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Preface to the second edition

This is the second edition of Invitation to Discrete Mathematics.
Compared to the first edition we have added Chapter 2 on partially
ordered sets, Section 4.7 on Turdn’s theorem, several proofs of the
Cauchy—Schwarz inequality in Section 7.3, a new proof of Cayley’s
formula in Section 8.6, another proof of the determinant formula for
counting spanning trees in Section 8.5, a geometric interpretation of
the construction of the real projective plane in Section 9.2, and the
short Chapter 11 on Ramsey’s theorem. We have also made a number
of smaller modifications and we have corrected a number of errors
kindly pointed out by readers (some of the errors were corrected in
the second and third printings of the first edition). So readers who
decide to buy the second edition instead of hunting for a used first
edition at bargain price should rest assured that they are getting
something extra. ..

Prague J. M.
November 2006 J. N
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Preface

Why should an introductory textbook on discrete mathematics have
such a long preface, and what do we want to say in it? There are many
ways of presenting discrete mathematics, and first we list some of the
guidelines we tried to follow in our writing; the reader may judge
later how we succeeded. Then we add some more technical remarks
concerning a possible course based on the book, the exercises, the
existing literature, and so on.

So, here are some features which may perhaps distinguish this
book from some others with a similar title and subject:

e Developing mathematical thinking. Our primary aim, besides
teaching some factual knowledge, and perhaps more importantly
than that, is to lead the student to understand and appreciate
mathematical notions, definitions, and proofs, to solve problems
requiring more than just standard recipes, and to express math-
ematical thoughts precisely and rigorously. Mathematical habits
may give great advantages in many human activities, say in pro-
gramming or in designing complicated systems.! It seems that
many private (and well-paying) companies are aware of this.
They are not really interested in whether you know mathemat-
ical induction by heart, but they may be interested in whether
you have been trained to think about and absorb complicated
concepts quickly—and mathematical theorems seem to provide
a good workout for such a training. The choice of specific mat-
erial for this preparation is probably not essential—if you're en-
chanted by algebra, we certainly won’t try to convert you to
combinatorics! But we believe that discrete mathematics is esp-
ecially suitable for such a first immersion into mathematics, since
the initial problems and notions are more elementary than in
analysis, for instance, which starts with quite deep ideas at the
outset.

1On the other hand, one should keep in mind that in many other human
activities, mathematical habits should better be suppressed.
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e Methods, techniques, principles. In contemporary university cur-

ricula, discrete mathematics usually means the mathematics of
finite sets, often including diverse topics like logic, finite aut-
omata, linear programming, or computer architecture. Our text
has a narrower scope; the book is essentially an introduction to
combinatorics and graph theory. We concentrate on relatively
few basic methods and principles, aiming to display the rich var-
iety of mathematical techniques even at this basic level, and the
choice of material is subordinated to this.

Joy. The book is written for a reader who, every now and
then, enjoys mathematics, and our boldest hope is that our
text might help some readers to develop some positive feelings
towards mathematics that might have remained latent so far.
In our opinion, this is a key prerequisite: an aesthetic pleasure
from an elegant mathematical idea, sometimes mixed with a tri-
umphant feeling when the idea was difficult to understand or
to discover. Not all people seem to have this gift, just as not
everyone can enjoy music, but without it, we imagine, studying
mathematics could be a most boring thing.

All cards on the table. We try to present arguments in full and
to be mathematically honest with the reader. When we say that
something is easy to see, we really mean it, and if the reader
can’t see it then something is probably wrong—we may have
misjudged the situation, but it may also indicate a reader’s prob-
lem in following and understanding the preceding text. When-
ever possible, we make everything self-contained (sometimes we
indicate proofs of auxiliary results in exercises with hints), and
if a proof of some result cannot be presented rigorously and
in full (as is the case for some results about planar graphs,
say), we emphasize this and indicate the steps that aren’t fully
justified.

CS. A large number of discrete mathematics students nowadays
are those specializing in computer science. Still, we believe that
even people who know nothing about computers and computing,
or find these subjects repulsive, should have free access to dis-
crete mathematics knowledge, so we have intentionally avoided
overburdening the text with computer science terminology and
examples. However, we have not forgotten computer scientists
and have included several passages on efficient algorithms and
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their analysis plus a number of exercises concerning algorithms
(see below).

e Other voices, other rooms. In the material covered, there are sev-
eral opportunities to demonstrate concepts from other branches
of mathematics in action, and while we intentionally restrict the
factual scope of the book, we want to emphasize these connec-
tions. Our experience tells us that students like such applica-
tions, provided that they are done thoroughly enough and not
just by hand-waving.

Prerequisites and readership. In most of the book, we do not
assume much previous mathematical knowledge beyond a standard
high-school course. Several more abstract notions that are very com-
mon in all mathematics but go beyond the usual high-school level are
explained in the first chapter. In several places, we need some con-
cepts from undergraduate-level algebra, and these are summarized
in an appendix. There are also a few excursions into calculus (enc-
ountering notions such as limit, derivative, continuity, and so on),
but we believe that a basic calculus knowledge should be generally
available to almost any student taking a course related to our book.

The readership can include early undergraduate students of math-
ematics or computer science with a standard mathematical prepa-
ration from high school (as is usual in most of Europe, say), and
more senior undergraduate or early graduate students (in the United
States, for instance). Also nonspecialist graduates, such as biologists
or chemists, might find the text a useful source. For mathematically
more advanced readers, the book could serve as a fast introduction
to combinatorics.

Teaching it. This book is based on an undergraduate course we
have been teaching for a long time to students of mathematics and
computer science at the Charles University in Prague. The second
author also taught parts of it at the University of Chicago, at the
University of Bonn, and at Simon Fraser University in Vancouver.
Our one-semester course in Prague (13 weeks, with one 90-minute
lecture and one 90-minute tutorial per week) typically included mat-
erial from Chapters 1-9, with many sections covered only partially
and some others omitted (such as 3.6, 4.5 4.5, 5.5, 8.3-8.5, 9.2).
While the book sometimes proves one result in several ways, we
only presented one proof in a lecture, and alternative proofs were
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occasionally explained in the tutorials. Sometimes we inserted two
lectures on generating functions (Sections 12.1-12.3) or a lecture on
the cycle space of a graph (13.4).

To our basic course outline, we have added a lot of additional (and
sometimes more advanced) material in the book, hoping that the
reader might also read a few other things besides the sections that are
necessary for an exam. Some chapters, too, can serve as introductions
to more specialized courses (on the probabilistic method or on the
linear algebra method).

This type of smaller print is used for “second-level” material, namely
things which we consider interesting enough to include but less essential.
These are additional clarifications, comments, and examples, sometimes
on a more advanced level than the basic text. The main text should
mostly make sense even if this smaller-sized text is skipped.

We also tried to sneak a lot of further related information into the
exercises. So even those who don’t intend to solve the exercises may
want to read them.

On the exercises. At the end of most of the sections, the reader will
find a smaller or larger collection of exercises. Some of them are only
loosely related to the theme covered and are included for fun and
for general mathematical education. Solving at least some exercises
is an essential part of studying this book, although we know that
the pace of modern life and human nature hardly allow the reader to
invest the time and effort to solve the majority of the 478 exercises
offered (although this might ultimately be the fastest way to master
the material covered).

Mostly we haven’t included completely routine exercises requiring
only an application of some given “recipe”, such as “Apply the al-
gorithm just explained to this specific graph”. We believe that most
readers can check their understanding by themselves.

We classify the exercises into three groups of difficulty (no star,
one star, and two stars). We imagine that a good student who has
understood the material of a given section should be able to solve
most of the no-star exercises, although not necessarily effortlessly.
One-star exercises usually need some clever idea or some slightly
more advanced mathematical knowledge (from calculus, say), and
finally two-star exercises probably require quite a bright idea. Almost
all the exercises have short solutions; as far as we know, long and
tedious computations can always be avoided. Our classification of
difficulty is subjective, and an exercise which looks easy to some
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may be insurmountable for others. So if you can’t solve some no-star
exercises don’t get desperate.

Some of the exercises are also marked by ©°, a shorthand for
computer science. These are usually problems in the design of effi-
cient algorithms, sometimes requiring an elementary knowledge of
data structures. The designed algorithms can also be programmed
and tested, thus providing material for an advanced programming
course. Some of the ©° exercises with stars may serve (and have
served) as project suggestions, since they usually require a combi-
nation of a certain mathematical ingenuity, algorithmic tricks, and
programming skills.

Hints to many of the exercises are given in a separate chapter
of the book. They are really hints, not complete solutions, and al-
though looking up a hint spoils the pleasure of solving a problem,
writing down a detailed and complete solution might still be quite
challenging for many students.

On the literature. In the citations, we do not refer to all sources
of the ideas and results collected in this book. Here we would like
to emphasize, and recommend, one of the sources, namely a large
collection of solved combinatorial problems by Lovész [8]. This book
is excellent for an advanced study of combinatorics, and also as an
encyclopedia of many results and methods. It seems impossible to
ignore when writing a new book on combinatorics, and, for exam-
ple, a significant number of our more difficult exercises are selected
from, or inspired by, Lovész’ (less advanced) problems. Biggs [1] is a
nice introductory textbook with a somewhat different scope to ours.
Slightly more advanced ones (suitable as a continuation of our text,
say) are by Van Lint and Wilson [7] and Cameron [3]. The beautiful
introductory text in graph theory by Bollobds [2] was probably writ-
ten with somewhat similar goals as our own book, but it proceeds
at a less leisurely pace and covers much more on graphs. A very rec-
ent textbook on graph theory at graduate level is by Diestel [4]. The
art of combinatorial counting and asymptotic analysis is wonderfully
explained in a popular book by Graham, Knuth, and Patashnik [6]
(and also in Knuth’s monograph [41]). Another, extensive and mod-
ern book on this subject by Flajolet and Sedgewick [5] should go to
print soon. If you're looking for something specific in combinatorics
and don’t know where to start, we suggest the Handbook of Combi-
natorics [38]. Other recommendations to the literature are scattered
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throughout the text. The number of textbooks in discrete mathe-
matics is vast, and we only mention some of our favorite titles.

On the index. For most of the mathematical terms, especially those
of general significance (such as relation, graph), the index only refers
to their definition. Mathematical symbols composed of Latin letters
(such as C,,) are placed at the beginning of the appropriate letter’s
section. Notation including special symbols (such as X \Y, G = H)
and Greek letters are listed at the beginning of the index.

Acknowledgments. A preliminary Czech version of this book was
developed gradually during our teaching in Prague. We thank our
colleagues in the Department of Applied Mathematics of the Charles
University, our teaching assistants, and our students for a stimulating
environment and helpful comments on the text and exercises. In
particular, Pavel Socha, Eva Matouskova, Tom&s Holan, and Robert
Babilon discovered a number of errors in the Czech version. Martin
Klazar and Jifi Otta compiled a list of a few dozen problems and
exercises; this list was a starting point of our collection of exercises.
Our colleague Jan Kratochvil provided invaluable remarks based on
his experience in teaching the same course. We thank Tomas Kaiser
for substantial help in translating one chapter into English. Adam
Dingle and Tim Childers helped us with some comments on the
English at early stages of the translation. Jan Nekovaf was so kind
as to leave the peaks of number theory for a moment and provide
pointers to a suitable proof of Fact 12.7.1.

Several people read parts of the English version at various stages
and provided insights that would probably never have occurred to
us. Special thanks go to Jeff Stopple for visiting us in Prague, care-
fully reading the whole manuscript, and sharing some of his teaching
wisdom with us. We are much indebted to Mari Inaba and Helena
Nesetfilova for comments that were very useful and different from
those made by most of other people. Also opinions in several rep-
orts obtained by Oxford University Press from anonymous referees
were truly helpful. Most of the finishing and polishing work on the
book was done by the first author during a visit to the ETH Zurich.
Emo Welzl and the members of his group provided a very pleasant
and friendly environment, even after they were each asked to read
through a chapter, and so the help of Hans-Martin Will, Beat Tra-
chsler, Bernhard von Stengel, Lutz Kettner, Joachim Giesen, Bernd
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Gértner, Johannes Blémer, and Artur Andrzejak is gratefully ack-
nowledged. We also thank Hee-Kap Ahn for reading a chapter.

Many readers have contributed to correcting errors from the first
printing. A full list can be found at the web page with errata men-
tioned below; here we just mention Mel Hausner, Emo Welzl, Hans
Mielke, and Bernd Bischl as particularly significant contributors to
this effort.

Next, we would like to thank Karel Horak for several expert sug-
gestions helping the first author in his struggle with the layout of
the book (unfortunately, the times when books used to be typeset
by professional typographers seem to be over), and Jana Chlebikova
for a long list of minor typographic corrections.

Almost all the figures were drawn by the first author using the
graphic editor Ipe 5.0. In the name of humankind, we thank Otfried
Cheong (formerly Schwarzkopf) for its creation.

Finally, we should not forget to mention that Sénke Adlung has
been extremely nice to us and very helpful during the editorial pro-
cess, and that it was a pleasure to work with Julia Tompson in the
final stages of the book preparation.

A final appeal. A long mathematical text usually contains a sub-
stantial number of mistakes. We have already corrected a large num-
ber of them, but certainly some still remain. So we plead with readers
who discover errors, bad formulations, wrong hints to exercises, etc.,
to let us know about them.?

2Please send emails concerning this book to matousek@kam.mff.cuni.cz. An
Internet home page of the book with a list of known mistakes can currently be
accessed from http://kam.mff.cuni.cz/ matousek/.
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1

Introduction and basic
concepts

In this introductory chapter, we first give a sample of the problems
and questions to be treated in the book. Then we explain some basic
notions and techniques, mostly fundamental and simple ones com-
mon to most branches of mathematics. We assume that the reader
is already familiar with many of them or has at least heard of them.
Thus, we will mostly review the notions, give precise formal defini-
tions, and point out various ways of capturing the meaning of these
concepts by diagrams and pictures. A reader preferring a more det-
ailed and thorough introduction to these concepts may refer to the
book by Stewart and Tall [9], for instance.

Section 1.1 presents several problems to be studied later on in
the book and some thoughts on the importance of mathematical
problems and similar things.

Section 1.2 is a review of notation. It introduces some common
symbols for operations with sets and numbers, such as U for set
union or ) for summation of a sequence of numbers. Most of the
symbols are standard, and the reader should be able to go through
this section fairly quickly, relying on the index to refresh memory
later on.

In Section 1.3, we discuss mathematical induction, an important
method for proving statements in discrete mathematics. Here it is
sufficient to understand the basic principle; there will be many oppo-
rtunities to see and practice various applications of induction in sub-
sequent chapters. We will also say a few words about mathematical
proofs in general.

Section 1.4 recalls the notion of a function and defines special
types of functions: injective functions, surjective functions, and bije-
ctions. These terms will be used quite frequently in the text.
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Sections 1.5 and 1.6 deal with relations and with special types of
relations, namely equivalences and orderings. These again belong to
the truly essential phrases in the vocabulary of mathematics. How-
ever, since they are simple general concepts which we have not yet
fleshed out by many interesting particular examples, some readers
may find them “too abstract”—a polite phrase for “boring”—on first
reading. Such readers may want to skim through these sections and
return to them later. (When learning a new language, say, it is not
very thrilling to memorize the grammatical forms of the verb “to
be”, but after some time you may find it difficult to speak fluently
knowing only “I am” and “he is”. Well, this is what we have to do in
this chapter: we must review some of the language of mathematics.)

1.1 An assortment of problems

Let us look at some of the problems we are going to consider in this
book. Here we are going to present them in a popular form, so you
may well know some of them as puzzles in recreational mathematics.
A well-known problem concerns three houses and three wells.
Once upon a time, three fair white houses stood in a meadow in
a distant kingdom, and there were three wells nearby, their water
clean and fresh. All was well, until one day a seed of hatred was sown,
fights started among the three households and would not cease, and
no reconciliation was in sight. The people in each house insisted that
they have three pathways leading from their gate to each well, three
pathways which should not cross any of their neighbors’ paths. Can
they ever find paths that will satisfy everyone and let peace set in?
A solution would be possible if there were only two wells:

&

IS

But with three wells, there is no hope (unless these proud men and
women would be willing to use tunnels or bridges, which sounds quite
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unlikely). Can you state this as a mathematical problem and prove
that it has no solution?

Essentially, this is a problem about drawing in the plane. Many
other problems to be studied in this book can also be formulated in
terms of drawing. Can one draw the following picture without lifting
the pencil from the paper, drawing each line only once?

And what about this one?

If not, why not? Is there a simple way to distinguish pictures that
can be drawn in this way from those that cannot? (And, can you
find nice accompanying stories to this problem and the ones below?)

For the subsequent set of problems, draw 8 dots in the plane in
such a way that no 3 of them lie on a common line. (The number 8 is
quite arbitrary; in general we could consider n such dots.) Connect
some pairs of these points by segments, obtaining a picture like the
following:

What is the maximum number of segments that can be drawn so that
no triangle with vertices at the dots arises? The following picture has
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13 segments:

Can you draw more segments for 8 dots with no triangle? Probably
you can. But can you prove your result is already the best possible?

Next, suppose that we want to draw some segments so that any
two dots can be connected by a path consisting of the drawn seg-
ments. The path is not allowed to make turns at the crossings of the
segments, only at the dots, so the left picture below gives a valid
solution while the right one doesn’t:

What is the minimum number of segments we must draw? How many
different solutions with this minimum number of segments are there?
And how can we find a solution for which the total length of all the
drawn segments is the smallest possible?

All these problems are popular versions of simple basic questions
in graph theory, which is one of main subjects of this book (treated
in Chapters 4, 5, and 6). For the above problems with 8 dots in the
plane, it is easily seen that the way of drawing the dots is immaterial;
all that matters is which pairs of dots are connected by a segment
and which are not. Most branches of graph theory deal with problems
which can be pictured geometrically but in which geometry doesn’t
really play a role. On the other hand, the problem about wells and
houses belongs to a “truly” geometric part of graph theory. It is
important that the paths should be built in the plane. If the houses
and wells were on a tiny planet shaped like a tire-tube then the
required paths would exist:
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Another important theme of this book is combinatorial counting,
treated in Chapters 3 and 12. The problems there usually begin with
“How many ways are there...” or something similar. One question
of this type was mentioned in our “8 dots” series (and it is a nice
question—the whole of Chapter 8 is devoted to it). The reader has
probably seen lots of such problems; let us add one more. How many
ways are there to divide n identical coins into groups? For instance,
4 coins can be divided in 5 ways: 1+ 1+ 1+ 1 (4 groups of 1 coin
each), 1+ 1+ 2,143,242, and 4 (all in one group, which is not
really a “division” in the sense most people understand it, but what
do you expect from mathematicians!). For this problem, we will not
be able to give an exact formula; such a formula does exist but its
derivation is far beyond the scope of this book. Nonetheless, we will
at least derive estimates for the number in question. This number is
a function of n, and the estimates will allow us to say “how fast” this
function grows, compared to simple and well-known functions like n?
or 2. Such a comparison of complicated functions to simple ones is
the subject of the so-called asymptotic analysis, which will also be
touched on below and which is important in many areas, for instance
for comparing several algorithms which solve the same problem.

Although the problems presented may look like puzzles, each of
them can be regarded as the starting point of a theory with numerous
applications, both in mathematics and in practice.

In fact, distinguishing a good mathematical problem from a bad one
is one of the most difficult things in mathematics, and the “quality” of

a problem can often be judged only in hindsight, after the problem has
been solved and the consequences of its solution mapped. What is a good
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problem? It is one whose solution will lead to new insights, methods,
or even a whole new fruitful theory. Many problems in recreational
mathematics are not good in this sense, although their solution may
require considerable skill or ingenuity.

A pragmatically minded reader might also object that the problems
shown above are useless from a practical point of view. Why take a
whole course about them, a skeptic might say, when I have to learn so
many practically important things to prepare for my future career? Ob-
jections of this sort are quite frequent and cannot be simply dismissed, if
only because the people controlling the funding are often pragmatically
minded.

One possible answer is that for each of these puzzle-like problems,
we can exhibit an eminently practical problem that is its cousin. For
instance, the postal delivery service in a district must deliver mail to all
houses, which means passing through each street at least once. What is
the shortest route to take? Can it be found in a reasonable time using a
supercomputer? Or with a personal computer? In order to understand
this postal delivery problem, one should be familiar with simple results
about drawing pictures without lifting a pencil from the paper.

Or, given some placement of components of a circuit on a board, is
it possible to interconnect them in such a way that the connections go
along the surface of the board and do not cross each other? What is
the most economical placement of components and connections (using
the smallest area of the board, say)? Such questions are typical of VLSI
design (designing computer chips and similar things). Having learned
about the three-wells problem and its relatives (or, scientifically speak-
ing, about planar graphs) it is much easier to grasp ways of designing
the layout of integrated circuits.

These “practical” problems also belong to graph theory, or to a
mixture of graph theory and the design of efficient algorithms. This
book doesn’t provide a solution to them, but in order to comprehend
a solution in some other book, or even to come up with a new good
solution, one should master the basic concepts first.

We would also like to stress that the most valuable mathematical
research was very seldom directly motivated by practical goals. Some
great mathematical ideas of the past have only found applications quite
recently. Mathematics does have impressive applications (it might be
easier to list those human activities where it is not applied than those
where it is), but anyone trying to restrict mathematical research to the
directly applicable parts would be left with a lifeless fragment with most
of the creative power gone.

Exercises are unnecessary in this section. Can you solve some of
the problems sketched here, or perhaps all of them? Even if you try
and get only partial results or fail completely, it will still be of great
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help in reading further.

So what 4s this discrete mathematics they’re talking about, the
reader may (rightfully) ask? The adjective “discrete” here is an oppo-
site of “continuous”. Roughly speaking, objects in discrete mathematics,
such as the natural numbers, are clearly separated and distinguishable
from each other and we can perceive them individually (like trees in
a forest which surrounds us). In contrast, for a typical “continuous”
object, such as the set of all points on a line segment, the points are
indiscernible (like the trees in a forest seen from a high-flying airplane).
We can focus our attention on some individual points of the segment
and see them clearly, but there are always many more points nearby
that remain indistinguishable and form the totality of the segment.

According to this explanation, parts of mathematics such as algebra
or set theory might also be considered “discrete”. But in the common
usage of the term, discrete mathematics is most often understood as
mathematics dealing with finite sets. In many current university curric-
ula, a course on discrete mathematics has quite a wide range, including
some combinatorics, counting, graph theory, but also elements of math-
ematical logic, some set theory, basics from the theory of computing
(finite automata, formal languages, elements of computer architecture),
and other things. We prefer a more narrowly focussed scope, so perhaps
a more descriptive title for this book would be “Invitation to combina-
torics and graph theory”, covering most of the contents. But the name
of the course we have been teaching happened to be “Discrete mathe-
matics” and we decided to stick to it.

1.2 Numbers and sets: notation

Number domains. For the set of all natural numbers, i.e. the set
{1,2,3,...}, we reserve the symbol N. The letters n,m, k, 1, j, p and
possibly some others usually represent natural numbers.

Using the natural numbers, we may construct other well-known
number domains: the integers, the rationals, and the reals (and also
the complex numbers, but we will seldom hear about them here).

The integer numbers or simply integers arise from the natural
numbers by adding the negative integer numbers and 0. The set of
all integers is denoted by Z.

The rational numbers are fractions with integer numerator and
denominator. This set is usually denoted by Q but we need not
introduce any symbol for it in this book. The construction of the
set R of all real numbers is more complicated, and it is treated in
introductory courses of mathematical analysis. Famous examples of
real numbers which are not rational are numbers such as v/2, some



8 Introduction and basic concepts

important constants like 7w, and generally numbers whose decimal
notation has an infinite and aperiodic sequence of digits following
the decimal point, such as 0.12112111211112.. . ..

The closed interval from a to b on the real axis is denoted by [a, 0],
and the open interval with the same endpoints is written as (a, b).

Operations with numbers. Most symbols for operations with
numbers, such as + for addition, v for square root, and so on, are
generally well known. We write division either as a fraction, or some-
times with a slash, i.e. either in the form § or as a/b.

We introduce two less common functions. For a real number z,
the symbol |x] is called! the lower integer part of x (or the floor
function of x), and its value is the largest integer smaller than or
equal to x. Similarly [z], the upper integer part of = (or the ceiling
function), denotes the smallest integer greater than or equal to x.
For instance, [0.999] = 0, [-0.1] = -1, [0.01] = 1, [¥] = 6,
V3| =1

Later on, we will introduce some more operations and functions
for numbers, which have an important combinatorial meaning and
which we will investigate in more detail. Examples are n! and
Q).

Sums and products. If ai,as,...,a, are real numbers, their sum
a; +az + -+ + a,, can also be written using the summation sign >_,
in the form

n
E a;.
=1

This notation somewhat resembles the FOR loop in many program-
ming languages. Here are a few more examples:

n the older literature, one often finds [z] used for the same function.
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n n

Di+4)=> (((+1)+E+2)+- -+ (i+n))
i=1 j=1 i=1
:an(m+(1+2+---+n))
i=1

n
= n<Zz) +n(l+2+-+n)
i=1
=2n(14+2+---+n).
Similarly as sums are written using » . (which is the capital Greek
letter “sigma”, from the word sum), products may be expressed using
the sign [] (capital Greek “pi”). For example,

n+ 1.

ﬂi—l—l_Q 3 n+1l
i 127 N

i=1 "
Sets. Another basic notion we will use is that of a set. Most likely
you have already encountered sets in high school (and, thanks to
the permanent modernization of the school system, maybe even in
elementary school). Sets are usually denoted by capital letters:

AB,....X,Y,...,M,N,...

and so on, and the elements of sets are mostly denoted by lowercase
letters: a,b,..., z,y,..., m,n,....

The fact that a set X contains an element x is traditionally writ-
ten using the symbol €, which is a somewhat stylized Greek letter
e—"“epsilon”. The notation z € X is read “x is an element of X7,
“r belongs to X7, “x is in X”, and so on.

Let us remark that the concept of a set and the symbol € are
so-called primitive notions. This means that we do not define them
using other “simpler” notions (unlike the rational numbers, say, which
are defined in terms of the integers). To understand the concept of a set,
we rely on intuition (supported by numerous examples) in this book. It
turned out at the beginning of the 20th century that if such an intuitive
notion of a set is used completely freely, various strange situations, the
so-called paradoxes, may arise.? In order to exclude such paradoxes, the

2The most famous one is probably Russell’s paradox. One possible formulation
is about an army barber. An army barber is supposed to shave all soldiers who
do not shave themselves—should he, as one of the soldiers, shave himself or not?
This paradox can be translated into a rigorous mathematical language and it
implies the inconsistency of notions like “the set of all sets”.
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theory of sets has been rebuilt on a formalized basis, where all proper-

ties of sets are derived formally from several precisely formulated basic

assumptions (axioms). For the sets used in this text, which are mostly
finite, we need not be afraid of any paradoxes, and so we can keep
relying on the intuitive concept of a set.

The set with elements 1, 37, and 55 is written as {1,37,55}. This,
and also the notations {37,1,55} and {1, 37,1, 55,55, 1}, express the
same thing. Thus, a multiple occurrence of the same element is ign-
ored: the same element cannot be contained twice in the same set!
Three dots (an ellipsis) in {2, 4, 6,8, ...} mean “and further similarly,
using the same pattern”, i.e. this notation means the set of all even
natural numbers. The appropriate pattern should be apparent at
first sight. For instance, {2!,22 23 ...} is easily understandable as
the set of all powers of 2, while {2,4,8,...} may be less clear.

Ordered and unordered pairs. The symbol {z,y} denotes the
set containing exactly the elements z and y, as we already know. In
this particular case, the set {z,y} is sometimes called the unordered
pair of  and y. Let us recall that {z,y} is the same as {y,x}, and
if z =y, then {x,y} is a 1-element set.

We also introduce the notation (z,y) for the ordered pair of
x and y. For this construct, the order of the elements = and y is
important. We thus assume the following;:

(z,y) = (2,t) if and only if x = z and y = ¢. (1.1)

Interestingly, the ordered pair can be defined using the notion of
unordered pair, as follows:

(z,y) = {{z}, {z, y}}-

Verify that ordered pairs defined in this way satisfy the condition (1.1).
However, in this text it will be simpler for us to consider (z, y) as another
primitive notion.

Similarly, we write (z1, z2, ..., xy) for the ordered n-tuple consist-
ing of elements z1, 2o, ..., T,. A particular case of this convention is
writing a point in the plane with coordinates z and y as (z,y), and
similarly for points or vectors in higher-dimensional spaces.

Defining sets. More complicated and interesting sets are usually
created from known sets using some rule. The sets of all squares of
natural numbers can be written

{i%: i e N}
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or also
{n € N: there exists k € N such that k% = n}
or using the symbol 3 for “there exists”:
{neN: Ik e N(k* =n)}.

Another example is a formal definition of the open interval (a,b)
introduced earlier:

(a,b) ={z e R: a <z < b}.

Note that the symbol (a,b) may mean either the open interval, or
also the ordered pair consisting of a and b. These two meanings must
(and usually can) be distinguished by the context. This is not at all
uncommon in mathematics: many symbols, like parentheses in this case,
are used in several different ways. For instance, (a,b) also frequently
denotes the greatest common divisor of natural numbers a and b (but
we avoid this meaning in this book).

With modern typesetting systems, it is no problem to use any kind
of alphabets and symbols including hieroglyphs, so one might think of
changing the notation in such cases. But mathematics tends to be rather
conservative and the existing literature is vast, and so such notational
inventions are usually short-lived.

The empty set. An important set is the one containing no element
at all. There is just one such set, and it is customarily denoted by ()
and called the empty set. Let us remark that the empty set can be
an element of another set. For example, {(} is the set containing the
empty set as an element, and so it is not the same set as (!

Set systems. In mathematics, we often deal with sets whose ele-
ments are other sets. For instance, we can define the set

M = {{17 2}7 {17 2, 3}7 {273a 4}7 {4}}7

whose elements are 4 sets of natural numbers, more exactly 4 subsets
of the set {1,2,3,4}. One meets such sets in discrete mathematics
quite frequently. To avoid saying a “set of sets”, we use the notions
set system or family of sets. We could thus say that M is a system of
sets on the set {1,2,3,4}. Such set systems are sometimes denoted
by calligraphic capital letters, such as M.

However, it is clear that such a distinction using various types of let-

ters cannot always be quite consistent—what do we do if we encounter
a set, of sets of sets?
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The system consisting of all possible subsets of some set X is
denoted by the symbol® 2% and called the power set of X. Another
notation for the power set common in the literature is P(X).

Set size. A large part of this book is devoted to counting various
kinds of objects. Hence a very important notation for us is that for
the number of elements of a finite set X. We write it using the same
symbol as for the absolute value of a number: | X|.

A more general notation for sums and products. Sometimes it
is advantageous to use a more general way to write down a sum than
using the pattern ;" | a;. For instance,

>

i€{1,3,5,7}

means the sum 12 + 32 4+ 52 + 72. Under the summation sign, we
first write the summation variable and then we write out the set of
values over which the summation is to be performed. We have a lot
of freedom in denoting this set of values. Sometimes it can in part
be described by words, as in the following;:

Z i=24+3+5+7.

i 1<i<10
1 a prime
Should the set of values for the summation be empty, we define the
value of the sum as 0, no matter what appears after the summation
sign. For example:

=1 1€{2,4,6,8}
i odd
A similar “set notation” can also be employed for products. An
empty product, such as [] 27, is always defined as 1 (not
0 as for an empty sum).

§i2<j<1

Operations with sets. Using the primitive notion of set member-
ship, €, we can define further relations among sets and operations

3This notation may look strange, but it is traditional and has its reasons.
For instance, it helps to remember that an n-element set has 2" subsets; see
Proposition 3.1.2.
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with sets. For example, two sets X and Y are considered identical
(equal) if they have the same elements. In this case we write X =Y.

Other relations among sets can be defined similarly. If XY are
sets, X C Y (in words: “X is a subset of Y”) means that each
element of X also belongs to Y.

The notation X C Y sometimes denotes that X is a subset of ¥V
but X is not equal to Y. This distinction between C and C is not quite
unified in the literature, and some authors may use C synonymously
with our C.

The notations X UY (the union of X and Y) and X NY (the
intersection of X and Y') can be defined as follows:

XUY={z:z€XorzeY}, XnNY={z:z€XandzeY}.

If we want to express that the sets X and Y in the considered union
are disjoint, we write the union as XUY. The expression X \ Y is the
difference of the sets X and Y, i.e. the set of all elements belonging
to X but not to Y.

Enlarged symbols U and N may be used in the same way as the
symbols > and []. So, if X7, Xo,..., X, are sets, their union can be
written

Ux (1.2)

and similarly for intersection.

Note that this notation is possible (or correct) only because the
operations of union and intersection are associative; that is, we have

Xn(Ynz)=(XnYy)nZz

and
Xuuz)=(Xuy)uz

for any triple X,Y, Z of sets. As a consequence, the way of “parenthe-
sizing” the union of any 3, and generally of any n, sets is immaterial,
and the common value can be denoted as in (1.2). The operations U
and N are also commutative, in other words they satisfy the relations

XNY=YnX,

XUuY =YUX.

The commutativity and the associativity of the operations U and N are
complemented by their distributivity. For any sets X,Y. Z
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we have
XNYuz)=XnY)u(Xn2z),
XUulnzZ)y=(XUuY)Nn(XU2).
The validity of these relations can be checked by proving that any
element belongs to the left-hand side if and only if it belongs to the right-

hand side. The relations can be generalized for an arbitrary number of
sets as well. For instance,

n n

AN <UX1) = U(AmXi);

=1 i=1

Au(ﬂX) ﬁ (AU X;).

Such relations can be proved by induction; see Section 1.3 below. Other
popular relations for sets are

X\(AUB) = (X\A)N(X\B) and X\(ANB)=(X\A)U(X\B)

(the so-called de Morgan laws), and their generalizations

1 (Ua) =N

X\ (ﬂA) U 4).
=1
The last operation to be introduced here is the Cartesian product,
denoted by X x Y, of two sets X and Y. The Cartesian product of X
and Y is the set of all ordered pairs of the form (z,y), where z € X
and y € Y. Written formally,

XxY={(z,y): e X, yeY}.

Note that generally X xY is not the same as Y x X, i.e. the operation
is not commutative.

The name “Cartesian product” comes from a geometric interpreta-
tion. If, for instance, X =Y = R, then X X Y can be interpreted as all
points of the plane, since a point in the plane is uniquely described by
an ordered pair of real numbers, namely its Cartesian coordinates*—
the x-coordinate and the y-coordinate (Fig. 1.1a). This geometric view
can also be useful for Cartesian products of sets whose elements are not
numbers (Fig. 1.1b).

4These are named after their inventor, René Descartes.
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Y XxY
3e ‘e ° ° °
(a,b) (a,3) (b,3)
ad-e °
20 ° ° ° °
(c,2)
le ) ° ° ()
] ° ° ° o X
b a b c d

(a) (b)

Fig. 1.1 Hlustrating the Cartesian product: (a) R xR; (b) X x Y for finite
sets X,Y.

The Cartesian product of a set X with itself, i.e. X x X, may

also be denoted by X?2.

Exercises

1.

Which of the following formulas are correct?
() 5] = 5] +n.

(b) 245 = 5] + L5],
(¢) [(lz])] = [=] (for a real number x),
(d) [(Le] + DT = Lz] + L]

. *Prove that the equality |\/z| = |[+/|z]] holds for any positive real

number z.

. (a) Define a “parenthesizing” of a union of n sets |J;_; X;. Similarly,

define a “parenthesizing” of a sum of n numbers > | a;.

(b) Prove that any two parenthesizings of the intersection (), X;
yield the same result.

(¢) How many ways are there to parenthesize the union of 4 sets
AuBUCUD?

(d) **Try to derive a formula or some other way to count the number
of ways to parenthesize the union of n sets U?:l X;.

. True or false? If 2X = 2Y holds for two sets X and Y, then X =Y.

. Is a “cancellation” possible for the Cartesian product? That is, if

X xY = X x Z holds for some sets X,Y, 7, does it necessarily fol-
low that Y = 27

. Prove that for any two sets A, B we have

(A\B)U(B\ A) = (AUB)\ (AN B).
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7. *Consider the numbers 1,2,...,1000. Show that among any 501 of
them, two numbers exist such that one divides the other one.

8. In this problem, you can test your ability to discover simple but “hid-
den” solutions. Divide the following figure into 7 parts, all of them con-
gruent (they only differ by translation, rotation, and possibly by a mir-
ror reflection). All the bounding segments in the figure have length 1,
and the angles are 90, 120, and 150 degrees.

N
N

1.3 Mathematical induction and other proofs

Let us imagine that we want to calculate, say, the sum 1+ 2 4 2% +
23+ ... 427 = Y1 2¢ (and that we can’t remember a formula
for the sum of a geometric progression). We suspect that one can
express this sum by a nice general formula valid for all the n. By
calculating numerical values for several small values of n, we can
guess that the desired formula will most likely be 2"+ — 1. But even
if we verify this for a million specific values of n with a computer, this
is still no proof. The million-and-first number might, in principle, be
a counterexample. The correctness of the guessed formula for all n
can be proved by so-called mathematical induction. In our case, we
can proceed as follows:

1. The formula Y1 ;2" = 2""! — 1 holds for n = 1, as one can
check directly.

2. Let us suppose that the formula holds for some value n = ny.
We prove that it also holds for n = ng + 1. Indeed, we have

no+1 no
Y 2= <22> 4 gnotl,
=0 1=0

The sum in parentheses equals 2™ +! — 1 by our assumption (the
validity for n = ng). Hence

no+1
Z 21 — 2TLO+1 14+ 2n0+1 —9. 2n0+l 1= 2n0+2 _1.
i=0

This is the required formula for n = ng + 1.
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This establishes the validity of the formula for an arbitrary n: by
step 1, the formula is true for n = 1, by step 2 we may thus infer
it is also true for n = 2 (using step 2 with ng = 1), then, again by
step 2, the formula holds for n = 3. .., and in this way we can reach
any natural number. Note that this argument only works because
the value of ng in step 2 was quite arbitrary. We have made the
step from ng to ng+ 1, where any natural number could equally well
appear as ng.

Step 2 in this type of proof is called the inductive step. The ass-
umption that the statement being proved is already valid for some
value n = nyg is called the inductive hypothesis.

One possible general formulation of the principle of mathematical
induction is the following:

1.3.1 Proposition. Let X be a set of natural numbers with the
following properties:

(i) The number 1 belongs to X.
(ii) If some natural number n is an element of X, then the number
n + 1 belongs to X as well.

Then X is the set of all natural numbers (X = N).

In applications of this scheme, X would be the set of all numbers
n such that the statement being proved, S(n), is valid for n.

The scheme of a proof by mathematical induction has many vari-
ations. For instance, if we need to prove some statement for all n > 2,
the first step of the proof will be to check the validity of the state-
ment for n = 2. As an inductive hypothesis, we can sometimes use
the validity of the statement being proved not only for n = ng, but
for all n < ng, and so on; these modifications are best mastered by
examples.

Mathematical induction can either be regarded as a basic property of
natural numbers (an axiom, i.e. something we take for granted without

a proof), or be derived from the following other basic property (axiom):

Any nonempty subset of natural numbers possesses a smallest element.

This is expressed by saying that the usual ordering of natural numbers

by magnitude is a well-ordering. In fact, the principle of mathematical

induction and the well-ordering property are equivalent to each other,?
and either one can be taken as a basic axiom for building the theory of
natural numbers.

5 Assuming that each natural number n > 1 has a unique predecessor n — 1.
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Proof of Proposition 1.3.1 from the well-ordering property. For
contradiction, let us assume that a set X satisfies both (i) and (ii), but
it doesn’t contain all natural numbers. Among all natural numbers n
not lying in X, let us choose the smallest one and denote it by nyg.
By condition (i) we know that ng > 1, and since ny was the smallest
possible, the number ny — 1 is an element of X. However, using (ii) we
get that ng is an element of X, which is a contradiction. m|

Let us remark that this type of argument (saying “Let ng be the
smallest number violating the statement we want to prove” and deriv-
ing a contradiction, namely that a yet smaller violating number must
exist) sometimes replaces mathematical induction. Both ways, this one
and induction, essentially do the same thing, and it depends on the
circumstances or personal preferences which one is actually used.

We will use mathematical induction quite often. It is one of our
basic proof methods, and the reader can thus find many examples
and exercises on induction in subsequent chapters.

Mathematical proofs and not-quite proofs. Mathematical proof
is an amazing invention. It allows one to establish the truth of a
statement beyond any reasonable doubt, even when the statement
deals with a situation so complicated that its truth is inaccessible to
direct evidence. Hardly anyone can see directly that no two natural
numbers m,n exist such that ' = V2 and yet we can trust this
fact completely, because it can be proved by a chain of simple logical
steps.

Students often don’t like proofs, even students of mathematics.
One reason might be that they have never experienced satisfaction
from understanding an elegant and clever proof or from making a
nice proof by themselves. One of our main goals is to help the reader
to acquire the skill of rigorously proving simple mathematical state-
ments.

A possible objection is that most students will never need such
proofs in their future jobs. We believe that learning how to prove math-
ematical theorems helps to develop useful habits in thinking, such as
working with clear and precise notions, exactly formulating thoughts
and statements, and not overlooking less obvious possibilities. For ins-
tance, such habits are invaluable for writing software that doesn’t crash
every time the circumstances become slightly non-standard.

The art of finding and writing proofs is mostly taught by exam-
ples,® by showing many (hopefully) correct and “good” proofs to the

SWe will not even try to say what a proof is and how to do one!
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student and by pointing out errors in the student’s own proofs. The
latter “negative” examples are very important, and since a book is
a one-way communication device, we decided to include also a few
negative examples in this book, i.e. students’ attempts at proofs with
mistakes which are, according to our experience, typical. These int-
entionally wrong proofs are presented in a special font like this. In the
rest of this section, we discuss some common sources of errors. (We
hasten to add that types of errors in proofs are as numerous as grains
of sand, and by no means do we want to attempt any classification.)

One quite frequent situation is where the student doesn’t under-
stand the problem correctly. There may be subtleties in the problem’s
formulation which are easy to overlook, and sometimes a misunder-
standing isn’t the student’s fault at all, since the author of the prob-
lem might very well have failed to see some double meaning. The only
defense against this kind of misunderstanding is to pay the utmost
attention to reading and understanding a problem before trying to
solve it. Do a preliminary check: does the problem make sense in the
way you understand it? Does it have a suspiciously trivial solution?
Could there be another meaning?

With the current abundance of calculators and computers, errors are
sometimes caused by the uncritical use of such equipment. Asked how
many zeros does the decimal notation of the number 50! = 50-49-48-. . .-1
end with, a student answered 60, because a pocket calculator with an
8-digit display shows that 50! = 3.04140-1054. Well, a more sophisticated
calculator or computer programmed to calculate with integers with ar-

bitrarily many digits would solve this problem correctly and calculate
that

50!=30414093201713378043612608166064768844377641568960512000000000000

with 12 trailing zeros. Several software systems can even routinely solve
such problems as finding a formula for the sum 12-21422.22432.234.. .+
n?2", or for the number of binary trees on n vertices (see Section 12.4).
But even programmers of such systems can make mistakes and so it’s
better to double-check such results. Moreover, the capabilities of these
systems are very limited; artificial intelligence researchers will have to
make enormous progress before they can produce computers that can
discover and prove a formula for the number of trailing zeros of n!, or
solve a significant proportion of the exercises in this book, say.

Next, we consider the situation where a proof has been written
down but it has a flaw, although its author believes it to be satisfac-
tory.
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In principle, proofs can be written down in such detail and in such
a formal manner that they can be checked automatically by a com-
puter. If such a completely detailed and formalized proof is wrong,
some step has to be clearly false, but the catch is that formalizing
proofs completely is very laborious and impractical. All textbook
proofs and problem solutions are presented somewhat informally.

While some informality may be necessary for a reasonable pre-
sentation of a proof, it may also help to hide errors. Nevertheless,
a good rule for writing and checking proofs is that every statement
in a correct proof should be literally true. Errors can often be det-
ected by isolating a specific false statement in the proof, a mistake
in calculation, or a statement that makes no sense (“Let ¢1, {2 be two
arbitrary lines in the 3-dimensional space, and let p be a plane contain-
ing both of them...” etc.). Once detected and brought out into the
light, such errors become obvious to (almost) everyone. Still, they
are frequent. If, while trying to come up with a proof, one discovers
an idea seemingly leading to a solution and shouts “This must be
IT!”, caution is usually swept aside and one is willing to write down
the most blatant untruths. (Unfortunately, the first idea that comes
to mind is often nonsense, rather than “it”, at least as far as the
authors’ own experience with problem solving goes.)

A particularly frequent mistake, common perhaps to all mathe-
maticians of the world, is a case omission. The proof works for some
objects it should deal with, but it fails in some cases the author over-
looked. Such a case analysis is mostly problem specific, but one keeps
encountering variations on favorite themes. Dividing an equation by
x — y is only allowed for x # y, and the x = y case must be treated
separately. An intersection of two lines in the plane can only be used
in a proof if the lines are not parallel. Deducing a? > b? from a > b
may be invalid if we know nothing about the sign of a and b, and so
on and so on.

Many proofs created by beginners are wrong because of a confused
application of theorems. Something seems to follow from a theorem
presented in class or in a textbook, say, but in reality the theorem
says something slightly different, or some of its assumptions don’t
hold. Since we have covered no theorems worth mentioning so far, let
us give an artificial geometric example: “Since ABC' is an isosceles
triangle with the sides adjacent to A having equal length, we have
|AB|? + |AC|? = |BC|? by the theorem of Pythagoras.” Well, wasn’t
there something about a right angle in Pythagoras’ theorem?
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A rich source of errors and misunderstandings is relying on unp-
roved statements.

Many proofs, including correct and even textbook ones, contain un-
proved statements intentionally, marked by clauses like “obviously...”.
In an honest proof, the meaning of such clauses should ideally be “I,
the author of this proof, can see how to prove this rigorously, and since
I consider this simple enough, I trust that you, my reader, can also fill
in all the details without too much effort”. Of course, in many mathe-
matical papers, the reader’s impression about the author’s thinking is
more in the spirit of “I can see it somehow since I’ve been working on
this problem for years, and if you can’t it’s your problem”. Hence omit-
ting parts of proofs that are “clear” is a highly delicate social task, and
one should always be very careful with it. Also, students shouldn’t be
surprised if their teacher insists that such an “obvious” part be proved
in detail. After all, what would be a better hiding place for errors in a
proof than in the parts that are missing?

A more serious problem concerns parts of a proof that are omitted
unconsciously. Most often, the statement whose proof is missing is
not even formulated explicitly.” For a teacher, it may be a very chal-
lenging task to convince the proof’s author that something is wrong
with the proof, especially when the unproved statement is actually
true.

One particular type of incomplete proof, fairly typical of students’
proofs in discrete mathematics, could be labeled as mistaking the par-
ticular for the general. To give an example, let us consider the following
Mathematical Olympiad problem:

1.3.2 Problem. Let n > 1 be an integer. Let M be a set of closed

intervals. Suppose that the endpoints u,v of each interval [u,v] € M

are natural numbers satisfying 1 < u < v < n, and, moreover, for any

two distinct intervals I, I’ € M, one of the following possibilities occurs:

INI =0,or I C I',or I' C I (i.e. two intervals must not partially

overlap). Prove that | M| <n — 1.

An insufficient proof attempt. In order to construct an M as large
as possible, we first insert as many unit-length intervals as possible, as in
the following picture:

"Even proofs by the greatest mathematicians of the past suffer from such
incompleteness, partly because the notion of a proof has been developing over
the ages (towards more rigor, that is).
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These [n/2] intervals are all disjoint. Now any other interval in M must
contain at least two of these unit intervals (or, for n odd, possibly the
last unit interval plus the point that remains). Hence, to get the maximum
number of intervals, we put in the next “layer” of shortest possible intervals,
as illustrated below:

y
1

1 2 ... 13

We continue in this manner, adding one layer after another, until we finally
add the last layer consisting of the whole interval [1,n]:

1 2 ... 13

It remains to show that the set M created in this way has at most n — 1
intervals. We note that every interval I in the kth layer contains a point of
the form 7+ % 1 <4 < n—1, that was not contained in any interval of the
previous layers, because the space between the two intervals in the previous
layer was not covered before adding the kth layer. Therefore, |[M| <n—1
as claimed. O

This “proof” looks quite clever (after all, the way of counting the
intervals in the particular M constructed in the proof is quite elegant).
So what’s wrong with it? Well, we have shown that one particular M
satisfies |M| < n — 1. The argument tries to make the impression of
showing that this particular M is the worst possible case, i.e. that no
other M may have more intervals, but in reality it doesn’t prove any-
thing like that! For instance, the first step seems to argue that an M
with the maximum possible number of intervals should contain |n/2|
unit-length intervals. But this is not true, as is witnessed by M = {[1, 2],
[1,3], [1,4],...,[1,n]}. Saving the “proof” above by justifying its various
steps seems more difficult than finding another, correct, proof. Although
the demonstrated “proof” contains some useful hints (the counting idea
at the end of the proof can in fact be made to work for any M), it’s
still quite far from a valid solution.

The basic scheme of this “proof”, apparently a very tempting one,
says “this object X must be the worst one”, and then proves that this
particular X is OK. But the claim that nothing can be worse than X is
not substantiated (although it usually looks plausible that by construct-
ing this X, we “do the worst possible thing” concerning the statement
being proved).

Another variation of “mistaking the particular for the general” often
appears in proofs by induction, and is shown in several examples in
Sections 5.1 and 6.3.
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Exercises

1.

Prove the following formulas by mathematical induction:
(a) 1+2434+---+n=n(n+1)/2
(b) S -2 = (n—1)27+ 4+ 2.

. The numbers Fy, Fy, F, ... are defined as follows (this is a definition

by mathematical induction, by the way): Fy = 0, F} = 1, F,10 =
Foi1+ F, forn=20,1,2,... Prove that for any n > 0 we have F}, <
(1 ++/5)/2)""! (see also Section 12.3).

(a) Let us draw n lines in the plane in such a way that no two are
parallel and no three intersect in a common point. Prove that the
plane is divided into exactly n(n + 1)/2 + 1 parts by the lines.

(b) *Similarly, consider n planes in the 3-dimensional space in gen-
eral position (no two are parallel, any three have exactly one point in
common, and no four have a common point). What is the number of
regions into which these planes partition the space?

Prove de Moivre’s theorem by induction: (cos a+isina)™ = cos(na) +
isin(na). Here i is the imaginary unit.

. In ancient Egypt, fractions were written as sums of fractions with nu-

merator 1. For instance, % = % + %. Consider the following algorithm

for writing a fraction 7% in this form (1 < m < n): write the fraction

ﬁ, calculate the fraction > — W7 and if it is nonzero repeat the
same step. Prove that this algorithm always finishes in a finite number

of steps.

*Consider a 2™ x 2" chessboard with one (arbitrarily chosen) square
removed, as in the following picture (for n = 3):

H |

Prove that any such chessboard can be tiled without gaps or overlaps
by L-shapes consisting of 3 squares each.

Let n > 2 be a natural number. We consider the following game. Two
players write a sequence of Os and 1s. They start with an empty line
and alternate their moves. In each move, a player writes 0 or 1 to
the end of the current sequence. A player loses if his digit completes
a block of n consecutive digits that repeats itself in the sequence for
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10.

11.
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the second time (the two occurrences of the block may overlap). For
instance, for n = 4, a sequence produced by such a game may look
as follows: 00100001101011110011 (the second player lost by the last
move because 0011 is repeated).

(a) Prove that the game always finishes after finitely many steps.

(b) *Suppose that n is odd. Prove that the second player (the one who
makes the second move) has a winning strategy.

(¢) *Show that for n = 4, the first player has a winning strategy.
Unsolved question: Can you determine who has a winning strategy for
some even n > 47

. *On an infinite sheet of white graph paper (a paper with a square

grid), n squares are colored black. At moments ¢t = 1,2,..., squares
are recolored according to the following rule: each square gets the color
occurring at least twice in the triple formed by this square, its top
neighbor, and its right neighbor. Prove that after the moment ¢t = n,
all squares are white.

. At time 0, a particle resides at the point 0 on the real line. Within 1

second, it divides into 2 particles that fly in opposite directions and
stop at distance 1 from the original particle. Within the next second,
each of these particles again divides into 2 particles flying in opposite
directions and stopping at distance 1 from the point of division, and so
on. Whenever particles meet they annihilate (leaving nothing behind).
How many particles will there be at time 2! + 17

*Let M C R be a set of real numbers, such that any nonempty subset
of M has a smallest number and also a largest number. Prove that M
is necessarily finite.

We will prove the following statement by mathematical induction: Let
l1,4s,...,¢, be n > 2 distinct lines in the plane, no two of which are
parallel. Then all these lines have a point in common.

1. For n = 2 the statement is true, since any 2 nonparallel lines intersect.

2. Let the statement hold for n = ng, and let us have n = ng + 1
lines ¢1,...,¢, as in the statement. By the inductive hypothesis, all these
lines but the last one (i.e. the lines ¢1,¢s,...,¢,_1) have some point
in common; let us denote this point by z. Similarly the n — 1 lines
by, 0o, ..., 0y_o,L, have a point in common; let us denote it by y. The
line £ lies in both groups, so it contains both x and y. The same is true
for the line £,,_5. Now #1 and ¢, _ intersect at a single point only, and
so we must have x = y. Therefore all the lines ¢y, ..., ¢, have a point in
common, namely the point z.

Something must be wrong. What is it?
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12. Let nq,ns9,...,n; be natural numbers, each of them at least 1, and let
ni+ng—+---+ng = n. Prove that n+n3+---+n? < (n—k+1)>+k—1.

“Solution”: In order to make Zle n? as large as possible, we must set
all the n; but one to 1. The remaining one is therefore n — k + 1, and in
this case the sum of squares is (n — k + 1)% + k — 1.

Why isn’t this a valid proof? *Give a correct proof.
13. *Give a correct proof for Problem 1.3.2.

14. *Let n > 1 and k£ be given natural numbers. Let Iy, 1s,..., I, be
closed intervals (not necessarily all distinct), such that for each interval
I; = [uj,v;], u; and v; are natural numbers with 1 < u; < v; < n,
and, moreover, no number is contained in more than & of the intervals
Ii,...,I,,. What is the largest possible value of m?

1.4 Functions

The notion of a function is a basic one in mathematics. It took a long
time for today’s view of functions to emerge. For instance, around
the time when differential calculus was invented, only real or com-
plex functions were considered, and an “honest” function had to be
expressed by some formula, such as f(z) = 22 + 4, f(z) = /sin(x/7),
f(z) = [ (sint/t)dt, f(z) = Yo" (" /n!), and so on. By today’s stan-
dards, a real function may assign to each real number an arbitrary real
number without any restrictions whatsoever, but this is a relatively
recent invention.

Let X and Y be some quite arbitrary sets. Intuitively, a function f is
“something” assigning a unique element of Y to each element of X.
To depict a function, we can draw the sets X and Y, and draw an
arrow from each element x € X to the element y € Y assigned to it:

(0% .7

B 8

v 15
X 6 Y

Note that each element of X must have exactly one outgoing
arrow, while the elements of Y may have none, one, or several ingoing
arrows.

Instead of saying that a function is “something”, it is better to
define it using objects we already know, namely sets and ordered
pairs.
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1.4.1 Definition. A function f from a set X into a set Y is a set
of ordered pairs (z,y) with x € X and y € Y (in other words, a
subset of the Cartesian product X x Y ), such that for any x € X, f
contains exactly one pair with first component x.

Of course, an ordered pair (z,y) being in f means just that the
element z is assigned the element y. We then write y = f(z), and
we also say that f maps = to y or that y is the image of x.

For instance, the function depicted in the above picture consists
of the ordered pairs (a, 8), (3,8), (7,15) and (9, 8).

A function, as a subset of the Cartesian product X x Y, is also
drawn using a graph. We depict the Cartesian product as in Fig. 1.1,
and then we mark the ordered pairs belonging to the function. This
is perhaps the most usual way used in high school or in calculus. The
following picture shows a graph of the function f: R — R given by
flo)=a—az+1:

1

/-1 1

The fact that f is a function from a set X into a set Y is written
as follows:

fr X->Y.

And the fact that the function f assigns some element y to an ele-
ment x can also be written

frax—uy.

We could simply write y = f(x) instead. So why this new notation?
The symbol — is advantageous when we want to speak about some
function without naming it. (Those who have programmed in LISP,
Mathematica, or a few other programming languages might recall the
existence of unnamed functions in these languages.) For instance, it is
not really correct to say “consider the function z2”, since we do not say
what the variable is. In this particular case, one can be reasonably sure
that we mean the function assigning 22 to each real number z, but if we
say “consider the function zy? 4+ 523y”, it is not clear whether we mean
the dependence on y, on z, or on both. By writing y — 2zy? + 523y, we
indicate that we want to study the dependence on y, treating z as some
parameter.
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Instead of “function”, the words “mapping” or “map” are used with

the same meaning.®

Sometimes we also write f(X) for the set {f(x): z € X} (the
set of those elements of Y that are images of something). Also other
terms are usually introduced for functions. For example, X is called
the domain and Y is the range, etc., but here we try to keep the
terminology and formalism to a minimum.

We definitely need to mention that functions can be composed.

1.4.2 Definition (Composition of functions). If f: X — Y and
g: Y — Z are functions, we can define a new function h: X — Z by

h(z) = g(f(x))

for each x € X. In words, to find the value of h(x), we first apply f
to x and then we apply g to the result.

The function h (check that h is indeed a function) is called the
composition of the functions ¢ and f and it is denoted by go f. We
thus have

(9 o f) () = g(f(x))
for each x € X.

The composition of functions is associative but not commutative.
For example, if g o f is well defined, f o g need not be. In order that
two functions can be composed, the “middle set” must be the same.

Composing functions can get quite exciting. For example, consider
the mapping f: R? — R? (i.e. mapping the plane into itself) given by

fi(z,y)— <sin(ax) + bsin(ay), sin(cz) + dsin(cy))

with a = 2.879879, b = 0.765145, ¢ = —0.966918, d = 0.744728. Except
for the rather hairy constants, this doesn’t look like a very complicated
function. But if one takes the initial point p = (0.1,0.1) and plots
the first several hundred thousand or million points of the sequence p,

f), f(f®), f(f(f())),..., a picture like Fig. 1.2 emerges.® This is

8In some branches of mathematics, the word “function” is reserved for func-
tion into the set of real or complex numbers, and the word mapping is used for
functions into arbitrary sets. For us, the words “function” and “mapping” will
be synonymous.

9To be quite honest, the way such pictures are generated by a computer is
actually by iterating an approximation to the mapping given by the formula,
because of limited numerical precision.
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Fig. 1.2 The “King’s Dream” fractal (formula taken from the book by C.
Pickover: Chaos in Wonderland, St Martin’s Press, New York 1994).

one of the innumerable species of the so-called fractals. There seems
to be no universally accepted mathematical definition of a fractal, but
fractals are generally understood as complicated point sets defined by
iterations of relatively simple mappings. The reader can find colorful
and more sophisticated pictures of various fractals in many books on
the subject or download them from the Internet. Fractals can be not
only pleasant to the eye (and suitable for killing an unlimited amount of
time by playing with them on a personal computer) but also important
for describing various phenomena in nature.

After this detour, let us return to the basic definitions concerning

functions.

1.4.3 Definition (Important special types of functions). A
function f: X — Y is called
e a one-to-one function if x # y implies f(z) # f(y),
e a function onto if for every y € Y there exists x € X satisfying
f(z) =y, and
e a bijective function, or bijection, if f is one-to-one and onto.

A one-to-one function is also called an injective function or an
injection, and a function onto is also called a surjective function or
a surjection.
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In a pictorial representation of functions by arrows, these types
of functions can be recognized as follows:

e for a one-to-one function, each point y € Y has at most one
ingoing arrow,

e for a function onto, each point y € Y has at least one ingoing
arrow, and

e for a bijection, each point y € Y has exactly one ingoing arrow.

The fact that a function f: X — Y is one-to-one is sometimes
expressed by the notation
[ XY

The — symbol is a combination of the inclusion sign C with the map-
ping arrow —. Why? If f: XY is an injective mapping, then the set
Z = f(X) can be regarded as a “copy” of the set X within Y (since f
considered as a map X — Z is a bijection), and so an injective map-
ping f: X<—Y can be thought of as a “generalized inclusion” of X in
Y. This point can probably be best appreciated in more abstract and
more advanced parts of mathematics like topology or algebra.

There are also symbols for functions onto and for bijections, but
these are still much less standard in the literature than the symbol for
an injective function, so we do not introduce them.

Since we will be interested in counting objects, bijections will be
especially significant for us, for the following reason: if X and Y are sets
and there exists a bijection f: X — Y, then X and Y have the same
number of elements. Let us give a simple example of using a bijection
for counting (more sophisticated ones come later).

1.4.4 Example. How many 8-digit sequences consisting of digits 0
through 9 are there? How many of them contain an even number of
odd digits?

Solution. The answer to the first question is 10%. One easy way of
seeing this is to note that each eight-digit sequence can be read as the
decimal notation of an integer number between 0 and 10% — 1, and
conversely, each such integer can be written in decimal notation and, if
necessary, padded with zeros on the left to produce an 8-digit sequence.
This defines a bijection between the set {0,1,...,10% — 1} and the set
of all 8-digit sequences.

Well, this bijection was perhaps too simple (or, rather, too custom-
ary) to impress anyone. What about the 8-digit sequences with an even
number of odd digits? Let E be the set of all these sequences (E for
“even”), and let O be the remaining ones, i.e. those with an odd num-
ber of odd digits. Consider any sequence s € FE, and define another
sequence, f(s), by changing the first digit of s: 0 is changed to 1, 1 to
2,...,8t09,and 9 to 0. It is easy to check that the modified sequence
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f(s) has an odd number of odd digits and hence f is a mapping from
E to O. From two different sequences s, s’ € F, we cannot get the same
sequence by the described modification, so f is one-to-one. And any
sequence t € O is obtained as f(s) for some s € E, i.e. s arises from
t by changing the first digit “back”, by replacing 1 by 0, 2 by 1,...,
9 by 8, and 0 by 9. Therefore, f is a bijection and |E| = |O|. Since
|E| + |O| = 108, we finally have |E| =5 -107. O

In the following proposition, we prove some simple properties of
functions.
Proposition. Let f: X — Y and g: Y — Z be functions. Then
(i) If f,g are one-to-one, then g o f is also a one-to-one function.
(ii) If f, g are functions onto, then g o f is also a function onto.
(iii) If f, g are bijective functions, then g o f is a bijection as well.
(iv) For any function f: X — Y there exist a set Z, a one-to-one func-
tion h: Z—Y , and a function onto g: X — Z, such that f = hog.
(So any function can be written as a composition of a one-to-one
function and a function onto.)

Proof. Parts (i), (ii), (iii) are obtained by direct verification from the
definition. As an example, let us prove (ii).

We choose z € Z, and we are looking for an « € X satisfying
(g o f)(z) = z. Since g is a function onto, there exists a y € Y such that
g(y) = z. And since f is a function onto, there exists an z € X with
f(z) = y. Such an z is the desired element satisfying (g o f)(z) = z.

The most interesting part is (iv). Let Z = f(X) (so Z C Y). We
define mappings g: X — Z and h: Z — Y as follows:

g(x) = f(z) forzeX
h(z) ==z for z € Z.
Clearly g is a function onto, A is one-to-one, and f = h o g. O

Finishing the remaining parts of the proof may be a good exercise
for understanding the notions covered in this section.

Inverse function. If f: X — Y is a bijection, we can define a
function g: Y — X by setting ¢g(y) = = if = is the unique element
of X with y = f(z). This g is called the inverse function of f, and
it is commonly denoted by f~!. Pictorially, the inverse function is
obtained by reversing all the arrows. Another equivalent definition
of the inverse function is given in Exercise 4. It may look more com-
plicated, but from a certain “higher” mathematical point of view it
is better.
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Exercises

1. Show that if X is a finite set, then a function f: X — X is one-to-one
if and only if it is onto.

2. Find an example of:
(a) A one-to-one function f: N<—N which is not onto.
(b) A function f: N — N which is onto but not one-to-one.

3. Decide which of the following functions Z — Z are injective and which
are surjective: x — 1+, z— 1422, 2 — 1+ 23, 2 — 1+ 22 + 23
Does anything in the answer change if we consider them as functions
R — R? (You may want to sketch their graphs and/or use some
elementary calculus methods.)

4. For aset X, let idx: X — X denote the function defined by idx(x) =
x for all z € X (the identity function). Let f: X — Y be some func-
tion. Prove:

(a) A function g: Y — X such that go f = idx exists if and only if f
is one-to-one.

(b) A function g: Y — X such that f o g =idy exists if and only if f
is onto.

(¢) A function g: Y — X such that both fog=1idy and go f =idx
exist if and only if f is a bijection.

(d) If f: X — Y is a bijection, then the following three conditions are
equivalent for a function g: Y — X:

(i) g=f"
(ii) go f = idy, and
(iii) fog=idy.

5. (a) If go f is an onto function, does g have to be onto? Does f have
to be onto?

(b) If go f is a one-to-one function, does g have to be one-to-one? Does
f have to be one-to-one?

6. Prove that the following two statements about a function f: X — Y
are equivalent (X and Y are some arbitrary sets):
(i) f is one-to-one.
(ii) For any set Z and any two distinct functions ¢;: Z — X and
go: Z — X, the composed functions fog; and f o go are also distinct.
(First, make sure you understand what it means that two functions
are equal and what it means that they are distinct.)

7. In everyday mathematics, the number of elements of a set is under-
stood in an intuitive sense and no definition is usually given. In the
logical foundations of mathematics, however, the number of elements
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is defined via bijections: |X| = n means that there exists a bijection
from X to the set {1,2,...,n}. (Also other, alternative definitions of
set size exist but we will consider only this one here.)

(a) Prove that if X and Y have the same size according to this defini-
tion, then there exists a bijection from X to Y.

(b) Prove that if X has size n according to this definition, and there
exists a bijection from X to Y, then Y has size n too.

(¢c) *Prove that a set cannot have two different sizes m and n, m # n,
according to this definition. Be careful not to use the intuitive notion
of “size” but only the definition via bijections. Proceed by induction.

1.5 Relations

It is remarkable how many mathematical notions can be expressed using
sets and various set-theoretic constructions. It is not only remarkable
but also surprising, since set theory, and even the notion of a set itself,
are notions which appeared in mathematics relatively recently, and some
100 years ago, set theory was rejected even by some prominent mathe-
maticians. Today, set theory has entered the mathematical vocabulary
and it has become the language of all mathematics (and mathemati-
cians), a language which helps us to understand mathematics, with all
its diversity, as a whole with common foundations.

We will show how more complicated mathematical notions can
be built using the simplest set-theoretical tools. The key notion of a
relation,'® which we now introduce, is a common generalization of such
diverse notions as equivalence, function, and ordering.

1.5.1 Definition. A relation is a set of ordered pairs.!' If X and
Y are sets, any subset of the Cartesian product X x Y is called a
relation between X and Y. The most important case is X = Y;
then we speak of a relation on X, which is thus an arbitrary subset
RC X x X.

If an ordered pair (x,y) belongs to a relation R, i.e. (z,y) € R,
we say that x and y are related by R, and we also write zRy.

We have already seen an object which was a subset of a Cartesian
product, namely a function. Indeed, a function is a special type of
relation, where we require that any € X is related to precisely one

10As a mathematical object; you know “relation” as a word in common lan-
guage.

HTn more detail, we could say a binary relation (since pairs of elements are
being related). Sometimes also n-ary relations are considered for n # 2.
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N W

1 2 3 4

Fig. 1.3 A graphic presentation of the relation R = {(1,2), (2,4), (3,2),
(4,2), (4,4)} on the set {1,2,3,4}.

y € Y. In a general relation, an z € X can be related to several
elements of Y, or also to none.

Many symbols well known to the reader can be interpreted as rela-
tions in this sense. For instance, = (equality) and > (nonstrict inequal-
ity) are both relations on the set N of all natural numbers. The first
one consists of the pairs (1,1),(2,2),(3,3),..., the second one of the
pairs (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1),... We could thus
also write (5,2) € > instead of the usual 5 > 2, which we usually don’t
do, however. Note that we had to specify the set on which the relation
>, say, is considered: as a relation on R it would be a quite different
set of ordered pairs.

Many interesting “real life” examples of relations come from various
kinds of relationships among people, e.g. “to be the mother of”, “to be
the father of”, “to be a cousin of” are relations on the set of all people,
usually well defined although not always easy to determine.

A relation R on a set X can be captured pictorially in (at least)
two quite different ways. The first way is illustrated in Fig. 1.3. The
little squares correspond to ordered pairs in the Cartesian product,
and for pairs belonging to the relation we have shaded the corre-
sponding squares. This kind of picture emphasizes the definition of
a relation on X and it captures its “overall shape”.

This picture is also very close in spirit to an alternative way of

describing a relation on a set X using the notion of a matrix.'? If R
is a relation on some n-element set X = {z1,22,...,2,} then R is

12An n x m matrix is a rectangular table of numbers with n rows and m
columns. Any reader who hasn’t met matrices yet can consult the Appendix for
the definitions and basic facts, or, preferably, take a course of linear algebra or
refer to a good textbook.
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completely described by an n x n matrix A = (a;;), where

Qi; = 1 if (xi,xj) €ER
[£27] =0 if (Z’i,l’j) gR

The matrix A is called the adjacency matriz of the relation R. For
instance, for the relation in Fig. 1.3, the corresponding adjacency matrix

would be
0 1 0 0
0 0 0 1
0 1 0 0
0 1 0 1

Note that this matrix is turned by 90 degrees compared to Fig. 1.3. This
is because, for a matrix element, the first index is the number of a row
and the second index is the number of a column, while for Cartesian
coordinates it is customary for the first coordinate to determine the
horizontal position and the second coordinate the vertical position.

The adjacency matrix is one possible computer representation of a
relation on a finite set.

Another picture of the same relation as in Fig. 1.3 is shown below:

e 30

Here the dots correspond to elements of the set X. The fact that
a given ordered pair (z,y) belongs to the relation R is marked by
drawing an arrow from x to y:

x Y

and, in the case x = y, by a loop:
)
A relation between X and Y can be depicted in a similar way:
X R
R

'l
—/
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This way was suggested for drawing functions in Section 1.4.

Composition of relations. Let X,Y, Z be sets, let R C X XY be a
relation between X and Y, and let S C Y X Z be a relation between
Y and Z. The composition of the relations R and S is the relation
T C X x Z defined as follows: for given x € X and z € Z, Tz holds
if and only if there exists some y € Y such that xRy and ySz. The
composition of relations R and S is usually denoted by Ro S.

The composition of relations can be nicely illustrated using a draw-
ing with arrows. In the following picture,

(o)
X R ’
(O .
~ ¥
— e
o« .
\_/ \_/

a pair (x,z) is in the relation R o S whenever one can get from x to z
along the arrows (i.e. via some y € ).

Have you noticed? Relations are composed in the same way as func-
tions, but the notation is unfortunately different! For relations it is cus-
tomary to write the composition “from left to right”, and for functions
it is usually written “from right to left”. Soif f: X - Y andg: Y — Z
are functions, their composition is written g o f, but if we understood
them as relations, we would write fog for the same thing! Both ways of
notation have their reasons, such a notation has been established his-
torically, and probably there is no point in trying to change it. In this
text, we will talk almost exclusively about composing functions.

Similarly as for functions, the composition is not defined for arbi-
trary two relations. In order to compose relations, they must have the
“middle” set in common (which was denoted by Y in the definition).
In particular, it may happen that R o S is defined while S o R makes
no sense! However, if both R and S are relations on the same set X,
their composition is always well defined. But also in this case the result
of composing relations depends on the order, and R o S is in general
different from S o R—see Exercise 2.

Exercises
1. Describe the relation R o R, if R stands for
(a) the equality relation “=” on the set N of all natural numbers,

(b) the relation “less than or equal” (“<”) on N,
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(c) the relation “strictly less” (“<”) on N,
(d) the relation “strictly less” (“<”) on the set R of all real numbers.

2. Find relations R, S on some set X such that Ro S # So R.

3. For a relation R on a set X we define the symbol R™ by induction:
R'=R, R""!' = Ro R".
(a) Prove that if X is finite and R is a relation on it, then there exist
r,s € N, r < s, such that R" = R?®.
(b) Find a relation R on a finite set such that R™ # R"*! for every
n € N.

(c) Show that if X is infinite, the claim (a) need not hold (i.e. a relation
R may exist such that all the relations R™, n € N, are distinct).

4. (a) Let X = {z1,29,...,z,} and Y = {y1,¥2,...,ym} be finite sets,
and let R C X x Y be a relation. Generalize the definition of the
adjacency matrix of a relation to this case.

(b) *Let X,Y, Z be finite sets, let R C X xY and S CY X Z be rel-
ations, and let Ar and Ag be their adjacency matrices, respectively.
If you have defined the adjacency matrix in (a) properly, the matrix
product ArAg should be well defined. Discover and describe the con-
nection of the composed relation Ro S to the matrix product AgAg.

5. Prove the associativity of composing relations: if R,S,T are relations
such that (RoS)oT is well defined, then Ro(SoT) is also well defined
and equals (Ro S)oT.

1.6 Equivalences and other special
types of relations

Each language has its peculiarities. Some languages favor wovels, others
love consonants. Some have a simple grammar, others have an easy
pronunciation. The situation in mathematics is similar. The language
of mathematics in itself has its essential properties (it is exact and
details matter very much in it, perhaps even too much), but the various
branches of mathematics differ by style and language. For example, a
typical feature of algebra seems to be a large number of definitions
and notions, which usually appear at the beginning, before anything
begins to “really happen”. However, many of these algebraic notions
show up in other subfields as well and they belong to the vocabulary
of mathematics in general. Here we present an example of how such
notions can be introduced. This section essentially belongs to algebra
and it concerns various special kinds of relations.

We recall that functions are regarded as relations of a special
kind. Now we are going to define four properties that a relation may
or may not have. They are so useful that each deserves a name, and
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they will in turn be used for defining equivalences and orderings,
which together with functions are arguably the most important spe-
cializations of the general concept of relation.

1.6.1 Definition. We say that a relation R on a set X is

e reflexive if xRx for every x € X;

e symmetric if xRy implies yRx, for all x,y € X;

e antisymmetric!? if, for every x,y € X, xRy and yRx never hold
simultaneously unless r = y;

e transitive if t Ry and yRz imply xRz, for all x,y,z € X.

In a drawing like that in Fig. 1.3, a reflexive relation is one con-
taining all squares on the diagonal (drawn by a dotted line). In draw-
ing using arrows, a reflexive relation has loops at all points.

For a symmetric relation, a picture of the type in Fig. 1.3 has
the diagonal as an axis of symmetry. In a picture using arrows, the
arrows between two points always go in both directions:

<

In contrast, this situation is prohibited in an antisymmetric

relation:
O

The condition of transitivity can be well explained using arrows.
If there are arrows * — y and y — z, then the x — z arrow is present

as well:

T Y z

The pictures for reflexivity, symmetry, antisymmetry, and transi-
tivity using arrows emphasize the fact that these properties are easy
to verify (in principle), since they are defined using two-element and
three-element subsets.

3Sometimes this is called weakly antisymmetric, while for a strongly antisym-
metric relation xRy and yRx never happen at the same time, i.e. xRz is also
excluded.
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These properties can also be described using the operation of
composing relations (see Section 1.5) plus the following two notions:

The inverse relation R~! to a given relation R is given by R~ =
{(y,z): (z,y) € R}. It arises by “reversing arrows” in R.

The symbol A x denotes the smallest reflexive relation on a set X:

Ax ={(z,z): z € X}.

The relation Ax is called the diagonal (on the set X). The name
is motivated by the matrix-like picture of a relation discussed in
Section 1.5.

With these tools, Definition 1.6.1 can be concisely reformulated
as follows:

(1) R is reflexive if Ax C R.

(2) R is symmetric if R = R™L.

(3) R is antisymmetric if RN R~! C Ay.
(4) R is transitive if Ro R C R.

Now we can define equivalences, orderings, and linear orderings.

1.6.2 Definition.

e A relation R on a set X is called an equivalence on X (or some-
times an equivalence relation) if it is reflexive, symmetric, and
transitive.

e A relation R on a set X is called an ordering on X if it is reflexive,
antisymmetric, and transitive.

e A relation R on a set X is called a linear ordering on X if it is
an ordering and moreover, RUR™' = X x X (or in other words,
for every two elements x,y € X we have xRy or yRzx).

It may seem at first sight that the differences between the three
notions just defined are minor and insignificant. This impression is
quite misleading, though, and it illustrates a general rule: One has
to watch every word in a mathematical definition. The notions of
equivalence and of ordering are in fact quite remote from each other,
so remote that they are usually studied separately. This is how we
will also proceed: Equivalences will be discussed in the rest of the
present section, while orderings will be covered later, in Chapter 2.

For a quick illustration we present initial examples; some of them
will be discussed later in more detail. We consider three relations on



1.6 Equivalences and other special types of relations 39

the set N of all natural numbers:

e The relation R defined by xRy if x — y is an even integer is an
equivalence (but not an ordering).

e The relation | given by x|y if x divides y, i.e. if there exists a
natural number ¢ such that gx = y, is an ordering (but neither
an equivalence nor a linear ordering).

e The relation <, where z < y has the usual meaning, i.e. that the
number z is less or equal to y, is a linear ordering (and thus an
ordering as well, but not an equivalence).

The reader is now welcome to check that the just defined relations
satisfy the appropriate conditions in Definition 1.6.2.

Equivalences. Informally, an equivalence on a set X is a relation
describing which pairs of elements of X are “of the same type” in
some sense. The notion of equivalence is a common generalization of
notions expressing identity, isomorphism, similarity, etc. Equivalence
relations are often denoted by symbols like =, =, ~, ~, =, and so
on. The reader may want to contemplate for a while why the prop-
erties defining an equivalence in general (reflexivity, symmetry, and
transitivity) are natural for a relation that should express something
like “being of the same type”.

Let us consider some geometric examples. Let X be the set of
all triangles in the plane. By saying that two triangles are related if
and only if they are congruent (i.e. one can be transformed into the
other by translation and rotation), we have defined one equivalence
on X. Another equivalence is defined by relating all pairs of similar
triangles (two triangles are similar if one can be obtained from the
other one by translation, rotation, and scaling; in other words, if
their corresponding angles are the same). And a third equivalence
arises by saying that each triangle is only related to itself.

Although an equivalence R on a set X is a special type of relation
and we can thus depict it by either of the two methods considered
above for relations in general, more often a picture similar to the one
below is used:
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The key to this type of drawing is the following notion of equiv-
alence class. Let R be an equivalence on a set X and let x be an
element of X. By the symbol R[x], we denote the set of all elements
y € X that are equivalent to x; in symbols, R[x] = {y € X: xRy}.
RJz] is called the equivalence class of R determined by x.

1.6.3 Proposition. For any equivalence R on X, we have
(i) R[z] is nonempty for every x € X.
(ii) For any two elements z,y € X, either R[x] = R[y] or R[z] N
Rly] = 0.
(iii) The equivalence classes determine the relation R uniquely.

Before we start proving this, we should explain the meaning of
(iii). It means the following: if R and S are two equivalences on X
and if the equality R[x] = S[z] holds for every element = € X, then
R=25.

Proof. The proof is simple using the three requirements in the
definition of equivalence.

(i) The set R[z]| always contains z since R is a reflexive relation.
(ii) Let 2,y be two elements. We distinguish two cases:

(a) If xRy, then we prove R[z] C R[y| first. Indeed, if z € R|x],
then we also know that zRx (by symmetry of R) and there-
fore zRy (by transitivity of R). Thus also z € R[y]. By using
symmetry again, we get that Ry implies R[x] = R[y].

(b) Suppose that xRy doesn’t hold. We show that R[z]NR[y] =
(). We proceed by contradiction. Suppose that there exists
z € R[z] N R[y]. Then zRz and zRy (by symmetry of R),
and so xRy (by transitivity of R), which is a contradiction.

(iii) This part is obvious, since the equivalence classes determine R
as follows:
xRy if and only if {z,y} C R[z].

|

The above proposition explains the preceding picture. It guaran-
tees that the equivalence classes form a partition of the set X; that
is, they are disjoint subsets of X whose union is the whole X. Con-
versely, any partition of X determines exactly one equivalence on X.
That is, there exists a bijective mapping of the set of all equivalences
on X onto the set of all partitions of X.
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Exercises

1.

Formulate the conditions for reflexivity of a relation, for symmetry of
a relation, and for its transitivity using the adjacency matrix of the
relation.

. *Prove that a relation R on a set X satisfies Ro R~! = Ax if and only

if R is reflexive and antisymmetric.

. Prove that a relation R is transitive if and only if Ro R C R.
. (a) Prove that for any relation R, the relation 7 = RURoRURo Ro

RU... (the union of all multiple compositions of R) is transitive.

(b) Prove that any transitive relation containing R as a subset also
contains T'.

(c) Prove that if | X| =n,then T=RURoRU---URoRo---0R.
—_—
(n—1)x

Remark. The relation T as in (a), (b) is the smallest transitive relation
containing R, and it is called the transitive closure of R.

. Let R and S be arbitrary equivalences on a set X. Decide which of

the following relations are necessarily also equivalences (if yes, prove;
if not, give a counterexample).

(a) RNS
(b) RUS
(c) R\ S
(d) Ro S.

. Describe all relations on a set X that are equivalences and orderings

at the same time.

Let R and S be arbitrary orderings on a set X. Decide which of the
following relations are necessarily orderings:

a) RNS

b) RUS

c) R\ S

d) RoS.

a) Suppose that R is a transitive relation on the set Z of all integers,
and we know that for any two integers a,b € Z, if |a — b| = 2 then
aRb. Is every R satisfying these conditions necessarily an equivalence?

(Note that a pair of elements can perhaps be in R even if it is not
enforced by the given conditions!)

(
(
(
(
(

(b) Suppose that R is a transitive relation on Z, and we know that for
any two integers a,b € Z, if |a — b| € {3,4} then aRb. Is R necessarily
an equivalence?
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9. Call an equivalence ~ on the set Z (the integers) a congruence if the
following condition holds for all a,z,y € Z: if x ~ y then also a + = ~
a+y.

(a) Let ¢ be a nonzero integer. Define a relation =, on Z by letting
x =4 y if and only if ¢ divides  — y. Check that =, is a congruence
according to the above definition.

(b) *Prove that any congruence on Z is either of the form =, for some
q or the diagonal relation Ag.

(¢) Suppose we replaced the condition “a+x ~ a+y” in the definition
of a congruence by “ax ~ ay”. Would the claim in (a) remain true for
this kind of “multiplicative congruence”? *And how about the claim
in (b)?



2
Orderings

The reader will certainly be familiar with the ordering of natural
numbers and of other number domains by magnitude (the “usual”
ordering of numbers). In mathematics, such an ordering is considered
as a special type of a relation, i.e. a set of pairs of numbers. In the
case just mentioned, this relation is usually denoted by the symbol
“<” (“less than or equal”). Various orderings can be defined on other
sets too, such as the set of all words in a language, and one set can
be ordered in many different and perhaps exotic ways.

The general notion of ordering has already been introduced in
Definition 1.6.1: A relation R is called an ordering if it is reflexive,
antisymmetric, and transitive. Let us also add that if X is a set and
R is an ordering on X, the pair (X, R) is called an ordered set.

Ordered sets have numerous interesting properties. We mention
some of them in this chapter, and we will encounter a few others
later on, most notably in Chapter 7.

2.1 Orderings and how they can be depicted

We begin with several remarks concerning the notion of ordering.
Orderings are commonly denoted by the symbols < or <. The first
of them is useful, e.g. when we want to speak of some ordering of the
set of natural numbers other than the usual ordering by magnitude,
or if we consider some arbitrary ordering on a general set.

If we have some ordering <, we define a derived relation of “strict
inequality”, <, as follows: a < b if and only if a < b and a # b.
Further, we can introduce the “reverse inequality” >, by lettinga > b
if and only if b < a.

Linear orderings and partial orderings. Let us recall that a
relation R is called a linear ordering if it is an ordering, and moreover,
for every x,y we have Ry or yRx.
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In order to emphasize that we speak of an ordering that is not
necessarily linear, we sometimes use the longer term partial ordering.
A partial ordering thus means exactly the same as ordering (without
further adjectives), and so a partial ordering may also happen to be
linear. Similarly, instead of an ordered set, one sometimes speaks of
a partially ordered set. To abbreviate this long term, the artificial
word poset is frequently used.

Examples. We have already mentioned several examples of ordered
sets—these were (N, <), (R, <), and similar ones, where < denotes
the usual ordering, formally understood as a relation.

As is easy to check, if R is an ordering on a set X, and Y C X is
some subset of X, the relation R NY? (the restriction of R on Y) is
an ordering on Y. Intuitively, we order the elements of Y in the same
way as before but we forget the others. This yields further examples
of ordered sets, namely various subsets of real numbers with the usual
ordering. This turns out to be a rather general example of a linearly
ordered set; see Exercise 2.3.6.

The idea of alphabetic order of words in a dictionary is formally
captured by the notion of lexicographic ordering . Let us first consider
a particular case: Let X = N x N be the Cartesian product of two
copies of the natural numbers, that is, the set of all ordered pairs
(a1,az), where a; and ag are natural numbers. We define the relation
<jex Of lexicographic ordering on X as follows: (a1, as) <jex (b1,b2) if
either a; < ag, or a; = ag and ag < be. More generally, if (X1, <;),
(X2,<9),..., (X, <,) are arbitrary linearly ordered sets, we define
the relation <y, of lexicographic ordering of the Cartesian product
X1 x Xg x -+ x X, in the following way:

(a17a27 cee ,(In) Slex (b17b2a .. 7bn)

holds if (a1, az,...,an) = (b1,ba,...,by), or if there exists an index
i€{1,2,...,n} such that a; = b; for all j < i and a; <; b;. It is easy
to see that the alphabetic ordering of words is an example of a lexico-
graphic ordering in our sense, although at a closer look, we discover
various complications: for example, words have various lengths, not
speaking of fine points such as “van Beethoven” occurring under B
in encyclopedias.

Examples of partially ordered sets. What do orderings that
are not linear look like? One example is the relation Ax = {(z,z):x
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€ X} (the diagonal). It satisfies the definition of an ordering, but for
|X| > 1 it is not a linear ordering.

Let us describe more interesting examples of partially ordered
sets.

2.1.1 Example. Let us imagine we intend to buy a refrigerator. We
simplify the complicated real situation by a mathematical abstrac-
tion, and we suppose that we only look at three numerical parameters
of refrigerators: their cost, electricity consumption, and the volume
of the inner space. If we consider two types of refrigerators, and if
the first type is more expensive, consumes more power, and a smaller
amount of food fits into it, then the second type can be considered
a better one—a large majority of buyers of refrigerators would agree
with that. On the other hand, someone may prefer a smaller and
cheaper refrigerator, another may prefer a larger refrigerator even if
it costs more, and someone expecting a sharp rise of electricity costs
may even buy an expensive refrigerator if it saves power.

The relation “to be clearly worse” (denote it by <) in this sense
is thus a partial ordering on refrigerators or, mathematically re-
formulated, on the set of triples (¢, p, v) of real numbers (¢ stands for
cost, p for power consumption, and v for volume), defined as follows:

(c1,p1,v1) = (c2,p2,v9) if and only if

2.1
€1 > ¢2, p1 = p2, and vy < vg. (2.1)

The following example has already been mentioned, but let us
recall it here:

2.1.2 Example. For natural numbers a, b, the symbol a|b means “a
divides b”. In other words, there exists a natural number ¢ such that
b = ac. The relation “|” is a partial ordering on N (as the reader has
already been invited to verify).

2.1.3 Example. Let X be a set. Recall that the symbol 2% denotes
the system of all subsets of the set X. The relation “C” (to be a
subset) defines a partial ordering on 2%,

Drawing partially ordered sets. Orderings of finite sets can be
drawn using arrows, as with any other relations. Typically, such
drawings will contains lots of arrows. For instance, for a 10-element
linearly ordered set we would have to draw 104+ 9+ --- 4+ 1 = 55
arrows and loops. A number of arrows can be reconstructed from
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transitivity, however: if we know that z < y and y < z, then also
x = z, so we may leave out the arrow from z to z. Similarly, we
need not draw the loops, since we know they are always there. For
finite ordered sets, all the information is captured by the relation of
“immediate predecessor”, which we are now going to define.

Let (X, =) be an ordered set. We say that an element z € X is
an immediate predecessor of an element y € X if

e r <y, and
e there is no ¢t € X such that x <t < y.

Let us denote the just-defined relation of immediate predecessor
by <.
The claim that the ordering < can be reconstructed from the relation
<1 may be formulated precisely as follows:

2.1.4 Proposition. Let (X, <) be a finite ordered set, and let < be
the corresponding immediate predecessor relation. Then for any two
elements x,y € X, x < y holds if and only if there exist elements
X1,Ta,...,2x € X such that x <x1 <--- <Qxp <y (possibly with k = 0,
i.e. we may also have x < y).

Proof. One implication is easy to see: if we have x <x1 <+ < x) <y,
then also * < 1 < -+ = xp =X y (since the immediate predecessor
relation is contained in the ordering relation), and by the transitivity
of <, we have z < y.

The reverse implication is not difficult either, and we prove it by
induction. We prove the following statement:

Lemma. Let z,y € X, x <y, be two elements such that there exist
at most n elements t € X satisfyingx <t <y (i.e. “between” x and y).
Then there exist x1,x2,...,xr € X such that x <z <--- <z <y.

For n = 0, the assumption of this lemma asserts that there exists no ¢
with z < t < y, and hence = <y, which means that the statement holds
(we choose k = 0).

Let the lemma hold for all n up to some ng, and let us have x < y
such that the set M,, = {t € X: © <t < y} has n = ng + 1 clements.
Let us choose an element u € My, and consider the sets M, = {t €
X: x <t < u} and M,, defined similarly. By the transitivity of < it
follows that My, C My, and M,, C My,. Both M, and M,, have at
least one element less than My, (since u & My, u & M,,), and by the
inductive hypothesis, we find elements x1, ...,z and y1,...,y, in such
a way that r <21 <--- <z <u and u<y; <--- <yy <y. By combining
these two “chains” we obtain the desired sequence connecting z and y.

O
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By the above proposition, it is enough to draw the relation of
immediate predecessor by arrows. If we accept the convention that
all arrows in the drawing will be directed upwards (this means that
if z < y then y is drawn higher than z), we need not even draw the
direction of the arrows—it is enough to draw segments connecting
the points. Such a picture of a partially ordered set is called its Hasse

diagram. The following figure shows a 7-element linearly ordered set,
such as ({1,2,...,7},<):

The next drawing depicts the set {1,2,...,10} ordered by the divis-
ibility relation (see Example 2.1.2):

8 10
4

q 5 7
2

1

The following figure is a Hasse diagram of the set {1,2,3} x {1,2,3}
with ordering =< given by the rule (aj,b1) < (ag,b2) if and only if
ai § a9 and bl § b2:

(3,3)
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Finally, here is a Hasse diagram of the set of all subsets of {1, 2, 3}
ordered by inclusion:

{1,2,3}

U<

{1} {3}

{2,3}

Exercises

1. Verify that the relation (2.1) in Example 2.1.1 indeed defines a partial
ordering.

2. *Let R be a relation on a set X such that there is no finite sequence
of elements x1, o, ...,z of X satisfying x1 Rxo, zoRx3,. .., xp_1 Rxy,
xpRxy (we say that such an R is acyclic). Prove that there exists an
ordering < on X such that R C <. You may assume that X is finite if
this helps.

3. Show that Proposition 2.1.4 does not hold for infinite sets.

4. Let (X, <), (Y, =) be ordered sets. We say that they are isomorphic
(meaning that they “look the same” from the point of view of ordering)
if there exists a bijection f: X — Y such that for every z,y € X, we
have z < y if and only if f(z) < f(y).

(a) Draw Hasse diagrams for all nonisomorphic 3-element posets.

(b) Prove that any two n-element linearly ordered sets are isomorphic.
(¢)* Find two nonisomorphic linear orderings of the set of all natural
numbers.

(d)** Can you find infinitely many nonisomorphic linear orderings
of N7 Uncountably many (for readers knowing something about the
cardinalities of infinite sets)?

2.2 Orderings and linear orderings

Each linear ordering is also a (partial) ordering. The converse state-
ment (“each partial ordering is linear”) is obviously false, as we have
seen in several examples. On the other hand, the following important
theorem holds:

2.2.1 Theorem. Let (X, <) be a finite partially ordered set. Then
there exists a linear ordering < on X such that ¢ = y implies x < y.
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Each partial ordering can thus be extended to a linear ordering.
The latter is called a linear extension of the former.

Before the proof of Theorem 2.2.1 we introduce yet another imp-
ortant notion.

2.2.2 Definition. Let (X, <X) be an ordered set. An element a € X
is called a minimal element of (X, <) if there is no x € X such that
x < a. A maximal element a is defined analogously (there exists no
T - a).

The following holds:

2.2.3 Theorem. Every finite partially ordered set (X, =) has at
least one minimal element.

Proof. Let us choose x¢g € X arbitrarily. If xy is minimal, we are
done. If, on the other hand, ¢ is not minimal in (X, <), then there
exist some x1 < xg. If x1 is minimal, we are done now, and else, we
find some xo < x1, and so on. After finitely many steps we arrive
at a minimal element, for otherwise, X would have infinitely many
different elements zg, x1, 22, ... . O

Let us remark that Theorem 2.2.3 is not valid for infinite sets.
For instance, the set (Z, <) of integers with the natural ordering has
no minimal element.

The reader may find the (algorithmically motivated) proof of The-
orem 2.2.3 suspicious. Instead of explaining it in more detail, we add
another, more usual version of the proof.

Second proof. Let us consider the ordered set (X, =), and let
us choose an x € X such that the set L, = {y: y < x} has the
smallest possible number of elements. If |L,| = 1, then we are done,
since x is necessarily a minimal element: We have |L,| = {z}. We
prove that |L,| > 1 is impossible. Namely, in this case there exists a
y € L,y # x, and then we have |L,| < |L;|, which contradicts the
choice of the element z. O

We apply the existence of a minimal element (Theorem 2.2.3) in
the next proof.

Proof of Theorem 2.2.1 (existence of linear extensions). We
proceed by induction on |X|. For |X| = 1 there is nothing to prove:
there is only one ordering of X and it is already linear. Thus, let
us consider an ordered set (X, <) with |X| > 1. Let g € X be a
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minimal element in (X, <). We set X’ = X \ {z0}, and we let <’
be the relation < restricted to the set X’. We already know that
(X', =) is an ordered set, and hence by the inductive hypothesis,
there exists a linear ordering <’ of X’ such that xz =<’ y implies
x <" y for all z,y € X'. We define a relation < on the set X as

follows:
g <y foreach ye€X;

r <y whenever z <'y.

Obviously, z = y implies z < y. The reader is invited to verify that
< is indeed a linear ordering. O

The existence of linear extensions is important and useful in many
applications. In computer science one often needs to compute a linear
extension of a given partial ordering. This algorithmic problem known
as topological sorting.

Theorem 2.2.1, the existence of linear extensions, is also valid for
infinite sets. But it cannot be proved that easily. Actually, in a sense, it
cannot be proved at all, since it can be regarded as one of the axioms
of set theory (similar to the so-called axiom of choice, to which it is
closely related).

Let us conclude this section with a linguistic warning. A notion
seemingly very similar to minimal element is a smallest element
(sometimes also called a minimum element). But this similarity is
only in the language and the notion itself is quite different, as the
following definition shows.

2.2.4 Definition. Let (X, <) be an ordered set. An element a € X
is called a smallest element of (X, =X) if for every x € X we have
a < z. A largest element (sometimes also called a maximum element )
is defined analogously.

A smallest element is obviously minimal as well. For example, in
the set of all natural numbers ordered by the divisibility relation, i.e.
(N,]), 1 is both a smallest element and a minimal element. But a
minimal element need not always be a smallest element: For exam-
ple, if we consider any set X with at least two elements, and no
two distinct elements are comparable (thus, we deal with the poset
(X,Ax)), then every element is minimal but there is no smallest
element. Another example is (N \ {1}, ]), that is, the natural num-
bers greater than 1 ordered by the relation of divisibility. It has no
smallest element, while there are infinitely many minimal elements;
see Exercise 7.
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Exercises

1.

(a) Show that a largest element is always maximal.

(b) Find an example of a poset with a maximal element but no largest
element.

(c) Find a poset having no smallest element and no minimal element
either, but possessing a largest element.

. (a) Consider the set {1,2,...,n} ordered by the divisibility relation

| (see Example 2.1.2). What is the maximum possible number of ele-
ments of aset X C {1,2,...,n} that is ordered linearly by the relation
| (such a set X is called a chain)?

(b) Solve the same question for the set 2{12"} ordered by the rela-
tion C (see Example 2.1.3).

Let le(X, <) denote the number of linear extensions of a partially ord-
ered set (X, <). Prove:

(a) le(X, <) =11if and only if < is a linear ordering;
(b) le(X, =) < nl, where n = |z| (you may want to read Chapter 3
first).

Prove that a smallest element, if it exists, is determined uniquely.

Prove that for a linearly ordered set, a minimal element is also the
smallest element.

. Prove or disprove: If a partially ordered set (X, <) has a single minimal

element, then it is a smallest element as well.

. (a) Prove that the partially ordered set (N'\ {1},]) has infinitely many

minimal elements. What are they usually called?

(b) How many minimal elements are there in the ordered set (X, |),
for X = {4k + 2: k > 2}7 Let us remark that the analogous question
for the set {4k+1: k > 2} ordered by divisibility is considerably more
difficult.

. Let (X, R) be a partially ordered set. Prove:

(a) Then (X, R™1!) is also a partially ordered set.

(b) An element x € X is maximal in (X, R) if and only if  is minimal
in (X,R71).

(¢) An element z € X is the largest element of (X, R) if and only if
is the smallest element of (X, R™1).

Since (R™')™! = R, we can see that notions for ordered sets come
in symmetric pairs, such as minimal element and maximal element,
smallest element and largest element, etc. We can thus often consider
definitions and proofs for only one notion in such a pair. For example,
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it suffices to prove Theorem 2.2.3 (existence of a minimal element), and
the analogous theorem about the existence of a maximal element fol-
lows automatically—the proof can easily be “translated”. This method
is called, somewhat imprecisely, the duality principle for ordered sets.

9. Let (X, <) be a poset and let A C X be a subset. An element s € X
is called a supremum of the set A if the following holds:

e g <X sforeachac€ A,
e if ¢ < s’ holds for all a € A, where s’ is some element of X, then
s=<s.
The infimum of a subset A C X is defined analogously, but with all
inequalities going in the opposite direction.

(a) Check that any subset A C X has at most one supremum and
at most one infimum. (The supremum of A, if it exists, is denoted by
sup A. Similarly inf A denotes the infimum.)

(b) What element is the supremum of the empty set (according to the
definition just given)?

(c) Find an example of a poset in which every nonempty subset has
an infimum, but there are nonempty subsets having no supremum.
(d) *Let (X, =) be a poset in which every subset (including the empty
one) has a supremum. Show that then every subset has an infimum as
well.

10. Consider the poset (N, |) (ordering by divisibility).
(a) Decide whether each nonempty subset of N has a supremum.
(b) Decide whether each nonempty finite subset of N has a supremum.

(c) Decide whether each nonempty subset has an infimum.

2.3 Ordering by inclusion

In Section 1.4 we have shown how an equivalence on a set X can
be described by a partition of the set. This correspondence is one-
to-one; we can also say that partitions constitute just a different
representation of equivalences. Does anything similar exist for partial
orderings?

The answer seems to be no. The notion of ordering appears to be
much richer and more complex than that of equivalence, and this is
also why we have devoted a special chapter to orderings. However,
in this section we show that we can imagine every partial ordering
as being defined by inclusion, i.e., in a (seemingly) simple way. This
result will be formulated using the following notion.
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2.3.1 Definition. Let (X,=<) and (X', =’) be ordered sets. A
mapping f: X — X' is called an embedding of (X, <) into (X', =X’)
if the following conditions hold:

(i) f is an injective mapping;

(ii)) f(x) =" f(y) if and only if x < y.

Let us add a few remarks. If f is an embedding that is also surjec-
tive (onto), then it is an isomorphism, which we have already consid-
ered in Exercise 2.1.4. While isomorphism of ordered sets
expresses the fact that they “look the same”, an embedding of (X, <)
into (X', =<’) means that some part of (X', <’), namely, the part
determined by the set {f(x): x € X}, “looks the same” as (X, <).

The next drawing illustrates two posets:

z
2 T Yy
3e  ———
1 v u
P w
t
P

Examples of embeddings of P; into P, are the mappings f: 1 — v,
22— 2,3~ yand f': 1~ t,2 — 2,3 — w, while, for example,
neither g: 1 — ¢t,2 — v,3 — ymnor ¢: 1 — 2,2 — w,3 — u are
embeddings.

2.3.2 Theorem. For every ordered set (X, <) there exists an embed-
dings into the ordered set (2%, C).

Proof. We show that, moreover, the embedding as in the theorem
is very easy to find. We define a mapping f: X — 2% by f(z) =
{y € X: y = x}. We verify that this is indeed an embedding.

1. We check that f is injective. Let us assume that f(x) = f(y).
Since z € f(z) and y € f(y), the definition of f yields z < y as
well as y < z, and hence z = y (by the antisymmetry of <).

2. We show that if x < y, then f(x) C f(y). If z € f(z), then
z = x, and transitivity of < yields z < y. The last expression
means that z € f(y).

3. Finally, we show that if f(z) C f(y), then z <y. If f(z) C f(y),
then = € f(y), and hence x < y.

O
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Actually, we have already met the definition of the mapping f in
the proof of Theorem 2.2.3, where the set f(z) was denoted by L,.
It is no problem that we have denoted the same thing differently in a
different context. The construction of the sets L, is quite frequent in
mathematics and it appears under various names (e.g., a lower ideal or
a down-set).

Note that the theorem above holds for infinite sets as well.
The ordered sets (2%,C) are thus universal in the sense that

they contain a copy of every ordered set. No wonder that they have
been studied very intensively and that there are special notions and
notation defined for them. In particular, for X = {1,2,...,n} the
set (2%, C) is often denoted by B,. Hasse diagrams of Bj, B, and

B3

are drawn below:

Q

Bl BQ BS

When additional properties of the ordered set B, are consid-

ered, then one speaks of a Boolean algebra, a Boolean lattice, an
n-dimensional cube, etc.

Exercises

1.

2.

How many linear extensions of By are there, and what about B3?

Modify the proof of Theorem 2.3.2 using up-sets, that is, sets of the
form U, = {y: zRy}.

Find an example of an ordered set that can be embedded into B,, for
some n < |X]|.

*Prove that every finite poset can be embedded into (N, |).

. *Prove that not every finite poset admits an embedding into the ord-

ered set of triples of real numbers as in Example 2.1.1.

(a) Describe an embedding of the set {1,2} x N with the lexicographic
ordering into the ordered set (Q, <), where Q denotes the set of all
rational numbers and < is the usual ordering.

(b) Solve the analog of (a) with the set N x N (ordered lexicographi-
cally) instead of {1,2} x IN.
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(¢)* Prove that every countable linearly ordered set admits an
embedding into (Q, <).

7. *Prove that every subset of the poset B, has both supremum and
infimum (see Exercise 2.2.9 for the definitions).

8. Count the number of embeddings of P; into P5, where P, and P> are
the partially ordered sets in the picture above Theorem 2.3.2.

2.4 Large implies tall or wide

Let (X, <) be a finite partially ordered set. For brevity, let us denote
it by the letter P. In most of this section we will consider only one
(but arbitrary) ordered set. The notions that we will explore are
introduced by the following definitions.

2.4.1 Definition. A set A C X is called independent in P if we
never have x < y for two distinct elements x,y € A.

An independent set is also referred to as an antichain.

The definition can be rephrased using the following terminology.
Let us say that two distinct elements z and y are incomparable if
neither x <y, nor y < x. So a set is independent if every two of its
elements are incomparable.

Let a(P) denote the maximum size of an independent set in P.
In symbols, this can be written

a(P) = max{|A|: A independent in P}.

2.4.2 Example. For the following ordered sets P; and Ps

Pl P2
we have a(P)) = 3, a(P) = 4.

2.4.3 Observation. The set of all minimal elements in P is ind-
ependent.

2.4.4 Definition. A set A C X is called a chain in P if every two
of its elements are comparable (in P).
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Equivalently, the elements of A form a linearly ordered subset of
P. Let w(P) denote the maximum number of elements of a chain
in P. For the ordered sets P; and P, above we have w(P;) = 3,
w(PQ) = 2.

It is easy to check that w(B,,) = n+ 1. Determining «(B,,) is con-
siderably more complicated; we answer this question in Chapter 7.

The above examples indicate that the number a(P) can be thou-
ght of as a kind of abstract “width” of the ordered set P, while w(P)
corresponds to its “height”.

The following theorem, with an innocent-looking proof, actually
has quite powerful consequences.

2.4.5 Theorem. For every finite ordered set P = (X, <) we have
a(P)-w(P) > |X|.

(The reader may first want to check that the examples above
fulfill the conclusion of the theorem.)

Proof. We define sets X1, Xo, ..., X; inductively: Let X7 be the set
of all minimal elements of the ordered set P. In an inductive step,
let X1,..., X, be already defined, and let X; = X \ Ule X, denote
the set of all elements belonging to none of the sets Xi,..., X,. If X
is the empty set, then we put t = £ and the construction is finished.
Otherwise, for X # (), we let <’ stand for the ordering < restricted
to the set X é, and we define Xy, as the set of all minimal elements in
(X}, ='). The proof will be finished as soon as we verify the following
claims:

(1) The sets X,...,X; form a partition of X.
(2) Each X; is an independent set in P.
(3) w(P) > t.
Claims (1) and (2) follow immediately from the definition of the
sets X1, Xo,..., X and from Observation 2.4.3. Thus, it suffices to

prove (3).
By backward induction, for k =t,t—1,...,2,1, we find elements
x; € X such that the set {x1,z2,...,2:} constitutes a chain. Let us

choose x; € X arbitrarily. Since x; ¢ X;_1, there necessarily exists
T1_1 € X¢_1 so that zy_1 < xy. This argument is a basis of the
whole proof: Having already constructed elements z; € X;, 241 €
Xi—1y- &1 € Xgy1, then xp1q ¢ Xi, and hence there exists
xr € X with zp < T41.
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The set {z1,...,x;} thus constructed is a chain. Therefore, w(P)
> t. (Actually we have w(P) = t; we do not need this and we leave
it as a simple exercise.) O

Theorem 2.4.5 has a number of nice connections, as is illustrated
by the following celebrated application:

2.4.6 Theorem (Erd&s—Szekereslemma). An arbitrary sequence
(x1,...,2,241) of real numbers contains a monotone subsequence of
length n + 1.

Let us first define the notions in this theorem explicitly. A subse-
quence of length m is determined by indices i1, ..., %m, 11 < io < ---
< im, and it has the form (z;,,x4,,...,2;,). Such a sequence is
monotone if we have either x;, < x;, < --- < x;,, or T, > T, >
-+« > x; . For example, the sequence (3,5,6,2,8,1,4,7) contains the
monotone subsequence (3,5,6,8) (with i1 = 1, ia = 2, i3 = 3 and
i4 = b), or the monotone subsequence (6,2, 1) (with i; = 3, is = 4,
i3 = 6), as well as many other monotone subsequences.

Proof of Theorem 2.4.6. Let a sequence (x1,...,2,2, ) of n? +1

real numbers be given. Let us put X = {1,2,...,n2 + 1}, and let us
define a relation < on X by

¢ = j if and only if both ¢ < j and z; < x;.

It is not difficult to verify that the relation < is a (partial) order-
ing of the set X. So we have a(X, <) - w(X, <) > n?+ 1, and hence
a(X, =) > nor w(X, =) >n. Now it is easily checked that a chain
1] < 13 < + -+ < iy, in the ordering < corresponds to a nondecreasing

subsequence z;, < x;, < --- < x; (note that iy < ia < -+ < ip),
while an independent set {i1, 2, ..., %, } corresponds to a decreasing
subsequence (if we choose the notation so that i1 < iy < -+ < iy,
then we get x;, > x4, > --- > x;, , since for example, z;, < x;, and
i1 < iz would mean i; < i2). O
Exercises

1. (a) Let =;, ¢ = 1,...,k, be orderings on some set X. Prove that
ﬂle =; is again an ordering on X (recall that <; is a relation, and
thus a subset of X x X).

(b) *Prove that every partial ordering < on a set X can be expressed
as the intersection of linear orderings of X.
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. Prove that w(B,) =n+ 1.

Find a sequence of real numbers of length 17 that contains no mono-
tone subsequence of length 5.

Prove the following strengthening of Theorem 2.4.6: Let k, ¢ be nat-
ural numbers. Then every sequence of real numbers of length k¢ + 1
contains an nondecreasing subsequence of length k+ 1 or a decreasing
subsequence of length £+ 1.

. (a) Prove that Theorem 2.4.5, as well as the preceding exercise, are

optimal in the following sense: For every k and £ there exists a partially
ordered P with n elements such that n = kf, a(P) = k, and w(P) = .

(b) *Given k, £ > 1, construct a sequence of real numbers of length k¢
with no nondecreasing subsequence of length k£ + 1 and no decreasing
subsequence of length ¢ + 1.

(a) Let us consider two sequences a = (aq,...,a,) and b = (by,...,by)
of distinct real numbers. Show that indices i1,...,i;, 1 <i; < -+ <
ir < n, always exist with k& = [n'/%] such that the subsequences

determined by them in both a and b are increasing or decreasing (all
4 combinations are allowed, e.g. “increasing in a, decreasing in b”,
“decreasing in a, decreasing in b”, etc.).

(b) *Show that the bound for & in (¢) cannot be improved in general.

**(Dilworth’s theorem) Let (X, <) be a finite partially ordered set.

Show that X can be expressed as a (disjoint) union of at most a =
a(X, =) chains.
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Combinatorial counting

In this chapter, we are going to consider problems concerning the
number of various configurations, such as “How many ways are there
to send n distinct postcards to n friends?”, “How many mappings
of an n-element set to an m-element set are there?”, and so on. We
begin with simple examples that can usually be solved with common
sense (plus, maybe, some cleverness) and require no special know-
ledge. Later on, we will come to somewhat more advanced techniques.

3.1 Functions and subsets

As promised, we begin with a simple problem with postcards.

Problem. Professor X. (no real person meant), having completed
a successful short-term visit at the School of Mathematical Contem-
plation and Machine Cleverness in the city of Y., strolls around one
sunny day and decides to send a postcard to each of his friends Alice,
Bob, Arthur, Merlin, and HAL-9000. A street vendor nearby sells 26
kinds of postcards with great sights of Y.’s historical center. How
many possibilities does Professor X. have for sending postcards to
his 5 friends?

Since the postcard for each friend can be picked in 26 ways, and
the 5 selections are independent (making some of them doesn’t in-
fluence the remaining ones), the answer to this problem is 26°. In a
more abstract language, we have thereby counted the number of all
mappings of a 5-element set (Prof. X.’s friends) to a 26-element set
(the postcard types). Here is another closely related problem:

Problem. How many distinct 5-letter words are there (using
the 26-letter English alphabet, and including meaningless words
such as ywizp*)?

"Who can tell which words are meaningless? It might mean something in
Tralfamadorian, say.
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Since each of the 5 letters can be picked independently in 26 ways, it
is not hard to see that the answer is again 26°. And, indeed, a 5-letter
word can be understood as a mapping of the set {1,2,...,5} to the
set {a,b,...,z} of letters: for each of the 5 positions in the word,
numbered 1,2,...,5, we specify the letter in that position. Finding
such simple transformations of counting problems is one of the basic
skills of the art of counting.

In the next proposition, we count mappings of an n-element set
to an m-element set. The idea is exactly the same as for counting
the ways of sending the postcards, but we use this opportunity to
practice more rigorous mathematical proofs in a simple situation.

3.1.1 Proposition. Let N be an n-element set (it may also be
empty, i.e. we admit n = 0,1,2,...) and let M be an m-element
set, m > 1. Then the number of all possible mappings f: N — M
is m™.

Proof. We can proceed by induction on n. What does the proposi-
tion say for n = 07 In this case, we consider all mappings f of the
set N = () to some set M. The definition of a mapping tells us that
such an f should be a set of ordered pairs (z,y) with z € N =0
and y € M. Since the empty set has no elements, f cannot possibly
contain any such ordered pairs, and hence the only possibility is that
f is the empty set (no ordered pairs). On the other hand, f = () does
indeed satisfy the definition of a mapping in this case: the definition
says that for each x € N something should be true, but there are no
x € N. Therefore, exactly 1 mapping f: () — M exists. This agrees
with the formula, because m® = 1 for any m > 1. We have verified
the n = 0 case as a basis for the induction.

Many would object that a mapping of the empty set makes no sense
and so it is useless to consider it, and we could really start the induction
with n = 1 without any difficulty. But, in mathematical considerations,
it often pays to clarify such “borderline” cases, to find out what exactly
the general definition says about them. This allows us to avoid various
exceptions and special cases later on, or missing cases and mistakes in
proofs. It is similar to the usefulness of defining an empty sum (with no
addends) as 0, etc.

Next, suppose that the proposition has been proved for all n < ng
and for all m > 1. We set n = ng+1 and we consider an n-element set
N and an m-element set M. Let us fix an arbitrary element a € N.
To specify a mapping f: N — M is the same as specifying the value
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f(a) € M plus giving a mapping f': N\ {a} — M. The value f(a)
can be chosen in m ways, and for the choice of f’ we have m"~! ways
by the inductive hypothesis. Each choice of f(a) can be combined
with any choice of f’, and so the total number of possibilities for
f equals m - m"~! = m™. Here is a picture for the more visually
oriented reader:

m possibilities
to map a

the rest can,
be mapped in

m"~! ways

O

3.1.2 Proposition. Any n-element set X has exactly 2™ subsets
(n>0).

This is another simple and well-known counting result. Let us
give two proofs.

First proof (by induction). For X = (), there exists a single
subset, namely (), and this agrees with the formula 20 = 1.

Having an (n + 1)-element set X, let us fix one element a € X,
and divide the subsets of X into two classes: those not containing a
and those containing it. The first class are exactly all the subsets of
the n-element set X \ {a}, and their number is 2" by the inductive
hypothesis. For each subset A of the second class, let us consider the
set A" = A\ {a}. This is a subset of X \ {a}. Clearly, each subset
A" C X \ {a} is obtained from exactly one set A of the second class,
namely from A’ U {a}. In other words, there is a bijection between
all subsets of the first class and all subsets of the second class. Hence
the number of subsets of the second class is 2" as well, and altogether
we have 2" + 2" = 21 gubsets of the (n + 1)-element set X as it
should be. a

Second proof (reduction to a known result). Consider an ar-
bitrary subset A of a given n-element set X, and define a mapping
fa: X — {0,1}. For an element z € X we put

1 ifxed
fA(x):{o ifz ¢ A.
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(This mapping is often encountered in mathematics; it is called the
characteristic function of the set A.) Schematically,

fa 0 1.0 0 1 1 0

Distinct sets A have distinct mappings f4, and conversely, any given
mapping f: X — {0,1} determines a subset A C X with f = fa.
Hence the number of subsets of X is the same as the number of all
mappings X — {0, 1}, and this is 2" by Proposition 3.1.1. a

Now, a somewhat more difficult result:

3.1.3 Proposition. Let n > 1. Each n-element set has exactly 2"
subsets of an odd size and exactly 2! subsets of an even size.

Proof. We make use of Proposition 3.1.2. Let us fix an element
a € X. Any subset A C X \ {a} can be completed to a subset
A’ C X with an odd number of elements, by the following rule: if
|A| is odd, we put A" = A, and for |A| even, we put A" = AU {a}.
It is easy to check that this defines a bijection between the system
of all subsets of X \ {a} and the system of all odd-size subsets of X.
Therefore, the number of subsets of X of odd cardinality is 2"~
For subsets of an even size, we can proceed similarly, or we can
simply say that their number must be 2" minus the number of odd-
size subsets, i.e. 2% — 271 = n—1, O

Later on, we will examine several more proofs.

Injective mappings.

Problem. Professor X., having spent some time contemplating the
approximately 12 million possibilities of sending his postcards,
returned to the street vendor and wanted to buy his selection. But
the vendor had already sold all the postcards and was about to close.
After some discussion, he admitted he still had one sample of each of
the 26 postcards, and was willing to sell 5 of them to Professor X. for
$5 apiece. In this situation, Professor X. has to make a new decision
about which postcard is best for whom. How many possibilities does
he have now?

As Professor X. (and probably the reader too) recognized, one has
to count one-to-one mappings from a 5-element set to a 26-element
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set. This is the same as counting 5-letter words with all letters dis-
tinct.

3.1.4 Proposition. For given numbersn, m > 0, there exist exactly

n—1

m(m—1)...(m—=n+1) = [[(m —1)

=0

one-to-one mappings of a given n-element set to a given m-element
set.

Proof. We again proceed by induction on n (and more concisely this
time). For n = 0, the empty mapping is one-to-one, and so exactly
1 one-to-one mapping exists, and this agrees with the fact that the
value of an empty product has been defined as 1. So the formula
holds for n = 0.

Next, we note that no one-to-one mapping exists for n > m,
and this again agrees with the formula (since one factor equal to 0
appears in the product).

Let us now consider an n-element set N, n > 1, and an m-element
set M, m > n. Fix an element a € N and choose the value f(a) € M
arbitrarily, in one of m possible ways. It remains to choose a one-to-
one mapping of the set N\ {a} to the set M\{f(a)}. By the inductive
assumption, there are (m —1)(m —2)...(m —n+ 1) possibilities for
the latter choice. Altogether we have m(m—1)(m—2)...(m—n+1)
one-to-one mappings f: N — M. (Where is the picture? Well, these
days, you can’t expect to have everything in a book in this price
category.) O

As we have noted for the postcards and 5-letter words, choosing a
one-to-one mapping of an n-element set to an m-element set can also be
viewed as selecting n objects from m distinct objects, where the order of
the selected objects is important (i.e. we construct an ordered n-tuple).
Such selections are sometimes called variations of n elements from m
elements without repetition.

Exercises

1. Let X = {x1,29,...,2,} be an n-element set. Describe how each sub-
set of X can be encoded by an n-letter word consisting of the letters
a and b. Infer that the number of subsets of X is 2". (This is very
similar to the second proof of Proposition 3.1.2.)
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2. Determine the number of ordered pairs (A, B), where A C B C
{1,2,...,n}.

3. Let N be an n-element set and M an m-element set. Define a bijection
between the set of all mappings f: N — M and the n-fold Cartesian
product M™.

4. Among the numbers 1,2,...,10'%, are there more of those containing
the digit 9 in their decimal notation, or of those with no 97

5. (a) How many n X n matrices are there with entries chosen from the
numbers 0,1,...,¢q— 17

(b) *Let ¢ be a prime. How many matrices as in (a) have a determinant
that is not divisible by ¢? (In other words, how many nonsingular
matrices over the g-element field are there?)

6. *Show that a natural number n > 1 has an odd number of divisors
(including 1 and itself) if and only if y/n is an integer.

3.2 Permutations and factorials

A bijective mapping of a finite set X to itself is called a permutation
of the set X.

If the elements of X are arranged in some order, we can also imag-
ine a permutation as rearranging the elements in a different order.
For instance, one possible permutation p of the set X = {a,b,¢,d}
is given by p(a) = b, p(b) = d, p(c) = ¢, and p(d) = a. This can also
be written in a two-row form:

a b ¢ d
( b d ¢ a ) '

In the first row, we have listed the elements of X, and under each
element x € X in the first row, we have written the element p(x) into
the second row. Most often one works with permutations of the set
{1,2,...,n}. If we use the convention that the first row always lists
the numbers 1,2, ..., n in the natural order, then it suffices to write
the second row only. For example, (2 4 3 1) denotes the permutation

p with values p(1) =2, p(2) =4, p(3) =3, and p(4) = 1.
In the literature, permutations of a set X are sometimes understood
as arrangements of the elements of X in some order, i.e. as linear order-
ings on the set X. This may be a quite useful point of view, but we will

mostly regard permutations as mappings. This has some formal advan-
tages. For instance, permutations can be composed (as mappings).



3.2 Permutations and factorials 65

Yet another way of writing permutations is to use their so-called
cycles. Cycles are perhaps easiest to define if we depict a permuta-
tion using arrows, in the way we depicted relations using arrows in
Section 1.5. In the case of a permutation p: X — X, we draw the ele-
ments of the set X as dots, and we draw an arrow from each dot z to
the dot p(z). For example, for the permutationp = (483529617)
(this is the one-line notation introduced above!), such a picture looks
as follows:

O

1 4 6 7

Each point has exactly one outgoing arrow and exactly one ingo-
ing arrow. It is easy to see that the picture of a permutation con-
sists of several disjoint groups of dots, where the dots in each group
are connected by arrows into a cycle. One can walk around such a
cycle in one direction following the arrows. The groups of elements
connected together by these cycles are called the cycles of the con-
sidered permutation. (Any reader who is not satisfied with this pic-
torial definition can find a formal definition of a cycle in Exercise 2.)
Using the cycles, the depicted permutation p can also be written
p = ((1,4,5,2,8)(3)(6,9,7)). In each of the inner parentheses, the
elements of one cycle are listed in the order along the arrows, start-
ing with the smallest element in that cycle.

What can permutations be good for? They are studied, for instance,
in the design and analysis of various sorting algorithms. Certain efficient
algorithms for problems with graphs, or with geometric objects, start
by rearranging the input objects into a random order, i.e. by performing
a random permutation with them. In the so-called group theory, which
is extremely important in almost all mathematics and also in many
areas of modern physics, groups of permutations (with composition as
the group operation) are one of the basic objects of study. An ultimate
reason for the impossibility of a general algebraic solution of algebraic
equations of degree 5 is in the properties of the group of all permutations
on the 5-element set. Rubik’s Cube, a toy which used to be extremely
popular at the beginning of the 1980s, provides a pretty example of
a complicated permutation group. Surprisingly involved properties of
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permutations are applied in a mathematical analysis of card shuffling.

This is just a small sample of areas where permutations play a role.

According to Proposition 3.1.4, the number of permutations of
an n-element set is n(n — 1) -...-2- 1. This number, regarded as a
function of n, is denoted by n! and is called n factorial. Hence we
have

n—1 n
nl=nn-1)-...-2:-1=[[(n-j) =]]i
j=0 i=1

In particular, for n = 0 we have 0! = 1 (because 0! is defined as the
empty product).

Exercises
1. How many permutations of {1,2,...,n} have a single cycle?

2. For a permutation p: X — X, let p* denote the permutation arising
by a k-fold composition of p, i.e. p! = p and p¥ = p o p*~1. Define a
relation ~ on the set X as follows: ¢ ~ j if and only if there exists a
k > 1 such that p¥(i) = j. Prove that ~ is an equivalence relation on
X, and that its classes are the cycles of p.

3. Let p be a permutation, and let p* be defined as in Exercise 2. By
the order of the permutation p we mean the smallest natural number
k > 1 such that p* = id, where id denotes the identity permutation
(mapping each element onto itself).

(a) Determine the order of the permutation (23154789 6).

(b) Show that each permutation p of a finite set has a well-defined
finite order, and *show how to compute the order using the lengths of
the cycles of p.

4. ¢S Write a program that lists all permutations of the set {1,2,...,n},
each of them exactly once. Use a reasonable amount of memory even
if n!, the number of permutations, is astronomically large. *Can you
make the total number of operations of the algorithm proportional to
n!, if the operations needed for the output (printing the permutations,
say) are not counted?

5. (This is an exercise for those who are getting bored by the easy material
covered in the first two sections of this chapter.) Let p be a permuta-
tion of the set {1,2,...,n}. Let us write it in the one-line notation, and
let us mark the increasing segments in the resulting sequence of num-
bers, for example, (45726 8 3 1). Let f(n,k) denote the number of
permutations of an n-element set with exactly k increasing segments.
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(a) *Prove that f(n,k) = f(n,n+ 1 — k), and derive that the aver-
age number of increasing segments of a permutation is (n + 1)/2 (the
average is taken over all permutations of {1,2,...,n}).

(b) *Derive the following recurrent formula:

(c) Using (b), determine the number of permutations of {1,2,...,n}
with 2 increasing segments, with 3 increasing segments, and *with &
increasing segments.

(d) *For a randomly chosen permutation 7 of the set {1,2,...,n}, cal-
culate the probability that the first increasing segment has length k.
Show that for n large, the average length of the first increasing seg-
ments approaches the number e — 1.

Remark. These and similar questions have been studied in the analysis
of various algorithms for sorting.

6. Let 7 be a permutation of the set {1,2,...,n}. We say that an ordered
pair (i,7) € {1,2,...,n} x {1,2,...,n} is an inversion of 7 if i < j
and (i) > 7(j).

(a) Prove that the set I(m) of all inversions, regarded as a relation on
{1,2,...,n}, is transitive.
(b) Prove that the complement of I(7) is transitive too.

(c) €S Consider some sorting algorithm which rearranges n input num-
bers into a nondecreasing order, and in each step, it is only allowed to
exchange two neighboring numbers (in the current order). Prove that
there are input sequences whose sorting requires at least cn? steps of
this algorithm, where ¢ > 0 is some suitable constant.

(d) »¢% Can you design an algorithm that calculates the number of
inversions of a given permutation of {1,2,...,n} using substantially
less than n? steps? (See e.g. Knuth [41] for several solutions.)

7. (a) *Find out what is the largest power of 10 dividing the number 70!
(i.e. the number of trailing zeros in the decimal notation for 70!).
(b) *Find a general formula for the highest power k such that n! is
divisible by p*, where p is a given prime number.

8. Show that for every k,n > 1, (k!)™ divides (kn)!.

3.3 Binomial coefficients

Let n > k be nonnegative integers. The binomial coefficient (Z) (read
“n choose k”) is a function of the variables n, k defined by the formula

n _n(n—l)(n—2)...(n—k+1)_Hfz—l(n_z.)
<k>_ Wk—1)-...-2-1 === (3D
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The reader might know another formula, namely

<Z> - k:'(nnik)‘ (3:2)

In our situation, this is equivalent to (3.1). Among these two possible
definitions, the first one, (3.1), has some advantages. The numerical
value of (Z) is more easily computed from it, and one also gets smaller
intermediate results in the calculation. Moreover, (3.1) makes sense for

an arbitrary real number n (more about this in Chapter 12), and, in

particular, it defines the value of (Z) also for a natural number n < k;

in such cases, (Z) =0.

The basic combinatorial meaning of the binomial coefficient (Z)
is the number of all k-element subsets of an n-element set. We prove
this in a moment, but first we introduce some notation.

3.3.1 Definition. Let X be a set and let k be a nonnegative integer.

By the symbol
X
k

we denote the set of all k-element subsets of the set X.

For example, ({a,g,c}) = {{a, b}, {a, c},{b, c}}. The symbol (}) has
two meanings now, depending on whether x is a number or a set.
The following propositions put them into a close connection:

3.3.2 Proposition. For any finite set X, the number of all k-
element subsets equals (I)kfl)'

In symbols, this statement can be written

X\ _ (1X]
()= (5)
Proof. Put n = |X|. We will count all ordered k-tuples of elements of
X (without repetitions of elements) in two ways. On the one hand, we
know that the number of the ordered k-tuplesis n(n—1)...(n—k+1)
by Proposition 3.1.4 (see the remark following its proof). On the
other hand, from one k-element subset M € ()k(), we can create k!

distinct ordered k-tuples, and each ordered k-tuple is obtained from
exactly one k-element subset M in this way. Hence

()]

nn—1)...(n—k+1) = k!
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Another basic problem leading to binomial coefficients. How
many ways are there to write a nonnegative integer m as a sum of r
nonnegative integer addends, where the order of addends is impor-
tant? For example, for n = 3 and r = 2, we have the possibilities
3=0+3,3=142,3=2+1, and 3 = 0+ 3. In other words, we want
to find out how many ordered r-tuples (i1, 12,...,%,) of nonnegative
integers there are satisfying the equation

i i+ e+ iy =m. (3.3)
The answer is the binomial coefficient (m;L_Tl_ 1). This can be proved
in various ways. Here we describe a proof almost in the style of a
magician’s trick.

Imagine that each of the variables i1,149,...,4, corresponds to
one of r boxes. We have m indistinguishable balls, and we want to
distribute them into these boxes in some way (we assume that each
box can hold all the m balls if needed). Each possible distribution
encodes one solution of Eq. (3.3). For example, for m = 7 and r = 6,
the solution 0+14+0+3+ 142 = 7 corresponds to the distribution

So we are interested in the number of distributions of the balls into
boxes. We now let the bottoms and the leftmost and rightmost walls
of the boxes disappear, so that only m balls and r—1 walls separating
the boxes remain:

(we have also moved the balls and walls for a better aesthetic impres-
sion). This situation still contains full information about the distri-
bution of the balls into boxes. Hence, choosing a distribution of the
balls means selecting the position of the internal walls among the
balls. In other words, we have m + r — 1 objects, balls and internal
walls, arranged in a row, and we determine which positions will be
occupied by balls and which ones by walls. This corresponds to a
selection of a subset of r — 1 positions from m +r — 1 positions, and

this can be done in (™" 1) ways. O

Simple properties of binomial coefficients. One well-known for-

mula is
O-(2) e



70 Combinatorial counting

Its correctness (for n > k > 0) can immediately be seen from the
already-mentioned formula (}) = ﬁlw Combinatorially, Eq. (3.4)
means that the number of k-element subsets of an n-element set is
the same as the number of subsets with n — k elements. This can be
verified directly without referring to binomial coefficients—it suffices
to assign to each k-element subset its complement.

Here is another important formula, attributed to Pascal:

n—1 n—1 n

()= () =) 6
One elegant proof is based on a combinatorial interpretation of both
sides of Eq. (3.5). The right-hand side is the number of k-element
subsets of some n-element set X. Let us fix one element a € X
and divide all k-element subsets of X into two groups depending
on whether they contain a or not. The subsets not containing a are
exactly all k-element subsets of X'\ {a}, and so their number is (";1)
If A is some k-element subset of X containing a, then we can assign
the (k — 1)-element set A’ = A\ {a} to A. It is easy to check that
this assignment is a bijection between all k-element subsets of X
containing the element a and all (k — 1)-element subsets of X \ {a}.
The number of the latter is (z:}) Altogether, the number of all
k-element subsets of X equals (";1) + (Z:}) O

The identity (3.5) is closely related to the so-called Pascal

triangle:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Every successive row in this scheme is produced as follows: under each
pair of consecutive numbers in the preceding row, write their sum, and
complement the new row by 1s on both sides. An induction using (3.5)
shows that the (n 4 1)-st row contains the binomial coefficients (g),

() G-
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Binomial theorem. Equation (3.5) can be used for a proof of
another well-known statement involving binomial coefficients: the
binomial theorem.

3.3.3 Theorem (Binomial theorem). For any nonnegative
integer n, we have
n
(1+2)" = kzo <Z> o (3.6)

(this is an equality of two polynomials in the variable x, so in par-
ticular it holds for any specific real number x).

From the binomial theorem, we can infer various relations among
binomial coefficients. Perhaps the simplest one arises by substituting
x =1, and it reads

@ N <1> ) @ . () _on, (3.7)

Combinatorially, this is nothing else than counting all subsets of an
n-element set. On the left-hand side, they are divided into groups
according to their size.

Second proof of Proposition 3.1.3 (about the number of odd-
size subsets). By substituting z = —1 into the binomial theorem,
we arrive at

(- () () - kzi:o(_l)k@ 0. ()

Adding this equation to Eq. (3.7) leads to

[6)-()+(0) ]

The brackets on the left-hand side contain the total number of even-
size subsets of an n-element set. Therefore, the number of even-
size subsets equals 2”7 1. The odd-size subsets can be counted as a
complement to 2". O

Further identities with binomial coefficients. Literally thou-
sands of formulas and identities with binomial coefficients are known
and whole books are devoted to them. Here we present one more for-
mula with a nice combinatorial proof. More formulas and methods on
how to derive them will be given in the exercises and in Chapter 12.
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3.3.4 Proposition.

> (1) -(%)

Proof. The first trick is to rewrite the sum using the symmetry of
binomial coefficients, (3.4), as

> ()02

Now we show that this sum expresses the number of n-element sub-
sets of a 2n-element set (and so it equals the right-hand side in the
formula being proved). Consider a 2n-element set X, and color n of
its elements red and the remaining n elements blue. To choose an
n-element subset of X now means choosing an i-element subset of
the red elements plus an (n —i)-element subset of the blue elements,
where i € {0,1,...,n}:

For a given 4, there are (7) possibilities to choose the red sub-
set and, independently, ( " ) possibilities for the blue subset. Al-

n—i

n blue

X

together, an n-element subset of X can be selected in > (7)(,",)

n—i
ways. a

Multinomial coefficients and the multinomial theorem. Here is
one of the favorite problems of American textbooks: how many distinct
words, including nonsense ones, can be produced using all the letters
of the word MISSISSIPPI? In other words, how many distinct ways are
there to rearrange these letters? First, imagine that the letters in the
name are distinguished somehow, so that we have 4 different Ss, etc. In
our text, we distinguish them by indices: M111S1S515S3S413P1P2I4. So
we have 11 distinct letters, and these can be permuted in 11! distinct
ways. Now consider one (arbitrary) word produced from a “nonindexed”
MISSISSIPPI, such as STPISMSIPIS. From how many “indexed” words
do we get this word by deleting the indices? The indices of the 4 letters
S can be placed in 4! ways, the indices of the 4 letters I can be arranged
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(independently) in 4! ways, for the 2 letters P we have 2! possibilities,
and finally for the single M we have 1 (or 1!) possibility. Thus, the word
SIPISMSIPIS, and also any other word created from MISSISSIPPI, can
be indexed in 4!4!2!1! ways. The number of nonindexed words, which is
the answer to the problem, is 11!/(414!2!1!).

The same argument leads to the following general result: if we have
objects of m kinds, k; indistinguishable objects of the ith kind, where
k1 + ko + -+ + ky, = n, then the number of distinct arrangements of
these objects in a row is given by the expression

n!
klko! .. k)

This expression is usually written

n
k17k2a-~-akm

and is called a multinomial coefficient. In particular, for m = 2 we get a
binomial coefficient, i.e. ( P k) denotes the same thing as (Z) Why the
name “multinomial coefficient”? It comes from the following theorem:

3.3.5 Theorem (Multinomial theorem).  For arbitrary real
numbers x1,Ta,..., T, and any natural number n > 1, the following
equality holds:
n k1 k km
(z1taztotam)t = Y (kl,km...,km)xllx; et

k14 Fhkm=n
K1reerkm >0

The right-hand side of this formula usually has fairly many terms
(we sum over all possible ways of writing n as a sum of m nonnega-
tive integers). But the theorem is most often applied to determine the
coefficient of some particular term. For example, it tells us that the
coefficient of 22y32° in (z +y + 2)'0 is (2713075) = 2520.

The multinomial theorem can be proved by induction on n (see
Exercise 26). A more natural proof can be given by the methods we

discuss in Chapter 12.

Exercises

1.

Formulate the problem of counting all k-element subsets of an n-
element set as a problem with sending or buying postcards.

. Prove the addition formula (3.5) by using the definition (3.1) of bino-

mial coefficients and by manipulating expressions.
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10.

11.
12.
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(a) Prove the formula

O+ (7)) ()-(1l) o

by induction on n (for r arbitrary but fixed). Note what the formula
says for r = 1.

(b) *Prove the same formula combinatorially.

*For natural numbers m < n calculate (i.e. express by a simple formula

not containing a sum) > ,_ (7];) ().

. Calculate (i.e. express by a simple formula not containing a sum)

(@) Yhey (0) 1
(b) * Yo (F)k.

> (-0

*How many functions f: {1,2,...,n} — {1,2,...,n} are there that
are monotone; that is, for ¢ < j we have f(i) < f(j)?

. **Prove that

. How many terms are there in the sum on the right-hand side of the

n

formula for (1 + -+ + ;)™ in the multinomial theorem?

*How many k-element subsets of {1,2,...,n} exist containing no two
consecutive numbers?

(a) Using formula (3.9) for r = 2, calculate the sums > ,i(i —1) and
i i

(b) Using (a) and (3.9) for r = 3, calculate >, *.

(¢) *Derive the result of (b) using Fig. 3.1 (the figure is drawn for the
case n = 4).

Prove the binomial theorem by induction on n.

For a real number x and a natural number n, let the symbol 2 denote
z(x—1)(x—2)...(x —n+1) (the so-called nth factorial power of x).
Prove the following analog of the binomial theorem:

(x+y)2= g (?) xlyn=t,

Proceed by induction on n.
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Fig. 3.1 A graphical derivation of the formula for 13 + 23 4 --. 4+ n3.

13.

14.

15.

16.

17.

Prove the so-called Leibniz formula for the differentiation of a product.
Let u, v be real functions of a single real variable, and let f*) denote
the kth derivative of a function f. Then

()™ = (Z) 49 (n—k)

k=0

(supposing that all the derivatives in the formula exist). The case n = 1
is the formula for differentiating a product, (uv)’ = u'v + wv’, which
you may assume as being known.

CS Write a computer program that lists all k-element subsets of the
set {1,2,...,n}, each of them exactly once. Use a reasonable amount
of memory even if (2), the number of such subsets, is very large. *Can
you make the total number of operations of the algorithm proportional
to (Z), if the operations needed for the output are not counted?

Let p be a prime and let n, k be natural numbers.

(a) Prove that for k < p, (¥) is divisible by p.

(b) Prove that (;‘) is divisible by p if and only if |n/p| is divisible
by p.

(a) *Using the binomial theorem, derive a formula for the number of
subsets of cardinality divisible by 4 of an n-element set.

(b) *Count the subsets of size divisible by 3 of an n-element set.

We have n kinds of objects, and we want to determine the number of

ways in which a k-tuple of objects can be selected. We consider vari-
ants: we may be interested in selecting ordered or unordered k-tuples,
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18.

19.

20.

21.
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and we may have either just 1 object of each kind or an unlimited
supply of indistinguishable objects of each kind. Fill out the formulas
in the following table:

Only 1 object | Arbitrarily many
of each kind objects of each kind

Ordered k-tuples

Unordered k-tuples

We have k balls, and we distribute them into n (numbered) bins. Fill
out the formulas for the number of distributions for various variants
of the problem in the following table:

At most 1 ball | Any number of balls
into each bin |into each bin

Balls are distinguishable
(have distinct colors)
Balls are
indistinguishable

*How many ways are there to arrange 7 elves and 5 goblins in a row
in such a way that no goblins stand next to each other?

A table is set with 13 large plates. We have 5 lobsters (indistinguishable
ones) and 8 stuffed snails (also indistinguishable). We are interested
in the number of ways to serve the snails and lobsters on the plates.
The order of serving is important. Imagine we were writing a script
for a movie: “Put a snail on plate no. 3, then serve a lobster on plate
no. 11...”7. Only one item is served at a time. How many ways are
there if

(a) if there are no restrictions, everything can come on the same plate,
say, and

(b) if at least 1 item should come on each plate?

Draw a triangle ABC'. Draw n points lying on the side AB (but dif-
ferent from A and B) and connect all of them by segments to the

vertex C. Similarly, draw n points on the side AC' and connect them
to B.

(a) How many intersections of the drawn segments are there? Into how
many regions is the triangle ABC' partitioned by the drawn segments?
(b) *Draw n points also on the side BC' and connect them to A. Assume
that no 3 of the drawn segments intersect at a single point. How many
intersections are there now?

(¢) *How many regions are there in the situation of (b)?



22.

23.

24.

25.

26.

27.
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Consider a convex n-gon such that no 3 diagonals intersect at a single
point. Draw all the diagonals (i.e. connect every pair of vertices by a
segment).

(a) *How many intersections do the diagonals determine?

(b) *Into how many parts is the polygon divided by the diagonals?
(Cayley’s problem) *Consider a regular convex n-gon P with vertices
Ay, As, ..., A,. How many ways are there to select k of these n vertices,
in such a way that no two of the selected vertices are consecutive
(in other words, if we draw the polygon determined by the selected

vertices, it has no side in common with P)? Hint: First, calculate the
number of such selections including Aj.

*Consider a regular n-gon. We divide it by nonintersecting diagonals
into triangles (i.e. we triangulate it), in such a way that each of the
resulting triangles has at least one side in common with the original
n-gon.

(a) How many diagonals must we draw? How many triangles do we
get?

(b) *How many such triangulations are there?

(a) What is the coefficient of #2y3z in the polynomial (22 — y? + 32)5?
What about the coefficient of z2y?2z?

(b) Find the coefficient of 22y82 in (22 + y? — 52)7.

(c) What is the coefficient of u?v3z3 in (3uv — 2z + u +v)7?

(a) Prove the equality

n - n—1
<k1,k2,...,km) B <k:1—1,k:2,k3,...,km)
n—1
+(k1,k21,k3,...,km>

4ot n—1
klkaa-“akm—lakm_l

(b) Prove the multinomial theorem by induction on n.

Count the number of linear extensions for the following partial order-
ings:

(a) X is a disjoint union of sets X1, Xo, ..., Xi of sizes r1,79,..., 7,

respectively. Each X; is linearly ordered by =, and no two elements
from the different X; are comparable.

(b) *The Hasse diagram of (X, <) is a tree as in the following picture.
The root has k sons, the ith son has r; leaves.
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3.4 Estimates: an introduction

If we are interested in some quantity and we ask the question “How
much?”, the most satisfactory answer seems to be one determining the
quantity exactly. A millionairess may find some fascination in knowing
that her account balance is 107,343,726.12 doublezons? at the moment.
In mathematics, an answer to a counting problem is usually considered
most satisfactory if it is given by an exact formula. But quite often we
do not really need an exact result; for many applications it is enough to
know a quantity approximately. For instance, many people may find it
sufficient, although perhaps not comforting, to learn that their account
balance is between 4000 and 4100 doublezons. Often even a one-sided
inequality suffices: if we estimate that a program for finding an optimal
project schedule by trying all possibilities would run for at least 100
days, we probably need not put further effort into determining whether
it would actually run for more than 102 days or less than that.
Exact results may be difficult to find. Sometimes computing an exact
result may be possible but laborious, and sometimes it is beyond
our capabilities no matter how hard we try. Hence, heading for an
estimate instead of the exact result may save us lots of work and
considerably enlarge the range of problems we are able to cope with.
Another issue is that an exact answer may be difficult to grasp
and relate to other quantities. Of course, if the answer is a single
number, it is easy to compare it to other numbers, but the situation
is more delicate if we have a formula depending on one or several
variables. Such a formula defines a function, say a function of n, and
we would like to understand “how big” this function is. The usual
approach is to compare the considered function to some simple and
well-known functions. Let us give a nontrivial example first.

3.4.1 Example (Estimating the harmonic numbers). The fol-
lowing sum appears quite often in mathematics and in computer
science:

1 1 1 |
Hy=1+ -4 -4t ==Y =
n=ltgt ot z;z

2Doublezon is a currency unit taken from the book L "Ecume des jours (English
translation: Froth on the Daydream) by Boris Vian.
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Fig. 3.2 Partitioning the sequence (%, %, %7 ...) into groups.

This H,, is called the nth harmonic number. It turns out that there
is no way to simplify this sum (it has no “closed form”). We want
to get some idea about the behavior of H,, for n growing to co. In
particular, we want to decide whether H,, — oo for n — oo.

A simple estimate. The idea is to divide the terms of the sequence
%, %, %, ... into groups, each group consisting of numbers that are
roughly of the same magnitude. That is, we let the kth group G

consist of the numbers % with

1 1 < 1
2% 7S Rl
(see Fig. 3.2).
Hence G, contains the 25~ numbers

1 1 1 1
k=17 ok—1 1 17 ok=1 4 97" "7 ok _ "

Therefore, the sum of the terms in each Gy satisfies

1
Z z < |Gplmax Gy, =281 —— =1,

2k—1
z€Gy,

and similarly

1 1
z€Gy
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A given term % belongs to the group Gy, with 2871 < i < 2% ie.
with k = |logyi] + 1. Therefore, H,, is no bigger than the sum of
numbers in the first |logy n| + 1 groups, and we get

"1 [logg n]+1
anzgg Z 1 <loggn + 1.
i=1 k=1

Similarly we can derive a lower bound

—_
—_

> - lloggn).
k=1

We may conclude that H, does grow to infinity but quite slowly,
about as slowly as the logarithm function. Even for very large values
of n, we can estimate the value of H, by computing the logarithm.
If n is large, the ratio of the upper and lower bounds is close to 2.

For somewhat more sophisticated and more precise estimates of
H,, see Exercise 3.5.13.

In this example, we seem to have been lucky. We could approxi-
mate the considered function H,, quite closely by suitable multiples of
the logarithm function. But experience shows, and certain theoretical
results confirm, that this is not exceptional luck, and that functions

(of a single variable n) occurring in natural problems can usually be

estimated fairly accurately by everyday functions like n, n?, n3%/13 27

3.26"™, 3”2/2, Inn, %n(ln n)?, etc. But finding such estimates may often
be quite tricky. In the subsequent sections, we will demonstrate several
techniques which may be helpful in such an effort.

Asymptotic comparison of functions. In the above example,
we have shown that the function H,, is “smaller” than the function
logy n + 1, meaning that the inequality H,, < logsn + 1 holds for all
n € N. But if we consider the functions f(n) = 5n and g(n) = n?,
then neither is smaller than the other, strictly speaking, since, for
example, f(1) = 5 > ¢g(1) = 1 but f(6) = 30 < ¢(6) = 36, so
neither of the inequalities f(n) < g(n) and f(n) > g(n) is correct
for all n. Yet we feel that g “grows much faster” than f: after some
initial hesitation for small values of n, g(n) exceeds f(n) and remains
above it for all the larger n.

In mathematics and in theoretical computer science, functions
defined on the natural numbers are usually compared according to
their behavior as n tends to infinity, while their behavior for small
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values n are ignored. This approach is usually called the asymptotic
analysis of the considered functions. We also speak of the asymptotic
behavior or asymptotics of some function, meaning its comparison to
some simple functions for n — oo.

If f and g are real functions of a single variable n, we may introduce
the symbol f = g, meaning that there exists some number ng such that
the inequality f(n) < g(n) holds for all n > ng; that is, “g ultimately
outgrows f”. So, for the example in the preceding paragraph, we can
write 5n < n2.

It is useful to think a bit about the relation < just introduced. It
can be viewed as a “soft” inequality between the considered functions.
If f < g holds, we are sure that g outgrows f for large enough n but
we generally do not know how large n must be. The notation < thus
suppresses some information. This often makes it much easier to de-
rive the < inequality between two functions than to prove the “hard”
inequality < (which should hold for all n). But it may also make the <
inequality treacherous for the “end-user”. Suppose that someone sells
us a black box that, for each input number n, computes and displays
some value f(n). We also get a guarantee that f(n) < n. We can never
really prove that the guarantee is invalid. No matter how many of the
n we find with f(n) > n, the seller can always claim that the number
no implicit in the guarantee is still much bigger than our examples.

The notation f < ¢ is not common in the literature (although we
believe it has some didactical value for understanding the other nota-
tions to come). Instead, several other notations are used that suppress
still somewhat more information, and thus may make the estimates yet
more convenient to derive.

The “‘big-Oh” notation. The following notation is used quite
often; for instance, it appears frequently in the analysis of algorithms.

3.4.2 Definition. Let f,g be real functions of a single variable
defined on the natural numbers (most often we assume that the
values attained by both f and g are nonnegative). The notation

f(n) = O(g(n))

means that there exist constants ng and C such that for all n > ny,
the inequality |f(n)| < C - g(n) holds. If one has to read f(n) =
O(g(n)) aloud one usually says “f is big-Oh of g”.

Here the information suppressed by the notation f(n) = O(g(n))
is the value of the constant C. It may be 0.1, 10, or 10'°—we only
learn that some constant C' exists. The notation f(n) = O(g(n))
can intuitively be understood as saying that the function f doesn’t
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grow much faster than g, i.e. that f(n)/g(n) doesn’t grow to infin-
ity. Instead of f(n) and g(n), specific formulas may appear in this
notation. For example, we may write 10n? + 5n = O(n?).

We should warn that f(n) = O(g(n)) says that f(n) is not too
big, but it does not say anything about f(n) not being very small.
For example, n+5 = O(n?) is a true statement, although perhaps not
as helpful as n +5 = O(n). Let us also emphasize that although the
notation contains the equality sign “=", it is asymmetric (essentially,
it is an inequality); one shouldn’t write O(f(n)) = g(n)!

The O( ) notation often allows us to simplify complicated expres-
sions wonderfully. For example, we have

(7n? + 6n + 2)(n® — 3n + 2%) = O(n®). (3.10)

Why? We note the following two simple rules concerning the O()
notation: if we have fi(n) = O(gi1(n)) and fa(n) = O(g2(n)) then
fi(n) + fa(n) = O(g1(n) + g2(n)), and similarly for multiplication,
fi(n) f2(n) = O(g1(n)ga(n)) (Exercise 6). Since obviously n = O(n?)
and 1 = O(n?), by a repeated application of the addition and multi-
plication rules we get 7n? + 6n + 2 = O(n? + n? + n?) = O(n?), and
similarly n® —3n+28 = O(n?). A final application of the multiplica-
tion rule gives Eq. (3.10). A nice thing in this derivation is that we
didn’t need to multiply out the parentheses first!

After some practice, one can write estimates/simplifications like
(3.10) right away without too much thinking, by quickly spotting the
“main term” in an expression (the one that grows fastest) and letting
all others disappear in the O( ) notation. Such insight is usually based
on a (maybe subconscious) use of the following simple rules:

3.4.3 Fact (Useful asymptotic inequalities). In the following,

let C,a,a,3 > 0 be some fixed real numbers independent of n. We

have

(i) n® = O(n?) whenever a < 3 (“a bigger power swallows a smaller

one” ),

(ii) n® = O(a™) for any a > 1 (“an exponential swallows a power”),

(iii) (Inn)¢ = O(n®) for any a > 0 (“a power swallows a logarithm”).
(In fact, in all the inequalities above, we can write the < symbol

instead of the O() notation.)

Part (i) is trivial, proving part (ii) is a simple exercise in calculus,
and part (iii) can be easily derived from (ii) by taking logarithms.
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Using the symbol O( ), we can also write a more exact comparison
of functions. For example, the notation f(n) = g(n)+ O(y/n) means
that the function f is the same as g up to an “error” of the order
V/n, i.e. that f(n) — g(n) = O(y/n). A simple concrete example is
(5) =n(n—1)/2 = In? + O(n).

The next example shows how to estimate a relatively complicated
sum.

3.4.4 Example. Let us put f(n) = 13 +23 + 3% + ... + n3. We want

to find good asymptotic estimates for f(n).

In this case, it is possible to find an exact formula for f(n) (see
Exercise 3.3.10), but it is quite laborious.?> But we can get reasonable
asymptotic estimates for f(n) in a less painful way. First, we may note
that f(n) < n-n® = n* On the other hand, at least % addends in
the sum defining f(n) are bigger than (n/2)3, and so f(n) > (n/2)* =
n*/16. As a first approximation, we thus see that f(n) behaves like the
function n*, up to small multiplicative factors.

To get a more precise estimate, we can employ the summation for-
mula (3.9) (Exercise 3.3.3) with r = 3:

3 n 4 n 5 T n\ (n+1
3 3 3 3) 4 )
Set g(k) = (’;) We find that g(k) = 2k=D*=2) _ %3 + O(k?). Hence

31
we have

f(n)=§k3=§69 Z P —6g(k
6("11) +O(Zk2) - %4-1-0(713).

k=1

In this derivation, we have used the following fact: if f, g are some

functions such that f(n) = O(g(n)), then >7_, f(k) =0 (X 1_, 9(k)).

It is a simple but instructive exercise to prove it.

A few more remarks. A similar “big-Oh” notation is also used for
functions of several variables. For instance, f(m,n) = O(g(m,n)) means
that for some constants mg,ng, C' and for all m > mg and all n > ng,
we have |f(n,m)| < C - g(m,n).

In the literature, one frequently encounters several other symbols for
expressing “inequality” between the order of magnitude of functions.
They can be quite useful since once one gets used to them, they provide
a convenient replacement for complicated phrases (such as “there exists

3At least by hand; many computer algebra systems can do it automatically.
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a constant ¢ > 0 such that for all n € N we have ...” etc.). We will
not discuss them in detail, but we will at least list the definitions of the
most common symbols in the table below.

Notation Definition Meaning

f grows much more slowly

_ ] M —
f(n) =o(g(n))  limy o0 575 =0 than ¢

fn)=Q(g(n)) gn)=0(f(n)) f grows at least as fast as ¢

. f(n) = O(g(n)) and f and g have about the
F(n) =©(g(n) f(n) =Q(g(n)) same order of magnitude

~ i fn) _
f)~g(n)  Timge 20 =1

N

f(n) and g(n) are almost
the same

So, finally, it is natural to ask—what is a bound f(n) = O(g(n))
good for? Since it doesn’t say anything about the hidden constant,
we cannot deduce an estimate of f(n) for any specific n from it!
There are several answers to this question. In some mathematical
considerations, we do not really care about any particular n, and it
is enough to know that some function doesn’t grow much faster than
another one. This can be used, for example, to prove the existence of
some object without actually constructing it (see Chapter 10 for such
a proof method). A more practically oriented answer is that in most
situations, the constant hidden in the O() notation can actually be
figured out if needed. One just has to go through a computation done
with the O() notation very carefully once more and track the con-
stants used in all the estimates. This is usually tedious but possible.
As a general rule of thumb (with many many exceptions), one can
say that if a simple proof leads to an O( ) estimate then the hidden
constant is usually not too large, and so if we find that f(n) = O(n)
and g(n) = Q(n?) then typically f(n) will be smaller than g(n) even
for moderate n. We add more remarks concerning the O( ) notation
in connection with algorithms in Section 5.3.

Exercises

1. Check that the relation < introduced in the text is a transitive relation
on the set of all functions f: N — R. Find an example of functions f
and ¢ such that neither f < g nor g < f.
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2. Find positive and nondecreasing functions f(n), g(n) defined for all
natural numbers such that neither f(n) = O(g(n)) nor g(n) = O(f(n))
holds.

3. Explain what the following notations mean, and decide which of them
are true.

(a) 72 = O(n* nn)

(b) n? = o(n?Inn)

(c) n* +5nlnn =n?(1+o(1)) ~n?

(d) n? + 5nlnn =n? + O(n)

(e) o5y 1 = O(n?)

(£) iy Vi=0(n/?).

4. What is the meaning of the following notations: f(n) = O(1), g(n) =
Q(1), h(n) = n°M? How can they be expressed briefly in words?

f

5. *Order the following functions according to their growth rate, and
express this ordering using the asymptotic notation introduced in this

section: nlnn, (Inlnn)2" (Inn)nn n. eV (Inp)nn p. oo

n1+1/(1nlnn), n1+1/ lnn7 n2.

6. Check that if we have fi(n) = O(g1(n)) and fa2(n) = O(g2(n)

1(n) 2(n)) then
fi(n) + fo(n) = O(g1(n) + g2(n)) and fi(n)f2(n) = O(g1(n)ga(n

))-

3.5 Estimates: the factorial function

In this section, we are going to consider estimates of the function
n! (n factorial). At the first sight, it might seem that the definition
of the factorial itself, i.e. the formula n! =n(n —1)-...-2-1, tells
us everything we may ever need to know. For small values of n, n!
can be very quickly evaluated by a computer, and for larger n, one
might think that the values of the factorial are too large to have any
significance in the “real world”. For example, 70! > 10190, as many
owners of pocket calculators with the button may know. But in
various mathematical considerations, we often need to compare the
order of magnitude of the function n! to other functions, even for
very large values of n. For this purpose, the definition itself is not
very suitable, and also an evaluation of n! by a computer sometimes
won’t be of much help. What we need are good estimates that bound
n! by some “simpler” functions.

When approaching a problem, it is usually a good strategy to start
looking for very simple solutions, and only try something complicated
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if simple things fail. For estimating n!, a very simple thing to try is

the inequality
n n
n!:Hz’SHn:n".
i=1 i=1

As for a very simple lower bound, we can write

n n
n!:HizHQZQ”—l.

Hence, n! is somewhere between the functions 2"~! and »n". In many
problems, this may be all we need to know about n!. But in other
problems, such as Example 3.5.1 below, we may start asking more
sophisticated questions. Is n! “closer” to n™ or to 2"~ 1? Does the
function ’ZL—? grow to infinity, and if so, how rapidly?

To some extent, this can be answered by still quite simple consid-
erations (similar to the first part of the solution to Example 3.4.4). If
n is even, then § of the numbers in the set {1,2,...,n} are at most
5, and § of them are larger than 5. Hence, for n even, we have, on
the one hand,

nl > ﬁ i> f[ Z:(Z)n/2=< Z)n (3.11)

i=n/2+1 i=n/2+1
and on the other hand,

n/2 n

nl < <HZ>< I1 n> :2’71—72. (3.12)

i=1 i=n/2+1

For n odd, one has to be slightly more careful, but it turns out that
n
both the formulas n! > (x/n/2> and n! < n"/2"/? can be derived

for all odd n > 3 as well (Exercise 1). So, from Eq. (3.11) we see
that n! grows considerably faster than 2"; in fact, sooner or later it
outgrows any function C™ with a fixed number C. Eq. (3.12) tells us
that n™ grows still faster than n!.
Here is a simple example where the question of comparing n” and
n! arises naturally.

3.5.1 Example. Each of n people draws one card at random from a
deck of n cards, remembers the card, and returns it back to the deck.
What is the probability that no two of the people draw the same card?
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Is there some “reasonable chance”, or is it a very rare event? Mathe-
matically speaking, what is the probability that a mapping of the set
{1,2,...,n} to itself chosen at random is a permutation?

The number of all mappings is n™, the number of permutations is n!,
and so the required probability is n!/n™. From the upper bound (3.12),
we calculate

nt o /27 2 "/2,
n" n

Therefore, the probability is no more than 2-"/2, and for n not too
small, the considered event is extremely unlikely. From more precise
estimates for n! derived later on, we will see that the probability in

question behaves roughly as the function e™".

A simple estimate according to Gauss. We show an elegant way of
deriving estimates similar to (3.11) and (3.12) but a bit stronger. This
proof is of some historical interest, since it was invented by the great
mathematician Gauss (or, written in the German way, Gauf}), and we
also learn an important and generally useful inequality.

3.5.2 Theorem. For every n > 1,

n? < nl < (n;—l) .

We begin the proof with an inequality between the arithmetic and
geometric mean of two numbers. For positive real numbers a, b, we define
the arithmetic mean of a and b as 22, and the geometric mean® of a

R
and b as Vab.

3.5.3 Lemma (Arithmetic—geometric mean inequality). For any
pair of positive real numbers a, b, the geometric mean is no bigger than
the arithmetic mean.

Proof. The square of any real number is always positive, and so
(v/a — v/b)? > 0. By expanding the left-hand side we have a—2vab+b >
0, and by adding 2v/ab to both sides of this inequality and dividing by
2 we get Vab < aT'H’. This is the desired inequality. O

Proof of Theorem 3.5.2. The idea is to pair up each number i €
{1,2,...,n} with its “cousin” n+1—i and estimate each of the products
i(n+1—1) from above and from below. If ¢ runs through the values 1,
2, ..., nthen n+ 1 — 4 runs through n, n — 1, ..., 1. The product

4If g denotes the geometric mean of a and b then the ratio a : g is the same
as g : b. From the point of view of the ancient Greeks, g is thus the appropriate
segment “in the middle” between a segment of length a and a segment of length
b, and that’s probably why this mean is called geometric.
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ﬁszrlfz

i=1
thus contains each factor j € {1,2,...,n} exactly twice, and so it equals
(n!)2. Therefore we have

~[[ Vi1, (3.13)

If we choose a =i and b =n + 1 — ¢ in the arithmetic—geometric mean
inequality, we get
i+n+1—-79 n+1

. 17 < _
iln+1—1) < 5 5

and by (3.13)

n n n
_ e n—|—1:<n—|—1> ,
11;[1 ( : i1 2 2

which proves the upper bound in Theorem 3.5.2.

In order to prove the lower bound for n!, it suffices to show that
iln+1—i)>nforalli=1,2,...,n. For i =1 and i = n we directly
calculate that i(n+1—i) = n. For 2 < i < n—1, we have a product of two
numbers, the larger one being at least 5 and the smaller one at least 2,

and hence i(n + 1 —4) > n holds for all i. Therefore, n! > /n™ = n"/2
as was to be proved. O

Of course, not everyone can invent such tricks as easily as Gauss
did, but at least the arithmetic—geometric mean inequality is worth
remembering.

Having learned some estimates of n!, we may keep asking more
and more penetrating questions, such as whether ("+1) /n! grows
to infinity, and if so how fast, etc. We will now skip some stages of
this natural evolution and prove bounds that estimate n! up to a
multiplicative factor of only n (note that in the preceding estimates,
our uncertainty was still at least an exponential function of n). In
these more sophisticated estimates, we encounter the so-called Euler
number e = 2.718281828 ..., the basis of the natural logarithms.
The reader may learn much more about this remarkable constant in
calculus. Here we need the following:

3.5.4 Fact. For every real number x,
1+x<e”
holds (see Fig. 3.3).
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Fig. 3.3 The functions y = 1 + z and y = e” in the vicinity of the origin.

This fact is something which should be marked in large bold-faced
fluorescent letters in the notebook of every apprentice in asymptotic
estimates. Here we use it to prove

3.5.5 Theorem. For every n > 1, we have

n\" n\n"
e<7) gn!gen<7> .
e e

First proof (by induction). We only prove the upper bound n! <
en(n/e)", leaving the lower bound as Exercise 9. For n = 1, the right-
hand side becomes 1, and so the inequality holds. So we assume that
the inequality has already been proved for n — 1, and we verify it for
n. We have

e

by the inductive assumption. We further transform the right-hand

side to [en (%)"] | (";1>ne,

In the brackets, we have the upper bound for n! we want to prove. So
it suffices to show that the remaining part of the expression cannot
exceed 1. By an algebraic manipulation and by using Fact 3.5.4 with

L we obtain
n

e(n;1>n:e<1—i)nge(e_l/“)n:e-e_l:l.

r = —
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y=Inzx
y=In|z]

0 1 2 3 4 5 6

Fig. 3.4 Estimating the area below the step function by integration.

Let us note that Fact 3.5.4 is the only property of the number e
that was used in the proof; for example, the numerical value of e hasn’t
played any role. It so happens that e is characterized by Fact 3.5.4: If a is
a real number such that 1+x < a” for all z € R, then necessarily a = e.
The existence and uniqueness of a real number e with this property has
to be established by the means of mathematical analysis (a task which
we don’t consider here).

Second proof of Theorem 3.5.5 (using an integral). We again
do the upper bound only. We begin with a formula for the factorial,
nl=1-2-...-n, and we take natural logarithms on both sides. In this
way, we get

Inn!=Inl4+In2+---+Inn

(the function In is the logarithm with base e). The expression on the
right-hand side can be thought of as the area enclosed between the
x-axis and the step function z +— In|z| on the interval [1,n + 1]; see
Fig. 3.4.

Since In |z] < Inz on this interval, the area in question is no bigger
than the area below the graph of the function x — Inx on the interval
[1,n + 1]. We express this latter area as an integral:

n+1
lnnlg/ lnzde=(n+1)Inn+1) —n,
1
as one can calculate as a simple exercise in integration. This estimate

can be further manipulated into

nl < e(n+1) In(n+1)—n _ (’I’L + 1)n+1 .
> on

This is not yet the expression we want. But we can use this inequality
for n — 1 instead of n, and this gives the formula in the theorem:
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n

n
n!:n~(n—1)!§n-ez_1 =en<%> .

O

A curious reader might want to discover how the number e enters
the second proof. It might seem that we inserted it artificially, since
we started with taking the natural logarithm of n!, that is, logarithm
base e. However, it turns out that if we start with logarithm with any
other base, e appears in the final bound as well, only the calculation
becomes more complicated.

For the reader’s interest, let us mention a considerably more precise
estimate for n!, known by the name Stirling’s formula: If we define the
function

f(m)=vam ()",

e

where m = 3.1415926535... is the area of the unit disk, we have
f(n) ~ nl. Recall that this means

lim M

n—oo nl

=1

So if we estimate n! by f(n) then the relative error of this estimate
tends to 0 for n tending to infinity. For example, for n = 8, the error
is about 1%. Let us note that Stirling’s formula is approximately “in
the middle” of the estimates from Theorem 3.5.5 (see also Exercise 10).
Proving Stirling’s formula requires somewhat more advanced tools from
calculus and it doesn’t quite fit into this book, so we omit it (see Knuth
[41] for a proof).

Exercises

1. (a) Check that the formula n! > (\/n/2) is valid for all odd n > 1,
by a consideration similar to Eq. (3.11).
(b) Check that also n! < n™/2"/2 holds for all odd n > 3.

2. Using Fact 3.5.4, prove that

(a) 1+ 1) <eforalln>1,and

(b) * (14 L)t >eforall n > 1.

(¢) Using ( ) and (b), conclude that lim, (1 4+ £)" =e.

(d) Prove (1—3)m <1 <(1-1)m=L

(Calculus required) *Prove Fact 3.5.4.

4. Show that {/n tends to 1 for n — oo, and *use Fact 3.5.4 to prove
that ¥/n—1> IHT” for all n > 1.
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. Decide which of the following statements are true:

a) nl~ ((n+1)/2)"
b) n! ~ ne(n/e)™
c) nt=0((n/e)")
d) In(n!) = Q(nlnn)
e) In(n!) ~ nlnn.
a) For which pairs (a,b), a,b > 0, does the equality vab = (a + b)/2
hold?
(b) The harmonic mean of positive real numbers a, b is defined by the
expression 2ab/(a + b). Based on examples, suggest a hypothesis for

the relation (inequality) of the harmonic mean to the arithmetic and
geometric means, and *prove it.

/\/\/\r\/—\/\

Let 21, 23, ..., 2, be positive reals. Their arithmetic mean equals (z1+
Ty +---+xy,)/n, and their geometric mean is defined as /x1x3 .. 2.
Let AG(n) denote the statement “for any n-tuple of positive reals
T1,%2,...,Ty, the geometric mean is less than or equal to the arith-
metic mean”. Prove the validity of AG(n) for every n by the following
strange induction:

(a) Prove that AG(n) implies AG(2n), for each n.
(b) *Prove that AG(n) implies AG(n — 1), for each n > 1.

(c) Explain why proving (a) and (b) is enough to prove the validity of
AG(n) for all n.

. (Computation of the number 7) *Define sequences {ag, a1, as, ...} and

{bo,b1,ba,...} as follows: ag = 2, bg = 4, ant1 = Vapbn, buy1 =
2y 4+1bn /(an4+1 + by). Prove that both sequences converge to 7. Hint:
Find a relation of the sequences to regular polygons with 2" sides
inscribed in and circumscribed to the unit circle.

Remark. This method (of Archimedes) of calculation of 7 is not very
efficient. Here is an example of a much faster algorithm: z; = 273/4 +
2_5/47 Y1 = 21/4; o =2+ \/57 Tn = anl(wn + 1)/(yn + 1); Yn+1 =
(Yn/Tn +1/3/Z0)/(Yn + 1), Tpny1 = (VTn + 1/\/Zy)/2. Then the m,
converge to m extremely fast. This and other such algorithms, as well
as the remarkable underlying theory, can be found in Borwein and
Borwein [16].

. Prove the lower bound n! > e(n/e)"™ in Theorem 3.5.5

(a) by induction (use Fact 3.5.4 cleverly),
(b) via integration.

(Calculus required) *Prove the following upper bound for the fac-
torial function (which is already quite close to Stirling’s formula):
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n! < ey/n(n/e)™. Use the second proof of Theorem 3.5.5 as a starting
point, but from the area below the curve y = Inx, subtract the areas
of suitable triangles.

11. Prove Bernoulli’s inequality: for each natural number n and for every
real z > —1, we have (1 + )" > 1+ nz.

12. Prove that for n = 1,2,..., we have

11
2Wn+1-2<14—=+—=+--

1
ARV +%§2\/ﬁ—1.

13. Let H, be as in Example 3.4.1: H, =5 1

i=17"
(a) *Prove the inequalities Inn < H,, <Inn+1 by induction on n (use
Fact 3.5.4).

(b) Solve (a) using integrals.
3.6 Estimates: binomial coefficients

Similar to the way we have been investigating the behavior of the
function n!, we will now consider the function

n 7n(n—1)...(n—k+1)7k_1n_i
<k>_ k(k—1)-...-2-1 _gk—i' (3.14)

From the definition of (Z), we immediately get

()=

and for many applications, this simple estimate is sufficient. For
k > 5, one should first use the equality (Z) = (nf k)

In order to derive some lower bound for (Z’), we look at the def-
inition of the binomial coefficient written as a product of fractions,
as in (3.14). For n > k >4 > 0 we have 7= > 7, and hence

(1)= ("

Quite good upper and lower bounds for ( kl) can be obtained from

Stirling’s formula, using the equality (}) = ﬁlk), These bounds are
somewhat cumbersome for calculation, however, and also we haven’t
proved Stirling’s formula. We do prove good but less accurate estimates
by different methods (the main goal is to demonstrate these methods,
of course).
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3.6.1 Theorem. For every n > 1 and for every k, 1 < k < n, we have
n en\k
< (%)
k k

Proof. We in fact prove a stronger inequality:

(g)+(§)+(g)+...+(g) < ()",

We start from the binomial theorem, which claims that

(Z) . (v;)H (7;)352 I (Z)x" =(1+a)"

for an arbitrary real number z. Let us now assume 0 < x < 1. Then by
omitting some of the addends on the left-hand side, we get

()¢ (e (e

and dividing this by z* leads to

R

Each of the binomial coefficients on the left-hand side is multiplied by
a coefficient that is at least 1 (since we assume z < 1), and so if we
replace these coefficients by 1s the left-hand side cannot increase. We

obtain (g) ) (’f) . (Z) . (11:7;’)"

The number z € (0,1) can still be chosen at will, and we do it in such

a way that the right-hand side becomes as small as possible. A suitable

value, which can be discovered using some elementary calculus, is x = %

By substituting this value into the right-hand side, we find

n+n+ +n<1+ﬁn<ﬁ)k
0 1 k) — n k/ -
Finally, by using Fact 3.5.4 we arrive at
(1+ k) < (ek/n>” _ ok,
n
and the inequality in Theorem 3.6.1 follows. O

The trick used in this proof is a small glimpse into the realm of
perhaps the most powerful known techniques for asymptotic estimates,
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using the so-called generating functions. We will learn something about
generating functions in Chapter 12, but to see the full strength of this
approach for asymptotic bounds, one needs to be familiar with the
theory of functions of a complex variable.

The binomial coefficient (\_n?QJ)' From the definition of the
binomial coefficients, we can easily get the following formula:

<Z> :n_llzﬂ<ki1>'

Therefore, for k& < n/2 we have (Z) > (kfl), and conversely, for

k > n/2 we obtain (}) > (kil) Hence for a given n, the largest

among the binomial coefficients (Z) are the middle ones: for n even,
(n%) is bigger than all the others, and for n odd, the two largest

binomial coefficients are (Ln72 j) and ([n%]).

The behavior of the binomial coefficient (Z) as a function of k, with
n fixed as some large number and for k close to n/2, is illustrated in
Fig. 3.5(a). The graph of the function (}) isn’t really a continuous curve
(since (Z) is only defined for an integer k), but if n is very large, there
are so many points that they visually blend into a curve. The “height”
of this bell-shaped curve is exactly (Ln72 j)’ and the “width” of the bell

shape approximately in the middle of its height is about 1.5y/n. The
scales on the vertical and horizontal axes are thus considerably different:
the horizontal axis shows a range of k of length 3+/n, while the vertical
range is (I_n72j) (which is nearly 2" as we will soon see).

If you plot the function x +— e~/ 2, you get a curve which looks
exactly the same as the one we have plotted for binomial coefficients,
up to a possibly different scaling of the axes. This is because the e~ ’/2
curve, called the Gauss curve, is a limit of the curves for binomial co-
efficients for n — oo (in a suitably defined precise sense). The Gauss
curve is very important in probability theory, statistics, and other ar-
eas. For example, it describes a typical distribution of errors in physical
measurements, the percentage of days with a given maximal tempera-
ture within a long time period, and so on. In statistics, the distribution
given by the Gauss curve is called the normal distribution. The Gauss
curve is one of the “ubiquitous” mathematical objects arising in many
often unexpected contexts (another such omnipresent object is the Eu-
ler number e, and we will meet some others later in this book). You
can learn more about the Gauss curve and related things in a prob-
ability theory textbook (Grimmett and Stirzaker [20] can be highly
recommended).
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Fig. 3.5 A graph of (}) as a function of k in the vicinity of % (a), or
perhaps a hat, or maybe a gigantic boa constrictor which has swallowed an
elephant (b) (see [28]).

How large is the largest binomial coefficient (L /2 j)? A simple but
often accurate enough estimate is

a1 < () <7

The upper bound is obvious from the equality Y ;_, ( ) = 2" and
the lower bound follows from it as well, because (L n)2 J) is largest
among the n + 1 binomial coefficients (Z) whose sum is 2".

We prove a considerably more precise estimate. For convenient
notation, we will only work with even values of n, and so we write
n = 2m.

3.6.2 Proposition. For all m > 1 we have

22m m 22m
()
2v/m m Vom
Proof. Both inequalities are proved similarly. Let us consider the

number
1-3-5-...-(2m—1)

2:4-6-...-2m
(the whole idea of the proof is hidden in this step). Since

1-3-5-...-(2m—1) 2-4-...-(2m)  (2m)!

P =

P= 6 am 24 om) P
we get
()
Thus, we want to prove
1 1
v == e



3.6 Estimates: binomial coefficients 97

For the upper bound, consider the product

O

which can be rewritten as

() (). (500) <

Since the value of the product is less than 1, we get (2m + 1)P? < 1,
and hence P < 1/v/2m.
For the lower bound we consider the product

(-3)(-8) ()

and we express it in the form

() (%) - (28) - rmr e

which gives P > 1/2\/m. O

Let us remark that by approximating both (2m)! and m! using
Stirling’s formula, we get a more precise result

2m 22m
m Vrm'
Such estimates have interesting relations with number theory, for

example. One of the most famous mathematical theorems is the follow-
ing statement about the density of primes:

3.6.3 Theorem (Prime number theorem). Let 7(n) denote the
number of primes not exceeding the number n. Then

n

m(n) ~ i —

Inn
(ie. lim, oo m(n)Inn/n=1).
Several proofs of this theorem are known, all of them quite difficult
(and a quest for interesting variations and simplifications still contin-

ues). Within the 19th century, Tschebyshev found a simple proof of the
following weaker result:

n
7 =6 ()
ie.cyn/Inn < w(n) < con/Inn holds for all n and for certain constants

ca > ¢y > 0. Part of the proof is based on the estimates 23;:1 < (2::) <
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22m (see Exercise 2). Tschebyshev also proved the so-called Bertrand
postulate: For every n > 1, there exists a prime p with n < p < 2n.
Perhaps the simplest known proof uses, among others, the estimates in
Proposition 3.6.2. The reader can learn about these nice connections in
Chandrasekhar [35], for example.

Exercises

1

2.

a) Prove the estimate () < (en/k)* by induction on k.

-
(b) Prove the estimate in (a) directly from Theorem 3.5.5.
(

Tschebyshev estimate of m(n))
a) Show that the product of all primes p with m < p < 2m is at most
2m

(
)

(b) *Using (a), prove the estimate w(n) = O(n/Inn), where 7(n) is as
in the prime number theorem 3.6.3.

(¢) *Let p be a prime, and let m, k be natural numbers. Prove that if
p* divides (2::) then p* < 2m.
(d) Using (c), prove 7(n) = Q(n/Inn).

3.7 Inclusion—exclusion principle

We begin with a simple motivating example. As many authors of exam-
ples with finite sets have already done, we resort to a formulation with
clubs in a small town.

3.7.1 Example. The town of N. has 3 clubs. The lawn-tennis club has
20 members, the chandelier collectors club 15 members, and the mem-
bership of the Egyptology club numbers 8. There are 2 tennis players
and 3 chandelier collectors among the Egyptologists, 6 people both play
tennis and collect chandeliers, and there is even one especially eager per-

son participating in all three clubs. How many people are engaged in
the club life in N.?

As a warm-up, let us count the combined membership of tennis and
Egyptology. We see that we have to add the number of tennis players
and the Egyptology fans and subtract those persons who are in both
these clubs, since they are accounted for twice in the sum. Written in
symbols, we have [T UE| = |T|+ |E| — |[TNE| =20+ 8 —2 = 26. The
reader who isn’t discouraged by the apparent silliness of the whole prob-
lem® can probably find, with similar but more complicated considera-
tions, that the answer for the 3 clubs is 33. To find the answer, it may
be helpful to draw a picture:

SWhich may indicate mathematical inclinations.
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T

E

The inclusion—exclusion principle mentioned in the section’s title is
a formula which allows us to solve problems of a similar type for an
arbitrary number of clubs. It is used in situations where we want to
compute the size of the union of several sets, and we know the sizes
of all possible intersections of these sets. For 2 sets, T' and FE, such
a formula has been given above, and for 3 sets C, T, E' it reads

|CUTUE| = |C|+|T|+|E|—|CNT|—|CNE|—=|TNE|+|CNTNE].

Expressed in words: in order to get the size of the union, we first add
up the sizes of all the sets, then we subtract the sizes of all pairwise
intersections, and finally we add the size of the intersection of all
the 3 sets. As will be shown in a moment, such a method also works
for an arbitrary number n of finite sets Aj, Ao, ..., A,. The size of
their union, i.e. |[A; U A U---U A,]|, is obtained as follows: we add
up the sizes of all the sets, then we subtract the sizes of all pairwise
intersections, add the sizes of all triple intersections, subtract the
sizes of all 4-wise intersections, etc.; as the last step, we either add
(for n odd) or subtract (for n even) the size of the intersection of all
the n sets.
How do we write this in a formula? One attempt might be

|Aj U Ay U---UA,| = |A1] + [Aa] + - + Ay
—|A1NAg|— AN As| = —|A1 N A | —[A2NAg| = - — |41 N Ay
+]A; N Ag N Ag| + [A1 N Ax N Ayl
+"‘+(—1)n71‘A1 NAsN---N A,

This is a cumbersome and not very clear way of expressing such a
simple rule. Slightly better is a notation using sums:

AU AU UA =) Al = D A N A
i=1

1<ii <ig<n
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+ Z |Ai; N Ay N A13|

1<i1<i9<iz<n
— e (D" AI N AN N Ay

If we recall the notation ()k() for the set of all k-element subsets of
a set X, and if we use a notation similar to ) also for multiple
intersections and unions, we can write the same formula still more
elegantly:

3.7.2 Theorem (Inclusion—exclusion principle). For any collec-
tion A1, As, ..., A, of finite sets, we have

SICIEDS

k=1 Ie({l,Q,I;,n})

n

U4

=1

(A

iel

. (3.15)

In case you cannot see why this formula expresses the rule we
have formulated in words, you may want to devote some time to it
and work out the case n = 3 in detail. Many students have problems
with this notation (or any mathematical notation) for the inclusion—
exclusion principle, confusing numbers with sets and vice versa, and
this makes a clean solution of more complicated problems very hard.

Finally, the shortest and almost devilish way of writing the inclusion—
exclusion principle is

U

i=1

- >y

0AIC{1,2,...,n}

N Ai‘. (3.16)

el

First proof of the inclusion—exclusion principle: by induction.
The induction is on n, the number of sets. There is a small subtlety
here: for the inductive step, we need the formula for the case n = 2,
and so we use n = 2 as the basis for induction. For 2 sets, as we
know, the formula holds. Assume its validity for arbitrary n — 1 sets.
We have

n

U4

i=1

n—1
= U A;
i=1

| ({a)en

i=1

n—1
i=1

(here we used inclusion-exclusion for 2 sets, i.e. the equality
|JAUB| = |A|+ |B|—|ANB|with A=A, U---UA,_1, B=A,)

n—1 n—1
= Al +14n - [ JAin 4y)
=1 =1
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(distributivity of the intersection: X N (YU Z) = (XNY)U(XNZ);
now we use the inductive hypothesis twice, once for |[A;U---UA,,_1]
and once for |[A] U---U A _,|, where A, = A, N A,)

= <:§(_1)k—1 IE({L%”_H) QIAi > + |4y
)

n—1
_ ( (—1)k1 Z ﬂ A
re(ft2m=1y lielun}
We are nearly done. In the first sum, we add, with the proper signs,
the sizes of all intersections not involving the set A,. In the second
sum, the sizes of all the intersections involving A, appear, and the
intersection of k + 1 sets (i.e. some k sets among Aj,..., A,_1 plus
Ay) has the sign —(—1)*=1 = (=1)*. The second sum doesn’t inc-
lude the term |A,|, but this appears separately between both sums.
Altogether, the size of the intersection of any k-tuple of sets among
Aq,..., A, appears exactly once in the expression, with the sign
(—1)k=1. This agrees with Eq. (3.15), and the proof by induction is
finished. Without a reasonable notation, we would easily get lost in
this proof. O

i

Second proof of the inclusion—exclusion principle: by count-
ing. Let us consider an arbitrary element x € A1 U---U A,. It
contributes exactly 1 to the size of the union on the left-hand side
of (3.15). Let us look at how much x contributes to the various in-
tersection sizes on the right-hand side. Let j be the number of sets
among the A; that contain x. We can rename the sets so that z is

contained in A, Ay, ..., Aj.
The element & now appears in the intersection of every k-tuple
of sets among A, Ag,...,4; and in no other intersections. Since

there are (}) k-element subsets of a j-element set, = appears in (7)
intersections of k-tuples of sets. The sizes of k-wise intersections are
counted with the sign (—1)*~!, and so = contributes the quantity

N

to the right-hand side of the inclusion—exclusion formula (3.15). By
the formula (3.8) for the sum of binomial coefficients with alternat-
ing signs, the above expression equals 1. The contribution of each
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element = to both sides of the inclusion—exclusion formula (3.15) is
thus 1, and the formula is proved. O

And one more proof. If one looks at the inclusion—exclusion prin-
ciple in a proper way, it is a consequence of the following formula for
expanding a product:

A4zl ta).. . (Itz)= > (Hsci). (3.17)

IC{1,2,....,n} “i€l

Contemplate what this formula says (write it out for n = 1,2, 3, say)
and why it holds.

In order to prove the inclusion—exclusion principle, let us denote
A=A UAU---UA,, and let f;: A — {0,1} be the characteristic
function of the set A;, which means that f;(a) = 1 for a € A; and
fi(a) = 0 otherwise. For every a € A, we have [[_,(1 — fi(a)) = 0
(don’t we?), and using (3.17) with x; = —f;(a) we get

S )] fila) =0,

IC{1,2,...,n} iel

By adding all these equalities together for all @ € A, and then by inter-
changing the summation order, we arrive at

0->( ¥ o)

ac€A NIC{1,2,...,n} iel
= Y (=M ( > Hfi(a)). (3.18)
I1C{1,2,...,n} acAiel

Now it suffices to note that the [];.; fi(a) is the characteristic func-
tion of the set (;c; A;, and therefore Y., [T;c; fi(a) = |Mies Ai]- In

particular, for I = 0, J[;4 fi(a) is the empty product, with value 1
by definition, and so Y, 4 [L;cq fi(a) = > ,ca 1 = |A|. Hence (3.18)

VIED SR Pt

0£IC{1,2,...,n} i€l

:O7

and this is exactly the inclusion—exclusion principle. An expert in algebra
can thus regard the inclusion—exclusion principle with mild contempt:
a triviality, she might say. O

Bonferroni inequalities. Sometimes we can have the situation where
we know the sizes of all the intersections up to m-fold ones, but we
do not know the sizes of intersections of more sets than m. Then we
cannot calculate the size of the union of all sets exactly. The so-called
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Bonferroni inequalities tell us that if we leave out all terms with k& > m
on the right-hand side of the inclusion—exclusion principle (3.15) then
the error that we make in this way in the calculation of the size of the
union has the same sign as the first omitted term. Written as a formula,
for every even q we have

q n
St 3 N4l < | U A (3.19)
k=1 re({ 2, mh) el i=1
and for every odd g we have
q n
S(=pt Y 4| >[4 (3.20)

k=1 re((2y )il i=1

This means, for instance, that if we didn’t know how many diligent
persons are simultaneously in all the three clubs in Example 3.7.1, we
could still estimate that the total number of members in all the clubs
is at least 32. We do not prove the Bonferroni inequalities here.

Exercises
1. Explain why the formulas (3.15) and (3.16) express the same equality.

2. *Prove the Bonferroni inequalities. If you cannot handle the general
case try at least the cases ¢ =1 and ¢ = 2.

3. (Sieve of Eratosthenes) How many numbers are left in the set
{1,2,...,1000} after all multiples of 2, 3, 5, and 7 are crossed out?

4. How many numbers n < 100 are not divisible by a square of any integer
greater than 17

5. *How many orderings of the letters A, B, C, D, E, F, G, H, I, J, K,
L, M, N, O, P are there such that we cannot obtain any of the words
BAD, DEAF, APE by crossing out some letters? What if we also forbid
LEADING?

6. How many ways are there to arrange 4 Americans, 3 Russians, and 5
Chinese into a queue, in such a way that no nationality forms a single
consecutive block?

3.8 The hatcheck lady & co.

3.8.1 Problem (Hatcheck lady problem). Honorable gentlemen,
n in number, arrive at an assembly, all of them wearing hats, and
they deposit their hats in a cloak-room. Upon their departure, the
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hatcheck lady, maybe quite absent-minded that day, maybe even al-
most blind after many years of service in the poorly lit cloak-room,
issues one hat to each gentleman at random. What is the probability
than none of the gentlemen receives his own hat?

As stated, this is a toy problem, but mathematically it is quite
remarkable, and a few hundred years back, it occupied some of the
best mathematical minds of their times. First we reformulate the
problem using permutations. If we number the gentlemen (our apolo-
gies) 1,2,...,n, and their hats too, then the activity of the hatcheck
lady results in a random permutation 7 of the set {1,2,...,n},
where 7(i) is the number of the hat returned to the ith gentle-
man. The question is, what is the probability of 7 (i) # i holding
for all i € {1,2,...,n}? Call an index i with (i) = i a fized point
of the permutation 7. So we ask: what is the probability that a ran-
domly chosen permutation has no fixed point? Each of the n! possible
permutations is, according to the description of the hatcheck lady’s
method of working, equally probable, and so if we denote by D(n)
the number of permutations with no fixed point® on an n-element
set, the required probability equals D(n)/n!.

Using the inclusion—exclusion principle, we derive a formula for
D(n). We will actually count the “bad” permutations, i.e. those
with at least one fixed point. Let S,, denote the set of all permu-
tations of {1,2,...,n}, and for i = 1,2,...,n, we define A; = {m €
Sp: m(i) = i}. The bad permutations are exactly those in the union
of all the A;.

Here we suggest that the reader contemplate the definition of the
sets A; carefully—it is a frequent source of misunderstandings (their
elements are permutations, not numbers).

In order to apply the inclusion—exclusion principle, we have to
express the size of the k-fold intersections of the sets A;. It is easy
to see that |A;| = (n—1)!, because if 7(i) = i is fixed, we can choose
an arbitrary permutation of the remaining n — 1 numbers. Which
permutations lie in A1 N As? Just those with both 1 and 2 as fixed
points (and the remaining numbers can be permuted arbitrarily), and
so |[A1NAs| = (n—2)!. More generally, for arbitrary i; < iy < --- <y
we have [4;; N A;, N---NA;, | = (n—k)!, and substituting this into
the inclusion—exclusion formula yields

5Such permutations are sometimes called derangements.
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IAj U UA,| = i(—1)k—1<z> an 1”'.

k=1 k=1

We recall that we have computed the number of bad permutations
(with at least one fixed point), and so

| | n! n! o
which can still be rewritten as
1 1 1
D(n) =n! (1 T + o + (—1)”n!> ) (3.21)

As is taught in calculus, the series in parentheses converges to e~ !

for n — oo (where e is the Euler number), and it does so very
fast. So we have the approximate relation D(n) =~ n!/e, and the
probability in the hatcheck lady problem converges to the constant
e~ =0.36787.... This is what also makes the problem remarkable:
the answer almost doesn’t depend on the number of gentlemen!

The Euler function ¢. A function denoted usually by ¢ and named
after Leonhard Euler plays an important role in number theory. For a
natural number n, the value of ¢(n) is defined as the number of natural
numbers m < n that are relatively prime to n; formally

en)={me {1,2,...,n}: ged(n,m)=1}.

Here ged(n, m) denotes the greatest common divisor of n and m; that is,
the largest natural number that divides both n and m. As an example
of application of the inclusion—exclusion principle, we find a formula
which allows us to calculate ¢(n) quickly provided that we know the
factorization of n into prime factors.

The simplest case is when n = p is a prime. Then every m < p is
relatively prime to p, and so p(p) =p — 1.

The next step towards the general solution is the case when n = p
(a € N) is a prime power. Then the numbers not relatively prime to
p® are multiples of p, i.e. p,2p,3p,...,p* 'p, and there are p®~! such
multiples not exceeding p* (in general, if d is an any divisor of some
number n, then the number of multiples of d not exceeding n is n/d).
Hence, there are p(p®) = p* — p®~! = p®(1 — 1/p) remaining numbers
that are relatively prime to p®.

An arbitrary n can be written in the form

(0%

o a1,Q2 o
n=p; Py ...p.",

where p1, pa, ..., p- are distinct primes and a; € N. The “bad” m < n,
i.e. those not contributing to ¢(n), are all multiples of some of the
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primes p;. Let us denote by A; = {m € {1,2,...,n}: p;m} the set
of all multiples of p;. We have p(n) =n —|A; U A2 U---U A,|. The
inclusion—exclusion principle commands that we find the sizes of the
intersections of the sets A;. For example, the intersection A; N Ay con-
tains the numbers divisible by both p; and ps, which are exactly the
multiples of p1ps, and hence |A; N As| = n/(p1p2). The same argument

gives
n
|[A;, N A, N NA, | = ————.
PiyDiy - - - Piy,
Let us look at the particular cases r = 2 and r = 3 first. For n = p{"* p5?
we have

@(n) =n—|A1 U As| =n — |Ar] — |Ag] + |A1 N Ay

n n n 1 1
=n—-——-—+ =n|{l—-— 1-—.
b1 P2 P1P2 P1 P2
Similarly, for n = p{'p32p5® we get

n n n n n n n n n
b1 P2 P3  pipP2  pPiP3  P2P3  P1P2pP3

(25

This may raise a suspicion concerning the general formula.

3.8.2 Theorem. Forn = p{*p5?...por, we have

w(n):n<1_pll> (1_;2)...(1_;). (3.22)

Proof. For an arbitrary r, the inclusion—exclusion principle (we use,
to our advantage, the sho