, non-
compatability, intecval arsa of the fgure. See alse Section 139
of the Epilogue wo this edition.

Crolumbic [1978a): add “MES le:ARORD™

Hammer, Tharaki, and Simecne [1%78]; change o the following:
[1978} Degres sequences of threshold graphs, Proc. Sth Southeastern
Conf. on Combingiorics. Graph Theory and Compuring, Con-
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CHAPTER 1

Graph Theoretic Foundations

1. Basic Definitions and Notations

Functiaons and Retations

Let X and ¥ be sets. A function {or mapping) [ from X to ¥, denoted
fX-=Y,

is u rule which aszociales (o each element x of X 5 corresponding clement
¥ of ¥. It is usgal to call v the image of x under fand denote it by y = #(x).
We catl fan infective or sue-to-ore function if no pair of distinct members of
X has the same immage uoder f; that 1s,

sFE N =fx}# S (e X
or equivalently,
fix)=fixl=x=x (xx=X)

The function 15 called surfective o ente ifeach pin ¥ is the image of some x
in X, that is.

¥ye ¥ildxe XD such that  p = f{x).

A function which is both injective and surjective is called a bijecrion. A
pernmncation is stoply a bijection from a set to itsell

Following the usual notation of mathematics, x € X indicates that x is a
mermher of the set X and 4 = X meaons that A 15 & (nol necessanly proper)
subset of X, The cardinality or size of X s denoted by | X' §. Forsuhsets 4 and
Bof X, the notation 4 ~ B and 4 . B are the usual set intersection and sat

1



2 1. Graph Theoretic Foundations

unon operations. When A and B are disjoint sobsets, we often write their
vaion with a plus sign. That 1%,

=4+ 8 ndicatles A B=¢0 and = 4wh,

where 7 i the empty set. Throughout tiis book we will deal exclusively with
finite sets. A collection { X}, of subsets of a set X is said to eoner X il their
union equals X. The collection is called a parrition of X il Lhe sobscis arc
patrwise digjoint and the collection covers X

Let $PUX Y denote the power ter of e set X, Le, the eodlection of all subsets of
X 1tis welt known that |9 X0 — 2% A birer v reliotion on X is defined o be
a [uneiim

X - 2x

from X o the power sel of X For cach x = X, the image ol x wnder B is a
subsel A{x) = X cualled the set of refariees of x. It is castomury o reprosent
1he relation A as a collection of ordered pairs # = X = X, where

(x 5.4 tand ooby if & o Ktz
I11 this case we say that x7 is reduted 1o x. Modice Ll this does mo oecessurily
imply thal x 15 tebated W £ (Perhaps ooe sheold read " will inheril from™
imsteind ol “ 18 relaled o7 a5 o the cise of g poor nephew wilth ien children
and his rich widowed childless aunt.)
A binary relation R on X may satisfy one ar more of the lollowing prop-
ertiss;
SYHBAtFIC propert P
2 ERx) = xz HixD (x, &' EX),
UNTLSPIMEmELrIe fropert
x € R{x)= x¢ R{x'} (x, 52 X),
reflexive property
x € Rix) (==X,
irreflexive property
x¢ Rix) fxe X,
praisitive propert ¥
£ Riy), ve R(x) = z € R{x) (x, p, 2 X}
Such a relation is said to be an equivaleace if it 1s reflexive, symmelric, and
transitive. A binary relation is called a szrict partial order if 1% irreflexive und

transitive, It is a simple exercise to show that a stiict parttal arder will also be
antisymmetric,



1. Basic Definitions and Motations 3
Graphs

Let us formally define the notion of a graph, A grap® G consists of a finite
set ¥ and an irveflexive hinary eclation an T2 We call ¥ ihe set of vertices, The
bicary relation: may be represented either as a collection E of ordered pairs or
as # function from ¥ to its power set.

Adir B — L
Both of these representations will be wsed interchangeably. We cull Adjin)
the adincency ser of vertax v, and we call the ordered pair (o, w) £ E an adge,
Clearly
f, wisg B ifand only £ w= Adile)

In Ihis case we say Lhal w s adfacenr to ¢ and v and w are endpaings of the edge
{u, w). The assamption of irreflexivity implics that

{5, 3fE  {vel),
or cquivalenlly,

vgAdiie)  (ve V)
We further denote

Nz} — [z} + Adjls)

which is callad the neighborhood of v,
In this hook we will usually drop the parentheses and the comma whun
denoting an edge. Thos

xyeE and fx, viz E

will have the some meating. This convention, we believe, improves the clarity
of exposition.

We have delined & graph as a set and a corlann relulion gn that set, It is often
somverient o doaw & " picture™ of the graph. This may be donein thahy ways,
Usnally one draws a cirele for each vertex and connects veriex x and verlex v
witl: a directed arrow whenever xyis an edge. [fbath xy and vx areedges, then
sometimes a single line joins x and v without arrows. Figure 1.1 shows three
of the many possible drawings that one could use to represent the same granh.
Tt gach case the adjacency struckhere remains unchangsd, Occasionally, very
intellipent persons will become extremely angry becanse one does not like the
other®s pictures. When this happens il is best 1o reimember that our figures
are meand simpy as 4 Lol W help undersland the underlying mathematical
stroglure or a8 an zid in constructing 3 mathematical madel for some appli-
cation,

* Sonw autaces wse the tern dindered graph or digranh,
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O R

o F%

Fimure 1.1, T'hres protares of {he wime smaph,

Twor graphs & = (V, E) and &' = {V', FY are callad feomorphic, dencted
G = &, if there 1s a bijection 1+ ¥ — 17 satisfying, for alt x, ve ¥,

x ¥)e B flx] fi(0) = B

Twer edges are adfacent il they share 2 common endpaint; atherwise they ats
nurdd facent.

Let & = (¥, E} be 2 graph with vertex se* ¥ und edge sel £, The graph
(71 = (. E 1)is said Lo be the resersal of &, where

E = {{x. ) (nxieEl
that 1s,
XpEE tenpye F (x, ve )
We defline spsneiric closure of G 10 he the graph &= (v, B, where
F=FoE L,
A praph & = (V. £)is called undirected i 115 udjacency relation {s symmetric,
L, il
E=E"
or cquivalently,
E=E
. ey .
We ooeasionaly denote an undirected edge by ob = {ab) o {ha} A praph
H =V, Fi o oealled an oriented graph # ils adjaceney relalion is anlisym-
melne, Le., iF
FoF =@
If, in addition, F < &7 = E, then H (ot FYis called an arentarion of G
{or E). The four eonisomor phic orientations of Lhe pentagon dre given in

Figure 1.2
Lot & = (V, E} be ar undirected graph. We deline the complement of
toy be the praph G = (F, E), where

FE=1{{x,y}=F x V|x s pandfs, 1 kL
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Paritagon

sReRege

Figare 1.2, Thu G nusisomee plc onlentalions of Ue peologon.

Tntwitively, the edees of (1 become the nonedges of F and vice versa. A graph
is compfere if cvory pair of distinel veroees i adweenl. Thus, the complement
&~ (¥, B) of G could equivalently be defined as shat set E satisfving E~ E
= ¢ and E | E complete. The complete graph an # vereices is usually
denoted by K, (3ee Figure .31

& {pareial) subyraph of a graph (¢ = (V, F)is defined to oe any graph 1 —
O, Edvsarmslving 17 = Fand B2 E Two Lypes of sabgruphs are of partic-
lar iznportance, namely, the subgraph spanned by a given subset of edges and
the subpraph induced by a given subsel ol vertices. Taey will now be described,

A subsel 50 F ol the edges spans the subgruph IT = (¥, 8% where
Fe = {re Vs an endpoint of some edge of 51 We call B the (partial)
sitbgraph spannzd by 5.

Fipore 1.3, Some cumplete graphos.



6 1. Graph Theoratic Foundations

frd o & "
- &
/N E )

i ¥ F.]

C

& agraph o & (partiall
subroph ol &
LS fi]
q "~1 e o
r ¥
Tha wib=et Spanned by The induted Subgroph
g = {a% fd of. fa} 6o, ¢, 7, ¢}

Figare 1 4. [aamples of subgraphs.

Ghiven a subset A = F ol the vertices. we defing the subgraph induced by A
1o be Gy = (A, B}, where

E.=lxyrelt|xeAdand yc 4k
Far ve A we denote Adp, (v} = Adi{p] m A Chviously not every subgraph
of 1% an induced subgraph ol & {Figure 1.4).
Lel €7 = (F. E)be un undirceled praph. Consider the [ollowing definitions.
Cligue: A subset A = ¥ al » vertioes 15 an r-efigee i1t induees a complele
subgraph, e, if G, = K, Asingle vertex is a Llulique A cligue 4 is maximal
if there is no clique of &7 which propetly contains A as a subset. A elique 1s

it IE there is no clique of & of larger cardinality, Some authors nse the
lermn complere set (0 indicale o cligue,

iy 1s the number of vertices in a maximum clique of G; it is called the
eligue number of {5,

A cligue cover ol sige & 15 a partition of the vertices V=4, + A, | -+
4+ A, such that each 4, is a clique.

k(65) is the size of a smallest possible clique cover ol G; it is called the
clique cover reanber of G

A srable set is a wubeer X of vertices no two of which are adjacent. Some
authors use the term independent ser Lo indicale a stabie zet,

o () 15 Lthe number of vertices in a stabie set of mazimum cardinality; it is
called the seabiliry mumber of €
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A proper cocloring 15 o partition of the verticess V= X, + X2 4 -+ X,
such that cach X is a stable set. In such o case, the members of X, are
“painted ” with the color  and adjacent vertices will receive dilferent colors.
We say that (7 is e-colovable. 1t iscommean to cmit heword proper; a coloring
will alwivs b wisomed to be & proper colaring.

#(G) is the smallest possible ¢ for which there exists a proper c-coluring of
G 1t as called the clromatic mumber of €7,

[l iz casy to see that
efG) < (G and  afld) = KG),

sihoe every vertex ol o maximum clique (maxmun stable set) must be con-
tained in a different parlition scgmenl in any diinlinom peoper coloring
{minimum clique coverh There is an obviows deality to these notions,
narnely.

ol Gy = (G and WGy = E(GY.

Igl =V, E) be an arbitrary graph. The au-degiee of o verlex x, de-
noled by A1 (xl, is defined 2s d'(x) = |Ad[{x)]. The in-degree d™{x) of x
15 defined simalacly:

A0 = | Lz Fla e Adjid].
Although in pencral £7(x) and 47{x) will not be cgoal, we do have

At = Y dx=|El
xcl* xcF

gacil ordered pairin E conrtiboting 1o both summands, & verlex whose owt-

degree (in-degree) equals zera is called a sink (source). If both d ' {x) = Dand

d7(x) =0, then x Is an {safamed certex.

When {715 an undirected praph the situstion s somewhat speclal, Ig such a
case d'(x} = d {x)foreach x € ¥, and we call this number simply the degree
of x, detwted d{x). That is, the degree ol x in an uodirecled graph is the size of
its adjacency set. Finally, defining | E|| = 1| L’| we obtain the Gamiliar formula

P2, dlx) = |E].
xal

Let & = (¥, E) be an arbitrury graph. We present scine fairly stapdard
delinitions,

Cheint A sequence of veriices [gy, 6y, U2, ..., ] iE 2 chainof length i in G

o, jmeforey, eElori=12___ 1L

Bath: A scquenes ol vertices [ty, By, o, ..., by 15 & path from o, to o, of
fergth lin & provided that o, yoye b fori= 1,2, ..., L
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AAYA
¥a,3 A 54y,

Fleare 1.5

A path or ¢chain in & is called simple if no vertex occurs more than onee, It
i called teivfaf i = O

Connected graph: A gruph 015 connected il between any Uwo vertices there
exists a chain in & joming them,

Strongly connected graph: A graph O 5 strongly conrected I Tor any two
vertices x and y there exists a path in & from x to 3

Remark. Thenotions of chain and path comneide when 35 an ondirected
eraph,

Cycle: A sequenee of vertices [Lg. 1, 07, ... 2, vpl 18 called a epele of
length [ + 1 {or closed path) if »,. jpyeifori= 1,2, ..., land 4,0, € E.

Semple cyohe: A eyele [ey, w0, 05, .., 0y, 5p) 15 @ ximple cpele if o, # o, for
P

Chordless cyele: A simpleeyele [, 0. 02,0, 1y, 0p] 18 chordless if g ¢ R
for i and j differing by maove than 1 mod £+ 1,

Bipartite graph: An undireeted graph G = (V, E) is bipartite if its verlices
catl be particionsd into Lwo disjoint stable sels ¥V = §, + 5;. Le, cvery edge
hay ome endpoint in S and the other in §;. Equivalzotly, & is bipartite fand
anly if it 1s 2=colotable. [Uis customary to use the notation G = (%, 5;. E),
which cmphusizes the pattition. Vertices £ 5; and pe 8, are of the xme
parity il § = j und arc of opposite parity il 1 # J.
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Complete hiparlite graph: & Wpartile graph ¢ — (8,. §;, £) 8 complere il
for every x c & and pc 8, we have xye E, e every possible edpe Lhat could
exist does exist.

Throughout the text certain graphs will occur many times, We give names
to some of them (see Figurs 1.5),

K the complete graph 00 1 vertices or icligue.

.- thechordiess cypcle on a verlios or a-cpcle,

P, the chordless path graph on « vertices or n-puth,

Koo Wi complete Diparifte graph on tr — 1 vertices partitioned into an

m-stabde set and an p-srable set,
Ky o the sier graphonn | 1 vertices,
mA T mdisioint copics of K.

There is abviously some overlap with these names, Forcaample, K, = Oy is
called a triumgle. Notice also that &, = 2K, and K, , = 2K,

2. Intarsection Graphs

Let # be s family of nanempry sels. The intersection graph of # is obtained
by representing each set in % by a vertex and connecting two vertices by an
edee fand only if their corresponding seis intersecr. When # 15 allowed 1o be
an arbitrary family of sets, the class of graphs obtained as intersection graphs
is simiply all undirceted praphs {Murezewski | 1945]) The problemn of cliar-
acterizing the intersectinn graphs of familics of sets having some specfic
ropelogical or olher puttern is often very inseresting and frequently has
apphications Lo 1be real world.

The inrersectinn graph of a family of wtervaks on g linearly ordered set
(like the real line) is called an fmrereal graph, If these intervals are requirved
1o have unil length, then we have g unit imrersal graph 2y proper tereasl graph
is consirucled from g family of inlervals om a ling such Lhal oo interval prop-
erly conlains another, Roberes {1969 showed that the classes ol undt in-
terval graphs and proper inlerval graphs coincide, Imlerval praphs are
discussed in Secrion 1.3 and in Chapter 8.

Consider the following relaxation of the notion of intervals on a line. If we
Join the two ends of our ine, thus forming = circle, the intervas will become
arcs on the crrele. Allowing ares to slip over and includs the poinl ol connee-
tion, we obtan a class of intersection graphs called the circular-are graphs,
which properly conlains the inlerval praphs. Circolir-are graphs bave been
extensively studicd by A C. Tucker and others. We will survey these results
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in Secrion &6, Theee are 4 aumber of interesting applications of circular-arc
graphs, including computer storgge allocation and the phasing of traffic
lights. Let ns look st an example of the latter application.

Example. The traffic flow at the corner of Holly, Yood, and Wine is
pictured in Figera 16, Certain lanes sre compatible with one another, such
as ¢ #and f, or d and k, while others are incompatible, such as b and 12 In order
to avoid collisions, we wish Lo insiali a Lraffie bHght sysiem to contro? the flow
of velucies. Each lane will be assigned an are on a circle representing the time
mecrval during which it kasa green light, Incampatible lanes musl beassipred
digjoint atcs. Fhe ciicle may be reparded as a clock represenling o eniire
cycle witich will be continually repeated. An are assignment fer our example
15 given n Figuee 17 1o general, i €7 i the inlersection gruph of the arcs of
such an assignment (sce Figure |.8), and if B i3 the compatibility relation
defined on the pairs of Tanes, then clearly G 1s a (partial) subgraph of M. In
our example, the compatible pairs ¢d, &), (h, ), and (i, flare o £f but are notin
. Additional aspecss of this problemn, such as bhow 1o choose an arc assign-
ment which minitotzes wailing Hme, can also be meorporated into the made],
The reader is referrad do Stoffers 1] and Roberts (19746, pp. 129 134,
1978, Section iG] for more details,

A proper circwlir-ure graph Is the intersechion praph of a Tamily of arcs
nome of which properly containg anocher. TU can be shown (Theorem 8.1%)

Hally Stroct
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Figure 1.7, Fhe clock oyele,

that every proper cirvealar-arc graph hds a reproscnlalion ax interdscting
arcs of a cirela In whicl not only is no are properly contained in angther bt
also no pair of arcs together cover the entire circle,

In a different generalization of intervul graphs, Rene [P70] characterized
the intersection graphs of paths in a tree, and Gavril [1974%] gives a recoghi-
tion algovithim for therm, Watter [1972], Buneman {1574], aud Gavei: [1974]
carTiod 1his idea further ard showed that the tntetsection graphs of sublrecs of
a tree arc cxactly the tnangulatzd grephs of Chapter 4. All of this is summar-
1zed in Frgure 1.5

A permutation diagratn consists of # peints on cach of two pacallel lines
and n straight line segments matching the points, The intersection graph of
the line segments is called a perrastation graph. These graphs will be discussed

Figare i.%. {7 e civenlar-ace peaph.
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e mat af
s ST St T b

Cirpular- oG

Fipare 1.9,

i Chapeer 7. If the 2n points are located rardomly around a circle, then the
maiching segments will be chords of the circle and the resuliing class of
interscelion graphs, studied in Chapler 1L, properly containg the permuatation
griphs. A simple argumenl shows Lhat geery proper circilar-are graph is also
the graph of intersecting chords of o eircle: We may assume that no pair of
ares Logeher covers the eotire crrele (Theorem 8.18) Vor cach are on the
cirgle, draw *he chord comnecting its two endpoints. Clearly, two arcs overlap
if and only if their corresponding chards intersect,

There are many other interesting classes of intersection graphs. We havs
introduced you to only some of them. specifically those classes which will
be developed further in the text, To the readsr who wishes to investigate ozher
iniersection graphs we offer the following references:

Cubes and boxes in pspace:  Dangzer and Grunbaom 71267,
Roberls [19690].

Conves sels in R-space: Wepner [19467],
Ogden and Boberts | 197,
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3. Interval Graphs—A Snaak Preview of the Notions
Coming Up

Ouar intention in this section Is 1o arouse the reader’s curiosity by presenting
some basic ideas that will be pursnad in preater detail in later chapters. We
a'so hope Lo imbuc the reader with a sense of how the subject matter is
relevant Lo applicd mathematics and computer science.

An yndirecteq graph (7 is called an infereed graph iFits verlices can be put
into ope-to-one corrcspondence with a set of intervals . # ol'a ingarly ordered
sef {like the read line) such thal tws vortices are connected by an edge of & il
and only il their corresponding intervuls huve nonemply intersection. We
calt # an interval represeicdion for G.{1t is unimportant whether we use open
intervals or cloged inlervals: the resulting cluss of graphs will be the same ) An
intcrval representation ol the windmill graph is given in Figure 114

Let us discuss one application of mierval graphs. Many other such
applications will be presented m Seclion 5.4,

Application ta Scheduling

Consider a collecrion € = {e,} of courses being ollered by a major omoi-
versily. Lol T, be the tirne interval during which course ¢, is to take place. We
woukd like Lo assign courses (o classroams so that o bwo courses meet in the
samic room gt the sane sme.

This problem can be solveed by properly coloring Lhe verlices of Lhe grapl
& ={C, F}Ywhere

grepE e Tien Ty &£ E

Each colar corresponds ta a different classroom, The zeaph G is obviously an
ineerval graph, sines it is represenred by time intervals.

=
s
-—
[

Kiguee 1M1 Aninterval gruph— the windmill geapsh (ut lerty —-and an interval represen eiivn
le i1,
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This example s espectally toleresting bocause  cfficienl. mear-time
algorithms are known for coloring interval graphs with a minimum number
of colors. {The minimuom coloring prohlem 15 N-complete for general
graphis, Section 2.1} We will discuss these algocithuns (o subsequent chaprers.

Remark.  The determination of whelher a piven graph iz an inlerval
graph can also be carried out o near time (Section ¥,3).

Wo have chosen inlerval graphs as an introduction o our sludies because
they sutizfy so many intercslimg propertics. The st fact (het we notics is
that being an interval graph is a heredicary propert v,

Proposition L1, Aninduced subgraph ol un interval gruph is an interval
graph.

Pragf, I [I.1,-1 is an interval representation for a graph & = (¥, E),
then {I,)..y is an interval representation for the indvoed subgraph &, =
(X, £y}

Herveditary propertics abound in graph thoory. Some of our favoritcs
include planacity, bipartiteness, and any “forhidden subgraph™ char-
aclerization. The next property of mterval graphs is also a hereditacy

Propescly.

Trtangniated graph praperty.  Every simple cyele of Jenglh srictly preater
than 3 possesses a chord.

Graphs which satisly this property are called wdamgelated graphs. The
graph in Figure 1.10 s triangulated, bat the howse geaph in Figure 1,11 15 not
triangnlated becanse it contains a chordless 4-cycle,

Proposition 1.2 (Hajis 14581, An inteyval praph 2atisfies the triangu-
lated graph property,

Figure 111, A graph which is not tiangwiated : The house graph.
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¥

LVigure )12, & ipjangulated graph wehich ia not an mmtecvel goaph.

Progf,  Suppose the imerval graph G containy a chordless cycle [vy. 2y,
Baieoo Bpoqe g Withi = 3 Let I, denotethe interval corresponding to o, For
=12 .., 01— Lchooscapnnt el | »d Since !, ;and F_ | do not
averlag, the p, constilute g strietly imereasing ot strictly decreasing sequence.
Theretiore, it is impossible b fy ond F_ ) to intersect. contradicting the
erilerion Lhal tarp 4 s an edge of €0 |

Mol every tnangulated graph is an inervel graph, Coonsider the tree T
given in Figure 112, which cenainly hus ne chordless eveles. The intervals
Fo Ty, ang ! of areprescotation lor T would have 1o be disjeint, and F would
properly include the middle interval, say [, Where, Lhen, could we put 50
that it intersects £ bat not 1% Clearly we wonld be stuck, 5S¢ there must be
mors 10 the story of Wnterval graphs than we have told so far,

Trapsilive vrientation property. Lach edes can be assigned a one-way
dircelion io such a way thal Lhe resulting ovlented graph (V. £7) satishies the
ollewing condilion

ghefapd besF imply wefF (T, oo e B, {1

Arn undirected graph which is transitively arigotable is sometimes called a
coprrobitiny graph. Figure 113 shows o lransitive orientadon of the A
graph and of the suspension ridge praph. The odd lenglh chordless cyeles
T, Co Cgn o and the bulls head graph (see Figore 114} canool be transi-
{vely orienied.

Proposition 1.3 (Ghovila-Houn [1962 ). The complement of an inleryal
grapl satisfiss the transitive orientation property.

Proof.  Let {I,b..v be an interval representation for G = (7, E). Deline
an orientation & of the complemnent & = {V, E) as follows;

s¥EF =1, <L, (¥sye )
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A\

Twe & groph The =uspansion bridgs giogh

A\

Frewrz 113, Trumsilive voentaliens of tea comparaliling graphs

Here 7, < [ mcuns thut Lhe imterval £, Los eolinzly o the lefl of the interval
I, (Remember, they ure disjoiut.) Clearly (1) is satisleed, since J, < I, < |,
implies £ < [_. Thus, £ 15 & twansitive orientarion of G, |

Asin the case of triangolated graphs, there are gruphs whose comploments
are comparability graphs bul which fail to be interval graphs. So it seems that
Propositions 1.2 and 1.3 simply provide nacessary (but not sufficient condi-
tions for interval graphs. Rather than wait any lenger, we state a1 important
result that suys, il we pul these two properlies ogether, we get (drum roll,
please) exactly ail nterval graphs.

Theorem 1.4 (Gilmore and Hoffman [1964]).  An ondirccied praph
is an incerval graphifand oaly if & is 4 triangolated graph and its complement
(7 is a comparability graph.

The proof of sufficicncy is postponed unlil Chapter 8, primarily boconse
Lthis is 14 “ getting acguainted with™ section.

Looking hack, each of the graphs in Figures 11}, 111, and 1,13 cun be
properly colored using three colors and each contains a triangle, Thorctare,

O The bfl's head grogh

Fimme 114, Two praphs which acc nel transitively cricniable. Why?
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[or these graphs, their chromatic number equals their clique nomber, This is
not an accident. In Chapters 4 and 5 we will show that any triangulated praph
and any compacability graph also sansties the following propertics.

t-Perfect property,  For cacli induced subgraph (7, of G,
WG ) = wlG ).
The chordless eycles O, £y, O arg not g-perlfect, A dual notjon of y-perlec-
tipn 1% the ollowing:
w-Perfect property. T or each induced subgraph &, of &,
HG ) = k{G,)

A very imporiunt theorem in Chapler 3 siates that a graph is z-puerfect if and
cenly if it is x-perfect. This equivalence was originally conjectured by Claude
Berge, and it was proved somc ten years later by Liszld Lovasz,

4. Summary

The reader has been introduced Lo the graph theoretic foundations needad
i Lhe remainder of the book. In addition, he fas bl 3 Gaste of some of the
parlicular nolfums thal we intend o investigate furlher. Relurning to the
Lable ol contents at this poimt, he will recognice many of the lopics listed.
The chapter dependencies ave given i Figure 1,15,

Figuee 115, The chapter dependaoces. The reader htny wish 10 read Chaplers | oand 2
yuickty and seler back v them ay needed.
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In the next chapter we will present the foundations of algerthoic design
and analysis. Az was the case in this chapter, many examples will be given
which will inlrewduce the reader to the idceas and techniynes that he will liod
helpful in subsequent chaplers,

EXERCISES

1. Showthat thegraphsin Figures 1.16 and 1,17 are both intersection graphs
of a family of chords of a circle but that neither is a circular-arc graph.

Figrure L1k, Figure 1.17.

2. Can you hnd graphs for each zane of the Yenn diagramoan Figore 197
3  Let 3 be a lamily of intervals on a line such that no interval containg
ancther. Show that none of the lkft endpoints coincide, Give a procedure
whichconstructs a lamily 3 of unitintervals such that the mtersection graphs
of # and %7 arc isomorphic,

4. Let@ = {¥, E}beany undirecred graph. Show thar there is a family # of
snhsets of V¥ such that 6 is the intersection grapl of 57,

8. Tt {rbhe the intersection graph of a fumily of paths in a tree and lete he a
vertex of (2. Show that the induced subgraph Gy apj0 I a0 interval graph.
6. Prove divectly (using only the delinition) that the graph in Figure 1,17
does not have an interval representation and i3 therelfore oot an interval
graph.

7. Give an toterval representalion for the praph in Figuee LIS Show 1hal
itis mol w comparabtlity praph. Why 1= Lhis not in conllicl wilh the Gikmore

Hoffman thearem'!

Figure 1.i%.

8. Give a graph theoretic solunion 1o the following problem: A group of
calculus teaching assistants cach pives two office hours weekly which are
chosen in advance, Decause of budgetary rcasons, the TAs must sharc
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offices. Since each otfice has only one blackboard, how can uflice space bhe
assigned so that at any particular time oo more than onc TA is macling with
students?

%.  Give an cxample to show that the graph you obtaw in Exercise 8 is not
recessarily an interval graph, How could we alter the problem se that we
wonld obtain only intcrval graphs?

10, Ts Lhe bull's head graph (Figure 1. 14y an Interval graph Is the comple-
ment of the suspension bridge graph {Figure 1.13) an mterval graph? What is
# powd nymne for this last graph?

1. An undirceted graph is sejfcomplementary iF U is isomorphic to s
complemcnl, Show that there are exactly two selfcomplementary graphs
having live vertices, How many are Lhere for fout vertices? Six vertices

12, Let G =(¥, F) b an vndirecled graph. A subset A S F s called an
cdge cover of & if for every edge xy e F. cither xe 4 or vy 4 or hoth. Praye
that A is a minimum edge cover if and only if ¥ — A is a maximum stable set.
13. Lol # = {5}, . beafamily of subsets of a set. Two members &, and
S, of F overfap, denoted 8.4 8,08, 8, = @8, € 5, and 5, & 5, The
arerlap graph of & 15 the undirected graph & = (I, E) where

xycl Fandonlyif 5,435 (x, y= ¥

(i} Show that if x and y are in separate connected componenls G,
and &7, of &7, 1hen

5,25, =585, (= Al

til) Tet & ba the collection of (maximal} connected components of &
Show that the relation <, defined For all /7, Gpe % as

Gy < Gpaedred, ye Bsuch that 5, = &y,

i5 & strict partial order of %
14, Alamily # of distnct notnemply subsets ol 4 sel 8 s a representation of a
graph G il the intersection graph of $# is isomorphic (o & A reproesentation is
minirueer H fhe set § 1= of stuallest possible cardinality over all cepresentations
of G. A graph 7 is ayniguely imrerrecrgfle if for all minimam representations
# o and #F 5 of € #F und # 5 urc somorphic,

fiy Prove that every triangle-free zraph is uniguely intersectable.

A star w-gon 5 construcied from the cyole ©, by adjoining new verlices to
the cndpoints of each edge. Tipure 1.1% (llustrates a star 7-gor.

{iip Werify thae the family # = 18, 8, .., 8 - D Dy D Hise
mimimum representation of the st a-gon, where &, = it and D, =
iiof 1 1 mod sl

Gty Prove thal cvery stat m-gon is umiquely miersectable (Alter and
Wung [1977])
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Fipure 119, A stur T-pon.

I5.  The Bergewmystery story. 3 professors had been to the library on theday
that the rare tractate was stolen. Each bad entersd ooce, staved for sorne lime,
and then [eft. If two were in the libeary at the same time, thea at least ong of
them saw the other. Detectives questioned the professoes and gathered the
following testitaony: Abe saad that he saw Burl und Eddicin the library; Butt
said that he saw Abe and lda; Charloue claimed (o sce Desmond and Ida;
Desmend said thal he suw Abe and Ida: Fddie testified to sesing Burt and
Charlodte; Ida said that she saw Charlotie and Eddic,
Cne of the professors lied ' Who was it7

Research Problem.  Characterize uniquely intersectable graphs and/or grive
a recoymition algonithem,
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CHAPTER 2

The Design of
Efficient Algorithms

1. The Complexity of Computer AlgoTithms

With the advent of the Migh-speed electrotic compuler, oow branches of
applicd mathernatics have sprouled forth, One arca that has enjoyed a most
rapid growth o the past decade is the complexily analysis of compuler
algorithms. At one level, we may wish to compare the relative efficiencies of
procedures which solve the same problem. At 8 secound level, we can ask
whether one problem is intrinsically harder to salve than another prablem.
It may even forn ont that a task is too hard for a computer to solve within a
reasonable amount of time, Megsuring the costs 1o he incorred by imple-
menting various algorilhms is 2 vital necessity in compuler science, but it
can be a formideble challenge.

let us reflect for 4 moment on the differences betwean computability and
computational complexity. These two topics, along with formal languiges,
become the pillars of the theory of computation, Computability addresses
its2lll mostly to questions of existence: Ts there an algorithm which solves
problem [1? An early surprise for many math and computer science siudents
is that one can prove mathematically that computers cannot do everything,
A standaed example is the unsolvabidity of the halting problem. Looscly
stated, Uhis says that it i impoassible for @ professer to writc a cemiputer program
which will accepr as data gny student’s progranming assigmnent and wif]
FELHrI either the arvwer  ves, this stident’s program will halt within fnite (fme™
or “wno, this sivdent’s program (Ras an infinite loop and} wilfl run forever.”
Proviog that a problem iz computable usually, but not always, consists of

22
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demomnstrating an actual algorithm which will terminaw with a correct
answer for every input. The amount of resourees (time and space) used in the
caloulalion, although finite, is unlimited. Thus, corputability gives us an
understanding of the capabilities and limitations of the machines that man-
kind can build, bat without regard Lo resoerce teslrictimns.

[n conérast Lo this, compulabonal complexily deals precisely with the
quantitative aspects of problem solving, It addresses the issue of what can be
computed within a practical or reasonable amount of lime and space by
measurtne the resource requirements exactly or by obtaining upper and
lower bounds. Complexity is actually determined on three levels: the problem,
the algorithun. and the implementation. Naloradly, we want the besLalgarithm
which solves cur problem, and we want 1o choose the best implemeniation of
thal algorithm,

A prodlon consists of a question Lo be answered, 4 requitement to be
tulfilled, or & best possible sitwation or structore to be found, called a sodurion,
usually 0 response ro several lnput powarmeters of pariables. which arc
described but whose values arc left unspecified. A decision problem 15 anc
which requires a simple ™ ye3™ ar *no™ answert. Ao instance of a problem I is
a specihcalion of parlicular valoes lar its parameters. An algorithmfor Il isa
step-by-slep procedure which when applied o any mslance of I peoduces
a solution,

Usnally we can rowrile an opiimizalion problem as a decision problem
which ul lirst seems Lo be much easier o solve than Lhe origiosd bud luros oel,
to be just about as hard. Consider the followiig two versions of the graph
caoloring problen.

GHRAPN COLOELN G (oplimization version)

fnstance: An undirected graph G

Question: What 15 the smallest number of colors needed for 4 proper coloring
of 7

GRAPH COfORING (decision version)
fustamce An undirected graph O and an integer & = 0.
Questiger; Dises Lhere exist o proper & coloring of &7

The oplimication version ¢an be solved by applying at algorithm for the
decision version & times for an a-verles graph. IFihe » decision problems are
solved sequentially, then the time necded 1o solve the optimization version is
larger than that for the decision version by at most a factor of a. However, f
they can be selved simultaneously (in parallel), then the time necded for
bolh versions is essentially the samec.

It iz customary to sxpress complexily as 4 function of the sizs of the inpu.
We say that an algorithm of for 11 runs in time O f(m)) if for some constant
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¢ = 0 there exists an Implementation of < which terminates after at most
¢fim) {computational) steps For all instances of size s, The complexity of an
algocithen o is the smallest function 7 such that & wns in O f{m)) Tha
complexily ol a problem 11 s the stallest flor which (here exisls an O f{(#1))-
tume algorithm of Bor L ic, the minimum complexity over all possibfe
algorithns sobvinge N, Thus, demuonstrating and analyzing the complexity of a
particular algonlhm for [ providos us with an wpper dound on the complexily
of TL*

By presenting fuster and more cificient algorithms and implernencations of
algorithms, successive researchers have improved the complexity upper
bounds (i.c, lowered them) for many problems inoreeemt years. Congider the
cxample of lesting a graph lor plananty. A praph is plener ifitcan bedrawn on
the plane (or on the surface of o sphere) such that no two edpes cross one
anather. Kuratowski's [1930] characterization of planar graphs in terms of
forbidden configorations provides an abvious exponential-time planarity
lgorithm. namely, werily that no subset of vertices mduces a subgraph
homeomorphic w K or 2K ;. Ausiander und Parier {1961 ] zave o planar
cmbedding procedure, which Goldsiein [1963 | was able (o formulaie in such
& way that halting was guaranteed. Shirey [ 1969] implemented this aleorithm
to run in O{r™) time for an #-vertex graph. In the meantime, Lempel, Even,
and Cederbuaum [1967] gave a different plananicy alporithm, and, although
they Jdid not. specify 4 lime bound, an easy O{n?) maplementation cxists.
Roperoft und Tarjan [1972, 1974] then improved the Auslander—Paricr
method first to n log a) and fioully 1o Ofr), which 15 the besi possible
Booth and Leuker showed that the Lempel-Even- Cederbanm method
could alse be implemented to run in G(w) time. Table 2.1 shows the stages of
improvernent for the planarity problem and for the maximum-petwork-flow
problem. Tarjan [1978] summaizes the progress on 3 tumber ol other
prablems.

Determining the complexity of a problem 11 requires a two-sided attack:

{1} I'he wpper boumd—the minmum complexity over afl krowsalgonitbims
solving LI

(2} The lower found  the largest function f for which it bas been proved
{mathematicaliy} that all possibie algorithms solving IT are required to have
complexity at least ag high as £

Our ultimate goal is to make these bounds coincide, A gap between (1) and
{2} tells us how much more research is needed to achieve thiz goal. For many

* W hwve jusl described e worst-vise colRplexdy soalysis Onc may alsa farmalate
complexity gosording de e averame cene . A goand coseussion of Lhe prog daild cons of avecape-case
anulysis can be Boond in Weide | 1977, Section 4],



1. Complexity of Computer Algorithms 25

T'ahle 1.1

Proptress an ths eomplevity of oeo comlinatorial pwrohloms

Plaasrity, darimom necwntk flow:
A praph with # verlives A relwork wilh novertices atd ¢ edpes
axp L aritowski [L930] INonrerminatine Ford and
uncer cortain Fulkerson |18H42]
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Bocth and Lenker
[L07Th| . wee logt a Cradil amd Mazmad
AR

TDone jnalependentiy.

problems this pap is stubbornly large. An example of this is the problem of
matrix mulliplication.

In Strassen [1969] an algorithm is presented for moliplying a pair of
2 » 2 matrices using only sevent scalar multiplications. It is now known that
sevenl mulliplications is the best possible. For arbitrary n x m matnices
Srrassen’s algotithm may be applied recursively (by first embedding the
malrices inlo the next larger power of 2 i1 5i2e) 10 oblain 4 geteral algerithm
whose complexity is G{a" ") = G{n® "), Unal recently, O(n’*1 was he
bt resull known, The best algorithm known for the cnse of 3 % 3 matrices is
piven by Laderman [1976] it uses 23 sealar multiplications. By appropriately
composing these two methods with themselves or each other, we can oblain
the best algorithms known for n = 4, 6. 7, 8,49, and many other values. For
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w — & O, A, Schachtzsl bas an algorithm wsing 103 muloplications, an un-
provement of one given by (00 dyvkors, which wsed 103 Asymplotically,
however, in onder 1o improve Strassen’s general bound, one would necd an
algorithim for & — 3 using 21 or fewer multiplications (3ince fog, 21 <
log; 7 - log, 2N aran algotithm ler m = 3 using ¥l or fewer tnuliphcations,
cte. Amaringly, Pan [1975, 19794 has discovered a4 collzetion of algorithms
which do improve opon Sirassen™ boued, The bost of these is an algorithm
[or ;e = 4% which wsis 47216 multipbivalions. Since bog,, 47216 = 275,
Pan's algorithm has 2 complexily of Qa7 F) [n wry recenl work Pun
[ 1979k] has reduced the complexity down to G{(p*****) for very large »
This 15 currently the upper bound for the mateix muttiplication problem.
Crn Lhe olher hand, Lhe tghtest lowee bound koown to date for this problem
is only Q) Tsee Aho, Boporoft and THman, 1974, 1 <38,

The nggsst open question involving the gap betwsen upper and lower
complaxily bouds invelves the so called NP-complete problenss (dissussed
Delow), For cach of the problems in this cluss only capencotal-time algo-
rithms are known, yet the hest lower boangs proven so tar arc polynomial
funcrions, Fuarthermore, if a polynomial-ume algorithm exists for one of
themn, then such an algorithim exists for all of them. Inciuded among the
WP-complee probloms oo graphs are fnding 8 Hamiltoman eircut, a
minimum coloring, or & maximum clique. Appendix A conlains g small
collection of WP-complete problerts which wifl suffice for he purposcs of
this bock. For a more comprehensive 1ist, e reader 1s referred o Gurey and
Johnson [19T8] Led us discuas Lhe basics of Lthis theory.

The sicie of an algotithm coteists of Lhe current values of all variables
sird ke Tocation of ihe currenl instruction w be excouled. A dererministic
etdpor itk 1 olie [ur which each slule upon exccution of the iostrucion unigue-
Ly Jdetermines al must one nexl saate. Yirlually all computers, s we kiuow
thern, run deleininistically, A problem 11 iz in the class P chere exists a
delerministic polynamial-tice algorithm which solves 11

A nondeterwinistle algorither is one lor which 4 slite may delermine many
nexi swates amd which fllows up on cach of the next states simmiionesusy,
We may regard a nondelerministic algorithm gs having the eapability of
branching oll it muny copres of itself, one for each nexc state. L hus, while a
delerministic alporithm must explore 4 sel of alternatives one a5 a timz. a
pandetermiznstic alporithm cxamines all alternatives at the same time,

Following Reingold, Mievergelt and e [1977], three special instrue-
tionis are ussd i wriling nondelenringstic algorithms for decision problems:

a — choice(ST ceeates | 5| copies of the alpovithm, and assigns every member
of the ser & o the variable » o one of the coples,

failure causes that copy of the algorithm to stop execution.
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sukoess cawges all copies of the algogithim to stop execotion and mdicates
a “yes™ anpswer to that instange of the oroblem.

A noodetenennistic polynomial-tine alporithin for the decision version of
the CLIQUE problem iz the ollowing: Let G = {F, £} be an undirected
graph and ler & 2= {0

procedure U1 R, 21:

Legin
b= g
2 fwrallsc Fdeod - choieotid 1w, A,
A WA~ & then Taflyre
4 forulleowe s A p £ wdo
5. if o o [ then Failore ;:
G, SEMTEsS
wnd

The kop in line 2 nondeleroministically sclects a subset of vertices 4 = F;
lines d-6 decide 1f A s a complole set [T soeeess 15 reuched in one of the
copics, et Lhe fingl value of A in that copy is o clique of stee al leasi B Using
the above procedure we obtain a nondeterministic polynomial-tine algo-
rithm for the opeimization version of the CLIQUE problem as follows: Let
= be an undirected graph with # vertices,
procedume A X0CLFRLEG
begin

fork « e luep 1do

OO FAGE. &) then return &

end

A prablem I s i the clazs NI If theee exists a nondetereninistic polynomial-
time algorithm which solves FL We have just dononstrated that CLIQLE
™I* by presenting an zppropriate algecithim, Cleacly, I = NI Ao in-
perrtant open quastion: in the theory of computation is whether the contain-
ment of Pin WP proper; te, 8 P # NP

One problem My s pefynenaally transformable 1o anolther problem 1,
denoted TI; = M., if Ehere exists a funetion §f mapping the instanees of T
intg the instances of [, sieh that

{iy fis computable determimistically in palynontial time, and

i1}y asolution to the instancs ({1 of I, gives a solution to the instance J
of IT,, forail I

Tintultively this msans that I1; s mo harder te solve than 1, up W an added
polynomial letm, Bor we could solve 11, by combining the transformalion
with the best lgorithm lor solving T, Thus, if [T, =% I1., then

COMTLEXITY(T],) = COMPLEXITY{l1,] + POLYNOMIAL.
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I 11, has a delerministic polynomial-time alsonlhm, then so docs 11,5 4f
evory delernunistic algorithm solving FI, requires al least an cxponcnlial
amount of tme, then the swme s truc of M.

A problem 11 35 N P-hard iF any one of the following cquivalent conditions
hirlds;

(i I =11 forall IT'eNP;

(Aa) TTzP =P — NP

(A4 the existence of 3 deterministic polynomial-time alegorithm for T
would imply Lhe extslence of a pulynomisd-time glgarichm for cvery problem

in NI

A problem 17 is N P-complere iT it is both a member of NP aad is WI-hard
{see Figure 2.1). The NP-complete problems are the most difficulz of those 1o
the “xone of uneertainty.”

The topie of NP-complelencss was initisied by Cook [197] | Emphasizitg,
the significance of polynomial-tine raducibility. he focnsed attention on NP
decision problems. He proved that the SATISFIABILITY problem ol

Figwre 2.1, TFhe Ieracchy of complexities. The kig npen question s whorher ar nod the
“rone o uncertainty,” NP P, is smpty.
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mathematical lopic 18 NP-complete (Conk™s theorem), and he suggesied
other problems which might be NPcomplele, Kurp [1972] prosented a
large collection of NP-complete problems (about two doezen) anising from
combinatorics, logic, sel theory, and other areas of discrete mathematics,
i the next [cw yoars, bundreds of problents were shown to be NP-complere,
The standard teclmique employed with N P-compleletiess 15 as follows: Tigss,
by Cook’s theoscm, place SATISFIABILITY in the heg of NPwomplew
prioblems. Nexi, repeat the following scquence of mstroctions a few hundred
LiTnies:

I'ind a candidare [T which might be NP-complete, Select an appropriate
IT' from the bag of NP-complete problems. Show that IT e NP and IT' = I,
Add T Lo Lhe bap.

An gmounl of cleverness is neoded in sclecting 7T ancl finding a lransiormas
tion fram IT to IT, By way of iflustraiion we will demoostete such @ reduction
In the proof of the next 1heorenl. For a more complete treatient of Look’s
thearem and the reductions following from it see (in increasing level of
seope ) Remgald, Nievergell, and Deo {1977, Aho, Haperaft, and TNman
[1974], und Gurey und Johoson | L97§].

To illustzate tae techiique of reduclion, we present the lollowing resul-.

Theorem 2.1 (Poljak [1974]% (i) STABLE SLT = STABLE SET
ON TRIANGLE-T'REL GRAFTIS;
(i) STABLE SET = GRAPL COLOGRING.

Prood. {11 1et ¢ ke oan ondivecied graph wirh v overtives amd e odees
The idezx of our proot will be to constroct from 0 acertain triangle-free graph
H wilh the properly thal knowing «f A will immediately give us o0 Sub-
divide each edge of & itito a path ol lengih 3; eal]l the resulting graph AL
Clearly, 1 % & toangle-free graph with # + 2e vertices and 3e edges. Also, H
can he constructed from (7 in G — &) steps. Binally, since a1} = alG} + ¢
a delerministic polynomiat time algorithm which solves for «(I5) vields a
sclution Le af (7).

fi)  Let @ be ao undirecied graph and construct H as in parl (i) Moxd we
construct B [rom H as [ollows, The vertices of A" correspond to the edges
of A, and wo connel tweo vertives of H it their coTresponding edges in H do
net share o common vertex, This construction can be sasily cartied out in
O}y steps. Since IT is trangledree, A= —m —aiN=c4+n
— w(€7), Thus, & () can be determined from y(H). |

Since it 15 well known that STABLE SE'T s NP.complete. we obtain the
Following lesser known rosull.
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Corsllary 2.3, STABLE SUT ON TRIANGLE-FRUDL GRAPHS s
MNP-complete.

A graph theoretic or ather type of problem N which is normaliy hard 16
sulve in the geoeral case may have an efficient solution if the inpur domain is
suitaly restricted, The HAMILTONIAN CIRCULT problom, lor example,
is crivial if the only praphs considersd are trecs. Howover, we bave seen that
restricting the STABLE SET problem to mangle-frec graphs is not saf-
ficient Lo allow fasl caleulation (until someone proves that P - NP). Re-
sagreh has found interesting families # of graphs for which certain hard
problems IT when resiricted Lo % are nooirivipd and tractable (e, m P, In
this book we will consider Lhis sitnalion for various tamilies of perfect araphs
and some nol so perfect graphs. A more perplexing topic cwrrently ynder
investigation by many complexity thcorists is that of finding and under-
standing the cause of the boundoery between the Lractability and incractahbilily
ol vurious problems IT.

e final note: Our delinition of comptexily suppressed one fundamental
poinl. An implementation of an algorithm is always laken refative Lo some
specilied type of machine. As an wnderlying assumption throughout this
hook we will take the mmdom aceess machine (RAM), intradoced by Cook
and Reckhow [1973], as our madel of computation. The RAM is an abstrac-
tion of a general-purpose digital compurer in which each storage cell has a
unigue address, aliowing it to perform in one compatationad step an access
toany cell, an anthmetic or Boolean aperation. o 4 comparison, 4 compuarg-
Liin 15 performed scquenlially by a RAM, ong slep 4l g ime. The Lheory of
NWP-complele problems is gswally formulaled using the Tarmg maching
wodel raller thin the RARM, This presenls no difficuliy, however, since any
BAM can be simulated o o determimisiic Turing machive with only a
polyncniial iNcecase it running fune,

Summary

Beaides providing a basis for comparing algorithms which solve the same
problem, algorithmic analvsis has other practical vses. Most importantly, It
aflords us the eppottunity Lo know in edoaree of the compareadion an estimate
o 4 bound on Lhe storage and run Lime tegquirements. Such ad vanes kbow-
ledze would be assential when dosigning & compuler system ot 4 manned
spacecraft in which the ability to caleulate trajectorics and [re the puidane:
rockets appropriately within tight constraints had better ke guarantesd.
Even in less urpent situations, having advanced estimates allows a program-
mer Lo sel job card limils Ly abort those runs which exeeed the expected
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houtwds and hetice probably contain vreors, snd 1o avond aborting correct
programs. Also such estimales are teeded by Lhe person who must decide
wheother or ool i is worlhwhile spending the necewsary funds on compuler
Lime to carry out a certain (very large) computation,

2. Data Structuras

As the name suggssts, data siructures provide a systemaric framework in
which the vanables being processed {buth inpul and inwernal) can be organ-
iced, Data slructures are really mathematical objocts, but we will usually
teler to their computer implemenlalions by the same names. The moal
familiar data structure is the greayp, which is used in conjunction with sub-
serippred variables, A O=dimensional array s a single variable ar storape
Iocation, A& d-dimensional aray can be defined recursively as & finite sequence
of (f D-dimensional artays all of the same size, A vecter 15 psually storal
as o l-himensional array amd g maerix a5 o 2-dinoensional aray, It s cenetally
accepded Lhatl he enimies of dn ammay must be homogeneous (e, dll of the
same (ype and all reguiring the sume amount of space),

The mawn [eature of an array is its indcxing capahility. The subscrips
should uniguely deferming the location of each data item, The antries of an
array dre stored consceutively, and an addressing scheme using mwfripliers
allows uccess 1o a0y entry i a constant amoudt of time, Independent of the
size af the array, on a random access machine. Thus, a quety of the fnrm

“lv As e > Y7 ean be execoted in essentially ane step,

For those unfumiliar with the use of multipliees, the technigue will be
illugtruled for un i, x m, matriz 4. Let 1 assume that the entries of 4 are
stored scuuentially in kwalioms of sive s intheorder 4 A4, 5,00, 4 o,
Ay Az ze ooy Aa s cons Apy g Ap 20 o Apye, (TOW-majer ardering).
Then the space used by each row of 4 equals mys. Now A, ; conld he accessed
by starting at 4, ,, jumping down § — 1 rows, and then moving gverj — 1
columns, Thus, il B — ADDRESS{A | ), then we have the formula

ADDRIESS(A ) — B+ § — Lmys + (f — 1.

An analopgaus formuls can be oblained for column-major ordening, This
idca casily extends to d-dimensional arrays {Exervise 14).

A lisy is a data stmcture which consists of homosencous records which are
linked together io a inear fashion, Each record will contain one {iekd or more
of data and one fleld or more of pointers. Figure 2.2 shows two singly linked
lists: each record has a single forward pointer. Uolike an array, in which the
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COURANT

I e L e o ) I S N

CoLLmAR| 4

(e —{zo] {7 & |

Figure 2.2, Two singly libked liscs,

data is stored sequentially o memory, the records of a list can e scallered
throughouot memeory. The pointers maintain law and order. This allows (I
Nexibilicy of changmg the siqc ol the data structure, ioserling and deleting
items, by simply chanpeing Lhe values nf 2 fow poinlers ratber than shilting
lurge blocks of data. An implementation of our examples is given in Figure
23 To usoy twe arrays and dwo sinele variables, The A is i special symbol
indicating undefined. The listCOURANT can be printed out by the following
ProETam:

o]
Mt LOMIHAMNIT;
wldle F = 4
mrint DAT A4 P
P —POINTER{F};;
el

This is an example of seanming 1 sl Scanning mkes time propottional
the lenglh of the list

Two special types of listr should be mentioned here becanse of their use-
fulness in computer science. A staek is a list in which we ace only permitted to
insert and delele clements at obe cnd, called the top of the stack. & guene s 2
list in which we are only permitied Loinserl al ong cod, called the i@l of the
quene. and delete from the other end, called the head of the guene,

CONRENT *
o0 LWRIA

v 2 % 4 5 & T &
L EER I ES EAARNERES

paweeR: { A | a s ] el alalal ]

Fipwve 2.3 An wmplerncotaticn of che ligs COURANT and COUWRIA wang arrays. (Ln
whal veu wus Comibia lownded )
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The Adjacency Metrix of a Graph

Let (f = (V, E) be a graph whose vertices have heen {arbitranly) ordered
by . The adjaeency malnx M = (m; ;) of G isann x nmutrix wilh
entries

n ir wu gk,

it = .

TN 0 I
(see Figure 2,40, By delimition, (he mait diagonal of ¥ all 2eros, and M s
symmetiic about the main disgenal if and ooly if © 15 ap vodirested graph
If M is stored in a computer as a 2-dimensional array, then only one step
{more precisely Q1) time) is required lor the slatements ~1s oo e £V ot
“Fruse the edpe 1,7 An instruction such as “mack each verlex which 15
adjacent to o, " requires scanning the entire column § and hence takes n
steps. Similarly, “ mark cach edge™ takes #* steps. The space requirement for
the array representation s O(n’). A graph whose edges are weighted can be

represenled in the same [ashion. In this more generat case m; | will equal the

weight of g e a nonedpe will have weight either zero or infinity depending,

upatt the application.

i} 1al

HE &

o
e
wss [
-

14

Figure 1.4, () The graph & (b) The adjaceney mutns of 40, (2} The sdjacer oy iaes of 6.
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Some ol the performance figures abowe cun be improved upon when the
density of M ix low, We use the term sperse o indicate that |FY < o%, Le,
the number of edges is much loss than r®, Ome of the most talked about
classes of sparse graphs ure the planar graphs for which Luler proved that

[E] = 3n — &
The Adjacency Lisls of a Graph

For cach vertex v, of & we create a hsl Adj(n;) containing those vertices
adjacent to v, The adjacency Hsts are nol neocssarily sorted althongh ane

might wish them to be (see Figure 2.4¢) The space requirement for the
adjacency bst representation of o graph with » vertices and e edges is

r}(E [t + djj) - Ol 1 e,
3

where o, denates che degree of o, (see Figure 2.5), Thus, From sterage con-
siderations. it is usually more advanlapeaus ro use adjaceney lists than the

T 3 d 3

HEAD: 3[2 I g m|1

[
a
a
[
-~
4
=
=]
=

DATA: | .32

|
.
[
-
.w_
L:_
Les
e |

JANK: |4 A ® u|4 5 | ;
A I I N N I

NEAD: |1 (3[448 )19

DEGEREE: 2001401

DATA: (2.3|3|2]4 1|5|1|4|
(k)

Figure 25, Twa implementations of Figure 2.4, (@) Au implementatiorn o lhe adjacency
ey 0 G g lirckeedd lists. (b)) An implementation of the sdyaccney sots of & in soquential sinenge,
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Tabie 2.2

Soroe typical graph operadors and their complexity with respect b three dada sonctunes”

Adjaceey matrix Adjauency sces Addjaccoey sors
storea] ws an arTay stored us lsls stored stousnlzally

1% ;25 un edge! 31} Qid Cha*

Mazk sach voitex E¥k] (4] )

which is adpaecenl o

Mark cach cdge Xy e} e

Add an edpe ey 1 LI Wk e/l

Bruse sn edps 5o, LR 2 ey

21 the adjaceney sz are sored, (hors the strrmed enfries can be redused 1o filog 40
using 4 binary searcl, but the double stammed coury wall teceease 1o SR

adjucency matrix to store a sparse graph, Often, it 15 alse advantageouns from
tiure considerations to store a sparse graph using adjacency [ists, I'or example,
the instruction “mark each vertex which is udjacent 1o ¢, requires scanning
the list Adjte;y and hence takes | sieps. Sirenlarly, “mark such cdee™ Likes
ey steps asing adjucency bsls, g subslantial sgving over the adjacency
walna for u spamse praph, However, crasing an edge s more complex with
lists than with the matriz fsec Table 2.2), Thus there (s no represertation of o
graplt that s hest for afl operations and processes. Since 1he selection of #
particular data strosture cam noticeahly affect the speed and efficiency of an
algorithm, decisions abont the representation must incorporate a knowledpe
of the algorithms to be applied. Conversely, the choter of an algonithm may
deperd on how the data is initialty given. For example, an algorithm to set ap
the adjacency lists of o spurse praph will take longer if we are initiaily given
its adjaceicy mAITIX us un 7 « #narray rather thao as a collection of ordered
pairs represeeting Lhe cdges.

A praph problem is said 10 be Snear in the size of the graph, ot simply
Bivgrger, 11 it has an uleoritbm whick can be implememted o run in Qg + &)
steps on a graph with n vertives and ¢ cdges. This is usually the Best that one
counld expect for a graph problem. By a carclul choice of algorithm and data
structure a pumber of simple problems can be wolved in lincar time: these
include testing for connectivily {Section 2.3), biconncetivity {Exercise 5), and
planarity {Takle 2.1). We will illustrate this on the problem of convertiog the
adjacency Lsts of a graph inwo sorted adiecency fists.

[i s by now w well-known fact that any algorithm which correclly sorls
# x¢l of & pumbers using comparisens will reguire at keast & log k compari-
son: oth in the worst case and in the average cose.* Furthermore, many

* AL lepavithieos will be hase 2.
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£k log k)-time algorithms for sorting by comparisons are avarlable: HEAP-
SORT, BIiNARY INEERTION, MERGESGRET, cie. This might suggest
that sorting the adjacency hst of &, requires d; fog o, steps, so that sorting
all the adjacency lats would tuke 5. d; log d, steps, which s superlinear,
Lo, grealer than Ofn 4+ £ As an allcroative to compansoen sorting, Ady(z)
could be put into order vsing a radix or bucket sort, This method takes
Cip + d) mooves and is execuied gy follows:

Initulize bil veowor: <& b L B0 o Qo 00
Scan Aditz) assigning: b+ L Lor vack v e Adpe)
St SeredACiin) — &
Sean bil vector: for/ — oy do
if I':rJ = 1 then {XINCATENMATE ry to Sorted Adiicy)

o L —
o

If this were dane for all adjacency setz, it would require (n*) steps which
iz superlinear for sparse graphs. Happily, there is vet anosher method for
ordering Lhe adjseency lisls, which torns oul to be linear. Tt 15 conceptually
very simple and differs from the ghove in that Lthe SortedAdi(s) are not
croated separately, bul tather, simultancouwsdy.

Alporithm 2.1. Sorting the adjacency lists of a graph.

Input: The unsorted adjacency lists of a graph & = {V, E) whase vertices
are numbered vy, Ty, .., By

Catpuat: The serted adjacency Lsls of the reversal & ' =(V, E (I G is
unditected, then ¢ = 0 '; atherwise rn the algarithm & second time an
0oL

Merhnd - The algorithm s as fallows;

bepin
| Tor 7+ F b di Snrtad Adie) +— anapty lisb;
furd — 1 to 4 do
for cuch &; ¢ Adpzsido
COMCATEMATE 5 ta SorrcdAdjis,);
emd

o b

Theorem 2.3, Alsocithm 2.1 runs in p + ¢} tione,

FProwf.  Line 1 iz a loop which takes (e steps. Concatensiion 15 mdepon-
deni of the length of a lisy provided that a8 pointing yariable i wed o re-
member the address of the end of the list. Thus line 4 takes (1) steps, and the
loop 3 4 takes £Nd,) steps. Therefore, the nested [oops 2 4 require a total of
Y1 Otdy = Of) steps, which proves the theorem. |

The usual implementation of sdjucency sets us lnked lsts is illustrated in
Figure 2.5 There is an alterngale way of stoong (he adjaceney scls when oo
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tnserting or deleting is anticipated. Under these circumsiances sequential
storage can e used e chirminate the links that were present in the list repre-
sentation and thus save space, In bolh implementations HEAD{(E) poinis Lo
the fiest member of Adi{e,), bot Adj(.) is now stored in consecutive locations
DATA(HEADC, .., DATA(IICATND) + DOGREE(f) — 1) (see Figure
2.5b) and Fxercise 9).

For lurther resding on duts struetorss and their wses see Kooth 19697,
Ao, Hoperolt, and UNMlmao [1974], Horowile and Sabun [1976], Lewis and
Smith [1976], Wirth [1976], Goodmun and Hedelnicn [1977], Reitigold,
Mievergelt, and Deo [1977], and Gotleib and Gotleib [1978].

4. How to Explore a Graph

Tn designing algorithms we [requently require a mechanism for exploring
the verices and edges of & graph. Having the adjacency sets at hand allows
us Lo repeatedly pass from a vartex to one of its peighbors and thos “walk ™
theough the graph. Trpically, i the midst of such a searching algorithm, some
of the vertices will have been visited, the remainder not yet visited. A decision
will hawe o be made us o which verlex x 18 bemg visited next Sinoe, in
general, there will be many eligible candidates for x, we may want to co-
tablizsh sime sorl of prworily among them.

Twa criteria of priority which prove to be especially usaful in exploring a
praph are discussed in Lhis section, They are depth-Grsl scarch {DFS) and
bremdeli-licst search (BFS). In both methusls cach edes 15 traversed exactly
once 0 e forward and reverse diccetions and each vertex is visited. By
cxamining a graph i osuch a siructured way, some algorithms beeome
cusier L understund ynd fasler Lo exeente, The choiee of which mothod Lo
use will often alfect the elficiency of the algorithm. Thus, simply selecting a
clever data structure is not sufficient to insure a good implemeniation. A
carcfully chosen search technique s also needed.

Depth-First Search

In DFS we sclect and visit a vertex u, then visil a verlex b adjigeenl 1o 4.
comtinuing with a vertex < adjacent to b (but different from g, [ollowed by 4o
“unvisited ¥ o adjacent 1o ¢, and 50 forth, As we go deeper and deeper into
the graph, we witl evenlually visil a veriex p with no unvisited neighbors;
when this happens, we relom to the veriex x immediately preceeding v in the
search amd revisil x. Nole thal iF €7 15 a conpected undicected graph, then
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pracertare TIFSEA RCH(#}:

ewrin
1. itk v wigited 72 é — F + 1) DESNTIMBER{E) + i
2. Mo vach w e Adjie) du
1. #Hwiz marked " unvanged™ then

Dweyrio
4, Add the adge ow i ¥ FATHER(W) +— &
L3 YFSRARCH W,
el
end

Figure 24, Doplh-Qirst seanch.

gach vertea will be visiled wid every edge will be explored once 1w both
directions. ITG s nol connected, then such 2 sepreh is comied ool By each
conneeled component ol G,

A depth-ficst search of an unditecled gruph & = {V, E) partilions the
edge el inte Lwo classes T and B wheee T ocomprises a sparming forest of O
with one spanning tree for cach component of &, The edge x¥ is placed into
T if vertex y was visited for the first time immediately lollowing a visit to x.
In this case x 1s called the father of v and yp is the son of x. The origin of this
male-dommated nomenclature appears 1o be hiblical. The edges in T are
called tree adges. The remaiming edyges, called hack edges. arc placed into 5,
they are also called fromds by an(n) arborist graph theorist 16 & is connected
then {F, Ty s called a depeh-firsr spasning frse. We consider cach lree of
the depth-first spanning forest to he rosted af the vertex at which the DFS of
Lhat Lrce was begun

An algorithm for depth-fiest search is given below,

Algorithm 2.2, Depth-first search of a graph,

frput: Ao undirecled graph & = (F, E] reproscnled by adjacency sets
Adj{uy for e V.

Ouiput: A partition of £ into 4 set T of tree edges and a set # of back edges
Method: Al vertices are initially marked “unovisitd.” The procedure
DFSEARCH in Figure 2.6 42 wsed recursively, All edees in B nof placed mta
T are assumed Lo be in A I addition, Lhe verlices are numbered from 1town
according to the order in which they are first visited; DFSNUMBER(z)
denotes Lhis oumber for a vertex ©. The algorithm is as follows:

begln
iliadiee: T~ 05+ 0,
e all pe F da mack o ' anvigited ™;
while ihere cxigls v & Fmarked  anvisitad © do
DEFSEARCH;
end

-

=
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la peneral a graph may bave many depth-ficst spanning forests. Tndeed
there is quite a bit of freedom in choosing the vertices in lines 2 and 8. Nong-
theless, a depth-first spanning forest T has some impottant and wseful
properties. whiclh we now state,

(EM) I v s a proper ancestor of win 1, then DESNUMEBER(#) <
LFSNUMEBER{w),

(D2y  Forovery edge of G, whether teee or back edge, ong of its endpoints
15 an anceslor of the olher eodpaint, that s, there are bo “cross edges.”™

We leave the proof of properties {I31) and {I32) as an exercise,

DESEARCH{:} is an example of a recursive proceduwre, that is it calls
el Such 4 procedure 15 implemented using a stack. When a call to itself is
made, the current valoes of all vartables local to the procedure and the ling
ol 1he procedure which made the call are stored at the top of the stack. In this
way when control is retarned the computation can conlioes where it had left
ull. Sume compuler languages. like aican, PLA, PASCAL, and SETL, aliow
rocursive subroutines and scl up the stack gutomalically for you, Other
lumguapes, ke FORTRAN, (0OBOL, 0T BaSTC. do not have 1this fzature, so that the
progrommer musl sel up his own slaek Lo simulale the recursion.

Breadth First Search

In BI'S we select g vertex and put il on an inittally emply queoe of vertices
tir be pivired. We repeatedly remove the verlex x at the bead of the gqueoe and
then place onto the quoous all vertices adfacent to x which have never been
srguened. As o Lhe vase ol deplh-firsl search, BFS is curmed oul oncs for
cach connected component of the graph, Ilowever, in BFS zach vertex is
visited only onec (and is thus exhausicd, having produced all i{s offspring in
ooe visil).

A breadth-first search of an undirected priph & = {V, £} also partitions
theedge sel into two classes: the tree edges i T and the back edges in B, 1iere
an edge xy is placed 1o T if vertex v is enquened during the visit to x. The
{partial) subgraph {V, 1) is called a breadtfi-firse spamatng foresi.

An algorithm for breadth-ficst scarch is given below,

Algorithm 2.3,  Breadth-first search of a graph.

Tnput: An undirected praph & — (F, £) represented by adjucency sels
Adj(e), for v e V.

Chetpiet: A partition of B into a set T of tree edges and a sol B of back odpes,
Method: ATl vertices arc initislly marked “never enquened.” The procedure
BFSEARCH in Figure 2.7 is used to visit a vertex All edges in E not placed
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procedure BHSEARLH( x):

Incmn
I, s+ i+ L, BFSNUMEER) -
2. for zach 1 = AdNz) do

L il p s macked P oever emyguewned ™ Ul
bepin
4, Add the edpe =10 1 FATHEROD ~— T
5. add 110 €); matk y Cenguegsd '
end
end

Fipure 2.7- RBreadih (st search

into T are assumed to be in B An array BFSNUMBER records the order In
which the vertices are enquensd and visited. The alporithi is as follows:

hepin
& imidalize: - 28 00 emply quele, i e O
N Farall & e Fodoomeark ¢ never angueted T,
5. whik 1z emply and there exisls = F Foparked U oot ewgosned ™
. add »to €2 mark i - sngquened
10, while {J is nonampy
1L. o= heud of €F G~ [} — x;
12 BESEARUCHx),
ered
el
vad

Let T be a breadth-Aost spanning forest of an undirected graph G = (F, £

As was the case for DFS, a graph may bave many breadib-first spanning
torests, The fevel (in T of a vertex ¢ is defined inductively:

j’{}, ifsisarootofatreein T

FEVEL®) * ) | LEVEL(FATHER@Y,  otherwise

A breadth-first spanaing forest T satisties the tollowing properiics.

(B} I »is a proper ancestor of w n T, then BFSNUMBER(r) <
BI'SKUMBLR{w).

(B2}  Every edge of &, whether lrec or buck edpe, connescls two vertices
whose level i 8 dilfers by at mosl 1.

(B3} Ifpisaveres in the connegled component of 6 whose root in T isr,
then the: Jevel of 6 equals the length of the shortest path from rte ¢ G

In Section 4.3 we will discuss a variant of the process described here, called
lexicographic breadih-fivsl search, in which the vertices of a given level are nat
scirchal in the same order as they are engueocd, but rather according to a
priority which depends on their ancestors.
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Implementatian and Complexity

lel 65 = {F, E) be a graph, Both Algorithms 2.2 and 2.3 can be imple-
mented to run i Lime and space proportional to |V] + | E|. Such an imple-
mentation is said to be Jinear in (he size of 6. Thiz 15 uswally the best that one
can expect from a graph algarithm, singe it is reasonable (o assume each
veriex gnd cach edpe must be processed. Let us describe in detail a linear
implementation of Algorithm 2.2 and leave Algorithm 2.3 as an exercise,

The adjacency rets of 7 can be stoved vither as singly hnked lists or by
using sequential allocation®; thus, the input can be entered in OC| V| + | E])
time and space. A Boolean array VISITED of size | V| can serve wo mark cach
verlex ¢ wredsited it VISITED(E) = 0 and pisired if VISITED) = 1. Thus,
line 7 of Algorithm 2.2 can be cxecuted G4 | V| ) time, and the tests in lines
3 and 8 can be done in constant time, The sct T can be a singly linked list,
while TATIICR and DIFSNUMBER will be arravs of size |F|. Ilence
statements 1, 4-6, and 9 can each be dpne o constant time Mow coimes the
crucigl part of the complexity analysis, Statement % requircs a pointing
variable which will scan, or rum through, all the vertices exactly once. That is,
when this pointer finds an unvisited vertex, the pointer’s value will be saved,
so that the nexl time statement & s sequired the search Tor an unvisited
verlex can resumde al the spod whens i had last loft off {rather Lhan starting at
the beginning of ¥ each time), Therefore, the total oumber of operations
summed over all cxecutions of statement 8 15 propertional to | F|. Exactly
the same techmigue is used in statement 2 to scan Adi{e) which. together with
CUT PIEVious comments, implies that the entire procedurs DI'SEARCI(x)
takes O | Adi(ad) time. Finally, the procedure is called once for cach vertex,
s the total time (and space) complexity of our implemenlation is

KV Evﬂ'ﬂ&clj(u}ll)-
e
which equals 00| F| + | &}

As we mentioned 10 the opening paragraphs of this seclion, one search
technique may be preferable over another, thal is, iU may give us & moe
ciicient implementation. We List some islances of problems for which DFS
and BF5 arc most affective, respectively,

DFS—platarity lesting; cerlain connoetivity related problems (bicon-
neclivily, tricotnectivily); Lopalogical soring; lesting for eyeles in an oriented
praph.

* It inserting or delering of edpes were required i e elporithen, then sequem ol allovaticon
woitld nert e advinable
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BFS§ shortest-path problems; testing for chordless cycles (Seetions 4.3
and 4.4): network Bow problems,

In the nest section we will diveuss ane of these problems—topological
sorting. U'pon completing that section the reader will have been exposed to
all the algorithmic toels needed for the remainder of the boeok. For additional
reading in this area see Ahe, Hoperolt, and Ullman [1974], Goodman and
Hedetnieini [1977], and Reingold, Mievergelt, atd Deo [1977].

4. Transitive Tournaments and Topological Sorting

Let 2 be an orizntation of the complete graph K, on s vertices. Fach edge
xy of 1 may be reparded as the outcome of a contest belween the vertices x
and v, where x was the loser and p the winner, We call 2 a {romsitiee iourmd-
went if, for all triples of verlices,

sy F oand yzefF inpligs  xz=F, (1

Condition (17 simply savs inat F' has oo 3cyeles, A scrongs statement can
be made,

Theorem 2.4, Let Fobe an orientation of the completc graph K. The
following statements are equivalent,

1) F isa transitive tournsament.
(iiy F is acyelic,

Moreover, Lthe verlices can be lincarly ordereed oy, £y, ... o] such thal
{tii} - ory has medegree i — 1o F for all £ and
(v) e Fifand onlyilf <

This linear ordering of the verticss 1s unique, Figure 228 shows o transitive
tournament and the linear ardering of its vertices.

Proof (i} == (11)  Sitce Vi3 transitive, it has oo J-cycle. Suppose F has an
feyele (= 3pwhoere § s smallest possitle. But this Feyele has a chord which
shortcts it, producing a cyete of shorter length and thas contradicting the
minimality of I Hence, 15 acyclic,

(il == (it} ITF 15 acechic, then if hus a sink (o vertex of out-degrae zero),
Call the sink o, Clearly ry, has m-deprec 2 — 1. Deleting o, [rom the graph,
wi obluin o smuller soyelic oriented graph, and the conclusion follows by
induction.
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&

Figore 2.8, A Lunsilive leuridacrent,

(i} = (v} By induction.
{iv) = {i} Obvious

Thix theorem provides s with 2 Jinear time algotithm for rocognizing
transitive lovmaments, Fiest, calenlale 1be m-degree of each vertex; then,
using a Boolean vector, verify that thore are na duplicates among the in-
degrees. The Lechnigue of recogmzing a class of graphs yefely on the basis of
the degreay af their vertices will be seen aguin when we study threshold graphs
(Chapter 107 and split graphs (Chapter )

A slightly more generdl problem than recogmizing transitive tourniments
is thal of ropaologically sering an arbitrary geyelic ooented praph e = (¥, FL
Whiat we seek 15 4 linear ordering of the verlices [y, 2o, o0, 0,1 which 13
consislent with the edpes of G that s,

poEF =iaf (for wll i, i, (2)

An ordering which satisties (2% s called a fopolagical sorting of O TP had »
cyide, Lthen a Lopological serling would clearly be impossible. Why? Bul, if
{r {5 acyelic then §7 s always possible. One mathod for finding an ordering
sacisfyirg (2] is the following:

Forje |V |tol step |
Locate 4 sink ¢ of the remaining graph and call it ¢
Delete s and all edges incident on 6 from the graph:

nexty;

{3)

The correctnass of this methodd is telt as an exercise, In pracfice, weo can
implement (3} without actually deleting anything fron omr data structires.
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Rather, we employ a deptli-first search and some clever labeling. The
algorithin is presented below,

Algorithm 2.4.  Topological sorting.

Inpue: An aevelic oriented graph & = (¥, F) stored as adjacency Hsts,
Curput; A DFS nombering of the vertices called DY SWNUMBLR and a
topological sort numbering of the verlices called TSNUMBER. The algo-
rithm also tests e make sure that O is acyclic.

Mezhed: To fnd the jth vertex of the desived ordering, the deptiv-first search
procedure TOPSGRT in Fignre 2% locates a vertex r all of whose successors
Im G have alveady been searched and tumbered angd are therefore considercd
as having been deleted. "This vertex r 18 then numbered. The enlire algerithm
18 a5 follows:

beyin

for cach » = I do
DI SMLUMBER{=Y — 1]
TShUMERRLS) — 05

i-lE,

I~ Th

for cach x ¢ Fde
if DFSYUMRBERL - O ihen

rOeSORTO;

Algoeithm 2.4 15 illuslruted m an caumpls in Appeodix C.

procedure ' TUPFEI0R D)
i—:141;
DHFSNUMBEERDG: — i
for aH v F Adiir) do
Ineaine
il DFSMLIMBER[W) — O then
TOPEQRT(wW);
else SETSNUMBER ) - Othen
B TR TTT FTEUE TEa
e
commcet: We pow |ghel = with 3 valae smaller than
the value nusipned to ey descendant.
TEMUAMBERY) +-
A=

Tetirn

Fipore 1.9,
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EXERCISES

1. (a} Show that a spanping tees of the complcle graph K, i cither a
depth-firat spanting tees or a breadth-firsl spanning Lee,

{k) Find a spunning tree of the complete graph K5 which is neither a
depth-fimst ot a breadth-first spanning e,
2. Maodify the DES and BES Algorithuns 2.2 and 2.2 to count the numbser of
counceted commponents of an vodivected graph &
). Prove propertics (D1 and {T32) for any depth-fivst scarch spanming
forest T
4. A vorlex xis an arcdoedetlon verees of @ iTdeleting » and all odzes incident
on L incretses the number ol connecled components. Let G be o connected
undirected praph. and let T be g DVE spanning tree of G- Prove that a vertex
x is an articulation vertes of G iFand only i one of the Rdlowing holds:

fi) xis the root of ¥, and x bas more than one son;

(1id x5 mol the root of T, and for some son x of x there s no back edge
batween any descendent of s (Including s itzell) ane a proper ancestor of x,

Remark. A connecled andirected graph G is fécomrected {there are Iwo
vertex=digjoinl paths between cvery pair of verticesy if and ooly if ¢ has no
arhicnlation verles.

S{Hiconnectivity), Tal T hea DFS spunning tree of an undirected graph G.
Assume that the verfices are numberod consecutively as they arc lirst visiled
doring depth-first search, and iet m{v) denote this number. For cach verlex x,
dutine

LOWER) = MIN{mx), m(w),

where w runs over abl proper ancestors of x accessible frawm a son of x by
going down some tree edges and then up one back edps.

) Write a depeh-firse search algorithie which assigns the valuss =(x)
ang calenlales the values LOW{x) for all vertices x.

() Prove thal vour algorithm can ran in (| F] + |E]) time for an
arbitrary graph & = [V, E).

{c]  Show how your algorithm can detect articelarion vertices using the
lunction LOW.
6. Trescribe an efficient implementation of Algonithm 2.3 and prove that 11
15 lingar in the size of the wraph,
7. Let § and I be subsets of the intecers 1.2, 3, ..., n, a0d let A be a one-
dimessional array of size 7 whose values have been initialized 4(1) =
A2y = +a0 = Afn) = 0 Wile subroutines which ealenlate S0 T and § T
in time propottional to |[5] 4+ |T]. Assume that 5 and T are storcd us
(unardercd) gingly Fnked lists, {The answer appzacs in Appendix B.}
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B. Let H = (V. F) be an acyelic oricnted graph, A height function h is
defined on Lhe vertices mdoetively:

1l if 11 is a sink,
hpy —

(| + maxihiw)|we Adir)} otherwise,

Write a DFS algorithm which assigns a heighr fusction & 1o ths vertices,
Prove that your algonthm can be implemented w rue io |V, — [F|)
lime.

B Lat Vo= {12 .00} and Tet £ be y colleetion of s ordered pairs repre-
seniing the edges of 2 praph 6 = (¥, E) Write a porrean progeam which
allocates segueatiol space it an array A of size m to stare the adjaceney weils
of (7, where Adily is followed by Adj(?), atc. Let b, denote the Tocation in A
of the beginning of Adj(), and lei d; denoie the out-degree of vartex | {i.e., the
number of ordered pairs in which il is the first coandinate). You are petmitted
exactly two scans of b, one Lo caleulate the out-degraes of the verrices and
o Lo 1] the array. For example, if

E = {(4,5), (1, 4316, T0 (3, 2L 4, 1),(5, 4), (8, 2),
(T, 60, (2033, {2, 80, 9. 4), (1, 6. (4, 91,16, 1),
(5, 71. (4, 6), (4,70 (7, 5). (6,43, (7. )},

ther the array A should Took @ indicated in Figure 2,10, Nota that

b= 14 } 4.
7
AdiCY Adi2) Adjf4) AdiiT)
R " — !, e
N i i ' i I N i
als 3|32<| a6 T4 T:1 46 s|al2]a:
— : :
d -2 do-5 d, -1 B -1 b, -8 b &
d—2 d, =2 dy—1 b,=3 B, — 1l b — I
dy=1t dy=3 dg=1 by=5 k=13 h, — 2
Figure 110,

10, Using the data stoucture from Exervise 9 implemend the algorithm
friom Faercise § and 1est it on some sample grephs

11. Using the data stencture from Fxercise 9 implement the akgorithm
from Lixercise § Lo test some sample undirected graphs for hiconnectivity.
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12, Lot U(n} be the sct of all upper tiangular, (0, D-valucd B < 7 malrices.
That is, an & = #nustrin M = [ is in Lia) if

0 =y
r”jj= | ]:=j..
Qorl [

Show that L{n) forms o group undet matrix multiplication over the twg
clement ficld GEC2 and that the identity matrix [ is the identity element of
this group. {in GL2 040 -1 +1 -0, ¢~ T 1T 8- 1, 0.0
b l=1-0_0andl-1=1}

13. Let & = (T, FYbe an acyclic, topoicgically sorled, orenled praph: ue,
its vertices have been rcnamed such that ¥ = 11,2, .., »} und

HeF amplies § < Lie¥)

Clearly, this numbering implics that the adjaeency mulrix MG} of (7 s upper
rriangular and i= therefore in L) fiee Exercise 120 Convider the subsel

Lg={MeUln|m;=Li=j=fefF:

consisting of these mattees m U{x) with noneeros only in the positions
determined by the netwros of M)

i) Show Llhat the clements of U can be ordered by set inclusion te form
a comrplele, destributive luttive.

(1) Show that 17 15 a subgroup of Uik} if and only if F i3 transitive (Le.,
a slriel parbial order).
4. Let A be a d-dimensional array of sizc s, = ma = 0 2 . EISCUSs
Hew A may be stored in consecutive slorage locations of s1ze » 1 a mannst
sintilar €0 cow-major of column-major ordering, Give a formula for obtaining
the address of A, ;5.
15, In ke proof of Theorem 2.1, show that the following ¢launs are vacid:

{11 The transformation G — H is Qfn + &),

(i) wIT) = €7} + «.

fuil  The translormation 4 — 1 @ O0e®) Canbis be improved ?

{iv] #[HY =& — 0 — wC).
16, Prove the following: If ¢ bas & vertices, then Wy = +if and only if
(7 = Kb =r, where ® detotes the Cartesian product. (The Cartesian
product of two graphs G, = (F, Epand &, = {F;, E.5is the graph G =
{F, = Fa, E), where Eo= {{n, 0,0 (v, o)) etther 6, = o) and (rq, 20 E B,
or i, = 15 and v, v e £ (Chvadal [1%73, p 32670
17.  Lsing Lxercise 16, show that GRAFH COLORING = STAHLE SET.
18 Prove lhul assipmng o onoimam coforing o o biparlile praph has
complesily which is linesr io the size of the graph.
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19. Prove that STARLE SET restricted to bipartile graphs has com-
plexity which 15 polynomial in the size of the graph.

20. Frove that HAMILTONIAN CIRCUIT restricted to btpartite graphs
is NMP-complete,

21. Il a positive integer s can be stored in | + [log, m] spuce, show Lhal
the numbers 1, 2,5, ..., ncan be stored in a tolsl of £{n) space.

2. Alporithms &F amd # run in 57 and 27 sleps, tespoctively, on an mpul
of sivi n.

{iy lcurrent compuiers can sxceule 10° sleps/sec, what size mpui can be
processed by cach algorithm in one minute? In one hour? In one year?

{ii} Buppose that by the time this Book reaches your universily library
the computer wdustry has a tochnolopical breakthroogh, which increascs
the speed of execution by 100-fold. What will he the corresponding increased
cipahility of atgorithns & and &7
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CHAFTER 3

Perfect Graphs

1. The Star of the Show

In this scction we introducs the main character of the book—rthe perfect
graph. He was “discovered™ by Claude Berse, who has been his agent sinee
the eacly 19605, P05 has appearce in such memorable works as “Farbung
voll Graphen, deren similiche bzw. deren wogerade Kreise starr sind ™ and
*Caracténsation des graphes non orientés donl on peut odenler los arrétes
d¢ manicre 4 abienir o graplc dunc relation d'erdoe.” Drespite lus scemingly
assmning name, P.G. has nuxed the highbrow glamorows life with an intensc
dedication to improving the plight of mankind. His fcature rolc in ™ Perfoct
graphs and an application to eptimizing municipal services™ has won him
admiration and respect around the globe, Traveling incognito, a further sign
of his modesty, be has been spotied by lans dispuised as a graph parfait or as
d (banuaa) split graph in a local e oréam parlor. So, Tadies and geotlemen,
without further ado, the management proudly presents

THE PERFECT GRAPH

Let us recall the Inllowing parameters of an undirected praph, which were
definad in Saction 1.1,

e (), the cligue number of G: the size of the fargest complete subpraph
of &,

AG), the chromatic manber of G the fewest number of colors needed to
properly eolor the vertices of G, or equivalently, the fewest number of stable
sets necded to cover the vertices of G.

ol
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afis}, the stability mumber of G: the size of the largest stable set of &,
k[E5), the clique cover manber of G: the fewest number of complete sub-
graphs neaded W cover the vertices of

The intersection of a clique and a stable set ol 4 graph (& can be at most one
vertex. Thus, for any graph £,

a6} = ((G)
and

#(G) < K(G).

These equalities are dual to one another since a(F) = o) und k(G) =
HG).

Let ¢ = {¥, E) be an undirected praph. The main purposc of this book is
to study thosc graphs sutisfying the properties

(P)) (G} =xG,) (foralldc¥)
and
Py alGr=kiG,) (oralldc=V)

Such a praph is called perfict. Tt is clear by duality that a graph & sulishes
{P, ) if and only if its complement & satisfies (P ). A much stronger tesult was
conjectuted by Berge [1961], cultivated by Fulkerson [1969, 1971, 1972],
and finally proven by Lovass [19724], narely, that (P} and (P,) are equiv-
alent. This has become known as the Perfect Graph theorem, which will be
proved o the next seetion along with a third equivalent condition, duc to
Lovase [1972b],

Py} oG G) = 4] (ferall 4 Z V)

In subsequent chapters it will be sufficient to show that 4 graph satisfies any
(P} in order to conclude that it is perfect, and a perfect graph will satisfy
all properties (P),

A fourlh characterization of perfect araphs, due to Chvétal [1975], will
he discossed in Section 3.3, and we shall encounter stitl another Tormulation
in the chapter on superperfect graphs.

It is traditional to call a graph y-perfeci it it satisties (P, ) and =-perfect if it
satisfies (P,). ‘The Perfect Graph theorem then states that a graph is y-perfect
if and only 1f it 12 x-parfect. However, the equivalence of (P,) and (P;) fails
for uncountable graphs. The interested reader may consult the following
references on infinite perfect graphs: Hajnal and Suranyi [1958], Perles
[19631, and Nash-Williams [1967], Baumgartner, Malitz, and Reinhardl
[1970}], Trotter [1971], and Wagon [1975].
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2. Tha Perfect Graph Thaorem

To this section we shall show the equivalence of properties (P,)-(P:)h A
key to the proof is that multiplication of the vertices of a graph, as defined
below, preserves each of the propertics {P;),

Let €F be an undirected praph with verlex x. The praph & ¢ x is obtained
from G by adding a new vertex x' which s conmected to all the neighbors of
x. We leave it to the reader to prove the elementary property

(Gox) —p=(G — P=x for distinet vertices x and y.

More generally, if x,, x5, ..., x_atre the vertices of Gand h = (hy, by, ... B
is a vector of non-negative intepers, then & = & - h is constroeted by sub-
stitnting for each x, a stable set of A, vertices x/, ..., x}' and joining x¥ with
x) il x; and x, are adjacent in G. We sav that F is obtained from G by mufti-
plication of vertices.

Remark. The definition allows b — 0, in which case H includes no copy
of x;. Thus, every induced subgraph of {7 can be obtained by multiplication
of the appropriate (0, 1valued vector,

Lemma 3.0 {Berge [1961]),  Let H be obtamed from by multiplication
of vertices.

() Uf & satistics (P,), then H satisfies (P)).
(n) I {5 satisfies (P, ), then H satisfies (P

Proof.  The lemima is true il & has only one verlex. We shall assume thal
(1) and (i) are (rue lor all graphs with kewer vertices than G, Lel H = G- h
Il ot of Lhe coordinates of I equals zaro, say i; = 0, then H can be obtainad
from & — x; by muoltiplication of vertices. But, if G satisfies (P} [resp. (P,Y],
then G — x; also sutisfies (P, ) [resp. (P,)]. In this case the induction hypoth-
esis implics {1) and (i),

Thus, we may assumc that cach coordinate &, = 1, and since H can be
built up from a sequence of smaller muhiplications {Excreise 2), it is sufficient
to prove the result for II = & x Lel ¥ denote the added “copy™ of x.

Assume thal G satisfies (P} Since x and x' are nonadjacent, e G- x} =
(7). Lot F be colored using (G colors. Color x° the same ¢olor as x. This
will be 2 coloring of £5 « x in el €z » xY colors, Hence, (7 o x satisfies (i)

Mexl assume thatl & satisfies (P,). We must show that =G - x) = G c x).
Let ¥ be a clhque cover of & with || = k(G) = =ié), and let K, be the
clique of ¥ contaming x. There are fwo cases.
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Case I+ x is contained in a maximum stable set S of G, i.e.,|S| = o(G). In
thiz case 8 o {x'} 15 aslable sct of G x, 50 .
(GG o x) = a(G) 1 1,
Since A" {{x'}) covers G = X, we have that
HGaxy < MG+ | = @) + 1 = alG=x) < k(G x).
Thus, G > X) = &(G = x).

Case 2t No maximemn stable set of & contains x. 1o this case,

#G o ) = afi),

Since each clique of ¥ intersects a maximum stable set exactly ooce, this 13
trug in particular for K. Bot x is not a member of any maximum stable set,

Therefore, D = K| — {x} inmersects sach maximum stable set of G exactly
OIE, 50

o{(fy_p} = AG) — L.
Thiz implies that

MGy pl= oG _pt=e{G)— I =a(li-x)— 1.

Taking & clique cover of G, 5 of cardibalily (G~ x) — 1 aloog with the
extra clique 2w {57, we obtain a cover of & - 5. Therefore,

k(G o x) = oG » ). 1

Lemma 3.2 {T'ulkerson [1571], Lovasz [1972b1).  Let & be an undivectad
graph each of whese proper induced subgraphs satishies (P), and let H be
obtained from G by multiplication of vertices, If G satisfies (Py), then H
satishizs (P5).

Progf.  Let & satisky (P) and choose H 10 be a graph having the smallest
possible number of wertices which can be obtained from & by multiplication
of vertices but which faids 1o satisfy (P,) itself. Thus,

eXHy(H} < | X1, (1

where X denotes the vertex set of H, yet (P3) docs hold for each proper in-
duced subgraph of H.

As m the proof of the preceding lemma, we may assume that each vertex of
G was multiplied by at least 1 and that some vertex  was multiplied by
h=2 Let U = [ulu®, ..., 1#] be the vertices of H corresponding to u. The
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vertex #' plays a distinpuished role in the proof. By the minimality of H,
(P} is satisfied by H, _ ., which gives
X~ 1=|X —o'| S ef{Hy_xlHy_u)  [by(Ps)]
< w{ ) H)
=X =1 [by (13].
Thus, equality holds througheut, and we can defing
p=alHy_ ) = alH),
g = @(Hy_u) = a(H),
and
pg=1X|-L (2)

Since H, _,, is obtained from G — u by multiplication of vertices, Lemma
1.1 implies that H, _; satisfies (P;). Thus, Hx_y can be covered by aset ol g
complete subgraphs of H, say K,, K, ..., K,. We may assume that the K
are paiewise disjoint and that |K | = |K;| = --- = | K |. Obviously,

SIKl=1X—vi=IxXi—hk=p—G—1)  [by Q)]

Since | K| = p,al most h — 1 ofthe K, (ail 1o contrdbule p Lo the um. Henees,
|Ki|=|Kil=-= |K.;—h+1l= .

Let ff' be the subgraph of # induced by X" = K, w--u K @
{u'}. Thos

IXl=pWg~=h+ 1)+ 1 <pg+ | = |X| [ty [2}]. 3
so by the minimality of H,
ol H A H) = | X7 by (P3)]. {4)
But p = viH} = w{H", s0
o) = | Xp  [by (4]]
=g—h+1 [y (307,

Let § be a siable sel of H of cardinality g — k + 2. Certainly w! € 8", for
cltherwise 8 would contain two vertices of 2 clique (by the definition of A7),
Therelore, § = § w 7 is a stable set of H with ¢ + | vertices, contradicting
the definition of 4. |
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Theorem 3.3 The Perfect Craph Theorem (Lovise 19720 Tor an
undirected praph & = (F, E), Lhe lollowing stalements are cquivalent:

(B edG,) = pG,) {forull A = V),
(P} wb) = kG {faralld = F),
(P} el G ) = | A (forall 4 = V)

Proof. We may assume that the theorem 18 lrue for all graphs wath fewer
vertices than G.

(P =(Py). Suppuose we can color {7, in oG ;) colors. Since there are at
most a{l7 ) vertices of a given color it Follows that oG a4 = |A].

(P;)=(PF,). Lst & = (F, E}satisfy (P,}; then by induction each proper
induced subgraph of G satisfics (P,)-(P5). L s sulcient to show that
{7} = x(G).

1f we had 7 stable sct § of & such that afiy_ 5 < w{{F), we conld then paint
8 orange and paint G- _g in oGy — 1 other colors, and we would have «{G)
= wG).

Suppose Gy _ ¢ has an ofG)-cligue K(S) [or every stable sel § of G, et %
be the collection of all slable sets of G, and keep tn mitd that &~ K(8) = £
For gach x; = V, let K denote the number of diques K{5) which contain x,.
Lol H = (X, F) be obtained from G by multiplying each x, by ;. On the one
hand, by Lemma 3.2,

el HydH) = X

On the other hand, using some simple counting arguments we can easily
show that

1X|= Ehi

la
= ¥ K5 = efGH |, (5)
Hms
N 2 e, {6)
w(H}y = max 3k {7)
Ted XieT
=max|:E[TﬁK{S]|] {8}
Tei| Scs

=¥ -1 {9
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which together imply that
a{Halif) < e{GH| | — 1) < | X],

a coniradichion

(P;) == (Py}. By what we have already proved, we have the following
implications:

(7 satisfies (P,) < {7 satisfies {P )
<> (7 satisfies {P;) =~ G satisfics (Py). |

Corollary 3.4, A graph & is perfect if and only if its complement G is
perfact,

Corollary 3.5. A graph G is perfect if and only if every graph H obtained
from by multiplication of vertices is perfect.

Historical note.  The cquivalenes of () and [P, was almosi proved by
Fulkersan, He eacd the news of the success of T.owisz, who was nat sware
of Fulkersaon's work at that Ume, from a posteard senl by Berge. Folkerson
immediately retwmed to his previons results on phluperfection and, witlun a
fcw hours, oblained his own proot. Such are the Joys and sorrows of research,
His conselation, o our bene(L, was thal in the process of s iyvesligations,
Fulkersom invenited and developed the noton of sntiblocking pairs of
polyhedra, an idea which has booome an important lopic in the rapidly
growing ficld of polyhedral combinatoricd

Btiefty, and i cor tecritiology, FPelkerson had proved the following:

Let .#(G) be the callection of all graphs IF which can be consirncted from
# praph G by mulliplication of vertices. Then, H satisfies (P, Mor all He #{0)
i and only il H satisfies (D) for all X e #1000,

* Equalions (51 (9} are jusbfisd as [ollows:

(31 Congilzr by incidence matris whoee rows ar ol zaed by e vertices o, vy, . oL, X, and
whose column: cerrcepond to the sliques £085) Tor 5 0 00 Ther, £y egdals the numbser of oon-
Foros e Tow F, and KUV cquals the number of ooneeros i ils cercesponding coluom, whick s
by dafirulion el Lo (i),

[AY At moatane ooy of sy vermes of O emild hein o fligue of H.

[Ty I0a roaximon stable sel of FF sunleins seorwe ol the " copies™ of X thed i will contain a.l
ol the = copies.™

(8 Resleict arlentace 00 1hese rows 20 he svalris peationent 1 30 which balong ta glements
of 7.

(9 e KOS = Land [0 K0ET = 0L

1 Falyhodral combinacories daals with the interplay hetwoen coneepes from combinetencs
and mathemarical programming.
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Clearly. thisresult together with Leamma 3.1 would give a proof of the equival-
ence of (P and (P} tor G

3. p-Critical and Partitionable Graphs®

An undizected graph & s called p-eritiest iC i is mintmally imperfiect, that
ix, 7 35 not perfect bat every proper indoced subgraph of & s a perfeet graph.
Such a graph, in particutar, satisfics the megualities

als 1) = kG - x) and G — x) = ¥ — x)
for all vertices x, where G — x denotes the resulting graph after deleting x.
The faltowing propetties of p-critical graphs are exsy consequences of the
Perfoct Ciraph theorem.
Theorem 3.6.  T0 €7 is o p-crilical praph on i verlices. then
Ho= W Gu(E) + L,
atyd Tor abl vertices x of &,
al((7) = KG — x) and (7 = w7 — x).

Froof. By Theoremn 1.3, since 7 is preritical we lave » = efOAG) and
#— 1= 2 xkalis — x)far all vertices x. Thus,

o T =alG — sheG — x) = e < n
Hengg, n — 1 — o) 2(G) = 200G — =) = k{7 5} and
efy = o7 — xh = G x) |
Pel @, oo = 2 be arbitrary intepers. An undirected graph G on » vertices is
called (@, ea)-partieionehle i n = ooy + | and for all vertices x of &
2 — k(s — x, o — ¥l — x).

We have shown In Theorem 1.6 that every p-critical graph is (2, e)-purtition-
able with & = a(¥) and w = w{F). A more general rasult holds.

Remark 3.7, After removing any vertex x of an (&, wipatrtitionable graph,
the remaining graph has 2o vertices, chromutic nurnber o, and clique cover
number ¢, S0 an a-colonng of & - x will pactition the vertices nvo o stable
sels, one of wlach must be at least of size x, Similarlyv. a minimum ¢lique

¥ Seovivns 3.3-2.5 wers wmitten joutly with Mark Buckingham,
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cover of & — x will partition the verlves into  cliques, one of which must
be al leasl of size o

Theorem 3& I & iz an (o rebpartitiosable graph, then & = «(@) and
= ).

Proof. Let {7 = (V, E) be {x e)-parlitionable. By Femark 3.7, ¢ = # )
and o = ol Conversely, take a maximum stable set % of & and let ye
' — 5 Then & is also a maximum stable set of G — y, 50

MG — |8 — ol — ) < hG — ) =
Thoes, ®{ (31 < & Sitwilary el G} < e Therefore, o = alGhand o = (G |

Theorem 3.8 shows that the intepers = and o for 2 partitionable graph are
umique. Therelors, we shall simply use the term partitionable graph and
assume thal z = W& and o — olG) The class of p-critical gruphs is property
contained in the class of partitionable graphs which, in turn, 13 properly con-
Ltained 11 the class of imperfect graphs (Exercise 10).

Temma3.9. If{ isa partitiongble graph an x vertices, then the following
cotrditions hald:

{1y facontaing asetof wmaximom cliques £, K., .. K thal cover cach
vortn of (7 exactly () titnes;
iy i contang a sel of n maximum stable sets 5, 55, ..., &, (hat cover
cuch verfex of O exactly of(} times; and '
(i} K, & = #Fifand only ilé — .

FProgf, Choose a maximwm cliqne K of & and, for each x e K, choose a
miictum Clique cover #7 of G — £ By Remark 3.7, all of lhe members of
7, must be clivyues of stee wn Fioally, Tot A be lhe £ = momalrix whose lirst
row is Lhe characleristic veclor of K and whose subsequent tows are Lhe
cliarasterisiiv vectors of each of the cliguss in 4 [or all x e K {Mole thal the
puber of Fows 51 4+ @ = 1)

Each vertex v ¢ K is covered otice by 37, for all x e K, Each vertex 2 K
is coverod onee by K and once by ¥, for all = 2 x € K. Therefore, every
veotol 5 covercd o times. For cach row a, of A we let K be 1he cligue whose
chiracteristic vector s a;. We may express (1) by Lhe matria equation 1A = il
where 115 The row veelor eonlaining all ones. Condition (i) will be salisfied
oneg we show that the K, are distinet,

For each 6 pick a werrex e K, and el & denoic g minimem stable sct
covering {eobaring} of ¢ — o By Remark 3.7 and an easy counting exarcise,
there musl be some stable set 8, 5 such that K, m &, = &0 Let b, be the
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characteristic vector of 5;, amd 1t B denote the w = # matrix having rows b,
fori=1,...,n Since I-bT— » we have

IABT = o51BT = s = (s 1)1

But a;- bl =0, 30 AB" = J — I where J 5 the matrix containing all ones
and I is the identty macrix. This proves (i),

Finally, both A and B arc nonsingular mateices since J - Iis nonsingular,
Thus, the K; are distingt and the 5, are distinct. Furthermore,

[B = 1BAT(AT) ' = I(F — IEAT) " =(n — 1)1{A")"!
= [{n - 1¥w]l = 21,

which proves (it} |

The next resalt shows that qff the maximam cliques and stable sets of &
arc among those in Lemma 3.9,

Lemma 3.80. A parlilionable graph ¢ contains cxactly # maximum
cliques and v maximum stable sets,

Proof. Lot A and B be the platrices whose rows are the characleristic
vertors of Lthe cligues and stable scts, respectively, salislyving ABT = J — 1as
specificd in Lemma 3.9, Suppose thal ¢ 3% (he characteristic veetor of some
maximum cligue of G, We will show that © 15 8 Tow of A,

We first ohserve that & ' = U1 — BT since

Ay 'T— R =m "AF— AR " — J— AB" = 1.
A solution t 1o the equation LA = ¢ will satisfy
t=cA™? = ‘el - BT = @ Y{wl) — ¢RT = | — ¢BT.
Therefore, Eis a ({3 D=valoed veclor. Also,

T =1 —cB) 1" =0 —ac I"T=n—aw=L

Therelore, t 1s 4 unit vector, This implies that € is a row of A
Similarly, every characterstic vector ol a masimum stable sct is a row of B.

Theovenn 311, Let (7 be an undmected graph on £ vertices, and lot
2 = @l @) and r7 = w7}, Then (7 is partibonable il and ouly if the following
conditions hold:

(it n=awm+1;
(i) G has exuctly n maximum cliques and # maxioiom stiable sels,
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[1ii)  every vertex of (F is contained o eaactly o maximum cliques and in
exactly £ muximum stable sets;

{iv)  each maximum cligne infersects afl but one nuiximum stable set and
¥ite versa,

Proal. (=)} This implication follows from Lepumnas 3.9 and 3,10,
f=) Following our previoms notation, conditions (ii)-(iv) imply that

Al = JA = i, Rl =JB = zl, ABT=J -1

where A and B ure »ox »# matrices whose rows are Lhe characteristic voolors
of the maximum cliques and muximum stable sety, respectively. Let x, be a
vertex of 7 and let b be its corresponding column in A, Singe

ATR=R 'BATR=R"'(J TB=B Yzl B

=gz W-—1=J-1,

we obtain B = 1 - «, where ¢; is the ith unit vector, Thus, b, desipiates o
rows of B (e, stable sets of &) which cover G — x, Thas, #G — x) = w.
By a similar arpument, &{(r — %) =< z for all o Bul singe 1 — 1 — 3o, we
must have @G — x) = moand MG — x) = = Therefore, O is parlitionable,

Corollary 302 (Padberg [1974]).  If & is a p-critical graph, then
conditions (i—{iv) of Theorem 3.0 1 hald,

Padberg's invastigarion of the facial structure of polyhedra associated
with {0, L)-valucd matrices first 1od him Lo a proolol Corollary 3,12 {Weshall
discnss somc of Padberg®s work in Section 3.5.) The prool presenled bere,
using onby clemenlary lineur alpebra, is due to Bland, ITuang, and Trotter
L1979 ). Additional resulls on pecritical praphs can be found in Section 3.4

The only p-critical graphs known are the chardless cycles of add length
and their complements, Figores 31 and 3.2 illvstrate the conditions of
Theorem 3,11 for the graphs €. and ..

[T LSy Ry . R R A A I AP R R e e H
= AT LA s, L R = A E, - 2
PR Ky ow by T2he by, K. dy S
4 3 HE A PO P PR I P P P T
ek Ky 85,
Am S i =2 Wil -2

Figure 3.1. The graph ¢, wod i1z masimum clique and slable s¢l stroctore as specified in
Thegrom 31,
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K.o— L2 5 Ke =12 34 R, — 54,50 K, — 256
¥ 2 Bg m 45 h T K = 16T 15 Kan T L3
Moo MV, — LS RS, - 1T
Bo— ML AL B — L5 N, o

& 3 HES I U PO PR PR R AT U SO TR
HE W SO FON. S SRR TR S o PO P 13-

3 a TR R S S PR | SYU F J

(R TR U S S S
2=T afiFl =2 wit =3

Fipmre 3.2 The araph ©, and its maximom chque and stable sel sl ag specified m
Theorgm 5,1 E,

4. A Polyhedral Characterization of Parfact Graphs

Let A be anm = n matrix. We congider the twa polyhedra
PlAY={x|Ax = 1, x = I}
and
P A) = convex hull{{x|x = P{A} » integral}),

where x is an r-vector and 115 the m-vector of all ones, Clearly F{A) = PlA),
and for f) 1)-valued matrices A having no sere column, P{A) and PoA)
are bounded aond are within the wnit hypercotx 1u B An importaol example
of such a mairix is the matimal cligues-versus-vertices ncidence matrix of
an undirccicd graph € This 1 called the cligue matrix if all the maxima]
cliyues are included. The cliyue matrix of 7 s unigue up W permotations of
the rows and columns (see Fiaurs 3.3}

Lel A be any m x n (U, 1)-valued malrixs having no 7ero eolumons. The
dertved graph of A has ke vertices vy, 9., b, Corrcspunding Lo the colwmns
of A, and an cdge cotmeeting o and ¢; whenever the ith and fth colums of
A have a1 in some row a, . Clearly cvery raow of A [orms a (bot necessarily

Fignre 3.3, A meaph ancd s chgue mates,
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maximal) cligue I ils derdved graph. Muany matrces have the sume derived
graph. Tar example, il & is either the cliqgue matrix or the edge ncidence
matrix of 5, then the derived graph of A wilt he .

Lemma 31 Lei ¢ b anyndirecied graph, aned ol & beany (0, D-vaducd
matria having no zero column whose derived graph equals &, Then x 15 an
extremum oof Py &) if and only il x is the characteristic vector of some stable
sel of 7,

Proof, I ais an exlremum of F A%, then x must be inlepral, and since A
(0, Devalued witheul @ zoro column, x =< L Thus, % i3 the characieristic
veolor of some sel of vertices 5. Suppose Lhere exist verlices w and v of § that
are connocted i &; hence some row 8, of A has a 1 in columing 1 and ¢ This
viclds g, ¢ x = 2, vet Ax = 1. Therefore, 5 must be a stable st

Converselv, piven that x is 4 characteristic veclor of a slable sel of (7,
certainly x & P,[A). Let x be expressed a5 a convex combination of some set
of extremia 1670 B2, L B ol PolA); that is,

R 1=F % 0Pt
G
Thus, it x, = 1, then A = 1 For all §, and il x, = 0, then b = 0 far all i.
Theretore, ¥ = b and x is un exiremum of P LA) |

¥, =

]

Theorem 314 (Chwital (197573 Let A be the clique matrix of an andirect-
gd graph &, Then & 15 perfect if and only il PAA) = F{A)
To prove the thoorem we shzll use a resylt feon linear prograpiming used

by Edmonds | 1965] and achers:

Lemma 3,15, Given hounded polyhedea S and T, where § has a finite
ninnber of extrema,
S=T i mMax €-X = max e-x Ve, thiegralh
aulijx ek snhj xe ¥
Proafof Thearem 314, Assume that P(A) = P(A) Let G, be an induced
subgraph of (£ and let e denote the characteristic vector of 7, We have,

#(r)= mMaxux = maxux = miny-L
subj i) bl Axs1, xz0 xubj ¥A 0 ya i

The first equality fallows from the [act thal maiimums are always achicy-
able af some extremum and the extrema of FAA) cormespond to stable sets
{Lemma 313} The sccond eyuality follows from Lemma 3.15 setting e = u,
and the third equality comes from the doality theorem of linear programming,
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Therelore, choose ¥ = 4 such thal ¥ ¥ = 2(Gy) and v < yA Denoting the
Jch columi of A by if',_we nhiain

= T s Ty wi=y Yo <y ({Gul) = e GpdeAGr ).
Jeds Jel! fedl
Thus. by Theorem 3 3. fr is perfect.
LConversely. assume that (7 i perfect, Fur apy integer vector ¢, form the

graph Jf by enultiplying the ith verex of & by max (0. ¢,;) for each L By Lemma
3.1, H is perfect. We have the following:

afll) = a{G) ‘The maximum wetebted stable set of
(7 given by ¢,
= Maxc- N The maximuwm can always be foand
subjxc Prid

at an extremutn. which corresponds
1o a stable set (Lemima 3130

S MEA ¢t X Pid) = PlA)
sl PLAY
= min¥-1 Draafity thearem.

aulaj gz p 2201

< min y-1 I'he consiraml sel 1s smalklet.
sohy vA =&, nn-negac e Lotegrl v
= k[{7] The minimum chgae covering of §§
such that vertex | is covercd o,
times. The constrainl vA = ¢, non-
negative inlegral ¥, specilics such a
covering,
— k(H), Any cligue of H corresponds o a
cligne of {0 thus &H) = 00 0T
vertex Iof 0718 covered by o
cliques, 1hen there arc ¢, ctigues in
H. sach covering a4 diffcranl eopy of
i, 50 kA0 = k1)
But ®fH) = &{H). Thas,
MUX £ X — Mux X
suln. x s Prid) saib] e P&

and, by Lemma 3.15, FfA) — P{A). I

Remark. The first half of the prool of Theorem 3.14 still hokls under a
wiakoned hypothesis on A:

TF & js a (00 D-valued oleix having no zero colunm whose derived praph
equals &, then P{A) = P{A) implies that & @s perfect.
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5. A Polyhadral Characterization of p-Critical Graphs

Manfred Padberg first discoverad the properties thown m Section 3.3 of
p-mritical graphs while investigating the fusial siroucture of the polyhedra
A for peneral (0, Tevialocd matrices A, Tnodoing o, he also discovered a
polyhedral characierizstion of p-critical graphs. 1o Fadberg [ 1973, 19747, he
uscid the results of T.ovasz and Chvatal to produce these results In a later
wotk, Padberg [1976b], he developod a mote general appraach, which
enabled him o prove the same resalts divectly and Lo prove the theorems of
Lovase and Chvalul in a ditferent manmer.

The niatrix A 1 said w be perfect iF PUAY 12 dntegral, Lhat 15, PUA) bas only
integer cxtrema: PA} — PIAYL A v said to be abuost perfect i P{A) 1
alrmnst imtegral, that Is, {1) PAAY £ POAY (PUA) has at least oo nonttilegral
cxtremum). and (i} the palyhedrs P{A) — PIAY ~ Ix e RE|x; — 01 are all
imegral, j = 1.2,....m

For the remuinder of this scelion, A will always denole anm = n (0, 1)-
valued mulrix having no zero eolumn, and P, Py, und £; will denote AA),
P AY, and PA), respectively.

Pudberg™s resulls, atthough ol slaled in the lollowing manmer, imclude the
follewing six cheorems,

Theorem 316, Tf A is perfoct, then & s am gqugmented chique malrix of iis
derived graph, that ts, A is the clique matrix possibly angmenicd with some
redundant rows correspondrng W nonmaximal cliques.

Let Jidenate the puitrix of A1hones amdd 1 e idenbily madris, We say thal A
caritaing 1he # o a submalnix b — T il some pormuotation of J — T ootars as
an a x Hsubmalriz of A

Theeren 3,17, If A 1 alinost perfect, then either () A Is an auginenisd
cligue manrix of i derived graph or {i1Y A contains the £ = # subrmatrx
J - L

Theorem 3.18. Lot 7 be Lhe derived graph of AT A5 almost perfsct and
docz not cantain the # » n sobmatiix J — I, then

(i) n=of{ha{la) + I
(11}  every vertex of Gisinexactly ercliques of size o and inexacily 2 stablz
sits of sizg o
(il & bas exactly » maximum eliqoes and e maxinum stable sets;
{iv) Lhere is a numbering of the maxinum ciques K, K4, ..., K, and
maximum stable sets ¥, 51, .-, 5, of O such that K, o 5, = & ifand only if
f— |
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[
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Figore 1.4, Thederived graph G of U naalnis & is o pecfect craph, ver PLA) hus (b 440,000
s estoewn g Umes & is au dmperfect malis, A% s e Qigue maiia of G andd is pertect.

Theorem 309, A s perlect if and only if & is an angmented clique matriz
of its derived praph and the derived graph is perfect,

Corollary 3.20. A 1= almost perfect 1f and only i either {0 A 15 an avg-
mented ciique matux of its derived praph and the derived graph is almost
porfoct (p-criticaly or (i) A has no row of all ones and contains the » < o
submatrixJ — §lor s = 3. VForthermore, io (it} lhe derived graph s complele.

Corollary 3.20.  Evazry poritical graph has the lour propertics of 'Uheorem
318

Mote carsfully the wording of Theorem 3.19. It is very possible thar A is
not g perfect watrix and vet its darived graph G is perfect and every row of A
cotresponds to a maximal clique of G OF course, in this case, by Theorem
319, the mateix iz missing a row corrssponding o some olthér maximal
cligue (see Figure 3.4},

Theorerms 3.16, 3.17, 3.1%9, and Corollary 3.20 gre very usclul when con-
sidering graphs as incidence matrices, Clorpdlary 321 is a restatement of
Corollary 312,

To show Theorems 316 and 3,17 we will turn to the covncept of anti-
Mocking polyhedra (Fulkerson [1971. 19727) Two polyhedra F, and P,
are an aniiblocking poir if P, — [X[xPy < L, x = 0} or Py = [v|¥P;, £ 1,
¥ = ], the conditions being equivalent. If £, 15 generated from a (00 1)-
valued mateix A, having no zgero column, then we have the property, among
many others, that every extremurn of P, 15 a projoction of some vow of A,
and cvery nonredundant row of A i an extremem of P, (Fulkerson 71972 [
The satoe result holds if we interchangs the indices.

Let BY D™, L, B be the eatrema of #, and denote 1he matria having
tows BB by B Define @ = PB), Q) = Py(B)and O, = PAB)lor
§= 1,2 .. .n The polvhedra P, and @ are an antiblocking pale (1Fulkerson
[1972]). By Lemima 3.13, the rows of B cormespond 1o all of the slable sets
of O, the derived yraph of A. Thus, B is an augmented clique matrix of the
complement &, Sce also Monma and Trotter [1974].
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Proof of Thearem 300, Let A be perlfect 1P, = Phand & be Qs derived
graph. Since P; and @ are an antiblockiag pair, P apd § are also an anti-
blockiog pair. By the properties of antiblocking pairs, the sxtrenia of & most
all be arajections of the rows of A so O is ttepral, By Lemma 3,13, afl the
slable sets of 6 in other words all the chques of G, are sxteema of 2, since
¢ — {J;. Thus, cvery clique of & musl be & projection of somes cow of A,
Therelore, A is an augmented clique matrix of s derived graph, 1

Proof of Theorem 3,17, Assuning that A is almosc perfect, P is integral
far i - 1,2, ..., By a similar argument ta that for Theorem 316, each £,
is also integral. This [ollows since FlA) m {xsR™.x, = D} is the same as
removitg the jeh columo from A and lorming its polyhedron.

Cage [ Qi not fmegrol and thus is almost integral. In this case Padberg
wis able Lo shuw by a direct analysis of tbe faceis of P 1hat P and @, are an
antiblocking pair. As in the proof of Theorsm 3,16, we have thal A is an
augmented eliquee matox of its derived graph.

Cease 20 i infegral. 10 this case Padberg was able (o show by Lhe non-
inlegrality of P thal | is an extremum of . This means that B must be the
identity malrix {or 4 permutation of it), This in turn Goplics thae the derived
graph of A is complele, Therefore, ot P, Lo be integral, some row & of the
mairix formed by deleting Lhe JLh solumin of A must Be all ooes {Theorem
218) Yel e tow I A gan have 1] oncs sinee 4 35 only almost perfect, Thns,
row & Lo A st be all ones exeepl for 2 2ero i colymn - Sinee this s irue for
allj= 1,2 _.. n Acontains the n % a submatnx J — L |

Allhouph Thearem 318 is cssenbiglly contained among the resulis of
Secticn 3.3, Padbera’s proof does nat vse the Perfeet Graph thearem and his
technique 18 valuable in its own tght. Bofure proving Theorem 308 we siate
Padberg's corpetstone lemma.

Temma 322, Jf x is a nonintegral extremum of an almost integral
pobrhedron P, then for ecwery 2 x 1 nomsingular sphmatrix &, of A soch
that A X = |, thore extsts ant s = A nonsingular submalrix B, of B satisfving
the matrix equation

B A =J-L
Iurthermore,
x = (1i{n 1B

A g quick obscryvation, we note that for any noninteper extesmum x of I,
x = &k Wior some &, 5, — 0, then x = P, and thus is an extremum of P2, Dut
then x would have ta be integral. The only way x could be an extrermum of P
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15 10 satisfy » Linearly independant constraints of Ax < 1. Let A, bethen =% n
nensingular submatrix of A Thus, for each x there does exist such an A, as
specified in Lemma 3.22,

Tadherg was also able 1o show that x, a noninteger extremnm of P, s the
unique noninteger extremum; thaty = {Li{r — 1AL forany A, of Lemma
322 is an exteemurn of (0 and thal [or any A, and corresponding B, of
Lemma 322, x = |det AT Y1 and y = |det B Y| L Armed with these matrix
equations, the prool of Theorem 3.8 is 4 straightforward exercise in linear
dlgebra

Broofof Theorem 3215, Lol G be Lhe derived praph of A where A i5 almost
perfect and does not contain the # % w1 submatrix J — L By the detinition of
alnost perfect we have the exisience of a noninteger extrermnm x of P, By
Lemma 3.22 and the previons discussion, x 12 unique and there exist n = &
nonsingular submatrices A, of A and B, of B snch that A, x — 1 and B, A/
= J — T.Moreover,forallsuch &, and B, .x = (14n - 1)B}1 — |deL AL,
and y, defined by ¥ = (14n — 113471 = |da2t B{ |1, is an extremum of Q.

W shall fizst show Lhat A % umigue, in that sny row a1, of A satisfying
a % =115 in A,. We have the following tmphcations:

BAT=J T=AR =J -1=BT=X_-A/'=A'=X_pB],

where X is the 4 % # matrix having » colnmns of x. Thus, ifa, -x = 1, then
a AT =a X —aB) is 0 or 1, vet a, A7 -1 =a,-x =1 Therefore,
2. A7 = e;. the ith unit vector, for some jc {1, 2, ., n}. Thiz implies that a,
ix equal 1o the fthtow ol A Lhat s, 4, i3 i6 A, Finally, since x = bdet A7 |1,
we have that A, connina exacily all the rows of A having the mauximum
numbur of ones. By Theorem 3,17, A is an augmented cligne matrix of 7,
Therefore, A, must contain exactly all the maximum cligues of G
A similar argument holds for y, By, Band & Since

B,y = B,{{1i{x — 1aATIH = L
we have Byt — Y — AT Thos for any row b, of B satisfying b,-y — 1, we
have B = b Y — b A} and vet LB ‘-1 =h -y =L So b isin B,
Hioce y = [det By YL, and sioce by vonstruction B is an augmented cligue
matrx of (7, wi have thal By must conlain eaaclly abl the maximum oliques
ol G.
(i) The row sum of A, {5 o), vet A1 =A |dat A;ix = |det A |1;
thus Jdet A, = w0, Sinlacly for By, the tow sum s of (7), yet
B,1 = B, |det B, |y = [det B, |1;

so |det By | = «(C), Therefore, of Gxolis) = |det RyAT| = |det{F - T)j =
(=1~ (n — N =n— L Thus, n = (Gl + 1.
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(i) Sinee ¥y = (14n — INATL, we have (L)l = (1w AT1L and thus
el = ATL That is 201 the colomo sums ol &, are e Therefors, very vertex is
i exactly mochigues of size e,

Similarly for %, x — (14n — 1)W1 implies (1/0)1 = (1/va)BT1, and
hence #1 = BJ1. Therefore, every vartex is in exactly « stablz sets of size «.

(i) A, s ar m v pnonsineolar matrix contuining cxactly all the maxi-
mium eligues of G therefore, (F hos cxaelly 7 maximum cliques. By a similar
argument an B, & has exzctly # maximn stable sets,

uv) Let &; correspond to che gh row of A foré= 1,2, ..., and §,
correspond Lo the fith row of B, forj = 1,2 ., » Since B, AT =0 — 1 the
muximurn eliques K|, K, .., K, and maximum stable sets §,. 5., ..., %

of G are numbzred such that K~ §; - (7 if and oniyif 7 — . |

The %only 1" condition of Theorem 319 i3 a stronger statetnent than
Theorem 3.16; it states Lhat the decived graph itsell 15 perfeol, which also
Lurns oul Lo be a sufficient sondilion for A Lo be perleel In fael, Theorem 3.19
iy prociscly Chvdral's Theorems 314 and 316 put together, A more dircet
proot here will be instenctive, Again we need an intermediate rvesolt of
Padbers’s,

Lemma 323,  Pis integral if and only if max
all (0, 1)-valued q.

It s well knoven that for a general mattz A with non-negative entrics and
wo zerer column, satislying max . p ¢ ° x = Qmod |Hor all nen-regative ¢
1% pquivalent 1o P being integral. Bul for our matrix A, considering only
(1, 1-vablucd q is anfficient.

q-x =0 mod 1 for

s hi ne

Proofof Theorem 315 (=) Let A be an augmented clique matrix of its
derived graph &, where & is perfect. Let q be a (0, IFvalued vector and G its
corresponding induced subgraph of G 'Then

()= max g-x £ max g¢-x = emin v 1
makjscl; sib] xe ¥ Sl yA za, p il
= mie vo1 =kG)

=ubj yA =g, y= 4, integrul

The first conality is clear becase of Lemma 3.13 and the fact that an aptimal
solution can always be found at an extrecnont, The last equality is 1ene since
A s an augmented clique matrix and any optimal ¥ is (0, -valued. The in-
cgqualities have been seetl before in Section 3.4,

Mow sinee O is perfect, we must have squality everywhere. Thus,

mai q-x = Omunl L
anhjwe M
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Fmally, sihec q was arbitraty, Lemma 3,23 implies that P is mtegral, and fhns
A s perfcct

=) Let A be perfect. By Theorem 316, A is s#p augmealed cligue
matrix of its decrved graph. To show that & is perfect we shall use Induction
om Lhe size of the indueed subprapls,

For |G — 0 1t 15 ¢lear that =G — kG Assume that every k-veriex
induced subpraph s perfect. Given |G = £ 4+ 1, leL g be the characteristic
veclor of G Sioce P is inlegral and A is an supgmentod clique malrix of 7,

@O = max §-x= Ein ¥l = mit y-1
culij a1 sob; pA g w0 nelej ahieag, vz b, gl
— Ki(2). (10)

We claim Lhat thers 18 an mleger oplimal solulion or ming ey w0 ¥ * L
We know that an optimal solution ¥ exists. If ¥ is integral we are done;
otherwise thore s a b such that 0 = 3, < 1. Clearly the kth vow a, of A has
the property a, - > O, for otherwise ¥ would not be optimal, Define g; — g
for a,, — O and g, = 0 [or a; = 1. Since § s the characteristic vector of a
sroaller indvoasd subpraph, and since (107 sUll holds, there is an nteger
uoplimal selution § lor . Clearly woy oplimal sololion lor § bas s kih
component zero; thus ¥ is feasible but not optimal for §. Yet y*. where y* — §
creept for v} = L. is lasible lor q. That 1s,
min ¥-1 min ¥-l=y¥1 min v-1 11
pubjxA g, v subjyhey, ¥ 0 subi yAoqg, ¥yl

Therelore, ¥* 1 an integer oplinsl soluBon [0 MU, sy, eee ¥ 0 1 2id
thus =(0") — &0 |

The observant reader will notiee thal the same ™ only iF* prood could huwe
been used i Theorem 3014
The proofs of Corollacies 320 and 3.21 are now casy.

Provf of Coreflary 3.20, («=) Case 1: Let A be an sugmented cligue
matrix of its dertved graph O, where € 1s p-eritical. Sioec deleling any verbes
jof ¢ results in a perfect graph, all the P, arc integral. You by Theoremn 315,
A s Impeatect becanse G is lmperfect; thecefore A is alinost pertoct.

Cose 22 Let A have no row of all coes and conlain the a = n submatrix
J—Vilor g = 3 Since cach P is ohlatned from the malric A wilh ils fh
columt deleted, and since this submatrix has a row containing alk ones, all
I are intepral. Yet (14 - 111 1s an extremum of P, since cvery row has al
most 8 lonss and 3 Dis an a7 % » sebmatns, Therolfore A 1% almost
petlect.

(=} Given that A 1s almost peclect, we apply Theorem 317 to ablain
T cases.
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Case 1A s an gugrierted olique matrix of s derfoed graph G By Thearem
319 cach P, isintegral, the submaltrix of A obtained by deleting the jth column
i perfeel, and thus the deletion of any verlex § ol F resubls in a poerleet graph.
Yer by Thoorem 3LI9 again, 6 kel i not perfect since A 15 not perfecl.
Theretore, (7 15 p-critical.

Cose 20 A comrging the nox mosybmareix J — L Cleacly A does not contain
a rew of all ones, for otherwise A would be perfect. Finally, we must certainly
have r = 3, thus ¢ i3 complete. |

: Froof of Corellary 321, Given a p-critizal graph ¢, form A, 1ts clique
matrix. By Corollary 3.20, case 1, A is almost perfect. Cerlainly {5 15 the de-
cived praph of A, and thus the hypothesis of Theotem 3 1% iy safisfied. |

& The Strong F':ar'far;t Graph Conjecture

The add eycle 7,5, 4 (fark = 2)is nol a peclect graph since af 5, ) = &
and E(Cs, ) = & — 1 (or, alternatively, since cHC 00 = 2 and /(i Ca )
= 1}, However, every proper subgraph of €, -, is perfect. Thus, Cap.; 5@
p-critical praph (e, minimally imperfect) and by the Petrlect Oraph theotem
its complement Cs, o - 33 also pecritical. To date, these are the orly khown p-
critical graphs.

Dring the second interngtional meeting on grapk theory, held at Hulle on-
Saal in March 1964 Claude Berge raiscd the guestion of whether or not other
p eritical graphs besides the odd cycles and their comjprlements exist. He
comjeclured that there are mone, and 1his has come Lo be koown as the
sirony perfect graph conjecture {(SEGC), (Actwally, the word “coojecture”
first appeared in Berge [ 1962].)

The strong perfect graph cowjecture may be stated o several equivalent
forms.

SPGC,, An undirected graph is perfect if and only if it contains no in-
duced subgraph isemorphic to Cap .y ot Top_y (lot k = 20

SPGC,.  An undirestad graph & is perfect if and only if in ; and in
every odd cycle of length = 5 has a chord.

SPGC,;. The oaly peritical praphs that exist are Cyy,, and Cgyp
{for k= 20

The graphs {5, and Cupy, are commonly referred to as the odd hole
and the odd antifede, respectively,

We have seen in Sections 3.3 and 3.5 that p-crivical graphs reflect an extra-
ordinary amount of symmelry (as ndecd they should of the SPGC turns ot
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10 be true). Let & be a p-cotical graph on # vertices, and let @ = =(G) and
w = w({), Then the following conditions hold for G.

Lovdsz condirion
p=am+1

Pudberg comditiong

Every vertex s it exactly e maxitnom cliques (of size o).

Every vertex ig it exactly o maxinum stable sets (of size ).

(r bas exactly n maximum cliques (ol s7c ),

G bas exactly » maxirum stable sets {of size o).

The maximnm gligques and masimnm <ghle sels can he neeosd K,
Kz, ... K,and 5, §;, ..., 5, respectively, so that [K,n§; =1t — 4§,
where §;; is the Kronecker delia.

Clearly, any p=rilicul graph must be cunnecicd. Bul £ 1s the only con-
nected sraph on a2 vertices for which oo = 2 and having exacily # vedirected
edges such that each vertex is an endpoint of exactly two of these edges. So,
by Padberg’s conditions we obtain anotber equivalent form of the strong
perfect graph conjecture:

SPGC,. Thereis no p-critical graph with 2z = 2and w = 2.

Recall from Scction 3.3 that a purtiiomable praph on n vertices autisfics
the Loviss and Padberg comditions.

Figures 3.5 and 3.9 give two examples ol (3. ¥)-partitionable graphs which
fail to be p-critical. For this reason, the Lovisz and Padberg conditions alone
are nol sufficient to prove the SPGLU. Mevertheless, partitionable graphs do
pive us further reductions of the SPGC.

Onc speeial type of partitionablc graph is easy to describe. The undirected
graph C; has vertices 8y, 4, v5, ..., 7, with o, and v, joined by an edge il and
only i i and i differ by at niost d. (Here and in the next theorem all subseript
aritlunetic s taken modulo ) it is easy W see thal the graph T2, i an
(e, eo)-partitionable graph. When « = 2, then €2, 14 simply the oddd hole
€. v when o = 2 then €55 is the 0dd antihole T, ;.

Thevrem 3.24 (Chvatal [1976]). For any integers = Yand w = 3, the
partitionable graph CZ L is not p-critical

Proof. Letz = 3and c = 3 be given. We will show thal C27,!, contains
a proper induced subgraph 5 which is not perfect.

If we index the v — arp — | maximal chques {K,} of 077}, so that K, =
lt iy, 1] foreach ) < § < n, then the clique matrix of the graph
has the familiar cyclical pattern, as shown in Figure 3.4, Let A denote the
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Figore 1.5 A praph safistying rhe ey and Tadberg candilions ahich Guils 1o e p=ritical.
Lhe chgue miteis and sliale scb maltix andicate the regecred indexng  the masimum cliques

and maximum stalle secs. Vhas example was diseorenod depeodeaely by Fluang [1976) and by
Chvdtal, Granoem, Peceld, and Whilesicles {10767,

subgraph remaiming after deleting the o = 2 vertices s, 15, 4, By, 5, a0d
all ¢y lori =23 .. o— 1 Inthe deleting process every maximom
chque hax lost al least one of it members, 5o o{H) < o — 1, Therefore, i
suffices Lo show Lthat B cannol be colored using @ — 1 colors.

Suppose that H it m — 1 colorable. Lat », be colored Back and let the
o - 2 additional colors be called the rainbow. We have the following series
of implications:

ft, U2, ..., tul © Ky = {p;,....9,} requires the entire rainbow;
T0g, ey B Baal € K3 =0, 508 black;

{bat 2 Caras s Paprr) © Kyag
S g ds e s Va1 | TCQUITSs the entire rainbow;

IPutas - oon Uzt i Pampad & Kpppa = py a3 18 black;
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Fipure 36, The clique macrixof O 57 where oo — dand e 5 The mackers designam ehich

ag 1 1-

vetlives are 1o be deleted to obtain an mperiect subgraph.

and finally, by induetion on ¢,
By + 1 15 black

= b ga-- o Tyt fpes ) TEQUITES the entire rainbow
[ -
= {By 1 10s 37 14 Dlack,

forr=2.. ., a—2

Therctore, both v, and g, -, + 5 are black, but they are both contained in the
chique K, {43, & contradiction, Hence, y(H) > w — 1 = wif)and H is
imperfect as requaived.

As g eorollary of Theorem 3.24 we obtain another equivalent version of the
strotye perfect graph conjecturs:

SPGC:. I G is p-critical with «fG) = 2 and o{(7) = 1, then & contains
an induced subgraph isomorphic to C2 .

Chyital, Graham, Perold, and Whitesides [1979] have prosented two
procedures for consiructing (g, o)-partitionable graphs other than C2),.

If we we restrict the universe of graphs being congidered by making an
extra assumption about their structurs, then, in certain cises, the SPOAHC can
he shown Loy hokd Table 3.1 lisis some suceessiul resteictions. For the most
part the oniginat proofs cited do not make use of the Padberg conditions,
Tucker [1979] has incorporated the Padberg conditions into new proofs of
the SPGC for K, ;-free graphs and 3-chromatic graphe.



Exercisas Fi7

Tabte 3.1

Clesses of graphs for which the slrong oeelect grapa sunjeciurs
15 knesan 1o hold

Flumur graphs Anckar |17 a]

K, i-[res praphs Farthagararhy nod Ravindra [1976)
Citcular-urc graphe Lucken [1975]

E-fres praphe Carlbasarathy and Ravidra []‘}I.TLJ']

Fchromstic graphs

Tactually any peapl willl e = 3] Togker [1%77]
Tercidal praphs; prapls Waving

maxinum varter depree 2 6 Grinslead [1978]

The strong perfect graph conjecture vemains a formidable challenge to us.
Hs solution has zloded researchers for two decades. Perhaps in the thind
decade a reader of this book will settie Lhe problem.

EXERCISES

I. Let x and y be distinct vertices of a graph G. Prove that {G = x} — v =
(0 — yyox
2. Lelx,, x;....,x bethe vertices of a praph G and let § = & » h whete
h= [ky, hs. ..., h)1s 2 vector of non-negative integers,
Yerify that F can be constrocted by Lhe following procedure:
begin
[Ty
Tori — 1 to)de
iTh, =0then  — H — x;
else while iy = Odo

bepin
Moo ffarx:
Ny =1
end
emd

3. Give an example of a graph G for which (G} = k() and «{G) < ¥G).
Why does Luis not contradict the Perfact Graph theorem?

4. Suppose G satishes o) = K@) Let ¥ be a clique enver of € where
| %] = k{(F), and let % be the collection of all stable sats of cardinality s},
Show that

IS~ K|=1 forall 5% and K e ¥,
Ciive a doal statermment for a graph satislying m{fs) = A G
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5. Prove the Jollowing: For any integer &, there exists a graph € such that
X = 2 and ®WG) = k. Thus, the gap between the clique number and the
chrematic number can be arbitrarily large (Tutte [1954], Kelly and Kelly
[1954], Zykov [1952]; sec also Sachs [ 19697

b.  Prove that an pvertex graph G is an odd chordless cycle if and only if
n=2X+ 1L, afGr=k and &G — v — w) =k For all vertices v and wof &
{Melnikoy and Vising [1971], Greanwell [1%78]).

T.  An undirected graph G is animodular if its clique mainx A has the prop-
erty that every square submatrix of A hae determinant equal 1o 8, +1, or
= 1. Prove the following:

{1} The graph m Figure 3.7 is unimodular;
(i} unimodolanty is a hereditary property;

(i} a bipartite graph is unimodular;
(iv} aunmmodular graph is perfect (if necessary, fior (iv) sce Berge [1973]).

VAVAVA

Figure 3.7

8. Show that the five versions of the stzong perfect graph conjecture given in
this chapter are equivalent.

9. Prove that (¢ is p-oritical il and only if G is partitionable but no proper
induced subgraph of & 18 partiticnable.

10, Show that the graph in Figare 3.8 iz partitionable bot pot p-critical.
Show that the graph in Figure 3.9 it impertect but not partitiopable.

Kigure 3.8
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Figore 34

I1. let A and B be v » n matrices und bel o znd o be intepers. Using
matrix operations give a short proof of the following: F AJ = JA = e,
Bl=JB=a)und AB"=J —Lthenxn =n — |.

12, Let 6 = (X £} and # = (¥, F) be undirected graphs. Ther norinal
product is defined to be the graph G - H whose vertex set is Lhe Cartesian
product X x ¥ with vertices (x, ¥) and (x', ) adjacent if and culy if

»

x=x" and yef or xi'ceE and p=y
ur
xx'eE and pefF.
Prove the following

(i) G -h) = max{z(G). }{H)}.
i) mfG - Hy = ofG)ex(H);
(fiy ofls- H) = G H);
() MG-H) < k{GW(H)
13, let &' denote the normal product of & with itseli r — 1 times, Le,
G - Gand 7 — -G Let

&) = sup FelG).

Prove that wffiy = k(G) imphiee «(G) = =(G). Far an application of this to
zero-capacity codes, see Berge [1973, p. 382, 1975, p. 13].
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CHAPTER 4

Triangulated Graphs

1. Imtroduction

Ome ol the first clussss of graphs Lo be recognized as being pecfect was the
class ol triangulared graphs. Hapnal and Suraonyi {19587 showed that tri-
angolated graphs satisfy the perfect property P, (e-pertection), and Berge
| 19640 | proved that they salisly P, [ p-perfection). These Gwo resuds, in large
mggsure, mspirad the conjecture that P, and ', were equivalent, a statement
that we now know 1o be true (Theatem 330 Thus, the study of triangulated
graphs can well be Lhought of as Lthe begioming of Lhe theory of perfect graphs.

We briefly looked af the triangulated graph property in the sneak preview
Scotion 1.3, For vompleleness” sake, we shall repeat the definition here and
menbien a few basic properhics.

An undirected graph ¢ 1s called erinrgutated il every cyole of length stoictly
graater than 3 passesses a chord, that is, an edge joining two nonconsecutive
vertices of the oyele, Bywvalently, & does not contain an indused subgraph
Isesnorphic to O for w3 Being triangulated 15 a hereditary property
inherited hy all the induced sobgraphs of G, You may cecall from Section 1]
that the interval graphs constitute a special tvpe of friangolatcd graph, Thus
we have our first example of triangolated graphs.

[n the Lterature, triangulated praphs have also been called chordedd, rigid-
circtil, momed one framsieive, sid perfect eliminerion graphs.

2. Characterizing Triangulated Graphs

A vertex x ol O s called simpliciad if its adjacency set Adiix) mduees i
complele subgraph of G e, Adj{x) is o cligque {not neegssarily muximaly

]
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Dirac [1961], and lacer Lekkerkerker and Bakind [1962], proved thal a
triangulited graph always has a simplicia] verrex (in fact at least two of them).
and wsing this fact Fulkerson and Gross [1965] suggested an iterative pro-
cadure ho recopnize teiangulared graphs based on ths and the herediary
properly. Namely, repearedly locae o simpliciel veriex and eliminate It from
the graph, witll aither wo vertices remoin anrd the graph is tricngafoted or of
somie stage Ao simpliciol vertex exisly and the graph is ree wriongulaved. Uhe
correelness of Lhis procedare 15 proved im Theorem 4.1, Let s state (hings
more algebraically.

Lot & = [V, EY be un undirecied graph and et o = |54, ¢y, ..., 5] beoan
ordering of the venlices. We say that o is @ perfect sertex ellmination schome
for perfect scheme) if each v; b5 a simplicial vertex of the induced subgraph
G Inother words, each set

Xo= Jeye Adiled] ] = §)

15 complele. For cxample, the graph ) in Figure 4.1 has a perfect vertex
climimation scheme 5 = |a g, &8 o, 8, 4] 1t s nol uoigque; in facl € has 96
delfevent perfect elimination schemes. In contrast ta this, the graph &, has
fo simplicial verlex, 30 we cannol even slart constructityg a perfect scheme

11 hus fofie.

Asnhser 5 < Vs o vertex separator for nanadjacent vertices a and b (or
an a—f separatory if the removal of 3 eom the graph separates ¢ and & into
distimet conmected components, IFne proper subsel of 818 3n a—f separator,
then & is w mifrimal pertex seporator (o1 g and b Consider agaien e graphs of
Fizyre 4.1, In ., the sel iy, o) 35 o minimal verles separalor or poand g,
whergas {x, 1, 21 15 2 miniinal vestea separator fow paod e (1Low is it possible
thal Lurh aie mimimal verlex sepucalors, vel oue is conlained 1 the othec?)
in Gy, every minnaal verex separator has cavdinaliry 20 Thas 15 an unusnal
phenomenon, However, norice also that the two vectices of such a separator
of €, are adjacen, in cvery case. This latlzr phenormenon actually cocurs [ur
all triangulated graphs, as you will see in Theorem 4.1,

e
= L C d
M ) !
] ! e
’
g, G2

Fipgore 4.1, “Jwe graphs, ane rianpgelazed and one ool thangulated,
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Wenow give two characterizations of (nangululed graphs, one algonthme
(Fulkerson and Gross [1965]1 and the ather graph theoretic (Dhirac [19617).

Therrem 4.1 Lot be an ondirected praph. The Tollowing slatement s are
cguivilenl ;

(0 O is srhiangelted,
(il} 7 has a perfect vertex alimination scheme, Moreaver, any simplicial
vertex can start a pectect scheme.
(lify bvery minmal vertex separstor induwces a complete subgraph of £i,

Froof. () —= {1} Lel fa, 2, 0, v, vay oo e 2] G = 1) Be g sionple opele
of G — {1, E). Any mmimat g b separalor must contam verlices x and v for
some i, 50 1y, € Iowhich s a chord of the eycle.

{i) = (1)  Supposcd s o minimal o-b separator with {, and Gy being the
conmected componenls of Gy coblaming e und b, respechively, Since 5 s
minimal, cach v+ .8 is adfecen: Lo some verlex in A snd some verlex #e Y
Therefore. for any pair x, ye 5 there exist paths [x, wq, o0, o ¥l and [k
By, b X7 where each o, e A and b, € B, such that these paths arc chosen
to be of smallest possible lengrh. It follows that [, ..o, o by, B, X
1% a simple cycle whose lengih is at leasc 4, implyiog that it must hawve a chord.
Bul iyh, ¢ E by the eledmition of veriex sepuralor, snd g, i Foand ih g R
hy the minimeality ol # wnd ¢ Thus, the only possible chard s xpe F |

Remark, If also follows that r = £ = 1, Implying that for all «, vy = § there
gxist vertices in 4 and B which are adjacent to both x and y. A stronger result
i given in Exercige 12

Refore contimiting with fhe romaining implications, we pause for 2 message
from our lemmz department.

Lemaa 4.2 {Dirae [1961])  Every triangulated graph ¢ — {F, £} has a
simpliceal vertex, Moreover, if & 15 nol a eligque, (hen i has two nonadjacent
simplicial verlicos,

Poaof,  The lemma is trivial if (7 s complete. Assume Lhat {F has two non-
adjucent verlices a and b and that Lhe lemma is trac for al] graphs with fewer
verlices thun &, Let § be g minimal vertes sepatalor lor g and b wilh &, and
Gp being the connegled components of &, containing @ and b, respectively.

By induction, either the subaraph (7, . has two nemadjacen] simgicial
verlices one of which most be in 4 (since 5 induces « complete subetph) ar
(i, yisitscilcomplete and any vertex ol A izsimplcial i (7 o Furthertore,
sinee AdjiAY © A+ 5, d siopdicial verles of Gy, i A iy simplicial in all of
¢, 3imilarly B cantains a simplicia] vertex of & This proves the lemma.
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We now rejoin the proof of the theorem whick is shill in progress,

{11==1{i} According to 1the lemma, if G 5 trianpulated, then 1 has o
simplivial vertex, say x. Since Gp . B iriangolated and smeller than G, it
has, Iy induction, a perfect scheme which, when adjoined s a suffix of x,
forms a petfecr scheme for .

(== (1Y Let { bea simple cycle of (r and let x be the vertex af C with
the smallest wndex in a perfect scheme. Since | Adyx} . O = 2, the eventoal
simpliciality of x pusrantees s chord m £ |

2. Hecognizing Trianguisted Graphs by Lexicographic
Hreadth-First Search

From Lemma 42 we leamed that the Fulkersom—(rtoss recognilion
procedurs affords s a choice of at least twe vertices for cach position n
constiuctme a perfect scheme for o triangolated graph. Theicfore, we can
freely choose a venex v, to wpoid during the whale process, saving it Zer ihe
last position in a schere. Stnilarly, we can pick any vertex o | adjacent to
v, torsave for the (n — st position. 1Pwe continued in this manner, we would
be constructing a scheme faelwards! This s exaciby what Lenker [1974] and
Bose and Tarjan [1975] have done in order Lo give a lingar-time algorithm
lor rowognizsing riahpulated praphs, The version presented in Rose, Tatjan,
and Leuker [19767 waes a texteogrephic breadoh-hist search in which the
usnal guene of vertees is replaced by a queye of (unordersd) subsers of the
vertioes which s sometinues relfimed bul never teordered. The method
{Figure 4.2 is as follows:

brepan

1. assigx the lubel T4 ench vettes;

2 fowri— ol sep — 1do

K} scizet pick om wamambered veres Cowich terges Zahel,

4 Al — oo twmeent Tois assirns e o Lhe numlr ¢

il rpdats: Tor eack manemberad vetrea v= Adje) do wEd O label w):
v

Fipgnte 4.2, Alporichm 4.1 Lox RFS,
Algorithm 4.1, Lexicographic breadth-first search.

frpnt: The adjacency sets of un undirecied graph (f = (F, E).

Quput: Ao ordering & of the vertioes,

Maethnd, The vertices are numbered from g o 1o the onder that they are
selected inling 3 This nomtbering fixes the positions of an climiration scheme
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A

Higur: 4,3,

. For cach vertes v the laled of ¥ will comstar of a set of numbers lsted in
decressing order. The vertices can Then be lexicagraphically ordered aceord-
ing to their lahels {Lexicapraphic arder is jusk dictionary order, so thar
9Tal < 985 and 643 = 6432 Ties are broken arbitrarily.

Example. We shall apply Algorithim 4.4 o the graph in Figurs 4.3 The
vierlen g s selecled arbitracily e fine 3 docing the first puss. The evolution of
ihe labeling and the numberine are illosiraied in Figure 4.4, Nolice ihat the
lnal numbering ¢ — (oo dl e boa) is o perleet vertex siiminalion scheme. This
1% o aceiden |,

For each waluz of i, let L{x) denote the label of x when statetnent 4 is
exccuted, Lo, when the fth verles 15 numbersd. Bemember, the index s
decrenpntid at cach syceessive igmelion, For example, L,0x) = & lor all x
amd L, 0x) = dn} il v o Adi{einty, The fllowing properiics ace of prims
Il amee:

(LIVE () = Lfx) (f = i¥;

(L L) = Li¥) = Lo} = LAv) (< i)

FL3Y I o7 a) < o™ YBY < o7 e and ec Adpe)  Adjibh then there
exists a vertex J = Adjiby  Adi(e) with 67 "¢l < &~ 'L

Kbel mamm b4 ke Db ik Ikl rumiee ol e ebol numor
.7| & - al @ 5 | @ =z a|l # = [ ¢ ] w[ & ] |
sl al - 2/ - el fs1 | 2 g | o b dst| o | o] Bt| ot
ol & | ¢ | = f=e|ar| = [=~7| W] = |c|fag}| - |—r{izz}
el ¢ | - 4 |- a| el | - ¢ fea}| - alitaf| = alia3}| 2
el -] s -] oo | elma] x| cfua 5| efim s

Figure 4.4.
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Propertv (LY sayvs that the label of 2 vertes may geUlarger but never spualler
as the algorithm proceeds. Property (L2} slates 1hal onge a vertex gels ahead
of another vertex, they stay in that order. Finally, (1.3 gives s condition uneder
which there must be & suitable verlex & which was numbercd hefore ¢ iin
time) and bence reecived i bureer miember,

I cxicographic hreadib-first <sesrch can be wsed 1o recogirize triangulated
graphs as demonstrated by the next rthearem.

Theorem 4.3, Anordirested graph & = (F, £ is triangolated f and only
H the ordering ¢ prodwced by Algorithm 4.0 s a pertoet vertex chminalion
scheme.

Froof. IV — n — L. then the proof is trivial. Assume that the theorem
is true for all graphbs with fower than # vertioes and lel o be e ordering pro-
duced by Algorithie 4.1 when applied e a triangulared graph <. By induciion,
il ix sutticient W show that x - #{1) 1% 2 Smplicta. vertex of £,

Suppiose x 1% nob simplicial. Choose vertices ;. x, € Ad(s) with x,0, & £
an that w, 12 as large as possible (with respect to the ordering o). (Remamber,
o ingreases as you appraach the root of the search trec ) Consder the follow-
ing inductive procedure. Assime w2 are given verfices r . x.. ..., X, with
thase properties: for gl i, 7 = 0,

(1) =z oxeb=i=l

(2 axcEasii— -1

L I b B R o X

{4)  x;1s the largest vertea (with respect 1o a) such that

X %6 E bt g

{For qotstienal reasons let x, = x and x| = x,;.) The silualion form = 2
was constructed initially,

The vertices X, =, X, 1. and x, salisly the hypothoses of property (L3}
us g, o angd o, respoctively, Henee, chioose x,, ., Lo be the largest vertex (with
respect tao o) targer Lhan x, which is adjacent 1o x4 but not adjagent to
T 2o Deovr 3 o were adjicent 10 v, _ 5, then §1.3) applied to dhe vertices
Ty Eme v Ky would imply tie existence of o vertex larger Lhan x|
{heice larger than x ) which 15 adpacent to x . but not to x,_ .. con-
tradicting the maximality of x, I (4). Therelore x,.., i nol adkcent to
X, _5. Finaily, it fllows from (1} (2}, and chordality that =« £ E for
P—0 1 o 4o

Clearly this indueclive procedure continues indelinitesy, but the graph is
finite, a contradiction. Therefore, the verlex x musl be simplicial, and the
theorem is proved in ane direction. The converse follows from Theorem 4.1
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In an uwnpublished work, Tagjan [1976] has shown another method of
sgrehing o graph that cun be wsed e recognize trianaelated praphs. 11 (s
called maxintiim cordinglity serch (MOR), and L s defined ab ollows:

MOE: Lhe vertices are ro he numhered from » ta 1.
‘The next vertex ta e rmmberad is always ane which is adjacent to the mast
numbered vertices, ties being broken arbitrarily,

Using an argument sumilar to the proof of Theoram 4.3, one can show that
is triangulated if and only if every MCS ordering of the vertives is 4 perfoect
ellimination scheme. 1t should be pointed out that theta are MUCS orderings
whichcannot beoblained by Lex BES, there are Lex BFS ordenings which are
not MCE, and there exivt perfect elimination schemes which are neither
MCS now Ley BEES. Exercises 27 and 28 develop seme of the results ap BCS.
Bath Lex BL'S and MCS are special cases of a general method {or finding
perfect elimination schames recently deseloped by Alan Ilollman and
Miche! Sakarovich,

4. Tha Complexity of Recognizing Triangulatad Graphs

Having proved the correctioess of Algorithm 4.1, lat us now analyze its
complexity. We finst deseribe an implementation of Lex BFS, then show hat
i reguives | F| 1 [F|) time. We do not actually ealeulate the labels, bul
rather we keepr the unnombered vertices in lesicagraphic order.

Data Structure

We use a quens £ of sets
F = lvz Vlabelr) = fand 7 ¢ wndefinad

ardered lexicopraphicatly from smallest to largest; cach sct 5 (s represcoted
by a doubly linked list. Initially there is but one sel §, = . Fuch se1 5, hus
d FLAG initially set at O I'or a verteX w, the array elemeant SET v poinis o
Sibenwg and another asray pives the address of win SET(w) lor delelion
purposes. A list FIX LIST, initially coply, % slso used, and simple arrays

represent o and o~ "

Implemeantation

Sclecl ws vio line 3 aoy verlen in dhe bast sel ol § and dedewe o from SET().
Create a new set 5, for each old set 8 containiog an unnumbercd vortes
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w e Adi(e). We delete vom &, alb such vertices w and place them in the new
set §,.;, which iz inserted inco the gquene of sely immedinely llawing S,
Clearly Lhis method maintains Lhe proper lexicogeaphic ordedng withour our
acludlly having to caleulate the labels. Mare specifically, update can be
implcmented as follows:

Tor all mmournhensd -+ o Adjie) do
Tegzim
iFFLAGERE vy = O twn
beprin
Cezatz new ol 87 and imsorr i .m0 O emmediately in back of SEe;
FLAGISETH) — 10 FLAGES — 11 put o prnter 1o SET {w)on FIX LIST
(G ]
Tt 57 e the w2t iommediately im back of SETiw b 0 deleos wefeom SEEC(w); add wee 57
SET(w) — &7
vl
Tor cach aed S oo FIX LINT de
hargin
FLAGLS] 1),
il .5 i =iy then
delete & fecim £
cod

bl

B is casy to verily that, as presentad, statement 5 requives O] Adjied|)
time, Conseguently, the for lpop belwoen stalements 2 and 5 pses O] 4
| £] ) timc, tnitializimg Lhe dats stroctore including statement 1 lakes & V)
time. This proves the following result,

Thearem d.4. Algorithm 4.0 wan be implementod o carry oul lexico-
graphic breadeh-Grat search on an undinecied graph & = (F, £ in (0] V|
+ | £} timi: and space,

Example. Let @, denote the queue ol sels af unnnmbered vertices just
before &(f} is defined in Algorithm 4.1, Figure 4.3b gives £, ,, and &
tor the graph i Figure 4,34, For convenience, the veetices are identiied with
their eventual position in . Figure 1.5c shows the data strocture for O belore
the FIX [15T hus been emiptied and with Lhe implicit labels in parentheses,

In order to use Lex BFS to recognire trianguluted graphs, we need ao
elficient method to test whether or not a given ordering o of the vertices is u
perfoad vortes shmination schemne. This 1s proved by the next algorithm.

Alporithm 4.2, Testing o perfect eliminalion scheme,
frput. The adjacency sals of an undirected gruph & — (F, E) and an ordering
v of V.
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G = {123.456n89]
gy ={n2} « {34568}

@, = {1} < {2} < {345} < ‘a7}

3 l
[+ ::]TI LI
{1] {2} y {na.5} fe.7}
Figure 5.

Gatput, “True™ 1if o 15 a perfect vertex elimination scheme and “false™
olherwise.

Method. A single call o ihe procedure PERFECT o), mven i Figore .6,
The list A{a) collects a1l Lhe vertices which will eventually buve to be checked
for adjacancy with w. The actual checking s delayed wmtil the tleration when
# — i) in lines & aund 9 This techoique is used so that in the ¢ '{¢)}th
iterution there is no search of Adjfe).

Complexity. Arrays are msed for 7 and ¢ - and lists hold Ady(y) and Al
Lines 4 7 can be implernented simultaneously in one scan of Adjis). The
go to in line 5 will be executed exactly | — | Limes, where f is the number of
cotulected compotetits ol & The sl AQw) will reprosent a set with repeiftions
The test in line B simply checks for a vertex w on the list A(e) which is not
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hisolean procediore PR FRCT [ah:
ey

l. for all worlices o do A —d .
2. for ¢« Loy — Ldo
hepin
L3 v
4. ¥ Irs Adile) o7 = o ek
5 [ Sl {1 - T
fi. w o foin ool o= A
I Ccomalenale A Yok o A
W it Al — Adjie] 24 hen
% Tetum Cfalse
el
itk retorm “oTue

end

Figute 4.6, Frooedare 2o o5t s pertees vornes ¢limdnation scheme.,

adjacent w0 &, can be done in O Adiie) ~ |Afed]) time by using an aiTay
TUST o size r inially set towll soros as follows:
begin

for v & A do TRET[E) +~ 1.,

lor v £ Al de
5. FITNTw) O then

FEtUET Y nen2mpie ™

for w - Adp ) do TESLRT -3,
reten 'y '

)

Thus. the entire algorithm can be porfermed in lime and space proportional
i
V1= 3 rAdi| + F |4,
¥ urF

whira has Ay} i its final valuz, Mow, the middle summand s lurger than the
ast since o piven Adj(v} appears as part of at most ong of the Tsts Afw).
[ence, both summands can e raplaced by 4| L]} Thiz proves the com-
plexity part of the next theorem.

Theorem 4.5, Algorithm 4.2 corrsetly rests whether or 0ol an ordvring o
of the vertices 15 & perfect vertex climimation scheme. It can be implemenred
to tun in time and space proportional to |[F o+ B

Frord. The algorithm returns “false™ durimg the o~ '(u)-th iteration if
and vnly if there exist vertices g vy w o7 (e) < g~ ) < o~ w)) where
is defined in line 4 during the & "ukth iteration, and

towe Adjird  butwis not adjacent to w,

{leardy, if we get “false,” then « 15 not a petfect elimination scheme,
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Conversely, suppose o is nol perfect eliminarion and the algerithm returns
“true” Let o be the vertex with o7 1{e) largest possible such that ¥ = {w|we
Adifw) and o™ Wed = ¢~ W) is nor complete. Let u be the veriox of X delined
in ling & during the o~ {#)th itecation, afier whiclk: (in line 71 X - [u} &
added to Alu] Since during the ¢~ Wu)4h iteration [ing 3 15 nat exeentl,

every xe X — fwl s adjacent to w.
and
cvery pair x, yo X — {u) i adjucenl.
The laticr stutement follows from the maximality of & ') Thus, X s
conmpletiz, @ sontradiction, |

Corellary 4.6,  Triangulated graphs can be recoenized in lincar {hnc.,

Provyf. The prool [ublows [Tom Theorems 4.3 4.5 |

b, Triangulated Graphs as intevsection Graphs

We have seen i Chapter 1ithat (he Interval graphs are a proper subclass
of Lthe triangnlated graphis. This leads naturally to the problem of claracrer-
Zzing triapgnlated graphs as the wntersection grapbs of some lopologieal
family slightiy mors eoneral than imervals on o line. To this seclion we shall
shaw that a praph s ioangulated and only #is the ilersection praph ofa
family of subtroes of o tree. (Sce Figure 4.7.)

\:,

Fignre 4.7, A riangalitsd priph =nd 5 subires ropregentarian fur il
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A larmily 11} of subsets of & set T is said to satisfy the Helly property of
Jeland T, % @forallije fimplies that 7, ; T; = Zi

ITwe let T be a tree and let gach f; be a sublree of T, then we can prove the
fullowing resull.

Propasition 4.7, A tamily of sulyracs of a tree satisfies the Helly propatty.

Fraof, Supposc Tom T 2 27 for all & je J. Consider thice points a, i, ¢
on T Bat § be the set of indices » such that T, contains at least two of these
three points, and let . P, P, be the simple paths in T connecting o with f,
bowilh ¢, amel ¢ with ¢, respeetively, Since T s a tree, W follews that By » Pyon
Py A, but each T1s < ) containg one of these paths £, Therefore,

(V8= 8 nF Py = 3

Al

The lerina is proved by induction. Let us assume Lhut
[T T, #g  forall LjeJl= [T+ {1

Jed
for ail mdex sets J of size < b This is cerlainly true for k= 2. Conaider a
family of subtrezs {7, ..., T, L By the induction hypothesis there exist
points a, e on T osuch that
K B4t

Ge |"‘. T,. e ﬁTEr, ceT, M T
-1 P

1"
I

Moreover, every ¥, cantains at least twn of the peants o, B, oo Henee, by the
k1

prececding puragr&}rh, (it T = |
Theoren 4.8 {Waltee [1972], Gavril | [Y74a |, and Bunerae [ 19747).  Let
G = [V, £) ke anundirected prapl 'L he follewing statements are ¢quivalant;

(i} is g tiangulated graph.
{11y &7 is the inlersection graph of a family of subtrees of a tree,

(i) There exists g tree 1 = (87, &) whose verlex set .7 18 Lhe set of maxi-
mal cliques of (¢ soch that each of the induced subgraphs Ty (v e ¥} is con-
necied (and hence a subiree), where . consists of those maxiral cligques
which conLan e,

Progf, (i) = (1) Assume that there exists o tree T = (¥, £) satisfying
statement (i) Let o, we V. Now

e E, p,wed for some cligue A4 .4,
Ao L #E L Te, Ty, F @

Thus G is the intersection graph of the family of subtrees Ty [0e V3ol T.
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(i) = {1y Let I'fil.., bea family of subtrees of o tree T soch dhat pwe F
iff Lo T, 2 3

Suppose O contains a chordlass eycle [ug, #, oo s 5] with k= 3
aorresponding to the sequence of subtrecs T, Ty ..., Ty | Tofthe lree T
that i, T, ~ T; # 47 il and only it and f differ by at mosl ot module £ All
nrithmetic will be done mod k.

Choost a polnt a; from ey (=8, ..., & - 1), Let b, oe the last
common polnt o Lhe {unique) ample paths o a; to o, and o to o,
These paths lie in 1 aad 1;, ;, respectively, so that b, also lies in T Ty,
Let P, be the sioplc path connecting &, and 5., Clearly I, = T., #0
PPy — @ for dand §odiffering by omove than §mod & Moereover, P,m
Poy=tWltori=0_ k— | Thes, | ;; P s asiopls cycle in 1, contra-
dicting the definizion of a ree.

(i) = (i1} Woeprnove the implicidlion by induclion on the siqe ol {7 Axseme
thatl the thoeorem i Irue for all srephs having fewer verlices than G T O is
complele, then T s a single vertey and the reatl s friviad, IF O is disconneciod
wilth compunerils (..o, O, then by mdoction there cxists 3 correspuncding
free T satislving {iiih lor each @, Woe connect a poial of T, wilth 4 poiot ol
Lo Gi=1,.. .k — 1)toabtain a tree satislving (iii) for &,

Let s assume that 47 15 connected bur not complete. Choose a simplicial
vertex w of & and let 4 = {a} o Adj{u). Clearly, A 15 a maximal cligue of .
Let

U=Tued Adj(v) = 43}
a1
¥—4 L

Motc that the seta L7 ¥Foand ¥ — A arc nonem pry sines (13 contnected bt naot
compleie. Consider the induced subgraph 4 — Gy _ ;. which iz friangulated
and has fewer verlices than (7. By induction, let 7' he 4 tree whose verlex sot
K715 the et of maximal cligoss of € such that lor each veriex e V¥ — U Lhe
set K, = (X = K've XY induces o connectod subgraple Giubtres) of 17

Remark. Eithor K = K7 - {4} {¥} o1 K — K" + {4} depending
upon whather ar not ¥ s a maximal cl:.que of .
Let # he a maximal clique of 7 containing ¥.

Case 1. B — Y, then we obtain Tirom T hy renaming B, A.
Case 2, 1 % ¥, then we obtain T from 77 by connecting the new
vertex 4 to B,

Ineithercase K, = {d} forallein U and K, = K, forallvin ¥ — 4, cach
of which :nducss asubtree of T. We need only worry about thesets K (ve Y}
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Incase 1, K, — K} + {4} — {8}, which induces the sume subtrec as K,
since only names were chunged. In case 2, K, — K, + A}, whicl clearly
induces a sublree. ' '

Fhius, we have constructed the regired tree T and the praof of the theorem
1s complete. |

Bunemearn | 1972 1974 | discusses 1he application of the subdree intcrsection
mnde] in canstoncting evolntionary trees and in cerfain other classificarory
neablems.

Anundircoted graph €7 = (17, EYiscalled a pach graph if if 5 the infepsection
graph of o family of paths in a tree. fenz TL9T07 showed that @ s a paih
graph if and only if & s triangutated and & is the intersection graph of a
family # of paths in an undirected graph such that # satisfies the Helly
rroperky. Ggvril [1978] presented an eflicient algorithim for recosnizing
patl graphs, Le also proved a theorem lor path graphs analogons to fhe
equivalence of (i) and (L) in Theorarn 4.8 (sce Eiencise 260

6. Triangulated Graphs Are Perfect

Checasionally, the minimum graph coloring problem and 1be masimum
clique problem can be simplified wsing the principle of separation intn pivces
{Rorpe L1IYTE 0329 ) This muethod is deseribed in the tollowing theorermn atnd
its prool In particular, it is applicable 1o iriangulated graphs.

Theovem 4.9, Tot 8 bea vertex separator of a conneeled undirecled graph
C=(V.Fand let (G, . G, ..., G, Iwethe connected components of & .
IF % is a clique (not nocessarily maximall, then

20 = max {Gz )

T

arnil

el G = rrax oGy -y )

Proaf. Clearly y({r} = Gy, (Jforeach i s0 7(G) = & — max; p(Grye )
It [ael, {7 can be colored using exactty & colors. Fiest cobor Gy, then mnde-
peandenily cxiend 1hs coloring o vach piece Gz_ . This composite will be
# colonng of € Thus, ¢} — &

MNext, certamly cl0) = ollgy ) for cach £ o o U) = max; cf(g, )
= m. Let X be a maximurm clique of G, Le, L X[ — eofG) T i3 impossitblie thal
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two vertices of X liein ¢, and G, (0 # §) since the vertices are conaected.
Thus, X lics wholly in one of the picees, say Gy, 4 - Henoeom = e Gy_ g ¥ =
| X| — wiGhTherefore, ef(;) — m

Corollary 410, Tet § be aseparating set of a connecied undirscted graph
G=(V E,andler s, .G, .. ... 0, hethe connected componenis ol {7 5.
If %15 a clique, and if each subaraph € 4. is perfect, then {r s perleot.

Proaf,  Assame that the result s true for all graplis with fower vertices than
0. 1L saffices Lo show that 70} = exX ). Listng Theorem 4.9 and the Fact that
cach gruph (fg, ,, 15 perlecl, we have

¥l — e W0y ) = man iy ) = wlG) |

a

We arg now ready o state the main resulr,

Theorem 4,11 {Berge [1960], Hajnal and Surdnyi [1958]k  Dvery (-
anguiated graph is perfeet.

Proof. Lel O be g ismgulated graph, aod assume that the theorem is
trui for ull graphs bhaving [ewer vorbces than &, We may assume that G s
connected, [or othorwise we congider cach component individually, If G is
complete, then @ s cortamly perfeet. IF 6 is nol complete, then let 5 be a
minimal yertex separator for some pair of nooadjacent veriices. By Theorem
4.1, 5 is a clique, Movcaver, by the induction hypothesis, cach of the {in-
angulated) subgraphs Gy, 4, a5 defingd in Corollary 4.10, is perlect. Thus,
by Corollary 4.10, £ s perfact, 1

Bemark. The proofs in this section vsed only the pecfect graph property
(P (Barge (196070 TTistcrically, hoswesar, until Theorem 3.3 was proved,
the arguments had to be carricd out for properey (T30 83 well {Hajnal and
Suranyi [ 1955}

Let# denole the class of all undirected graphs satistying the property that
every ochl evele of length grester than or equal o 5 has at least two chords.
Clearly, every trianguiated graph is in % Our vltimate goal in the remainder
of this section is to prove that the graphs in % are perlfect. The technigque uscd
to show this will e constructive n the Tollowing sense: Given a kcoloring
of a graph € £ %, we will show how 1o reduce it into an w-coloring of G,
where = a3 = e {7}, by pertorming a sequence of color interchanges called
switehings,

Let & be an undirected graph which has boen properly colored. An (s, f)-
chain in 7 15 a cham whost vertices allernate between the colors 2 and #, Lot
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{o e denotz he subgeaph induces by the verrices of & which are calared @ or £
Ar Jx, B switch with pespact to G consists of the following operation:

Either interchange the colors in a nontrivial connected compaonent of G,
amd Teave all other colors wnchanged, or eeolor all iselated verlices of G,
wang fand leave all oiher colors unchangad.

Wote thal the result of an o B switch with respect o G 15 again 2 proper
coloeing of {r.

Lenuna 412 [et Ge% be properly coloted, and let x be any vertex of
(r. Lot verlives w =& Adjiy) be eolored = and f, respeciively, with a = L T
yoend 7 oare linked by an (w f-chain in O then they are linked by an (y, -
chain in i aip-

Praof Tuelp — (¥ = %, %y, Xayooo. % = 2] Boan [+, V] chain in 7 of
mirimum length hetween v and =0 Clearly, { muost be odd. We claim Uhat

oy ¥p0 Xaa o W5 = AdJOx)

The claim s cortainly true it 7= 1. Tet us as<ome that 7 = 3 and that the
claim is true for all minimum {z, fi-chaing of add length strictly less than (.
Mow, the cvele 0 =[x, oy, X0, ..., x;. 7] has add tength [ + 2 = 3, and all

of its chards must have « as an endpoint since a chord between an ¥ verlex
and a [ vertex of 4 would give a shorter chain. Therefore, every subchain
wlo, 2] = [xe oo o0 ] of g a minipourn (o, §)-chuin, and since 7 =% the
evcle 7 has at least two chords, xx, and o, (-2 ),

I ol ey, o] gl 2] and plxg, o0 alb have odd lengrh, then applying the
iduction hypothesis te 2ach of them we obtain {x,, x,, ..., ) = Adj{x)
Crtherwise, at least one of plxg. x Jor p2[x,, x/] las even length. Withoot kss
ol generalbity, ussume thal u)xvg., x;] has sven length so thal gl 3, x| has odd
length. By mduciion, {x;. 540 ..., 5} = Adjix) In particular, %, ,F
AdNx), 50 ol xe, 2. 4] has odd length and by induction {x,, x, ... % 4}
= Adjix). This proves the clatm. |

Let 67 — Gaag- Lemma 412 says thal @ nontrivial conoected component
of G, contains ouly ong nantrivial connceted component of G, or only iso-
Lol o vertices of &, o only selated f vertces of G,

Lemma 313 Tol e s peomer coloring of @ graph Ge %, and et ¥ e a
vertex ol Ov coloved v Tet f.- he the resteiction of /fo the subaraph & induced
by those vertices adjncent to x whase colors are from sotme arditeary subset
£ of colors with »& 0. [F 5 can be teansformed bilo a coloring ¢ of & by
a sequence of switchings with respect to G (using colors from ) then f
can be teansformed into a coloring I of & by a sequence of switchings with
respest fo €5 such that fL. = g'
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Froaf. Tt is sullicient to consider the case of & single o 5 switch with
respect (o (7, where o, £ 5+ Suppose thar a connected component I, of
(i was switched. IT 42, 1s nontriveal, then by Lemina 4,12 the same result
could be chiained by switching the compenent of r;, containing H,,.
IN {1, has omly une vertea, then all isolated verlices of G, were switched o f,
Inn Lhis case the sume result could be oblaned by switching all nonttivial
compuonenls of G, which conlain isolated o vorloes of G, plus switching
all isolated verlices al {r, o fi |

Theorem 4.14 (Meynicl [1976]),  Tet & # and lot f'he a k=coloring of G,
Then there exists o geoloring g of 6 with g = @&y which is obtainable from
Jby u sequence of switchings with respect 1o &,

Proof. The theorem is olwivusly teue for praphs with one vertex. Assume
that the thenrern is troe for a1l graphs with fewer verlices than G,

Cansider 4 k-coloring fol G using the colots {2,090, ... gl wilthk =y =
AL Chowse a verles x with color a 2 oy, wy, - %y it there 1 none, the
proof is linished. Let &' be the subgraph induced by the werlices colonsl
#yo 2,000 2, and adjacent to x. Clearly,

i = G} = x(ﬂ.‘uljl.ﬂ] <g-— L
Sdnee G e %, Lhe induction hypolhesis implies Lhal there exists o g'colonng
g of " which is oblainable from ;. by a sequence of switchings with respect
Ly &' By Lemma 4,13 ' cun also e ohiwined from £ by g sequene: of switch-
ms wilh respect Ly O Aller perlorming this seoguenee of switchiongs, we can
recolor v with one of Lhe calors ey, @, ..., 2, which s unised by g7 (smoc

g =g - 1% Thus, we have enlarged the set of vertices calored &y, 5,, ..., 1.
Kepearing 1hus process until all vertices of & ure colored =, 25, ..., 2, will
viekd a wminimum coloring. |

Weare now teady 1o show Lhal the graphs in % arc perfeet. Gallal [1962]
orginally proved the case where each odd cycle bas two noncrossing chords;
a shorter proof appeared in Surinyi [1968], The case where each odd cycle
has rwo crossing chards was proved by Clarn [ 196497 (soe Sachs [19707h The
merieral case, us presenled here, 15 due o Meyniel [19767,

Theorem 4.15. [l (¥ 15 an undirected graph such thar every odd cycle has
twor chords, 1hen & 18 perlocl.
Progf. Let G e # with 2(G) = 4, and lel A be un indueed subgraph of &
sutislying
HH) = g
il A=y [or every vertox a of H,
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Choose a vertex v of IJ and a (g — 1kooloring fof I} — x_and lef 117 be the
subgraph wduced by Adjgixd UH were (g - 2kenlorable, then by Theorem
4.[4 frestricted to ' could be transformed o a {y — 23colorimgol H by
sequence of switchings with respect to H° Then by Lemma 4.1 there would
est A g — L-oolorms of H — x uving ¢ — 2 cosors Tor Adjgixr Buk this
would mnpiy that y(H) = ¢ — L, 8 contrudiction.

Therefare, {51 .0 Adi =) 15 not (g — 1-colorable, and hence it must be the
entire vertex get of H. Simee this aroument hiolds for all x, it follows that H
is a g-clique. Thus, ¥»{GY = wir) = 4. In iike manoer, G = XY for all
induced subgtaphs & of G sinee baingr i % 1= 4 heroditary property. Thus
{r is perfect.

7. Fast Aigorithms for the COLORING, CLIQUE, STABLE
SET. and CLIQUE-COVER Proklems on Triangulated
Graphs

Fet (0 = [V, £} be n triangulated graph. and lef o be a parfect elimination
scheme for . [t was first pointed out by Fuelkerson and Gross [1965] that
every maxima: cligque was of Lhe form {oh o X where

X, — Ixeadim| o ey = o Hx1h

This clementary acl is casly shown, By the definition of o, cach {eb o X
15 complete. Let w he the [irsl veriex it o confained 1nab arbilrary maximal
clique 4 them 4 = {w} o X Therefore, we have the lellowing result,

Proposition 4,16 {Fulkerson and Gross [1965]). A triangulated geaph on
# vertices has at most r maximal eliques. with equality fand only it the graph
has ho edges,

it s casy enough o modify Algonthm 4.2 (0 priat out sach set {7} o X,
Fiowever, some of these will not be maximad, and we wookd like w filter them
oul. The mechanism that we employ 15 Lhe observation that fu] o X, 15 nof
maximal M for same 4, in line 7 of Algorithm 4.2, X, is concatenated to A{u)
{Exercize 133 The madified algorithm s as follows:

Algorithm 4.3 Chromatiec number and maximal cligues of & trangulared
arapl, .
Fapnt: The gdjacency sets ol a trimaaladed sraph OFand o perfect elimimation
schene o,
Cuepane: Al maximal cliques of G and the chromatic number x5,
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Merhod: A siugle call to the procedure CLIGUES( s} given in Figurc 4.8, The
number 3¢} indicates the size of the lorpest set that would have been con-
catenated to Afe) in Algorithm 4.2, & careful comparison will reveal that
Alporithm 4.3 is # modilication al Algorithm 4.2

Theorem 4.17.  Alrorithene 4.3 correclly vabeulates the chiramalic number
aoel wll maximal eligues ol g triangulated praph G = (F, B o O F| 4+ [
tumec.

The proof 15 similar to that of Theorem 4.5,

Mexl wo tackle the problem of tinding the stabilicy number o of a tri.
angulated graph. Betler wel, since o is perfect, Tel us demand that we produece
buth a sLable sc1 and cligque cover of size e (). A solution is given by Cravril,

Let v be i perfect climination scheme for & = (¥, E}. We define inducrively
a sequence of vertieas py, pa. ... 1 0 Lhe following, manner: v, = a(l); v is
the first vertes in & wlich [ollows 3 sod which s notin X o X
wd el vertices ollowing youre in X, w0 X Lencs

¥ = {}’1+.1f'2* v .vl} k= X}-_ W U‘!{}.'
The following theoton applics.
Theorem 4.18 (Gaveil [19727). The set vy, vay 0.y ¥ P 18 4 COREZIOIT

stable sct of &, and the colloction of sets X, = (vt 0 &, =1L 2 ...,1)
compeiscs 3 minimem clique cover of 0

provedure CLIGTTES 4o
Iegin
1. r+1l:
2 B ail weenices @ do 50h — O
i for 5 — |10 do
buyzin
4, T rmf];
5 Y—lzeddimle <o 150}
i, aaljzl 3 them print o,
. il X = @ then po o 13
L3 o omimmde Nx) ae Xk
9. Stu) +— man] sup, &) — LY,
141, il 4Ty < | X e dov
hegin
1L print {ri o X
12, ¥ =y [+ Y|i;
vl
13, ool
14 print * The chromule sumberis ™ g

end

Fignre 4.8, Procedure L Tiol all magimal chiguss ai'n'triangnlﬂ-'-ed graph, given g pecfecl
ehininislicn scheme.
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Proaf. The el {w,, 3. ..., 3} is stable since If v, 0, € E for j = i, then
¥ = X, which eannot be. Thus () = t. On the other hand, 2ach of the zets
Yo= [y X, isacigoe, smd so £, o, X is a cliqoe covar of G, Thus,
27y = k() =+, and we have produced the desired maximum stable set
and mminitmum clique caver, |

lmplementing this procedues to run cllicienlly is 4 straightforward exercise
and 15 lest for the reader {BExercise 253 For a treatmenl of the maiimum
weiplited siahle set prohlem, see Feank [L1Y765].

EXERCISES

t. Show that for = 5 the gruph €, is not triangulated.
2. Using Theorem 4.1, condition {u), prove thal every inlerval graph is
trigngulated. What is the intecpretation of 4 separator 1o an interval repre-
sentation of a graph?
3. Proveproperties (L1) {L3)oflexicographic breadth-first seacch (Section
4.3
4. Apply Algorithm 4.1 to the graph in Figure 3.3 by acbitrarily selecting,
1w vertex of degree 2 in line 3 during the tirst pass of the algorithm, {i) Whail
i Lhe purfeel scheme you get? (i) Find o pericet scheme of €& which cannaol
posibly arise trom Algorithm 4.1

The clasa of undirected graphs known as k-trees 15 defined recursively as
tollows: A k-troe on x wvertices consists of a clique on & vertices {k-clique):
given any k-trec T on 4 vertices, we consteuct a k-trec on &+ vertices by
adjaining 4 new vertex x,,, to T, which is made adjacont to cach verlex of
somc k-cligue of T, und oonadyacent to the remaining i — & vertices. Moties
that u 1-troe 18 just a tree im Che usual sense, and thatl a A-iree has ol least &
verlices. Exerclics 5-7 below ate due Lo Rose [1974]. Huarary atd Palmer
[1968] discwss 2-Lrees.
5. Show Lhat a k-lree hasa perleet verlex clinmnulion scheme and s 1herefors
toiangulated. (ive an cxample of a triangulated graph whicl is not a k-rree
for any k.
0. Prove the foliowing result; An undirected graph & = (¥, E} s ak trec if
and only if

(i} s comoected,
(i) ¢ has a kcligue but no (& + -clique, and
(iil}  every minimal verlex separator of O is a f-clique.
7. Let {5 =(V, E) he a trianzulated graph which has a k-clique but no
(k + 2)-clique. Prove that |E] < k¥ — S&(k + 1) with equaiity holding if
and only if G is 4 k-tree.
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. Show that every 3-frec is planar,

9. L&l & be an unditected graph and let K be construcled as follows. The
vertices of i correspond Lo the edges of £r, and two vertices of H are adjacent
if their corresponding cdpes form Lo sides of 4 rianple in G, Prove thal {5
iz a 2-tree if and only i H 15 a cactos of trangles,

it Show that cvery vertex of 2 minimal x v separator is adjacent to some
verlex in cach of Lhe connected components containing x and y, respeetively.
11. Let 5 be 1 minimal x -y separator of 4 connected graph (7. Show that
every path in & from x to y conlains a member of & and that ewry 53 (8
contained in some path i from x to v which ivalves oo ather elament of 8,
that is, um ¥ = {5},

12,  Prove the loliowing: For any mimmal vertex separator 8 of a triangu-
Iated graph € = (17, E), there exisis 4 verlex ¢ in each conmected compoment
of G . such that § = Adj{c) (Hinot: Prove the inclusion for each subset
X < § using Induction.}

13, Program Algorithms 4.1 and 4.2.using the dara structures suggested and
test sorne graphs lor the triangulated graph property.

14, hive a vepresentation of the graph io Figure 4.3a as intersecting sub-
trees of a free.

15, Provethut &is tniangulated if and only if {715 the tntersection graph of a
lamily .F of subtrees of 2 tree where no member of & contains another
member of F (Gavrtl | 1974a]).

Lo, Give an alporithim which constructs Jor any trtangalated graph O o
collectinm of subtrees of 4 tree whose inlersection graph is isomorphic to G.
17, Proveche following: A is a ceee if and only I every family of paths o IF
sitisfics rhe Helly property.

I8. Proveihe lollowing theorem of Renz [ 1970]: ¢ is the intersection graph
of a family of patbs v a tree i & is triangulated and is the intersectionl
graph of a family of arcs of a graph satisfying the Helly property.

19, Using the Helly property Tor sublrees of a tree, show direclly 1hat (i)
implies {iif) in Theorem 4.8 {llint: for each clique A of the milersection
graph, painl the subtree corresponding 1o the interseelion of all members of
A red and painl the remainder of the 1oee green, What does i look like when
you collapse each red piece [0 a point™)

e Prove Caorollary 4 1 using the perfoct graph property (P} instead of
(ry).

21. The line graph L{() obf & is delined to be the yndirected gruph whose
vertices vorrespond Lo Lhe edges of G, and two vertices of L{G) are joined by
an edge if and only if they correspond to adjacent adges in G, Prove that & is
triangulated if and only if L{G) is telangulated.
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2. Provethat Algorithm 4.3 correctly caleulates the chiromatic number and
all maximal cliques of a triangulated graph.

23, Let o be 3 perfect vortey ¢limination seheme for a lrinegubaicd sraph
G ={V, E) Lei & =V, F} be un arientation of (7, where xve FiTo ™4 x)
= &7 1) Show thae IT s acyelie. Let 1 be any topological sorting of H. Show
that 1 15 alse a perfecl elimination scheme for G,

24, Prove that a acight fonction f (see Chapter 2, iaercise 8) of the acvelic
ariented graph i defined o the precediog exervize is 1 minimum coluring of
the Lriatgnlaled praph € Thus, a triangulated sraph cin be colored with a
mirimum gumbser of colors in lime proporton] Ly i sk

25, Modily Algorithm 4.3 50 thal, in addition, it prints cul @ mWaximun
stable set and prints an asterisk next to those cliques which together comprise
a miaimom clique cover.

26, Prove the lollowing: G = (¥, E)is a path praph if and onoly il there
exists a tree T whose vertex set is 47 (the maximal clhiques of < such that for
atl 2= ¥, the nduced subgraph Ty 0% 4 path in T_ (¥, denotes e set of
maximal eliques which contam o) (Gavell [1978].)

27, Let & = (V, £ be an undirecred grapn, und et 5 = e v,. .o, 0| be
un ordering of V. Consider the [ollowing properiy:

(T Wa Y <a "oy <o Ywhand we Adjiny — Adjde), then there
eiists an x such that o 7e) < a7 x) and x < Adi(»)  Adjiw)

Prove that if 715 a trlangulated graph and o satisfies (17, then = 1s a perfect
climination scheme for & Clarjan [1976T4)

28, (i) Trove that any MO8 order, as defined at the end of Seclion 4.3,
satisfics proporly (T3 from the proceding excretse.

{ii)  Chive an imnplemmentation of MOS to recognize tnangalaled praphs in

f¥n + ef time. (Hint. To achicve lincarity you may wish to link together all
unmiumbered vertices which are cormently wdjzcent to Lhe sanwe number of
nurnbered vertices {larpn [194767))
29, Anundireeted groph iy called -rriangalated ievery odd cycle with more
than three vertices has a sal of chords which lorm will the cycie a planar
graph whoss unbounded face is the exterior of the cyele wnd whos: bounded
faces are all trismgles. Prove thad o graph s i-riangalated if and andy if every
eveic of odd length b has & — 3 chords that do nol cross one another (Callal
L1962 )
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CHAPTER 5

Comparability Graphs

1. TI'-Chains and Implication Classes

This chaplor v devied Lo Lhe class of perfecl graphs knowe as tom-
parability praphs oc ransitively oricolable graphs. These praphs wers en-
counlered in Scction L3 in conmuection with inlerval graphs (Praposition 1.3),
bui our treatment here will be imdependen of thatl bricf inliroduckion,

An undireeicd graph G = (V, Edis a comparabitiey graph il there exisls an
orientation { V. FY of r satisfving

Frf'=g, F+F'=E P'cF,

where M2 = {ucloh be e F for some vertex b3 The relation I is a strice
partial ordering of V whose comparability relation 15 cxactly £ and F s
called a iramsicsoe orieniation of O (or of £). Comparability graphs are also
known as fransitfeely origargble graphs and parifail)y orderofle graphs
Examples of some comparability graphs can be found i Scetion (3

Lat us =ce whatl happens when we Lry Lo assipn 2 lransitive oTienitalion te
the d-cycle (Fignre 3.1a). Arhitrarily choosing ob e F forces as to orient the
bottom edge toward b and the top edge toward o (for otherwise transitivity
would be violated), These o turn, fores the renusining edge to be oriemed
toward d. Applying the samne jdea to the grapb in Figure 5.th, we find that a
contradiction arises, namely, choosing ab e F lorces successively the orienlas
ticrns efr, o, cf ef, Bf, andd Aa. This graph s nod o compacability graph. Wenow
make the nobon of foremg mare precise.

Drefine 1be binary relatson LU oo the edges of an oondirected graph & =
{F, EYas follows:

githar g =y and hh' g F

C o .
ab T a'h iff {or h— b and as ¢ E

105
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—

(o) (o

Figure 3.1, bsamples of Jomcing. The arbrrdry choce of o & F Homagy the arher suizated
Lieuilivs,

We sav that off directly forces a'd” whenever afb [ o'l Since F is irreflexive,
ol T af; however, ab I e, The reader should nes continae witil be is con-
vinced of this fact.

The rellexive, trangitive closure 1™ of 1 is casily shown o be an eguivalence
redution oo £ and heece partitions £ inwo what we shadl call the impliceation
elassen of &, Thus edpes ab and e ace in the same rmplica ion class iCand only
if there exists 4 sequence of edges

ab =BT b T---Tag by = cd, with & = 0,

Such a sequence is called & U-chaire from ab to od, and we say that ab {eventu-
ally} forces e whenever ol T™* od.
The reader can eastly verify the properties

wh T a'h = tha T Pa',
al 1 el == by T4 ¥er’,

whiich follow directly from the definitions.
Let F0) denote the coltection of implication classes of G. We define

Fiy = (4|4 e M0,

where 4 = A 4 ' s the symmelric closure of 4. The members of L #{G)
are called the color closses of G for reasons that will hecome evidant later,

Examples. The graph G in Figure 5.2 has cight implication classes:
Ay = fabl Ay = fed}, Ay = Tuc ol aet, Ag = b, bd, bel,
AV = that, Ay = ldet, AT = demdayval, A7 = {ehodb, eb)

Sowe have F((F) = {4, 4,, A;, 4,). Onthe other hand, the graph in Figure
5.1k has only one implication class:

A — {ob, cb, ¢d, cf. of, bf, bu. be, do, fo, fe, b7
and A = A
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Figure 2. Ar vundirccted grapn F and a coloting of is sdpes wocording to the classes

ul .51[ G}

]

Theorem 5.1, Let 4 be an implication class of at undirected geaph G If
£7 hus o transilive ordentation Foihencilhar Fa A = Aot F e = 4 Vand,
in esther case, A~ A4 = 7.

FProof We defined I' in order to capluce the Fact that, for any transitive
orientation F of ¢,

if ebUa'l and abhel, then b eF,
Applying this property repearedly, we obdain F - A = Zford = F. Sinee (i)
A F 41 Pand (ip ¥ o~ £ = @ we have the implications
Frid=g =4~ F! [Ty {1)]
= AT FaFnd_ A"

and
AcF A ek latrmd T3 by {1i¥]
= Fin Aﬂ = d.
Ineithercase A m d™" — &7, |

The converse of Thearein 5.1 15 also valid, namely, if 4 ~ A7 = A fir
eaery implication claws A, ther (3 hos @ travsiting artentation. This resalt will be
rrrvved as patt of Theorom 5,27, Theorem 5.27 abio provides the justificatioo
for un wlgorilkm which assipgns o ransitive oriedtation W a comparability
graph.

Bemark., Muany readers may wonder whelher an arhilrary union of im-
plication clases F = | j; A; satisfving Foof '= Faund F+F ' = E1is
tecessarily a trapsit:ve arientation of & The answear is po. As a counter-
examyle, consider a trianple which has § = 3 such onentations, two of
whivh [ail 1o be transilive,

Mexr we present Jwo lemmas which will be usebul thronghout this chapter.

Latah = aphe Cay I Tahy = cdbepiven. Forcach 1 = 1, ..,k we
hawve

{Ji_lb;_l ilﬂibi_'l rﬁ';h‘-.
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Figuee 3.3,

sitee the gdded middle edge equals ome of the other teo. Henew we may stale
the fellowing:

Lomma 5.2, If ab T* cd, then there exists a T-chain [tom ab 10 od of the
form

ah = aghg Tabg Uady Tagh T- T b, =cd

Soch a chinn wilt be called a raronteal T-chatn.

Lermma 5.3 (The Triangle Lemmal. Lot A, B, and ©© beimplication classes
of an undirected graph &r = (¥, E) with A # Band 4 # € ! and having
edpes afre 17, ac = B, and he o A (see Figore 5.3

i Ubeed hen e eCandac e B
(i e edand od e then o'’ = B.
(i) Mo edge in A touches the vertex o

Proaf. By Lemma 3.2 there exists a canonical I-chain
E:[: = b.{:. [:.-. Fhlﬂ“ rhll'."| r' t r bh{:k = h"lﬂ.’-.
Bv induction on i, we have the tollowing implications:
[Roae Fhy_qoyed]l=ab, o F,
By by £ ab, Tamel,
[C-'zd, a¥ b o, ed]=ac,_ L,
CpasE F—ar,  Vag o f
Therefore, in particular, ab’ = ab, e C and ac’ = ac, € B. This proves (3},

Mext, el ws assume thal be' @ 4 aod o' ¢ C By part (1), ac’ < B. Consider
4 mew cenottical Cechain,

-fﬁi? = I‘.TU,bU Falbu I_albl r“‘ru,b; = ﬂrfil".
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This chain gives rise to the chaln
' —agc' Tad' L Tane' = a'c’.

Thuas, ac’ 1™ o'e” and ¢'e’ € B, which praves {1i).
Fiaallv, part (i) immediately imples (i) |

Thevrem 5.4, 1ol 4 be animplicalon class of an gndirceted graph & =
(¥, E). Exactly one of the following altermatives holds:

i) A=4=414
i) Ar A =@, 4 and A1 are ransitive, and they are the only
Lransitive orientations of 4.

Progf, (i Assume A A7 2@ LatobeAdr A7 50 ab T* ba. For
any cded, cd T*ab and deD* ba. Shwee I'™ 13 an equivalence 1clation,
cf [*deand dre 4, Thus A = 4.

(i Assume A A4 = 2 and let ab, boo A Now ac¢ E=uh'ch=-
ched—=hee A Y comtradietion. Thus oe e F.

Let B be the implication cliss of ¢ containing ge, and sopposz 4 # B
Sioce 4 # A7 and abe 4, the Triangle Lemiua 3.3(1) implies that ab e B. a
conteadiction Thuos ac e 4. and 4 15 transitive. Moreover, A being transitive
implics thal A 1 is transitive.

Finally, 4 is an implication class of 4,50 by Theorem 3.1 dand 4™ arcthe
only Lransitive oricolations of 4. |

Corollary 3.5,  Eachoolorelass of an ondirected araph £r either has exactly
two Lransilive aricnlations, one being the reversgl of the olher, or has oo
transitive orientation. 16in O there isa color class having no transitive arienta-
tion, than €7 fails to be a camparahility graph.

2. Uniquely Partially Orderable Graphs

Lel Hy, bewgraph wilth nvertices v, 05, .. tpand 0 H ), H,, L I De
i disjoint graphs.* The composition araph H — H |H,, H,, ..., H,] &
formed as lollows: Farall 1 <2 0 j << w, replace vertex v, In IT,, with the graph
H; and make cach vertex of H; adjacent to cach vertex of {f, whenever ¢ is

* The grashs miy be directed 00 unditeied
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A% e Gl
Figure 5.4. The compusition of some undirected grapls,

adjacent to #; in H,. Formally, for H, = (¥, E) we define 5 — (V| E) a5
fedlows:

V=¥
=1l

I'= U Ly v daplxe VL yeVand vy Byl

L |

We may alsodencte E = E [ E, Eq. ..., E,] Wecall Hj, the cuter fuctor and
H,.. .., H lhe irner factors (see Figures 54 and 3.5).

Theorem 54, Let G = Gu[G). G4, ... {5,]. where the (G, are digjoint
ungdirccted graphs, Then G s a comparabiliny graph f and only if cach (o
{0 < i = n) 18 a comparability graph,

! o

NN s A

L z

o
N
it
o
a®

o [Ar B e )

Figuea 5.5 The composition of some transwively orignted graphs.
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Figure 56, Thesy decocapusitons of the sume grenh, 1he odges are marked according to
rhoir ¢alor clzisas.

Proof. Let F,, &, ... 1, be transitive eriestations of G, G, ... O,

teapuclively. [is casy W show that FTF,. ..., F,] 18 4 ransilive onemation
of €0, The converse tollows from the hereditary propoerty of comparabilily
graphs. |

A graph is called decomposwbie Il 1t can be expressed as a nootrivial com-
position uf some of its induced subgraphs, otherwise, i is called indecompos.
adfe, Three decompositions of the same graph are Hlostrated in [igure 5.6,
Of course. any graph € has the trivial decompositions ¢ = K, [G]and & =
GIR, Ry ..o E L Formally, & - [V, EY i[5 decomposabile iF there exiats a
partition I = ¥, | ¥5 : .- i b of the verticas into nonempty pairwise
disjoint subsets with 1 = r = | F] such that

iy (;R[_GI"i' Gv‘;: s {"1-,_1

tor any sef of representatives B = [z, 0, 2.0 e B Soch o partition s
satid (0 iedwce a proper decompusirion of G Thearen 5.6 may be rcinter preted
as follows,

Corellary 5.7, Ler b a Transitive orentation of a comparability graph
GoH G — Gl oo 0 ] I a proper decomposition af &, than F —
FalFun-o Frl

LeL ws caaenine Che ellec) of this decomposition o Lhe color classes, Nolice
in Figore 5.4 that el ool class occurs either entinely within gne inlerngl
lactor or entirely within Lhe external odges, This phenemenon IS boge in
LN =

Theorem 5.8, Let & = G [, .., 5G] be the composition of disjeint
wndirected graphs 6, = (8, Epde = 01,0 T4 35w eobor class of 67, then
pne of the following alternarives bho'ds:

i) Ao &) for exactly one indes j = 1, ot

(i) Ak = & for allindices j = 1.
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Proof. By our original definition of forcing, cvery volor <luss I Is 4 con-
nected (partlal) subgraph of {r. Suppose that AnE, # & for some f = .
Let gb= A ~ E; and consider an edge o't’ T ab. Clearly o't ¢ &, for any
ks k= 1, sinoe edeges i different intertal componenis never share a
vertex. Moreover, @'y cannot be an external edge because il it were then by
the definition of compositicn the vertices u. &, fn ¥ would induce a triangle
in G, implying that o't ¥ ab. Heace, o'h’ must also be in £ Thus, by oon-
nectivity, A © E;. |

Lel ¢ ={F, Fybean undirected graph. A subset ¥ = ¥ Is called parririve
if for each xe ¥ — ¥ eilbwer ¥ roAdi{x) — &F or ¥ = Adix) A parlilaive
sl ¥ois mamtrinial 01 <2 | Y] <0 | F).On the one hand, any internal actor of a
decomposition of & s partitive, On the other hand, a partitionmg of the
vertices F o= ot --- 4 {u ) + F wheee ¥ is partitive induces a proper
decomposition of & Thereflore, we may conclude the [ollowing remmazk.

Remark 5.9, O ke o worttriiatl pariiciee set i eond only 15 G5 decomposabile,

Before contimueing, we proesent twa simple consequences of the Treangle
lernuna,

Proposition .10, I ¥ is the sel of vorlices spanncd by i color class 4 of
an undireeled graph G = (V. F), then ¥ 5 patritive,

Proaaf. T Y = I, then the resalt is trivial, Oitherwise, el ec ¥ — ¥, and
suppose that pe ¥ o Adjla) Then, abe F - and bec & for some e ¥,
which implics thal ac e £ A Applying Lemma 53000, we obtam that
Y <= Adijfa) : |

Proposition 5.11.  Ap undirected graph & = (I, &1 may have at most one
color class which spans all of 7.

Pruaf.  Suppose that two distinet color classes 4 and B both span 1. Then
for every vertex b tiere exist edges abe B and be e A, Since 4 £ B, the edpe
e is in F. What eolor is it Let £ denote the enlor class containing ae. 1
C & A, then Lemma 5.3(ii) implies that no edge from A may touch vertexa, u
contradiction. ence € — A 2 B, and Lemma 5.3(iii) now implies thar no
cdac from B may touch vertex ¢, another contradiction. Therefore, 4 and i
cannot both span all of 17 |

A comparability graph G s called uniquely pardally ordevable (UPOY T 0
has exactly two trapsitive oricntations, one being the reversal of Lhe other.
Clearly, a comparability geaph is U if and only if it has exactly one color
class (see Corollary 3.5).



3. MNumbear of Transitive Orientations 113

Theorem 502 (Shewrin and Filippoy |1970]; Trotter, Moors, and
Summer [1976]1.  Tel G be s connected comparability graph. The following
conditions are sguivalamt.

(1 G UPO.
£i1)  Lvery nonteivial partitive sef of G s a atable seu
{uny  [or every proper decomposition of &, each interoal lactor is a stable
set (e, all edpes are external},

Prowf. The Tollowing proal s doe to Arditt [1476a]. By Lhe comments
proceding Remark 59, {i1) and (31} are cquivalent, IF 07 b5 LPO, then €7 has
exactly ane color class, and ihis class spans ¥. Thersfore, by Theorem 2.8
any proper decomposition of G must make all edges external. Thuas (1) implies
(Giik, Mexl, suppose 608 nol LIPO, then by Proposition 511 € has a colar
class which only spums g proper subsel ¥ ool Vo By Proposiden 510, ¥ s 4
nentrivial partitive se which is nol g stable ol Thos (i) implies G, |

Corollary 513, Let & be a comparability graph, If & Is indecompaosable,
then r is L),

Progi, IE Qs indcurﬁmpm‘.ublc, Lhen 7 is conmected and il slisfics condi-
tian (i) of Theerem 512 vacuously. Henoe £ 15 TITO, |

3. The Numkbksr of Transitive Orisntations

ln 1his section we shall examine the interaction hetwesn implication
classes. In the process we will abeain a focmubka for the nomber oG ol (rangi-
tive arientations of a comparability graph & and a procedurs for consrructing
e, Ohur treatmel Jollows Golumbic | 1977a | inowhich maoest of Lhis theory
wis developed. Au allerwate method lor caloulaling (G appears in Shevein

arw Falippoy [19707],

Example. A transilive orentation of any graph partially orders its
vertices, Consider a trunsitive orientation F of the complete graph K, ., on
¥ — 1 vertices. Since m F each pair of distinet vertices 15 comparable, the
partial ordering is actually a linear ordering (lotal ordenng. Conversely, any
littear orderiog ol the vertices ol K viclds airansitive orentation by direet-
ing cach cdpe from smaller to larger, Therclore,

fOR, ) = the number of linear orderings of r — | elemeits
—{r 1 1
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Let & = (¥, £} be an undirected graph. A complete subgraph (b, §) an
r — 1 vertices is called a simplex of rask r il each undirected edge ab of § is
contdined m a different ¢olor class of &, Far exampls, each undirected edpe
ab of F is itsef a simaplex of rank 1. A simplex is muximal il it is not propecly
contained in any larger simplex.

The smultiplex seneraled by o simplex § of rank #is defined to be the follow-
ing uncirceted {parlind) subgrapli: §7,, ML whers

M= {abc E|lab T xp lor some xy e 81,
or alternatively,

M=1]A

where the umion 15 over all color classes A c.F (G} salisiving A S = Z.
Thos, M is the imion of the 1rfr 1 1) color classes represented by the cdges of
the simplex 5. {This nuntber is due to 5 being a complele graphon r + 1
vertices.) Anticipating Corollary 305 we sav thul the multiplex 8 also has
rank v A multiplex is meocimead if 1t s noL properly contaimed inoany lurger
muliiplex. We will soon see thal M s a maximal multiples if and only if S iz a
maximal simplex.

Remark. If we actually assign a different color to each class of F{() and
paint the edees of I accordingly, then s complete subgraph ¥ whose edges
arc cach painted g differemt eodor s 2 simpley, The collection of edpes of B
painted the same color us sorme edge of 5 is a speftiplex, Fov example, if there
v a red, white, und Boe triangle in the praph, then the sel ol gl red, whice, amd
blue edges is a multiplex of rank 2. The graph in Figure 5.2 has two disjoine
maximal multiptexes, one of rank 2 and e of rank 1. The expressions
erfcerdored triongle and simplex of cank 2 are svoanymous, linally, notice that
the adges and tmplico fon elasses of o tricolored triangle satisfp the hypotheses of
the Trivagle Lemm 5.0,

An Esonmtorphisa between two simplices (VL 5 hand ( F,, 5, hofanundirected
praph 15 a bijection & K. — ¥, such thal ah T* f{a) 5] for cach distinel pair
i b= L It is thus possible to lay 8, on tap of 5, 5o that the coloms of their
crlges malch.

Theorem 5,14 (Golumbic [1977aT),  Lat (V. 1) be a simplex generating
the multiples M, and Tet {F;, $hhe a simplex contained in M, Then (V. 8] is
isemorphic 1o subsimplex of (K, T

FProaf.  Choose an edge be 3. Since T generates M, there axists an edge
et e T such that he T* B¢ Define () = b and f{ey =o' If rank § = 1,
then the theorem s proved.
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Flgore £.7.  From a mhicobersd (Tangle in X w2 find enoisomorphie oricoloned oiangte in 7
The vertices ¥ and b” mus| beequal since T e skiiples.

(herwise, consider any other vertex o e K, and lel 4, B and C denote the
implication classes such that bz A ace B, and oh £ C Since 1 generates M,
there eadsts an edpge 27 =T O Applying the Triangle Lemma 5.3{(1) twice
we ablain{l)ab’ e Cand ac' e Bund (2} a"e" e Fand #'c = A (Ligure 3.7). Bul
the simplex T canmol contain two diflerent edges &' and &% which are Lhe
same coloc; henee & = 8%, Define f () = @", In Lhis mamner Fiy defined Tor ail
vertices of ¥, Choose distinet vertices ¢ and o of 1, different from b and ¢
Since ah T* fla)fip) and db T* f(d) fib), Lhen flad — F1d) would imply
@ = dJ, since 55 2 simplex. Thos (s injective, Moreover, the Triangle Damima
200 implics that gd T#* fia} ({4} Thercfore, i an somaorphizm from S0 a
subsimplex of T. |

The lolkrwing is an immediate resnlt of the preceding thearem.

Corallary 3,15, Slnplices generating Lhe sume nultiplex are isomorphic.

The next letnma shows us how to construed simplices,

Lemma 5.16.  Let(};, &) be a simplex of an vodirected graph & = (F, E)
geperating a multiplex M, If ¢ contains g tncolored rriangle on verlices a, b, ¢

such that wb¢ M but bee M, then we may adjoin the vortex g 1o (15, 8 o
obtain Lhe larper simples (K. Theodaining (K, §), where

K = e fieh,

T — S fuflde ¥
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Praaf. Lol s assumme that (G contains o tricotorcd triangle on g, b, ¢ satisfy-
g ab M oand beo M. Sinee § geticrales A, there s some edge b'c e .5 for
which #'c’ ¥ be, The Triangle Lemima 3,301} implies that ab” und ac’ are in
the same two distinet color classes of &, respectively, as are ab and ac, Thus,
ab’ & M. Next we shall show that ae' € M as well.

Suppose that ac’e M; then ae' I xp [0 some xy e ¥ (hocause ac’ must be
thi same color as some cdee in 8. Again by the Triangle lemma, da ¥ #x.
however, g d M while &'y = 8, a contradiction. Thus, ac’ ¢ M, This argument
actually proves the strongsr clain:

Fuct 1. IFa tticolored 1nurple has one side in M and another side cat in
M. then the Lhivd side is aso not in M,

Meal let d e Fiod 2 0o Cortainly ad & E singe @b’ and #'d arc in differcnt
color classes. Whereas the edges b'c and o ace in different eolor classes, the
edpe ad i3 10 a dilferent class han al beas: ooe of them. Therslore, at least ane of
the triangles {7, o of Gy, . o I8 tricolored and satwisfies the hypothess of
Ficl 1, fmplving thal gd ¢ M. Thus, the set Lgd | e 150 shares no cobor olasses
with 5.

Sance ab’ and ac’ ate in different color classes, ta conclode the proof thal
{ ¥, This a sunples i suifices to show the lollowing claim:

tuct 2. Rither the undirected edges od (Tor d & Fphace all in diflerent color
classew, o all of the edges ad (for d o ¥) are T*reluted.

Suppose that af, af £ A e #(6G) IF 4 has no (ransitive orientation, then
Theorem 53.4{1) imples thal ad 1 Yo, 10 4 has o transitive oclentation, then
Theorem 540153 implies that ad 7% ad’ sinee dd' ¢ A, Now el g be any verlex
of ¥y other ihun d or & W ad™# A, then Gy g g and Gy, o e dre both Lri-
coloved triangles shacing two commoe calors. S0 by Lthe Trisngls Lemna
MR, oA U8, which contradicts the definition of a simplex. Thus,
ad” < A and, us befory, ad T* ad”. This proves Fact 2 and concludes the proof
of the theorem. Obviously, rank T = | + rank §. |

Letnma 3,310 tells us thas if 4 undirecicod graph confaing g red, white, wod
hlue iriangle. then anywhere in the graph where we find a red cdge aband o
white edpe b, the edge e wiil be bluz. SBuppose there 15 a maulliplex M coo-
taining a4 red. white, and blue rriangle. The next theorem shows. in particular,
thit every red, while, and blue icfungle is part of 8 simplex gonerating M.

Theorem 5,17 (Golumbic TI%77a]l. Let § be a simplex contained m a
maltiplex A, There exists a simplex 5, generating M such that § — Sy
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Prouof T rank § = rank M, then § itsell generates M. We proceed by
reverse indoction, assuming the thoorom to be true for any simplex of tank
greater than rank 5.

Lct £ be any simplox gencrating M. Sinee runk £ = rank M, only some
of the adzes of L7 have “consins™ in 8 of the same color. ' These are the ones
conlaned in M defined hece asthe nultiplex generated by 3. Thus M, — M,
Sineg L35 conmecied it has a tricolored triangle on g, b, ¢ with be s M,
abr¢ M, By Lemma 516, we can gudjoin the vorlex @ 1o S eregting a simplex
T econtaining 5 with vank T =1 + rank & Thos, Ty incduetion, there is a
simplex X, penecating M such that § < 1< 5y, |

Theorems 514 abd 517 can be summartesd as lollows:

Cornllary 508, Lew M, M, be muoltipleses with M, = M.

{1 Every simplex generating M| is contained in a simplex generating
M.
(i) Uvery simplex generating A, containg a subsimplex which generales
M,

Theorem 5.1%.  Let M be the multiplex seoerated by 4 simplex §. Then, M
iz a maximal mulviplex iFand only 75 is & maximal sioaplex.

Proof. (=} This implication follows directly from the debinition of
multiplex,

(=) Suppose 5 is maximal apd M = M’ where M’ s another multiplex,
Sinee ¥ © A « MY, Theoremn 517 unphes the existenee of 4 simplex 8 con-
taining & with & pcnerating M. But the maximality of 5 yiclds 5 = 5, so
M= M. |

By virtue of the preceding theorem and corollary we can now locale a
maxinal multiples by a focal seareh of the cdges, We pick an cdge a1 random
and build up successiveiy large simphces cach containing iws predecessor untii
the simplex we bave is maxinal It then ganerates a maximna] muluples.

The pext theorem implics that the max ikl midtiplexes partition the gdgey
af dr,

Theosrem 5.2, | A and M5 are mavimal mwuluplexes of an uodirected
graph &, theneithec M, A M, = Slaor M, = M,

Progf.  Tct &, and §, be simpliees gengrating M, and M, | respectively. By
Theorem 3.1%, 3, and 5, are maximal. Suppose M, ~ Mo £ & and M,
# My, lhen some sdees of 5; are in M, and some are nol. Because 5, 15
connecied, it must contain a tricolored triangle &, , . with bee M, and
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ab ¢ M. By Lomma 516, we ¢an construct a large simplex 1' containing 5,
contradicting the maximality of 5. Thus, one of the alternatives of the
theoremt musl held. i

Theorem 5.21. 1 A iy an tmplication class of an undirectad graph ¢ =
(¥, E)such Lthat 4 = A. then 4 dtself is a4 maximal multiplex of rank 1.

The proof of Theorern 521 filows dicectly lrom the Friangle lemma and
the definition of muktiplex. 1t s left as an excroise for the reader, |

A& stmplex of rink » has (¢ + 1) transitive ocientations, as we have seen in
Lhe example at the beginming of this section, Maoreover, in the proot of the
next theorern we will show that a transitive orientation of the simplex extends
umiquely o a transitive orentation of the muliiplex gencrated by il cxcepr
when the mulliplex ig iseli an implication class and hence ot transitively
prientable (hy Theorem 5.4), Conversely, a transitive orientation of 8 mukti-
plex restricls uniquely 1o a transitive otenlation of any simplex contained
in it

Thewrem 522, Lot M be o multiplex of rank » IF M is transitively orient-
ahle, then MY = {r 1 130

Remark. Theorem 521 shows thal U only case iu whuch 8 mighit Taal o
be transitively ovientable s when r — L

FProglt  Lel § beu simples ol tatk r generating M. and let Fgbe a transitive
atientation of . Finatly, let 4,, ..., 4, [k = L¢(r + 13] be the implication
clusyes contuining the edgss of #,. The corresponding color classes A, are
distinct,and A, + --- + A, = M. Ifv = I, then A, isa transitive oricntation
of M = A, ifand only if A, # A, if and only if (A} =2 I{ # > 1. then
F—A 4+ A, s certainly an orientation of M by Theotems 34 ynd
3.21. We must show that F js transitive, Lel b e, bee A [T =y, then
ac € A, by the transitivity of A, [Theorem 5340011 £ 2 f, them ae o E wince
A;m A, = . Suppose ca e F, then the individual transitivity of 4, and 4,
implics Lhil ca e A, for some @+ ¢ # [ Theorem 514, however, inplies thao
there exisl cdges o'b. Be', e e S such thul i = A, P e 4, and &'’ £ 4,
gnntradicting the fransilivity of Fy. Therelore, ae e # and F is transitive. Thus,
for cach transilive oricnlation ol § we oblain a unique teansitive orientation
of M, so )= o8 ={r - 1L

Conversely, given a transitive orientation F, of M. considir 15 restniclion
For 8L X, The three facts, alr, be o Fy m0 8 F; being tragsitive and 8 being
complele, collectively imply that arc o 8 S0 Fom 8 8 a transifive
arigntation of §, Therefore, .5 > (M) und Theorem 5.22 15 proved. |
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The martition of an undirected graph & = [V, B) into its maxunal multi-
pleses £ = M. + - + M will be relerred to as its MW-decomprsition. TL s
unique up to the order of the M, Having jusl caamined the transitive
orientability of a multiplex, ot us now investizate the transilive orientahility
of ali of £ The next major theorsm shows a onc-lo-one correspondence
herween the teansitive onentations of the M, and those of E.

Thewrem 3,23 (Golumbic [E77a]) Lat © — {F, £ be an undirected
praph, und It £ = M, - - | M, where each M, is a maximal multiplex
of F,

(iy 1T s atransitive orlentation of (7, then F oo 3 D5 8 transitive orenta-
tiom of M.

{ip If#, ..., Faretransitive erienlations of A, ..., My, respeclively,
then &, + - 4+ ¥, is a transitive orientation of {5

(Hiy L007) = (UM M- A

(ivi If G is a comparability geaph and r, —= eank M, then (G} =

[Te- ik = 1%

Eroed.  Slatemnent (il [ollows frarm (i) and (1), while (iv) is implisd by (iii)
astd Theorerm 522,

{1y Assume £ s a lransitive occotation of 6 and lel ab, be o F ~ M,
Suppose thasac & ‘ef,,Ihv:Il .y b, o MUSLAOE Be u iricolored lnauglu thrufUIL
alt, heo A for some A€ FiG), Thus ab, be el i A, and F v A egds either
Aor A 7 both of which are transitive by Theorems 3.1 and 5.4, Henec
ge e A, which is a contradiction.

fii}  Assme that £, ..., ), are ransilive oreotations ol M. .0 M,
respectively, We shall show that Foo1 .- 1 F, i3 transitive, Let abeld’.,
hee F TP - othen ge e £, by transitivity of oI5 £ J, then of and be are
in difforent eclor classes. so wce B Since G, , o cannot he a wricolored
triangle angd henee cannot be contained in a sinele muolciplex, it follows that
ace M, - M, But if cac F, + F,, then transitivity gives a contzadiction.
Thus, we el 4 1, |

Surneerizing the results of this section, we have shown that the maximal
mulliplexes partition the edges and sl independently wilh mespeet 1o lransi-
tive orientation. They are peneraled by maximal simplices which can be
built up from u sinpgle edge by o local search, Simplices generating the same
multiplex zre isomorphic. Finally, the number of transitive orientations of an
undirecied graph s a prodoct of feelorals depencing on the ranks of il
maximal muliiplexes. Thys, every comparability graph behayes as if 1t were
4 disjoint collection of complete graphs.
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4. Schemes and {/-Decompaositions—An Algorithm
for Assigning Transitive Orientations

it Lhis section we desertbe an algorithm for calonlating fransilive oricala-
tions atd e determining whether or nol a pranh i 8 compariatdlity graph.
This techmigare is a modification of one first presenied by Poveli, Lempel,
and Fven [19717]. Oinr varsiom uses the notions tnrraduced n Section 5.1 the
priof afits cowrcetness rekics on some af the resnlis o Baction 13, A discussion
of Tt compeiationa [ complexity will fotlow i Section 5.6,

Tel & = {F, F) be an undireciod graph. & pariition of the cdge sot £ =
K, 1 B, co - Bt calted o G-decampasition of Fif B, is an implication
class of JltiL + -4+ B foralli=1,2 ..., k A sequence of edzes [,
L R ¥ v b is cilled d decomposiziom schere for O i there exists a G-
decomposition F = ﬂ, e By oo 1 By osaistying xy e B Tor all §=
1,2,k [othis chapter the teem soheme will always mean a decomposition
scletie,

For a given G-decomposition there will be many corresponding schetmes
{any. set of representatives from the B} However, [or a given scheinea there
exisis exactly one covresponding G-decomposition. A scheme and G-decom-
position can be constructed by the lollowing procedure:

Algorithm 5.1 (Decomposition Algorsithom).
Te {5 = (., £} bean andirected graph.
Tnitially, et = 1 and £, = E,

Elep (1) Arbitrarity pick an edge e, — .y e B,

S1ep (23 Fuunerate the implicabion class 8 of £ conlaming x;F;.

Slep(3): Define 7, = E, - B,

Srep{d): [T ;.| = 7, then k21 & = 1 and Swop; otherwise, increase @ by 1
and go hack 1o Step (1.

Clearly, the decomposition algotithm yickds o scheme Ty, ... x5 ]
and corresponding G-decomposition &, 4 --- + ﬂk tor uny andirected graph
& Moreover, if 3,x, had hween chosen instead of x, ¥, for some § then £ 1
would replace B; in the U-decomposition, ﬁupp]g,ing the atgorithm Lo the
graph m Figure 5.2, the y:-u.,mf: [erc, be, de] gives the O-decomposition for
whichB, = 4,, 8, = A, : AT and B; = 47" {see p. 106 and Figure 5.87),
I this example notice thaT althougl b and be were nat T-related in the
originul graph, once B, is removed they become [-related in the remainimye
subpraph and their impleation clusses merge. e peneral, each impiication

* Anivlaer exiemnoe s eiven in Crercise 3.
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figure 3%, Andluumbion of the decomposition algodth.

class of &, ;| will be the union of seme number of nplicalion classes of B, We
nowr cxamine cxactly bow the old classes merge,

Thearem 5.24 (Columbic (19774} Let 4 be an implication class of an
undirected graph & — (1, £), and ler D be an ‘mplication class of E — A
Fither

(i) Pisanimplication elass ol F,and A is an implicgtion class of & — f,
aT

{iiy I= 8+ ¢ where #and € are implication classes of £, and A + &
L £ i5 a multiplex of £ of rank .

Proof, Removing A [rom E may canse some implication classes of £ to
merge. Lot 2 be the umion of I implication ¢lasses of £,

Assume & = 2. then there exists 4 triangle on vertices @, b, ¢ with bhc e A
and either ur = B and ab e C or co e B and ba = O, where Band € are distinet

implication ¢tasses of E contained in L Without loss of generality we may
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assume g¢ £ A and ab e since the other case is identical for £71. Suppnse
=04 then ba, ace B Bul iré B, so by Theorem 54 B— B— R Y,
implying 8 — €. a contradiction, Therefore B~ (' = % and G, ., s a
tricolored triangte, making A | | ¢ a multiplex of rank 2.

Furthcrmaore, any Fchain in £ A containing edges [rom & and ¢ could
nol conlain edges from other implicatian classes since all triangles in £ with
one edge in A and « second edge in £ fresp. €) must huve its third side in €
{resp. B) and would be isomorphic as a simplex to G, , - Thos & - 2 and
D—=—FB+ 1.

Finalby. we shall show that if & = I, then 4 15 an implication class aof
E—fi By what we have already proved, if A Is not an loplication class of
F—Ffihenf 4+ 4 - A, isamultiplex of rank 2 in £ for some ihird implica-
liom class A, of E Howeyer, s implies that [ alone is not an implication
class of £ — A, coniradicling & = 1. So indecd A is an implication class of

£F-h 1

Corollary 5,25, Let 4 be an mpheation class of an undirected & =
(F.ELTf A — A then all other iinplication ¢lasses of £ are again implication
classes of F — 4.

Corollary 5.26. Let A be an implicution ¢lass of an wndirected graph
G = (¥, I Then | F(E) = ¢ + |.F(X — A)|, where r 18 the rank of the
rmraadinztl mulliplex of £ containmg A.

The proaf of the first corollary folleaws direcily from Theorem 521, wlhile
the second corollary s a vesult of A being a part of exactly » - 1 ditferent
multiplexes of rank 2. |

The next theorem 15 of major imporiance sanee il legitinuzes the use of
fr-decompositions 45 a construclive lool for deciding whether an undirected
graph 1s a comparabifity geaph, und il so, producing a transitive oricnfation,
Comdition (ivhis the rraditional characterivation due 1o Gilmoere and Eollman
[1964] wnd Ghouily-Houri [1964].

Theswem 5,27 (TROY Theorem), Let G —(F, Eybe an nndiraeted graph
with {-decompeosilton £ — 8, — -+~ + B, The [ollowing skalemends are
cywivalent:

(i © =V, E}yis g comparability graph;
(i) An A" =& for all implication classes A of £;
(i) Brdt=@loriol,. ..k
(v)  every “cirowit”™ of edges ¢, earg, oo, g,e € B osuch that g, ey
Boliga Ty gty B F (for i — 2.0 g — ) hus even length.
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Furthermore, when these conditions held, B, + --- + B, is 4 transilive
oricntation of £

Praafs {iY=={11} Thisis pracisely Theorem 5.1.

(iiy = (i} We shall proceed by induction. Since B, is an implication
class of F, we have 8, » B, ' = Z It & = 1, then we are done. Assume the
lmplication s true for all (-decompasitions of graphs of length less than &,
Then, in particular, it is frue for E - B,

Let & be an nnplication class of E — &,. By Theorem 5.24, eithar I is an
tnplication class of £, o which case B D7 = GLor D = 5 + C, wlere B
angd £ ure implication classes of £ such that B+ € = @, implying that

Do P =B+ (BT - O70
=(BAR {0l
=E_

Therefore, by induction, B, ~ B, ' — @F lori— 2, ...k

(i) =i} let E= B, + -+ B e 5 G-decomposition of E with
8.+ B — 3 By Theorom 5.4, B, is transitive, If & = 1, then the implica-
tion holds, Assuine the implication is true fo all G-decompositions of graphs
of lenglh less than ko By Lhis assumplion, F — By + - — By i o transilive
urienlalion of I — B, We muasd show (hat B, + F Is {ransitive,

Letab, bee B, + 1Y 1T buth Lhese edges sre in By or bolh in F, then by the
individwal transitivity of B) aod F, aco B + F. Assume, therclore, Lhal
tth e B, and be e £ wlich finplies that b ¥ ob s ge e B Whal would happe
ifacg B, + FIThen cac B, 4+ & Tluweyer,

e By _ahc By —~che By, a coutradiction,
and

casF, hee F = hae F, a contradiction,

Thusace By + F Simitarly, abe Fand ke e B, imply ac e B, + F. Soindecd
B, ¢ -+ 1 By v o lransiiive orientalion of E,

[ivh=={it Suppose pityed e 477 £ &L By Lemma 3.0 thers exidts a
T'chain

vpg Degrg Vigeg IU---Uisn, ey, = o0
By comstruction, 4 is odd, sinee all frst coordinates have odd index. Further

MOTE, 14dg, P2 ¥,. ..o, 8y 1% such a circuit. & contradiction,
Conversely, iIf I has such a circule of odd length g, then

v g Doy, - T

e Dege T usey
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is a [-chaio in E, implylng that 4~ A7 # & for the implication olass 4
contalliig v,v4, & contradiction, k

By combining the 'TRO theorom with the decomposition algorithm, we
ohtin an algorithm for reeognizing comparability graphs and assipning a
transitivc orientation.

Algorithm 5,2 {TRO Algonthrh.

Fapue: An anditected graph ¢ = (¥, £

Gluerpued - A Lransitive orewlalion F of edges of G, or 4 message that G isnot g
comparatility graph.

Method : The entire algorithin is as follows:

begin
Iutdalize: & Ly & o+~ F5 F = 04
1. Ar':'.-ir.r;uii],r rick are gdge a5 =
1. Eollrietate the anplicalion class B, of & cenlunime xy,;
i~ B~ = Fithen
add F.a £
else
primt " fr 1z ot A eompalability graph™;
STOF; _
Thefine: By = £
4, il & _, — 7 Uem
% — I outpot F;
STOP,
clse
Feid 1
e o [

P

cid

The sequence of [ree choices made 11 loe | of the algocithm determings
which of Lhe many transilive otlenlutivos of & s produced by the algorithin,
A differont scheme may give o diflerend frapsitive omienlation. But when you
Iry oul a fow different schemes you wilt notice 3 remarkable phenomenon:
No mutter how the free choives for G are made, the number of iterations &
wifl always be the same. A prood thal 1his is actually Ituc for any graph {F and,
more gnportantly, 2 characterization of the underfying mathemulical stroc-
ture which causes i arc the subjeet of 1he next secliion.

5. The I'-Matroid of a Graph

The Decomposition Algorthm 5.1 ermphasizes that the crder in whicl the
edges appear in a schome s extremely ninportant. The free choless made in
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garher teratioms affect which cidges renain to be chosen in lalter ilerations.
Hihe algorithun once gave us a scherme (e, 2.2, ..., & ], what will bappen il
we rervn the algorithm by choosing ¢, fivst and e, second TIs there any weison
for believing thal e, will not have been removed and will therefore be availuble
a4 the third free choice? The ghawer o the laller guueshion s yes,

ATl the resulls mLhis section are due o Golumbic [1977a].

Theorem 5.28. Lol e, eq,. ... & ] bea scheme for an undirected graph G,
and let  be a permutalion of the numbers J1, 0.0 k) Then feg . gz oo
¢qr] % also ascheme for £

Proof. If k — 1, then there is aothing to prove. Assume therefore that
=2 LetB, + By +--- — B, bethe (-decomposition corresponding 10 the
given scheme, Theorem 5.24 allows us to commute edges necurring next Lo
each othar in a scheme in the ollowing manner. Fix ¢ < & Lel

E =8B+ -+ 5,
L

implication class of £, conlaining ¢, |,
C

— implication class of £, — £ containing «, .

By Thegrem .24, either {1 B,,, = Cyand B, = (.. sothat B+ B, =
¢, + €4, Or (i) there exists an implication class A of £, such thar B, | =
A= and &, = A - B, also implying that & + 5,,, =+ 8.,
Cansequently. in either case, &, — --- +~ &, + &0 4+ - + i, 15 2 Gde-
coimposition of Fowith scheme [e,. ..., g 0000 5]

Iowevar, every perrmitation can be eipressoed as a compositien of such
local commulations {ollen called transpositions), from which the theotem
[ollows, 1

Theorem 320 (Columhic [197Tay. Let & = (I, E) be an undirected
araph,

(1) Fach scheme for (F has the same length,
(i1} Fach G-decomposition of G has the same length.
(i) Hle. e, ., edand [§. 4, ..., ;] are schemes for G, then for any
¢; there exists fsuch that [e), ..., ¢, | foe (... 6] 15 also a scheme for €.

Proof. Il G has an implication class A such that £ — 4, then any scheme
has length | and any cdge can be chosen as g scheme. Therefore, assume that
the thegrem is true for all graphs having fewer implication clagses than 7, and
It Le, €a, . o and [, 2,0 0L f] be schemes [or Gwith & m = 2. Choose
¢; and [usimg Theorcm 3,28 0f necessary} make sure that it is s in Lhe first
position, ITE — &, 4+ €, 1 oo x ¢ is the G-decomposition corresponding
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to | fp S5, .o fm ], that e 6 {ﬁ,'P forsomep. Ths B, fp nfnafpin -]
is alsoa scheme. Theorem 5,28 then implics that [e, .. .. f; a1 1000 - o fm]
iz a scheme for &

l. inﬂi:‘}'-r h{}[h I_EE'- ---a EI|"- R €kJ :-LT]{J. L.f.l:b ey pr— L2 fp+ 1> ~- -2 j:mi e
schemes for £ - B, where B is the implication class of F containing e,. Since
£ B has fewer inplication classes than I, by wduction the fengihs k — |
undm  Tareequal andthers exists some f; which can replace ¢; In irs scheme.
In conclusion, since carresponding G-decompoesitions and schemes have the
same lenpth, all -decompositions muosl have 1he sume leoglh. |

Thus we kave found o comber assoviated with an undirecled graph &
which is invariani over all schemes and G-decompositions of the prapl,
namnely the [ength of any scheme or G-decomposition of &, We shull denote
this number by #{€,

Theorem 530, Let & —{F, ) be an ondirected praph, atd let IF —

Mot b My, where M, is a maximal waultiples of E of rank r,. Then
AGI=r, | o+ 1y,

Proof. Let Ae #(G) satisfy 4 = M Now M, — 4 5 s multiples of
rank r, — Loand £ — A= (M, — A )+ M. — .- + M, is un M-decom-
position of (7 = (V, E — AL Sifce |#(G)| = T #(T)], we may sswame by
induction that Ay ={r; — [} +r; — - - + . Therefore, /G =r +
LT R |

Ty O —{F, I3 e a comparanility graph with O-decomposition £ —
B, + -+ B, and corresponding scheme [e. ..., ] By Theorenm 527,
B + --- + B, will be a transitive orienlation of G. Replacing e: by e, L inthe
schetne will have the elfect of replacing B; by B !, thus piving a tew transitive
orientation of . [ this manne: we oblain 2™ transitive orlentations of ¢
since k = #{&7). There may, however, be thers; Lhe scheme (e, . e
iy BYED zive 4 tansitive ovientation of & differenl fom the 2™ above. Jn
[ael, Lhe only lime when Lhese 279 represent alt Lhe Lrangitive snemtations ol
€7 1% when ceeh maximmal moltiples @ of rank one. (This fiflows itom Thecrems
522 and 53} and lhe inequaiily 2 -2 (r + 13! for r > 1) For cxample,
PR, - rand A, ) = {r + 111 for the complete graph on o + 1 vertioss,
On the other hand, the graph G in Figure 39 has 4&) = 27,

Stoary

The owner of 4 wrge railroad decided o inlroduce hus sons ete te
business. He asked his eldest to choose aoy two cilies between winch they
provide teain service, and the father would give him control of thal nun, The
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Flgmre 9. The numbar of rianeles i rlicy — 1.

lad chose New York and Philadelphia. Bur the boy was clever and reasoned
with his father saving, “Sioce you operate service between Harrisburg and
Philadeiphia and T operate the New Y ork—-Philadelphia traing, and since we
don't offer any dircol service between Harrishurg amd New Yook, why not
give me alsa the Harrisburp Thiladelphia ran for ihe convenicnee of our
prssengers who wonld otherwise be burdened with their hoavy tupgage in
changing trainst™

The lather was convineed by the son's argument and eave him the extea
rail link. The son, encouraged by his success, continued this type of reason ing
for triples of citles that fil the aboye pattert and sccumulated more rail lines
until finatly no more teiples of that fonm were left. His lather handed him the
corresponding deeds; they embracad und the son left to go out an has own,

The Talher continued Lhe same process wilh his other sons, grving one
rail linc and then also giving any olher ink A-B when the son already con-
tridled B C provided they did ool operate A-C betwesnt the two ol them.
Fanally, the father bad piven awasy his entine rail syslem.

Theorum 529 shows thal no matter how cach son chooses his nitial froe
choice, exactly #G) song gel portions of the railroad, where €7 is the graph
whose verlices are the ciies and edges the rail links, |

We will now describa the underlying muthematical strocturce that cposes
the Imvaniant r{} to arise.

A matroid {F, &% conrists of 2 nonempty [finite)} sat F of efemcsi s together
with a noncmpty collcetion @ of subscts of E, called hases, satistying the
[orblowing axioms.

{1} No base properly conlains another base,
() I, 0 c# and xe £, then there exists an element v e §; such that

(fh — {2} + {¥pes
Thesremn 530, Let & = (V. B} be an undivected graph.

(1) <E, 8% is a matredd, where jey, ...l e B iMTand only if [ey, ..., gl
5 4 wcheme for &
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Gy (F(), B> is & matroid, where 3 (6] is the st of color elasses of G
and [A,, ..., A e #ifand only il le,, ... e e B lore e 4,

FProgf.  The order in which Lhe edpes appear in a scheme is important for
tha G-decomposition it will produce, Theorern 528, however, allows us 1o
treat schemes as sets of chosen represcntative vdpos in which order 15 mst
relevant. By Theotem 3.29, Lhese subsels salisty the axioms of a matroid. This
proves (1), Condition (1) follows castly from (i), |

The matroid {7 G}, #0675 may be regarded as Lhe quotient of the matroid
{E, A% For those readers famibiar with matroads, the myarant () equals the
rank (in Lhe usual matroid senscd of (£, #5 and of < F(G), #C. These
matrodds are of @ very spoetal Lype. Lot us see exoctly whal class of matroids
15 prisduced in Lhis manner.

Ay Theorem 524, the free cholees talken from ona muaximal muliiples i no
wiy influence chodves caken from any other maximal multiplex, Therclore, i
suffices to restrict our attention to applying the decomposition algorithm
to o maximal simplex (¥, $) Lot ¢ — rank 8, Its frce choices (¢ of them)
constitole the cdges of a spanning trec af (F;, 51 Why is that” 10 cerlaioly
trugif s — 1 orr = 2. it were false, then there would be a scheme ff contain-
ing a simple eycle of edges oyes, 021, -, g1 of minimal length | over all
schemes. By Theorem 524, 1 £ 3 Again by Theorem 524, vov; could be
replaced by ¢y04 in 5. forming anather schemne with a eycle of length less than
[, contradicling minimality. Theretfore, the v edpes contain no simple oyoles
and must be 4 spanning trez of (1. §) since there are p cdges and ¢ 4+ 1
vertices. Purthernmors, any spanming iree of { ., 83is o scheme sinee i conains
¢ edges, and for every other edge ab the tree provides apath e, ey, ... 2 from
g Lo b which, when uwsed successively in Lhe consiruction of a &-decom-
position, will also climinate the cdge ok,

Two matroids <F,, 3, and <F,, #&;% ate isewmorphic If theee cxists a
bajection f= E; — E; such that

Sifnes, forall {1 =8,
and
Fofac forall #,=4,.
Let . denate rhe familv of matroids
= £ HG)Y BGY |G s an undirected graph).

From the above diseussion we may state the following characterization of
the matroids n &,
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Theorem 5,32, A matroid is in the funily 4 if and only if it is isomeorphic
to the matrold of spanning trees of a set of dis{oinl complete graphs.,

6. The Complexity of Comparahility Graph Racognition

A version of the decomposition algerithras of Scction 5.4 is prosented here
in a pscudo-compulor-language. T will suggest to us how we may aclually
cnumcrale the implicalion classes of a graph. We shall show that one can
find a G-decomposition and test foo transitive orientability of an undireeted
graph G = (F, £ o0 &5 -1 B} ime aod | F| + {E]) space, whers 0 is the
mas i degres of a vertex.

Lel (5 = (V. £} be wo windirecled graph with vorlives g, ¢5, ..., 1, I the
algomilthm helow we use (he lunctioo

0 iro,0,¢ E,
CLASS(. ) — S ff o, 0 hus boen assigned to 8,
' —k tf ¢, »; has been assigned to B,

undefined il'n;v; € F has not yet been assigned,

and |CLASS(, f)) denotes the absalure value of CLASS(S, /1. As usual, the set
s always assomed 1o be a collection ol ordered pairs and the degree d, ol
verlea o 15 Laken here 1o mean the number of cdges with g, as tirst coordinale
(1.2, the out-depree). We reely use the identily

El= ¥4,
=1
in our analysis,
Almwithm 5.3 (Decomposilion Algorithm—ATlernale Version).

Inpui: Ab undiresied graph G = {17, ) wilh verlKes o, vae 2e., v, Whose
adiacency sets abey = Ady} iMand only if ¢ 2 £

Gutpir: & G decomposition of the grapih given by the final values of CLASS
and a variable 1 LAG which is O if the graph is a comparability graph and |
atherwise, IT the gorithm wermimates with FLAG sl 1o 2510, (ien i iransi-
live orientation of 7 is oblained by comhining all edges having positive
CLASS.

Methad: The algorithm proceeds until all edzes have heeq explored. In the
kth iteration an wnexplored edge is placed m B, {Tis CTASS is changed o
k) Whenever an oidge 15 placed into B it 1s explored using the recursive
procedure of FFigure 510 by adding w0 B, 1those edges | -related 1o it in the
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prowednee FXPIOREC
Tor ach o e AL p st Chial [ro ADH 100 CCLASS . s [ < 4] 0
I:pin
il CLARS (i} is undefined then
breyrin
CLASEG, m} - b CLARRG, - &
FXPLORFLG, i3]
cad
clse
rCTARR( wm} = - then
buepin
CLASSG, me) — o FLAG 13
LXPLORIE, 51

end
v
for eoscli f e Addji such thae e Audyld or [CLASS o) 4] do
bepin
il CT ARSI, @ 3 tandelitncs deen
Twpin
CLASE R, 1 B CLASS Amb- -k
FXPIARKim, ).
ool
elfye
HCLASSm o) = - & then
hegin
CLASIrr, 11— FLAG ¢ 13
EY L OR B, )
enid
cnd
Tetum

Figure 5,140,

graph £, (Notce that &, e, € B ifand only iFeicher | CLASSC, /3| equals k or is
undefined rhrovghout the kth jteration,)

The variable FILAG is changed from 0 to 1 the first time o B is found such
that B, ~ B ' # &7, At that point it is known that G is not a comparability
graph (by Theorem 3.27)

The algorithin is s follows:

hegin
milialize: & « 0 FLAG «- 1,
for cach edge sp) in & du
if CLASS [, 0 i3 undefined then
hegin
ek + 1
CLASS (L f e E CLASE(niy - &y
FXBILORE (0},
el
el
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Complexity Analysiz

W begin by speeiflying an appropriate data struoclure. The adjaceney scts
are stored as linked lists sorted into increasing order. The clement of the list
Ady(#) which represents edge vy will have Four fields comtuining j, CLANSGL)),
puinter 1o £1LASS(f, 7}, and pointer to mext elemetit on Adj{i) fsee Figure
5.11). The storage reqmireraenl for this dala structore s 0| V| + | E[) and it
surling the lists js done using Algorithm 2.1, then the entire initialization of
the data stoecture can be accumplished tn lincar lime,

The ecrucial factor ko the analysis ol our algorithm is the time required to
access or assign the CLASS fuoction. (rdinerily finding CLASSE, #1) could
lake CYd) sleps by seagning Adjff). but il a temporary pointer happened to
be in the neighborheod, then a reference to CT.ASSGE, #r) ar CLASS(m, 1)
would take g fxed number of steps. Consiler Uha first laop of EXEPLORE(, /).
Two temporery pointers simultaneoushy scan Adiiy and AdilH looking lor
values of m which satisfy the condition in the for wtatement. Since the lists are
sorted and thanks to these neighborly pointars, this foop com be execuled in
O{d, + o Jsteps. The second leop is done similarly: hence Lhe time complexity
of EXPLORE(, f}is £44; 1 ).

N D

Flgire 511, Aa vedirected graph, the transitive orlentation peuerated by Lhe schemg
(1. 20 14 Nfund its dues stroecore siter running the atgarithim,
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In the mam program. a temporaty pointer cans each adpacency list
successively in the for loap, implying 2 time complexity of O} L | b 'inally, the
algorithm calls EXPLORE once for each edge or its reversal [both if their
implicarion classes are not digjoine). Therelore, since

Ep{di | d)=2F d2 < 23Y d, — 25 F|,
ST IR H =1 -1
1t follows that the thine complexity lor the enline algonthm {including pre-
processing L inpot)is al most ({8 - | E ), Thus we hve provad Lhe following:

Theorem 5333, Comparability graph recognition and finding a transitive
crieniation can be done i €3 - | £} time and Q0 V| 1 | F|) space, where
is the muximuom degree of a verex,

The algorithm as presented in this section explores the edges in a depth-ficst
search. Replacing cuch recursive cull EXPLORE(x, ¥ by placing xv in a
quene of edges to be cxplored would change the algoritiim 1o breadth-first
search. Soane futore application may lead s to prefer one over the other,

7. Coloring and Other Proklems en Cemparability Graphs

Ter any acyelie orientation F {ml pecessanly transitive) of an undirected
graph & = [V, K} we may associate a strict partial ordering of the vertices,
nammely, x > p iff there gxists a noninviad path in F frem x e v A haighe
funetion A can then be placed on Fas Tollows: e — 0l eis o sink ;otherwise,
Aluvy = 1 maxfAlw)vw e Bl We have alveady seen, in Chapter 2, Facreise
&, that the height function can be assigned in [ingeaf time B8ing o reoursive
depth-first search. The lunction & 15 always a proper vertex colering of &,
but it is hot necessarily a minimucn colocing, The number of cobors nsed will
be equal L Uhe cumber of vertices io Lhe Tongesl palh of & Tis s also squal
1ol -+ max kipdjoe Vi since we started al heighl (color) wern. A& poor chuolce
of F may result m an overly coloclu] coloring However, 1he silualion is
suaranteed to be better if F happens also to be transitive.

Suppose thar (55 a comparability graph, and let F be 2 transiive orienta-
tign of €7, In such a case, every path in F coeresponds to a cligue of & because
of transitivily. Thus, the heipht function will yield a eolering which uses
exactly w((} colors, which iz the best possible. Morvover, singe boing o
cowmparability graph is a hereditary property, we find that (G ) = (0 ) for
all induced subpraphs 4 of (. This proves the foliowing result.
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Theorem 5.34.  Frcry comparability graply is i perfoer graph,

Thearen 534 eoupled with 1he Perfect Grraph Theorem 3.3 imphes that the
statulity number of a comparability graph is equal ta the cliquz cover number
of tae graph. This proves the following classical result,

Thesrem 5.35 (Dilworlh L1950, Lot (X, =1 be a partrally ordered set,
‘The mintmum sumber of hieearly ordeted subsets (vsually called chains)
needed to partition X s egual Lo the maximum cerdinality of a subset of ¥
having no two members comparable {usually calied an anrichaint,

Many proofs of Dilwarths theorem can be feund w the leralufe, Among
them, 1those of Fulkerson [1956] and Perles | 1963] seemn most elepant. The
reader is reforred also to Dilworih [ 1950 ], Preceed |1979], Trotter [1975], and
Tverberg [1967], Grecne and Kleiiman [1976] have recently extended
Dilwarth's thaeorem ta mote general parlitions of 4 poset inlo chaing. Some
relaled references includs Greenc [ 1974, 19767, Griggs [1972], and Hotlman
and Schwarte [1977].

We direct our ultention next to some algorithnue aspeets of problems on
comparability graphs. L Section 5.6 we showed that & transitive orientation
Frould be constructed for a comparahiliiy graph Gin Q(de — m)steps, where
A 1% e muximum degree of 4 veriex, o+ 15 the number of cdpes, and & is the
number of vertees. From the transtive orienlation } owe can yssign a min-
mum coloring of f using the height function in fn + @) wdditional steps.
At the saine time a maximum clique could alsa be calculated. We shail il-
tosteate this by solving a slightly more genzeal prohlem.

MAXTMI M WREIGHTEDR CLIOUT.

drstance: A0 undirected graph & and an gssignment of a weight wic) to cach
verlox e

Question: Find a clique of F for which the sum of the weights of its vertices is
larpest pussible.

If all vertices have the same weight, then the problem is reduced Lo 1he
usual prablem of linding o oligue of maximom cardinaliey. 1n generat the
MAXIMIINM WEIGHTED CLIQUE problem is NP-complete, but when
restricted 10 comparability graphs it becomes tractable.

Algorithin 54, Muximum weighlad clique of a compyrabilily graph
Input: A transitive odlentation & of a comparability graph & = (V. B} aud
i welghl lunction w delined on K.

Ouerpist . A clique & of & wheose weight s maximam,
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procedure CXPLORLI):
il Adjfe] — & Ihen
Hf'[i'ln = wl:.l:.'J.
POINTCR 1 « - A
rehm;
Furall ¢ e Adpe) du
if v 15 unexnlored Heen
ERPLORE(x);
cnd Lor ull:
meleer y = Adjifs) anch hat Bivd  roaal Hio) x e Adie));
Hir — wie] — Wi,
FOINTER ) —
relam
el

Fipure 5.1

Merhod  We wse g modification of the heighd calculation technique employing
the recupsive depth-firse scarch procedore EXPLORE in Figore 5,12 To
cach verlex ¢ we associle i cumylalive weight B(e), which oquals the
weight of the heagviesl path lrom ¢ 1o some sink, A peioler is assigned o e
dexignating ik successor on That heaviest path. Tangs 4 10 calenkate K onee
the cuommlative weights are assigned. The algorithin is given as a procodourc.

procedire MAXWEIGHT CLIEM FLVF.F):
fer all v = F duw
il ¢ 15 unesploled thea
CXPLORL 420
s fir uli;
sefect ¥ = ¢ nuch that FTy) = masfHm) re ¥5;
K — iy
1 POINTRT 1)
whik P = Ado
A+« Koojvh
y — POINTCR &)
retam K
end

ok

L=

=

Proving the cormeelness of Algorithm 5.4 and displaying animplementation
whose complexity is linear in the size of the graph (assuming thal F is provided
tor the algorithtn in the proper data strocture) are left as exercises for the
Teader.

We conclude with an interesting polynamial-time method for Gncing
af ), the size of the largest stable set of a comparability graph 7, We frans
form a transitive ocientation (¥, F) of G into & transportation network by
adding two new vertices s and ¢ and edges sx and yt for each sobrce x and
sink y of I, Assignming a lower capacity of | to each vertex, we initialize a
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compalible inteper-valued flow and then call o minimum-Tew algontbim.
The value of the mivimum Bow will equal the sige of the smallest covering of
the vertices by chiques, which in tuca will equal the size of the largest inde-
pendent set since every comparability geaph is petfecrt. Such a minimum-
(o slgorizshm can run in polyoosmial time, (5ce Figure 2t for the complex-
itics of varous maximum-flow algorilthms.)

8. The Dimension of Partial Orders

Szpilrajn [1930] lirst noted that any partial order (&, ") could always be
extetdsd Lo a Dhear ordering L ol X, In Section 2.4 we called such a linear
gaieusion : wwpelogical sornng, Let Y0P denote the collection of all linsag
extensions of PooAny subset 3 = #0P) sulnslying [, o L = P s called a
reafizer ol P, amd 135 size 15 | %) The inlerseclion ix thal of sels ol ordersd
frurs, that i,

ghe (4 Le=ubel  forevery Le .
L=t

Cleanly, 250 its<d 15 a realizer of P, We define the dimension of P, dim P,
ta be the size of the smallest possible realizer for B, Such a realizer 5 called a
sripimm reclizer for P The oouon of dimension of a partial order first
appeared in Dushnik and Miller [1941].

Examples. The partial order £ whose Husse diagram is illustrated in
Figurc 513 has dime1sian 2. A minioum realizer for P is glso shown, Notice

e /
& ¢
a' i o
# 1 e
F i b
1 .
N
¥ F4
o Y Y-
, e g
b o X
i L
s o'
Ll 'LE

Figure 513, A parval cider # of dimesnsion 2 Wesve P = L, n £,
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Figore 514, A pariia] onder ol Janensivn 3 Webave BB o~ Lo B Wy wondd
i1 lincar arders he insufficient to cealize 27

thal the subposet £ which is cireled also has dimension 2 and that 1t must
appear above element a i one of the linear orders and below sleement a in
Lhe ather. Figure 514 shows the Hasse diugram ol a parlial order whose
iimension is 3 (see Excroise 16).

Lemma 5,36, Let (X, ] e a poset. For each ¥ < X, we havs
dim Fy = dim P,

Froof. Clearly, restricting the linsar cxtensions in a realizer & of 1P 1o the
elements of ¥ yiclds a realizer (not necessavily minimum) of £, Choosing %
ter be mimimum for P we obtain the result. |

Theorem 537 (Hiruguchi (19517 Lel £ = Py[¥,, Pa. ..., Py be the
compovition of disjoint partial orders €5 PO < 0 = k). Then

dim ¥ = maxidim P00 = i = &)

FProof. For cuch 4, lot L 0 Lo, ..., T, be a realizer for P, where
m=max{dim P, i — 1., k3. Dcfme

-ll*ll_f = LI:I,}['LJ-.}' Lzlf‘-. s - f"]c.jJ'

Then {A;]f = 1.2,..., ;m}is arealiver of P, so dim P = m.

Mext, ohserve that PP contains each of the F; as 4 subposct. (To oblain ¥,
take a set of representutives from X, ..., X,..} Heooe, by Lemma 536,
m = dim F. |

As noted carlice, the dimension of a partial order was introduced by Dush-
nik and Miller [19417. They showed that there eaist paitial ovders of dimen-
sionn d Jor all positive integers d, and they gave the first charucterization of the
poscls of dimension 2 We shall boefly mention some other kinesan results an
dimension theory. A spectal bibliography on the subject appeats at the end of
this chaprer. In addition, W._ T. Trotler is currently completing 2 hook on the
subjecl.
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Flgure 515, The Hiwee diarcam of 1he crown #7,

Let § e g nonemply sclangd let #45) denole its power set ovdered by inclu-
ston. Komm [1948] proved that dim #(8) = |§.. Hiraguchi [ 1931 showed
that dim ¢* < 4| X | for any partial order (X, F} and gave examples of poscts
for which equalily holds, Another proof of this result can be found in Bogart
[1977].

Scdmak [1952-19547 investigated the poset P{m) consisting of the empty
set and the points, lines, faces, etc, of a palvhedron = in B°, He proved the
following implications.

(1) If =is a polygon in B, then dim P(r) — 3.

(M IFris a polvhedron in B then dim Plr) = 4, with equality holding
for tegular polyhedra, pyramids, prisms. and their doals in B°.

(3} There exist polyhedra o 147 with arbitranly high dimension,

This problem was ortginally possd by Kurepa [19517.

Ducamp | 1967] showed that finding a minimum realizer for 4 partial order
Is cguivalent to a certaim bipartile covering problern. However, for all but
simall posets the method s intrackable.

Ler & be a connected undirected graph, and let ) denole the collection
ol connecled induced subgraphs of & ordered by inclusion. Trolter and Moore
[1978a] proved chat dim PG Y equals the number of nonarticulation vertices
of & (A tnonarbeultion werlex 15 one whose removal from O leaves 11 con-
nceled.) This result pereradizes a resull of Loclere [ 1976], namely, Lhe dimen-
sin of the collection of subtress of a tree T ordered by wnclusion equals the
number of leaves ol 1, The special case of dim A6 = 2 was donwe by Dushnik
and Mhller [12417.

Trotier [1974a] studicd the class of partial orders called crowns, obtaining
an cxact forruia for their dimension, Bricfly, let BL be a poset on 2m clements
split imke an wcomparable set {x,. %, ..., x|} and anether incomparable
82t { s bay ooy Voo f With o p e BL forj =i 4+ 10 + 2,00, + {{addilion
modula m) (see Figure 5,150 Trotter proved s fordd < [ < mand = 3

dim £ = [2mim — 1+ 1]
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Raker, Fishburn, and Roberts [1972] used the family £B21, . to show that,
for any g = T, the callection of all posets of dimension = e (s not axionmtiz-
able by a setence in first-order logic and cannet be characterized by a finite
callection of forbidden subconfigurations,

Cre [1962] obscreed that the dimension of a partial ordar could be viewed
in another, equivalent manner. The points in the Eochidean space B of
dimensicn k can be partially ordered in o nutoral way: {x,, X5, ..., K} =
CFan Kuwono peb il = g Bor each i Theo Lhe dimension of a posst P is the
smallest nonnegative integer & for which P can be embedded in B In some
rense this justifies the choice of the term dimension for partial orders.

Rabimoviteh {1973, 1973a] hax shown that the dimension of a samiorder
is at most three. Semiorders arisc naturally in psyehology* and are discussed
in Chapter 8 Kelly [1977] and Trotter and Moore [1976h] have characicr-
ized ull posets of dimension 3

Application. Lot (X, P) be g partially ordered sct, perhaps vhtained as the
transitive closure of an acyclic praph, and Ll | X | = A The dim P may be
regarded as the minimum number k of artributes needed o distinguish be-
tween the comparability and incomparability of pairs fram X The technique
iz the following: To each item x e X we wssociale s S-tuple (x, Xz, - -2 Xg)
g MF, where x; is the relative posilion of x in L, and 2 = [L,} is a mingmum
realizer of P In such o setup, (X, P) would be stored using Oikn) storuge
lpcarions, and 2 gquery of the form “Ts xp o P27 will reguoire al most & com-
parisons. Fhis technique 15 advantageous when # 15 large and Fis very small
provided that the preprocessing needed to obtain 2 minimom realizer 1 ool
ton expensive. This is always the cise when dim P £ 70t

Thearem 5.38 (Dushoik and Miller | 194] 1. Tet & boe the comparability
graph of a poset F.Then dim £ < 2 il and only il the complementary graph
{7 is transitively orientable.

Froof. Lel F be o transitive orientation of G. 1t is easv ta show that
# =P+ F. P F'lisy realizer of P, Conversely, if & — {L.. L.} isany
replizer of P.then F =1, P —{L. — P)7! is a transitive orienfation of
G. For,suppose ab, b  F butac ¢ F. The transitivity of L, impliesthat ac = P;
simitarly, the transitivity of I, implies that ¢a = P, o contradiction. |

* Some peychelngiscs beligve it praference is tased an o singla crirzron with some degres
of furzinesa; ks vicwpeanl is modaled in Section &3 Chker paychobomisls believe that the brain
it actoally cemparing multiple crideria: this viewpoint iz modeled be the realizery degeribed 1w
thiig seerion.

o dete fha compeegiey of conapucing dim FEar o arbirary posct F s unknowo. 11 may or
iy ol be MP-complee.
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From lhe preceding thearcern it follows that wo partial orders which Bave
{he sume comparability graph cither hoth have dimension <2 or both have
dimnension =2 A stronger result holds, which s shadl now present.

Theorem 5.39 ([rotier, Moore, and Summner (19767 IF two pariial
orders P amd £ have the sume comparalicy graph &, then dim £ = dim £}

Prigf.  The lworem s certainly e [or posets of one elancot, W
provecd by dueclivae, Let (X, Plaod (X 0% be pactal orders lavine the same
comparability graph 7, and T2t us assaume that for all proper subsets ¥ of X,
Jing § = dint Py Thero are Lo cases 1o gomnsider,

Case 1 005 indecomposalde. T this case, Corellacy 513 Implies that 15
UPD. Therefare, glther P = ¢ o = @77, buth implyiog that dim & =
dine ().

Case 20 0 is decomposable. Let &r — Gp[Gy oL, 6. ] be a proper du-
composilion of &0 By Corollary 37, P — Pulfe . 0 P ] and @ =
el (e, ... O ] Applying Theorem 5.37 and the induction hypothesis,
we e abtain

dim F = max{dim Py, dim P ... dim 178
— max{dim Pz, dim @ . ... dim Oy }
= dim ) I

Theorem 5309 also appears in Crysin [1377],

In 1 personal commurication. Richard Stanley has reported that two
pariial orders Puand € huving the same comparability graph alse have the
same number of Lnear 2xtensions, Lo, | #{PY = | (0% . His proof i= based
om the resulis of Rection 5.3

EXERCISES

L {i} Drovethat the Forceng relation T moai equivalence relalion,
fity  Ireve that the following properties hoeld:
ab el =bal Bo
whTHolh = ha Yo
2. The complete graph &, has lwe implication classes. (ive a lormada for
[ FK ] Tor = 2

3. Which ol'the graphs in Figure 516 wre comparshility graphs? How macy
implicition glasses ard color clisses dothey have?
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4. Let G be a connected comparability graph whose commiemen § is con-
nected and containg no induced subgraph isomirphic 10 K. Prove thal
(7 is LIPCY | Hint: Vlse Theorem 502 (Adgner and Prins [19717)]

5. TProve the following resnlf for an undirected graph € W &, and F, are
transitive oricntations of €7 and O, respectively, then &, + ¥, 15 a (ranstive
Liyurnamcnt.

& DNruwihegraph & — #,[8F 115, 08, 4, ] for the graphs in Figore 517,
Yerify that it has 16 color classes: % within Lhe internal facuors, 6 among the

external edpes connecling #, with A, and | conzisting of the remaining
extarnal edges Prove that G has 1440 wransitive oriciilations.

Y 4 A v v

Flgure 5.16.

Figure 5.17.

7. Show that if an undirected graph & has no induced subgraph isomocphic
to the path P, then hoth G and & are comparability graphs.

§.  Verify that rhe graph in Figura 518 has four colar classes partitioned
inte two maximal multipleses of rank 1and 2, respectively. Use the decompo-
sition algorithm of Section 54 10 olvain a G-decomposition of this graph.
{Ome solution is given in Appendis Tv) [s this graph o comparability geaph?

Figure 5.18.

. Calculate r{) for the graphs in IFxercises 3, 6, and 3.
1. Let «{¢3} be the stability number of an undirected graph G = (¥, E),
Brove that A{GY < | V| — «G) {Golumbic [ 197747}
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1l. A binary relation B s vacuously transitive if B — &5, i Vacuously
transitive relptions have been studied by Sharp 19730 Prove that an un-
direceed graph has 3 vacoously fransifive orentpdion 7 and only G i1 s
bupartite.

12, Prove that every Lransitive arientation of 3 comparability graph & s
obtaimuble from some G-decomposilion of .

13, Let & ={F. £} be an undirected graph, and consider the equivalence
relation -~ defined on F as follows:

oo it Adiiey = Adj{u

By irreflexivily, cyuivalent vertices are nol adjacent. We lorm the quotient
graph G = (¥. E) by merging equivalent vertices. Formaliy, let ¥ be the set
al all equivalenee clsses under ~ | and lel & denole the ~-class containing
the vertex a. For any subset of edges 4 = K we define

A= tablabc AL

(it Prove that @b s E—-ab= B (ive an example of a graph ¢ and a
subset of edges 4 such that cd £ 4 but &d ¢ 4 for some sdec ed.
(i Prove thut the following condiliors are equivident
(1) @b ~ d,
(2} a~cundb~ 4,

(3t a==&andb=4d

(i) Prove that {17 (3 above imply that ab T* od but not conversely
{Ciolumbic [197763).
14, et = (V. Fybeununditected praphanc len & = (7 F)be i1s quotient
graph os detined in Exercise 13, Prave the toflowing,

1) ¥ A= 5, then 4 AG

{uy T[ey e, .., ] isascheme for o with corresponding € decompasi-
tion By 1 By 11 By theg [& By 0. &1 15 0 scheme for B owith cor-
responding G-decomposition By, — B, + .- = ;.

(i) W00V, F)is a rransilive oricitation of G, then (V. F} is 4 transitive
otiemation of &.

{iv) Lwery imphication class, scheme, G-decomposition, and transitive
orientation of 7 is of the form indiceted in {1} {10 (Golumbic [1977bT).
15. Prove that Algocithin 54 correcthy computes a naximum weighoed
cligue of s comparability graph, Show aat the algeatho can be inplemetled
to ron in linear inne i the si2e ol “he graph.
16,  Prove thal the purtial order tn Figure 514 hus dimension 3,
17. Let @ beasubsetof 25 and for | = ¢ = klet £, consise ol those numbers
which appear as the ith coordinats in semoe k-tuple in £ Comsider the natural
prartial order oo € as dedined it Soction §,
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(i) Showthatif @isthe Cartesian product ) = £, = 5 = -+ = @, und
|G = 2 for each i, then ding £) = &

(i) Prove Komm's Uheorem, ngmely, that dim %8 = & for a set &
I8, Comple:e the proof of Theorem 5.38,
19. A partial order (X, P} is un intercal ineinsion order if X can be put into
one-to-one colTespandence with a family §7.3, . ol intervals on a lincasly
ordered set such thar

x-=w jifl, (Wx, vo X

¥
Prove che following: dim P = 2 ifand only H Fis an inteeval inclusion order
{Dushnik and Mitler 194171
Ak Let & = {F. Ey be an onditeeted graph. Show the fellowing stalemenls
are eguivalent:
{i} @ hasa toansitive arientation whose 1lasse diagram is a rooted tree:

() risacomparability poaph and the Hasse diagram of every t-ansitive
crientation of & 15 4 raoted e

(i) ifa, b, o, de ¥ are distinet weztices satisfywg b, be, o e I, then
cither ac o B ar hd e E;

(ivy O comtains ne nduced subgraph somomphic to O o F,.
Crive an example of & camperability graph which iz triangulated apnd whose
complement is i comparability praph ezt which Fagls Lo salisly the cotditions
above (Wolk ] 1962, 196571 Ardita [1975b] hus mvesligated comparability
graphs whoso Havse diggram is a troe.
21.  Show that the leaves of a rooted tree cut be bocarly ordered so that (he
set of decendent leaves of any verex oocur consecutively. Uise this eesolt to
show that any graph @ which 15 the comparability praph of a rooted tree is
also an interval graph.
22, U B +8B,+ -+ B, is u fr-decomposition ol an undirected geaph
G =1V, L) lhen By — --- + B, is called u portiaf G-decomposition for each
F=U 1, ..., &k Show that lhe subgraphs of O obtamed as parhal G-de-
composilions {(meluding (7 and F} fomm a4 lattice. Show thal this latlice iy
modular but bi necessarily distabutive
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CHAFTER 6

Split Graphs

1. An Introduction to Chapters 6-8:
Intarval, Permutation, and Split Graphs

An undirecled graph & may possess one or moere of Lhese lumiliur proper-
Ligs:

Proporty £: G 15 o comparability graph.
Property £: 3 15 a comparability graph (ic., G 18 a cocomparability graph).
Properly T: {7 is 4 tnangualated graph.
Property T: & is a triangulated graph fic., G is a cotriangulated graph)
Thesz four propertics are lndependent of one ancther. Examples of all
16 possible combinations arc given i Appendiz F.
{hapters 6—8 deal with the classes of graphs which have beon charactenized
1o terms of Lhese four properties. ln partivular, we shall show Lhe fullowing:

interval graphs = T +
permutalion graphs = ¢ + O
split graphe = T + T.
We bepin ourstudy with sphl praphs, which are delined in Lhe gext section.
Chaplers 88 wre ndependent ol ong another; they may be resd inany order
without loss of conuinuily.

2. Characterizing Split Graphs

An undicected praph & = (F, E) is delined to be split if there is & partition
F— 8§ 4+ K ofits veriex sel inle a stabic set § and a complete set K. There is

49
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Figore 6.1 A oplil geaph with are of ts lfoar particions odcared. Tae other frarlfinus sre
(TS I B SUTRRSCI N P S I

no restriction on edges between vertices of 5 and vertices of K. In peneral,
the partition ¥ = 5 + K of a split graph will not be unique; neither will ¥
{resp. K) necessarily be a maxinal stable set (resp. clique). For example, the
graph & in Figure 6.1 has four partitions, one of which 1s indicated. Mhotice
also that 5| = 2(G) = 4 whereas 4 = |K| = w(F) = 5, 5 [s the anly max:-
mumn stable ser of &, and K o {xt (for £ = 1, 2, 3) are the only maximum
cligues,

Since astable set o ( is & complete sel of the complement (7 and vice versa,
we have an imimcdiate rosali.

Theorem &1, Ar undirceled graph G iz a sphitl praph if and only if ifs
comptement £ s 1 splil graph.

The next 1thecrem Follows [bom the work of Hammer and Suneone [1977].

Theprem 6,2, Luf € be o sphil graph whose vertices have Been partitioned
inte a stable set % and a complee set K. Exactly one of the following con-
Uitbons Turlds:

{1 |8 — =2y and K| - fd)

{in this <ase the parttion § + K is unique),
(i) |5 =oaft} and |K|= ef€) — 1

{in this case there exists at x € § such Lhal K + {x} is complete),
(i} |8 — Gy —1 and 1K} = wid)

fin this ¢age thers exisls u pe K such thyt § ¢ {] is szable),
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Froaf.  Sinceastable set and a complete set can have at mest one common
vartex, i follows that a split graph has the suns 206 — o{0] cqual to cither
[Viortdi4 1

If 207y + e{{7) — ||, then we are i case (). Suppose, 1 this case, there
v another partition F— 8 = K. Llet{x: =8 K and jpt =5 K If x
and p are adjacent m €F, Lhen {x} + K 15 a clique of 5122 wf{ G + 1, which is
impossible. I x and p are not adjacenl o G, thea {v} = % 1s a stable =gt of
size o Cr) + I, which is imposgible. Hence, the partition ¥ - 8 + K musi be
umigue.

H a7y + w5y = V| + 1, theo we ace in either case (i) or case (ii). We
will prove the clatm m case (LY only, case (jii) being analopons, Let | 8] = =07,
[&] oGy — Tandlel K' beaclique of s12e ;i) Since § + K 154 partition
and &' islarger thap K, 8§ v K’ moust be oonemply and thereloce of cardinality
1 Eel fx} = 8 o K iU Tollows that K = K 4 Jx}, which is complete, |

Theorem6.3 (Fildes and Hammor [19778]). Let & be an undirected
pruph. The following conditions are equivalent:

(1] {715 a split graph,

(Lt and O are friangolated graphs,

(1) 7 gontains no induced subaraph somorphic (o 2K, O, or £;.

Proof. {1)=={1) L&t & = (V, B have vertex parution ¥ — § + K with
3 stible and K complete. Suppose G contained a chordless cvele C of length
=4 At least one and at most two (adiacent) vertices of € wonld be in X,
Both cases wonld inply that & contains a pair of adjacent vertices, a comntra-
diction. Therefore, 67 nust be trignpulated. By Theorem 6., G s splil, 50 €7 3
triangulated.

(ilr == (iil)  Imomediate.

(iiiy == {i) Let K be u maximum clique of 7 chosen (among all masimum
cliques) =o that &, _, has fewest possible edpes. We mos show that ¥ =
¥ — K wostable.

Supnose, rn the comtrary, thal Gy has an edge xyp. By the maximality of &,
no verlex of § could be adjacent Lo cvery member of K, Moreover, if both
x and p wors adjacent to cvery vertex of B with the exception of the same
single vertex z, then K — {2} + {x} + {¥} would be a complete set larger
than K. Thus, there miwsd exist distinet verbioes g, »e K such thal xu § £ and
o E.

Since & contains peither an mduced copy of 2K, nor O, it [ollows that
exnaclly one of the cdges xv o is i . Assume, without Toss of generality.
that xed £ and wie b For any we & — lueb, if yw @ F and xwé E, then
G i = 2K, whereas if pw ¢ £ and xwe £ then Gy, ., = Cy. Thus,
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¥ is adjacent to every vertex of K — {ul, and K= K — ¢} + {pt s a
maximal clique.

Since Gy _g- can have no fower edges than Gy _y has, it follows from the
fact that x is adjacent to ¥ but not 10 v that there exists a vertcx ¢ &£ p in
¥ — K which is adiacent to ¢ but not to . Now 1x must be an edge of G, for
otherwise {4 =, ¢} would Induce a copy of 2K, Siolacly, te ¢ £, for
olherwise {7, x, ), a} would induce a copy of C,. However, this implies that
irox, you, vl induces 4 capy of O, a contradiction. Therefore, S = F - K is
slable, and G 15 4 split graph, |

A characterization of when a split graph is alse a comparability praph
appears in Chapter 9 { Theorem 9.7).

3. Degree Sequances and Split Graphs

A sequence A = [d,,d-,....d, ] olintegers, n— 1 =2 d, =d; = --- = d,
z 0, is called grapaic it there exists an undirected praph having A as s degree
seguence. L'or example, the sequence | 2, 2, 2, 2] corresponds Lo the chordless
droyike Oy while the sequence [2,2,2, 2.2, 2] corresponds to both 2K ; and
Co. U easy 1o construcl seguenoes which are nol graphic, such as | | 1, 1]
and [4,4,2.1.1],

A simple necestary condition Tor s segqoetce to be praphic comes liom
Euler's theorem: The sum ¥ d; must be even. However, as the preceding
example shows, an even sumn is nol sullicien to msure graphecness. Two
classical theoremns characterizing graphic sequences will now be stated,

Thenrem f.d (Havel [1955), Hakimi [1962]) A sequence A of inlegers
A=l z=dy =d: = -2 d, 2 Disgraphiciland only if the modified sequence
&I = [-I'IE_ - ]., da - 1‘- e "d4|—1 - 11 ddl—1'| - -,d"j

fsortod inle deereasing order) s graphic,

Theorem 6.5 {Crddsand Gadlai [ 19003 A xequence of imegersw — 1 = o,
=y = --- = d, = 0ds graphie if and only if

(i) » diiseven, and

=1

{u) i do= e — 1)+ i minjr, d;},
i—1

I=r+]1

farrP=1,2,...,0 - 1.
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The inequality (i} will be called the mth Erddis Gallai frequality {(FOGT)
Shortly, we shall give a characteriration of sphil graphs 1o terms of these
inequalities. We shall nod prove Theorem 6.4 or Theorem .5 here since a
very readable treatment can be found in Harary [1369, Chapler f]. Both of
these theorsms suggest algarithims Tor testing whethar or not 2 given ssguenoc
s graphic (Fxerclse £).

A third classical theorem on graphic sequences depends partly on the
lollowing observation, Let x, 1, 2. and w he distinct varticas ol € with xp and
zw ed pes of & and xz and pw ponedges of & IF we replace the lwa edges by
the two nonedges, the rasulting graph G will have the same depree sequetice
as G (see Figure 6.2), Such a replacement will be called un imterchange. A
sroger result holds, which we now state.

Remark 6.6, Provided that we allow graphs o have multiple cdges, if
Lwer graphs huve the same depree sequenee, then cach can be obtained from
the other by i tnite sequenee of interehanges,

A proaf of Remark 0.6 can be Found in Ryser [19%63, Chapter 6, Theoret
A0 by appbving his rechoggue o the edees-versus-vertives incidence matrin
af &,

A penetal guestion arises; What graph theoreiic properties can be deder-
mincd solely from the degree seguence? Tn Seellon 25 we remarked Lhal
transiLve lournaments could be recoenisacd by the in-degrees of Lhe verlices,
Alse, a charseterizglion of irees in fenmns of degree sequencss is known, We
will now discuss this problen as applied to split graphs.

lel A = [y, &y, - -, o] he an integer sequence with s - 1 =2 d, = d, =

sy = Doand ler D=0 1,2 .. .,n — || Comparing the decreasing
scquence A wilh the inereasinge seqoence O, et oy draew altention o the [we-
sition just prior to ¢ overtaking A Let m be the lavgest index f such that

d. =7 — 1. lhus, eithér m = » andé A 15 the depree scquence of K, ord, =
t— landd, ., <
The next resull characlerizas split graphs as those for which equality holds

i ché prih Erdos-Oallan ineguality, where wois dofined as above.

* p——ar L G ¥

ke ke e

Fi ‘—’ W F —— e Al P o

Figure 62 A salic line Jenotes an edge of €7; a brokan Joe denates a ronedde of 7. An
Fnfershiange teplaes Che Lwo oges with dhe tve toned pes,
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Thenrem 6,7 {Hammer and Simeane [1977]L Let G =({F, F) ba an
undirceled praph with degree sequence o, = o, =+ = d,. and ot m —
max|ijd, = § — t. Then, (5 s asplit graph il and only if

Yd=mm—1+ Y 4.
i—1 i-ml

Furthertmoere, il this is the case, then e G — s

Frosal. The theorem is true iF 6 s a complete graph, so we may assuns
thatd, = m — landd =tk Sine Ads nonincreasing, min{m, &} = J, lor

ml |

i = m + L. Therafore, the mth L siznplilics Lo

s=Yd,Zmim— 1)+ Y d. ()
=1 1=wm1

Ler Kodetwle Uhe Tiest peovertices of largest degree, The Jell summand ol (1)
slils mie lwo coniribylions § = 5y - 5., Whelo

% — E HreKlxzo B = mm — 1k iy
ek
5y E|_1Jq‘. Klxyc i)
vl
= YifreKxypc K2 Y 4 (31
T L —rat 1

Equality helds i {2y if and only o K 5 complete. Tquality holds in (3] if
and only I V¥ — K s stuble. Therefore, of cquality bolds in {1}, then & &5 a
split graph,

Copvorsely, assune that & — (W, £} s a split graph, By Thearom 6.2 we
i partiticn Finto g stable sol § and a complete sct K such thal | K| = G}
Fvery verlex il K has degree al feast | K| — L and, since K 15 maximum, every
verlex 16 5 has degree al most | K| — |. Therelore, we may assume that the
vertices are ordered sothal K = {oyocngpiand 5 — frgp - 9, whers
deg e — d;0 Moreover, diy = K] =1 and digo, = K| -1 <|K|, s0
twlr) = | K| = . I'inatly, since K s complete and 5 — K i alahle, we
conclude that equakity holds in (2) aod (3) and therefore also im (1), |

Corallary .8, 1f € is g splic graph, then every gruph with the sume degree
sequence a5 O 15 alse a split araph,

Remark. Tlammer and Sinecns [15977] myestigated a more general
problem on graphs. They deline Lhe splittance of an arbitrary undirected
graph Lo be Lhe minimunm number of edges 1o be added or erased in onder to
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produce a split graph. (O course, split graphs are qusl these graphs whose
splittance is 2cro. Their mam result shows that the splittance depends anly
on the degree sequence of the graph, and is given by the expression

.ilm{m—']}— Edf— E d,-J,

L= H cz=nel|
where prand the o, are as in Theorem 0,7.

Those who have further mteresi in (e lopic of praphs and ther depree se-
quences are encouraged to read the survey paper by Hlakioi ond Schrmeichel
[1974].

EXERCISES

1. Cive pevessary and sufficient conditions lor 4 tree Lo be a splu graph.
Prave thit your answer is corrcet.

2. Prove that the Hamiltenman cirewil problem s NP-complele fior spidl
graphs. (Hini, Lse the fact that the Hanullonian cireuil problem i WP-
camplowe [or padile graphs,

Y llow many nomisorerphic graphs are diere wiily the following degres
gequences () [3,3, 22 L1 [5554,3.2],0i00 [55.4.3.3.3.2. 117
4. Give an example of two nonisomorphic split graphs haviog the same
depres sequatee,

S What is1be splivanee of 2raphs C,, K, . &, and F,7

6. Give an ©(n) time algorithm for determining whether or 1ot 4 nonin-
creasiilg integeracquence s — | = o) = d, oo = d) o O graphic. Prove
thatl wour algorithm i cocrect sod thut i complexicy is lincar.

T. o let & = fe).d.,. . d, ] be an inteser sequence, and define & = |4,
da. ... ] by the Rorntida

di=n—1—d ., fi=1,..»d

Shorw that A is graphic il and only i1 A s graphic. Whal cin you say about the
eraphs cotresponding to A and A?

B Tt wm—man{ild, =7 1% where 0 | d 200 =4, 200 Shovw
that if tha wih EGI holds, then the rih FGL automatically holds for v —
mo 1, .., {Uamuner, Ibaraki. and Sineone [T9TET).

9. Prove Corollary 6.8 directly [rom Theorem 6.6,

Research problem. Characlerize those graphs which are umgquely deter-
mined up to isemorphism by their degree sequence, R, 1L Johnson has solved
this problem for reees; the solution s Lhe class oblained v Exercise 1.
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CHAPTER 7

Permutation Graphs

1. Introduction

In this chapler we consider a class of perloct graphs which has a larpe
number of apphcations, Buppose 7 is a permotation of the numbers 1,2, n
Let us thunk of 7 as the sequence [n,, 7,. ..., 7, ], 50, for example, the permu-
tation = T4,3,6.1.5,2] has ny —: 4, &, = 3, efc. Notice that (n™ ). de-
noted here as w77, i the position in the segnettce where the number i can be
found; v pur cxample 17 ' - 1, =77 .= 2, et

We can construct an undirected graph &{n] from = in the following
manner: O] = | has verices pumbersd fom 1 o p) %o vertices are joined by
an edge if the lakger of their correspouding numbers s to the lett of the
smualler oo (Lhat s, they vocur oul of Chetr proper order reading Yefi Lo right)
In our cxample, both 4 and 3 are connecled Lo 1 sinee they are cach larger
and to the left of 1, whereas neither 5 nor 2 is connected o | {see Figure 7,10
The graph G[x] 18 sometimes called Lhe irpersion graph of &

blore formally, o mis 4 permutution of Lhe numbers 1, 2, .., &, then the
graph G[w] = (V, &1 is dolined ax [oliows:

Ve 1,2, n)
and
Febe(f—fm ' —x =

An undirecied graph 5 is culled a permutation graph if there exists a permuota-
tion & such that & =~ G[x].

157
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=

Fipurer T.1. The graoa o5d, 3, 6,1, 5, T

2. Charactarizing Permutation Graphs

Permuialion graphs have many interesting properties. Nosice what
happens when we peterse the scguenee mo Each pair of numbers which
occurced in the correet order m & is mow in the wrong order, and vice versa.
Thus, the permutation graph we obrain is the complement of 7| x]. In other
words, 1l 1 i the permuotation oblaioed by reversing the sequence 7, then

[z"] — G[=].

This shows that ehe complement of @ permutation graph i alin o peraatulion
gHFeLph.

Another property of the graph G a | (which vos may have already guessed)
1s that it is transitively orfentable. 1f we orient sach edge toward its larger
eridpoitd, then we will obtain a trapsitive orientation F. 1o, suppose i e I
and flre Foehen§ < f < kand o7 ' = a7 ! = m, ', which implies that ike M.
This resull is nly half of the story: we actually have the following:

Thearem 7.1 (Pouchi, Tempel, and Even [1971T  An imdirected praph &
ix a permutation graph il and only if § and & are comparability graphs,

Proof. Buppose G = G[al: then G 15 & comparability graph since G[x)
has a transitive orientation Likewisc, & is o compartabilily graph sinee
G = G[=']

Converse(y, let {¥, F,) and (V. I} be transitive onentations of & = (F, £}
and & = (F, E) respectively. We slaim that (V, F, + F,) ia an aepelie
onentation of the cormplele graph (3, F ~ E) For suppose F, — F, had a
cycle [v,, 29, 40, .0 L 5y, 2] of the smallest possible length L H = 3, then
lhe cycle can be shorlened either by o6, or po2y, contradicting rinimality.
IfL = 3, theo ul least Lwo ol the edpes ol the cydde are 1 the saimes F,, implying
that F, s ol transitive. Thus (F, F. + Fabis avyelic, Simidarly (F.FT + Fi)
is acyelic.
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W concludde the prool by constructing i permulation a1 such that & =
Ga] An acyelic oticiiation of a complet graph is transizive. and it deter-
nuines d unigue logar ordedng of the vertices. {See Section 2.3 on wransitive
tournaments.) Consider the indiowing procedore.

Srep I Vabwel the vertices secording 1o the order detecruned by £, + Fo;
namcty, the vorlex x of in=degree | — 1 gews label fix) = 1

Step {1 Label the vertioes according o the order determined by F77 o+
¥ namely, the vertex 1 of in-degres £ — 1 gats label F{x) = L.

Motice that

apc B | Dy — DO L0 — £00] < 0, {13

simee it i thie ecdges of B which Dave their ofentations reversed between steps
and 1I. This is the key 1o oor argumetl.

Step FIF. Dedine & as follows: For cach verlex <l Lix) = L then o7t =
Flix) The relationship is depteted in lhe commutiog disgram below,

L2, .m

Therefore, by (1}, = 15 the desired permutation and L the desired iso-
morphisim, |

Remark. T terins of the nomenclature of Section 5.8, G 18 4 pernmutalion
graph ifand only if the rransieve anentalions of G, when regatded as partial
orders have dimenyion at most 2.

The construction technique preserted above is illustrated in Figure 7.2

Theoren 7.1 suggests an algovithi for mecommizing prrmutation graphs,
namely, applying the transitive orientation algorithm ta the graph and to its
complament. If we succeed jo finding transitive orientatiens, then the graph
is a permutation graph. To find a svitable permuiation we can follow the
conattuclion procedure in the prool of the theorem. The entire method
requires (§r”) time and {¥n%) space for 4 praph with & vertices,

We conclude this section with a remark which follows from transitive
aricntability.

BRemark. The decreasing subsequences of « agd the cliques of GIx] ars
in one-to-one covrespondence. The inereasing subsequeness of o and the
slabe sets of GIe] ace 10 obe-lo-om: correspoondence.



160 7. Parmutation Graphs

z &
r » r &
7 [ L= [
i3 o
b Al v )
Lipl =6
rinl =2
LiFi=4 .
/ LiF=5
L= 3
Ll =5
Ll -y
Liof =1
FloF - A

Figure 7.2, {onstruciion of the permutaien m —[3, 3, 1.6, 4. 2] from the lesnsitive orienta-
thons &, and £ Vemek v eives 1,0 = dwens b eives g0 = 6, vl

3. Permutation Labelings

A related, but simplee, problem is Lhat of esting whether a givenr labeling
of the vertiees of a graph iz 2 permutation labeling. Let & - [V, K} be ab
undirccted graph, and let L:V ~ [1,2, ..., 1} be a byection labeling the
vertices, Wo call Lo permaizanion lobeling if therc exists a permutation = of
1. 2,. ... n} such that

xve B [14x) — 1] [= ML) — = YE] <=0
Clearly, G 15 o permutation graph ifand only if it fas ai least one permutation
lubeling. '

I'igure 7.3 shows two labelings of the same praph. The first is the permu-
tation labeling already constructed in Figure 7.2, The second s not a per-
imatation laheling ot the following reason. Since Adjil) = {3, 6], bath 3
and & would be oo the loft of 1 while 2-4 would be on tha righl of 1 in any
permutation w that reight work However, this unples thar 3 and 4 would be

teihe tghl ol &—yet they are aol connected 1o 4. Hence, to such permotation
& exists for Lhis lybeling,
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+ 3
4 2 4 z
3 3 3 [
i i
“his label'ng is To'x lobe ing 5 rol
O pPERLOTion Tk ing 0 pRrmIntion leneting
Tigore T.3.

Theorem 7.2 (Gl and Acherya 19771 Let G = (¥, E} be an undirected
graph. A bijection L. F -+ {1, 2,.. ., 4} is 2 permutation labeling of & il and
only if the mapping

Frxo Mx)—d (x) 4403 (xc V)
is an ingeetion, where
d™(x) = Hye Adi{x} L{y) < L{x)}|
and
d () = [y Adif<} Liv) = L)}

Progf, (=) Let 7 be a permiation corresponding 1o the labeling .
Then (%) i< the number of integers in & smaller than and to the right of
F{x), and 47 (%) fs the number of inftegers in & larper than and to the left of
Lix} By Excreise 4, fix} == YL{x))k and sioce m ' and L are injective (in-
decd hijective ), s oo s f

{+=) Assuming that | is injeclive, we will construct the dusined permu-
tation, Since d 7 {(x) = L{x) — Fand 4" {x} = n - L{x} it follows that

l=flaysn (xeF) (144

But 15 iu}:clix.-u and inleger valued. so (2} implies that £ s a bijection from
Fley {12 oo nl Define o ag fellowes:

wi) = L{f (i)

(se¢ Figure 7.4)
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.
.
.
f e
..
+ - i
I'| M N - S I T T

Figure 7.4

Now, m 15 @ permulation, stneg [ and (7! are bijective. Furthermore,
T ML) = f{x) (xe V),
s0 we st verify that
xpE Eax[Lix) — Lip][f(x} - f(x}] = O

This is left g2 an exercrse for the reader. |

4, Applications

Pormutation graphs can be regarded as a clasy of interseclion praphs in the
tollawing manner. Write she nombers 1, 2, .. n hortzontally [tam teft to
righl; undermealh them write the numbers m,, 7., . . ., T, Ik SoqUEICE, 4€a1n
horizontally Jeft to right: finally, draw w straight line segmenis joining the
twao 1z, Lthe two s ele. We call this the satehing dlagram of misce Figure 7.5),
Mootive that the fih scgment intersects the fih sepment i und only if i and §
appedr in reversed orderin m; Lhis is the same eriterion for the vertices fand §
of G« to he adjacent. Therefare. the intersection praphs of the segments of
rtehing diagrams are exactly the permutation praphs.

The reason for our introduciog Lhese malehing disgrams is to wssist us o
studying scoe applications of permutation zraphs,

4 3 [ § £ a

Figure 75, The mulching diaecam af [4, 3. 6, 1, 5. 2]
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Application 7.1, Soppose we have two collections of cities, the X cities
and the Yoities, lyving, respectively, oo two pacallel lines. Suppose also, that
there are aitine roules conmecting vanous X cities wilh variows Y eities. all
scheduled to be ulilized at the same lime of 1he day. Oor nission, should we
decide Lo aceept 11, will be 1o assipn altitudes to cach lipht path so that inter-
secling routes will be al differcnl altitudes. W will thereby assure that no
midair collisions will eccur. Being clever graph theorists, we recogniz: this
a3 a coloring problem,

The data, as given, provides us with o biputlile graph embedded in the
plune, as pictured in Figuee 746, We number the flight patls by lrwversing 1he
northern cities from west to east. From this we can extract 3 matching
disgram, or go struight to Llhe comresponding permutation graph Gl
Aswizning altitudes to the flight paths so fhat intersecting paths rcesive
ditterent altitudes s equivalent 1o colering the vertices of G[w] so that
adjacent vertices recetve different colors. An ellicienl colornng algorithm for
peremutatzon graphs is piven i the next section.

mon ) ()

T

e &

{( Lavizvitle Y { crmrleston )

lat

12 K 4 5 6 T L] 0

& 1 38rm L] T e &1

by

Figure 7.6, (4] A bipactirg praply B remesenting Dighl pulhs between citics. 1) The muiching
diagrant of 2 pefmuleton recructed frem the mpartie praph 8. ic) The praph S[a]. Cotor e
verdices of (7] m| and solve thy altitnds assipurme poobdem Go &
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Application 7.2 {Shifted Infervals). Let # — (i — L2, 6} be a
collcction of intervals ou a ine, where [, = {x,, yJand || - » — x,denotes
the tength of [ Assume that the infecvals, which may overlap. have been
ardered such that x; = x, =< --- = x,. Ler w, represent the cost of shifting
the interval I, (assuined 1o be independent of the distance chiffed). Find the
cheapest shifting of intervals sa that {1} (b order @ presecved and (2) no
overlup remaing. {Tn Fven, Poucli, and Lempel [1972], the intervals cor-
roespond o the momory rogquircments of 1 programs at a certain time in a
mulliprogramming compuler.)

A solution o this problem 1= as fwllows. Consider the oriented graph
(£, 1) where

ofdeFer 3 [hl<n 5 (i<h

[N

Twa intervals are thos telated in F if and only 1 the intetvals between them
cin be shifted in such a way Lhat none of these f — 7+ 1 intervals {including
the fixed f; and I} will intersect, It Is routine to show that F s a transitively
ariented graph (see Fxercise 51 The sclution to our problem will be to find
a chuin of F having maximum weight (fo remain. all others are shifeed): in
olher words, find @ maximuom weighicd cligoe of the puph £ = F + F7F
which is noL only w comparability grapl bul is even a permulition graph.

5. Sorting a Permutation Using Queues in Parallel

A gquene 5 a linear storage device w1 whach items are aded ar ane end and
untlowded at Lhe otboer end in a Hrst-in first-out fashion (FIFCY. Lol us
considet Lhe problem of sorling a permotation & of the numbers 1,2, .00 &

Figure 7.7, A petwock ol & goewss o pavallzl,
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vsing a natwork of & quenes arconged i parallel (see Fiaure 7.7) The permuta-
tion sits in the input queue itially, Lach number, i tuen, passes along 1o one
ol the & inlernal quewes where 11 s stoted Lemporaily until 16 is movad onto
the outpat queue. We gssume that sach queuc has unhounded capacity and
that backing up ateng an cdge, counter to its dicection, is forbidden, One can
easily imagine a station master direcling railecad cacs through such a switch-
vard in order Lo rearrangs the cars of a freight train, Typically, the number
of sidings (queacs) will be limited, 50 we are ded 10 the ollowing problem,
Given g netwark af & queuss in parallel, churacterioe the permutations which
can be serled on il Or similiarly, given g permutation o how maoy queues
will we necd * In addition, find an oplimal soriing meihod.

Example. Suppose m — |4. 3.0, 1,5 2] The 4 is placed o (). The 3
cannot goin 2, because U will be forever sluck behind 1he 4, so put itin g4,
Mext comes the 4, which can go either behind 4 on @, or behind 3 on .,
Put & hehind 4 on 2. How abouot 17 1t must go o @, The 3 cannot go on
2, heciose s already there  put 5 on €4 behind 3. Finally 2 caenot goon (3,
or (¢, but it can go on ;. Now that everything is stored {Figurc 7.8). we
unload the numbers | -6 fom their respeclive storape places.

W cull vour attention w a lew obvicos [acts. Uhe contents of each {J; must
be in inercasing order, lor otberwise il would be impossible (o successully
unload all the nmnbetrs in propar order. Iurthermore, if is ensy ta show that
it makes oo difference whatsoever whether we {a) requite loading off iInput
numbers anle the gqususs before utiloading uny of them or (byallow unloading
anytioe it is possible,

What 15 1l thul forees two numbers Lo go iole differenl queoes? Atwwer:
The numbers veour m reversed order it w Thus, i 4 and § are adjacent in
G=]. then they #ust go throngh differant quenes,

Propositien 1.3, L&t n=[my, m;,.. .. 1.} bo i pormutation of the in-
legers {12,000, 0, Phere s a one-fo-one cormespondenee belween the

Fipure TH. A nctwori whizh s sorcing = = [4.3,6, 1,5, 2|
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proper k-colorings of GEr] and the successful soning sirafegies for min a
nelwark of & parallel gnencs.

Froof.  Assin painters to 2ach £, each with a different color panl. Now
sarl ;oin the d-network and bave every ftumbur puinted as it weslers ils
corresponding quene. Since connected vertices i and f of G[w] pass through
different qoeues, they receive different colors.

Comversely, given a proper cobonng of Gla | using cabors 12,0k, ussign
a traffic director to the nput queune, If the coler of x 15 ¢, then the traiflic
director sends x to O Suppuose 1his slratepy is vosuccessful Tleere must bea
botleneck i some guews, say O le, G, hus o paic of numbers < and v
stored i reversed vrder. Howsver, ©and v enter @, o 1he same ordar Jhat
they appear in o, nanely, reversed. Tha, x and poare adjacenl in G, and
yel They are beth colored the same, 4 comlradietion, Clearly, this correspon-
dence is a bilection. I

Corollary 74, Lei © be o permuluvon. The following numbers ate
equial:

(it the chromatic number of Gpxl
(i} the minitnum nember of quenes requ:red to sort =,
(iiiy the lenpth of o longest decreasing subsequence of T,

Pranf.  The cquivalence of (i} and (1) follews immediately from Prope-
sition 7.3, und Hs proof suggests o methad for fransforming a solution of one
problem into o solulion ol the other. Egoalily bolween (1) aod {5} holds sinee
a longest sybsequence of 7 carresponds 10 & maxioyumw clique of G ], which
will be of size p(G[x]) since permutation graphs are parfoct. |

The cenoricd sorifng sirategy for mplaces each number in the first availoble
quege. {Our example was done that way.) [ rom this sirategy, we ohtain the
cunenical ciolering of Gn]. The fllowing algorthm simulates the process. It
vields a minimom coloniaa,

Algorithm 7.1, Canonicai coloring of a permutation.
et A perroatation o — [y, T, .., 1] of the nambers {1, 2, ..., 0L
Curpur: A colering of the vertices of On] and the chromatic number ¥ of
Glal
Merhads Thring the jfth iteration, &, 1s transferred onto the quena £, baving
smallest mdex § satisfving =; = last entry of & {1e., the first allowable ).
We do not acteally save Lhe enlire coatents ol Q). Instead, an arcay LANT{}
holds the last oummber ;. The counter & keops track of the actuad number of
guenes {eolors) used, The cnlice almorithm 15 25 follows:
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begin
1T L=n;
2.0 forj— | tewdo
Trepn
3 1 o= FIEST allownhle gueoe;
q. COLCHR Iy« o
5 LARTE — 1,
f. koo masik, o,
cod
E I
end

In arder to cxecute staternent 3 officiently, a type of binacy mnsertion can be
wsed. One such subronting js given in Figure 7.9, The next cosolt shows the
carrectness of Aleonithom 7.1

Theorem 7.5, T2t he o parmutation of the numbers {1, 2., .. a4} The
canonical coloring of Cf=], as produced by Algorithm 7.1, s a minimom
coloring.

Progf.  Clearly, Algorithm 7.1 prodoces & proper g-voloring of &« ] We
nust show that y — @(G[xT) It is sufficient to show that m has o decreasing
subseguence of lenplh p Consider the predecessor funetion p defined as
follows: 1M COLOR(m;} — i = 2, Lhen m; equals the value of LASTE - 1)
during the fhitevation. Clearly. 7, = mpand p() < jsinee il was 1, sitting
an 2, | which forced 1; (o go down to ;. Then

. ‘E.I'J.‘ PR R-f:k'
where
O LOR [1’:.,-*] Fi
and
T, = My e b=y —1,.002
15 the desired docreasing subsequence. |
procedore FIRST aTivaable quene:
Iepin
fe=mlite- kg 1
wntil i = rdo
beglu
#oa |LE 4 072
ir e 1L.AETr}
Hwn i < r;
e —r 4+ 1,
cod
e i
vl

Figure 7.9,
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Bemark, To lind & mimimim cligue cover of £ 2], apply Algarithm 7.0
ta the reversal o of =,

Alporithm 7.1 cun be osed o color ary permutation graph G in time
propotlionsl o klog e provided we llave the permutation = and the so-
marphism O = [ r] MNatice that this complexily s independent of the
number of edges of &, If we do pot have @ then we wonld eevert to the
coloring aloorithim for comparability graphe,

Remark. 1 we apply 1he algorithmo in Exercise & of Chapler 2w Lthe
crientation M of Gln] where cech edpe is onented woward s lurger endpoin,
Lhen L codoring wie obiam will be cxaofly the same a5 the canonical coloring,
namely,

COLOR(x} — i=» TICIGLT{n) — i — 1.

EXERCISES

1. Forwhal permulation mof the numbers 123, nis S0e] the Jollowing:

ta) ke complels praplh on o verdices;

(Bt the graph ol » isalated svertices;

fe)  two disjoinl complete graphs on ¢ amd 7 — r verfices, respeelively?
2. liind & permutation = whose graph Ofx] s somocphic to & Do the
samie [oe (7, {see Fipurs 7,100

A O

]

Y

Fizure 7,140,

3. Lot o' be the inverse of the permutation & Prove that Gle] = Gz~ *].
4 Letn=[x,,m,;,. ... 5] beapermutulion of {1, 2,...,#] T.etp; denote
Lhe number of intepers less than and to tae might of 110 ©, and let §; denate the
rumber of integers gesatsr than and to the left of 7 in & Prove that the
following equatity holds:
m i p=i+y

8, Lel 7 be defined g% in Application 7.2 (the shifled nterval probiem), and
tE = FOF™",

(1} Show that Fis & transitive orentation of I
{ny  Prove that £ is o permutation grapl
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6. Givean apphication similar to Application 7.2 which wses the fact proved
in Exeroise 5(i), numely, Lhat L is oot only o comparabality graph, but is
CVCR o pernulalion graph.

T, A purmulation graph 8 wrigeely representable if there (s ooly one
permulation mtuch thut G[e] ~ . Characlenize the uniquely tepresentable
rermutation graphs.

%, let (i bo o permutation graph with n werlioes. Given ransitive orienta-
tions F, and F, of (G and 4, respectively, write an algonthm which caleulates
a permutation = such that G[x] = &, Show that your algorithm can run in
Oir?} e,

9. Using the canonical sotting strategy, give a minumum caloring of the
graph Gla]for o = [9.8, 2. 5.0, 1, 7. 4 3],

10.  1In sorting, using a network of paralle] gueues, prove that il makes no
difforence whether we {0 reguine loading g inpul numbers anda The gueues
before unloading any of them or (B allow nnloading anviioe il is possible,
11. Provethe following: Ar any point during the execution of Algorithm 7.1,

LASE() = LAST(2) = - - > LAST(L).

Why is this fact aeeded to justily the correciness of the subrontine in I'igore
747 Analyze the time complexity of Algorithun 7.1

12. Let G be a permutation geaph with & vertices, Show that either ¢ or &
contains a clique of size [n''?] {Crdés and Szckeres [1935]).
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CHAPTER 8

Interval Graphs

1. How It All Startad

T3 1957 (i, Hajis posed Lhe followng probiem:

Cilvenr o fnote number of intervals o a sieaight line, a graph assaciated
with this sel of intervils can be constructed in 1he following maoner:
each interval corresponds to s vertex of the gruph, and (wo vertices are
conpected by an cdge if und only if the corresponding intervals overlap
at least partizlly. The question is whether a given graph is isumorphic 1o
one of Lhe graphs just vharacterised {Hajis L4357, p. 65, anslated by
M.CG.

Tndependently, the well-known moelecubar biologist, Seymonr Benzer,
during, lus mvestigations of the fing structure of the zene. asked o relared
questicit,

From the clussical researches of Morpan and hisschoel. the chromosoms
1% known as o lincar arrangement of hereditary elements. the genes.
These clemenes must bave an mternal structore of their own, At this
finer level, within the gene the question griscs ugain: - . Ane they [the
wnbatements within the gene] linked rogether in a linear order analogous
to the higher level of integration of the genes in the chromosome?

A crucial exarination of the question shoutd be made Irom the point
of view of tepodag e, sinee 1115 @ maller of how parls of the struclune arc
contected o cach other, rather than of the distances between therm.
Laperiments L explore the topology should ask gualitarive questions
{e.g. do two parts of *he strugture toach each other or not 7) rather than
greantitar e ones (how far apart are they 7). {Beozer [19597.)

LK
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The salution to this question would be loond by stodyg 1hose praphs
which represent intersecting intervals om a line, and then verifving whether
or nol the dala that was gathered was consistent with the lincar genstic
hypothesis.

Our treatmenl of interval gruphs began in Chapter 1. Let 9s continne
leoking inta the properties of this interesting und uselul class of grephs. The
rcader may wish to roview Section 1.3 at this poiat.

2. Somea Characterizations of Interval Graphs

The [ollowing theorem and its corrollary will castablish wharc the cluss of
interval graphs betongs in the world of porfcct graphs.

Theorem 8.1 {Gilmore and Hollman [1964]).  Let & be an undirected
graph. The followinp stalermnents arc cyuivalent.

fiy < is an imterval graph.
(i} © comtaing no chordless 4-cycle and its complement £ i a com-
parality graph,
(i) The maximal ¢ligues of 5 can be higcar]y ordered such that, for every
vertex x of G, the maximal cligues conlaining x occut consecytively,

Progf. (i} ==(1i} This was proved in Chapter |, Propositions 1.2 and 1.3,

{ii) = {iii} Lel us assume that & = (. EY containg no chordless 4-cycls,
and let F be a teansitive orientation of the complement (.

Lesnmn A, Let A, and 4, be maximal cliqees of 4.

{a) Thesc cxists an odge in F with one cndpoint in 4, and the other
endpeint in A, :

by  All such edges of E connecting A, with 4, have the same orientation
T

Proof of Lemmm A, [a) U no such edyge exists in F, then 4, 10 4, s a
clique of &, contradicting maxumality,

{b} Suppose gb e F and de € F with awe A, and byl e A, We must show
a vonlradiction. Il either & = ¢ or b = 4, Lhen transitivity of F immediately
gives o contradiclion ; olherwise, Lthese Tour vertices are distinet (Tigare 8.1),
and ad or bc s m E, since E may not have a chordfess d-cyele. Assume,
withour loss of generality, that o e E; which way is it oriented 7 Using the
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O ey D

o

Figure 8.0, Hoid cdges are in & broken odocs aze in B Arrows denele e erienlulivg &

Lrungitividy of M, ad e F {resp. do e Flwould imply e e P {resp, db = 1), which
w impossible, and Temma A is proved.

Consider 1he following relation on the collecton % of maximal cligues:
A, < A, iff there is an edge of F connecting 4, with 4, which is orented
towurd 4, By Lemma A 1his delines a toornament (complete orieneation)
on ¥, We claim that (%, <) s a transitive tournament, and henee lincarly
orders @, For suppose A, = A, ang A, < A, then there would be cdges
wysland el withwed, xved,andz= A, feither o ¢ Eor wy ¢ E,
ther we = & and A, < 4, Therelors, assume thal the edoes wy, yx, and xz
are all o E fsee Vigure 323 Sinee & comtuins o chordiess d-ovele, wug B,
and the transitivity of £ iplies wze FoThus 4] < Ay, which proves the
transitive tournament clain.

MNext, assume that # has been linearly ordered A, 4;, .., 4, according
e the relalion above (Lo, §< jilf 4, < 4;) Soppose there exist cliques
Ay Ad; = Ay wilhxed,, xd¢ A, und xe A, Simee x4 A, there 14 4 verlex
yeA;suchthat xv¢ E Bul 4, < A4, implies xy<= F, whereas 4; = 4, implics
px & F, cottradiction. This proves (i)

giti] =i} For cach vertex » = V) let Ji{x) denote the set of all maximal
ciques of O which coatain x The sets f(x), for x e ¥, are olervals ol the
lingarly arderad set {%, < ) [ remaing 1o be shown thar

¥R T AT} A 0 (6 et

Lhis obviously holds, since twoe vertices are connected if and only if they are
both contained w some maximal chque. |
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Corollary 8.2.  An undirecied praph 7 15 an interval graph il and only if
r is a triangulated praph and its compiement & is 2 comparability graph.

Roemark. The coloring, cligue, stahle sct, and clique cover problems can
be solved in polynomial time for interval graphs by using the algorithms of
Chaplers 4 and 3 A roeognition algorithm can be oblained by combining
Algorithms 4.1 and 5.2, although the recopmition algorithm to be presented
i Secticn 8.3 will be asymplolically more eificienL

Statement (i) of e Gilmore- Holfman theorem has an inleresting
imabrik foermodadion. A matrix whose enircs arg zeros and ones, is said (o have
the comsecstive 17y property for columns if ils rows can be permuled inosuch a
way thal the s 0 cach evlumn occur consecutively, In Figure 8.3 the matrix
¥, has the conscoulive 1% properly for columns sioce its rows cam be
permuted to obrain M,. Matrix ¥M; does not posscss Lhe property. Consider
the cligue marrix M (maximal cliques-versus-verticas incidenice matrix) of a
graph G The following corollary 1o Theorem 8.1 i immediate.

Thewrem 8.3 (lulkerson and Gross [1965]), An undirected graph s an
imerval graph if and only if its cligue matrix M has the consccutive 1's
proferty for eahummes,

Prowf. An ordening of the maximal cliques of ¢ cotresponds to a pertmi-
lation of the raws af ¥, This theavein follows front Theotratn 8.1, |

The earliest charactertzation ol interval graphs was oblived by Leker-
kerker and Boland. Ther tesult eanbodies L nobion Lhat an interval graph
cannot branch inee more than two directions, o can i ciecle back wotlo
itsell.

Theorem 3.4 (Lekkerkerker and Boland [1962]).  An undirceted praph &
is an interval graph it and only if the following twa conditions are satiafied:

(1) G is a triangulated graph, and

(i} any three vertices of & can be ordered in such a way that cvery path
from the first verlea Lo the third verlex passes through a neighbor of the
scoond vortex,

Three verlwes whicle [l to satisfy (i) arve called an wstroddal teiple, They
woull have Lo be pairwise oonad jacent, bul any two of them would have to be
connected by a path which aveids the neighborhood of the remaining vertex.
Thus, {7 is an interval geaph if and coly if G is triangulated and containg no
astroidal triple. Condition (ii) illustrates a well-known law of the business
warld: Fvery shipment [rom a supplier to the consumer must pass by the
midde dan,
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Figore #.3.  Malox M. has the coasscutive 175 property For calamas since i zun he erans-
frwmied inrn :\-i:. bdiairin "Ir'ls Cors not hee e gorseculae 25y Pl I_'.- 1r enlmns sisoc oo
vistaal be suitably Tressleeroed.

3. The Complexity of Consecutive 1's Testing

[nterval gmraphs wers chatacterized oz thoss graphs whose eligoe matrices
satisfy the consecutive 1's properly for colomns (Theorem §.3). We may
apply this characterization to a recognition algorithm for interval graphs
£ = (1, K0 a two-step process. First, verify that G 15 teiangolated and, if
s0. cnumerate its maxinal cligoes. This can be 2xscuted tn time propor-
tional to |¥F| <~ | E| {Corollary 4.6. Theorern 4.17) and will praducea at most
w0 ¥ maximal eligues {Proposition 4.16), Szeend, test whether or nod the
cliques can be ordercd so Lhal those which contain verlex ¢ ooour con-
secutively for every ¢ & . Booth and Leuker [ 1976] have shown thal this
step can also be cxzeuted in lingar time, We shall look at the main idess
behind their algorthm and s implementation. The inlerested reader should
eomnsull their very renslable paper Jor additions) deliils Sulyect w Curollary
8.8 arl Fxerclise 3 we have the Rllowing.

Therrem 8.5 (Booth snd Leuker | i19763)  Interval praphs con be recog-
tzed in linear time,

The general consecntive geranpement probiem is the olowing: Glien o
finfre st X oand a colfaction F of subsets of X, does dere e 2i88 G persastation
maf X i which the manhers of eqch snhet T e @ appear as g consacutiog
subsequence of o Ln the interval graph problem, A is the set of maximal
cliques und .# = {He)},, . where Hed s the set of all maximal cliques coo-
taining ». The conssontive artanpgement and consecutive 1% problems are
equtvelent: The rows af the mateix constitute X, and sach column determinas,
ar is determinad by, a subset of X consiszing of thoss rows contaitting a 1 in
the specified column, Tucker [1972] has characterized the consecutive ['s
probiem 1ty termns of forbidden confgurations, Atother churaclerization, due
tor Makano [1973a], 15 stated as Exercise 12,
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Il

Limure §.4. A P{-Lree.

Besides its use in tecognizing inlervy] praphs., the comscoulive 1's problem
ligs a numnber of olher applicalivis. These melode o lincur-time algorithm
for recopnicing, plasar graphs (see Bouath and Leoker [ 1976]), and a stotage
allocation problam o be discussed n the nexl scelion (Application §.4).

The data structure peeded to solve the conseeulive grrangemnent problem
st efficientty is the PQ-tres. PO-trees were invenled by Leuker [ 19757 and
Boath F1Y757 eapressly Tor this purpose. They are osed Lo represend all the
permutations of X which wre consisten wilh The comstraints of conseoutivily
detennined by #. Most imporlanlly, only a small amound of storage s
required Jor Lhis reprosentalion,

A PQ-tree 1 18 & rooted tree whose inisrnal nodes are of two types: £ and
. The children of a type P-node cocur in ko particolar order, while those of a
g-node appear inam order which must be locally preserved, This will be
explained in Lhe pexl paragraph. We designale a P-node by o cirdle and a
G-node by a wide reclangle. Tle leaves of T are labebed bijectively by the
elements of the set ¥ (sec Figure §.4),

The fronifer of @ tree T 1s 1the permolation of X oblaioed by reading
the labels of the leaves from lel 1o rightl. 1o our example, the frontier is
fABCDEFGHIF] Two PO-froes T und T ure eguirafent, denoted
T = T if ane can e obtained from ihe ather by applying a sequence of the
following transfarmation rales.

1, Arbitranly permuce the children of Panode.
2 Beverse the children of & O-node.

Iigure 8.5 dlusirates o PQ-lree which 5 equivalenl 1o the tree in Figure 8.4
Wslronteris [ FJ LG H A BE D Purenthetically, we oblain an equivalent
tree by regarding T us g mobile and exposing it W & penle summer brecee.
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Figure 8.5, A £ iree eguivalen 1o the Lees o Travure 4.4,

Finally, any fronticr oblainable from a trec cquivalent with Tis said to be
consistent wilh T, and we define

COMSISTENTT) = {FRONTIER{T T = T}

It can be shown that the classes of consistent permutalions of P3-trees form
a lattece. The null tree T, has no nodes and CONSISTENT{T;) = & The
uningrsel trerr has one internal P-node, the reat, amd a leaf for evers member of
& (Figure 8.0},

Let us now relate PO-frees tothe consecutive arrangement problem Ler #
be a collection of subsets of a sel X, apd led FL{.F ) denote the colleclion ol all
permulations w of X such thal the nwmbors of cach subscl fe. @ occar
comsecubively in z For example ol # = 14, 8, O}, {4, D3% (hen 11LF) =
IRARCLACE,[CRBAD] [BCAD]E We have the fallowing im-
paTtant coTrespatdenees.

Theorem &6 (Booth and T ooker [1976]) () For every collection of
snhaets # of X there exists a PO-tree T'such that Thi# ) = CONSISTENT{T).

(i} For every P{-tree [ there exists a collection of suhsets ¢ =nch rhat
HiLF} = CONSISTENTIT )

- o

Figure §48. The oniversal inee 0 COMSISTENT 7)) inclodes 213 permuearions af
XY =5 o’
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Mot thal the effecl of Q-modes i Lo restrict the nanmber of permulalinms by
making some of the brother relationships ogid. We leave it Lo the reader to
verify that the tree in Figure ¥4 coarresponds 1o the collection

F={{A,BLIC, DD EVLIE CDEL LG I G HL T
The following proced ure cleacly calculates TI#).

pracedure COMSFECUTIVE: X, #5
Bt

1 1T ¢- {i mix & nermntetion ol 57}
2 Borzach Fe # oo
i f1 - I = dathe memhers of £ neear comseeutively in 25 :;
4. rereEn [,
g

Any gaive implementation of this algacithue would De nnpraczical becaose of
the inftially exponcntial size of TL However, using "0-rrees we can repressit
I with anly G(|X|) space. The equivalent prozram wsing PO-trees s as
forTlomars,

procedore CONSECUTIVELY, 21
begio
| T+ unmiversul o,
z Far cack o dn
3. 1o RECIWEY, 40
1, roiuen 1
b

This varsian makes use af @ pattern matching routine REDUCE. which
attempts to apply a set of 11 remplages, Each template comsisks of a patters
to he matched agamst the carrent FA0-tree and 3 replacgitent 1o be substituied
for the pattern, The semplazes are applisd from the bottom to the lop of the
tree, The null tree tnay he returned when no template applies. Two examples
areiliustrated in Cigure 8.7, For details of the algorilhm, Lhe reader is diected
1o Booeth und Leuker [1976]. There you will find the lemplates, a detailed
version of Lthe algorithm, o proof of correctness, and a proof of the following
complexily theorem.

Theorem 8.7 (Booth and Lenker [1976 (). The class of permutations TI{.#7}
can be computed in O(|#7 + [X| 4+ S[ZE|.F ) steps where SIZECS) —

Treslil

In {he theorem the word computed means cornpuated iniks PO-{Tee repre-
senration [\ In the consecutive arrangemenrs prablent 1t is not necessary 1o
calculate all of TIL#3. Rather, it is encugh to produce one member of TEC# Y or
ta determine that M # ) is conpty. This cin be done very simply by caicmatinge
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F-{{sc) {a 2} {8 o} f=l{a0¢) [5e 2} {5 ]}

g g o0 A &8 & 08 £ F
All 24 parmutatices possibla Al 720 permubations possible
LH, } {a.45F]
emplatea F2 Tengipte FZ
A8 g ¢ £
) [ A 0 £
EeacHy 1: perrutonars poss ol bwactly 44 perruiohars  possble
(£ 8] {8 .c 0}
Temnplates A3 A2 Ternplotes P35 ~4
S |:_
£
ro& 4 L=
ExewAly 4 pmrratabtions posy b Eumcily {6 permutctions passible
-y
i {e. o} l Femplates A3, 22 A4
I 1
Mull iras [ [ 1 1
=2 goroaE
Py I3

L= AdFICES, F4OCHE,
£BCOFA EBCRLF Y}

Figere 5.7 Dwer illusiraons of Lhe procséare QONSECUTIY R CPL-ree veraani. The
recluclzons make wse o Uhe lemplates in Booh aod Leuker [1970]

FROMNTIER( 1), Tn the next sectinn we suzgest an application in which the
pormulations of TIC#) may have to he compared according Lo sceondary
CTUCTHL.

Corolbary 8.5, Let M be g (0, 1)-valued maleix with s toes, - coluions,
and f noneero entrics, Then, M can be tested Jor the consecutive 1's property
mim + B ) sleps,

Remark. T is sparse{ /< mal), then M would not be stered a5 an array.
Baulhir, cither a list ol the nomecre entries o tow sts of M owonld be used
(Chapier 2.
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P0Gl LG an iy R
nlri1i111 leol 1l Llaal g
Trtoolf_J[orvind L1401 L0
ru1nnl G111 P10
mreiraa a1l L1010 LI L B A
pLLoLo F1Loul QUG Lo
M, ., M,

Figuee 8.8, Marry 81, has the circalar 15 propecty Cor colamng 300D iz rows cdn ha per-
mnied 1o vicld My Aatcix %, docs rol bave this progerly.

A {0, I3-valued matrix has the cicculor s properry (o7 columms of s
rows can be peronated in such a way that the ¥4 in cach column oeeur inoa
cireular consecutive order; regard the mialcia 18 wrapped around a cylinder.
In ligure 8.8 Lhe matris M| has the circular Us properly sinee its rows can
be permuted to obrain M, However, M, does not have the circular 1%

property.
Remark 1. ™ has ciccular 15 i and ondy il it has circulae Os,

Remark 2. The circular I's property 18 peeserved under complementation
of any column. Le. interchanging ones and zeros.

The circular 1's property was introduced by Ryser | 1969

Clearly. cansecutive 1's implies cirenlar 1's, but not conversely. Nonethe-
less, one can verily the latter property vaing a test for the former, as follows

Let M be a (0, 1)-valued matrix, and et M be oblained from M by com-
plementing those columns wilth a 1 in the flh row (& chosen acbitraciy),

Theorem 8.9 (Tucker 1970, 190171 Matriz M bas the cireglar 1=
properly if und onfy if M’ has the consecutive 1's property.

Proof. Ry Remark 2, if ¥ has the circular s property, then so does M
By cyclically permuting the rows of ¥ so that the kth row {(contaimine only
7oroz) is moved to the top, we shall obtain a matrix with consceutive 1's in
each column. Conversely, if M' has the consecutive 1’s property, then M
aleg has the ciecular 1's property. Heoce, Remark 2 imiplies 1hat M has the
gircwdut 'y properly. |

The efficiency ol testing fot cireular 1% and cotiseoulive 1% depends partly
upan the sparseness of M. Thus, if M is sparse we shall want to choose k so

that M 15 also sparse, This can always be dong provided M s stored as a Tist
of its nonzero entries or by row lists.

Theorem B.F {Buolle TH?5 Anom o= 8 (O, D-valoed mateix M with
F noneero ealries can be Lested lur the dreular 1% property in Q0w + 0 + [}

RLeps.
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Proaf.  Toeo M be given a5 u 1ise L ol its aonzero entries. Vesting for circolar
F's can be accomplished as follows,

Step I Bcan Loonce, setting up row lists for B and counting the noumber
e of omes o cach row 1 Oim + .

Step IT. Chonse a row & having minimum nomber of 1's: O(m),

Step ITI. Form M by comptementing the appropriate columns, This
niay b earricd oul by scanning each row in parallei with row &, of by using
an avxliary Boolzan a-vector. as llustrated in Appendix B: L’J{Ei(n*f o=
Oim + 3.

Remark., M Lias ot most 2F nonzeros since each row is at nost doubled
in itas numiber of ones.

Step TV, Test M for consceutive s:00m { n + )y =18m t u + 11 1

Wo hirve seen that testitg a given mateiy M for the consecetive o circelar
Fs properries can be executed efficiently. Tt is natnral b ask, if M does not
salisfy ome ar bolh of these proper Les, whethar certain columms of % i e
deleted in order thal the remaining malri satisticy the property. Tn general
this problem s very dillicull to answer.

Theorem BAL {Booth {1%753). Fel M be an r = ¢ (0, Thvalucd mains,
and ket & be an integer (k= o) Deciding whether or nol There grlstsan e = &
submatrix of B satisfying the consecutive 1's praperty {or the circular 15
property) is NP-complare,

A proof Tollws from Uxercise 15

Kou [1977] presents two other extensions of the consecttive U's property
which are also NPLomplete:

(1) rmimimizing the number of consecutive blocks of 1's appearing in the
colunig;

(2 minimizing the ounber of Umes & cow must be splil ol bwo picos Lo
obtaim consecutive s,

4. Applications of Interval Graphs

Interval graphs are among Lhe most useful mathematicsl struceyres for
modeling real world problems. The line on whick the intervals rost muay
represent anylhing thal is nommally regarded as one dimensional. The
linestily may be doe oy physical restricrion such as blomishes on 8 micho-
orgdnism, speed lraps on a highway, of tles in sequential storage in a cotn-
puter. J1 may arisc from fime depemdencies as in the case of the [ife span of
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persons of cars, of jobs on a fived Gme schedule. & cost frenction may be the
reason as with the approximate woerth of some fine wines or the potential for
growth of 2 porlfalio of securities, And so the list goes on,

The lask to be performed on an interval graph will vary from problem to
prohlem. I what is required is to find a coloring or a maximum weighted
stahlc wcl or 4 big cligue, then fast glgorithms arc available, M Hamilionian
circuit must ke found, then there are ne known elficient algorithms {unlcss
the gaph has more stinctuce than just baing an ioterval grapl). Alse, the
speed with which such a problem can be solved wiil depend partially on
whether we ure given simply The interval graph & or, inoaddidion, an interval
reprosentation of G

Let ws diveet our gltention to g few interssting applications of mterval
eraphs.

Application 8.1, Sappose ¢, ¢3. ..., ¢, are choemical compounds which
must be refrigerated under closely monitored conditions, I ¢compound ¢
maust be kepr at a constan! temperature between £ and ¢ degrees, how many
refrigerators will be needed w store all the compoundy?

Lol 0 be the interval graph with vertices ¢y, ¢y, ..., ¢, wd comnect two
vertices whenzver Lhe lemperature mtervals of their carrespomding com-
pounds interseet. By the Helly property (Scetiom 453, iMoo, .. ..0, s a
clique of &, then the intervals {1t L2 0] = 1,2, &} will have s commoen
point of intersection, sav £ A& refdgeralor se0 at o lemperatues of ¢ wudl be
surtable for storing all af them, 'Thus, a solution o the minitmization problem
will be chtaned by finding a minimom clique cover of G,

Application 8.2, Benzer's probleny, as stated o the lutroduction to this
chapter. asks if the subelements mside The pene are linked Legether ina linear
arrangemenl, To answer Lhis question dala were gathered on mutalions of the
gene, For cerlain microorganisms 4 mutant form may be assumed Lo arise
tom 1he standard form by ulleration of some conpected part of the internal
strncture. By experiment it can be derermined whether or not the blamished
part of two mutant genes intersect. {We would hope 1o show that the blem-
ished purts ate lincar.)

From a large colleetion of mutants we abtain the pairwise imLerscetion datg
of their blemishes and consider its intersection graph G. Are the intarsection
data compatiblz wirh the hypothesis of linearity of subelements in the geng?
Equivalently, is & an intervai graph? A positive answer does not confirm
linearity! However, if the data are correct, a negative answer definitely
refutes the hypothesis. Beneer experimented on the wirus Phage T4 his
findings were consistent wih linearity (see Benzer [1959, 1962] and Roberts
19760
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Cohen, Komlds, and Mueller [1979] have shown that the asymplotic
prohabilily P, that o random gruph with g vertiees und e edges is an interval
araph sptisfics

P&,e - E’:‘F(‘ "U

[or lavge r and & and not too large &0 where 1 2= 326" 307 From this tesult
and Trom some Maotile Carlo estimates, they suppest, "iL appeacs that the
chance thal Buneer observed an interval praph by chance wlonc is nearly
zero,” 1or related results see Cohen [ 1968, 19787 and Hanbon [1979a, L0k,
The phenomenon of uverlap in hiology hus been broaght to light again
recenlly. Kolala | 1477] surveys some of these developments. She writes,

Sinec the carly days of molecular biology, pencs have been pictured as
nonoverlapping seguences of DNA [wilhin the chromosome], Detalled
studies of a few bacterial and viral genes conficmed this yiew, and mosg
wveshigators did not question if. [Forihermore,] the hypothesis of
poa-overlapping genes is a keystone for many genetic theories. [How-
gver, recent evidence seems to supgesl thut] viral penes and possibly
buclerial genes may averlap. None of Lhe studies with buctenia provide
wcomraverlible evidence that genes overlap, bod all swpest that this
phenomenon aoeurs, LIN overlapping genes do exist] current vicws of
peng organization and the conlrol of gene expression, as well as vicws of
(bt mfornation content of XMNA molecules and the effects of mutations
i DA, may have to be suhstaniially revised, [Science 176, 1187 1188
(1977, copyright 1977 by the American Association for the Advance-
metl of Seicnee.]

Application 8.3, In archucology seriarion is the aliempt o place g scl of
iterms in their proper chronological order, Al the turn of the centucy, Flinders
Petrie, 1 well-known archaeslogst, formulated this problem, calling i
“sequenee dating,” while stndying 300 types of pottery fonwd in 300 Egyptian
graves, This problem has much m commeoen with interval graphs and the
consecutive 17s property. Let 4 be o set of artifacts (or aspects of artifacts)
which have been discovered in various praves. To zach artifact there oughr to
correspond a time imerngl (mknown e ws) during which il was inowse, To
each prave there corresponds o pome n fme (also unknown) when its
cottents wers interred. Oure problem is tochgore out these Hme relationships.

{a] Consider the incidence matrix M whose rows represent the sraves
and whose coluinns represent the artifacis wiuch either are or are nol
present In A given grave, Under the assumption thal a grave contains cuery



184 8. Interval Graphs

member of 4 in use al lhe time of burnal, the matnx M will bave the con-
seciilive 18 property for eolumns, Fach permutation of the rows which gives
consecutive 13 corresponds to an acceptable seriation of the zraves and
define: s possible meerval assignment for A, Sinee there may be many of
these, ather methods will alse have Lo be used Lo lurther Bmit the possibilities.

fb)  Consider the graph G whose vertices represent the artifucts with two
verrices being connectad by an edge if thefr corresponding artifucts are found
in seme common grave. Under the agsomption that every pair of artifacts
whose usape iolervals intersect are o be found together in sume grave, we
have the € 3 an interval graph and any interval assignment for & would be a
catuhidate for the usage intervals of 4. As before, additional techniques ate
requited to choose the correct assignment. {See Kendall [196%a, 196%h],
Hodson, Ketdall, and Tautu [1971], and Roberts F1976]. One further
drawback to practical apphication is that there may be incomplete data so
that the assumplioms are tid salisfied.

Application 8.4, Let X represent a set of distinet data items {recurds) and
let . be a collection of subsets of X called inguiries. Can X be placed in
Mtrear sequential stotuge n such a way that the members of cuch f=.F are
dtoredd in conscontive locations? When this storage Lavot s possible, the
rocords portincnt to any inguiry can be aceessed with bwo parainctcrs. a
starting pointer and a tenetl Ghosh [1972, 19737 calls this the consecutive
retrfecod properly ; il 1s clearly u restalemeni of Lhe conseoulive arrangement
property. Thus, the question can be answered elliciently usitg PO-trees
(Section 813 For related rvestlts ses Nakane [1973a, 1973k, Ghaosh [1974,
1973], Wakaman and Green [1974], Macrinos and Hakimi [1978], [T,
Kou [1977], and Gupta [1979], For an application of the circular 1's
property to eyclie staffing prohlems, see Bastholdi ef of. [1977],

Commentary

Applicatioe 8.5, At the Iypical lostimate of Mathematica. Sciences
CTIMS) each new lfaculty member visits the coftee lounge once during the
firsL day of the semester and meels everyone whe s there al the time. Llow
win wo assign Lhe now Genlly membors 1o aleoves of the coflee lounpe in
stich a way that no one ever mecds & ngw nerson during Lhe cotire remaniter
oof the semestor? This is clearly it coloring protdemn o an mterval graph. Wo
specific algorithm is needed, however, since it usnally happens natarally.

Additionat applications of consecutive and circelar s w such areas as
[ile urganizalion and cychic staffing appea: i the hiblicgraphy at the end of
the chapter,
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5. Prefergnce and Indifferenca

Let I be a set. Let us assumec that, for cvery pair of distinet members of F,
a certain decision maker cither clearly prefers ong over the other or he feels
indifferent about them. What is the wature of his proferences, and can they
b quantified in an orderly manner? What docs this iraply about his decision
professes?

We construct two graphs H = (K. P) and G = (F, E) as follows. For
distindd x, ye F,

xy € P <= xis preformed over p,
xy € E «= indifferencc is el between x and j.

By delinition, H = (¥, £y is an oviented graph, & = (¥, £) [ an undirected
graph, and (F, P + P ' + E)is complete

What should we expect lrom the structore of H? If H has a cycle, then our
decision maker is likely 1o be confusad and is probably wasting time running
aroend in circles.

Therefore, it is reasonabie to require IF to be acyelic. In fact. we would
want ff 1o be transitive. After all, if x is peeferred over y and v is prefarred
aver z, it is unlikely that a discriminating person would feel imdifferent aboul
x and z. Thus, we reguoire that P be a partial order.*

e example s ot as whinsical s it may at ficst seem. The discession
above, and what will [ollow below, are importane issues 1 decision theory
and mathematical psvelology, Analyzing how such preferences are made can
crable oy to understind and predict individos] as well as group hehgvior.
For cxample, how do we evaluate the decision making ability of 2 middle
level corporate manggeer in order Lo determioe if he iy lop manggement
material?

The discipline of wility lheory provides lhe mechanism lor quanilying
preference. One regsonable measare, due to Luge [12536], is the notion of a
semiiorder. We azsign a real number nfx) W each x £ Fso Lhat forall x and p
th ¥, x 15 preferted over v and only of wx) & sufffeiontly larger than w(y).
Formaily, letting & = (0 a realvalued function w: I — Wi callod o wemioeder
wrifity fimetion Tor a hinary relation (V, P)if the foliowing condition js
satisfied

XpEPespix) = uwiy) + 8 {1 VL {1}

* Ko, Luce, Suppes. god Tyersky [1971, p 17, present an argiiment agiizst 0 osilivity of
prelecence.,
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Clearly. a relation P satisfying (1) # a partial ordsring of V. The quannty 4
represents the amount of flizzfiress that must be Altered cut. Lhis enables us
tar be 1oditlerent about events that differ by a minuscule amoennt.

1t 15 naturd] for uy to ask the question, under what conditions does a
preference relation (K. ) admit a semiorder utility fuaction?

Theorem X.12 (Scott and Suppos (19587 There exists a semiorder
utility function for a binary welation (F, P) if aed only if the following con-
ditions hold; Forall , p z.we V,

(B1y  Pis irreflexive;

(82} xpcfand owe Pimply sweo Poreye”

{(53) xyePand yze Pimply xwe Poarwre P.

Such a relation £ s culled a semiirder. Uhe condilions (5 -(%3) constiluic
i set of axioms for a seriorder.® Proof of the novessity of these three con-
dithons is straightforwacd and 1s given as Exerctse 4 For the sollicency hall
of the thewren, the readar is divected to the corstructive proof of Babinovitch
L1977 or Lo Lhe cxistence proofs of Scott [19647] and Suppes and Zinnes
[l963].

Degn and Keller [1968] prove that the number of nonisomorphic semi-
arders on an psel 5 (3N + §) In particular, they show thal vach wo-
maorphisim ¢lass has a unigue representative, called a worsal marural pariial
order {WNPOY), and they then demonstrate a onc-to-one correspondence
between (a) the NNPOs. (b) the normal subgroups of the upper riangular
grouap of # o= # matrices, and (¢) the s2t of nondecraasing paths friom (0, 00 1o
{m, m)om 3 Carteslan prid which never fses above the ine x =y Rabincvitch
[ 197R] shows that every semiorder may be cxpresscd as the intersection of at
mosl three lineur orders. No similar result holds for orders satisfying only
{81 and (823, e, mtervad orders, Jamison and Lao [LU73]) characterize the
choice fupctions of semiorders. They also have a good table of referonces.
For Turther investigation sez the waorks of Fishburn [19%0a 1971, 1971,
1973, 1975 ] und Lhe exccellent book by Boberts 1979,

Quar attention hias thos far heen focused on semiordars rom the staned-
poiat of the preference relation (F, P). We now investigate the mdifference
relation £r = (¥, E} of our semiorder (F, P A number of chacacterizations
are known for these undirected graphs, Tirst, G 15 a special fype of interval
wraph (Exarcise 7). Becond, o necessary condition easily follows from a
semiordes uidity funclion, namely, Lhe existenee of & veul-valued function
woon Fosalisfeing

yye Fas|wix) — w(vdi = & (x = 1)

* Vinfarmnarcty, Mg term semionda was vsed in Ohouila-Flouri [19627 and leter in Deres
[19737 in s different conlexl.
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Weo will see 1 the next theorem Lhat Uthis laller conditien is also sufficient.
The theorem provides g number of equivalent characterizations of idiffer-
ence praphs. which are, simply staled, the class of cocomparability graphs of
semiorders. Addilional characlurizilivns appear as Eacrcises [0 and 11,

Theorem 8.13 (Roberts [19697). Let G = (I, £) be an undicscted graph,
The fellowing conditions are egquivalent.

i1} There exists g realvalued function o: ¥ — 1 sabslying, for all
distinet vertices x,p =V,

xpe b e |ulx) — aly)] < 1.
fii)  There exists a semiorder (7, Prsnchthat E= P+ F 1
(i) G is 2 comparability maph and cvery transicive origntation of
& = (F, £} 1s a semiorder.
tvy s an oterval graph containing no mduced copy of £ .
{v) G isa proper inlerval graple
(viy 7 isa uni interval zraph.

Pronf. {iY={vi} Letubea real-valued lunclion satisTying
xpe B |w(x)} — u{F)] = | (x = ¥l

Toreach verlex ¥ £ 1 we asspciate the apen interval I, = {iix) — Jj_ ) + Jf].
Cleacly,

fod, + @ ulx) — )| < {x # ¥

Therefore, the callestion {13 . I8 a wnit inferval representarion for the
graph (s,

(vi} = (¥] &ince no ot jnterval can properly contain another unjt
interval, & unil imlerval represenlation for O will be proper.

(vi=(v) Lel{f .}, bea proper inlerval represenlation of (. Suppose
L ocontaing an imduced soharaph G, . ., .. Isomorphic o K| , whers
fo1s 22, 74) 15 6 stable seLand pis adjocent @ each z; (i = 1,2,3). 101, is that
ierval umony the intervals I_, 4, f, which les entirely between the other
two, then £, must properly conluin f_, a contradiction, Thus, 7 can have no
mduced copy of K ,. '

fiv) = {ui} (A, A. T Martey [unpublished]) %ince & 15 an interval graph,
its complement G = (¥, B} is o comparability graph. Lel } be g transitive
orienlalion of & Using transitivicy and Theerem 3.1 it is struightforward to
show that Foaatisfies the axioms (S1) and (523 of a semiorder (Exercise 7).
We will show that (53) also holds provided that G contains oo lnduced copy
of K, .. Suppose aye Fand yze ¥, while xw ¢ F and wo it 1 By ransilivity
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\\i’,

Flgure 84 Sobd 2dges are b the 1reesilive wientation Ful & = (6, 01 Broken edaes e
inie =¥, Fu

ol &) wed M ound swg B, and wye F, pwé F, but 22 e F (see Figure 8.9
Therefore, G . o, 15 somorphic to K 4, a contradiction,

fiu) = {1} Immediale.

(i) = (i) [IF(T7 Py is a semiorder, then thers exists a real-valued lunclion
w':F + R and anumber d > 0 such thar

xpePeui(x) - uwly= 0
Define p(x} = w'ix)d Since P+ P - E, clearly

el # [wlx) — wly)| = 1 {x# L. |

6. Circular-Arc Graphs

The inlersectron graphs obtaned [rom collecuiong of arcs o a circle are
callzd circedar-are graphs. A circular-ace cepresentation of an undirceted
graph G which fails to cover some poiat p on the crcle will be topalagically
the same as an interval reprosentation of (7 Specitically, we can ool the circle
at p and straighten it oul to a linc, the ares beooming inlervals. [U s sasy ta
see, therelure, Lhal every imterval graph is o circular-are geaph,. The converse,
however, s [alse. In Tacl, circular-arc praphs are, o genecal, nol perkect
graphs, For cxample, the chordless eveles Cs. C;, g, - - are circular-are
graphs {see Figure 8 10),

As with interval geaphs, it is immaterial whether we choose open arcs ar
closed arcs. 'Uhe same class of intersection praphs will acise in ether case
{Fxcreise 13). We shall adopt the convenliom of open arcs. We call & a proper
cirewlar-arc graph if Lherc exists a cirenlar-are representation o G in which
o arc properly contains another.

In Section 1.2 we discussed an application of circular-arc graphs 1o the
traffic light pheasing problem due ro Stoffers [1968]. The astute reader may
well be able o adapl some of the applications of inlerval graphs given in
Section §.4 to the more general class of circular-are graphs, Stah! [1967]
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Fipare 800 A cireulos-aie cepsesentation of B pnoperfeut prapl, O

sugpesls such a probiem in genetics, Other relevant papers on applicabions
of circular-are graphs include Luce [19717, Hubert [1974 ], Tucker [1978],
utid Trotter and Maoore [1979].

A characterization of circular-are graphs dos to Tucker, originally formu-
lated m terms ol the zugmentad adjacency matrix of a grapl, Is cguivalent
Lo Lhe [allowing.

Theorem 8,14 (Tucker [1970b, 19717 An undirecred sraph O -2 (I F)
i a cirenlar-are graph if and only i its veortices can be (circularty) mdexad
Bp, 23,0000 1 30 that for all fand §

[eilher Bipra- oo B e Adple)
ar Biv e - 3 O Adj(m)

'

{2}

I

(i< then v,y o, meaANs o4y, Gy, By oo, B

e

FProof. Let & have a circular-are represcilation (opon atcsh Wo may
assurmne, withont [oss of generality, that no paic of ares share a Gommon
cndpoinl (Lxercise 14), Moving clockwise once around the circle from an
arbilrary slarting poin, index the vertees avcording Lo the otder m which the
counlerclockwize cndpoinls of thur corresponding arcs occur. Lol A, denole
are corresponding Lo . Clearly, ¢ is adjacent 1o 5 if and only if the counter-
clockwise endponit of A, lies within A; or viee versa. Tn Lhe fommer case, cuch
of Ay oo, A nterseels A and in the laluer case cach of A, Lo, A
intersects 4 . Thus (2) 15 satisficd.

Conversely, ler the vertices beindexed as requited m (1) We will construat
acircular-arc representiation for 5. Lel p, be the £Uh howr marker on 2o z-lour
cdlock. For gach vertex 7 lel oy, be the first vertex in the eyelic scquence
Byga Mpas oo - 0y which is et adjacent @, Deaw an open are A; clockwise
from p; W0 p,,.. By consiruction. 4, intersects 4, (i £ f) if and only if either
pied; o1 p = A, But also

P A g, v e Adjn)
Therefore, by (23, eyeye Fifand only if A; v 4, £ &0 1
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Theorem .14 gives us a method for recognizing adreular-are graphs and
consirueiing a circular-are reprosenialion. However, sinee the characieriog-
tion is quantificd ever al permutlations of the verlices, this melhod will be
impracticat for all bul very small praphs. Tucker { 1978 approaches the
problem of trving to [nd 4 more cfficienl reeopmition alzorichm. Details of
polyonomial tme algoridim will appear in Tucker [1974].

In view of Thoorem .3 il 15 templing to goess thal a circular-are graph 1s
characterized by the vircular P properly of its cligue matrix or some olther
mairix. Lnfortunseely, Lhis is not the cage. Three reladed theoreres, however,
are stated here withoutl proof.

We eall & a Hally ofreedar-are graple if Lhere exists a ciroular-are represen-
tation for & which satisfics the Helly property.

Thearem 15 (iavril [ 19747, Anuadirected graph & s a Helly ciecular-
arc graph H and oaly if #s cligue matris has the ciroular s propecty Tor
colnmns,

The anginented adiacency matrix of & s obtained from the ad jacency matrix
by adding I's along the main diagonal,

I'bearem 8716 {Tacker [1940, 19717 An undirected gruph £ris i circw-
lar-are graph if s angmented adjacency mutrixs has the eireular s properly
for columis.

Fipme 8,30, A collewtion ot args of A circle with represenlicg ssquence of endpaing
o Twodo e BoE Ak A
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Theorem B 07 {Tucker | 1970b, F9717Y. An undircoiod praph G s 4 proper
circilar-arc graph if and oaly il itz augmented adjacency mairix bas the
circular 1's property for columns and, For cvery parmotation of the rows and
columns that is a cvclic shifl or version of their circular Us order, Lhe Tast 1
in the [rst column does oot oocur after the Tast 1 of (e seeond column,
excluding columns whicl are cither all zeres ar all ones.

It i= useful to regard 2 colleetion of arck ax 4 sequetier @ of U8 endpoints
listed clockwise. Without loss of generality. we shall assume that no two arcs
share a common eudpaint (Exercise 14} In o the symbol x demotes 1he
coutilerelockwise endpoint of are A, and < denoces its clockwise endpaint,
For cuaemple. m = [a.d, . B, &, d, b, d. & ¢] represents the collection of arcs m
Figure 8.11. Any cyclic paroutation of o would be an cqually valid represen-
Lation, The manner in which two ares A and A inlersest 15 uniquely detet-
mined by the pattern of Lhe sobsequence of 7 involving [x, %, , #3. Some
cxamples arc shown in Table 8.1 We shall utilize this modu] in proving the
nexl theorem,

Theorem 8.08. 7 G is a proper circular-are graph, then G has o proper
circular-are represenlalion in which no two arcs share a common endpoint
anck na lwo ares (ogether cover Lhe entice circle (e, they do not inteérscel at
both endg)

Progf,  The prool will be induction on the number of “circle covering”
pairs of gres, Let &' = {4}, b2 8 proper circular-arc representation of
G = (F,R) We may assume that no two arcs share a commeon endpaint.
Suppose 4, and A4, cover tho entire circle, Hhat s they iotersect in two

Tuble 8.1

Coding 3 famiy of wres 25 8 sequence of letters®

Danter of subscquenoe Tnecr pretation
lx. 5. 3. 7 Ay md, =3
Lr':: 15X E] A: - AF
I, v & 9 Ay and A, overlap ar oo end
R | A, wnd A, overlap al bolh ends

* Sntie cxamylos of how the patlern of 1he @0 bseguence
ol 7 imvahing fx, &, p, 3} determines the manner of intor-
section of arcs A, avd A, Aosy cyelic peomutation of a
peilern leaves the inlerpretation anchanged,
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disjeint subarcs. Let « be the sequence of endpoints of the arcs going clock-
wise fram the countzrelockwise endpoint of 4,. Thus, [a, f b, 4] is the sub-
segquence of @ involving these Tellers, and 7 may be cxpressed s the con-
catenalion o = o, whers

tT—[u,...,B,I...,f:',...ﬂﬁ,...J.

— e — ———

T P

For any x< F, it is impossible for x and £ to appear in 1 in the order [x, £
since such an appearance would amply 4 = 4, contradicling the supposi-
tion that & s proper,

Consider the new sequence o’ = 'y, where ©' 15 obtained from 1 by listing
those entries of rwith hats followed by those without hats but preserving the
telative order of each 1ype 1'or any x, v € F, this unshuffling operation will
leave unchangsd the subsequence of o invelving {x, X, v 73 wnless either
[, §#] or [¥, £] s a subsequence of 1, Binoe e cases 210 analogous, we assune
that [ =, #] is in . We allow the possibility that s equals ¢ or that v equals b,
MNow x may sither precede < of lollow 4w e, and v must fall between §and b,
lor ather wise o would oot be proper. Thissituation s depicted i Fipure & 12,
Clearly, cither | £ %, %, p] or [ x 1)y, 2] s a subsequence of o, indicating Uhat
Ay and Apoverlap at both ends. After the transforoation from o o o coeurs,
thesie hecome, respectively, L& Fox, v] or [§ 50 )0 £] which cornespond Lo
ares which properly overlap al only gne end.

Lot & v a set of arcs eorcesponding to o', We have just shown thar (1)
sume doubly intersecting ares i ¢ are ransformned inloe singly intersecting
ares in o, and (it all other pairs v =/, Including nenintersecling, singly
interseeting, the remaining doobly intersectitg, atd propedy contained (of
which there were none) ares, were [cft vnchanged, Thus, 7 s a proper
circular-are representation of 0 with [wer circle covering pairs. and the
thearem fodlows by Induction. |

This theorein was wsed in Section 1.2 1o show that every proper ciroular-arc
araph is also the graph of intersecting chords of a circle. (See also Chapler 11

We conchude this section hy presenting a polvoooial-time algorithm which
inds a maximum ¢lique of a cmeular-are graph. The algorithim appears in

’ LR 1 h, 41k . E. LI ]
m“m“i | | l
[ | | il
¥

Figure $.17. A view of where in g the letsers £ and ¢ ooscd he hidmg.

ﬂ":[l]. D A L ?, ii-la
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Gavnl | 1974 | along with ¢llicient solurions of the stable set prohlern and the
clique cover problem for circular-are graphs. The complexity of the coloring
problemn is unlcoown {or these graphs.

Tet {4,f.. e a circular-are represeotation of & = (F, £). Assume that
no two arcs share an endpoint, Denote the counterclockwise and clock wise
crdpotniy of A, by £ and & respectively. For x ¢ I, we deline

Y,=iveV|xe Al + {xi,

Ao=Teel ¥ licAd,y

Fich of ¥, and Z_arc eomplete seis, st the mdueed suhpraph Gy 2, is the
complemend of a bipwrtite graph. Thys, finding o maximwn clique of Gy 7,
can be done in polynomial time.

Let £ bea maximum clique of . Choose o verlex x & K such that 4 does
not properly contain any arc A, (w £ K). Heoce, for every we K, & = m,
gither ¥ € 4, or ¥ € 4, Therefore, K is a clique of Gy . 7 .

A maximum cligne of & can be ohtained as fallows: For each x € V. can-
struct and find a maximom cligue Kix) of &y, : then seleet the iargest
among the Kix)

EXERCISES®

I. Thiszcnss how interval graphs and the consgeutive 175 provperly cooled be
applicd to the lollowing problom. Several psychological traits arc o be
examincd in children. Assign an age period to each trait representing the
natueal order in the developmant process during which the trait is presant.
What traits would be appropriate for such a study?

2. Tet M be a symmetric {0, 1)-valeed matrix. Prove that either M has the
consccalive s property for columos and rows or M has neither property.
Prove (he same result for circular s,

3. Provethat the clique mattix of an intecval graph G = (F, E) has at most
V| 1 | E[) nonzero entries, Is this equally true For trianguiated graphs
{Fulkerson and Gross [19657])7

4. Let # beafamily of intervals on a line, and let & be the maximum possible
tnumber of pairwise disjont intervals in #. Prove Lhal there exist k poinls on
1he Line such that each iowerval contaios sl leust one of these poiots (1. Gallai).
5. Lt A and B be (0 1-valued matrices having [he sam shape. Prove thal
IfA*A = BB, then either both A and B have the consecutive 1's proporty for
columns or neither has it (Fulkerson and Oross [1965, Theorem 2,17 A

* Also ceview e speraases Moo Clipler L.



194 2. [Interval Graphs

stronger version of this is the fallowing: 1F ATA = BTB and A has no sab-
comtignration of cither of the forins below, then A = PEB e some permutation
malrix P

111 00 0
;000 O 11
01 uf 01
0, 110,

{Byser [1969, Theotem 4.173),
6. Lot Pbea bimagry relition on a set V. A real-valued fimction : V — R is
called an erding wrility function for (3, 1) if

xpe Pe-ulx) = w1k

(2}  Show Lhat (F, Py admils o ording wiility fanction il and only if P
15 irrellexive. anilsymmetric, and satisfies the nsgative transitivity condition
{transitive indifference),

Xvg P ¢ P xzq P

A fpreference) relation salisfving 1he conditions in a) i= called & weak order
in decision theory and a presrder in some inathematics literature, An ordinal
utility function is like scores on an exam, this makes a weak ordering almost
a total ocdering {ties being allowed). Armstrong T1930] first observed that
teansttive indifference has importan: cipirieal shorteomings in a preference
model *® To rasedve Unese shotleomings, Luce [1956] introduced semiorders.

(b) Wl is the structure of the indiffetence graphs of weak orders?
7. Let & = (F, E) be an undirected graph. Prove that the following con-
dilivms are cquivilent;

(1) 7 s yn interyal graph,

(1) G has 4 lrunsilive orentation P satisfying axioms (511 and (82 of a
semiotder.

(ii) Every transitive orientation £ of 7 satislics (S1) and (82).
X, Comsider the lexicographic vrdering of the plane: A point {x, ¥) s sthaly
less than & point (x% 3] Meither x < 2" ot both x = x' and y < ¥, Clearly for
vyery pair of distiniet poines, one of ther is strictly Tess than the other. Prove
N1zt theme cannot exist a real-valoed function § defined on the poinrs of the
plane which preserves the exicographic ordering (e, fix, v < 50 =
(x, v} < {x7, ) {Debren [ 1954]).

& 1Ty wrols.
The nocetracsitiveness of isdiferese rrost be recopnized anc waplaieed o 'sic) ang theamyaf
chodee, and the only exolanslion thal seers to worek is based on the imperfect powers of
discriminatian o the human aund wherehy insqualitzes hecome recognizuble only when of
sufficienl mapniade [L95G po [22].
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9, TI'rove the necessily half of the Scoll Suppes theorem.

10, Prove that (7 s a proper interval graph o and only if its augmented
seljacuney matrix satisfics the epnsecutive Us property for columns (Roberts
[ L2968 ). ¢ The augmented adfacency mairix ol & 15 oblained Irom the adjacency
matrix by adding s along the man diagonal.)

11, We asgy that vertices g and b wre eguivelenr, denoted a = b, i their
neighborhoods Mg and N{B) are conal, & vertex v is cabled axreewe iF N{x)
15 complete {le, x is a simplicial vertex) and [, b e W(x), a= x b & x]
implies [37 £ N{a) o N{b), = ¢ N{x)] {see Figure 8.13). Fally, 1ol 5% be the
quotient grd ph abtamed from G by cralescing the verlices of cach & -cquiva-
lenee class and preserving the adjacencies hetwesn classes,

Flgore K15 “T'he shadoc arzd iz zmply,

Prove that the following conditions are cquivalent Loy those in Thearem %13
for an indifference graph G = (V, E).

{wi} For cvery conneeted, induced subgraph H of G, cithcr H* has
craelly one verlex (e, H iy complele) or A% lus craetiy two {nonadjaceni)
cxtreme verbices (Roborts [1969]).

(viii) (7 is triangulated and containg none of the eraphs in Digure 8,14 us
induced subsraph (Wegner (1907 1}

A A AN

Figowe $.0d. | orhidden sobges ple.

12, Let M = [m;;] be an incidence matrix and deline the row scts A; and
columm sets B, as follows:
A; = iy = 11, By = {ilm, = 1}

{2} Show Lhat the following are equivalent.
(i} Row interseerion properiv: Vo every |, f k,

.-"1‘- iy "‘Iij;‘*l.\. o /1_fﬁa"ln.£;4j ot Akl"'l a"‘l_i:.d.)]u
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(1) Cotumnmn Brorsection propeety: Fot every LK,
eS8 or BB B or BB S B

{Makango | 1973070,

{b) Themairix Mis cloved if B, ~ By «£ 27 implies By i B, = By for some
columnm set 8, of M. The closwre ol M) of M s delinal by adding columns
M inductively: M™ = M: M has column sets B77 100 g7 far all 0~ 1
angd BY 71 of M™T 7 satisfyimg BT - BTN 2 8

Prove that M has the consegutive 1%s property lor columms if and anly if
¢l has the cohunn thtersection property {Wakane [1973a]).
b3 Let. = {4} ., bea finite collection of closed arcs of a circle. Show
thal there exists another collection o = {403, of open ures such that

i) AarA,=@=A.nA, =g,
{ii) A= Ao d,C A

¥

x, ye ¥l

14, Letw — {4}, ., beainiecollection of open arcs ol a circle, Show that
there emists anoher collection & = {47}, of open arcs ofa circle satisfying
the following for all x, pe V!

(i A, 4, = Fd,nA =&

(i A Cd =A, A,
(11t two ares of & have a commaon endpoinl,
15, Tel A he the n x m iociklence marix (verlices-versus-edgesy of an
nndirected graph 5.

1) Prove that ¢ has & Hamillonian eireuit fand only FA hasann = n
submatrix satislving the circular I's property.

(b} Frovs that r has a Raonltonian path If and only iF A has an 7 x

(# — 17 submatrix satisfying rhe consscutive 1's property {Boolh | [995])
16, Give an example of 3 dreular-are praph whose avginentad adjacency
matrix does ool have the eircular U's propecty,
17. A graph @ s & writ circwler-aec graph T there exists & circular-are
representation for 7 in which cvery are s of wnil lengith, {The diameter of
Llie circle is variable.) Verily that the graph in Figure .15 s & proper circulur-
arc graph but is not a vt circular-arc graph (Tucker [1374]). {Here we
assutne that all arcs are apen or all arcs are closed.)

Figore ¥,15.



Biblingraphy 197

18. Let Fheacircular-are graph. Show that {60 = 2o 00 (Tucker 1074 1),
19, A matrix M 5 said to have the whimedulor propariy F every square
submatrix of M has delermmant equal ok, +1,ar - L {Fveryentry ofsuch a
matrix s necessarily @, 1, ot L) Show that any (0 1-valued malgix
satislving the consccutive s property 15 unimodular,

Research Prublem. Let oF e o collection of intervals whose tolerscolion
praph s G, and let LCCF) denote the nuinber of difercat sized mtcrvals in &,
Delme the farevvad cound of G denotad 1C(G), W De emn{TCY F}.# 1= an
imterval representslion of G Clearly, TG = 1 1T G 15 & wide interval
graph. Adso, KO(K, =2,

{iv Foranyk = 2, characterize all graphs & with 1C0G) = &,

(iy  Find good upper and lower bounds for 10{(7).
Leibowitz | 19787 has constructed graphs of ioterval count k for all integers i.
Shi has also fwnd three clagsses of graphs with inlerval coont 2, tamely, orees
thal are inlerval graphs, interval praphs with a vertes whose removal leaves
# unit interval graph, and Lhreshold graphs.

Research Problem. Treting the farersal wumber of G = {1V, L), denoted
IN(EY, Ly e the timtmmam number ¢ for which these exists a collection of
sets % = [U. b, p, where £/, s the union of ¢ (nol necessanly desjoiit}
intereals on the real line, such thal G s the intersecticn praph of &, 1e,
syeEIF U~ U £ &3 Clearly, IN(G) = | ff 715 an interval graph. Alsa,
any cireular-are prapl has interval number sl masl 2.

{iy Foranyk > X characeenize the graphs G with IN(G) = 2,

(1) Caleulate the interval nombers of some special clisses of graphs,

[iiiy Whul are the best bounds for IN(G)?
Trotter und Harary [1979] and Griggs and Wesy [19797] have shown that
lhe tlerval number of a troc is at most 2 and that

INIK L, b= [{een + 134 + 5}

Giriggs and West have also shown that IN{GY = [{6 + 1)/2 ], where & is the
maximum degres of o verles, with cguadity holding for triangle-free regular
graphs, Griggs [1979] has proven that IN(G) = [(r + 14 For all a-veries
graphs,
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CHAPTER 9

Superperfect Graphs

1. QColoring Weighted Graphs

Ln this chapter we turn our attention 1o @ notion of perfection in weightod
graphs. In the process, a more general tvpe of colaring the vertices of a graph
will be iwiroduced. suggesung many interesting applications., The conegpt
of supoperfection, miroduced o Section 2, s due e0 Alan Hoffman and
Ellis Jobhnsor, They were motivaled by the shipbuilding problem (Applica-
ticn .1, and moest of the sarly results ace theirs.

Foeach vertex x ofa graph G — (F, Eywe associale a non-negative mumber
wix), and we define the weight of a subset § <. V10 De the guantity

w5y = Lﬁw{x}.
{Without loss of generality we way assume throwghaut that all weights are
mbcersl ) The puir (0 w) iz called a weighted geaph. The sabscl 8§ will often
be Lhe vertices of 2 simple evele or g cligue or g steble sel.

An faterval colorirg of a weighled graph (L w) maps each verlex x onto
an {open) interval £ oof Lhe real line of width {or thcasure) wix) suveh Lhat
adjacent vertices are mapped o disjelnt intervals, that is, xy e £ implies
foo = F Figure %1 shows two colonngs of a weighted graph. The
mmber of ees of i oodoting (Lo, its total wideh) s defined ta be |1 1 f,
The fneervel chromatic nuather (G w)is the lease number of hues needed to
color the vertices with intervas. 'or the graph o Figure U 1L f0w) — 10,

Examptel, IT w{cy— ! for every vertexn xe l, then yG;w) — plO)
That s, the nofion of nterval colonng reduces W the osoal definizion of
coloring whes all weights wre eguek.

203



204 8. Supermperfect Graphs

'r' - 'rﬂ 'rr
L - |

3 '
E 1 bl 1

o4 @ 3 4 36T 3 340012

—_— = —
ip i ir
ikl
. % M & " k X
k 4 3 1

a1 223567 & 340

—
i P
g}

Figore &1, Two intoreal coloviogs of 2 eeiplned graph © fa) (0F; v (b o colating of (G w)
using 12 hues ;and (c1a coloring of (6719 using, 10k hucs.

Application .1 (The Shipbudding Problemn). I cectain shipyands the
sections of a ship ace constructed oo a dry dock, called the welding plane,
accurding to a vigid e schedule, Each seolion s reguires o ceclain width
wia) on lhe dock during constiuclion. Can the seotions be ussipned space
ot welding plane of tilal widlh & o that ne spat is rescrved for two soctions
al Lhe sarme Lime!

Let the seclions he represenied by the vertices of a graph & und connect
two vertices if et corresponding sections have interseeling time intervals,
Thus (65 w)is o weighted olerval praph. Aninlerval coloring of (G w) will
provide the asaignment of the sections to spaces, of appropriate size, on the
welding plane. This assignment will be consistent with the intersecting time
testrictions. (The reader most be carclul w distingnish between the tHime
imfereals which produced the edges of & and the coloring ntereals which
provide a solution o the asdznmenl of space on the dock.)

Heoark L. Larey Slockmeyer has shown thal delormuning whether
sO0 s w) = ks an NP-complete problem, cven i wos testricted to the valuss 1
and 2 and € 1s an terval graph. 1 lallows Lhal the shipbuildiog problen s
N P-complete.

Application 9.2 {The DBanguet Problem}. The meou for a baonguet in-
cludes a numbwer of conked dishes which must be prepared in advance. & dish
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e musl be baked for mid) minutes af @ temperiatinre (nat necessarily oonsant)
between ¢ (b and 20 Unfortopately, there is only one oven, lipw can we
schedule the dishes so that the toral cooking time i3 minitnized?

[et {7 be the graph whose vertives represenl dishes, with peo veriices being
conmected i1 their corresponding dishes bave dsjoint temperatuce intervals
fand therclare can never be in the oven al the same time). A A6 m-caloring®
o {6 ; ) will provide a sodution to the scheduling problam by assigning an
appropriale Ume inlerval 1o cach dish during which it 5 10 be n the oven
The Helly property for (b lomperdlurce) intereals insures 1hat thers 15 always
a common acegpiable emperalore for all dishes being simultaneously
baked. (Our soluieon does ol take into acconal the size limmtation of the
Uven.)

Remark 2. The banguet problem can be solved in polyaomial time, This
ix particularly mteresing in the conlexl of Remark 1. The reason for the
tractability here i Lhat Lhe gruph obtaimed in the banguel problem is the
roimplenent of s miceval graph. We will show in the next seciion that
¥y can be caleuluted o polynomial time whenever (r is 4 comparabilicy
graph.

Application 9.3 (Computer Storage Optimization). Most compilers
maintiin 1 one-lo-one mapping belween the viriahles ina progeam and
their locations in starage. Therelore, in i dight slorage sivnaliom, the program-
mer may have to overlay slorage by deliberately wsing the same variahle or
muore Lhin one purpose, much o the dewriment of etarisy and reliability of
the program. Liaing the notion of interval coloring, Fabri [14797 hus investi-
galed frecing the programmer ITom Lhe task ol overlaying by havinge the
processor periorm all storape wllocation decisions. Thus, wo want an aulo-
matic comslruction of 4 many-lo-one correspondenee bolwoen the variables
and starage which poarantses the indeprivy ol the vaoahbes. It s assumad
thil Lhe variables have dilfering siae reguirement s (a5 with armiays).

Let £ be an undirected geaph whose vortices correspood Lo the variables
al o program. We contcct two verlices pand r by an cdaz it and only iF there
15 soine node o the program [ow graph at which ¢ and o are simullancously
livet and thus cnjoined from sharing storupe, Associated with each vertex
of (7 13 4 weighl corresponding ta The size of Lhe variable. Since nonconfhchng
variables may overlay ome ancther nstorage, an intervad colonng of G
corrgaponds to a lingar storage layont, and the wwerval chromalic numbers
correspomds to the sise of the optimum (ie., smallest) such storuge fayoul.

* I'rom this peint on, we will use the ero ceferag 1o e yriecsad coloremg, whenever 1hs
et gl allows,
¥I'his can be doiermined by plokal daza Qow analysis.
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We may regand an mterval coloring in another manner, Aszsociared with
any such coloring of 4 weighted undirected graph & — {¥, £ is an implicit
deyeiic omenililion F ool 0L This orienlalion s obtained Sy dirceting an edge
toward the vertex whose caloring biterval is to the right of the other, on the
real ‘e, that is,

xpeliesd o f, {torall xpe £
This sugpesls the following alieroytive definilion of @05 w,

Propesicion 9.1, Lol (7 w) be a weighted undivceled gruph. Then

HG, WY — nu:u(

F

Iax vl ;:})

[ i
whare F is an acyclic orienlulion of G and o s o pah 12 &)

Praof.  Given F we define a colaring i of (6 w) in the sume way that ohe
tsually comstructs & beight lunction in a pattial order. l'or a sink x, et
Als) = (wl{x}) Proceeding inductively, fur a verlea v lel | be the largest
eadpoint of the wervals corrsspoding 1o Lhe soms of ¢ and deling Wy =
Mot v wlyd) Thas, ks a cobaring and its ammber ol bees equals max, w{g).
This proves that (¢, w) < mine{oax, wig)h

Conversely, a mimimain coloring gives us an avycle orizolation M oas
mertions] above, ad clearly 0wl = wip) for ooy palh @ in P This
proves the reverse inegualily, and hence ey uality holds. |

2. Superparfection

'he o ligue nwber ol w weighled grapl {(7; w) is defimed as
wilwh = max{w{K} K 15 a cligue of G,

As one mighl expeel, wf GG wl = w0 wh, which lollows [roan Proposition 2.1,
An undirected gragh G is superperfect if for every non-negative weightiog

P

Tigure 9.2, A superperieT grapl.
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F o8
: 1
»

Figure 9.3

w af the vertices e(fr; w) = pG;w). Equivalently, (v is superperfect if for
evety welghting wihere axists an acvelic arientatian # of O sirch that w{y <
w{ £} lor every patiy poin M and sompe clique & of & Lo pacticular, the weight
ol tae " hewwiesl " eligue i O wdfcgual the weight ol the " heaviest ™ pathin &
Thus, we Tave Lwo basic melhods for demonsirating saperpericeiion : pros
viding & wuiluble coloring or giving 8 suitable acyclic onenlsiion. We shall
lustrate these fechoiques on @ tew examples,

Example 2. The praph in Figure 9.2 s seperperfeel. 'Uhe heaviest cligoo
is githir (B one of the lwo iangles or (113 one of the Laree edges not conlained
in g irigngle. Suppose (i) s the ease for some weighling w, angd assume,
without loss of genarality, that fa, 4% s the heaviest. Then wik) | wic) =
wid) and wie) - wl ) = wfay, »0 Lhat the oloring in Figure 9.3 will do.
Olherwize, suppose (i) 1 nee the case, and assume that {d. e, £ 1 the heaviest
cligue. Tharelore, wiay | wib) | wie) = wid)d | wie] | w7 und, sinee (1)
has been ruled ant,

whad < wile) | owi ), wiby < wid} | ol f), wiel < wld) © wieh

By cvelicelly permuting Ehe verlices ol sach inlangle if necessary, we may also
assunic that all) < wldh I vl = wi 1) then the coloring in Figure 9.4a
arves 4 solulion: olhetwise Figuee 9.4b works. Therefore, i every case, we
have exhibited a coloting whosz numhber of hues equals the weight of the
heaviest chgue, We conclude thal Lhe praph o superperfoct.

Exsmple 3. An undirectad graph is perfect il and only if for every (0, 13-
vilued wekghling w of the vertices w(G:wy = p{lr wh This every super-
perfoel graph i3 g perfect graph.

F) I r r & ¥
i i 4 & s 'y i 'y
L % & " + % + 4
b & y " " Lo .
.| c & Soax o om r i
im 4]

Fipure 9.4
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Figure 9.5, &- nnr superaetiee

Example 4. The graph & o Tigure 9.5 15 pot superperfect since any
acyclic orieniation with the welghting shown would have a path ofweight =&
s complement G {Figure 9.63, however is superpetfecl.

Example 5. By cxtending g weighting w of X = F to all of V), defining
afey — O ko all e 7 — XLt follows that eack iwfuced sulgraph of « super-
perfect graph is itself superperfect,

Lel F be a trunsitive orientglion of & comparahilivy praph &Go By [ransi-
lvity, cvery path in F s contaimes) inoa eligue of &, 8o, in particylar, for any
weiphting of 1he verlices ol &, the weight of heaviest panl in Foequals the
woizhl of the heavies! eligue in £, This grpument praves The following
thenTem.

Theorem 9.2, A comparability graph is superperfoct.

Theorem 9.2 wins trst noted by Alan Hotfman, und he raised the question of
the existenee of superperfect praphys which are nol comparability graphs.
Such o graph wos [ovod by the author i 1974; 1t 53 1he araph m Fipure 9.2,
W shall explore this questian fucther in Sections 3 and 4,

Thearam 9.2 has an algocithmic aspect as well The imterval chramaltic
number WG w) of 8 weighted comparahility granh can be caleulated in
polynomiaf time. One most simply obtain a transitive orieniation F, for
which Algorithin 5.2 may be used, and then apply Algorithim 3.4 o find a

Figure 06, & auperperizo.
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maximum weighled chigue In fael, the vpumal coloring mway e caleolated
elliciently by a deprh-first sgacch procedure utilizing the method described m
the proo! of Proposition 9.1

3. An Infinita Class of Superperfect
Noncomparability Graphs

Before descrihing cur class of graplhs. we will prove the following useful
lemuma.

Lemma 93 Ler e,...,u,., and by,.... 6, be sequences of real
numbers such that
n—1 n—1
Yoa= ) b
i—Q i
Thiere cxists a cyelic permutation noof (0 1, .. o6 — 1} sueh Ehal

kst H
Yao = b, (e — 0,1 ....n— L)
-0 i—0
Proof. Let ¢, — b, — &, Il each of the partial sums > 7, ¢; = 0 {m = {},
..oyt = 1) then the result holds. Otherwise, let Y7_ |, ¢; be the smallest of
these pactial sams (ie, the most negative)
Consider 1o permutalion @ =t 474+ 1 (moda). For m=] L+ ...,
# — | we have

J m—1 m
O Yo=Y+ - ¥ oo,
=0 f=n 1=1-1 = i= )+
thus proving (he lemms, |

Let a and & be urbilrary posilive inlegers, = & Congider the undivected
graph &, , = (4 =+ 0. E), whoern
M A= Togoa), . .oouy o bisaeligue,
Gy 8= lhg, by oo b ) 15 awligue, and
(“]:' i S :'il'_ljz:l.L‘J,f."ll I bl‘.'_,lll'ul‘uth:l f'i:lf_j'- - ]-s 2. ] k.
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Figurc 9.7, (7, ,.

Figure 9.7 illustrates these adjacencias. We romark here that &, 5 08 the
same praph as &, the complement of a chordiess cyele of Tenpth 2n The

verlices ol the eyele going around inocder ace [aq, g a0 B - - o g 10 B2 1

Theorem 9.4 (Golambie [19747) [or acbitrary integers o = & = {b the
graph €, ¢ v superperioct.

Praof.  Assumzihuls = S o= O for the other cases are tnvial, Our metusd
of showing superpertfection hes three sleps.

Step I Assign anoarbitrary weighl to cach verlex.

Srep ff. Deseribe 4 particular acyelic orientation §7

Srep £71. Show that every muximal path in F s either (1) contained in some
cligque, or (ji) has weight less than or equal Le o path (already shown o be)
in cliass (1)

Woe call F a superperfee! orientation wilh respoct w this weighting,

Stepr ], W assign anl arbilraty weiphl o cach verlex, For simplivity,
denote the weight of 2, and b, by &, and b, respectively. We may assuma that
dg t G, 4+ b8 = hy 1 byt e+ B, by interchanging (he sets 4
and B iMnecessary, [urthermors, applying Lemma 9.3, we may assume that
the vertices have beer indexed zo that the purtial sums salisty

dy 4o+ mhy b B, m=001, . n— 1L
Step TE. Let us assign the acyclic crientation [ ol &, ¢ as follows:
thet,, Il e F D=i=i=n—-1)
abh.=F =i i=mmfp- 1,1+ k),
fa;e ¥ M=r=k- o kyi<j<u—1)
face Figure 0.8),
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Figure 98,  Moaauoad padhsin £

Step 111 Any muximal path in Fowill stanl in g source node gy or .
(it} Consider & maximal path 4 starting in by, Either i = [bo by, by L
in which case it is contained in a clique, or, for some indices fund p 0 20 =
-1 l=p=k |

M= I._jl-?l::-“ ey his [ S P! —p‘bn—_l'-+|! ra E:|.1|—1_]r

{O0bviously il p = I, then there are no &5 at the end) Now hae F for
r=0 . dadi=n—k+i....ohn—laonda, b _ ,;etforg =« —i§
atdd j o g 1 1L Thos, gis conunoed ina cligoe

(i) Consider @ maximal path v slartiog i a,. Now v is of the form v =
L. - . a by romainder | whoene by 39 Lhe Brst By oo v S

l.iu,_"" +£?I£f;{.* ""'|'|r;|r1
Lh weizht ol v 1% o morc than the weight ol Lhe path
[hoe oy By B, remainder],
which is contained in a clique. cancluding the proof of the thegram. 1
Cordlary 2.5,  The camplermnend of an even-lengaith cyvels wilth mrchords is
superperlect.
The nexLresull shows thal The graphs G p constilule aclass ol superpuerfect
graphs distinel Irom the comparability graphs,
Theorem 9.6, G, is not a comparahility graph, for 1 £k = n - 2,

Proof.  Recall that an undirected graph is a compurability graphe il and
ottly iF every closed path with no (riangular chords has even length {see
Theorem 5.27) However,

[ Ty Oeg s On B ae o Dyt iy s LTI L lijp it |

i5 such a closed path in & . and bus odd Tength, |
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4., When Does Superperfect Equal Comparability?

FFigure 9% illustrates part of the world of supermerfect graphs. We have
shown in Scction 3 that the superperiecl graphs propoerly contain Lthe com-
perabibily graphs. This leadys us wo ask arder whar randivions these rwa elasses
vaiacide, 10 this seetton we shall give one anawer to this question and we shall
discuss some open problens.

Faldes and Hammer 1977 | have praved the lollowing:

Theorem 9.7, 1 {risa splil gruph, then 7 i o comparability graph if and
only il £ contains ne induced subpraph isomomphic to H, H,, or 1 of
Figurc 910,

Frogf.  The lorward mphcation i immedisle sinee nonc of the graphs
in Figure 9. 18 is 4 comparsbility graph. We shall show the revarse implica-
tion, Lel ¢ he a «plit gruph whose vertices are partitioned into o stahle set
X and a complele saL ¥. An edge of & (s called pure if both its endpoinis are
in ¥ and called mixed otharwise A vertex from X (resp. ¥ is denoted by a
subscriprcd lower-casc x (resp. y) The key to the proof is the observation
that a minimal T-chain (1., coe that does not properly contain another
I'chain) wil altcrate botween mixed and pure edges and will involve only
1w vertices af X. Assume that O contatns ito imduced copy ol I1,, I, or IS,

Tet; hea mininal T-chain. Since bo two pure edges arc T-related, how
many mixed edees may separale oonseculive pore edges @) and e, in 37 All
such mixed edges will share o common verlex mom ¥, and henee they are

Superaarfes)

o R
"s_('\cl 'fs- g Ser Tl

=

wilaeyy| —

Fignre 9.4
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H , My

Figure 2.1,

-relited to one arother. This, iF there were more than two, the chain 7
could be shortencd, comragdieling minipulily, Suppose thore are exacily
Lwren; Lhien wee Bave e followimp seement of p

cefole THD e Dfyeey

which corresponds 1o the diagram in Figere 9,11, By miniality of 7.y, and
by are adjacent. respectively, o 1. and x,. Iy 2 Adj{x,) or ¥, e Adji,),
which includes the possibilily of x, und v, comciding, then & contains an
mmduced copy of H,; otherwise, ircontaing a copy of B, Thercfore, p alternares
berween pere qnd mixed edges, qx claimed.
I is oot & comparahility graph, then Lhere cxists o minimal L-chain »
from sotne mixed edge x, ). toits reversal, namely,
oy Uy Prax Taaya Ui pa I pgvs T gy T T s = 1%g.
Wow x., # x. and v involves only these two verlices from X, since O Taas ne
induced copy of ff . Thus, x,, — x, — %, —-vcund x. —x, — x; — -, 8nd

by the parity of the indices x,_; egquals x; aed nel x,, 4 contradiction. Thiy
provas the theorom. I

Figure %11,
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Ome can easily verify that H,. 0, cand £, are not superpetfect (Exercise L)
Friom Lhis abservation we ohrain a new rasult,

Corollary $.8.  For split gruphs, 15 a comparabilily granh i and oaly
il & 15 supetpartect,

Fringf,  Suppose (Fisnola comparabilicy graph ; thien € contains one of{he
lorhidden indoced subpraphs of Figure 9100 Sinee soperperfection is a
hereditury property, we decdnee that s nat siperperfect. The oppasite
implication i troe lor sl graphs. [ |

The class of split graphs s very restuctive. We wontder how much 1t s
possible to weaken the hypothesis of Corollury 9.8 and yel obtain the same
canglusion, For cxample, all the superperfect noncomparability graphs of
Section 3 were neither triangulated for coloiungulaled. 151t rue or false that
for triangulaed (or cotriangulawesl) praphs & s o comparahitily praph il and
only iT G s superpetfect ” .

b, Composition of Superperfact Graphs

Recall from Section 5.2 the definition of the compasition of graphs. Tn this
secton we  nvestigate how this operation affects  saperperfeection. Let
Gy oo, 08, be undirceted gruphs, where g has ooverlioes ey dip, ..., 1

Theorem 9. Wi, . ... i, are superperfect, then their composition
G — [ ey, oo, 3] B8 sporpertoet; ie., superperfootion is preserved uoder
commpwition.

Frooft Tell, = (V. Ejpfori =0.1,. ... ¢ be disjoint supcrpoericet graphs,
and ler w be a0 weighting of I, 4+ T, 4+ .-~ 4+ F_. (The vertices in ¥, are not
welghied sioce they will be replaced.) Supposce further that F, is a super-
perfect origntation of &; with respect to w (vestricted to G for sach i — 1),
1.o...n Wedaim that F = [yl Fy, ..., F.] is a superperfect ortentation of
¢ with respect to w

Smeccachofthe £, =0 1L, .. myareacyelic,soi M Lt K (i = 1....,n)
b a cligue of O whose weight wi K3 s greater than or squal to that of any
path in F,. Nefing w'ie) — wiK ) for all o V. and Jol Ky be a ehgue of
whose weight wi(K b is gecater than or equal 2o that of any path in F. Now

any path g Fy[F Lo Fol s of thelocm po= [pg g0, T where the
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Figure 9.12. & chordless S-cyele 3o (Fy, O

g;, are paths in distiner F; - and the sequence of vertices [z, &, ... 4,1 isa
path in Fy. Henece, we hawe the following inequalities:
wipd — ol bl = KD e W)
=wie ) — -+ win,

= w'i{ Ky,

Bul the vertices of | 1K, |0 Kol induee a clique K of &gl Gy, .., G ] whose
wolghi wd K cguals w'{K o). Thus, wo have shown that G s superpericel. ||

Exemplet. Lel X, be the sl of positions of o b o« & chessboard, and et
& b the hinary relation defined on X, ax follows: cpc @ iff a queen can be
movved from position x o posilion 3 in 4 single chess move.

Comsider, for the moment, Lhe graph (X 5, ). Let x be the middle position
and lel X = X, — x Motice that (X5, () is the composition of the single
verlex xoand the inducel suberaph (X, Q) with exlemnal Tuclor Koo Heow-
ever (A, D) i Wie complement o o chordiess $-eycle and s Lherelore o
superperfect ctaph, Elence, (X 5, O iy alse o superperfect mmcomperabalil v
s,

Clearly (X . Q0 v an induced subgraph of (5, _,, £, 50 (X @) is 4 non-
comparahility graph lerall & = 3 Morcover, Figure 212 shows that (X, £}
iz ot perfect since it contains a chordless 5-cycle Thus, (X, &1 not perlect
and hence nat superperfece for £ = 4,

6. A Representation Uzing tha Consecutiva 1's
Property

We now relatc the concepl of superperfection to seme ideas of Vincar
programming. The material presented here is due to Alan J. Hoffinan and
Fllis 1. Johnsoo
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Recallthat a {00 S-valued mnatrix is said fo have the consecntive P's profierty
{Tor columns) il the rows cun be permwied so that all the 1% in each eolumn
eecur consecutively, Lot M denole the siable seis-versus-vertices incidence
mulrix of un undirected graph €,

Theorem 8.10. €7 is superperfecl il and only if for cvery tow vectorw = 0
the tinear programining problem

yM=w ¥ >0 (lz)
minfreize 3 g, (1b)

hay an optioam {row vector) solution ¥ such that

the submutriz of M consistiong of those rows &; with 3 # 0 has
the consecutive 1% properly.

(2)

Assume that the veriex sol ¥is indexed gy, 02, .. .0 5, and 1ot us interprer
what the theorem says.

Intcrpretation. Each sfable set X, iz assipned a plot on the real line of
width y; for use only by its members. {Recall that no two members of 5§, will
need this cotmmuanal plot sitnadtaoenusly

Feasibility: By {1a) the sum of the widihs of (he plots aviilable Lo a given
verlex o must be at least w,.

Mimimeality: By {1b) lhe combincd widih of the plots is smallest possible,
Comsecutive s By (2) the noocmpty plots cun be arraoged so that thosea for
sACh Veriex arg contiguous.

Progi. Trom the above interpretation, 1t is ¢lear that any ¥ satisfring
Detl {1a)y and {23 gives a eoloring of (5, w) of widrth E}',. The following
converse also holds:

For every Guloring o of (G; w) there exisls a veclor ¥ {1 be con-
structed helow) satislying (1a} amd (2) such that ¥y equals the (3}
widih ol e,

Let e mip ¥ onto the interval from 3 oo £, We may assume that ¢ s feft
fustified, that 1s, that no weervalt can be shified Lo Lhe lelt without disturbing
the validity of ¢ as an wnterval coloring.

Divide each interval o{r) inle subintervals abeled with exactly those
vertices assigned (o (hal subinterval (see Figuare 91720 Fach of these labels is
some stable set. Suppose there are 1wo subintervals, I, andl 1, with the same
kabcl 5. TE they are adjacent, then cotnbine them into one Lirger subinterval,



6. A Representation Uzing the Consecutive 1's Proparty 217

If they are nonadjacent, there is a vertex v such that o{v) 18 wholly contained
between f, and £, and whose lefr endpeint coincides with the right endpoint
of {; (assume £, @ to the left of I,). ITowever, shifting o(g) to the left by the
width of f, yields another coloring. contradicting left justibcation. Thus, we
may assune (hal for cach stable set 8; chere is at most one subinterval with
label 5,, and woe deline y; o eyual the width of that subinterval if it exists and
zerootherwise, Clearly, v satisfies (1a) and (2) and Z yrequals the width of Lhe
coloming . This proves claim {3
Consider the lingar programming problem

MWix =< [, x =0,
o {4)

maximize ¥ w;x;

1

By the Duality theorem, the oplimum solutions of (1) and {4} are equal.
Furthermore, of x is the charscteristic vector of a clique of G, then x is a
feasible snlation to [4). Convirsely, any integral feasible solution to (4 is the
eharueteristic veetor of a clique. Thus, an aptimum stdution § to (1) satisfies

PAERE (V)] (5)

We do nat necessarily have equality in (3)since (4) may not have an optimum
solution which s integral, (For example, consider the graph C,.}

Weare now teady to prove the theorem in one direction. Suppose that & is
superperfret, and Jet w = 0 be given, Choose a coloeing ¢ of (G w) of width
@G, w). By (3) we obtain a vector y satisfying (la} and (2) with } y, =
wilr; wi: and by {5}, ¥ is optimim.

Te prove the converse of the theorem, we need the following lemmas.

LA ds 240, Trvalued matoix whoss columms have the comsceutive
I"s property, than A is totally unitmoduiar (e, every subdetermi- {6}
nant is 0, 1 ar — 10

Henee, il w i integral, then every optiromn solntion to (1) which satisfies
{2 1s integral. (Scc Hoffman and Kruskal [1956].)

If for every integral w* = 0 (1) has an optimum solution which
s itegral, then o every w = 0 {4) has an oplimum solulion {7
which is integral.' (See Hoffiman [ 1974] for analogans thearem.)

Suppose that for all w = 0 (1) has an optimum selution ¥ satisfying (2}
Ther x(G;w) — ¥, 7. By {6) and {7), there is an optimum solution R to {4}
which iz integral. But this optimum solution % 15 the characlerslic vestor of a
chique of G, so ofG, w) =}, x;. Finally, by the dualily of {1) and {4) we
abiluin G w) = wf(G; w), |
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EXERCISES

L. Usiug the leehnigue of Exonple 5, prove that Lhe graphs 2, 15, and
o oof Figure 210 are ool supcrpertoat,

1. Provelhefollowing: [T H i oblained from by muluplication of vertices,
ther A i superperfect i and only iF G iz superpoerfoce,

3. Prove that the shipbouding problem s NP-complets,

4. Wnre s polynonual-ume algorithm to solve the banguet problem.
Analves the complexivy of your alpotithm,

5. Show that the bull’s head graph {ligure 1. 14) iz an mteeval graph which
is ool superperfect.
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CHAPTER 1 O

Threshold Graphs

tn this chapter we discussa particularly sineple teclinique for distinguishing
Betwern stasle and nonstable subsets of vertices in a special class of graphs,
The praphs thul admat this techtogue, which invelves asspning cettaio
welghts W the vertices, are culled threshld graphs, Threshold praphs weie
introduced by Chvdral and Hammmer [1973], Their cesults foren the basis for
much of the nexl two sections, W bepin by imtrodudng the more peneral
nolwn of lhreshold dimension.

1. The Threshold Dimansian

Let V— dogor,.. .. 00 B the verlex sel of an undirccted gruph . Any
subser X o ¥ can be represented by its characteristic tector x = {x,. 53,
cens Yo whers o all |

= 1 (TR
Ul i mé X

Thus, the sebscts of wertices are in one-to-one coreesponcence with the
carners of the unit hypercube 1n B accerdsng Lo the coordinates of their
characleristic veclors.

Lot wis consider the colleciion of ail stable scls of G W ask the ollowing:
Ts Lhere o hyperplane thid culs m-space io half o sueh a way thal on one side
all corners of the hypercube (characteristic vectors} correspond 1o stable sets
af ¢ and on the other side all corners correspond to nonstable sets™ Hguiva-
lemtly, can we distinpuish which sohsers of B are stable sets using a single

219
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" "2

Cigure 10.1.

lincar incquality? IF the answer is affirmative, then the graph under con-
sideration is a thresheld graph. I zol, we shall want 10 know bow many
mequalinies are needed to distinguish belween slable and nonstable scts,

Example. Considor the graph in Figore 1001, s stable sels correspond
10 the solid comers of the unjt 3cube in Tiguee 10.2. The inequality x, +
Ix, 4+ x, = 11 satistied only by the characleriatic vectors of the stable sets,
Thus, a separating plane does exist. namely, x + 2p + 2z = 2.

The threshold dimension 8G) of the praph G . (¥, E) is defined Lo be the
minimurm number & of linear maqualities

ey | oepaxy + - Fu,x, =105
: 1

Xy + GpaXy o e X, Tl

such that X is a stable set i and only i #ts characteristic veetor x = (x4,
Xyy .o e, X, Satishies {10, Regarding each inequality of (1} as a hyperplane in
n-space, X is stable iff x lies on or within the “good ™ side of each of those k&
hyperplancs. Since (7 is finite, (N(7) is finite and well defined.

Figure 102, The point s 1, B gorrespamd s Lo the sel Ly, 2], wheh is naf stahie,
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Remark. The only graphs & for which #00) = 0 are those having mo
cdges, Lo ihis case, the empty set of constraints sulfices,

Let us first notice that withow loss of genaralily, we mey assume thot all the
riembers g and toin (1) wre aor-negelice inlegers. SUPPOSe wa are given a set
of lineur inequalities (1) Since the zero vector represents a stable set, we
must have cach 7, = O Furtbermore, aoy negalive cocllicient a; can be
ehamped to zero becanse for sels X nol containing ¢ Lhe sum COUNTX),

defined by

COUNT(X}= Y a,= Y a,x,
rpzX r—1

would retnain unchanged, whereas for sets X containing «; this sum would be
incroased o COUNTLY — {n;}) which is <t il and only il X is sable,
Finally, singe Lthe graph is finite uod the x; are ioegral, we can perturb the
systen by a small ¢ here and there 1o make 1l the oumbers non-pegative
rationals. Then we mulliply by the least commaon divisor in order to obtain
inlepurs,

An yndirected graph & = (F, K whose threshuld dimeosion J(G) (s =1
15 o threshold grapk. BEyalvalenlly, {7 — (F, E) 35 threshold iF there exisis a
threshold assignememt [a; t] consisting of 4 labeling @ of the verlices by non-
negative mtegers and an mieger threshold ¢soch that

Nisstablees ¥ wl(x) = ¢ (X = 1", (2)
v X

Rt

Examples. The star graph X, is ¢asily scen o be a threshald graph hy
assigning wiz} Lo be the deprec of 2 and ¢+ — g, (Iipore 1030, Labeling by
degree, howevar, does nol always work. The labeling in Ligure 104 fails 1o
satisly (2) {or any value of £ since there is a stable set of weighit 7 and a non-
slable set of weight 6. 1t 3 not 4 threshold assignment. On the other hand, the

Fipure 103, The vroph A, ¢ ansd o threshobd assiprmenlwith ! = 4.
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3 5 = B
[+ H L]

Fignre U4, (4] Degren Tal=:ling. (b} A fhroshold assigmment fard = 140

labcling in Figurc 104b of the same graph is a threshold assignment for
t = Lk There ure graphs which are not threshold graphs, For csample, Lhe
chordless cyele € with = 4 s nol threshold and neither is the palth P, Ror
wo= i (lipune B0.9).

Lt should atso be noted that an induced subgraph ol a threshold graph iz 2
threshald graph. Therefore. any graph which contains an induced subgraph
momerplue to ane of those in Figure MES i not threshold

The threshold dimension KO of sn arhitrary graph 6 can he delined inoan
altcrmale but cquivalenl manner asing threshold geaphs. Take 8007 wo he Lhe
mintpim nueher of theeshold graphs needed to cover the edges of e, parlial
subpraphs of G, which arc themselves threshold, and ncelude cvery odge al
leist onee. For example, #0671 7 singe O, can he covered by two copies of
K, .. The tormalities of proving the definitions eguivalant are left 1o tha
reader (Exercise 3] However, ot can casily seo That cuch ioequality of (1)
correspands L one threshold graph and vice versa, und taken ropether they
determine the adjacencies of the graph, This idea of covering by threshald
graphs can be used to prove the following theorem, Let () denole the size
of the largest stable set of G

Thesram 16,1 (Chvatal und Hammer { 19733 1 7 is an undirsewed graph
with r vertices, then f{G7) < n — af (). Moreover, eguality holds 17 (buat om
oniy I} £ contzins no triangle.

Froof,  Let X bea stable set of cardinaiity af7). For each vertex o ¢ X let
8, be Lhe star graph with poal the centler and having edess ' for each o'

w r w ¥ w v
£ ¥ ES ¥ K ¥

Fipure L5, The gruphs . &, and 2K, uce ool Lhresbold sinee any assipanen wonkd
raguire the wnegqualtics v — b <o, 1oz xon - 2 €0 and x = o= fowhich s oononn-
sislernl.
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adjacent w oin & Thus, 15, |cd X} lorms sn edge covering of cardinality
i — o ), proving the Lirst assertion,

Since O and £, are not threshold form = 4 and since being threshold is a
property inhecited by induced subgraphs, it follaws that any minimoam cover
[Gif = L .... 0} af a triengle-free praph 4 conslsts only of stars 0,
whose center vertices we denore by w,, Moreaver, any edas of & has at leasl
one endpoint in U= {u|i= L..., NG implying that ¥ L7 is stable
and w(GY = |V - Ll =n MG Combung thes with the first assertion,
wi obiain w(Gr - o — HG) for lisngle-free graphs. |

Corallary 10.2.  For the lollowing graphs we have

iy WOy =T th = 3,
fiLh NK,, . = MIN{m. =}
(uy O — 2]
Proagf.  Each of thess graphs is triangle free. so the theorem provides the
equalities. |

Ay poinled ool i Chivital and Hannmes [1977], the problem of compding
6T is MNP eeomplete in view of Poljak’s proof (Theorem 2.1} that computing
A GY for tnangle-ree graphs is NP-complete. We shall sec, howaver, thal
deciding whether or nol 86 — 1 can be done in lingar time.

Unforlunately, since #(&.) - 1, the baund of the fheorem is sometimes
useless, However, e next resuit shows that it 5 the best possible.

Corollary 1.3 (Chvital und Hammer |[1973]). For cvery ¢ = O there
caisls a graph O with # vertices such that (1 - & =2 (0G0

Peanf. Frdis [1961] hus proved ihat for any positive integer & there s o
triangle-tree graph G, with 2(Gyy < % and 7 > o Nilog N)° vertices. (Here
rois oA positve constant independent of Ay Given ¢ = 1, choose Y large
ciough 0 that 2N = (log NY* and consider the Frdeas graph 3. Since
iz Nllog My2eN? = Niitillowsthat(d - 2w < n — W < 0 — (i) =
HG ). |

2. Degree Partition of Threshold Graphs

In this scclinn we presend o number of characterizations of threshold
graphs, Tel G = {F, F) be a threshold graph with thteshold assignment
la;t]). The following properties are immedeile

alx) =1 (xeV), (3
xpeEsealx)+ aly) =1 (e, yeF,x £ ¥) (4]
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A labeling satisfying (3} and (41 1% nod in general a throshald assignment since
the sets being tesled for stabilicy are restricted to those of cardinality =2
However, condition (4) does imply the existence of a different labeling and
thrisnodd satisiying (23, as we shall peove in Theerem 1004, For example, the
lubeling given in Figure 10.4a does satsly (3 and {4) with ¢ -. 5, butitis not a
threshold assignment, On the other hand. the labeling in Figure 104b ix a
threshold sssigment for ¢ = 10,

We begin by dafining the degrec partition of an undirected graph G =
(T, By which we associate vertices haviog the sume depree. Let O =< 5, <
dy = --- = b, 1 be the degrees of the nomisolated vertwees; the d4; are
distinel and Lhere may be many vertices of degree &, Define 4, = {0 and
o1 = |F| = L The degree partitior of 773 given by

I:(;_f::lll.'l-'_'|l}1-l e 1"l:.m:l

H I

where £}, 13 the set of all vertices of depres ;. Only £, 15 possibly empty,

The following theorem is due to Chyital and Hammer T19730 The
cquivalence of (1) and (i1} was discovered independently by Henderson and
Lalcstein [19797].

Theorem L4, Let 7 = {i, &) Be an undicecied gruph wilh degree par-
tdion ¥ — D, + 0y + -+ = D The following statements are equivalent:

(1) 7 15 a threshedd graph;
fi1]  thers exists an integer labeding ¢ of V¥ and an mteger (ihrshold) ©
suich that lor distinel vertices v ound

sreli=ox) + oy =t
(i} for all distingt vertices x= D, and y= 2,
aye w4 j=m,
(v} the reearsions below are sulisfiod

b= 6, — Doy =0k, |m2] L
dp o= 0. - (i=n,m— 1 [m2]+ 1)

i m i

Beforc proving the theorem let ws understand ivs sigrificance. Starernent
feil} saya that the structwre of the graph iy eatirely determined by the indices
iof the degree partition. The vertices contained 1 the tivst half of the partition
cells form a stable set, while those containad in the fater half of the padilion
ceils from a complele sel, Furthemmore, the adiacencies possess 4 natueal
contalament, as tlustrated io Figure 1006, Statoment {iv] s mesl impartant
compatationally for i allpws ng 1o verify that woe have i threshold graph by
using purely arithmelic opernfions withow! making referenes 1o edges or



2. Degree Panition of Threshold Graphs 226

Sable Clique

Figare 106, The typical sructure of o theesheld graph. A line between cells £ and 0,
indicibes Lhal sach verrex it £, is adjacent tncacl vortex of ;. Ceit 3y, contains al] izolaicd
weitiovs und may be empty. Cell f, o oanly edists if ais ol

adjpeency sols—ua very unusual sieation in graph theory® Since these
recursive refations can be verified within Ofn) computational steps for a
graph with » verlices, we oblain the {ollowing,

Corollary L5, Given only the deprees of the vertices of an nndircctcd
graph G, there is an algotrithm which decides whether or not ¢ Is a threshald
graph and which runs in time proporiional to Lhe number of vertices of €.

Prool ol this corotlaty is given as Exercise 7.

Proof of Theovers 104, (i) == (i1) This is just Propetty (4).

(i = (i) The proof is by iwduction on the leagih of the degres partition.
We may assume that & < i = | = m,

Let wbe & vertes ol lacgest label o ). For any uther verlex x i x s adjacent
Loy somne verlen w {Le, xd D) then & < alx) + clwh < cfx) + ey} implying
that x s adjacent o p. Henes, ye D, 6, = ¥| — |D,| — | and each vertex

* The reader will molice Uil Une two sels o0 iecorsious actually use the same equation. They
are staezd scparately to emphasize the method of culeulativn €4, and &, are kaowm), and to
indivate how they may be proved induetively.
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i Fa, s adjacent o all mommsolited veriices, This proves (3i1) 0 the cise
J—m

bPurthermore, the tertices of Dy are adfucent omly o those it I, Lar
suppose 3, > |4} | then each vertex x e ¥ — Dy would be adjacent 1o some
verte® i 1 — O henee x would also be adjacent Lo z where 2 has the larpest
label in ¥ — B, This forees 2 to ke in D, 2 contradiction. Thus, 8, — i, |.

Finglly, let V' =F - D, — 0, and copsider the imdueed subgraph
G — (87, Byl whielh also satisfes (i), Since Hs dogree parbitiom F7—
B+ By s shorier by 2 than oor oridnal. the indueiion hypothosis
proves the cluim for f < m,

(i = (ivd ARy some nefleetion (iv) Is seen simply ax o restatemert of
fiii),

(v) =1y We shall assign an integer lzbel o, to each x e I, such thad ihe
sum of the labels of the vertices In X = Vs less than or equal to a designated
iateger tif and only MY 5 a stable set. Now Dy + --- 4+ D)5, 18 stable, and if
X 15 a stable ser containing a vertex v e D), with j = [mil], then X — vy <
Do+--+D,..

The reader may verify that the following labeling is a threshold assigo-
ment. {Lle slrould do the aritlhemetic bass VL)

ap = |F[ (=00 m2])
| = zl'l_."ll_m.'_"ll !_

T I | R L7 1

Remark. Orclin [E977] has given o construction of the unigue faragraf
threshold assignmenl which minimizes the threshold o

Motice that almast the miceoe image of Figurs 1006 will appeaz il we
teplace edges by nonedges in that iflustration. This is nol sutprising in light
of the foliowing corellary.

Corellary Tz, The complement of a threshold graph 15 a theeshold
zraplL
Proofs  Assuine thal o labeting satsfying comdition (1] s given. The
lubeling &x) = ¢ — o{x) {lor all ¥ = Fy with the threshold | = ¢ — 1 satisfies
fi) fur the complemenl since
A E==02t ofs)  ayd
RS S S G
exf < aln) | Ay |
From this corollury we conclude that a graph with # vertices is threshold
il and only if there exists a hyperplane in B® separaling the charactensiic
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veclors of the complers sers of vertices {roun the characieristic vectors of the
noncounplete sets, An alterogtive proof of Corollary 106 follows from the
next result,

Theprem L7 (Chvital and Hamumner 11973]) A graph i threshold (S
and oaly f it hag no induced subgraph somorpluc to 2K, P, or Oy,

Proof. The praphs 2K, P, and £, are oot threshold graphs (Tigore
Hid)y, henee no threshold graph can comam ome of them, Conversely,
suppose & = (3, L) is not threshold. then there exists 2 subset ¥ = | with
|X| =4 such that & £ Adjix)~ X £ X {x} for cach xe X. (This is a
straighiforward consequence of Theorem 10.4; see Excicise 3.} Choosc
x, EX tohave the smmallest degree in G and pick 5, 258 Ysothat x e F
but x;e, ¢ E Since |Adjilc )2 X0 = [Adjley) m X chere ousts an xye X
sich that %, x, € E but x %, ¢ £ Thus. the sel {3y, Xa. X3, Xq) mduegs ong
of the three forbidden graphs 2K 5, £,, or (. which proves the thearem. |l

Bensaken and Hamuner [1978] have studied an analogous threshold prab-
lem Tor absorbent for dominating} sels, A subset X of vertices is absorbent
il every vertex not in X is adjacent Lo some memnber of X The class of geaphs
ohrained properly contging the threshold graphs. They give a number of
characierizatinns ol 1his class.

3. A Characterization Using Permutations

Where does a threshold graph (7 fit into the world of perfoet praphs” First
of all, G is a split graph since its verticzs can be partitioned into g stable set
and a complete act) the edges etween these scts ars structored in 8 niwnner
that has alrcady heen deserilied. Sceondly, the edges of O can be transilively
orignted; let the vertices of €7 be numbered wecording to ascending degree
amd arient ciach cdge loward s Targer numbered codpoinl. By Corollury
1.6, lhe complement & can also be lransitively oniented, so G s a special
kind of permutation grupl. In the nomenclature of Szction 6,1 every thresh-
old graph is a irangolated-colmangulated - comparability—cocomparability
graph. or symbolically,

[HRUSHOLD - T~ T C A (.

This inclusion is proper as demonstrated by the graph P,
[ et us characterize threshodd araphs i the context of permutation graphs.
Let = be o permutation of the nembers {120, nl. In Chapter 7 we
definzel the graph of #, denoted by G[x], to have vertices numbered ¢,
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Ly, --.. %, wilh ¢; and #; adjacent ifangd enly if (f We7' - a7 'y < O Fer
cxamiple. writing = as the scipenee m,5, -+ &, we see that G[1.2,... .1 has
no edges whereas Gimom — 1, ... 1T is the compiete graph. Recall that the
graphs Gaf and GUr® ] are cornplementary, whare s denctes & written in
reversed scquential order. Finally, an andirected graph {7 js 3 fiermuiarion
graph T 3 isomarphic o Gl for some

Felmand £ be fwn sagiences over some alphabet. The shufffe produce is
clefineed us fnlnwa:

Fut —imty Mt le=a---a, and T==3.---7,L

Here the o, and 7, are subsequencss, & ranpes over all intepers, aed juxta-
position means concatenation. The notwn of shaffle prodoct appears o

automata theory (see Exlenberg | (9745

Theorens 1004 {(Golunbic [19782]).  The threshold graphs are procisely
those permutation graphs corresponding fo sequences contained

(2 ...\ —1,...,0+ 17, (3)
where pand v are positive iolegers and o denotes shaffle prodoes.

Froof. Let & ={F, EYbe a given threshold graph with degree partition
F=Dy =D -+ D0, Let s, =3%:_,0, amd rename the vertices

Epa Uz, o0 G sucly that deg v -0 dep o;implics § < f, We deline 4 permutation
= as follows:

B P il L] Oy
Yo sEIply HL ISR olhgratse
o j'|'1 +5 s Tor F o= miz],
At ] for ImiZ < e
T — Yol Pm-¥2Vm-2""" Flmy21-

Mote that = is of the farm (59, and that
oLl s DA = IE T (6}

We will show that e — &[x].

Choose vertices o, € I and v, e D22 we may assume tiat x = and hence,
by construction, i < j. By (), v, und £ are adjueent in G[x] if and only if p
appears to the left of x in «, This will oceur if and only if cither {i) £ = [m/2]
and v, is strictly to the left of 4, or (i} [m/2| < ¢ = j But conditions {i) and
fi1) together are equivalent with & + j = m. Henee, by Theorem 10441680, v,
and v are sdiacent io Gfw] il and oely if ¢ 2, B proving that G = G=].

Conversely, any permutation of 1he form (53 yiclds 4 threshold graph, ]
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Teng and Liu [1978] wse the shuffle peodocer tor the integration of several
Irically independent and concurrently operating trillsmission EraInmLiTs,
Tronwition graminara deseribe the roles, or profncols. which regulale (he
Inleractions between the aftached entities in a computer nefwork ta cnsure
thul they proceed in an orderly Eushion.

4 An Application 1o Synchronizing Paratlel
Processes

Threshold zraphs were rediscovered and studied by others. mcluding
Henderson and Zalestein f 1977 they are responsible for the application
presented here See also Vantitborgh and van Lasmswesde [ 1972].

A hyporgraph B — (8, &) consisting of a vertex set § and a hyperedge
collection & of subsels of 5, ¥ called = vhreshold hppergraph if there exists a
non-negafive inteper labeling ¢ of 5 and an integer threshold ¢ such that for all
Y oF

- Ty [y Y Yo
A conLuins oo hyperedge 2 L‘.ﬂ{x" =0

FEaL

As before, we cull the pair [ &) £] 8 rhreshnid assignmenr for H,

Unlike the special case when Ff is g araph for which many results gre
known, the prohlem of characterizing threshold hypergeaphs is unsolved and
appaats to ke quite difficult. Mevartheless, hreshald mraphs and hvpergraphs
can be nsefon] in an applicialion By compuling waich we will now presertl.

Consider a set of compuler progrums 33 = | P;] W be run in parallsl.
(Some of the P, might actually ke subroutines of larger pragrams.) Becanss of
crverall merory constraigg or comman monory laeation requircments some
conflict may arise when o cerlain subsel 2 of # s not able to ron sumul-
luncously. Let & denote the collection of all such forbidden 3, Hence, the
programs il X < #* can by rurn together withom conflict if and only if X
CONnains g member of 4.

Wihen {2, £is o threshold hypereraph a particularly simple progromming
technique can be applicd to 1ot the computer prevent condlicks avtomatically
and contro] the trallic of programs ruoning and waiting. Let o] be a
threshuld wssignmenl for {92, &) and denole ¢ = of P} The techmigue s ay
[ollows,

{1y I'recede each program I with a call to proc=dure Pis ¢)

{2y Follow each program P, with a call wy procedure (g o)
(3% Initialize a new global variable @ wilh e value ¢
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prosedere Fs. o) provedure My of
it s = - then AN =
¥oamede- i refurn
crter £
vlse
vall aguin
FELIHTY

Figure QLT Suhrovitioe P oeggpiests poaamissian (o begim pnd subeogiine w0 infoarms the
Froalfie eomtrnller thal the proeran is Ooished. Yariable £ recocds hose muoeh ' room s coccently
avdilable.

(Sce Figure 1007) The variable s, called a :.nrmapham never allows the sum
of th ¢, for Lhose programs corrently cunniog te exceed ¢ The number ¢
rﬂsamhleh the spacs required Lo do P;- Every fime we wish Lo ekecule a
routing P, the procedure I checks whether or not there is sulficient space
(e, i 5 = b Wsg, we reducs 5 iy ry and begin: iF not, then we wailt {in a
gquenc) vulil there 15 cnough space. When we fmish P, the procedure F ore-
Lot ¢; unils al spacy.

Example 1. Ciivenuscl of programa {P3 such thar at most 12 of them can
be execuled simuliancously, assign ¢ — 12 and of#) — 1 for each i

Example 2. 1ot # cansist of three tvpes of processes: the readers ., ...,
R, the wirters W, ..., W,: and the mathemancians M, ., M, Assume
{hat wo may ckeente sieniltansously ethier at most one mathenaucian plus
an ynlimited number of readers or at most one writer,® This problein has the
ehreshodd assiptiment

Ry 1 i—1,....r

cfM=r+1 j— L....m)

AW 21 h=1....w
L=+ 1.

Althuouel there is na accurate graph theergtic formulation for Example 1,
Eaumple 2 can be viewed asa graply & with edges connecting Lhe readers with
the writers, the mathemealicians with cach other and the wrilers, and the
writers willh everyone. Tn this cise the stable sets of & corrcspond 1o the
subsers which can be executed simultanaonsly,

Ixample 3. I we add some bureancrais B, ... B, to Example 2 who
can work with wrilers but cannat work wilh mathematicians, then the systern
na longer has a thresheld assighment.

* [f satnoodd s Wikl an e s¥5t2m, o ane clse may have zecoas since chunges are being
mude. Ctheredss:, a5 muny reuders can work os want, bul oply ons mashematician can work
becanss there is anly one caloanator and he pecds o caloulator,
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Finally, suppise we hove a sysiem with thrashold dimension . We can
procesd similarly using P's and 77z except that £ semapliores will he needed,
One semapbore handles each inequality (o labelingy, and a segiment *; can
be entered ifand anly if there is sufficient resource according to each of the &
sernaphores.

EXERCISES

1. Drove that iNGY = n + 1 — w(Q) where #40) and w(G) dennte the
thrgshold dimension of G and the size of the largest clique of &, respechively,
2. Show that 3070 = KO0 Tor any ioduced subgraph 11 of 5.
3 Prove the ollowing: & = {V, £} is g threshold greph il and only of for
gach subsel A = Thwre cxists 1 verlex x e X such that Adxy—~ X = & or
Adi(xym X = & ~ {x) (le, xis adjuient toall the verlives ol X — {xl orto
none of them . Chvital and Hammer [1971].}
4. Show that the following procedane will recognize threshold graphs.
Whal 15 1ls complexily?
Boolean proceduwre THEESTTOLING):
bepin
while the edge sut i2 nonemmy de
beyin
deere all iscoated vartices,
if there s o verles @ adiacent 62 all ramaiahiy verlives. e dole v,
else
relwen Tuls:;
end

Tefurn fEnes
endl

& Prove the following: A graph & = (¥, E} i1 throshold if and only if it

vorlices can be ordered and partitioned dnto a stable set X — dxy, %5, ..., 0}
and u complete so1 ¥ = v, .., 1} such that

A L e O P A U A ] )
6. Provethat a threshold graph & with degreepactition ¥ — Dy - D + -+
+ D, has a Hamilteman cireuit 7 and only if the hollowing relations are
satisfied:

|13y ] =10,

k ™

Bl Y b k=12 00m - 102]),
[ | i=m+1-E

il m

Y= ¥ @y (il mis even).

i-1 J=mizl

Show how one may obtan the Hamiltonian cirewit,
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7. Let Hhavevertioes 1,2, rand ist DEG (G cqual the degree ol verlex 1
Write an algorithm which verilies the reowrrence relations in Thearem
10.40v), Prove that your algorithim rons in £3x) time.

8. Laleulale the thoeshold dimension (o the graphs m Figare HLS thus
showing thal #(67) 1s it in general equal to WG for nonthreshold graphs.

Cipnre 10,8,

9,  Find negcessary and soficient conditions for a sequence [a,, d, ... £
to be a threshold assignment for some threshold geaph,
th.  Prove that the number of mutoalty nonisomat phic t-verlex threshold
graphs is 2" L
11, Prove that G is i threshold graph il and only i cyusality bolds i egaeh
of 1he Erdas Gallai inequalities (see Section 6.3} ( Hammer. Ibaraki, and
Simeone [1975T,
L2, Verify that the labeling given at the end of the proof of Theorsin 10,4
1 o threslhold asstEnment, )
13 let #7000 donole the smallesy inleger & Tor which there exist partial
sihgraphs (17, FL(F, F oo, (V.. Faaf i = (F, K} salislying E = E; 1
Lo B where cach (VBN Is o threshold graph. Prove that (&)
aquals the threshold dimension 0{G)of . {Nole: You may assume F, =
forr cach £ Why™
14, Let & be i threshold graph whose vertices are numbered according to
increasing degree. Prove thal Lthe orientalion oblined by ditecting cach
edpe ol & toward itz larger numbered endpeint is transitive,
15, Let X be asel of propositions and lol ¥ be a sel ol subjects ina psycho-
logical experiment. A subject cither agroes or disagrees with a proposition,
A Gutiman seale is 4 Bnear ordering of X w0 ¥ such thal a subject agrees
with all items following i and disagrees with all items preceding il Lel &
bean endirected praph with vertex set X w Feonstructed as folloas: X forms
a stable set; ¥ [omms a clique; subject v is adjacent to proposition x if und
vnly if subjeet v agrees with propostlion x. The fullowing are from Leithowitz
[1974]:

(i} Prove that chere exists a Gutiman scale for X o ¥ if and only it &
1% 4 1hreshold praph.
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(1} Give an algocithm 1o comstruet a Guilmarn scale. For a discussion
of Giuduman seales, soe Coumbs L1964 |
16, DProve (hal cyvery threshold gruph has an interval representation using
intecvals of at most twa different lengths (Leibowicz [ 1978])
17.  Let miG Y denote the number of maximal chigues of an undirected graph
Goand lel af (8) be the seabificr mumber. Clearly,

€} < mlln,

since Lhere muzst be #((7) distinet eliques contaming the members of a mixi-
i stable scl

An undirscted graph & = (F, £) is sadd o be sricially perfect if for cach
A = Fiheinduced subgraph €, of & satisfies w7, ) — m(G 4). This name was
chosen since it 15 trivial to show that such a graph 1s perfeel. Prove the
following {Golumbic | 19780 [

fit A graph & = (I E}is trivially perfoct if and only if it contains ne
induced subgraph isomorphicio C, or Py

(i) A connected graph is oivially perfect o and ooly J &t s 2 com-
parability graph whaose Hisse disgram i a rooled Lree,

(iii) & and & are both crivially perfect iff & is a threshold graph.

Reseurch Problem.  Characterize the graphs of threshold dinension 2.

Research Problem. Lol 5 be o lionle ser and el & be s colleeuom of subsets
of & each of size ». The pair H — (5, &) 15 usvally called an r-regular hyper-
graph. [Fr = 2, then ff is just an undirected graph. Consider the following
propecties:

(T,} Thers exists a {positive integer) labelhing ¢ of § and an (integer)
threshald ¢ such thal. for all subsets X = 5,

X oontaing no member of & = l oxy = 8
Sed

(T;) There exists a (positive mlcger} labeling ¢ of § and an {integer)
threshold ¢ such that for all subsets 4 = 5 of size v,

Aed o= E A I

xcd
(T3] Forzx, ye §define x ;= il x can replace y in any hyperedge {mem-
berdof & Thatis, x =y il [vedcd and x¢ A] imply A — {5} + {x} 4
Then, for all x. ¢= 3, eithar x 7= ¥ or ¥ 2= x or halh,
Clearly ('L )= (13} = {15). Lither prove or disprove the reverse implica-
tions. | We know they are both true when ¢ = 2. Pechaps a proof forr = 3
would pencralize to arbiteacy r]
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Not So Perfect Graphs

1. Sorting a Permutation Using Stacks in Parallsl

Let = be a permetation of the numbers {1, 2, ..., k). which we will regard
as the sequence r = [m,. 2., ..., 7] We would like o sorL & into natgral
order psing a system of stacks arranged in parallel, ilusiraled o Preoe 111,
{aitially, the permutalion sits on the inpul quene, Two bypes of moves ane
alliwed s (1) moving the vumber al the head of the mput quene onto the top
of o o the stacks or (if moving 2 number fiom the top of 2 stack to the tail
of the cutput quene. & successful sorling is acermplished by transferring all
numbers o the outpal gueue in the order L2, ..., & by repsatedly applying
{1} andfor (i

Given a sufficient number of stacks, any perrutation can be sorled in this
mantet, But when can a permutation « be sorted using a system of anly m
slacks in parallel? [or cxample, the sequence = — [3. 5, 4.1, 6. 2] requites
three slucks, sithee the tumbers 3, 5, and & must be stared on different stacks
unti! 2 has reached the output gqueus. The observation that 3, 3, avd 6 ocour
i their aatoral order but are Jollowed by the smaller number 2 15 the key to
converting this sorting prablem indo & graph colaring probiom.

Let Al x] be the undirected graph having vertices {1,2, ... .n} with f and
E adjacent i1 Meere exisls an £ such that

Lok and G
2356
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Fimwre 111, A sestern ol sTacks mopanaldle].

We can read =71 = (™ 1) as “the posizion of i o w.” An example of this
congtruction is given jn Figore 11,2 We call HT=] the stock sorring graph
of @ It is a straigheforward exercise 1o show the following:

i can be sorted inoa svstem of sostacks inoparallel if and only if the ¢hro-
matic number of HTa] 15 at mest m.

One passible appiication of this sorting technique is in cearranging e
railroad cars of & truio e a switching yard {see Knuth [1504. Section 2.2.1;
1973, pp. 164-LT0F, Even and tai (9717, and ‘Facjan § 1947271

Let #° be the collectiog: of all graphs & such that & is isomorphic to Hfr]
for some permutation s Yery little is known abour the class %, There have
been no efficient recogniliom ar coloring aigorithms prodoced for Lhe praphs
in A which are in geoerat soc perfiecr graphs. Neither is there a good graph
theoretic charicterzation. Our reason for Introdueing the class ¥ is 1o show
an equivalence between . and another class of graphs which has {restrated
mathemaricians for some vears, namely, the ciecls grapls

© @

Kignee 103, Toe praph AT, 5. 4.1, 0. 2]
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2.  Intersecting Chords of a Circle

An yndisected praph & is called 3 efrcle grapk [ it 15 isounorphic 1o the
intersection graph of a finite cellection of chords of a circle (see Figure 113}
Without loss of generality, we may asswme 1hdl no tao chonds share a
commen endpoint,

Theorem 11.F (Tven and Ttai [1971]).  An undirected graph (G is a praph
of intersecting chords of a cirele if and only

& — all solaled vertices! = H[w] — fall solated verfices)

for some pormulalion o

This thesrem will be proved constroetively by demonstryling two iech-
rigues, Alzorithms 11D aml L2, whose correctness will be shewn n
Propusifions 112 and 113, cespectively. The algoritluns transformt one
reprosetilalion inlo the other

Remark E.  The subtracteon of isolated vertices in Lhe theatem is reguined
Two intersecting chords would pive the complele graph on lwo verlicas,
wheress any graph L]« | which has an odpe must have at leasl threc verticss,

Remark 2. brom the point of view of coloring, covening by chgues, and
finditg & maximun stable set or maxiom clique, solated verlices neither
acid to net subkract from the esseehial complexity of Le problem.

Remark 3. A cirele wilh intersecting chords enables us to gencralize the
notion of 8 matching divgram which we cncountered in Section 7.4, Further-
maTe, s0rling a permutation using stacks v parallel is very much like the
problom of sorling & permulalion asing parallel guenes discussed in Section

Flgore 113, A sct ol chards and its - nrerscetion graal.
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7.5 The remarkable feature of ‘Theorem 11,1 is that the eguivalence estab-
lished in Chapler 7 balween permutation graphs and socting in parallel
queugs extends o an equivalencs between dircle graphs and sorting in
patallel stacks.

Alporithm 11.1.  Constrocting g cirele with chords from 2 permntation,

fepul: A permtation ol the bumbers 1,2, 0, 1,
Chedpeees A circle % with o chords,
Method: “Uhe algocithm is as foldlows:

. DREAW A CIRCLE. Lah nodas @, . i, ..., (0@ ¢lockerise maaaer,
20 W o once around the circle clockseise clatlies jusd prive Lo,

far i« | tuade
4. il o bave nol passed by nude

4. Hen Sk 0P elarkwise 100
, D anolier nede 5 imzoeedialeby clockwise (hul belore the nesl ede);
T mext s

W IFRAW chords maceking the pairs of ouwrohers,

Examphk 11.1.  We apply Algarithm 117 1o the pormutation = =
12, %4 6,7, 1, 3 8 5] The instructions executed by Lo alporithm are
wiven in Figure 11.4 along with the stack sorting graph H[x] and the initial
and hnal configurations for the ciccle % of chords,

Proposition 11.2.  (iiven a permotation z, Algorithm 111 canstnucts a
set of chords of a circle whose intersection graph is isomorphic 1o ).

Proof. Suppose § and & are adjacent in H] ) and assome § < k. Then
there ts an i such that { < j < & and o7 ' = o7 ! = =7 !, which implics that
after the ith iteration of Algorithm (1.1 j and & bave already been passed

2 ©

@Aa
N

)

[nitial confiquration Final centiguration W& 9467 L385]

Fiawre 104, Alporicdon 1.1 applied o the pecmubation » = [2, 9.4, 6,7, 1,3, 4, 3]. The
instructicns executed are as Ellowea.
Skipta | ;drawa 1, TImw a2, Skipto 3. draw o 3. Deaw 0.4 Shiptn 5y dravwa 5. Draw 6-5.
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ever. Henes we shall write the new § belore the new &, and their chords will
therefire finlersect.

Comversely, suppose two chords intersect and, reading clockwise around
the circle from the starting point, their codpoints are lubeled 7 &, 7. &% Thus
Jkand =, "= om L Since in the fth iteration we had already passed the
livst &, eherie must bean i, § <, such that during the ith deration we skipped
aver k Ln the firsl ccvurronee of & Thus, m b = ¥ 0 and & are adjacent

i H[=1. |

Alrorithen 1.2, Constructing 4 pertsuiation from 2 crcle with chotds,

fnput: A arcle % with cherds.
Cratpiet - A pertnatation = of the numbers 1L, 2, ..., s
Meothad:  The algonthn i us foliows:

1o Pick a numbeer o fa lucky cho ee will climinad: sunumbering lawerk;
T Inidalizes i n; piek o starang peinl (ool an endpoint of 4 chood);
3. for onec aropund the citele geing oo relock wise dn
Tegln
4. il et L-:rll.‘l.[_‘-l'rinl I 1= anlohelsd
then
& lal=1 47, Tl il woposile endmanl i
fi. devremenl: 1« - § — |:
ks
T Lreale o Jwnmy cadpeint on the circle jus. preceding o
H laszl e d.unmy &,
. dectoment 7. ¢ :
I, shlp 02 jusl prios weothe next unitacled exdpomi ;
o
11, reoumber evervihiog so that the smallest label is 1 by subcract ng che tinal walue of 5 from
cughy;
12

primi e scyusnee ol primed ooobsos runoiop cockwise [rem the staring poiot and <all
Chew 7w, om0, respeiiely:

Example 11.2. Applying Algorithm 11.2 16 Lhe circle % in Figure 115,
we obtain the pormutalion 7= [7. 4, 2, 10, 6, 1, 4, 3, %, 5] The instructions
cavrndod by the algonthm and the Gical (Jabcled) conliguration for % are
alse given,

Propasition 11,3, Given a set of chords of 4 civele &, Algorithm 112 finds
a permutarion T osoch that the fcrsection praph of % s isomorphic
Hl=]  {some isolated vertices].

¥ 1he somond accurrences of fand & weee ereated from the index of the lop, which is -
[EHEAT
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ok
_F‘%

£ [mitial confiqurotian Firol configuration
Fipure 11,5, Algorhm |12 epplisd o the arcle % "Uhe wsrrnctions execured wre the
fiol Lerring.
We cheatand pick v - 100 Label choeeds 190,98, and 6. Creale dunizny 2 and skip ovsr 97,
Lehel chord 4. Creare dezuny ' and skip oves 8, Lal=l ¢hond 2, Creawe shimmy 5 aed skin
cegr 87 LO°0 22 gand W Tohe peecwutatiozeis m — [704 2 1006 L& 3 B3]

Progf. Suppose j and & are adfacent in a7 and assome f < &, Then
there s an ¢ such that § < § =2 & and Lheir primed vergions appear 1n ihe
clockwise order 7, &, 1 'Uhis implies thal [ and & are ool dummy end poins. ®
Sineye unprined owmbers ocour o decreasing order poing counterclockwise,
1t Tollows that the fth and kth chords intersect,

Conversely, i the jth und ith ehords intersect with < & Lhen &0 was
skipped over afler labeling some dummy endpoint f. where @ < [ 5o

my b e m b and Jand K oure adjscent in H[x]. |

For small examples these algorichms are casy 1o do by hand. We wouid
like ro suggest a data structure suitable for performing the algarithms on a
computer. A citcle 4 with chords may be repreesented by either a list or an
arrcay conststing of the sndpoints of the chords given in the counterclockwise
order, heginning with a f[aed boat arbitrary slarting point. There will be
poinlers providing direct access from one endpoint of a chozd 1o the opposite
cndpoelnt. An example of this data structure 12 given i Figure 116, Notice
that ARRAY(D) = ARRAY(OPPOSITE ) for all § in the cxample.

To impleent Algorithm 11.2 we scan the data steocture corresponding to
¥ ende from left to right, labeling endpoints appropriasely The propecty of
an endpoine being prined can be coded inlo the label On the other band,
Algorithm 1D would cecelve iLs inpul o as Lhe ceversed st | x,, oo ma. 71 ]
inle which the new nodies arc inserted. 4« the lisl s scanned from right o
lett, we keep track of which nurmbers have boen passed by using an aus:liary
bit veelor. Both of these implemeniations ¢un be sarnied oyt in time and
space propertional Lo the size of the input

* Reranse any Sammy endpoie following § counterclochwlise worid bave soucler value,
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1 25456 TE3 W HIZI4M
aray; 31 [PTala4]s 6]z 7]2]1]4]5]
Cepaute 4 li2la[ 1 Blisfia]s[0]3 0l 6 7t

Fizewre 11 f. Thala stracioies fina chele with chords,

Mark Buckinghaim has suggesicd vhe fedlowing algorithin to construct the
sdjacency sets of The interseetion graph obluined from a circle with chords

Algorithm t1.3.
Frput: The data siruciurs DS, as desenbed above, representing a collection
of m chords ol a arels
urpur: The adjaceney sels of ihe intersection graph.

Method: The algorithm is given in Flgure 11.7. We traverse DS (ic, the
circle connterclockwise) exactly once. Chords §and & intersect o and anly il
their endpoints accur in the grder |k, 7, & j] or [ E, 5 B FBach chond L is
added to the cng of & st catled L18T when its first endpoint is encountered
(line 4). N remaina there until the second endpount {5 reached ar which time
all cherds 7ot the LIST fllwing & are discovered 1o inlerset chord &
(lines 5-T}. Then & is remmoved from the LIST (line 8), An array POTNTER{E),
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begin .
1. ipitiakise: LIST = @i foris Dtonds Adjifi— 00,

3 forcach eolry & of D8 da i ordar
3 iFx s nos om LINT
Uen
4. appennl kb 167 TIST,
vlse
5, for cach s g the right of & an LIST de
k. add  to Ak
7 add & Lo A i,
WENT )
o, delete & from 1LIST;
el &

ond

Flgure 117, Alearithon 13,

nitially undefinad, may be used (o execute efficientty the test in line 3 and the
gocess to the starting point in Hoc 5 A prool of correetness 3 1oft as Exorcise K.

Remark. Touchard [1952], Riordan | 19757, and Read [1979] investigate
& generating lungction for the number of ways of drawing & chords of a circle
50 as ko oblain & intersections,

3. Owverlap Graphs

The citele praphs are couivalont la yel anothor popalar chass ol graphs,
tamely, the orerlup graophs. Given a collection of inkervals on & line. each pair
of intervils will satisly caucthy one ol the lollowing properties

fleerlop. The two tndervals indersect but steither preperly comtaing the
other.

Containgment.  One of the twa intaevals properly contains Lhe other.

Pisfoimresy.  Phe two mlervals have cmpty iolersection.

A praph O 13 called an sverlup grogph o s veetices may ba put Lito one-fa-one
correspondence with a callection of infervals on a bine such that lwe vartices
are adjacent i & if and only If their cerresponding Mtervals overlap {nat
fust inlersect). Withoal loss of generaldy we may assome that tive Dervals
are either open or closcd and thul no twa infervals have y common endpont

Let # = 11t o beacollection of intervals om o ling, wod assume thai no

Lfalze

two infervals have a common endpoint. The pairs of distinel indices ure
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partilioned mile three mutvally digjoint sets 4, B D ous lollows: For distinet
vk,
EN | U @+ f, =11
(i.e. the Intervals overlap).
=vo B il cither £, f, or I« f.
(e, one lnterval propetly contains the other);
xv=fd A0 fomd,—

{i.c., the inlervals are disjond).

Clearly, 4. B, and 1 are symmelric relations partitioning all pairs. Thus we
hase that £, ) s the ovarlap pranh represaoled by £ (F, A + B) 15 the
interval graph ropresented by # and {F, 2 35 o comparabiity aeaph since
s complement 35 aninlecyal graph. Forthermore, defining
wpe i T f,
and
e F if I, lies entirely (o dhe lef of .

it Follows thut (V07 and (F, 1) are trunsitive orentations of (F, ) and
(¥, D, respectively. An cxample of Lthese graphs s illesiraced i Figore TER

s

S —4

al

1) f) tdt tal

Figare 11L&, a) A callectian, 7 of e rvals, 18 Tl cooeezap wraph 0B A 1ule 200 R inlerval
praph (¥ A &) of #. (dd The transicve grientation (¥, C) copressnling IR conainmenr
(c) The cransibive orientstion { F, #) representing disjointoesss.
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Flgure 1LY, Intersecting chorls ulthe wircle eorsespond o overlappioe intervals vo Lhe line.
TIa projeciion mestod is suggested by Cruwril 1973 Kelative 1o ehis chowes ol poae havs
1oand £y everlapping, dyand § ovectuppesg, J, and 4 disinl, and fy confainine £

We have the Tollowine casy resalt.

Froposition T4, An undirected graph 7 is o citele graph i and ondy i
s an overlap graph.

Froof.  Given a clrele with chords, choose a point pron the circle which is
ool an e poinl of  ehord, To each chord with endpoints o and ¢ we associate
Lhes aro alomg 1he eirgle from ¢ e 2 which dosg not conigim p. IF the circle is
cul il peanl p, Ehen we will obtain g line with 2 colicction of intervils having
the desited property.

This process may e reversed Dy wrapping a citlection ol indecvals of a
ling arcund o cirele and then drawing 4 chotd befween the vae eodpoints of
vach nleregl |

An altertule way 1o visualize this cquivalenee 15 by plucing the circle
tangend to a line, with p as the notth pole, and the point of tangeney as the
south pole, Project:ng the chords down ta the line, as in Figure T1.9% we
abtain the correspondence. Our data structure for representing a circle with
chords s simply & disorete version of this linegrizelion,

& Fast Algorithms far Maximum Stable Set and
Maximum Cligua of These Nat So Perfect Graphs

In the precediag sectiors we dermonstrated the equivaleace of $he stack
sorting grapls, the circle graphs, and the overlap graphs. We arc therclore
[ree to choose whichever model soits s besl in order Lo prove properties
abot the cliss,

As we mencionad earlier, there ave a number of open prohlems congerring
this class of grapis.
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(1] Find an wlgorithm which recoymizes girefe graphs and consinueis i
reprosgntalion for the praph us inlersgeting ehords of a eirele.
(i Arc the coloring and dlicue-cover probleoms ™ P-complele B cirle
graphs?
(17} It the strong perfeet praph comjecture truwe for eirele sraphy?

The stable se: problem and the cligue problem arc tractable when restricled
Ly our nel so perfect graphs, In the context of open problem (T4 1t is ¢sseniianl
that we be given, a priort, a representation of the graph as overlapping
ihtervals, intersecting chords, ar o permutation to be soried, We choose o
use the overlap graph model. We first present a solution to the stable set
problem. due to Gavrdl [1973], which can be implemenred 1o run in paly-
noinial tirme.

Let .# = {14, bea collection of intervals, let €7 = {F, 4) be the overlap
graph of F, and let € and £ be the oriented containment and disjointness
relatians as defined in the preceding section For ail x = F, let

lxy={nsFiexe O}

bi the set of indices whose corresponding inlervals gre (properly} cootained
i £ The algorithm s ws follows.

Algorithm 11.4,  Maximum stable set of an overlap graph,

fuputs The fEransitivelyt orienled contaiomenl relatioo {F, £ and the
{transilively) oricnied disjoininess relation (F, Fy ol g cillection . # of wler-
vitls whowt overlap graph s G = (1 4L

Ouipge: A masimum staale sel 5 ol G

Metheod . We assign, to cach vertex » = V, a weight wix) and a maximin
stalilesct S0t G, ey where wls) = [ S{x)]. This s carried out recursively
1 sueh & way that vertices arc aasigned weights in g topelogically sorted
arder with respect to O AL the hea ot of the aloorithin is the subreatine (from
Clapter 51 MAXWEIGHT CT.IQGUE, which finds a sct of pairwise disjoint
intervals (F o that penerates, i ling & of MAXSTABLE, the best possiblc
stable sct, The satire algoTithm consists of the sinzle call,

heging
5 MAXSTABLINY;
elnd

and usox the reearsive procedwre in Figare 11,100 The assumption that F is
transitive 15 crucial since it allows [ine 3 to be exiecuted eliciently.

*arey, lohngan, Miller and Papadirmicricns [2¥9] reparr 1422 e wolning posklers [wr
virele graphs i NP-compele
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procedure MAXSTAERI F{X]:
Irpln

1. X - & ihen retum Fc

2. while Lhere axists ¥ 7 4 with -« v wpdefined dao
i Sah = dab o MAXSTABLL L),

4 pix] — | ¥

3. T+ MAXWEIGTIT CLIQURLY. £,

a. etten L S0

cnd

Figore LE 11

Theorem 118 (Gaveil [1973]0 Algorithm 114 correctly finds a max-
mum stable sel of an overlap graph,

An example of Algoritlm 114 applied 1o the nrervals in Figure 11.8
follows the proof of the theorem.

FProgf.  We shall show that {he procedurs returns & maximum slable sch
of the subgraph Gy, —= (X, A, ) lor any subsel ¥ < Featisfying U{x) © X for
all x & X. The claim is cortainly true il | X | = 0. Assume that it s true for all
submcts smaller than X, In particular, by tnduction, ${x} — {1} s a maximum
slabbe sel ol (Fp,. so S(x) is & maximum stable set of G, L for each
¥EX.

let T be us delined in line 5. Since the intervals (7,1, 7 are pairwise dis-
Joint, and since 4, < F, Tor atl =800 — 1s] and e 1, it Fallows that
F= 1 |,or5r)is a stable set of G, Thus

HGy) 2 3 wl) = ] (1)
reT
We st show that J is maxirmum.

Let J* he a maximum stable sel of €y, and el T be the set of sinks of

(. C )i

T =dved|f, < I, implics 24 J7.

Mol that the intervals represented by 17 are also pairwise disjoint, so, by the
correctness of MAXWEIGHT CLIGHUE,

3wy = E wii) {(2)
ol ne T
Mow, glearly, if 3¢y = (xe F|I, = L then [ Y1) = wiplotall ye T lor
otherwise we could replace §°(y) with 5(v) and obtain a larger stable set.
Henes.

Al =|F| = wirL {3}

=T
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Commbining (103}, we oblaio
WGy = U,

which concludes the required prool, |

Example 11,3, We apply Algorihm 1 E4 10 Lhe infervals of Figure 1%
in order to find & maximum slable sel of their overlap graph & = (¥, 4) The
verlices cun be assigoed weights in any lopologically sorted ooder with respect
Ly €. We arbitrarily choose the order a,c,e,g.4.b. f. Clearly, wia) = wic) —
wiel = wigl =1 und o) = {a}, Sep= ek Sep = 1) and Sig) = {g}
since they are all sources of £7, Wext, 3y = {d. ¢} and «{d) = 2 since MAX-
WEIGHT CLIQUE (U(d), Fpy) = U(d) = ieb. Now Uty = {e,d,e.q; and
the heavies] clique in Frg, s {d, gi2 thus Siky = {b. d, g} and wiky = 3,
Stmilierly, §{ 3y = { f g} and wi /) — 2. Linally, MAXWEIGHT CLIQUE
(¥, Fy conld be cither |a, 4 g} ot o, e, [}, both having weight 4. 1hey give,
tespectively, the stahle sets feo, oo g} and ioe, g}

Mext we provide an alporithr due Lo CGavell [ 1973 ] which solves the cligue
problem ot cirele graphs in polvoomal Ums, The notiens of matehiing
divpram and permutation graph em Chapler 7 will be ased,

Let 7 = (F E) be g cirele graph with representing Fatnily €, p ol chords
of a aircle ¢, and let Me) = {27 + Adjis)

Lemma [. Torevery vertex ¢ e I, the induced subgraph €y, b4 2 pormu-
tanon graph.

Progf. Wz max assume thar no fwo chords buve s commoen endpoiznl.
Thus, ihe ehord ) cuts € into two pieces such thar for x € Adj(s)} the chord
€.y has one zndpoinl in each picce. Therefore, the subset I = {01 i, 18
A malching dizgram whose permuotation graph is G ... S conneeting a
few verlex Lo every vorbex of 4 permutation graph results in another permula.
tion graph, it follows that Gy, is 8 permutation graph. 1

Lemma 2. If K is a cligue of @3, then K s a cligne of g, foreach ¢2 K

Proof.  Trivial 1

Algorithin 115, Maximum clique of a circle praph.
The algorithm  as lollows:

bepin
. dorre vdo K, = MAXCLIQUEIINT,,, 1;
Lo reton (g CArgEst A

emd
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By Lemma 1. statepent 1 cao be excouted siliciently. By Lemma 2, Lhe
slgorithm 15 correet. Detaits are 1ot wo Lhe reader as Exercise 11

E. A Graph Thaoretic Characterization of QOverlap
Graphs

Although we hivve shown e cquivalence of circle rraphs, stack sorting
grupths, and averlap praphs, we have not eeally chacacrerized them from a
traditional graph theoretic point of wiew. In this section we shall present
such a charactzrization, The solation, bowever, wiil fall short of providing
us with an efficient recognition alporithimn,

Theneem 11,6 {Fournier [1978]). Ao undirected graph G = (I, E}is an
overlap graph it and only il there exists an acyclic orientation P of 7 and teno
lingar extensions f.y and Iy of ™ such that the relation F - {L; ~ [} P
satlisfies

xvel yvzel, =xzefF (43
and

¥l vre b v xze b {3)

Remark, Such a relation [ is transitive.

Proof (=) Let & = {I}, ., bea collection of closzd intervals on the
real ling, no two intervals sharing an endpoint, such that xx' 15 an cdpe of G il
and oaly if I and I, . overlap {i.e., they miersect but neither containg the
other) Wedenate 7. = [, bland I, - [o" }]. Cansider the hinary relations
defined on ¥ as {ollows:

el g b B

sl er g

eloe=ebal,
Clearly P s an acyche arettation of G, and L and L, ace lingar extensions
af P The refation F — (7., » 1) - P satishies

sXeEFwwg<chcg <l

atnd represents £ being eotirely to the left of 1, .. Tt is easy to see that (4} and
{5} sre salisfied.
{=) o lhe remainder of the proof, {or agy binary relation & we denote

Rix} — {y|xp: R}
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Lot G = (F £) e an undirected graph on g vertices and let I, £, L. and
I osatisfy the conditions of the theorem, To a vortex x ol {r we associate the
interval I, = [a, h] as follows:
a=1+ L ek + 0PN,
b= 2 — |Ltxd — )|

W shall showw that # = 11 3 . 1% an overlap representarion of O

Gl .V fg- h = 2
We shull prove the ineguality @ - b, the others being trivial. By the
definitions of o and b, 17 13 enough 1o prove the mequality

[L7 Yl VIR M + | Egl)| 1 IR = 2 — 1) {6)
M= e F~'{x), then &' ¢ LY, because F = L, and L. is antisymmetric,;
thus F~ ')y o Lafs)y = @ Similardy, FOoy o L7 ') = 20, Thus., cach menm-
Per o of Vis countad at st twace on the 1ot side of £6) except for x itself,
which is nod courded 3l all, This proves Claim 1.
For vertices x and x" (x £ x% whete I, = [a.b] and T, = [a\, D] are
defined a5 above, we shall show the ollowing three implications:

Cluim 2.
i} xx'el, —{(Puf)i=a<ag <h <b
(i) xx'elF b <.
{iil) xx'eP—=ag<a <h b
Motice thal xx' o L. — (P Fiiland only if xx'c L, — L, and sinoe L. 1sa
todal order, implicalion 3} would follow dicectly lTom
) el =a<yd and {i;} xx'clo=h=<f,
let xx'el,. Since [, js a total order we have Ly Wxd o L7, and
thus |L7 )] < 4.7 a3 (Uhe strier inequality is dus to xe ) Yx" and
¢ L7 W Also, from property (i), we have £ "{xy = F (x50 |F 7 el
= |F~ %'t Combining these inequalities we ablaul
T I Y e T IR T kS T
which vields a4 = @ and proves (1)) hnplication {i;) is proved 12 the same
fashion, This proves (i)
For tmplication {i6) we shall show thal it xx'= 5 lhen
LA S S S A E S TR I E OFTE ST N £ B (1

Lot a"c O a"d Ly (0 fie, a7 L7 then x'x"e L, since L, s a
total order; morsover, (4) implies that xx" < F {ie, X" Fix). and hence
¥ e La(x) In an analogous mannce, i ¥ F Fo(x), then x"c Folx') umd
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x" 0 L7 Thos, each verlex of F, including © ad ', s couzeled al Jeast
Lwice oo he left side of €71, Thes prowves {31

For implication {1k sinee {17 and {259 hold, 11 s suficient L show that if
xx e Plher o < b, ot ecuivalently, if xx"« P, {hen

LT = 1F MDY L] 4+ | Fx)] < 2 — 1) (8}

It s easy to verily that if x7e F W'y then x7 4 Lo(x) and &7 ¢ FLx) (sinee £
s o fransitive relation). Similarly, if x" e P, then x7£ L7000 and ¢
F Y x" Thus, each element of Fis couriled af moest twice on the lelt side of
(8), except for x and ', which are counted exactly once each (x e L7 {xD
and x" = L,0x. This proves (il snd concludes Claim 2,

Finally, the theee conditions of (D-{ii} ure motuaily eaclusive and cover
alf possiulities, Therelors. the opposite implations also hold m (< Gu) In
particular,

e P=ag g < hah
Since s oun onientation of £, we conclude that
xx' =G and I overlap,

and ¥ = {f ¥ ., is the desired overlap modal of (7. |

Remark. Tfrhe relation £in Pheorein 116 is empty, then {7 {s 4 permuia-
llom geaeph; conversely, for every permutation graph there exist selarions
Foland L as inthe theorem with £ = £, L, {as e the proof of Theorcm
T However, sven when O 35 2 permotation graph thare may very well cxist
other relations P, L. and I.; satisfving the conditions of the theerem fur
which P 2 L, < Lo, IPor example, letting & = Ky with P=2, L, =
Fx < pzzliand Ly — [x = 7 < ploweobtain L, ~ L, 2 &1

Higtorical Mata

Wo bopan this chapter by discussitae a probiem using stacks. We conclude
wirh an historcal nole on one of the oldest written references 1o the notion of
“Tast-in, firss-out, ™ The reference ocours in a commeantary by Rashi (Rabhi
Solomon ben Tsaac) on the Biblical verse

Then his hrolher emerged. his hand seizing Esaw's heei: so they named
him Jacol.t Isaac was sty vears old when they were born [Genesis
KNV, 26

* W gre iadeboed o Gideon Entlich S preinizng ot Lhis celecznce 31a connnuaialian with
Filweard M. Reingedd, wha len passed iton te ke aotivee The trans koo of the Rashiquaration
is us Lo B M. Reingrdd

*In Hebsew. Yetukow, pluy on the word “soey meaning ~Sesl”
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ashi lived from 1040060 1105 A, residing primarily in Teoves, [France,
his birthplace, where he founded one of the leading schools of the time, ITe is
tha mast farmones biblical and fadmuadic commentator in all of Jewish history,
His commentury on this verae s wa Tollows:

I heard 3 Midrashic Tegend eapounding on the meaning [of the plirasc
“Then bis brether emerged -7 | L was his [Jacob's| right, the grasping
of his [ Faaw's] heel: Jucob was conceived fro U fast deop and Esau
Irevm the second, Comsider o tube with narcow mouth, Pur two stongs
e i, one alier the other—the st 10 eoler esit: last and the last 1o
erier eaisls Jirsl 10 ks | Uhoe | fownd | uialy Esaw, conceived last, exited
Mest, awd Jaceh, conceived first, eadted lase. [Thus] Jacob weot to delay
him [Esau] so that Le [Jacely] woold e fost barn [juse] as e ags frst
prodluced and te be a first fruit of the womb and to Lake the birthrighl
[as ‘1 deserved ] according fo the [aw.

Rashi 15 cleatly descoibing a stack mechanis.

EXER{IGES

I, Find a permuration z whose graph fI(m] is a chordiess pentagon plis
smie isnlaled vertices,

2. 1Tsimp the duta structore supgested in Lhe fext, write compufer programs
toimplentent Alzorithms L1 and L2 and test them oo the examples given
in this chapter.

A Thises Hm] always have some isolated vertices™ Prave that if Af[x] has
cractl¥ ane isolated vertex ther HM|rl = Glm) but of coasersely [see
Chapler 7).

4. Show that if the aofpnt of Alporithmm 112 15 used ws the inpul ol Al
garithm 11,1, then the resulting composition may chage the set of chonds.
Muocify Alzorithm 112 g0 that this does not happet.

% Hy an arbitrary comention we have discussec sorfing a permiiatum o
in a4 parallel syslem of stacks from righs to left, e prohlemn of sortimg o
fram left o right* i cquivalent W forming o from [1, 2, ... from cight to
left, 1o this cuse one should stody e coloting problens on the undivected
craph A7) m] having vorlives §1, 2.0, 0} with & and j adpacent i there is &
such that j<j<k and = "=, ' = 5 ' I peneral the cheamatic
nummbers of ] | and 19 7] are diflerent,

Fuwennld conzree Aranand 1 laes.
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Let the function g: i +x - 1 i act on the labeled veriices of a graph®
and be composed with other permulalions in the obviows way, Also lel
0 — 0 G B[] for some wb, Prove the following:

) pel¥[a]=Hlprm:p]
(i) pod|z]=prmapl,
(ii) = ¥
6. Let the graph ff{xn] be properly colored wsing ¢ colots. Show that the
frllowing alpacithun correctly sorts w using a netwaork of § stacks i pacallel
Faput:  The permulation = with the numbers propedy colored.
Outpmt: The permotation f1, 2, .. 8] sorled.
Method: The t stacks are in ong-to-ane correspondence wrth the colors,
The algorithim is as Gllows:
hegrin
ka1,
while & = o do
Ik cidn be toved onto Lhe cutpul queoe e
mwve & unie Lhe Lh ol queeuee |
alsx

e rhe mesl menbet of e inpul gqueas vobo the stack of 1ls ol
vl

7. EBhow that 2 permutation £ can be sorted m a network of £ stack in
rrralicl under the resteiction that all numbers mise be loaded into the stacks
before any unloading cun begin if und oniy il its reversal = can besored in 2
network of & queues in parallel. Give some additional eguivalent con-
ditions.
8. Drove that Algorithro 1.3 correctly calculates the adjacency sets of the
graph & = (F, £} of intersecting chords of a cucle. Show that the algoreithm
can be implementad toorun o OF| V| = | &)
% Lei f{n) bethe length of the shortest string of mambers from £1,2,....6"
which contaios all ! permutations as subsequences, Prove that fin) < #* —
2 1 4w = Dikowtas and Hu [LY75]0
10, Delermine the compulational complexity of Algorithm 114
L. Dwtermine Lhe computationad complexity of Algarithm 11.5 taking inta
consideration that each subgraph ., must be caloulated.
12, A ciecle & with choeds adeits o egregzor if an additional chord may b
added to e which will imtersect every other chord.

(1) Prove that &7 15 a permulation graph if and only il £7 s the inlerseclion
graph aof u circlz of chords which admils an eguataor,

(i) Give an example of a circle ¥ which does set wdmit an equator but
whose inerzection graph is a pormutalion graph,
13, Thesequence of operations used in sorting the permuatation [ 15,4, 1.6.2]

“denuetnd o -
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as ihSecton 111 can be ghbreviated by the coda
PRI ET. T G ST S . P S

whore &) slaods lor "move the next number from the input cuene cnta
sleck §7 and X, stands lor "move the nomber A 1he cop of stack 7 to the
oulput gquenc.” Some segqueheess of 5% and X W spealy meaningless vpera-
lioms; for example, lhe soquence 8,55, X8 5, XX ) 5,X, cannot be
carricd oul.

We call a secuence of 8% and X" admissibie o IF conlains the same
numiber of &% und X5 for coch integer & ound 100 speciflics no operation hat
cannol be performed. Formulate a rale which distinguishes between ad-
missizle and madmuissable seguences (Kouth (1969, Exeroise 22,1, Mo, 3Th
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CHAPTER 172

Perfect Gaussian Elimination

1. Perfect Elimination Matrices

Let M e a nonsingular a w ¢ matrix with enteies m,; in some field like
the real numbers), We reduece M o the dentsty matrix | by repeatedly

{a) choosing a nonzero coiry sy; Lo el as phugr and

fb} updating the matrix by using clenwnlury row and column operalions
to change m;; to 1 and ta make all other cirlries i the fh row and fib column
cyual e (0

This familiar technique is called Gawasion elimination* and can be found in
mest hooks on lingar algehra.

When performing Gaussian slimination an o sparse matrix, an arbitrary
cheaice of pivets may result e the filling mv of sone zero positions with
nonseros, One may ask, when is there a sequence of pivots which inducgs na
Wl-in? & perfect elivimation soheme [or Bl s a sequence of pivots which
reduces M 1o L withoot ever changing a cere entey (even femnporarily)y to a
netere. Such a8 sequence does not exist for every matrix, When M has a
perfeel climination seheme and M ois glso sparse, then the sparseness can be
praserverd thronghaoe! the reduction. This is imporlant far the storage
requirements of M since 4 spatrse matrix s most eficiently represenied inoa
cotnpuler by lstityg its noeed Srloes.

* Tnopractce ome wiiez]ly “xeres vul” just the i culomn postpoming calvulabons on the
ocln oo wneil che crnd, o which time back subscitation iz wscd. For ooy purposss the mathnds e
the sane,

254
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YN A I - v Lo 0 o 1o g :}'\,l
Bac (I TR noE -1 (T T a1 o0
. - — . W q L
Cluoiee: [ VR B Jd—=1 5 =1 oo g —a LI CO I
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4111 L1110 2100 Lo o o}
Gauold I VI L on IR /I L
Choice: {1 0 Lo f Y1 ool 7 oot o] 7 loe 1o
Lo ool o9 0l 00 01, r}urrl_,ﬂ

Flgare 12.1, Twc reductings of 4 matne.

Examples.  Two reductions of the sanie matrix are given in Miegure [2.1;
the first iniroduces new notiseros but the second does not. What causes the
fifl-inn? 1 is 2asy 1o see that pivoting on a nonzero entry my, wili introdoce
some Bl if m,, £ G and my £ 0 but sy, = O lor some 3 aned ¢ (sec Figune
[22). The malris in Figuse 123 s nensinguiar but has no perleet climination
scheme. Any enfry chosen as the firgd pivat will cuuse some fill-ing A tri-
diagonal mulrix, ay indicated in Figure 12,4, his 3 number of perfect elimina-
{ion schemes, ong being (the positions on Lthe main diagotal ordered from top
1o bottom,

Figure 122, Clhoowming pomibien (7 s poval cesulls m Elling o posilio (s, o, Thus the
chowee s unaceeptu ble. The astersks mdicale nonsecos.

1 Ed +* II
e !
1 1 a0 0d 1l oot
J01 1 0L # o=
T1 1 10 S
L a F b0 i
I o a0 b 1 I'. +
Figmre 113, A mucris witl o poifsel Figure 124, A leidiugcoalioalis. The

cliesration sclems. aszerisks indicats the nomrern ontitics.
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Throwshout this chapter we shull aseume that ¥ s nonsingular and that
arithmelic goinciderce does not cause new zeros (0 occur during the re-
ductions *

Let us Jook al the problem praph theoretically.

Fho graph GO} of M has vartiess oo, 1y, with g, being an edge if and
only if i £ jand entey wy, # 0. The bipartite graph B(M) of M haz verncos
Toooaxand v, cortesponding to the rows and columns, respec-
lively, whers x, s adjacent 1 v, ifand only ifa, 2 0. Weacall x, and y. part-
rers; thar coreespondence with vertex », of GUVE 15 obvious,

2. Symmaetric Matricas

If M is & syoimetric matrix, then G{M) is an undirected graph. In this case
a nerizero diaponal enlry my is decoplable as o pivel if and only £ & 15 a
simplicial vertes ol MY, (W Dy ) In facl, pivoling on my 15 cquivalent to
making Adjis) inte 2 complews sybaraph by adding any missing edgey and
deleting ¢, Thercfore, the pecfect elimination schemes for M under the
restriction thut

(R)  all pivats are chosen along the main diagonal whose enteies ate each
AONZeq

correspond precisely to the perfect vertex elimination schetes of 7MY By
Thevrem 41w oblain the cquivilenos of slatements (3 and (idiy, Grst
oblained by Rose | 14707, in the llowing (heavem. We present a generaliza-
tion due 1o Columr bic [LY78L

Theorem 12.1. 1ot M be g symmcloc madns wilth noneero diagonal
entries. The follosying sondilms are cyaivalen:

fiy M has u perlec climingtion scheme;
{17 M has a perfect elinuinalion scheme under resirelon (R):
(Y G(MD) is a triangulated grapl.

Bolore proving the theorem, we must introduce a bipartile graph meods]
of thi climination process. This model will be used here and throughoul ilhe
chapter.

Anedpge 2 — xy ol 4 bipartite graph & — (L7, F) is bistnpliciad IF Adi(x) +
Adji ¥ induces a complets hipattitc subgraph of 71 Take note that che

* Actually s sefTeisng 1o aasums that oo considears | pew zomo will b foond ina gos.tien
wlen wewant ba chones 4y pivob{egpecting it be norzere) e L Lhe Lime when we wiast tochonss
iL.
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N A2 it A
K A1 ¥ Y
Figure 125,

bisimpliciollly of an sdge v retained a5 o hereditury property 0ot induced
suhgruph. bet @ = [, &5, ..., | be a sequence of pairwise nonadjacent
eilges of 41, Denote by S, the set ol endpoints of the edges ¢, . ¢, and let
Sy = A We say thal g s a0 perfece edge eliminarion sepeme for Bl cach cdpe
e, 1% hisimpliciab in the remammg induced subgraph Hy._ - und Hy o has
no edge. Thys, we regard rhe elimination of an edge as the removal of ]l edges
adjacent to g For example, the gruph in Figure 123 has the perleer edge
elimination scheme [, ¥, ¥q k. ¥o Py, ¥4 ¥4 ], Watice that inttially ¥, 3, is
nol hisimplicial. A sehsequence ¢ — [ey. ¢y.---. & ] of o (k = r)iscalled a
partial scheme. The nolations A — ¢ and Ay, _5 will be used Lo tndicate the
sime sabgraph,

Constder the bipartile matrix (M) of M. It is evideot thal bisimplicial
cdpes of B(M) correspond procisely to acceplable pivots of M and that
perfect edpe climination schemes for (M) correspond to perfect elimination
schemes for ML (Sce Figure 1227 again 1o conjunclion with brgure [26.)

Praof of Theerews 121, We have already remarked thal {ii} and {iti} are
equivalant, and since {ii) trivially implies (1), it suflices to prove that {1
implics (i), Lel ws awsume that M ois symmelric with nonzero diggonal
cntricy, and leles be o parfect edge elimination scheme for B(M).

Suppose GEM ) bas achovdiess eycle [v, . v, ..., 7, ¥, . This corresponds
in B{M) Lo the configuration B; (Figure 12.7) induced by C = {x_, ¥, .....
X v b Congider the frst edge ¢ of o involving o vertex of O Clearly, ¢
involves only one vertox of C since aooe of the cdges of B, (s bisimplicial.
Assume without loss of generality that ¢ = x_ v, [or some vertex y, ¢ C, and
Izt x, be the partoer of v,.

Figure 12,6,  The odpr xyy, is oot simphcial. A broken line indicaies o nonedge.
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Figare 12.7.  The indizated subgruph 8. ol BN

Since i Bp, Adilx,,) — 1¥a, Yeuo ¥ b and Adiiy, b Adi(e, 3 Adigy, )
= {x,,}, the simpliciabty of x; p, implies that £ ~ Adj(y,)} — 4x,,} and by
symmetry C o Adj(x) = 1¥, |- Thus, we have that x, y., and x, . are edges
but x, ¥, is not an cdge, which conlradicts the bisimpliciality of x, v,
Therelore, Gid) i3 riungulaled |

Corellary 12,2, A syounetole moakrix with nonzera diagonal entrics can be
tested [or possession of a perfect elimination scheme in titme proportional ta
the number of nomzero ¢ntrics,

Froafl  Let m denote the numiber of potzero cotnes of mateix MM is
stored in QUm) space, then the data stroctures nesded Tor applying Algarithms
4,1 and 4.2 to G can be initialized m (0} time, The result lollnws from
Corollary 4.0 |

Theprem (2.1 characterized perfect elimination for symmerric matrices.
Moreover, 1t says Lhat G suffices 1o consider only the diagonal eatries.
Haskins and Rose [1972] treal the nonsymmielric case uader {R), and
Klcitenan [1%74] settles some guestions lefl open by Haskins and Rose, The
unrestricted case was finally solved by Golumbic and Goss [1978], who
introduced perfect elimination bipartite graphs. These graphs will be dis-
cussed M the pext secton. Addivdenal backpround on rhese and other
tnatrix elimination problzms can be found in the followng survey articles and
their references: Tarjan 19707, Georpe [ 1977, and Bed [1977]. A discussion
of the complexity of algonthms which caleulsls minimal and oimicsum
Ul weder (RY can be Tound in Obhisoki [H76], Ohesoks, Cheong, and
Frjisuwa L1976), Ruse, Taron, and Lucker [1976]. and Rosc und Tarun
[1978].
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3. Perfeet Elimination Bipartite Graphs

The general problem of deciding if a given [nonsymmetric) matrix M hkas
u perlect ehmination scherme can be answered using the bepartire graph model
wtroduced w the preceding section, A perfect elimination bipartite araph is
one for which there exists some perfect edge elimination scheme. But how da
we construct such a scheme? Is it possible to choose gy bisimplicial edge.
elimipate It, and then continue from there to constynet the remainder of a
scheme? The next theorem answers thus question in the allicouative, (Through-
out tna seetion the term scheme will mean perfect edgw ehmmenation scheme,)

Theorent 123 [Golumbicund Goss 178 . e = xy is abisimplicial edge
aof a perfect climination bipactitc graph # = (X, ¥, E), then Hy_ ;v -5 18
@luo & perfecl elimination hipartile graph.

Praafl  Wu wish Lo show thatl if i has a scheme [e), e5,...,8,] then it
alio hus o schome beginning with ¢ Lol e = %y, with x, ¢ X and y,e ¥
(1= 1,2 ....n) and deline H; Lo be the subgraph of H indoced by X —
LIRS TEPE I o T T

Caze . x = x;and y = y; for some L Bince bisimpliciality of un edge s
preserved in induced subgraphs, it follows that [e,epa. .. 8o 1 8o qer -0 €]
15 a scheme.

Case 2. x=xaid p = y;lor some @ # /. We may assame that { < § by
inlerchanping X and ¥ I neovessary; heove [e, e, .00, 02, 18 & partial
schemne.

Consider an edge x;, v, for same £ < A < f. Suppose ilere cxiss anm = &
such thal x, v, and x; 15 are edees in /. We would then have the following
implicalivns ;

X ¥; bieimplicial in 5, implies x,», = F,
sp by bisimplicial in H implies x 7€ E,
£ ¥; bisimplicial in 7 iinplics x,,%; = E,

This shows that e — [, 4. - &, 840 -0« 51 ] 18 a partial scheme,
Similarly, the [ollowiog srgument shows thal ¢ = 5% 18 in H ound s
simpliciad in H — #. I x; % ond 5,3 arein E for 5,1 = j, then

wvy bistmplicial o B imples v e £,
«;y; bishnpliciad in I amphes x, p; € F,
¥y, bisimplicial in I implies x,y, e E.
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Smce (f — gy — [¢] = ;. we conclude that

(e ot g B L8 8 ]

LRl Rl 20 1
15 4 scheme,

Case 3. Ome of x and p is not among the x; aod »,. Assome that x = x,
and p # y, for some ¢ and for all j. By an argument similar to, but shorter
thar, Case 2, [ec ey 0o p 8ra gn -0y 0, | 1 & SSherme, |

Corollary 12.4. The greedy algorithen of repeatedly eliminating a
simplicial edge of the remaimng graph (thus slso removing all edpes
adjacenl to 10 until no odge romains will soceoed if and ondy il H 13 a perlect
climination bipariitc graph.

Progf.  Assume the corollary Is teve for all subgraphs of I TF H is not
perfect ebrmination, thent the algorilthm will sarely [ail {ie, al somec time
before all cdges are removed, there will be no bisimplicial edge). ITLF is per-
{ecl eliminacion, then climingte some hisimphcial edge ¢, Since IF — [¢] ix also
perfect elimimation, we have, by induction, that the algorithm will saceeed. |

A pair uf edges ab and ed of H — (L7, E)is seprable if the suberaph induced
by them is isowmoerphic to 2K.. The graph H is said to be sepurable if 1t
contains & pair of separable edpes: oltherwise [ s ronseparadle. Clearly a
uonseparable graph has at most one nontrivial connecled componcni
Furlhermore, any induced subpraph of a nonscparable graph s anon-
separable,

Thearem 135 (Golumtic and Goss 19787, IfFH = (X, Y. E) 15 a non-
sepurable bipurtite graph, then cuch mortselated perrex = is the endpoint of
sorne bisipmpliciel edge of H.

Suppose thal z s g ngnisolaied vertex which is nol the codpoint of any
bisimphivial edge, We may assume Lhal 22 ¥ lel %z be any vige, W shall
construct an minie chan of subsets of X

Xogo X, o - X
which will contradict the finitengss of X Assume we are given subsety
Xo=ixg. 5. ...,% X
ancd
Fe=tz by .opmr= ¥
s1ch that
xebesi<j foralld=ij=<k
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anid
Xzel foral 0= i < 4

(The arbitrary edee 5,z will skaet the induction when & = Q)

Eince xz i3 nod bisiplicial, there exisl vertices x and v (# z) such 1hat
Xy xceEbut xpe E Hence, pe ¥. Moreover, for all 0 < § <7 k the edges
X Ve And xp p are nof sepacable, implving that v ye E, Bot xv¢ F, s0
x ¢ X, Therefore, by regaming x = x,,, and ¥ = 1, and setting X, =
Xoudn, dand Yy, — ¥ oy, 0w are ready for the e iteration of
our gonstruction. This glgorithm goes on indefinitely, hul X and ¥ are finite,
a contradiction. Thus H must rave a bisimplicial edge with £ us one of its
cudpoints, |

Corollary 260,  Every nonseparable bipartite praph A is a perfect elimi-
nation bipartite graph.

Prewif By Theorem 123, it suffices 1o show thal ffhzsa bistmplicial cdge.
The corollary follows from Pheorem 12,3, I

We have accomplished {wo things in regard to perfect slimination hi-
partitc graphs: We have provided an algarithm for regognizing them, and
we have proven g sulliciant (but not necessary) condition for them Being
perfect elimination, however, cattod lell us much aboutl the stencture of a
graplh. Indeed, Iet H be any bipartite graph withh vortices s, g ..., oy gdd
Bewe vertioss woy, wa, oo, W, ald connect o, with wy for eaclk i=1, ..., a
This gugmented praph is a perlect elnination bipaci e praph and completely
masks Lhe strociure of A I [ellows (tem this negatlive resolt thal thee
cannot gxist 4 eharacterization of porfect climingtion bipartitc graphs
Lerms of some forbidden configarations or subgraphs.

4. Chordsl Bipartite Graphs

lu the preceding scetion we have successiully gencralized the perfoot
efluination aspect of triangulated graphs, This raises the foblowing question:
Es lhere an appropnate notiva of chordatity for biparlite graphs? A loabgu-
lated graph muy have 3-cycles, ol any Jonger cyele must bave @ chord. Ta
bipartile graphs the smallesl allowable cyele has [englh 4, so0 we muke the
(ollowing definilion. A bipartite geaph Is chordal Iif every cvcle of length
slriedly gressler Lhar 4 has a chord,

Hemark. Every nonscparable bipartite graph is chordal biparliee.
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Separable edges can be equivalently defined as follnws: A nair of edpes ob
and od of & = {F, E} is separable T there cxists a sel § of verlices whase
remaval fromm {r causes o and ed Lo Tic in distingt commectad components of
the remaining subgraph G 5. The s2l X is called an adge separator for af
atul od; & is minisal if no propar subset of § is an edge separatar far of and
od. The next resull is analogous 1o Theeremn 4,10

Theorem 12,7 (Golombie and Goss [1978]) A bipartiwe graph H —
(X, ¥, E} is chordal hipurtile if and anky if every minimal edge separator
induces 4 complete hipactite subgrapt.

Prowf. Let © = [y, 69,0, 5, 0] bo 2 eyele of H having even Tength
k = & Consider the sel § = Adpea) 1 Adie,) {es. 6,0 Clearly § separ-
ates vo 1y from veeg, und 870 = {n, 1) Let § = 8 be a nunimal edge
sopardlor torvs cyand gy e, Thusey € Sand o, 2 5. I0Y iscompleic hipartitc,
then o, ey 35 4 chord of C doe 1o the opposile parity of the subscripts,

Corversely. let T'be a mipimal edge separator and let 1, and 1, be con-
necled components ol the praph remaining after removing 1. Let v and y be
ary pulr of vertices of T ol opposite parily. Since i, und I g are connecled,
thers <xist minimwm leagth paths [x, o, o, o0, 9] and 3 by, Bl oo, x)
with o2 A4 amd B e B Because these paths are of odd length =3, they jein to
pive a cyele of length =& I thes cycle has a chord, it must be the edpe 2y,
siilce by constriction oo other pair may be adsacent. Hence, T will be a com-
plets bipartite ser. |

The next theorem generalices Lemma 4.2 with scparability dn bipartitz
graphs correspanding to nonadjsceney im pneirecled graphs.

Theorem 12.8 (Golumbic {1979 Let I be a chordal biparvite graph.
Il 41 is sepatable, then it has at least two separable bisimplicial sdges,

Froaf.  Assume thal H — (X, ¥, £} has separable edpges = and fi and Lhat
the theorem is truc for all graphs with fewer vertices than A, Lel § be
minimal edge separator for 2 und fwith H | andd { ; being the connected com-
ponents of 1, 4 containing o and £, respectively, We clwim H,, g hasa
hisimplicial cdge whose endpoin are both in A

Case 1. H, .o & sepaurable. By induclion H, |, has 1w separahle bi-
simplicial edges x, %, and x; .. Since $§ is complete, al most two of the four
endpoints are in 8, either those with the same parity or those with the same
subscript. Suppose x, x; £ 5 and ¥, ¥, £.4. Take v mimmum l2ngth path
[¥1stgeer ity 31 T, and a minimum length path L. by, ..o by, 2]
with the &, in Hg. Gluing these together we obtain a ¢ycle of length at Jeast 6
which must have 1 chord. Bul minimality permits only the chords x, . or
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Xy, contradicting the separability of x) p; and x; ;. Sionlacly g, and vy
vaneol both be i 8 'Therelore, H | ; has a bisimpliced edge whose endpoines
arc both in A.

Case X H .5 s nonsepareble L2t )¢, beany edge of A | By Theorem
125 there gxist verlices ¥, and xq such thul x v and s va are bisimplical in
H .5 Suppose both ¥y and x, are in 8, lor olherwise the laim s true. Then
wp argd v are adjacenl sinee 8 15 cotiplete. The bisimpliciality of &) 1, Imphies
that Adj(x,) = Adj, L dlx.), ancl the bisimpliciality of <.y, implies that
Adj_sfan} = Adjixn ) Hemoe, Adifxg) — Adiirzd — Adiystxe) + Adile,
which we bnow nduces a complete biparctite subgraph Thus, 3. & also
busimnphicial o 44 o, so the claim for tus case is proven,

Finally, a bisimplictal edge of H ;| . whose endpaines lig in 4 5 also bi-
simplical w2 osinee AdjlAy — 4 = 5. ‘Lherefore, by the claim, I has a
bisimplicial «dge ¢ whose endpaints fie in 4 and, similarly, a Bisimplicial
edge ¥ whose endpoints liein B, and &' and § arc sepurabic. |

The prool of Theoren 12,8 actually @ives a slightly stronger rasnlt,

Coreliary 12.%. Let If — (X. ¥, £) e a chordal bipartite graph. IfS s a
minimal sdge sepurator for some pair af edpes, then {4 has 2 simplicial cdge
in gach nontrivia! conngeted component of H, ¢ .

Thearem V280 (Golumbic and Cross L1978 Livery clundal bipactice
praph is & pesfect ehdnalion hiparile graph.

Proof.  Since chordal Mpartiteness s o heredilary property, il 1y suliicieni
to show that a choedal Sipactite graph T has a bisimplicial edge. Applving,
Theorem 1225 for H nonseparable or Theorom 128 for F oseparable, we
obtiin the desired result, |

Unlike the case of riangulated graphs (Theorem 410, the convense of
Theorem 12,10 1s Talse. Lach of the edpes ow, in Figure 128 is bisimplicial,
and lhe eliminazion of any one of thein breaks the 5-oyele. Nevertheless, we
do bave a necessary and suthoient condition For chardality in terms of perfect
glitmination by adding a hereditary condition.

Corollary I2.EL. A graph is chordal bipartite f ard oaly  every induced
sufrproph B perfeer shwanatton bipareita.

Froof. I H possesses a chordless cvele O of lenyrhe strectly greater than 4,
then C would be an induced subpraph which s not perfect clintnation. Con-
versaly. if H is chordal bipartite. then so is every induced subgraph HY, and
by Theorem 12 1}, B is perfecl climuation. |
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"
" W,
e, #y
",

Figure 128, A pertect elitnananinn bipaetite grapk wrichis noo chardal. The evele is braken
when ong o the cdges w15 elimemated.

Summary

We have presented bipartite generalizations of triangulated graphs accord-
ing to twao important properties: parfect elimnination and chordality, Although
these netions do nol coincide in Lhe general setting, both do extend certam
aspacts of teia ngulated graphs Pedect elininatwon ipartite praphs correctly
mmodel the application to Gavssian elunination with ne fill-in, Chordal
bapartite graphs satisly the separation theoremns analogous to these of Dirac,
Alan Hofftnan and Michel Sakarovich have recontly discovered that the
chordal hipartete graphs give a charvacterization aof the matrices in an im-
partant class of Timcar programming probdems for which the greedy heuristse
approach gives an optitmum solution,

EXERCISES

b, Verily thal the mateiy below has a perfect eltinination scheme but dees
et Dave one umeder restriction (R

[ LT I
211 04
1 10
4 | 0 1 1
LT R R | |
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2. Let & = (), F} be an undirected graph with vertices p,. v,. ..., &,. The
bipurdte graph B{G) of O has vertices xy, 2, ..o x,oand vy, Ve, oo Fay
with x; adjucent o v land only if i = jor re; e E
(1) Share that ol B{dr) is chordal bipariite, Then 6 s a rigmgubiled graph.
fiil  Forwhich of the tiangolated geaphs in Figore 12.9 5 B{G) et chordal
bipartite”? Fisd o minimal edge sepatator whoch does not biduce a bipartite
cligue,

Dipgure 124,

A Consider the graph F constructed as follows: @y, ..., a,.a,] amd
(B b by are vertex disjoint chordless oveles with weven, and g; b is an
edpe iV E — f = | {mod 2). Show that £ 15 not a petlect eliminacion bipartite
gragh [or o = &

4. Lel Ff = (X, ¥, £} be o perlect eliininutioun ipactite graph with perfect
schieme o For ay e £ defline the deficierney ol xpm G4 1o e

Dixyvh = lab ¢ Ela, bre Adi{x) + Adjiv!.
Show that & 13 also a perfect scheme for tho graph M = (X, Y, I+ Bix ).

Suppose you mudi a stupid pivel cheiee and cansed some fill-in on your
perfect elimination bipartite graph @ 18 all hope lost? Mo, vou can sall ¢on-
tmuc perfectly, as the next exercise shuows,

5 UM =1{x, Y L) i a perlecy eliminution bipartite graph and xp s any
edge, then ibe x v-elintinot fin graph

Ho =X s ¥ = [ By iy oo+ Blxp))

is also perleel climination. (Hint: Use Theorem 12,3 or modify its preooll) [Hr
I Ihe perfect scheine for M owioch wos mispluced whean xp was stupidly
climinatedd. how can 7 be cleverly moedilicd Lo give u perfect scheme for H 7
6. Prove the cluim o case 3 ol Theorem 12,3,

T LetIf = (X, YV, Iy be a bipartite graph and Jec F' — (X, ¥, Ky denote it
bipartite complemcnl: that is, for all xe X and ye ¥, xpe Bl xp e E
Prove the Jollowing: The graphs I and A ure both chordal bipartie IF and
ooly il H containg no induced subgraph somorphic to O, 3K, or (0
(Golunintie and Goss [19787).

8 Lel (5= (F. £} be an onelirecled graph and kel 367 be s bopartite
graph (see Facrcise 3 For 8 < Folet BUSY — {x |60 81 o pfere N6 Prove
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Lhat 5 is o minirnal verlex separator of G i and andy il BS) s a minimal edge
separator of B0 (Galumbic [19797).
9. The Venn disgeam in bigure 12,10 has nine regions reprosenting sl
possibilitizs Tor a hipartite peaph to sutisly or nol satisfy the loflowing
[ropertias.,

P.E.R. The graph is a perfect elimination hipartite graph.

C.B. The graph is chordal biparine,
{I.E.B.} The bipartitz complement ol the graph s perfect elimination bi-
partile

(C.B) The biparlile conoplement of the graph is chocdal biparliee.
For cach region give an ckagmple of a praph which lives in that region, (One
sodation @ shown in Appendix E, but try to find your own examples without
referming tor it.)

v
F—C.B.

——FEER.
\—Hi paetite Grophs———

Figmre 12,140, Hipartite granhs.

10, Let ff ={X, ¥, E) be a bipartite grapl, and let G be the split graph
ablained fom If by conouoling every puir of verlices W ¥, Prove that H s
nenseparable il and oniv il G is a threshold gpruph. For an application, see
Chapiter 100, Lxercise 15
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Appendix

A. A Small Coflection of NP-Compiete Problems

ORAPH COLORING {decisinn version)
frstanee:  An undirectad graph O and an integer & > 0
Ceestior: Taopes there sxist 1 proper L-coloring of 7 FEaquivalently, is
¥ = i

GRAPH COLORING (opiimization versim)

Frstames: Anoumditecied graph
Craesiion: What is {07

CLIGUE [ilecisinn version)
fustance:  Anundirected graph G and an inteper & = 0.
Oyestion:  Does there exist a complete subset of vertices of &r of size &7
Eguivaletitly, is ndls) = &

CLIQUE (optimization version)
Instance:  An undirected graph G
uestion:  What 5 (i
STABLE SET {decision version)
Instunce:  An undirected graph & and an integer & = 07
Quesrion:  Does (7 have a stable set ol sice &7 Lquivatendy, is 2(0) = &7
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STABLE SET {opimmization version)
Inatawtce: An uodirected geaph G,
fheestionn What s %007

CLIQUE COVER [decision version)
fustonce:  An undirecied graph & ound an integer & = {1
Questinr;,  Can the vertices of G be covered by & cligques of G Bguivaleutly,
is k() < &7

CLIQUE COVER {oplitirzalion version)
Irstance:  An undirected graph G
Duestion;  Whal s &(00

ODAMILTONIAN PATH
Insrance: Ao unditected graph O with vertices o, 15, .., 5,

Guestiow: Can the vertices he ovdered [v,,, vp., .0 22, ] 80 that 4, and
P, dreadjpcent in frfori — 1,2, . 0 — 17

HAMILTONIAN CIRCUST

Imsramec: An unditecwed praph & with vertiees v, ;. .., 5.

{huesrion:  Can the vertices be ordered [e, ), o, 000, 0 ] 50 that v and
iy, ure adjacentin Glor i — 1,2, .. e — tand i, and Ly, are also adiacent
in 57

STABLE SET ON TRIANGLE-FREE GRAPIS
Instapce:  An undivected graph ¢ having no J-cycle.
Cuestinm:  Whal is «{()?

B. An Algorithm for Set Union, Intersection., Difference, and
Symmetric Diffarence of Two Subsets

Input: Two subsets 8 and T of a whiversal set O whose members ate
numthered sy, w1, o, 5 AlLsubsels are representcd as lists ol numbers {the
indiges of ils members),

CGutpiyr: Thesets S 0T, 58,8 T,T - Sandis Ty (T - 5
Method:  An auxilliary Boolean s-vector B — by, b2, .., 0., Iniliatly
comtaieing only coros, i ased. As the Bst § is scaoncd, B is changed to the
characteristic vector of § (line 3. In theloop4-9, 5~ Tand T — S arelormed,
(5 — T T — 5 is half formed, and B is ¢hanged Lo the characieristic
voclat of § — 70 to the loop 1015, 5w Tand (5§ — Ty (¥ — §) are com-
pleted and § — T is formed. Also B s restored Lo the zero vector,



C. Topological Sorting 21
hegin
1. remgrk- B = {00, ..., 1%
2 milinlize ST =T8T 8- T T=8=[8=TIw(T-=51=,;
LoMwrallizXddak s- 1,
4. Twallj=Tde
5 FA. =1
thei
by, Add flo F T
T b=
vkt
. Add pra T — &
9 Addflots W o - s
10, foralliz Ydo
1, ifs =1
then
2. Add (o ¥ .. T
13 Addite X T
14, Add i dd — o (F — k)
tER ko=
16, remark; 8 = <00, O
end
Complexity,  Assumying no charge for initiglizing 8{line 1}, the complexity
is dominared by che three loops. Thus, the algertithm runs in (4|5 + | 7))
ateps,
C. Topological Sorting: An Exampla

of Algorithm 2.4

Tet us assumce that the graph in Figure €1 is stored as sorted adjacency

lists. Trnitiolly, the DFSNUMBER and the TEN{IMBER of aach vertex is
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Fipure C2

Appandix
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sol b U, f 15 set 1o T.oand § s set to 0] he search begins with vertex 1. TOT-
SORICL wilt calf TOPSORT(Z), which will call TOPSRORTH): when
cembre] s eventually roturned o TOPSORT) L will resume its scan of
Adj{ 1) and will call TOPSORT(S: When TOPSGRTE s finished, the tnain
touline will call ‘TOPSOHT3), ole These recursive calls are dlostrated in
Figure 2 The final values of the depth-first search numbering and the
topolopical sorting numbering are as follxws:
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D. An Hlustration of the Decomposition Algarithm

The decomposition algorithm in Seotion 5.4 a5 applied (o 2 noncompira-
bilily graph is illustrsled in Figore 1M,

R v E ) 7.8 £V, &
1 £
9 -
@ o
i
"
= Fl
£
" Fu
L)
¥
A .
¥ i fr
I
£ ¥
Figute 1]

E. The Properties P.E.B.. C.B.. {P.E.B.Y", {C.B.Y
Hlustrated

Figure K1 pives exampies of graphs suiisfying or not satisfving the follow-
ITyE provperties:

F.E.B.: the graph is a perfecl climination bipartite graph;
C.B..  the graph is chordad bipartite;
(FERB}): thc bipartite complement of Lhe praph is perfect elhmination
bipartits;
{C.B)Y:  the bipartite complement of the gruph is chordal bipartite.
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The regens i Bgure E1 are ilostrated by the piven examples as iollows:
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F. The Properties €, O, T, 7 Iltustrated 27Th

F. The Properties C,C. 7.7 lustrated

Fxumples of praphs which are or whose comploments are compurability
graphs and/or trinugulated praphs:
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Epilogue 2004

1. Intraduction = Foundations and Applications

L thiz Epitoane chapter. we wilf take a “short tour”™ of sumae of the new resalts
in algorithenic graph theory and perfect graphs. So many new ressarch divections
have been the subject ol hivestigation since this beok was first published in
1980, that it i impossible to survey them all. The algorithms and applications
asscciated with structured families of graphs Bave grown 3 matotily o these
24 years. The literature has inerciased tenfold, and the world of perfect praphs
has grown to include over 2(H) special rraph classes. Perfect pruphs now have
their own Mathematical Reviews Classification 03CL7, as so do reomemic and
intersection representations 5062,

We presznt here a sample of tha many sesnlts of the Second Generation of
Aldporithmic Graph Theety from the anthors biased iew. MNecessarily, it must
b only a small fraction of what would otherwise reguize 4 large sequel volume.
Furlumalely, the availability ol sovezal new books, Lsled eaclier in the Prologue
ot this cditien, can alse aid the reader cager W pursue lurther explomtion in this
ared.

The sevtions of this Epllogue are oumbered W comespond with the chaprers
of the book, Our intention s, s with {5 formur chuplers, to send he temder
back to the litevature, Taboratory and librury to contimee rescurch,

Infersection Graphs

We saw many of the early usas of tha intersection graph maode] in the sneak
preview Section 1.3, in the application sections on permutation graphs, inkerval
graphis, and clscwhers in the book, But the volume and scope of research in this
geoeral arca has expanded sigmificantty both from the modeling and alporithmic
paints of view, Scime of theae applications inclyde mobile frequency assignment
(Osput and Hoberts [1983]), pevement deterioration aralysis (Gaftass aod

27
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Memhauser [L9R1]), relational databasss (zee Ciolumbic [19ER]), evoluticnary
trees {see Watenman [19957), physical mapping of DNA (roldberpg, et al. [19935],
Golumbic, Kaplan and Shamir [19294]], container ship skowage {Avriel, Penn and
Shpirer [20007), and VEST circuit design {Tiagan, Golumbic and Pinter [1985]),
lntersection praphs hive become o necessary and imporlanl ool for solving
real-world problems. Mokee and Mebdorms [ 199] s devoted 1o the wopie of
imersecuon graph modsls and their applicaton, We will present severad other
exarnples in this new Lpilogue chapler,

Temporal Reasaning

Cmc of the “tradifionsl™ applications of intcrval graphs is reasoning about time
intervuly, which started with the odginal question of Ha'ds (Scetion 3.1, page
1713, Temporal reasoning is gn cssential part of many applications io artiticial
intelligence. Given a set of cxplicit relationships betwesn cortain cvents, we
wolld like to be able to infer addicional relationships which are implicit i those
given. For exatnple, the transitivity of “before” and “'conmzins™ may allow us to
derive information regarding the sequence of events. Seriation problamns, like
the exarnp.e in Section 8.4, ask for o mappieg of temporal events ono the time
line such thar all the given relatioms are aatisfied, thar is, a consistent scepacio.
Simularly, there are problems of scheduling, planning, and story understanding
int which one is intergsted -n consiruciing a rime lire where each parocular event
or phenomenon o lask corresponds 1o an iatetval representing s duralion.

Allen [1933] introducad a medel for ternporal reasoning using the thirteen
primitive interval relations obtained by considenng all possible ordenngs of their
foar endpoints, Several authors working in AT have studied and adapred Adlen’s
moxle] further, and have incorporated such models into teasoning systems. The
paper by Golumbic and Shamir [1923] has provided a bridge linking some of
these temporal reasoning notions from the Al conununity with those of the
combinatorics conmmunity. Their approach bas been to sinplify Allens modcl
in order to smdy its complenity nsing graph theoretic feclmiques. Wo tefer the
reader to Colurabic [1992] which is a survey paper’ on the topic, witten in the
sarne spicit as this ook, 1L desertbes a nurnber of direciions of curtent work an
reusiriing ghoul e, many of which emploe graph alpericuns,

2. The Design of Efficient Algorithms

Maximum Network Flow Problem

Progress on lowering the computatonal complexity of the maximum network
fow (uaxrr o] problem was presented n Table 2.1 as one of several illustrations

Thiz serey paper alan inciudzs some of the authory newast ilhostralive stome, “Goldie and the
LFuur Beaes”, “Will Allaw pet te Judes o tieee?™, and “Five Sattononious Goluombic Women™,
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of closing the gap between the besc known alporithms and the lower complexity
baund, Iuether impeovement fir maxiTowy have heen given by Goldbarp and
Tatfan |198%] (Anelogin’ie)), King, faa and larjan {1994] fne 1 w7y and
Ulne I0g, ;0 7l Philips and Westhrook [1593] ((relog,, n 1 ritlog ni'Y).
Wi reler the interested reader (o Cook, Cunningham, Pulleyblank and Schreijver
| 199%], Corpun, Leiserson Bavesl, second edition {2001], Goldberg [1998] and
Johnzon and BeGoeoeh [1993],

Although it is not a central topic in sludyving perfect graphs, maximum network
flow algorithms do play an inportant role in certain eptimization problems on
perfect graphs. For exanple, we imvoked its complemertary relative MincLOW
at the end of Scetion 3.7 when skeiching a polyoomial method for fnding 1he
alabilivy number qf¢r) of 4 cocomparability graph, This method has subsequently
been used gs part of the alporithem by Narasimban and Manber [1992] [or the

stability nuwber of tolcrance graphs.

Graph Sandwich Problems

Tn this beok, we placed a major focus on the minimuonm eolonng, maxinmon
clique, and recognine: problems for special families of graphs. Ancther rpar-
Lant ulrorithmic direction has been e sludy of vacivos coroplelivn problans. For
cxample, (e migienmm compleor prebizm requites adding a minimuem number
cdpes to an arbimary graph 7 in order to obtain a new graph ' which satisfies
the desired property T1L such as being an méerval praph or g iogngulated graph,
see (Farey and Johuson [1979]. Yanuakakis [1981]. One motivation for such
completion problens is as a haoristic for coloring &, singe @{G) < yt&

Another sariation of the corcpletion problem, called the mupdh semdwick
probiem, 13 defined by allowing enly some of the nencdges to be elipgible to
be added to the aripinal graph. Specificalty. piven a graph & = {F, £y and a
subset £y C E of {oprional) nanedges, we ask whether there exists a completion
G = (F, &) which salisfies the desired property [ suchthat £ T £ C £ Ey

Sandwich problems arise in applications where only partial information aboul
the graph is known, The interval graph sandwich preblem was shows w be
NP-complate by Colwrbic and Shamir [1993]. 1t arises in molecular biology in
problems of physical mapping of DNA and in problems of termporal reasoning,
gimiilar in spint to the carly work deserthed no Applications 8.2 and 83 o
pages 182183, For exanple, see Atking and Middendodf {1934] and Golombic,
Kaplan and Shawmir [1994].

Golumhic, Kaplan and Shamir [1993] irvestigates graph sandwich peoblems
for other special familiss of graphs. Specifically, the sandwich problem i3
pelynomial for splil praphs, cographs, and threshold graphs, bu 1s SP-completc
for chondul graphs, proper interval praphs, comparability graphs, permutacion
graphs, and others (see alsc Golumbic and Trank [2(04, Sections 4.7 4.8]).
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There % alse 2 body of Lterature on graph modification penhlems, where one
may add edges and delote edues to transform a graph (7 iuto 2 modified graph o
satiafying a property I1. The problem is to mirzimize the tote] number of additions
and de:etions, thus chanping the edee set as litle as possible. For a good survey
and introduction to chis ares, see Natanzon, Shamic and Sharan [2001].

3. Perfect Graphs

The Strong Perfect Graph Canjecture/Thearem

I May of 2002, the announcersent was ade that the Suong Perlect Graph
Conjecture (SPGC}) of Claude Berpe had been proven by the tsam of researchers
consisting of Muds Chudnovsky, Neil Robertson, Panl Seymeowr and Robin
Thomas [2002]. This most Important reaudt, atber 22 years, is convently submitted
for publeasdion.

The lerm Berge wrapd has bren delined ws an undirecied graph which contuins
ceither an odd chordless cyele Che (o odd hole) nor its complement T
{low & 2= 2} {an odd antibele) as an induced subgraph. Thus, what should siow
he called the Strong Perfect (rraph Theorem states that an undirected praph is
perfect if and only i it is & Beree graph, the “only I7 direction being immediate.

During the decades proveding this selution, 8 large body ol research developed
imvolving the struenwe of minimally imperfoet graphs, (scc Brandstide, Lo and
Spinrad [1999 Chapter [4]1. The spin-off effect of these imvestigations has been
the birth of many new childeen in the world of perfect praphs, both new problemes
and # generation of young resesrchers, The eobectons edited by Berge and
Chdtal [1954] amd Ramiree-Alfonsin and Reed [2001] provide 2 gond cross-
section of the work in this area.

Alhouwgh proving che 3PGC was a major mathe:matical challenge rather than
af afgorithmic one. it ralsed severz] related intevesting algorichmic questions: 1s
there 4 polvnecrial time algotitho-n which recoonizes whether o1 not ar undircoted
ceaph (7 has an odd chowdless cyele of length = 5% Is there o polynomiial
time algorithm which recognizes Berge graphs® The second problen has been
solved, by Chednovsky and Seymour [2002], Chudnevsky, Cormgjels, L.
Sevmour and Vuskowié [2002], Cormegjols, Biu and Yuikowic 2002, und ewalls
publication. Combining this algoithm with the Strong Perfeet Graph Theorem
sluwwrs that there fv 0 pofenomind time aigorishm wiich recogrizes wheiler or nol
t praph s perfecs. A solution to the ficst question has so far not been tound (as
ol speizg 2003, but when'il a selutlon 8 fourd, it will give an alternate sooution
tor the second question by applying il le the pruph and s cvwplement.

Finally, Vasack Cavital maintains u perfecd websdite® which comtains a leag List
of references imd historical nores. A wsefi] teehnical report by Houpardy | 19494]

2 gl meiwe el perg e cSbvinaliperfec! prakien s kol
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lists, for cach wrdered pair ('), C+) ol Y6 classes of perfect graphs, whether the
class O 15 a subset of the class £h_ und iF this is not tae case, provides and exam-
ple of a graph which is in € but not in £5. An en-lime tool for checking the chass
conta’mment for a larger set of mord: than 200 grph classes has been developed
at Rostock University ¥ [t also contains the known complexity Tesalls tor recop-
nitinn of the classes, the maxinnrn stable set and dominaton problems. Several
urresolved contaimrents and complexitcs remain as oper problues. Fipioe 133,
at the end of this Epilogus (p. 303), ves o complete Qierarchy of some of the
main classes of perfect graphs, ondered by inclusion (repointed from Golwmbic
and Trenk [2004] where it appeass together with separating examples),

Stable Sets

On the stble set problem for perfoct graphs, there hus also been progross,
CGirtitschel, Lovisz and Schrijver [1931] tunve shown that the ellipsoid method of
solving linear progratnming problems can be applied to abtain 2 polynomial al-
gorithm to find max;mum stable sets and mininmm calodngs for perfect craphs,
Alsp, sinee 7 is perfect if and only if its complement & is perleet, Giis same
approach can e used to {nd maximum cligues and minimom choue covers,

The major smportance of thiz regull ig thar it generalizes what 2ad been known
for many classes of perfoet graphs. Although the compiexity of the algorithm is
polymoenial, ot may not he practical to implement. Az the agthars poirt out, itis
not intended to compete with the special purpose algorithms desigred o solve
these problems for interval graphs, cocomparghiticy graphs, triangnlated graphs,
and other classes of pezfect graphs which so often atise in applications. lur

further reading on a.gorithms for the stable set prodlem snd the clique probleny
goa Tlestz [1993] and Johoson and Teick [1995].

4. Triangulated Graphs — Chordal Graphs

Throuehout this book. we have foliewed the Trench tradition by wsing the
name friangwiaed graph for an andivected graph containing no chordless eyale
Cr (& 2 43 Lo chis section, however, we will use i popalar syootym charda!
graph. Twy important vanations of chordal graphs will be briefly presented here,
namely the stoongly chosdal and the weally chordal graphs. As thelr names
indicate, every strongly chordal graph is chordat, and every chordal grph is
weakly chordal. Weakly choedal grapias are also periect graphs.

* bt uete i s ki sushock e
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Strongly Chordal Graphs

Strongly chordal graphs, mlrodeced by Farber [1985]. specialize chondal
prapks in sevezal ways. They are charucterized by several agquivalent definitions
usimyr chords of a cyele, torbidden subgraphs and elimination orderings, We will
alse eneounter these pruphs later in Section 12 of this Epiloge in relation to
churdal bipartit2 graphs.

Let €= [w.uz,. .. 0z, %] be 2 cycle of even length 2% = 6. A chord wu, € £
is called an odd chornd i one of | and § is even and the other s odd, that 3=, 3t
divides (' imto twe cven length cveles. A graph & = (F.E) i detined to he
stromghy chorde! if 1t iz chordal and cvery cyele of aven length preater than or
equal to 6 hus an odd cherd. For example, referring to Figure F1 on page 275,
the graphs Oz, G, (g and G5 ave strongly chordal, however, the othors are nol
strangly chordal, 6s follows: &) and Ge are nol chordal so they are nol strongly
chordal; the graph &7 is chordal, but the &-cyele going around the oulside of the
graph has ne odd chord, so the graph is not strongly chordal,

The praph & w oflen called the 3-sxn and 3 one of & family ol forbidden
subgraphs characterizing strongly chordal grapha. The A-mum 5y (& = 3) consists
of 2k vertices, astable sot X = {y 0.t and a dlique ¥ = {3,000, o b
and edges F| . Fy whete E) = {xir, ke, S2p, v, oeve s | forms the
outer cyede and £z — {yps | < 7} founs the inner clique. The suns are split
graphs, s thewy are choedal by Theorem 6.3, but they ate oot sirongly chocdal
gince the ouler cvele has no odd chord,

A frompeliae of onder & (= 3 18 0 praph obiaioed Dom o -cvele O by
acding for each edge of C o new vatex adjpeent only to e two endpoins of
that gdaz, and then adding enpugh chords to O e make 3t chordal. A compdere
trampedine is one n which all the chords are added w0 the cycle &, making it
a clique and identical to the E-sun S;. Tt is not difffenlt to shewr thar a chovdal
graph which contains an indoceed trampoline also concains a (smaller) complote
trampoline.

A vertex x 13 called simpde if for cvery pair of neighbos ¥ and =z of x, either
Ny © Niz) or N2y © N{y) An ondering of the vertices [vg,v9,-.-,2] 15
valled & simple eltminetivn ordering [or @ e, i a siople verlex i the ndoced
subgraph 7, for all §, where A; = Gy, .0 & the subymaph remuining after
.. .., Ui have baen elimitvted, MNote that the 3-sun S (G on page 275) has
1o simple vervex, 50 it does not have a simaple elimmation ordaring,

A sfrong elfmingtion ordering s defimed w be an orderine of the vertioes
[Lr.02.. 0] where, for all | < § < &« £ 1F o e, 536y & F then oy © &
It 15 an easy exercise to verify that simple elimination orderings and soong
elitninafion ocderings are special cases of perfect eliminanien ordarings,

‘The next Theereny, due Lo Farber [1483], provides the lollowing characierica-
tions of stronply chordal praphs:
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Theorem 13.1. The following conditions are equivalent for an undirected
graph ¢ = (V. E):
(i) & iz strongly chordal.
{iiy (7 has a simple clirnination ordering.
(11} & has a strong climinalion ordering,
{iv) (0 is chordal and sun-free.
{v) & is chondal and trampoline-froe,

Srrnngly chosdal graphs are closely related o the class of chordal hipartine
grapha {Section 2.4, papa 26t We will present this connectinn helow o
Theorems 1315 and 13.17. For forther reading on strongly chordal graphs, and
additional chammelerizations, s¢¢ Brandstddy, Le and Spiorad [1999] and MuKe
and Mehlorrs [ 1999).

Weakly Chordal Graphs

Huyward [1983] troduced the class of weakly chondafl praphs (also called
vieaily irangriared) ws those having no induced subgraph isomorphie to O, or
to €, for 2 = 5. The class of weakly churdal graphs contains the class of chordal
graphs, since (s = 7 and €, contains mduced cupies of € for v > & Also, the
wenkly chovdad graphy are perfect graphs. This result now Giillows immediately
from the Strony Perfect Graph Thearem, however, the first proof was obtained by
cornbining a result by Chivatal [1585], that neither a minimally imperfect graph
& nor i complement € can contain a “star-cutset”, wilh a resull by Hayward
(1985], that if {7 15 a weashy chordal graph (with at least 3 vertices) then cither
¢ or T Musl coniain a “star-vulsel™,

We call vertices x and p & fo-paie 1F every chondless path between r anl »
has exactly twir edires. The weakly chordal graphs have been characterized using
LwU-puins w5 fullows.

Theorem 3.2, The following are equivalent:
{iy & is a weakly chordal graph,
{ii} FEvery induced subgraph of & is cithar a ciique or has a rwo-pair.
{ili} Ifedges are repeatedly added belween (wo-paits in &, he result is eventually
a cligue.

The bmplication {1t} = (i) follows from the observation thar nonadjacent
vertices in €, or C, {g = 5 are not a two-pair. The implication (i} = (i) is
due 1o Hayward, Hoang and MalFray | 199)], and {1) <= (iii) is due {0 Spinrad
and Sritharan [L995]. The laster equivalence also lewds to an O(xY) recognition
algorilhm [or weakly chordal graphs.
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LexBFS

In Secticn 4.3, we provenved leocographic breadth fivst search (LexBF5).
using [t to obtain the lnear tine algorithm for recognizing chorda’ graphs. We
alao menrdoned that magimum cardinality search (MCS) provides a conceptually
aned computationalhy simpler reethod for getting 7 perfect linunation scheme by
changug the febel of o verrex x from a “list” of the macked neighbors to 3
simple “oounter™ of those meked neighbors. Tazan's prood tha MO8 ondering
pormectly recowmize chordal gruphs can b found in Golumbic | 1984].

Tana and friends might have been tamporarily disappointed wher MCS seemed
to make LexBIS obsolere, bur nol [or long! Lea BES hus become wseful in olker
contexts, ineluding recognizng proper nlerval graphs, meesnizing asteroidal
triple-free prapks and several other algovithms. There ara also results for LexBFS
on the powers of chordal graphs and on distarce hereditary praphs which have
1o analogous resull for MOS. See Urandstidl, Le and Sporead [1999, Chapter 5]
which alsu surveys churaclerizalions of many perfec! graph fariilies In lerms of
spevial kinds of verlex oxderings.

Intersection Sraphs on Trees

Let T be a tree and et {7} he a collaction of subtrees {connected subgraphs}
of T'. We mnay think of the host tree T either (1) as a conzinueus mnde] of a tree
cotbedded in e plane, thus serecalizing the real line from she cne-dimersziona]
casc, or (2} as u Eoife dizerct: mode] of o lree, namely, a conneced graph of
vurlices and edgzs having ao ¢ycles, thus peneralizing the path Iy foom the one
dimansioral caze.

The distiaction hetween these two models becores inportant wher: measuinge
the siza of the intersection of two subtrees. For example, in the comtinuous mode]
{i), we might take the sizc of the intersection fo be the Buclidean distunve of g
longest corpmion path of the two subtrecs. In the diserste model (2}, we might
count the number of commoen vertiees or cormmon edgss, We nse (he axpressions
“nonempiy inmlersection”™ and “vertex interseetion” o mean shunng a verfex or
point of 7, and “nontrivial interscction™ and “cdze nferscetion”™ to mean shenng
an edgs or atherwise measurable sepment of T

Laing this werminelogy, Theerern 48 (page 92) stated the followiag,

Theerem 4.8, A praph is the sertey frderseciion gragh of g set of subtrees of
g free if und only if i1 1v & cherdal graph,

In contrast to this, Golumbic and Jamison " 1985a)] observed that the Beonily of
eddie interseotion graphs of subtrees of a tree vield all possible praphs, proving
the following:

Theorem 13.3. Every eraph can be represented as the odge inlersection praph
af substars of a star.
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Tahle L. Tiraph classes uralving toes

Tamc of [ateraction L¥njoet: Hamst Litaph Class

vorme interacoton qulvess mae cherda' grasha

worlex mntetaeclhen subrres slier szlid pruphs

BC [T TECECULIOL subsress slar ul emapns

verles inlerseclivn pielks patly iolerval erephe

verles, inlersec o partks Trze pats praphe ur YPT gmaphe
LEE nCrciinn [ratks (LR FT'T graphs

ColrAiarent intervals Ting permutarioe arapls
Lonliiment puths e T fop=n quastion)
venlainrmenl subrmees sler cumparsbility w-anhs

Proofl Let & — (. #) be any graph, ard et £ = e, e} Consider
the star T lormed by a centtral node @ aad leaves 8. .. By, Defing the sabstar
corregponding 1o gy to be the substar 7 of 7 oindyced by e} U {8 o C o
Clearly, oey & E if and only if T; and T share an edpe, namely edge sy of ¥
where £; = ;. |

We will see below in Taeorem 3.0, that a graph I8 the ferfer iRlerscolion
2rtpd: of substars of a star if and only if1t is 3 split grash,

Twny different classes of intersection graphs also arise whuea considering siople
palks (inslead of suolrecs) of an arbitrary hosl tree I7 The parh graphs, which
we meriiored on page 94, are the subfmily of chordal graphs obtained as the
“werex mnreregcrion graphs of puths o ee™ und ure ulso calied VPT srapls.
Howeever, the graphs oblined as the “edge interseeiion graphs of paths in a trec™,
catled BFT grapks, are not necessaniy ehwoolal, The olugs of EPT praphs are no
perfect graphs, and the recegrition problam for them is NP-complete, Golunbic
and Tamisen [1955a, 1985h], See also Muorama and Wei [1986] amd Syske | 1985,

Table | sunumnarizes the subtrec graph classcs we have discussed here 2nd in
Secitons 13.5 and 13.6 below. A ful] treatment can be fogad in Goluinbic and
Trenk |2004, Cuupler 111,

5 Comparabillty Graphs and the Dimenslon of Qrdered Sets

Cornparability invariants

A praph can have many dillersnl trangitive orentations, so there may be
different partial orders with the seme corrparabilily graph. A property of partially
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bz 13.1. A& tunchina dispram and 1ts anessechon graph (which is isemompe to €.

1

ordered selg is called & comparebility fnvorient B ellher all orders with & piven
compurahility gruph have thal preparly. or none have that property. For example,
we sdw il Theore:n 8,13 (page 187 and ir Cxercise B.7 (page 194} that the
properlics of boing & semionder o an mtervil onder are comparability invanants.

The dimension of ¢ partial order is also 4 comparability imvariaat, that is, dim
F=dim & whenever P and & have the same comparability grapl & henwes, we
van denote thiz common value by dim &, The proot we gave for Theorom 5,34
{page 139} is meoreprote; a [ull cormeet proof can be fumd in Trotter [1492] or
in (rolumbic and Trenk [2004]. Those references may he corsulted for facther
smdy on compaabiity invarank propecties,

Function Diagrams: t1e [1tersaction Madel for Cocamparability Graphs

Giolumbic, Rotern and Torrutia [1983] have charscterized che lamily of
cocomparzbilizy araphs as tac intersection praphs of functivn loes in a
diagram which generalizes the matching diaprams {page 162} which represent
permtanon graphs, Their fnction diagrams are consticted as fivllowes.

Lel £ und £; be twoe horteortal lines, A conlinuous curve 0 connesting a
point on £ with a peint on Ly iz called a funcdon fine it whenever two points
{37 and (17 on f have the same horizontal value 1 — ¥, the points omst
be equal, ie., r — &', A fumction diggras consists of L) ard L; and a st of m
functian lires conoecting peints on L- and Ly, The fanction dispram in Figure
13.1 bas six function lines. We note that 3 matching disgnun is the speeia: vase
ir which the fimction lines arc struight lioes,

Consider the following special type of function disgram in whick e curves
arc piccewise lincar Lot £y, Lo, .. Lgy be horzonrsl lines sach [ebeled from
Iott to vight by a pormwtation of the nonbers 1,2, ., 5. For each ¢ (1 <3¢ < p)
the curve f; consisiz of the onion of the § soraight tine segments which join £ on
Liwithion Ly {1 £ ¢ < &) When b = |, this (s just 3 matching diagram:
when & 2= 2,00 is culled the soscarenarion of & malchiog diagracos,

The foliowing theorem is due b Golymbic, Rotemn and Uratéis J1983], and o
proof ean also be feund in Gelomhic and Trenk [2004].

Theorem 13.4. The lollowing are squivalent.
(1) €7 15 lhe intersection graph of a funcrion dkagram,
(1) €7 is a cocompurabilitg.
{iity £F is the intersection graph of a concatenation of watching diaprams.
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Morcover, if £ 1s the imintmarr, value for whick & is the intersection graph of
8 concasenalion of £ matching diagrams, then dim & — £ - 1.

Containment Graphs

The pamraimment grapk 7= (', £] ot & colleetion F={5;} of distingt subscty
of a set § has vertex set M — [1..._,»} and edpe s2t E={§ either & ¢ 5; o1
5 C S . A praph with such a represertation is called a comtainment graph. The
clags of cormainment graphs i equivalent to the class of comparability graphs.
Muoremeer, Golumbic and Scheinenmnan [ 1989] obaerved that every comparability
erapk can be represented as the contzinmert graph of a collection of subtrecs
(substars) of a star, Dushadk and Miller [134] characterized the contamiment
graphs ol imervals on the Lt as precisely thoss having pardel order dimensior
2, and from Chapter 7, we zecall Lhat these are equivalenl to the permutution
graphs, Generalizing mfervat comtuinment, Golumbie und Scheinernan [1939)
alan showed the following,

Theorerm 13.5. A praph 7 is the containment grapi of rect:linesr boxes® in
d-spacs i7 acd ouly if dun &) < 24,

Yannakakis [1932] has showe that the complezity of deformining whether an
oider P has dimension < &, for any fizved & 2= 3 33 WNl-complete, This ansacrs
the open problem stated in the footmote or page 138, A proof can Be fnpad in
Mabeday and Peled 5,995, Chaprer ], Theeefore, as a corallars of Theoreem
13,5, we conclude \lal the recoynifion prodles for e containment graphs of
Buses in the plune {v NP-complety.

Ay carly as the Banlf Contrrence m L984, wo posed the problemn, *Char-
actetize the conwainment orders of crcles in the plane and their comparability
graphs”, see Rival | 1983, page 583]. Propress on this question can be found in
Fishburn [1935]. Scheinerman and Wisrman [1988]. and Scheinerran {1992).
Sphere orders are the generatizatior. to higher dirrensio:n, and are alse found in
the brerature, Characrerizing the conmainment graphs of paths oa tres s 11l an
e problem.

MNew Complexities for Comparability Graphs, Transitive Orientation and
Farmutation Graphs

New alporitiuns bave been found for recognizing comparability grapas and
pertraeation sraphs, based on fast rodular decomposition of zeaphs, Modular
cecompostlion s the recursive version of the mothod we saw in Scetion 5.2 The

2 . .. .
Bopca witk sider paallc to the anes.
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first el 1bese new alperithos were due to Spinrad | 1985]. MeConnell and Spinrad
[1999] show how o tind an orientation £ of an arbitrary grapa = (F, F) such
tiat F is a transitive orientation (TR of & if and only ff 7 is & comparability
graph. Thiz 12 very good if there i5 other information guarantesing that & s
a comparabilify geaph, Tleawever, this alone does ol recopnize comparability
praphs, since the algorithm s:mply produces an ordemution which i rot Dunsitive
when &[5 moz 2 comparability graph, Hetee, 1o complete it 0 4 recognition
algotithen, one must test 2 to dewermine if il 12 lansidve,

The vomplexity of Lheir method wses Oz + 2) time to produce a linear ordering
Ly of tac vertices which 3s then applicd tv £ to produce an orientation £ It then
uses {pT) time to test whether Fy is wansitive, whene () is the ::l:rm]:r]eﬂiitv
to perform transitive closute or # % & matrix mutiplication (curtentdy #*¥%), In
o simnilar fashior, they can prq}dULL another linest ordedng £; of the vertices
which if applicd to £ will produce an oricntation 7, which will be transitive
if and only ¥ (7 s a cocomparability graph. So the complexity of recognizing
cocnparabilty graphs = coerently also He")

Interesiingly, (Leir method allows recognialge perimutalion gty in Ofa + )
time, by lrsl preducime L, 2o oaod ) and calculaling e n-degrees and oul-
degrees ol F and £, bul willout seieally producing £, since ulberwise e
complexity witt hit (3(x%). These enuble us o follow (he construction in e prool
of pur Theprem 7.0 (pages 1538—13%), yielding a permetation represeniaton for
G, if 7 is a pennutation graph. o7 @ contradicton amone the degroes 15 G 3 not
a permutuion grank, '

8. Split Graphs

Theoran 4.8 stated that a grapk s the fverlex) nkemseclion praph ol o set
of sublress ol a e 1 and oy i Is o idangolaed prapl. Meborris aod
Shier [1%983] give an analogous version lor split prupls, which we ecall are
charsvterized us being buth riangeiated and cotirenpolated {1heorsm 6.3, page
151 TE the howst dree T 15 a stur Ko, then eaek induced subliee consisls of either
# substar containing the cenmul node or just g single Teul node, T 15 casy o see
that the graphs obtaibed I thiz vesmiction are precisely the class of split pruphs,
as obsarved in Meblorris and Shier [1283].

Theorem 13.6. A graph 7 is the verex infersection graph of distingt nducad
subkrees of a star &, it and only it & 15 a spli graph.

Frool Recall shat u graph & s wplic greph i its vertices can be partitionad
inte a clique & — [x,... % aod a stable set & = Ty, 0 G on
a spht gr:-tph ponsidar the star T formed by a central node % and loaves
oo Epu Py - oFe. where the subtree ectresponding to 3; £ 8 is the single
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leal ¥, m ¥ and the sublres cerresponding fo .y = K consists of the substar
of T induced by fu, 5 U {% |1y & Az} Clearly, (his 12 an imersection
representation for . ('.'nm'amély, if we are pivwn # reproesentation dor O as the
intersection praph of distingt imduced substars of 4 star, then those substars
containing the conltal node correspond o a cligue i & and the remaining
subtroes [the single lewves) cormespond o a stable sel of O i

7. Parmutation Graphs and Applications from Circuit Design

Matching diagrams, ke those we studied o Seclion 7.4, are used in circol
desiym for choannel routing problems wheee a sl of nomibered pins on the upper
side of the diagramy muost be connreted (cleoizivally) 1o a sel ol pins on Lhe lower
side. The area hetween the upper and lower horizenlals s called the channel
When a pair of line segments commecting matched pins intersect, they must
be placed on dillerent silicon layers, sunilar to the altimdes for the airerall in
Application 7.1, Thus, the nunimumn number of Lysers needed woteslize the
diagram equals the ¢lique number wi((¥) of its permutation graph &, the vale of
which can be culeulated in G{mlog &) lime, We will discuss briefly two similar
graph problems orpinally motivaled by cirenit design. The books by Lengauver
[1H30] snd Shrwani { 1995 give a comprebensive lieatoent of other YLSL desiyn
and routing elgorithma.

Cell Flipping in Matching Diagrams

Golombie and Kaplun [199%5] bave considercd whe [ollowing geheralization
of the chamme| routing problem above, which 15 rotivated by “standacd cell”
tzchnalogy. he mimhers on each side of the chamel are partitionsd (oo
conzecutive sphseqnences. or ceffs, each of which can he left anchanged or
flipped {i.e. reversad). This takes place at a stage where the cell placement on
horizomtal rows has rlready heen perfarmed, and the anly remaining depree of
freedown is replacing some of the cells with thetr “mireoe image” with respect to
the vertical axis, i.e., cell flipping. The questions asked are:

mMIWFLEF: B what choice of fippings will the resulting clique number be
minintized?

MaxiLy: For what choice of flippings will the resulting cligue number be
maxinized?

Yur cuwnple, let the upper sequence be partitiemed [3.4, 71,02, 6], [1, 5, 8] and
lat the lower sequence be [6, 2, 5L [4°, 1. 7', &, 3], where the bracketa indicale
cells. The clique numbwr o4 G) is 4 with o lipping bur is redoced to 3 if we
flip [2, 8], or is ncrcascd to 5 if we Hip [2,6] [0, 27, ¥ and [4, 17, 7, &3]
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The complexity of the waxne problem i3 (ip®) using a dynamic program-
wing algarithm, whereas the mopur problem i NP-complele {see CGolembic
and Kaplsn {199€)) When one side of the channal is fixed {ro fipping or that
gide), the problem of finding 2 fipping for the other side which moerismizer the
cligna number can be fomad in (e log ) time, YVerhia (2007] has shown the
complexity of the one sade fitpping problem for minfmizing the chique number
to be AP-complets,

W'e note that the cell fipping problems could have been defined o minimize or
maxzimize {he stability number b 1z clesr, however, that these stabiliny problems
are cormputationally equivalent to our cligue problems, since of(7) = wi() and
(7 is a permutation paph if and only if  is a permutation graph. For example,
the 4 differsnr one side fipping problems can be restated as follows: Given a
perrratation of the numbers 1,2, ., m partitioned into vobls, find flippings which
mimimize/maximize the longest mercasing/decrensing subsequence.

Trapozaid Graphs

Dagan, Gohanbic and Pinter 198287 extended the notion of a permutation
dingram by replacing each matching segment (- by & trapezoid abtalned from 4
potnes 2, M, o, o wheve interval £ = T, ] les o the apper bing of the diagram
and interval £ = [ea, ] lizs on the lower line of the diagram. The intersection
praphs of these trapecntd disgrams sze called mapezaid graphs. Trupezoid praphs
are a subclass of cocomparability graphs, and their associated (teapezoid) orders
are precisely those having intarval dimension 2 (see Trotter (199210,

Langley {1993] and Ma and Spiorad [1994] gave polstomial ime algoritivns
for recogsiizing apexod praphs, and Telsner, Miller and Wernisch | 1997 have
piven oprimal maxcHque and maxstable sel alporitimes for the ciass, Furlher
inveatipation of the class can be found i Cheah and Cornell [1996], As we
will menion below, raperoid graphs are equivalent eo the bounded bitolerance

graphs,

Cographs and Factoring Read-Once Funcligns

An imporlant subfamily of permutation graphs are the complemenr reducible
granli, or cographs, which were nvestipated by Comeil, Lerchs and Burlingham
{1381] and Corneid, Perl and Stewart | 1985, Cographs can be detined recursively
a2 follows: (1) a single vertex is a cograph; {2) the disjoini union of ¢ographs is a
eograph; £3) the complemnerd of a cograph is a cograph. Allernatels, they can be
detined by a restriciad tvpe of decomposition, as in our Section 5.2 (page 111}
where {rp would be either a clique or g stable set. Ome can recopnize whether a
graph Cr i a cograph by repeatediy decomposing it in this way, ard in linear time
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oblain o epresentation called its enteee. The cobree 13 usefyd in mary algorithms
Far the ¢lass, ‘The next theorern gives several chametvrizations of cogruphs.

Theprem 13.7. The following are equivalent for an directad graph G
(1) F is & couraph.
(it} {7 is Py-free.
{ii’} Tor every suhset X of wertices, either the imduced subpraph . s
disconnected or Us cotnplemnent Gy is disconnected.

Bevognizing cographs and building the associased cotree has been recently
used in an applivation fnvolvine multi-level togic svothests, Golumbic and Mintz
F1999} presented o factoring alrodthm for seneral Boolean functions which ts
based on graph purlilioning, sod at e lowen tevels of the recursion, read-ones
fimetions are handliad 17 4 speetal maanen Reawd-obes lundivns are very closely
related 1o copraphs, as we shall ses,

A Boolean finction F %5 called a readeonee function iF I has a Tactored
form in which each variable appears exactly once. For exmimple. the function
F| = ag — acp + ace 15 2 read-0nee unction since it car be factored into the
formula B = alg + ofp — e)). The funclion F> = ab + ac - be 15 pot g wead-onee
function. Bead-onee funcfions have intercsting speeial aropertics sad sceoumnt
for a large percentage of functions which arise at the lower Tavel resl circuit
applications. They have also gained recent interest in the fleld of comprataiional
learning ey,

Pt F =0 —---+ of be given in disfunctive normsl form (aurn-of-products),
whers cach o 18 o product lerm, and kel ¥ = fog, e, b be Hs set of variables,
We ponsider the graph T = (¥, 1) of & where o, © 8 whenever o and v,
appear together do sorme product term . The function F 15 called noewmd
every cliqee of I'r is contained in one of the product terms, Our examplte Fa
ahowve is oot normal simce I'p, s 8 fzangle, but 211 srodoct 1ecms are of size
2. The dual F* of I is the Baction obtained from F by replacing products by
sums and sums by products, By taking the disjunctive notmal form of F* one
van consiruet the graph Tre. The next theotem i@ due to Survich [1991]:

Theorem 13.8. The following ame equivaleal:
2} F 15 a cead-onee lunction.
{12} [ in Py-lree fie, g copraph) and & is g oo (neson.

(i} T =T,

Colmnbic, Mintz and Rotics [2005] present a very fast methiod for recognizing
and [actoring read-onee functions based on algorithms for cograph eeommition
and on checkiny nommalidy.
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8. interval Graphs and Circulararc GGraphs

AT-Frea Graphs

Thres vertioes ¢y, o0, s 10 3 graph & = (V&) foon an asreroidal iriple (4T
it, for all pormuiations 7, f.& of {1.2.3}, these is a path fromy o to o which
avolds using any vortex in the neighborlood &g} = o UiAdi{vg ) An easy way
te verity this for v is to delote ANy and tosi whether o and &, remain in the
same conneeted component of & - M} Tr also followes Fromm the definigon that
e thyee wverlices of an astersdidal 1nple are palrwise nonadjacenl. For example,
ihe graph in Figure 515 (page 196) bas § asleroidal wriples®,

A graph ds culled witeroidd iriple free ot Ai4free I I contains 0o asteroidal
lriple, We saw o Theoram £ 4 (page 174) doe ioberval prapls sre clarvacterized
by being chordal and AT-{rec. Gotumbic, Monma and Troteer [1984] proved the
foilowing result,

Theorem 154 bvery cocomparability graph is an Alfhee graph.

More reccntly, Cornesf, Olanu and Stewart [1997, 19949 have piven new
algorthrmic and structural resalis for AT-free gruphs. Kohler |[2000] also provides
efficiemt recognition algorithims for the class.

Telerance Graphs

Tolerinee prapis were inroduced by Golumbic aad Mooma [1982] w
peneralice soame of the applications assoclated wich imierval graphs, Theie
motivation was the aeed to solve scheduling problems, tmore pencral than what
we suw i1 Secton 1.3, in which resourcecs such as mooms, wehicles, sapporl
persumnel, el may be newded on sn exclusive basis. bul where & measwre of
Hexibility or tolerinee would be alfowed for shating o7 rebinquishing the resouree
when total exclusivity provented a solition. The reeent book by Goburnbic and
Trenk [2004] conteins a thorough study of toleraoce graphs and related topics,

Anyrdirectad praph {7 = (17, E) {3 a rodormrce graph if there exists o colleetion
I = [} r of closed intervals on the real bine and an assignment of positive
curmbwrd ¢ = {8 Jeer such that

ew B e W T 3omin{i )
Here I} denotes the length of the interval 7. The positive number 2. s called the

foleranee ol ¢, wad Lthe pair (T, 1} 15 called an imtercal toderaitce Pepresentarion
of ©. A toferance graph s said to be Sownded 1 it has a wleranee representation

¥ In thiz haok, we norrecty apeliod thase “astroical™ rether thun asreraicul.
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inwhich ¢, < || forall ¢ € F. Tolerance praphs pencrabize both interval praphs
sod permulalion graphs, and in Goturabic and Monma [ 1932] it was shown that
every bouruled {oderance graph 15 a cocomparability graph. Golumbic, Monma
and Troter | 1984} proved whal tolerance graphs are perfect and are contained in
the c'ass of weakly chordal gruphs,

Coloting bounded tolerance graphs in palvonomnial Hme s an immediate
consequatiee of thetr beimg cocomparability graphs, Narasinghan and Manber
[1992] usc this fact {as a subrouting) le find the chromate msmber of any
funbounded) wolcrance graph in polynomial time, but not the colonng tsclif
Golumbic and Siani [2002] give an Hgr + slogn) alpwmithm for coloring
a toleranee praph, given the tolorance represcntation with g wvertices having
unbounded wlerance (see Golumbic and Trenk [2004]). The complexicy of
secopnieiny  Gdersove praphs and bounded wolerance prapis remain apen
yueslions,

A variety ol “varialions v ihe teme of wolerapes™ w praphs have beers delned
and stadicd over the pust years. By substiluting u different “hust” sel instead
of the real line and with a specified type for the subsets of that host insiead
of mntervals, we obtain ciasses such as neiphborbood subtree tolerance {MNefT)
graphs, tolerance praphs of paths on 4 oee o wlerance competitiom gryphs. By
chanping the fimction mfn for o different binary functon ¢ (for example, max,
i, produed, etc.), we obtain a class that will be called p-tolerince praphs,
By replacing the measure of the fenpts of an interval by sonw other measure
Ut of the intersection of thz teo subsetz (for example, cardinality in the cage
of discrete setg, or momber of hranching nodes or macimum degree in the case
of subtrees of trees), we could ohtain vet other varigtions of tolerance graphs,
Whan we regincr Lhe lerances B0 be 1 or oo, we obuin the class of fagerd
praive gropie, By allowing a separate leftside tolerance and rightside tolerance
tor each interval. various bitolerance graph models cin e obained. For example,
Lanples [1993] showed that the hounded bitalerancs graphs are equicglant o the
edasw af frapezoid graphe, Ditected praph analogues to severzl of these models
have also heen defined and smdied. For forther study of telarance graphs and
refated wpics, we refer the reader to Gobumbic and Trenk [2004],

Circutar-Arc Graphs

In Scction 8.6, we presented the sarly work on circularare graphs. the
intersection graphs of arcs on a circle. The first polynomial time aigorithin
for recognizng ciecular-are graphs wos gven by Tucker [1980] and had
complexily Ofr’ ). Qvet Lhe yeary, muore efficiznt algorithms were desipned for
the recopnition problem first by Hsu [1995] in Ofre) and Eshen and Spinrad
[1993] in £3(4}, and most recently by MoConnell {2001, 2003] in Gin 1 &) which
is optimal. The coloring problem for circular-are graphs was shewn to be NP-
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complete by Garey, Johnson, Miller and Papadimitciou 19801, The miaximum
stable set and the maxinum eligue problems are polynomial, see Gohambic and
Hanmrer [§988]. Hsu ancd Spivrad [19953, B [19835), Apostolco and Hambis
[1987].

8. Superperfect Graphs

Superperfect Noncomparability Graphs

Progross has been made on the question asked in Scetion 9.4, “When docs
superperfect equal comparabiling?™ Gallai [1267] published a complete lige of the
minimal aoneomparahility graphs, that is. the nencomparability geaphs with the
property thial temoving any veriex makes 1he reruining subgraph o compurability
graph, sex alse Beroe wid Chvalal | 1984, po 7E]. Usinyg this Tist, Andreae [1985]
detenmingd all of the mingmal noncemparability graphs which are superperfect.
One of these 33 the graph it our Fiauqe L1¥ on p 18 which we frcorrecty
placed m the position of net-superperfect in Figure 99 on p. 212, This graph
iz sperpevfeet ol & simple proof s alsa eiven m Kloks and Bodlander [ 1962,
Theorem 3.2],

In Cornllary 9.8, we sgw that for split graphs, & i a comparabality graph if
and only if O 13 superpertect, This mwotivaled o asking the quesiion of whethet
or nol this egiivalenee hobds for taopulated grapas or for cotrisngulated graphs.
Using his farhidden subgraph charactzrization of superpecfect noncomparability
graphs, Andeeas [1985] answesed thiz question with “false™ for triacgulated
graphs and “true” for cotrianguiated graphs, showing the following,

Theerem 1310
(i) For comriangulated graphy, G e a vomparabilily goaphk if ¢nd only I & i3
supurperfoul.
{11} For triangulated graphs, & i= a comparability graph if and only if & is
superperfiel and contsing no induced subgraph isomerphic to G, G or Gy
of Figurc 132

As Ambrege [1985] poinds oul, this list of {3 mpinimal superperfect aon-

compargbifity praphs could also be used to answer owr cquivaienes question
for other hereditary classes of araphs, Tn a similar icvestigation for k-trees,

e S N SN

Fig.1i.2. The minimai rianmlated, superperfest noncomparahility graphs.
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Kloks and Bodlander |1992] puve o commplete chavactatizaton, by means of
fisrkidden subgraphs. of the supemperfect 2-rees. The erph (7 18 2 superperfoot
Zeree. They also give an algorithm for teating superperfaction in F-traes, whose
complexily is linear for any fixed &, and can produce a complete forbidden
subgraph characrerization of superperfect K-trees.

10. Thresheld Graphs

The undisputed authority on Lhreshold graphs aod relaed wpics s the book
by Wlahadey and Peled [1995]0 T ois a masterpicer of claridy, and it presents
a comgprehznsive coverage of Fermems digraphs, threshold dimension, messures,
weights, ordors, cnmneration, and o vanety of peocralizations, veriatons amd
speclalizations of thrashold graphs. Any mtention of updatmg or expanding upom
Chapter 10 must therefore defer to their book,

Mew complexicy resufis on the threshold dimension of a graph deserve
wentioning. In Secdon 1001, we detined the threshold dimension 06} of 4 praph
7. Threshold graphs are tanse having rhreshold dimension at most 1, and they
can be recognized in linear time, The complextty of determining 8107) is MP-
comnplele (page 223, and & swonger result s that detetaining whether 8(G) < &,
for any fixed & > 3, 12 NP-complete {Golurnbic | 1981 ], Yunmakakis [1982]) S0
the remaining question, open for the next dozen years. was whether recognizing
threshold dimension 2 cowld be dome i polyoomial dme, A positive aoswer o
this question follows from the next interesting result.

Two edaes of {7 are said to coafficd IF thelr endpoints induce in {F one of the
torbidder subgraphs O, £y or 285 charsctenizing thresheld graphs §see Theorem
10,7, page 227), The vontlict pruph & of (7 is defined by taking F(0*) = E{{7)
and by joininyg twe vertices of G* by wod edpe in B{G*) i and only if their
corresponding edyes in & condlicl, For example, the comflict praph of a threshold
graph 15 a mable ser, and tbe conllict graph of €4 w 285, We noted in Scelion
(0.1, that we can ke 800} w be the wminimum number of threshold zraphs
needed to cover the ecdges of . Thus, Chvital and Hammer [L977) obscrved dhat
such gn cdur covering of & leads to a valid coloning of £7°, that is, #(G*) < ()
wherc each color toprosonts a threshold graph in the edge covering. From this
ingquality, one can sec that whenever 4 has thresheld dimension 2, ts condliet
graph G must be a bipartite graph. The cotverse of this mplivation for 8{(r1= 2
was conjectured 1o hold by Thars'sd and Peled [1951]. and it was finally proven
by Faschle and Simon [ 1993], which we record as follows,

Theorem 13.11. A praph & has threshold dimension 2 if and only if its conflict
graph & 15 o bipartte graph.
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A proof of this theeremn can be fourd in MMahades and Peled [|993, Section
8.5) Sinee constructing the conflict graph and testing swhather it is 2-golorahle
can he done in polynomial tune, we immadiately obtain the following corolkary.

Theorermn 1312 The problern of determining whether #0670 =0 2 has poly-
nemial time complexily.

Threshold Hypergraphs

T Section 104, we presenfed the definition of threshold hypergraph and gave
an application in which they might be nsefi’ for the aliocation of resources,
Thrashold Topergraphs are closely related o the class of threshold Doalean
funcriens, We also posed a Research Troblem (en pape 233 siving chies
properiies of r-repular Bvperpraphs, esch being o penermlizalion ol thresbold
graphs by hypergruphks. Reiterman, of gl {1985] have ghown duar these throe
properties are diffcrent, and they have given a characterizasion of the most
ceneral of them (71} which are known as shift stulide r-regular hypergraphs.
Boros | 1991 hzs geaeralived thig furiher, giving a chazacterizarion of shift siable
hypergraphs (nol neeossarily repular oncs).

11. Circle Graphs

Circle grapias are the imtezscelion gphs of choeds of & crcle, In Chapter
11, we cablled these “mor @ pertect graphs™ mlher as a joke, needing a1 excnse
Lo melude therm in the book even Lhough thev are not perfac, geaphs, Circle
praphs are an Dmportant and natoral extension of permmatation graphs, and their
cgulvalence with vvetlap praphe ratses their stalus sven further, The recogmition
problem [or circle graphs, which had been open, wag aolved independentls by
Bouchet [1987] and Gabor, Supowit, and Hsu [989] who pave polynomial
algorithms with complexity of ((x*) and O{n®), mspeclively. Subscguently, an
(1) metod was given by Spinvad [1994]. A forther characterization of einele
graphs appeacs in Bouchet [1994],

12. Chordal Bipartite Graphs

We defined the class of chordal fipartie praphs n Section 12.4 a3 those
hipartie graphs which, for all &= 4, have no induced chordless cyele £ Thus,
a chords] hipartite graph s not necessarily a chordal graph since the dcyele £
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is chordal bipartile bul not chordal ©. Recalling the defin’tior: of weally chordal
graphis (Section 13,4 above), it 1s a simple exeroise o show the following:

Theorem 13.13. An undirecled graph & is chordal bipartite if and only iff &
is bipartie and weakly chordal.

{Chordal bipartite geaphs e also melated to somomply chordal praphs and o
totally balanced marices, A 01 matnx 15 callad fopglly balgrced if 1t does
nol contain ax a submatrix the {varex-edge) ircidence mateix of a cvele of
length =3 A 0L matrix i called U-free iF it does not coniain a submcateix ol the
fom {'H]I] Anstee gnd Frber [1984], Holitean, Kilen and Sakaroviteh [I985]
and Tubiw [1987] proved the fol owmy:

Theorem 13.14. A 0/] malris is todefly balanced iU and only if 115 rows and
columns cun be permuted so thal dhe resuling mairs 3 Dafree,

Let & — {F, £} be an undirected graph with ¢ = {or.. .. .00} We define
the cligue-erier incidence graph of & to be the bipanie grapl H{{) with the
vertices o {7 on one zide and the maximal cliques of & on the other side. such
that a vertex o of {7 i adjacent 1w a cligue £ of 7 in ITG) ifand only ifo iy a
member of £ in (7, In Section 8.2 {mape 174), studying the charagtenzationy of
meerval graphs, we defined a sinular nogon, the cligue-verrex oldence mairix
of & which we denotz by M = M5

Finally, we define B{CG1 = (X, Y, E'] te be the bipartite praph when:
Ye=du ooz V=Jv. ey mnd B = Jagpe e £ 1) {op |owsy € FL
The grapph B{Y) 1a, in fact, the same as the clnsed neiphbarhoodcarwey incidetce
Brapdl of 07

The followving thearem is due oo Farher [1987].

Theorem 13,15, The feliowing conditions are equivaleat
(13 7 15 a swongly chordal graph,
(i) H{y 15 a chordal bipartiie grapa,
(1) BIEEF) 15 o totally Balanced matmx.
fiv) B{ (7} is a chordal biparlite graph.

W mention another nteresting equivalence which follows essentially from our
proof of Theorem 1201, and was stated explicitly later in Brandstidr [194915.

& e T etrodiced the term “ekundal mpaeriie grapk” in (873, v thinsoyg was that the word
“ehordul™ in this cortext should he intemorcted as an adjcsive pemiting ovcies of e aatallesr
possible length rlength 5 for puaphs 0 geaecal, or leneh 4 fer Spactee prazhs) bo: cecuinng
that amy larger awele nicat have 8 chard. Thus. the meaniag of “chnedal™ was eornced dependis,
admizied 'y & avewhar confising maller, Todaedd, this criticlsm i owoived 0 Dounds!iadt, Lo and
Spinrud [13#0Y, pupe 41| Cleacly, o grepk 0F ix foth a chordel praph ond Miparen: i and onde iF G
ir o foweae af ey
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Theorem 1316, An urditected graph (¥ is a chordal graph if and anly if 30
i® a perfect elimination bipardte graph.

Chr Corollary 12,1 {paze 2063) retatcd chordal bipartite graphs to perfect
elimination Liparto: graphs by sdding the hereditary propecty te the lades We
now present two addidonal charaeterlzations of chordal bepartile zraphs.

Let £I - (X, Y, £ be a bipartite graph, and let & — |ey, ..., en | Be an ordering
of the edzes. Define 4, = (X, ¥ 5 where £ — {e;,. .. eqr, that @5, £ 35 the
graph obaioed by erasing the edpes & ., g0y, bul ool their endpoinls. We call
F o porfieed Vedve-withoui-oerfer ' erasing ovdeting 10 & 18 lisimplicial in B

Tenete by Jplity (A7) the splil graph obtained by completng ¥ into a cligue.

In the followirg theorem, the cquivalence (1) +— (if) is due to Dalhaus [ 1921],
and severul rescarchers, acvording: to Brandstadl, Le und Spinrad (1999], have
observed (1) «— (i)

Theorem 13.17. The following conditons are cquivalent tor a bipartitc graph
H.
iy M is a choedal bupartite praph,
(i) Splitv(#) is a strongly chordal graph.
{111} F hus an edge-withoul-verlex erading ocder

Further reanlts om chovdal hipartite graphs, relatine them to vertex crdenings,
weally halanged matrices, matrices having a T-free omdering, and other classas,
can be Jound througheut BrundsGidl, Le and Spinced [ 19905, Minimmm Iriangs-
Lations of chondal bipartile zeaphs are studied in Kloks [ 1994,

A Final Mote on Terminotogy

Samuel Filenberg, ome of the leading mathematiclans o the twerticth
gemtury, and my doctoral thesds advisor, objecied strenuously against the use
of mathemanical terms such as “partial function™. In his view, an adjeetive
modifying a noon should speeialize the mathematical concept raprasenced hy
the noun and mof peseraleee it Since a partinl fenction is not & finction at all,
but ruther @ mappinge which 15 delired on only part of i dormain, Le., 8 partially
detined fumctinn, be reranded such toroix as un imprecise abuse of lansuage,
For him, semigroups were ohvays monoids [with identity), and be would have
disliked weakly chordal graphs,

Thus, quite correcily, 4 subsel 1s a sel, a recursive function is a function, an
allipator purse is a purse, and 2 strongly choerdal graph is a chordal graph, which
in turt 1% & graph. The “is-u7 bierurchy is a partal order (whoops!} s a partially
ordered set [whoops again!} is simply an order.

The ferminology we wsed i this book, and subsequently, has tried to follow
thix principle. For example, we preler W use the terms interval tolerance graphs
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and neighborhood submee tolerance graphs when ceferring w (hese classes, bul
oever tolemnee interval graphs since the concept of an imterval graph s so firmby
extablished in the literature. Somilaly, we nstst on using the termm imterval probe
graphs, The use of chordal bipartite graph is consistent with this approach, but
has cansed confusion. Tt iz never possible to pet i@ right cvery titne, but we hope
that there will ke enongh toderanee on hoth sides of the intervat to keep the
coanfiict geaph very sparse,
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