

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
Building Embedded Linux Systems

By Karim Yaghmour

Publisher: O'Reilly
Pub Date: April 2003

ISBN: 0-596-00222-X
Pages: 416
Slots: 1

Building Embedded Linux Systems shows you how to design and build your own embedded
systems using Linux® as the kernel and freely available open source tools as the framework.
Written by an active member of the open source community, the book is structured to gradually
introduce readers to the intricacies of embedded Linux, with detailed information and examples in
each chapter that culminate in describing how Linux is actually put on an embedded device.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
Building Embedded Linux Systems

By Karim Yaghmour

Publisher: O'Reilly
Pub Date: April 2003

ISBN: 0-596-00222-X
Pages: 416
Slots: 1

 Copyright

 Dedication

 Preface

 Audience of This Book

 Scope and Background Information

 Organization of the Material

 Hardware Used in This Book

 Software Versions

 Book Web Site

 Typographical Conventions

 Contact Information

 Acknowledgments

 Chapter 1. Introduction

 Section 1.1. Definitions

 Section 1.2. Real Life and Embedded Linux Systems

 Section 1.3. Example Multicomponent System

 Section 1.4. Design and Implementation Methodology

 Chapter 2. Basic Concepts

 Section 2.1. Types of Hosts

 Section 2.2. Types of Host/Target Development Setups

 Section 2.3. Types of Host/Target Debug Setups

 Section 2.4. Generic Architecture of an Embedded Linux System

 Section 2.5. System Startup

 Section 2.6. Types of Boot Configurations

 Section 2.7. System Memory Layout

 Chapter 3. Hardware Support

 Section 3.1. Processor Architectures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.2. Buses and Interfaces

 Section 3.3. I/O

 Section 3.4. Storage

 Section 3.5. General Purpose Networking

 Section 3.6. Industrial Grade Networking

 Section 3.7. System Monitoring

 Chapter 4. Development Tools

 Section 4.1. Using a Practical Project Workspace

 Section 4.2. GNU Cross-Platform Development Toolchain

 Section 4.3. C Library Alternatives

 Section 4.4. Java

 Section 4.5. Perl

 Section 4.6. Python

 Section 4.7. Ada

 Section 4.8. Other Programming Languages

 Section 4.9. Integrated Development Environments

 Section 4.10. Terminal Emulators

 Chapter 5. Kernel Considerations

 Section 5.1. Selecting a Kernel

 Section 5.2. Configuring the Kernel

 Section 5.3. Compiling the Kernel

 Section 5.4. Installing the Kernel

 Section 5.5. In the Field

 Chapter 6. Root Filesystem Content

 Section 6.1. Basic Root Filesystem Structure

 Section 6.2. Libraries

 Section 6.3. Kernel Modules

 Section 6.4. Kernel Images

 Section 6.5. Device Files

 Section 6.6. Main System Applications

 Section 6.7. Custom Applications

 Section 6.8. System Initialization

 Chapter 7. Storage Device Manipulation

 Section 7.1. MTD-Supported Devices

 Section 7.2. Disk Devices

 Section 7.3. To Swap or Not to Swap

 Chapter 8. Root Filesystem Setup

 Section 8.1. Selecting a Filesystem

 Section 8.2. Using an NFS-Mounted Root Filesystem to Write a Filesystem Image to Flash

 Section 8.3. CRAMFS

 Section 8.4. JFFS2

 Section 8.5. Disk Filesystem over NFTL

 Section 8.6. Disk Filesystem over RAM Disk

 Section 8.7. Mounting Directories on TMPFS

 Section 8.8. Live Updates

 Chapter 9. Setting Up the Bootloader

 Section 9.1. Bootloaders Galore

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 9.2. Server Setup for Network Boot

 Section 9.3. Using LILO with Disk and CompactFlash Devices

 Section 9.4. Using GRUB with DiskOnChip Devices

 Section 9.5. U-Boot

 Chapter 10. Setting Up Networking Services

 Section 10.1. The Internet Super-Server

 Section 10.2. Remote Administration with SNMP

 Section 10.3. Network Login Through Telnet

 Section 10.4. Secure Communication with SSH

 Section 10.5. Serving Web Content Through HTTP

 Section 10.6. Dynamic Configuration Through DHCP

 Chapter 11. Debugging Tools

 Section 11.1. Debugging Applications with gdb

 Section 11.2. Tracing

 Section 11.3. Performance Analysis

 Section 11.4. Memory Debugging

 Section 11.5. A Word on Hardware Tools

 Appendix A. Worksheet

 Section A.1. Project Identification

 Section A.2. Hardware Summary

 Section A.3. Development Tools

 Section A.4. Kernel

 Section A.5. Root filesystem

 Section A.6. Storage Device Organization

 Section A.7. Bootloader Configuration and Use

 Section A.8. Networking services

 Section A.9. Custom Project Software

 Section A.10. Debug Notes

 Section A.11. Additional Notes

 Section A.12. Embedded Linux Systems Worksheet

 Appendix B. Resources

 Section B.1. Online

 Section B.2. Books

 Section B.3. Publications

 Section B.4. Organizations

 Section B.5. Linux and Open-Source-Oriented Hardware Projects

 Appendix C. Important Licenses and Notices

 Section C.1. Exclusion of User-Space Applications from Kernel's GPL

 Section C.2. Notices on Binary Kernel Modules

 Section C.3. Legal Clarifications About the Kernel by Linus Torvalds

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. The association between the image of a windmill and the topic of
embedded Linux systems is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

To Mom, whose courage and determination are an everyday guiding light, and to
Dad, whose foresight and engineering spirit are an everlasting source of inspiration.

—Karim Yaghmour

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
When I first suggested using Linux in an embedded system back in 1997 while working for a
hardware manufacturer, my suggestion was met with a certain degree of skepticism and surprise.
Today, the use of Linux in embedded systems is no laughing matter. Indeed, many industry giants
and government agencies are increasingly relying on Linux for their embedded software needs.

The widespread interest and enthusiasm generated by Linux's successful use in a number of
embedded applications has led to the creation of a plethora of articles, web sites, companies, and
documents all pertaining to "embedded Linux." Yet, beyond the flashy announcements, the
magazine articles, and the hundreds of projects and products that claim to ease Linux's use in
embedded systems, professional developers seeking a useful guide are still looking for answers
to fundamental questions regarding the basic methods and techniques required to build
embedded systems based on the Linux kernel.

Much of the documentation currently available relies heavily on the use of a number of
prepackaged, ready-to-use cross-platform development tools and target binaries. Yet other
documents cover only one very precise aspect of running Linux on an embedded target.

This book is a radical departure from the existing documentation in that it makes no assumptions
as to the tools you have at hand or the scope of your project, other than your desire to use Linux.
All that is required for this book is an Internet connection to download the necessary packages,
browse specific online documentation, and benefit from other developers' experiences, as well as
share your own, through project mailing lists. You still need a development host and
documentation regarding your target's hardware, but the explanations I outline do not require the
purchasing of any product or service from any vendor.

Besides giving the greatest degree of freedom and control over your design, this approach is
closest to that followed by the pioneers who have spearheaded the way for Linux's use in
embedded systems. In essence, these pioneers have pulled on Linux to fit their applications by
stripping it down and customizing it to their purposes. Linux's penetration of the embedded world
contrasts, therefore, with the approach followed by many software vendors to push their products
into new fields of applications. As an embedded system developer, you are likely to find Linux
much easier to pull towards your design than to adapt the products being pushed by vendors to
that same design.

This book's approach is to allow you to pull Linux towards your design by providing all the details
and discussing many of the corner cases encountered in using Linux in embedded systems.
Though it is not possible to claim that all embedded designs are covered by this book, the
resources provided here allow you to easily obtain the rest of the information required for you to
customize and use Linux in your embedded system.

In writing this book, my intent has been to bring the embedded system developers who use open
source and free software in their designs closer to the developers who create and maintain these
open source and free software packages. Though a lot of mainstream embedded system
developers, many of whom are high-caliber programmers, rely on third-party offerings for their
embedded Linux needs, there is a clear opportunity for them to contribute to the open source and
free software projects on which they rely. Ultimately, this sort of dynamic will ensure that Linux
continues to be the best operating system choice for embedded systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Audience of This Book

This book is intended first and foremost for the experienced embedded system designer who
wishes to use Linux in a future or current project. Such a reader is expected to be familiar with all
the techniques and technologies used in developing embedded systems, such as cross-
compiling, BDM or JTAG debugging, and the implications of dealing with immature or incomplete
hardware. If you are such a reader, you may want to skip some of the background material about
embedded system development presented early in some sections. There are, however, many
early sections (particularly in Chapter 2) that you will need to read, because they cover the special
implications of using the Linux kernel in an embedded system.

This book is also intended for the beginning embedded system developer who would like to
become familiar with the tools and techniques used in developing embedded systems based on
Linux. This book is not an introduction to embedded systems, however, and you may need to
research some of the issues discussed here in an introductory text book. Appendix B contains a
list of books and other resources to help you.

If you are a power user or a system administrator already familiar with Linux, this book should
help you produce highly customized Linux installations. If you find that distributions install too
many packages for your liking, for example, and would like to build your own custom distribution
from scratch, many parts of this book should come in handy, particularly Chapter 6.

Finally, this book should be helpful to a programmer or a Linux enthusiast who wants to
understand how Linux systems are built and operated. Though the material in this book does not
cover how general-purpose distributions are created, many of the techniques covered here apply,
to a certain extent, as much to general purpose distributions as they do to creating customized
embedded Linux installations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scope and Background Information

To make the best of Linux's capabilities in embedded systems, you need background in all the
following topics, which in many books are treated distinctly:

Embedded systems

You need to be familiar with the development, programming, and debugging of embedded
systems in general, from both the software and hardware perspectives.

Unix system administration

You need to be able to tend to various system administration tasks such as hardware
configuration, system setup, maintenance, and using shell scripts to automate tasks.

Linux device drivers

You need to know how to develop and debug various kinds of Linux device drivers.

Linux kernel internals

You need to understand as much as possible how the kernel operates.

GNU software development tools

You need to be able to make efficient use of the GNU tools. This includes understanding
many of the options and utilities often considered to be "arcane."

In this book, I assume that you are familiar with at least the basic concepts of each topic. On the
other hand, you don't need to know how to create Linux device drivers to read this book, for
example, or know everything about embedded system development. As you read through this
book and progress in your use of Linux in embedded systems, you are likely to feel the need to
obtain more information regarding certain aspects of Linux's use. In addition to the references to
other books scattered through this book, take a look at Appendix B for a list of books you may find
useful for getting more information regarding the topics listed above.

Though this book discusses only the use of Linux in embedded systems, part of this discussion
can certainly be useful to developers who intend to use one of the BSD variants in their
embedded system. Many of the explanations included here will, however, need to be
reinterpreted in light of the differences between BSD and Linux.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Organization of the Material

There are three major parts to this book. The first part is composed of Chapter 1 through Chapter
3. These chapters cover the preliminary background required for building any sort of embedded
Linux system. Though they describe no hands-on procedures, they are essential to understand
many aspects of building embedded Linux systems.

The second part spans Chapter 4 through Chapter 9. These important chapters lay out the
essential steps involved in building any embedded Linux system. Regardless of your systems'
purpose or functionality, these chapters are required reading.

The final part of the book is made up of Chapter 10 and Chapter 11, and covers material that,
though very important, is not essential to building embedded Linux systems.

Chapter 1 gives an in-depth introduction to the world of embedded Linux. It lays out basic
definitions and then introduces real-life issues about embedded Linux systems, including a
discussion of open source and free software licenses from the embedded perspective. The
chapter then introduces the example system used in other parts of this book and the
implementation method used throughout the book.

Chapter 2 outlines the basic concepts that are common to building all embedded Linux systems.

Chapter 3 provides a thorough review of the embedded hardware supported by Linux, and gives
links to web sites where the drivers and subsystems implementing this support can be found. This
chapter discusses processor architectures, buses and interfaces, I/O, storage, general purpose
networking, industrial grade networking, and system monitoring.

Chapter 4 covers the installation and use of the various development tools used in building
embedded Linux systems. This includes, most notably, how to build and install the GNU toolchain
components from scratch. It also includes sections discussing Java, Perl, and Python, along with
a section about the various terminal emulators that can be used to interact with an embedded
target.

Chapter 5 discusses the selection, configuration, cross-compiling, installation, and use of the
Linux kernel in an embedded system.

Chapter 6 explains how to build a root filesystem using the components introduced earlier in the
book, including the installation of the C library and the creation of the appropriate /dev entries.
More importantly, this chapter covers the installation and use of BusyBox, TinyLogin, Embutils,
and System V init.

Chapter 7 covers the intricacies of manipulating and setting up storage devices for embedded
Linux systems. The chapter's emphasis is on solid-state storage devices, such as native flash and
DiskOnChip devices, and the MTD subsystem.

Chapter 8 explains how to set up the root filesystem created in Chapter 6 for the embedded
system's storage device. This includes the creation of JFFS2 and CRAMFS filesystem images,
and the use of disk-style filesystems over NFTL.

Chapter 9 discusses the various bootloaders available for use in each embedded Linux
architecture. Special emphasis is put on the use of GRUB with DiskOnChip devices, and U-Boot.
Network booting using BOOTP/DHCP, TFTP, and NFS is also covered.

Chapter 10 focuses on the configuration, installation, and use of software packages that offer
networking services, such as SNMP, SSH, and HTTP.

Chapter 11 covers the main debugging issues encountered in developing software for embedded
Linux systems. This includes the use of gdb in a cross-platform development environment,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Linux systems. This includes the use of gdb in a cross-platform development environment,
tracing, performance analysis, and memory debugging.

Appendix A introduces a worksheet that can be used in conjunction with this book to provide a
complete specification of an embedded Linux system.

Appendix B provides resources you may find useful when building embedded Linux systems.

Appendix C includes important postings by Linus Torvalds and other kernel developers regarding
the kernel's licensing and the issue of non-GPL binary kernel modules.

Though Chapter 7 through Chapter 9 are independent, note that their content is highly
interrelated. Setting up the target's storage device as discussed in Chapter 7, for example,
requires a basic knowledge about the target filesystem organization as discussed in Chapter 8,
and vice versa. So, too, does setting up storage devices require a basic knowledge of bootloader
set up and operation as discussed in Chapter 9, and vice versa. I therefore recommend that you
read Chapter 7 through Chapter 9 in one breath a first time before carrying out the instructions of
any of these chapters. When setting up your target thereafter, you will nevertheless follow the
same sequence of operations outlined in these chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hardware Used in This Book

As we'll see in Chapter 3, Linux supports a very wide range of hardware. For this book, I've used
a few embedded systems to test the various procedures. Table P-1 contains the complete list of
systems I used.

Some of these systems, such as the iPAQ or the Dreamcast, are commercial products available
in the mainstream market. I included these intentionally, to demonstrate that any willing reader
can find the materials to support learning how to build embedded Linux systems. Sega Dreamcast
consoles, for instance, are available for less than $50 on eBay. Though they boot using a
specially formatted CD-ROM, they are one of the cheapest ways for learning cross-platform
development with Linux. You can, of course, still use an old x86 PC for experimenting, but you
are likely to miss much of the fun given the resemblance between such systems and most
development hosts.

Table P-1. Target systems used throughout this book

Architecture System type Processor clock
speed

RAM
size

Storage size and
type

PPC TQ components
TQM860L 80 MHz 16 MB 8 MB flash

SuperH Sega Dreamcast 200 MHz 16 MB CD-ROM (see text)

ARM Compaq iPAQ 3600 206 MHz 32 MB 16 MB flash

x86 Kontron Teknor VIPer
806 100 MHz 40 MB 32 MB

CompactFlash

x86 COTS[1] Pentium 100 MHz 8 MB 32 MB DiskOnChip

[1] Commercial Off-The-Shelf.

Apart from running on a slew of embedded systems, Linux also runs on a wide variety of
workstations. Throughout this book, I used the hosts presented in Table P-2. Though the Apple
PowerBook served as my main development host for the book, I had to use an x86 host for some
aspects of building x86-based embedded targets, because some software components cannot be
cross-compiled for an x86 target on a non-x86 host. Both GRUB and LILO, for example, have to
be built on an x86 host. I can report, nevertheless, that I wrote this entire book on a PowerBook
host running the Yellow Dog Linux distribution. This is yet another sign that Linux changes the
computing world's landscape by providing one standard operating environment across a very
fragmented world of hardware.

Table P-2. Host systems used throughout this book
Architecture System type Processor clock speed RAM size Storage size

PPC Apple PowerBook 400 MHz 128 MB > GB hard disk

x86 Pentium II 350 MHz 128 MB > GB hard disk

To illustrate the range of target architectures on which Linux can be used, I varied the target
hardware I used in the examples between chapters. Table P-3 lists the target architecture used in
each chapter. Though each chapter is based on a different architecture, the commands given in
each chapter apply readily to other architectures as well. If, for instance, an example in a chapter
relies on the arm-linux-gcc command, which is the gcc compiler for ARM, the same example
would work for a PPC target by using the powerpc-linux-gcc command instead. Whenever more
than one architecture is listed for a chapter, the main architecture discussed is the first one listed.
The example commands in Chapter 5, for instance, are mainly centered around the ARM, but

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example commands in Chapter 5, for instance, are mainly centered around the ARM, but
there are also a few references to PPC commands.

Though Table P-3 lists the target being used in example for each chapter, it provides no
indication as to the host being used, because it makes no difference to the discussion. Instead,
unless specific instructions are given to the contrary, the host's architecture is always different
from the target's. In Chapter 4, for example, I used a PPC host to build tools for an x86 target.
The same instructions could, nevertheless, be carried out on a SPARC or an S/390 with little or
no modification. Note that most of the content of the early chapters is architecture independent,
so there is no need to provide any architecture-specific commands.

Table P-3. Main target architectures used for commands examples
Chapter Target architectures

Chapter 1 N/A

Chapter 2 N/A

Chapter 3 N/A

Chapter 4 x86

Chapter 5 ARM, PPC

Chapter 6 PPC

Chapter 7 x86, PPC

Chapter 8 ARM

Chapter 9 PPC, x86

Chapter 10 ARM

Chapter 11 PPC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Software Versions

The central software on which an embedded Linux system depends, of course, is the Linux
kernel. This book concentrates on Version 2.4 of the Linux kernel, and on Release 2.4.18 in
particular. Changes within 2.4 will probably have only a benign effect on the information in the
book. That is, new releases will probably support more hardware than Chapter 3 lists. But the
essential tasks described in this book are unlikely to change in 2.4. As the kernel evolves past
Version 2.4, however, some of the steps described in this book are likely to require updating.

In addition, this book discusses the configuration, installation, and use of over 40 different open
source and free software packages. Each package is maintained independently and is developed
at a different pace. Because these packages change over time, it is likely that the package
versions covered in this book may be outdated by the time you read it. In an effort to minimize the
effect of software updates on the text, I have kept the text as version independent as possible.
The overall structure of the book and the internal structure of each chapter, for example, are
unlikely to vary regardless of the various software changes. Also, many packages covered by this
book have been around for quite some time, so they are unlikely to change in any substantial
way. For instance, the commands to install, set up, and use the different components of the GNU
development toolchain, which is used throughout this book, have been relatively constant for a
number of years, and are unlikely to change in any substantial way in the future. This statement
applies equally to most other software packages discussed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Book Web Site

Given that many of the software packages discussed in this book are in continuous development
that may cause some of the explanations included here to change, I set up a web site for
providing updates and links related to this book:

http://www.embeddedtux.org/

The worksheet presented in Appendix A, for example, is available for download in both PDF and
OpenOffice formats from the book's web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Typographical Conventions

The following is a list of typographical conventions used in this book:

Constant width

Is used to show the contents of code files or the output from commands, and to indicate
source code keywords that appear in code.

Constant width bold
Is used to indicate user input.

Italic

Is used for file and directory names, program and command names, command-line options,
URLs, and for emphasizing new terms.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contact Information

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/belinuxsys/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments

E quindi uscimmo a riveder le stelle.[2] It is with these words that Dante ends Inferno, the first part
of his Devine Comedy. Though it would be misleading to suggest that writing this book wasn't
enjoyable, Dante's narrative clearly expresses the feeling of finishing a first iteration of the book
you now hold in your hands. In particular, I have to admit that it has been a challenging task to
pick up the bits and pieces of information available on the use of Linux in embedded systems, to
complete this information in as much as possible, and put everything back together in a single
straightforward manuscript that provides a practical method for building embedded Linux systems.
Fortunately, I was aided in this task by very competent and willing people.

[2] "And from there we emerged to see the stars once more."

First and foremost, I would like to thank Andy Oram, my editor. Much like Virgil assisted Dante in
his venture, Andy shepherded me throughout the various stages of writing this book. Among
many other things, he patiently corrected my non-idiomatic phrases, made sure that my text
actually conveyed the meaning I meant for it to convey, and relentlessly pointed out the sections
where I wasn't providing enough detail. The text you are about to read is all the much better, as it
has profited from Andy's input. By the same token, I would like to thank Ellen Siever with whom I
initially started working on this book. Though our collaboration ended earlier than I wished it had,
many of the ideas that have made their way into this final version of the book have profited from
her constructive feedback.

I have been extremely fortunate to have an outstanding team of reviewers go over this book, and
am very greatful for the many hours they poured into reading, correcting, and pointing out
problems with various aspects of this book. The review team was made up of Erik Andersen,
Wolfgang Denk, Bill Gatliff, Russell King, Paul Kinzelman, Alessandro Rubini, David Schleef, and
David Woodhouse. I'd like to especially thank Alessandro for his dogged pursuit of perfection. Any
remaining errors you may find in the following pages are without a doubt all mine.

Writing about the use of Linux in embedded systems requires having access to a slew of different
hardware. Given that embedded hardware is often expensive, I would like to thank all the
companies and individuals who have stepped forward to provide me with the appropriate
equipment. In particular, I would like to thank Stéphane Martin of Kontron for providing a Teknor
VIPer 806 board, Wolfgang Denk of DENX Software Engineering for providing a TQ components
TQM860L PPC board, and Steve Papacharalambous and Stuart Hughes of Zee2 for providing a
uCdimm system.

I have found much of the incentive and thrust for writing this book from being a very satisfied
open source and free software user and contributor who has profited time and again from the
knowledge and the work produced by other members of this community. For this, I have many
people to thank. Primarily, I'd like to thank Michel Dagenais for his trust, his guidance, and for
giving me the chance to freely explore uncharted terrain. My work on developing the Linux Trace
Toolkit, as part of my masters degree with Michel, got me more and more involved in the open
source and free software community. As part of this involvement, I have met a lot of remarkable
individuals whose insight and help I greatly appreciate. Lots of thanks to Jacques Gélinas,
Richard Stallman, Jim Norton, Steve Papacharalambous, Stuart Hughes, Paolo Mantegazza,
Pierre Cloutier, David Schleef, Wolfgang Denk, Philippe Gerum, Loic Dachary, Daniel Phillips,
and Alessandro Rubini.

Last, but certainly not least, I owe a debt of gratitude to Sonia for her exceptional patience as I
spent countless hours testing, writing, testing some more, and writing even more. Her support and
care has made this endeavour all the more easy to carry out. La main invisible qui a écrit les
espaces entre les lignes est la sienne et je lui en suis profondément reconnaissant.[3]

[3] "The invisible hand that wrote the spaces between each line is hers, and I am profoundly grateful to her for this."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Introduction
Since its first public release in 1991, Linux has been put to ever wider uses. Initially confined to a
loosely tied group of developers and enthusiasts on the Internet, it eventually matured into a solid
Unix-like operating system for workstations, servers, and clusters. Its growth and popularity
accelerated the work started by the Free Software Foundation (FSF) and fueled what would later
be known as the open source movement. All the while, it attracted media and business interest,
which contributed to establishing Linux's presence as a legitimate and viable choice for an
operating system.

Yet, oddly enough, it is through an often ignored segment of computerized devices that Linux is
poised to become the preferred operating system. That segment is embedded systems, and the
bulk of the computer systems found in our modern day lives belong to it. Embedded systems are
everywhere in our lives, from mobile phones to medical equipment, including air navigation
systems, automated bank tellers, MP3 players, printers, cars, and a slew of other devices about
which we are often unaware. Every time you look around and can identify a device as containing
a microprocessor, you've most likely found another embedded system.

If you are reading this book, you probably have a basic idea why one would want to run an
embedded system using Linux. Whether because of its flexibility, its robustness, its price tag, the
community developing it, or the large number of vendors supporting it, there are many reasons for
choosing to build an embedded system with Linux and many ways to carry out the task. This
chapter provides the background for the material presented in the rest of the book by discussing
definitions, real-life issues, generic embedded Linux systems architecture, examples, and
methodology.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 Definitions

The words "Linux," "embedded Linux," and "real-time Linux" are often used with little reference to
what is being designated. Sometimes, the designations may mean something very precise. Other
times, a broad range or category of applications is meant. Let us look at these terms and what
they mean in different situations.

1.1.1 What Is Linux?

Linux is interchangeably used in reference to the Linux kernel, a Linux system, or a Linux
distribution. The broadness of the term plays in favor of the adoption of Linux, in the large sense,
when presented to a nontechnical crowd, but can be bothersome when providing technical
explanations. If, for instance, I say: "Linux provides TCP/IP networking." Do I mean the TCP/IP
stack in the kernel or the TCP/IP utilities provided in a Linux distribution that are also part of an
installed Linux system, or both? This vagueness actually became ammunition for the proponents
of the "GNU/Linux" moniker, who pointed out that Linux was the kernel, but that the system was
mainly built on GNU software.

Strictly speaking, Linux refers to the kernel maintained by Linus Torvalds and distributed under
the same name through the main repository and various mirror sites. This codebase includes only
the kernel and no utilities whatsoever. The kernel provides the core system facilities. It may not be
the first software to run on the system, as a bootloader may have preceded it, but once it is
running, it is never swapped out or removed from control until the system is shut down. In effect, it
controls all hardware and provides higher-level abstractions such as processes, sockets, and files
to the different software running on the system.

As the kernel is constantly updated, a numbering scheme is used to identify a certain release.
This numbering scheme uses three numbers separated by dots to identify the releases. The first
two numbers designate the version, and the third designates the release. Linux 2.4.20, for
instance, is version number 2.4, release number 20. Odd version numbers, such as 2.5,
designate development kernels, while even version numbers, such as 2.4, designate stable
kernels. Usually, you should use a kernel from the latest stable series for your embedded system.

This is the simple explanation. The truth is that far from the "official" releases, there are many
modified Linux kernels that you may find all over the Internet that carry additional version
information. 2.4.18-rmk3-hh24, for instance, is a modified kernel distributed by the Familiar
project. It is based on 2.4.18, but contains an extra "-rmk3-hh24" version number controlled by the
Familiar development team. These extra version numbers, and the kernel itself, will be discussed
in more detail in Chapter 5.

Linux can also be used to designate a hardware system running the Linux kernel and various
utilities running on the kernel. If a friend mentions that his development team is using Linux in
their latest product, he probably means more than the kernel. A Linux system certainly includes
the kernel, but most likely includes a number of other software components that are usually run
with the Linux kernel. Often, these will be composed of a subset of the GNU software such as the
C library and binary utilities. It may also include the X window system or a real-time addition such
as RTAI.

A Linux system may be custom built, as you'll see later, or can be based on an already available
distribution. Your friend's development team probably custom built their own system. Conversely,
when a user says she runs Linux on the desktop, she most likely means that she installed one of
the various distributions, such as Red Hat or Debian. The user's Linux system is as much a Linux
system as that of your friend's, but apart from the kernel, their systems most likely have very
different purposes, are built from very different software packages, and run very different
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, Linux may also designate a Linux distribution. Red Hat, Mandrake, SuSE, Debian,
Slackware, Caldera, MontaVista, Embedix, BlueCat, PeeWeeLinux, and others are all Linux
distributions. They may vary in purpose, size, and price, but they share a common purpose: to
provide the user with a shrinkwrapped set of files and an installation procedure to get the kernel
and various overlaid software installed on a certain type of hardware for a certain purpose. Most
of us are familiar with Linux distributions through CD-ROMs, but there are distributions that are no
more than a set of files you retrieve from a web site, untar, and install according to the
documentation. The difference between mainstream, user-oriented distributions and these
distributions is the automated installation procedure in the mainstream ones.

Starting with the next chapter and in the rest of this book, I will avoid referring to the word "Linux"
on its own. Instead, I will refer directly to the object of discussion. Rather than talking about the
"Linux kernel," I will refer to the "kernel." Rather than talking about the "Linux system," I will refer
to the "system." Rather than talking about a "Linux distribution," I will refer to a "distribution." In all
these circumstances, "Linux" is implied but avoided to eliminate any possible confusion. I will
continue, however, to use the term "Linux," where appropriate, to designate the broad range of
software and resources surrounding the kernel.

1.1.2 What Is Embedded Linux?

Again, we could start with the three designations Linux suggests: a kernel, a system, and a
distribution. Yet, we would have to take the kernel off the list right away, as there is no such thing
as an embedded version of the kernel distributed by Linus. This doesn't mean the kernel can't be
embedded. It only means you do not need a special kernel to create an embedded system. Often,
you can use one of the official kernel releases to build your system. Sometimes, you may want to
use a modified kernel distributed by a third party, one that has been specifically tailored for a
special hardware configuration or for support of a certain type of application. The kernels provided
with the various embedded distributions, for example, often include some optimizations not found
in the main kernel tree and are patched for support for some debugging tools such as kernel
debuggers. Mainly, though, a kernel used in an embedded system differs from a kernel used on a
workstation or a server by its build configuration. Chapter 5 covers the build process.

An embedded Linux system simply designates an embedded system based on the Linux kernel
and does not imply the use of any specific library or user tools with this kernel.

An embedded Linux distribution may include: a development framework for embedded linux
systems, various software applications tailored for usage in an embedded system, or both.

Development framework distributions include various development tools that facilitate the
development of embedded systems. This may include special source browsers, cross-compilers,
debuggers, project management software, boot image builders, and so on. These distributions
are meant to be installed on the development host.

Tailored embedded distributions provide a set of applications to be used within the target
embedded system. This might include special libraries, execu, and configuration files to be used
on the target. A method may also be provided to simplify the generation of root filesystems for the
target system.

Because this book discusses embedded Linux systems, there is no need to keep repeating
"embedded Linux" in every name. Hence, I will refer to the host used for developing the
embedded Linux system as the "host system," or "host," for short. The target, which will be the
embedded Linux system will be referred to as the "target system," or "target," for short.
Distributions providing development frameworks will be referred to as "development
distributions."[1] Distributions providing tailored software packages will be referred to as "target
distributions."

[1] It would be tempting to call these "host distributions," but as you'll see later, some developers choose to develop
directly on their target, hence the preference for "development distributions."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1.3 What Is Real-Time Linux?

Initially, real-time Linux designated the RTLinux project released in 1996 by Michael Barabanov
under Victor Yodaiken's supervision. The goal of the project was to provide deterministic
response times under a Linux environment.

Nonetheless, today there are many more projects that provide one form or another of real-time
responsiveness under Linux. RTAI, Kurt, and Linux/RK all provide real-time performance under
Linux. Some projects' enhancements are obtained by inserting a secondary kernel under the
Linux kernel. Others enhance the Linux kernel's response times by means of a patch.

The adjective "real-time" is used in conjunction with Linux to describe a number of different things.
Mainly, it is used to say that the system or one of its components is supposed to have fixed
response times, but if you use a strict definition of "real-time," you may find that what is being
offered isn't necessarily "real-time." I will discuss "real-time" issues and further define the meaning
of this adjective in Section 1.2.1.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 Real Life and Embedded Linux Systems

What types of embedded systems are built with Linux? Why do people choose Linux? What
issues are specific to the use of Linux in embedded systems? How many people actually use
Linux in their embedded systems? How do they use it? All these questions and many more come
to mind when pondering the use of Linux in an embedded system. Finding satisfactory answers to
the fundamental questions is an important part of building the system. This isn't just a general
statement. These answers will help you convince management, assist you in marketing your
product, and most of all, enable you to evaluate whether your initial expectations have been met.

1.2.1 Types of Embedded Linux Systems

We could use the traditional segments of embedded systems such as aerospace, automotive
systems, consumer electronics, telecom, and so on to outline the types of embedded Linux
systems, but this would provide no additional information in regard to the systems being
designated, because embedded Linux systems may be structured alike regardless of the market
segment. Rather, let's classify embedded systems by criteria that will provide actual information
about the structure of the system: size, time constraints, networkability, and degree of user
interaction.

1.2.1.1 Size

The size of an embedded linux system is determined by a number of different factors. First, there
is physical size. Some systems can be fairly large, like the ones built out of clusters, while others
are fairly small, like the Linux watch built by IBM. Most importantly, there are the size attributes of
the various electronic components of the system, such as the speed of the CPU, the size of the
RAM, and the size of the permanent storage.

In terms of size, I will use three broad categories of systems: small, medium, and large. Small
systems are characterized by a low-powered CPU with a minimum of 2 MB of ROM and 4 MB of
RAM. This isn't to say Linux won't run in smaller memory spaces, but it will take you some effort to
do so. If you plan to run Linux in a smaller space than this, think about starting your work from
one of the various distributions that put Linux on a single floppy. If you come from an embedded
systems background, you may find that you could do much more using something other than
Linux in such a small system. Remember to factor in the speed at which you could deploy Linux,
though.

Medium-sized systems are characterized by a medium-powered CPU with around 32 MB or ROM
and 64 MB of RAM. Most consumer-oriented devices built with Linux belong to this category. This
includes various PDAs, MP3 players, entertainment systems, and network appliances. Some of
these devices may include secondary storage in the form of solid-state drives, CompactFlash, or
even conventional hard drives. These types of devices have sufficient horsepower and storage to
handle a variety of small tasks or can serve a single purpose that requires a lot of resources.

Large systems are characterized by a powerful CPU or collection of CPUs combined with large
amounts of RAM and permanent storage. Usually, these systems are used in environments that
require large amounts of calculations to carry out certain tasks. Large telecom switches and flight
simulators are prime examples of such systems. Typically, such systems are not bound by costs
or resources. Their design requirements are primarily based on functionality while cost, size, and
complexity remain secondary issues.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In case you were wondering, Linux doesn't run on any processor below 32 bits. This rules out
quite a number of processors traditionally used in embedded systems. Actually, according to
traditional embedded system standards, all systems running Linux would be classified as large
systems. This is very true when compared to an 8051 with 4K of memory. Keep in mind, though,
current trends: processors are getting faster, RAM is getting cheaper and larger, systems are as
integrated as ever, and prices are going down. With growing processing demands and increasing
system requirements, the types of systems Linux runs on are quickly becoming the standard. In
some cases, however, it remains that an 8-bit microcontroller might be the best choice.

16-Bit Linux?
Strictly speaking, the above statement regarding Linux's inability to run on any
processor below 32 bits is not entirely true. There have been Linux ports to a number
of odd processors. The Embeddable Linux Kernel Subset (ELKS) project found at
http://elks.sourceforge.net/, for example, aims at running Linux on 16-bit processors
such as the Intel 8086 and 286. Nevertheless, it remains that the vast majority of
development done on the kernel and on user-space applications is 32-bit-centric.
Hence, if you choose to use Linux on a processor lower than 32 bits, you will be on
your own.

1.2.1.2 Time constraints

There are two types of time constraints for embedded systems: stringent and mild. Stringent time
constraints require that the system react in a predefined time frame. Otherwise, catastrophic
events happen. Take for instance a factory where workers have to handle materials being cut by
large equipment. As a safety precaution, optical detectors are placed around the blades to detect
the presence of the specially colored gloves used by the workers. When the system is alerted that
a worker's hand is in danger, it must stop the blades immediately. It can't wait for some file to get
swapped or for some task to relinquish the CPU. This system has stringent time requirements; it
is a hard real-time system.

Streaming audio systems would also qualify as having stringent requirements, because any
transient lagging is usually perceived as bothersome by the users. Yet, this later example would
mostly qualify as a soft real-time system because the failure of the application to perform in a
timely fashion all the time isn't catastrophic as it would be for a hard real-time system. In other
words, although infrequent failures will be tolerated, the system should be designed to have
stringent time requirements.

Mild time constraints vary a lot in requirements, but they generally apply to systems where timely
responsiveness isn't necessarily critical. If an automated teller takes 10 more seconds to
complete a transaction, it's generally not problematic. The same is true for a PDA that takes a
certain number of seconds to start an application. The extra time may make the system seem
slow, but it won't affect the end result.

1.2.1.3 Networkability

Networkability defines whether a system can be connected to a network. Nowadays, we can
expect everything to be accessible through the network, even the refrigerator. This, in turn, places
special requirements on the systems being built. One factor pushing people to choose Linux as
an embedded OS is its proven networking capabilities. Falling prices and standardization of
networking components are accelerating this trend. Most Linux devices have one form or another
of network capability. You can attach a wireless network card in the Linux distribution built for the
Compaq iPAQ, for instance, simply by inserting the adapter in the PCMCIA jacket. Networking
issues will be discussed in detail in Chapter 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2.1.4 User interaction

The degree of user interaction varies greatly from one system to another. Some systems, such as
PDAs, are centered around user interaction, while others, such as industrial process control
systems, might only have LEDs and buttons for interaction. Some other systems, have no user
interface whatsoever. For example, some components of an autopilot system in a plane might
take care of wing control but have no direct interaction with the human pilots.

1.2.2 Examples

The best way to get an idea of what an embedded Linux system might do is to look at examples
of such systems. Trouble is, if you try to look for example embedded systems whose details are
publicly available on the Internet, you will mostly find consumer devices. Very few examples of
Linux in aerospace, industrial control, telecom, or automotive systems are publicly detailed. Yet, it
isn't as if Linux wasn't used in those types of applications. Rather, in contrast to consumer
devices, the builders of such devices see little advantage in advertising their designs. For all they
know, they may be providing critical information to competitors who may decide to switch to Linux
to catch up with them. Consumer device builders, on the other hand, leverage the "hype" factor
into promoting their consumer products. And given the different market dynamics between
consumer products and industrial products, they can afford to play to the crowd.

Surprisingly (or maybe not so surprising after all), some of the best examples of Linux in critical
systems are provided in the pages of Linux Journal magazine. Digging back a few years, I was
able to uncover a treasure of non-consumer-oriented embedded applications based on Linux.
This, combined with the consumer devices detailed on the Internet and the statistics we shall see
below, provide a fair image of Linux's capabilities and future as an embedded operating system.
Table 1-1 contains a summary of the example embedded Linux systems discussed below. The
first column is a brief description of the system. The second column details the type of the
embedded system. The next four columns characterize the system based on the criteria outlined
in the previous section.

Table 1-1. Example embedded Linux systems' characteristics

Description Type Size Time
constraints Networkability

Degree of
user

interaction

Accelerator control Industrial
processcontrol Medium Stringent Yes Low

Computer-aided
training system Aerospace Large Stringent No High

Ericsson "blip" Networking Small Mild Yes Very low

SCADA
protocolconverter

Industrial
processcontrol Medium Stringent No Very low

Sharp Zaurus Consumer
electronics Medium Mild Yes Very high

Space vehicle control Aerospace Large Stringent Yes High

1.2.2.1 Accelerator control

The accelerator control system was built at the European Synchrotron Radiation Facility and is
described in issue 66 of Linux Journal. The accelerator equipment is built of many hardware and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

described in issue 66 of Linux Journal. The accelerator equipment is built of many hardware and
software components that control all the aspects of experimentation. While not all software was
transferred to Linux, some interesting parts have been. This includes the serial line and stepper
motor controllers. Many instances of these devices are employed to control various aspects of the
system. Serial lines, for instances, control vacuum devices, power supplies, and programmable
logic controllers (PLCs). Stepper motors, on the other hand, are used in positioning goniometers,
slits, and translation stages. Serial lines are controlled via serial boards running on PC/104.

The PC/104 single board computer (SBC) controlling the serial boards has a Pentium 90 MHz
with 20 MB of RAM and a 24 MB solid-state hard disk. A standard workstation distribution, SuSE
5.3, was trimmed down to fit in the limited permanent storage space. Some stepper motor
controllers run on a similar configuration, while others run on VME boards that have 8 to 32 MB of
memory and load the operating system from a Unix-type server using BOOTP/TFTP. These
boards run a modified version of Richard Hirst's Linux for 680x0-based VME boards. All the
equipment is network accessible and controllable through a TCP/IP network. Here, Linux, in the
broad sense, was chosen because it is configurable, stable, free, and well supported, contains
support for many standards, and its source code is accessible.

1.2.2.2 Computer-aided training system

The computer-aided training system (CATS) was built at CAE Electronics and is described in
issue 64 of Linux Journal. Unlike full flight simulators, which include visual, sound, and motion
simulation, CATS provides only a visual representation of the various aircraft panels. A CATS isn't
a cheap version of a flight simulator. Instead, it complements a flight simulator by providing entry-
level training. Conventional CAE CATS were built on IBM RS/6000 workstations running AIX. A
port to Linux was prompted by the low cost of powerful x86 systems and the portability of Linux
itself.

The CATS come in three different versions: one-, three-, and seven-screen systems.
Development and testing was done on a workstation equipped with a Pentium II 350 MHz
processor, 128 MB of RAM, and Evolution4 graphic cards from Color Graphics Systems, which
provide for control of four displays each. Xi Graphics' AcceleratedX X server was used to control
the Evolution4 and provide adequate multiheaded display. A single-screen version could still run
easily on a Linux system equipped with the standard XFree86 X server.

Because of customer requirements, the system was provided on a bootable CD-ROM to avoid
local installation. Hence, the complete CATS is run from the CD-ROM using a RAM filesystem.
The end system has been found to be reliable, predictable, dependable, stable, and in excess of
performance requirements. Work on prototype flight simulators running Linux began in April 2000.
Having had very positive results, most full flight simulators currently shipped run Linux.

1.2.2.3 Ericsson "blip"

The Ericsson "blip" is a commercial product. Details of the product can be found on Ericsson's
blip web site at http://www.ericsson.com/about/blipnet/ and on LinuxDevices.com. "blip" stands for
"Bluetooth Local Infotainment Point" and enables Bluetooth devices to access local information.
This product can be used either in public places to provide services or at home for accessing or
synchronizing with local information.

The blip houses an Atmel AT91F40816 ARM7TDMI paced at 22.5 MHz with 2 MB of RAM, 1 MB
of system flash, and 1 MB of user flash. The Atmel chip runs the uClinux distribution, with kernel
2.0.38 modified for MMU-less ARM, provided by Lineo along with uClibc, the miniature C library,
and talks via a serial link to a standalone Bluetooth chip. Access to the device is provided by a
proprietary Bluetooth stack, an Ethernet interface, and a serial port. Custom applications can be
developed for the blip using an SDK provided by Ericsson and built using customized GNU
software. Linux was chosen, because it provided an open and inexpensive development
environment both for the host and the target, hence encouraging and stimulating the development
of third-party software.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2.2.4 SCADA protocol converter

The System Control and Data Acquisition (SCADA) protocol converter is detailed in issue 77 of
Linux Journal. Here, an existing Digital Control System (DCS) controlling a turbocompressor in an
oil extraction plant had to be integrated into a SCADA system to facilitate management of the
plant. Converting the complete DCS for better integration would have been expensive, hence the
choice was made to build a conversion gateway that interfaced between the existing DCS and the
SCADA system.

Linux was chosen because it is easy to tailor, it is well documented, it can run from RAM, and
development can be done directly on the target system. An 8 MB DiskOnChip (DOC) from M-
Systems provides a solid-state drive for the application. To avoid patching the kernel with the
binary drivers provided by M-Systems, the DOC's format is left in its shipped configuration as a
DOS filesystem.[2] The kernel and root filesystem are compressed and placed in the DOC along
with DOS. Upon bootup, the batch files invoke Loadlin to load Linux and the root filesystem. The
system files are therefore read-only and the system is operated using a RAM root filesystem. The
root filesystem was built using Red Hat 6.1 following the BootDisk HOWTO instructions. The
system is an industrial PC with 32 MB of RAM.

[2] Though this project used M-Systems' binary drivers, there are GPL'd drivers for the DOC, as we'll see in Chapter 7.

1.2.2.5 Sharp Zaurus

The Sharp Zaurus is a commercial product sold by Sharp Electronics. Details on the Zaurus can
be found on its web site at http://www.myzaurus.com/ and on LinuxDevices.com. The Zaurus is a
Personal Digital Assistant (PDA) completely based on Linux. As such, it comes equipped with all
the usual PDA applications, such as contacts, to do list, schedule, notes, calculator, email, etc.

The original Zaurus, the SL-5500, was built around an Intel StrongARM 206 MHz processor with
64 MB of RAM and 16 MB of flash. A newer version, the SL-5600, is built around an Intel XScale
400 MHz processor with 32 MB of RAM and 64 MB of flash. The system is based on Lineo's
Embedix embedded Linux distribution and uses QT's Palmtop GUI. Independent development of
the Zaurus software is encouraged by Sharp who maintains a developer web site at
http://developer.sharpsec.com/.

1.2.2.6 Space vehicle control

The space vehicle control was built at the European Space Agency (ESA) and is detailed in issue
59 of Linux Journal. The Automatic Transfer Vehicle (ATV) is an unmanned space vehicle used in
the refueling and reboosting of the International Space Station (ISS). The docking process
between the ATV and the ISS requires the ATV to catch up to the ISS and dock with precision.
This process is governed by complex mathematical equations. Given this complexity, monitoring
systems are needed to ensure that all operations proceed as planned. This is the role of the
Ground Operator Assistant System (GOAS) and the Remote ATV Control at ISS (RACSI).

The GOAS runs on the ground and provides monitoring and intervention capabilities. It used to
run on a Sun UltraSPARC 5-based workstation with 64 MB of RAM and 300 MB of disk space. It
was ported to a Pentium 233 MHz system with 48 MB of RAM running Linux.

The RACSI runs on the ISS and provides temporary mission interruption and collision avoidance.
It runs on an IBM ThinkPad with 64 MB of RAM and uses 40 MB of the available disk space. The
system runs the Slackware 3.0 distribution. Moo-Tiff libraries are used to provide Motif-like
widgets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Linux was chosen, because it provides the reliability, portability, performance, and affordability
needed by space applications. Despite these benefits, the ESA finally decided to run the RACSI
and GOAS on Solaris, using the same equipment, for operational reasons.

As these examples show, Linux can be put to use in many fields in many ways, using different
hardware and software configurations. The fastest way to build an embedded system with Linux is
often to look at similar projects that have used Linux in their systems. There are many more
examples of embedded systems based on Linux that I have not discussed. A search through the
various resources listed in Appendix B may yield fruitful leads. Keep in mind, though, that copying
other projects may involve copying other people's mistakes. In that case, the best way to guard
yourself from chasing down other people's problems is to ensure that you have an understanding
of all the aspects of the system or, at least, have a pointer where you can find more information
regarding the gray areas of your system.

1.2.3 Survey Findings

Since Linux started being used as an embedded operating system, many surveys have been
published providing information regarding various aspects of Linux's use in this way. Though the
complete results of many of the surveys are part of commercial reports, which are relatively
expensive, there are a few interesting facts that have been publicized. Let's look at the findings of
some of these surveys.

In 2000, Embedded Systems Programming (ESP) magazine conducted a survey on 547
subscribers. The survey found that, though none considered it in 1998 and 1999, 38% of readers
were considering using Linux as the operating system for their next design. This is especially
interesting, as Linux came in only second to VxWorks, WindRiver's flagship product. The survey
also found that, though none were using it in 1998 and 1999, 12% of respondents were already
using Linux in their embedded systems in 2000.

As part of reporting on embedded Linux, LinuxDevices.com set up a web-based survey in 2000
and 2001 that site visitors could fill to provide information regarding their use of Linux in
embedded systems. Both years, a few hundred respondents participated in the survey. Though
there were no control mechanisms to screen respondents, the results match those of other more
formal surveys. Both surveys contained a lot of information. For the sake of simplicity, I will only
mention the surveys' most important findings.

In 2000, the LinuxDevices.com survey found that most developers considering the use of Linux in
embedded systems were planning to use an x86, ARM, or PPC target with a custom board. The
survey shows that most developers plan to boot Linux from a DiskOnChip or from a native flash
device, and that the main peripherals included in the system would be Ethernet and data
acquisition cards. The most important reasons developers have for choosing Linux are the
superiority of open source software over proprietary offerings, the fact that source availability
facilitates understanding the operating system, and the elimination of the dependency on a single
operating system vendor. Developers reported using Red Hat, Debian, and MontaVista as their
main embedded Linux distributions.

In 2001, the LinuxDevices.com survey found that developers plan to use Linux in embedded
systems mostly based on x86, ARM, and PPC systems with custom boards. As in the previous
survey, most developers plan to boot their system from some form of flash storage. In contrast
with the previous survey, this survey provides insight regarding the amount of RAM and persistent
storage developers intend to use. The majority of developers seem to want to use Linux with
system having more than 8 MB of RAM and 8 MB of persistent storage. In this survey, developers
justify their choice of Linux based on source code availability, Linux's reliability and robustness,
and its high modularity and configurability. Developers reported that Red Hat and Debian were
their main embedded Linux distributions. Combined with the 2000 survey, the results of the 2001
LinuxDevices.com survey confirm a steady interest in Linux.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another organization that has produced reports on Linux's use in embedded systems is the
Venture Development Corporation (VDC). Though mainly aimed at companies selling products to
embedded Linux developers, the VDC's reports published in 2001 and 2002 provide some
interesting facts. First, the 2001 report states that the market for embedded Linux development
tools products was worth $20 million in 2000 and would be worth $306 million by 2005. The 2001
report also finds that the leading vendors are Lineo, MontaVista, and Red Hat. The report finds
that the key reasons developers have for selecting Linux are source code availability and the
absence of royalties.

The 2002 VDC report included a web-based survey of 11,000 developers. This survey finds that
the Linux distributions currently used by developers are Red Hat, Roll-Your-Own, and non-
commercial distributions. Developers' key reasons for choosing Linux are source code availability,
reduced licensing, reliability, and open source development community support. Interestingly, the
report also lists the most important factors inhibiting Linux's use in embedded applications. The
most important factor is real-time limitations, followed by doubts about availability and quality of
support, and fragmentation concerns. In addition, the report states that respondents consult the
open source community for support with technical issues regarding Linux, and that most are
satisfied with the answers they get.

The Evans Data Corporation (EDC) has also conducted surveys in 2001 and 2002 regarding
Linux's use in embedded systems. The 2001 survey conducted on 500 developers found that
Linux is fourth in the list of operating systems currently used in embedded systems, and that
Linux was expected to be the most used embedded operating system in the following year. In
2002, the survey conducted on 444 developers found that Linux was still fourth in the list of
operating systems currently used in embedded systems, and that Linux is as likely to be used as
Windows as the operating system of choice for future designs.

While these results are partial and though it is too early to predict Linux's full impact on the
embedded world, it is clear that there is great interest in embedded Linux and that this interest is
growing. Moreover, the results show that the interest for Linux isn't purely amateuristic. Rather,
Linux is being considered for and used in professional applications and is being preferred to a lot
of the traditional embedded OSes. Also, contrary to popular belief and widespread FUD (fear,
uncertainty, and doubt) Linux isn't interesting only because it's free. The fact that its source code
is available, is highly reliable, and can easily be tailored to the task are other important reasons, if
not more important. Interestingly, the Debian distribution is one of the favorite embedded
distributions, even though no vendor is pushing this distribution on the market.

1.2.4 Reasons for Choosing Linux

Apart from the reasons polled by the various surveys mentioned above, there are various
motivations for choosing Linux over a traditional embedded OS.

1.2.4.1 Quality and reliability of code

Quality and reliability are subjective measures of the level of confidence in the code. Although an
exact definition of quality code would be hard to obtain, there are properties common
programmers come to expect from such code:

Modularity and structure

Each separate functionality should be found in a separate module, and the file layout of the
project should reflect this. Within each module, complex functionality is subdivided in an
adequate number of independent functions.

Ease of fixing

The code should be (more or less) easy to fix for whoever understands its internals.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extensibility

Adding features to the code should be fairly straightforward. In case structural or logical
modifications are needed, they should be easy to identify.

Configurability

It should be possible to select which features from the code should be part of the final
application. This selection should be easy to carry out.

The properties expected from reliable code are:

Predictability

Upon execution, the program's behavior is supposed to be within a defined framework and
should not become erratic.

Error recovery

In case a problematic situation occurs, it is expected that the program will take steps to
recover from the problem and alert the proper authorities, usually the system administrator,
with a meaningful diagnostic message.

Longevity

The program will run unassisted for long periods of time and will conserve its integrity
regardless of the situations it encounters.

Most programmers agree that the Linux kernel and most projects used in a Linux system fit this
description of quality and reliability of their codebase. The reason is the open source development
model (see note below), which invites many parties to contribute to projects, identify existing
problems, debate possible solutions, and fix problems effectively. You can expect to run Linux for
years unattended without problems, and people have effectively done so. You can also select
which system components you want to install and which you would like to avoid. With the kernel,
too, you can select which features you would like during build configuration. As a testament to the
quality of the code making up the various Linux components, you can follow the various mailing
lists and see how quickly problems are pointed out by the individuals maintaining the various
components of the software or how quickly features are added. Few other OSes provide this level
of quality and reliability.

Strictly speaking, there is no such thing as the "open source" development
model, or even "free software" development model. "Open source" and
"free software" correspond to a set of licenses under which various
software packages can be distributed. Nevertheless, it remains that
software packages distributed under "open source" and "free software"
licenses very often follow a similar development model. This development
model has been explained by Eric Raymond in his seminal book, The
Cathedral and the Bazaar (O'Reilly).

1.2.4.2 Availability of code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code availability relates to the fact that Linux's source code and all build tools are available
without any access restrictions. The most important Linux components, including the kernel itself,
are distributed under the GNU General Public License (GPL). Access to these components'
source code is therefore compulsory. Other components are distributed under similar licenses.
Some of these licenses, such as the BSD license, for instance, permit redistribution of binaries
without the original source code or the redistribution of binaries based on modified sources
without requiring publication of the modifications. Nonetheless, the code for the majority of
projects that contribute to the makeup of Linux is readily available without restrictions.

When source access problems arise, the open source and free software community seeks to
replace the "faulty" software with an open source version providing similar capabilities. This
contrasts with traditional embedded OSes, where the source code isn't available or must be
purchased for very large sums of money. The advantages of having the code available are the
possibility of fixing the code without exterior help and the capability of digging into the code to
understand its operation. Fixes for security weaknesses and performance bottlenecks, for
example, are often very quickly available once the problem has been publicized. With traditional
embedded OSes you have to contact the vendor, alert them of the problem, and await a fix. Most
of the time, people simply find workarounds instead of waiting for fixes. For sufficiently large
projects, managers even resort to purchasing access to the code to alleviate outside
dependencies.

1.2.4.3 Hardware support

Broad hardware support means that Linux supports different types of hardware platforms and
devices. Although a number of vendors still do not provide Linux drivers, considerable progress
has been made and more is expected. Because a large number of drivers are maintained by the
Linux community itself, you can confidently use hardware components without fear that the
vendor may one day discontinue that product line. Broad hardware support also means that Linux
runs on dozens of different hardware architectures, at the time of this writing. Again, no other OS
provides this level of portability. Given a CPU and a platform, you can reasonably expect that
Linux runs on it or that someone else has gone through a similar porting process and can assist
you in your efforts. You can also expect that the software you write on one architecture be easily
ported to another architecture Linux runs on. There are even device drivers that run on different
hardware architectures transparently.

1.2.4.4 Communication protocol and software standards

Linux also provides broad communication protocol and software standards support as we'll see
throughout this book. This makes it easy to integrate Linux within existing frameworks and to port
legacy software to Linux. You can easily integrate a Linux system within an existing Windows
network and expect it to serve clients through Samba, while clients see little difference between it
and an NT server. You can also use a Linux box to practice amateur radio by building this feature
into the kernel. Likewise, Linux is a Unix clone, and you can easily port traditional Unix programs
to it. In fact, most applications currently bundled with the various distributions were first built and
run on commercial Unixes and were later ported to Linux. This includes all the software provided
by the FSF. Most traditional embedded OSes are, in this regard, very limited and often provide
support only for a limited subset of the protocols and software standards available.

1.2.4.5 Available tools

The variety of tools existing for Linux make it very versatile. If you think of an application you
need, chances are others felt the need for this application before you. It is also likely that
someone took the time to write the tool and made it available on the Internet. This is what Linus
Torvalds did, after all. You can visit Freshmeat (http://www.freshmeat.net) and SourceForge
(http://www.sourceforge.net) and browse around to see the variety of tools available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2.4.6 Community support

Community support is perhaps one of the biggest strengths of Linux. This is where the spirit of the
free software and open source community can most be felt. As with application needs, it is likely
that someone has encountered the same problems as you in similar circumstances. Often, this
person will gladly share his solution with you, provided you ask. The development and support
mailing lists are the best place to find this community support, and the level of expertise found
there often surpasses what can be found over expensive support phone calls with proprietary OS
vendors. Usually, when you call a technical support line, you never get to talk to the engineers
who built the software you are using. With Linux, an email to the appropriate mailing list will often
get you straight to the person who wrote the software. Pointing out a bug and obtaining a fix or
suggestions is thereafter a rapid process. As many programmers experience, seldom is a justified
plea for help ignored, provided the sender takes the care to search through the archives to ensure
that her question hasn't already been answered.

1.2.4.7 Licensing

Licensing enables programmers to do with Linux what they could only dream of doing with
proprietary software. In essence, you can use, modify, and redistribute the software with only the
restriction of providing the same rights to your recepients. This, though, is a simplification of the
various licenses used with Linux (GPL, LGPL, BSD, MPL, etc.) and does not imply that you lose
control of the copyrights and patents embodied in the software you generate. These
considerations will be discussed in Section 1.2.6. Nonetheless, the degree of liberty available is
quite large.

1.2.4.8 Vendor independence

Vendor independence, as was demonstrated by the polls presented earlier, means that you do
not need to rely on any sole vendor to get Linux or to use it. Furthermore, if you are displeased
with a vendor, you can switch, because the licenses under which Linux is distributed provide you
the same rights as the vendors. Some vendors, though, provide additional software in their
distributions that isn't open source, and you might not be able to receive service for this type of
software from other vendors. Such issues must be taken in account when choosing any
distribution. Mostly, though, you can do with Linux as you would do with a car. Since the hood isn't
welded shut, as with proprietary software, you can decide to get service from a mechanic other
than the one provided by the dealership where you purchased it.

1.2.4.9 Cost

The cost of Linux is a result of open source licensing and is different from what can be found with
traditional embedded OSes. There are three components of software cost in building a traditional
embedded system: initial development setup, additional tools, and runtime royalties. The initial
development setup cost comprises the purchase of development licenses from the OS vendor.
Often, these licenses are purchased for a given number of "seats," one for each developer. In
addition, you may find the tools provided with this basic development package to be insufficient
and may want to purchase additional tools from the vendor. This is another cost. Finally, when
you deploy your system, the vendor will ask for a per-unit royalty. This may be minimal or large,
depending on the type of device you produce and the quantities produced. Some mobile phone
manufacturers, for instance, choose to implement their own OSes to avoid paying any royalties.
This makes sense for them, given the number of units sold and the associated profit margins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With Linux, this cost model is turned on its head. All development tools and OS components are
available free of charge, and the licenses under which they are distributed prevent the collection
of any royalties on these core components. Most developers, though, may not want to go chasing
down the various software tools and components and figure out which versions are compatible
and which aren't. Most developers prefer to use a packaged distribution. This involves purchasing
the distribution or may involve a simple download. In this scenario, vendors provide support for
their distribution for a fee and offer services for porting their distributions to new architectures and
developing new drivers for a fee. This is where their money is made. They may also charge for
additional proprietary software packaged with their distribution. Compared to the traditional
embedded software cost model, though, this is relatively inexpensive, depending on the
distribution you choose.

1.2.5 Players of the Embedded Linux Scene

Unlike proprietary OSes, Linux is not controlled by a single authority who dictates its future, its
philosophy, and its adoption of one technology or another. These issues and others are taken
care of by a broad ensemble of players with different but complementary vocations and goals.

1.2.5.1 Free software and open source community

The free software and open source community is the basis of all Linux development and is the
most important player in the embedded Linux arena. It is made up of all the developers who
enhance, maintain, and support the various software components that make up a Linux system.
There is no central authority within this group. Rather, there is a loosely tied group of independent
individuals, each with his specialty. These folks can be found discussing technical issues on the
mailing lists concerning them or at gatherings such as the Ottawa Linux Symposium. It would be
hard to characterize these individuals as a homogeneous group, because they come from
different backgrounds and have different affiliations. Mostly, though, they care a great deal about
the technical quality of the software they produce. The quality and reliability of Linux, as discussed
earlier, are a result of this level of care.

Your author is actually part of the free software community and has made a number of
contributions. Besides maintaining a presence on some mailing lists and participating in the
advancement of free software in various ways, I wrote and maintain the Linux Trace Toolkit, which
is a set of components for the tracing of the Linux kernel. I have also contributed to other free
software and open source projects, including RTAI and Adeos.

Throughout this book, I will describe quite a few components that are used in Linux systems.
Each maintainer of or contributor to the components I will describe is a player in the free software
and open source community.

1.2.5.2 Industry

Having recognized the potential of Linux in the embedded market, many companies have moved
to embrace and promote Linux in this area. Industry players are important because they are the
ones pushing Linux as an end-user product. Often, they are the first to receive feedback from
those end users. Although postings on the various mailing lists can tell the developer how the
software is being used, not all users participate in those mailing lists. Vendors must therefore
strike an equilibrium between assisting their users and helping in the development of the various
projects making up Linux without falling in the trap of wanting to divert development to their own
ends. In this regard, many vendors have successfully positioned themselves in the embedded
Linux market. Here are some of them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The vendors listed here are mentioned for discussion purposes only. Your
author has not evaluated the services provided by any of these vendors
for the purposes of this book, and this list should therefore not be
interpreted as any form of endorsement.

Red Hat

This Linux distribution is one of the most widely used, if not the most widely used. Other
distributions have been inspired by this distribution or, at least, had to take it into
consideration. Red Hat was one of the first Linux distributions and, as such, has an
established name as a leader that has contributed time and again back to the community it
took from. Through its acquisition of Cygnus, it procured some of the key developers of the
GNU development toolchain. This adds to the list of key Linux contributors already working
for Red Hat. Cygnus had already been providing these tools in a shrinkwrapped package to
many embedded system developers. Red Hat continued on this trajectory. Although it does
not sell an embedded distribution different from its standard distribution, it provides a
development package for developing embedded Linux systems using its distribution. Red
Hat maintains a web site about the projects it contributes to at http://sources.redhat.com/.

MontaVista

Founded by Jim Ready, an embedded industry veteran, MontaVista has positioned itself as
a leader in the embedded Linux market through its products, services, and promotion of
Linux in industrial applications. Its main product is MontaVista Linux, which is available in
two versions: Professional and Carrier Grade. MontaVista has contributed to some open
source projects including the kernel, ViewML, Microwindows, and LTT. Although
MontaVista does not maintain a web site for the projects it contributes to, copies of some of
its contributions can be found at http://www.mvista.com/developer/sourceforge.html.

LynuxWorks

This used to be known as Lynx Real-Time Systems and is one of the traditional embedded
OS vendors. Contrary to other traditional embedded OS providers, Lynx decided to
embrace Linux early and changed its name to reflect its decision. This, combined with the
later acquisition of BSDi by WindRiver[3] and QNX's decision to make its OS available for
free to download, were signs that open source in general, and Linux in particular, are
making serious inroads in the embedded arena. That said, LynuxWorks still develops,
distributes, and supports Lynx. In fact, LynuxWorks promotes a twofold solution. According
to LynuxWorks, programmers needing hard real-time performance should continue to use
Lynx while those wanting open source solutions should use BlueCat, their embedded Linux
distribution. LynuxWorks has even modified Lynx to enable unmodified Linux binaries to
run as-is. The fact that LynuxWorks was already a successful embedded OS vendor and
that it adopted Linux early confirms the importance of the move towards open source OSes
in the embedded market.

[3] WindRiver has since changed its mind and its relationship with BSD seems to be a matter of the past.

There are also many small players who provide a variety of services around open source and free
software. In fact, many open source and free software contributions are made by individuals who
are either independent or work for small-size vendors. As such, the services provided by such
small players are often on a par or sometimes surpass those provided by larger players. Here are
some individuals and small companies who provide embedded Linux services and are active
contributors to the open source and free software community: Alessandro Rubini, Bill Gatliff,
CodePoet Consulting, DENX Software Engineering, Opersys, Pengutronix, System Design &
Consulting Services, and Zee2.

1.2.5.3 Organizations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are currently three organizational bodies aimed at promoting and encouraging the adoption
of Linux in embedded applications: the Embedded Linux Consortium (ELC), Emblix, the Japan
Embedded Linux Consortium, and the TV Linux alliance. The ELC was founded by 23 companies
as a nonprofit vendor-neutral association and now includes more than 100 member companies.
Its current goals include the creation of an embedded Linux platform specification inspired by the
Linux Standard Base and the Single Unix Specification. It remains unclear whether the ELC's
specification will gain any acceptance from the very open source and free software developers
that maintain the software the ELC is trying to standardize, given that the drafting of the standard
is not open to the public, which is contrary to the open source and free software traditions. Emblix
was founded by 24 Japanese companies with similar aims as the ELC but with particular
emphasis on the Japanese market. The TV Linux alliance is a consortium that includes cable,
satellite, and telecom technology suppliers and operators who would like to support Linux in set-
top boxes and interactive TV applications.

These efforts are noteworthy, but there are other organizational bodies that influence Linux's
advancement, in the broad sense, although they do not address embedded systems particularly.

First and foremost, the Free Software Foundation (FSF), launched in 1984 by Richard Stallman,
is the maintainer of the GNU project from which most components of a Linux system are based. It
is also the central authority on the GPL and LGPL, the licenses most software in a Linux system
fall under. Since its foundation, the FSF has promoted the usage of free software[4] in all aspects
of computing. The FSF has taken note of the recent rise in the use of GNU and GPL software in
embedded systems and is moving to ensure that user and developer rights are preserved.

[4] "Free" as in "free speech," not "free beer." As Richard Stallman notes, the confusion is due to the English language,
which makes no difference between what may be differentiated in other languages such as French as "libre" and
"gratuit." In effect, "free software" is translated to "logiciel libre" in French.

The OpenGroup maintains the Single Unix Specification (SUS), which describes what should be
found in a Unix system. There is also the Linux Standard Base (LSB) effort, which aims at
developing and promoting "a set of standards that will increase compatibility among Linux
distributions and enable software applications to run on any compliant Linux system," as stated on
the LSB web site at http://www.linuxbase.org/. In addition, the Filesystem Hierarchy Standard
(FHS) maintained by the Filesystem Hierarchy Standard Group specifies the content of a Linux
root tree. The Free Standards Group (FSG) maintains the Linux Development Platform
Specification (LDPS), which specifies the configuration of a development platform to enable
applications developed on conforming platforms to run on most distributions available. Finally,
there is the Real-Time Linux Foundation, which aims at promoting and standardizing real-time
enhancements and programming in Linux.

1.2.5.4 Resources

Most developers connect to the embedded Linux world through various resource sites and
publications. It is through these sites and publications that the Linux development community,
industry, and organizations publicize their work and learn about the work of the other players. In
essence, the resource sites and publications are the meeting place for all the people concerned
with embedded Linux. A list of resources can be found in Appendix B, but there are two resources
that stand out, LinuxDevices.com and Linux Journal.

LinuxDevices.com was founded on Halloween day[5] 1999 by Rick Lehrbaum. It has since been

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LinuxDevices.com was founded on Halloween day[5] 1999 by Rick Lehrbaum. It has since been
acquired by ZDNet and, later still, been purchased by a company owned by Rick. To this day,
Rick continues to maintain the site. LinuxDevices.com features news items, articles, polls, forums,
and many other links pertaining to embedded Linux. Many key announcements regarding
embedded Linux are made on this site. The site contains an archive of actively maintained articles
regarding embedded Linux. Though its vocation is clearly commercial, I definitely recommend
taking a peek at the site once in a while to keep yourself up to date with the latest in embedded
Linux. Among other things, LinuxDevices.com was instrumental in launching the Embedded Linux
Consortium.

[5] The date was selected purposely in symbolic commemoration of the infamous Halloween Documents uncovered by
Eric Raymond. If you are not familiar with these documents and their meaning, have a look at
http://www.opensource.org/halloween/.

As part of the growing interest in the use of Linux in embedded systems, the Embedded Linux
Journal (ELJ) was launched by Specialized System Consultants, owners of Linux Journal (LJ), in
January 2001 with the aim of serving the embedded Linux community, but was later discontinued.
Though ELJ is no longer published as a separate magazine, LJ now contains an "embedded"
section every month, which contains articles that otherwise would have been published in ELJ.

1.2.6 Copyright and Patent Issues

You may ask: what about using Linux in my design? Isn't Linux distributed under this weird license
that may endanger the copyrights and patents of my company? What are all those licenses
anyway? Is there more than one license to take care of? Are we allowed to distribute binary-only
kernel modules? What about all these articles I read in the press, some even calling Linux's
license a "virus"?

These questions and many more have probably crossed your mind. You probably even discussed
some of these issues with some of your coworkers. The issues can be confusing and can come
back to haunt you if they aren't dealt with properly. I don't say this to scare you. The issues are
real, but there are known ways to use Linux without any fear of any sort of licensing
contamination. With all the explanations provided below, it would be important to keep in mind
that this isn't legal counsel and I am not a lawyer. If you have any doubts about your specific
project, consult your attorney.

OK, now that I've given you ample warning, let us look at what is commonly accepted thought on
Linux's licensing and how it applies to Linux systems in general, including embedded systems.

1.2.6.1 Textbook GPL

For most components making up a Linux system, there are two licenses involved, the GPL and
the LGPL, introduced earlier. Both licenses are available from the FSF's web site at
http://www.gnu.org/licenses/, and should be included with any package distributed under the
terms of these licenses.[6] The GPL is mainly used for applications, while the LGPL is mainly used
for libraries. The kernel, the binary utilities, the gcc compiler, and the gdb debugger are all
licensed under the GPL. The C library and the GTK widget toolkit, on the other hand, are licensed
under the LGPL.

[6] The licenses are often stored in a file called COPYING, for the GPL, and a file called COPYING.LIB, for the LGPL.
Copies of these files are likely to have been installed somewhere on your disk by your distribution.

Some programs may be licensed under BSD, Mozilla, or another license, but the GPL and LGPL
are the main licenses used. Regardless of the license being used, common sense should prevail.
Make sure you know the licenses under which the components you use fall and understand their
implications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The GPL provides rights and imposes obligations very different from what may be found in typical
software licenses. In essence, the GPL is meant to provide a higher degree of freedom to
developers and users, enabling them to use, modify, and distribute software with few restrictions.
It also makes provisions to ensure that these rights are not abrogated or hijacked in any fashion.
To do so, the GPL stipulates the following:

You may make as many copies of the program as you like, as long as you keep the license
and copyright intact.

Software licensed under the GPL comes with no warranty whatsoever, unless it is offered
by the distributor.

You can charge for the act of copying and for warranty protection.

You can distribute binary copies of the program, as long as you accompany them with the
source code used to create the binaries, often referred to as the "original" source code.[7]

[7] The specific wording of the GPL to designate this code is the following: "The source code for a work
means the preferred form of the work for making modifications to it." Delivering binaries of an obfuscated
version of the original source code to try circumventing the GPL is a trick that has been tried before, and it
doesn't work.

You cannot place further restrictions on your recipients than what is provided by the GPL
and the software's original authors.

You can modify the program and redistribute your modifications, as long as you provide the
same rights you received to your recipients. In effect, any code that modifies or includes
GPL code, or any portion of a GPL'd program, cannot be distributed outside your
organization under any license other than the GPL. This is the clause some PR folks refer
to as being "virus"-like. Keep in mind, though, that this restriction concerns source code
only. Packaging the unmodified software for the purpose of running it, as we'll see below, is
not subject to this provision.

As you can see, the GPL protects authors' copyrights while providing freedom of use. This is fairly
well accepted. The application of the modification and distribution clauses, on the other hand,
generates a fair amount of confusion. To clear this confusion, two issues must be focused on:
running GPL software and modifying GPL software. Running the software is usually the reason
why the original authors wrote it. The authors of gcc, for example, wrote it to compile software
with. As such, the software compiled by an unmodified gcc is not covered by the GPL, since the
person compiling the program is only running gcc. In fact, you can compile proprietary software
with gcc, and people have been doing this for years, without any fear of GPL "contamination."
Modifying the software, in contrast, creates a derived work that is based on the original software,
and is therefore subject to the licensing of that original software. If you take the gcc compiler and
modify it to compile a new programming language of your vintage, for example, your new compiler
is a derived work and all modifications you make cannot be distributed outside your organization
under the terms of any license other than the GPL.

Most anti-GPL speeches or writings play on the confusion between running and modifying GPL
software, to give the audience an impression that any software in contact with GPL software is
under threat of GPL "contamination." This is not the case.

There is a clear difference between running and modifying software. As a developer, you can
safeguard yourself from any trouble by asking yourself whether you are simply running the
software as it is supposed to be run or if you are modifying the software for your own ends. As a
developer, you should be fairly capable of making out the difference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that the copyright law makes no difference between static and dynamic linking. Even if your
proprietary application is integrated to the GPL software during runtime through dynamic linking,
that doesn't exclude it from falling under the GPL. A derived work combining GPL software and
non-GPL software through any form of linking still cannot be distributed under any license other
than the GPL. If you package gcc as a dynamic linking library and write your new compiler using
this library, you will still be restricted from distributing your new compiler under any license other
than the GPL.

Whereas the GPL doesn't allow you to include parts of the program in your own program unless
your program is distributed under the terms of the GPL, the LGPL allows you to use unmodified
portions of the LGPL program in your program without any problem. If you modify the LGPL
program, though, you fall under the same restrictions as the GPL and cannot distribute your
modifications outside your organization under any license other than the LGPL. Linking a
proprietary application, statically or dynamically, with the C library, which is distributed under the
LGPL, is perfectly acceptable. If you modify the C library, on the other hand, you are prohibited
from distributing all modifications under any license other than the LGPL.

Note that when you distribute a proprietary application that is linked
against LGPL software, you must allow for this LGPL software to be
replaced. If you are dynamically linking against a library, for example, this
is fairly simple, because the recipient of your software need only modify
the library to which your application is linked at startup. If you are statically
linking against LGPL software, however, you must also provide your
recipient with the object code of your application before it was linked so
that she may be able to substitute the LGPL software.

Much like the running versus modifying GPL software discussion above, there is a clear
difference between linking against LGPL software and modifying LGPL software. You are free to
distribute your software under any license when it is linked against an LGPL library. You are not
allowed to distribute any modifications to an LGPL library under any license other than LGPL.

1.2.6.2 Pending issues

Up to now, I've discussed only textbook application of the GPL and LGPL. Some areas of
application are, unfortunately, less clearly defined. What about applications that run using the
Linux kernel? Aren't they being linked, in a way, to the kernel's own code? And what about binary
kernel modules, which are even more deeply integrated to the kernel? Do they fall under the
GPL? What about including GPL software in my embedded system?

I'll start with the last question. Including a GPL application in your embedded system is actually a
textbook case of the GPL. Remember that you are allowed to redistribute binary copies of any
GPL software as long as your recipients receive the original source code. Distributing GPL
software in an embedded system is a form of binary distribution and is allowed, granted you
respect the other provisions of the GPL regarding running and modifying GPL software.

Some proprietary software vendors have tried to cast doubts about the use of GPL software in
embedded systems by claiming that the level of coupling found in embedded systems makes it
hard to differentiate between applications and, hence, between what falls under GPL and what
doesn't. This is untrue. As we shall see in Chapter 6 and Chapter 8, there are known ways to
package embedded Linux systems that uphold modularity and the separation of software
components.

To avoid any confusion regarding the use of user applications with the Linux kernel, Linus
Torvalds has added a preamble to the GPL license found with the kernel's source code. This
preamble has been reproduced verbatim in Appendix C and stipulates that user applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preamble has been reproduced verbatim in Appendix C and stipulates that user applications
running on the kernel are not subject to the GPL. This means that you can run any sort of
application on the Linux kernel without any fear of GPL "contamination." A great number of
vendors provide user applications that run on Linux while remaining proprietary, including Oracle,
IBM, and Adobe.

The area where things are completely unclear is binary-only kernel modules. Modules are
software components that can be dynamically loaded and unloaded to add functionality to the
kernel. While they are mainly used for device drivers, they can and have been used for other
purposes. Many components of the kernel can actually be built as loadable modules to reduce the
kernel image's size. When needed, the various modules can be loaded during runtime.

Although this was intended as a facilitating and customizing architecture, many vendors and
projects have come to use modules to provide capabilities to the kernel while retaining control
over the source code or distributing it under licenses different from the GPL. Some hardware
manufacturers, for instance, provide closed-source binary-only module drivers to their users. This
enables the use of the hardware with Linux without requiring the vendor to provide details
regarding the operation of their device.

The problem is that once a module is loaded in the kernel, it effectively becomes part of its
address space and is highly coupled to it because of the functions it invokes and the services it
provides to the kernel. Because the kernel is itself under the GPL, many contend that modules
cannot be distributed under any other license than the GPL because the resulting kernel is a
derived work. Others contend that binary-only modules are allowed as long as they use the
standard services exported to modules by the kernel. For modules already under the GPL, this
issue is moot, but for non-GPL modules, this is a serious issue. Linus has said more than once
that he allows binary-only modules as long as it can be shown that the functionality implemented
is not Linux specific, as you can see in some of his postings included in Appendix C. Others,
however, including Alan Cox, have come to question his ability to allow or disallow such modules,
because not all the code in the kernel is copyrighted by him. Others, still, contend that because
binary modules have been tolerated for so long, they are part of standard practice.

There is also the case of binary-only modules that use no kernel API whatsoever. The RTAI and
RTLinux real-time tasks inserted in the kernel are prime examples. Although it could be argued
that these modules are a class of their own and should be treated differently, they are still linked
into kernel space and fall under the same rules as ordinary modules, whichever you think them to
be.

At the time of this writing, there is no clear, definitive, accepted status for binary-only modules,
though they are widely used and accepted as legitimate. Linus' latest public statements on the
matter, made during a kernel mailing list debate on the Linux Security Module infrastructure
(reproduced verbatim in Appendix C), seem to point to the fact that the use of binary-only
modules is an increasingly risky decision. In fact, the use of binary-only modules is likely to
remain a legally dubious practice for the foreseeable future. If you think you need to resort to
binary-only proprietary kernel modules for your system, I suggest you follow Alan Cox's advice
and seek legal counsel beforehand. Actually, I also suggest you reconsider and use GPL modules
instead. This would avoid you many headaches.

1.2.6.3 RTLinux patent

Perhaps one of the most restrictive and controversial licenses you will encounter in deploying
Linux in an embedded system is the license to the RTLinux patent held by Victor Yodaiken, the
RTLinux project leader. The patent covers the addition of real-time support to general purpose
operating systems as implemented by RTLinux.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although many have questioned the patent's viability, given prior art, and Victor's handling of the
issue, it remains that both the patent and the license are currently legally valid, at least in the
United States, and have to be accounted for. The U.S. Patent Number for the RTLinux patent is
5,995,745, and you can obtain a copy of it through the appropriate channels. The patent license
that governs the use of the patented method is available on the Web at
http://www.fsmlabs.com/about/patent/.

The license lists a number of requirements for gratis use of the patented method. Notably, the
license stipulates that there are two approved uses of the patented process. The first involves
using software licensed under the terms of the GPL, and the second involves using an umodified
version of the "Open RTLinux" as distributed by FSMLabs, Victor Yodaiken's company. The
traditional way in which these requirements have been read by real-time Linux developers is that
anyone distributing non-GPL real-time applications needs to purchase a license from FSMLabs.
Not so says Eben Moglen, the FSF's chief legal counsel. In a letter that was sent to the RTAI
community, the original of which is available at
http://www.aero.polimi.it/~rtai/documentation/articles/moglen.html, Moglen makes the following
statement: "No application in a running RTLinux or RTAI system does any of the things the patent
claims. No applications program is therefore potentially infringing, and no applications program is
covered, or needs to be covered, by the license."

Though Moglen's authoritative statement is clear on the matter, it remains that FSMLabs'
continued refusal to provide explanations regarding the patent's reach has left a cloud of
uncertainty regarding all real-time extensions using the patented process.

It follows from this that the only way to stay away from this mess is to avoid using the patented
process altogether. In other words, another method than that covered by the patent must be used
to obtain deterministic response times from Linux. Fortunately such a method exists.

Basing myself entirely on scientific articles on nanokernel research published more than one year
earlier than the preliminary patent application, I wrote a white paper describing how to implement
a Linux-based nanokernel to enable multiple OSes to share the same hardware. The white paper,
entitled "Adaptive Domain Environment for Operating Systems," was published in February 2001
and is available from http://www.opersys.com/adeos/ along with other papers on other possible
uses of this method. Given that your author started working on this book soon after the paper's
publication, there was little development effort being put on the project, and the idea lay dormant
for over a year.

The situation changed in late April 2002 when Philippe Gerum, a very talented free software
developer, picked up the project and decided to push it forward. By early June, we were
sufficiently satisfied with the project's status to make the first public release of the Adeos
nanokernel. The release made on June 3, 2002, was endorsed by several free software
organizations throughout the world, including Eurolinux (http://www.eurolinux.org/) and April
(http://www.april.org/), as a patent-free method for allowing real-time kernels to coexist with
general purpose kernels. Though, as with any other patent, such endorsements do not constitute
any guarantee against patent infringement claims, the consensus within the open source and free
software community is that the Adeos nanokernel and its applications are indeed patent free. For
my part, I encourage you to make your own verifications, as you should do for any patent. Among
other things, review the original white paper and, most importantly, the scientific articles
mentioned therein.

Already, Adeos is being used by developers around the world for allowing different types of
kernels to coexist. RTAI, for instance, which previously used the patented process to take control
from Linux, and was therefore subject to the patent license, has already been ported to Adeos.
Though at the time of this writing Adeos runs on single processor and SMP x86 systems only,
ports to other architectures should be relatively straightforward, given the nanokernel's simplicity.
If you are interested in contributing to Adeos, by porting it to other architectures for example, or if
you would just like to use it or get more information, visit the project's web site at
http://www.adeos.org/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2.7 Using Distributions

Wouldn't it be simpler and faster to use a distribution instead of setting up your own development
environment and building the whole target system from scratch? What's the best distribution?
Unfortunately, there are no straightforward answers to these questions. There are, however,
some aspects of distribution use that might help you find answers to these and similar questions.

1.2.7.1 To use or not to use

First and foremost, you should be aware that it isn't necessary to use any form of distribution to
build an embedded Linux system. In fact, all the necessary software packages are readily
available for download on the Internet. It is these same packages that distribution providers
download and package for you to use. This approach provides you with the highest level of
control and understanding over the packages you use and their interactions. Apart from this being
the most thorough approach and the one used within this book, it is also the most time-
consuming, as you have to take the time to find matching package versions and then set up each
package one by one while ensuring that you meet package interaction requirements.

Hence, if you need a high degree of control over the content of your system, the "do it yourself"
method may be best. If, however, like most people, you need the project ready yesterday or if you
do not want to have to maintain your own packages, you should seriously consider using both a
development and a target distribution. In that case, you will need to choose the development and
target distributions most appropriate for you.

1.2.7.2 How to choose a distribution

There are a number of criteria to help in the choice of a distribution, some of which have already
been mentioned in Section 1.2.3. Depending on your project, you may also have other criteria not
discussed here. In any case, if you choose commercial distributions, make sure you have clear
answers to your questions from the distribution vendor when you evaluate his product. As in any
situation, if you ask broad questions, you will get broad answers. Use detailed questions and
expect detailed answers. Unclear answers to precise questions are usually a sign that something
is amiss. If, however, you choose an open source distribution,[8] make sure you have as much
information as possible about it. The difference between choosing an open source distribution and
a commercial distribution is the way you obtain answers to your questions about the distribution.
Whereas the commercial distribution vendor will provide you with answers to your questions about
his product, you may have to look for the answers to those same questions about an open source
distribution on your own.

[8] An open source distribution is a distribution that is maintained by the open source community, such as Debian.
Inherently, such distributions do not contain any proprietary software.

An initial factor in the choice of a development or target distribution is the license or licenses
involved. Some commercial distributions are partly open source and distribute value-added
packages under conventional software licenses prohibiting copying and imposing royalties. Make
sure the distribution clearly states the licenses governing the usage of the value-added software
and their applicability. If unsure, ask. Don't leave licensing issues unclear.

Before evaluating a distribution, make yourself a shopping list of packages you would like to find
in it. The distribution may have something better to offer, but at least you know if it fits your basic
requirements. A development distribution should include items covered in Section 1.4.2, whereas
a target distribution should automate and/or facilitate, to a certain degree, items covered in
Section 1.4.1 and Section 1.4.4. Of course, no distribution can take away issues discussed in
Section 1.4.3, since only the system developers know what type of programming is required for
the system to fit its intended purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One thing that distinguishes commercial distributions from open source distributions is the
support provided by the vendor. Whereas the vendor supplying a commercial distribution almost
always provides support for her own distribution, the open source community supplying an open
source distribution does not necessarily provide the same level of support that would be expected
from a commercial vendor. This, however, does not preclude some vendors from providing
commercial support for open source distributions. Through serving different customers with
different needs in the embedded field, the various vendors build a unique knowledge about the
distributions they support and the problems clients might encounter during their use, and are
therefore best placed to help you efficiently. Mainly, though, these vendors are the ones who keep
up with the latest and greatest in Linux and are therefore the best source of information regarding
possible bugs and interoperability problems that may show up.

Reputation can also come into play when choosing a distribution, but it has to be used wisely, as
a lot of information circulating may be presented as fact while being mere interpretation. If you've
heard something about one distribution or another, take the time to verify the validity of the
information. In the case of a commercial distribution, contact the vendor. Chances are he knows
where this information comes from and, most importantly, the rational explanation for it. This
verification process, though, isn't specific to embedded Linux distributions. What is specific to
embedded Linux distributions is the reputation commercial distributions build when their vendors
contribute to the open source community. A vendor that contributes back by providing more open
source software or by financing development shows that he is in contact with the open source
community and has therefore a privileged position in understanding how the changes and
developments of the various open source projects will affect his future products and ultimately his
clients. In short, this is a critical link and a testament to the vendor's understanding of the
dynamics involved in the development of the software he provides you. In the case of open
source distributions, this criterion is already met, as the distribution itself is an open source
contribution.

Another precious tool commercial distributions might have to offer is documentation. In this day
and age where everything is ever-changing, up-to-date and accurate documentation is a rare
commodity. The documentation for the majority of open source projects is often out of date, if
available at all. Linus Torvalds' words ring true here. "Use the source, Luke," he says, meaning
that if you need to understand the software you should read the source code. Yet not everyone
can invest the amount of time necessary to achieve this level of mastery, hence the need for
appropriate documentation. Because the open source developers prefer to invest time in writing
more code than in writing documentation, it is up to the distribution vendors to provide
appropriately packaged documentation with their distributions. When evaluating a distribution,
make sure to know the type and extent of accompanying documentation. Although there is less
documentation for open source distributions, in comparison with commercial distributions, some
open source distributions are remarkably well documented.

Given the complexity of some aspects of development and target setup, the installation of a
development and/or target distribution can be hard. In this regard, you may be looking for easy-to-
install distributions. Although this is legitimate, keep in mind that once you've installed the
distributions, you should not need to reinstall them afterward. Notice also that installation does not
really apply for a target distribution, as it was defined earlier, because target distributions are used
to facilitate the generation of target setups and don't have what is conventionally known as an
"installation" process. The three things you should look for in the installation process of a
distribution are clear explanations (whether textually during the installation, in a manual, or both),
configurability, and automation. Configurability is a measure of how much control you have over
the packages being installed, while automation is the ability to automate the process using files
containing the selected configuration options.

With some CPU models and boards being broadly adopted for embedded systems development,
commercial distribution vendors have come to provide prepackaged development and/or target
distributions specifically tailored for those popular CPU models and boards. If you are intending to
use a specific CPU model or board, you may want to look for a distribution that is already tested
for your setup.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2.7.3 What to avoid doing with a distribution

There is one main course of action to avoid when using a distribution: using the distribution in a
way that makes you dependent solely on this same distribution for all future development.
Remember that one of the main reasons to use Linux is that you aren't subject to anyone's will
and market decisions. If your development relies solely on proprietary tools and methods of the
distribution you chose, you are in risk of being locked into continuous use of that same distribution
for all future development. This does not mean, though, that you shouldn't use commercial
distributions with value-added software the likes of which cannot be found on other distributions. It
only means that you should have a backup plan to achieve the same results with different tools
from different distributions, just in case.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 Example Multicomponent System

To present and discuss the material throughout the book, this section will examine an example
embedded Linux system. This embedded system is composed of many interdependent
components, each of which is an individual embedded system. The complete system has a set of
fixed functionalities, as seen by its users, but the individual components may vary in composition
and implementation. Hence, the example provides us with fertile ground for discussing various
solutions, their trade-offs, and their details. Overall, the system covers most types of embedded
systems available, from the very small to the very large, including many degrees of user
interaction and networking and covering various timing requirements.

1.3.1 General Architecture

The embedded system used as the basis of the examples in this book is an industrial process
control system. It is composed of networked computers all running Linux. Figure 1-1 presents the
general architecture of the example system.

Figure 1-1. Example embedded Linux system architecture

Internally, the system is made up of four different types of machines, each fulfilling a different
purpose: data acquisition (DAQ), control, system management (SYSM), and user interface (UI).
The components interconnect using the most common interface and protocol available, TCP/IP
over Ethernet. In this setup, the acquisition and control modules sit on a dedicated Ethernet link,
while the user interface modules sit on another link. In addition to being the interface between the
two links, the system control module provides an interface to the "outside world," which may be a
corporate intranet, through a third link.

The process being controlled here could be part of a factory, treatment facility, or something
completely different, but this is of no importance to the main design being discussed, because all
process control systems have similar architectures. To control a process, the system needs to
know at all times the current state of the different components of the process. This is what data
acquisition is for. Having acquired the data, the system can determine how to keep the process
under control. The location where the analysis is conducted may vary, but all control commands
will go out through the control module. Because some aspects of the process being controlled
often need human interaction and/or monitoring, there has to be a way for the workers involved to
observe and modify the process. This is provided by the various user interfaces. To glue all this
together and provide a central data repository and management interface, the system control
module is placed at the center of all the components while providing a single access point into the
system from the outside world.

1.3.2 Requirements of Each Component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each component has its own set of requirements to fit in the grand scheme of things and is,
therefore, built differently. Here is a detailed discussion of each component.

1.3.2.1 Data acquisition module

The first components of process measurement are transducers. Transducers are devices that
convert a physical phenomenon into an electrical signal. Thermocouples, strain gauges,
accelerometers, and linear variable differential transformers (LVDTs) are all transducers that
measure temperature, mechanical variations, acceleration, and displacement, respectively. The
transducers are usually placed directly within the area where the process is taking place. If a
furnace boils a liquid of which the temperature needs to be monitored, a thermocouple would be
placed within the receptacle containing the liquid.

The electrical signals output by transducers often go through various stages of signal
conditioning, which may include amplification, attenuation, filtering, and isolation, before
eventually being fed to a DAQ device. The DAQ device, often a DAQ card installed in a computer,
samples the analog values, converts them to digital values, and stores these values in a sample
buffer. Various software components can then use these values to plot curves, detect certain
conditions, or modify certain control parameters in reaction to the signal, such as in a feedback
loop.

As DAQ is a vast domain discussed by a number of books, it is not the purpose of this chapter to
discuss DAQ in full. Rather, we will assume that all signal retrieval and conditioning is already
done. Also, rather than limiting the discussion to one DAQ card in particular, we will assume a
DAQ card for which a driver exists complying with the API provided by Comedi, a software
package for data acquisition and control, which I will cover later.

Hence, the DAQ module is an industrial computer containing a DAQ card controlled via Comedi
to retrieve data about the process. The computer runs a medium-sized embedded system with
stringent time constraints and no user interface, while being connected to the rest of the system
using Ethernet.[9]

[9] Though they are not used in this example, off-the-shelf Ethernet-enabled DAQ devices are readily available.

In a typical setup, the DAQ module stores the data retrieved in a local buffer. Analysis may be
conducted on this data on site or it may be transferred to the SYSM module for analysis. In any
case, important data is forwarded to the SYSM module for backup and display by the various UIs.
When analysis is conducted onsite, the DAQ module will signal the SYSM module if it detects an
anomaly or critical situation. Conversely, the DAQ module will carry out the DAQ commands sent
by the SYSM module. These commands may dictate sample rate, analysis parameters, or even
what the module should do with acquired data once analysis is over. For the SYSM module to be
aware of the DAQ module's operations, the DAQ module will forward status and errors to the
SYSM module whenever necessary or whenever it is asked to do so.

The DAQ module typically boots off a CompactFlash or a native flash device and uses a RAM
disk or CRAMFS. This lets the module be replaced easily in case of hardware failure. Software
configuration involves a kernel built for preemption running on either a PC-type system or a
system based on the PowerPC architecture. The DAQ provides no outside services such as FTP,
HTTP, or NFS. Instead, it runs custom daemons that communicate with the SYSM module to
carry out the proper behavior of the overall system. Because it is not a multiuser system and no
user ever interacts with it directly, the DAQ module has only minimal support for user tools. This
may involve the BusyBox package. The IP address used by the DAQ is fixed and determined at
design time. Hence, the SYSM module can easily check whether the DAQ module is alive and
operational.

1.3.2.2 Control module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventional process control involves programmable logic controllers (PLCs) and similar systems
that are expensive, run their own particular OSes, and have special configuration procedures.
With the advent of inexpensive modern hardware on the consumer market, it is becoming more
common to see mainstream hardware such as PCs used in process control. Even industrial
hardware has seen its price falling because of the use of mainstream technology.

Here too, process control is a vast domain and I do not intend to cover it in full. Instead, we
assume that the hardware being controlled is modeled by a state machine. The overlaying
software receives feedback to its control commands based on the current state of the controlled
hardware as modeled by the state machine.

The control module is an industrial computer with an interface to the hardware being controlled.
The computer runs a medium-sized embedded system with stringent time-constraints and no user
interface, much like the DAQ module, while being connected to the rest of the system using an
Ethernet link.

The control module's main task is to issue commands to the hardware it controls, while monitoring
the progression of the hardware's behavior in reaction to the commands. Typically, these
commands originate from the SYSM module, which is the central decision maker, and that will
make decisions according to the data it gets from the DAQ module. Because the commands
provided by the SYSM module may involve many hardware operations, the control module will
coordinate the hardware to obtain the final result requested by the SYSM. Once operations are
complete, whenever any special situation occurs or whenever it is requested, the control module
will send the SYSM module a status report on the current hardware operations.

The control module can boot off a CompactFlash or a CFI flash device and use a RAM disk or
CRAMFS, much like the DAQ module. It is based on a PowerPC board, which runs a kernel
configured for preemption along with a real-time kernel, such as RTAI or RTLinux, since hard
real-time response times are necessary to control complex hardware. Hardware control will
therefore be carried out by custom, hard real-time drivers. Here too, no outside networking
services are provided. Custom daemons communicate with the SYSM to coordinate system
behavior. Because the control module is not a multiuser system and has no direct user
interaction, only minimal user tools will be available. BusyBox may be used. The control module
also uses a fixed IP address for the same reason as the DAQ module.

1.3.2.3 System management module

The SYSM module manages and coordinates the interactions between the different components
of the system, while providing a point of entry into the system to the outside world, as mentioned
earlier. It is a large embedded system with stringent time constraints and no user interface. It
contains three network adapters: one for DAQ and control, one for user interfaces, and one for
the outside network. Each networking interface has its set of rules and services.

On link A, the SYSM module retrieves data from the DAQ module, stores all or parts of it, and
forwards pertinent data to the various UIs for display. The stored data can be backed up for future
reference and may form the base of a quality control procedure. The data can be backed up
either by means of conventional backup or using a database that has a backup procedure. As
said earlier, the SYSM module may carry out analysis on acquired data if this isn't done on the
DAQ module. Whether the analysis is done locally or on the DAQ module, the SYSM module will
issue commands to the control module according to that analysis and according to the current
state of the controlled process. The SYSM module runs custom daemons and utilities that
complement the daemons present on the DAQ module and control module to communicate with
them appropriately. As with the other elements on link A, the SYSM module has a fixed IP
address so the DAQ and control modules can identify it easily.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To the outside network, the SYSM module provides HTTP and SSH services. The HTTP service
enables authorized users on the outside network to configure or monitor various aspects of the
complete system through the use of web pages and forms. The SSH services make it possible for
the embedded system's manufacturer to log into the system from a remote site for
troubleshooting and upgrades. The availability of an SSH server on such a large system reduces
maintenance cost for both the manufacturer and the client.

One of the configurable options of the SYSM module is the way errors are reported to the outside
world. This indicates to the SYSM what it should do with an error it cannot handle, such as the
failure of the DAQ or control module. The standard procedure may be to signal an alarm on a
loudspeaker, or it may involve using SNMP to signal the system operator or simply sending a
critical display request to the appropriate UI module. The link to the outside world is another
configurable option. The SYSM module may either have a fixed IP address or retrieve its IP
address using DHCP or BOOTP.

On link B, the SYSM module offers DHCP services so the UIs can dynamically allocate their
addresses. Once UIs are up and have registered themselves with the SYSM, it will forward them
the data they are registered to display, along with the current system state, and will react to value
changes made in a UI according to the system's state. In the course of system operation, workers
can modify the amount of data displayed according to their needs, and the SYSM module will
react accordingly by starting or ceasing to forward certain data to the UIs.

As the SYSM module is a large embedded system, it will boot off a hard disk and use the full
features made available to a conventional workstation or server including swapping. The server
may be an a Sun, a PowerPC, an ARM, or a conventional PC. It makes little difference which type
of architecture is actually used for the SYSM module, since most of its functionality is fairly high
level. Because it needs to serve many different applications in parallel while answering rapidly to
incoming traffic, the SYSM module runs a kernel configured for preemption. Also, as it serves as
a central point for management, it is a multiuser system with an extensive user toolset. The root
filesystem on the SYSM module will look similar to the one found on common workstations and
servers. In fact, we may even install a conventional server distribution on the SYSM module and
configure it to our needs.

1.3.2.4 User interface modules

The user interface modules enable workers to interact with the ongoing process by viewing values
that reflect the current status and modifying variables that control the process. The user interfaces
are typically small embedded systems with mild time constraints. They too are network enabled,
but in various ways. In contrast to the previous system components covered earlier, user interface
modules can have various incarnations. Some can be fixed and attached close to a sensitive post
of process control. Others can be portable and may be used by workers to walk around the
processing plant and enter or retrieve various data. After all, some aspects of the controlled
process may not be automated and may need to be entered by hand into the system.

The values displayed by the various UIs are retrieved from the SYSM module by communication
with the appropriate custom daemons running on it. As UIs may receive critical events to display
immediately, custom daemons run on the UI devices awaiting critical events sent from the SYSM
module. The user can choose which variables she wants to view, or the data set may be prefixed,
all depending on the purpose and the type of worker using the UI. In any case, some messages,
such as critical events, will be displayed regardless of the configuration. Some UIs may display
only limited data sets, while others may display detailed information regarding the ongoing
process. On some UI modules, it is possible to engage in emergency procedures to handle a
critical situation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As UI modules are small, they typically boot from native flash or through the network. In the later
case, the SYSM module has to be configured to accommodate remote boot. Whether remote
boot is used or not, the UI modules all obtain their IP addresses via DHCP. Portable UI modules
are typically based on ARM, MIPS, or m68k architectures and run standard kernels. As the UI
modules are used to interact with the user in an automated fashion, only minimal user tools are
necessary, although extensive graphical utilities and libraries are required to accommodate the
display and the interaction with the user. Since we assume that anyone on the premises has
access to the UI modules, we do not implement any form of authentication on the UI devices, and
hence all UI modules are not multi-user systems. This, though, could change depending on
system requirements.

1.3.3 Variations in Requirements

The description of the various modules given above is only a basic scheme by which to
implement the system. Many variations can be made to the different components and the
architecture of the system. Here is a list of such variations in no particular order:

Depending on the physical conditions where the system is deployed, it may be necessary
to constantly verify the connectivity of the various system components. This would be
achieved by a keepalive signal transmitted from the modules to the SYSM module or using
watchdogs.

Using TCP/IP over Ethernet on link A may pose some problems if reactions to some critical
conditions need to be carried out in a deterministic time frame. If a certain chemical
reaction being observed by the DAQ module shows signs of imminent disaster, the SYSM
module may need to be notified before the chemical reaction goes out of control. In those
cases, it may be a good idea to use RTNet, which provides hard real-time UDP over
Ethernet.[10] This would necessitate running a real-time kernel on the SYSM module.

[10] Though UDP does not delay packet transfers as TCP does, the standard TCP/IP stack in Linux is not
hard real time. RTNet provides hard real-time network communication by providing a UDP stack directly on
top of RTAI or RTLinux.

Ethernet is not fit for all environments. Some other protocols are known to be more reliable
in industrial environments. If need be, the designers may wish to replace Ethernet with one
of the known industrial networking interfaces, such as RS485, DeviceNet, ARCnet,
Modbus, Profibus, or Interbus.

For compactness and speed, designers may wish to implement the DAQ, control, and
SYSM modules in a single physical device, such as a CompactPCI chassis with a separate
card for each module.

For management purposes, it may be simpler to implement the UI modules as X terminals.
In this configuration, the UI modules would act only as display and input terminals. All
computational load would be carried out on the SYSM module, which would be the X
application host.

If the system is not very large and the process being controlled is relatively small, it may
make sense to combine the DAQ, control, and SYSM modules into a single sufficiently
powerful computer.

If one network link isn't sufficient for the traffic generated by the DAQ module, it may make
sense to add another link that would be dedicated to data transfers only.

Since it is more and more frequent to keep process data for quality assurance purposes,
the SYSM module may run a database. This database would store information regarding
the various operations of the system along with data recorded by the DAQ module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other variations are also possible, depending on the system's requirements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 Design and Implementation Methodology

Designing and implementing an embedded Linux system can be carried out in a defined manner.
The process includes many tasks, some of which may be carried out in parallel, hence reducing
overall development time. Some tasks can even be omitted, if a distribution is being used.
Regardless of the actual tools or methodology you use, Chapter 2 is required reading for all tasks
involved in building an embedded Linux system.

While designing and implementing your embedded Linux system, use the worksheet provided in
Appendix A to record your system's characteristics. It includes a section to fully describe each
aspect of your embedded system. This worksheet will help your team keep track of the system's
components and will help future maintainers understand how the system was originally built. In
fact, a properly completed worksheet should be sufficient for people outside your team to rebuild
the entire system without any assistance.

Given that the details of the tasks involved in building embedded Linux systems sometimes
change with the updating of the software packages involved, visit this book's web site
(http://www.embeddedtux.org/) from time to time for updates.

1.4.1 Creating a Target Linux System

A target Linux system is created by configuring and bundling together the appropriate system
components. Programming and development aspects are a separate subject, and are discussed
later in this chapter.

There are four main steps to creating a target Linux system:

Determine system components

Configure and build the kernel

Build root filesystem

Set up boot software and configuration

Determining system components is like making a shopping list before you go to the grocery store.
It is easy to go without a shopping list and wonder at all the choices you have, as many do with
Linux. This may result in "featurism," whereby your system will have lots and lots of features but
won't necessarily fulfill its primary purpose. Hence, before you go looking at all the latest Linux
gizmos available, sit down and write a list of what you need. I find this approach helps in focusing
development and avoids distractions such as: "Look honey, they actually have salami ice cream."
This doesn't mean that you shouldn't change your list if you see something pertinent. It is just a
warning about the quantity of software available for Linux and the inherent abundance of choices.

Chapter 3 discusses the hardware components that can be found as part of an embedded Linux
system. This should provide you with enough background and maybe even ideas of what
hardware you can find in an embedded Linux system. As Linux and surrounding software are ever
evolving targets, use this and further research on the Net to find out which design requirements
are met by Linux. In turn, this will provide you with a list of items you need to develop to complete
your system. This step of development is the only one that cannot be paralleled with other tasks.
Determining system requirements and Linux's compliance to these requirements has to be
completed before any other step.

Because of the ever evolving nature of Linux, you may feel the need to get the latest and greatest
pieces of software for your design. Avoid doing this, as new software often needs testing and may

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pieces of software for your design. Avoid doing this, as new software often needs testing and may
require other software to be upgraded because of the dependencies involved between packages.
Hence, you may find yourself locked in a frantic race to keep up with the plethora of updates.
Instead, fix the bugs with the current software you have and keep track of other advances so that
the next generation projects you design can profit from these advances. If you have an important
reason to upgrade a software component, carefully analyze the consequences of such an
upgrade on the rest of your system before actually carrying out the upgrade. You may also want
to test the upgrade on a test system before applying it to your main system.

Having determined which features are pertinent to your design, you can select a kernel version
and relevant configuration. Chapter 5 covers the configuration and build process of the kernel.
Unlike other pieces of software, you may want to keep updating your kernel to the latest stable
version throughout your project's development up until the beta stage. Though keeping the kernel
version stable throughout the development cycle may seem simple, you may find yourself trying to
fix bugs that have been fixed in more recent kernels. Keeping yourself up to date with recent
kernel developments, as we discuss in Chapter 5, will help you decide whether updating to the
most recent kernel is best for you. Also, you may want to try newer kernels and roll back to older
ones if you encounter any serious problems. Note that using kernels that are too old may cut you
off from community support, since contributors can rarely afford keep answering questions about
old bugs.

Regardless of whether you decide to follow kernel updates, I suggest you keep the kernel
configuration constant throughout the project. This will avoid completed parts from breaking in the
course of development. This involves studying the configuration options closely, though, in light of
system requirements. Although this task can be conducted in parallel with other tasks, it is
important that developers involved in the project be aware of the possible configuration options
and agree with the options chosen.

Once configuration is determined, it is time to build the kernel. Building the kernel involves many
steps and generates more than just a kernel image. Although the generated components are not
necessary for some of the other development aspects of the project, the other project
components tend to become more and more dependent on the availability of the kernel
components as the project advances. It is therefore preferable to have the kernel components
fully configured and built as early as possible, and kept up to date throughout the project.

In parallel to handling the kernel issues, you can start building the root filesystem of the
embedded system, as explained in Chapter 6. The root filesystem of an embedded Linux system
is similar to the one you find on a workstation or server running Linux, except that it contains only
the minimal set of applications, libraries, and related files needed to run the system. Note that you
should not have to remove any of the components you previously chose at this stage to obtain a
properly sized root filesystem. In fact, if you have to do so, you probably did not determine system
components adequately. Remember that this earlier stage should include an analysis of all
system requirements, including the root filesystem size. You should therefore have as accurate as
possible an estimate of the size of each component you selected during the first step of creating
the target system.

If you are unable to predetermine the complete list of components you will need in your
embedded system and would rather build your target root filesystem iteratively by adding the tools
and libraries you need as you go along, then do so, but do not treat the result as your final root
filesystem. Instead, use the iterative method to explore the building of root filesystems and then
apply your experience into building a clean root filesystem for your target system. The reason
behind this is that the trial and error nature of the iterative method makes its completion time
nondeterministic. The structured approach may require more forethought, but its results are
known and can be the basis for additional planning.

Setting up and configuring the storage devices and the bootloader software are the remaining
tasks in creating a target Linux system. Chapters Chapter 7, Chapter 8, and Chapter 9 discuss

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tasks in creating a target Linux system. Chapters Chapter 7, Chapter 8, and Chapter 9 discuss
these issues in full. It is during these steps that the different components of the target system
come together: the bootloader, the root filesystem, and the kernel. As booting is highly dependent
on the architecture, different bootloaders are involved. Within a single architecture there are also
variations in the degree of debugging and monitoring provided by the bootloaders. The
methodology to package and boot a system is fairly similar among the different architectures, but
varies according to the permanent storage device from which the system is booted and the
bootloader used. Booting a system from native flash, for instance, is different from booting a
system from a DiskOnChip or CompactFlash device, and is even more different from booting from
a network server.

1.4.2 Setting Up and Using Development Tools

Software development for embedded systems is different from software development for the
workstation or server environments. Mainly, the target environment is often dissimilar to the host
on which the development is conducted. Hence the need for a host/target setup whereby the
developer develops his software on the host and downloads it onto the target for testing. There
are two aspects to this setup: development and debugging. Such a setup, however, does not
preclude you from using Linux's multiarchitecture advantage to test your target's applications on
your host with little or no modification. Though not all applications can be tested in this way,
testing target applications on the host will generally save you a lot of time.

Embedded development is discussed in Chapter 4. Prior to testing any code on the target system,
it is necessary to establish a host/target connection. This will be the umbilical cord by which the
developer will be able to interact with the target system to verify whether the applications he
develops function as prescribed. As the applications cannot typically run on bare hardware, there
will have to be a functional embedded Linux system on the target hardware already. Since it is
often impossible to wait for the final target setup to be completed to test target applications, you
can use a development target setup. The latter will be packaged much more loosely and will not
have to respect the size requirements imposed on the final package. Hence, the development
root filesystem may include many more applications and libraries than will be found in the final
root filesystem. This also allows different and larger types of permanent storage devices during
development.

Obtaining such a setup necessitates compiling the target applications and libraries. This is
achieved by configuring or building the various compiler and binary utilities for cross-
development. Using these utilities, you can build applications for the target and therefore build the
development target setup used for further development. With this done, you can use various
Integrated Development Environments (IDEs) to ease development of the project components
and other tools such as CVS to coordinate work among developers.

Given the horsepower found on some embedded systems, some developers even choose to
carry out all development directly on the target system. In this setup, the compiler and related
tools all run on the target. This, in effect, combines host and target in a single machine and
resembles conventional workstation application development. The main advantage of such a
configuration is that you avoid the hassle of setting up a host/target environment.

Whatever development setup you choose, you will need to debug and poke at your software in
many ways. You can do this with the debugging tools covered in Chapter 11. For simple
debugging operations, you may choose to use ad hoc methods such as printing values using
printf(). Some problems require more insight into the runtime operations of the software being
debugged; this may be provided by symbolic debugging. gdb is the most common general-
purpose debugger for Linux, but symbolic debugging on embedded systems may be more
elaborate. It could involve such things as remote serial debugging, kernel debugging, and BDM
and JTAG debugging tools. But even symbolic debugging may be inadequate in some situations.
When system calls made by an application are problematic or when synchronization problems
need to be solved, it is better to use tracing tools such as strace and LTT. For performance
problems, there are other tools more adapted to the task, such as gprof and gcov. When all else
fails, you may even need to understand kernel crashes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4.3 Developing for the Embedded

One of the main advantages of using Linux as an embedded OS is that the code developed for
Linux should run identically on an embedded target as on a workstation, right? Well, not quite.
Although it is true that you can expect your Linux workstation code to build and run the same on
an embedded Linux system, embedded system operations and requirements differ greatly from
workstation or server environments. Whereas you can expect errors to kill an application on a
workstation, for instance, leaving the responsibility to the user to restart the application, you can't
afford to have this sort of behavior in an embedded system. Neither can you allow applications to
gobble up resources without end or behave in an untimely manner.[11] Therefore, even though the
APIs and OS used may be identical, there are fundamental differences in programming
philosophies.

[11] Normal Linux workstation and server applications should not gobble up resources either. In fact, the most
important applications used on Linux servers are noteworthy for their stability, which is one reason Linux is so
successful as a server operating system.

1.4.4 Networking

Networking enables an embedded system to interact with and be accessible to the outside world.
In an embedded Linux environment, you have to choose networking hardware, networking
protocols, and the services to offer while accounting for network security. Chapter 10 covers the
setup and use of networking services such as HTTP, Telnet, SSH, and/or SNMP. One interesting
aspect in a network-enabled embedded system is the possibility of remote updating, whereby it is
possible to update the system via a network link without on-site intervention. This is covered in
Chapter 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Basic Concepts
As we saw in the previous chapter, there is a rich variety of embedded Linux systems. There are
nevertheless a few key characteristics that apply uniformly to most embedded Linux systems. The
purpose of this chapter is to present to you the basic concepts and issues that you are likely to
encounter when developing any sort of embedded Linux system.

Many of the subjects introduced here are discussed in far greater detail in other chapters. They
are introduced here to give you a better sense of how the entire system comes together.

The chapter starts by discussing the types of hosts most commonly used for developing
embedded Linux systems, the types of host/target development setups, and the types of
host/target debug setups. These sections are meant to help you select the best environment for
developing embedded Linux systems or, if the environment is already specified and can't be
changed, understand how your particular setup will influence the rest of your development effort.
The chapter then presents details of the structure commonly found in most embedded Linux
systems. I present the generic architecture of an embedded Linux system, I explain the system
startup, the types of boot configurations, and the typical system memory layout.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Types of Hosts

In Chapter 3, I cover the hardware most commonly found in embedded Linux targets. Each
possible target system can be developed by a wide variety of hosts. In the following, I discuss the
types of hosts most commonly used, their particulars, and how easy it is to develop embedded
Linux systems using them.

2.1.1 Linux Workstation

This is the most common type of development host for embedded Linux systems. It is also the
one I recommend, because developing embedded Linux systems requires that you become quite
familiar with Linux and there is no better way of doing this than using it for your everyday work.

A standard PC is your most likely Linux workstation. Do not forget, nonetheless, that Linux runs
on a variety of hardware and that you are not limited to using a PC. I, for example, regularly use
an Apple PowerBook running Linux for my embedded work. It lacks an RS232 serial port, but this
is easily fixed by adding a USB serial dongle.

You may use any of the standard Linux distributions such as Debian, Mandrake, Red Hat, SuSE,
or Yellow Dog on your host. In fact, I assume you are running a common distribution throughout
this book. As I said in Chapter 1, you do not need an embedded Linux distribution to develop
embedded Linux systems. This book provides you with all the necessary information to build your
own development environment.

Though I've made an effort to keep the text host-distribution independent,
the instructions in this book are slightly tilted towards Red Hat-type
distributions. You may therefore need to make minor modifications to a
few commands, depending on the distribution installed on your host.
Wherever possible, distribution-dependent commands are presented as
such.

Of course, the latest and fastest hardware is every engineer's dream. Having the fastest machine
around will certainly help you in your work, but you can still use a relatively mild-powered machine
with appropriate RAM for this type of development. Remember that Linux is very good at making
the best of the available hardware. I, for instance, often use a Pentium II 350MHz system with 128
MB of RAM for development.

What you will need in large quantity, however, is storage space, both disk space and RAM. In
addition to the space used by your distribution, you should plan for 2 to 3 GB of disk space, if not
more, for your development environment and project workspace. An uncompressed kernel source
tree, for example, which is one of the many components you will have in your project workspace,
uses more than 100 MB of space before compilation. After compilation, this grows even further. If
you are experimenting with three or four kernels at the same time, you can therefore easily use up
to 500 MB of disk space for kernel work alone.

As for RAM, some of the GNU toolchain compilation steps require large amounts of it, especially
during the build of the C library. I recommend 128 MB of RAM and 128 MB of swap space for the
host.

2.1.2 Unix Workstation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Depending on your circumstances, you may be required to use a traditional Unix workstation.
Solaris workstations, for instance, are very common among telecommunication solutions
developers. Although the use of such workstations is much less common than the use of Linux
workstations for developing embedded Linux systems, it is still feasible.

Because Linux itself is very much like Unix, most of what applies to Linux also applies to Unix.
This is especially true when it comes to the GNU development toolchain, since the main GNU
tools such as the compiler, the C library, and the binary utilities (more commonly known as
binutils) were developed and used on traditional Unix systems even before Linux existed.

Therefore, the descriptions that follow in the rest of this book should also work fine on any Unix
workstation. I say "should" because there may be slight differences that you may have to resolve
on your own. The recommendations I gave above for a Linux workstation in regards to storage
space apply to Unix workstations as well.

2.1.3 Windows (2000, NT, 98, etc.) Workstation

Almost a decade ago, embedded system development shifted towards Windows workstations.
Many developers have since become used to working on this platform and many new developers
have been initiated to embedded systems development on it. For these and other reasons some
developers would like to continue using Windows workstations for, ironically, developing
embedded Linux systems.

At first glance, it would seem that the main problem with this platform is the availability and use of
the GNU development toolchain. This is not a problem, because Red Hat provides the Cygwin
environment, which is the Windows-compatible GNU toolchain, and some people have used it to
build cross-platform tools for Linux. Mumit Khan has detailed the procedure to build a cross-
platform development toolchain for an i386 Linux target on a Windows host at
http://www.nanotech.wisc.edu/~khan/software/gnu-win32/cygwin-to-linux-cross-howto.txt.
Although attempts to use this procedure for other Linux targets have not been "officially" reported,
there are no obvious reasons for it to fail.

If you really need to continue using a Windows workstation and would like to have an easy way of
working in a Linux environment to develop a Linux target, you may want to use emulation and
virtualization software such as VMWare or Connectix. In this case, you can run Linux in a virtual
environment while your main workstation is still Windows.

Remember, however, that by continuing to use Windows for your everyday work, you are not
getting to know Linux's intricacies. You may, therefore, find it difficult to understand some of the
problems you encounter on your Linux target. Also, you may need to get the latest in workstation
power and space requirements to get an adequate work environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 Types of Host/Target Development Setups

Three different host/target architectures are available for the development of embedded Linux
systems: the linked setup, the removable storage setup, and the standalone setup. Your actual
setup may belong to more than one category or may even change categories over time,
depending on your requirements and development methodology.

2.2.1 Linked Setup

In this setup, the target and the host are permanently linked together using a physical cable. This
link is typically a serial cable or an Ethernet link. The main property of this setup is that no
physical hardware storage device is being transferred between the target and the host. All
transfers occur via the link. Figure 2-1 illustrates this setup.

Figure 2-1. Host/target linked setup

As illustrated, the host contains the cross-platform development environment, which we will
discuss in Chapter 4, while the target contains an appropriate bootloader, a functional kernel, and
a minimal root filesystem.

Alternatively, the target can use remote components to facilitate development. The kernel could,
for instance, be available via Trivial File Transfer Protocol (TFTP). The root filesystem could also
be NFS-mounted instead of being on a storage media in the target. Using an NFS-mounted root
filesystem is actually perfect during development, because it avoids having to constantly copy
program modifications between the host and the target, as we'll see in Section 2.6.

The linked setup is the most common. Obviously, the physical link can also be used for
debugging purposes. It is, however, more common to have another link for debugging purposes,
as we shall see in Section 2.3. Many embedded systems, for instance, provide both Ethernet and
RS232 link capabilities. In such a setup, the Ethernet link is used for downloading the executable,
the kernel, the root filesystem, and other large items that benefit from rapid data transfers
between the host and the target, while the RS232 link is used for debugging.

2.2.2 Removable Storage Setup

In this setup, there are no direct physical links between the host and the target. Instead, a storage
device is written by the host, is then transferred into the target, and is used to boot the device.
Figure 2-2 illustrates this setup.

Figure 2-2. Host/target removable storage setup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with the previous setup, the host contains the cross-platform development environment. The
target, however, contains only a minimal bootloader. The rest of the components are stored on a
removable storage media, such as a CompactFlash IDE device or any other type of drive, which
is programmed on the host and loaded by the target's minimal bootloader upon startup.

It is possible, in fact, that the target may not contain any form of persistent storage at all. Instead
of a fixed flash chip, for instance, the target could contain a socket where a flash chip could be
easily inserted and removed. The chip would be programmed by a flash programmer on the host
and inserted into the socket in the target for normal operation.

This setup is mostly popular during the initial phases of embedded system development. You may
find it more practical to move on to a linked setup once the initial development phase is over, so
you can avoid the need to physically transfer a storage device between the target and the host
every time a change has to be made to the kernel or the root filesystem.

2.2.3 Standalone Setup

Here, the target is a self-contained development system and includes all the required software to
boot, operate, and develop additional software. In essence, this setup is similar to an actual
workstation, except the underlying hardware is not a conventional workstation but rather the
embedded system itself. Figure 2-3 illustrates this setup.

Figure 2-3. Host/target standalone setup

Contrary to the other setups, this setup does not require any cross-platform development
environment, since all development tools run in their native environment. Furthermore, it does not
require any transfer between the target and the host, because all the required storage is local to
the target.

This type of setup is quite popular with developers building high-end PC-based embedded
systems, such as high-availability systems, since they can use standard off-the-shelf Linux
distributions on the embedded system. Once development is done, they then work at trimming
down the distribution and customizing it for their purposes. Although this gets developers around
having to build their own root filesystems and configure the systems' startup, it requires that they
know the particular distribution they are using inside out. If you are interested in this approach,
you may want to take a look at Running Linux and, if you plan to use Red Hat, Learning Red Hat
Linux, both published by O'Reilly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 Types of Host/Target Debug Setups

There are basically three types of interfaces that developers use to link a target to a host for
debugging: a serial line, a networking interface, and special debugging hardware. Each
debugging interface has its own benefits and applications. We will discuss the detailed use of
some of these interfaces in Chapter 11. This section briefly reviews the benefits and
characteristics of each type.

Using a serial link is the simplest way to debug a target from a host, because serial hardware is
simple and is often found, in some form or another, in embedded systems. There are two
potential problems in using a serial link, however. First, the speed of most serial links is rather
limited. Second, if there's only one serial port in the embedded system or if the serial link is the
embedded system's only external interface, it becomes impossible to debug the system and
interact with it using a terminal emulator at the same time. The absence of terminal interaction is
not a problem in some cases, however. When debugging the startup of the kernel using a remote
kernel debugger, for example, no terminal emulator is required, since no shell actually runs on the
target until the kernel has finished booting.

The use of a networking interface, such as TCP/IP over Ethernet, provides much higher
bandwidth than a serial link. Moreover, the target and the host can use many networking
connections over the same physical network link. Hence, you can continue to interact with the
target while debugging applications on it. You can also debug over a networking link while
interacting with the target using a terminal emulator over the embedded system's serial port.
However, the use of a networking interface implies the presence of a networking stack. Since the
networking stack is found in the Linux kernel, a networking link cannot be used to debug the
kernel itself. In contrast, kernel debugging can be and is often carried out over a serial link.

Both the use of a serial link and the use of a networking interface requires that some minimal
software be taking care of the most primitive I/O hardware available on the target. In some cases,
such as when porting Linux to a new board or when debugging the kernel itself, this assumption
does not hold. In those case, it is necessary to use a debugging interface that provides direct
hardware control over the software. There are several ways to achieve this, but most are quite
expensive.

Currently, the preferred way to obtain direct control over hardware for debugging purposes is to
use a BDM or JTAG interface. These interfaces rely on special BDM or JTAG functionality
embedded in the CPU's silicon. By connecting a special debugger to the JTAG or BDM pins of the
CPU, you can take complete control of its behavior. For this reason, JTAG and BDM are often
used when bringing up new embedded boards or debugging the Linux kernel on such boards.

Though the BDM and JTAG debuggers are much less expensive and much less complicated, in
terms of their technical operation, than In-Circuit Emulators (ICEs), they still require the purchase
of special hardware and software.[1] Often, this software and hardware is still relatively expensive
because CPU manufacturers are not keen to share the detailed information regarding the use of
the JTAG and BDM interfaces included in their products. Obtaining this information often involves
establishing a trust relationship with the manufacturer and signing stringent NDAs.

[1] Have a look at some of the books listed in Appendix B if you are not familiar with the various hardware tools
commonly used for debugging embedded systems, including ICEs.

Though it would probably be too expensive to equip each member of an engineering team with
her own BDM or JTAG debugger, I highly recommend that you have at least one such debugger
available throughout your project for debugging the very difficult problems that a serial or
networking debugger cannot deal with appropriately. When selecting such a debugger, however,
you may want to evaluate its compatibility with the GNU development toolchain. Some BDM and
JTAG debuggers, for instance, require the use of specially modified gdb debuggers. A good BDM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JTAG debuggers, for instance, require the use of specially modified gdb debuggers. A good BDM
or JTAG debugger should be able to deal with the standard GNU development toolchain, and the
binary files generated using it, transparently.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 Generic Architecture of an Embedded Linux System

Since Linux systems are made up of many components, let us take a look at the overall
architecture of a generic Linux system. This will enable us to set each component in context and
will help you understand the interaction between them and how to best take advantage of their
assembly. Figure 2-4 presents the architecture of a generic Linux system with all the components
involved. Although the figure abstracts to a high degree the content of the kernel and the other
components, the abstractions presented are sufficient for the discussion. Notice that there is little
difference in the following description between an embedded system and a workstation or server
system, since Linux systems are all structured the same at this level of abstraction. In the rest of
the book, however, emphasis will be on the details of the application of this architecture in
embedded systems.

Figure 2-4. Architecture of a generic Linux system

There are some broad characteristics expected from the hardware to run a Linux system. First,
Linux requires at least a 32-bit CPU containing a memory management unit (MMU).[2] Second, a
sufficient amount of RAM must be available to accommodate the system. Third, minimal I/O
capabilities are required if any development is to be carried out on the target with reasonable
debugging facilities. This is also very important for any later troubleshooting in the field. Finally,
the kernel must be able to load and/or access a root filesystem through some form of permanent
or networked storage. See Section 1.2.1 for a discussion of typical system configurations.

[2] As we'll see below, a specially modified version of Linux called uClinux does run on some CPUs that aren't
equipped with MMUs. The development of applications for Linux on such processors differs, however, sufficiently from
standard Linux application development to require a separate discussion. I will therefore not cover the use of Linux on
MMU-less architectures.

Immediately above the hardware sits the kernel. The kernel is the core component of the
operating system. Its purpose is to manage the hardware in a coherent manner while providing
familiar high-level abstractions to user-level software. As with other Unix-like kernels, Linux drives
devices, manages I/O accesses, controls process scheduling, enforces memory sharing, handles
the distribution of signals, and tends to other administrative tasks. It is expected that applications
using the APIs provided by a kernel will be portable among the various architectures supported by
this kernel with little or no changes. This is usually the case with Linux, as can be seen by the
body of applications uniformly available on all architectures supported by Linux.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Within the kernel, two broad categories of layered services provide the functionality required by
applications. The low-level interfaces are specific to the hardware configuration on which the
kernel runs and provide for the direct control of hardware resources using a hardware-
independent API. That is, handling registers or memory pages will be done differently on a
PowerPC system and on an ARM system, but will be accessible using a common API to higher-
level components of the kernel, albeit with some rare exceptions. Typically, low-level services will
handle CPU-specific operations, architecture-specific memory operations, and basic interfaces to
devices.

Above the low-level services provided by the kernel, higher-level components provide the
abstractions common to all Unix systems, including processes, files, sockets, and signals. Since
the low-level APIs provided by the kernel are common among different architectures, the code
implementing the higher-level abstractions is almost constant regardless of the underlying
architecture. There are some rare exceptions, as stated above, where the higher-level kernel
code will include special cases or different functions for certain architectures.

Between these two levels of abstraction, the kernel sometimes needs what could be called
interpretation components to understand and interact with structured data coming from or going to
certain devices. Filesystem types and networking protocols are prime examples of sources of
structured data the kernel needs to understand and interact with to provide access to data going
to and coming from these sources.

Disk devices have been and still are the main storage media for computerized data. Yet disk
devices, and all other storage devices for that matter, themselves contain little structure. Their
content may be addressable by referencing the appropriate sector of a cylinder on a certain disk,
but this level of organization is quite insufficient to accommodate the ever changing content of
files and directories. File-level access is achieved using a special organization of the data on the
disk where file and directory information is stored in a particular fashion so that it can be
recognized when it is read again. This is what filesystems are all about. Through the evolution of
OSes in time, however, many different incompatible filesystems have seen the light of day. To
accommodate these existing filesystems and the new ones being developed, the kernel has a
number of filesystem engines that can recognize a particular disk structure and retrieve or add
files and directories from this structure. The engines all provide the same API to the upper layers
of the kernel so that accesses to the various filesystems are identical even though accesses to
the lower-layer services vary according to the structure of the filesystem. The API provided to the
virtual filesystem layer of the kernel by, for instance, the FAT filesystem and the ext2 filesystem is
identical, but the operations both will conduct on the block device driver will differ according to the
respective structures used by FAT and ext2 to store data on disk.

During its normal operation, the kernel requires at least one properly structured filesystem, the
root filesystem. It is from this filesystem that the kernel loads the first application to run on the
system. It also relies on this filesystem for future operations such as module loading and providing
each process with a working directory. The root filesystem may either be stored and operated on
from a real hardware storage device or loaded into RAM during system startup and operated on
from there. As we'll see later, the former is becoming much more popular than the latter with the
advent of facilities such as the JFFS2 filesystem.

You'd expect that right above the kernel we would find the applications and utilities making up and
running on the OS. Yet the services exported by the kernel are often unfit to be used directly by
applications. Instead, applications rely on libraries to provide familiar APIs and abstract services
that interact with the kernel on the application's behalf to obtain the desired functionality. The
main library used by most Linux applications is the GNU C library. For embedded Linux systems,
substitutes to this library can be used, as we'll see later, to compensate for the GNU C library's
main deficiency, its size. Other than the C library, libraries such as Qt, XML, or MD5 provide
various utility and functionality APIs serving all sorts of purposes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Libraries are typically linked dynamically with applications. That is, they are not part of the
application's binary, but are rather loaded into the application's memory space during application
startup. This allows many applications to use the same instance of a library instead of each
having its own copy. The C library found on a the system's filesystem, for instance, is loaded only
once in the system RAM, and this same copy is shared among all applications using this library.
But note that in some situations in embedded systems, static linking, whereby libraries are part of
the application's binary, is preferred to dynamic linking. When only part of a library is used by one
or two applications, for example, static linking will help avoid having to store the entire library on
the embedded system's storage device.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 System Startup

Three main software components participate in system startup: the bootloader, the kernel, and
the init process. The bootloader is the first software to run upon startup and is highly dependent
on the target's hardware. As we'll see in Chapter 9, there are many bootloaders available for
Linux. The bootloader will conduct low-level hardware initialization and thereafter jump to the
kernel's startup code.

The early kernel startup code differs greatly between architectures and will conduct initialization of
its own before setting up a proper environment for the running of C code. Once this is done, the
kernel jumps to the architecture-independent start_kernel() function, which initializes the high-
level kernel functionality, mounts the root filesystem, and starts the init process.

I will not cover the details of the kernel's internal startup and initialization, because they have
already been covered in detail in Chapter 16 of Linux Device Drivers (O'Reilly). Also, Appendix A
of Understanding the Linux Kernel (O'Reilly) provides a lengthy description of the startup of PC-
based systems from the initial power-on to the execution of the init process. That discussion
covers the kernel's internal startup for the x86.

The rest of the system startup is conducted in user space by the init program found on the root
filesystem. We will discuss the setup and configuration of the init process in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6 Types of Boot Configurations

The type of boot configuration chosen for a system greatly influences the selection of a
bootloader, its configuration, and the type of software and hardware found in the host. A network
boot configuration, for example, requires that the host provide some types of network services to
the target. In designing your system, you first need to identify the boot configurations you are
likely to use during development and in the final product. Then, you need to choose a bootloader
or a set of bootloaders that will cater to the different types of boot setups you are likely to use. Not
all bootloaders, for example, can boot kernels from disk devices. In the following, I will cover the
possible boot configurations. Let us start, nevertheless, by reviewing some boot basics.

All CPUs fetch their first instruction from an address preassigned by their manufacturer. Any
system built using a CPU has one form or another of solid state storage device at that location.
Traditionally, the storage device was a masked ROM, but flash chips are increasingly the norm
today.[3] The software on this storage device is responsible for bootstrapping the system. The
level of sophistication of the boot software and the extent to which it is subsequently used as part
of the system's operation greatly depends on the type of system involved.

[3] Masked ROMs continue to be used when devices are produced in very large quantities. Consumer gaming devices
such as consoles, for example, often use masked ROMs.

On most workstations and servers, the boot software is responsible only for loading the operating
system from disk and for providing basic hardware configuration options to the operator. In
contrast, there are very few agreed upon purposes, if any, for boot software in embedded systems
because of the diversity in purposes of embedded applications. Sometimes, the boot software will
be the very software that runs throughout the system's lifetime. The boot software may also be a
simple monitor that loads the rest of the system software. Such monitors can then provide
enhanced debugging and upgrading facilities. The boot software may even load additional
bootloaders, as is often the case with x86 PCs.

Embedded Linux systems are as diverse as their non-Linux counterparts. Embedded Linux
systems are characterized, nevertheless, by the requirement to load a Linux kernel and its
designated root filesystem. How these are loaded and operated, as we'll see, largely depends on
the system's requirements and, sometimes, on the state of its development, as described in
Section 2.2.

There are three different setups used to bootstrap an embedded Linux system: the solid state
storage media setup, the disk setup, and the network setup. Each setup has its own typical
configurations and uses. The following subsections discuss each setup in detail.

We will discuss the setup and configuration of specific bootloaders for each applicable setup
described below in Chapter 9.

2.6.1 Solid State Storage Media

In this setup, a solid state storage device holds the initial bootloader, its configuration parameters,
the kernel, and the root filesystem. Though the development of an embedded Linux system may
use other boot setups, depending on the development stage, most production systems contain a
solid state storage media to hold all the system's components. Figure 2-5 shows the most
common layout of a solid state storage device with all the system components.

Figure 2-5. Typical solid state storage device layout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

No memory addresses are shown in Figure 2-5, because the ranges vary greatly. Intuitively, you
may think that addresses are lower on the left and grow towards the right. However, there are
cases where it is the inverse and the bootloader is at the top of the storage device address range
instead of the bottom. For this reason, many flash devices are provided in both top-boot and
bottom-boot configurations. Depending on the configuration, the flash region where the
bootloader is found often has special protection mechanisms to avoid damage to the bootloader if
a memory write goes astray. In top-boot flash devices, this protected region is located at the top
of the device's address range, and in bottom-boot flash devices, it is located in the bottom of the
device's address range.

Although Figure 2-5 shows the storage device separated into four different parts, it may contain
fewer parts. The boot parameters may be contained within the space reserved for the bootloader.
The kernel may also be on the root filesystem. This, however, requires that the bootloader be able
to read the root filesystem. Also, the kernel and the root filesystem could be packaged as a single
image that is uncompressed in RAM before being used. Depending on the capabilities provided
by your bootloader, there may even be other possible configurations, each with its advantages
and disadvantages. Usually, a setup can be categorized using the following criteria: flash memory
use, RAM use, ease of upgrading, and bootup time.

Boot storage media are initially programmed using a device programmer or the CPU's integrated
debug capabilities, such as JTAG or BDM. Once the device is initially programmed, it can be
reprogrammed by the system designer using the bootloader, if it provides this capability, or using
Linux's MTD subsystem. The system may also contain software that enables the user to easily
update the storage device. We will discuss the programming of solid state storage media in
Chapter 7.

2.6.2 Disk

This is the setup you are probably most familiar with because of its widespread use in
workstations and servers. Here, the kernel and the root filesystem are located on a disk device.
The initial bootloader either loads a secondary bootloader off the disk or fetches the kernel itself
directly from the disk. One of the filesystems on the disk is then used as the root filesystem.

During development, this setup is particularly attractive if you would like to have a large number of
kernel and root filesystem configurations for testing. If you plan to develop your embedded system
using a customized mainstream distribution, for instance, this setup is helpful. If you are using a
hard disk or a device mimicking a hard disk, such as CompactFlash, in your production system,
this boot setup is probably the best choice.

Because this scheme is well known and well documented, we will only discuss it briefly in Chapter
9.

2.6.3 Network

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this setup, either the root filesystem or both the kernel and the root filesystem are loaded via a
network link. In the first case, the kernel resides on a solid state storage media or a disk, and the
root filesystem is mounted via NFS. In the second case, only the bootloader resides on a local
storage media. The kernel is then downloaded via TFTP, and the root filesystem is mounted via
NFS. To automate the location of the TFTP server, the bootloader may also use BOOTP/DHCP.
In that case, the target does not need any preset IP addresses to find either the TFTP server or
the NFS server.

This setup is ideal in early stages of development, because it enables the developer to share data
and software rapidly between his workstation and the target without having to reprogram the
target. Software updates can then be compiled on the host and tested immediately on the target.
In contrast, few production systems use this setup, because it requires the presence of a server.
In the case of the control system described in Chapter 1, nevertheless, this setup actually can be
used for some of the devices, because the SYSM module already provides network services.

Obviously, this setup involves configuring the server to provide the appropriate network services.
We will discuss the configuration of these network services in Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7 System Memory Layout

To best use the available resources, it is important to understand the system's memory layout,
and the differences between the physical address space and the kernel's virtual address space.[4]

Most importantly, many hardware peripherals are accessible within the system's physical address
space, but have restricted access or are completely "invisible" in the virtual address space.

[4] What I call here "virtual address" is known in x86 jargon as "logical address" and can have other names on other
architectures.

To best illustrate the difference between virtual and physical address spaces, let's take a closer
look at one component of the example system. The user interface modules, for instance, can be
easily implemented on the StrongARM-based iPAQ PDA. Figure 2-6 illustrates the physical and
virtual memory maps of an iPAQ running the Familiar distribution. Note that the regions illustrated
are not necessarily proportional to their actual size in memory. If they were, many of them would
be too small to be visible.

Figure 2-6. Physical and virtual memory maps for the Compaq iPAQ

The physical map of a system is usually available with the technical literature accompanying your
hardware. In the case of the iPAQ, the StrongARM manual, the SA-1110 Developer's manual, is
available from Intel's web site.

The physical map is important, because it provides you with information on how to configure the
kernel and how to develop custom drivers. During the kernel's configuration, for instance, you
may need to specify the location of the flash devices in your system. During development, you
may also need to write a driver for a memory-mapped peripheral. You will also need to provide
your bootloader with information regarding the components it has to load. For these reasons, it is
good practice to take the time to establish your system's physical memory map before starting
software development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the iPAQ, the flash storage is divided in two. The first part contains the bootloader and starts
at the lowest memory address available. Given the bootloader's size, this region is rather small.
The rest of the flash storage space is occupied by the system's root filesystem, which in the case
of Familiar, is a JFFS2 filesystem. In this case, the kernel is actually on the root filesystem. This is
possible, because the bootloader has enough understanding of JFFS2 to find the kernel on the
filesystem.

Upon startup, the bootloader reads the kernel from the root filesystem into the system's RAM and
jumps to the kernel's start routines. From there on, the rest of the system startup is carried out by
Linux.

Once Linux is running,[5] the programs use virtual addresses. In contrast to the physical memory
map, the layout of the virtual memory map is of secondary importance for kernel configuration or
device driver development. For device driver development, for instance, it is sufficient to know
that some information is located in kernel space and some other information is located in user
space, and that appropriate functions must be used to properly exchange data between the two.

[5] I assume that you are using MMU-equipped hardware. This discussion does not hold if you are using a Linux
variant for MMU-less processors.

The virtual memory layout is mostly important in helping you understand and debug your
applications. As you can see in Figure 2-6, the kernel occupies a quarter of the virtual address
space starting from address 0xC0000000. This region is also known as "kernel space." The rest
of the address space is occupied by application-specific text, data, and library mappings. This is
also known as "user space." Whereas the kernel is always located above the 0xC0000000 mark
for all applications, applications' memory maps may differ even on the same system.

To reconstruct a process' virtual memory map, you need to look at the maps file in the process'
PID entry in the /proc filesystem. For more details on how to get this information, see the Chapter
20 in Understanding the Linux Kernel (O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Hardware Support
Having covered the basics of embedded Linux systems, including generic system architecture, we
will now discuss the embedded hardware supported by Linux. I will first cover the processor
architectures supported by Linux that are commonly used in embedded systems. Next, I will cover
the various hardware components involved, such as buses, I/O, storage, general-purpose
networking, industrial-grade networking, and system monitoring. Although I include many different
components, I have omitted components not typically used in embedded configurations.

Note that the following discussion does not attempt to analyze the pros and cons of one hardware
component or another. Use it, rather, as a starting point for your research in either identifying the
components to include in your system or judging the amount of effort needed to get Linux to run
on the hardware you have already chosen.

Also, the following does not cover the software made available by the various hardware vendors
to support their hardware. It covers only hardware supported by the open source and free
software communities. Some vendors may provide closed-source drivers for their hardware. If you
intend to use such hardware, keep in mind that you will have no support from the open source
and free software development community. You will have to refer to the vendor for any problems
related or caused by the closed-source drivers. Open source and free software developers have
repeatedly refused to help anyone that has problems when using closed-source drivers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1 Processor Architectures

Linux runs on a large number of architectures, but not all these architectures are actually used in
embedded configurations, as I said above. The following discussion looks at each architecture in
terms of the support provided by Linux to the CPUs belonging to that architecture and the boards
built around those CPUs. It also covers the intricacies of Linux's support and any possible
caveats. I will not cover the MMU-less architectures supported by uClinux, however. Though the
code maintained by this project has been integrated late in the 2.5 development series, it remains
that the development of the uClinux branch and the surrounding software has its own
particularities. If you are interested in an MMU-less architecture to run Linux, you are invited to
take a closer look at the uClinux project web site at http://www.uclinux.org/. uClinux currently
supports Motorola MMU-less 68K processors, MMU-less ARM, Intel's i960, Axis' Etrax, and other
such processors.

3.1.1 x86

The x86 family starts with the 386 introduced by Intel in 1985 and goes on to include all the
descendants of this processor, including the 486 and the Pentium family, along with compatible
processors by other vendors such as AMD and National Semiconductor. Intel remains, though,
the main reference in regards to the x86 family and is still the largest distributor of processors of
this family. Lately, a new trend is to group traditional PC functionality with a CPU core from one of
the 386 family processors to form a System-on-Chip (SoC). National Semiconductor's Geode
family and ZF Micro Devices' ZFx86 are part of this SoC trend.

Although the x86 is the most popular and most publicized platform to run Linux, it represents a
small fraction of the traditional embedded systems market. In most cases, designers prefer ARM,
MIPS, and PowerPC processors to the i386 for reasons of complexity and overall cost.

That said, the i386 remains the most widely used and tested Linux platform. Thus, it profits from
the largest base of software available for Linux. Many applications and add-ons start their lives on
the i386 before being ported to the other architectures supported by Linux. The kernel itself was in
fact written for the i386 first before being ported to any other architecture.

Since most, if not all, i386 embedded systems are very similar, or identical to the workstation and
server counterparts in terms of functionality and programmability, the kernel makes little or no
difference between the various x86 CPUs and related boards. When needed, a few #ifdef
statements are used to accommodate the peculiarities of a certain CPU or board, but these are
rare.

The i386-based PC architecture is the most widely documented architecture around. There are
many different books and online documents in many languages discussing the intricacies of this
architecture. This is in addition to the documents available from the various processor vendors,
some of which are very complete. To get an idea of the scope of the existing documentation, try
searching for "pc architecture" in the book section of Amazon.com. It would be hard to
recommend a single source of information regarding the i386 and PC architecture. Intel
Architecture Software Developer's Manual, Volume 1: Basic Architecture, Volume 2: Instruction
Set Reference, and Volume 3: System Programming Guide published by Intel are traditionally rich
sources of information about how to program the i386s, albeit limited to Intel's products. The
availability of these documents may vary. At some point, hardcopies were not available from
Intel's literature center. During that time, however, the documents were available in PDF format
online. At the time of this writing, the manuals are available in hardcopy from Intel's literature
center.

Regarding the PC architecture itself, a source I've found useful over time is a package of DOS
shareware called HelpPC,[1] which contains a number of documents describing the intricacies and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shareware called HelpPC,[1] which contains a number of documents describing the intricacies and
operations of various components of the PC architecture. Another useful manual with similar
information is The PC Handbook by John Choisser and John Foster (Annabooks). Note that your
particular setup's technical configuration may differ slightly from the information provided by the
various sources. Refer to your hardware's documentation for exact information.

[1] A search on the web for "HelpPC" should rapidly point you to an appropriate URL where you can download the
package. Although the document files included with the shareware have a special format allowing them to be read by
the DOS HelpPC utility, these documents are plain text files that can be read with any usual editor in Linux.

3.1.2 ARM

The ARM, which stands for Advanced RISC Machine, is a family of processors maintained and
promoted by ARM Holdings Ltd. Contrary to other chip manufacturers such as IBM, Motorola, and
Intel, ARM Holdings does not manufacture its own processors. Instead, ARM designs the CPU
cores for its customers based on the ARM core, charges customers licensing fees on the design,
and lets them manufacture the chip wherever they see fit. This offers various advantages to the
parties involved, but it does create a certain confusion to the developer approaching this
architecture for the first time, as there does not seem to be a central producer of ARM chips on
the market. There is, though, one unifying characteristic that is important to remember: all ARM
processors share the same ARM instruction set, which makes all variants fully software
compatible. This doesn't mean that all ARM CPUs and boards can be programmed and set up in
the same way, only that the assembly language and resulting binary codes are identical for all
ARM processors. Currently, ARM CPUs are manufactured by Intel, Toshiba, Samsung, and many
others. The ARM architecture is very popular in many fields of application and there are hundreds
of vendors providing products and services around it.

At the time of this writing, Linux supports 10 distinct ARM CPUs, 16 different platforms, and more
than 200 related boards. Given the quantity and variety of information involved, I refer you to the
complete and up-to-date list of ARM systems supported and their details at
http://www.arm.linux.org.uk/developer/machines/. Suffice it to say that Linux supports most
mainstream CPUs and boards, such as Intel's SA1110 StrongARM CPUs and Assabet
development boards. In case you need it, there is a method to add support for new hardware.
Generally, for any information regarding the Linux ARM port, consult the project's web site at
http://www.arm.linux.org.uk/.

In addition to the kernel port to the ARM, many projects have geared up for ARM support. First,
hard real-time support is available from the RTAI project and a StrongARM RTLinux port is
available at http://www.imec.be/rtlinux/. In addition, Java support is available from the Blackdown
project.[2] There is however no kernel debugger, since most developers who need to debug the
kernel on an ARM system use a JTAG debugger.

[2] The Blackdown project is the main Java implementation for Linux and is located at http://www.blackdown.org/.
When evaluating the level of Java support provided for the other architectures, it is the level of support provided by the
Java run-time environment packages available from the Blackdown project that will be my main reference. There may
be commercial Java solutions other than the Blackdown project for any of the architectures discussed, but they are not
considered here as they aren't open source. A more in-depth discussion of Linux's Java support is carried out in
Chapter 4.

For any information regarding the ARM architecture and its instruction set, consult the ARM
Architecture Reference Manual edited by David Seal (Addison Wesley), and Steve Furber's ARM
System-on-Chip Architecture (Addison Wesley). Contrary to other vendors, ARM does not provide
free manuals for its chips. These are the only reference manuals currently available for the ARM.
Although the ARM Architecture Reference Manual isn't as mature as technical documentation
provided by other processor vendors, it is sufficient for the task. Because individual chip
manufacturers are responsible for developing the chips, they provide specific information such as
timing and mechanical data regarding their own products. Intel, for example, provides online
access to manuals for its StrongARM implementation.

3.1.3 IBM/Motorola PowerPC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PowerPC architecture is the result of a collaboration between IBM, Motorola, and Apple. It
inherited ideas from work done by the three firms, especially IBM's Performance Optimization
With Enhanced RISC (POWER) architecture, which still exists. The PowerPC is mostly known for
its use in Apple's Macs, but there are other PowerPC-based workstations from IBM and other
vendors as well as PowerPC-based embedded systems. The popular TiVo system, for instance,
is based on an embedded PowerPC processor.

Along with the i386 and the ARM, the PowerPC (PPC) is a very well supported architecture in
Linux. This level of support can be partly seen by looking at the large number of PPC CPUs and
systems on which Linux runs.

To provide compatibility with the various PPC hardware, each type of PPC architecture has its
own low-level functions grouped in files designated by architecture. There are such files, for
example, for CHRP, Gemini, and PReP machines. Their names reflect the architectures, such as
chrp_pci.c or gemini_pci.c. In a similar fashion, the kernel accounts for the embedded versions of
the PPC, such as IBM's 4xx series and Motorola's 8xx series.

In addition, a great number of applications that run on the i386 are available for the PPC. Both
RTLinux and RTAI, for instance, support the PPC. There is also support for Java, and OpenOffice
has been ported to the PPC. The PPC Linux community is active in many areas of development
ranging from workstation to embedded systems. The main PPC Linux site is
http://penguinppc.org/. This site is maintained by community members and is not affiliated with
any particular vendor. It contains valuable documentation and links and should be considered the
starting point for any Linux development on the PPC. There is also http://www.linuxppc.org/,
which is affiliated with the LinuxPPC distribution. This site was the initial home of the efforts to
port Linux to to the PPC. While I'm discussing distributions, it is worth noting that there are a
number that support the PPC, some exclusively. LinuxPPC and Yellow Dog Linux, for example,
provide Linux only for PPC machines. There are also traditional mainstream distributions that
provide support for the PPC as part of their support for other architectures. These include
Mandrake, Debian, and SuSE.

If you intend to use the PPC in your embedded application and want to be in touch with other folks
using this architecture in their systems, be sure to subscribe to the very active linuxppc-
embedded list. Most problems are recurring, so there is probably someone on that list that has
had your problem before. If not, many people will be interested to see your problem solved, as
they may encounter it, too. The list is hosted on linuxppc.org, which hosts many other PPC-
related lists.

Early on, the companies behind the PPC agreed upon a standard system architecture for
developing boards based on the chip. This was initially provided through the PowerPC Reference
Platform (PReP), which was eventually replaced by the Common Hardware Reference Platform
(CHRP). Documentation on CHRP is available in the book entitled PowerPC Microprocessor
Common Hardware Reference Platform: A System Architecture guide (Morgan Kaufmann
Publishers), available online at http://www.rs6000.ibm.com/resource/technology/chrp/.
Documentation on the 32-bit versions of the PowerPC is available from both IBM and Motorola
through a manual entitled PowerPC Microprocessor Family: Programming Environments for 32-bit
Microprocessors. This manual is available online in the technical documentation sections of both
companies' web sites and in hardcopy for free from Motorola through the literature center section
of its web site.

3.1.4 MIPS

The MIPS is the brain child of John Hennessey, mostly known by computer science students all
over the world for his books on computer architecture written with David Patterson, and is the
result of the Stanford Microprocessor without Interlocked Pipeline Stages project (MIPS). MIPS is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result of the Stanford Microprocessor without Interlocked Pipeline Stages project (MIPS). MIPS is
famed for having been the basis of the workstations and servers sold by SGI and of gaming
consoles such as Nintendo's 64-bit system and Sony Playstations 1 and 2. But it is also found in
many embedded systems. Much like the ARM, the company steering MIPS, MIPS Technologies
Inc., licenses CPU cores to third parties. Unlike the ARM, however, there are many instruction set
implementations, which differ from each other to various degrees. 32-bit MIPS implementations
are available from IDT, Toshiba, Alchemy, and LSI. 64-bit implementations are available from
IDT, LSI, NEC, QED, SandCraft, and Toshiba.

The initial port of Linux to MIPS was mainly done to support MIPS-based workstations.
Eventually, the port also came to include development boards and embedded systems based on
MIPS. To accommodate the various CPUs and systems built around them, the layout of the MIPS
portion of the kernel is divided into directories based on the type of system the kernel will run on.
Similarly, kernel configuration for a given MIPS system is mainly influenced by the type of board
being used. The actual type of MIPS chip on the board is much less important.

Looking around, you will find that support for Linux on MIPS is limited when compared to other
architectures such as the i386 or the PowerPC. In fact, few of the main distributions have actually
been ported to MIPS. When available, commercial vendor support for MIPS is mostly limited to
embedded architectures. Nevertheless, there is a Debian port to both big endian and little endian
MIPS, and a port of Red Hat 7.1 is also available. Also, many PDA and development board
manufacturers actively support Linux ports on their MIPS-based hardware. As with some other
ports, MIPS lacks proper Java support. Hard real-time support is however available for some
MIPS boards from the RTAI project.

In addition to conventional MIPS-based machines, an entirely different set of processors is based
on NEC's VR chips for the purpose of running WindowsCE. A number of developers were
interested in having Linux running on these devices, and hence started new projects for the
purpose. These projects have advanced rapidly and have come to occupy a large portion of the
Linux-on-MIPS development.

For more information regarding the MIPS port of Linux in general, take a look at the official home
of the Linux MIPS port at http://www.linux-mips.org/. The web site contains a list of supported
systems, documentation, links, and other useful resources. For information on the VR and other
PDA-related efforts on MIPS, check out the Linux VR page at http://linux-vr.org/. If you're looking
into working with Linux on MIPS, I suggest you take a look at both sites. There are also
commercial embedded distributions that provide extensive support for some MIPS boards.
Depending on the board you choose and your development model, that may be a practical way to
get Linux up and running on a MIPS system.

Because MIPS is divided into multiple platforms, you will need to refer to the data provided by
your system's manufacturer to evaluate and/or implement Linux support. One general resource
that is recommended on MIPS Technologies Inc.'s own web site is See MIPS run by Dominic
Sweetman (Morgan Kaufmann Publishers). You can also get PDFs on MIPS's web site. MIPS
provides 32- and 64-bit editions of their MIPS Architecture for Programmers three volume series,
made up of Volume I: Introduction to the MIPS Architecture, Volume II: The MIPS instruction set,
and Volume III: The MIPS Privileged Resource Architecture.

3.1.5 Hitachi SuperH

In an effort to enhance its 8- and 16-bit H8 line of microcontrollers, Hitachi introduced the SuperH
line of processors. These manipulate 32-bit data internally and offer various external bus widths.
Later, Hitachi formed SuperH Inc. with STMicroelectronics (formerly SGS-Thomson
Microelectronics). SuperH Inc. licenses and heads the SuperH much the same way ARM
Holdings Ltd. steers the ARM and MIPS Technologies Inc. steers the MIPS. The early
implementations of the SuperH, such as the SH-1, SH-2, and their variants, did not have an
MMU. Starting with the SH-3, however, all SuperH processors include an MMU. The SuperH is
used within Hitachi's own products, in many consumer-oriented embedded systems such as
PDAs, and the Sega Saturn and Dreamcast game consoles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As the early SuperH (SH) processors did not include MMUs, they are not supported by Linux.
Currently, both the SH-3 and SH-4 are supported by Linux. However, not all SH-3 and SH-4
systems are supported by Linux, as there are many variations with various capabilities. Linux
supports the 7707, 7708, and 7709 SH-3 processors and the 7750, 7751, and ST40 SH-4
processors. Accordingly, Linux supports a number of systems that use these processors,
including the Sega Dreamcast. Although discontinued, this system is a great platform to practice
with to become familiar with non-i386 embedded Linux systems. An SH-5 port is also in the
works, though it is not yet part of the main kernel tree. For more information on this port, visit the
project's web site at http://www.superh-software.com/linux/.

Support for the SH outside the kernel is rather limited for the moment. There is no support for
Java, for instance, although the architecture has a kernel debugger. There is also an RTLinux
port to the SH-4 created by Masahiro Abe of A&D Co. Ltd., but this port is not part of the main
Open RTLinux distributed by FSMLabs. The port can be found at
ftp://ftp.aandd.co.jp/pub/linuxsh/rtlinux/current/. There are no SH distributions either. There are,
however, many developers actively working to increase the level of support provided for this
architecture by Linux, including a Debian port. Accordingly, there are a number of web sites that
host Linux SH-related documentation, resources, and software. The two main ones are
http://linuxsh.sourceforge.net/ and http://www.m17n.org/linux-sh/.

As there is no standard SH architecture, you will need to refer to your hardware's documentation
for details about the layout and functionality of the hardware. There are, nonetheless, manuals
that describe the operations and instruction set of the various processors. The SH-3's operation is
described in Hitachi SuperH RISC engine SH-3/SH-3E/SH3-DSP Programming Manual, and the
SH-4's operation is described in SuperH RISC engine SH-4 Programming Manual. Both
resources are available through Hitachi's web site.

3.1.6 Motorola 68000

The Motorola 68000 family is known in Linux jargon as m68k and has been supported in its MMU-
equipped varieties for quite some time, and in its MMU-less varieties starting with the 2.5
development series. The m68k came in second only to the x86 as a popular 1980s architecture.
Apart from being used in many popular mainstream systems by Atari, Apple, and Amiga, and in
popular workstation systems by HP, Sun, and Apollo, the m68k was also a platform of choice for
embedded systems development. Recently, though, interest has drifted away from the m68k to
newer architectures such as ARM, MIPS, SH, and PowerPC for embedded systems design.

Linux supports many systems based on the m68k, starting with the mainstream and workstation
systems already mentioned and including VME systems from Motorola and BVM. Because these
systems are completely different from each other, the kernel tree is built to accommodate the
variations and facilitate the addition of other m68k-based systems. Each system has its own set of
specific modules to interface with the hardware. An example of this is the interrupt vector tables
and related handling functions. Each system has a different way of dealing with these, and the
kernel source reflects this difference by having a different set of functions to deal with interrupt
setup and handling for each type of system.

Since the MMU versions of the m68k are seldom used nowadays in new, cutting-edge designs,
they lag behind in terms of software support. There is, for instance, no hard real-time support and
no Java support. Nor is the processor architecture listed among supported architectures for other
user-level applications such as OpenOffice. For up-to-date information regarding the port, the
supported hardware, and related resources, refer to the m68k Linux port homepage at
http://www.linux-m68k.org/. One distribution that has done a lot work for the m68k is Debian.
Check out their documentation and mailing lists if you plan to deploy an m68k-based embedded
Linux system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since there is no standard m68k-based platform such as the PC for the i386, there is no single
reference covering all m68k-based systems. There are, however, many textbooks and online
resources that discuss the traditional use of the m68k and its programming. Motorola provides the
68000 Family Programmer's Reference Manual and the M68000 8-/16-/32-Bit Microprocessors
User's Manual free through its literature center. Other, more elaborate, texts that include
examples and applications can be found by looking for "68000" on any online bookstore.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 Buses and Interfaces

The buses and interfaces are the fabric that connects the CPU to the peripherals that are part of
the system. Each bus and interface has its own intricacies, and the level of support provided by
Linux to the different buses and interfaces varies accordingly. The following is a rundown of the
buses and interfaces found in embedded systems and a discussion of their support by Linux.
Linux supports many other buses, such as SBus, NuBus, TurboChannel, and MCA, but these are
workstation or server-centric.

3.2.1 ISA

The Industry Standard Architecture (ISA) bus was designed for and occupied the core of PC-AT
architecture. It was odd even for its time, as it did not provide many of the facilities other buses
offered, including ease of mapping into normal processor physical address space. Its simplicity,
however, favored the proliferation of many devices for the PC, which, in turn, favored the use of
PCs in embedded applications.

ISA devices are mostly accessed through the I/O port programming already available in the x86's
instruction set. Therefore, the kernel does not need to do any work to enable device drivers to use
the bus. Instead, the various device drivers access the appropriate I/O ports directly using the
in/out assembly functions. Although the kernel provides support for Plug and Play (PNP) devices,
this capability is of little use for embedded applications. Instead, embedded systems that do need
to support hardware variations will be based on buses that support runtime hardware addition and
removal, such as CompactPCI, PCMCIA, and USB. The kernel also supports Extended ISA
(EISA) devices, but this bus has not been very popular and has been superseded by the PCI bus.

Information regarding the ISA bus can be found in many places. The PC Handbook and HelpPC
mentioned above are good quick references for port numbers and their operation. ISA System
Architecture by Anderson and Shanley (Addison Wesley) is an in-depth explanation of the
operation of the ISA bus and related hardware. Also, Linux Device Drivers by Rubini and Corbet
(O'Reilly) contains details about ISA programming in Linux.

3.2.2 PCI

The Peripheral Component Interconnect (PCI) bus, managed by the PCI Special Interest Group
(PCI-SIG), is arguably the most popular bus currently available. Designed as a replacement for
ISA, it is used in combination with many different architectures, including the PPC and the MIPS,
to build different types of systems, including embedded devices.

Unlike ISA, PCI requires software support to enable it to be used by device drivers. The first part
of this support is required to initialize and configure the PCI devices upon bootup. On PC
systems, this is traditionally done by the BIOS. However, the kernel is capable of carrying out this
task itself. If the BIOS has carried out the initialization, the kernel will browse the BIOS's table to
retrieve the PCI information. In both cases, the kernel provides device drivers with an API to
access information regarding the devices on the PCI bus and act on these devices. There are
also a number of user tools for manipulating PCI devices. In short, the level of support for PCI in
Linux is fairly complete and mature.

The Linux Device Drivers book mentioned above provides very good insight about PCI
development in Linux and how the PCI bus operates in general. The PCI System Architecture
book by Shanely and Anderson (Addison Wesley) gives in-depth information on the PCI bus for
software developers. Of course, you can always get the official PCI specification from the PCI-
SIG. Official specifications, however, tend to make for very dry reading material. Finally, there is
the Linux PCI-HOWTO, available from the Linux Documentation Project (LDP) at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Linux PCI-HOWTO, available from the Linux Documentation Project (LDP) at
http://www.tldp.org/, which discusses the caveats of using certain PCI devices with Linux and the
support provided to PCI devices by Linux in general.

3.2.3 PCMCIA

Personal Computer Memory Card International Association (PCMCIA) is both the common name
of a bus and the name of the organization that promotes and maintains related standards. Since
the publication of the initial standard, which supported only 16-bit cards, other standards have
been published, including the 32-bit CardBus and the USB CardBay specifications. When part of
an embedded system, PCMCIA renders it flexible and easy to extend. On the iPAQ, for instance,
it enables users to connect to a LAN using a wireless networking card. In other systems, it makes
large permanent storage space available through the use of CompactFlash cards.

The extent of Linux support for PCMCIA can be confusing. First and foremost, there is the main
Linux PCMCIA project, which is hosted on SourceForge at http://pcmcia-cs.sourceforge.net/ and
is maintained by David Hinds. The package made available by this project supports a large
number of cards, listed at http://pcmcia-cs.sourceforge.net/ftp/SUPPORTED.CARDS. Linux
support for PCMCIA is quite mature for the i386 architecture and available in part for the PPC, but
unfortunately, it's still in its infancy for other chips at the time of this writing. Apart from the
package maintained by Hinds, the official kernel contains support for a portion of the PCMCIA
cards supported by the Hinds' package. The developers' intent is to have the official kernel
become the main source for PCMCIA support. Until then, the best choice is to use Hinds'
distribution for production systems. It includes the necessary system tools to configure the
automatic loading and unloading of the appropriate PCMCIA device drivers when a card is
inserted or removed from a PCMCIA slot.

Apart from the official PC Card Standard available from the PCMCIA association itself, there are a
number of books on PCMCIA. However, before investigating those works, you should read the
Linux PCMCIA Programmer's Guide written by Hinds and available on the PCMCIA project's web
site. This guide includes references to books that provide more information regarding PCMCIA.

3.2.4 PC/104

Although simple, the ISA bus is not well adapted to the rugged environments where embedded
systems are deployed. The PC/104 form factor was introduced to address the shortcomings of
ISA's mechanical specification. PC/104 provides a bus whose electrical signals are identical to
those of the ISA bus, but with a different mechanical specification that is more adapted to
embedded system development by providing ease of extensibility and ruggedness. Instead of
using slots where cards are inserted, as in a regular ISA setup, PC/104 specifies the use of pin
connectors. When PCI became popular, the PC/104+ specification was introduced to provide a
PCI-signal-compatible bus as an addition to the PC/104 specification. Both PC/104 and PC/104+
are managed by the PC/104 Consortium, which includes more than a 100 member companies.

The PC/104 is identical to ISA and the PC/104+ is identical to both ISA and PCI from the signal
perspective and, therefore, from the software's perspective. Therefore, Linux requires no special
functionality to support these buses. However, this does not mean that Linux supports all PC/104
and PC/104+ devices. As with any other ISA or PCI device, you should seek exact information
about Linux compatibility with the PC/104 device you are evaluating.

3.2.5 VME

The VME[3] bus is largely based on Motorola's VERSA backplane bus, which was developed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VME[3] bus is largely based on Motorola's VERSA backplane bus, which was developed
specifically for the 68000 in 1979. At the time, VERSA was competing with buses such as
Multibus, STD, S-100, and Q-bus, although it is rarely used today. Striving to provide a new bus
that would be microprocessor independent, Motorola, Mostek, and Signetics agreed that the three
companies would support a new bus. This came to be the VME bus based on the VERSA's
electrical signals and the Eurocard mechanical form factor. In the Eurocard form factor, VME
boards are loaded vertically into a VME chassis and connected to its backplane using pin
connectors, unlike common computer boards that use edge connectors inserted into slots. Since
its introduction, the VME bus has become widely adopted as the preferred bus for building
powerful and rugged computers. One factor that has helped the VME bus' popularity is that it is
an open standard that isn't controlled by any single organization.

[3] Although "officially" the letters VME mean nothing, it has been revealed by an engineer taking part in the
discussions between the three companies that it is short for "VERSA Module Eurocard."

As the VME bus can accommodate multiple VME boards, each with its own CPU and OS, no
central OS controls the bus. Instead, arbitration is used to permit a board to become bus master
momentarily to conduct its operations. The job of Linux on a VME board is therefore to interact
properly with its VME hardware interface to obtain the appropriate functionality.

There are currently two active Linux VME projects. The first aims at providing Motorola 68K-
based boards with Linux support and can be found at http://www.sleepie.demon.co.uk/linuxvme/.
Although the work of this project has since largely been integrated into the main kernel tree, the
project's site is still the main resource for recent developments and news. The second project
aims at providing Linux support for all VME boards, regardless of their CPU. It is called the
VMELinux Project and can be found at http://www.vmelinux.org/. In each case, support is
provided for each board individually. The supported boards are listed on each project's web site.
So, when assessing whether your VME board is supported by Linux, you should look for support
for the exact model you have. If the board you've chosen isn't supported yet, support for other
board models will help provide you with examples on how to implement support for your VME
board in Linux.

In addition to these two projects, a couple of software and hardware vendors provide Linux
support for additional VME hardware within their own distributions. The kernel maintained by
DENX Software Engineering and available from their web site using CVS, for example, provides
support for various PPC-based boards not supported by the VMELinux project.

From the Linux perspective, the Linux VME HOWTO is available on the LDP's web site. The
VMEbus International Trade Association (VITA) web site contains a number of recommended
publications regarding the VME bus in general and the related standards. Missing from this list,
though of interest, is John Black's The Systems Engineer's Handbook: A guide to building
VMEbus and VXIbus systems.

3.2.6 CompactPCI

The CompactPCI specification was initiated by Ziatech and was developed by members of the
PCI Industrial Computer Manufacturer's Group (PICMG), which oversees the specification and
promotes the use of CompactPCI. The CompactPCI specification provides an open and versatile
platform for high-performance, high-availability applications. Its success is largely based on the
technical choices made by its designers. First, they chose to reuse the Eurocard form-factor
popularized by VME. Second, they chose to make the bus PCI-compatible, hence enabling
CompactPCI board manufacturers to reuse low-cost PCI chips already available in the
mainstream market.

Technically, the CompactPCI bus is electrically identical to the PCI bus. Instead of using slot
connections, as found in most workstations and servers, pin connectors are used to connect the
vertically loaded CompactPCI boards to the CompactPCI backplane, much like VME. As with PCI,
CompactPCI requires a single bus master,[4] in contrast with VME, which could tolerate multiple

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CompactPCI requires a single bus master,[4] in contrast with VME, which could tolerate multiple
bus masters, as explained earlier. Consequently, CompactPCI requires the permanent presence
of a board in the system slot. It is this board that arbitrates the CompactPCI backplane, just as a
PCI chipset would arbitrate a PCI bus in a workstation or a server.

[4] The term "bus master" can mean different things in different contexts. In this particular instance, "bus master"
designates the device that sets up and configures the PCI bus. There can be only one such device on a PCI bus,
though more than one device on a PCI bus may actually be able to access the memory regions exported by other PCI
devices.

In addition, the CompactPCI specification allows for the implementation of the Hot Swap
specification, which describes methods and procedures for runtime insertion and removal of
CompactPCI boards. This specification defines three levels of hot swapping. Each level implies a
set of hardware and software capabilities. Here are the available levels and their requirements:

Basic hot swap

This hot swap level involves console intervention by the system operator. When a new card
is inserted, she must manually inform the OS to power it up and then configure and inform
the software of its presence. To remove a card, she must tell the OS that the board is about
to be removed. The OS must then stop the tasks that are interacting with the board and
inform the board to shut down.

Full hot swap

In contrast to basic hot swap, full hot swap does not require console intervention by the
operator. Instead, the operator flips a microswitch attached to the card injector/ejector to
notify the OS of the impending removal. The OS then performs the necessary operations to
isolate the board and tell it to shut down. Finally, the OS lights an LED to notify the operator
that the board can now be removed. On insertion, the OS carries out the inverse operations
when it receives the appropriate insertion signal.

High Availability

In this level, CompactPCI boards are under complete software control. A hot swap
controller software manages the state of all the boards in the system and can selectively
reverse these individual boards according to the system's state. If a board fails, for
example, the controller can shut it down and power up a duplicate board that is present
within the same chassis for this very purpose. This hot swap level is called "High
Availability," because it is mostly useful in what are known as high-availability
applications,[5] such as telecommunications, where downtime must be minimal.

[5] To avoid any confusion, I will refer to this hot swap level as "High Availability hot swap level" and will
continue to use the "high-availability" adjective to refer to applications and systems who need to provide a
high level of availability, regardless of whether they use CompactPCI or implement the "High Availability hot
swap level."

Linux accommodates the basic CompactPCI specification, through the PCI support it already
provides. Support for dynamic insertion and removal of devices in Linux also exists in different
forms. Primarily, Version 2.4 of the kernel includes the required kernel functionality. The
associated user tools are available through the Linux Hotplugging project at http://linux-
hotplug.sourceforge.net/.

That said, this level of support is insufficient to accommodate all the complexities of CompactPCI
systems. In addition, there are few drivers within the main kernel tree for mainstream
CompactPCI boards, although CompactPCI board manufacturers may provide Linux drivers. This
caveat has led to the emergence of a number of commercial solutions that provide high-
availability Linux solutions on CompactPCI, including Availix's HA Cluster and MontaVista's High
Availability Framework. The ongoing High-Availability Linux Project, found at http://linux-ha.org/,
aims at providing the open source components needed to build high-availability solutions using
Linux. The project isn't restricted to a specific hardware configuration and is, therefore, not
centered around CompactPCI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the future, we may see more open source software accommodating the various complexities of
CompactPCI-based systems, both in terms of hot swap capabilities and in terms of software
support for communication, resource monitoring, cluster management, and other software
components found in high-availability systems. For now, however, if you want to use Linux for a
CompactPCI-based high-availability application, you may need to work with one of the existing
commercial solutions to obtain all the features described by the CompactPCI specification.

Documentation regarding Linux's hotplug capabilities, including how to write hotplug-aware
drivers and how to configure the hotplug management tools, is available through the Linux
Hotplugging project web site. The web site also includes a number of links to relevant information.
Information regarding CompactPCI specifications can be purchased from PICMG.

3.2.7 Parallel Port

Although not a bus in the traditional sense, the parallel port found in many computers can be used
to connect a wide range of peripherals, including hard drives, scanners, and even network
adapters. Linux support for parallel port devices is extensive, both in terms of the drivers found in
the kernel and the ones provided by supporting projects. There is no central authority or project,
however, that directs Linux's support for parallel port devices, since the parallel port is a
ubiquitous component of computer systems. Instead, there are good resources that describe
which devices are supported. These include the Hardware Compatibility HOWTO found at the
LDP and the Linux Parallel Port Home Page found at http://www.torque.net/linux-pp.html. It is
worth noting that Linux supports the IEEE1284 standard that defines how parallel port
communication with external devices is carried out.

As the parallel port can be used for many purposes besides attaching external devices, I will
discuss parallel port programming when explaining the use of the parallel port as in an I/O
interface in Section 3.3.

3.2.8 SCSI

The Small Computer Systems Interface (SCSI) was introduced by Shugart Associates and
eventually evolved into a series of standards developed and maintained by a series of standard
bodies, including ANSI, ITIC, NCITS, and T10. Although mainly thought of as a high-throughput
interface for hard drives for high-end workstations and servers, SCSI is a general interface that
can be used to connect various hardware peripherals. Only a small segment of embedded
systems ever use SCSI devices, though. These systems are typically high-end embedded
systems such as the CompactPCI-based high-availability systems discussed earlier. In those
cases, a CompactPCI SCSI controller inserted in the CompactPCI backplane provides an
interface to the SCSI devices.

If you consider using SCSI in an embedded system, note that although Linux supports a wide
range of SCSI controllers and devices, many prominent kernel developers believe that the
kernel's SCSI code requires major work or even a complete rewrite. This doesn't mean that you
shouldn't use SCSI devices with Linux. It is only a warning so that you plan your project's future
updates in light of such possible modifications to the kernel's SCSI layer. At the time of this
writing, work on the SCSI code has not yet started. It is expected that such work would be
undertaken during the 2.5 development series of the kernel. For now, the SCSI hardware
supported by Linux can be found in the Hardware Compatibility HOWTO from the LDP. As with
the parallel port, there is no single reference point containing all information regarding Linux's
support for SCSI, since the SCSI interface is an established technology with a very large user
base.

Discussion of the kernel's SCSI device drivers architecture can be found at
http://www.torque.net/sg/, at http://www.andante.org/scsi.html, and in the Linux 2.4 SCSI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.torque.net/sg/, at http://www.andante.org/scsi.html, and in the Linux 2.4 SCSI
subsystem HOWTO from the LDP. Information regarding SCSI programming in Linux is available
in the Linux SCSI Programming HOWTO from LDP. This should be the starting point for the
development of any SCSI driver for Linux, along with the Linux Device Drivers book by O'Reilly.
For a broad discussion about SCSI, The Book of SCSI: I/O For The Millennium by Gary Field and
Peter Ridge (No Starch Press) is a good start. As with other standards, there are always official
standards documents provided by the standard bodies, but again, such documentation often
makes for dry reading material.

3.2.9 USB

The Universal Serial Bus (USB) was developed and is maintained by a group of companies
forming the USB Implementers Forum (USB-IF). Initially developed to replace such fragmented
and slow connection interfaces as the parallel and serial ports traditionally used to connect
peripherals to PCs, USB has rapidly established itself as the interface of choice for peripherals by
providing inexpensive ease of use and high-speed throughput. Although mainly a mainstream
device-oriented bus, USB is increasingly appearing in hardware used in embedded systems, such
as SBCs and SoCs from several manufacturers.

USB devices are connected in a tree-like fashion. The root is called the root hub and is usually
the main board to which all USB devices and nonroot hubs are connected. The root hub is in
charge of all the devices connected to it, directly or through secondary hubs. A limitation of this is
that computers cannot be linked in any form of networking using direct USB cabling.[6]

[6] Some manufacturers actually provide some form of host-to-host link via USB, but the standard was not intended to
accommodate this type of setup. There are also USB network adapters, including Ethernet adapters, that can be used
to connect the computers to a common network.

Support within Linux for behaving as a USB root hub[7] is quite mature and extensive, comparing
positively to the commercial OSes that support USB. Although most hardware vendors don't ship
Linux drivers with their USB peripherals, many have helped Linux developers create USB drivers
by providing hardware specifications. Also, as with other hardware components, many Linux
drivers have been developed in spite of their manufacturers' unwillingness to provide the relevant
specifications. The main component of Linux's support for USB is provided by the USB stack in
the kernel. The kernel also includes drivers for the USB devices supported by Linux. User tools
are also available to manage USB devices. The user tools and the complete list of supported
devices is available through the Linux USB project web site at http://www.linux-usb.org/.

[7] Whereby Linux is responsible for all USB devices connected to it.

Support within Linux for behaving as a USB device[8] is limited in comparison to its support for
behaving as a USB root hub. While some systems running Linux, such as the iPAQ, can already
behave as devices, there is no general agreed-upon framework yet for adding USB device
capabilities to the Linux kernel.

[8] Whereby Linux is just another USB device connected to a USB root hub, which may or may not be running Linux.

Development of USB drivers is covered by the Programming Guide for Linux USB Device Drivers
by Detlef Fliegl, available through the Linux USB project web site. The Linux Device Drivers book
also provides guidelines on how to write Linux USB drivers. There are a number of books that
discuss USB, which you can find by looking at the various online bookstores. However, the
consensus among developers and online book critics seems to indicate that the best place to
start, as well as the best reference, is the original USB specification available online from the
USB-IF.

3.2.10 IEEE1394 (FireWire)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FireWire is a trademark owned by Apple for a technology they designed in the late 80s/early 90s.
They later submitted their work to the IEEE and it formed the basis of what eventually became
IEEE standard 1394. Much like USB, IEEE1394 enables devices to be connected using simple
and inexpensive hardware interfaces. Because of their similarities, IEEE1394 and USB are often
considered together. In terms of speed, however, it is clear that IEEE1394's architecture is much
more capable than USB of accommodating throughput-demanding devices, such as digital
cameras and external hard drives. Recent updates to the USB standard have reduced the gap,
but IEEE1394 still has a clear advantage in regards to currently existing high-throughput devices
and future capabilities. Although only a small number of embedded systems actually use
IEEE1394, it is likely that the need for such a technology will increase with the demand in
throughput.

In contrast to USB, IEEE1394 connections do not require a root node. Rather, connections can
be made either in a daisy-chain fashion or using an IEEE1394 hub. Also, unlike SCSI,
connections do not need any termination. It is also possible to connect two or more computers
directly using an IEEE1394, which isn't possible with USB. To take advantage of this capability,
there is even an RFC specifying how to implement IP over IEEE1394. This provides an
inexpensive and high-speed network connection for IEEE1394-enabled computers.

Linux's support for IEEE1394 isn't as extensive as that provided by some commercial OSes, but it
is mature enough to enable the practical, every day use of quite a number of IEEE1394 hardware
devices. The kernel sources contain the code required to support IEEE1394, but the most up-to-
date code for the IEEE1394 subsystem and the relevant user utilities can be found at the
IEEE1394 for Linux project web site at http://www.linux1394.org/. The list of supported devices
can be found in the compatibility section of the web site. The number and types of devices
supported by Linux's IEEE1394 can only increase in the future.

Support for running an IP network over IEEE1394 in Linux is currently in its infancy. In due time,
this may become a very efficient way of debugging embedded Linux systems because of the
quantity of data that can be exchanged between the host and the target.

Documentation on how to use the IEEE1394 subsystem under Linux with supported hardware can
be found on the IEEE1394 for Linux project web site. The web site also includes links to
documentation regarding the various specifications surrounding IEEE1394. The main standard
itself is available from the IEEE and is therefore expensive for a single individual to purchase.
Although the standard will be a must for any extensive work on IEEE1394, the FireWire System
Architecture book by Don Anderson (Addison Wesley) is a good place to start.

3.2.11 GPIB

The General-Purpose Interface Bus (GPIB) takes its roots in HP's HP-IB bus, which was born at
the end of the 1960s and is still being used in engineering and scientific applications. In the
process of maturing, GPIB became the IEEE488 standard and was revised as late as 1992. Many
devices that are used for data acquisition and analysis are, in fact, equipped with a GPIB
interface. With the advent of mainstream hardware in this field of application, many GPIB
hardware adapters have been made available for such mainstream hardware and for PCs in
particular.

GPIB devices are connected together using a shielded cable that may have stackable connectors
at both ends. Connectors are "stackable" in the sense that a connector on one end of a cable has
the appropriate hardware interface to allow for another connector to be attached to it, which itself
allows another connector to be attached. If, for instance, a cable is used to connect a computer to
device A, the connector attached to A can be used to attach the connector of another cable going
from A to device B.

Though the kernel itself does not contain drivers for any GPIB adapter, there is a Linux GPIB
project. The project has had a troubled history, however. It started as part of the Linux Lab
Project[9] found at http://www.linux-lab.org/. After some initial development and a few releases,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Project[9] found at http://www.linux-lab.org/. After some initial development and a few releases,
which are still available at ftp://ftp.llp.fu-berlin.de/LINUX-LAB/IEEE488/, development stopped.
The package remained unmaintained for a number of years, until Frank Mori Hess recently
restarted the project in a new location, http://linux-gpib.sourceforge.net/, and updated the
package to the 2.4.x kernel series. The package currently provides kernel drivers, a user-space
library compatible with National Instrument's own GPIB library, and language bindings for Perl
and Python. The package supports hardware from HP, Keithley, National Instruments, and other
manufacturers. The complete list of supported hardware is included in the devices.txt file found in
the package's sources and on the project's web site.

[9] The Linux Lab Project is actually much more broad than GPIB. Its aim, as stated on their site, is to provide a
comprehensive set of GPL software tools for all "Linux users dealing with automation, process control, engineering
and scientific stuff."

Using this package, GPIB buses are visible from user space as /dev/gpib0, /dev/gpib1, and so on.
Programming the bus to interface with the attached devices involves knowing their GPIB
addresses. The /etc/gpib.conf file makes it easier to configure the addresses used by the attached
devices. The file must be tailored to match your configuration. The installation and the operation
of the package components are documented along with the GPIB library functions in the Linux-
GPIB User's Guide included with the package.

3.2.12 I2C

Initially introduced by Philips to enable communication between components inside TV sets, the
Inter-Integrated Circuit (I2C) bus can be found in many embedded devices of all sizes and
purposes. As with other similar small-scale buses such as SPI[10] and MicroWire, I2C is a simple
serial bus that enables the exchange of limited amounts of data among the IC components of an
embedded system. There is a broad range of I2C-capable devices on the market, including LCD
drivers, EEPROMs, DSPs, and so on. Because of its simplicity and its hardware requirements,
I2C can be implemented either in software or in hardware.

[10] Though there is some SPI support in Linux, it is limited to a few boards. There is, in fact, no framework providing
architecture-independent SPI support.

Connecting devices using I2C requires only two wires, one with a clock signal, serial clock (SCL),
and the other with the actual data, serial data (SDA). All devices on an I2C bus are connected
using the same wire pair. The device initiating a transaction on the bus becomes the bus master
and communicates with slaves using an addressing scheme. Although I2C supports multiple
masters, most implementations have only one master.

The main kernel tree includes support for I2C, a number of devices that use I2C, and the related
System Management Bus (SMBus). Due to the heavy use of I2C by hardware monitoring sensor
devices, the I2C support pages are hosted on the Linux hardware monitoring project web site at
http://www2.lm-sensors.nu/~lm78/. The site includes a number of links, documentation, and the
most recent I2C development code. Most importantly, it contains a list of the I2C devices
supported along with the appropriate driver to use for each device.

Apart from the documentation included with the kernel about I2C and the links and documentation
available on the hardware sensors web site, information regarding the bus and related
specification can be obtained from Philips' web site at
http://www.semiconductors.philips.com/buses/i2c/. Also of interest in understanding the bus, the
protocol, and its applications is the I2C FAQ maintained by Vincent Himpe, found at
http://www.ping.be/~ping0751/i2cfaq/i2cfaq.htm.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 I/O

Input and output (I/O) are central to the role of any computerized device. As with other OSes,
Linux supports a wide range of I/O devices. The following does not pretend to be a complete run-
down of all of them. For such a compilation, you may want to read through the Hardware
Compatibility HOWTO available from LDP. Instead, the following concentrates on the way the
different types of I/O devices are supported by Linux, either by the kernel or by user applications.

Some of the I/O devices discussed are supported in two forms by the kernel, first by a native
driver that handles the device's direct connection to the system, and second through the USB
layer to which the device may be attached. There are, for instance, PS/2 keyboards and parallel
port printers and there are USB keyboards and USB printers. Because USB has already been
discussed earlier, and in-depth discussion of Linux's USB stack would require a lengthy text of its
own, I will cover only the support provided by Linux to the devices directly attached to the system.
Note, however, that USB drivers for similar devices tend to rely on the infrastructure already
available in Linux to support the native devices. A USB serial adapter driver, for example, relies
on the same facilities as the traditional serial driver, in addition to the USB stack.

3.3.1 Serial Port

The serial port is arguably every embedded system developer's best friend (or her worst enemy,
depending on her past experience with this ubiquitous interface). Many embedded systems are
developed and debugged using an RS232 serial link between the host and the target.
Sometimes, PCBs are laid out to accommodate a serial port, but only development versions of
the boards ever include the actual connector, while production systems are shipped without it.
The simplicity of the RS232 interface has encouraged its wide-spread use and adoption, even
though its bandwidth is rather limited compared to other means of transmission. Note that there
are other serial interfaces besides RS232, some of which are less noise-sensitive and therefore
more adapted to industrial environments. The hardware serial protocol, however, isn't as
important as the actual programming interface provided by the serial device's hardware.

Since RS232 is a hardware interface, the kernel doesn't need to support RS232 itself. Rather, the
kernel includes drivers to the chips that actually enact RS232 communication, Universal
Asynchronous Receiver-Transmitters (UARTs). UARTs vary from one architecture to another,
although some UARTs, such as the 16550, are used on more than one architecture.

The main serial (UART) driver in the kernel is drivers/char/serial.c. Some architectures, such as
the SH, have other serial drivers to accommodate their hardware. Some architecture-independent
peripheral cards also provide serial interfaces. As with other Unix systems, nonetheless, serial
devices in Linux are uniformly accessed as terminal devices, regardless of the underlying
hardware and related drivers. The corresponding device entries start with /dev/ttyS0 and can go
up to /dev/ttyS191. In most cases, however, there are only a handful of serial device entries in a
system's /dev directory.

Serial port basics, setup, and configuration are discussed in the Serial HOWTO available from
LDP. Programming the serial port in Linux is discussed in the Serial Programming HOWTO from
LDP. Since serial port programming is actually terminal programming, any good reference on
Unix systems programming would be a good start. Worthy of note is Richard Stevens' Advanced
Programming in the UNIX Environment, which is one of the most widely recognized works on the
subject of Unix systems programming, including terminal I/O.

3.3.2 Parallel Port

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In comparison to the serial port, the parallel port is seldom an important part of an embedded
system. Unless the embedded system is actually a PC-style SBC, the parallel port is, in fact,
rarely even part of the system's hardware. In some cases, a parallel port is used because the
embedded system has to drive a printer or some sort of external device, but with the advent of
USB and IEEE1394, this use is bound to diminish.

One area of embedded systems development where the parallel port fits quite nicely, however, is
simple multibit I/O. When debugging, for instance, you can easily attach a set of LEDs to the
parallel ports' pins and use those LEDs to indicate a position in the code. The trick is to insert a
set of parallel port output commands in different portions of the code and to use the LEDs to
identify the last position reached prior to machine lockup. This is possible, because the parallel
ports' hardware keeps the last value output to it unchanged regardless of the state of the rest of
the system. The Linux Device Drivers book provides a more detailed description of how to use the
parallel port as a simple I/O interface and how to set up an LED array to display the parallel port's
output.

Linux supports parallel port I/O through a set of three layers. At the middle level is the
architecture-independent parport driver. This driver provides a central management facility for the
parallel port resources. This middle-level driver is not visible from user space and is not
accessible as an entry in the /dev directory. Low-level drivers that control the actual hardware
register their presence with this driver to make their services accessible to higher-level drivers.
The latter may provide a number of different functions. Both low- and middle-level drivers are
found in the drivers/parport directory of the kernel sources.

The most common high-level driver is the line printer driver, which enables user applications to
use a printer directly attached to the system's parallel port. The first line printer device is visible in
user space as /dev/lp0, the second as /dev/lp1, and so on. Some other high-level drivers use the
parallel port as an extension bus to access an external device attached to the system, as
discussed in Section 3.2.7. They all use the parallel port middle-level driver and are visible, in one
way or another, as entries in /dev. Finally, the parallel port itself is accessible natively from user
space via the user-space parallel port driver, which is seen as /dev/parportX, where X is the
number of the parallel port. This latter driver is in the drivers/char/ppdev.c file in the kernel
sources.

Apart from the usual PC architecture references mentioned earlier and the device drivers book,
Linux parallel port subsystem and API are documented in The Linux 2.4 Parallel Port Subsystem
document available from http://people.redhat.com/twaugh/parport/ and in the Documentation
directory of the kernel sources.

3.3.3 Modem

Embedded systems that use a modem to call a data center are quite common. Alarm systems,
bank machines, and remote-monitoring hardware are all examples of embedded systems that
need to communicate with a central system to fulfill their primary purposes. The goals are
different, but all these systems use conventional modems to interface with the POTS (plain old
telephone system) to access a remote host.

Modems in Linux are seen as serial ports, which is very much the same way they are seen across
a variety of OSes, including Unix. As such, they are accessible through the appropriate serial
device /dev entry and are controlled by the same driver as the native serial UARTs, regardless of
whether they are internal or external. This support, however, applies only to real modems.

Recently, a sort of modem called a WinModem has appeared in the PC market. WinModems
contain only the bare minimal hardware that make up a modem and are capable of providing real
modem services only because of software that runs on the OS. As the name implies, these
modems are mainly targeted to systems running Windows. They work fine with that OS, because
their vendors provide the appropriate drivers. With Linux, however, they do not work, because
they don't contain real modem hardware and the kernel can't use its serial driver to operate them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To provide support for these types of (handicapped) devices, a number of projects have sprung
up to develop the necessary software packages. A central authority on these projects is the
Linmodems web site at http://www.linmodems.org/. The site provides documentation, news, and
links to the various WinModem support projects. At the time of this writing, however, there is no
body of code that provides uniform support for the various WinModems.

Real modem setup and operation is described in the Modem HOWTO from the LDP. Linmodem
setup and operation is described in the Linmodem HOWTO from the LDP. Since modems are
serial ports, the documentation mentioned above regarding serial ports also applies to modems.

3.3.4 Data Acquisition

As described in Section 1.3.2.1, DAQ is at the basis of any process automation system. Any
modern factory or scientific lab is filled with DAQ equipment linked, in one way or another, to
computers running data analysis software. Typically, as described earlier, the events occurring in
the real world are measured by means of transducers, which convert a physical phenomenon into
an electrical value. These values are then sampled using DAQ hardware and are thereafter
accessible to software.

There is no standard interface in Unix, or any other OS for that matter, for interfacing with data
acquisition hardware.[11] Comedi, the Linux control and measurement device interface, is the main
package for interfacing with DAQ hardware. Comedi is found at http://www.comedi.org/ and
contains device drivers for a great number of DAQ boards. The complete list of boards supported
is found in the Supported hardware section of the web site.

[11] DAQ hardware may actually take a number of forms. It can be an Ethernet-enabled device, a PCI card, or use
some other type of connection. However, most DAQ devices used with workstations connect through some standard
interface such as ISA, PCI, or PCMCIA.

Along with providing drivers for DAQ hardware, the Comedi project includes Comedilib, a user-
space library that provides a unified API to interface with all DAQ hardware, regardless of model
or manufacturer. This is very useful, because it allows you to develop the analysis software
independently of the underlying hardware, and avoid being locked in to a particular vendor.

Similarly, Kcomedilib, a kernel module providing an API similar to Comedilib, enables other kernel
modules, which could be real-time tasks, to have access to the DAQ hardware.

No discussion about DAQ would be complete without covering some of the most well-known
commercial (proprietary) packages used along with DAQ, such as LabVIEW, Matlab, and
Simulink. Given the popularity of Linux in this field, all three packages have been made available
for Linux by their respective vendors. Note, however, that there are a number of packages in
development that aim at providing open source replacements for these packages. Scilab and
Octave, for instance, are Matlab replacements found at http://www-rocq.inria.fr/scilab/ and
http://www.octave.org/, respectively.

Documentation regarding the installation and configuration of Comedi can be found on the
project's web site along with examples. The site also includes a number of useful links to other
Linux DAQ-related sites. Documentation regarding the closed-source packages can be found on
their vendors' web sites.

Although I haven't covered them, some DAQ hardware vendors do provide drivers for their
hardware, either in open source form or under a proprietary license. When evaluating whether to
use such drivers, it is important to ponder future vendor support so you don't find yourself trapped
with dead and unmaintained code. Even when source is available under an open source or free
software license, be sure to evaluate its quality to ensure that you can actually maintain it if the
vendor decides to drop its support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3.5 Process Control

As with DAQ, process control is at the basis of any process automation system. As I said in
Section 1.3.2.2, there are many ways to control a process, the most common being the use of
PLCs. More recently, mainstream hardware such as PCs have been used for process automation
and control.

Linux can be used for control in many ways. First, you can use serial or parallel ports to drive
external hardware such as step motors. This involves serial and parallel port programming, which
I covered earlier. There is no standard software package to interface with externally controlled
hardware in this manner, such packages or APIs are specific to the application being designed.

Examples of serial or parallel ports for control are readily available both in print and online.
Sometimes these examples are oriented towards the PC running DOS or Windows. In that case,
they need to be adapted to Linux and the facilities it provides. If you need such a port, you will find
the Linux Device Drivers book to be helpful.

Second, external processes can be controlled using specialized boards attached to the computer
through a peripheral bus. In this case, you need a driver specific to the board being used. The
Comedi package mentioned earlier provides support for some control boards. Also, control board
manufacturers are becoming increasingly aware of the demand for Linux drivers for their
hardware and are providing them accordingly.

Last, there is an effort underway to let a standard Linux system replace traditional PLCs. The
project, Machine Automation Tools LinuxPLC (MAT LPLC), located at http://mat.sourceforge.net/,
provides PLC language interpreters, hardware drivers, a PLC module synchronization library,
example modules, and a GUI interface to visualize the controlled process. Building a PLC using
LPLC consists of programming independent modules, either in C or an interpreted language such
as "ladder logic," that are synchronized through LPLC facilities such as shared memory. Because
each module is an independent process, you can add and remove control modules with ease.

The LPLC team provides information regarding the use and programming of their package on
their project's web site. Although the project is still in its early stages, the development team lists
practical examples showing the package's usability in real scenarios.

3.3.6 Home Automation

As with DAQ and process control, home automation is a vast domain. I will not attempt to cover
the basics of home automation or the required background, because other authors have
documented them. If you are new to home automation or would like to have more information
about this field, you can find an extensive list of links and reference material in Dan Hoehnen's
Home Automation Index located at http://www.homeautomationindex.com/.

One technology often used in home automation is X10 Power Line Carrier (PLC)[12] developed in
the 1970s by Pico Electronics in Scotland. Although other protocols have been put forward by
manufacturers, X10 remains the dominant protocol in home automation.

[12] X10 PLC should not be confused with the PLCs used in process automation. These are actual control devices
unrelated to the X10 PLC hardware protocol.

Pico later formed X10 corporation as a joint venture with BSR. To this day, X10 corporation still
sells X10 technology components. In the meantime however, the original X10 patent expired in
1997. Hence, many manufacturers currently provide X10-compatible equipment. The X10 PLC
protocol enables transmitters and receivers to communicate using short RF bursts over power
line wiring. There is therefore no need for additional wiring, because all communication occurs on
the house's existing electrical wiring.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike other fields in which Linux is used, there is no central open source home automation
project for Linux. Instead, there are a number of active projects being developed independently.
Furthermore, there is no particular home automation driver within the kernel. The required
software components are all part of the various packages distributed by the home automation
projects.

The following is a list of Linux-compatible open source home automation projects:

MisterHouse

MisterHouse is a complete home automation solution. It includes a user interface and X10
interface software, can be controlled using a variety of voice recognition packages, and can
interface with voice synthesis software. MisterHouse is entirely written in Perl and can
therefore be used with a number of OSes, including Linux. MisterHouse is available for
download under the terms of the GPL from the project's web site with complete
documentation at http://misterhouse.sourceforge.net/.

ALICE

The Automation Light Interface Control Environment (ALICE) provides a user interface and
software to interact with X10 devices. ALICE is written in Java and runs on any appropriate
JVM, including the Linux JVM available from the Blackdown project. ALICE is distributed
under the terms of the GPL with documentation from the project's web site at
http://jhome.sourceforge.net/.

HEYU!

HEYU! is a command-line utility that enables the control of X10 devices. It is available from
the project's web site at http://heyu.tanj.com/heyu/. HEYU! is distributed under a special
license similar to other open source licenses. You will find the exact wording of the license
in the source files' headers.

Neil Cherry has put together an impressive repertoire of resources and links about home
automation and Linux home automation projects. His Linux Home Automation web site is located
at http://mywebpages.comcast.net/ncherry/. Neil also maintains the Linux Home Automation
project at http://linuxha.sourceforge.net/. It provides a number of links and documentation related
to Linux home automation.

3.3.7 Keyboard

Most embedded systems are not equipped with keyboards. Some may have a limited input
interface, but keyboards are usually considered a luxury found only on traditional workstation and
server configurations. In fact, the idea that an embedded system may have a keyboard would be
viewed as awkward by most traditional embedded system designers. Nonetheless, recent breeds
of web-enabled and consumer-oriented embedded systems have some form of keyboard
attached to them.

As with other Unix-like systems, communication with the user in Linux is done by means of a
terminal, in the Unix tty sense, where a keyboard is used for input and a console for output. This
is of course a simplification of the very complex world of Unix terminal I/O, but it will suffice for the
current discussion. Hence, all keyboard input is considered by the kernel as input to a terminal.
The conversion from the actual data inputted by the user to actual terminal input may involve
many different layers of kernel drivers, but all keyboard input is eventually fed to the terminal I/O
driver.

In a PC, for instance, keyboard input is processed sequentially by the code found in the following
files of the drivers/char directory of the kernel sources: pc_keyb.c, keyboard.c, and tty_io.c. The
last file in the sequence is the terminal I/O driver. For systems based on other architectures, the
Input layer mechanism is usually used. This mechanism specifies a standard way for input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input layer mechanism is usually used. This mechanism specifies a standard way for input
devices such as keyboards, mice, and joysticks to interface with the system. In the case of USB
keyboards, for instance, the input processing sequence is the following, starting from the drivers
directory of the kernel: usb/usbkbd.c, input/keybdev.c, char/keyboard.c, and again, char/tty_io.c.

There are other ways to provide input to a terminal, apart from the use of a physically connected
keyboard. Terminal input is also possible through remote-logging, serial-linking between
computers, and in the case of PDAs, hand-writing recognition software. In each case, accessing
the character input programmatically requires terminal I/O programming.

3.3.8 Mouse

Embedded systems that have a user interface often offer some form of touch-based interaction.
Whether it be a bank terminal or a PDA, the input generated by the user's touch of a screen area
is treated the same way as input from a conventional workstation mouse. In this sense, many
embedded systems have a "mouse." In fact, there are many more embedded systems that
provide a mouse-like pointer interface than there are that provide a keyboard interface.

Since traditional Unix terminals do not account for mouse input, information about the pointer
device's input doesn't follow the same path as data about keyboard activity. Instead, the pointer
device is seen on most Linux systems as /dev/mouse, which itself is often a symbolic link to the
actual pointer device. The device can be polled and read to obtain information regarding the
pointer device's movements and events. Although the name of the entry in /dev where the pointer
is found is usually constant, the format of the data retrieved from the device varies according to
the type of device. There are, in fact, many mouse protocols that define different input formats.
Note that the protocol used by a mouse is not directly tied to its manufacturer or even the type of
physical connection used to link it to the system. This is why the configuration of the X server, for
example, requires the user to specify a protocol for the mouse device. The kernel, on the other
hand, has drivers that manage the actual physical link between the mouse and the system.

Any programming that involves a pointer device would require an understanding of the protocol
used by the device. Fortunately, a number of libraries and environments already have this level of
decoding implemented, and easy-to-use APIs are provided to obtain and react to pointer input.

3.3.9 Display

Blinking lights, LEDs, and alpha-numeric LCDs are the traditional visual apparel of embedded
systems. With the growing incursion of embedded devices in many facets of our daily lives,
including service automation, there is a push to replace such traditional display methods with
visually rich interfaces. In other areas of embedded systems deployment, such as factory
automation or avionics, visually rich interfaces have been the norm for quite a while.

As I mentioned above, traditional Unix systems provide output in the form of terminal consoles.
This, however, is too rudimentary of an interface for today's demands. If nothing else, consoles
can output only text. Other more elaborate interfaces are needed when building graphic
interfaces, which may include some form of windowing system.

With Linux there are many ways to control and program a display. Some of these involve kernel
support, but most rely mainly on code running in user space, hence favoring system stability and
facilitating modularity. The most common way to provide a graphical interface with Linux is, of
course, the X Window System, but there are other packages that may be preferable in certain
circumstances.

3.3.10 Sound

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Beep, Beep, Beep... that's what Sputnik emitted and that's pretty similar to what most embedded
systems still sound like. Even the very graphic-rich avionics and factory automation systems don't
have more sound output, except maybe in terms of decibel. Sound-rich embedded systems are,
however, becoming more and more popular with the proliferation of consumer and service-
oriented devices.

Unix, however, was never designed to accommodate sound. Over the years, a number of
schemes appeared to provide sound support. In Linux, the main sound device is usually /dev/dsp.
Other audio-hardware related devices are also available for other sound capabilities such as
/dev/mixer and /dev/sequencer.

Contrary to many other parts of development in Linux, audio is an area that has yet to mature.
There are two independent projects that provide both support for sound hardware and an API to
program the hardware.

The first, and oldest, is the Open Sound System (OSS) introduced by Hannu Savolainen. Most
sound card drivers found in kernel releases prior to 2.5 are based on the OSS architecture and
API put forth by Hannu. Over the years, these APIs changed and have been "cleaned up" by Alan
Cox. Nonetheless, many consider them to be ill-adapted for modern audio hardware. The OSS
drivers and API are actually a publicly available subset of a commercial product from Hannu's
company, 4Front Technologies, which has broader support for hardware and a richer API.
Documentation regarding OSS programming can be found at http://www.opensound.com/pguide/.

The second audio project is the Advanced Linux Sound Architecture (ALSA). ALSA's aims are to
provide a completely modularized sound driver package and offer a superior environment to OSS,
both in terms of the API and in terms of management infrastructure. In terms of hardware support,
the ALSA project supports hardware not supported by the OSS. Since the ALSA project and all its
components have always been open source, all documentation and source is available online at
the project's web site, http://www.alsa-project.org/.

It was expected that the ALSA project would at some point replace the OSS content in the kernel.
Starting with Linux 2.5, ALSA has indeed been integrated in the kernel, although the OSS drivers
have been kept for the time being. As with other areas of Linux support, audio support varies with
the target architecture. The more mainstream the architecture, the better the support.

3.3.11 Printer

As with many mainstream peripherals, printers don't use usually grace embedded systems. There
are, however, exceptions. An embedded web server that supports printing is an example of an
embedded system that needs an OS with printer support. Traditional embedded system
developers would usually consider "embedded web server" to be an oxymoron, but devices that
provide these types of packaged services are more and more common and involve development
methods similar to those of more constrained embedded devices.

Conventional Unix printer support is rather outdated in comparison to the support provided by
many other OSes. Linux's printer support is, unfortunately, largely based on other Unix printing
systems. There are, nonetheless, a number of projects that aim at facilitating and modernizing
printing services in Linux and Unix in general.

To understand how document printing and printer support is implemented in Linux, let us review
the steps a document generally goes through, starting from the user's print request to the actual
printing of the document by the printer:

1. A user submits a document for printing. This may be done either at the command line or via
a menu in a graphical application; there is little difference between them in Linux. Usually,
printable output of Unix programs is in PostScript (PS) format and is sent as such to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

printable output of Unix programs is in PostScript (PS) format and is sent as such to the
printer. As not all printers available on the market are PS capable, PS output has to be
converted to a format understandable by the actual printer being used. This conversion is
done at a later stage, if necessary.

2. The document, along with the user's print options, is stored in a queue dedicated to a
single printer. This queue may be either local, if the printer is directly attached to the
system, or remote, if the printer is attached to a server on the network. In both cases, the
process is transparent to the user.

3. A spooling system takes care of the print queue and queues the document for printing
whenever the printer becomes available. It is at this stage that the conversion of the
document from PS or another format to the actual format recognized by the printer takes
place. The conversion is done using a set of filters, each taking care of the conversion of
one type of format to another. The most important of these is the PS-to-printer filter, which
is specific to each type of printer.

Depending on the print-management software being used, these steps may vary slightly. There
are currently five different print-management packages available for Linux: LPD, PDQ, LPRng,
CUPS, and PPR. LPD is the traditional package found on most distributions. The other packages
are making inroads and are slowly replacing LPD. Whichever package is used, however, the final
conversion from PS to printer format is usually done by GhostScript,[13] a very important package
that enables the viewing and manipulation of PS files. Once this conversion is done, the output is
finally fed to the actual printer device, whether it be a parallel port printer or a USB printer.

[13] GhostScript has a large memory footprint and may not be suitable for some small-sized embedded Linux systems.

Keep in mind that all the work is done in user space. The kernel drivers get involved only at the
very end to feed the filtered output to the actual printer.

If you intend to add printer support to your embedded system, I suggest you read up on Unix
printer management from any of the good conventional Unix or Linux systems management
books available. Running Linux by Welsh, Dalheimer, and Kaufman (O'Reilly) provides a good
description of how printer setup is done in Linux when using LPD. For bleeding edge information
regarding Linux printing, take a look at http://www.linuxprinting.org/, the main resource on the
subject. On that same web site, you will find the Printing HOWTO, which contains extensive
information about the different print-management packages, their operation, and relevant links.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Storage

All embedded systems require at least one form of persistent storage to start even the earliest
stages of the boot process. Most systems, including embedded Linux systems, continue to use
this same initial storage device for the rest of their operation, either to execute code or to access
data. In comparison to traditional embedded software, however, Linux's use imposes greater
requirements on the embedded system's storage hardware, both in terms of size and
organization.

The size requirements were discussed in Chapter 1, and an overview of the typical storage device
configurations was provided in Chapter 2. We will discuss the actual organization further in
Chapter 7 and Chapter 8. For the moment, let us take a look at the persistent storage devices
supported by Linux. In particular, we'll discuss the level of support provided for these devices and
their typical use with Linux.

3.4.1 Memory Technology Devices

In Linux terminology, memory technology devices (MTDs) include all memory devices, such as
conventional ROM, RAM, flash, and M-Systems' DiskOnChip (DOC). As explained by Michael
Barr in Programming Embedded Systems in C and C++ (O'Reilly), such devices have their own
capabilities, particularities, and limitations. Hence, to program and use an MTD device in their
systems, embedded system developers traditionally use tools and methods specific to that type of
device.

To avoid, as much as possible, having different tools for different technologies and to provide
common capabilities among the various technologies, the Linux kernel includes the MTD
subsystem. This provides a unified and uniform layer that enables a seamless combination of low-
level MTD chip drivers with higher-level interfaces called user modules, as seen in Figure 3-1.
These "user modules" should not be confused with kernel modules or any sort of user-land
software abstraction. The term "MTD user module" refers to software modules within the kernel
that enable access to the low-level MTD chip drivers by providing recognizable interfaces and
abstractions to the higher levels of the kernel or, in some cases, to user space.

Figure 3-1. The MTD subsystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and
properties in the mtd_info structure to the add_mtd_device() function. The callbacks an MTD
driver has to provide are called by the MTD subsystem to carry out operations such as erase,
read, write, and sync. The following is a list of MTD chip drivers already available:

DiskOnChip

These are the drivers for M-Systems' DOC technology. Currently, Linux supports the DOC
1000, DOC 2000, and DOC Millennium.

Common Flash Interface (CFI)

CFI is a specification developed by Intel, AMD, and other flash manufacturers. All CFI-
compliant flash components have their configuration and parameters stored directly on the
chip. Hence, the software interfaces for their detection, configuration, and use are
standardized. The kernel includes code to detect and support CFI chips.

As the CFI specification allows for different commands to be made available by different
chips, the kernel also includes support for two types of command sets implemented by two
different chip families, Intel/Sharp and AMD/Fujitsu.

JEDEC

The JEDEC Solid State Technology Association (http://www.jedec.org/) is a standardization
body. Among its standards are a set of standards for flash chips. It is also responsible for
handing out identification numbers for such devices. Although the JEDEC flash standard is
rendered obsolete by CFI, some chips still feature JEDEC compliance. The MTD
subsystem supports the probing and configuration of such devices.

Non-DOC NAND flash

The most popular form of packaging for NAND flash is M-Systems' DOC devices. There
are, however, other types of NAND flash chips on the market. The MTD subsystem
supports a number of such devices using a separate driver from the DOC drivers. For a
complete list of the devices supported by this driver, look in the include/linux/mtd/nand-
ids.h file in the kernel sources.

Old non-CFI flash

Some flash chips are not CFI compliant, and some aren't even JEDEC compliant. The MTD
subsystem therefore provides drivers that manipulate such devices according to their
manufacturers' specifications. The devices supported in this fashion are non-CFI AMD-
compatible flash chips, pre-CFI Sharp chips, and non-CFI JEDEC devices. Keep in mind,
however, that these drivers are not updated as frequently as the drivers for more commonly
used devices such DOC or CFI memory devices.

RAM, ROM, and absent chips

The MTD subsystem provides drivers to access conventional RAM and ROM chips,
mapped in a system's physical address space, as MTD devices. Since some of these chips
may be connected to the system using a socket or some similar connector that lets you
remove the chip, the MTD subsystem also provides a driver that can be used to preserve
the registration order of the MTD device nodes in case one of the devices is removed and
is therefore absent from the system.

Uncached RAM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If there is any system RAM that your CPU cannot cache, you can use this memory as an
MTD device during normal system operation. Of course, the information stored on such a
medium will be lost when the system's power is turned off.

Virtual devices for testing and evaluation

When adding or testing MTD support for your board's devices, you may sometimes want to
test the operation of the user modules independently from the chip drivers. To this end, the
MTD subsystem contains two MTD drivers that emulate real MTD hardware: a driver that
emulates an MTD device using memory from the system's virtual address space, and
another that emulates an MTD device using a normal block device.

Since there is no universally agreed upon physical address location for MTD devices, the MTD
subsystem requires customized mapping drivers[14] to be able to see and manage the MTD
devices present in a given system. As some systems and development boards have known MTD
device configurations, the kernel contains a number of specific mapping drivers for a variety of
such systems. It also contains a generic driver for accessing CFI flash chips on systems that have
no specific mapping driver. If there are no appropriate mapping drivers for your system's memory
devices, you may need to create a new one using existing ones as examples. The existing
mapping drivers are found in the drivers/mtd/maps/ directory of the kernel sources.

[14] A mapping driver is a special kind of MTD driver whose main task is to provide MTD chip drivers with the physical
location of the MTD devices in the system and a set of functions for accessing these physical devices.

As with other kernel device drivers, an MTD chip driver can manage many instances of the same
device. If you have two identical AMD CFI-compliant flash chips in your system, for instance, they
might be managed as separate MTD devices by a single instance of the CFI driver, depending on
their setup.[15] To further facilitate customization of the storage space available in MTD devices,
the MTD subsystem also allows for memory devices to be divided into multiple partitions. Much
like hard disk partitions, each MTD partition is then accessible as a separate MTD device and can
store data in formats entirely different from those of other partitions on the same device. In
practice, as we saw in Chapter 2, memory devices are often divided in many partitions, each
serving a specific purpose.

[15] Identical chips placed on system buses are often arranged to appear as a single large chip.

Once the MTD chip drivers are properly configured for a system's memory devices, the storage
space available on each MTD device can be managed by an MTD user module. The user module
enforces a storage format on the MTD devices it manages, and it provides, as I said above,
interfaces and abstractions recognized by higher-level kernel components. It is important to note
that MTD user modules are not fully interoperable with all MTD drivers. In fact, certain MTD user
modules may not be usable with certain MTD drivers because of technical or even legal
limitations. At the time of this writing, for example, development is still under way to enable the
JFFS2 user module to be used with NAND flash devices. Until recently, it was impossible to use
the JFFS2 user module with any form of NAND flash, including DOC devices, because JFFS2 did
not deal with NAND flash chip particularities. Work is underway to fix the situation, however, and
JFFS2 may actually be usable with NAND devices by the time you read this. The following list
describes the existing MTD user modules and their characteristics:

JFFS2

JFFS2 is a successor and a complete rewrite by Red Hat of the JFFS discussed below. As
its name implies, the Journalling Flash File System Version 2 (JFFS2) implements a
journalling filesystem on the MTD device it manages. In contrast with other memory device
storage schemes, it does not attempt to provide a translation layer that enables the use of
a traditional filesystem with the device. Instead, it implements a log-structured filesystem
directly on the MTD device. The filesystem structure itself is recreated in RAM at mount
time by JFFS2 through a scan of the MTD device's log content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to its log-structured filesystem, JFFS2 implements wear leveling and data
compression on the MTD device it manages, while providing power down reliability.

Power down reliability is crucial to embedded systems, because they may lose power at
any time. The system must then gracefully restart and be capable of restoring a filesystem's
content without requiring outside intervention. If your Linux, or even Windows, workstation
has ever lost power accidently, you probably had to wait for the system to check the
filesystems' integrity upon rebooting and may have even been prompted to perform some
checks manually. Usually, this is a situation that is not acceptable for an embedded system.
JFFS2 avoids these problems; it can gracefully recuperate regardless of power failures.
Note, however, that it does not guarantee rollback of interrupted filesystem operations. If an
application had called write() to overwrite old data with new data, for example, it is possible
that the old data may have been partially overwritten and that the new data was not
completely committed. Both data sets are then lost. Your system should be built to check
on startup for this type of failure.

Wear leveling is necessary, because flash devices have a limited number of erases per
block, which is often 100,000 but may differ between manufacturers. Once this limit is
reached, the block's correct operation is not guaranteed by the manufacturer. To avoid
using some blocks more than others and thereby shortening the life of the device, JFFS2
implements an algorithm that ensures uniform usage of all the blocks on the flash device,
hence leveling the wear of its blocks.

Because flash hardware is usually more expensive and slower than RAM hardware, it is
desirable to compress the data stored on flash devices and then decompress it to RAM
before using it. This is precisely what JFFS2 does. For this reason, eXecute In Place
(XIP)[16] is not possible with JFFS2.

[16] XIP is the ability to execute code directly from ROM without copying it to RAM.

JFFS2 has been widely adopted as the filesystem of choice for MTD devices. The Familiar
project, http://familiar.handhelds.org/, for instance, uses JFFS2 to manage the flash
available in Compaq's iPAQ.

As I said earlier, though JFFS2 cannot currently be used with NAND devices, including
DOC devices, this is under construction and may be available by the time your read this.
Meanwhile, JFFS2 can be used with other types of MTD devices and is even sometimes
used with CompactFlash devices, which actually behave as IDE hard drives connected to
the system's IDE interface.

NFTL

The NAND Flash Translation Layer (NFTL) implements a virtual block device on NAND
flash chips. As seen in Figure 3-1, a disk-style filesystem, such as FAT or ext2, must then
be used to store and retrieve data from an NFTL-managed MTD device.

It is important to note that M-Systems holds patents on the algorithms implemented by
NFTL and, as such, permits the use of these algorithms only with licensed DOC devices.
Though NFTL is itself reliable in case of power failure, you would need to use a journalling
filesystem over NFTL to make your system's storage power-failure proof. An embedded
system that crashes while running ext2 over NFTL, for example, would require a filesystem
integrity check on startup, much like a normal Linux workstation.

JFFS

The Journalling Flash File System (JFFS) was originally developed by Axis
Communications AB in Sweden and was aimed at embedded systems as a crash/power
down-safe filesystem. Though JFFS has reportedly been used with NAND devices—a
feature likely to be available in JFFS2 by the time you read this—it has largely been
replaced by JFFS2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FTL

The Flash Translation Layer implements a virtual block device on NOR flash chips. As with
NFTL, a "real" filesystem must then be used to manage the data on the FTL-handled
device.

FTL, too, is subject to patents. In the U.S., it may be used only on PCMCIA hardware.
Instead of using FTL on NOR flash chips, you may want to go with JFFS2 directly, as it is
not hampered by any patents and is a better fit for the task.

Char device

This user module enables character device-like access to MTD devices. Using it, each
MTD device can be directly manipulated as a character device, in the Unix sense. It is
mostly useful for the initial setup of an MTD device. As we'll see in Chapter 7, there is a
specific way in which reading and writing to this char device must be done for the data
involved to be valid. Before writing to the char device, for example, it usually must be
erased first.

Caching block device

This user module provides a block device interface to MTD devices. The usual workstation
and server filesystems can then be used on these devices. Although this is of little use for
production embedded systems, which require features such as those provided by JFFS2,
this module is mainly useful for writing data to flash partitions without having to explicitly
erase the content of the partition beforehand. It may also be used for setting up systems
whose filesystems will be mounted read-only in the field.

This module is called the "caching" block device user module, because it works by caching
blocks in RAM, modifying them as requested, erasing the proper MTD device block, and
then rewriting the modified block. There is, of course, no power failure reliability to be found
here.

Read-only block device

The read-only block device user module provides the exact same capabilities as the
caching block device user module, except that no RAM caching is implemented. All
filesystem content is therefore read-only.

As you can see, the MTD subsystem is quite rich and elaborate. Even though its use is
complicated by the rules that govern the proper matching of MTD user modules with MTD chip
drivers, it is fairly flexible and is effective in providing a uniform and unified access to memory
devices. The Memory Technology Device Subsystem project web site is found at http://www.linux-
mtd.infradead.org/ and contains documentation regarding the programming API for implementing
MTD user modules and MTD chip drivers. It also contains information regarding the MTD mailing
list and a fairly elaborate MTD-JFFS-HOWTO by Vipin Malik.

In Chapter 7, we will continue our discussion of the MTD subsystem and will detail the setup and
configuration instructions for using MTD devices in your embedded system.

3.4.2 ATA-ATAPI (IDE)

The AT Attachment (ATA)[17] was developed in 1986 by three companies: Imprimis, Western
Digital, and Compaq. It was initially used only by Compaq but eventually became quite popular
when Conner Peripherals began providing its IDE drives through retail stores. By 1994, ATA was
an ANSI standard. Different versions of the standard have since been developed allowing faster
transfer rates and enhanced capabilities. Along the way, the ATA Packet Interface (ATAPI) was

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transfer rates and enhanced capabilities. Along the way, the ATA Packet Interface (ATAPI) was
developed by CD-ROM manufacturers with the help of Western Digital and Oak Technology.
ATAPI allows for CD-ROM and tape devices to be accessible through the ATA interface using
SCSI-like command packets. Today ATA and ATAPI are developed and maintained by ANSI,
NCITS, and T13.

[17] Although it is often referred to as "IDE," which stands for Integrated Drive Electronics, "ATA" is the real name of
this interface.

Although only a fraction of traditional embedded systems ever need a permanent storage media
providing as much storage space as an IDE hard disk can, many embedded systems use a very
popular ATA-compliant flash device, CompactFlash. Contrary to the flash devices discussed in
Section 3.4.1, the CompactFlash's storage space can be accessed only using the ATA interface.
Hence, from the software's perspective, and indeed from the hardware's perspective, it is
indistinguishable from a small-sized IDE drive. Note that CompactFlash cards can also be
accessed through CompactFlash-to-PCMCIA adapters. We will discuss the use of CompactFlash
devices with Linux further in Chapter 7. Meanwhile, keep in mind that not all CompactFlash
devices have the proper characteristics for use in embedded systems. In particular, some
CompactFlash devices do not tolerate power failure, and may be permanently damaged following
such a failure.

In embedded Linux systems, IDE and most other types of disks are usually set up as in a
workstation or server. Typically, the disk holds the OS bootloader, the root filesystem, and
possibly a swap partition. In contrast to most workstations and servers, however, not all
embedded system monitors and bootloaders are ATA-capable. In fact, as we'll see in Chapter 9,
most bootloaders are not ATA/IDE-capable. If you want to use an IDE disk in your system and an
ATA-capable monitor or bootloader is not present in your system's flash, you need to have the
kernel present in flash or in ROM with the boot monitor so that it may be accessible at system
startup. You then have to configure your boot monitor to use this kernel on startup in order to
have access to the IDE disk. In this case, you can still configure your root filesystem and swap
partition to be on the IDE disk.

Linux's support for the ATA interface is quite extensive and mature. The ATA subsystem, located
in the drivers/ide directory of the kernel sources, includes support, and sometimes bug fixes, for
many chipsets. This support spans many architectures. In addition, the kernel supports PCMCIA
IDE devices and provides a SCSI-emulation driver for use with ATAPI devices. The latter can be
used in conjunction with a SCSI driver to control an ATAPI device for which there is still no
existing ATAPI native driver. Though it is no longer necessary since the 2.5 kernel development
series, this functionality was mostly useful to users with workstations equipped with CD-RW
drives, since the tools available to operate these devices in Linux used to require that the
underlying hardware be SCSI.

Given the importance of ATA/IDE support, most modifications and updates posted to the kernel
mailing list are directly integrated into the kernel. This contrasts with other subsystems where
maintainers provide a separate up-to-date version through the subsystem's project web site, while
the kernel contains a stable version that is updated every so often when the maintainers send a
patch or, more commonly, a set of patches to Linus. There are, however, ATA/IDE-related tools,
primarily hdparm and fdisk, maintained outside the kernel, mainly because they are user tools and
are not required for the kernel's normal operation. hdparm gets and sets IDE hard disk
parameters using the ioctl() commands supported by ATA/IDE drivers in the kernel. fdisk is used
to view and modify disk partitions. If you have ever installed Linux on a workstation, you are
probably already familiar with fdisk. Note that this utility is not limited to IDE hard disks and can be
used with SCSI disks, too.

The main starting point for information on Linux's ATA/IDE capabilities is the Linux ATA
Development Project web site located at http://www.linux-ide.org/. In addition to providing access
to the ATA-related user tools, it provides links to many resources relevant to ATA. Also of
importance is the ide.txt file located in the Documentation directory of the kernel sources, which
contains information on the kernel's support for IDE devices and how to configure the kernel to
properly access such devices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Several non-Linux-specific ATA/IDE resources are available both online and in print. PC
Hardware in a Nutshell by Robert Bruce Thompson and Barbara Fritchman Thompson (O'Reilly)
contains a full chapter on IDE and SCSI hard disk interfaces, including a comparison of these
interfaces. Although the discussion centers on high-level issues, it is a good introduction to the
world of ATA/IDE and may be helpful in choosing a hard disk interface. For a more in-depth
discussion, you may want to have a look at the Enhanced IDE FAQ, available from
http://www.faqs.org/, which contains tips and tricks resulting from the cumulative knowledge
available on the comp.sys.ibm.pc.hardware.storage newsgroup. Finally, if you really want to know
all the ins and outs of the ATA interface, purchase the relevant standards documents from ANSI.
Before you do so, however, be sure to read the relevant portions of the kernel's sources, as they
too often contain hard-to-find information.

3.4.3 SCSI

As described in the Section 3.2.8 subsection of Section 3.2 , the use of SCSI storage devices in
embedded Linux systems is limited. When used, these devices are set up and configured in much
the same way they would be used in a server. You may therefore follow the instructions and
recommendations provided in any appropriate system administration book or online manual. The
documentation and resources mentioned in the earlier Section 3.2.8 are, of course, still
recommended. As an introduction to SCSI storage devices, PC Hardware in a Nutshell (O'Reilly)
contains a brief discussion of SCSI storage devices and a comparison with ATA/IDE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 General Purpose Networking

An increasing number of embedded systems are attached to general purpose networks. These
devices, although more constrained than other computerized systems in many ways, are often
expected to provide the very same network services found in many modern servers. Fortunately,
Linux lends itself quite well to general purpose networks, since it is itself often used in mainstream
servers.

The following discussion covers the networking hardware most commonly found in embedded
systems. Linux supports a much wider range of networking hardware than I will discuss, but many
of these networking interfaces are not typically used in embedded systems and are therefore
omitted. Also, as many of these networking interfaces have been extensively covered elsewhere,
I will limit the discussion to the topics relevant to embedded Linux systems and will refer you to
other sources for further information.

Network services will be discussed further in Chapter 10.

3.5.1 Ethernet

Initially developed at Xerox's PARC research center in Palo Alto, California, Ethernet is currently
the most pervasive, best documented, and least expensive type of networking available. Its speed
has kept up with the competition, growing geometrically over the decades. Given Ethernet's
popularity and the increasing demand for embedded systems to be network enabled, many
embedded development boards and production systems have been shipping with Ethernet
hardware.

Linux supports a slew of 10 and 100 Megabit Ethernet devices and chips. It also supports a few
Gigabit Ethernet devices. The kernel build configuration menu is probably the best place to start
to see whether your particular hardware is supported, since it contains the latest drivers list.[18]

The Ethernet HOWTO, available from the LDP, also contains a list of supported hardware, and a
lot of information regarding the use of Ethernet with Linux. Finally, Donald Becker, who wrote
quite a few Linux Ethernet drivers, maintains a web site with information regarding Linux's
network drivers at http://www.scyld.com/network/.

[18] You may also want to use this list as the basis of your hardware design, as I suggested earlier.

A number of resources discuss the use and internals of Ethernet. Charles Spurgeon's Ethernet:
The Definitive Guide (O'Reilly) is a good starting point. Charles also maintains a web site
containing Ethernet resources at http://wwwhost.ots.utexas.edu/ethernet/. One of these resources
is the Ethernet FAQ based on postings made on the comp.dcom.lans.ethernet newsgroup. If you
need to write your own Ethernet driver for your hardware, you will find the Linux Device Drivers
book useful.

3.5.2 IrDA

The Infrared Data Association (IrDA) was established in 1993 by 50 companies with the mandate
to create and promote a standard for low-cost interoperable infrared data interconnections. The
first IrDA specification was released in 1994 and continues to be maintained and developed by
the association from which the specification takes its name. Today, IrDA hardware and software
can be found in many consumer devices, including PDAs, cellular phones, printers, and digital
cameras, to name a few. In comparison to other wireless schemes, such as Bluetooth, IrDA is
inexpensive. This, in turn, favors its widespread adoption.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are two main types of protocols within the IrDA specification: mandatory and optional. A
device must at least implement the mandatory protocols in order to be able to interoperate
properly with other IrDA devices. The mandatory protocols are the physical signaling layer
(IrPHY), the link access protocol (IrLAP), and the link management protocol (IrLMP). The last
protocol also includes the Information Access Service (IAS), which provides service discovery
capabilities.

IrDA devices can exchange data at rates of up to 4 Mbps within a one meter range. Unlike other
wireless technologies, IrDA requires directional pointing of the devices involved in a
communication. An obvious advantage of such a scheme is the increased security resulting from
the requirement that IrDA users keep their devices pointing in each other's direction during the
whole connection time.[19]

[19] Any "intruder" would have to be in direct view of the users involved in the communication.

Linux supports all the mandatory IrDA protocols and many of the optional protocols. Figure 3-2
presents the architecture of Linux's IrDA subsystem.

Figure 3-2. Linux IrDA subsystem architecture

IrPHY is the actual physical infrared device through which the data is transferred. It is usually
located on the side of the device it is part of. In a PDA, for instance, it is often located on the top
side of the device so the user can view the PDA's screen while pointing his IrDA port to that of
another user's PDA or any other IrDA-enabled device.

The IrDA standard categorizes IrPHY devices according to their speed. There are currently three
speed categories: serial infrared (SIR) at up to 115.2 Kbps, medium speed infrared (MIR) at up to
1.152 Mbps, and fast infrared (FIR) at 4.0 Mbps. In the future, very fast infrared (VFIR) at 16
Mbps should be part of the standard as well.

The Linux kernel includes the following drivers for SIR and FIR devices:

IrTTY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IrTTY provides support for 16550-UART-compatible IrDA ports. This driver uses the
kernel's serial driver and provides speeds of up to 115200 bps.

IrPORT

IrPORT is a half-duplex serial port driver that is meant to eventually replace IrTTY.

Serial Dongles

To provide IrDA support for a system that doesn't have an IrDA port built into it, an IrDA
dongle can be attached to the system's serial port. The kernel build configuration menu
contains the complete list of serial dongles supported by Linux.

On-board and bus-attached devices

The kernel supports a number of chips found in on-board and bus-attached IrDA devices.
The kernel build configuration menu contains the complete list of chips supported by Linux.

USB dongle

Like serial dongles, USB dongles provide a removable IrDA interface. Instead of SIR
throughput rates, however, they provide FIR rates.

The IrDA stack operates on top of the device drivers to provide IrDA functionality in Linux. Most
components of this stack are implemented as specified in the IrDA standard, but some
components implemented are not part of the standard. These are the stack layers implemented in
the kernel:

IrLAP

IrLAP is the link access protocol layer of the IrDA specification. It provides and maintains a
reliable link between IrDA devices. In addition to the normal connection-oriented protocol,
Linux supports connectionless exchanges using the Ultra protocol.

IrLMP

IrLMP is the link management protocol layer of the IrDA specification. It provides for and
manages multiple connections over IrLAP.

TinyTP

Tiny Transport Protocol (TinyTP) implements flow control over IrLMP connections.

IAP

The Information Access Protocol (IAP) is Linux's equivalent to the IrDA's Information
Access Service (IAS). As with IAS, IAP provides service discovery capabilities.

IrCOMM

IrCOMM is an emulation layer that provides IrDA connection capabilities to legacy
applications that usually communicate through common serial and parallel port devices.
Since these types of functionalities are accessed through TTYs, applications use the
kernel's TTY layer to access IrCOMM. Note that IrCOMM does not rely on TinyTP.

IrLAN

The IrDA specifies IrLAN to enable LAN-like connections between IrDA devices. IrLAN acts
as a network device from the point of view of upper layer protocols. It is, for instance,
possible to establish a TCP/IP network on top of an IrDA link using IrLAN.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IrNET

IrNET is also meant to enable LAN-like connections between IrDA devices. Instead of
implementing a full network device, as with IrLAN, IrNET acts as a very thin layer over
which PPP can be used to provide a full network device. Note, however, that IrNET is not
part of the official IrDA standard. Microsoft first introduced IrNET as part of their Windows
2000 IrDA stack, replacing IrCOMM and IrLAN. The Linux implementation is based on the
same concepts found in Microsoft's IrNET and can interoperate with it.

OpenOBEX

The IrDA standard specifies IrOBEX as an HTTP-like service for the exchange of objects.
OpenOBEX is the IrOBEX implementation for Linux. It consists of a user-space library that
can be found at: http://sourceforge.net/projects/openobex/.

In conjunction with the stack layers, you will need user-space tools to operate Linux's IrDA
capabilities. These tools are part of the IrDA Utils package. This package and many other IrDA-
related resources are available through the Linux-IrDA Project web site at
http://irda.sourceforge.net/.

For further information regarding Linux's IrDA stack and related tools and projects, you may want
to take a look at the Infrared HOWTO available from the LDP. Also, Jean Tourrilhes, a major
contributor to the Linux-IrDA project, maintains a number of very interesting Linux-IrDA pages at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/. Unlike other such standards, all the IrDA
standards are readily available for download directly from the association's web site at
http://www.irda.org/.

3.5.3 IEEE 802.11 (Wireless)

The 802.11 working group was set up by the IEEE 802 committee in 1990. The first 802.11
standard was published in 1997 and has been maintained and updated since then by the same
group. The standard provides for wireless communication between computers using the 2.4 GHz
(802.11b) and 5 GHz (802.11a) frequencies. Today, 802.11 is the wireless equivalent of Ethernet
in terms of widespread adoption and mainstream support.

Although many traditional embedded devices were equipped with some form or another of
wireless technology, recent embedded systems with 802.11 support are mostly user-oriented
devices such as PDAs. Connecting such devices to an 802.11 network is akin to connecting a
laptop or workstation to this type of network. Hence, you may use reference material discussing
the latter and apply it to your 802.11-enabled embedded device with little effort.

Linux has extensive support for 802.11b hardware. For a complete list of all the supported 802.11
hardware and related drivers and tools, I refer you to Jean Tourrilhes' Linux Wireless LAN
HOWTO found at his web site, http://www.hpl.hp.com/personal/Jean_Tourrilhes/. Support for on-
board or non-PCMCIA bus-attached devices is included with the kernel and can be selected
during kernel build configuration. Support for PCMCIA 802.11 cards, on the other hand, is part of
David Hinds' PCMCIA package mentioned earlier in Section 3.2.3.

Since most 802.11 devices' operation is similar to that of Ethernet devices, the kernel does not
need any additional subsystem to support them. Instead, most of the same tools usually used for
Ethernet devices can be used for 802.11 devices once the appropriate device driver has been
loaded and initialized. Nonetheless, there are tools required to address the particularities of
802.11, such as setting identification and encryption keys, and monitoring signal strength and link
quality. These tools are available through the Wireless Tools for Linux section of Jean's web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to Jean's web site, the Wireless HOWTO available from the LDP provides some
background information on the use of wireless devices with Linux. If you intend to make extensive
use of 802.11 devices, you may want to take a look at Matthew Gast's 802.11 Wireless Networks:
The Definitive Guide (O'Reilly). It contains a thorough discussion of the technology and its use
with Linux. You can also obtain copies of the actual standard from the IEEE. At the time of this
writing, they were freely available for download in PDF from the IEEE's web site. Jean's web site
contains the appropriate link, but you should note that the availability of these documents is
subject to change, as is stated on the IEEE's web site.

3.5.4 Bluetooth

Bluetooth was developed by Ericsson with help from Intel and was introduced in 1994. A
Bluetooth SIG was formed by Ericsson, IBM, Intel, Nokia, and Toshiba. Today, the SIG has more
than 1,900 member companies. Today, a wide range of devices such as PDAs and cell phones,
are already Bluetooth-enabled with more on the way.

Bluetooth operates on the 2.4 GHz band and uses spread spectrum frequency hopping to provide
wireless connectivity to devices within the same piconet.[20] Some have called it a "cable
replacement" and others have called it "wireless USB." In essence, it enables seamless wireless
communication between devices. Hence, Bluetooth devices do not need any configuration to
become part of a piconet. Rather, devices automatically detect each other and advertise their
services so that the other devices in the piconet can in turn use these services.

[20] Piconets are wireless networks comprising Bluetooth devices. Since Bluetooth devices can belong to more than
one piconet, piconets can overlap.

Linux has a few Bluetooth stacks. The four main ones are: BlueZ, OpenBT, Affix, and BlueDrekar.
BlueZ was originally written by Qualcomm and is now an open source project available under the
terms of the GPL from the project's web site at http://bluez.sourceforge.net/. In the following, I will
mainly discuss BlueZ, as it is the Bluetooth stack included in the mainstream kernel tree.

OpenBT was developed and is still maintained by Axis Communications AB. It is available for
download from the project's web site at http://developer.axis.com/software/bluetooth/. OpenBT
has better documentation and source code comments than BlueZ. But OpenBT is structured as a
serial abstraction (i.e., it is accessible through /dev/ttyBT0, /dev/ttyBT1, etc.) whereas BlueZ is
structured as a network protocol—accessible using the AF_BLUETOOTH socket type—which in
many regards, is more appropriate for Bluetooth, since it is itself a protocol.

Affix was developed and continues to be maintained by Nokia. It is available from its SourceForge
web site at http://affix.sourceforge.net/. Both user-space utilities and the kernel patch are
available for download under the terms of the GPL. The README available from the project's
web site is fairly rich and so is the packages' documentation. Like BlueZ, it is structured as a
networking protocol—accessible using the AF_AFFIX socket type.

Finally, the BlueDrekar stack was developed and is distributed by IBM through the project's web
site at http://www.alphaworks.ibm.com/tech/bluedrekar/. Although BlueDrekar can be freely
downloaded, it is not an open source project, and I will therefore not discuss it further.

Figure 3-3 presents the architecture of the BlueZ stack. If you are familiar with Bluetooth, you will
notice that BlueZ does not support Telephony Control protocol Specification Binary (TCS-bin) or
OBEX.[21] Although Linux supports IrDA OBEX, the existing Linux implementation, OpenOBEX,
cannot, at the time of this writing, operate with OpenBT and can only function in a preliminary way
with BlueZ. This is because OpenBT doesn't implement OBEX and BlueZ's support for OBEX is in
its early stages. Nevertheless, OpenOBEX can be used with Affix, since it implements OBEX.

[21] This is the same OBEX found in the IrDA standard. Instead of inventing a new protocol, the Bluetooth standard
simply uses the IrDA OBEX specification for the implementation of an HTTP-like binary exchange service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-3. Linux BlueZ Bluetooth subsystem architecture

The Host Controller Interface (HCI) is the lowest layer of the Bluetooth stack and is responsible
for interfacing with the actual Bluetooth hardware. BlueZ currently supports the following types of
HCI adapters:

HCI-USB

These are USB-attached Bluetooth devices. Do not confuse this with the "USB Bluetooth"
support found in the USB support submenu of the kernel build configuration menu. The
latter requires OpenBT, not BlueZ.

HCI-UART

These are Bluetooth devices attached to the serial interface.

HCI-VHCI

VHCI stands for Virtual HCI. Consequently, VHCI acts as a virtual Bluetooth device that
can be used for testing and development.

The HCI core is immediately above the HCI hardware device drivers and enables them to
interoperate with the higher levels of the protocol stack. BlueZ comprises the following stack
layers:

L2CAP

The Logical Link Control and Adaptation Protocol (L2CAP) is responsible for link
multiplexing, packet segmentation and reassembly, and quality of service.

RFCOMMd

The Bluetooth standard specifies the RFCOMM protocol to provide serial communication
between Bluetooth devices. BlueZ implements RFCOMM as a daemon, RFCOMMd, which
uses pseudo-TTYs for communication. PPP can then be used on top of RFCOMMd to
enable TCP/IP networking between Bluetooth devices.

SDPd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Service Discovery Protocol (SDP) lets a device discover services provided by other
Bluetooth-enabled devices and the advertisement of the services offered by a device. SDP
is implemented as a daemon, SDPd, in BlueZ.

In addition to the protocol stack, you will need the user-space tools available from BlueZ's project
web site. In addition to RFCOMMd and SDPd, these tools include l2ping for L2CAP pinging and
hcidump for HCI packet analysis.

Here are some relevant resources:

Further information on the operation of the BlueZ stack can be found in the BlueZ HOWTO
from the project's web site.

Information on OpenBT and its use is available on the project's SourceForge workspace at
http://sourceforge.net/projects/openbt/.

Delbert Matlock maintains a list of Linux Bluetooth resources at
http://delbert.matlock.com/linux-bluetooth.htm, which you may find useful if you are
considering the use of Bluetooth with Linux.

Prentice Hall publishes two popular Bluetooth books—Bluetooth Revealed: The Insider's
Guide to an Open Specification for Global Wireless Communications by Brent Miller and
Chatschik Bisdikian and Bluetooth: Connect Without Cables by Jennifer Bray and Charles
Sturman.

You may also be interested in becoming a Bluetooth SIG member. The Bluetooth SIG's web site
is located at http://www.bluetooth.org/. You can obtain the official Bluetooth standard from the
official Bluetooth web site at http://www.bluetooth.com/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 Industrial Grade Networking

As with other computerized applications, industrial control and automation rely increasingly on
computerized networks. General-purpose networking or connectivity solutions such as plain
Ethernet or Token Ring are, however, ill-adapted to the harsh and demanding environment of
industrial applications. Common Ethernet, for instance, is too vulnerable to EMI (Electromagnetic
Interference) and RFI (Radio Frequency Interference) to be used in most industrial environments.

Therefore, quite a few specialized, industrial-grade networking solutions have been developed
over time. In addition to being more adapted to industrial environments, these industrial networks,
commonly known as fieldbuses, contribute to reducing wiring, increasing modularity, providing
diagnostics capabilities, enabling self-configuration, and facilitating the setup of enterprise-wide
information systems.

In the following sections, I will cover the industrial networks supported by Linux and briefly discuss
the other industrial networks that have little or no Linux support. If you are new to fieldbuses, you
may want to take a look at Rob Hulsebos' Fieldbus Pages located at http://ourworld-
top.cs.com/rahulsebos/. The web site includes a large collection of links and references to all
sorts of fieldbus systems.

3.6.1 CAN

The Controller Area Network (CAN) is not only the most common fieldbus, but probably one of the
most pervasive forms of networking ever used. CAN was introduced in 1986 by Robert Bosch
Gmbh. as a serial bus system for the automotive industry and has since been put to use in many
other industries. CAN's development received early contributions from engineers at Mercedes-
Benz and Intel, which provided the first CAN chip, the 82526. Today, more than 100 million new
CAN devices are sold every year. Application fields range from upper-class cars, such as
Mercedes, to factory automation networks.

CAN specifies a hardware interface and a communication mechanism. It is a multi-master serial
networking protocol with error detection capabilities, where message identification is done through
content rather than through the receiver node or the transmitter node. CAN is managed and
promoted by the CAN in Automation (CiA) group and is subject to ISO standard 11898 published
in 1993.

Since CAN is a low-level protocol, akin to Ethernet, many higher-level protocols have been put
forward to complete it. Four such protocols are J1939, DeviceNet, Smart Distributed System
(SDS), and CANopen. J1939 was introduced and continues to be maintained by the Society of
Automotive Engineers (SAE), and is very popular in the automotive industry. DeviceNet is another
popular CAN-based higher-level protocol and is managed by the Open DeviceNet Vendor
Association (ODVA). SDS was put forth by Honeywell and continues to be promoted and
managed by the same company. CANopen was introduced and is managed by the same group
that maintains CAN, the CiA. SDS has not been as popular as DeviceNet and J1939, because it
was never standardized, while J1939, DeviceNet, and CANopen were.

Although there is no formal support for CAN within the kernel, many open source projects provide
support for CAN hardware in Linux. The following are the most important ones:

Linux CAN-bus Driver Project

This is the main open source CAN-support project. The project provides a kernel module
that supports many CAN boards based on the Intel 82527 and the Philips sja1000. The
project is located at http://home.wanadoo.nl/arnaud/. The project's web site provides
documentation, a HOWTO, and links to CAN-related sites.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Alessandro Rubini's Ocan driver

This is a driver for CAN boards based on the Intel 82587. It is maintained by Alessandro
Rubini, one of the authors of Linux Device Drivers (O'Reilly). The driver is available at
http://www.linux.it/~rubini/software/#ocan under the terms of the GPL and is remarkably
well documented.

can4linux

can4linux used to be maintained by the Linux Lab Project. It is now available from
http://www.port.de/engl/canprod/sw_linux.html. The package includes a driver for the
Philips 82c200-based boards and application examples.

CanFestival

CanFestival provides CAN and CANopen capabilities within Linux for the ADLINK PCI 7841
board. The software for the board can be used both in standard Linux mode and in real
time using the RTLinux framework. The package and its documentation are available from
http://perso.wanadoo.fr/edouard.tisserant/CanFestival/.

ss5136dn Linux Driver

This package provides both CAN and DeviceNet capabilities within Linux for the SST 5136-
DN family of CAN bus/DeviceNet interface boards. The package at
http://home.att.net/~marksu/dn5136man.html includes rich documentation and a user-
space library.

For more information on CAN, CAN-related hardware, and CANopen, consult the CiA's web site
at http://www.can-cia.org/. The CiA provides its specifications online. SAE provides subscription-
based access to the J1939 standard through its web site at
http://www.sae.org/products/j1939.htm. Information on DeviceNet can be found on the ODVA's
web site at http://www.odva.org/. The DeviceNet specification is available in printed form from the
ODVA for a fee that covers reproduction costs and provides a life time unlimited royalty-free
license to develop DeviceNet products. If you are interested in SDS, you can find more
information about it, including specifications, on Honeywell's web site at
http://content.honeywell.com/sensing/prodinfo/sds/.

3.6.2 ARCnet

The Attached Resource Computer NETwork (ARCnet) was introduced by Datapoint Corporation
in 1977 as a general purpose network, much like Ethernet. Today, ARCnet is seldom used in
office LANs anymore, but it is still popular as an industrial fieldbus. ARCnet is now an ANSI
standard and is managed and promoted by the ARCnet Trade Association (ATA).

ARCnet is a token-based network that can use either a star topology or a bus topology. An
ARCnet NIC (Network Interface Card) can be compatible with one of the two topologies, but not
both. Apart from its low cost, ARCnet has many advantages compared to standard office
networks, including deterministic performance, automatic reconfiguration, multi-master capability,
and immunity to noise. Also, ARCnet guarantees the safe arrival of packets and guarantees
notification in case of transmission failure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Support for ARCnet has been part of the Linux kernel for quite some time now. Since ARCnet
NICs have almost identical programming interfaces, there is no need for a broad range of device
drivers. Instead, the kernel includes drivers for the two standard ARCnet chipsets, COM90xx and
COM20020. In addition to the drivers, the kernel includes three different protocols to be used with
ARCnet hardware. The first and most common protocol conforms to RFC1201 and enables the
transmission of IP traffic over ARCnet networks. When a system is configured with the RFC1201
protocol, for instance, the kernel's own TCP/IP stack can be used to provide TCP/IP networking
on ARCnet hardware. The second protocol conforms to RFC1051, which was replaced by
RFC1201 already mentioned. This protocol is provided to enable interaction with old networks.
Finally, the kernel provides an Ethernet-encapsulation protocol, which enables ARCnet networks
to transport Ethernet packets.

Information regarding the Linux ARCnet drivers is available from the ARCnet for Linux project
web site at http://www.worldvisions.ca/~apenwarr/arcnet/. The site includes the Linux-ARCnet
HOWTO, which provides extensive discussion on the use of ARCnet with Linux. The HOWTO
includes jumper settings information and card diagrams for many ARCnet NICs. It also includes
cabling instructions for ARCnet networks. A text copy of this HOWTO is included in the kernel's
sources in the Documentation directory.

The ATA's web site, found at http://www.arcnet.com/ contains more information about ARCnet,
including forms for ordering the ANSI standard and other manuals.

3.6.3 Modbus

The Modbus Protocol was introduced by Modicon in 1978 as a simple way to transfer control data
between controllers and sensors using RS232 in a master-slave fashion. Modicon was later
acquired by Schneider Electric, which owns the Modbus trademark and continues to steer the
development of the protocol and its descendants.

Since Modbus specifies a messaging structure, it is independent of the underlying physical layer.
There are two formats used to transmit information with Modbus, ASCII, and RTU. The first sends
each byte as two ASCII characters, while the second sends each byte as two 4-bit hexadecimal
characters. Modbus is usually implemented on top of a serial interface such as RS232, RS422, or
RS485. In addition to Modbus, Schneider specifies the Modbus TCP/IP protocol, which uses
TCP/IP and Ethernet to transmit Modbus messages.

Two open source projects provide Modbus capabilities to Linux:

jModbus

This project aims at providing a Java implementation of Modbus RTU, Modbus ASCII, and
Modbus TCP/IP. It is housed at http://jmodbus.sourceforge.net/ and is distributed with
documentation and examples under a BSD-style license.

MAT LinuxPLC

This is the same automation project I mentioned earlier in Section 3.3.5. The MAT project
now contains code in its CVS repository implementing Modbus RTU and Modbus TCP/IP.
Although the source code is commented, there is little other documentation.

For more information about Modbus, read the Modbus specifications, available at
http://www.modbus.org/.

3.6.4 A Word on the Other Industrial Networks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are, of course, many other industrial networks, most of which are not supported by Linux.
There is, for instance, currently no support for ControlNet, Seriplex, AS-Interface, or Sercos in
Linux. Still other fieldbuses have some form of support in Linux, but will require a certain amount
of further work before we can classify them as having Linux support. The following is a list of such
fieldbuses:

Interbus

A driver is available for kernel Versions 2.0 and 2.2 for the Phoenix Contact Interbus board.
The driver is available from http://www.santel.lu/projects/wallace/interbus.html and comes
with documentation and examples.

LonWorks

A driver is available for kernel Version 2.2 for Easylon interfaces. The driver is released for
evaluation purposes and comes with little documentation or examples. It is available from
http://www.gesytec.de/englisch/support/linux_readme.htm.

In addition, there is a driver for Applicom cards in the Linux kernel. Though the driver was mainly
used for Profibus by its author, Applicom cards can handle many protocols. When used, the card
is seen as a character device in /dev.

Also, Hilscher Gmbh. provides a device driver for its CIF boards and a user-level framework that
enables the development of fieldbus-independent applications. The framework and device driver
is distributed under the terms of the GPL with extensive documentation and is available from
Hilscher's web site at http://www.hilscher.com/device_drivers_linux.htm. The device driver
included in the package can be accessed from user space using the unified framework API. This,
in turn, enables control applications to be developed independently from the underlying fieldbus
technology. Although only Hilscher's hardware driver is currently part of the package, the
approach used by Hilscher and the framework it provides may be useful in helping Linux provide
wide and uniform support to industrial network technologies in the future.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7 System Monitoring

Both hardware and software are prone to failing, sometimes drastically. Although the occurrence
of failures can be reduced through careful design and runtime testing, they are sometimes
unavoidable. It is the task of the embedded system designer to plan for such a possibility and to
provide means of recovery. Often, failure detection and recovery is done by means of system
monitoring hardware and software such as watchdogs.

Linux supports two types of system monitoring facilities: watchdog timers and hardware health
monitoring. There are both hardware and software implementations of watchdog timers, whereas
health monitors always require appropriate hardware. Watchdog timers depend on periodic
reinitialization so as not to reboot the system. If the system hangs, the timer eventually expires
and causes a reboot. Hardware health monitors provide information regarding the system's
physical state. This information can in turn be used to carry out appropriate actions to signal or
solve actual physical problems such as overheating or voltage irregularities.

The kernel includes drivers for many watchdog timers. The complete list of supported watchdog
devices can be found in the kernel build configuration menu in the Watchdog Cards submenu.
The list includes drivers for watchdog timer peripheral cards, a software watchdog, and drivers for
watchdog timers found in some CPUs such as the MachZ and the SuperH. Although you may
want to use the software watchdog to avoid the cost of a real hardware watchdog, note that the
software watchdog may fail to reboot the system in some circumstances. Timer watchdogs are
seen as /dev/watchdog in Linux and have to be written to periodically to avoid system reboot. This
updating task is traditionally carried out by the watchdog daemon available from
ftp://metalab.unc.edu/pub/linux/system/daemons/watchdog/. In an actual embedded system,
however, you may want to have the main application carry out the update instead of using the
watchdog daemon, since the latter may have no way of knowing whether the main application has
stopped functioning properly.

In addition to the software watchdog available in the Linux kernel, RTAI provides an elaborate
software watchdog with configurable policies. The main purpose of the RTAI watchdog is to
protect the system against programming errors in RTAI applications. Hence, misbehaving tasks
cannot hang the system. Upon detecting the offending task, the RTAI watchdog can apply a
number of remedies to it including suspending it, killing it, and stretching its period. The RTAI
watchdog and appropriate documentation are part of the mainstream RTAI distribution.

Finally, Linux supports quite a few hardware monitoring devices through the "Hardware
Monitoring by lm_sensors" project found at http://www2.lm-sensors.nu/~lm78/. The project's web
site contains a complete list of supported devices along with extensive documentation on the
installation and operation of the software. The lm_sensors package available from the project's
web site includes both the device drivers and user-level utilities to interface with the drivers.
These utilities include sensord, a daemon that can log sensor values and alert the system through
the ALERT syslog level when an alarm condition occurs. The site also provides links to external
projects and resources related to lm_sensors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Development Tools
Much like mainstream software developers, embedded system developers need compilers,
linkers, interpreters, integrated development environments, and other such development tools.
The embedded developer's tools are different, however, in that they typically run on one platform
while building applications for another. This is why these tools are often called cross-platform
development tools, or cross-development tools, for short.

This chapter discusses the setup, configuration, and use of cross-platform development tools.
First, I will discuss how to use a practical project workspace. I will then discuss the GNU cross-
platform development toolchain, the C library alternatives, Java, Perl, Python, Ada, other
programming languages, integrated development environments, and terminal emulation
programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Using a Practical Project Workspace

In the course of developing and customizing software for your target, you will need to organize
various software packages and project components in a comprehensive and easy-to-use directory
structure. Table 4-1 shows a suggested directory layout you may find useful. Feel free to modify
this structure to fit your needs and requirements. When deciding where to place components,
always try to find the most intuitive layout. Also, try to keep your own code in a directory
completely separated from all the packages you will download from the Net. This will minimize any
confusion regarding the source's ownership and licensing status.

Table 4-1. Suggested project directory layout
Directory Content
bootldr The bootloader or bootloaders for your target

build-
tools

The packages and directories needed to build the cross-platform development
toolchain

debug The debugging tools and all related packages

doc All the documentation you will need for your project

images The binary images of the bootloader, the kernel, and the root filesystem ready to be
used on the target

kernel The different kernel versions you are evaluating for your target

project Your own source code for this project

rootfs The root filesystem as seen by the target's kernel at runtime

sysapps The system applications required for your target

tmp A temporary directory to experiment and store transient files

tools The complete cross-platform development toolchain and C library

Of course, each of these directories contains many subdirectories. We will populate these
directories as we continue through the rest of the book.

The location of your project workspace is up to you, but I strongly encourage you not to use a
system-wide entry such as /usr or /usr/local. Instead, use an entry in your home directory or a
directory within the /home directory shared by all the members of your group. If you really want to
have a system-wide entry, you may want to consider using an entry in the /opt directory. For the
example embedded control system, I have the following layout in my home directory:

$ ls -l ~/control-project
total 4
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 control-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 daq-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 sysmgnt-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 user-interface

Since they all run on different targets, each control system component has a separate entry in the
control-project directory in my home directory. Each entry has its own project workspace as
described above. Here is the daq-module workspace for example:

$ ls -l ~/control-project/daq-module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ls -l ~/control-project/daq-module
total 11
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 bootldr
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 build-tools
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 debug
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 doc
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 images
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 kernel
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 project
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 rootfs
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 sysapps
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 tmp
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 tools

Because you may need to provide the paths of these directories to some of the utilities you will
build and use, you may find it useful to create a short script that sets appropriate environment
variables. Here is such a script called develdaq for the DAQ module:

export PROJECT=daq-module
export PRJROOT=/home/karim/control-project/${PROJECT}
cd $PRJROOT

In addition to setting environment variables, this script moves you to the directory containing the
project. You can remove the cd command if you would prefer not to be moved to the project
directory right away. To execute this script in the current shell so that the environment variables
are immediately visible, type:[1]

[1] All commands used in this book assume the use of the sh or bash shell, because these are the shells most
commonly used. If you use another shell, such as csh, you may need to modify some of the commands accordingly.

$. develdaq
Future explanations will rely on the existence of the PROJECT and PRJROOT environment
variables.

Since the distribution on your workstation has already installed many of
the same packages you will be building for your target, it is very important
to clearly separate the two types of software. To ensure such separation, I
strongly encourage you not to carry out any of the instructions provided in
the rest of this book while being logged in as root, unless I provide explicit
instructions otherwise. Among other things, this will avoid any possible
destruction of the native GNU toolchain installed on your system and,
most importantly, the C library most of your applications rely on.
Therefore, instead of logging in as root, log in using a normal user
account with no particular privileges.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 GNU Cross-Platform Development Toolchain

The toolchain we need to put together to cross-develop applications for any target includes the binary utilities, such
as ld, gas, and ar, the C compiler, gcc, and the C library, glibc. The rest of the discussion in the later chapters
relies on the cross-platform development toolchain we will put together here.

You can download the components of the GNU toolchain from the FSF's FTP site at ftp://ftp.gnu.org/gnu/
its mirrors. The binutils package is in the binutils directory, the gcc package is in the gcc directory, and the glibc
package is in the glibc directory along with glibc-linuxthreads. If you are using a glibc version older than 2.2, you
will also need to download the glibc-crypt package, also from the glibc directory. This part of the library used to be
distributed separately, because U.S. cryptography export laws made it illegal to download this package to a
computer outside the U.S. from the FSF's site, or any other U.S. site, for that matter. Since Version 2.2, however,
glibc-crypt has been integrated as part of the main glibc package and there is no need to download this package
separately anymore.[2] Following the project directory layout suggested earlier, download the packages into the
${PRJROOT}/build-tools directory.

[2] The following email from the glibc developer mailing list covers the folding of glibc-crypt into the main glibc package and conformance to
U.S. export laws: http://sources.redhat.com/ml/libc-alpha/2000-02/msg00104.html. This email, and the ensuing thread, refer to the "BXA"
abbreviation. This is the Bureau of Industry and Security of the U.S. Department of Commerce (http://www.bxa.doc.gov/). It is known as the
BXA, because it was formerly the Bureau of Export Administration.

Note that all the targets discussed in Chapter 3 are supported by the GNU toolchain.

4.2.1 GNU Toolchain Basics

Configuring and building an appropriate GNU toolchain is a complex and delicate operation that requires a good
understanding of the dependencies between the different software packages and their respective roles. This
knowledge is required, because the GNU toolchain components are developed and released independently from
one another.

4.2.1.1 Component versions

The first step in building the toolchain is selecting the component versions we will use. This involves selecting a
binutils version, a gcc version, and a glibc version. Because these packages are maintained and released
independently from one another, not all versions of one package will build properly when combined with different
versions of the other packages. You can try using the latest versions of each package, but this combination is not
guaranteed to work either.

To select the appropriate versions, you have to test a combination tailored to your host and target. Of course, you
may find it easier to ask around and see whether someone somewhere tested a certain combination of versions for
that setup and reports that her combination works correctly. You may also have to try such combinations for your
setup on your own if you do not find a known functional version combination. In that case, start with the most recent
stable versions of each package and replace them one by one with older ones if they fail to build.

In some cases, the version with the highest version number may not have had the time to
be tested enough to be considered "stable." At the time glibc 2.3 was released, for
example, it may have been a better choice to keep using glibc 2.2.5 until 2.3.1 became
available.

At the time of this writing, for instance, the latest version of binutils is 2.13.2.1, the latest version of gcc is 3.2.1, and
the latest version of glibc is 2.3.1. Most often, binutils will build successfully and you will not need to change it.
Hence, let us assume that gcc 3.2.1 fails to build although all the appropriate configuration flags have been
provided. In that case, I would revert to gcc 3.2. If that failed, I would try 3.1.1 and so on. It is the same thing with
glibc. Version 2.3.1 of glibc may fail to build. In that case, I would revert to 2.3 and later to 2.2.5, if necessary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You must understand, however, that you cannot go back like this indefinitely, because the most recent package
versions expect the other packages to provide certain capabilities. You may, therefore, have to go back to older
versions of packages that you successfully built if the other packages down the line fail to build. Using the above
versions, for example, if I had to go back to glibc 2.1.3, it might be appropriate to change back to gcc 2.95.3 and
binutils 2.10 although the most recent gcc and most recent binutils may have compiled perfectly.

You may also need to apply patches to some versions to get them to properly compile for your target. The web
sites and mailing lists provided for each processor architecture in Chapter 3 are the best place to find such patches
and package versions suggestions. Another place to look for patches is in the Debian source packages. Each
package contains the patches required for all the architectures supported by that package.

Table 4-2 provides a list of known functional version combinations. For each host/target combination, known
compatible versions are provided for binutils, gcc, and glibc. The last column indicates whether the tools require
patching.

Table 4-2. Known functional package version combinations
Host Target Kernel binutils gcc glibc

i386 PPC 2.10.1 2.95.3 2.2.1

PPC i386 2.10.1 2.95.3 2.2.3

PPC i386 2.13.2.1 3.2.1 2.3.1

i386 ARM 2.4.1-rmk1 2.10.1 2.95.3 2.1.3

PPC ARM 2.10.1 2.95.3 2.2.3

i386 MIPS 2.8.1 egcs-1.1.2 2.0.6

i386 SuperH 2.11.2 3.0.1 2.2.4

Sparc (Solaris) PPC 2.4.0 2.10.1 2.95.2 2.1.3

[3] See "The -Dinhibit_libc hack" subsection in the "Building the Toolchain" section of "The GNU toolchain" chapter in AlephOne's "Guide to
ARMLinux for Developers" (http://www.aleph1.co.uk/armlinux/book/book1.html) for further information on the modifications to be made to gcc
to make it build successfully.

[4] See Ralf Bächle's MIPS HOWTO (http://howto.linux-mips.org/) for further information on the patches to apply.

[5] See Bill Gatliff's "Running Linux on the Sega Dreamcast" (http://www.linuxdevices.com/articles/AT7466555948.html) for further information
on the patches to apply.

Some of the combinations presented were on the Net as part of cross-platform development toolchain setups. I
have kept the kernel version when the original explanation provided one. The kernel version, however, does not
really matter for the build of the toolchain. Any recent kernel—Version 2.2.x or 2.4.x—known to work for your target
can be used for the toolchain build. I strongly recommend using the actual kernel you will be using in your target,
however, to avoid any future conflicts. I will discuss kernel selection in Chapter 5.

Although it is not specifically mentioned in the table, there is one glibc add-on that we will need for the toolchain:
glibc-linuxthreads. The package's versions closely follow glibc's numbering scheme. Hence, the linuxthreads
version matching glibc 2.2.3 is linuxthreads Version 2.2.3. Although I recommend getting the linuxthreads package,
you should be able to build glibc without it. Note that glibc 2.1.x, for instance, does not build properly without
linuxthreads. If you are using glibc 2.1.x, remember that you will also need to download the glibc-crypt add-on if you
intend to use DES encryption.

By no means is Table 4-2 complete. There are many other combinations that will work just as well. Feel free to try
newer versions than the ones presented. Use the same technique discussed earlier by starting with the latest
versions and decrementing versions as needed. At worst, you will have to revert to setups presented above.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Whenever you discover a new version combination that compiles successfully, make sure you test the resulting
toolchain to ensure that it is indeed functional. Some version combinations may compile successfully and still fail
when used. Version 2.2.3 of glibc, for example, builds successfully for a PPC target on an x86 host using gcc
2.95.3. The resulting library is, nevertheless, broken and will cause a core dump when used on the target. In that
particular setup, we can obtain a functional C library by reverting to glibc 2.2.1.

There are also cases where a version combination was found to work properly on certain processors within a
processor family while failing to work on other processors of the same family. Versions of glibc earlier than 2.2, for
example, worked fine for most PPC processors except those that were part of the MPC8xx series. The problem
was that glibc assumed 32-byte cache lines for all PPC processors, while the processors in the MPC8xx series
have 16-byte cache lines. Version 2.2 fixed this problem by assuming 16-byte cache lines for all PPC processors.

The following sections describe the building of the GNU toolchain for a PPC host and an i386 target using binutils
2.10.1, gcc 2.95.3, and glibc 2.2.3. This was the second entry in Table 4-2.

4.2.1.2 Build requirements

To build a cross-platform development toolchain, you will need a functional native toolchain. Most mainstream
distributions provide this toolchain as part of their packages. If it was not installed on your workstation or if you
chose not to install it to save space, you will need to install it at this point using the procedure appropriate to your
distribution. With a Red Hat distribution, for instance, you will need to install the appropriate RPM packages.

You will also need a valid set of kernel headers for your host. These headers must usually be located in the
/usr/include/linux, /usr/include/asm, and /usr/include/asm-generic directories, and should be the headers used to
compile the native glibc installed on your system. In older distributions, and in some installations still, these
directories are actually symbolic links to directories within the /usr/src/linux directory. In turn, this directory is itself a
symbolic link to the actual kernel installed by your distribution. If your distribution uses the older setup, and you
have updated your kernel or modified the content of the /usr/src/linux directory, you will need to make sure the
/usr/src/linux symbolic link is set appropriately so that the symbolic links in /usr/include point to the kernel that was
used to build your native glibc, and that was installed by your distribution. In recent distributions, however, the
content of /usr/include/linux, /usr/include/asm, and /usr/include/asm-generic is independent of the content of
/usr/src/linux, and no kernel update should result in such problems.

4.2.1.3 Build overview

With the appropriate tools in place, let us take a look at the procedure used to build the toolchain. These are the
five main steps:

1. Kernel headers setup

2. Binary utilities setup

3. Bootstrap compiler setup

4. C library setup

5. Full compiler setup

The first thing that you probably noticed, looking at these steps, is that the compiler seems to be built twice. This is
normal and required, because some languages supported by gcc, such as C++, require glibc support. Hence, a
first compiler is built with support for C only, and a full compiler is built once the C library is available.

Although I placed the kernel headers setup as the first step, the headers will not be used until the C library setup.
Hence, you could alter the steps and set up the kernel headers right before the C library setup. Given the
workspace directory layout we are using, however, you will find the original ordering of the steps given above to be
more appropriate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Obviously, each step involves many iterations of its own. Nonetheless, the steps remain similar in many ways. Most
toolchain build steps involve carrying out the following actions:

1. Unpack the package.

2. Configure the package for cross-platform development.

3. Build the package.

4. Install the package.

Some toolchain builds differ slightly from this sequence. The kernel headers setup, for instance, does not require
that we build the kernel or install it. Actually, we will save much of the discussions about configuring, building, and
installing the kernel for Chapter 5. Also, since the compiler will have already been unpacked for the bootstrap
compiler's setup, the full compiler setup does not require unpacking the gcc package again.

4.2.1.4 Workspace setup

According to the workspace directory layout I suggested earlier, the toolchain will be built in the ${PRJROOT}/build-
tools directory, while the components built will be installed in the ${PRJROOT}/tools directory. To this end, we need
to define some additional environment variables. They ease the build process and are based on the environment
variables already defined. Using the same example project as before, here is the new develdaq script with the new
variables:

export PROJECT=daq-module
export PRJROOT=/home/karim/control-project/${PROJECT}
export TARGET=i386-linux
export PREFIX=${PRJROOT}/tools
export TARGET_PREFIX=${PREFIX}/${TARGET}
export PATH=${PREFIX}/bin:${PATH}
cd $PRJROOT

The TARGET variable defines the type of target for which your toolchain will be built. Table 4-3 provides some of the
other possible values for TARGET. Notice that the target definition does not depend on the type of host. A target is
defined by its own hardware and the operating system used on it, which is Linux in this case. Also, note that only
TARGET needs to be modified in case we change targets. Of course, if we had already compiled the complete GNU
toolchain for a different target, we would need to rebuild it after changing the value of TARGET. For a more
complete list of TARGET values, look at the manual included in the glibc sources.

Table 4-3. Example values for TARGET
Actual target Value of TARGET

PowerPC powerpc-linux
ARM arm-linux
MIPS (big endian) mips-linux
MIPS (little endian) mipsel-linux
SuperH 4 sh4-linux

The PREFIX variable provides the component configuration scripts with a pointer to the directory where we would
like the target utilities to be installed. Conversely, TARGET_PREFIX is used for the installation of target-dependent
header files and libraries. To have access to the newly installed utilities, we also need to modify the
to point to the directory where the binaries will be installed.

Some people prefer to set PREFIX to /usr/local. This results in the tools and libraries being installed within the
/usr/local directory where they can be accessed by any user. I find this approach not to be useful for most

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/local directory where they can be accessed by any user. I find this approach not to be useful for most
situations, however, because even projects using the same target architecture may require different toolchain
configurations.

If you need to set up a toolchain for an entire development team, instead of sharing tools and libraries via the
/usr/local directory, I suggest that a developer build the toolchain within an entry shared by all project members in
the /home directory, as I said earlier. In a case in which no entry in the /home directory is shared among group
members, a developer may build the toolchain within an entry in her workstation's /opt directory and then share her
resulting ${PRJROOT}/tools directory with her colleagues. This may be done using any of the traditional sharing
mechanisms available, such as NFS, or using a tar-gzipped archive available on an FTP server. Each developer
using the package will have to place it in a filesystem hierarchy identical to the one used to build the toolchain for
the tools to operate adequately. In a case in which the toolchain was built within the /opt directory, this means
placing the toolchain in the /opt directory.

If you choose to set PREFIX to /usr/local, you will also have to issue the commands shown below while being
logged-in as root, with all the risks this entails. You could also set the permission bits of the /usr/local
allow yourself or your user group to issue the commands without requiring root privileges.

Notice that TARGET_PREFIX is set to ${PREFIX}/${TARGET}, which is a target-dependent directory. If you set
PREFIX to /usr/local, successive installations of development toolchains for different targets will result in the
libraries and header files of the latest installation being placed in different directories from the libraries and header
files of previous toolchain installations.

Regardless of the value you give to PREFIX, setting TARGET_PREFIX to ${PREFIX}/${TARGET} is the
configuration the GNU toolchain utilities expect to find during their configuration and installation. Hence, I strongly
suggest that you use this value for TARGET_PREFIX. The following explanations may require changes if you
modify TARGET_PREFIX's value.

Again, you can remove the cd command from the script if you would prefer not to move directly to the project
directory.

4.2.1.5 Preparing the build-tools directory

At this point, you should have the different packages required for building the toolchain in the build-tools
As with other packages, a new directory will be created when you extract the files from the package archive. This
new directory will contain the complete source code necessary to build the packages and all appropriate Makefiles.
Although it is possible to build the package within this source directory, I highly recommend that you build each
package in a directory separate from its source directory, as is suggested in the FSF's installation manuals.

Building a package in a directory different from the one holding its source may seem awkward if you are used to
simply typing configure; make; make install, but I will shortly explain how this is done. First, though, we need to
create the directories that will hold the packages being built. Create one directory for each toolchain component.
Four directories are therefore needed: one for the binutils, one for the bootstrap C compiler, one for the C library,
and one for the complete compiler. We can use the following commands to create the necessary entries:

$ cd ${PRJROOT}/build-tools
$ mkdir build-binutils build-boot-gcc build-glibc build-gcc
We can now look at the content of the build-tools directory with the packages and the build directories (the last line
in this example is truncated to fit the page):

$ ls -l

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ls -l
total 35151
-rw-r--r-- 1 karim karim 7284401 Apr 4 17:33 binutils-2.10.1.tar.gz
drwxrwxr-x 2 karim karim 1024 Apr 4 17:33 build-binutils
drwxrwxr-x 2 karim karim 1024 Apr 4 17:33 build-boot-gcc
drwxrwxr-x 2 karim karim 1024 Apr 4 17:33 build-gcc
drwxrwxr-x 2 karim karim 1024 Apr 4 17:33 build-glibc
-rw-r--r-- 1 karim karim 12911721 Apr 4 17:33 gcc-2.95.3.tar.gz
-rw-r--r-- 1 karim karim 15431745 Apr 4 17:33 glibc-2.2.3.tar.gz
-rw-r--r-- 1 karim karim 215313 Apr 4 17:33 glibc-linuxthreads-2.2.3.t

Everything is now almost ready for building the actual toolchain.

4.2.1.6 Resources

Before proceeding to the actual building of the toolchain, let us look at some resources you may find useful in case
you run into problems during the build process.

First and foremost, each package comes with its own documentation. Although you will find the binutils package to
be the leanest in terms of installation documentation, it is also the least likely to cause any problems. The gcc and
glibc packages, however, are amply documented. Within the gcc package, you will find an FAQ file and an
directory containing instructions on how to configure and install gcc. This includes an extensive explanation of the
build configuration options. Similarly, the glibc package contains an FAQ and INSTALL files. The INSTALL
covers the build configuration options and the installation process, and provides recommendations for compilation
tool versions.

In addition, you may want to try using a general search engine such as Google to look for reports by other
developers who may have already encountered and solved problems similar to yours. Often, using a general
search engine will be the most effective way to solve a GNU toolchain build problem.

On the matter of cross-compiling, there are two CrossGCC FAQs available: the Scott Howard FAQ and the Bill
Gatliff FAQ. The Scott Howard CrossGCC FAQ is available at http://www.sthoward.com/CrossGCC/
rather outdated, however. The Bill Gatliff CrossGCC FAQ is available at http://crossgcc.billgatliff.com/

Though the Scott Howard FAQ is outdated, and though it isn't limited to Linux and attempts to provide general
explanations for all the platforms the GNU toolchain can be built for, it does provide pieces of information that can
be hard to find otherwise. It covers, for instance, what is known as Canadian Crosses,[6] a technique for building
cross-platform development tools for development on another platform. An example of this would be building
cross-platform development tools for an ARM target and an i386 host on a PPC workstation.

[6] In reference to the fact that Canada had three national parties at the time a name was needed for this procedure.

As with the Scott Howard FAQ, the Bill Gatliff FAQ is not limited to Linux. In addition to the FAQ, Bill Gatliff actively
maintains a CrossGCC Wiki site, which provides information on a variety of cross-platform development issues,
including tutorials, links to relevant articles, and explanations about GNU toolchain internals. Since this is a Wiki
site, you can register to modify and contribute to the site yourself. The Wiki site is accessed through the same URL
as the Bill Gatliff FAQ.

Both FAQs provide scripts to automate the building of the toolchain. Similar scripts are also available from many
other sites. You may be interested in taking a look at these scripts, but I will not rely on any scripts for my future
explanations as I would rather you fully understand all the steps involved.

Finally, there is a crosgcc mailing list hosted by Red Hat at http://sources.redhat.com/ml/crossgcc/. You will find
this mailing list quite useful if you ever get stuck, because many on this list have a great deal of experience with the
process of building cross-platform development toolchains. Often, just searching or browsing the archive will help
you locate immediate answers to your questions.

4.2.1.7 A word on prebuilt cross-platform toolchains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A lot of prebuilt cross-platform toolchains are available either online or commercially. Since I do not know the actual
process by which each was built, I cannot offer any advice regarding those packages. You may still choose to use
such packages out of convenience instead of carrying out the procedure explained here. In that case, make sure
you have documentation as to how these packages were configured and built. Most importantly, make sure you
know what package versions were used, what patches were applied, if any, and where to get the patches that were
applied in case you need them.

4.2.2 Kernel Headers Setup

As I said earlier, the setup of the kernel headers is the first step in building the toolchain. In this case, we are using
kernel Version 2.4.18, but we could have used any other version appropriate for our target. We will discuss kernel
selection further in Chapter 5.

Having selected a kernel, the first thing you need to do is download a copy of that kernel into the directory in which
you have chosen to store kernels. In the case of the workspace hierarchy I suggested earlier, this would be in
${PRJROOT}/kernel. You can obtain all the Linux kernels from the main kernel repository at http://www.kernel.org/
or any other mirror site, such as the national mirrors.[7] There are other sites that provide kernels more adapted to
certain targets, and I will cover these in Chapter 5.

[7] In some countries, there are local national mirrors, which may be preferable for you to use instead of the main U.S. site. These mirrors'
URLs are usually in the http://www.COUNTRY.kernel.org/ form. http://www.it.kernel.org/ and http://www.cz.kernel.org/ are two such mirrors.

For some time now, each version of the kernel has been available both as a tar-gzipped file (with the
extension) and as a tar-bzip2'd file (with the .tar.bz2 extension). Both contain the same kernel, except that tar-
bzip2'd files are smaller and require less download time than tar-gzipped files.

With the kernel now in your kernel directory, you can extract it using the appropriate command. In our case, we use
one the following commands, depending on the file we downloaded:

$ tar xvzf linux-2.4.18.tar.gz
or:

$ tar xvjf linux-2.4.18.tar.bz2
Some older versions of tar do not support the j option and you may need to use bzip2 -d or bunzip2 to decompress
the archive before using tar.

For all kernels up to 2.4.18, the tar command creates a directory called linux that contains the extracted files from
the archive. Starting with 2.4.19, however, the kernel extracts immediately into a directory that has the version
number appended to its name. Hence, Linux 2.4.19 extracts directly into the linux-2.4.19 directory. This avoids
accidently overwriting an older kernel with a new one. If you are using a kernel that is older than 2.4.19, I
recommend that you rename the directory right away to avoid any accidental overwriting:

$ mv linux linux-2.4.18
Overwriting a kernel version with another because the directory of the previous version wasn't renamed is a
common and often costly mistake, so it is really important that you rename the directory as soon as you extract the
kernel from the archive, if need be.

With the kernel now extracted, we proceed to configuring it:

$ cd linux-2.4.18
$ make ARCH=i386 CROSS_COMPILE=i386-linux- menuconfig
This will display a menu in your console where you will be able to select your kernel's configuration. Instead of
menuconfig, you can specify config or xconfig. The former requires that you provide an answer for every possible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

menuconfig, you can specify config or xconfig. The former requires that you provide an answer for every possible
configuration option one by one at the command line. The latter provides an X Window dialog, which is often
considered the most intuitive way to configure the kernel. Beware of xconfig, however, as it may fail to set some
configuration options and forget to generate some headers required by the procedure I am describing. The use of
config may also result in some headers not being created. You can check whether the kernel configuration has
successfully created the appropriate headers by verifying whether the include/linux/version.h file exists in the kernel
sources after you finish the configuration process. If it is absent, the instructions outlined below will fail at the first
instance where kernel headers are required; usually during the compilation of glibc.

As you probably noticed, the values of ARCH and CROSS_COMPILE depend on your target's architecture type. Had
this been a PPC target and an i386 host, we would have used ARCH=ppc and CROSS_COMPILE=powerpc-
linux-. (The trailing hyphen in the CROSS_COMPILE=powerpc-linux- variable is not an accident.) Strictly
speaking, it is not necessary to set CROSS_COMPILE for all kernel make targets. The various configuration targets I
just covered don't usually need it, for example. In fact, it is only necessary when code is actually being cross-
compiled as a result of the kernel Makefile rules. Nevertheless, I will continue to specify it for all kernel
targets throughout this book, even when it isn't essential, to highlight its importance. You are free to set it only
when needed in your actual day-to-day work.

I will cover the intricacies of kernel configuration in Chapter 5. If you are not familiar with kernel configuration, you
may want to have a peek at that chapter first. The most important configuration options we need to set at this time
are the processor and system type. Although it is preferable to fully configure the kernel before proceeding, just
setting the processor and system type is usually enough to generate the appropriate headers for the toolchain
build.

With the kernel now configured, exit the menu by selecting the Exit item with your right arrow. The configuration
utility then asks you if you want to save the configuration and, upon confirmation, proceeds to write the kernel
configuration and creates the appropriate files and links.

We can now create the include directory required for the toolchain and copy the kernel headers to it:

$ mkdir -p ${TARGET_PREFIX}/include
$ cp -r include/linux/ ${TARGET_PREFIX}/include
$ cp -r include/asm-i386/ ${TARGET_PREFIX}/include/asm
$ cp -r include/asm-generic/ ${TARGET_PREFIX}/include
Keep in mind that we are using a PPC host and an i386 target. Hence, the asm-i386 directory in the path above is
the directory containing the target-specific headers, not the host-specific ones. If this were a PPC target, for
example, we would have to replace asm-i386 with asm-ppc.

Note that you will not need to rebuild the toolchain every time you reconfigure the kernel. The toolchain needs one
valid set of headers for your target, which is provided by the procedure given earlier. You may later choose to
reconfigure your kernel or use another one entirely without impacting your toolchain, unless you change the
processor or system type.

4.2.3 Binutils Setup

The binutils package includes the utilities most often used to manipulate binary object files. The two most important
utilities within the package are the GNU assembler, as, and the linker, ld. Table 4-4 contains the complete list of
utilities found in the binutils package.

Table 4-4. Utilities found in the binutils package
Utility Use

as The GNU assembler

ld The GNU linker

gasp The GNU assembler pre-processor

ar Creates and manipulates archive content

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nm Lists the symbols in an object file

objcopy Copies and translates object files

objdump Displays information about the content of object files

ranlib Generates an index to the content of an archive

readelf Displays information about an ELF format object file

size Lists the sizes of sections within an object file

strings Prints the strings of printable characters in object files

strip Strips symbols from object files

c++filt Converts low-level mangled assembly labels resulting from overloaded c++ functions into their user-
level names

addr2line Converts addresses into line numbers within original source files

Note that although as supports many processor architectures, it does not necessarily recognize the same syntax as
the other assemblers available for a given architecture. The syntax recognized by as is actually a machine-
independent syntax inspired by BSD 4.2 assembly language.

The first step in setting up the binutils package is to extract its source code from the archive we downloaded
earlier:

$ cd ${PRJROOT}/build-tools
$ tar xvzf binutils-2.10.1.tar.gz
This will create a directory called binutils-2.10.1 with the package's content. We can now move to the build
directory for the second part of the build process, the configuration of the package for cross-platform development:

$ cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=${PREFIX}
Configuring for a powerpc-unknown-linux-gnu host.
Created "Makefile" in /home/karim/control-project/daq-module/build- ...
Configuring intl...
creating cache ../config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking how to run the C preprocessor... gcc -E
checking whether make sets ${MAKE}... yes
checking for gcc... gcc
checking whether the C compiler (gcc -g -O2 -W -Wall) works... yes
checking whether the C compiler (gcc -g -O2 -W -Wall) is a cross-c ...
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking for ranlib... ranlib
checking for POSIXized ISC... no
checking for ANSI C header files... yes
 ...

What I've shown is only part of the output from the configure script. It will actually continue printing similar
messages on the console until it has prepared each utility in the package for compilation. This may take a minute
or two to complete, but it is a relatively short operation.

During its run, configure checks for the availability of certain resources on the host and creates appropriate
Makefiles for each tool in the package. Since the command is not being issued in the directory containing the
binutils source code, the result of the configure command will be found in the directory where it was issued, the
build-binutils directory.

We control the creation of the Makefiles by passing the appropriate options to configure. The - -target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We control the creation of the Makefiles by passing the appropriate options to configure. The - -target
enables us to specify the target for which the binutils are being built. Since we had already specified the name of
the target in the TARGET environment variable, we provide this variable as is. The - -prefix option enables us to
provide the configuration script with the directory within which it should install files and directories. The directory for
- -prefix is the same as the one we specified earlier in the PREFIX environment variables.

With the Makefiles now ready, we can build the actual utilities:

$ make
The actual build of the binutils may take anywhere between 10 and 30 minutes, depending on your hardware.
Using a 400 MHz PowerBook host, it takes at most 15 minutes to build the binutils for the i386 target used here.
You may see some warnings during the build but they can be ignored, unless you're one of the binutils developers.

With the package now built, we can install the binutils:

$ make install
The binutils have now been installed inside the directory pointed to by PREFIX. You can check to see that they
have been installed properly by listing the appropriate directory:

$ ls ${PREFIX}/bin
i386-linux-addr2line i386-linux-ld i386-linux-readelf
i386-linux-ar i386-linux-nm i386-linux-size
i386-linux-as i386-linux-objcopy i386-linux-strings
i386-linux-c++filt i386-linux-objdump i386-linux-strip
i386-linux-gasp i386-linux-ranlib

Notice that the name of each utility is prepended by the value of TARGET we set earlier. Had the target been a
powerpc-linux, for instance, the names of the utilities would have been prepended with powerpc-linux-
building an application for a target, we can therefore use the appropriate tools by prepending the name of the
target type.

A copy of some of the utilities without the prepended target name will also be installed in the
${PREFIX}/${TARGET}/bin directory. Since this directory will later be used to install target binaries by the C library
build process, we will need to move the host binaries to a more appropriate directory. For now, we will leave them
as is and address this issue later.

4.2.4 Bootstrap Compiler Setup

In contrast to the binutils package, the gcc package contains only one utility, the GNU compiler, along with support
components such as runtime libraries. At this stage, we will build the bootstrap compiler, which will support only the
C language. Later, once the C library has been compiled, we will recompile gcc with full C++ support.

Again, we start by extracting the gcc package from the archive we downloaded earlier:

$ cd ${PRJROOT}/build-tools
$ tar xvzf gcc-2.95.3.tar.gz
This will create a directory called gcc-2.95.3 with the package's content. We can now proceed to the configuration
of the build in the directory we had prepared for the bootstrap compiler:

$ cd build-boot-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=${PREFIX} \
> --without-headers --with-newlib --enable-languages=c
This will print output similar to that printed by the binutils configuration utility we discussed earlier. Here too,
configure checks for the availability of resources and builds appropriate Makefiles.

The - -target and - -prefix options given to configure have the same purpose as with binutils, to specify the target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The - -target and - -prefix options given to configure have the same purpose as with binutils, to specify the target
and the installation directory, respectively. In addition, we use options that are required for building a bootstrap
compiler.

Since this is a cross-compiler and there are no system header files for the target yet—they will be available once
glibc is built—we need to use the - -without-headers option. We also need to use the - -with-newlib option to tell the
configuration utility not to use glibc, since it has not yet been compiled for the target. This option, however, does
not force us to use newlib as the C library for the target. It is just there to enable gcc to properly compile, and we
will be free to choose any C library at a later time.

The - -enable-languages option tells the configuration script which programming languages we expect the resulting
compiler to support. Since this is a bootstrap compiler, we need only include support for C.

Depending on your particular setup, you may want to use additional options for your target. For a complete list of
the options recognized by configure, see the installation documentation provided with the gcc package.

With the Makefiles ready, we can now build the compiler:

$ make all-gcc
The compile time for the bootstrap compiler is comparable to that of the binutils. Here, too, you may see warnings
during the compilation, and you can safely ignore them.

With the compilation complete, we can now install gcc:

$ make install-gcc
The bootstrap compiler is now installed alongside the binutils, and you can see it by relisting the content of
${PREFIX}/bin. The name of the compiler, like the utilities, is prepended with the name of the target and is called
i386-linux-gcc in our example.

4.2.5 C Library Setup

The glibc package is made up of a number of libraries and is the most delicate and lengthy package build in our
cross-platform development toolchain. It is an extremely important software component on which most, if not all,
applications available or being developed for your target will rely. Note that although the glibc package is often
called the C library—a confusion maintained within GNU's own documentation—glibc actually generates many
libraries, one of which is the actual C library, libc. We will discuss the complete list of libraries generated by glibc in
Chapter 6. Until then, I will continue to use "C library" and "glibc" interchangeably.

Using gcc 3.2 and Above
The instructions provided in the previous section will fail to work with gcc 3.2 and the subsequent 3.2.1
release existing at the time of this writing, because the - -without-headers configuration option is
broken and has not yet been fixed. To solve the problem, we must install appropriate glibc headers
before attempting to compile the bootstrap compiler. This sidebar provides the commands used to
install the headers, but does not explain the various command options in detail, since they are already
covered by the previous and next sections. Here, we are using binutils 2.13.2.1, gcc 3.2.1, and glibc
2.3.1. Note that a native gcc 3.2 must be available on the host for the following procedure to work.

First, we must extract the glibc package and its add-ons, as we would do when setting up the C library:

$ cd ${PRJROOT}/build-tools
$ tar xvzf glibc-2.3.1.tar.gz
$ tar -xvzf glibc-linuxthreads-2.3.1.tar.gz --directory=glibc-2.3.1
Next, we must configure glibc and install its headers:

$ mkdir build-glibc-headers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ mkdir build-glibc-headers
$ cd build-glibc-headers
$../glibc-2.3.1/configure --host=$TARGET --prefix="/usr" \
> --enable-add-ons --with-headers=${TARGET_PREFIX}/include
$ make cross-compiling=yes install_root=${TARGET_PREFIX} \
> prefix="" install-headers
Because we are not setting CC to point to an existing cross-compiler, we must set the cross-
compiling variable to yes so that the glibc build scripts do not attempt to build parts of the library
natively. Installing the headers is achieved by using the install-headers Makefile target.

Next, we create a dummy stubs.h file required for gcc to build (a version of this file will be generated
properly during the installation of the cross-compiled glibc):

$ mkdir -p ${TARGET_PREFIX}/include/gnu
$ touch ${TARGET_PREFIX}/include/gnu/stubs.h
Finally, we can build the bootstrap gcc compiler:

$ cd ${PRJROOT}/build-tools/build-boot-gcc
$../gcc-3.2.1/configure --target=$TARGET --prefix=${PREFIX} \
> --disable-shared --with-headers=${TARGET_PREFIX}/include \
> --with-newlib --enable-languages=c
$ make all-gcc
In addition to the options we used in the previous section, we are also using the - -disable-shared
configuration option to avoid the build scripts from trying to create the shared gcc library. If this option
is not used, gcc 3.2 fails to build.

Once the bootstrap compiler is installed, the steps for building and installing the rest of the GNU
toolchain are the same as those described in this chapter.

As with the previous packages, we start by extracting the C library from the archive we downloaded earlier:

$ cd ${PRJROOT}/build-tools
$ tar xvzf glibc-2.2.3.tar.gz
This will create a directory called glibc-2.2.3 with the package's content. In addition to extracting the C library, we
extract the linuxthreads package in the glibc directory for the reasons stated earlier in the chapter:

$ tar -xvzf glibc-linuxthreads-2.2.3.tar.gz --directory=glibc-2.2.3
We can now proceed to preparing the build of the C library in the build-glibc directory:

$ cd build-glibc
$ CC=i386-linux-gcc ../glibc-2.2.3/configure --host=$TARGET \
> --prefix="/usr" --enable-add-ons \
> --with-headers=${TARGET_PREFIX}/include
Notice that this configuration command is somewhat different from the previous ones. First, we precede the call to
configure with CC=i386-linux-gcc. The effect of this command is to set the CC environment variable to
linux-gcc. Therefore, the compiler used to build the C library will be the bootstrap cross-compiler we have just
built. Also, we now use the - -host option instead of the - -target option, since the library runs on our target and not
on our build system.[8] In other words, the host from the point of view of the library is our target, contrary to the tools
we built earlier, which all run on our build system.

[8] Practically speaking, the build system is our development host.

Although we still use the - -prefix option, its purpose here is to indicate to the configuration script the location of the
library components once on the target's root filesystem. This location is then hardcoded into the glibc components
during their compilation and used at runtime. As is explained in the INSTALL file in the glibc source directory, Linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

during their compilation and used at runtime. As is explained in the INSTALL file in the glibc source directory, Linux
systems expect to have some glibc components installed in /lib and others in /usr/lib. By setting - -prefix
configuration script recognizes this setup and the relevant directory paths are properly hardcoded in the glibc
components. As a result, the dynamic linker, for example, will expect to find shared libraries in /lib, which is the
appropriate location for these libraries in any Linux system, as we shall see in Chapter 6. We will not, however, let
the build script install the libraries into the build system's /usr directory. Rather, as we shall see later in this section,
we will override the install directory when issuing the make install command.

We also instruct the configuration script to use the add-on we downloaded with the - -enable-add-ons
we are using linuxthreads only, we could have given the exact list of add-ons we want to be configured by using the
- -enable-add-ons=linuxthreads option. If you are using glibc 2.1.x and had applied the glibc-crypt add-on, you
would need to use the - -enable-add-ons=linuxthreads,crypt option instead. The full command I provided earlier,
which doesn't include the full list of add-ons, will work fine nonetheless with most glibc versions.

Finally, we tell the configuration script where to find the kernel headers we set up earlier using the - -with-headers
option. If this option was omitted, the headers found through /usr/include would be used to build glibc and these
would be inappropriate, since they are the build system's headers, not the target's.

During the actual build of the library, three sets of libraries are built: a shared set, a static set, and a static set with
profiling information. If you do not intend to use the profiling version of the library, you may instruct the
configuration script not to include it as part of the build process by using the - -disable-profile option. The same
applies to the shared set, which can be disabled using the - -disable-shared option. If you do not intend to have
many applications on your target and plan to link all your applications statically, you may want to use this option. Be
careful, however, as your target may eventually need the shared library. You can safely leave its build enabled and
still link your applications statically. At least then you will be able to change your mind about how to link your
application without having to rebuild the C library.

Another option that has an effect on static versus dynamic linking is - -enable-static-nss. This option generates
libraries which enable the static linking of the Name Service Switch (NSS) components. In brief, the NSS part of
glibc allows some of the library components to be customizable to the local configuration. This involves the use of
the /etc/nsswitch.conf file to specify which /lib/libnss_NSS_SERVICE library is loaded at runtime. Because this
service is specifically designed to load libraries dynamically, it doesn't allow true static linking unless it is forced to.
Hence, if you plan to statically link applications that use NSS, add the - -enable-static-nss option to the
configuration script's command line. The web servers discussed in Chapter 10, for example, use NSS and will
either not function properly on the target or will simply fail to build if you instruct the linker to statically link them
against a glibc that doesn't allow static NSS linking. Look at the glibc manual for a complete discussion of NSS.

If you are compiling glibc for a target that lacks an FPU, you may also want to use the - -without-fp option to build
FPU emulation into the C library. In some cases, you may also need to add the -msoft-float option to the C flags
used to build the library. In the case of the PPC, at least, the C flags are appropriately set (since glibc 2.3)
whenever - -without-fp is used to configure glibc.

If you have chosen not to download the linuxthreads package, or the crypt package if you were using glibc 2.1.x,
you may try to compile the C library by removing the - -enable-add-ons option and adding the - -disable-sanity-
checks option. Otherwise, the configuration script will complain about the missing linuxthreads. Note, however, that
although glibc may build successfully without linuxthreads, it is possible that the full compiler's build will fail when
including C++ support later.

With the configuration script done, we can now compile glibc:

$ make
The C library is a very large package and its compilation may take several hours, depending on your hardware. On
the PowerBook system mentioned earlier, the build takes approximately an hour. Regardless of your platform, this
is a good time to relax, grab a snack, or get some fresh air. One thing you may want to avoid is compiling the C
library in the background while trying to use your computer for other purposes in the meantime. As I said earlier,
the compilation of some of the C library's components uses up a lot of memory, and if the compiler fails because of
the lack of available memory, you may have to restart the build of the library from scratch using make clean
followed by make. Some parts of the build may not be restarted gracefully if you just retype make.

Once the C library is built, we can now install it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ make install_root=${TARGET_PREFIX} prefix="" install
In contrast to the installation of the other packages, the installation of the C library will take some time. It won't take
as much time as the compilation, but it may take between 5 and 10 minutes, again depending on your hardware.

Notice that the installation command differs from the conventional make install. We set the install_root
variable to specify the directory where we want the library's components to be installed. This ensures that the
library and its headers are installed in the target-dependent directory we had assigned to TARGET_PREFIX
not in the build system's /usr directory. Also, since the use of the - -prefix option sets the prefix variable's value
and since the value of prefix is appended to install_root's value to provide the final installation directory of
the library's components, we reset the value of prefix so that all glibc components are installed directly in the
${TARGET_PREFIX} directory. Hence, the glibc components that would have been installed in
${TARGET_PREFIX}/usr/lib are installed in ${TARGET_PREFIX}/lib instead.

If you are building tools for a target that is of the same architecture as your host (compiling for a PPC target on a
PPC host, for instance), you may want to set the cross-compiling variable to yes as part of the
command. Because the library's configure script will have detected that the architectures are identical during the
build configuration, the Makefile assumes that you are not cross-compiling and the installation of the C library fails
as a result of the Makefile using a different set of rules.

There is one last step we must carry out to finalize glibc's installation: the configuration of the libc.so
used during the linking of applications to the C library and is actually a link script. It contains references to the
various libraries needed for the real linking. The installation carried out by our make install above assumes that the
library is being installed on a root filesystem and hence uses absolute pathnames in the libc.so link script to
reference the libraries. Since we have installed the C library in a nonstandard directory, we must modify the link
script so that the linker will use the appropriate libraries. Along with the other components of the C library, the link
script has been installed in the ${TARGET_PREFIX}/lib directory.

In its original form, libc.so looks like this:

/* GNU ld script
 Use the shared library, but some functions are only in
 the static library, so try that secondarily. */
GROUP (/lib/libc.so.6 /lib/libc_nonshared.a)

This is actually quite similar, if not identical, to the libc.so that has already been installed by your distribution for
your native C library in /usr/lib/. Since you may need your target's default script sometime, I suggest you make a
copy before modifying it:

$ cd ${TARGET_PREFIX}/lib
$ cp ./libc.so ./libc.so.orig
You can now edit the file and remove all absolute path references. In essence, you will need to remove
the library filenames. The new libc.so now looks like this:

/* GNU ld script
 Use the shared library, but some functions are only in
 the static library, so try that secondarily. */
GROUP (libc.so.6 libc_nonshared.a)

By removing the references to an absolute path, we are now forcing the linker to use the libraries found within the
same directory as the libc.so script, which are the appropriate ones for your target, instead of the native ones found
on your host.

4.2.6 Full Compiler Setup

We are now ready to install the full compiler for your target with both C and C++ support. Since we had already
extracted the compiler from its archive in Section 4.2.4, we will not need to repeat this step. Overall, the build of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extracted the compiler from its archive in Section 4.2.4, we will not need to repeat this step. Overall, the build of the
full compiler is much simpler than the build of the bootstrap compiler.

From the build-tools/build-gcc directory enter:

$ cd ${PRJROOT}/build-tools/build-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=${PREFIX} \
> --enable-languages=c,c++
The options we use here have the same meaning as when building the bootstrap compiler. Notice, however, that
there are fewer options and that we now add support for C++ in addition to C. If you had set TARGET_PREFIX
something other than ${PREFIX}/${TARGET} as we did earlier, you will need to use the - -with-headers
libs options to tell the configuration script where to find the headers and libraries installed by glibc.

With the full compiler properly configured, we can now build it:

$ make all
This build will take slightly longer than the build of the bootstrap compiler. Again, you may see warnings that you
can ignore. Notice that we didn't use all-gcc as with the bootstrap compiler, but rather all. This will result in the
build of all the rest of the components included with the gcc package, including the C++ runtime libraries.

If you didn't properly configure the libc.so link script file as previously explained, the build will fail during the
compilation of the runtime libraries. Also, if you didn't install the linuxthreads package during the C library setup, the
compilation may fail under some versions of gcc. Version 2.95.3 of gcc, for instance, will fail to build without
linuxthreads.

With the full compiler now built, we can install it:

$ make install
This will install the full compiler over the bootstrap compiler we had previously installed. Notice that we didn't use
install-gcc as we had done earlier for the bootstrap compiler, but rather install. Again, this is because we
are now installing both gcc and its support components.

4.2.7 Finalizing the Toolchain Setup

The full cross-platform development toolchain is now set up and almost ready to be used. I have only a couple of
final observations left.

First, let's take a look at what has been installed in the tools directory and how we will be using it in the future.
Table 4-5 provides the list of first-level subdirectories found in the tools directory.

Table 4-5. Contents of the ${PRJROOT}/tools directory
Directory Content

bin The cross-development utilities.

i386-linux Target-specific files.

include Headers for cross-development tools.

info The gcc info files.

lib Libraries for cross-development tools.

man The manual pages for cross-development tools.

share The files shared among cross-development tools and libraries. This directory is empty.

The two most important directories are bin and i386-linux. The first contains all the tools within the cross-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The two most important directories are bin and i386-linux. The first contains all the tools within the cross-
development toolchain that we will use on the host to develop applications for the target. The second contains all
the software components to be used on the target. Mainly, it contains the header files and runtime libraries for the
target. Table 4-6 provides a list of the first-level subdirectories found in i386-linux.

Table 4-6. Contents of the ${PRJROOT}/tools/i386-linux directory
Directory Content
bin glibc-related target binaries and scripts.

etc Files that should be placed in the target's /etc directory. Only contains the rpc file.

include The headers used to build applications for the target.

info The glibc info files.

lib The target's /lib directory.

libexec Binary helpers. This directory only contains pt_chown, which you will not need for most targets.

sbin The target's /sbin directory.

share Subdirectories and files related to internationalization.

sys-
include

Would have been used by the gcc configuration script to copy the target's headers had glibc not
installed the main target headers in the include directory.

Within the i386-linux directory, the two most important directories are include and lib. The first contains the header
files that will be used to build any application for the target. The second contains the runtime libraries for the target.

Notice that this last directory contains a lot of large libraries. By itself, the directory weighs in at around 80 MB.
Most embedded systems do not have this quantity of storage available. As we will see in Section 4.3
other libraries that can be used instead of glibc. Also, we will see in Chapter 6 ways to minimize the number and
size of the libraries you choose to use.

As I said earlier, a copy of some of the host utilities without the prepended target name have been installed in the
${PREFIX}/${TARGET}/bin directory. Since this directory now contains target binaries installed by the C library
build process, I highly suggest that you move the host binaries out of this directory and into another directory more
appropriate for host binaries. The utilities affected by this are as, ar, gcc, ld, nm, ranlib, and strip. You can verify
that these are indeed host binaries using the file command:

$ cd ${PREFIX}/${TARGET}/bin
$ file as ar gcc ld nm ranlib strip
as: ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1...
ar: ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1...
gcc: ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1...
ld: ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1...
nm: ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1...
ranlib: ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1...
strip: ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1...

We must choose an appropriate directory in which to put these binaries and create symbolic links to the relocated
binaries, because some GNU utilities, including gcc, expect to find some of the other GNU utilities in
${PREFIX}/${TARGET}/bin and will use the host's utilities if they can't find the target's binaries there. Naturally, this
will result in failed compilations, since the wrong system's tools are used. The compiler has a default search path it
uses to look for binaries. We can view this path using one of the compiler's own options (some lines wrap; your
shell will take care of line wrapping):

$ i386-linux-gcc -print-search-dirs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ i386-linux-gcc -print-search-dirs
install: /home/karim/control-project/daq-module/tools/lib/gcc-lib/i386-linux/2.95.3/
programs: /home/karim/control-project/daq-module/tools/lib/gcc-lib/i386-linux/2.95.3/
:/home/karim/control-project/daq-module/tools/lib/gcc-lib/i386-linux/:/usr/lib/gcc/
i386-linux/2.95.3/:/usr/lib/gcc/i386-linux/:/home/karim/control-project/daq-module/
tools/i386-linux/bin/i386-linux/2.95.3/:/home/karim/control-project/daq-module/tools/
i386-linux/bin/
libraries: /home/karim/control-project/daq-module/tools/lib/gcc-lib/i386-linux/2.95.
3/:/usr/lib/gcc/i386-linux/2.95.3/:/home/karim/control-project/daq-module/tools/i386-
linux/lib/i386-linux/2.95.3/:/home/karim/control-project/daq-module/tools/i386-linux/
lib/

The first entry on the programs line, ${PREFIX}/lib/gcc-lib/i386-linux/2.95.3, is a directory containing gcc libraries
and utilities. By placing the binaries in this directory, you can make the cross-compiler use them instead of the
native tools:

$ mv as ar gcc ld nm ranlib strip \
> ${PREFIX}/lib/gcc-lib/i386-linux/2.95.3
Meanwhile, the native toolchain will continue to operate normally. We can also create symbolic links to the
relocated binaries just in case an application still looks for the utilities only in ${PREFIX}/${TARGET}/bin
applications will not look exclusively in this directory, however, and you can almost always skip this step. One case
requiring these symbolic links is when you need to recompile components of the GNU cross-platform development
toolchain for your target. Nonetheless, because these are symbolic links to host binaries instead of the host
binaries themselves, it is easier to tell them apart from the target binaries in case you need to copy the content of
the ${PREFIX}/${TARGET}/bin directory to your target's root filesystem. The following script makes the links:

$ for file in as ar gcc ld nm ranlib strip
> do
> ln -s ${PREFIX}/lib/gcc-lib/i386-linux/2.95.3/$file .
> done
Regardless of the type of host or the gcc version you use, a directory similar to ${PREFIX}/lib/gcc-lib/i386-
linux/2.95.3 will be created during the building of the cross-platform development toolchain. As you can see, the
directory path is made up of the target type and the gcc version. Your particular directory should be located in
${PREFIX}/lib/gcc-lib/${TARGET}/GCC_VERSION, where GCC_VERSION is the version of gcc you are using in your
cross-platform development toolchain.

Finally, to save disk space, you may choose to get rid of the content of the ${PRJROOT}/build-tools directory once
you have completed the installation of the toolchain components. This may be very tempting, as the build directory
now occupies around 600 MB of disk space. I advise you to think this through carefully, nonetheless, and not rush
to use the rm -rf command. An unforeseen problem may require that you delve into this directory again at a future
time. If you insist upon reclaiming the space occupied by the build directory, a compromise may be to wait a month
or two and see if you ever need to come back to it.

4.2.8 Using the Toolchain

You now have a fully functional cross-development toolchain, which you can use very much as you would a native
GNU toolchain, save for the additional target name prepended to every command you are used to. Instead of
invoking gcc and objdump for your target, you will need to invoke i386-linux-gcc and i386-linux-objdump

The following is a Makefile for the control daemon on the DAQ module that provides a good example of the cross-
development toolchain's use:

Tool names
CROSS_COMPILE = ${TARGET}-
AS = $(CROSS_COMPILE)as
AR = $(CROSS_COMPILE)ar
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CPP = $(CC) -E
LD = $(CROSS_COMPILE)ld
NM = $(CROSS_COMPILE)nm
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
RANLIB = $(CROSS_COMPILE)ranlib
READELF = $(CROSS_COMPILE)readelf
SIZE = $(CROSS_COMPILE)size
STRINGS = $(CROSS_COMPILE)strings
STRIP = $(CROSS_COMPILE)strip

export AS AR CC CPP LD NM OBJCOPY OBJDUMP RANLIB READELF SIZE STRINGS \
 STRIP

Build settings
CFLAGS = -O2 -Wall
HEADER_OPS =
LDFLAGS =

Installation variables
EXEC_NAME = command-daemon
INSTALL = install
INSTALL_DIR = ${PRJROOT}/rootfs/bin

Files needed for the build
OBJS = daemon.o

Make rules
all: daemon

.c.o:
 $(CC) $(CFLAGS) $(HEADER_OPS) -c $<

daemon: ${OBJS}
 $(CC) -o $(EXEC_NAME) ${OBJS} $(LDFLAGS)

install: daemon
 test -d $(INSTALL_DIR) || $(INSTALL) -d -m 755 $(INSTALL_DIR)
 $(INSTALL) -m 755 $(EXEC_NAME) $(INSTALL_DIR)

clean:
 rm -f *.o $(EXEC_NAME) core

distclean:
 rm -f *~
 rm -f *.o $(EXEC_NAME) core

The first part of the Makefile specifies the names of the toolchain utilities we are using to build the program. The
name of every utility is prepended with the target's name. Hence, the value of CC will be i386-linux-gcc
compiler we built earlier. In addition to defining the name of the utilities, we also export these values so that
subsequent Makefiles called by this Makefile will use the same names. Such a build architecture is quite common
in large projects with one main directory containing many subdirectories.

The second part of the Makefile defines the build settings. CFLAGS provides the flags to be used during the build of
any C file.

As we saw in the previous section, the compiler is already using the correct path to the target's libraries. The linker
flags variable, LDFLAGS, is therefore empty. If the compiler wasn't pointing to the correct libraries or was using the
host's libraries (which shouldn't happen if you followed the instructions I provided above), we would have to tell the
compiler which libraries to use by setting the link flags as follows:

LDFLAGS = -nostdlib -L${TARGET_PREFIX}/lib

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LDFLAGS = -nostdlib -L${TARGET_PREFIX}/lib

If you wish to link your application statically, you need to add the -static option to LDFLAGS. This generates an
executable that does not rely on any shared library. But given that the standard GNU C library is rather large, this
will result in a very large binary. A simple program that uses printf() to print "Hello World!", for example, is less than
12 KB in size when linked dynamically and around 350 KB when linked statically and stripped.

The variables in the installation section indicate what, where, and how to install the resulting binary. In this case,
the binary is being installed in the /bin directory of the target's root filesystem.

In the case of the control daemon, we currently only have one file to build. Hence, the program's compilation only
requires this single file. If, however, you had used the -nostdlib option in LDFLAGS, which you should not normally
need to do, you would also need to change the section describing the files required for the build and the rule for
generating the binary:

STARTUP_FILES = ${TARGET_PREFIX}/lib/crt1.o \
 ${TARGET_PREFIX}/lib/crti.o \
 ${PREFIX}/lib/gcc-lib/${TARGET}/2.95.3/crtbegin.o
END_FILES = ${PREFIX}/lib/gcc-lib/${TARGET}/2.95.3/crtend.o \
 ${TARGET_PREFIX}/lib/crtn.o
LIBS = -lc
OBJS = daemon.o
LINKED_FILES = ${STARTUP_FILES} ${OBJS} ${LIBS} ${END_FILES}
...
daemon: ${OBJS}
 $(CC) -o $(EXEC_NAME) ${LINKED_FILES} $(LDFLAGS)

Here, we add five object files to the one we are generating from our own C file, crt1.o, crti.o, crtbegin.o
and crtn.o. These are special startup, initialization, constructor, destructor, and finalization files, respectively, which
are usually automatically linked to your applications. It is through these files that your application's main()
is called, for example. Since we told the compiler not to use standard linking in this case, we need to explicitly
mention the files. If you do not explicitly mention them while having disabled standard linking, the linker will
complain about the missing _start symbol and fail. The order in which the object files are provided to the
compiler is important because the GNU linker, which is automatically invoked by the compiler to link the object files,
is a one-pass linker.

The make rules themselves are very much the same ones you would find in a standard, native Makefile. I added
the install rule to automate the install process. You may choose not to have such a rule, but to copy the
executable manually to the proper directory.

With the Makefile and the source file in your local directory, all you need to do is type make to build your program
for your target. If you want to build your program for native execution on your host to test your application, for
example, you could use the following command line:

$ make CROSS_COMPILE=""

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 C Library Alternatives

Given the constraints and limitations of embedded systems, the size of the standard GNU C
library makes it an unlikely candidate for use on our target. Instead, we need to look for a C library
that will have sufficient functionality while being relatively small.

Over time, a number of libraries have been implemented with these priorities in mind. In the
following, we will discuss the two most important C library alternatives, uClibc and diet libc. For
each library, I will provide background information, instructions on how to build the library for your
target, and instructions on how to build your applications using the library.

4.3.1 uClibc

The uClibc library originates from the uClinux project, which provides a Linux that runs on MMU-
less processors. The library, however, has since become a project of its own and supports a
number of processors that may or may not have an MMU or an FPU. At the time of this writing,
uClibc supports all the processor architectures discussed in depth in Chapter 3. uClibc can be
used as a shared library on all these architectures, because it includes a native shared library
loader for each architecture. If a shared library loader were not implemented in uClibc for a certain
architecture, glibc's shared library loader would have to be used instead for uClibc to be used as
a shared library.

Although it does not rely on the GNU C library, uClibc provides most of the same functionality. It
is, of course, not as complete as the GNU library and does not attempt to comply with all the
standards with which the GNU library complies. Functions and function features that are seldom
used, for instance, are omitted from uClibc. Nevertheless, most applications that can be compiled
against the GNU C library will also compile and run using uClibc. To this end, uClibc developers
focus on maintaining compatibility with C89, C99, and SUSv3.[9] They regularly use extensive test
suites to ensure that uClibc conforms to these standards.

[9] Single UNIX Specification Version 3.

uClibc is available for download as a tar-gzipped or tar-bzip2'd archive or by using CVS from the
project's web site at http://uclibc.org/. It is distributed under the terms of the LGPL. An FAQ is
available on the project's web site, and you can subscribe to the uClibc mailing list or browse the
mailing list archive if you need help. In the following description, we will be using Version 0.9.16 of
uClibc, but the explanation should apply to subsequent versions as well. Versions earlier than
0.9.16 depended on a different configuration system and are not covered by the following
discussion.

4.3.1.1 Library setup

The first step in the setup is to download uClibc and extract it in our ${PRJROOT}/build-tools
directory. In contrast to the GNU toolchain components, we will be using the package's own
directory for the build instead of a separate directory. This is mainly because uClibc does not
support building in a directory other than its own. The rest of the build process, however, is similar
to that of the other tools, with the main steps being configuration, building, and installation.

After extracting the package, we move into the uClibc directory for the setup:

$ cd ${PRJROOT}/build-tools/uClibc-0.9.16
For its configuration, uClibc relies on a file named .config that should be located in the package's
root directory. To facilitate configuration, uClibc includes a configuration system that automatically
generates a .config file based on the settings we choose, much like the kernel configuration utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

generates a .config file based on the settings we choose, much like the kernel configuration utility
we will discuss in Chapter 5.[10]

[10] The uClibc configuration system is actually based on Roman Zippel's kernel configuration system, which was
included in the 2.5 development series.

The configuration system can be operated in various ways, as can be seen by looking at the
INSTALL file included in the package's directory. The simplest way to configure uClibc is to use
the curses-based terminal configuration menu:

$ make CROSS=i386-linux- menuconfig
This command displays a menu that can be navigated using the arrow, Enter, and Esc keys. The
main menu includes a set of submenus, which allow us to configure different aspects of uClibc. At
the main menu level, the configuration system enables us to load and save configuration files. If
we press Esc at this level, we are prompted to choose between saving the configuration to the
.config file or discarding it.

In the command above, we set CROSS to i386-linux-, since our cross-platform tools are
prepended by this string, as I explained earlier. We could also edit the Rules.mak file and set
CROSS to ${TARGET}- instead of specifying CROSS= for each uClibc Makefile target.

The main configuration menu includes the following submenus:

Target Architecture Features and Options

General Library Settings

Networking Support

String and Stdio Support

Library Installation Options

uClibc hacking options

Through its submenus, the configuration system allows us to configure many options. Fortunately,
we can obtain information regarding each option using the "?" key. When this key is pressed, the
configuration system displays a paragraph explaining how this option is used and provides its
default values. There are two types of options: paths for tools and directories needed for building,
installing, and operating uClibc, and options for selecting the functionality to be included in uClibc.

We begin by setting the tool and directory paths in the "Target Architecture Features and Options"
and "Library Installation Options" submenus. Table 4-7 lists the values we must set in those
submenus to have uClibc compile and install in accordance with our workspace. For each option,
the name of the variable used internally by uClibc's configuration system is given in parentheses.
Knowing this name is important for understanding the content of the .config file, for example.

Table 4-7. uClibc tool and directory path settings
Option Setting

Linux kernel header location (KERNEL_SOURCE) ${PRJROOT}/kernel/linux-
2.4.18

Shared library loader path (SHARED_LIB_LOADER_PATH) /lib

uClibc development environment directory (DEVEL_PREFIX) ${PRJROOT}/tools/uclibc

uClibc development environment system directory
(SYSTEM_DEVEL_PREFIX) $(DEVEL_PREFIX)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uClibc development environment tool directory
(DEVEL_TOOL_PREFIX) $(DEVEL_PREFIX)/usr

Notice that we use ${PRJROOT}/tools instead of ${PREFIX}, although the former is the value we
gave to the PREFIX environment variable in our script. This is because uClibc's use of the
PREFIX variable in its build Makefiles and related scripts differs from our use. Mainly, it uses this
variable to install everything in an alternate location, whereas we use it to point to the main install
location.

KERNEL_SOURCE should point to the sources of the kernel you will be using on your target. If you
don't set this properly, your applications may not work at all, because uClibc doesn't attempt to
provide binary compatibility across kernel versions.

SHARED_LIB_LOADER_PATH is the directory where shared libraries will be located on your
target. All the binaries you link with uClibc will have this value hardcoded. If you later change the
location of your shared libraries, you will need to rebuild uClibc. We have set the directory to /lib,
since this is the traditional location of shared libraries.

DEVEL_PREFIX is the directory where uClibc will be installed. As with the other tools, we want it
to be under ${PRJROOT}/tools. SYSTEM_DEVEL_PREFIX and DEVEL_TOOL_PREFIX are other
installation variables that are used to control the installation of some of the uClibc binaries and
are mostly useful for users who want to build RPM or dpkg packages. For our setup, we can set
SYSTEM_DEVEL_PREFIX to the same value as DEVEL_PREFIX, and DEVEL_TOOL_PREFIX to
$(DEVEL_PREFIX)/usr. This results in all uClibc binaries prepended with the target name, such
as i386-uclibc-gcc, to be installed in ${PRJROOT}/tools/uclibc/bin, and all uClibc binaries not
prepended with the target name, such as gcc, to be installed in ${PRJROOT}/tools/uclibc/usr/bin.
As we shall see later, we only need to add ${PRJROOT}/tools/uclibc/bin to our path to use uClibc.

Let us now take a look at the options found in each configuration submenu. As I said earlier, you
can use the "?" key to obtain more information about each option from the configuration system.
Because some options depend on the settings of other options, some of the options listed below
may not be displayed in your configuration. While most options are either enabled or disabled,
some are string fields, such as the paths we discussed earlier, which must be filled.

The "Target Architecture Features and Options" submenu includes the following options:

Target Processor Type.

Target CPU has a memory management unit (MMU) (UCLIBC_HAS_MMU).

Enable floating (UCLIBC_HAS_FLOATS).

Target CPU has a floating point unit (FPU) (HAS_FPU).

Enable full C99 math library support (DO_C99_MATH).

Compiler Warnings (WARNINGS). This is a string field that allows you to set the compiler
flags used for reporting warnings.

Linux kernel header location (KERNEL_SOURCE). This is the kernel path we discussed
earlier.

The "General Library Settings" submenu includes the following options:

Generate Position Independent Code (PIC) (DOPIC).

Enable support for shared libraries (HAVE_SHARED).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compile native shared library loader (BUILD_UCLIBC_LDSO).

Native shared library loader `ldd' support (LDSO_LDD_SUPPORT).

POSIX Threading Support (UCLIBC_HAS_THREADS).

Large File Support (UCLIBC_HAS_LFS).

Malloc Implementation. This is a submenu that allows us to choose between two malloc
implementations, malloc and malloc-930716.

Shadow Password Support (HAS_SHADOW).

Regular Expression Support (UCLIBC_HAS_REGEX).

Supports only Unix 98 PTYs (UNIXPTY_ONLY).

Assume that /dev/pts is a devpts or devfs filesystem (ASSUME_DEVPTS).

The "Networking Support" submenu includes the following options:

IP Version 6 Support (UCLIBC_HAS_IPV6).

Remote Procedure Call (RPC) support (UCLIBC_HAS_RPC).

Full RPC support (UCLIBC_HAS_FULL_RPC).

The "String and Stdio support" submenu includes the following options:

Wide Character Support (UCLIBC_HAS_WCHAR).

Locale Support (UCLIBC_HAS_LOCALE).

Use the old vfprintf implementation (USE_OLD_VFPRINTF).

We already covered all the options in the "Library Installation Options" submenu earlier in this
section. Here they are nevertheless for completeness:

Shared library loader path (SHARED_LIB_LOADER_PATH).

uClibc development environment directory (DEVEL_PREFIX).

uClibc development environment system directory (SYSTEM_DEVEL_PREFIX).

uClibc development environment tool directory (DEVEL_TOOL_PREFIX).

Though you should not normally need to enter the "uClibc hacking options" submenu, here are
the options it includes:

Build uClibc with debugging symbols (DODEBUG).

Build uClibc with runtime assertion testing (DOASSERTS).

Build the shared library loader with debugging support (SUPPORT_LD_DEBUG).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Build the shared library loader with early debugging support
(SUPPORT_LD_DEBUG_EARLY).

For our DAQ module, we left the options to their default values. For most targets, you should not
need to change the options either. Remember that you can always revert to the defaults by
removing the .config file from the uClibc's directory.

With uClibc now configured, we can compile it:

$ make CROSS=i386-linux-
The compilation takes approximately 10 minutes in our setup. As with the GNU toolchain, you
may see warnings during the build that you can safely ignore.

With the build complete, we can install uClibc:

$ make CROSS=i386-linux- PREFIX="" install
Given the values we set above, this will install all the uClibc components in the
${PRJROOT}/tools/uclibc directory. If we had already installed uClibc, the installation procedure
will fail while trying to copy files to the ${PRJROOT}/tools/uclibc directory. In such a case, we
should erase the content of that directory before issuing the make install command.

4.3.1.2 Usage

We are now ready to link our applications with uClibc instead of the GNU C library. To facilitate
this linking, a couple of utilities have been installed by uClibc in ${PRJROOT}/tools/uclibc/bin.
Mainly, uClibc installed an alternate compiler and alternate linker, i386-uclibc-gcc and i386-uclibc-
ld. Instead of using the i386-linux- prefix, the utilities and symbolic links installed by uClibc have
the i386-uclibc- prefix. Actually, the uClibc compiler and linker are wrappers that end up calling
the GNU utilities we built earlier while ensuring that your application is properly built and linked
with uClibc.

The first step in using these utilities is to amend our path:

$ export PATH=${PREFIX}/uclibc/bin:${PATH}
You will also want to modify your development environment script to automate this path change.
In the case of develdaq, here is the new line for the path:

export PATH=${PREFIX}/bin:${PREFIX}/uclibc/bin:${PATH}

Using the same Makefile as earlier, we can compile the control daemon as follows:

$ make CROSS_COMPILE=i386-uclibc-
Since uClibc is a shared library by default on the x86, this will result in a dynamically linked binary.
We could still compile our application statically, however:

$ make CROSS_COMPILE=i386-uclibc- LDFLAGS="-static"
The same "Hello World!" program we used earlier is only 2 KB in size when linked with the shared
uClibc and 18 KB when linked statically with it. This is a big difference with the figures I gave
above for the same program when it was linked with glibc.

4.3.2 Diet libc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The diet libc project was started and is still maintained by Felix von Leitner with aims similar to
uClibc. In contrast with uClibc, however, diet libc did not grow from previous work on libraries but
was written from scratch with an emphasis on minimizing size and optimizing performance.
Hence, diet libc compares quite favorably to glibc in terms of footprint and in terms of code speed.
In comparison to uClibc, though, I have not noticed any substantial difference.

Diet libc does not support all the processor architectures discussed in Chapter 3. It supports the
ARM, the MIPS, the x86, and the PPC. Also, the authors of diet libc favor static linking over
dynamic linking. So, although diet libc can be used as a shared library on some platforms, it is
mostly intended to be used as a static library.

One of the most important issues to keep in mind while evaluating diet libc is its licensing. In
contrast to most other libraries, including uClibc, which are usually licensed under the LGPL, diet
libc is licensed under the terms of the GPL. As I explained in Chapter 1, this means that by linking
your code to diet libc, the resulting binary becomes a derived work and you can distribute it only
under the terms of the GPL. A commercial license is available from the package's main author if
you wish to distribute non-GPL code linked with diet libc.[11] If, however, you would prefer not to
have to deal with such licensing issues, you may want to use uClibc instead.

[11] It is not clear whether this license covers the contributions made to diet libc by developers other than the main
author.

Diet libc is available for download both as a tar-bzip2'd archive or using CVS from the project's
web site at http://www.fefe.de/dietlibc/.[12] The package comes with an FAQ and installation
instructions. In the following, we will be using Version 0.21 of diet libc, but my explanations should
also apply to previous and subsequent versions.

[12] Notice the final "/". If you omit this slash, the web server will be unable to locate the web page.

4.3.2.1 Library setup

As with uClibc, the first step to setting up diet libc is to download it into our ${PRJROOT}/build-
tools directory. Here too, we will build the library within the package's source directory and not in
another directory as was the case for the GNU toolchain. Also, there is no configuration required
for diet libc. Instead, we can proceed with the build stage immediately.

Once the package is extracted, we move into the diet libc directory for the setup:

$ cd ${PRJROOT}/build-tools/dietlibc-0.21
Before building the package for our target, we will build it for our host. This is necessary to create
the diet utility, which is required to build diet libc for the target and later to build applications
against diet libc:

$ make
In our setup, this creates a bin-ppc directory containing a PPC diet libc. We can now compile diet
libc for our target:

$ make ARCH=i386 CROSS=i386-linux-
`You will see even more warnings than with the other packages, but you can ignore them. Here,
we must tell the Makefile both the architecture for which diet libc is built and the prefix of the
cross-platform development tools.

With the package now built, we can install it:

$ make ARCH=i386 DESTDIR=${PREFIX}/dietlibc prefix="" install
This installs diet libc components in ${PREFIX}/dietlibc. Again, as when building the package for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This installs diet libc components in ${PREFIX}/dietlibc. Again, as when building the package for
our target, we provide the Makefile with the architecture. We also specify the install destination
using the DESTDIR variable and reset the Makefile's internal prefix variable, which is different
from the capital PREFIX environment variable.

Diet libc has now been installed in the proper directory. There is, however, one correction we
need to make to diet libc's installation. By installing the x86 version of diet libc, we installed the
x86 version of the diet utility in ${PREFIX}/dietlibc/bin. Since we intend to compile our applications
on the host, we need to overwrite this with the native diet utility we built earlier:

$ cp bin-ppc/diet ${PREFIX}/dietlibc/bin

4.3.2.2 Usage

As with uClibc, using diet libc involves modifying the path and using the wrapper provided by diet
libc to link our applications. In contrast to uClibc, however, instead of substituting the cross-
development tools with tools specific to the library, we only need to prepend the calls we make to
the tools with the diet libc wrapper.

First, we must change our path to include the directory containing the diet libc binary:

$ export PATH=${PREFIX}/dietlibc/bin:${PATH}
Again, you will also want to change your development environment script. For example, the path
line in our develdaq script becomes:

export PATH=${PREFIX}/bin:${PREFIX}/dietlibc/bin:${PATH}

Notice that I assume that you won't be using both uClibc and diet libc at the same time. Hence,
the path line has only diet libc added to it. If you would like to have both diet libc and uClibc on
your system during development, you need to add both paths.

To compile the control daemon with diet libc, we use the following command line:

$ make CROSS_COMPILE="diet i386-linux-"
Since diet libc is mainly a static library, this will result in a statically linked binary by default and
you don't need to add LDFLAGS="-static" to the command line. Using the same "Hello World!"
program as earlier, I obtain a 24 KB binary when linked with diet libc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Java

Since its introduction by Sun in 1995, Java™ has become one of the most important
programming languages around. Today, it is found in every category of computerized systems,
including embedded systems. Although still not as popular as C in the embedded programming
world, it is nonetheless being used in an ever-increasing number of designs.

I will not attempt to introduce you to Java or any of the technology surrounding it. Instead, I refer
you to the plethora of books on the matter, including many by O'Reilly. There is, nonetheless, one
basic issue we need to review before continuing. Essentially, any discussion on Java involves a
discussion of three different items: the Java programming language, the Java Virtual Machine
(JVM), and the Java Runtime Environment (JRE), which is made up of the various Java classes.

There are many packages, both free and proprietary, that provide Java functionality in Linux. In
our discussion, we will concentrate on the freely available packages. Specifically, we will discuss
the Blackdown project, the open source virtual machines, and the GNU Compiler for the Java
programming language. I will not cover the installation or the use of these tools as there is little
difference between installing and using them on a Linux workstation and in an embedded Linux
system. I will, nonetheless, refer you to the appropriate documentation for such instructions.

4.4.1 The Blackdown Project

The Blackdown project (http://www.blackdown.org/) is the group that ports Sun's Java tools to
Linux. This effort is entirely based on Sun's own Java source code and provides Linux ports of
Sun's tools, including the Java Development Kit (JDK) and the JRE. This is the JDK and JRE
most often used in Linux workstations and servers.

This project has enjoyed a privileged, and sometimes troubled, relationship with Sun. Since this
project is entirely based on Sun source code and this code is not available as open source,[13] it is
entirely dependent on Sun's goodwill to help the Linux community.

[13] The source code for Sun's Java tools is available under the terms of the Sun Community Source License (SCSL).
The SCSL is not one the licenses approved by the Open Source Initiative (OSI). See http://opensource.org/licenses/
for the complete list of approved licenses.

Actually, the Blackdown project does not distribute any source code. Instead, it distributes prebuilt
binaries for the various processor architectures to which its developers have ported Sun's Java
tools. As the project's FAQ points out, you need to contact Sun to get access to the source code.

According to the licensing agreements between Sun and Blackdown, you are allowed to download
the JDK for your own use, but you cannot distribute it without entering into an agreement with
Sun. You can, however, download the JRE and distribute it as-is with few limitations.

Before releasing new versions of their work, the Blackdown team must meet the requirements of
Sun's compatibility tests. Hence, consecutive Blackdown releases do not necessarily support all
the architectures of the previous releases. Release 1.3.0-FCS, for instance, supports the PPC
and the x86, while 1.3.1-rc1 supports only the ARM. The complete list of Blackdown releases and
supported platforms is available from the project's status page at http://www.blackdown.org/java-
linux/ports.html.

To run the JDK or the JRE, you will need glibc, at the very least, and the X Window System with
its libraries if you wish to use the AWT classes. Given the constraints of most embedded systems,
only those with very large amounts of storage and processing power will be able to accommodate
this type of application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For more information regarding the Blackdown project, the tools it provides, how to install them,
how to operate them, and the licensing involved, see the Blackdown FAQ at
http://www.blackdown.org/java-linux/docs/support/faq-release/.

4.4.2 Open Source Virtual Machines

Given Blackdown's hurdles and its dependence on Sun, a number of projects have been started
to provide open source, fully functional JVMs, without using any of Sun's source code. The most
noteworthy one is Kaffe.

Since there isn't any consensus on the feasibility of using any of the various open source VMs as
the main JVM in an embedded Linux project, I will only mention the VMs briefly and will not
provide any information regarding their use. You are invited to look at each VM and follow the
efforts of the individual teams.

The Kaffe Java Virtual Machine (http://www.kaffe.org/) is based on a product sold commercially by
Transvirtual Inc., KaffePro VM, and is a clean-room implementation of the JVM.[14] Although no
new releases of the project have been made since July 2000 and although this VM is not 100%
compatible with Sun's VM, according to the project's web site, it is still the main open source
alternative to Sun's VM.

[14] That is, it was written from scratch without using any of Sun's Java source code.

There are other projects that may eventually become more important, such as Japhar
(http://www.japhar.org/), Kissme (http://kissme.sourceforge.net/), Aegis
(http://aegisvm.sourceforge.net/), and Sable VM (http://www.sablevm.org/). For a complete list of
open source VM projects, see the list provided by yet another open source VM project, the joeq
VM (http://joeq.sourceforge.net/), at http://joeq.sourceforge.net/other_os_java.htm. See each
project's respective web site and documentation for information on how to install and operate the
VM.

4.4.3 The GNU Java Compiler

As part of the GNU project, the GNU Compiler for the Java programming language (gcj) is an
extension to gcc that can handle both Java source code and Java bytecode. In particular, gcj can
compile either Java source code or Java bytecode into native machine code. In addition, it can
also compile Java source into Java bytecode. It is often referred to as an ahead-of-time (AOT)
compiler, because it can compile Java source code directly into native code, in contrast with
popular just-in-time (JIT) compilers that convert Java bytecode into native code at runtime. gcj
does, nevertheless, include a Java interpreter equivalent to the JDK's java command.

GNU gcj is a fairly active project, and most core Java class libraries are already available as part
of the gcj runtime libraries. Although most windowing components, such as AWT, are still under
development, the compiler and its runtime environment can already be used to compile and run
most command-line applications.

As with other GNU projects, gcj is fairly well documented. A good starting place is the project's
web site at http://gcc.gnu.org/java/. In the documentation section of the web site, you will find a
compile HOWTO, a general FAQ, and instructions on how to debug Java applications with gdb.
You should be able to use the compile HOWTO in conjunction with my earlier instructions
regarding the GNU toolchain to build gcj for your target.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5 Perl

Perl was introduced by Larry Wall in 1987. This programming language has since become a world
of its own. If you are interested in Perl, have a look at Wall, Christiansen, and Orwant's
Programming Perl or Schwartz's Learning Perl (both published by O'Reilly). Briefly, Perl is an
interpreted language whose compiler, tools, and libraries are all available as open source under
the terms of the Perl Artistic License and the GNU GPL from the Comprehensive Perl Archive
Network (CPAN) at http://www.cpan.org/. Since there is only one Perl toolset, you will not need to
evaluate different toolsets to figure out which one best suits your needs.

The main component you will need to run Perl programs on your target is a properly compiled Perl
interpreter for your target. Unfortunately, at the time of this writing, Perl is not well adapted to
cross-compilation. Efforts are, however, underway to solve the underlying issues. According to
Jarkko Hietaniemi, the 5.8 release manager, Perl 5.8.0, should be able to cross-compile itself. For
the time being, the 5.7 development branch includes two build options for cross-compiling small
versions of the full Perl package: microperl and miniperl. Note that both options are part of the
same package and you do not need to download any other package than the one provided by
CPAN.

4.5.1 Microperl

The microperl build option was implemented by Simon Cozens based on an idea by Ilya
Zakhareivh. It is the absolute bare minimum build of Perl with no outside dependencies other than
ANSI C and the make utility. Unlike the other builds, microperl does not require that you run the
Configure script, which performs a great deal of tests on the installation machine before
generating the appropriate files for the package's build. Instead, default configuration files are
provided with the bare minimum settings that allow the core Perl interpreter to build properly.
None of the language's core features are missing from this interpreter. Of course it does not
support all the features of the full interpreter, but it is sufficient to run basic Perl applications.
Since this code is considered "experimental," for the moment, you will need to evaluate most of
microperl's capabilities on your own.

I have successfully built a microperl for my DAQ module using the toolchain set up earlier, uClibc,
and Perl 5.7.3. The resulting interpreter was able to adequately execute all Perl programs that did
not have any outside references. It failed, however, to run programs that used any of the standard
Perl modules.

To build microperl for your target, you must first download a Perl version from CPAN and extract it
into the ${PRJROOT}/sysapps directory. Place the package in the sysapps directory, because it
will run only on the target and will not be used to build any of the other software packages for your
target. With the package extracted, we move into its directory for the build. Here, we cannot use a
different build directory, as we did for the GNU toolchain, because Perl does not support this build
method.

$ cd ${PRJROOT}/sysapps/perl-5.7.3
Since microperl is a minimal build of Perl, we do not need to configure anything. We can build the
package by using the appropriate Makefile and instructing it to use the uClibc compiler wrapper
instead of the standard gcc compiler:

$ make -f Makefile.micro CC=i386-uclibc-gcc
This will generate a microperl binary in the package's root directory. This binary does not require
any other Perl components and can be copied directly to the /bin directory of your target's root
filesystem, ${PRJROOT}/rootfs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When dynamically linked with either glibc or uClibc and stripped, the microperl binary is around
900 KB in size. When statically linked and stripped, the binary is 1.2 MB in size with glibc, and
930 KB with uClibc. As you can see, uClibc is the better choice in this case for size reasons.

For more information on how microperl is built, have a look at the Makefile.micro Makefile and the
uconfig.sh script. As work continues on microperl, it is expected that more documentation will
become available.

4.5.2 Miniperl

Miniperl is less minimalistic than microperl and provides most of what you would expect from the
standard Perl interpreter. The main component it lacks is the DynaLoader XS module, which
allows Perl subroutines to call C functions. It is therefore incapable of loading XS modules
dynamically. This is a minor issue, however, given the type of system miniperl will be running on.

As with the main Perl build, miniperl requires that you run the Configure script to determine the
system's capabilities. Since the system for which Perl must be built is your target, the script
requires you to provide it with information regarding the means it should use to communicate with
that target. This includes a hostname, a remote username, and a target-mapped directory. It will
then use this information to run its tests on your target to generate the proper build files.

The main caveat concerning this method is its reliance on the existence of a direct network link
between the host and the target. In essence, if your target does not have some form of
networking, you will be unable to build miniperl for it.

I will not provide the details of the build and installation methodology for miniperl, as it is already
very well explained in the INSTALL file provided with the 5.7.3 Perl package under the "Cross-
compilation" heading.

Cross-Compiling the Impossible
As we've just seen with Perl, not all packages cross-compile easily. As a matter of fact,
there is a great number of packages that have not been designed to allow cross-
compilation. This book mentions a few of these, but certainly can't list them all.

Beside trying to modify build scripts and using compilation tricks to force packages to
compile for another architecture, sometimes the only realistic solution is to actually
build the package on the target where it is supposed to run. At first, this may seem
unfeasible for most embedded systems because of these systems' typically limited
storage space. As we shall in Chapter 9, however, it is possible to mount a system's
root filesystem on an server using NFS. By using an NFS-mounted root filesystem, the
target can access as much storage space as the server allows it to.

In such a setup, it is therefore possible to cross-compile the gcc compiler itself for the
target, and then use this compiler to natively compile any package directly on the target
in exactly the same way the package's build scripts expect to operate. Once the
package has been compiled, the resulting binaries and libraries can thereafter be
copied to a small root filesystem tailored for the target's internal storage device, and
used in the field like any other target application. Obviously, there is no need to
package the cross-compiled gcc with the rest of the system in the field.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6 Python

Python was introduced to the public by Guido van Rossum in 1991. It has since gathered many
followers and, as with Perl, is a world of its own. If you are interested in Python, read Mark Lutz's
Programming Python or Lutz, Ascher, and Willison's Learning Python (both published by O'Reilly).
Python is routinely compared to Perl, since it often serves the same purposes, but because this is
the subject of yet another holy war, I will not go any further. Instead, feel free to browse the main
Python web site at http://www.python.org/ for more information on the world of Python. The
Python package, which includes the Python interpreter and the Python libraries, is available from
that web site under the terms of a composite license called the Python license, which is an
approved open source license.

As with Perl, you will need a properly configured interpreter to run Python code on your target.
Although the main Python distribution does not support cross-compiling, a patch has been
developed to this effect by Klaus Reimer and is available from
http://www.ailis.de/~k/patches/python-cross-compile.diff. Klaus also provides a very well written
Python cross-compiling HOWTO at http://www.ailis.de/~k/knowledge/crosscompiling/python.php.

You can follow Klaus' instructions to build Python for your target while using the appropriate
names for your target instead of the arm-linux used in the instructions. To follow the same project
workspace organization that we established earlier, download and extract the Python package in
the ${PRJROOT}/sysapps directory. Also, instead of building Python directly in its source
directory, you can use a build-python directory, as we did with the GNU tools, since Python
supports this build method. In addition, use the - -prefix=${PREFIX}/${TARGET}/usr option
instead of the values provided by the HOWTO. All the Python material will thereby be installed in
the ${PREFIX}/${TARGET}/usr directory. This directory can then be customized and copied onto
the target's root filesystem.

There are a couple of observations to be made about the resulting package. First, you will not be
able to build Python with diet libc. You will need to build Python against glibc or uClibc. This
means that glibc or uClibc will have to be on your target's root filesystem. When storage space on
your target is limited, I suggest you use uClibc instead of glibc. Also, if you want to build Python
against uClibc, you need to patch Python using the patch posted by Manuel Novoa on August 27,
2002 on the uClibc mailing list following the announcement of uClibc 0.9.15.

Second, Python has installed many libraries in the ${PREFIX}/${TARGET}/usr/lib/python2.2
directory, and many of those are large. You may want to trim down the content of this directory by
deleting the components you are unlikely to use. By itself, the dynamically linked and stripped
Python interpreter is 725 KB in size.

Nevertheless, Python's size and dependencies have not stopped developers from using it. The
team developing the iPAQ's Familiar distribution, for instance, includes it as part of their standard
packages.

Finally, as Klaus explains, you may see some warnings and failures during the build. This is
because some libraries and applications are missing on your target. The Tkinter interface to
libtk.a and libtcl.a will fail to build, for instance, unless you had cross-compiled and installed Tcl/Tk
for your target. This doesn't mean the Python build has failed. Rather, it is an indication that one
of the Python components has not built successfully. You will still be able to install and use the
Python interpreter and the modules that built properly on your target.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7 Ada

Ada was sponsored by the U.S. Department of Defense (DoD). During the 1970s, the DoD
realized that it had a huge software maintenance problem on its hands. Thus, it started work on a
new programming language that met its stringent requirements of code maintainability and
reliability. Ada was first standardized by ANSI in 1983 and was later updated in 1995 with the
release of the Ada95 standard.

Work on a gcc-based Ada compiler was started at New York University and resulted in gnat, the
GNU Ada compiler.[15] Work on gnat continued at Ada Core Technologies Inc. (ACT), which
maintained it for some time before it was eventually integrated into the main gcc source tree.
Every so often, ACT used to release a GPL copy of its most recent work and made it available,
along with some prebuilt binaries, at ftp://cs.nyu.edu/pub/gnat/. Their latest release, gnat 3.14p,
required gcc 2.8.1 to build. To be precise, gnat's source was provided with a patch that had to be
applied to the gcc sources, and an ada directory that had to be copied into gcc's source directory.

[15] Remarkably, gnat is entirely written in Ada.

Unfortunately, this led to all sorts of problems. For instance, gcc 2.8.1 was fairly outdated and
most gcc versions found in recent distributions failed to build it properly. Hence, if you wanted to
use the 3.14p release, you first had to install an old compiler on your system and use it to build
gnat. Obviously, this wasn't an endearing prospect.

More recently, ACT's work on gnat has been integrated into the gcc CVS and is now part of gcc
3.2. Though you still need a gnat binary to build the Ada compiler, the integration of gnat into
mainstream gcc is likely to simplify the use of Ada in embedded Linux systems in the future.

Apart from the ongoing effort to integrate gnat into mainstream gcc, there are two online projects
you may find helpful if you are interested in Ada programming in Linux. First, The Big Online Book
of Linux Ada Programming is a collective work started by Ken Burtch with the main goal of
providing a complete online reference manual for Ada programming in Linux. The manual is
available at http://www.pegasoft.ca/homes/book.html and has a couple of mirrors.

Second, the Ada for GNU/Linux Team (ALT) provides a number of ACT-independent binary
packages, RPMs, and patches at http://www.gnuada.org/alt.html. The group also provides a
number of links to packages providing Ada interfaces and bindings to popular libraries, such as
GTK, XML, and X11.

Great Software from 30 Years Ago...
I was reminded of the DoD's software troubles a couple of years ago while attending
the 2000 Usenix's annual technical conference. As this was the 25th annual technical
conference, both Dennis Ritchie and Ken Thompson were in attendance, a rare
occurrence.

Their attendance was highlighted by Evi Nemeth during the initial conference
orientation session where she pointed out the enduring value of their work. As part of
her explanation, she was emphasizing the longevity of their ideas and said: "Unix has
been around for 30 years. Do you know of any software that has been used for 30
years?"

At that point, the rhetorical question drew an unexpected answer from the crowd with
an attendee quipping: "uhh, lady, I work for the Air Force..."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.8 Other Programming Languages

There are, of course, many more programming languages supported in Linux. Whether you are
looking for programming in Forth, Lisp, or FORTRAN, a short search on the Net with your favorite
search engine should yield rapid results. A good starting point is the "Other Languages" section in
Chapter 13 of Running Linux (O'Reilly).

The cross-compiling and cross-development capabilities of the various language tools will need to
be evaluated on a tool-to-tool basis, since few compilers and interpreters lend themselves well to
cross-platform development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.9 Integrated Development Environments

Many integrated development environments (IDEs) are available for Linux. Most of these IDEs
are usually used to develop native applications. Nevertheless, they can be customized for cross-
development by setting the appropriate compiler names in the IDE's configuration. Table 4-8
provides a list of open source IDEs, their locations, and the list of embedded Linux-relevant
programming languages they support.

Table 4-8. Open source IDEs
IDE Location Supported languages

Anjuta http://anjuta.sourceforge.net/ Ada, bash, C, C++, Java, make, Perl,
Python

Eclipse http://www.eclipse.org/ C, C++, Java

Glimmer http://glimmer.sourceforge.net/ Ada, bash, C, C++, Java, make, Perl,
Python, x86 assembly

KDevelop http://www.kdevelop.org/ C, C++, Java

SourceNavigator http://sources.redhat.com/sourcenav/ C, C++, Java, Python

I am reluctant to recommend any particular IDE, because the choice is very much a personal one.
I personally prefer XEmacs and the command line to any IDE. Others, still, prefer plain-old vi. You
may want to look at the screenshots sections of each project to get an initial appreciation for it.
Ultimately, however, you may wish to download the IDEs and try them to make up your mind.

In terms of popularity, KDevelop is probably the most popular IDE of the list. Although it is very
much oriented towards native development of user applications, it can be customized for cross-
development. Anjuta is a very active project, and its interface resembles that of many popular
Windows IDEs. SourceNavigator is an IDE made available by Red Hat under the terms of the
GPL, and is part of Red Hat's GNUPro product. Glimmer is a Gnome-based IDE with capabilities
similar to the other IDEs. Eclipse is an ambitious project to create an IDE framework that can
easily be extended using plug-ins. It was initiated and is still backed by many companies,
including IBM, HP, Red Hat, and SuSE.

For more information regarding these projects, visit their web sites and have a look at their
documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.10 Terminal Emulators

The most common way to communicate with an embedded system is to use a terminal emulation
program on the host to communicate through an RS232 serial port with the target. Although there
are a few terminal emulation programs available for Linux, not all are fit for all uses. There are
known problems between minicom and U-Boot, for instance, during file transfers over the serial
port. Hence, I recommend that you try more than one terminal application to communicate with
your target. If nothing else, you are likely to discover one that best fits your personal preferences.
Also, see your bootloader's documentation for any warnings regarding any terminal emulator.

Three main terminal emulators are available in Linux: minicom, cu, and kermit. The following
sections cover the setup and configuration of these tools, but not their use. Refer to each
package's documentation for the latter.

4.10.1 Accessing the Serial Port

Before you can use any terminal emulator, you must ensure that you have the appropriate access
rights to use the serial port on your host. In particular, you need read and write access to the
serial port device, which is /dev/ttyS0 in most cases, and read and write access to the /var/lock
directory. Access to /dev/ttyS0 is required to be able to talk to the serial port. Access to /var/lock
is required to be able to lock access to the serial port. If you do not have these rights, any terminal
emulator you use will complain at startup.[16]

[16] The actual changes required for your distribution may differ from those discussed in this section. Refer to your
distribution's documentation in case of doubt.

The default permission bits and group settings for /dev/ttyS0 vary between distributions, and
sometimes between releases of the same distribution. On Red Hat 6.2, for example, it used to be
accessible in read and write mode to the root user only:

$ ls -al /dev/ttyS0
crw------- 1 root tty 4, 64 May 5 1998 /dev/ttyS0

As with /dev/ttyS0, the permission bits and group settings for /var/lock largely depend on the
distribution. For the same Red Hat 6.2, /var/lock was accessible to the root user and any member
of the uucp group:

$ ls -ld /var/lock
drwxrwxr-x 5 root uucp 1024 Oct 2 17:14 /var/lock

Though Red Hat 6.2 is outdated, and your distribution is likely to have different values, this setup
is a perfect example to illustrate the modifications required to allow proper access to the serial
port. In this case, to use a terminal emulator on the serial port as a normal user, you must be part
of both the tty and uucp groups, and access rights to /dev/ttyS0 must be changed to allow read
and write access to members of the owning group. In some distributions, the access rights to
/dev/ttyS0 will be set properly, but /var/lock will belong to the root group. In that case, you may
want to change the group setting, unless you want to allow normal users in the root group, which
I do not recommend.

Going back to Red Hat 6.2, use chmod to change the rights on /dev/ttyS0:

$ su
Password:
chmod 660 /dev/ttyS0
ls -al /dev/ttyS0
crw-rw---- 1 root tty 4, 64 May 5 1998 /dev/ttyS0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

crw-rw---- 1 root tty 4, 64 May 5 1998 /dev/ttyS0

Then, edit the /etc/group file using vigr[17] and add your username to the uucp and tty lines:

[17] This command is tailored for the editing of the /etc/group file. It sets the appropriate locks to ensure that only one
user is accessing the file at any time. See the manpage for more information.

...
tty:x:5:karim
...
uucp:x:14:uucp,karim
...

Finally, log out from root user mode, log out from your own account, and log back in to your
account:

exit
$ id
uid=501(karim) gid=501(karim) groups=501(karim)
$ exit
Teotihuacan login: karim
Password:
$ id
uid=501(karim) gid=501(karim) groups=501(karim),5(tty),14(uucp)

As you can see, you need to first log out and then log back in for the changes to take effect.
Opening a new terminal window in your GUI may have similar effects, depending on the GUI your
are using and the way it starts new terminal windows. Even if it works, however, only the new
terminal window will be part of the appropriate groups, but any other window opened before the
changes will still be excluded. For this reason, it is preferable to exit your GUI, completely log out,
and then log back in.

For more information on the setup of the serial interface, have a look at the Serial HOWTO
available from the LDP and Chapter 4 of the Linux Network Administrator's Guide (O'Reilly).

4.10.2 Minicom

Minicom is the most commonly used terminal emulator for Linux. Most documentation online or in
print about embedded Linux assumes that you are using minicom. However, as I said above,
there are known file transfer problems between minicom and at least one bootloader. Minicom is
a GPL clone of the Telix DOS program and provides ANSI and VT102 terminals. Its project web
site is currently located at http://www.netsonic.fi/~walker/minicom.html. Minicom is likely to have
been installed by your distribution. You can verify this by using rpm -q minicom if you are using a
Red Hat-based distribution.

Minicom is started by using the minicom command:

$ minicom
The utility starts in full-screen mode and displays the following on the top of the screen:

Welcome to minicom 1.83.0

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Mar 7 2000, 06:12:31.

Press CTRL-A Z for help on special keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Press CTRL-A Z for help on special keys

To enter commands to minicom, press Ctrl-A and then the letter of the desired function. As stated
by minicom's welcome message, use Ctrl-A Z to get help from minicom. Refer to the package's
manpage for more details about its use.

4.10.3 UUCP cu

Unix to Unix CoPy (UUCP) used to be one of the most popular ways to link Unix systems. Though
UUCP is rarely used today, the cu command part of the UUCP package can be used to call up
other systems. The connection used to communicate to the other system can take many forms. In
our case, we are mostly interested in establishing a terminal connection over a serial line to our
target.

To this end, we must add the appropriate entries to the configuration files used by UUCP. In
particular, this means adding a port entry in /etc/uucp/port and a remote system definition to
/etc/uucp/sys. As the UUCP info page states, "a port is a particular hardware connection on your
computer," whereas a system definition describes the system to connect to and the port used to
connect to it.

Though UUCP is available from the GNU FTP site under the terms of the GPL, it is usually
already installed on your system. On a Red Hat-based system, use rpm -q uucp to verify that it is
installed.

Here is an example /etc/uucp/port:

/etc/uucp/port - UUCP ports
/dev/ttyS0
port ttyS0 # Port name
type direct # Direct connection to other system
device /dev/ttyS0 # Port device node
hardflow false # No hardware flow control
speed 115200 # Line speed

This entry states that there is a port called ttyS0 that uses direct 115200 bps connections
without hardware flow control to connect to remote systems through /dev/ttyS0. The name of the
port in this case, ttyS0, is used only to identify this port definition for the rest of UUCP utilities
and configuration files. If you've used UUCP before to connect using a traditional modem, you will
notice that this entry resembles modem definitions. Unlike modem definitions, however, there is
no need to provide a carrier field to specify whether a carrier should be expected. Setting the
connection type to direct makes carrier default to false.

Here is an example /etc/uucp/sys file that complements the /etc/uucp/port file listed earlier:

/etc/uucp/sys - name UUCP neighbors
system: target
system target # Remote system name
port ttyS0 # Port name
time any # Access is possible at any time

Basically, this definition states that the system called target can be called up at any time using
port ttyS0.

We can now use cu to connect to the target:

$ cu target
Connected.

Once in a cu session, you can issue instructions using the ~ character followed by another
character specifying the actual command. For a complete list of commands, use ~?.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For more information on how to configure and customize UUCP for your system, have a look at
Chapter 16 in the Linux Network Administrator's Guide (O'Reilly), the UUCP HOWTO available
from the LDP, and the UUCP info page.

4.10.4 C-Kermit

C-Kermit is one of the packages maintained as part of Columbia University's Kermit project
(http://www.columbia.edu/kermit/). C-Kermit provides a unified interface for network operations
across a wide range of platforms. Although it features many capabilities, terminal emulation is the
package's capability we are most interested in.

Though you are free to download C-Kermit for personal and internal use, C-Kermit is not open
source software and its licensing makes it difficult for commercial distributions to include it.[18] C-
Kermit is available for download from http://www.columbia.edu/kermit/ckermit.html. Follow the
documentation in the ckuins.txt file included with the package to compile and install C-Kermit. In
contrast with most other tools we discuss in this book, C-Kermit should be installed system wide,
not locally to your project workspace. Once installed, C-Kermit is started using the kermit
command.

[18] Although the license was changed lately to simplify inclusion in commercial distributions such as Red Hat, C-
Kermit has yet to be included in most mainstream distributions.

In terms of usability, kermit compares quite favorably to both minicom and cu. Despite its lack of
user menus, as provided by minicom, kermit's interactive command language provides a very
intuitive and powerful way of interacting with the terminal emulator. When you initiate a file
transfer from the target's bootloader, for example, the bootloader starts waiting for the file. You
can then switch to kermit's interactive command line on the host using Ctrl-\ C and send the
actual file using the send command. Among other things, the interactive command line provides
Tab filename completion similar to that provided by most shells in Linux. Also, the interactive
command line is capable of recognizing commands using the shortest unique character string
part of a command name. The set receive command, for example, can be shortened to set rec.

To use the kermit command, you must have a .kermrc configuration file in your home directory.
This file is run by kermit at startup. Here is an example .kermrc file that I use on my workstation:

; Line properties
set modem type none ; Direct connection
set line /dev/ttyS0 ; Device file
set speed 115200 ; Line speed
set carrier-watch off ; No carrier expected
set handshake none ; No handshaking
set flow-control none ; No flow control

; Communication properties
robust ; Most robust transfer settings macro
set receive packet-length 1000 ; Max pack len remote system should use
set send packet-length 1000 ; Max pack len local system should use
set window 10 ; Nbr of packets to send until ack

; File transfer properties
set file type binary ; All files transferred are binary
set file names literal ; Don't modify filenames during xfers

For more information about each of the settings above, try the help command provided by
kermit's interactive command line. For more information regarding the robust macro, for example,
use help robust. In this case, robust must be used before set receive, since robust sets the
maximum packet length to be used by the remote system to 90 bytes, while we want it set to 1000
bytes.

Once the configuration file is created, you can start kermit:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ kermit -c
Connecting to /dev/ttyS0, speed 115200
 Escape character: Ctrl-\ (ASCII 28, FS): enabled
Type the escape character followed by C to get back,
or followed by ? to see other options.
--

If you are looking for more information about the use of C-Kermit and intend to use it more
extensively, think about purchasing the Using C-Kermit book by Frank Da Cruz and Christine
Gianone (Digital Press). Apart from providing information regarding the use of C-Kermit, sales of
the book help fund the project. Though the book covers Version 6.0, supplements for Versions
7.0 and 8.0 are freely available from the project's web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Kernel Considerations
The kernel is the central software component of all Linux systems. Its capabilities very much
dictate the capabilities of the entire system. If the kernel you use fails to support one of your
target's hardware components, for instance, this component will be useless as long as this
specific kernel runs on your target.

Many books and online documentation already discuss the kernel's internals, its programming, its
setup, and its use in user systems at length. I will not, therefore, cover these issues here. If you
are interested in such issues, have a look at Running Linux, Linux Device Drivers, and
Understanding the Linux Kernel by O'Reilly. These books cover the kernel's setup and use, its
programming, and its internals, respectively. You may also want to take a look at the Linux Kernel
HOWTO available from the LDP.

Our discussion will be limited to issues about the preparation of a Linux kernel for use in an
embedded system. Specifically, we will discuss kernel selection, configuration, compilation, and
installation. Each step will get us closer to the goal of obtaining a functional kernel with its related
modules for our target system. Our discussion will end with coverage of the aspects of the
kernel's operation that are specific to embedded systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 Selecting a Kernel

Though there is only one main repository for the kernel, http://www.kernel.org/, the versions
available from that site aren't always appropriate for all the architectures supported by Linux. In
fact, these versions will often not even build for, much less run on, some of the most popular
architectures in embedded Linux systems. This is primarily because the development of Linux for
these architectures isn't synchronized with the main kernel releases.

To have a working kernel for your target, you need to obtain one of the versions made available
by the development team in charge of your target's underlying processor architecture. Since each
architecture is maintained by a different team, the site of choice for a kernel varies accordingly.
Table 5-1 provides a list of locations where you will find the most appropriate kernel for your
architecture, along with the means of download available from that site.

Table 5-1. Most appropriate kernel location for each processor architecture
Processor architecture Most appropriate kernel location Available download means
x86 http://www.kernel.org/ ftp, http, rsync

ARM http://www.arm.linux.org.uk/developer/ ftp, rsync

PowerPC http://penguinppc.org/ ftp, http, rsync, bitkeeper

MIPS http://www.linux-mips.org/ cvs

SuperH http://linuxsh.sourceforge.net/ cvs

M68k http://www.linux-m68k.org/ ftp, http

As you can see, most of these sites are the same ones I recommended for each architecture in
Chapter 3. That said, these are not the only kernel locations for each target. Other locations may
also provide versions for your target. To begin with, some of these sites have mirrors that provide
the same content. Then there are the kernels provided by various individuals, companies, and
organizations. Exercise caution if you intend to use the latter type of kernel, as these kernels may
not be supported by the community[1] and you may be forced to rely on the provider's support, if
available, in case of problems.

[1] This lack of support from the community won't necessarily be due to lack of code availability (which shouldn't
happen since Linux is distributed under the terms of the GPL), but most likely because the modifications to the kernel's
functionality made by that provider are understood only by her. It may also be that the kernel modifications are not
considered mature enough, or even desirable, by the community to warrant inclusion in the main kernel tree.

Once you have found the download site that is most appropriate for you, you will need to select a
kernel version from that site. This is a difficult decision, as some versions have broken features,
even if the same features were fully functional in older versions. The best way to find this sort of
information is to stay in touch with the community maintaining the kernel for your architecture.
This doesn't mean sending any emails or contacting anyone, but it involves subscribing to the
appropriate mailing lists and keeping watch of the important notices on that list and on the port's
main web site.

Some of these sites, such as the ARM site, don't necessarily distribute full kernels. Rather, they
distribute patches to the official kernel. To obtain the appropriate kernel for your architecture, you
must then download the kernel from the main repository and apply to it the appropriate patch
provided by your port's site.

Kernel Version Variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The versions distributed by the alternative repositories often use variations on the
kernel's versioning scheme to identify their work. Russell King, the maintainer of the
ARM tree, distributes his kernels with the -rmk extension. Other developers base their
work on Russell's work and add their own extensions. Nicolas Pitre, another ARM
Linux developer, adds the -np extension to his kernels, and the maintainers of the
handhelds.org Familiar distribution add the -hh extension to their kernels. Hence,
kernel 2.4.20-rmk3-hh24, which I mentioned in Chapter 1, is handhelds.org's Release
24 of Russell's Release 3, which is itself based on Marcelo Tosatti's 2.4.20.

(Though Linus Torvalds is the usual maintainer of Linux releases, Linus passed the
maintenance of the 2.4.x series on to Marcelo so he could concentrate on the 2.5.x
development series.)

For our ARM-based user interfaces, we download plain 2.4.18 from http://www.kernel.org/ and the
2.4.18-rmk5 patch from the official ARM Linux site, http://www.arm.linux.org.uk/. By applying the
rmk5 patch to the vanilla 2.4.18, we obtain the 2.4.18-rmk5 kernel, which contains all the features
required for ARM-based systems.

Most of the time, the latest known-to-be-functional version is the best one to use. So if 2.4.17 and
2.4.18 are known to work on your target, 2.4.18 should be the preferable one. There are cases,
however, in which this doesn't hold true. Most folks who follow the kernel's development are
aware, for example, that Versions 2.4.10 to 2.4.15, inclusive, are to be avoided, because they
were part of a period during which a lot of changes were being integrated into the kernel and are
therefore sometimes unstable. Again, this is the sort of information you can obtain by keeping in
touch with the appropriate mailing lists and web sites.

If you find it too time consuming to subscribe to your port's mailing list or to the main kernel
mailing list, you owe it to yourself to at least visit your port's web site once a week and read the
Kernel Traffic (http://kt.zork.net/kernel-traffic/) weekly newsletter. Kernel Traffic provides a
summary of the most important discussions that occurred on the main kernel mailing list during
the past week.

Once you have found the appropriate kernel version for your target, download it into the
${PRJROOT}/kernel directory, extract it, and rename it if necessary, as we have done in the
previous chapter in Section 4.2.2. Renaming the kernel directory will avoid the mistake of
overwriting it while extracting another kernel you might download in the future.

Whichever version you choose, do not refrain from trying a couple of different kernel versions for
your target. In addition to the recommendations and bug reports seen on the Net, your evaluation
of different versions will provide you with insight on your hardware's interaction with the kernel.

You may also want to try some of the various patches made available by some developers. Extra
kernel functionality is often available as an independent patch before it is integrated into the
mainstream kernel. Robert Love's kernel preemption patch, for instance, was maintained as a
separate patch before it was integrated by Linus into the 2.5 development series. We will discuss
a few kernel patches in Chapter 11. Have a look at Running Linux (O'Reilly) if you are not familiar
with patches.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Configuring the Kernel

Configuration is the initial step in the build of a kernel for your target. There are many ways to
configure the kernel, and there are many options from which to choose .

Regardless of the configuration method you use or the actual configuration options you choose,
the kernel will generate a .config file at the end of the configuration and will generate a number of
symbolic links and file headers that will be used by the rest of the build.

We will limit our discussion to the aspects of kernel configuration that differ in embedded systems.
You can consult the various references I mentioned earlier if you are not familiar with kernel
configuration.

5.2.1 Configuration Options

It is during configuration that you will be able to select the options you want to see included in the
kernel. Depending on your target, the option menus available will change, as will their content.
Some options, however, will be available no matter which embedded architecture you choose.
The following is the list of main menu options available to all embedded Linux architectures:

Code maturity level options

Loadable module support

General setup

Memory technology devices

Block devices

Networking options

ATA/IDE/MFM/RLL support

SCSI support

Network device support

Input core support

Character devices

Filesystems

Console drivers

Sound

Kernel hacking

I will not give the details of each option, since the kernel configuration menu provides help
capabilities you can refer to as you perform the configuration. Notice, however, that we discussed
many of these options in Chapter 3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One of the most important option menus is the one in which you choose the exact instance of the
processor architecture that best fits your target. The name of this menu, however, varies
according to your architecture. Table 5-2 provides the system and processor selection option
menu name, along with the correct kernel architecture name for each. When issuing make
commands, we need to set the ARCH variable to the architecture name recognized by the kernel
Makefiles.

Table 5-2. System and processor selection option and kernel architecture name according
to processor architecture

Processor
architecture

System and processor selection
option

Kernel architecture
name

x86 Processor type and features i386

ARM System type arm

PPC Platform support ppc

MIPS Machine selection/CPU selection mips or mips64[2]

SH Processor type and features sh

M68k Platform-dependent support m68k

[2] Depending on the CPU.

Some options are available only for certain architectures. Table 5-3 lists these options and
indicates their availability for each architecture, as displayed by the kernel's configuration menus.

Table 5-3. Hardware support options for each architecture
Option x86 ARM PPC MIPS SH M68k

Parallel port support X X X

IEEE 1394 support X X X X

IrDA support X X X X

USB support X X X X

Bluetooth support X X X

Some architectures have their own specific configuration option menus. The following is a list of
such menus for the ARM architecture:

Acorn-specific block devices

Synchronous serial interfaces

Multimedia capabilities port drivers

Here is the list of menus specific to the PPC:

MPC8xx CPM options

MPC8260 communication options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The fact that an option is available in your architecture's configuration menu does not
automatically mean that this feature is supported for your target. Indeed, the configuration menus
may allow you to enable many kernel features that have never been tested for your target. There
is no VGA console, for instance, on ARM systems. The configuration menu of the kernel,
however, will allow you to enable support for the VGA console. In this case, the actual kernel build
will fail if you enable support for this option. In other cases, the selected feature, or even the entire
kernel, will not be functional. To avoid these types of problems, make sure the options you
choose are supported for your target. Most of the time, as in the case of the VGA console, it is a
matter of common sense. When the choice doesn't seem as evident, visiting the appropriate
project web site, such as the ones provided in Chapter 3, will help you determine whether the
feature is supported for your target.

In some cases, the fact that an option is not displayed in your architecture's configuration menu
doesn't mean that this feature can't actually be used on your target. Many of the features listed in
Table 5-3, such as Bluetooth, are mostly architecture independent, and should run on any
architecture without a problem. They aren't listed in the configuration menus of certain
architectures, because they've either not been tested on those architectures, or the maintainers of
those ports or the maintainers of the feature haven't been asked to add the feature in the
architecture's main config.in file.[3] Again, the resources listed in Chapter 3 are a good start for
finding out about which unlisted features are possibly supported on your target.

[3] config.in files control the options displayed in the configuration menus.

5.2.2 Configuration Methods

The kernel supports four main configuration methods:

make config

Provides a command-line interface where you are asked about each option one by one. If a
.config configuration file is already present, it uses that file to set the default values of the
options it asks you to set.

make oldconfig

Feeds config with a an existing .config configuration file, and prompts you to configure only
those options you had not previously configured. This contrasts with make config, which
asks you about all options, even those you may have previously configured.

make menuconfig

Displays a curses-based terminal configuration menu. If a .config file is present, it uses it to
set default values, as with make config.

make xconfig

Displays a Tk-based X Window configuration menu. If a .config file is present, it uses it to
set default values, as with make config and make menuconfig.

Any of these can be used to configure the kernel. They all generate a .config file in the root
directory of the kernel sources. (This is the file that contains the full detail of the options you
choose.)

Few developers actually use the make config command to configure the kernel. Instead, most use
make menuconfig. You can also use make xconfig. Keep in mind, however, that make xconfig
may have some broken menus in some architectures; as is the case for the PowerPC, for
instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To view the kernel configuration menu, type the appropriate command at the command line with
the proper parameters. For our ARM-based user interface modules, we use the following
command line:

$ make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
We then proceed to choose the configuration options appropriate to our target. Many features and
drivers are available as modules and we can choose here whether to have them built in the kernel
or whether to build them as modules. Once we are done configuring the kernel, we use the
Escape key or select the Exit item to quit the configuration menu. We are then prompted by the
configuration utility to confirm that we want to save the configuration. By choosing Yes, we save
the kernel's configuration and create a .config file. In addition to creating the .config file, a few
header files and symbolic links are created. If we choose No, the configuration is not saved and
any existing configuration is left unmodified.

Apart from the main configuration options, some architectures, such as the PPC and the ARM,
can be configured using custom tailored configurations for the various boards implemented using
the architecture. In those cases, the defaults provided with the kernel will be used to generate the
.config file. For example, here is how I configure the kernel for the TQM860L PowerPC board I
have:

$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- TQM860L_config
$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- oldconfig

5.2.3 Managing Multiple Configurations

It is often desirable to test different configurations using the same kernel sources. By changing
the kernel's configuration, however, we destroy the previous configuration, because all the
configuration files are overwritten by the kernel's configuration utilities. To save a configuration for
future use, we need to save the .config files created by the kernel's configuration. These files can
later be reused to restore a previous kernel configuration.

The easiest way to back up and retrieve configurations is to use the kernel's own configuration
procedures. The menus displayed by both the menuconfig and xconfig Makefile targets allow
you to save and restore configurations. In each case, you need to provide an appropriate
filename.

You can also save the .config files by hand. In that case, you need to copy the configuration file
created by the kernel configuration utilities to an alternative location for future use. To use a
saved configuration, you will need to copy the previously saved .config file back into the kernel's
root directory and then use the make command with the oldconfig Makefile target to configure
the kernel using the newly copied .config. As with the menuconfig Makefile target, the
oldconfig Makefile target creates a few headers files and symbolic links.

Whether you copy the files manually or use the menus provided by the various utilities, store the
configurations in an intuitive location and use a meaningful naming scheme for saving your
configurations. Using our project layout, I suggest that you store all your configurations in the
${PRJROOT}/kernel directory so that the configuration files may live independently from the
actual kernel sources while still remaining with the other kernel-related material. To identify each
configuration file, prepend each filename with the kernel version it relates to and a small
descriptive comment or a date or both. Leave the .config extension as-is, nevertheless, to identify
the file as a kernel configuration file.

In the case of the 2.4.18 kernel we are using, for instance, I tried a configuration where I disabled
serial port support. I called the corresponding configuration file 2.4.18-no-serial.config. I also
maintain the latest known "best" configuration as 2.4.18.config. Feel free to adopt the naming
convention that is most intuitive for you, but you may want to avoid generic names such as
2.4.18-test1.config.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.4 Using the EXTRAVERSION Variable

If you are using multiple variants of the same kernel version, you will find the EXTRAVERSION
variable to be quite useful in identifying each instance. The EXTRAVERSION variable is appended
to the kernel's version number to provide the kernel being built with its final name. The rmk5 patch
we applied on our plain 2.4.18, for example, sets EXTRAVERSION to -rmk5 and the resulting
version for that kernel is 2.4.18-rmk5.

The final version number is also used to name the directory where the modules built for the kernel
are stored. Hence, modules built for two kernels based on the same initial version but with
different EXTRAVERSIONs will be stored in two different directories, whereas modules built for two
kernels based on the same initial version but that have no EXTRAVERSION will be stored in the
same directory.

You can also use this variable to identify variants based on the same kernel version. To do so,
edit the Makefile in the main kernel directory and set EXTRAVERSION to your desired value. You
will find it useful to rename the directory containing this modified source code using this same
value. If, for example, the EXTRAVERSION of a 2.4.18 kernel is set to -motor-diff, the parent
directory should be named 2.4.18-motor-diff. The naming of the backup .config files should also
reflect the use of EXTRAVERSION. The configuration file for the kernel with disabled serial support
should therefore be called 2.4.18-motor-diff-no-serial.config in this case.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 Compiling the Kernel

Compiling the kernel involves a number of steps: building the kernel dependencies, building the
kernel image, and building the kernel modules. Each step uses a separate make command and is
described separately in this section. However, you could also carry out all these steps using a
single command line.

5.3.1 Building Dependencies

Most files in the kernel's sources depend on a number of header files. To build the kernel
adequately, the kernel's Makefiles need to know about these dependencies. For each
subdirectory in the kernel tree, a hidden .depend file is created during the dependencies build.
This contains the list of header files that each file in the directory depends on. As with other
software that relies on make, only the files that depend on a header that changed since the last
build will need to be recompiled when a kernel is rebuilt.

From the kernel source's root directory, the following command builds the kernel's dependencies:

$ make ARCH=arm CROSS_COMPILE=arm-linux- clean dep
As in the configuration of the kernel earlier, we set the ARCH and CROSS_COMPILE variables. As I
explained in Chapter 4, CROSS_COMPILE is only required when source code is actually compiled,
and could be omitted here. On the other hand, we will need to set at least the ARCH variable for
every make command we issue because we are cross-compiling the kernel. Even when issuing
make clean or make distclean, we will need to set this variable. Otherwise, the kernel's Makefiles
assume that the operations are to be carried out for the kernel code related to the host's
architecture.

The ARCH variable indicates the architecture for which this kernel is built. This variable is used by
the kernel Makefiles to choose which architecture-dependent directory is going to be used. When
compiling the kernel for your target, you must set this variable to your target's architecture.

The CROSS_COMPILE variable is used by the kernel's Makefiles to construct the names of the
tools used in the kernel's build. The name of the C compiler, for instance, is the result of the
concatenation of the value of CROSS_COMPILE and the letters "gcc". In the case of our ARM
target, the C compiler's final name is arm-linux-gcc, which is the actual name of the compiler we
built for this target using the instructions in Chapter 4. This also explains why the trailing hyphen
on the previous command line is important. Without this hyphen, the Makefile would try to use the
arm-linuxgcc compiler, which doesn't exist.

The building of the dependencies is relatively short. On my PowerBook, this takes two minutes.
There are usually no errors possible at this stage. If you do see errors, the kernel you have
probably suffers from fundamental problems.

5.3.2 Building the Kernel

With the dependencies built, we can now compile the kernel image:

$ make ARCH=arm CROSS_COMPILE=arm-linux- zImage
The zImage target instructs the Makefile to build a kernel image that is compressed using the
gzip algorithm.[4] There are, nevertheless, other ways to build a kernel image. The vmlinux
target instructs the Makefile to build only the uncompressed image. Note that this image is
generated even when a compressed image is requested.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[4] Though zImage is a valid Makefile target for all the architectures we discussed in depth in Chapter 3, there are
other Linux architectures for which it isn't valid.

On the x86, there is also the bzImage target. The "bzImage" name stands for "big zImage," and
has nothing to do with the bzip2 compression utility. In fact, both the bzImage and zImage
Makefile targets rely on the gzip algorithm. The difference between the two Makefile targets is that
the compressed kernel images generated using zImage cannot be larger than 512 KB, while
those generated using bzImage are not bound by this limit. If you want more information
regarding the differences between zImage and bzImage, have a look at the
Documentation/i386/boot.txt file included in the kernel sources.

If you chose any options not supported by your architecture during the kernel configuration or if
some kernel option is broken, your build will fail at this stage. If all goes well, this should take a
few minutes longer than the dependency build. On my hardware configuration, it takes five
minutes.

Verifying the Cross-Development Toolchain
Notice that the kernel build is the first real test for the cross-development tools we built
in the previous chapter. If the tools you built earlier compile a functional kernel
successfully, all the other software should build perfectly. Of course, you will need to
download the kernel you built to your target to verify its functionality, but the fact that it
builds properly is already a positive sign.

5.3.3 Building the Modules

With the kernel image properly built, we can now build the kernel modules:

$ make ARCH=arm CROSS_COMPILE=arm-linux- modules
The duration of this stage depends largely on the number of kernel options you chose to build as
modules instead of having linked as part of the main kernel image. This stage is seldom longer
than the build of the kernel image. As with the kernel image, if your configuration is inadequate for
your target or if a feature is broken, this stage of the build may fail.

With both the kernel image and the kernel modules now built, we are ready to install them for our
target. Before we do so, note that if you needed to clean up the kernel's sources and return them
to their initial state prior to any configuration, dependency building, or compilation, you could use
the following command:

$ make ARCH=arm CROSS_COMPILE=arm-linux- distclean
Be sure to backup your kernel configuration file prior to using this command, since make distclean
erases all the files generated during the previous stages, including the .config file, all object files,
and the kernel images.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 Installing the Kernel

Ultimately, the kernel we generated and its modules will have to be copied to your target to be used. I
will cover the actual copying of the kernel and its modules in Chapter 6 and Chapter 9. Meanwhile,
we will discuss how to manage multiple kernel images and their corresponding module installations.
The configuration of the target's boot layout and its root filesystem depend on the techniques we
discuss below.

5.4.1 Managing Multiple Kernel Images

In addition to using separate directories for different kernel versions, you will find it useful to have
access to multiple kernel images to test on your target. Since these images may be built using the
same sources, we need to copy them out of the kernel source and into a directory where they can be
properly identified. In our setup, the repository for these images is the ${PRJROOT}/images directory.

For each kernel configuration, we will need to copy four files: the uncompressed kernel image, the
compressed kernel image, the kernel symbol map, and the configuration file. The last three are found
within the kernel sources' root directory and are called vmlinux, System.map, and .config,
respectively. The compressed kernel image file is found in the arch/YOUR_ARCH/boot directory, where
YOUR_ARCH is the name of your target's architecture, and is called zImage or bzImage, depending on
the Makefile target you used earlier. For our ARM-based target, the compressed kernel image is
arch/arm/boot/zImage.

Some architectures, such as the PPC, have many boot directories. In those cases, the kernel image
to use is not necessarily the one located at arch/YOUR_ARCH/boot/zImage. In the case of the TQM
board mentioned above, for example, the compressed kernel image that should be used is
arch/ppc/images/vmlinux.gz. Have a look at the arch/YOUR_ARCH/Makefile for a full description of all
the Makefile boot image targets for your architecture. In the case of the PPC, the type of boot image
generated depends on the processor model for which the kernel is compiled.

To identify the four files needed, we use a naming scheme similar to that of the kernel's version. In
the case of the kernel generated using 2.4.18-rmk5 sources, for instance, we copy the files as
follows:

$ cp arch/arm/boot/zImage ${PRJROOT}/images/zImage-2.4.18-rmk5
$ cp System.map ${PRJROOT}/images/System.map-2.4.18-rmk5
$ cp vmlinux ${PRJROOT}/images/vmlinux-2.4.18-rmk5
$ cp .config ${PRJROOT}/images/2.4.18-rmk5.config
You could also include the configuration name in the filenames. So in the case of the kernel without
serial support, for instance, we could name the four kernel files zImage-2.4.18-rmk5-no-serial,
System.map-2.4.18-rmk5-no-serial, vmlinux-2.4.18-rmk5-no-serial, and 2.4.18-rmk5-no-serial.config

5.4.2 Installing Kernel Modules

The kernel Makefile includes the modules_install target for installing the kernel modules. By
default, the modules are installed in the /lib/modules directory. Since we are in a cross-development
environment, however, we need to instruct the Makefile to install the modules in another directory.

As the kernel modules need to be used with the corresponding kernel image, we will install the
modules in a directory with a name similar to that of the kernel image. So in the case of the 2.4.18-
rmk5 kernel we are using, we install the modules in the ${PRJROOT}/images/modules-2.4.18-rmk5
directory. The content of this directory will later be copied to the target's root filesystem for use with
the corresponding kernel on the target. To install the modules in that directory, we use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ make ARCH=arm CROSS_COMPILE=arm-linux- \
> INSTALL_MOD_PATH=${PRJROOT}/images/modules-2.4.18-rmk5 \
> modules_install
The INSTALL_MOD_PATH variable is prepended to the /lib/modules path, so the modules are
therefore installed in the ${PRJROOT}/images/modules-2.4.18-rmk5/lib/modules directory.

Once it is done copying the modules, the kernel tries to build the module dependencies needed for
the module utilities during runtime. Since depmod, the utility that builds the module dependencies, is
not designed to deal with cross-compiled modules, it will fail.

To build the module dependencies for your modules, you will need to use another module
dependency builder provided with the BusyBox package. We will discuss BusyBox at length in
Chapter 6. For now, download a copy of the BusyBox archive from http://www.busybox.net/ into your
${PRJROOT}/sysapps directory and extract it there.[5] From the BusyBox directory, copy the
scripts/depmod.pl Perl script into the ${PREFIX}/bin directory.

[5] Download BusyBox Version 0.60.5 or later.

We can now build the module dependencies for the target:

$ depmod.pl \
> -k ./vmlinux -F ./System.map \
> -b ${PRJROOT}/images/modules-2.4.18-rmk5/lib/modules > \
> ${PRJROOT}/images/modules-2.4.18-rmk5/lib/modules/2.4.18-rmk5/modules.dep
The -k option is used to specify the uncompressed kernel image, the -F option is used to specify the
system map, and the -b option is used to specify the base directory containing the modules for which
we need to build dependencies. Because the tool's output goes to the standard output, we redirect it
to the actual dependency file, which is always called modules.dep.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 In the Field

Let's take a look at the kernel's operation once it's installed on your target and ready to run.
Because the algorithms and underlying source code is the same for embedded and regular
systems, the kernel will behave almost exactly the same as it would on a workstation or a server.
For this reason, the other books and online material on the subject, such as Linux Device Drivers
and Understanding the Linux Kernel from O'Reilly, are much more appropriate for finding in-depth
explanations of the kernel. There are, nevertheless, aspects particular to embedded Linux
systems or that warrant particular emphasis.

5.5.1 Dealing with Kernel Failure

The Linux kernel is a very stable and mature piece of software. This, however, does not mean
that it or the hardware it relies on never fail. Linux Device Drivers covers issues such as oops
messages and system hangs. In addition to keeping these issues in mind during your design, you
should think about the most common form of kernel failure: kernel panic.

When a fatal error occurs and is caught by the kernel, it will stop all processing and emit a kernel
panic message. There are many reasons a kernel panic can occur. One of the most frequent is
when you forget to specify to the kernel the location of its root filesystem. In that case, the kernel
will boot normally and will panic upon trying to mount its root filesystem.

The only means of recovery in case of a kernel panic is a complete system reboot. For this
reason, the kernel accepts a boot parameter that indicates the number of seconds it should wait
after a kernel panic to reboot. If you would like the kernel to reboot one second after a kernel
panic, for instance, you would pass the following sequence as part of the kernel's boot
parameters: panic=1.

Depending on your setup, however, a simple reboot may not be sufficient. In the case of our
control module, for instance, a simple reboot may even be dangerous, since the chemical or
mechanical process being controlled may get out of hand. For this reason, we need to change the
kernel's panic function to notify a human operator who could then use emergency manual
procedures to control the process. Of course, the actual panic behavior of your system depends
on the type of application your system is used for.

The code for the kernel's panic function, panic(), is in the kernel/panic.c file in the kernel's
sources. The first observation to be made is that the panic function's default output goes to the
console.[6] Since your system may not even have a terminal, you may want to modify this function
according to your particular hardware. An alternative to the terminal, for example, would be to
write the actual error string in a special section of flash memory that is specifically set aside for
this purpose. At the next reboot, you would be able to retrieve the text information from that flash
section and attempt to solve the problem.

[6] The console is the main terminal to which all system messages are sent.

Whether you are interested in the actual text message or not, you can register your own panic
function with the kernel. This function will be called by the kernel's panic function in the event of a
kernel panic and can be used to carry out such things as signaling an emergency.

The list that holds the functions called by the kernel's own panic function is
panic_notifier_list. The notifier_chain_register function is used to add an item to this list.
Conversely, notifier_chain_unregister is used to remove an item from this list.

The location of your own panic function has little importance, but the registration of this function
must be done during system initialization. In our case, we add a mypanic.c file in the kernel/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must be done during system initialization. In our case, we add a mypanic.c file in the kernel/
directory of the kernel sources and modify that directory's Makefile accordingly. Here is the
mypanic.c for our control module:

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/notifier.h>

static int my_panic_event(struct notifier_block *,
 unsigned long,
 void *);

static struct notifier_block my_panic_block = {
 notifier_call: my_panic_event,
 next: NULL,
 priority: INT_MAX
};

int _ _init register_my_panic(void)
{
 printk("Registering buzzer notifier \n");

 notifier_chain_register(&panic_notifier_list,
 &my_panic_block);

 return 0;
}

void ring_big_buzzer(void)
{
 ...
}

static int my_panic_event(struct notifier_block *this,
 unsigned long event,
 void *ptr)
{
 ring_big_buzzer();

 return NOTIFY_DONE;
}

module_init(register_my_panic);

The module_init(register_my_panic); statement ensures that the register_my_panic
function is called during the kernel's initialization without requiring any modification of the kernel's
startup functions. The registration function adds my_panic_block to the list of other blocks in
the panic notifier list. The notifier_block structure has three fields. The first field is the
function to be called, the second is a pointer to the next notifier block, and the third is the priority
of this block. In our case, we want to have the highest possible priority. Hence the use of
INT_MAX.

In case of kernel panic, my_panic_event is called as part of the kernel's notification of all panic
functions. In turn, this function calls on ring_big_buzzer, which contains code to start a loud alarm
to attract the human operator's attention to the imminent problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Root Filesystem Content
One of the last operations conducted by the Linux kernel during system startup is mounting the
root filesystem. The root filesystem has been an essential component of all Unix systems from the
start. The root filesystem's current organization is a bit idiosyncratic and contains some
redundancy because of how it grew over time and was influenced by Unix developments. I will not
attempt to cover the reasons for the current structure and underlying conventions. Instead, I will
explain how to organize the various components to adhere to the accepted standards and,
thereby, obtain a functional root filesystem. In the process, we will use many of the components
we built earlier, such as the kernel modules and the C library.

First, we will discuss the basic root filesystem structure. Then, we will discuss how and where to
install the system libraries, the kernel modules, kernel images, device nodes, main system
applications, and custom applications. Finally, we will discuss how to configure the system
initialization scripts. At the end of this chapter, you will have a fully functional root filesystem for
your target. In the next chapters, we will discuss how you can place this root filesystem on an
actual filesystem type on a storage device for use in your target.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 Basic Root Filesystem Structure

The top-level directories in the root filesystem each have a specific use and purpose. Many of
these are meaningful only in multiuser systems in which a system administrator is in charge of
many servers and/or workstations used by different users. In most embedded Linux systems,
where there are no users and no administrators, the rules to build a root filesystem can be loosely
interpreted. This doesn't mean that all rules can be violated, but it does mean that breaking some
rules will have little to no effect on the system's proper operation. Interestingly, even mainstream
commercial distributions for workstations and servers do not always adhere to the established
rules for root filesystems.

The "official" rules to build a root filesystem are contained in the Filesystem Hierarchy Standard
(FHS) introduced in Chapter 1. The document is less than 30 pages long and is fairly easy to
read. If you are looking for answers or clarifications regarding the root filesystem, the FHS is
probably the best place to start. Table 6-1 provides the complete list of root filesystem top-level
directories and their content as specified by the FHS.

Table 6-1. Root filesystem top-level directories
Directory Content
bin Essential user command binaries

boot Static files used by the bootloader

dev Devices and other special files

etc System configuration files, including startup files

home User home directories, including entries for services such as FTP

lib Essential libraries, such as the C library, and kernel modules

mnt Mount point for temporarily mounted filesystems

opt Add-on software packages

proc Virtual filesystem for kernel and process information

root Root user's home directory

sbin Essential system administration binaries

tmp Temporary files

usr Secondary hierarchy containing most applications and documents useful to most
users, including the X server

var Variable data stored by daemons and utilities

If you are using Linux for your day-to-day work, you are already familiar with some of these
directories. Nevertheless, let's take a closer look at the content of a typical root filesystem for use
in an embedded Linux system.

First, all the directories that pertain to providing a multiuser extensible environment, such as
/home, /mnt, /opt, and /root, can be omitted. We could trim the root filesystem even further by
removing /tmp and /var, but these omissions may jeopardize the operation of certain programs. I
do not encourage such a minimalistic approach.

This discussion does not revolve around size issues, but rather
functionality. In fact, omitting a directory entry changes little to the
resulting root filesystem's size. The reason I state that /home can be
omitted, for example, is that even if it were present in an embedded Linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

omitted, for example, is that even if it were present in an embedded Linux
system, it would be empty, because its content, as prescribed by the FHS,
is useful only in workstation and server setups.

Depending on your bootloader and its configuration, you may not need to have a /boot directory.
This will depend on whether your bootloader can retrieve kernel images from your root filesystem
before your kernel is booted. You will be able to decide whether you should use a /boot directory
and how to use it for your target after you read Chapter 9. Of course, you can redesign the root
filesystem at any later time if need be.

The remaining directories, /bin, /dev, /etc, /lib, /proc, /sbin, and /usr, are essential.

At the extreme, you could omit /proc, which is useful only for mounting the virtual filesystem that
has the same name. However, it would then become very hard to understand what is happening
on your target if you needed to analyze it in the field. If you are very tight for space, you can
configure your kernel without /proc support, but I encourage you to enable it whenever possible.

Two of the root directories, /usr and /var, have a predefined hierarchy of their own, much like that
of the root directory. We will briefly discuss these hierarchies as we populate both directories in
the steps below.

Confusing Similarities
One of the most confusing aspects of the root filesystem is the apparent similarity in
purpose of some directories. In particular, newcomers often ask what difference there
is between the various directories containing binaries and the various directories
containing libraries.

There are four main directories for binaries on the root filesystem: /bin, /sbin, /usr/bin,
and /usr/sbin. The directory in which a binary is placed largely depends on its role in
the system. Binaries that are essential to both users and system administrators are in
/bin. Binaries that are essential to system administration, but will never be used by
ordinary users, are located in /sbin. In contrast, most nonessential user binaries are
located in /usr/bin and most nonessential system administration tools are in /usr/sbin.

As for the location of libraries, the rationale is similar. The libraries required to boot the
system and run the most essential commands are located in /lib, while /usr/lib contains
all the other libraries. Often, packages will create subdirectories in /usr/lib to contain
their own libraries. The Perl 5.x packages, for instance, have a /usr/lib/perl5 directory
that contains all the Perl-related libraries and modules.

A look on your Linux workstation's own root filesystem in these directories will show
you actual examples of the application of these criteria by your distribution's designers.

To work on the root filesystem, let's move into the directory we created for this purpose:

$ cd ${PRJROOT}/rootfs
We now create the core root filesystem directories required for our system:

$ mkdir bin dev etc lib proc sbin tmp usr var
$ chmod 1777 tmp
Notice that we did not create /boot. We will come back to it later and create it if it becomes
necessary. Also, note that we changed the permissions for the /tmp directory to turn the "sticky
bit" on. This bit in the directory permissions field will ensure that files created in the /tmp directory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bit" on. This bit in the directory permissions field will ensure that files created in the /tmp directory
can be deleted only by the user that created them. Though most embedded Linux systems are
single-user systems, as I said above, there are cases in which embedded applications must not
run with root privileges, hence the need to follow some basic rules about root filesystem
permission bits. The OpenSSH package we discuss in Chapter 10, for example, is such an
application.

We can proceed with the creation of the /usr hierarchy:

$ mkdir usr/bin usr/lib usr/sbin
On a fully featured root filesystem, the /usr directory usually contains many more entries. A simple
demonstration of this is easily conducted by typing ls -al /usr on your workstation. You will find
directories such as man, src, and local. The FHS contains a section addressing the layout of this
directory in detail. For the purposes of most embedded Linux systems, nonetheless, the three
directories we created will suffice.

The last entries to create are in the /var directory:

$ mkdir var/lib var/lock var/log var/run var/tmp
$ chmod 1777 var/tmp
Here, too, this directory usually contains many more entries. Directories such as cache, mail, and
spool are useful for a workstation or a server, but few embedded systems need those directories.
The directories we created are the bare minimum required for the normal operation of most
applications found in an embedded Linux system. Of course, if you need functionality such as web
page serving or printing, then you may want to add some of the additional directories required by
the applications providing this functionality. See the FHS and the documentation provided with
your application to find out your actual requirements.

With the root filesystem skeleton now ready, let's place the various software components in their
appropriate locations.

Running Linux with a Different root Filesystem
Structure

As I said in the previous discussion, the rules for building a root filesystem are found in
the FHS. Although most Linux applications and distributions depend on these rules,
they are not enforced by the Linux kernel itself. In fact, the kernel source code makes
very few assumptions regarding the structure of the root filesystem. It follows from this
that you could build an embedded Linux system with a very different root filesystem
structure. You would then have to modify the defaults of most software packages to
make them comply with your new structure. Some have taken an even more extreme
approach by building embedded Linux systems without any root filesystem at all.
Needless to say, I don't encourage you to go down this path. The root filesystem rules I
outlined above are recognized and agreed upon by all open source and free software
developers. By building your embedded Linux system using other rules, you would be
cutting yourself off from most open source and free software packages and their
developers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Libraries

In Chapter 4 we discussed how to build, install, and use the GNU C library and its alternatives for application
development. Here, we will discuss how to install those same libraries on the target's root filesystem so that
they can be used at runtime by the applications we develop. We will not discuss diet libc, because it is mainly
used as a static library.

6.2.1 glibc

As I said earlier, the glibc package contains a number of libraries. You can see the entire list of libraries
installed during the package's build process by looking at your ${TARGET_PREFIX}/lib directory. This
directory contains mainly four types of files:

Actual shared libraries

These files' names are formatted as libLIBRARY_NAME-GLIBC_VERSION.so, where LIBRARY_NAME
the name of the library and GLIBC_VERSION is the version of the glibc package you are using. The
name of the math library for glibc 2.2.3 is libm-2.2.3.so.

Major revision version symbolic links

Major revision versions do not follow the same numbering as the actual glibc version. The major
revision version for the actual shared C library in glibc 2.2.3, libc-2.2.3.so, is 6. In contrast, the major
revision version for libdl-2.2.3.so is 2. The names of the symbolic links for the major revision version
are formatted as libLIBRARY_NAME.so.MAJOR_REVISION_VERSION, where
MAJOR_REVISION_VERSION is the major revision version of the library. For the actual C library, for
instance, the symbolic link is libc.so.6. For libdl, it is libdl.so.2. Once a program has been linked to a
library, it will refer to this symbolic link. At startup, the loader will therefore look for this file before
loading the program.

Version-independent symbolic links to the major revision version symbolic links

The role of these links is to provide a universal entry for all the programs that need to link with a
particular library, regardless of the actual major revision or the version of glibc involved. These
symbolic links are typically formatted as libLIBRARY_NAME.so. For example, libm.so points to
libm.so.6, which itself points to the actual shared library, libm-2.2.3.so. The only exception to this is
libc.so, which, as I said in Chapter 4, is a link script. The version-independent symbolic link is the one
used when linking programs.

Static library archives

These archives are used by applications that choose to link statically with a library. The names of these
archives are formatted as libLIBRARY_NAME.a. The static archive for libdl, for instance, is libdl.a

You will also find some other types of files in ${TARGET_PREFIX}/lib, such as crti.o and crt1.o, but you will
not need to copy these to your target's root filesystem.

Out of the four types of files described above, we will need only two for each library: the actual shared
libraries and the major revision version symbolic links. The two other file types are needed only when linking
executables and are not required for the runtime operation of our applications.

In addition to the library files, we will need to copy the dynamic linker and its symbolic link. The dynamic linker
itself follows the naming convention of the various glibc libraries, and is usually called ld-GLIBC_VERSION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

itself follows the naming convention of the various glibc libraries, and is usually called ld-GLIBC_VERSION
In what is probably one of the most bizarre aspects of the GNU toolchain, however, the name of the symbolic
link to the dynamic linker depends on the architecture for which the toolchain has been built. If the toolchain is
built for the i386, the ARM, the SuperH, or the m68k, the symbolic link to the dynamic linker is usually called
ld-linux.so.MAJOR_REVISION_VERSION. If the toolchain is built for the MIPS or the PowerPC, the symbolic
link to the dynamic linker is usually called ld.so.MAJOR_REVISION_VERSION.

Before we actually copy any glibc component to the target's root filesystem, however, we need to select the
glibc components required for our applications. Table 6-2 provides the description of all the components in
glibc[1] and provides inclusion guidelines for each component. In addition to my guidelines, you will need to
evaluate which components your programs need, depending on their linking.

[1] See the glibc manual for a complete description of the facilities provided.

Table 6-2. Library components in glibc and root filesystem inclusion guidelines
Library

component Content Inclusion guidelines

ld Dynamic linker.[2] Compulsory.

libBrokenLocale

Fixup routines to get applications with broken
locale features to run. Overrides application
defaults through preloading. (Need to use
LD_PRELOAD).

Rarely used.

libSegFault Routines for catching segmentation faults and
doing backtraces. Rarely used.

libanl Asynchronous name lookup routines. Rarely used.

libc Main C library routines. Compulsory.

libcrypt Cryptography routines. Required for most applications
involved in authentication.

libdl Routines for loading shared objects dynamically. Required for applications that use
functions such as dlopen().

libm Math routines. Required for math functions.

libmemusage Routines for heap and stack memory profiling. Rarely used.

libnsl NIS network services library routines. Rarely used.

libnss_compat Name Switch Service (NSS) compatibility routines
for NIS.

Loaded automatically by the glibc
NSS.[3]

libnss_dns NSS routines for DNS. Loaded automatically by the glibc
NSS.

libnss_files NSS routines for file lookups. Loaded automatically by the glibc
NSS.

libnss_hesiod NSS routines for Hesiod name service. Loaded automatically by the glibc
NSS.

libnss_nis NSS routines for NIS. Loaded automatically by the glibc
NSS.

libnss_nisplus NSS routines for NIS plus. Loaded automatically by the glibc
NSS.

libpcprofile Program counter profiling routines. Rarely used.

libpthread Posix 1003.1c threads routines for Linux. Required for threads programming.

libresolv Name resolver routines. Required for name resolution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

librt Asynchronous I/O routines. Rarely used.

libthread_db Thread debugging routines.

Loaded automatically by gdb
debugging threaded applications.
Never actually linked to by any
application.

libutil Login routines, part of user accounting database. Required for terminal connection
management.

[2] This library component is actually not a library itself. Instead, ld.so is an executable invoked by the ELF binary format loader to load
the dynamically linked libraries into an application's memory space.

[3] See Chapter 4 for details.

Apart from keeping track of which libraries you link your applications with, you can usually use the ldd
command to find out the list of dynamic libraries that an application depends on. In a cross-platform
development environment, however, your host's ldd command will fail when provided with target binaries. You
could still use the cross-platform readelf command we installed in Chapter 4 to identify the dynamic libraries
that your application depends on. Here is an example showing how the BusyBox utility's dependencies can be
retrieved using readelf:

$ powerpc-linux-readelf -a ${PRJROOT}/rootfs/bin/busybox | \
> grep "Shared library"
 0x00000001 (NEEDED) Shared library: [libc.so.0]

Ideally, however, if you installed uClibc, you should use the cross-platform capable ldd-like command installed
by uClibc. For our control module target, which is based on a PowerPC board, the command's name is
powerpc-uclibc-ldd. This way, you can build the list of libraries your target binaries depend on. Here are the
dependencies of the BusyBox utility, for example (one line has been wrapped to fit the page):

$ powerpc-uclibc-ldd ${PRJROOT}/rootfs/bin/busybox
 libc.so.0 => /home/karim/control-project/control-module/tools/uclibc/lib/
 libc.so.0
/lib/ld-uClibc.so.0 => /lib/ld-uClibc.so.0

Having determined the library components we need, we can copy them and the relevant symbolic links to the
/lib directory of the target's root filesystem. Here is a set of commands that copy the essential glibc
components:

$ cd ${TARGET_PREFIX}/lib
$ for file in libc libcrypt libdl libm \
> libpthread libresolv libutil
> do
> cp $file-*.so ${PRJROOT}/rootfs/lib
> cp -d $file.so.[*0-9] ${PRJROOT}/rootfs/lib
> done
$ cp -d ld*.so* ${PRJROOT}/rootfs/lib
The first cp command copies the actual shared libraries, the second one copies the major revision version
symbolic links, and the third one copies the dynamic linker and its symbolic link. All three commands are
based on the rules outlined earlier in this section regarding the naming conventions of the different files in
${TARGET_PREFIX}/lib. The -d option is used with the second and third cp commands to preserve the
symbolic links as-is. Otherwise, the files pointed to by the symbolic links are copied in their entirety.

Of course, you can remove the libraries that are not used by your applications from the list in the set of
commands above. If you would rather have the complete set of libraries included in glibc on your root
filesystem, use the following commands:

$ cd ${TARGET_PREFIX}/lib
$ cp *-*.so ${PRJROOT}/rootfs/lib

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cp *-*.so ${PRJROOT}/rootfs/lib
$ cp -d *.so.[*0-9] ${PRJROOT}/rootfs/lib
$ cp libSegFault.so libmemusage.so libpcprocfile.so \
> ${PRJROOT}/rootfs/lib
If you have applications that use the glibc NSS, don't forget to copy the libnss_SERVICE libraries you need to
your target's root filesystem. libnss_files and libnss_dns are the ones most often used. You will also need to
copy the sample nsswitch.conf provided with glibc to your target's /etc directory and customize it to your
setup:[4]

[4] Have a look at Linux Network Administrator's Guide (O'Reilly) for details about the customization of the nsswitch.conf file.

$ cp ${PRJROOT}/build-tools/glibc-2.2.1/nss/nsswitch.conf \
> ${PRJROOT}/rootfs/etc
Whether you copy all or part of the glibc libraries, you will notice that some of these libraries are large. To
reduce the size of the libraries installed, we can use the cross-platform strip utility we built earlier. Be careful
not to strip the original libraries, since you would have to install them all over again. Strip the libraries only
after you copy them to the root filesystem:

$ powerpc-linux-strip ${PRJROOT}/rootfs/lib/*.so
On my control module, the ${PRJROOT}/rootfs/lib directory with all the glibc libraries weighs around 10 MB
before stripping. By stripping all the libraries, the directory is reduced to 2.5 MB.

The glibc components have now been installed on the target's root filesystem and are ready to be used at
runtime by our applications.

6.2.2 uClibc

As with glibc, uClibc contains a number of libraries. You can see the entire list by looking at your
${PREFIX}/uclibc/lib directory. This directory contains the same four different types of files as the glibc
directory.

Because uClibc is meant to be a glibc replacement, the names of the uClibc components and their use is
identical to the glibc components. Hence, you can use Table 6-2 for uClibc components. Note, however, that
not all glibc components are implemented by uClibc. uClibc implements only ld, libc, libcrypt, libdl, libm
libpthread, libresolv, and libutil. Use the same method as described for glibc to identify the uClibc components
you will need on your target.

Having determined the list of components we need, we can now copy them and their relevant symbolic links
to the /lib directory of our target's root filesystem. The following set of commands copies the essential uClibc
components:

$ cd ${PREFIX}/uclibc/lib
$ for file in libuClibc ld-uClibc libc libdl \
> libcrypt libm libresolv libutil
> do
> cp $file-*.so ${PRJROOT}/rootfs/lib
> cp -d $file.so.[*0-9] ${PRJROOT}/rootfs/lib
> done
The commands are likely to report that two files haven't been found:

cp: libuClibc.so.[*0-9]: No such file or directory
cp: libc-*.so: No such file or directory

This is not a problem, since these files don't exist. The set of commands above is meant to be easy to type in,
but you could add conditional statements around the cp commands if you prefer not to see any errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with glibc, you can modify the list of libraries you copy according to your requirements. Note that, in
contrast to glibc, you will not save much space by copying only a select few uClibc components. For my
control module, for instance, the root filesystem's /lib directory weighs around 300 KB when all the uClibc
components are copied. The following commands copy all uClibc's components to your target's root
filesystem:

$ cd ${PREFIX}/uclibc/lib
$ cp *-*.so ${PRJROOT}/rootfs/lib
$ cp -d *.so.[*0-9] ${PRJROOT}/rootfs/lib
There is no need to strip uClibc components, since they were already stripped by uClibc's own build scripts.
You can verify this using the file command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 Kernel Modules

In Chapter 5, we built the kernel modules and installed them in a temporary directory,
${PRJROOT}/images. We are now ready to copy these modules to their final destination in the
target's /lib directory.

Since you may have compiled many kernels to test for your target, you will need to select which
set of kernel modules to copy to the root filesystem. In the case of my control module, for
example, I chose a 2.4.18 kernel for my target. The following command copies that kernel's entire
modules directory to the root filesystem:

$ cp -a ${PRJROOT}/images/modules-2.4.18/* ${PRJROOT}/rootfs
We the use cp's -a option here to copy the files and directories in archive mode. This has the
effect of preserving file attributes and links, and copying directories recursively. Note that there is
no need to explicitly append the /lib/modules path to ${PRJROOT}/rootfs in the above command
because of the way we installed the modules in the ${PRJROOT}/images/modules-2.4.18
directory in Chapter 5.

That's it; the kernel modules are now ready for use on your target. You may also want to add a
/etc/modules.conf file to automate the loading of the modules during system operation. See
Chapter 11 in Linux Device Drivers for more details regarding module management and the use
of the /etc/modules.conf file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 Kernel Images

As I said earlier, the presence of the actual kernel image on your root filesystem largely depends
on your bootloader's capabilities. If you anticipate that your bootloader's setup will provide for
booting a kernel from the root filesystem, you may copy the kernel image to your target's root
filesystem at this time:

$ mkdir ${PRJROOT}/rootfs/boot
$ cd ${PRJROOT}/images
$ cp zImage-2.4.18 ${PRJROOT}/rootfs/boot
In addition to the kernel image, you may want to make it a standard practice to copy the
configuration file used to create the kernel so that you may be able to service units for which the
original project workspace may be lost:

$ cp 2.4.18.config ${PRJROOT}/rootfs/boot
Because we are discussing the actual bootloader setup in Chapter 9, there is nothing more to be
done here about the kernel's setup for now. We will continue the kernel image's setup later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5 Device Files

Following Unix tradition, every object in a Linux system is visible as a file, including devices.[5] All
the device files (a.k.a. device "nodes") in a Linux root filesystem are located in the /dev directory.
Most workstation and server distributions come packaged with a /dev directory containing more
than 2,000 entries to account for all the possible system variations. Because embedded Linux
systems are custom built, there is no need to fill the target's /dev directory with as many entries as
a Linux workstation or server. Only the entries required for the system's proper operation should
be created.

[5] The notable exception to this is networking interfaces, such as Ethernet cards, for which there are no device files.

Identifying which entries you need can be difficult if you don't have the required information. If you
choose to use devfs instead of creating fixed static device entries, you will avoid having to look for
the device information. Devfs has not been widely adopted, however, and static device entries are
still the norm.

The official source of information for static device major and minor numbers is the
Documentation/devices.txt file in the kernel sources. You can consult this file whenever you are
uncertain about the name or numbering of a certain device.

Table 6-3 lists the most basic entries you will need in your /dev directory. Depending on your
particular setup, you will probably need to add a few extra entries. In some cases, you may even
need to use entries other than the ones listed below. On some systems, for example, the first
serial port is not ttyS0. Such is the case of SuperH-based systems, for instance, where the first
serial port is ttySC0 (major number: 204, minor number: 8), and StrongARM-based systems
where the first serial port is ttySA0 (major number: 204, minor number: 5).

Table 6-3. Basic /dev entries

Filename Description Type Major
number

Minor
number

Permission
bits

mem Physical memory access char 1 1 600

null Null device char 1 3 666

zero Null byte source char 1 5 666

random Nondeterministic random number
generator char 1 8 644

tty0 Current virtual console char 4 0 600

tty1 First virtual console char 4 1 600

ttyS0 First UART serial port char 4 64 600

tty Current TTY device char 5 0 666

console System console char 5 1 600

Chapter 6 of Running Linux explains how to create device files. Essentially, you will need to use
the mknod command for each entry to be created. In contrast to most other commands we have
used up until now, you will need to be logged in as root to use this command. Remember to log
out from the root user mode once you are done creating the device files.

Here is a simple example showing the creation of the first few entries in Table 6-3:

$ cd ${PRJROOT}/rootfs/dev
$ su -m

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ su -m
Password:
mknod -m 600 mem c 1 1
mknod -m 666 null c 1 3
mknod -m 666 zero c 1 5
mknod -m 644 random c 1 8
 ...
exit
In addition to the basic device files, there are a few compulsory symbolic links that have to be part
of your /dev directory. Table 6-4 provides a description of these symbolic links. As with other
symbolic links, you can use the ln -s command to create these links.

Table 6-4. Compulsory /dev symbolic links
Link name Target

fd /proc/self/fd

stdin fd/0

stdout fd/1

stderr fd/2

We have now prepared a basic /dev directory for our target. We will come back to this directory
later to create some additional entries for some types of storage devices. You can consult Linux
Device Drivers for a more complete discussion about device files and device drivers in general.

Automated Creation of /dev Entries
The creation tools of some filesystems, such as JFFS2 and CRAMFS, have been
extended by Erik Andersen to allow the creation of /dev entries on the fly using a
device table file. With such a file, it is no longer necessary to log in as root and use the
mknod command to create entries in your target's root filesystem. Instead, the file
creation tool parses the device table file and creates the entries while it builds the rest
of the filesystem without requiring root login. Support for JFFS2 device table files is
already part of the MTD tools package, which includes the mkfs.jffs2 command.
Support for CRAMFS device table files is available in the form of a patch to be applied
to the CRAMFS source package. The patch and the latest CRAMFS filesystem
creation code are available at http://sourceforge.net/projects/cramfs/. I will not detail
the use of device table files, since they can only be used with a very limited number of
Linux filesystems at the time of this writing. Their format and their use are, however,
fairly well explained in the device_table.txt file provided in both the MTD tools package
and the CRAMFS patch. We will, nevertheless, discuss the MTD tools in Chapter 7
and the JFFS2 and CRAMFS filesystems in Chapter 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6 Main System Applications

Beyond the kernel's functionality and the root filesystem's structure, Linux inherits Unix's very rich
command set. The problem is that a standard workstation or server distribution comes equipped
with thousands of command binaries, each providing its own set of capabilities. Obviously,
developers cannot be expected to cross-compile such a large amount of binaries one by one, nor
do most embedded systems require such a large body of binaries.

There are, therefore, two possibilities: either we choose a few select standard commands, or we
try to group as many commands as possible into a very few trimmed-down applications that
implement the essential overall functionality. In the following, we will start by discussing the first
approach. I do not favor this approach, however, because it is tedious at best. Instead, I will
mostly focus on the second approach and the various projects that implement it. In particular, we
will discuss BusyBox, TinyLogin, and Embutils, which are the main packages used for this
purpose.

6.6.1 Complete Standard Applications

If you would like to selectively include some of the standard applications found in mainstream
distributions, your best bet is to start with the Linux From Scratch project located at
http://www.linuxfromscratch.org/. This project aims at providing explanations and links to
packages to help you build your own custom distributions. The Linux From Scratch book available
through the project's web site is its main documentation. It includes instructions and links to build
each application one by one. For each package, the instructions provide build-time and disk-
space estimates.

Alternatively, you can download applications off the Net one by one and follow the instructions of
each package for compiling and cross-compiling. Because few packages include full cross-
compilation instructions, you may need to look in the packages' Makefiles to determine the
appropriate build flags or make the proper modifications for the packages to cross-compile
adequately.

6.6.2 BusyBox

The BusyBox project was initiated by Bruce Perens in 1996 to help build install disks for the
Debian distribution. Since 1999, the project has been maintained by Erik Andersen, the
maintainer of uClibc, first as part of Lineo's open source efforts and currently as a vendor-
independent project. During this time, the BusyBox project has grown extensively and is now one
of the corner stones of many embedded Linux systems. It is included in most embedded Linux
distributions and has a very active user community. The project's current location is
http://www.busybox.net/. The project's web site includes documentation, links, and a mailing list
archive. The BusyBox package is available under the terms of the GNU GPL from this same web
site.

Enthusiasm for BusyBox stems from the functionality it provides while still remaining a very small-
sized application. BusyBox implements many commands. Here are a few: ar, cat, chgrp, chmod,
chown, chroot, cp, cpio, date, dd, df, dmesg, dos2unix, du, echo, env, expr, find, grep, gunzip,
gzip, halt, id, ifconfig, init, insmod, kill, killall, ln, ls, lsmod, md5sum, mkdir, mknod, modprobe,
more, mount, mv, ping, ps, pwd, reboot, renice, rm, rmdir, rmmod, route, rpm2cpio, sed, stty,
swapon, sync, syslogd, tail, tar, telnet, tftp, touch, traceroute, umount, uname, uuencode, vi, wc,
which, and whoami.

Although BusyBox does not support all the options provided by the commands it replaces, the
subset it provides is sufficient for most typical uses. See the docs directory of the BusyBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subset it provides is sufficient for most typical uses. See the docs directory of the BusyBox
distribution for the documentation in a number of different formats.

BusyBox supports all the architectures covered in Chapter 3. It can be linked both statically and
dynamically to either glibc or uClibc. You can also modify the BusyBox default build configuration
to remove support for the commands you are unlikely to use.

6.6.2.1 Setup

First, you need to download a copy of the BusyBox package from the project's web site and into
your ${PRJROOT}/sysapps directory. For my control module, I will be using BusyBox 0.60.5.

Once the package is extracted, we can move into its directory for the rest of the setup:

$ cd ${PRJROOT}/sysapps/busybox-0.60.5
Although the CVS version includes a terminal-based menu utility for configuring options, such as
the one I described for uClibc in Chapter 4, the main stable version, such as the one I'm using,
has to be configured by editing the appropriate file. The main file for configuring options is
Config.h. This file contains C-language #define statements for each option. By commenting out
an option's #define using // (slash slash) you effectively disable this option.

There are two types of options that can be configured: command support options and feature
support options. Disabling or enabling a command support option removes or adds the
corresponding command. Changing the #define BB_MKNOD line to //#define BB_MKNOD
disables support for the mknod command in BusyBox. Feature support options have a similar
behavior. Features, however, are not necessarily related to a particular command. Consequently,
every #define BB_FEATURE_... line is preceded with a comment line describing the feature.

Make sure you verify the command support options selected by default. Some important
commands, such as ifconfig, insmod, and ping, are disabled by default.

In addition to the configuration file, the main Makefile contains a few flags to control the way
BusyBox is built. Most of these flags are used during the development of BusyBox for debugging
purposes and are disabled in the standard distribution. The only flag you may be interested in
modifying is the DOSTATIC flag. When set to true, the resulting BusyBox binary is statically
linked with the C library. The default value of DOSTATIC is false, causing the binary to be
dynamically linked. You can change this either by modifying the Makefile or by adding
DOSTATIC=true as part of the make command.

Once BusyBox is configured, we can compile and install it. When linking with glibc, use the
following command:

$ make TARGET_ARCH=ppc CROSS=powerpc-linux- \
> PREFIX=${PRJROOT}/rootfs all install
The TARGET_ARCH variable is used by the Makefile to determine whether some architecture-
dependent optimizations can be carried out. CROSS is used, as in other circumstances, to specify
the prefix of the cross-platform development tools. Finally, PREFIX is set to the root filesystem
base directory. The Makefile will install all BusyBox's components within this directory.

To build BusyBox with uClibc instead of the GNU C library, use the following command:

$ make TARGET_ARCH=ppc CROSS=powerpc-uclibc- \
> PREFIX=${PRJROOT}/rootfs all install
BusyBox has now been installed on your target's root filesystem and is ready to be used.

6.6.2.2 Usage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To understand how best to use BusyBox, let's first take a look at the components installed on the
target's root filesystem by BusyBox's build process. As expected, only one executable was
installed, /bin/busybox. This is the single binary with support for all the commands configured
using Config.h. This binary is never called directly, however. Instead, symbolic links bearing the
original commands' names have been created to /bin/busybox. Such symbolic links have been
created in all the directories in which the original commands would be found, including /bin, /sbin,
/usr/bin, and /usr/sbin.

When you type a command during the system's normal operation, the busybox command is
invoked via the symbolic link. In turn, busybox determines the actual command you were invoking
using the name being used to run it. /bin/ls, for instance, points to /bin/busybox. When you type ls,
the busybox command is called and it determines that you were trying to use the ls command,
because ls is the first argument on the command line.[6]

[6] As any other application, busybox's main() function is passed the command line used to invoke it.

Although this scheme is simple and effective, it means you can't use arbitrary names for symbolic
links. Creating a symbolic link called /bin/dir to either /bin/ls or /bin/busybox will not work, since
busybox does not recognize the dir command.

Note that, though symbolic links are the usual way of linking commands to /bin/busybox, BusyBox
can also be instructed to create hard links instead of symbolic ones during its installation. Its
behavior at runtime is the same, however, regardless of the type of links being used.

The documentation on the project's web site, which is also provided with the package, describes
all the options available for each command supported. In most cases, the options supported by
BusyBox have the same function as the options provided by the original commands. For instance,
Using the -al options to BusyBox's ls will have the same effect as using the same options with the
original ls.

When using one of the shells provided in BusyBox, such as ash, lash, or msh, you will find it
convenient to use a /etc/profile file to define a few global variables for all shell users. Here is a
sample /etc/profile file for a single-user target:

Set path
PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

In addition to setting the path, you could set the LD_LIBRARY_PATH environment variable, which
is used during the startup of each application to locate the libraries it depends on. Though the
default location for libraries is /lib, your system may have libraries located in other directories. If
that is the case, you can force the dynamic linker to look for the other libraries by adding the
appropriate directory paths to LD_LIBRARY_PATH. As with the PATH environment variable, you
can add more directories to the library path by separating each directory path with a colon.

Note that on a workstation or a server LD_LIBRARY_PATH would actually be used only as a
temporary holding place for new library paths. Instead, the /etc/ld.so.conf is the file to edit to
permanently add another library path. This file is then used by the ldconfig command to generate
/etc/ld.so.cache, which is itself read by the dynamic linker to find libraries for dynamically linked
applications. Though ldconfig was generated when we compiled glibc in Chapter 4, it is a target
binary and cannot be run on the host to generate a target ld.so.cache.

6.6.3 TinyLogin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Much like BusyBox, TinyLogin is a collection of many login utilities into a single binary. TinyLogin
is often used in conjunction with BusyBox, although it can be used alone. Both packages are
maintained by the same developers and are therefore easy to use together. Because of their
common use together, the project developers have integrated all of TinyLogin's functionality into
the BusyBox CVS, and once the CVS development version is released as a stable version, it will
be possible to rely on a single package instead of two. There are, however, advantages to
continue using the TinyLogin functionality separately from BusyBox. Mainly, many of the
commands implemented in TinyLogin must run with root privileges, which in turn requires that the
TinyLogin binary file belong to the root user and have its "set user" permission bit enabled—a
configuration commonly known as "setuid root." Since TinyLogin uses symbolic links in the same
way BusyBox does, a single binary containing the functionality of both packages would also result
in having commands such as ls and cat run as root, which increases the likeliness that a
programming error in one command could be exploited to gain root privileges. Though BusyBox
drops its root privileges when unnecessary, and though it can be configured to check a
configuration file for those commands requiring root privileges, it remains that using separate
packages is the safest setup.

The TinyLogin project's web site is located at http://tinylogin.busybox.net/. It contains
documentation, a mailing list archive, links to other sites, and pointers to download the TinyLogin
package both using FTP or CVS. For my control module, I will be using TinyLogin 1.2.

As with BusyBox, TinyLogin supports all the architectures we discussed in depth in Chapter 3 and
can be linked either statically or dynamically with glibc or uClibc. TinyLogin can effectively replace
the following commands: addgroup, adduser, delgroup, deluser, getty, login, passwd, su, sulogin,
and vlock.

6.6.3.1 Setup

The first step in installing TinyLogin is to download the package and extract it into your
${PRJROOT}/sysapps directory. Once this is done, we can move into the package's directory for
the rest of the setup:

$ cd ${PRJROOT}/sysapps/tinylogin-1.2
The configuration of TinyLogin is done much the same as with BusyBox, by editing the Config.h
configuration file and commenting out the unwanted command support options and feature
options. TinyLogin also has a Makefile with similar options to BusyBox. The same rules explained
above for BusyBox's Config.h file and Makefile also apply to TinyLogin.

Apart from the other options you need to configure, pay special attention to the
USE_SYSTEM_PWD_GRP and USE_SYSTEM_SHADOW options in the Makefile. The explanations
above the statements in the Makefile provide a good idea about the effect of these options.
Mainly, USE_SYSTEM_PWD_GRP should be set to false unless you plan to use glibc's NSS
libraries with a properly configured /etc/nsswitch.conf file. If you set this option to false,
TinyLogin will directly use the /etc/passwd and /etc/group files instead of using the password and
group functions provided by glibc.

Similarly, if you set USE_SYSTEM_SHADOW to false, TinyLogin will use its own shadow functions
for accessing shadow passwords. Traditionally, /etc/passwd could be read by anyone in the
system and this in turn became a security risk as more and more programs for cracking
passwords were available. Hence, the use of so-called shadow passwords became the norm.
When in use, the password fields in /etc/passwd only contain filler characters and the real
encrypted passwords are stored in /etc/shadow, which can be read only by a process running with
root privileges. Note that if you had configured uClibc without shadow password support, setting
USE_SYSTEM_SHADOW to true and linking with uClibc will result in a failed build.

As with BusyBox, you can set DOSTATIC to true if you would like TinyLogin to be built statically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with BusyBox, you can set DOSTATIC to true if you would like TinyLogin to be built statically.

Once you have completed TinyLogin's configuration, you are ready to build the package. (Instead
of compiling and installing the package in the same step, as we did for BusyBox, you will first
compile and then install for the reasons explained below.)

To compile TinyLogin with glibc, use the following command:

$ make CROSS=powerpc-linux- \
> PREFIX=${PRJROOT}/rootfs all
To compile TinyLogin with uClibc, use the following command:

$ make CROSS=powerpc-uclibc- \
> PREFIX=${PRJROOT}/rootfs all
Once the package has been built, you can now install the package. Because the installation
process must setuid the TinyLogin binary, the installation command must be done while logged in
as root:

$ su -m
Password:
make PREFIX=${PRJROOT}/rootfs install
exit
TinyLogin has now been installed in the target's root filesystem and is ready to be used.

6.6.3.2 Usage

The TinyLogin installation copied only one binary to the root filesystem, /bin/tinylogin. As with
BusyBox, symbolic links were created with the original commands' names in the appropriate
binary directories.

You will need to create appropriate group, password, and shadow password files (/etc/group,
/etc/passwd, and /etc/shadow, respectively) for use by the various TinyLogin commands.
Unfortunately, the TinyLogin package does not provide a means to create these files prior to
having TinyLogin running on the target. Hence, you will have to copy existing files and edit them
manually for use on your target's root filesystem. A simple alternative is to use those files that are
part of your workstation setup and keep only those entries for users who will exist on your target
as well. Usually, this ends up being only the root user.

The group and password files on your workstation can be copied as-is to your target's /etc
directory. You can then edit your target's copies by hand and remove the entries that will not be
used on your target. The shadow password file requires a little more care, however, since you
may not want to reveal your own workstation's passwords to the users of your embedded system.
To create valid entries in your target's shadow file, the simplest method is to create phony users
on your workstation, set those users' passwords, and then copy the resulting entries. Here's the
entry for a phony "tmp" user I added to my workstation:

tmp:$1$3cdOSELf$XWRLoKIL7vMSfLYbRCWaf/:11880:0:99999:7:-1:-1:0

I set this user's password to "root" for convenience. I then copied this entry as-is to my target's
shadow file and edited the username appropriately:

root:$1$3cdOSELf$XWRLoKIL7vMSfLYbRCWaf/:11880:0:99999:7:-1:-1:0

There is now a user known as "root" with the password "root" on my target.

Remember that the password file contains the name of the shell used for each user. Since the
command name for the shell provided by BusyBox is sh, and since the default on most
workstations is bash, you need to change this to the shell on your target. Here is the password file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workstations is bash, you need to change this to the shell on your target. Here is the password file
entry for the root user for the same system:

root:x:0:0:root:/root:/bin/sh

By default, TinyLogin will set the path of each user as follows:

PATH=/bin:/usr/bin

If you would like to change this, you can either create a global /etc/profile file, as I explained
earlier, or a .profile file in each user's home directory. You will find the following .profile file useful
for the root user:

PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

For more information on the creation and manipulation of group, password, or shadow password
files, and system administration in general, see the Linux System Administrator's Guide from the
LDP, Running Linux from O'Reilly, and the Linux From Scratch book I mentioned earlier.

6.6.4 embutils

embutils is a set of miniaturized and optimized replacements for mainstream Unix commands.
embutils was written and is maintained by Felix von Leitner, the author of diet libc, with goals very
similar to those of diet libc. Currently, embutils supports four of the architectures discussed in
Chapter 3, the ARM, the i386, the PPC, and the MIPS. embutils is available from
http://www.fefe.de/embutils/.[7]

[7] As with diet libc, the last slash ("/") is important.

Although embutils groups some of the commands in a single binary, its main approach is to
provide one small binary for each command. embutils provides the following commands: arch,
basename, cat, chmgrp, chmod, chown, chroot, chvt, clear, cp, dd, df, dirname, dmesg,
domainname, du, echo, env, false, head, hostname, id, install, kill, ln, ls, md5sum, mesg, mkdir,
mkfifo, mknod, mv, pwd, rm, rmdir, sleep, sleep2, soscp, sosln, soslns, sosmv, sosrm, sync, tail,
tar, tee, touch, tr, true, tty, uname, uniq, wc, which, whoami, write, and yes.

As with BusyBox, not all the options provided by the full commands are supported, but the subset
provided is sufficient for most system operations. In contrast to BusyBox, however, embutils can
only be statically linked with diet libc. It can't be linked to any other library. Because diet libc is
already very small, the resulting command binaries are reasonably small. In terms of overall size,
nevertheless, BusyBox and embutils are fairly similar.

6.6.4.1 Setup

Before we start the setup, you will need to have diet libc installed on your host system as I
described in Chapter 4. Now download embutils and extract it in your ${PRJROOT}/sysapps
directory. For my control module, for example, I use embutils 0.15. You can then move into the
package's directory for the rest of the setup:

$ cd ${PRJROOT}/sysapps/embutils-0.15
There is no configuration capability for embutils. You can, therefore, build the package right away:

$ make ARCH=ppc CROSS=powerpc-linux- all
You can then install embutils:

$ make ARCH=ppc DESTDIR=${PRJROOT}/rootfs prefix="" install

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ make ARCH=ppc DESTDIR=${PRJROOT}/rootfs prefix="" install
The options and variables used in the build and installation of embutils have the same meaning
as those used for diet libc.

6.6.4.2 Usage

The embutils installation procedure has copied quite a few statically linked binaries to your target
root filesystem's /bin directory. In contrast to BusyBox, this is the only directory where binaries
have been installed.

A BusyBox-like all-in-one binary has also been installed, allinone. This binary reacts the same
way as BusyBox when proper symbolic links are created to it. Note that unlike BusyBox, you need
to create these symbolic links manually, since they are not created automatically by the
installation scripts. allinone provides the following commands: arch, basename, chvt, clear,
dmesg, dirname, domainname, echo, env, false, hostname, pwd, sleep, sync, tee, true, tty,
uname, which, whoami, and yes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7 Custom Applications

There are many places in the root filesystem where you can put your own application, depending
on the number and types of components it has. Usually, it is preferable to follow the FHS's
guidelines to place your software.

If your application consists of a relatively small number of binaries, placing them in /bin is
probably the best choice. This is the actual installation path used for the control daemon in
Chapter 4.

If your application consists of a complex set of binaries, and possibly datafiles, consider adding an
entry in the root filesystem for your project. You may either call this new directory project or name
it after your own project. In the case of my control module, this directory could be control-module.

The custom directory can contain a hierarchy of its own that you can customize to best suit your
needs. You may have to set the PATH environment variable on your target to include the custom
directory if your binaries are placed there.

Note that the addition of a custom entry in the root filesystem is contrary to the FHS. This is a
minor violation to the standard, however, since your filesystem is custom built for your target and
is unlikely to become a distribution of its own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.8 System Initialization

System initialization is yet another particularity of Unix systems. As explained in Chapter 2, the
kernel's last initialization action is to start the init program. This program is in charge of finalizing
system startup by spawning various applications and starting some key software components. In
most Linux systems, init mimics System V init and is configured much the same way. In
embedded Linux systems, the flexibility of System V init is overkill since such systems are rarely
run as multiuser systems.

There is no actual requirement for you to have a standard init program, such as System V init, on
your root filesystem. The kernel itself doesn't really care. All it needs is an application it can start
once it's done initializing the system. For instance, you can add an init=PATH_TO_YOUR_INIT
boot parameter to tell the kernel to use your init, which could be your main application. There are,
however, drawbacks to this approach, since your application will be the one and only application
the kernel ever starts. Your application would then be responsible for starting other applications
on the system. Furthermore, if your application unexpectedly dies, its exit will cause a kernel
panic followed by a system reboot; as would an unexpected exit of System V init. Though this may
be the desired behavior in some cases, in most cases, the system is most likely rendered
useless. For these reasons, it is usually much safer and useful to actually have a real init on your
root filesystem.

In the following subsections, I will cover the standard init package found in most Linux
distributions, the BusyBox init, and Minit, a miniature init provided by the author of embutils and
diet libc.

As with other issues in Unix, init is a broad subject. There are quite a few documents that discuss
Linux init at length. Chapter 5 of Running Linux describes the mainstream workstation and server
init setups. Alessandro Rubini wrote a very interesting piece about init that goes into the nuances
of the various initialization schemes. His article is available at http://www.linux.it/kerneldocs/init/.

6.8.1 Standard System V init

The standard init package found in most Linux distributions is written by Miquel van Soorenburg
and is available at ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/. By using this package, you get
the same flexibility to configure your target's startup as you would in configuring the startup of a
workstation or a server. However, the extra functionality and flexibility requires additional space.
Also, it requires that you keep track of the development of yet another software package. The
package includes the following commands: halt, init, killall5, last, mesg, runlevel, shutdown,
sulogin, utmpdump, and wall.

The package can be cross-compiled easily. First, download the package and uncompress it into
your ${PRJROOT}/sysapps directory. For my control module, I used sysvinit Version 2.84. Then,
move into the package's source directory and build it:

$ cd ${PRJROOT}/sysapps/sysvinit-2.84/src
$ make CC=powerpc-linux-gcc
Replace the value of CC to match the cross-compiler for your target. With the package now built,
we can install it on the target's root filesystem:

$ make BIN_OWNER="$(id -un)" BIN_GROUP="$(id -gn)" \
> ROOT=${PRJROOT}/rootfs install
This command will install all the binaries in the target's root filesystem but will fail afterward, since
the Makefile tries to install the manpages on the root filesystem as well. You can modify the
Makefile to avoid this, but you can also ignore the failure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The command just shown set the BIN_OWNER and BIN_GROUP variables to be that of your own
current user. By default, the Makefile attempts to install the various components and set their
ownership to the root user. Since you aren't logged in as root, the Makefile would fail. The
ownership of the binaries matters little on the target, since it isn't a multiuser system. If it were,
however, you need to log in as root and then run the install command. Be very careful, in any
case, to appropriately set the value of ROOT to point to your target's root filesystem. Otherwise,
you may end up overwriting your workstation's init with a target binary. Alternatively, to avoid
having to log in as root, you could still run the install command using your normal user privileges
and then use the chown command as root to change the privileges on each file installed. This,
however, involves going through the Makefile to find each file installed and its destination.

With init installed on your target's root filesystem, you will need to add the appropriate /etc/inittab
file and fill the /etc/rc.d directory with the appropriate files. In essence, /etc/inittab will define the
runlevels for your system, and the files in /etc/rc.d will define which services run on each runlevel.
Table 6-5 lists init's seven runlevels and their typical use in a workstation and server distribution.

Table 6-5. System V init runlevels
Runlevel Description

0 System is halted

1 Only one user on system, no need for login

2 Multiuser mode without NFS, command-line login

3 Full multiuser mode, command-line login

4 Unused

5 X11, graphical user interface login

6 Reboot the system

Each runlevel corresponds to a certain set of applications. When entering runlevel 5 on a
workstation, for example, init starts X11 and the user is prompted to enter his username and
password using a graphical login. When switching between runlevels, the services started in the
previous runlevel are shut down and the services of the new runlevel are started. In this scheme,
runlevels 0 and 6 have a special meaning. Particularly, they are used for stopping the system
safely. This may involve, for example, unmounting all the filesystems except the root filesystem
and remounting the root filesystem read-only so that no filesystem corruption occurs.

On most workstations, the default runlevel at system startup is 5. For an embedded system, it can
be set to 1, if no access control is necessary. The system's runlevel can be changed after system
startup either using init or telinit, which is a symbolic link to init. In both cases, the newly issued
init command communicates with the original init through the /dev/initctl fifo. To this end, we need
to create a corresponding entry in our target's root filesystem:

$ mknod -m 600 ${PRJROOT}/rootfs/dev/initctl p
For more information on the format of /etc/inittab and the files found in /etc/rc.d, refer to the
resources provided above.

6.8.2 BusyBox init

Among the commands it supports by default, BusyBox provides init-like capabilities. As with the
original mainstream init, BusyBox can handle the system's startup. BusyBox init is particularly well
adapted to embedded systems, because it provides most of the init functionality an embedded
system typically needs without dragging the weight of the extra features found in System V init.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system typically needs without dragging the weight of the extra features found in System V init.
Also, because BusyBox is a single package, there is no need to keep track of an additional
software package when developing or maintaining your system. There are cases, however, where
BusyBox init may not be sufficient for your system. BusyBox init, for example, does not provide
runlevel support.

Since I already described how to obtain, configure, and build BusyBox, I will limit this discussion
to the setup of the init configuration files.

Because /sbin/init is a symbolic link to /bin/busybox, BusyBox is the first application to run on the
target system. BusyBox identifies that the command being invoked is init and immediately jumps
to the init routine.

The init routine of BusyBox carries out the following main tasks in order:

1. Sets up signal handlers for init.

2. Initializes the console(s).

3. Parses the inittab file, /etc/inittab.

4. Runs the system initialization script. /etc/init.d/rcS is the default for BusyBox.

5. Runs all the inittab commands that block (action type: wait).

6. Runs all the inittab commands that run only once (action type: once).

Once it has done this, the init routine loops forever carrying out the following tasks:

1. Runs all the inittab commands that have to be respawned (action type: respawn).

2. Runs all the inittab commands that have to be asked for first (action type: askfirst).

During console initialization, BusyBox determines whether the system was configured to run the
console on a serial port (by passing console=ttyS0 as a kernel boot parameter, for instance). If
so, BusyBox versions prior to 0.60.4 used to disable all virtual terminals. Since 0.60.4, however,
BusyBox continues through its initialization without disabling virtual terminals. If in fact there are
no virtual terminals, its attempts to start shells on some virtual terminals later will fail anyway, so
there is no need to disable virtual terminals outright.

After having initialized the console, BusyBox checks for the existence of an /etc/inittab file. If no
such file exists, BusyBox uses a default inittab configuration. Mainly, it sets up default actions for
system reboot, system halt, and init restart. Also, it sets up actions to start shells on the first four
virtual consoles, /dev/tty1 through /dev/tty4. BusyBox will complain if you haven't created these
device entries.

If an /etc/inittab file is found, it is parsed and the commands it contains are recorded inside
internal structures to be carried out at the appropriate time. The format of the inittab file as
recognized by BusyBox is well explained in the documentation included in the BusyBox package.
The documentation provided in the BusyBox package includes an elaborate example inittab file.

Each line in the inittab file follows this format:

id:runlevel:action:process

Although this format resembles that of traditional System V init, take note that the meaning of id
is different in BusyBox init. Mainly, the id is used to specify the controlling tty for the process to
be started. You can safely leave this entry empty if the process to be started isn't an interactive
shell. Interactive shells, such as BusyBox's sh, should always have a controlling tty. BusyBox's sh
will actually complain if it has no controlling tty. BusyBox completely ignores the runlevel field,
so you can leave it blank. The process field specifies the path of the program to run, along with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

so you can leave it blank. The process field specifies the path of the program to run, along with
its command-line options. The action field is one of eight recognized actions to be applied to
process as described in Table 6-6.

Table 6-6. Types of inittab actions recognized by BusyBox init
Action Effect

sysinit Provide init with the path to the initialization script.

respawn Restart the process every time it terminates.

askfirst
Similar to respawn, but is mainly useful for reducing the number of terminal
applications running on the system. It prompts init to display "Please press Enter
to activate this console." at the console and wait for the user to press Enter
before restarting the process.

wait Tell init that it has to wait for the process to complete before continuing.

once Run process only once without waiting for them.

ctrlaltdel Run process when the Ctrl-Alt-Delete key combination is pressed.

shutdown Run process when the system is shutting down.

restart Run process when init restarts. Usually, the process to be run here is init itself.

The following is a simple inittab file for my control module:

::sysinit:/etc/init.d/rcS
::respawn:/sbin/getty 115200 ttyS0
::respawn:/control-module/bin/init
::restart:/sbin/init
::shutdown:/bin/umount -a -r

This inittab file does the following:

1. Sets /etc/init.d/rcS as the system initialization file.

2. Starts a login session on the serial port at 115200 bps.

3. Starts the control module's custom software initialization script.

4. Sets /sbin/init as the program to execute if init restarts.

5. Tells init to run the umount command to unmount all filesystems it can at system shutdown
and set the others as read-only to preserve the filesystems.

The id is left blank in this case, because it doesn't matter to the normal operation of the
commands. runlevel is also left blank, since it's completely ignored by BusyBox.

As shown earlier, however, none of these actions will take place until init runs the system
initialization script. This script can be quite elaborate and can actually call other scripts. Use this
script to set all the basic settings and initialize the various components of the system that need
special handling. Particularly, this is a good place to:

Remount the root filesystem in read-write mode.

Mount additional filesystems.

Initialize and start networking interfaces.

Start system daemons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is the initialization script for my control module:

#!/bin/sh

Remount the root filesystem in read-write (requires /etc/fstab)
mount -n -o remount,rw /

Mount /proc filesystem
mount /proc

Start the network interface
/sbin/ifconfig eth0 192.168.172.10

The above initialization script depends on the existence of an /etc/fstab file in the target's root
filesystem. I will not discuss the content and use of this file as it is already discussed in depth in
Running Linux. Nevertheless, here's the /etc/fstab file I use for my control module during
development:

/etc/fstab
device directory type options
#
/dev/nfs / nfs defaults
none /proc proc defaults

In this case, I mount the target's root filesystem on NFS to simplify development. We will discuss
filesystem types in Chapter 8 and NFS mounting in Chapter 9.

6.8.3 Minit

Minit is part of the miniaturized tools developed by Felix von Leitner, such as diet libc and
embutils. Minit is available from http://www.fefe.de/minit/.[8] As with the other tools distributed by
Felix, Minit requires a properly configured diet libc.

[8] As with the other tools available from fefe.de, the last slash ("/") is important.

Minit's initialization procedure is a complete departure from the traditional System V init. Instead
of using a /etc/inittab, for instance, Minit relies on the existence of a properly built /etc/minit
directory. Firdtjof Busse wrote a description of how Minit operates at
http://www.fbunet.de/minit.shtml. Firdtjof also provides pointers to example /etc/minit directories.

Unfortunately, as of Version 0.8, Minit is not yet as mature as the other tools provided by Felix. Its
Makefile, for instance, is unable to deal with installing the various components in a root filesystem
other than the host's own. For the time being, Minit is not appropriate for an embedded system,
but it may be worth considering sometime in the near future.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Storage Device Manipulation
The storage devices used in embedded systems are often quite different from those used in
workstations and servers. Embedded systems tend to use solid-state storage devices such as
flash chips and flash disks. As with any other Linux system, these devices must be properly set up
and configured to be used by the kernel. Because these storage devices differ greatly from typical
workstation and server disks, the tools to manipulate them (for partitioning, copying files, and
erasing, for instance) are also different. These tools are the subject of this chapter.

In this chapter, we will discuss the manipulation of embedded storage devices for use with Linux.
We will start with our primary topic: the manipulation of devices supported by the MTD subsystem.
I will also briefly cover the manipulation of disk devices. If you intend to use a conventional disk
device as part of your system, however, I recommend that you look at one of the books that
discusses Linux system maintenance, such as O'Reilly's Running Linux, for more extensive
coverage. The last section of this chapter will cover the use of swap in embedded systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 MTD-Supported Devices

As we saw earlier in Section 3.4.1, the MTD subsystem is rich and elaborate. To use it on your target, you will
need a properly configured kernel and the MTD tools available from the project's web site. We will discuss
both of the issues below.

As with other kernel subsystems, the development of the MTD subsystem and the MTD tools is independent
of the mainline kernel. Hence, the latest kernel often does not include the latest code in the MTD CVS
repository. You can, nevertheless, retrieve the latest code and use it instead of the MTD code already
included in the kernel you have selected.

Because the MTD code in the kernel releases is not in sync with the MTD development, however, you can
sometimes encounter problems. I was unable, for instance, to get vanilla Linux 2.4.18 to boot from a
DiskOnChip (DOC) 2000, because there is a bug in the default MTD code in that kernel. To fix the problem, I
had to manually modify the MTD code according to instructions found in the MTD mailing list archive. For this
reason, you will find the MTD mailing list and its archive helpful.

In the following sections, we will start by discussing the usage basics of the MTD subsystem. This will cover
issues such as configuring the kernel, installing the required utilities, and creating appropriate entries in
The discussion will then focus on the use of the MTD subsystem with the two solid state storage devices
most commonly used in embedded Linux systems: native CFI-compliant flash and DOC devices.

7.1.1 MTD Usage Basics

Having already covered the detailed architecture of the MTD subsystem, we can now concentrate on the
actual practical use of its components. First, we will discuss the /dev entries required for MTD abstractions.
Second, we will discuss the basic MTD kernel configuration options. Third, we will discuss the tools available
to manipulate MTD storage devices in Linux. Finally, we will describe how to install these tools both on the
host and on the target.

7.1.1.1 MTD /dev entries

There are five types of MTD /dev entries and seven corresponding MTD user modules.[1] In practice, many
MTD user modules share the same /dev entries and each /dev entry can serve as an interface to many MTD
user modules. Table 7-1 describes each type of MTD /dev entry and the corresponding MTD user modules,
and Table 7-2 provides the minor number ranges and describes the naming scheme used for each device
type.

[1] See Section 3.4.1 for the definition of MTD "user modules."

Table 7-1. MTD /dev entries, corresponding MTD user modules, and relevant device major numbers
/dev entry Accessible MTD user module Device type Major number

mtdN char device char 90

mtdrN char device char 90

mtdblockN block device, read-only block device, JFFS, and JFFS2 block 31

nftlLN NFTL block 93

ftlLN FTL block 44

Table 7-2. MTD /dev entries, minor numbers, and naming schemes
/dev
entry Minor number range Naming scheme

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mtdN 0 to 32 per
increments of 2 N = minor / 2

mtdrN 1 to 33 per
increments of 2 N = (minor - 1) / 2

mtdblockN 0 to 16 per
increments of 1 N = minor

nftlLN 0 to 255 per sets of
16

L = set;[2] N = minor - (set - 1) x 16; N is not appended to entry name if
its value is zero.

ftlLN 0 to 255 per sets of
16 Same as NFTL.

[2] As with other partitionable block device entries in /dev, device sets are identified by letters. The first set is "a," the second set is "b,"
the third set is "c," and so on.

The use of each type of MTD /dev entry is as follows:

mtdN

Each entry is a separate MTD device or partition. Remember that each MTD partition acts as a
separate MTD device.

mtdrN

Each entry is the read-only equivalent of the matching /dev/mtdN entry.

mtdblockN

Each entry is the block device equivalent of the matching /dev/mtdN entry.

nftlLN

Each set is a separate NFTL device, and each entry in a set is a partition on that device. The first entry
in a set is the entire device. /dev/nftlb, for instance, is the second NFTL device in its entirety, while
/dev/nftlb3 is the third partition on the second NFTL device.

ftlLN

Same as NFTL.

As we'll see later, you don't need to create all these entries manually on your host. You will, however, need to
create some of these entries manually on your target's root filesystem to use the corresponding MTD user
module. Also, note that the naming scheme described above differs slightly from the one described in the
devices.txt file mentioned earlier. The naming scheme presented here is the one used in practice.

7.1.1.2 Configuring the kernel

As I mentioned in Chapter 5, the configuration of the MTD subsystem is part of the main menu of the kernel
configuration options. Whether you are configuring the kernel using the curses-based terminal configuration
menu or through the Tk-based X Window configuration menu, you will need to enter the "Memory Technology
Devices (MTD)" submenu to configure the MTD subsystem for your kernel.

The MTD submenu contains a list of configuration options that you can choose to build as part of the kernel,
build as separate modules, or disable completely. Here are the main options you can configure in the MTD
submenu:

Memory Technology Device (MTD) support, CONFIG_MTD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory Technology Device (MTD) support, CONFIG_MTD

Enable this option if you want to include core MTD subsystem support. If you disable this option, this
kernel will not have any MTD support. When this option is set to be built as a module, the resulting
functionality is found in the module called mtdcore.o.

MTD partitioning support, CONFIG_MTD_PARTITIONS

Enable this option if you want to be able to divide your MTD devices into separate partitions. If you
compile this as a module, the module's filename is mtdpart.o. Note that MTD partitioning does not
apply to DOC devices. These devices are partitioned using conventional disk partitioning tools.

Direct char device access to MTD devices, CONFIG_MTD_CHAR

This is the configuration option for the char device MTD user module that is visible as /dev/mtdN
/dev/mtdrN. If you configure this as a module, the module's filename is mtdchar.o.

Caching block device access to MTD devices, CONFIG_MTD_BLOCK

This is the configuration option for the read-write block device MTD user module that is visible as
/dev/mtdblockN. If you configure this as a module, the module's filename is mtdblock.o.

Read-only block device access to MTD devices, CONFIG_MTD_BLOCK_RO

This is the configuration option for the read-only block device MTD user module that is visible using the
same /dev entries as the read-write block device. If you configure the read-only block device user
module as a module, the module's filename is mtdblock_ro.o.

FTL (Flash Translation Layer) support, CONFIG_FTL

Set this option if you would like to include the FTL user module in your kernel. When configured as a
module, the module's filename is ftl.o. The FTL user module is accessible through the /dev/ftlLN
entries.

NFTL (NAND Flash Translation Layer) support, CONFIG_NFTL

Set this option if you would like to include the NFTL user module in your kernel. When configured as a
module, the module's filename is nftl.o. The NFTL user module is accessible through the /dev/nftlLN
device entries.

Write support for NFTL (BETA), CONFIG_NFTL_RW

You must enable this option if you want to be able to write to your NFTL-formatted devices. This will
only influence the way the NFTL user module is built and is not a separate user module in itself.

Notice that only one of the two block device MTD user modules can be built in the
kernel, although both can be configured as modules (mtdblock.o and
mtdblock_ro.o). In other words, if you set the read-write block device user module to
be built into the kernel—not as a module—you will not be able to configure the read-
only block device user module, either built-in or as a module. As we saw earlier,
both block device MTD user modules use the same /dev entry, and cannot therefore
be active simultaneously.

The preceding list is primarily made up of the user modules I described earlier. The remaining MTD user
modules, JFFS and JFFS2, are not configured as part of the MTD subsystem configuration. Rather, they are
configured within the "File systems" submenu. Nevertheless, you will need to enable MTD support to enable
support for either JFFS or JFFS2.

The MTD submenu also contains four submenus to configure support for the actual MTD hardware device
drivers. Here are the submenus found in the MTD submenu and their descriptions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RAM/ROM/Flash chip drivers

Contains configuration options for CFI-Compliant flash, JEDEC-compliant flash, old non-CFI flash,
RAM, ROM, and absent chips.

Mapping drivers for chip access

Contains configuration options for mapping drivers. Includes one generic mapping driver that can be
configured by providing the physical start address of the device and its size in hexadecimal notation,
and its bus width in octets. This submenu also contains one entry for each board for which there is an
existing mapping driver included in the kernel.

Self-contained MTD device drivers

Contains configuration options for uncached system RAM, virtual memory test driver, block device
emulation driver, and DOC devices.

NAND Flash Device Drivers

Contains configuration options for non-DOC NAND flash devices.

Before configuring your kernel's MTD subsystem, make sure you have read the MTD subsystem discussion
in Chapter 3, since many of the options described here were amply covered in my earlier discussion.

When configuring the kernel for your host, you will find it useful to configure all the MTD subsystem options
as modules, since you will be able to test different device setup combinations. For your target, however, you
will need to compile all the options required to support your solid state storage device as part of your kernel
rather than as modules. Otherwise, your target will not be able to mount its root filesystem from its solid state
storage device. If you forget to configure your target's kernel so that it can mount its root filesystem from the
MTD device, your kernel will panic during startup and complain about its inability to mount its root filesystem
with a message similar to the following:

Kernel panic: VFS: unable to mount root fs on ...

7.1.1.3 The MTD utilities

Because the MTD subsystem's functionality is different from that of other kernel subsystems, a special set of
utilities is required to interact with it. We will see in the next sections how to obtain and install these utilities.
For now, let's take a look at the available tools and their purposes.

The MTD utilities are powerful tools. Make sure you understand exactly the
operations being performed by a tool before using it. Also, make sure you
understand the particularities of the device on which you are using the tools. DOC
devices, for example, require careful manipulation. You can easily damage your
DOC device if you do not use the MTD tools appropriately.

Within the MTD tool set, there are different categories of tools, each serving a different MTD subsystem
component. Here are the different tool categories and the tools they contain:

Generic tools

These are the tools that can be used with all types of MTD devices:

einfo device

Provides information regarding a device's erase regions.

erase device start_address number_of_blocks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

erase device start_address number_of_blocks

Erases a certain number of blocks from a device starting at a given address.

eraseall [options] device

Erases the entire device.

unlock device

Unlocks[3] all the sectors of a device.

[3] Some devices can be protected from accidental writes using write "locks." Once a device, or some portion of it, is
locked, it cannot be written to until it is unlocked.

lock device offset number_of_blocks

Locks a certain number of blocks on a device.

fcp [options] filename flash_device

Copies a file to a flash_device.

doc_loadbios device firmware_file

Writes a bootloader to the device's boot region. Though this command is usually used with DOC
devices only, it is not DOC specific.

mtd_debug operation [operation_parameters]

Provides useful MTD debugging operations.

Filesystem creation tools

These tools create the filesystems that are later used by the corresponding MTD user modules:

mkfs.jffs2 [options] -r directory -o output_file

Builds a JFFS2 filesystem image from a directory.

mkfs.jffs [options] -d directory -o output_file

Builds a JFFS filesystem image from a directory.

jffs2reader image [options] path

Lists the content of a path in the JFFS2 filesystem image.

NFTL tools

These tools interact with NFTL partitions:

nftl_format device [start_address [size]]

Formats a device for use with the NFTL user module.

nftldump device [output_file]

Dumps the content of an NFTL partition to a file.

FTL tools

These tools interact with FTL partitions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ftl_format [options] device

Formats an FTL device.

ftl_check [options] device

Checks and provides information regarding an FTL device.

NAND chip tools

These tools are provided for manipulating NAND chips:

nandwrite device input_file start_address

Writes the content of a file to a NAND chip.

nandtest device

Tests NAND chips, including those in DOC devices.

nanddump device output_file [offset] [number_of_bytes]

Dumps the content of a NAND chip to a file.

Most of these tools are used on /dev/mtdN devices, which are the char device interfaces to the various MTD
devices. I will describe the typical uses of the most important MTD tools over the next few chapters, covering
the actual MTD hardware in this chapter, preparation of the root filesystem in Chapter 8, and the boot setup
in Chapter 9.

7.1.1.4 Installing the MTD utilities for the host

The MTD utilities are maintained as part of the MTD development CVS. You can retrieve the latest tool
versions using CVS. You can also download a CVS snapshot from
ftp://ftp.uk.linux.org/pub/people/dwmw2/mtd/cvs/. For my DAQ module, I am using the snapshot dated 2002-
07-31.

Download the snapshot of your choice to your ${PRJROOT}/build-tools directory and extract it. You can then
move to this directory and prepare to compile the tools:

$ cd ${PRJROOT}/build-tools/mtd/util
$ automake --foreign; autoconf
$./configure --with-kernel=/usr/src/linux
When issuing the configure command, you must provide the path to the kernel that will be used to compile
the tools. Since you are building the tools for your host, you need to provide the path to your host's kernel
sources. By default, these should be located at /usr/src/linux.

As in other build scenarios, configure builds the Makefile required to compile the tools. You can now compile
the tools:

$ make clean
$ make
Make sure you issue the make clean command, as there are files in the utilities source code that need to be
deleted to allow symbolic links with the same names to be created to files in the kernel sources.

If the build process fails while compiling compr.c because of an undefined KERN_WARNING symbol, you will
need to edit the Makefile.am file and replace the following lines:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compr.o: compr.c
 $(COMPILE) $(CFLAGS) $(INCLUDES) -Dprintk=printf \
 -DKERN_NOTICE= -c -o $@ $<

with:

compr.o: compr.c
 $(COMPILE) $(CFLAGS) $(INCLUDES) -Dprintk=printf \
 -DKERN_WARNING= -DKERN_NOTICE= -c -o $@ $<

Once you have completed the modification, you will need to restart the build from the start, as already
described, after having issued a make distclean command.

With the utilities built, you can now install them in your tools directory:

$ make prefix=${PREFIX} install
This will install the utilities in ${PREFIX}/sbin. You will need to add this directory to your path, if it's not already
part of it. See my earlier explanation in Chapter 4 about installing uClibc's utilities for a complete description
on how to add a new directory to your development path.

Now that the utilities have been installed, you need to create the MTD device entries in your host's /dev
directory. The MAKEDEV script found in the util directory takes care of the device creation. Have a look
inside this file if you are interested in the devices being created. MAKEDEV mainly creates the /dev entries I
covered earlier in Section 7.1.1.1. Because MAKEDEV uses the mknod command, you will need to run it as
root:

./MAKEDEV
Although you may later want to update your MTD tool set, you should not need to use MAKEDEV again. If
your MTD devices are accessible on the host because you are using the removable storage setup or the
standalone setup we discussed in Chapter 2, you are ready to manipulate your MTD devices immediately. If
you are using the linked setup or want to use the MTD utilities on your target in a removable storage setup,
read the next section for instructions on how to build the MTD utilities for your target.

7.1.1.5 Installing the MTD utilities for the target

To install the MTD utilities for your target, you need to first download and install zlib. Earlier, when you
installed the MTD utilities on your host, you didn't need to install zlib, because zlib is part of most mainstream
distributions. Zlib is available at http://www.gzip.org/zlib/. For my DAQ module, I used zlib 1.1.4.

Download zlib and extract it in your ${PRJROOT}/build-tools directory. You can then move to the library's
directory to prepare its compilation:

$ cd ${PRJROOT}/build-tools/zlib-1.1.4
$ CC=i386-linux-gcc LDSHARED="i386-linux-ld -shared" \
> ./configure --shared
By default, the zlib build process generates a static library. To build zlib as a shared library, you must set the
LDSHARED variable and provide the - -shared option when invoking configure. With the Makefile created, you
can compile and install the library:

$ make
$ make prefix=${TARGET_PREFIX} install
As with the other target libraries we installed earlier, we install zlib in ${TARGET_PREFIX}/lib. Once the
library is installed, you can install it on your target's root filesystem:

$ cd ${TARGET_PREFIX}/lib

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd ${TARGET_PREFIX}/lib
$ cp -d libz.so* ${PRJROOT}/rootfs/lib
You are now ready to build the MTD utilities. Download the MTD snapshot into your ${PRJROOT}/sysapps
and extract it. Now move into the utilities directory and build the tools:

$ cd ${PRJROOT}/sysapps/mtd/util
$ automake --foreign; autoconf
$ CC=i386-linux-gcc ./configure \
> --with-kernel=${PRJROOT}/kernel/linux-2.4.18
$ make clean
$ make
In this case, the kernel path points to your target's kernel. As in the previous section, if the build process fails
while compiling compr.c because of an undefined KERN_WARNING symbol, you will need to edit the
Makefile.am file, make the appropriate changes, and restart the build from the beginning after issuing
distclean.

With the utilities built, you can now install them in your target's root filesystem:

$ make prefix=${PRJROOT}/rootfs install
This will install the utilities in ${PRJROOT}/rootfs/sbin. We will not run the MAKEDEV script here, because it
is not well adapted to creating device entries other than on the root filesystem of the system on which it runs.
If you want to use the script as is, you would have to copy it to your target's root filesystem and then run it
once you have the target running. This, however, would waste filesystem resources on the target, since the
script creates entries for all the MTD devices you can possibly have in a system. We will see in the following
sections how to create just the devices needed on the target's root filesystem.

How NOR and NAND Flash Work
Flash devices, including NOR flash devices such as CFI flash chips and NAND flash devices
such as the DOC, are not like disk storage devices. They cannot be written to and read from
arbitrarily. To understand how to operate flash chips properly, we must first look at how they
operate internally. Flash devices are generally divided into erase blocks. Initially, an empty block
will have all its bits set to 1. Writing to this block amounts to clearing bits to 0. Once all the bits in
a block are cleared (set to 0), the only possible way to erase this block is to set all of its bits to 1
simultaneously. With NOR flash devices, bits can be set to 0 individually in an erase block until
the entire block is full of 0s. NAND flash devices, on the other hand, have their erase blocks
divided further into pages, of 512 bytes typically, which can only be written to a certain number of
times—typically less than 10 times—before their content becomes undefined. Pages can then
only be reused once the blocks they are part of are erased in their entirety.

7.1.2 Native CFI Flash

Most recent small-to-medium-sized non-x86 embedded Linux systems are equipped with some form of CFI
flash. Setting up CFI flash to be used with Linux is relatively easy. In this section, we will discuss the set up
and manipulation of CFI devices in Linux. We will not discuss the use of filesystems on such devices,
however, since these will be covered in the next chapter. The order to the subsections below tries to follow
the actual steps involved in using CFI flash devices with Linux as much as possible. You can, nevertheless,
use these instructions selectively according to your current manipulation.

7.1.2.1 Kernel configuration

You will need to enable kernel support for the following options to use your CFI flash device:

Memory Technology Device (MTD) support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MTD partitioning support, if you would like to partition your flash device

Direct char device access to MTD devices

Caching block device access to MTD devices

In the "RAM/ROM/Flash chip drivers" submenu, Detect flash chips by Common Flash Interface (CFI)
probe

In the "Mapping drivers for chip access" submenu, the CFI flash device mapping driver for your
particular board

You may also choose to enable other options, but these are the bare minimum. Also, remember to set the
options to "y" instead of "m" if you intend to have the kernel mount its root filesystem from the CFI device.

7.1.2.2 Partitioning

Unlike disk or DOC devices, CFI flash cannot generally be partitioned using tools such as fdisk or pdisk
because partition information is not usually stored on CFI flash devices. Instead, the device's partitions are
hardcoded in the mapping driver and are registered with the MTD subsystem during the driver's initialization.
The actual device does not contain any partition information whatsoever. You will, therefore, have to edit the
mapping driver's C source code to modify the partitions.

Take TQM8xxL PPC boards, for instance, which are good candidates for my control module. Such boards
can contain up to two 4 MB flash banks. Each 32 bit-wide memory addressable flash bank is made of two 16
bit-wide flash chips. To define the partitions on these boards, the boards' mapping driver contains the
following structure initializations:

static struct mtd_partition tqm8xxl_partitions[] = {
 {
 name: "ppcboot", /* PPCBoot Firmware */
 offset: 0x00000000,
 size: 0x00040000, /* 256 KB */
 },
 {
 name: "kernel", /* default kernel image */
 offset: 0x00040000,
 size: 0x000C0000,
 },
 {
 name: "user",
 offset: 0x00100000,
 size: 0x00100000,
 },
 {
 name: "initrd",
 offset: 0x00200000,
 size: 0x00200000,
 }
};

static struct mtd_partition tqm8xxl_fs_partitions[] = {
 {
 name: "cramfs",
 offset: 0x00000000,
 size: 0x00200000,
 },
 {
 name: "jffs2",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name: "jffs2",
 offset: 0x00200000,
 size: 0x00200000,
 }
};

In this case, tqm8xxl_partitions defines four partitions for the first 4 MB flash bank, and
tqm8xxl_fs_partitions defines two partitions for the second 4 MB flash bank. Three attributes are
defined for each partition: name, offset, and size.

A partition's name is an arbitrary string meant only to facilitate human usability. This name is not used by
either the MTD subsystem or the MTD utilities to enforce any sort of structure on said partition. The
is used to provide the MTD subsystem with the start address of the partition, while the size is self-
explanatory. Notice that each partition on a device starts where the previous one ended; no padding is
necessary. Table 7-3 presents the actual physical memory address ranges for these partitions on a
TQM860L board where the two 4 MB banks are mapped consecutively starting at address 0x40000000.

Table 7-3. Flash device partition physical memory mapping for TQM860L board
Device Start address End address Partition name

0 0x40000000 0x40040000 ppcboot

0 0x40040000 0x40100000 kernel

0 0x40100000 0x40200000 user

0 0x40200000 0x40400000 initrd

1 0x40400000 0x40600000 cramfs

1 0x40600000 0x40800000 jffs2

During the registration of this device's mapping, the kernel displays the following message:

TQM flash bank 0: Using static image partition definition
Creating 4 MTD partitions on "TQM8xxL Bank 0":
0x00000000-0x00040000 : "ppcboot"
0x00040000-0x00100000 : "kernel"
0x00100000-0x00200000 : "user"
0x00200000-0x00400000 : "initrd"
TQM flash bank 1: Using static file system partition definition
Creating 2 MTD partitions on "TQM8xxL Bank 1":
0x00000000-0x00200000 : "cramfs"
0x00200000-0x00400000 : "jffs2"

You can also see the partitions by looking at /proc/mtd. Here is its content for my control module:

cat /proc/mtd
dev: size erasesize name
mtd0: 00040000 00020000 "ppcboot"
mtd1: 000c0000 00020000 "kernel"
mtd2: 00100000 00020000 "user"
mtd3: 00200000 00020000 "initrd"
mtd4: 00200000 00020000 "cramfs"
mtd5: 00200000 00020000 "jffs2"

Notice that the partitions are on erase size boundaries. Because flash chips are erased by block, not by byte,
the size of the erase blocks must be taken in account when creating partitions. In this case, erase blocks are
128 KB in size, and all partitions are aligned on 128 KB (0x20000) boundaries.

Another Way to Provide MTD Partition Information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For some time now, the MTD subsystem has been able to accept partition information as part of
the kernel boot options for the ARM architecture. This capability is used by the iPAQ Familiar
distribution to provide the iPAQ's kernel with the partition information for the device's CFI flash
chips.

Lately, a generalized form of this capability for all the architectures has been integrated into the
main MTD source code CVS repository. Though these changes had not yet made their way into
the main kernel tree at the time of this writing, they will eventually be integrated and, therefore,
enable the passing of the partition information at the kernel boot options on all architectures
supported by Linux.

Here is an example boot option line used to provide the kernel with the same partition information
provided in the previous section for the TQM8xxL board (the line appears wrapped on the page,
but must be written as a single line):

mtdparts=0:256k(ppcboot)ro,768k(kernel),1m(user),-(initrd);1:2m(cramfs),-
 (jffs2)

7.1.2.3 Required /dev entries

You need to create /dev entries for the char device and block device MTD user modules to access your CFI
flash device. Create as many entries for each type of user module as you have partitions on your device. For
example, the following commands create root filesystem entries for the six partitions of my TQM860L board:

$ cd ${PRJROOT}/rootfs/dev
$ su -m
Password:
for i in $(seq 0 5)
> do
> mknod mtd$i c 90 $(expr $i + $i)
> mknod mtdblock$i b 31 $i
> done
exit
Here are the resulting entries:

$ ls -al mtd*
crw-rw-r-- 1 root root 90, 0 Aug 23 17:19 mtd0
crw-rw-r-- 1 root root 90, 2 Aug 23 17:20 mtd1
crw-rw-r-- 1 root root 90, 4 Aug 23 17:20 mtd2
crw-rw-r-- 1 root root 90, 6 Aug 23 17:20 mtd3
crw-rw-r-- 1 root root 90, 8 Aug 23 17:20 mtd4
crw-rw-r-- 1 root root 90, 10 Aug 23 17:20 mtd5
brw-rw-r-- 1 root root 31, 0 Aug 23 17:17 mtdblock0
brw-rw-r-- 1 root root 31, 1 Aug 23 17:17 mtdblock1
brw-rw-r-- 1 root root 31, 2 Aug 23 17:17 mtdblock2
brw-rw-r-- 1 root root 31, 3 Aug 23 17:17 mtdblock3
brw-rw-r-- 1 root root 31, 4 Aug 23 17:17 mtdblock4
brw-rw-r-- 1 root root 31, 5 Aug 23 17:17 mtdblock5

7.1.2.4 Erasing

Before you can write to a CFI flash device, you need to erase its content. This can be done using one of the
two erase commands available as part of the MTD utilities, erase and eraseall.

Before updating the initial RAM disk on my control module, for example, I need to erase the "initrd" partition:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

eraseall /dev/mtd3
Erased 2048 Kibyte @ 0 -- 100% complete.

7.1.2.5 Writing and reading

Whereas flash filesystems such as JFFS2 take advantage of the capability of continuing to set bits to 0 in an
erase block to allow transparent read and write access, you cannot usually use user-level tools to write to an
MTD device more than once. If you want to update the content of an MTD device or partition using its raw
char /dev entry, for example, you must usually erase this device or partition before you can write new data to
it.

Writing to a raw flash device can be done using traditional filesystem commands such as cat and dd
erasing the "initrd" partition on my control module, for example, I use the following command to write a new
initial RAM disk image to the designated partition:

cat /tmp/initrd.bin > /dev/mtd3
In this case, my target's root filesystem is mounted via NFS, and I am running the MTD commands on my
target. I could have also used the dd command instead of cat. Nevertheless, the end result is the same in this
case.

Reading from a CFI MTD partition is no different from reading from any other device. The following command
on my control module, for instance, will copy the binary image of the bootloader partition to a file:

dd if=/dev/mtd0 of=/tmp/ppcboot.img
Since the bootloader image itself may not fill the entire partition, the ppcboot.img file may contain some extra
unrelated data in addition to the bootloader image.

7.1.3 DiskOnChip

DOC devices are quite popular in x86-based embedded Linux systems, and the MTD subsystem goes a long
way in providing support for them. I use it, for example, in my DAQ module. It remains that the DOC is a
peculiar beast that requires an attentive master. The reasons for such a statement will become evident
shortly.

7.1.3.1 Preliminary manipulations

Unlike most other devices found in embedded Linux systems, you will need to equip yourself with, at the very
least, a bootable DOS diskette loaded with M-Systems' DOS DOC tools to make proper use of any DOC
device. There are two basic reasons for this:

Like all NAND flash devices, DOC devices can contain a certain number of manufacturing defects that
result in bad blocks. Before a DOC device is shipped from the factory, a Bad Block Table (BBT) is
written on it. Although this table is not write-protected, it is essential to the operation of all software that
reads and writes to a DOC. As such, M-Systems' DOC software is capable of reading this table and
storing it to a file. Linux, however, does not currently have any utility to retrieve this table.

The NFTL driver included in most 2.4.x kernels (up to 2.4.19 at least) is unable to deal with some
versions of the M-Systems' DOC firmware. Versions 5.0 and later are the most likely to cause
problems. Hence, you may need to replace your DOC's current firmware with an older version, using
M-Systems' tools, for Linux to operate with your device properly. Currently, the firmware provided with
Version 4.2 of M-Systems' TrueFFS tools works fine with all kernels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition, there are two ways to install a bootloader on the DOC and format it for NFTL. The first, which is
most recommended by the MTD maintainer, is to use M-Systems' dformat DOS utility. The second, which
gives you the greatest degree of control over your DOC device from within Linux, is to use the doc_loadbios
and nftl_format MTD utilities. We will discuss both methods in the following sections.

M-Systems' DOS DOC tools and related documentation are available from the company's web site at
http://www.m-sys.com/. If you plan to use the Linux method to install a bootloader on the DOC and format it,
you need both Version 4.2 and Version 5.0 or later of M-Systems' tools. If you plan to use the DOS method,
you only need Version 5.0 or later of the M-Systems tools. At the time of this writing, the latest version is
5.1.2. The example below is based on a 32 MB DOC 2000 device. The output of the various tools will depend
on the actual device you are using, but should closely resemble the output presented here.

Start by preparing a DOS diskette with the latest tools. Once you have prepared the DOS diskette, boot the
system containing your DOC device with that diskette. Now, use the tools as follows:[4]

[4] See M-Systems' manuals for a full explanation of the tools' semantics and usage.

1. Using Version 5.0 or later of the DOC tools, make a copy of the BBT:

A:\>dformat /win:d000 /noformat /log:docbbt.txt
DFORMAT Version 5.1.0.25 for DOS
Copyright (C) M-Systems, 1992-2002

DiskOnChip 2000 found in 0xd0000.
32M media, 16K unit

OK

The dformat command is usually used to format the DOC for use with DOS. In this case, we instruct
dformat not to format the device by using the /noformat option. In addition, we instruct it to record the
BBT of the device starting at segment 0xD000[5] to the docbbt.txt file. Once dformat finishes retrieving
the BBT, store a copy of docbbt.txt in a safe repository, since you may have to restore it if you erase
the entire DOC device in Linux. Have a look at M-Systems' dformat documentation for information on
how to restore a lost BBT.

[5] "Real-mode" addresses on the PC are represented using a segment and offset couple in the following way:
segment:offset. It's usually shorter to provide just the segment whenever the offset is null. In this case, for example,
segment 0xD000 starts at address 0xD0000, as is displayed by dformat in its output.

Note that your DOC device may be free of bad blocks. In that case, the docbbt.txt will be empty and
you will not need to worry about restoring the BBT if you erase the device completely.

If you are using the DOS method to install a bootloader and format the DOC, you are done with the
preliminary manipulations and should proceed immediately to the next section, Section 7.1.3.2

2. Using Version 5.0 or later of the DOC tools, check the firmware version:

A:\>dinfo /exb
 D I N F O - utility
 Version 5.1.1.1.0, Last Update: 17 Jun 2002
 Copyright (C) M-Systems, 1992 - 2001
 --
 GENERAL INFO.

 Physical Address: 0xD0000
 DiskOnChip Type : DiskOnChip 2000
 Flash Type : Toshiba TC58128
 FormatType : NFTL
 TrueFFS version : 5.1
 Driver Version : DOS
 Sectors : 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Sectors : 4
 Heads : 16
 Cylinders : 1001
 Boot Area Size : 49152 Bytes
 Logical Sectors : 64064
 Phy. UnitSize : 16384 Bytes
 Physical Size : 33554432 (32 MB)
 Unit Size : 16384 Bytes
 Media Size : 33554432 Bytes (32 MB)
 Chip Size : 16777216 Bytes (16 MB)
 No Of Chips : 2
 Interleaving : 1

 EXB INFO.

 Version : 4.2
 Copyright : SPL_DiskOnChip (c) M-Systems
 RunTime ID : 0xC3
 Exb Flags : No Flags Found

The dinfo command displays a lot of information. You can identify the version of the firmware by
looking at the Version line in the EXB INFO section. In this case, the firmware version is 4.2. Do not
be confused by the TrueFFS version line in the GENERAL INFO section. This is not the firmware
version.

3. If your firmware is Version 5.0 or later, update the firmware version using Version 4.2 of the DOC tools:

A:\>dformat /win:d000 /s:doc42.exb
DFORMAT Version 3.3.9 for DiskOnChip 2000 (V4.2)
Copyright (C) M-Systems, 1992-2000

Driver not loaded - using direct access
WARNING: All data on DiskOnChip 2000(R) will be destroyed. Continue ? (Y/N)

Medium physical size is 32768 KBytes
Boot-image size is 48 KBytes

Finished 32768 KBytes
Writing Boot-Image
Format complete. Formatted size is 32032 KBytes.
Please reboot to let DiskOnChip 2000(R) install itself.

Once you have formatted the chip with Version 4.2 of the firmware, I recommend that you power-cycle
your system. Shut the system off and then put it back on. A simple reboot may work to get the firmware
installed properly, but a full power-cycle is necessary on some systems.

You are now ready to use your DOC device with Linux.

7.1.3.2 Kernel configuration

At the time of this writing, if you are using the DOS method to install a bootloader and format the DOC, you
need to patch your kernel with the latest MTD code from the MTD CVS repository to proceed. See the MTD
project's web site (http://www.linux-mtd.infradead.org/) for information on how to retrieve the code from the
CVS repository.

You will need to enable kernel support for the following options to use your DOC device:

Memory Technology Device (MTD) support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MTD partitioning support, if you would like to partition your flash device

Direct char device access to MTD devices

NFTL (NAND Flash Translation Layer) support

Write support for NFTL (BETA)

In the "Self-contained MTD device drivers" submenu, M-Systems Disk-On-Chip 2000 and Millennium

As with CFI flash, you may choose to select other options. If you compile the options just listed as modules,
the DOC support will be separated in three files, docecc.o, doc2000.o, and docprobe.o. Issuing a modprobe
docprobe command should load all three modules automatically. Whether it is part of the kernel or loaded as
a module, the DOC probe driver will analyze potential memory addresses for DOC devices. For each memory
address it analyzes, the probe driver outputs a message regarding its findings. Here is an example of output
from the probe driver on my DAQ module:

Possible DiskOnChip with unknown ChipID FF found at 0xc8000
...
Possible DiskOnChip with unknown ChipID FF found at 0xce000
DiskOnChip 2000 found at address 0xD0000
Flash chip found: Manufacturer ID: 98, Chip ID: 73 (Toshiba TH58V128DC)
2 flash chips found. Total DiskOnChip size: 32 MiB
Possible DiskOnChip with unknown ChipID FF found at 0xd2000
Possible DiskOnChip with unknown ChipID FF found at 0xd4000
...

M-Systems' DOC Driver
M-Systems provides a DOC driver for Linux as part of their Linux tools packages. This driver,
however, is not under the GPL and you can use it only as a loadable kernel module. Distributing
a kernel with this driver built in is a violation of the GPL. Hence, if you want to boot from a DOC
with a kernel that uses M-Systems' driver, you need to use an init RAM disk to load the binary
driver. Also, postings on the MTD mailing list suggest that the driver uses a lot of system
resources and can sometimes cause data loss on the serial port. For these reasons, I
recommend that you avoid using M-Systems' Linux DOC driver. Instead, use the GPL MTD
drivers, as I describe here.

7.1.3.3 Required /dev entries

You need to create /dev entries for the char device and the NFTL MTD user modules in order to access your
DOC device. Create as many char device entries and sets of NFTL entries as you have DOC devices in your
system. For each NFTL set, create as many entries as you will create partitions on your device. For my DAQ
module, for instance, I have one DOC device with only one main partition. I use the following commands to
create the relevant entries:

$ cd ${PRJROOT}/rootfs/dev
$ su -m
Password:
mknod mtd0 c 90 0
mknod nftla b 93 0
mknod nftla1 b 93 1
exit
Here are the resulting entries:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ls -al mtd* nftl*
crw-rw-r-- 1 root root 90, 0 Aug 29 12:48 mtd0
brw-rw-r-- 1 root root 93, 0 Aug 29 12:48 nftla
brw-rw-r-- 1 root root 93, 1 Aug 29 12:48 nftla1

7.1.3.4 Erasing

Erasing a DOC device is done in very much the same way as other MTD devices, using the erase and
eraseall commands. Before using any such command on a DOC device, make sure you have a copy of the
BBT, because an erase of the device will wipe out the BBT it contains.

To erase the entire DOC device in my DAQ modules, for instance, I use the following command on my DAQ
module:

eraseall /dev/mtd0
Erased 32768 Kibyte @ 0 -- 100% complete.

Typically, you will need to erase a DOC device only if you want to erase the bootloader and the current format
on the device. If you installed a Linux bootloader, for example, and would like to revert back to M-Systems'
SPL, you will need to use the eraseall command before you can install M-Systems' SPL with M-Systems'
tools. Whenever you erase the entire device, however, you need to use M-Systems' tools to restore the BBT.

7.1.3.5 Installing bootloader image

If your target does not boot from its DOC device, you can skip this step. Otherwise, you need to build the
bootloader, as I describe in Chapter 9, before going any further. First, nonetheless, let's see how a system
boots from the DOC.

During system startup on x86 systems, the BIOS scans the memory for BIOS extensions. When such an
extension is found, it is executed by the BIOS. DOC devices contain a ROM program called the Initial
Program Loader (IPL) that takes advantage of this characteristic to install another program called the
Secondary Program Loader (SPL) that acts as a bootloader during system startup. By default, the SPL is
provided by M-Systems' own firmware. To boot Linux from a DOC device, however, the SPL must be
replaced with a bootloader able to recognize the format used by Linux on a DOC. We will discuss the various
DOC-capable Linux bootloaders in Chapter 9. For now, let us take a look at how we can install our own SPL
on a DOC.

Here is the command I use to install the GRUB bootloader image, grub_firmware, on the DOC in Linux:

doc_loadbios /dev/mtd0 grub_firmware
Performing Flash Erase of length 16384 at offset 0
Performing Flash Erase of length 16384 at offset 16384
Performing Flash Erase of length 16384 at offset 32768
Performing Flash Erase of length 16384 at offset 49152
Performing Flash Erase of length 16384 at offset 65536
Performing Flash Erase of length 16384 at offset 81920
Writing the firmware of length 92752 at 0... Done.

Here is the command I use to install the GRUB bootloader image on the DOC in DOS:

A:\>dformat /win:d000 /bdkf0:grub_firmware
DFORMAT Version 5.1.0.25 for DOS
Copyright (C) M-Systems, 1992-2002
WARNING: All data on DiskOnChip will be destroyed. Continue ? (Y/N)y

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WARNING: All data on DiskOnChip will be destroyed. Continue ? (Y/N)y
DiskOnChip 2000 found in 0xd0000.
32M media, 16K unit

Formatting 2042
Writing file to BDK 0 92752
OK
Please reboot to let DiskOnChip install itself.

As with updating the firmware version earlier, you need to power-cycle your system after using doc_loadbios
or dformat for the firmware to be installed properly. That said, do not use doc_loadbios or dformat before
reading the explanations pertaining to its use with a bootloader in Chapter 9.

7.1.3.6 NFTL formatting

Currently, the only way to use DOC devices in Linux is to format them for NFTL. Once we format a DOC
device for NFTL, we can use conventional block device tools and filesystems in conjunction with the device.

If you would like to boot from the DOC, read the sections in Chapter 9 regarding x86 bootloaders before
carrying out any further operations on your DOC.

If you used the dformat utility earlier to install GRUB on the DOC, your DOC is already formatted for NFTL. If
you used doc_loadbios in Linux, you must use the nftl_format command to format the device for NFTL.

The following MTD command formats the entire DOC device for NFTL:

nftl_format /dev/mtd0
$Id: ch07.xml,v 1.3 2003/05/01 21:52:06 madd Exp madd $
Phase 1. Checking and erasing Erase Zones from 0x00000000 to 0x02000000
 Checking Zone #2047 @ 0x1ffc000
Phase 2.a Writing NFTL Media Header and Bad Unit Table
Phase 2.b Writing Spare NFTL Media Header and Spare Bad Unit Table
Phase 3. Writing Unit Control Information to each Erase Unit

This command takes some time to go through the various zones on the DOC. Should nftl_format encounter
bad blocks on the DOC, it outputs the following message:

Skipping bad zone (factory marked) #BLOCK_NUM @ 0xADDRESS

The BLOCK_NUM and ADDR values output by nftl_format should match the values found in the docbbt.txt
generated earlier.

For the nftl_format command to operate properly, it needs to have total control and
exclusive access over the raw DOC device it is formatting. Total control is
guaranteed by the fact that the commands provided earlier use the /dev/mtdX device
entries. Because these entries are handled by the char device MTD user module,
there is no conversion layer between the operations conducted on these devices
and the actual hardware. Hence, any operation carried out by nftl_format has a
direct effect on the hardware.

Exclusive access to the raw DOC device is a little trickier, however, because of the
NFTL driver. Basically, once the NFTL driver recognizes a DOC device, it assumes
that it has total control over the device. Hence, no other software, including
nftl_format, should attempt to manipulate a DOC device while the NFTL driver
controls it. There are a few ways to avoid this type of conflict, depending on the
configuration of the kernel you are using.

If the NFTL driver was configured as a module, unload the module before running
nftl_format. You can reload it once nftl_format is done formatting the device. If the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nftl_format. You can reload it once nftl_format is done formatting the device. If the
NFTL driver was built in, you can either use another kernel or build one, if need be,
that doesn't have the NFTL driver built in. If you want to continue to use the same
kernel that has the NFTL driver built in, you can use the eraseall command to erase
the device entirely. The next time your restart your system after the erase, the built-
in NFTL driver will not recognize the DOC and will, therefore, not interfere with
nftl_format's operations. Finally, if you are carrying out these instructions for the first
time, the NFTL driver should not be able to recognize any format on the DOC device
at this stage and should, therefore, not cause any problems.

If you have installed a Linux bootloader on the DOC using doc_loadbios, you need to skip the region where
the bootloader was written and start formatting at its end. To do so, you need to provide an offset to
nftl_format. Here is the command I use to format my DOC for NFTL in the case where I had already installed
GRUB as the SPL:

nftl_format /dev/mtd0 98304
$Id: ch07.xml,v 1.3 2003/05/01 21:52:06 madd Exp madd $
Phase 1. Checking and erasing Erase Zones from 0x00018000 to 0x02000000
 Checking Zone #2047 @ 0x1ffc000
Phase 2.a Writing NFTL Media Header and Bad Unit Table
Phase 2.b Writing Spare NFTL Media Header and Spare Bad Unit Table
Phase 3. Writing Unit Control Information to each Erase Unit

The 98304 offset is determined by the output of the doc_loadbios command shown earlier. The last erase
message output by the command reported erasing 16384 bytes at offset 81920. 98304 is therefore the first
address following the last region erased for the bootloader.

With the DOC device formatted for NFTL, reboot the system as a precautionary step. When the NFTL driver
is activated, either at kernel startup or when loading the nftl.o module, it should output a message similar to
the following:

NFTL driver: nftlcore.c $Revision: 1.3 $, nftlmount.c $Revision:...
Cannot calculate an NFTL geometry to match size of 0xfea0.
Using C:1018 H:16 S:4 (= = 0xfe80 sects)

If the NFTL driver can see a DOC device but is unable to recognize its format, it will output this message
instead:

Could not find valid boot record
Could not mount NFTL device

Although this message is normal if you have not yet used nftl_format on the DOC device, it is a sign that an
error occurred if you already used nftl_format on the DOC.

The error message may be followed by a message similar to:

Sorry, we don't support UnitSizeFactor 0x06

or:

Sorry, we don't support UnitSizeFactor of != 1 yet.

There are many reasons why you may encounter these messages. None of them are your fault if you have
followed the instructions above, as well as those in Chapter 9. As a first resort, you can try using different
MTD and GRUB versions. For example, I had such messages when I tried using a November 2002 CVS
version of GRUB with the DOC on my DAQ module. For some reason, the firmware image generated by that
version of GRUB confused the NFTL driver in 2.4.18. To solve the problem and have the NFTL driver
recognize my NFTL-formatted device, I used GRUB 0.92 instead of the latest CVS version. You may
encounter a similar error if you used dformat to install GRUB on the DOC but forgot to patch your kernel to
use the latest MTD code from the CVS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Whenever you encounter such a message, review your manipulations and make sure you have faithfully
followed the steps we discussed. If it is not a manipulation error, you can choose to dig deeper and use your
hacking skills to figure out the problem on your own. It is often a good idea, nevertheless, to search the MTD
mailing list archive and to consult with the MTD mailing list, because others may have encountered a similar
problem and may have already solved it. When sending a message to the MTD mailing list, or any other
mailing list for that matter, try to be as verbose as possible. It is very frustrating for mailing list subscribers to
receive pleas for help that have little or no detail. Specifically, provide the versions of all the software
components involved, explain the exact steps you followed, and provide the output of all the tools you used.

7.1.3.7 Partitioning

With the DOC device formatted for NFTL, you can now partition the device using fdisk. Here is the transcript
of an fdisk session in which I create one partition on my NFTL device:

fdisk /dev/nftla
Device contains neither a valid DOS partition table, nor Sun or S ...
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Command (m for help): p

Disk /dev/nftla: 16 heads, 4 sectors, 1018 cylinders
Units = cylinders of 64 * 512 bytes

 Device Boot Start End Blocks Id System

Command (m for help): d
Partition number (1-4): 1
Command (m for help): n
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1018, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1018, default 1018):
Using default value 1018

Command (m for help): p

Disk /dev/nftla: 16 heads, 4 sectors, 1018 cylinders
Units = cylinders of 64 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/nftla1 1 1018 32574 83 Linux

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that we delete the first partition before creating it again. This is because the use of dformat to install the
bootloader and format the DOC also results in the creation of a single FAT partition spanning the entire
device. If you had used the Linux doc_loadbios, fdisk will display the following error message regarding the
partition deletion, which you can ignore:

Warning: partition 1 has empty type

Also, note that instead of using a single partition on the DOC, or any other storage device for that matter, you
could delete all partitions and store your filesystem on the entire device.

See Chapter 3 in Running Linux for a full description of how to use fdisk. With the DOC partitioning done, you
can manipulate the newly created partitions like any conventional disk partition. Among other things, you can
format and mount the NFTL partitions. We will discuss these issues in detail in Chapter 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 Disk Devices

Manipulating disk devices[6] for use in embedded Linux devices is similar to what you do in Linux
workstations or servers. In the following, we will concentrate on only those aspects that differ from
conventional disk manipulations. I encourage you to consult other documents discussing Linux
system maintenance in general, such as Running Linux, to get the rest of the details.

[6] I use the term "disk devices" here to designate all devices that, in one way or another, appear as magnetic disk
devices to the Linux kernel. Hence, this includes CompactFlash devices, which appear as ATA (IDE) disks.

7.2.1 CompactFlash

A CompactFlash (CF) card is accessible in Linux in two ways: either as an IDE disk, when
plugged in a CF-to-IDE or a CF-to-PCMCIA adapter, or as a SCSI disk, when accessed through a
USB CF reader. In practice, it is often convenient to use a USB reader to program the CF card on
the host while using a CF-to-IDE or a CF-to-PCMCIA adapter in the target to access the device.
Hence, the CF card is visible as a SCSI disk on the host, while being seen by the target as an IDE
disk. The fact that the same CF card can be accessed through two very different kernel disk
subsystems can be problematic, however, as we'll see during the configuration of LILO for a CF
card in Chapter 9. Of course, there would be no problem if a CF device would always be
accessed through the same disk subsystem.

To access the CF card through a USB CF reader on the host, you must have kernel support for
USB storage devices. Most distributions are shipped with USB device support built as modules.
Therefore, all you have to do is load the appropriate USB modules and SCSI disk drivers on your
host:

modprobe usb-storage
modprobe uhci
modprobe sd_mod
Though the uhci module is used in this example, some systems, such as Apple's systems, require
usb-ohci instead. Once the modules are loaded, you can now look at the appropriate entries in
/proc to see your CF reader. For example, this is how the SanDisk SDDR-31 reader I have on my
PC host is seen by the SCSI subsystem:

cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00
 Vendor: SanDisk Model: ImageMate II Rev: 1.30
 Type: Direct-Access ANSI SCSI revision: 02
cat /proc/scsi/usb-storage-0/0
 Host scsi0: usb-storage
 Vendor: SanDisk Corporation
 Product: ImageMate CompactFlash USB
Serial Number: None
 Protocol: Transparent SCSI
 Transport: Bulk
 GUID: 078100020000000000000000
 Attached: Yes

In this case, because the reader is the first device on the SCSI bus, it can be accessed as
/dev/sda. Therefore, I can partition, format, and mount the CF card the same way I would
partition, format, and mount a conventional SCSI disk:

fdisk /dev/sda

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fdisk /dev/sda
...
mkdir /mnt/cf
mke2fs /dev/sda1
mount -t ext2 /dev/sda1 /mnt/cf
The partitions you put on the CF card and the use of the various partitions depends largely on
your target. If your target is an x86 PC derivative, you can use a single partition. If your target is
PPC using the U-Boot bootloader, you need to have a few small partitions to hold kernel images
and one large partition to hold your root filesystem. This is because U-Boot can read CF device
partitions and the data on those partitions, but it does not recognize any filesystem organization.
Hence, kernel images must be written to raw partitions to be loadable by U-Boot. We will discuss
example uses of CF cards as boot devices in Chapter 9.

7.2.2 Floppy Disk

If you intend to use a floppy disk as your main storage device for your embedded Linux project,
have a look at the "Putting them together: Making the diskette(s)" section of Tom Fawcett's Linux
Bootdisk HOWTO, available from the LDP. Tom explains in detail how to create a bootable floppy
using either LILO or the kernel alone. Although you do not need to read other sections of the
HOWTO, the instructions assume that you have created a RAM disk image containing your root
filesystem. See Chapter 8 for an explanation of how to create this RAM disk image.

We will not discuss the use of floppy disks in embedded Linux systems any further, because they
are very seldom used in production systems and because the Linux Bootdisk HOWTO already
covers the issues involved quite well.

7.2.3 Hard Disk

When configuring a hard disk for use in an embedded Linux system, the most convenient setup to
bootstrap the target is to attach the hard disk destined for the target to the host's own disk
interface. In this way, the target's hard disk can be manipulated directly on the host.

If the host already has one IDE disk that is seen as hda, for example, the target's IDE disk may be
seen as hdb or hdc, depending on the host's setup. We can then format and mount this drive as
we would any other hard disk. The only difference, however, is that the target's disk, seen on the
host as a secondary disk such as hdb or hdc, will very likely be seen as hda on the target. This
poses certain problems when configuring bootloaders. We will discuss these issues further in
Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 To Swap or Not to Swap

Swapping is an essential component of most Linux workstation and server installatations. It
enables the system to address more memory than is physically available by emulating the
additional memory on a storage device. Most embedded storage devices, such as flash and DOC
devices, however, are ill-adapted to this use, because they have limited erase and write cycles.
Since your application has little control over the kernel's use of swapping, it is therefore possible
to accelerate the wear on the storage device used for swapping. Hence, I encourage you to find
alternatives to swapping. Try reducing your applications' memory usage and having only the
minimal set of binaries required for your system's proper behavior loaded at any time.

Of course, if your storage device is a real hard disk—not a CF card—then swapping is a viable
option. The use of swap may, however, result in slower response times.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Root Filesystem Setup
Having built the root filesystem and prepared the target's storage device, we are now ready to set
up the root filesystem as it will be used on the target. First, we need to select a filesystem type for
the root filesystem. Then, we need to convert the root filesystem's content to the selected
filesystem format or install the root filesystem on a device formatted for the selected filesystem
type.

This chapter begins by discussing the basic filesystem selection criteria. This is followed by a
section describing how to use NFS to transfer filesystem images to the target's flash, a technique
we use often in this chapter. We then concentrate on the setup of root filesystems for use on
CRAMFS, JFFS2, NFTL, and RAM disks, respectively. Finally, we discuss the use of TMPFS for
mounting certain directories, and how to update an embedded system's root filesystem
dynamically. At the end of this chapter, the only issue remaining to getting a fully functional
embedded system will be the setup and configuration of the bootloader. I will cover these issues
in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Selecting a Filesystem

Selecting a filesystem type for your root filesystem is a delicate process. The final decision is
often a compromise between the filesystem's capabilities and the target's purpose. It is, for
example, useless to choose a filesystem that provides persistent write storage, such as JFFS2, if
the target never needs to permanently store any data. For such a target, a filesystem with no
persistent storage, such as CRAMFS, is a much better choice.

Furthermore, you may want to consider using many filesystems for the same system. A system
that needs read and write access to temporary files only, for instance, could have most of its root
filesystem mounted on CRAMFS while having its /var/tmp directory mounted on TMPFS or a RAM
disk, and its /tmp being a symbolic link to /var/tmp.

8.1.1 Characterizing Filesystems

To select the best filesystem or best combination of filesystems for a certain application, we need
to have a minimum set of characteristics that can be used to compare filesystems. Table 8-1
summarizes the characteristics of the filesystems typically used in embedded Linux systems. For
each filesystem type, these are the questions used to characterize it:

Write

Can the filesystem be written to?

Persistent

Does the filesystem preserve modifications across reboots?

Power down reliability

Can a modified filesystem recover from a power failure?

Compression

Is the content of the mounted filesystem compressed?

Lives in RAM

Is the filesystem's content first extracted from the storage device into RAM before being
mounted?

Table 8-1. Filesystem characteristics
Filesystem Write Persistent Power down reliability Compression Lives in RAM

CRAMFS No N/A N/A Yes No

JFFS2 Yes Yes Yes Yes No

JFFS Yes Yes Yes[1] No No

Ext2 over NFTL Yes Yes No No No

Ext3 over NFTL Yes Yes Yes No No

Ext2 over RAM disk Yes No No No Yes

[1] Extensive testing conducted by Vipin Malik shows that JFFS's power down reliability can fail. Such problems do not
exist with JFFS2, however. See his article on JFFS and JFFS2 for the complete details:
http://www.embeddedlinuxworks.com/articles/jffs_guide.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As I said above, a system needs a write-capable filesystem only if it needs to update data found
on that filesystem. Similarly, a system requires persistent writes only if the updated data needs to
be preserved upon reboots. A system that does not provide write capability does not require
persistent storage or power down reliability, since none of the data it stores is ever modified.

Compression, on the other hand, is a desired characteristic of most filesystems, because it can
lower the cost or increase the yield of storage in embedded systems. In some embedded
systems, however, the increased cost, in CPU cycles, of compression and decompression may be
undesirable.

While most filesystems are mounted directly from their storage device, filesystems mounted on
RAM disks must first be extracted from their storage device into RAM before they can be
mounted. Because the original filesystem image on the storage device is never accessed directly,
most filesystem images created for use with RAM disks are usually compressed before being
placed on a storage device. We will discuss the creation of such compressed filesystem images
for use with RAM disks in Section 8.6.

Finally, no filesystem can be replaced while it is currently mounted. If a system's root filesystem is
mounted from a JFFS2-formatted MTD partition, for example, the content of the MTD partition
holding this filesystem cannot be overwritten with a new root filesystem. The only case where
such a replacement is possible is when a filesystem is first copied into RAM before being
mounted, as is the case of RAM disks. In that case, the actual media where the filesystem is
stored is not accessed once the filesystem is mounted and can, therefore, be written over safely.
As we shall see in Section 8.8, filesystems that are mounted in read and write mode from their
original storage device can still be updated in various ways.

As you will have noticed, Linux supports a great deal many more filesystems than I cover in Table
8-1. But most of these filesystems are not well adapted for embedded Linux systems. In addition,
although I mention JFFS in the table above, we will not discuss it below, since it has been largely
superseded by JFFS2.

8.1.2 Guidelines for Filesystem Selection

Now that we have established a basic set of features for characterizing filesystems, let's review
some general guidelines for selecting a filesystem configuration for your MTD-compatible storage
device.

ROMFS...Not for ROMs
You will notice a "ROM file system support" item in the "File systems" submenu of the
kernel configuration menu. This filesystem is actually not intended for use with any
form of physical ROM. Instead, it is mainly intended for use on disks for installation and
troubleshooting purposes. ROMFS operates on block devices only, and does not
interface with Linux's MTD subsystem in any way. As the project's web site states, if
you want to use ROMFS with a real ROM, you must first write a device driver for this
ROM that makes it appear as a block device. See http://romfs.sourceforge.net/ for
further information on ROMFS.

If your system has a very small amount of flash but a relatively generous amount of RAM, a RAM
disk is probably your best choice, because the filesystem living on a RAM disk is compressed in
its entirety on the storage device. The compression ratio on the storage device obtained by using
a filesystem on a RAM disk is actually much higher than what can be achieved with a natively
compressed filesystem, such as CRAMFS or JFFS2, because such filesystems must still keep
their metadata,[2] among other things, uncompressed. The RAM disk's edge in regards to on-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their metadata,[2] among other things, uncompressed. The RAM disk's edge in regards to on-
storage-device compression are, however, offset by a higher RAM usage, since the entire
filesystem lives uncompressed in RAM. Also, a RAM disk isn't appropriate if you need persistent
data storage. Nevertheless, if your persistent data storage needs are limited, you can use a RAM
disk for most of your root filesystem and mount only the data directories from a persistent
filesystem such as JFFS2, as hinted to earlier. Also, using a RAM disk is often the easiest way to
obtain a self-hosting target (which is a target that doesn't require a host to obtain its kernel or
mount its root filesystem). x86 systems such as my DAQ module, for example, are the most likely
to be shipped with RAM disks, since the prices for the components of such systems, including
RAM, are low compared to other architectures. Note that although RAM can be cheap, it does
consume more power than flash. Using large amounts of RAM for a RAM disk may, therefore, not
be a viable option on some systems.

[2] This is the data stored by the filesystem to locate files and directories and maintain the filesystem structure in
general.

If your system has slightly more flash, or if you would rather save as much RAM as possible for
the actual application running on your target and can spare a few extra CPU cycles for runtime
decompression, CRAMFS is a very good candidate, granted the filesystem's limitations we
discuss in Section 8.3 aren't a show stopper. Though CRAMFS's compression ratio is lower than
a RAM disk, because of the reasons I outlined earlier, its capabilities are usually quite sufficient
for most embedded applications that do not require persistent storage. As with RAM disks,
nevertheless, you can mount the portion of the root filesystem that doesn't change at runtime on
CRAMFS and the rest on a persistent filesystem such as JFFS2.

CRAMFS will not be a viable option, however, if your target must be able to be upgraded in the
field. For example, the iPAQ Familiar distribution project switched from CRAMFS to JFFS2
precisely because users were unable to update their iPAQs without reprogramming their devices'
flash. On the other hand, as another example, CRAMFS is a good candidate for my control
module, because actual control procedures don't change very often in most industrial control
applications.

If you need to be able to change any portion of your filesystem at any time, JFFS2 is the best
candidate. Though JFFS2 doesn't achieve compression ratios as high as CRAMFS, since JFFS2
has to maintain space for garbage collection and metadata structures that allow filesystem writing,
JFFS2 does provide power-down reliability and wear-leveling, which are very important
characteristics for devices that rely on flash storage, as we discussed in Chapter 3. My user
interface modules, for example, would be completely based on JFFS2 to ease updating and
extend the lifetime of the devices' flash. At the time of this writing, however, JFFS2 is not a viable
option if you are using a NAND flash device such as the DiskOnChip (DOC), as I explained in
Chapter 3.

If you are using a DOC device and need to be able to change any portion of your filesystem at
any time, using a disk filesystem over NFTL is your only available option at the time of this writing.
Most embedded x86 devices that are equipped with DOC devices have to use this configuration.
My DAQ module, for instance, can be configured to store some of its samples locally from time to
time to a disk filesystem mounted over NFTL.

Strictly speaking, there is no such thing as a "disk filesystem." I use this
term here and in the rest of the book, however, to contrast filesystems
typically used on block devices, such as ext2 and reiserfs, from
filesystems typically used on MTD devices, such as JFFS2.

Whether you are using CRAMFS, JFFS2, or a disk filesystem over NFTL, you may want to
consider mounting some directories on TMPFS. Though the content of this filesystem is not saved
to persistent storage, it does allow you to use part of the RAM to store temporary files such as
those typically found in your root filesystem's /tmp directory. If you are using a CRAMFS-based

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

those typically found in your root filesystem's /tmp directory. If you are using a CRAMFS-based
root filesystem, this allows you to have a directory, or a couple of directories, where you can both
read and write files. If you are using either JFFS2 or a disk filesystem over NFTL, this allows you
to avoid wearing out the storage device by manipulating data from RAM.

Obviously, these are guidelines only, and each system likely imposes additional limitations that
you have to take into account. Nonetheless, these guidelines represent the typical design trade-
offs when building embedded Linux systems and they should give you a basic idea of how to
choose your final setup. In the rest of this chapter, I will discuss the actual setup of the filesystems
we discussed earlier and further detail their use.

8.1.3 Filesystems for Disk Devices

If you are using a conventional disk as your main storage device for your system, such as one
that connects to the system using an IDE or SCSI interface, I suggest you take a closer look at
the various filesystems currently used in desktop and server Linux installations. In particular, you
will find journalling filesystems such as ext3 and reiserfs to be quite well adapted to environments
that need power down reliability such as embedded systems. Because the use of these
filesystems is already amply covered elsewhere and embedded systems use them no differently
from their workstation or server counterparts,[3] I will not discuss their use any further. I refer you
to classic texts on the use of Linux on servers and workstations for further details on such
filesystems. IBM developerWorks' long series of articles by Daniel Robbins about Linux
filesystems is of special interest here. In his series, Daniel provides in-depth discussion of the
main journalling filesystems for Linux, including ext3, reiserfs, JFS, and XFS. See IBM's
developerWorks site for Daniel's articles: http://www.ibm.com/developerworks/linux/. You may
also be interested by Derek Vadala's Managing RAID on Linux (O'Reilly).

[3] As we discussed in Chapter 1, embedded Linux systems large enough to house actual physical hard disks have the
equivalent processing power and RAM resources to deal with such storage.

For a workstation- and server-oriented discussion of filesystems, see Chapter 6 of Running Linux.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Using an NFS-Mounted Root Filesystem to Write a
Filesystem Image to Flash

Though we will discuss the setup and configuration of the NFS server on the host for providing a
root filesystem to a target in detail in Chapter 9, let's take a look at how this configuration can be
useful at this stage.

The use of an NFS-mounted root filesystem during early development stages simplifies the
development process by allowing quick modification of the files used by the target. Later, the
target needs to have a filesystem stored in its flash in order to be self-hosting. Though some
bootloaders can be used to copy images to flash, it is also possible to use the MTD utilities
running on the target to copy files available on the NFS-mounted root filesystem to flash. To do
so, copy the designated filesystem image to the directory containing the NFS-mounted target root
filesystem, boot the target, and use MTD commands on the target to copy the filesystem image to
flash.

To copy an initial RAM disk image to your target's flash, for example, first configure your target to
mount its root filesystem from a directory exported by your host using NFS. On your host, copy
the filesystem image to the directory exported to your target. Though the filesystem image is not
physically on your target, it will be visible on its root filesystem once the kernel mounts it using
NFS at startup. Now, boot your target and use the MTD utilities on your target to copy the
filesystem image from the NFS-mounted root filesystem to the appropriate flash device entry in
your target's /dev directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 CRAMFS

CRAMFS was written by Linus Torvalds as a filesystem with a bare minimum feature set. It is a
very simple, and sometimes simplistic, compressed and read-only filesystem aimed at embedded
systems. Apart from the characteristics summarized in Table 8-1, CRAMFS has the following
limitations:

The maximum size a file can have is 16 MB.

There are no current (.) or parent (..) directory entries.

The UID field for files is 16 bits wide and the GID field is 8 bits wide. Normal filesystems
usually support either 16- or 32-bit UIDs and GIDs. On CRAMFS, GIDs are truncated to the
lower 8 bits. In other words, the maximum GID usable in a root filesystem built on CRAMFS
is 255.[4]

[4] See Chapter 5 in Running Linux for a discussion about UIDs and GIDs.

All file timestamps are set to epoch (00:00:00 GMT, January 1, 1970). The timestamps may
be updated at runtime, but the updated values will last only as long as the inode is cached
in memory. Once the file is reloaded, its timestamp will revert to epoch.

CRAMFS images can be read only by kernels using 4096-byte page sizes (The value of
PAGE_CACHE_SIZE must be 4096).

All files, whether they are linked or not, have a link count[5] of 1. Even when multiple
filesystem entries point to the same file, that file has a link count of only 1. This is fine for
most operations, however, since no files can actually be deleted from CRAMFS.

[5] As in other Unix systems, named links can be created toward files with most Linux filesystems. Typically,
filesystems maintain a count of the number of links toward a file, and when this count reaches 0 the file is
deleted.

The truncated GIDs are not problematic if your target's root filesystem does not contain a group
with a GID above 255. If your target is a single-user system, you don't need to worry about this
limitation. If your system must support a multiuser environment, make sure the GIDs of all files
and directories are below 255. Otherwise, any GID above 255 will wrap around to a number below
255 and, possibly, create a security risk. If you absolutely need a filesystem that can support at
least 16-bit GIDs, you may want to consider using a disk filesystem over a RAM disk. It provides
compression on the storage media, like CRAMFS, and also allows read and write access, instead
of read-only access in the case of CRAMFS.

In addition to CRAMFS's limitations, the tools provided for creating CRAMFS filesystem images
used to be subject to the host's byte ordering. Hence, you needed to use a host that had the
same byte ordering as your target to create a CRAMFS image. The only way to bypass this
limitation was to follow the technique I describe in Section 8.2. In essence, you had to mount the
target's root filesystem on NFS, create the CRAMFS image for the target on the NFS-mounted
filesystem, and write the created CRAMFS image to flash. Though, at the time of this writing, this
limitation still applies to the CRAMFS creation tools found in the kernel sources, there is a patch
that can be applied to the latest version of the CRAMFS tools to obtain filesystem creation tools
that are independent of the host's byte ordering. The latest CRAMFS tools package is found at
http://sourceforge.net/projects/cramfs/, and the byte swapping patch is in the "Patches" section of
the site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your system can function with CRAMFS's limitations, it is probably a serious candidate for your
project. If you are interested in CRAMFS but chaff at its limitations, you may want to ask around
for modified versions of CRAMFS. As the host byte ordering problem mentioned above shows,
there are people who have modified CRAMFS to bypass some of its limitations. Some reports on
the linuxppc-embedded mailing list mentioned in Chapter 3, for example, suggest that some
people have modified CRAMFS to avoid the page size issues. Although such modifications are
not part of the CRAMFS code found from the mainstream kernel sources, you may find them
useful. Have a look at the "Patches" section of the site provided above for a list of commonly
available CRAMFS patches.

To create a CRAMFS image of your root filesystem, you first need to create and install the
CRAMFS tools, cramfsck and mkcramfs. Both of these utilities are part of the package distributed
by the project site and are found in the kernel's sources in the scripts/cramfs directory. To build
the utilities from the kernel's sources, move to the scripts/cramfs directory and issue the make
command:

$ cd ${PRJROOT}/kernel/linux-2.4.18/scripts/cramfs
$ make
Now, copy the tools to an appropriate directory:

$ cp cramfsck mkcramfs ${PREFIX}/bin/
You can now create a CRAMFS image of your target's root filesystem:

$ cd ${PRJROOT}
$ mkcramfs rootfs/ images/cramfs.img
 bin
 boot
 dev
 etc
 lib
 linuxrc
 proc
 sbin
 tmp
 usr
'bin':
 addgroup
...
'boot':
 boot.b
...
'sbin':
 chroot
Directory data: 6484 bytes
166.67% (+15 bytes) addgroup
-31.46% (-2196 bytes) allinone
-40.27% (-240 bytes) arch
185.71% (+13 bytes) ash
...
-49.60% (-3700 bytes) wall
-49.54% (-695 bytes) include
Everything: 3560 kilobytes
Super block: 76 bytes
CRC: f18594b6
warning: gids truncated to 8 bits. (This may be a security concern.)

In this case, rootfs/ contains 7840 KB while the CRAMFS image's size is 3560 KB, a compression
ratio of approximately 50%. This ratio is consistent with CRAMFS's typical yields.

With the filesystem image ready, we can now write it to our storage device:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ su -m
Password:
cat rootfs/cramfs.img > /dev/mtd4
exit
Of course the commands above assume that the storage device is accessible on the host. If that
is not the case, use an NFS-mounted root filesystem first, as I describe in Section 8.2. To verify
the content of a CRAMFS filesystem, use the cramfsck utility built earlier.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 JFFS2

I have already described JFFS2's features in Chapter 3. One caveat I have not covered yet is
JFFS2's behavior when full. Because of its architecture, JFFS2 implements garbage collection on
MTD blocks. This scheme works fine in most cases. When the filesystem approaches its limits,
however, JFFS2 spends an increasing amount of time garbage collecting. Furthermore, as the
filesystem reaches its limits, the system is unable to truncate or move files and the access to files
is slowed down. If you are using JFFS2, make sure your application's data does not grow to fill
the entire filesystem. In other words, make sure your applications check for available filesystem
space before writing to it in order to avoid severe slowdown and system crashes. Also, try running
benchmarks on your target to determine the threshold at which JFFS2 starts misbehaving.

With that in mind, let us now concentrate on the creation and installation of a JFFS2 filesystem
image. Mainly, we will use the mkfs.jffs2 utility installed in the previous chapter as part of the MTD
utilities installation.

The creation of a JFFS2 image is fairly simple:

$ cd ${PRJROOT}
$ mkfs.jffs2 -r rootfs/ -o images/rootfs-jffs2.img
We use the -r option to specify the location of the directory containing the root filesystem, and the
-o option to specify the name of the output file where the filesystem image should be stored. In
addition to these options, we could use -l or -b to create little endian or big endian images,
respectively. The JFFS2 compression ratio is much smaller than CRAMFS. For a root filesystem
containing 7840 KB, for example, the resulting JFFS2 image is 6850 KB in size. The compression
ratio is a little above 10%.

Once you create the JFFS2 image, you can write it to its designated MTD device. If this device is
accessible on the host, you can carry out the appropriate commands directly on the host.
Otherwise, follow the instructions in Section 8.2: boot your target with an NFS-mounted root
filesystem, place the JFFS2 image on that filesystem, and issue the commands on the target to
write the image to the designated MTD device. Regardless of your setup, you first need to erase
the MTD device where the image will be placed:

eraseall /dev/mtd5
Erased 8192 Kibyte @ 0 -- 100% complete.

Obviously, the space available on the MTD storage device must be equal to or larger than the
JFFS2 image you are placing on it. With the MTD device erased, copy the JFFS2 image to the
MTD partition:

cat images/rootfs-jffs2.img > /dev/mtd5
Now, mount the copied filesystem to take a look at it:

mount -t jffs2 /dev/mtdblock5 /mnt
mount
...
/dev/mtdblock5 on /mnt type jffs2 (rw)
ls mnt
bin etc linuxrc sbin usr
dev lib proc tmp var
umount mnt
Unlike disk filesystems, JFFS2 cannot be mounted on loopback using a mount -o loop ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike disk filesystems, JFFS2 cannot be mounted on loopback using a mount -o loop ...
command to view its content. Instead, it must be mounted from a real MTD device as done
above. If you have no real MTD device on your host, such as CFI flash, you could use the virtual
memory MTD device presented in Chapter 3. You could also use the jffs2reader command
introduced in the previous chapter to view the image's content.

If your target had previously been using an NFS-mounted root filesystem, you are now ready to
boot it using the JFFS2 filesystem as its root filesystem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Disk Filesystem over NFTL

We have already discussed the installation and use of NFTL with DOC devices in the previous
chapter. We are now ready to discuss the use of a disk filesystem over the block device emulated
by NFTL. The most widely used disk filesystem with NFTL is ext2. We will, therefore, concentrate
on discussing that particular case. Note, however, that ext2 over NFTL does not provide power
down reliability. For that, you should use a journalling filesystem, such as ext3, XFS, JFS, or
reiserfs, with NFTL. The instructions that follow can be easily modified for any of the existing disk
filesystems, including journalling filesystems.

First, create a filesystem on the designated NFTL partition for the selected filesystem type:

mke2fs /dev/nftla1
mke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
8160 inodes, 32574 blocks
1628 blocks (5.00%) reserved for the super user
First data block=1
4 block groups
8192 blocks per group, 8192 fragments per group
2040 inodes per group
Superblock backups stored on blocks:
 8193, 24577

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

Now, mount the partition and copy the root filesystem to it:

mkdir /mnt/doc
mount -t ext2 /dev/nftla1 /mnt/doc
cp -a rootfs/* /mnt/doc
Here, I assume you are issuing these commands from your project's ${PRJROOT} directory. I
also assume that the DOC device is accessible on your host as /dev/nftla, and that you want to
create an ext2 filesystem on the first partition of that device. If the DOC device is not accessible
on your host, use an NFS-mounted root filesystem as I describe in Section 8.2 to copy the content
of the root filesystem onto your DOC device.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6 Disk Filesystem over RAM Disk

RAM disks, as their name indicates, live in RAM and act like block devices. The kernel supports
having many RAM disks active in the same time. Because they act like block devices, any disk
filesystem can be used with them. Since their content lasts only as long as the system isn't
rebooted, RAM disks are usually populated using compressed images of disk filesystems, such
as ext2, known as compressed RAM disk images. One instance where the use of such
compressed RAM disk images is particularly attractive for embedded Linux systems is during
system initialization. Mainly, the kernel is capable of extracting an initial RAM disk (initrd) image
from a storage device for use as its root filesystem. At startup, the kernel verifies whether its boot
options indicate the presence of an initird. If so, it extracts the filesystem image, whether it be
compressed or not, from the designated storage media into a RAM disk, and mounts it as its root
filesystem. The initrd mechanism is, in fact, the simplest method to provide a kernel with its root
filesystem. In this section, we will discuss the creation of a compressed RAM disk image for use
as an initrd. I will explain how this image can actually be used as an initrd in Chapter 9.

For our purposes, we will create an ext2-based RAM disk image for use in our target. Although
ext2 is the filesystem most commonly used with RAM disks, other disk filesystems can also be
used, as I hinted to above. Some developers, for instance, report using CRAMFS instead.

Note that although we are creating a filesystem image for use on a RAM disk in the following
procedures, all the operations are carried out on your host's disk. Hence, none of the following
steps involve using an actual RAM disk on the host.

First, create a blank filesystem image for the root filesystem:

$ cd ${PRJROOT}
$ mkdir tmp/initrd
$ dd if=/dev/zero of=images/initrd.img bs=1k count=8192
8192+0 records in
8192+0 records out

The dd command creates a 8192 KB filesystem image and initializes it using /dev/zero. By
initializing the filesystem in this way, we will achieve a maximum compression ratio for the unused
portions of the filesystem later when we use gzip to compress the entire image. In comparison, if
we were to reuse an existing image of the same size as the one we need, such as an image
created previously following this section's instructions, instead of using the dd command as
shown above, the image's compression would yield a lower compression ratio given that it already
contains non-uniform data. Practically, this means that you should never try updating an existing
filesystem image. Instead, always create a fresh filesystem image using your target's updated root
filesystem directory, ${PRJROOT}/rootfs.

With the filesystem image initialized, create a filesystem on it and mount it:

$ su -m
Password:
/sbin/mke2fs -F -v -m0 images/initrd.img
mke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
2048 inodes, 8192 blocks
0 blocks (0.00%) reserved for the super user
First data block=1
1 block group
8192 blocks per group, 8192 fragments per group
2048 inodes per group

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing inode tables: done
Writing superblocks and filesystem accounting information: done
mount -o loop images/initrd.img tmp/initrd
We use the -F option with mke2fs to force it to run on a file. Otherwise, mke2fs complains that
images/initrd.img is not a block device. The -v option specifies that the command should be
verbose, and the -m0 option specifies that no blocks should be reserved for the super user on the
filesystem. Whereas reserving blocks for the super user makes sense for a filesystem created for
use in a workstation or server, it isn't very useful in embedded systems, since they are usually
built as single-user systems.

Now, copy the root filesystem to the RAM disk and unmount it:

cp -av rootfs/* tmp/initrd
rootfs/bin -> tmp/initrd/bin
rootfs/bin/busybox -> tmp/initrd/bin/busybox
rootfs/bin/ash -> tmp/initrd/bin/ash
rootfs/bin/cat -> tmp/initrd/bin/cat
rootfs/bin/chgrp -> tmp/initrd/bin/chgrp
rootfs/bin/chmod -> tmp/initrd/bin/chmod
...
umount tmp/initrd
exit
After issuing the first command, you will see the complete list of all the files in your root filesystem
with their complete path as shown in the example. The images/initrd.img file now contains the
complete root filesystem for your target. The final step is to compress this filesystem to obtain a
compressed RAM disk:

$ gzip -9 < images/initrd.img > images/initrd.bin
$ ls -al images/initrd*
-rw-rw-r-- 1 karim karim 3101646 Aug 16 14:47 images/initrd.bin
-rw-rw-r-- 1 karim karim 8388608 Aug 16 14:46 images/initrd.img

The filesystem is compressed using the gzip command. The -9 option tells the command to use
the highest compression algorithm available. In this case, the compression ratio is above 60%,
which is superior to both CRAMFS and JFFS2. This gain is, however, subject to the caveat I
mentioned earlier in Section 8.1 regarding the fact that RAM disks live in RAM.

You can place the RAM disk image created here, images/initrd.bin, on the appropriate device on
your target and configure your bootloader accordingly. As I said earlier, we will discuss the use of
RAM disks as initrds in Chapter 9.

Init RAMFS
At the time of this writing, though initrds are still commonly used, the initrd mechanism
is increasingly showing its age, and kernel developers intend to replace it in the 2.5
series with init RAMFS (initramfs). In the future, each kernel is likely to have an
initramfs image that would contain much of the initialization code currently hardcoded
in the kernel. In that case, the definitive root filesystem would be mounted by the last
procedure running on the initramfs using the pivot_root() system call once
initialization is complete. Until initramfs becomes ready for mainstream use, initrds
remain the standard way for providing a kernel with a root filesystem at boot time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.7 Mounting Directories on TMPFS

TMPFS is a virtual memory-based filesystem that can grow and shrink according to its content.
Although its content is not saved across reboots, it is quite useful for storing temporary files.
Hence, instead of mounting all the directories from a single filesystem, you can choose to mount
directories that do not require permanent storage, such as /tmp, on TMPFS. Because content
stored on TMPFS is not saved across reboots, however, essential directories such as /usr, /etc,
or /bin cannot be stored on TMPFS. To use TMPFS, enable the "Virtual memory file system
support (former shm fs)" item in the "File systems" submenu in the kernel configuration menu.

With kernel support for TMPFS enabled, you can mount a 4 MB TMPFS filesystem on /tmp, for
example:

mount -t tmpfs none /tmp -o size=4m
Alternatively, you can add a line in your /etc/fstab file and modify your /etc/init.d/rcS file to mount
TMPFS at boot time. If you do not provide a size limit, the filesystem will grow according to its
content.

In contrast with most other mount commands, TMPFS does not require a device or file to be
mounted, hence the use of none as the device. The name of the device for TMPFS is actually
ignored by mount, and replacing none by any other name would have no effect on the command.

If you would like more information regarding TMPFS, take a look at part three of the IBM
developerWorks filesystem series mentioned earlier, Using the virtual memory (VM) filesystem
and bind mounts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.8 Live Updates

As we saw earlier in this chapter, no filesystem can be replaced in its entirety while being
mounted from the storage media where it is being stored. Hence, we need to look for ways to
update a filesystem's content while it is mounted. There are quite a few ways to do this, each with
their own advantages and disadvantages. In this section we will discuss three such methods, the
rsync utility, package management tools, and ad-hoc scripts.

8.8.1 The rsync Utility

rsync is a remote updating utility that allows you to synchronize a local directory tree with a
remote server. It relies on the rsync algorithm to transfer only the differences between the local
and remote files. It can preserve file permissions, file ownership, symbolic links, access times,
and device entries. rsync can use either rsh or ssh to communicate with the remote server. Given
its features, rsync is a good candidate for updating network-enabled embedded systems. rsync is
available from its project web site, along documentation and a mailing list, at
http://samba.anu.edu.au/rsync/. In addition to the documentation available from the project's site,
there is a very good introductory tutorial by Michael Holve available at
http://everythinglinux.org/rsync/.

To use rsync, you must have the rsync daemon running on a server and an rsync client running in
the embedded system. I will not cover the installation of an rsync server nor the detailed use of
the rsync client, since they are already well covered by the tutorial mentioned earlier and the rest
of the rsync documentation. I will, nevertheless, explain how to cross-compile, and install rsync for
use on your target.

To begin, download and extract a copy of the rsync package to your ${PRJROOT}/sysapps
directory. For my UI module, for example, I used rsync 2.5.6. With the package extracted, move
to its directory for the rest of the manipulations:

$ cd ${PRJROOT}/sysapps/rsync-2.5.6/
Now, configure and compile the package:

$ CC=arm-linux-gcc CPPFLAGS="-DHAVE_GETTIMEOFDAY_TZ=1" ./configure \
> --host=$TARGET --prefix=${TARGET_PREFIX}
$ make
Replace arm-linux-gcc with arm-uclibc-gcc to compile against uClibc instead of glibc. Here we
must set CPPFLAGS to define HAVE_GETTIMEOFDAY_TZ to 1, otherwise, the compilation fails
because the configure script is unable to correctly determine the number of arguments used for
gettimeofday() on the target.

With the compilation complete, install the rsync binary on your target's root filesystem and strip it:

$ cp rsync ${PRJROOT}/rootfs/bin
$ arm-linux-strip ${PRJROOT}/rootfs/bin/rsync
The stripped binary is 185 KB in size when dynamically linked with either uClibc or glibc, 270 KB
when statically linked with uClibc, and 655 KB when statically linked with glibc.

The same binary can be used both on the command line and as a daemon. The - -daemon option
instructs rsync to run as a daemon. In our case, we will be using rsync on the command line only.
To use rsync, you need to have either rsh or ssh installed on your target. rsh is available as part
of the netkit-rsh package from ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/. ssh is available as
part of the OpenSSH package, which we will discuss in depth in Chapter 10. Though that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

part of the OpenSSH package, which we will discuss in depth in Chapter 10. Though that
discussion concentrates on the use of the SSH daemon generated by OpenSSH (sshd), the SSH
client (ssh) is also generated during the compilation of the OpenSSH package. In the following, I
will assume that you are using ssh, not rsh, since it provides a secure transfer channel. The
downside to using ssh, however, is that the dynamically linked and stripped SSH client is above
1.1 MB in size, and is even larger when linked statically. rsh, on the other hand, is only 8 KB when
dynamically linked and stripped.

Once rsync is installed on your target, you can use a command such as the following on your
target to update its root filesystem:

rsync -e "ssh -l root" -r -l -p -t -D -v --progress \
> 192.168.172.50:/home/karim/control-project/user-interface/rootfs/* /
root@192.168.172.50's password:
receiving file list ... done
bin/
dev/
etc/
lib/
sbin/
tmp/
usr/bin/
usr/sbin/
bin/busybox
750756 (100%)
bin/tinylogin
39528 (100%)
etc/inittab
377 (100%)
etc/profile
58 (100%)
lib/ld-2.2.1.so
111160 (100%)
lib/libc-2.2.1.so
1242208 (100%)
 ...
sbin/nftl_format
8288 (100%)
sbin/nftldump
7308 (100%)
sbin/unlock
3648 (100%)
bin/
dev/
etc/
lib/
sbin/
wrote 32540 bytes read 2144597 bytes 150147.38 bytes/sec
total size is 3478029 speedup is 1.60

This command copies the content of my UI module project workspace rootfs directory from my
host, whose IP address is 192.168.172.50, to my target's root directory. For this command to run
successfully, my host must be running both sshd and the rsync daemon.

The options you need are:

-e

Passes to rsync the name of the application to use to connect to the remote server. (In this
case, we use ssh -l root to connect as root to the server. You could replace root with
whichever username is most appropriate. If no username is provided, ssh tries to connect
using the same username as the session's owner.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-r

Recursively copies directories.

-l

Preserves symbolic links.

-p

Preserves file permissions.

-t

Preserves timestamps.

-D

Preserves device nodes.

-v

Provides verbose output.

--progress

Reports transfer progress.

While running, rsync provides a list of each file or directory copied, and maintains a counter
displaying the percentage of the transfer already completed. When done, rsync will have
replicated the remote directory locally, and the target's root filesystem will be synchronized with
the up-to-date directory on the server.

If you would like to check which files would be updated, without carrying out the actual update,
you can use the -n option to do a "dry run" of rsync:

rsync -e "ssh -l root" -r -l -p -t -D -v --progress -n \
> 192.168.172.50:/home/karim/control-project/user-interface/rootfs/* /
root@192.168.172.50's password:
receiving file list ... done
bin/busybox
bin/tinylogin
etc/inittab
etc/profile
lib/ld-2.2.1.so
lib/libc-2.2.1.so
 ...
sbin/nftl_format
sbin/nftldump
sbin/unlock
wrote 176 bytes read 5198 bytes 716.53 bytes/sec
total size is 3478029 speedup is 647.20

For more information on the use of rsync, both as a client and a server, have a look at the
command's manpage and the documentation available from the project's web site.

8.8.2 Package Management Tools

Updating simultaneously all the software packages that make up a root filesystem, as we have
done in the previous section using rsync, is not always possible or desirable. Sometimes, the best

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

done in the previous section using rsync, is not always possible or desirable. Sometimes, the best
approach is to upgrade each package separately using a package management system such as
those commonly used in workstation and server distributions. If you are using Linux on your
workstation, for example, you are probably already familiar with one of the two main package
management systems used with Linux, the RPM Package Manager (RPM) or the Debian package
(dpkg), whichever your distribution is based on. Because of these systems' good track records at
helping users and system administrators keep their systems up to date and in perfect working
condition, it may be tempting to try to cross-compile the tools that power these systems for use in
an embedded system. Both systems are, however, demanding in terms of system resources, and
are not well adapted for direct use in embedded systems.

Fortunately, there are tools aimed at embedded systems that can deal with packages in a way
that enables us to obtain much of the functionality provided by more powerful packaging tools
without requiring as much system resources. Two such tools are BusyBox's dpkg command and
the Itsy Package Management System (iPKG). The dpkg BusyBox command allows us to install
dpkg packages in an embedded system. Much like other BusyBox commands, it can be optionally
configured as part of the busybox binary. iPKG is the package management system used by the
Familiar distribution I mentioned earlier in this book. It is available from its project web site at
http://www.handhelds.org/z/wiki/iPKG, along with usage documentation. iPKG relies on its own
package format, but can also handle dpkg packages.

Instructions on how to build iPKG packages are available at
http://www.handhelds.org/z/wiki/BuildingIpkgs. For instructions on how to build dpkg packages,
have a look at the Debian New Maintainers' Guide and the Dpkg Internals Manual both available
from http://www.debian.org/doc/devel-manuals. The use of the BusyBox dpkg command is
explained in the BusyBox documentation, and the use of the ipkg tool part of the iPKG package
management system is explained on the project's web site.

8.8.3 Ad Hoc Scripts

If, for some reason, the tools discussed earlier are not adapted to the task of updating an
embedded system's root filesystem, we can still update it using more basic file-handling utilities.
In essence, we can either copy each file using the cp command or patch sets of files using the
patch command, or use a combination of both. Either way, we need to have a method to package
the modifications on the host, and a method to apply the modification packages on the target. The
simplest way to create and apply modification packages is to use shell scripts.

diff and patch
Although the diff and patch pair can be used to patch entire directory hierarchies, these
tools deal with symbolic links as if they were ordinary files and end up copying the
content of the linked file instead of creating a symbolic link. Hence, the patch created
by diff -aurN oldrootfs/ rootfs/ is useless. Plans for modifying the utilities to deal
appropriately with symbolic links are part of both packages' future projects.

In creating such scripts, we need to make sure that the dependencies between files are
respected. If, for example, we are updating a library, we must make sure that the binaries on the
filesystem that depend on that library will still be functional with the new library version. For
example, the binary format used by uClibc has changed between Versions 0.9.14 and 0.9.15.
Hence, any application linked with uClibc Version 0.9.14 and earlier must be updated if uClibc is
updated to 0.9.15 or later. Although such changes are infrequent, they must be carefully
considered. In general, any update involving libraries must be carefully carried out to avoid
rendering the system unusable. For further information on the correct way to update libraries, see
the "Upgrading Libraries" subsection of Chapter 7 in Running Linux.

8.8.3.1 Installing the patch utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first step in creating update scripts is having the appropriate tools available both on the host
and the target. Since diff and patch are most likely already installed on your host, let's see how
patch can be installed for the target.

To install patch on your target's root filesystem, start by downloading the GNU patch utility from
the GNU project's FTP site at ftp://ftp.gnu.org/gnu/patch/. For my UI module, for example, I used
patch 2.5.4. With the package downloaded, extract it in your ${PRJROOT}/sysapps directory.

Now, create a build directory for the utility:

$ cd ${PRJROOT}/sysapps
$ mkdir build-patch
$ cd build-patch
Configure, build, and install the package:

$ CC=arm-uclibc-gcc ../patch-2.5.4/configure --host=$TARGET \
> --prefix=${TARGET_PREFIX}
$ make LDFLAGS="-static"
$ make install
Notice that we are using uClibc and are linking the command statically. We could have also used
glibc or diet libc. Regardless of the library being used, linking patch statically ensures that it will
not fail to run on your target during an update because of a missing or an incomplete library
installation.

The patch utility has been installed in ${TARGET_PREFIX}/bin. You can copy it from that
directory to your root filesystem's /bin directory for use on your target. Once in your target's root
filesystem, use the appropriate strip command to reduce the size of the utility. For example, here
is how I install patch for my UI module:

$ cp ${TARGET_PREFIX}/bin/patch ${PRJROOT}/rootfs/bin
$ cd ${PRJROOT}/rootfs/bin
$ ls -al patch
-rwxrwxr-x 1 karim karim 252094 Sep 5 16:23 patch
$ arm-linux-strip patch
$ ls -al patch
-rwxrwxr-x 1 karim karim 113916 Sep 5 16:23 patch

8.8.3.2 Scripts for performing updates

Using the target update guidelines discussed earlier, here is a basic shell script that can be used
on the host to create a package for updating the target's root filesystem:

#!/bin/sh

File: createupdate
Parameter $1: directory containing original root filesystem
Parameter $2: directory containing updated root filesystem
Parameter $3: directory where patches and updates are to be stored
Parameter $4: updated uClibc library version

Diff the /etc directories
diff -urN $1/etc $2/etc > $3/etc.diff

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

diff -urN $1/etc $2/etc > $3/etc.diff

Copy BusyBox and TinyLogin
cp $2/bin/busybox $2/bin/tinylogin $3/

Copy uClibc components
cp $2/lib/*$4* $3

The script makes a few assumptions. First, it assumes that neither /etc nor any of its
subdirectories contain symbolic links. Though this is true in most cases, we can still exclude any
such symbolic links explicitly using the -x or -X options. Also, the script updates BusyBox,
TinyLogin, and uClibc. You need to add the appropriate cp and diff commands for your setup.

The script can be used as follows:

$ cd ${PRJROOT}
$ mkdir tmp/rootfsupdate
$ createupdate oldrootfs/ rootfs/ tmp/rootfsupdate/ 0.9.14
In this case, oldrootfs contains the root filesystem as found on the target, rootfs contains the latest
version of the root filesystem, tmp/rootfsupdate contains the files and patches used to update the
target, and the new uClibc version is 0.9.14.

The following script updates the target using the update directory created above:

#!/bin/sh

File: applyupdate
Parameter $1: absolute path of dir containing patches and updates
Parameter $2: old uClibc version
Parameter $3: new uClibc version

Patch /etc
patch -p1 < $1/etc.diff

Copy BusyBox and TinyLogin
cp $1/busybox $1/tinylogin /bin/

Copy updated uClibc components
cp $1/*$3* /lib

Update uClibc symbolic links
ln -sf libuClibc-$3.so /lib/libc.so.0
for file in ld-uClibc libcrypt libdl libm libpthread libresolv libutil
do
ln -sf $file-$3.so /lib/$file.so.0
done

Remove old uClibc components
rm -rf /lib/*$2*

This script is a little longer than the script used to create the update. The added complexity is due
to the care taken in replacing the C library components. Notice that we use ln -sf instead of
deleting the links and then using ln -s. This is very important because deleting the links outright
would render the system unusable. You would then have to shut down the target and reprogram
its storage device using the appropriate means.

To run the script, copy the rootfsupdate directory to your target's /tmp directory and run the script:

applyupdate /tmp/rootfsupdate 0.9.13 0.9.14
You can run the update script on your host to test it before using it on your actual target. Here are
the steps involved:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. From the ${PRJROOT} directory, copy the old root filesystem (possibly oldrootfs) to tmp.

2. Modify the script to remove absolute references to /. Replace, for example, references to
/etc with references to etc.

3. Run the script on the copied filesystem.

4. Verify manually that everything has been updated adequately.

Copying an Entire Directory Tree Without GNU cp
When building an embedded Linux system, you will often need to copy entire
directories from one location to another as efficiently as possible while keeping files,
directories, and symbolic links intact. I have already done this a few times in the course
of my earlier explanations and have repeatedly used the cp -a command to accomplish
this. Although the -a option has been part of GNU cp for some time, it may not be
installed on your system if you are not using Linux. If, for some reason, GNU cp is not
available on your system, you can still obtain the same result as cp -a using a
command that is a combination of cd and tar. Let's take a closer look at this command
and how it works. This is how the command looks in its generalized form:

$ (cd SRC_DIR && tar cf - .) | (cd DEST_DIR && tar xvf -)
This command has two parts. The one on the left of the | character changes directories
to SRC_DIR and initiates a tar in that directory. Specifically, tar is told to create a tar
archive of the content of the directory from which it runs and to dump the resulting
archive to the standard output. In simple uses of tar for archiving, the command is
followed by a greater-than sign (>) and the name of either a tape device or a disk file.
Here we aren't actually saving the output; we're just using tar as a convenient way to
put the files into a stream and put it elsewhere.

On Unix command shells, the | is used to create a pipe between the output of the
command on the left and the input of the command on the right. Hence, the archive
dumped on the standard output by the command on the left is fed as the standard input
for the command on the right. In turn, the command on the right of | changes to the
DEST_DIR and initiates a tar in that directory. Contrary to the first tar, this one extracts
the content found on its standard input into the directory from which it is executed.

The net effect of this command is that the files and directories found in the SRC_DIR
directory are copied as-is to the DEST_DIR directory. The content of DEST_DIR is
thereafter identical to that of SRC_DIR.

Though this command is of little use if your system already has GNU cp, you may find
it helpful on systems that don't have GNU cp. If you are using a standard Linux
workstation or server distribution, cp -a remains the better option for copying entire
directory trees.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Setting Up the Bootloader
Though the bootloader runs for a very short time during the system's startup and is mainly
responsible for loading the kernel, it is a very important system component. Setting up a
bootloader is, to some extent, a task common to all Linux systems. It is a special task,
nevertheless, for embedded Linux systems, because the bootloaders used in such systems are
either completely different from those used in common systems or, even when they are the same,
are configured and operated in very different ways.

Chapter 7 discussed the manipulation of embedded storage devices, and Chapter 8 explained
how to set up a root filesystem for use in an embedded target. We are now ready to set up the
bootloader along with the other components created earlier so we may obtain a bootable and
functional embedded system. Because hardware architectures differ greatly among each other
and because boards based on the same architecture differ greatly among themselves, the
selection, set up, and configuration of a bootloader depend largely on the hardware you are using.

There is a slew of bootloaders available for Linux, thousands upon thousands of embedded
boards, and many possible boot configurations for a same board. It is, therefore, inconceivable to
cover all the possible combinations within a single chapter. Nor is it possible to give an in-depth
discussion of the use of each of the bootloaders covered. Many existing bootloaders for Linux
either already have an entire book describing their use or need one to be written for them.

Also, the number and quality of bootloaders vary greatly between architectures. Some
architectures, such as the PPC and the x86, have well known, established bootloaders providing
support for a range of hardware. Other architectures have few or no standard bootloaders and
mainly rely on the use of bootloaders provided by the hardware manufacturer. If you are using a
bootloader provided by the manufacturer, make sure you have all the binaries and
documentation. If possible, obtain the source code too so you can reprogram your target freely.

This chapter will concentrate on the bootloader/boot setup combinations most commonly used in
embedded systems to load Linux. Although GRUB can be installed and used on hard disks, for
example, its most common use in embedded Linux systems is to load Linux from DOC devices.
Hence, the GRUB section will cover only GRUB's use to load Linux from DOC devices.

First, we start by looking at the plethora of embedded bootloaders available for use with Linux.
We then discuss how to set up and configure a server to provide BOOTP/DHCP and NFS
services for targets that use these services to obtain a kernel image and mount their root
filesystem, respectively. This is followed by in-depth discussions of the use of LILO with disk
devices, the use of GRUB with DOC devices, and the use of U-Boot.

At the end of this chapter, you will either have installed all the components we created earlier,
configured your target with the appropriate bootloader, and be ready to boot your system, or you
will know where to get the rest of the information you need to achieve this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 Bootloaders Galore

As I said above, many bootloaders can be used with Linux on various hardware. In this section, I
will introduce the most popular and most versatile open source bootloaders for each architecture.
Some architectures, such as the MIPS and the m68k, have no standard bootloaders at all. If your
target is based on an MIPS or m68k processor, refer to the documentation provided by the
manufacturer for instructions on how to set up and boot your hardware.

Also, some publications make a distinction between "bootloader" and "monitor." In those cases,
the bootloader is just the component that boots a device and launches the main software,
whereas a monitor provides, in addition to booting capabilities, a command-line interface that can
be used for debugging, reading/writing memory, flash reprogramming, configuring, etc. In this
chapter, I will refer to both types of software as "bootloaders," while explicitly mentioning a
bootloader's monitor capabilities when available.

In comparing bootloaders, keep in mind that the availability and extent of monitor capabilities are
important during development. Once development is over, however, these capabilities may
become a liability, because the priority is to ensure that the user cannot inadvertently enter the
monitor mode. Some bootloaders, such as U-Boot for example, can be reconfigured to allow or
disallow access to monitor features. Your production hardware may also be built to prevent
physical access to the serial port.

Table 9-1 presents the open source bootloaders that can be used with Linux and the
architectures they support. For each bootloader, the table also indicates whether the bootloader
provides monitor capabilities, and provides a short description of the bootloader. Use this table as
a starting point for identifying which bootloader is best for your embedded system.

Table 9-1. Linux-capable open source bootloaders and the architectures they support
 Architectures

Bootloader Monitor Description x86 ARM PowerPC MIPS SuperH m68k

LILO No The main disk bootloader
for Linux X

GRUB No GNU's successor to LILO X

ROLO No Loads Linux from ROM
without a BIOS X

Loadlin No Loads Linux from DOS X

Etherboot No
ROMable loader for
booting systems through
Ethernet cards

X

LinuxBIOS No Linux-based
BIOSreplacement X

Compaq's
bootldr Yes

Versatile loader mainly
intended for Compaq
iPAQ

 X

blob No Loader from the LART
hardware project X

PMON Yes Loader used in Agenda
VR3 X

sh-boot No Main loader of the
LinuxSH project X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

U-Boot Yes
Universal loader based
on PPCBoot and
ARMBoot

X X X

RedBoot Yes eCos-based loader X X X X X X

In addition to the above table, there are a few observations to be made regarding the various
bootloaders available for each architecture:

x86

There are two main bootloaders used for the x86: LILO and GRUB. LILO is the mainstream
bootloader for most x86 workstation and server distributions. On Red Hat's distribution,
however, GRUB has replaced LILO. There are other, less known bootloaders, such as Rolo
and EtherBoot, which you may be interested in using under certain circumstances.

As you can see, few x86 bootloaders currently provide monitor capabilities. The most
glaring limitation of x86 bootloaders is that most require an x86-based host for your
development. The Makefiles of LILO and GRUB, for example, are not built to allow cross-
compilation. Moreover, it is difficult to install either LILO or GRUB from a non-x86 host on
storage media designated for an x86 target. Hence, even if you carry out all your
development on a non-x86 host, you may need to use an x86 host to compile and install
the x86 bootloader you select.

ARM

Though U-Boot aims at becoming the standard ARM bootloader, there is no standard
bootloader for ARM-based systems at the time of this writing. There are, nevertheless, a
couple of ARM bootloaders as shown in Table 9-1, each supporting a different set of
hardware. There are also many other bootloaders that can be used to boot Linux on an
ARM system. Some of these bootloaders are outdated or haven't been updated for a long
time, others are particular to one type of board or are not available under an open source
license.

PowerPC

The main bootloader found in most PPC systems is U-Boot (formerly known as PPCBoot.)

MIPS

There is no standard bootloader for MIPS-based embedded Linux systems. Though PMON
may be useful as an initial codebase, you will most probably need to port it to your target
before using it. At the time of this writing, efforts are underway to add MIPS support to U-
Boot.

SuperH

Though sh-boot is the main bootloader for SH-based embedded Linux systems, you may
find other bootloaders, such as RedBoot, better adapted to your system.

M68k

Though RedBoot supports some m68k-based systems, there is no standard bootloader for
m68k-based embedded Linux systems.

Now that I've introduced the various bootloaders and outlined the bootloader support for each
architecture, let's take a closer look at each bootloader.

9.1.1 LILO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The LInux LOader (LILO) was introduced by Werner Almesberger very early in Linux's history.
Now, LILO is maintained by John Coffman and the latest releases are available from
http://brun.dyndns.org/pub/linux/lilo/. LILO is a very well documented bootloader. The LILO
package, for instance, includes a user manual and an internals manual. The LILO mini-HOWTO
available from the LDP completes this documentation by answering some of the most common
questions about LILO's use. In addition, Running Linux contains a "Using LILO" section in
Chapter 5.

9.1.2 GRUB

The GRand Unified Bootloader (GRUB) is the main bootloader for the GNU project. GRUB was
originally written by Erich Boleyn in the course of finding an appropriate bootloader for what would
later be known as GNU Mach. Eric's work was later picked up by Gordon Matzigkeit and Okuji
Yoshinori, who currently continue to maintain and develop GRUB. The GRUB project's web site is
located at http://www.gnu.org/software/grub/. There, you will find the GRUB manual, which
discusses the package's use extensively. One aspect of GRUB's capabilities you may find helpful
during development is its ability to boot over the network using TFTP, and BOOTP or DHCP.
Though GRUB's code can be retrieved using CVS, the latest stable releases are tar-gzipped and
made available for download through the project's web site.

9.1.3 ROLO

The ROmable LOader (ROLO) was written and is being maintained by Robert Kaiser from Sysgo
Gmbh. as part of Sysgo's ELinos distribution. ROLO can boot Linux directly from ROM without
requiring any BIOS. ROLO is available from ftp://ftp.elinos.com/pub/elinos/rolo/. Though the
package contains little documentation, Vipin Malik has written a thorough article on the use of
ROLO in an embedded system at http://www.embeddedlinuxworks.com/articles/rolo_guide.html.

9.1.4 loadlin

loadlin is a DOS utility to load Linux maintained by Hans Lermen at
http://elserv.ffm.fgan.de/~lermen/. Though you should avoid building your system in a way that
requires DOS to be loaded first, there are cases where such a utility can be very handy. One case
where it can be useful, for example, is if you want to use M-Systems's DOS tools to boot from a
DOC device. In that case, you can write an autoexec.bat file that uses the loadlin utility to load
Linux. As we will see below, however, you can boot Linux directly from a DOC device using
GRUB.

9.1.5 EtherBoot

Many NICs are shipped with a socket for inserting ROM chips. When present and properly
signed, these ROM chips are recognized as BIOS extensions and executed during startup.
EtherBoot uses this capability to support the booting of diskless systems through the network.
EtherBoot has been used in many environments, including X-terminals, routers, and clusters. It is
available with complete documentation from http://etherboot.sourceforge.net/. The web site
provides links to manufacturers who sell EPROMs preloaded with EtherBoot.

9.1.6 LinuxBIOS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LinuxBIOS is a complete BIOS replacement that boots Linux from ROM at startup. LinuxBIOS
was developed as part of clustering research conducted at the Los Alamos National Laboratory
and has gathered support from many hardware manufacturers. The LinuxBIOS package and
documentation are available at http://www.linuxbios.org/.

9.1.7 Compaq's bootldr

Though initially developed for the Compaq iPAQ only, Compaq's bootldr currently supports Intel's
Assabet and HP's Jornada 720. Though it is limited in the range of hardware it supports, bootldr
provides a very rich command set and is capable of loading kernels directly from JFFS2 MTD
partitions. Bootldr is part of the software collection maintained by http://www.handhelds.org/ and is
available for download from ftp://ftp.handhelds.org/bootldr/.

9.1.8 blob

blob was introduced as the bootloader for the LART hardware project.[1] Since its introduction,
blob has been ported to many other ARM-based systems, including Intel's Assabet and Brutus,
Shannon, and Nesa boards. Unlike ARMBoot and Compaq's bootldr, blob does not provide
monitor capabilities, though it can be used to reprogram the flash and can load kernels directly
from JFFS2 MTD partitions. blob is available from the LART web site along with documentation at
http://www.lart.tudelft.nl/lartware/blob/.

[1] See LART description in Appendix B.

9.1.9 PMON

The Prom Monitor (PMON) was written by Phil Bunce to support LSI LOGIC's MIPS boards. It is
distributed under a very simplistic license, which stipulates that PMON comes with no warranty
and that you are free to redistribute it without any restriction. Though Phil's PMON has not been
updated since 1999, it is still available at http://www.carmel.com/pmon/. Others have nevertheless
used PMON for more recent projects. It was ported to the now discontinued Agenda VR3 Linux
PDA by Bradely LaRonde. That version is available from the AGOS SourceForge workspace at
http://agos.sourceforge.net/ and information on its use is available from the Agenda Wiki site at
http://agendawiki.com/. It remains that there is no central authority or roadmap for PMON, and
few boards are actually supported. As I said earlier, you may find the PMON codebase a good
starting point, but you will most probably need to port it to your system to use it.

9.1.10 sh-Boot

sh-boot is developed as part of the Linux SH project on SourceForge. Unfortunately, sh-boot has
not been updated for a while, so you may need to evaluate its usability for your system. Also, sh-
boot is a simple bootloader and does not provide any monitor capabilities. The bootloader is
available using CVS through the Linux SH project site at http://linuxsh.sourceforge.net/.

9.1.11 U-Boot

Though there are quite a few other bootloaders, "Das U-Boot," the universal bootloader, is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Though there are quite a few other bootloaders, "Das U-Boot," the universal bootloader, is
arguably the richest, most flexible, and most actively developed open source bootloader available.
It is currently maintained by Wolfgang Denk of DENX Software Engineering, and is contributed to
by a wide range of developers. U-Boot is based on the PPCBoot and ARMBoot projects.
PPCBoot was itself based on 8xxrom sources, and ARMBoot was an ARM port of PPCBoot done
by Sysgo Gmbh. At the time of this writing, U-Boot supports around 100 different PPC-based
boards, more than a dozen ARM-based boards, and a handful of x86-based boards. U-Boot's
success in scaling to a wide range of hardware has prompted developers to continue porting it to
even more new boards and architectures.

Among other things, U-Boot is capable of booting a kernel through TFTP, from an IDE or SCSI
disk, and from a DOC. Also, it includes read-only support for JFFS2. Besides having an extensive
command set and quite a few capabilities, it is also fairly well documented. The README
included with the package provides an in-depth discussion of the use of U-Boot. The doc directory
in the package's source includes any extra instructions required for certain boards. In addition to
the instructions found in the package, Wolfgang wrote the DENX PPCBoot and Linux Guide,
available at http://www.denx.de/re/DPLG.html, which provides many practical examples of the use
of PPCBoot with Linux on a TQM8xxL board. Though the discussion assumes that you are using
PPCBoot and DENX's Embedded Linux Development Kit (ELDK) distribution,[2] the sections
relating to the use of PPCBoot apply with little or no changes to U-Boot, and are helpful
regardless of whether you use any distribution.

[2] The ELDK is an open source development and target distribution.

The U-Boot project workspace is located at http://sourceforge.net/projects/u-boot. The U-Boot
package is available from that site. If you intend to use U-Boot often, you will find it useful to
subscribe to the very active U-Boot users mailing list at that site. Though there is no on-site
documentation for U-Boot at the time of this writing, you can still rely on the documentation and
background provided by the two projects on which U-Boot is based, PPCBoot and ARMBoot.
PPCBoot's web site is located at http://ppcboot.sourceforge.net/, and ARMBoot's project web site
is located at http://armboot.sourceforge.net/. We will explore U-Boot's use later in this chapter.

9.1.12 RedBoot

RedBoot is supposed to be a next generation bootloader from Red Hat, replacing CygMon and
GDB stubs with a firmware supporting a very wide range of hardware. Although Red Hat has
stopped active development of eCos, the OS on which RedBoot is based, eCos has now been
relicensed under the GPL and continues to be maintained by some of the Red Hat core eCos
developers. eCos' future, and RedBoot's as well, is therefore in the hands of those developers.

Despite its dependency on eCos,[3] RedBoot remains a very powerful bootloader. It is, for
instance, the only open source bootloader that currently supports all the architectures presented
in depth in Chapter 3 and a wide range of boards based on these architectures. Also, the
RedBoot package is fairly well documented, including a RedBoot User's Guide that provides
actual examples of its use on more than a dozen different systems. RedBoot's web site is located
at http://sources.redhat.com/redboot/ and its sources are available with the rest of the eCos
sources using CVS. Lately, eCosCentric Ltd., the company formed by the core eCos developers
from Red Hat, has been providing CVS snapshots at http://www.ecoscentric.com/snapshots/.

[3] RedBoot is part of the eCos source code tree and requires some of the code provided by that OS to provide its own
services. Hence, RedBoot's development is tied to, but not entirely dependent on, eCos' development. Some platforms
supported by RedBoot, for example, aren't supported by eCos.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Server Setup for Network Boot

As we saw in Chapter 2, setting up a target for network boot is ideal during the early stages of
development, because you can gradually modify the kernel and the root filesystem without having to
update the target's storage devices every time you make a modification. Though not all bootloaders can
use this setup to boot, I recommend that you use such a setup whenever possible.

As I said earlier, the simplest way to boot your target from the network is to use BOOTP/DHCP, TFTP, and
NFS. BOOTP/DHCP is the standard way to provide a network host with basic boot information, including
the location of other servers such as TFTP and NFS. TFTP is the simplest network protocol for
downloading remote files. In the case of an embedded Linux system, it is used by the target to obtain a
kernel image from the TFTP server. Finally, NFS is the standard and simplest protocol for sharing entire
directory trees between a client and a server. In the case of an embedded Linux system, it is used by the
target to mount its root filesystem from the NFS server. NFS cannot be used for any earlier activity,
because it requires a booted Linux kernel to operate. Together, these three protocols provide a very
efficient host/target development setup.

To enable network booting of the target, you must set up the development host's network services so that
the target can access the components it needs. In particular, you need to set up a host to respond to
BOOTP/DHCP requests, provide a kernel using a TFTP server, and enable NFS mounts. The subsections
below discuss each issue separately.

9.2.1 Setting Up the DHCP Daemon

Unlike other network services, DHCP is not dependent on the internet super-server. Instead, the DHCP
daemon is a service of its own, and you need to start it manually. First, you need to make sure that the
DHCP server is installed on your system. Though you can download it from http://www.isc.org/, the DHCP
server is part of most mainstream distributions.

If you are using an RPM-based distribution, use the following command to check for the presence of the
DHCP daemon:

$ rpm -q dhcp
dhcp-2.0-5

In this case, DHCP 2.0-5 is already installed. If it is not already installed on your system, use the
appropriate tools for your distribution to install the DHCP server. Note that most distributions include two
DHCP packages, a client and a server. The package containing the client is usually called
dhcpc-VERSION. There is an additional "c" after "dhcp" to identify the client package.

To operate properly, the kernel on which the DHCP server runs has to be configured with the
CONFIG_PACKET and CONFIG_FILTER options. The kernels shipped by default in most distributions
almost always have these enabled. If you are in the habit of building your own kernels for your workstation,
as I often do, watch out for those options when configuring the kernel. If the kernel wasn't built properly, the
DHCP daemon will output the following message when it tries to start:

socket: Protocol not available - make sure CONFIG_PACKET and CONFIG_FILTER are
defined in your kernel configuration!
exiting.

With the package installed and the kernel properly configured, create or edit the /etc/dhcpd.conf file and
add an entry for your target. For example, here is the /etc/dhcpd.conf file for my control module:

subnet 192.168.172.0 netmask 255.255.255.0 {
 option routers 192.168.172.50;
 option subnet-mask 255.255.255.0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 option subnet-mask 255.255.255.0;

 host ctrl-mod {
 hardware ethernet 00:D0:93:00:05:E3;
 fixed-address 192.168.172.10;
 option host-name "ctrl-mod";
 next-server 192.168.172.50;
 filename "/home/karim/vmlinux-2.4.18.img";
 option root-path "/home/karim/ctrl-rootfs";
 }
}

Essentially, this entry states that the host and target are on the 192.168.172.0 network, that the TFTP
server is located at 192.168.172.50, and that the address allocated to the target when it issues its DHCP or
BOOTP request is 192.168.172.10. The hardware ethernet field uniquely identifies the target through
its MAC address, which is 00:D0:93:00:05:E3 for my control module. The fixed-address field tells the
DHCP server which IP address should be allocated to the designated MAC address. The option host-
name field gives the hostname to the target so that it can use it internally. The next-sever tells the target
where the TFTP server is located. The filename field is the filename[4] of the image that has to be loaded
by the target. According to RFC 2131, which specifies DHCP, the filename is limited to 128 bytes. Finally,
the option root-path field provides the path to the target's root filesystem on the NFS server. If your
target does not need to load its root filesystem from an NFS server, you can omit this last field. Because
the host is the only network link to the target in this case, option routers points to the host's address. If
the target was linked to an entire network with a real router, option routers should point to that
network's default router.

[4] For the example to fit in the printed page's width, I avoid using the complete /home/karim/control-project/control-module/... path.
Use the actual complete path for your own development.

The example configuration provided above should be easy to adapt to your own target. If you need more
information regarding the configuration of the DHCP server, have a look at the manpage for dhcpd.conf
and the sample configuration file installed by your distribution, if one is present.

Note that if you are using a version of the DHCP daemon later than 3.0b2pl11, such as the one shipped
with Red Hat 8.0, you will need to add the following line to your dhcpd.conf file:

ddns-update-style ad-hoc;

With the DHCP server configured for the target, you are almost ready to start the DHCP server. Before you
do so, however, you need to make sure the /var/state/dhcp/dhcpd.leases file exists. If it doesn't, create it
using the touch command. If the file isn't created, the DHCP daemon will refuse to start.

Finally, start the DHCP server. On distributions based on Red Hat, enter:

/etc/init.d/dhcpd start

9.2.2 Setting Up the TFTP Daemon

The first step in setting up the TFTP daemon is to make sure the TFTP package is installed. Though the
latest version of the TFTP daemon is available for download as part of the NetKit package at
ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/, TFTP was most likely already installed on your system as
part of your distribution or is available to be installed from your distribution's CDs.

If you are using an RPM-based distribution, use the following command to check for the presence of the
TFTP daemon:

$ rpm -q tftp
tftp-0.16-5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tftp-0.16-5

In this case, TFTP 0.16-5 is already installed. If it is not available on your system, install the TFTP package
using the appropriate tool for your distribution. Alternatively, if your system doesn't rely on a package
manager or if some components have been installed without a package manager, you can also check for
the presence of the actual TFTP daemon binary using the whereis command.

Once the package is installed, enable the TFTP service by modifying the appropriate internet super-server
configuration file. In brief, the internet super-server listens on designated ports on behalf of the various
network services. When a request for certain service is received, the super-server spawns the appropriate
daemon and hands it the request. Hence, only the minimal number of daemons run at all times. TFTP is
one of the daemons normally handled by the super-server.

To enable the TFTP service in a system based on the inetd super-server, edit /etc/inetd.conf, uncomment
the line for the TFTP service by removing the # character at the beginning, and send a SIGHUP signal to
the inetd process so that it rereads its configuration file. To enable the TFTP service in a system based on
the xinetd super-server, edit /etc/xinetd.d/tftp and comment the line containing disable = yes by adding
a # character at the beginning. As with inetd, you must send a SIGHUP to xinetd.

Finally, you must provide the TFTP server with a list of directories containing files that should be made
available to TFTP clients. In a system based on the inetd super-server, append the list of directories to the
TFTP line in /etc/inetd.conf. In a system based on the xinetd super-server, edit the /etc/xinetd.d/tftp file and
append the list of directories to the server_args = line. The default directory for TFTP is /tftpboot
may choose to modify this to match your setup. Whichever directory you choose, make sure its access
permissions include read and execute for the "other" permission.

For example, here is a TFTP line in /etc/inetd.conf for a host using the inetd super-server:

tftp dgram udp wait root /usr/sbin/tcpd in.tftpd /home/karim/

In this case, images are placed in the /home/karim directory, which has the following permissions:

$ ls -ld /home/karim
drwxr-xr-x 4 karim karim 4096 Aug 29 16:13 karim

Here is a modified /etc/xinetd.d/tftp file from a Red Hat-based installation providing the same functionality
for a host using the xinetd super-server:

service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = /home/karim
disable = yes
 per_source = 11
 cps = 100 2
}

Regardless of the super-server in use on a host, the TFTP service is usually disabled by default. Hence,
even if you use the default /tftpboot, you will need to modify the super-server's configuration files to enable
TFTP.

9.2.3 Mounting a Root Filesystem on an NFS Server

As I explained in Chapter 2, while a bootloader and kernel must be stored locally or retrieved to local
storage through one of the methods shown earlier, the target's kernel can mount its root filesystem from a
remote NFS server. To this end, the NFS server must be properly installed and configured. Chapter 6
showed how to build your target's root filesystem. Though Chapter 8 showed how to prepare this filesystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

showed how to build your target's root filesystem. Though Chapter 8 showed how to prepare this filesystem
for use in the target, the root filesystem we created in Chapter 6 does not need any special preparation for
use by the NFS server.

The NFS server daemon is available in two flavors: as a standalone user application or as a part of the
kernel. Besides being faster, the latter is also the standard way most distributions are configured. In
addition to the NFS server itself, you need to have the NFS utilities installed. Usually, there is an nfs-utils
package as part of your distribution. Use the following command to identify whether nfs-utils is installed:

$ rpm -q nfs-utils
nfs-utils-0.3.1-13

With the nfs-utils installed, you need to make sure that the appropriate configuration files are present and
that the corresponding services are started.

The main file we need to configure for the NFS server is /etc/exports. Entries in this file describe the
directories each host or set of hosts can access. As an example, here is the entry in my /etc/exports
control module:

/home/karim/ctrl-rootfs 192.168.172.10(rw,no_root_squash)

This entry states that the machine with address 192.168.172.10 has read and write (rw) access to the
/home/karim/ctrl-rootfs directory, which is the path to the root filesystem we built for the target in Chapter 6
In addition, the no_root_squash argument indicates that the server should allow the remote system to
access the directory with its root privileges. These are very powerful rights that we are granting to the
target. If we have total control over access to the device, as is the case in most development setups, there
is obviously no security risk. If, however, the target's location is less secure or if it is directly connected to
the Internet, for example, you may prefer to use the default root_squash instead. In that case, the target
will not be able to write to most of its own root filesystem, though it will still be able to read and write to all
directories and files that are readable and writable by anybody. In practical terms, however, the target's
operation will be very limited.

Because offering the NFS service also involves the risk of network abuse, it is often pertinent to use some
minimal protection mechanisms to avoid intrusions. One simple way to do this is to customize the
/etc/hosts.deny and /etc/hosts.allow files to restrict access to network services. For example, here is the
/etc/hosts.deny file for my Red Hat-based host:

#
hosts.deny
#

portmap: ALL
lockd: ALL
mountd: ALL
rquotad: ALL
statd: ALL

and here is my /etc/hosts.allow file:

#
hosts.allow
#

portmap: 192.168.172.10
lockd: 192.168.172.10
mountd: 192.168.172.10
rquotad: 192.168.172.10
statd: 192.168.172.10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statd: 192.168.172.10

The rules specified in this files restrict access to the various file-sharing services. Together, these files
indicate that only the machine with address 192.168.172.10 can use the NFS services. This is fine in the
case of my setup, since I don't want to share my workstation with anyone else. Even if you do not
customize /etc/hosts.deny and /etc/hosts.allow, I encourage you to take security issues to heart and use
whichever means necessary, such as backups, to protect your work.

Once the configuration files are created, you can start the portmapper service, which is required by the
NFS server:

/etc/init.d/portmap start
Finally, you can start the NFS server itself:

/etc/init.d/nfs start
If you would like more information on the configuration of remote boot using NFS, see the two Diskless root
NFS HOWTOs on the issue at the LDP. Also, you may be interested by the NFS HOWTO, also at the LDP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 Using LILO with Disk and CompactFlash Devices

Because there is already ample documentation on the installation, configuration, and use of LILO,
I will cover only its specific use in embedded PC-like systems. Specifically, I will provide the
instructions to use on the host to install LILO on a storage device meant to be used in the target.

The installation of LILO on a target's storage device requires the use of the removable storage
setup as explained in Chapter 2. In this scenario, the target's storage device is removed from the
target and connected to the host's own hardware to be programmed. Hence, the target's storage
device is controlled by the host's operating system like any other host device. The target's storage
device is therefore seen as an extra storage device for the host. It can be seen, for example, as a
secondary IDE disk (/dev/hdb) or as a primary SCSI disk (/dev/sda). Regardless of the way it is
seen by the host's kernel, LILO needs to be used in a specific way to install itself on this
secondary storage and not on the host's boot media, as is the default.

As we discussed in Chapter 8, CF devices are quite peculiar in this regard, because they can be
seen on the host as a SCSI disk (/dev/sdX) when accessed through a USB CF reader, while
being seen on the target as an IDE disk (/dev/hdX) when accessed through a CF-to-IDE or CF-to-
PCMCIA adapter. The configuration file example I provide below takes care of this issue by using
the appropriate BIOS and kernel flags so that the disk seen as a SCSI disk on the host can boot
normally as an IDE disk once put back in the target.

In the following, I assume that the storage device where LILO will be installed is accessible on
your host, and that you are using LILO Version 22.3 or later. If you are using an earlier version, an
important command will fail, as I will explain shortly. Follow these steps to install LILO on a
secondary IDE or SCSI storage device on your host:

1. Create appropriate /dev entries in your target's root filesystem for the storage device where
LILO is to be installed. This is not the storage device as it will be accessed once in your
target. Rather, this is the storage device entry used by the host to access the designated
storage device. If, for example, you want to install LILO on /dev/sda (usually the first SCSI
hard disk in your system), there must be a /dev/sda entry on your target's root filesystem. It
is very likely that this entry does not correspond to a valid device on your target. Indeed, it
is possible that the disk accessed as /dev/sda on the host may be accessed as /dev/hda
once on the target. Nevertheless, you must create the /dev/sda entry in your target's root
filesystem for LILO to use when running on the host. The reasons for this will soon become
evident. For more information on the relationship between /dev entries and the actual
physical storage devices, see Chapter 3 of Running Linux.

2. Create a LILO configuration file on your target root filesystem. To avoid damaging your
host's configuration when installing LILO on the target's storage device, put your LILO
configuration in /etc/target.lilo.conf on your target's root filesystem instead of the usual
/etc/lilo.conf. Hence, if you accidentally issue a LILO command that modifies your host, the
tool will complain about a missing file and no damage will be done to your host.

Here is a sample /etc/target.lilo.conf to boot my DAQ module from a CF card:

boot = /dev/sda
disk = /dev/sda
 bios = 0x80

image = /boot/bzImage-2.4.18
 root = /dev/sda1
 append = "root=/dev/hda1"
 label = Linux
 read-only

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, the CF card is accessed through a USB CF reader and is visible on my host
as a SCSI disk through /dev/sda. On the target, however, it will be accessed through a CF-
to-IDE adapter and will be visible as an IDE drive through /dev/hda. If you use a normal
LILO configuration file to configure LILO, it would guess the BIOS ID of the disk it is
operating on, and would use that ID at startup to make access requests to the BIOS. Since,
in this case, it is operating on a SCSI disk, it would assume a SCSI BIOS ID and would
make access requests for such a disk. Since no such disk exists on the target, the BIOS
would return an error and LILO would fail to boot. The trick in the configuration file above
lies in the bios = 0x80 line. This informs LILO that it is booting from the disk with BIOS
ID 0x80, which is the first IDE drive in the system. Because of the confusion between SCSI
and IDE, I must also append a root=/dev/hda1 option to the kernel's boot parameters.
Otherwise, the kernel would fail to find its root filesystem and crash while trying to mount
it.[5]

[5] Normally, you shouldn't need to append a root= option to the kernel's boot parameters if you already
have a root line in your image description. In this case, however, the software involved takes for granted that
disks cannot change types, and fails to configure the boot process properly without the double declaration.

Alternatively, if you want to install LILO on /dev/hdb, replace the /dev/sda entries above
with /dev/hdb. In this case, you won't need to append the root=/dev/hda1 option to the
kernel's boot instructions, because the disk appears as IDE both on the host and the target.

When LILO is run with the configuration file above, it opens the host's /dev/sda device and
installs itself there. Because this configuration file is located in
${PRJROOT}/rootfs/etc/target.lilo.conf instead of /etc/lilo.conf, special options must be
used with LILO to provide it with the location of this alternative configuration file. I will
present the complete LILO command line to use in this configuration shortly.

For a complete discussion of how LILO is installed on an alternative storage device, see
the Installing hdc to Boot as hda and Using bios= section in the LILO mini-HOWTO
provided by the LDP.

3. If necessary, partition the storage device using fdisk.

4. Create filesystems on the storage device for the filesystem types you selected using the
appropriate filesystem creation tools. For an ext2 filesystem, for example, use mke2fs.

5. Mount the root filesystem partition on an appropriate directory in /mnt.

6. Copy the root filesystem to its designated partition using cp -a. The root filesystem must
contain the kernel image referenced by the /etc/target.lilo.conf file created earlier,
/boot/bzImage-2.4.18 in this case.

7. Install LILO on the storage device. For my DAQ module's storage device, for example,
which is mounted as /mnt/cf on my host, I use the following command:

lilo -r /mnt/cf -C etc/target.lilo.conf
Warning: etc/target.lilo.conf should be owned by root
Warning: LBA32 addressing assumed
Added Linux *

This command instructs lilo to use the chroot() system call to change its root directory to
/mnt/cf directory and to use the etc/target.lilo.conf configuration file found in that directory.
The command programs the devices specified in the target.lilo.conf configuration file. The
/dev entries specified in the configuration file are located starting from the root directory
entry, /mnt/cf. If /dev/sda must be programmed, for example, LILO attempts to open and
program /mnt/cf/dev/sda.

If you had forgotten to create the /dev entries specified in target.lilo.conf on your target's
root filesystem, this command will fail. It will also fail if there is no /tmp directory on your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

root filesystem, this command will fail. It will also fail if there is no /tmp directory on your
target's root filesystem. Furthermore, if you are using a LILO version earlier than 22.3, the
command will report the following error and fail:

Fatal: open /boot/boot.b: No such file or directory

This error message is due to the fact that, prior to Version 22.3, LILO's components were
separated across different files, some of which were .b files. Since 22.3, all .b files are part
of the lilo binary.

8. Unmount the root filesystem partition.

You can now remove the storage device from your host, either by shutting down the host and
removing the hard disk or by removing the CF card from the CF reader, instaling it in your target,
and booting it.

A Word on Using LILO with DiskOnChip Devices
To boot from a DOC device, LILO must be patched, since it doesn't support the DOC
by default. Both the Linux tools package provided by M-Systems and the MTD package
provide a patch for LILO. In light of the common experience of many individuals on the
MTD mailing list and the fact that GRUB is the bootloader receiving most of the MTD
development team's attention, however, I strongly recommend that you use GRUB
instead of LILO for booting from a DOC device. If you still would like to use LILO, look
at the relevant entries in the MTD mailing list archive or, if you fail to find what you
need in the archive, ask the mailing list for guidance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4 Using GRUB with DiskOnChip Devices

Since the use of GRUB with conventional disk devices is already amply covered in the GRUB
manual, we will mainly concentrate on the installation and use of GRUB with DOC devices. Before
I start covering the details of how to compile and use GRUB with a DOC device, I must warn you
that an improper configuration of GRUB for your DOC can render your system unbootable. Let's
see why this happens and how it can be avoided.

As I explained in Chapter 7 when describing the use of the doc_loadbios command, DOC devices
contain a ROM program called the IPL that is detected as a BIOS extension at startup and is
executed by the BIOS. When it runs, this IPL installs another program, the SPL. To boot from a
DOC device using GRUB, the SPL must be replaced by a version of GRUB specifically tailored to
boot from a DOC.

Since there may be other BIOS extensions in the system, the SPL loaded by the IPL cannot boot
the system right away. Instead, it must install a Terminate and Stay Resident (TSR) program that
will lay dormant until the BIOS is ready to boot the system. In the case of GRUB, the GRUB SPL
replaces the BIOS's bootstrap interrupt, INT 19h, with a custom interrupt handler that will execute
the rest of the GRUB code to finish booting from the DOC device. Hence, the other BIOS
extensions get to run and GRUB is called only when the system is ready to be booted.

The problem with this scheme, however, is that the default bootstrap handler installed by the
BIOS never gets a chance to run, and any boot configuration option you may have selected in
your BIOS—such as booting from disk or floppy first—will be completely ignored by GRUB when
its handler is invoked. This is fine if the configuration file on the DOC is correct. At worst, you
would then boot using the DOC, change the configuration file in Linux, or completely remove
GRUB from the DOC to set the system as you desire.

If you make any mistakes in the GRUB configuration file that result in boot failure, however, you
will be unable to restart your system normally without finding a way to disable the replacement of
the bootstrap interrupt handler at startup. There are four known ways to do this:

You can physically remove the DOC from the system before starting it. The problem with
this choice is that your only way to reprogram the DOC thereafter, if you do not have
access to a hardware DOC programer, is to insert the DOC after the system has been
started. In other words, you would have to connect the DOC to a live electronic circuit.
Needless to say, neither the DOC nor the electronic circuits interfacing with it have been
designed for this sort of manipulation. Also, I neither encourage you to try this nor take any
responsibility if you are crazy enough to do it. However, a few courageous people on the
MTD mailing list have reported that they successfully inserted their DOC in a running
system in this way to reprogram it.

If jumpers are available for configuring the address region to which the DOC device is
mapped, you can try removing the jumpers completely and starting the system. In some
cases, such as when using the ISA DOC evaluation board provided by M-Systems, this will
result in the BIOS not recognizing the IPL and, hence, not running it. In other cases,
however, this may result in a system hang. If this trick works for you, you will be able to
boot the system using the BIOS's configuration. However, to access the DOC again once
the system is running, you will have to insert the jumper while the system is powered on.
Again, though this is reported to work, the hardware was not designed for this, I don't
encourage you to do it, and I take no responsibility whatsoever for any possible outcome.

The configuration of GRUB allows it to use the ROM BASIC interrupt, INT 18h, instead of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The configuration of GRUB allows it to use the ROM BASIC interrupt, INT 18h, instead of
the bootstrap interrupt. Lately, in addition to being the ROM BASIC interrupt, INT 18h is
sometimes used for network boot. When configured to use this interrupt, GRUB would kick
in only if the BIOS configuration is set to network boot or if there are no boot devices set in
the BIOS. This approach has a few drawbacks. First, it requires changing the BIOS
configuration every time you want to switch from booting from the DOC to booting from a
hard disk. This can be time-consuming during development. In addition, the use of INT 18h
by recent BIOSes is not standardized, as the case of the BIOSes using it to provide
network boot demonstrates.

Having seen the above choices while writing this book, your author decided to find a
"cleaner" way of doing things. Hence, I set out digging in some of my old DOS and BIOS
hacking books and came up with a solution that's both elegant and simple. Basically,
instead of replacing the default bootstrap interrupt handler outright, my modified GRUB
SPL makes a copy of the original handler, replaces it with the GRUB bootstrap handler,
and lets the BIOS continue looking for other extensions in the system. When GRUB's
bootstrap handler is invoked, it then checks whether the user is holding down the Ctrl key.
If so, the original bootstrap handler is restored, and the BIOS is left to continue the
bootstrap using the boot configuration chosen by the user. If the Ctrl key isn't held down,
GRUB continues its normal procedure to load whatever is on the DOC. As you can see,
this solution does not involve any dangerous hardware manipulations; save, maybe, for
people suffering from carpal tunnel syndrome.

For obvious reasons, I strongly encourage you to use the last solution. This enhancement is,
however, fairly recent at the time of this writing and you will only find it starting with GRUB patch
grub-2002-10-08-doc.patch, which is available in the MTD CVS. I will explain how this option is
enabled during GRUB's configuration in the next section.

Having covered the dangers of using GRUB to boot from a DOC, let's discuss the building,
installation, and use of GRUB with a DOC.

9.4.1 Configuring and Building GRUB for the DOC

As I said earlier, you will need an x86 host to build GRUB. The following instructions assume that
you are using such an x86 host. GRUB will fail to build or will create unusable binaries on any
other type of host.

To start, download GRUB into your ${PRJROOT}/bootldr directory and extract it there. Then copy
the GRUB patch from the ${PRJROOT}/sysapps/mtd/patches directory to the GRUB directory in
${PRJROOT}/bootldr. In the case of my DAQ module, for example, I used GRUB 0.92 and the
grub-2002-02-19-doc.patch patch. Now apply the patch to GRUB:

$ cd ${PRJROOT}/bootldr/grub-0.92
$ patch -p0 < grub-2002-02-19-doc.patch
Because this patch was originally meant for GRUB 0.90, there were some warnings and one
failure when applying it to 0.92. The failure in this case was in ChangeLog and can therefore be
ignored.

If you want to use the Ctrl key method discussed in the previous section to avoid having to
hotplug your DOC, use the grub-2002-10-08-doc.patch patch or a later version against a GRUB
version retrieved from the CVS repository. Because the CVS repository is constantly changing,
however, this patch may not apply cleanly to the latest CVS contents. To get the patch to apply as
cleanly as possible and have the resulting source tree compile, for example, I had to retrieve the
GRUB sources from the CVS repository as they were on October 10, 2002 and then manually edit
a couple of files in the source code. To retrieve the code as it was on the date I mentioned, I used
the following command:

$ cvs -z3 -d:pserver:anoncvs@subversions.gnu.org:/cvsroot/grub \

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cvs -z3 -d:pserver:anoncvs@subversions.gnu.org:/cvsroot/grub \
> co -D"10/10/02" grub
With the code patched, you are ready to build GRUB. First, create the Makefile using the
automake tools:

$ aclocal && automake && autoconf
Now, configure GRUB to build for the DOC:

$./configure --enable-diskonchip-2000 \
> --enable-diskonchip-ctrlbypass \
> --enable-ext2fs \
> --disable-ffs --disable-xfs --disable-jfs --disable-vstafs \
> --disable-reiserfs --disable-minix --disable-fat
This command line disables GRUB's support for all filesystems except ext2 and enables support
for the DOC 2000 device. It also enables the Ctrl key bypass method I described in the previous
section using the - -enable-diskonchip-ctrlbypass option. There are a few other configuration
options relevant to the DOC. If you are using DOC Millennium, for example, you may want to use
the - -enable-diskonchip-mil256 or - -enable-diskonchip-mil512 option, depending on whether
your DOC Millennium is using 256- or 512-byte page sizes. You can also use the - -enable-
diskonchip-biosnetboot option to boot GRUB on the network boot interrupt instead of the
bootstrap interrupt as described earlier. For a complete description of the options available for
configuring GRUB for the DOC, have a look at the README_DiskOnChip created in the GRUB
package directory when the DOC patch was applied earlier.

Once the configuration is done, you can build GRUB:

$ make
Once the compilation is done, the stage1/grub_firmware file will contain the GRUB image to be
written to the DOC. Copy this file to ${PRJROOT}/images/grub_firmware-0.92 for future use:

$ cp stage1/grub_firmware ${PRJROOT}/images/grub_firmware-0.92

9.4.2 Installing GRUB on a DOC

I have already covered the installation of the GRUB bootloader image in Section 7.1.3.5. Follow
the instructions given in that section to install the GRUB image created here on your DOC device.

9.4.3 Configuring GRUB to Boot from a DOC

As with LILO, GRUB uses a configuration file to determine the boot media and kernel it has to
boot. Unlike LILO, however, you do not need to run the GRUB binary to parse and update its
configuration. Instead, the GRUB configuration file, menu.lst, is placed as-is in the /boot/grub
directory of the target's root filesystem and is read by GRUB at startup. To configure GRUB to
boot from a DOC, this is the file that we must create.

As an example, here is a simple menu.lst file for booting from a DOC device:

timeout 5
default 0

title DiskOnChip 2000 Boot
kernel (dc0,0)/boot/bzImage-2.4.18 root=/dev/nftla1

title HD Boot
kernel (hd0,0)/boot/bzImage-2.4.18 root=/dev/hda1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

kernel (hd0,0)/boot/bzImage-2.4.18 root=/dev/hda1

This file states that there are two boot possibilities. The first, which is also the default, involves
booting kernel /boot/bzImage-2.4.18 from the first partition of the first DOC, dc0. The second
involves booting a kernel by the same name as the previous item from the first partition of the first
hard disk, hd0. For each configuration, the root= option indicates the device where the booting
kernel will find its root filesystem.

This configuration is useful during development, since it allows you to choose between booting
from the DOC and from your hard disk. On a production system, you probably want to remove the
entry for the hard disk and set the timeout to zero so that booting from the DOC becomes the only
possible option.

You can further modify GRUB's configuration and allow for a number of boot options. Look at
GRUB's manual for a complete description of the configuration file format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5 U-Boot

As I said earlier, U-Boot is a richly documented bootloader. The README file included with the package, for
example, covers the use of U-Boot extensively. Among other things, it discusses the package's source code
layout, the available build options, U-Boot's command set, and the typical environment variables used in U-Boot.
In the following, I will cover the essential aspects of U-Boot and provide practical examples of its use. An in-
depth discussion of U-Boot would, however, require a book of its own. For this reason, I encourage you to print a
copy of the README provided with U-Boot and have a look at the other documentation written by the project
maintainer.

9.5.1 Compiling and Installing

Start by downloading and extracting the latest version of U-Boot in your ${PRJROOT}/bootldr directory. As of
this writing, the latest U-Boot version is 0.2.0. Once extracted, move to the package's directory:

$ cd ${PRJROOT}/bootldr/u-boot-0.2.0

Physical RAM and Flash Location
The board used in the following explanations has 16 MB of RAM and 8 MB of flash. The RAM is
mapped from address 0x0000000 to address 0x00FFFFFF, and the flash is mapped from address
0x40000000 to address 0x407FFFFF. The documentation provided with U-Boot discusses its use of
the physical memory of targets.

Before you can build U-Boot, you need to configure it for your target. The package includes a number of preset
configurations for quite a few boards. So, a configuration may very well exist for your target already. Look at the
README file to see if your board is supported. For each supported board, U-Boot's Makefile includes a
BOARD_NAME_config target, which is used to configure U-Boot's build for the designated board. The
configuration target for the TQM860L board I use for my control module, for example, is TQM860L_config
Once you have determined the proper Makefile target to use, configure U-Boot's build process:

$ make TQM860L_config
Now, build U-Boot:

$ make CROSS_COMPILE=powerpc-linux-
In addition to generating bootloader images, the build process will compile a few tools to be used on the host for
conditioning binary images before downloading them off to the target to a running U-Boot. Table 9-2
files generated during U-Boot's compilation.

Table 9-2. Files generated during U-Boot's compilation
Filename Description

System.map The symbol map

u-boot U-Boot in ELF binary format

u-boot.bin U-Boot raw binary image that can be written to the boot storage device

u-boot.srec U-Boot image in Motorola's S-Record format

You can now download the U-Boot image onto your target's boot storage device using the appropriate
procedure. If you already have U-Boot, or one its ancestors (PPCBoot or ARMBoot) installed on your target, you
can use the installed copy to update U-Boot to a new version, as we shall see in Section 9.5.10. If you have

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can use the installed copy to update U-Boot to a new version, as we shall see in Section 9.5.10. If you have
another bootloader installed, follow the procedures described in that bootloader's documentation for updating
bootloaders. Finally, if you have no bootloader whatsoever installed on your target, you need to use a hardware
programming device, such as a flash programmer or a BDM debugger, to copy U-Boot to your target.

Whichever method you use to copy the actual bootloader image to your target, make a copy of the relevant
bootloader images to your ${PRJROOT}/images directory. For my control module for example, I copy the
images as follows:

$ cp System.map ${PRJROOT}/images/u-boot.System.map-0.2.0
$ cp u-boot.bin ${PRJROOT}/images/u-boot.bin-0.2.0
$ cp u-boot.srec ${PRJROOT}/images/u-boot.srec-0.2.0
If you intend to debug U-Boot itself, copy the ELF binary also:

$ cp u-boot ${PRJROOT}/images/u-boot-0.2.0
Finally, install the host tool generated by the U-Boot build:

$ cp tools/mkimage ${PREFIX}/bin

9.5.2 Booting with U-Boot

Once U-Boot is properly installed on your target, you can boot it while being connected to the target through a
serial line and using a terminal emulator to interface with the target. As I said in Chapter 4, not all terminal
emulators interact cleanly with all bootloaders. In the case of U-Boot, avoid using minicom for file transfers,
since problems may occur during such transfers.

Here is a sample boot output for my control module:

U-Boot 0.2.0 (Jan 27 2003 - 20:20:21)

CPU: XPC860xxZPnnD3 at 80 MHz: 4 kB I-Cache 4 kB D-Cache FEC present
Board: TQM860LDB0A3-T80.201
DRAM: 16 MB
FLASH: 8 MB
In: serial
Out: serial
Err: serial
Net: SCC ETHERNET, FEC ETHERNET
PCMCIA: No Card found
Hit any key to stop autoboot: 5

As you can see, U-Boot prints version information and then provides some detail regarding the hardware it is
running on. As soon as it boots, a five second timer starts ticking at the last output line. If you do not press a key
during those five seconds, U-Boot boots its default configuration. By pressing a key, you get a prompt:

=>

One of the first things you probably want to try is obtaining help from U-Boot:

=> help
askenv - get environment variables from stdin
autoscr - run script from memory
base - print or set address offset
bdinfo - print Board Info structure
bootm - boot application image from memory
bootp - boot image via network using BootP/TFTP protocol
bootd - boot default, i.e., run 'bootcmd'
cmp - memory compare
coninfo - print console devices and informations
cp - memory copy
crc32 - checksum calculation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

crc32 - checksum calculation
date - get/set/reset date & time
dhcp - invoke DHCP client to obtain IP/boot params
diskboot- boot from IDE device
echo - echo args to console
erase - erase FLASH memory
flinfo - print FLASH memory information
go - start application at address 'addr'
help - print online help
ide - IDE sub-system
iminfo - print header information for application image
loadb - load binary file over serial line (kermit mode)
loads - load S-Record file over serial line
loop - infinite loop on address range
md - memory display
mm - memory modify (auto-incrementing)
mtest - simple RAM test
mw - memory write (fill)
nm - memory modify (constant address)
printenv- print environment variables
protect - enable or disable FLASH write protection
rarpboot- boot image via network using RARP/TFTP protocol
reset - Perform RESET of the CPU
run - run commands in an environment variable
saveenv - save environment variables to persistent storage
setenv - set environment variables
sleep - delay execution for some time
tftpboot- boot image via network using TFTP protocol
 and env variables ipaddr and serverip
version - print monitor version
? - alias for 'help'

As you can see, U-Boot has a lot of commands. Fortunately, U-Boot also provides per-command help:

=> help cp
cp [.b, .w, .l] source target count
 - copy memory

When U-Boot appends the [.b, .w, .l] expression to a command, this means that you need to append one
of the indicated strings to the command to invoke the desired version of the command. In the case of
example, there are three versions, cp.b, cp.w, and cp.l, for copying bytes, words, and longs, respectively.

U-Boot is strict in its argument parsing. It expects most values to be provided in hexadecimal form. In the case
of the cp command, for example, this means that the source address, the target address, and the byte count
must be provided in hexadecimal values. You don't need to prepend or append those values with any sort of
special characters, such as "0x" or "h". If your source address is 0x40000000, for example, simply type
40000000.

U-Boot accepts any unique subset of characters that starts a command name. If you want to use the
command, for example, you can type just the first three letters, era, since erase is the only command to start
with those three first letters. On the other hand, you can't type lo and expect U-Boot to understand it, since there
are three commands that start with those letters: loadb, loads, and loop.

9.5.3 Using U-Boot's Environment Variables

Once U-Boot is up and running, you can configure it by setting the appropriate environment variables. The use
of U-Boot environment variables is very similar to the use of environment variables in Unix shells, such as
To view the current values of the environment variables on your target, use the printenv command. Here is a
subset of the environment variables found on my control module:

=> printenv

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=> printenv
bootdelay=5
baudrate=115200
loads_echo=1
serial#= ...
ethaddr=00:D0:93:00:05:E3
netmask=255.255.255.0
ipaddr=192.168.172.10
serverip=192.168.172.50
clocks_in_mhz=1
stdin=serial
stdout=serial
stderr=serial

Environment size: 791/16380 bytes

Each environment variable has a different meaning. Some environment variables, such as bootdelay
serial#, or ipaddr, have predetermined uses that are recognized by U-Boot itself. See the README
complete discussion of U-Boot's environment variables and their meanings.

As with Unix shells, you can add environment variables in U-Boot. To do so, you must use the setenv
Here is an example session where I add a few environment variables to my control module (the third command
must be entered as a single line, even though it appears broken on the page):

=> setenv rootpath /home/karim/ctrl-rootfs
=> setenv kernel_addr 40100000
=> setenv nfscmd setenv bootargs root=/dev/nfs rw nfsroot=\$(serverip):\$(rootpath)
 ip=\$(ipaddr):\$(serverip):\$(gatewayip):\$(netmask):\$(hostname)::off panic=1\;
 bootm \$(kernel_addr)
=> setenv bootcmd run nfscmd
In this case, I set U-Boot to boot from the kernel found at 0x40100000 and to mount its root filesystem using
NFS. Notice that I used the \ character to tell U-Boot that the character following \ should not be interpreted as
a special character. This is how the nfscmd looks like, for example, after U-Boot has read it:

=> printenv nfscmd
nfs2cmd=setenv bootargs root=/dev/nfs rw nfsroot=$(serverip):$(rootpath)
ip=$(ipaddr):$(serverip):$(gatewayip):$(netmask):$(hostname)::off panic=1;bootm
$(kernel_addr)

The setenv command adds the environment variables to the current session only. Hence, if you reset the
system, any environment variable you set only with setenv will be lost. For the environment variables to survive
reboots, they must be saved to flash. This is done using the saveenv command:

=> saveenv
Saving Enviroment to Flash...
Un-Protected 1 sectors
Erasing Flash...
. done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors

Be careful when using saveenv, since it will save all the environment variables currently defined, even those you
may have been using temporarily. Before using saveenv, use printenv to take a look at the currently defined
environment variables to make sure you are saving only the necessary variables. If you want to delete a
variable, simply use setenv on the variable without providing any values. Here's an example:

=> setenv RAMDisk_addr 40500000
=> printenv RAMDisk_addr
RAMDisk_addr=40500000
=> setenv RAMDisk_addr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=> setenv RAMDisk_addr
=> printenv RAMDisk_addr
Error: "RAMDisk_addr" not defined

Note that the = character is not treated as a special character by setenv. In fact, it is seen as another character
in the string making up the environment variable, as we saw earlier in this section. The following command, for
example, is flawed (notice the extra = displayed by printenv in comparison to the same printenv shown in the
previous capture):

=> setenv RAMDisk_addr = 40500000
=> printenv RAMDisk_addr
RAMDisk_addr= = 40500000

9.5.4 Creating Boot Scripts

U-Boot environment variables can be used to create boot scripts. Such boot scripts are actually environment
variables containing a set of U-Boot command sequences. By using a combination of the run command and the
; (semicolon) operator, you can make U-Boot run boot scripts. The environment variables I set in the previous
section, for instance, are actually part of a boot script, nfscmd.

The key to the way the script I provided in the previous section works is the bootcmd environment variable. This
variable is recognized by U-Boot as the script to run automatically when the system is booted. I set this variable
as run nfscmd. In other words, U-Boot should run the nfscmd script to boot the system. In turn, this
environment variable is a set of commands of its own. First, it sets the bootargs environment variable, which
U-Boot passes to the kernel as its boot parameters, and then uses the bootm command to boot the kernel
located at $(kernel_addr). The semicolon separates commands. The use of the $(VAR_NAME) operator tells
U-Boot to replace the entire string with the value of the VAR_NAME environment variable. Hence, when
runs, $(kernel_addr) is replaced by 40100000, which is the value I set earlier. In the same way,
$(rootpath) is replaced by /home/karim/ctrl-rootfs, and the rest of the environment variables
included in nfscmd are replaced by their respective values.

Though it would have been possible to set bootcmd to contain the entire boot script instead of using
nfscmd, it would have been much harder then to specify alternative boot scripts at the boot command line. By
using the run command in the bootcmd script, multiple boot scripts can coexist within U-Boot's environment
variables. You can then change the system's default boot using:

=> setenv bootcmd run OTHER_BOOT_SCRIPT
Or you can run boot scripts directly from the command line without changing the value of the bootcmd
environment variable:

=> run OTHER_BOOT_SCRIPT
Scripts are a very useful feature of U-Boot and you should use them whenever you need to automate a certain
task in U-Boot.

9.5.5 Preparing Binary Images

Since the raw flash is not structured like a filesystem and does not contain any sort of file headers, binary
images downloaded to the target must carry headers for U-Boot to recognize their content and understand how
to load them. The mkimage utility we installed earlier was packaged with U-Boot for this purpose. It adds the
information U-Boot needs to binary images while attaching a checksum for verification purposes.

While the use of image headers is not a technical requirement for a bootloader, such
headers are very convenient both during development and in the field. Hence, their use
by U-Boot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see the typical use of mkimage, type the command without any parameters:

$ mkimage
Usage: mkimage -l image
 -l = => list image header information
 mkimage -A arch -O os -T type -C comp -a addr -e ep -n name
 -d data_file[:data_file...] image
 -A = => set architecture to 'arch'
 -O = => set operating system to 'os'
 -T = => set image type to 'type'
 -C = => set compression type 'comp'
 -a = => set load address to 'addr' (hex)
 -e = => set entry point to 'ep' (hex)
 -n = => set image name to 'name'
 -d = => use image data from 'datafile'
 -x = => set XIP (execute in place)

For example here is how I create a U-Boot image of the 2.4.18 kernel I compiled for my control module:

$ cd ${PRJROOT}/images
$ mkimage -n '2.4.18 Control Module' \
> -A ppc -O linux -T kernel -C gzip -a 00000000 -e 00000000 \
> -d vmlinux-2.4.18.gz vmlinux-2.4.18.img
Image Name: 2.4.18 Control Module
Created: Wed Feb 5 14:19:08 2003
Image Type: PowerPC Linux Kernel Image (gzip compressed)
Data Size: 530790 Bytes = 518.35 kB = 0.51 MB
Load Address: 0x00000000
Entry Point: 0x00000000

The command takes quite a few flags, but their meaning is easily understood by looking at the usage message
provided by mkimage. Note that the name of the image, provided in the -n option, cannot be more than 32
characters. Any excess characters will be ignored by mkimage. The rest of the command line tells mkimage
this is a gzipped PPC Linux kernel image that should be loaded at address 0x00000000 and started from that
same address. The image being provided in input is vmlinux-2.4.18.gz and the U-Boot-formatted image will be
output to vmlinux-2.4.18.img.

RAM disk images can be processed in a similar fashion:

$ mkimage -n 'RAM disk' \
> -A ppc -O linux -T ramdisk -C gzip \
> -d initrd.bin initrd.boot
Image Name: RAM disk
Created: Wed Feb 5 14:20:35 2003
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
Data Size: 470488 Bytes = 459.46 kB = 0.45 MB
Load Address: 0x00000000
Entry Point: 0x00000000

In this case, the number of parameters is shorter, since we don't need to specify start and load addresses. Note
that the image type has changed to ramdisk.

We can also create a multi-type image that combines both the kernel image and a RAM disk. In that case, the
files included are listed sequentially using a colon separator:

$ mkimage -n '2.4.18 Ctrl and Initrd' \
> -A ppc -O linux -T multi -C gzip -a 00000000 -e 00000000 \
> -d vmlinux-2.4.18.gz:initrd.bin \
> vmlinux-2.4.18-initrd.img

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> vmlinux-2.4.18-initrd.img
Image Name: 2.4.18 Ctrl and Initrd
Created: Wed Feb 5 14:23:29 2003
Image Type: PowerPC Linux Multi-File Image (gzip compressed)
Data Size: 1001292 Bytes = 977.82 kB = 0.95 MB
Load Address: 0x00000000
Entry Point: 0x00000000
Contents:
 Image 0: 530790 Bytes = 518 kB = 0 MB
 Image 1: 470488 Bytes = 459 kB = 0 MB

Once you have prepared an image with mkimage, it is ready to be used by U-Boot and can be downloaded to
the target. As we'll see below, U-Boot can receive binary images in a number of different ways. One way is to
use images formatted in Motorola's S-Record format. If you intend to use this format, you need to further
process the images generated by mkimage by converting them to the S-Record format. Here is an example
conversion of the multi-type image generated above:

$ powerpc-linux-objcopy -I binary -O srec \
> vmlinux-2.4.18-initrd.img vmlinux-2.4.18-initrd.srec

9.5.6 Booting Using BOOTP/DHCP, TFTP, and NFS

If you have properly configured a server to provide the target with DHCP, TFTP, and NFS services, as I
explained earlier, you can boot your target remotely. Back from U-Boot's prompt on my control module, here is
how I boot my target remotely, for example:

=> bootp
BOOTP broadcast 1
DHCP client bound to address 192.168.172.10
ARP broadcast 1
TFTP from server 192.168.172.50; our IP address is 192.168.172.10
Filename '/home/karim/vmlinux-2.4.18.img'.
Load address: 0x100000
Loading: ### ...
done
Bytes transferred = 530854 (819a6 hex)

The bootp command issues a request that is answered by the DHCP server. Using the DHCP server's answer,
U-Boot contacts the TFTP server and obtains the vmlinux-2.4.18.img image file, which it places at address
0x00100000 in RAM. You can verify the image's header information using the iminfo command:

=> imi 00100000

Checking Image at 00100000 ...
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK

As you can see, the information printed out by iminfo on the target is very similar to that printed out on the host
by mkinfo. The OK string reported for the checksum means that the image has been downloaded properly and
that we can boot it:

=> bootm 00100000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=> bootm 00100000
Booting image at 00100000 ...
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK
Linux version 2.4.18 (karim@Teotihuacan) (gcc version 2.95.3 20010315 ...
On node 0 totalpages: 4096
zone(0): 4096 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line: root=/dev/nfs rw nfsroot= ...
Decrementer Frequency: 5000000
Calibrating delay loop... 79.66 BogoMIPS
 ...
VFS: Cannot open root device "" or 02:00
Please append a correct "root=" boot option
Kernel panic: VFS: Unable to mount root fs on 02:00
 <0>Rebooting in 180 seconds..

In this case, the kernel panics because it is unable to find any root filesystem. To solve this problem, we must
use the environment variables to create a boot script for passing appropriate boot options to the kernel. The
following commands create a new boot script, bootpnfs, and modify the special bootcmd script, as we did in
Section 9.5.3, in order for the system to boot using BOOTP/DHCP, TFTP, and NFS:

=> setenv bootpnfs bootp\; setenv kernel_addr 00100000\; run nfscmd
=> printenv bootpnfs
bootpnfs=bootp; setenv kernel_addr 00100000; run nfscmd
=> setenv bootcmd run bootpnfs
=> printenv bootcmd
bootcmd=run bootpnfs

In this case, the bootpnfs script automatically executes the bootp instruction we used earlier in this section to
obtain a kernel from the TFTP server. It then uses the nfscmd script we created in Section 9.5.3 to boot this
kernel. The value of kernel_addr is changed so that the nfscmd script would use the kernel loaded using
TFTP, not the one located at 40100000.

If you use the boot command now, U-Boot will boot entirely from the network. It will download the kernel through
TFTP and mount its root filesystem on NFS. If you would like to save the environment variables we just set, use
the saveenv command before rebooting the system, otherwise, you will have set the same variables again at the
next reboot.

9.5.7 Downloading Binary Images to Flash

Booting from the network is fine for early development and testing. For production use, the target must have its
kernel stored in flash. As we will see shortly, there a few ways to copy a kernel from the host to the target and
store it to flash. Before you can copy any kernel image, however, you must first choose a flash region to store it
and erase the flash region for the incoming kernel. In the case of my control module, I store the default kernel
between 0x40100000 and 0x401FFFFF. Hence, from U-Boot's prompt, I erase this region:

=> erase 40100000 401FFFFF
Erase Flash from 0x40100000 to 0x401fffff
........ done
Erased 8 sectors

The simplest way to install a kernel in the target's flash is to first download it into RAM and then copy it to the
flash. You can use the tftpboot command to download a kernel from the host to RAM:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=> tftpboot 00100000 /home/karim/vmlinux-2.4.18.img
ARP broadcast 1
TFTP from server 192.168.172.50; our IP address is 192.168.172.10
Filename '/home/karim/vmlinux-2.4.18.img'.
Load address: 0x100000
Loading: ### ...
done
Bytes transferred = 530854 (819a6 hex)

When tftpboot is run, it adds the filesize environment variable to the existing environment variables and sets
it to the size of the file downloaded:

=> printenv filesize
filesize=819a6

You can use this environment variable in subsequent commands to avoid typing in the file size by hand. Don't
forget to erase this environment variable before saving the environment variables, or it, too, will be saved.

In addition to tftpboot, you can use the loadb command to download images to the target:

=> loadb 00100000
Ready for binary (kermit) download ...

At this point, U-Boot suspends and you must use the terminal emulator on the host to send the image file to the
target. In this case, U-Boot expects to download the data according to the kermit binary protocol, and you must
therefore use kermit to download a binary image to U-Boot. Once the transfer is done, U-Boot will output:

Total Size = 0x000819a6 = 530854 Bytes
Start Addr = 0x00100000

Here, too, U-Boot will set the filesize environment variable to the size of the file downloaded. As we did
earlier, you may want to use the iminfo command to verify that the image has been properly downloaded.

Once the image is in RAM, you can copy it to flash:

=> cp.b 00100000 40100000 $(filesize)
Copy to Flash... done
=> imi 40100000

Checking Image at 40100000 ...
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK

Alternatively, instead of downloading the image to RAM first using tfptboot or loadb and then writing it to flash,
you can download the image directly to flash using loads. In this case, the host sends the image to the target in
S-Record format. In comparison to the two previous methods, however, downloading an S-Record file is
extremely slow. In most cases, it is preferable to use tftpboot or loadb instead.[6]

[6] The loadb command and, by default, the tftpboot command can't be used to download directly to flash. Though U-Boot can be
configured at compile time to allow direct flash download using tftpboot, direct flash download using loadb is not supported.

To download S-Record files, you will need to use the cu terminal emulator to transfer them to the target,
because the other terminal emulators don't interact properly with U-Boot when downloading this sort of file.
When connected through cu, use the following commands:

=> loads 40100000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=> loads 40100000
Ready for S-Record download ...
~>vmlinux-2.4.18.srec
1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
 ...
 ...176 33177 33178 33179 33180 33181
[file transfer complete]
[connected]

First Load Addr = 0x40100000
Last Load Addr = 0x401819A5
Total Size = 0x000819A6 = 530854 Bytes
Start Addr = 0x00000000

The ~> string shown here is actually part of the input you have to type. It is actually the cu command used to
initiate a file download.

As before, you can verify the image once it's in memory:

=> imi 40100000

Checking Image at 40100000 ...
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK

Every time you want to load a new image to flash, you have to start back at the erase command shown in the
beginning of this section.

9.5.8 Booting Using a RAM Disk

The first step in booting from a RAM disk is to download the RAM disk from the host and install it on the target's
flash. Many of the commands are the same as those shown and explained in previous sections. Here is how I do
this for my control module:

=> tftpboot 00100000 /home/karim/initrd.boot
ARP broadcast 1
TFTP from server 192.168.172.50; our IP address is 192.168.172.10
Filename '/home/karim/initrd.boot'.
Load address: 0x100000
Loading: ### ...
done
Bytes transferred = 470552 (72e18 hex)
=> imi 00100000

Checking Image at 00100000 ...
 Image Name: RAM disk
 Created: 2003-02-05 19:20:35 UTC
 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
 Data Size: 470488 Bytes = 459.5 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
=> printenv filesize
filesize=72e18
=> imi 40200000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=> imi 40200000

Checking Image at 40200000 ...
 Bad Magic Number
=> erase 40200000 402FFFFF
Erase Flash from 0x40200000 to 0x402fffff
........ done
Erased 8 sectors
=> cp.b 00100000 40200000 $(filesize)
Copy to Flash... done
=> imi 40200000

Checking Image at 40200000 ...
 Image Name: RAM disk
 Created: 2003-02-05 19:20:35 UTC
 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
 Data Size: 470488 Bytes = 459.5 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK

Since I had already installed a kernel, I can boot the kernel available in flash with the RAM disk I just installed:

=> bootm 40100000 40200000
Booting image at 40100000 ...
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK
Loading RAMDisk Image at 40200000 ...
 Image Name: RAM disk
 Created: 2003-02-05 19:20:35 UTC
 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
 Data Size: 470488 Bytes = 459.5 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
 Loading Ramdisk to 00f2c000, end 00f9edd8 ... OK
Linux version 2.4.18 (karim@Teotihuacan) (gcc version 2.95.3 20010 ...
On node 0 totalpages: 4096
zone(0): 4096 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line:
Decrementer Frequency: 5000000
Calibrating delay loop... 79.66 BogoMIPS
 ...
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
 ...
RAMDISK: Compressed image found at block 0
 ...
VFS: Mounted root (ext2 filesystem).
 ...

Here, too, we can use environment variables to automate the booting process. Also, instead of using separate
images for the kernel and the RAM disk, we could use a single image containing both, such as the one we
created in Section 9.5.5. As I said earlier, U-Boot is a very flexible bootloader with many possible configurations.
Though we cannot hope to cover all its possibilities here, feel free to experiment with U-Boot to obtain the setup
that suits you best.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5.9 Booting from CompactFlash Devices

Before booting a kernel from a CF card using U-Boot, you need to properly partition and populate the CF card.
Use pdisk or fdisk to partition the CF device, depending on your host. Since U-Boot does not recognize any disk
filesystem, you will need to create a few small partitions to hold raw binary images and one large partition to hold
your root filesystem, as I explained in Chapter 7.

For my control module, for example, I used a 32 MB CF card on which I created three partitions using
2 MB partitions to hold one stable kernel and one experimental kernel, and one 30 MB partition to hold my root
filesystem. To copy the kernels to their respective partitions, I used the dd command:

dd if=vmlinux-2.4.18.img of=/dev/sda1
1036+1 records in
1036+1 records out
dd if=vmlinux-2.4.18-preempt.img of=/dev/sda2
1040+1 records in
1040+1 records out

I formatted /dev/sda3 using mke2fs, mounted it on /mnt/cf, and copied the root filesystem to it using the
techniques described in the previous chapter.

After I inserted the CF card in the PCMCIA port using a CF-to-PCMCIA adapter, here was the output of U-Boot
at startup:

U-Boot 0.2.0 (Jan 27 2003 - 20:20:21)

CPU: XPC860xxZPnnD3 at 80 MHz: 4 kB I-Cache 4 kB D-Cache FEC present
Board: TQM860LDB0A3-T80.201
DRAM: 16 MB
FLASH: 8 MB
In: serial
Out: serial
Err: serial
Net: SCC ETHERNET, FEC ETHERNET
PCMCIA: 3.3V card found: SunDisk SDP 5/3 0.6
 Fixed Disk Card
 IDE interface
 [silicon] [unique] [single] [sleep] [standby] [idle] [low power]
Bus 0: OK
 Device 0: Model: SanDisk SDCFB-32 Firm: vde 1.10 Ser#: 163194D0310
 Type: Removable Hard Disk
 Capacity: 30.6 MB = 0.0 GB (62720 x 512)
Hit any key to stop autoboot: 5

U-Boot identifies the storage device at startup. U-Boot provides a wide range of ide commands for manipulating
IDE storage devices. You can see these commands by typing the help command:

=> help ide
ide reset - reset IDE controller
ide info - show available IDE devices
ide device [dev] - show or set current device
ide part [dev] - print partition table of one or all IDE devices
ide read addr blk# cnt
ide write addr blk# cnt - read/write `cnt' blocks starting at block `blk#'
 to/from memory address `addr'

We can further use U-Boot's command line to get more information regarding the device:

=> ide part

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=> ide part

Partition Map for IDE device 0 -- Partition Type: DOS

Partition Start Sector Num Sectors Type
 1 62 4154 83
 2 4216 4154 83
 3 8370 54312 83

This command reads the partition table of the CF device and prints it out. In this case, the partition printed out by
U-Boot fits the description provided earlier.

Loading a kernel image from one of the partitions on the CF device is done using the diskboot command. This
command takes two arguments: the address where the kernel is to be loaded and a partition identifier. The latter
is a concatenation of the device number and the partition number on that device separated by a colon. This is
how I load the kernel image found on partition 1 of device 0 to address 0x00400000:

=> diskboot 00400000 0:1

Loading from IDE device 0, partition 1: Name: hda1
 Type: U-Boot
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
=> imi 00400000

Checking Image at 00400000 ...
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK

Once the kernel is loaded, you can use the bootm command to boot that kernel. This can also be automated by
setting the autostart environment variable to yes. In that case, diskboot will automatically boot the kernel it
loads:

=> setenv autostart yes
=> disk 00400000 0:1
Loading from IDE device 0, partition 1: Name: hda1
 Type: U-Boot
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
Automatic boot of image at addr 0x00400000 ...
Booting image at 00400000 ...
 Image Name: 2.4.18 Control Module
 Created: 2003-02-05 19:19:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 530790 Bytes = 518.3 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK
Linux version 2.4.18 (karim@Teotihuacan) (gcc version 2.95.3 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Linux version 2.4.18 (karim@Teotihuacan) (gcc version 2.95.3 ...
On node 0 totalpages: 4096
 ...

As we did in Section 9.5.3 and Section 9.5.6, you can script the bootup from the CF device by setting the
appropriate U-Boot environment variables. Also, if you wish, you can write to the disk directly from U-Boot using
the ide write command. Have a look at the help output and the documentation for more information regarding
the use of U-Boot's IDE capabilities.

9.5.10 Updating U-Boot

U-Boot is like any other open source project; it continues to evolve over time as contributions are made and bug
fixes are integrated to the codebase. Consequently, you may feel the need to update your target's firmware
version. Fortunately, because U-Boot runs from RAM, it can be used to update itself. Essentially, we have to
download a new version to the target, erase the old firmware version, and copy the new version over it.

There are obvious dangers to this operation, because a mistake or a power failure will
render the target unbootable. Hence, utmost caution must be used when carrying out
the following steps. Make sure you have a copy of the original bootloader you are
about to replace so that you can at least fall back to a known working version. Also,
seriously consider avoiding the replacement of your firmware if you have no hardware
means to reprogram the target's flash if the upgrade fails. If you do not have access to
a BDM debugger or a flash programmer, for example, there is a great risk that you will
be left with a broken system if one of the following steps fails. Dealing with buggy
software is one thing; ending up with unusable hardware is another.

Once you have taken the necessary precautions, download the U-Boot image into RAM using TFTP:

=> tftp 00100000 /home/karim/u-boot.bin-0.2.0
ARP broadcast 1
TFTP from server 192.168.172.50; our IP address is 192.168.172.10
Filename '/home/karim/u-boot.bin-0.2.0'.
Load address: 0x100000
Loading: #################################
done
Bytes transferred = 166532 (28a84 hex)

If you do not have a TFTP server set up, you can also use the terminal emulator to send the image:

=> loadb 00100000
Ready for binary (kermit) download ...

Start Addr = 0x00100000

Unlike other images we have downloaded to the target, you cannot use the imi command to check the image,
since the U-Boot image downloaded was not packaged on the host using the mkimage command. You can,
however, use crc32 before and after copying the image to flash to verify proper copying.

Now, unprotect the flash region where U-Boot is located so you can erase it (in this case, U-Boot occupies the
flash region from 0x40000000 to 0x4003FFFF):

=> protect off 40000000 4003FFFF
Un-Protected 5 sectors

Erase the previous bootloader image:

=> erase 40000000 4003FFFF
Erase Flash from 0x40000000 to 0x4003ffff
... done
Erased 5 sectors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Erased 5 sectors

Copy the new bootloader to its final destination:

=> cp.b 00100000 40000000 $(filesize)
Copy to Flash... done

Erase the filesize environment variable set during the download:

=> setenv filesize
Save the environment variables:

=> saveenv
Saving Enviroment to Flash...
Un-Protected 1 sectors
Erasing Flash...
. done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors

At this stage, the new bootloader image has been installed and is ready to be used. Until you issue the
command, however, you can still use the old U-Boot currently running to fix any problems that may have
occurred during the update. Once you are satisfied that every step of the update has gone through cleanly, you
can go ahead and restart the system:

=> reset

U-Boot 0.2.0 (Jan 27 2003 - 20:20:21)

CPU: XPC860xxZPnnD3 at 80 MHz: 4 kB I-Cache 4 kB D-Cache FEC present
Board: TQM860LDB0A3-T80.201
DRAM: 16 MB
FLASH: 8 MB
In: serial
Out: serial
Err: serial
Net: SCC ETHERNET, FEC ETHERNET
PCMCIA: No Card found
Hit any key to stop autoboot: 5

If you can see the U-Boot boot message again, U-Boot has been successfully updated. Otherwise, there has
been a problem with the replacement of the firmware and you need to reprogram the flash device using the
appropriate hardware tools.

Sometimes, kernel images that used to boot with the older bootloader version will fail to boot with newer
versions. When upgrading from a PPCBoot version prior to 1.0.5 to Version 1.0.5 or later, for example, kernels
prior to 2.4.5-pre5 may fail to boot. In that case, the reason behind the problem is in the way U-Boot passes the
clock speed to the kernel. Prior to kernel 2.4.5-pre5, kernels expected to receive the speed in MHz, while later
kernels expect to receive the speed in Hz. To this end, PPCBoot 1.0.5 passes the clock speed to kernels in Hz.
Kernels that expect to receive it in MHz, however, fail to boot. In practice, the boot process will start as it would
normally, but the system will freeze right after U-Boot finishes uncompressing the images for startup. You will,
therefore, see something like:

 ...
 Entry Point: 00000000
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nothing will be output after that, and there will be no responses to any input from the terminal. To solve the
problem, you need to tell the newer version of U-Boot to keep passing the clock speed in MHz to the older
kernels. This is done by setting the clocks_in_mhz environment variable to 1:

=> setenv clocks_in_mhz 1
=> saveenv
Though this sort of problem does not occur for every upgrade, changes in the kernel sometimes require
significant changes to the tools that interface with it. Given that such problems are difficult to figure out if you are
not involved in the actual development of each project, I strongly encourage you to keep in touch with the rest of
the U-Boot users by subscribing to the U-Boot users mailing list from the project's web site and to read
announcements of new versions carefully.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Setting Up Networking Services
Increasingly, embedded system designers are called upon to include networking capabilities in
their products. An embedded system may, for example, include a web server to enable web-
based configuration. It may also enable remote login for maintenance and upgrading purposes.
Because the Linux kernel, and the networking software that run on it, are often the preferred
software for running networking services that require high reliability and high availability, you will
find Linux particularly well suited for networking applications.

In this chapter, we will discuss the setup and configuration of the networking services most
commonly found in embedded Linux systems. This discussion will include instructions on how to
cross-compile each networking package and how to modify the target's root filesystem to run the
services provided by each package. In particular, I will cover the use of the internet super-server
(inetd), remote administration with SNMP, network login through Telnet, secure communications
with SSH, serving web content through HTTP, and dynamic configuration through DHCP.

There are, of course, many other networking services that can run on top of Linux. Though I
couldn't realistically cover all of them in a single chapter, the explanations included here should
provide you with some hints as to how to install and use other networking packages. Also, I will
not cover the setup, configuration, and use of actual networking hardware. If you need information
regarding these issues, have a look at Running Linux and Linux Network Administrator's Guide,
both published by O'Reilly. I will not provide in-depth coverage, either, of the configuration and
use of the various networking packages, since many already have entire books dedicated to
them. For more information regarding Linux networking in general, look at books such as the
ones mentioned earlier that discuss the issue from the perspective of a server or a workstation.

This chapter builds on the material presented in Chapter 6. The operations presented here are
done as part of building the target's root filesystem described in Chapter 6. Though these
operations are supplemental, we discuss them here because they are not essential to the creation
of the target's root filesystem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 The Internet Super-Server

As in most other Unix systems, networking services are implemented as daemons in Linux. Each
networking daemon responds to requests on a particular port. The Telnet service, for example,
operates on port 23. For networking services to function properly, some process must be alive
and listening on each corresponding port. Instead of starting all the networking daemons so that
each would listen to its own port, however, most systems make use of an internet "super-server."
This super-server is a special daemon that listens to the ports of all the enabled networking
services. When a request comes in from a particular port, the corresponding networking daemon
is started, and the request is passed on to it for service.

There are two main benefits to this scheme. First, only the minimal set of needed daemons is
active at all times, and therefore, no system resources are wasted. Second, there is a centralized
mechanism for managing and monitoring network services.

Though many networking services can be managed by the internet super-server, some services
such as an HTTP server or an SNMP agent are almost always set up to have direct control of
their ports for reasons of scalability and reliability. In fact, the daemons providing such services
will not require an internet super-server to operate properly. For each networking service
discussed in the following sections, we will consider whether the service depends on the super-
server.

There are two main internet super-servers available for Linux, inetd and xinetd. Though inetd
used to be the standard super-server for most Linux distributions, it is gradually being replaced by
xinetd, which contains more features. But because inetd contains fewer features than xinetd, it is
also smaller and may be better for an embedded Linux system.

10.1.1 inetd

inetd is part of one of the netkit packages available from
ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/. Netkit is a set of packages that provide various
networking capabilities. inetd is part of the netkit-base package, which also contains ping. Like
other netkit packages, netkit-base is distributed under the terms of a BSD license. In this section
and throughout this chapter, I will use an ARM-based system as my system management (SYSM)
module[1] to present the operations you need to carry out.

[1] See Section 1.3 for details about the components in my example system.

First, download netkit-base and extract it into your ${PRJROOT}/sysapps directory. For my SYSM
module, I used netkit-base Version 0.17. Now, move to the directory where netkit-base was
extracted:

$ cd ${PRJROOT}/sysapps/netkit-base-0.17
Before you begin configuring netkit-base, you need to modify the configure script to prevent it
from trying to run test programs on your host. Because you are instructing it to use the compiler
you built for the target, the test programs it compiles will be fit only for your target. Hence, these
test programs will fail to run on the host, and the configure script fails to complete if it is not
modified. To avoid these problems, edit the configure script and comment all the lines that
attempt to execute the compiled binary by adding a # symbol at the beginning of each line. The
actual test programs configure tries to run are all called _ _conftest. Here is an example
commented line:

./_ _conftest || exit 1;

To build, inetd requires either glibc or uClibc. To link it against uClibc, however, you need to make

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To build, inetd requires either glibc or uClibc. To link it against uClibc, however, you need to make
sure that RPC support was enabled in uClibc. If uClibc was built with RPC disabled, which is the
default, you must reinstall uClibc.

Once the configure script has been properly edited, configure and compile netkit-base:

$ CC=arm-linux-gcc ./configure --prefix=${TARGET_PREFIX}
$ make
Netkit-base builds quite rapidly. The binary generated is 24 KB in size when linked dynamically
with glibc and stripped. When linked statically with glibc and stripped, the size of the binary is
around 460 KB. With uClibc, the stripped binary is 24 KB when linked dynamically and 85 KB
when linked statically. Regardless of the actual link method you choose, the resulting inetd binary
is much smaller than the xinetd binary, as we shall see in the next section.

The file sizes provided throughout this chapter correspond to my own
setup and you are likely to obtain slightly different sizes. Use the numbers
provided here as an indication only, because your actual binaries are
likely to have different sizes from mine. ARM code, for instance, and RISC
code in general, is usually larger than x86 code.

In contrast with other packages we've built in other chapters, don't use make install, because the
Makefiles were not properly built for cross-platform development. Among other things, they
attempt to use the host's strip command to strip the binaries of their symbol tables.

To install inetd, copy the inetd binary and the sample configuration file manually to your target's
root filesystem:

$ cp inetd/inetd ${PRJROOT}/rootfs/usr/sbin
$ cp etc.sample/inetd.conf ${PRJROOT}/rootfs/etc
Edit the inetd.conf file according to your own setup. In addition to inetd.conf, the etc.sample
directory contains other file samples that may be used in your target's /etc directory, such as
resolv.conf and services. For my SYSM module, for example, here's the inetd.conf entry for the
Telnet daemon discussed in Section 10.3:

telnet stream tcp nowait root /usr/sbin/telnetd

Once inetd is copied and configured, edit your target's /etc/inittab file to add a line for inetd. Here
is an example line for my SYSM module that uses BusyBox's init:

::respawn:/usr/sbin/inetd -i

The -i option instructs inetd not to start as a daemon. Hence, init can respawn inetd if it dies for
some unexpected reason.[2]

[2] The super-server is not normally subject to crashing. The reliance on init is therefore just an extra precaution.

Because netkit-base also includes ping, you will find a ping binary in the ping directory. You don't
need to use this binary if you are already using BusyBox, however, since BusyBox includes a ping
command.

For more information regarding the use of inetd, have a look at the man pages included in the
netkit-base package under the inetd directory.

10.1.2 xinetd

xinetd is preferable to inetd on some systems, because it allows some secure authorization,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xinetd is preferable to inetd on some systems, because it allows some secure authorization,
provides extensive logging abilities, and can prevent denial-of-access attacks, among other
things. Though the FAQ available from the xinetd project web site contains a complete list of
advantages over inetd, suffice it to say that you should use the xinetd super-server if your
embedded system is designed to provide extensive networking services or live in a hostile
networking environment such as the Internet.

xinetd is distributed at http://www.xinetd.org/ under a BSD-like license. For my SYSM module, I
used xinetd Version 2.3.9. Download and extract the xinetd package into your
${PRJROOT}/sysapps directory, and move into the package's directory for the rest of the
manipulations:

$ cd ${PRJROOT}/sysapps/xinetd-2.3.9
As with inetd, xinetd can't be compiled with uClibc if it lacks certain features. In particular, xinetd
will fail to build with uClibc if it doesn't support RPC and C99. In addition to the C library, xinetd
depends on the math library (libm) and the cryptography library (libcrypt).

Configure, compile, and install xinetd:

$ CC=arm-linux-gcc ./configure --host=$TARGET --prefix=${TARGET_PREFIX}
$ make
$ make install
xinetd builds quite rapidly. The stripped dynamically linked binary itself is quite large, being 130
KB in size with either uClibc or glibc. When statically linked and stripped, the binary's size is 615
KB with glibc and 210 KB with uClibc. The xinetd package installs its components in the
${TARGET_PREFIX} directory. The build also installs manpages. The xinetd binary itself is
installed in ${TARGET_PREFIX}. Copy it from that directory to your target's root filesystem and
strip it:

$ cp ${TARGET_PREFIX}/sbin/xinetd ${PRJROOT}/rootfs/usr/sbin
$ arm-linux-strip ${PRJROOT}/rootfs/usr/sbin/xinetd
A sample configuration file is provided with xinetd, xinetd/sample.conf. Use this sample as the
basis for configuring your target. Copy it to your target's root filesystem and edit it according to
your needs:

$ cp xinetd/sample.conf ${PRJROOT}/rootfs/etc/xinetd.conf
Here is the entry in my SYSM module's xinetd.conf for the Telnet daemon discussed in Section
10.3:

service telnet
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/telnetd
 bind = 127.0.0.1
 log_on_failure += USERID
}

Finally, edit your target's /etc/inittab file to add a line for xinetd. As for inetd, I had to add a line for
xinetd in my SYSM module's inittab:

::once:/usr/sbin/xinetd

Unlike inetd, xinetd can be started only as a daemon. Therefore, it cannot be respawned by init if
it dies.

For more information regarding the use and configuration of xinetd, look at the manpages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For more information regarding the use and configuration of xinetd, look at the manpages
included in the xinetd directory of the xinetd package. The project's web site also includes an FAQ
and a mailing list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Remote Administration with SNMP

The Simple Network Management Protocol (SNMP) allows the remote management of devices on
TCP/IP networks. Though networking equipment, such as routers and switches, is the most likely
to be SNMP-enabled, almost any device that connects to a TCP/IP network can be equipped with
an SNMP agent.[3] An SNMP agent allows you to monitor the target remotely and automatically. In
other words, you don't need to have an operator stand by the system and make sure it's still alive
and watch over its current performance. The SNMP agent allows you to automatically query the
device for its status using an SNMP manager[4] application running on a separate system. The
agent running in your target can also be configured to send SNMP traps to the SNMP manager to
inform it of software or hardware failure. If your target is part of a complex network or if you need
to be able to constantly monitor its status remotely, you should think about including an SNMP
agent in it.

[3] Basically, an agent is the SNMP software component that runs in the networked device to enable it to be managed
remotely.

[4] A manager is an SNMP software component that runs on a normal workstation or server and that is responsible for
monitoring remote systems running SNMP agents.

There are quite a few SNMP agents and packages that enable interaction with SNMP-enabled
devices, many of them are quite expensive. In the open source world, Net-SNMP is the standard
package for building and managing SNMP-enabled systems. Net-SNMP is distributed at
http://net-snmp.sourceforge.net/ under a composite license that is similar to the BSD license.[5]

[5] See the COPYING file in the Net-SNMP package for the complete details about the license.

The Net-SNMP package is relatively large and contains many software components. For most
targets, however, we will be interested only in the SNMP agent, since this is the software
component that will allow our device to be remotely managed. Start by downloading and
extracting the Net-SNMP package to your ${PRJROOT}/sysapps directory. For my SYSM
module, for example, I used Net-SNMP Version 5.0.6. Now, move to the package's directory for
the rest of the manipulations:

$ cd ${PRJROOT}/sysapps/net-snmp-5.0.6
The Net-SNMP package can be compiled with both uClibc and glibc. There are a few
requirements when using uClibc, however, as we'll see. In addition to the C library, Net-SNMP
depends on the shared object dynamic loading library (libdl) and the math library (libm).

To configure Net-SNMP for building with glibc enter:

$ CC=arm-linux-gcc ./configure --host=$TARGET --with-endianness=little
To link Net-SNMP against uClibc, uClibc must be configured with IPv6 support. If it isn't, you can
add the —disable-ipv6 option to Net-SNMP's configuration command line to disable IPv6 support
within Net-SNMP. Also, you will need to fix the agent/mibgroup/ucd-snmp/disk.c file so that it
compiles properly with uClibc. Edit the file and look for the following declaration:

#if HAVE_FSTAB_H
 endfsent();
#endif

Replace that declaration with the following one:

#if !defined HAVE_GETMNTENT && defined HAVE_FSTAB_H
 endfsent();
#endif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#endif

Finally, issue the configure command using arm-uclibc-gcc instead of arm-linux-gcc.

Note that we avoid using the - -prefix option when configuring Net-SNMP. If we used it, the
resulting SNMP agent would always look for its files in the directory provided in the option.
Instead, we want the SNMP agent to take its configuration from the default /usr/local/share/snmp
directory. To control the directory where the SNMP components are installed, we will set the
values of prefix and exec_prefix when issuing the make install command.

During its execution, the configuration script will prompt you for certain information regarding the
functionality of the SNMP agent, including the SNMP version to use, the contact information for
the device, and the system's location. The instructions provided by the configuration script are
usually sufficient to understand the purpose of the information requested. If you need more
information regarding the configuration process of the Net-SNMP agent, look at the Essential
SNMP book by Douglas Mauro and Kevin Schmidt (O'Reilly).

Once the configuration script has completed, build and install the Net-SNMP components:

$ make
$ make prefix=${TARGET_PREFIX} exec_prefix=${TARGET_PREFIX} install
The values we provide for the prefix and exec_prefix variables determine the main directory
where the Net-SNMP components are installed. By avoiding the use of the - -prefix option during
the configuration earlier and by setting the prefix and exec_prefix variables here, we ensure
that the SNMP agent runs from the target's /usr/local/share/snmp directory even though its
components are initially installed in the ${TARGET_PREFIX} directory on the host. If you forget to
set exec_prefix, the installation will fail, because the scripts will try to install components into
your host's /usr directory.

The SNMP agent built by Net-SNMP is a very large binary. If you compile it against glibc and strip
it, it will measure 650 KB when linked dynamically and 1.1 MB when linked statically. If you
compile it against uClibc and strip it, it will measure 625 KB when linked dynamically and 680 KB
when linked statically. Because the figures for the unstripped binaries all exceed 1.7 MB, I
strongly encourage you to strip the agent binary.

The complete build and installation will take around 10 minutes, depending on your hardware,
because Net-SNMP is quite a large package. In addition to copying binaries, the installation
copies manpages and headers into the ${TARGET_PREFIX} directory. The SNMP daemon
(snmpd), which is the actual SNMP agent, is installed in ${TARGET_PREFIX}/sbin. The other
SNMP utilities, such as snmpget, are installed in ${TARGET_PREFIX}/bin. The SNMP trap
daemon is also installed in ${TARGET_PREFIX}/sbin (this daemon is used to monitor incoming
traps). The MIB information required by the SNMP daemon is installed in
${TARGET_PREFIX}/share/snmp.

With all the Net-SNMP components installed in your development workspace on the host, copy
the SNMP daemon to your target's root filesystem:

$ cp ${TARGET_PREFIX}/sbin/snmpd ${PRJROOT}/rootfs/usr/sbin
Copy the relevant components found in ${TARGET_PREFIX}/share/snmp to the
/usr/local/share/snmp directory of your target's root filesystem:

$ mkdir -p ${PRJROOT}/rootfs/usr/local/share
$ cp -r ${TARGET_PREFIX}/share/snmp ${PRJROOT}/rootfs/usr/local/share
The SNMP MIB information weighs in at around 1.3 MB. Added with the stripped binary, this
brings the minimum cost of the total SNMP package to a little over 2 MB in storage. This is a fairly
large package for most embedded Linux systems.

To run properly, the SNMP agent requires a configuration file. An EXAMPLE.conf example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To run properly, the SNMP agent requires a configuration file. An EXAMPLE.conf example
configuration has been created during the build of the Net-SNMP package in the package's root
directory. Customize that file and copy it to your ${PRJROOT}/rootfs/usr/local/share/snmp
directory:

$ cp EXAMPLE.conf ${PRJROOT}/rootfs/usr/local/share/snmp/snmpd.conf
Finally, edit your target's /etc/inittab file to add a line for snmpd. Here is the line I add for snmpd in
my SYSM module's inittab:

::respawn:/usr/sbin/snmpd -f

The -f option instructs snmpd not to fork from the calling shell. In other words, snmpd will not
become a daemon and init will respawn it if it dies.

For more information regarding SNMP, including the configuration and use of Net-SNMP, look at
the Essential SNMP book mentioned earlier. The Net-SNMP project's web site contains quite a
few resources, including an FAQ, various documents, and a mailing list. The manpages installed
by Net-SNMP are also informative.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 Network Login Through Telnet

The Telnet protocol is one of the simplest ways to log in to a remote network host. Consequently,
it's the easiest way to access your target system once it is connected to a network. To enable
remote login, your target must run a Telnet daemon. There are two main Telnet daemons
available for use in embedded Linux systems, telnetd, which is part of the netkit packages
mentioned earlier, and utelnetd, which is maintained by Robert Schwebel of Pengutronix. In terms
of size, the binary generated by the utelnetd package is clearly smaller than the one generated by
the netkit Telnet package. In addition, utelnetd does not require an internet super-server, while
telnetd does. If your system has very limited resources and does not include other network
services managed by an internet super-server, use utelnetd.

Though Telnet is a convenient, lightweight communications mechanism for managing your device
on a dedicated network, it's not a secure protocol and is, therefore, not fit for use on the Internet.
If you need to remotely log in a device that resides on the Internet, use SSH instead. We will
discuss SSH in detail in Section 10.4.

10.3.1 netkit-telnetd

As with other netkit packages, netkit-telnet, which contains telnetd, is distributed at
ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/ under a BSD license. For my SYSM module, I
used netkit-telnet Version 0.17.

Download and extract the netkit-telnet package into your ${PRJROOT}/sysapps directory and
move to the package's directory for the rest of the manipulations:

$ cd ${PRJROOT}/sysapps/netkit-telnet-0.17
As in the case of the netkit-base package described earlier, the configure script included in netkit-
telnet package attempts to run some test programs. Because these test programs are compiled
using the target's compiler, they will fail. To avoid this, edit the configure script and comment out
all the lines that attempt to execute test binaries. As earlier, here is an example commented line:

./_ _conftest || exit 1;

Once the script has been modified, you are ready to configure and compile the Telnet daemon.
To link with glibc, type:

$ CC=arm-linux-gcc ./configure --prefix=${TARGET_PREFIX}
$ touch ${TARGET_PREFIX}/include/termcap.h
$ make -C telnetd
To build with uClibc, type:

$ CC=arm-uclibc-gcc ./configure --prefix=${TARGET_PREFIX}
$ touch ${PREFIX}/uclibc/include/termcap.h
$ make -C telnetd
As you can see, we compile only telnetd. The package also includes the telnet client, but the
Makefile for that client doesn't allow cross-compilation. Even if it did, you'll find it better to use the
miniature telnet client included in BusyBox. We used touch to create a termcap.h file in the
appropriate header directory because telnetd's source files include this header file. We don't need
the termcap library, however. The build process requires only the termcap header file to be
present, and the file can be empty.

The complete build process for telnetd is fairly short. The resulting binary is quite small. When

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The complete build process for telnetd is fairly short. The resulting binary is quite small. When
built with uClibc and stripped, the binary is 30 KB if linked dynamically and 65 KB if linked
statically. When built with glibc and stripped, the binary is 30 KB if linked dynamically and 430 KB
if linked statically.

Don't use make install, because the Makefile was not properly built for cross-platform
development and attempts to use the host's strip command instead of the version we built earlier
for the target.

Instead, copy the telnetd binary by hand to your target's root filesystem:

$ cp telnetd/telnetd ${PRJROOT}/rootfs/usr/sbin
You need to have a properly configured copy of either the inetd or xinetd internet super-server
that allows Telnet connections to your target. Alternatively, you could edit your target's /etc/inittab
to start the Telnet daemon using the -debug option so that it doesn't need to rely on any super-
server. However, telnetd wasn't meant to be used this way.

In addition to the C library, telnetd depends on the login routines library (libutil). Hence, do not
forget to copy this library to your target's /lib directory if you link telnetd dynamically.

For further information regarding the use of telnetd, have a look at the manpage included in the
telnetd directory of the netkit-telnet package, or the manpage installed on your host for your
workstation's native telnetd.

10.3.2 utelnetd

The utelnetd package is distributed at http://www.pengutronix.de/software/utelnetd_en.html under
the terms of the GPL. utelnetd depends on the C library and can be built using uClibc. For my
SYSM module, I used utelnetd 0.1.3.

Download and extract the utelnetd package into your ${PRJROOT}/sysapps directory and move
to that package's directory for the rest of the installation:

$ cd ${PRJROOT}/utelnetd-0.1.3
utelnetd does not require any configuration before compilation. To compile the package against
glibc, type:

$ CC=arm-linux-gcc make
The compilation time is very short, since the entire daemon is contained in a single source file.
The resulting utelnetd binary is around 10 KB in size when linked dynamically with either glibc or
uClibc and stripped. When linked statically, the binary is 375 KB if linked against glibc and
stripped, and 25 KB if linked against uClibc and stripped.

There are no configuration files required for utelnetd. All you need is to copy the binary to your
target's root filesystem and modify the system's initialization to start a copy of utelnetd at startup.
Unlike telnetd, utelnetd is standalone and doesn't rely on an internet super-server such as inetd or
xinetd. First, copy the file to your target's root filesystem:

$ cp utelnetd ${PRJROOT}/rootfs/usr/sbin
Now, edit your target's /etc/inittab file to start utelnetd at startup. As an example, here is the line I
add for utelnetd in my SYSM module's /etc/inittab:

::respawn:/usr/sbin/utelnetd

Though there is little documentation on the use of utelnetd, the package is simple enough that a
quick glance at the source code should provide you with all the information you need.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4 Secure Communication with SSH

Though you can easily communicate with your target using Telnet, it is a very insecure protocol
and its vulnerabilities are widely documented. The user password, for instance, is transmitted in
clear text from the client to the server. It would therefore be rather unprudent, and in most cases
downright dangerous, to include a Telnet daemon in your product in the hopes of being able to
remotely fix problems once the product is at the client's site. Instead, it would be much preferable
to use a protocol that relies on strong encryption and other mechanisms to ensure the
communication's confidentiality. The best way to do this currently is to use the SSH protocol and
related tool suite. SSH uses public-key cryptography to guarantee end-to-end communication
encryption while being fairly easy to use and deploy.

Because SSH is an IETF standard, there are a few competing implementations, some of which
are proprietary commercial products. The main open source implementation is OpenSSH.
Although there are other open source implementations, they are either very difficult to cross-
compile or have dependencies that make them impractical for use in embedded Linux systems. I
will therefore devote most of this section to discussing OpenSSH. We will briefly review the other
open source implementations, because they may eventually become usable in embedded Linux
systems.

An embedded system that can be accessed through SSH runs the same SSH server software
usually run on a traditional server. Our discussion will therefore concentrate on the compilation of
the SSH server for the target, and its setup, configuration, and use on the target. I will not cover
aspects of how to set up and use any of the other SSH components.

If you are seriously considering using an SSH package in your target, I suggest you take a look at
SSH, The Secure Shell: The Definitive Guide by Daniel Barrett and Richard Silverman (O'Reilly).
It provides the in-depth coverage I cannot undertake here.

10.4.1 OpenSSH

OpenSSH is developed and maintained as part of the OpenBSD project. It is available from
http://www.openssh.org/ under a composite BSD license (see the LICENSE file for the complete
details) along with ample documentation and quite a few other resources. To use OpenSSH in
your target, you also need two libraries: OpenSSL and zlib. OpenSSL is an open source
implementation of the Secure Socket Layer (SSL) protocol and is available from
http://www.openssl.org/ under a BSD-like license. The zlib compression library is the same as the
one we discussed earlier in Section 7.1. Before building and installing OpenSSH, you must first
build and install both these libraries in your host's cross-platform development framework. In
addition, OpenSSH, OpenSSL, and zlib need to exist natively on your host. If you intend to link
OpenSSH with uClibc, uClibc must be installed natively on your host. Before you go any further,
make sure that the required components are properly installed on your workstation, since they are
needed for compiling OpenSSH for the target.

For my example SYSM module, I used OpenSSH 3.5p1, OpenSSL 0.9.6g, and zlib 1.1.4.
Because vulnerabilities are found from time to time in some of these packages, it is important to
keep track of the versions you are using and to have upgrade plans, in case serious
vulnerabilities are found in one of the versions you are using.

The OpenSSH package is hostile to cross-compilation. Among many
other things, its configuration script attempts to run test samples it builds
using the compiler specified with CC=. Because the applications built

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using the compiler specified with CC=. Because the applications built
using the cross-compiler can't run on the host, the script stops and emits
an error. As you'll see, we need to resort to a number of tricks to force the
package's configuration scripts and Makefiles to build the software. The
headers and libraries installed natively on the host are used extensively,
for example, in fooling the package into compiling for the target. Though
the instructions that follow try to be as complete as possible, you may
need to put some effort into figuring out a few modifications for your own
setup.

In the following, I discuss both OpenSSL and OpenSSH. Because the
names of both packages differ by only one letter, it is easy to confuse the
names while reading the text. Pay close attention to the last letter of each
package name to avoid any confusion.

We will discuss how to build and install OpenSSL shortly. First, however, refer to Section 7.1 for
instructions on how to build zlib. In contrast to these earlier instructions, you need to build zlib as
a static library instead of a shared library. To do so, don't set the value of LDSHARED and don't
use the - -shared option, as we did earlier, on the configure command line.

In the rest of this section, I will assume that you are building OpenSSH against glibc. If you would
rather use uClibc, replace all references to ${TARGET_PREFIX} with references to
${PREFIX}/uclibc and all references to arm-linux-gcc with references to arm-uclibc-gcc. If you had
not enabled shadow password support and C99 support when installing uClibc, you will need to
reinstall uClibc with support for these features enabled. Also, you will need to install zlib in
uClibc's directory. To do so, set the value of prefix to ${PREFIX}/uclibc instead of
${TARGET_PREFIX} when issuing the make install command for zlib.

With zlib properly built and installed, download and extract OpenSSL in your ${PRJROOT}/build-
tools directory. Move to the package's directory to configure, compile, and install it:

$./config --prefix=${TARGET_PREFIX} compiler:arm-linux-gcc
$ make
$ make install
Here, the compiler is specified using the compiler: option instead of setting the value of CC. Once
completed, all the components installed are found under the ${TARGET_PREFIX} directory. The
compilation takes around 10 minutes on my hardware setup.

Once OpenSSL is installed, download and extract OpenSSH into your ${PRJROOT}/sysapps
directory. Now move to OpenSSH's directory to proceed:

$ cd ${PRJROOT}/sysapps/openssh-3.5p1
To trick OpenSSH's configure script into successfully creating useful Makefiles, we need to
pretend that we are actually configuring it for the host. We then use the Makefiles created by
configure to build OpenSSH for the target. For this scheme to succeed, we must use a few fake
file links. Mainly, we need to:

1. Create a symbolic link to the host's C compiler bearing the same name as the C compiler
we generated for the target.

2. Create a symbolic link to the host's native OpenSSL headers.

3. Create a symbolic link to the host's native OpenSSL libraries.

On my development host, for example, the native OpenSSL headers and libraries are located in
the /usr/local/ssl directory, and the C compiler is located in /usr/bin. Here are the preliminary steps
I use for preparing the build of OpenSSH for my SYSM module:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ export PATH=./:$PATH
$ which gcc
/usr/bin/gcc
$ ln -s /usr/bin/gcc ./arm-linux-gcc
$ ln -s /usr/local/ssl/include ./fake-include
$ ln -s /usr/local/ssl/lib ./fake-lib
I modified the PATH to force configure to start looking in the current directory first for all binaries.
This enables me to trick it into using a compiler called arm-linux-gcc when this is really the host's
own compiler. I can now run the configure script itself using the fake links:

$ CC=arm-linux-gcc CFLAGS=-I./fake-include LDFLAGS=-L./fake-lib \
> ./configure --host=$TARGET
The line above generates Makefiles that build dynamically linked binaries. To link the binaries
statically, change the value of LDFLAGS to "-L./fake-lib -static".

The script's output resembles the output of other configure scripts we've seen before. At the end,
however, it prints a summary of the configuration it has found:

OpenSSH has been configured with the following options:
 User binaries: /usr/local/bin
 System binaries: /usr/local/sbin
 Configuration files: /usr/local/etc
 Askpass program: /usr/local/libexec/ssh-askpass
 Manual pages: /usr/local/man/manX
 PID file: /var/run
 Privilege separation chroot path: /var/empty
 sshd default user PATH: /usr/bin:/bin:/usr/sbin:/sbin:...
 Manpage format: doc
 PAM support: no
 KerberosIV support: no
 KerberosV support: no
 Smartcard support: no
 AFS support: no
 S/KEY support: no
 TCP Wrappers support: no
 MD5 password support: no
 IP address in $DISPLAY hack: no
 Use IPv4 by default hack: no
 Translate v4 in v6 hack: yes
 BSD Auth support: no
 Random number source: OpenSSL internal ONLY

 Host: arm-unknown-linux-gnu
 Compiler: arm-linux-gcc
 Compiler flags: -I./fake-include -Wall -Wpointer-arith -Wno-un...
Preprocessor flags:
 Linker flags: -L./fake-lib
 Libraries: -lutil -lz -lnsl -lcrypto -lcrypt

This output indicates that the SSH software expects to operate through the root /usr and /var
directories, which is fine since it will be running as root on the target. The most important parts,
however, are the Compiler and the various flags fields at the bottom. In the output shown, the
compiler name is the right one, and the include and library paths point to the fake entries I created
earlier. Hence, I have succeeded in fooling configure into creating Makefiles that use filenames
that I can control. To finish the trick, I can now remove the fake links I created earlier and create
appropriate ones for my target:

$ rm arm-linux-gcc fake-include fake-lib
$ ln -s ${TARGET_PREFIX}/include ./fake-include

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ln -s ${TARGET_PREFIX}/include ./fake-include
$ ln -s ${TARGET_PREFIX}/lib ./fake-lib
By removing the arm-linux-gcc file link, I am forcing the Makefiles to use the arm-linux-gcc
command found in the PATH, which is the actual cross-compiler I built earlier for my target.
Similarly, the library and header file path links I just created will force the Makefiles to use my
target's actual libraries and header files. All is set now for building OpenSSH.

Before you issue the make command, you may need to hand-tweak some header files if the C
library version you are using for your target is not the same as the one used on your host or if the
sizes of the various C types on the target differ from those on the host. In my case, for example, I
had to edit defines.h and config.h. In defines.h, I had to add an #if 0 and #endif around the
definitions of _ _ss_family. In config.h, I had to do the same with the #define of
HAVE_GETGROUPLIST. You will probably need to modify those files in your own way to get
OpenSSH to compile. If you get errors at link time about missing symbols, this probably means
you have to edit config.h and comment out the appropriate HAVE_ definition. Note that any
modification to config.h will be lost if you run the configure script again.

With the headers having been properly modified, everything is ready for building OpenSSH:

$ make
The complete compilation takes less than five minutes on my hardware. The resulting SSH
daemon—which is the binary we are most interested in for our target, as I said earlier—is fairly
large. When compiled against glibc and stripped, the binary is around 1 MB in size if linked
dynamically and 1.4 MB if linked statically. When compiled with uClibc and stripped, the binary is
around 1 MB when linked dynamically and 1.1 MB when linked statically.

Copy the SSH daemon to your target's root filesystem and strip it:

$ cp ./sshd ${PRJROOT}/rootfs/usr/sbin
$ arm-linux-strip ${PRJROOT}/rootfs/usr/sbin/sshd
To run the daemon, you need a configuration file and a set of private and public keys. An example
configuration file is already provided as part of the OpenSSH package, sshd_config. Copy this file
to your target's root filesystem and customize it according to your needs:

$ mkdir -p ${PRJROOT}/rootfs/usr/local/etc
$ cp sshd_config ${PRJROOT}/rootfs/usr/local/etc
Also, you need to generate the keys for your target. There are three types of keys to generate,
RSA1, RSA, and DSA, and each has a private and a public component. All keys will be located in
the same directory as the daemon's configuration file, in the target's /usr/local/etc/ directory. Using
your host's native OpenSSH tools, create the keys for your target:

$ ssh-keygen -t rsa1 -f ${PRJROOT}/rootfs/usr/local/etc/ssh_host_key
$ ssh-keygen -t rsa -f ${PRJROOT}/rootfs/usr/local/etc/ssh_host_rsa_key
$ ssh-keygen -t dsa -f ${PRJROOT}/rootfs/usr/local/etc/ssh_host_dsa_key
In addition, create /var entries on your target's root filesystem for OpenSSH:

$ mkdir -p ${PRJROOT}/rootfs/var/run ${PRJROOT}/rootfs/var/empty
$ su -m
Password:
chown root:root ${PRJROOT}/rootfs/var/run ${PRJROOT}/rootfs/var/empty
chmod 755 ${PRJROOT}/rootfs/var/empty
exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, you need to have a "privilege separation" user on your target. This user isolates the
connection to the outside world from the brain of the SSH daemon. Thus, if the connection is
compromised, the remote party does not obtain root access to the system. To add the privilege
separation user, first edit your target's /etc/group file and add the following line:

sshd:x:255:

Replace the 255 value with a group ID that is still available on your target. If you are using
CRAMFS, remember that this number must be below 256. Now, edit your target's /etc/passwd file
and add the privilege separation user:

sshd:x:501:255:sshd privsep:/var/empty:/bin/false

Also, edit your target's /etc/shadow file and add an entry for the privilege separation user:

sshd:*:11880:0:99999:7:-1:-1:0

Furthermore, you need to copy all the libraries sshd depends on to your target's root filesystem, if
you had used dynamic linking. Use arm-uclibc-ldd to find the complete list of dependencies.

As with the earlier networking packages, edit your target's /etc/inittab file to start the sshd
process:

::respawn:/usr/sbin/sshd -D

The -D flag is used to tell sshd not to fork from the shell and become a daemon. Hence, init can
respawn it if it dies. This, however, is not a common occurrence, and any failure of sshd should
be considered a serious bug and be properly investigated.

For further information on how to configure and operate OpenSSH, see the SSH, The Secure
Shell: The Definitive Guide book mentioned earlier.

10.4.2 A Word on Other SSH Implementations

Apart from OpenSSH, there are a few other open source SSH implementations; most notably
LSH and FreSSH. At the time of this writing, however, neither is fit for use in production
embedded Linux systems.

LSH, for example, depends on packages that have their own dependencies. In particular, it
depends on the GNU MP library, zlib, and liboop. The first two dependencies are tolerable. The
problem is that liboop depends on glib, which in turn requires pkg-config. Moreover, the glib
package doesn't lend itself well to cross-compiling. If you are using a host of the same
architecture as the target, you may to consider compiling LSH statically and then using it on your
target. If, as in most cases, your target isn't of the same architecture as your host, LSH isn't a
practical choice at this time.

FreSSH, on the other hand, is a relatively new package that isn't as mature as the other open
source SSH packages. Among other things, it lacks a configure script and requires extensive
Makefile modifications to build. In addition, it can be built only against glibc. The compilation
against uClibc requires a number of source code modifications. When compiled against glibc, the
resulting SSH daemon's size is around 850 KB, which is very close to the size of the SSH
daemon generated by OpenSSH.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.5 Serving Web Content Through HTTP

One of the biggest trends in network-enabling embedded systems is the inclusion of a web
(HTTP) server. The added HTTP server can then be used for enabling remote administration or
remote data viewing. In the case of my SYSM module, for example, the HTTP server enables my
users to configure and monitor various aspects of the control system.

Though the open source Apache HTTP server is the most widely used HTTP server in the world,
it is not necessarily fit for embedded systems. Mainly, it is very difficult to cross-compile and tends
to be rather large in terms of required storage space. There are, nevertheless, other open source
HTTP servers that are much more adapted to embedded systems. In particular, Boa and thttpd
are small, lightweight, fast servers and are a perfect fit for embedded Linux systems.

There does not seem to be a clear set of characteristics to help in choosing between Boa and
thttpd. The only really notable difference is that Boa is distributed under the terms of the GPL
while thttpd is distributed under the terms of a BSD-like license. The size of the resulting binaries
are, however, quite comparable. Both packages also support CGI scripting. Therefore, I suggest
you have a look at both to decide which one you prefer.

10.5.1 Boa

Boa is available from http://www.boa.org/ and is distributed under the terms of the GPL. Boa
requires only a C library and can be compiled both against glibc and uClibc. For my SYSM
module, I used Boa 0.94.13.

Download and extract Boa in your ${PRJROOT}/sysapps directory. With the package extracted,
move to the appropriate directory:

$ cd ${PRJROOT}/sysapps/boa-0.94.13/src
Configure and compile Boa:

$ ac_cv_func_setvbuf_reversed=no CC=arm-linux-gcc ./configure \
> --host=$TARGET
$ make
The command line above generates a dynamically linked binary. If you would rather have a
statically linked binary when compiling with uClibc, add LDFLAGS="-static" to the make
command line. To statically link against glibc, use the following make command line instead:

$ make \
> LDFLAGS="-static -Wl --start-group -lc -lnss_files -lnss_dns \
> -lresolv -Wl --end-group"

If you are trying to statically link Boa against glibc but you didn't use the - -
enable-static-nss option when configuring the build of the library, the
command line above will fail because of missing files.

If you try to avoid this error by using only LDFLAGS="-static" with a
glibc not built for enabling static NSS linking, the resulting binary will not
function properly on the target, as I said in Chapter 4. Mainly, the binary
attempts to load its dynamic NSS libraries from ${TARGET_PREFIX} on
the target. Since this directory doesn't exist, Boa always fails to find the
libraries it needs and stops. Though it may complain about a different sort
of problem, such as an unknown user, you can see the files it tries to open
using strace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To avoid these problems altogether, you must recompile glibc with the - -
enable-static-nss option. Once the library is recompiled and installed, you
will be able to link a real static binary that includes the appropriate NSS
libraries.

Note that you won't encounter this type of problem with uClibc, since it
doesn't implement glibc-style NSS.

The compilation time is short. When linked against uClibc and stripped, the resulting binary is 60
KB in size when linked dynamically and 90 KB when linked statically. When linked against glibc
and stripped, the resulting binary is 60 KB in size when linked dynamically and 520 KB when
linked statically.

Once the binary is ready, copy it to your target's root filesystem and strip it:

$ cp boa ${PRJROOT}/rootfs/usr/sbin
$ arm-linux-strip ${PRJROOT}/rootfs/usr/sbin/boa
For Boa to run, it needs a boa/ subdirectory in the target's /etc directory and a configuration file in
that same directory. Create Boa's directory and copy the sample configuration file to it:

$ mkdir -p ${PRJROOT}/rootfs/etc/boa
$ cp ../boa.conf ${PRJROOT}/rootfs/etc/boa
At runtime, Boa will need a user account to run. This user account is specified in the boa.conf file.
Edit this file and your target's /etc/passwd and /etc/groups files to add a user for Boa to use. Boa
also needs a /var/log/boa directory on your target's root filesystem to log accesses and errors:

$ mkdir -p ${PRJROOT}/rootfs/var/log/boa

Remember that log files can be a problem in an embedded system if their
growth is not restricted. Having a script that runs periodically to reinitialize
such files, for example, is a simple way to ensure they don't use up the
available storage space.

When running, Boa finds its web content from the target's /var/www directory. This is where you
should put any HTML files, including index.html. Create the directory and copy your content to it:

$ mkdir -p ${PRJROOT}/rootfs/var/www
$ cp ... ${PRJROOT}/rootfs/var/www
Finally, add a line in your target's /etc/inittab for Boa. On my SYSM module, for example, here is
the line I add for Boa:

::respawn:/usr/sbin/boa

For more information on how to use Boa, see the documentation included in the Boa package
and on the project's web site.

10.5.2 thttpd

thttpd is available from http://www.acme.com/software/thttpd/ and is distributed under a BSD-like
license. In addition to the C library, thttpd also depends on the cryptography library (libcrypt).
Download and extract thttpd in your ${PRJROOT}/sysapps directory. For my SYSM module, for
example, I used thttpd 2.23beta1. Move to the package's directory for the rest of the instructions:

$ cd ${PRJROOT}/sysapps/thttpd-2.23beta1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd ${PRJROOT}/sysapps/thttpd-2.23beta1
Now, configure and compile thttpd:

$ CC=arm-linux-gcc ./configure --host=$TARGET
$ make
This command line generates a dynamically linked binary. As with Boa, to generate a statically
linked binary with uClibc, add LDFLAGS="-static" to the make command line. To statically link
against glibc, you must use a make command similar to that used for Boa:

$ make \
> LIBS="-static -Wl --start-group -lc -lnss_files -lnss_dns \
> -lcrypt -lresolv -Wl --end-group"

As with Boa, if you are trying to statically link thttpd against a version of
glibc that wasn't built to enable static NSS linking, the command line
above will fail. Even if bypassed using LDFLAGS="-static", the
resulting binary will not function properly on the target. See the note in the
previous section for details.

As with Boa, the compilation ends quickly. When linked against uClibc and stripped, the resulting
binary is 70 KB in size when linked dynamically and 115 KB when linked statically. When linked
against glibc and stripped, the resulting binary is 70 KB when linked dynamically and 550 KB
when linked statically.

Copy the resulting binary to the target's root filesystem and strip it:

$ cp thttpd ${PRJROOT}/rootfs/usr/sbin
$ arm-linux-strip ${PRJROOT}/rootfs/usr/sbin/thttpd
Unlike Boa, you can configure thttpd either by using a configuration file or by passing the
appropriate command-line options. Use the -C option to provide a configuration file to thttpd. An
example configuration file is provided in contrib/redhat-rpm/thttpd.conf. If you wish to use a
configuration file, edit this file to fit your target's configuration after having copied it to your target's
root filesystem:

$ cp contrib/redhat-rpm/thttpd.conf ${PRJROOT}/rootfs/etc
Like Boa, thttpd operates with a special user account. By default, it uses the nobody account.
Create this account using procedures outlined earlier, or set thttpd to use an account of your
choice. The configuration file copied earlier specifies the use of the httpd user. It also identifies
the target's /home/httpd/html directory as the location for source HTML files:

$ mkdir -p ${PRJROOT}/rootfs/home/httpd/html
Finally, edit your target's /etc/inittab file. Here is the line I add for thttpd in my SYSM module's
inittab:

::respawn:/usr/sbin/thttpd -C /etc/thttpd.conf

For more information on how to install and run thttpd, see the manpage included in the package
and the project's web site.

10.5.3 A Word on Apache

Apache is available from http://www.apache.org/ and is distributed under the Apache license.[6] As

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache is available from http://www.apache.org/ and is distributed under the Apache license.[6] As
I said earlier, Apache does not lend itself well to cross-compiling. If you are not deterred by this
warning and would still be interested in attempting to cross-compile Apache, have a look at the
procedure outlined by David McCreedy in his posting to the Apache development mailing list:
http://hypermail.linklord.com/new-httpd/2000/May/0175.html. If you succeed, you'll probably want
to take peek at Apache: The Definitive Guide by Ben Laurie and Peter Laurie (O'Reilly) for more
information regarding the configuration and use of Apache.

[6] This license is BSD-like. See the LICENSE file included with the package for the complete licensing details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.6 Dynamic Configuration Through DHCP

The Dynamic Host Configuration Protocol (DHCP) allows for the automatic network configuration
of hosts. Automatic configuration usually involves assigning IP addresses but can include other
configuration parameters, as we saw in Chapter 9. On a network that uses DHCP, there are two
sorts of entities: clients that request a configuration and servers that provide the clients with
functional configurations.

An embedded Linux system can easily be used as a DHCP server. In my example system, for
instance, the SYSM module can provide dynamic configurations to the UI modules. Conversely,
an embedded Linux system may need to obtain its own configuration from a DHCP server. My UI
modules, for example, may obtain their configurations from the SYSM module.

The standard DHCP package used in most Linux distributions is the one distributed by the
Internet Software Consortium (ISC). Although the package may seem to be a good candidate for
use in embedded Linux systems because of its widespread use and the fact that it includes both
the client and the server, its Makefiles and configuration scripts do not allow cross-compilation in
any way.

There is, nevertheless, another open source package that provides both a DHCP server and a
DHCP client, and that can be used in an embedded Linux system: udhcp. The udhcp project is
maintained as part of the BusyBox project, and its web site is located at http://udhcp.busybox.net/.
The package is available from that web site and is distributed under the terms of the GPL. udhcp
depends only on the C library and can be compiled both with glibc and uClibc.

Begin by downloading and extracting the udhcp package in your ${PRJROOT}/sysapps directory.
For my SYSM module, for example, I used udhcp 0.9.8. Move to the package's directory for the
rest of the operations:

$ cd ${PRJROOT}/sysapps/udhcp-0.9.8
There is no configuration needed with this package. Hence, compiling the package is all that
needs to be done:

$ make CROSS_COMPILE=arm-uclibc-
Here, too, the compilation time is short. If you want to build statically, add LDFLAGS="-static"
to the make command line. Also set CROSS_COMPILE to arm-linux- if you would prefer to build
with glibc instead of uClibc. When linked against glibc and stripped,[7] the server and the client are
around 16 KB in size when linked dynamically. The client is 375 KB in size and the server 450 KB
in size when linked statically against glibc and stripped. Note that udhcp uses glibc's NSS and will
require Makefile modifications in order to pass the link options at the end of the compile lines, not
in the middle as it does by default. You will also need to set LDFLAGS to values similar as the
ones we used earlier to build Boa and thttpd statically against glibc. When linked against uClibc
and stripped, the server and the client are around 15 KB in size when linked dynamically and 40
KB in size when linked statically.

[7] The udhcp Makefile automatically strips the binaries once they are built.

If you are using the server in your system, copy it to your target's /usr/sbin directory:

$ cp udhcpd ${PRJROOT}/rootfs/usr/sbin
If you are using the client, copy it to your target's /sbin directory:

$ cp udhcpc ${PRJROOT}/rootfs/sbin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cp udhcpc ${PRJROOT}/rootfs/sbin
Both server and client need configuration files and runtime files to store information regarding
lease status.

For the server, create a /var/lib/misc directory and a lease file, and copy the sample configuration
file to your target's root filesystem:

$ mkdir -p ${PRJROOT}/rootfs/var/lib/misc
$ touch ${PRJROOT}/rootfs/var/lib/misc/udhcpd.leases
$ cp samples/udhcpd.conf ${PRJROOT}/rootfs/etc
If you forget to create the lease file, the server will refuse to start.

For the client, create a /etc/udhcpc directory and a /usr/share/udhcpc directory, and copy one of
the sample configuration files to /usr/share/udhcpc/default.script:

$ mkdir -p ${PRJROOT}/rootfs/etc/udhcpc
$ mkdir -p ${PRJROOT}/rootfs/usr/share/udhcpc
$ cp samples/sample.renew \
> ${PRJROOT}/rootfs/usr/share/udhcpc/default.script
Also, edit your target's /etc/inittab file to start the daemon you need. For instance, here is the line
for the DHCP server I use in my SYSM module:

::respawn:/usr/sbin/udhcpd

For a complete discussion on the configuration and use of udhcpd and udhcpc, read the
manpages included with the package and look at the project's web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Debugging Tools
In the previous chapters, we've discussed how to set up, configure, and use various preexisting
free and open source software components. Now that you are ready to work with your system,
you'll need some powerful debugging tools.

In this chapter, we discuss the installation and use of the main software debugging tools used in
the development of embedded Linux systems. This discussion covers debugging applications with
gdb, tracing applications and system behavior, performance analysis, and memory debugging. In
addition, I briefly review some of the hardware tools often used in developing embedded Linux
systems. Because the particular operating system on the target makes little difference in the way
the hardware debugging tools are used, we do not discuss how to use them. I will, nevertheless,
suggest ways that you can use hardware tools to facilitate debugging the software running in your
embedded Linux system.

To best use the tools discussed in this chapter, I strongly recommend the use of an NFS-mounted
root filesystem for your target. Among other things, this enables you to rapidly update your
software once you've identified and corrected a bug. In turn, this speeds up debugging, because
you can continue debugging the updated software much sooner than if you had to transfer the
updated binary manually to your target first. In essence, an NFS-mounted root filesystem
simplifies the updating and debugging process and, therefore, reduces development time. In
addition, NFS allows for performance data generated on the target to be available immediately on
the host.

Though I cover the most important free and open source debugging tools in this chapter, I do not
cover all the debugging tools available in Linux. The material covered in this chapter should,
nevertheless, help you make the best use of any additional Linux debugging tools you may find on
the Web or in your distribution. Among the debugging tools I do not discuss are all the tools used
for kernel debugging. If you need to debug a kernel, have a look at Chapter 4 of Linux Device
Drivers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Debugging Applications with gdb

The GNU debugger (gdb) is the symbolic debugger of the GNU project and is arguably the most important
debugging tool for any Linux system. It has been around for over 10 years, and many non-Linux
embedded systems already use it in conjunction with what is known as gdb stubs to debug a target
remotely.[1] Because the Linux kernel implements the ptrace() system call, however, you don't need
stubs to debug embedded applications remotely. Instead, a gdb server is provided with the gdb package.
This server is a very small application that runs on the target and executes the commands it receives from
the gdb debugger running on the host. Hence, any application can be debugged on the target without
having the gdb debugger actually running on the target. This is very important, because as we shall see,
the actual gdb binary is fairly large.

[1] gdb stubs are a set of hooks and handlers placed in a target's firmware or operating system kernel in order to allow interaction
with a remote debugger. The gdb manual explains the use of gdb stubs.

This section discusses the installation and use of gdb in a host/target configuration, not the actual use of
gdb to debug an application. To learn how to set breakpoints, view variables, and view backtraces, for
example, read one of the various books or manuals that discuss the use of gdb. In particular, have a look
at Chapter 14 of Running Linux (O'Reilly) and the gdb manual available both within the gdb package and
online at http://www.gnu.org/manual/.

11.1.1 Building and Installing gdb Components

The gdb package is available from ftp://ftp.gnu.org/gnu/gdb/ under the terms of the GPL. Download and
extract the gdb package in your ${PRJROOT}/debug directory. For my control module, for example, I used
gdb Version 5.2.1. As with the other GNU toolset components I described in Chapter 4, it is preferable not
to use the package's directory to build the actual debugger. Instead, create a build directory, move to it,
and build gdb:

$ mkdir ${PRJROOT}/debug/build-gdb
$ cd ${PRJROOT}/debug/build-gdb
$../gdb-5.2.1/configure --target=$TARGET --prefix=${PREFIX}
$ make
$ make install
These commands build the gdb debugger for handling target applications. As with other GNU toolset
components, the name of the binary depends on the target. For my control module, for example, the
debugger is powerpc-linux-gdb. This binary and the other debugger files are installed within the $PREFIX
directory. The build process proper takes from 5 to 10 minutes on my hardware, and the binary generated
is fairly large. For a PPC target, for example, the stripped binary is 4 MB in size when linked dynamically.
This is why the gdb binary can't be used as-is on the target and the gdb server is used instead.

At the time of this writing, the gdb built for the target cannot handle target core
files. Instead, the faulty program must be run on the target using the gdb server to
catch the error as it happens natively. There has been discussion regarding
adding cross-platform core file reading capabilities to gdb on the gdb mailing lists,
and a few patches are already available. Support for reading cross-platform core
files in gdb may therefore be available by the time your read this.

The gdb server wasn't built earlier because it has to be cross-compiled for the target using the appropriate
tools. To do so, create a directory to build the gdb server, move to it, and build the gdb server:

$ mkdir ${PRJROOT}/debug/build-gdbserver
$ cd ${PRJROOT}/debug/build-gdbserver
$ chmod +x ../gdb-5.2.1/gdb/gdbserver/configure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ chmod +x ../gdb-5.2.1/gdb/gdbserver/configure
$ CC=powerpc-linux-gcc ../gdb-5.2.1/gdb/gdbserver/configure \
> --host=$TARGET --prefix=${TARGET_PREFIX}
$ make
$ make install
The gdb server binary, gdbserver, has now been installed in your ${TARGET_PREFIX}/bin directory. The
dynamically linked gdbserver is 25 KB in size when stripped. Compared to gdb, the size of gdbserver
much more palatable.

Once built, copy gdbserver to your target's root filesystem:

$ cp ${TARGET_PREFIX}/bin/gdbserver ${PRJROOT}/rootfs/usr/bin
There are no additional steps required to configure the use of the gdb server on your target. I will cover its
use in the next section.

Debugging Information, Symbol Tables, and strip
Most modern Linux binaries are in the ELF format. As with binaries of other formats, ELF binaries contain
a number of sections, each with a different name and role. The actual executable code for the binary is
usually in the .text section. There are also other sections such as .data for initialized data and .bss
for uninitialized data. Debugging information is usually in the .stab and .stabstr sections. These
sections are formatted according to the Stabs (short for symbol table) debug format and contain
information such as line numbers, paths to source files, paths to include files, variables declarations,
types declarations, and so on.

Both objdump and readelf can be used to view the sections of an ELF binary. Here is a sample output
generated by running readelf on the unstripped gdbserver binary:

$ powerpc-linux-readelf -S gdbserver
There are 32 section headers, starting at offset 0x1aca4:
Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 ...
 [12] .text PROGBITS 10000b48 000b48 003008 00 AX 0 0 4
 ...
 [17] .data PROGBITS 10015470 005470 000914 00 WA 0 0 4
 ...
 [25] .bss NOBITS 10016114 005e54 00236c 00 WA 0 0 16
 [26] .stab PROGBITS 00000000 005e54 00798c 0c 27 0 4
 [27] .stabstr STRTAB 00000000 00d7e0 00d1d5 00 0 0 1
 [28] .comment PROGBITS 00000000 01a9b5 0001ee 00 0 0 1
 [29] .shstrtab STRTAB 00000000 01aba3 0000ff 00 0 0 1
 [30] .symtab SYMTAB 00000000 01b1a4 000f40 10 31 6e 4
 [31] .strtab STRTAB 00000000 01c0e4 000d19 00 0 0 1
Key to Flags: W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), O (extra OS processing required)
 o (os specific), p (processor specific) x (unknown)

When the strip command is used, the sections containing the debugging information, .stab and
.stabstr, are removed from the binary along with .symtab and .strtab, while the rest of the
sections, except .shstrtab, remain unchanged. The only section that changes is the section header
string table, .shstrtab, which shrinks in size since there are fewer sections in the binary. Here is the
output generated by running readelf on the stripped gdbserver binary:

$ powerpc-linux-readelf -S gdbserver
There are 28 section headers, starting at offset 0x6134:
Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...
 [12] .text PROGBITS 10000b48 000b48 003008 00 AX 0 0 4
 ...
 [17] .data PROGBITS 10015470 005470 000914 00 WA 0 0 4
 ...
 [25] .bss NOBITS 10016114 005e54 00236c 00 WA 0 0 16
 [26] .comment PROGBITS 00000000 005e54 0001ee 00 0 0 1
 [27] .shstrtab STRTAB 00000000 006042 0000f0 00 0 0 1
Key to Flags: W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), O (extra OS processing required)
 o (os specific), p (processor specific) x (unknown)

For more information on binary formats, including ELF, have a look at John Levine's Linkers & Loaders
(Morgan Kaufmann). For information on the Stabs format, have a look at the The "stabs" debug format
manual provided in the gdb/doc directory of the gdb package and available online at
http://sources.redhat.com/gdb/current/onlinedocs/stabs.html.

11.1.2 Using the gdb Components to Debug Target Applications

Before you can debug an application using gdb, you need to compile your application using the
appropriate flags. Mainly, you need to add the -g option to the gcc command line. This option adds the
debugging information to the object files generated by the compiler. To add even more debugging
information, use the -ggdb option. The information added by both debugging options is thereafter found in
the application's binary. Though this addition results in a larger binary, you can still use a stripped binary
on your target, granted you have the original unstripped version with the debugging information on your
host. To do so, build your application on your host with complete debugging symbols. Copy the resulting
binary to your target's root filesystem and use strip to reduce the size of the binary you just copied by
removing all symbolic information, including debugging information. On the target, use the stripped binary
with gdbserver. On the host, use the original unstripped binary with gdb. Though the two gdb components
are using different binary images, the target gdb running on the host is able to find and use the appropriate
debug symbols for your application, because it has access to the unstripped binary.

Here are the relevant portions of my command daemon's Makefile that changed (see Chapter 4 for the
original Makefile):

...
DEBUG = -g
CFLAGS = -O2 -Wall $(DEBUG)
...

Though gcc allows us to use both the -g and -O options in the same time, it is often preferable not to use
the -O option when generating a binary for debugging, because the optimized binary may contain some
subtle differences when compared to your application's original source code. For instance, some unused
variables may not be incorporated into the binary, and the sequence of instructions actually executed in
the binary may differ in order from those contained in your original source code.

There are two ways for the gdb server running on the target to communicate with the gdb debugger
running on the host: using a crossover serial link or a TCP/IP connection. Though these communication
interfaces differ in many respects, the syntax of the commands you need to issue is very similar. Starting a
debug session using a gdb server involves two steps: starting the gdb server on the target and connecting
to it from the gdb debugger on the host.

Once you are ready to debug your application, start the gdb server on your target with the means of
communication and your application name as parameters. If your target has a configured TCP/IP interface
available, you can start the gdb server and configure it to run over TCP/IP:

gdbserver 192.168.172.50:2345 command-daemon
In this example, the host's IP address[2] is 192.168.172.50 and the port number used locally to listen to
gdb connections is 2345. Note that the protocol used by gdb to communicate between the host and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gdb connections is 2345. Note that the protocol used by gdb to communicate between the host and the
target doesn't include any form of authentication or security. Hence, I don't recommend that you debug
applications in this way over the public Internet. If you need to debug applications in this way, you may
want to consider using SSH port forwarding to encrypt the gdb session. The book SSH, The Secure Shell:
The Definitive Guide (O'Reilly) explains how to implement SSH port forwarding.

[2] At the time of this writing, this field is actually ignored by gdbserver.

As I said earlier, the command-daemon being passed to gdbserver can be a stripped copy of the original
command-daemon built on the host.

If you are using a serial link to debug your target, use the following command line on your target:

gdbserver /dev/ttyS0 command-daemon
In this example, the target's serial link to the host is the first serial port, /dev/ttyS0.

Once the gdb server is started on the target, you can connect to it from the gdb debugger on the host
using the target remote command. If you are connected to the target using a TCP/IP network, use the
following command:

$ powerpc-linux-gdb command-daemon
(gdb) target remote 192.168.172.10:2345
Remote debugging using 192.168.172.10:2345
0x10000074 in _start ()

In this case, the target is located at IP 192.168.172.10 and the port number specified is the same one we
used above to start the gdb server on the target. Unlike the gdb server on the target, the command-
daemon used here has to be the unstripped copy of the binary. Otherwise, gdb will be of little use to try
debugging the application.

If the program exits on the target or is restarted, you do not need to restart gdb on the host. Instead, you
need to issue the target remote command anew once gdbserver is restarted on the target.

If your host is connected to your target through a serial link, use the following command:

$ powerpc-linux-gdb progname
(gdb) target remote /dev/ttyS0
Remote debugging using /dev/ttyS0
0x10000074 in _start ()

Though both the target and the host are using /dev/ttyS0 to link to each other in this example, this is only a
coincidence. The target and the host can use different serial ports to link to each other. The device being
specified for each is the local serial port where the serial cable is connected.

With the target and the host connected, you can now set breakpoints and do anything you would normally
do in a symbolic debugger.

There are a few gdb commands that are you are likely to find particularly useful when debugging an
embedded target such as we are doing here. Here are some of these commands and summaries of their
purposes:

file

Sets the filename of the binary being debugged. Debug symbols are loaded from that file.

dir

Adds a directory to the search path for the application's source code files.

target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the parameters for connecting to the remote target, as we did earlier. This is actually not a
single command but rather a complete set of commands. Use help target for more details.

set remotebaud

Sets the speed of the serial port when debugging remote applications through a serial cable.

set solib-absolute-prefix

Sets the path for finding the shared libraries used with the binary being debugged.

The last command is likely to be the most useful when your binaries are linked dynamically. Whereas the
binary running on your target finds its shared libraries starting from / (the root directory), the gdb running
on the host doesn't know how to locate these shared libraries. You need to use the following command to
tell gdb where to find the correct target libraries on the host:

(gdb) set solib-absolute-prefix ../../tools/powerpc-linux/
Unlike the normal shell, the gdb command line doesn't recognize environment variables such as
${TARGET_PREFIX}. Hence, the complete path must be provided. In this case, the path is provided
relative to the directory where gdb is running, but we could use an absolute path, too.

If you want to have gdb execute a number of commands each time it starts, you may want to use a .gdbinit
file. For an explanation on the use of such files, have a look at the "Command files" subsection in the
"Canned Sequences of Commands" section of the gdb manual.

To get information regarding the use of the various debugger commands, you can use the help command
within the gdb environment, or look in the gdb manual.

11.1.3 Interfacing with a Graphical Frontend

Many developers find it difficult or counter-intuitive to debug using the plain gdb command line. Fortunately
for these developers, there are quite a few graphical interfaces that hide much of gdb's complexity by
providing user-friendly mechanisms for setting breakpoints, viewing variables, and tending to other
common debugging tasks. Examples include DDD (http://www.gnu.org/software/ddd/), KDevelop and other
IDEs we discussed in Chapter 4. Much like your host's debugger, the cross-platform gdb we built earlier
for your target can very likely be used by your favorite debugging interface. Each frontend has its own way
for allowing the name of the debugger binary to be specified. Have a look at your frontend's documentation
for this information. In the case of my control module, I would need to configure the frontend to use the
powerpc-linux-gdb debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Tracing

Symbolic debugging is fine for finding and correcting program errors. However, symbolic
debugging offers little help in finding any sort of problem that involves an application's interaction
with other applications or with the kernel. These sorts of behavioral problems necessitate the
tracing of the actual interactions between your application and other software components.

The simplest form of tracing involves monitoring the interactions between a single application and
the Linux kernel. This allows you to easily observe any problems that result from the passing of
parameters or the wrong sequence of system calls.

Observing a single process in isolation is, however, not sufficient in all circumstances. If you are
attempting to debug interprocess synchronization problems or time-sensitive issues, for example,
you will need a system-wide tracing mechanism that provides you with the exact sequence and
timing of events that occur throughout the system. For instance, in trying to understand why the
Mars Pathfinder constantly rebooted while on Mars, the Jet Propulsion Laboratory engineers
resorted to a system tracing tool for the VxWorks operating system.[3]

[3] For a very informative and entertaining account on what happened to the Mars Pathfinder on Mars, read Glenn
Reeves' account at http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html. Glenn was the
lead developer for the Mars Pathfinder software.

Fortunately, both single-process tracing and system tracing are available in Linux. The following
sections discuss each one.

11.2.1 Single Process Tracing

The main tool for tracing a single process is strace. strace uses the ptrace() system call to
intercept all system calls made by an application. Hence, it can extract all the system call
information and display it in a human-readable format for you to analyze. Because strace is a
widely used Linux tool, I do not explain how to use it, but just explain how to install it for your
target. If you would like to have more details on the usage of strace, see Chapter 14 of Running
Linux.

strace is available from http://www.liacs.nl/~wichert/strace/ under a BSD license. For my control
module I used strace Version 4.4. Download the package and extract it in your
${PRJROOT}/debug directory. Move to the package's directory, then configure and build strace:

$ cd ${PRJROOT}/debug/strace-4.4
$ CC=powerpc-linux-gcc ./configure --host=$TARGET
$ make
If you wish to statically link against uClibc, add LDFLAGS="-static" to the make command line.
Given that strace uses NSS, you need to use a special command line if you wish to link it
statically to glibc, as we did for other packages in Chapter 10:

$ make \
> LDLIBS="-static -Wl --start-group -lc -lnss_files -lnss_dns \
> -lresolv -Wl --end-group"
When linked against glibc and stripped, strace is 145 KB in size if linked dynamically and 605 KB
if linked statically. When linked against uClibc and stripped, strace is 140 KB in size if linked
dynamically and 170 KB when linked statically.

Once the binary is compiled, copy it to your target's root filesystem:

$ cp strace ${PRJROOT}/rootfs/usr/sbin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cp strace ${PRJROOT}/rootfs/usr/sbin
There are no additional steps required to configure strace for use on the target. In addition, the
use of strace on the target is identical to that of its use on a normal Linux workstation. See the
web page listed earlier or the manpage included with the package if you need more information
regarding the use of strace.

11.2.2 System Tracing

The main system tracing utility for Linux is the Linux Trace Toolkit (LTT), which was introduced
and continues to be maintained by this book's author. In contrast with other tracing utilities such
as strace, LTT does not use the ptrace() mechanism to intercept applications' behavior. Instead,
a kernel patch is provided with LTT that instruments key kernel subsystems. The data generated
by this instrumentation is then collected by the trace subsystem and forwarded to a trace daemon
to be written to disk. The entire process has very little impact on the system's behavior and
performance. Extensive tests have shown that the tracing infrastructure has marginal impact
when not in use and an impact lower than 2.5% under some of the most stressful conditions.

In addition to reconstructing the system's behavior using the data generated during a trace run,
the user utilities provided with LTT allow you to extract performance data regarding the system's
behavior during the trace interval. Here's a summary of some of the tasks LTT can be used for:

Debugging interprocess synchronization problems

Understanding the interaction between your application, the other applications in the
system, and the kernel

Measuring the time it takes for the kernel to service your application's requests

Measuring the time your application spent waiting because other processes had a higher
priority

Measuring the time it takes for an interrupt's effects to propagate throughout the system

Understanding the exact reaction the system has to outside input

To achieve this, LTT's operation is subdivided into four software components:

The kernel instrumentation that generates the events being traced

The tracing subsystem that collects the data generated by the kernel instrumentation into a
single buffer

The trace daemon that writes the tracing subsystem's buffers to disk

The visualization tool that post-processes the system trace and displays it in a human-
readable form

The first two software components are implemented as a kernel patch and the last two are
separate user-space tools. While the first three software components must run on the target, the
last one, the visualization tool, can run on the host. In LTT Versions 0.9.5a and earlier, the tracing
subsystem was accessed from user space as a device through the appropriate /dev entries.
Starting in the development series leading to 0.9.6, however, this abstraction has been dropped
following the recommendations of the kernel developers. Hence, though the following refers to the
tracing subsystem as a device, newer versions of LTT will not use this abstraction and therefore
will not require the creation of any /dev entries on your target's root filesystem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Given that LTT can detect and handle traces that have different byte ordering, traces can be
generated and read on entirely different systems. The traces generated on my PPC-based control
module, for example, can be read transparently on an x86 host.

In addition to tracing a predefined set of events, LTT enables you to create and log your own
custom events from both user space and kernel space. Have a look at the Examples directory
included in the package for practical examples of such custom events. Also, if your target is an
x86-or PPC-based system, you can use the DProbes package provided by IBM to add trace
points to binaries, including the kernel, without recompiling. DProbes is available under the terms
of the GPL from IBM's web site at
http://oss.software.ibm.com/developer/opensource/linux/projects/dprobes/.

LTT is available under the terms of the GPL from Opersys's web site at
http://www.opersys.com/LTT/. The project's web site includes links to in-depth documentation and
a mailing list for LTT users. The current stable release is 0.9.5a, which supports the i386, PPC,
and SH architectures. The 0.9.6 release currently in development adds support for the MIPS and
the ARM architectures.

11.2.2.1 Preliminary manipulations

Download the LTT package, extract it in your ${PRJROOT}/debug directory, and move to the
package's directory for the rest of the installation:

$ cd ${PRJROOT}/debug
$ tar xvzf TraceToolkit-0.9.5a.tgz
$ cd ${PRJROOT}/debug/TraceToolkit-0.9.5
The same online manual that provides detailed instructions on the use of LTT is included with the
package under the Help directory.

11.2.2.2 Patching the kernel

For the kernel to generate the tracing information, it needs to be patched. There are kernel
patches included with every LTT package in the Patches directory. Since the kernel changes with
time, however, it is often necessary to update the kernel patches. The patches for the latest
kernels are usually available from http://www.opersys.com/ftp/pub/LTT/ExtraPatches/. For my
control module, for example, I used patch-ltt-linux-2.4.19-vanilla-020916-1.14. If you are using a
different kernel, try adapting this patch to your kernel version. Unfortunately, it isn't feasible to
create a patch for all kernel versions every time a new version of LTT is released. The task of
using LTT would be much simpler if the patch was included as part of the main kernel tree,
something your author has been trying to convince the kernel developers of doing for some time
now. In the case of my control module, I had to fix the patched kernel because of failed hunks.

Given that the binary format of the traces changes over time, LTT versions cannot read data
generated by any random trace patch version. The -1.14 version appended to the patch name
identifies the trace format version generated by this patch. LTT 0.9.5a can read trace data written
by patches that use format Version 1.14. It cannot, however, read any another format. If you try
opening a trace of a format that is incompatible with the visualization tool, it will display an error
and exit. In the future, the LTT developers plan to modify the tools and the trace format to avoid
this limitation.

Once you've downloaded the selected patch, move it to the kernel's directory and patch the
kernel:

$ mv patch-ltt-linux-2.4.19-vanilla-020916-1.14 \
> ${PRJROOT}/kernel/linux-2.4.18
$ cd ${PRJROOT}/kernel/linux-2.4.18

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd ${PRJROOT}/kernel/linux-2.4.18
$ patch -p1 < patch-ltt-linux-2.4.19-vanilla-020916-1.14
You can then configure your kernel as you did earlier. In the main configuration menu, go in the
"Kernel tracing" submenu and select the "Kernel events tracing support" as built-in. In the patches
released prior to LTT 0.9.6pre2, such as the one I am using for my control module, you could also
select tracing as a module and load the trace driver dynamically. However, this option has
disappeared following the recommendations of the kernel developers to make the tracing
infrastructure a kernel subsystem instead of a device.

Proceed on to building and installing the kernel on your target using the techniques covered in
earlier chapters.

Though you may be tempted to return to a kernel without LTT once you're done developing the
system, I suggest you keep the traceable kernel, since you never know when a bug may occur in
the field. The Mars Pathfinder example I provided earlier is a case in point. For the Pathfinder, the
JPL engineers applied the test what you fly and fly what you test philosophy, as explained in the
paper I mentioned in the earlier footnote about the Mars Pathfinder problem. Note that the overall
maximum system performance cost of tracing is lower than 0.5% when the trace daemon isn't
running.

11.2.2.3 Building the trace daemon

As I explained earlier, the trace daemon is responsible for writing the trace data to permanent
storage. Though this is a disk on most workstations, it is preferable to use an NFS-mounted
filesystem to dump the trace data. You could certainly dump it to your target's MTD device, if it
has one, but this will almost certainly result in increased wear, given that traces tend to be fairly
large.

Return to the package's directory within the ${PRJROOT}/debug directory, and build the trace
daemon:

$ cd ${PRJROOT}/debug/TraceToolkit-0.9.5
$./configure --prefix=${PREFIX}
$ make -C LibUserTrace CC=powerpc-linux-gcc UserTrace.o
$ make -C LibUserTrace CC=powerpc-linux-gcc LDFLAGS="-static"
$ make -C Daemon CC=powerpc-linux-gcc LDFLAGS="-static"
By setting the value of LDFLAGS to -static, we are generating a binary that is statically linked
with LibUserTrace. This won't weigh down the target, since this library is very small. In addition,
this will avoid us the trouble of having to keep track of an extra library for the target. The trace
daemon binary we generated is, nevertheless, still dynamically linked to the C library. If you want
it statically linked with the C library, use the following command instead:

$ make -C Daemon CC=powerpc-linux-gcc LDFLAGS="-all-static"
The binary generated is fairly small. When linked against glibc and stripped, the trace daemon is
18 KB in size when linked dynamically and 350 KB when linked statically. When linked against
uClibc and stripped, the trace daemon is 16 KB in size when linked dynamically and 37 KB when
linked statically.

Once built, copy the daemon and the basic trace helper scripts to the target's root filesystem:

$ cp tracedaemon Scripts/trace Scripts/tracecore Scripts/traceu \
> ${PRJROOT}/rootfs/usr/sbin
The trace helper scripts simplify the use of the trace daemon binary, which usually requires a
fairly long command line to use adequately. Look at the LTT documentation for an explanation of
the use of each helper script. My experience is that the trace script is the easiest way to start the
trace daemon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the time of this writing, you need to create the appropriate device entries for the trace device
on the target's root filesystem for the trace daemon to interface properly with the kernel's tracing
components. Because the device obtains its major number at load time, make sure the major
number you use for creating the device is accurate. The simplest way of doing this is to load all
drivers in the exact order they will usually be loaded in and then cat the /proc/devices file to get
the list of device major numbers. See Linux Device Drivers for complete details about major
number allocation. Alternatively, you can try using the createdev.sh script included in the LTT
package. For my control module, the major number allocated to the trace device is 254:[4]

[4] I obtain this number by looking at the /proc/devices file on my target after having loaded the trace driver.

$ su -m
Password:
mknod ${PRJROOT}/rootfs/dev/tracer c 254 0
mknod ${PRJROOT}/rootfs/dev/tracerU c 254 1
exit
As I said earlier, if you are using a version of LTT that is newer that 0.9.5a, you may not need to
create these entries. Refer to your package's documentation for more information.

11.2.2.4 Installing the visualization tool

The visualization tool runs on the host and is responsible for displaying the trace data in an
intuitive way. It can operate both as a command-line utility, dumping the binary trace data in a
textual format, or as a GTK-based graphical utility, displaying the trace as a trace graph, as a set
of statistics, and as a raw text dump of the trace. The graphical interface is most certainly the
simplest way to analyze a trace, though you may want to use the command-line textual dump if
you want to run a script to analyze the textual output. If you plan to use the graphical interface,
GTK must be installed on your system. Most distributions install GTK by default. If it isn't installed,
use your distribution's package manager to install it.

We've already moved to the LTT package's directory and have configured it in the previous
section. All that is left is to build and install the host components:

$ make -C LibLTT install
$ make -C Visualizer install
The visualizer binary, tracevisualizer, has been installed in the ${PREFIX}/bin directory, while
helper scripts have been installed in ${PREFIX}/sbin. As with the trace daemon, the helper scripts
let you avoid typing long command lines to start the trace visualizer.

11.2.2.5 Tracing the target and visualizing its behavior

You are now ready to trace your target. As I said earlier, to reduce wear, avoid using your target's
solid-state storage device for recording the traces. Instead, either write the traces to an NFS-
mounted filesystem or, if you would prefer to reduce polluting the traces with NFS-generated
network traffic, use a TMPFS mounted directory to store the traces and copy them to your host
after tracing is over.

Here is a simple command for tracing the target for 30 seconds:

trace 30 outt
The outt name specified here is the prefix the command should use for the names of the output
files. This command will generate two files: outt.trace, which contains the raw binary trace, and
outt.proc, which contains a snapshot of the system's state at trace start. Both these files are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outt.proc, which contains a snapshot of the system's state at trace start. Both these files are
necessary for reconstructing the system's behavior on the host using the visualization tool. If
those files are stored locally on your target, copy them to your host using your favorite protocol.

It is possible that your system may be generating more events than the trace infrastructure can
handle. In that case, the daemon will inform you upon exit that it lost events. You can then change
the size of the buffers being used or the event set being traced to obtain all the data you need.
Look at the documentation included in the package for more information on the parameters
accepted by the trace daemon.

Once you've copied the files containing the trace to the host, you can view the trace using:

$ traceview outt
This command opens a window that looks like Figure 11-1.

Figure 11-1. Example LTT trace graph

In this case, the graph shows the interaction between the BusyBox shell and another BusyBox
child. On the left side of the visualizer display, you see a list of all the processes that were active
during the trace. The Linux kernel is always the bottom entry in that list. On the right side of the
display, you see a graph that characterizes the behavior of the system. In that graph, horizontal
lines illustrate the passage of time, while vertical lines illustrate a state transition. The graph
portion displayed here shows that the system is running kernel code in the beginning. Near the
start, the kernel returns control to the sh application, which continues running for a short period of
time before making the wait4() system call. At that point, control is transferred back to the kernel,
which runs for a while before initiating a scheduling change to the task with PID 21. This task
starts executing, but an exception occurs, which results in a control transfer to the kernel again.

The graph continues in both directions, and you can scroll left or right to see what happened
before or after this trace segment. You can also zoom in and out, depending on your needs.

Using this sort of graph, you can easily identify your applications' interaction with the rest of the
system, as I explained earlier. You can also view the same set of events in their raw form by
selecting the "Raw Trace" thumbnail, as seen in Figure 11-2.

Figure 11-2. Example LTT raw event list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you would prefer not to use the graphic tool at all, you can use the tracevisualizer on the
command line. In that case, the tracevisualizer command takes the two input files and generates
a text file containing the raw event list. This list is the same as the one displayed in the "Raw
Trace" thumbnail of the graphic interface. To dump the content of the trace in text, type:

$ tracevisualizer outt.trace outt.proc outt.data
The first two parameters of this command, outt.trace and outt.proc, are the input files I described
earlier, and the last parameter, outt.data, is the output file to where the trace's content is dumped
in text. You can also use one of the facilitating scripts such as tracedump or traceanalyze. We
discuss LTT's analysis capabilities and the "Process analysis" thumbnail later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 Performance Analysis

Obtaining in-depth data regarding various aspects of your target's performance is crucial for
making the best use out of the target's capabilities. Though I can't cover all aspects of
performance analysis, I will cover the most important ones. In the following sections, we will
discuss process profiling, code coverage, system profiling, kernel profiling, and measuring
interrupt latency.

11.3.1 Process Profiling

Process profiling is a mechanism that helps understanding the intricate behavior of a process.
Among other things, this involves obtaining information regarding the time spent in each function
and how much of that time the function spent on behalf of each of its callers, and how much time
it spent in each of the children it called.

A single process in Linux is usually profiled using a combination of special compiler options and
the gprof utility. Basically, source files are compiled with a compiler option that results in profiling
data to be collected at runtime and written to file upon the application's exit. The data generated is
then analyzed by gprof, which displays the call graph profile data. Though I will not cover the
actual use of gprof and the interpretation of its output, since it is already covered in the GNU gprof
manual, I will cover its cross-platform usage specifics.

First, you must modify your applications' Makefiles to add the appropriate compiler and linker
options. Here are the portions of the Makefile provided in Chapter 4 that must be changed to build
a program that will generate profiling data:

CFLAGS = -Wall -pg
...
LDFLAGS = -pg

Note that the -pg option is used both for the compiler flags and for the linker flags. The -pg
compiler option tells the compiler to include the code for generating the performance data. The -
pg linker option tells the linker to link the binary with gcrt1.o instead of crt1.o. The former is a
special version of the latter that is necessary for profiling. Note also that we aren't using the -O2
compiler optimization option. This is to make sure that the application generated executes in
exactly the same way as we specified in the source file. We can then measure the performance of
our own algorithms instead of measuring those optimized by the compiler.

Once your application has been recompiled, copy it to your target and run it. The program must
run for quite a while to generate meaningful results. Provide your application with as wide a range
of input as possible to exercise as much of its code as possible. Upon the application's exit, a
gmon.out output file is generated with the profiling data. This file is cross-platform readable and
you can therefore use your host's gprof to analyze it. After having copied the gmon.out file back to
your application's source directory, use gprof to retrieve the call graph profile data:

$ gprof command-daemon
This command prints the call graph profile data to the standard output. Redirect this output using
the > operator to a file if you like. You don't need to specify the gmon.out file specifically, it is
automatically loaded. For more information regarding the use of gprof, see the GNU gprof
manual.

11.3.2 Code Coverage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to identifying the time spent in the different parts of your application, it is interesting to
count how many times each statement in your application is being executed. This sort of
coverage analysis can bring to light code that is never called or code that is called so often that it
merits special attention.

The most common way to perform coverage analysis is to use a combination of compiler options
and the gcov utility. This functionality relies on the gcc library, libgcc, which is compiled at the
same time as the gcc compiler.

Unfortunately, however, gcc versions earlier than 3.0 don't allow the coverage functions to be
compiled into libgcc when they detect that a cross-compiler is being built. In the case of the
compiler built in Chapter 4, for example, the libgcc doesn't include the appropriate code to
generate data about code coverage. It is therefore impossible to analyze the coverage of a
program built against unmodified gcc sources.

To build the code needed for coverage analysis in versions of gcc later than 3.0, just configure
them with the - -with-headers= option.

To circumvent the same problem in gcc versions earlier than 3.0, edit the gcc-2.95.3/gcc/libgcc2.c
file, or the equivalent file for your compiler version, and disable the following definition:

/* In a cross-compilation situation, default to inhibiting compilation
 of routines that use libc. */

#if defined(CROSS_COMPILE) && !defined(inhibit_libc)
#define inhibit_libc
#endif

To disable the definition, add #if 0 and #endif around the code so that it looks like this:

/* gcc makes the assumption that we don't have glibc for the target,
 which is wrong in the case of embedded Linux. */
#if 0

/* In a cross-compilation situation, default to inhibiting compilation
 of routines that use libc. */

#if defined(CROSS_COMPILE) && !defined(inhibit_libc)
#define inhibit_libc
#endif

#endif /* #if 0 */

Now recompile and reinstall gcc as we did in Chapter 4. You don't need to rebuild the bootstrap
compiler, since we've already built and installed glibc. Build only the final compiler.

Next, modify your applications' Makefiles to use the appropriate compiler options. Here are the
portions of the Makefile provided in Chapter 4 that must be changed to build a program that will
generate code coverage data:

CFLAGS = -Wall -fprofile-arcs -ftest-coverage

As we did before when compiling the application to generate profiling data, omit the -O
optimization options to obtain the code coverage data that corresponds exactly to your source
code.

For each source file compiled, you should now have a .bb and .bbg file in the source directory.
Copy the program to your target and run it as you would normally. When you run the program, a
.da file will be generated for each source file. Unfortunately, however, the .da files are generated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.da file will be generated for each source file. Unfortunately, however, the .da files are generated
using the absolute path to the original source files. Hence, you must create a copy of this path on
your target's root filesystem. Though you may not run the binary from that directory, this is where
the .da files for your application will be placed. My command daemon, for example, is located in
/home/karim/control-project/control-module/project/command-daemon on my host. I had to create
that complete path on my target's root filesystem so that the daemon's .da files would be properly
created. The -p option of mkdir was quite useful in this case.

Once the program is done executing, copy the .da files back to your host and run gcov:

$ gcov daemon.c
 71.08% of 837 source lines executed in file daemon.c
Creating daemon.c.gcov.

The .gcov file generated contains the coverage information in a human-readable form. The .da
files are architecture-independent, so there's no problem in using the host's gcov to process
them. For more information regarding the use of gcov or the output it generates, look at the gcov
section of the gcc manual.

11.3.3 System Profiling

Every Linux system has many processes competing for system resources. Being able to quantify
the impact each process has on the system's load is important in trying to build a balanced and
responsive system. There are a few basic ways in Linux to quantify the effect the processes have
on the system. This section discusses two of these: extracting information from /proc and using
LTT.

11.3.3.1 Basic /proc figures

The /proc filesystem contains virtual entries where the kernel provides information regarding its
own internal data structures and the system in general. Some of this information, such as process
times, is based on samples collected by the kernel at each clock tick. The traditional package for
extracting information from the /proc directory is procps, which includes utilities like ps and top.
There are currently two procps packages maintained independently. The first is maintained by Rik
van Riel and is available from http://surriel.com/procps/. The second is maintained by Albert
Cahalan and is available from http://procps.sourceforge.net/. Though there is an ongoing debate
as to which is the "official" procps, both packages contain Makefiles that are not cross-platform
development friendly, and neither is therefore fit for use in embedded systems. Instead, use the
ps replacement found in BusyBox. Though it doesn't output process statistics as the ps in procps
does, it does provide you with basic information regarding the software running on your target:

ps
 PID Uid VmSize Stat Command
 1 0 820 S init
 2 0 S [keventd]
 3 0 S [kswapd]
 4 0 S [kreclaimd]
 5 0 S [bdflush]
 6 0 S [kupdated]
 7 0 S [mtdblockd]
 8 0 S [rpciod]
 16 0 816 S -sh
 17 0 816 R ps aux

If you find this information insufficient, you can browse /proc manually to retrieve the information
you need regarding each process.

11.3.3.2 Complete profile using LTT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because LTT records crucial system information, it can extract very detailed information regarding
the system's behavior. Unlike the information found in /proc, the statistics generated by LTT are
not sampled. Rather, they are based on an exact accounting of the time spent by processes
inside the kernel. LTT provides two types of statistics: per-process statistics and system statistics.
Both are provided in the "Process analysis" thumbnail.

The per-process statistics are display by LTT when you select a process in the process tree
displayed in the "Process analysis" thumbnail. Figure 11-3 illustrates the data that can be
extracted for a single process.

Figure 11-3. Single process statistics

Among other things, the data tells you how much time your task was scheduled by the kernel
("Time running") versus how much time was spent running actual application code ("Time
executing process code"). In this case, the task wasn't waiting for any I/O. But if it did, the "Time
waiting for I/O" line would give you a measure of how much time was spent waiting. The times
and percentages given depend on the time spent tracing. In this case, tracing lasted 10 seconds.

LTT also provides information regarding the system calls made by an application. In particular, it
gives you the number of times each system call was made and the total time the kernel took to
service all these calls.

The system-wide statistics are displayed by LTT when you select the topmost process entry in the
process tree, which is called "The All Mighty (0)." Figure 11-4 illustrates the system data extracted
by LTT.

Figure 11-4. Overall system statistics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The system statistics start with a few numbers regarding the trace itself. In this case, the trace
lasted almost 10 seconds and the system was idle for over 98% of that time. Next, the number of
times a few key events have happened are provided. On 7467 events, LTT says that 1180 were
traps and 96 were interrupts (with 96 IRQ entries and 96 IRQ exits.) This sort of information can
help you pinpoint actual problems with the system's overall behavior. The screen also displays a
cumulative summary of the system calls made by the various applications running on the system.

As with the actual trace information, the statistics displayed in the "Process analysis" thumbnail
can be dumped in text form to file from the command line. Look at the LTT documentation for
more information on how this is done.

11.3.4 Kernel Profiling

Sometimes the applications are not the root of performance degradation, but are rather suffering
from the kernel's own performance problems. In that case, it is necessary to use the right tools to
identify the reasons for the kernel's behavior.

There are quite a few tools for measuring the kernel's performance. The most famous is probably
LMbench (http://www.bitmover.com/lmbench/). LMbench, however, requires a C compiler and the
Perl interpreter. It is therefore not well adapted for use in embedded systems. Another tool for
measuring kernel performance is kernprof (http://oss.sgi.com/projects/kernprof/). Though it can
generate output that can be fed to gprof, it involves the use of a kernel patch and works only for
x86, ia64, sparc64, and mips64. As you can see, most embedded architectures are not supported
by kernprof.

There remains the sample-based profiling functionality built into the kernel. This profiling system
works by sampling the instruction pointer on every timer interrupt. It then increments a counter
according to the instruction pointer. Over a long period of time, it is expected that the functions
where the kernel spends the greatest amount of time will have a higher number of hits than other
functions. Though this is a crude kernel profiling method, it is the best one available at this time
for most embedded Linux systems.

To activate kernel profiling, you must use the profile= boot parameter. The number you
provide as a parameter sets the number of bits by which the instruction pointer is shifted to the
right before being used as an index into the sample table. The smaller the number, the higher the
precision of the samples, but the more memory is necessary for the sample table. The value most
often used is 2.

The sampling activity itself doesn't slow the kernel down, because it only occurs at each clock tick
and because the counter to increment is easily obtained from the value of the instruction pointer
at the time of the timer interrupt.

Once you've booted a kernel to which you passed the profile= parameter, you will find a new
entry in your target's /proc directory, /proc/profile. The kernel's sample table is exported to this
/proc entry.

To read the profile samples available from /proc/profile, you must use the readprofile utility
available as an independent package from http://sourceforge.net/projects/minilop/ or as part of
the util-linux package from http://www.kernel.org/pub/linux/utils/util-linux/. In the following
explanations, I will cover the independent package only since util-linux includes a lot more utilities
than just readprofile. Download the readprofile package and extract it in your ${PRJROOT}/debug

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

than just readprofile. Download the readprofile package and extract it in your ${PRJROOT}/debug
directory. Move to the package's directory and compile the utility:

$ cd ${PRJROOT}/debug/readprofile-3.0
$ make CC=powerpc-uclibc-gcc
To compile the utility statically, add LDFLAGS="-static" to the make command line. The binary
generated is fairly small. When statically linked with uClibc and stripped, for example, it is 30 KB
in size.

Once readprofile is built, copy it to your target's /usr/bin:

$ cp readprofile ${PRJROOT}/rootfs/usr/bin
For readprofile to operate adequately, you must also copy the appropriate System.map kernel
map file to your target's root filesystem:

$ cp ${PRJROOT}/images/System.map-2.4.18 ${PRJROOT}/rootfs/etc
With your target root filesystem ready, change the kernel boot parameters and add the
profile=2 boot parameter. After the system boots, you can run readprofile:

readprofile -m /etc/System.map-2.4.18 > profile.out
The profile.out file now contains the profiling information in text form. At any time, you can erase
the sample table collected on your target by writing to your target's /proc/profile:[5]

[5] There is nothing in particular that needs to be part of that write. Just the action of writing erases the profiling
information.

echo > /proc/profile
When done profiling, copy the profile.out file back to your host and have a look at its contents:

$ cat profile.out
 ...
 30 _ _save_flags_ptr_end 0.3000
 10 _ _sti 0.1250
 8 _ _flush_page_to_ram 0.1053
 7 clear_page 0.1750
 3 copy_page 0.0500
 1 m8xx_mask_and_ack 0.0179
 2 iopa 0.0263
 1 map_page 0.0089
 ...
 1 do_xprt_transmit 0.0010
 1 rpc_add_wait_queue 0.0035
 1 _ _rpc_sleep_on 0.0016
 1 rpc_wake_up_next 0.0068
 1 _ _rpc_execute 0.0013
 2 rpciod_down 0.0043
 15 exit_devpts_fs 0.2885
 73678 total 0.0618 0.04%

The left column indicates the number of samples taken at that location, followed by the name of
the function where the sample was taken. The third column is a number that provides an
approximation of the function's load, which is calculated as a ratio between the number of ticks
that occurred in the function and the function's length. See the readprofile manpage included with
the package for in-depth details about the utility's output.

11.3.5 Measuring Interrupt Latency

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One of the most important metrics for real-time embedded systems is the time it takes for them to
respond to outside events. Such systems, as I explained in Chapter 1, can cause catastrophic
results if they do not respond in time.

There are a few known ad-hoc techniques for measuring a system's response time to interrupts
(more commonly known as interrupt latency). These measurement techniques can be roughly
divided into two categories:

Self-contained

In this case, the system itself triggers the interrupts. To use this technique, you must
connect one of your system's output pins to an interrupt-generating input pin. In the case of
a PC-based system, this is easily achieved by connecting the appropriate parallel port pins
together, as is detailed in the Linux Device Drivers book. For other types of systems, this
may involve using more elaborate setups.

Induced

Using this technique, the interrupts are triggered by an outside source, such as a frequency
generator, by connecting it to an interrupt-generating input pin on the target.

In the case of the self-contained method, you must write a small software driver that initiates and
handles the interrupt. To initiate the interrupt, the driver does two things:

1. Record the current time. This is often done using the do_gettimeofday() kernel function,
which provides microsecond resolution. Alternatively, to obtain greater accuracy, you can
also read the machine's hardware cycles using the get_cycles() function. On Pentium-
class x86 systems, for example, this function will return the content of the TSC register. On
the ARM, however, it will always return 0.

2. Toggle the output bit to trigger the interrupt. In the case of a PC-based system, for
example, this is just a matter of writing the appropriate byte to the parallel port's data
register.

The driver's interrupt handler, on the other hand, must do the following:

1. Record the current time.

2. Toggle the output pin.

By subtracting the time at which the interrupt was triggered from the time at which the interrupt
handler is invoked, you get a figure that is very close to the actual interrupt latency. The reason
this figure is not the actual interrupt latency is that you are partly measuring the time it takes for
do_gettimeofday() and other software to run. Have your driver repeat the operation a number of
times to quantify the variations in interrupt latency.

To get a better measure of the interrupt latency using the self-contained method, plug an
oscilloscope on the output pin toggled by your driver and observe the time it takes for it to be
toggled. This number should be slightly smaller than that obtained using do_gettimeofday(),
because the execution of the first call to this function is not included in the oscilloscope output. To
get an even better measure of the interrupt latency, remove the calls to do_gettimeofday()
completely and use only the oscilloscope to measure the time between bit toggles.

Though the self-contained method is fine for simple measurements on systems that can actually
trigger and handle interrupts simultaneously in this fashion, the induced method is usually the
most trusted way to measure interrupt latency, and is closest to the way in which interrupts are
actually delivered to the system. If you have a driver that has high latency and contains code that
changes the interrupt mask, for example, the interrupt driver for the self-contained method may
have to wait until the high latency driver finishes before it can even trigger interrupts. Since the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

have to wait until the high latency driver finishes before it can even trigger interrupts. Since the
delay for triggering interrupts isn't measured, the self-contained method may fail to measure the
worst-case impact of the high latency driver. The induced method, however, would not fail, since
the interrupt's trigger source does not depend on the system being measured.

The software driver for the induced method is much simpler to write than that for the self-
contained method. Basically, your driver has to implement an interrupt handler to toggle the state
of one of the system's output pins. By plotting the system's response along with the square wave
generated by the frequency generator, you can measure the exact time it takes for the system to
respond to interrupts. Instead of an oscilloscope, you could use a simple counter circuit that
counts the difference between the interrupt trigger and the target's response. The circuit would be
reset by the interrupt trigger and would stop counting when receiving the target's response. You
could also use another system whose only task is to measure the time difference between the
interrupt trigger and the target's response.

However efficient the self-contained and the induced methods or any of their variants may be,
Linux is not a real-time operating system. Hence, though you may observe steady interrupt
latencies when the system is idle, Linux's response time will vary greatly whenever its processing
load increases. Simply increase your target's processing load by typing ls -R / on your target while
conducting interrupt latency tests and look at the flickering oscilloscope output to observe this
effect.

One approach you may want to try is to measure interrupt latency while the system is at its peak
load. This yields the maximum interrupt latency on your target. This latency may, however, be
unacceptable for your application. If you need to have absolute bare-minimum bounded interrupt
latency, you may want to consider using one of the real-time derivatives mentioned in Chapter 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4 Memory Debugging

Unlike desktop Linux systems, embedded Linux systems cannot afford to let applications eat up memory as they go or
generate dumps because of illegal memory references. Among other things, there is no user to stop the offending
applications and restart them. In developing applications for your embedded Linux system, you can employ special
debugging libraries to ensure their correct behavior in terms of memory use. The following sections discuss two such
libraries, Electric Fence and MEMWATCH.

Though both libraries are worth linking to your applications during development, production systems should not include
either library. First, both libraries substitute the C library's memory allocation functions with their own versions of these
functions, which are optimized for debugging, not performance. Secondly, both libraries are distributed under the terms
of the GPL. Hence, though you can use MEMWATCH and Electric Fence internally to test your applications, you
cannot distribute them as part of your applications outside your organization if your applications aren't also distributed
under the terms of the GPL.

11.4.1 Electric Fence

Electric Fence is a library that replaces the C library's memory allocation functions, such as malloc()
equivalent functions that implement limit testing. It is, therefore, very effective at detecting out-of-bounds memory
references. In essence, linking with the Electric Fence library will cause your applications to fault and dump core upon
any out-of-bounds reference. By running your application within gdb, you can identify the faulty instruction immediately.

Electric Fence was written and continues to be maintained by Bruce Perens. It is available from
http://perens.com/FreeSoftware/. Download the package and extract it in your ${PRJROOT}/debug directory. For my
control module, for example, I used Electric Fence 2.1.

Move to the package's directory for the rest of the installation:

$ cd ${PRJROOT}/debug/ElectricFence-2.1
Before you can compile Electric Fence for your target, you must edit the page.c source file and comment out the
following code segment by adding #if 0 and #endif around it:

#if (!defined(sgi) && !defined(_AIX))
extern int sys_nerr;
extern char * sys_errlist[];
#endif

If you do not modify the code in this way, Electric Fence fails to compile. With the code changed, compile and install
Electric Fence for your target:

$ make CC=powerpc-linux-gcc AR=powerpc-linux-ar
$ make LIB_INSTALL_DIR=${TARGET_PREFIX}/lib \
> MAN_INSTALL_DIR=${TARGET_PREFIX}/man install
The Electric Fence library, libefence.a, which contains the memory allocation replacement functions, has now been
installed in ${TARGET_PREFIX}/lib. To link your applications with Electric Fence, you must add the
your linker's command line. Here are the modifications I made to my command module's Makefile:

CFLAGS = -g -Wall
...
LDFLAGS = -lefence

The -g option is necessary if you want gdb to be able to print out the line causing the problem. The Electric Fence
library adds about 30 KB to your binary when compiled in and stripped. Once built, copy the binary to your target for
execution as you would usually.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By running the program on the target, you get something similar to:

command-daemon

 Electric Fence 2.0.5 Copyright (C) 1987-1998 Bruce Perens.
Segmentation fault (core dumped)

Since you can't copy the core file back to the host for analysis, because it was generated on a system of a different
architecture, start the gdb server on the target and connect to it from the host using the target gdb. As an example,
here's how I start my command daemon on the target for Electric Fence debugging:

gdbserver 192.168.172.50:2345 command-daemon
And on the host I do:

$ powerpc-linux-gcc command-daemon
(gdb) target remote 192.168.172.10:2345
Remote debugging using 192.168.172.10:2345
0x10000074 in _start ()
(gdb) continue
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x10000384 in main (argc=2, argv=0x7ffff794) at daemon.c:126
126 input_buf[input_index] = value_read;

In this case, the illegal reference was caused by an out-of-bounds write to an array at line 126 of file
more information on the use of Electric Fence, look at the ample manpage included in the package.

11.4.2 MEMWATCH

MEMWATCH replaces the usual memory allocation functions, such as malloc() and free(), with versions that keep
track of allocations. It is very effective at detecting memory leaks such as when you forget to free a memory region or
when you try to free a memory region more than once. This is especially important in embedded systems, since there is
no one to monitor the device to check that the various applications aren't using up all the memory over time.
MEMWATCH isn't as efficient as Electric Fence, however, to detect pointers that go astray. It was unable, for example,
to detect the faulty array write presented in the previous section.

MEMWATCH is available from its project site at http://www.linkdata.se/sourcecode.html. Download the package and
extract it in your ${PRJROOT}/debug directory. MEMWATCH consists of a header and a C file, which must be
compiled with your application. To use MEMWATCH, start by copying both files to your application's source directory:

$ cd ${PRJROOT}/debug/memwatch-2.69
$ cp memwatch.c memwatch.h ${PRJROOT}/project/command-daemon
Modify the Makefile to add the new C file as part of the objects to compile and link. For my command daemon, for
example, I used the following Makefile modifications:

CFLAGS = -O2 -Wall -DMEMWATCH -DMW_STDIO
...
OBJS = daemon.o memwatch.o

You must also add the MEMWATCH header to your source files:

#ifdef MEMWATCH
#include "memwatch.h"
#endif /* #ifdef MEMWATCH */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#endif /* #ifdef MEMWATCH */

You can now cross-compile as you would usually. There are no special installation instructions for MEMWATCH. The
memwatch.c and memwatch.h files add about 30 KB to your binary once built and stripped.

When the program runs, it generates a report on the behavior of the program, which it puts in the memwatch.log
the directory where the binary runs. Here's an excerpt of the memwatch.log generated by running my command
daemon:

= == == == == == == MEMWATCH 2.69 Copyright (C) 1992-1999 Johan Lindh = == ==
...
unfreed: <3> daemon.c(220), 60 bytes at 0x10023fe4 {FE FE FE ...
...
Memory usage statistics (global):
 N)umber of allocations made: 12
 L)argest memory usage : 1600
 T)otal of all alloc() calls: 4570
 U)nfreed bytes totals : 60

The unfreed: line tells you which line in your source code allocated memory that was never freed later. In this case,
60 bytes are allocated at line 220 of daemon.c and are never freed. The T)otal of all alloc() calls
indicates the total quantity of memory allocated throughout your program's execution. In this case, the program
allocated 4570 bytes in total.

Look at the FAQ, README, and USING files included in the package for more information on the use of MEMWATCH
and the output it provides.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5 A Word on Hardware Tools

Throughout this chapter we have mainly concentrated on software tools for debugging embedded
Linux software. In addition to these, there are a slew of hardware tools and helpers for debugging
embedded software. As I said earlier in this chapter, the use of a particular operating system for
the target makes little difference to the way you would normally use such hardware tools. Though
hardware tools are sometimes more effective than software tools to debug software problems,
one caveat of hardware tools is that they are almost always expensive. A good 100 Mhz
oscilloscope, for example, costs no less than a thousand dollars. Let us, nevertheless, review
some of the hardware tools you may use in debugging an embedded target running Linux.

Although brand-new hardware tools tend to be expensive, renting your
tools or buying secondhand ones can save you a lot of money. There are
actually companies that specialize in renting and refurbishing hardware
tools.

The most basic tool that can assist you in your development is most likely an oscilloscope. As we
saw in Section 11.3.5, it can be used to measure interrupt latency. It can, however, be put to
many other uses both for observing your target's interaction with the outside world and for
monitoring internal signals on your board's circuitry.

Though an oscilloscope is quite effective at monitoring a relatively short number of signals, it is
not adapted for analyzing the type of transfers that occur on many wires simultaneously, such as
on a system's memory or I/O bus. To analyze such traffic, you must use a logic analyzer. This
allows you to view the various values being transmitted over a bus. On an address bus, for
example, the logic analyzer will enable you to see the actual addresses transiting on the wires.
This tool will also enable you to identify glitches and anomalies.

If the problem isn't at a signal level, but is rather caused by faulty or immature operating system
software, you need to use either an In-Circuit Emulator (ICE), or a BDM or JTAG debugger. The
former relies on intercepting the processor's interaction with the rest of the system, while the latter
rely on functionality encoded in the processor's silicon and exported via a few special pins, as
described in Chapter 2. For many reasons, ICEs have been gradually replaced by BDM or JTAG
debuggers. Both, however, allow you to debug the operating system kernel using hardware-
enforced capabilities. You can, for instance, debug a crashing Linux kernel using such tools. As a
matter of fact, the Linux kernel is usually ported to new architectures with the help of BDM and
JTAG debuggers. If you are building your embedded system from scratch, you should seriously
consider having a BDM or JTAG interface available for developers so that they can attach a BDM
or JTAG debugger, even though it may be expensive. Most commercial embedded boards are
already equipped with the appropriate connectors.

There is at least one open source BDM debugger available complete with gdb patches and
hardware schematics. The project is called BDM4GDB and its web site is located at
http://bdm4gdb.sourceforge.net/. This project supports only the MPC 860, 850, and 823 PowerPC
processors, however. Though this is quite a feat in itself, BDM4GDB is not a universal BDM
debugger.

The LART project (http://www.lart.tudelft.nl/) provides a JTAG dongle for programming the flash of
its StrongARM-based system. This dongle's schematics and the required software are available
from http://www.lart.tudelft.nl/projects/jtag/. Though this dongle can be used to reprogram the
flash device, it cannot be used to debug the system. For that, you still need a real JTAG
debugger.

If you are not familiar with the subject of debugging embedded systems with hardware tools, I
encourage you to look at Arnold Berger's Embedded Systems Design (CMP Books), and Jack
Ganssle's The Art of Designing Embedded Systems (Newnes). If you are actively involved in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ganssle's The Art of Designing Embedded Systems (Newnes). If you are actively involved in
designing or changing your target's hardware, you are likely to be interested by John Catsoulis'
Designing Embedded Hardware (O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Worksheet
Though embedded Linux systems differ greatly, the method outlined in this book should readily
apply to building any sort of embedded Linux system. It follows from this that it is possible to lay
out a set of rules for specifying the particularities of each embedded Linux system. The worksheet
presented in this appendix does just that. Once completed, any developer can use a worksheet in
conjunction with the explanations in this book to recreate an embedded Linux system without any
assistance from the original designers. During development, the worksheet can be used by
members of the development team to obtain detailed information regarding each component of
the system.

The worksheet contains one section for detailing each aspect of an embedded Linux system.
Each section contains a set of attributes pertaining to the aspect of the embedded Linux system it
describes. The sections are:

Project identification

Hardware summary

Development tools

Kernel

Root filesystem

Storage device organization

Bootloader configuration and use

Networking services

Custom project software

Debug notes

Additional notes

Most sections include a "Main contact" field. This field should be used to specify the name of the
person responsible for this particular aspect of the embedded system during development. The
person in charge of a certain aspect of the system is expected to be aware of the various caveats
and keep up to date with the recent developments of the relevant open source and free software
packages. The person responsible for the kernel, for example, should ideally be subscribed to the
Linux kernel mailing list and the kernel development list for the architecture the system is based
on.

Though the worksheet attempts to be as exhaustive as possible, you may need to modify it and
extend it for your project's purposes. The number of entries for listing some system components,
such as the "Peripherals" list in the "Hardware summary" section for example, may be insufficient
to describe your system. Feel free to add more pages to leave more space for detailing your
system's characteristics.

A copy of the blank worksheet is available for download in PDF and OpenOffice format from the
book's web site at http://www.embeddedtux.org/. Alternatively, you can photocopy the worksheet
included in this appendix. Avoid writing directly in this book, however, as you may want to make
changes to your worksheet and use the book across different projects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The rest of this chapter describes each section of the worksheet in detail. Though the meaning of
most fields should be apparent, some fields may require some explanation. Whenever
appropriate, references the relevant chapters are provided.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.1 Project Identification

This section contains high-level information regarding your embedded system. Most of the
information required for this section can be found in Chapter 1. Table A-1 describes each field in
the "Project identification" section.

Table A-1. Description of "Project identification" fields
Field Description

Name The name of the project.

Internal ID The number or string uniquely identifying this project in your
organization.

Project leader The main person in charge of the project.

Start date The date at which the project started.

Expected completion
date The date at which the project is expected to be finished.

Project description A high-level description of your project.

Type of system The type of the system as presented in Chapter 1.

Size One of: small, medium, or large. See Chapter 1 for the complete
description of each embedded Linux system type.

Time constraints One of: mild or stringent. See Chapter 1 for the discussion regarding
each type of time constraint.

Degree of user
interaction

A qualitative measure of how elaborate the system's user interface is.
See Chapter 1 for examples.

Are networking services
offered or used? One of: yes or no.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2 Hardware Summary

This section contains detailed information regarding your hardware from the software perspective.
The information required for this section is most likely found in your embedded system's
specifications, which are available either from your hardware department or from your board and
processor vendors. This hardware information is crucial for many aspects of building the
embedded Linux system. Table A-2 describes each field in the "Hardware summary" section. As I
said earlier, feel free to extend the number of entries related to "Peripherals" so there's one for
each of your system's peripherals.

Table A-2. Description of "Hardware summary" fields
Field Description

Processor
family One of the processor families discussed in Chapter 3.

Processor
model

The processor model within a processor family. If the processor is part of the
PowerPC family, for example, its model could be 450, 750, 860, etc.

Board type
Manufacturers usually have board families or types that have similar
characteristics. You can leave this field empty if there is no such characteristic for
your board.

Board
model The model or part number for your board.

RAM size The size of system RAM.

RAM start
and end
addr

The location of the RAM in the physical address space.

ROM/Flash
size The size of system ROM or flash.

ROM/Flash
start and
end addr

The location of the ROM/Flash in the physical address space.

ROM/Flash
model The ROM or flash chip model.

Processor
startup
address

The address from which the processor fetches its first instruction.

Disk
storage
type

Fill this field if you are using an IDE or SCSI device or a device that acts as one,
such as a CompactFlash device.

Disk
storage
size

The storage space available on the disk device.

Peripherals:
Type

The kind of peripheral device: Ethernet controller, video controller, CAN interface,
etc.

Peripherals:
Model The model or part number for the peripheral chip.

Peripherals:
Description A description of the peripheral's characteristics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Peripherals:
Mem
location

The physical address space window used to access the peripheral.

Peripherals:
ID

Some peripherals have unique IDs. If the peripheral is an Ethernet device, for
example, write the device's MAC address, if there's only one such device being
produced, or the MAC address range used for the production run, if there are
many units produced.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.3 Development Tools

This section describes the developments tools used for building the embedded system and how
these tools are themselves created. Most of the information in this section pertains to the setup of
the development tools as described in Chapter 4. You should record this information as you build
the tools so you don't lose the information. Table A-3 describes each field in the "Development
tools" section. Many of the fields are identical for all development tools.

Table A-3. Description of "Development tools" fields
Field Description

Host type The type of host used for development. See Chapter 2 for the types of hosts
that can be used for embedded Linux development.

Tool: version The official version of the tool as downloaded from its project's web site.

Tool: Special build
flags Any build flags used to build the tool that are not listed in Chapter 4.

Tool: Special
configuration flags

Any configuration flags used to configure the tool that are not listed in
Chapter 4.

Tool:
Configuration
summary

A summary of the way the tool's build was configured. This applies to uClibc
only, as discussed in Chapter 4.

Tool:
Patches/Changes A description of the patches or changes applied to the tool.

Editor/IDE The editor or IDE used by the members of the development team for this
project.

Terminal emulator The terminal emulator used by the members of the development team for
this project.

Notes Any additional notes regarding the setup and use of the development tools.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.4 Kernel

This section contains complete details regarding the kernel used in the embedded system. This
information is to be used in conjunction with the explanations provided in Chapter 5. Table A-4
describes each field in the "Kernel" section.

Table A-4. Description of "Kernel" fields
Field Description

Version The official kernel version as obtained from the primary download site for
your architecture.

Download location The URL from which you obtained the kernel.

Patches: Description A description of the patch you applied.

Patches: Download
location The URL from which you obtained the patch.

Configuration file
location

The complete path on your internal servers or repository to the
configuration file used to build the system's kernel.

Configuration
summary

A detailed list of the most important configuration options enabled for the
system's kernel.

Kernel failure
handler description

A description of the kernel panic handler implemented for your system.
See Section 5.5 for details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.5 Root filesystem

This section contains complete details of the target's root filesystem. This information is to be
used in conjunction with the explanations provided in Chapter 6. Table A-5 describes each field in
the "Root filesystem" section. The "/dev device entries" part of this section lists the /dev entries
created in addition to those discussed in Chapter 6. The "System applications" part of this section
lists the system applications used to provide basic Unix services, such as BusyBox, TinyLogin,
and Embutils. The "System initialization" part of this section lists the services started by init and
the fashion in which they are started.

Table A-5. Description of "Root filesystem" fields
Field Description

C library The C library used in the embedded system: glibc, uClibc, or diet libc.

C library components The C library components copied to the target's /lib directory as
discussed in Chapter 6.

/dev device entries:
Name The name of the entry.

/dev device entries:
Major nbr The device major number for this entry.

/dev device entries:
Minor nbr The device minor number for this entry.

/dev device entries:
Used by The applications that use this entry.

System applications:
Package The name of the system application package.

System applications:
Version The package version

System applications:
Build config

A summary of the package's configuration. For BusyBox, for example,
list the configuration changes to the configuration default.

System applications:
Config file location

The complete path on your internal servers or repository to the
configuration file used to build this package.

System initialization:
Service The service or binary being started.

System initialization:
Type of activation

The type of init activation. Examples include: askfirst, wait, and once.
See Chapter 6 for the complete list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.6 Storage Device Organization

This section describes the content of the system's storage device. The primary storage device is
expected to be a ROM or flash storage chip, whereas the secondary storage device is either a
disk or additional solid-state storage devices. The contents of this section should be used in
conjunction with the explanations in Chapter 7 and Chapter 8. Table A-6 describes each field in
the "Storage device organization" section.

Table A-6. Description of "Storage device organization" fields
Field Description

Development
setup

The setup used for transferring software components from the host to the target
as described in Chapter 2.

Storage
device[1]

content:
Component

The type of component stored. This can be a bootloader, a kernel, boot
parameters, or any sort of filesystem, including a root filesystem.

Storage
device
content: Size

The storage size allocated to this component.

Storage
device
content:
Location

The location of the component within the storage device. In the case of a solid-
state storage device, such as ROM or flash, this is the physical start and end
addresses. In the case of a disk storage device, this is the start and end sectors.

Storage
device
content:
Dependency

The other components that load or use this component. A root filesystem, for
example, depends on a kernel, and a kernel depends on a bootloader.

Storage
device
content:
Format

The format in which the component is stored. For a filesystem, for instance, this
is the filesystem type, such as ext2 or JFFS2.

[1] Though the entries listed here are generic, the are many possible types of storage devices, as I said earlier.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.7 Bootloader Configuration and Use

This section contains detailed information on the bootloader's configuration and use. This
information is to be used in conjunction with the explanations in Chapter 9. Table A-7 describes
each field in the "Bootloader configuration and use" section.

Table A-7. Description of "Bootloader configuration and use" fields
Field Description

Package The bootloader used in the system.

Version The package version.

Build
configuration A description of the build configuration.

Setup
procedure

The manner in which the bootloader is installed in the target's storage device.
This can include both software and hardware manipulations.

Boot options:
Option One of the boot options configured into the bootloader.

Boot options:
Description A description of the result of selecting this boot option.

Default boot
option The boot option activated if no other option is selected.

Security The security procedure for locking and unlocking the bootloader to avoid user
tampering.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.8 Networking services

This section provides details regarding the networking services offered by the embedded system.
This information is to be used in conjunction with the explanations provided in Chapter 10. Table
A-8 describes each field in the "Networking services" section.

Table A-8. Description of "Networking services" fields
Field Description

Main network service The main network service provided by the system.

Service The networking service being offered

Package The package used to offer the networking service.

Version The package version.

Configuration summary A summary of the package's configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.9 Custom Project Software

This section provides information regarding your custom software project. This information can be
obtained only by analyzing your own software. This isn't meant to be a complete description of
such software. It is expected that your team has its own internal documentation regarding the
project's architecture and internals. This worksheet section is really just a summary meant to
provide a bird's eye view of how your custom software interacts with the rest of the system. Table
A-9 describes each field in the "Custom project software" section.

Table A-9. Description of "Custom project software" fields
Field Description

Main source
repository The main repository where your project's source code is stored.

Code maintainer The main person in charge of the project's source code.

Location in target
root filesystem

The complete path to the final location of the project's components on your
target's root filesystem.

Binary size The total size of all binaries in your project.

Data size The total maximum size occupied by your project's data.

Dependencies The other software packages on which your project depends. The C library
is likely to be one of the dependencies listed here.

Initialization
procedure

The way in which the software is started by the other system components.
If your software is launched by init, say it here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.10 Debug Notes

This section contains information about debugging your project. The information in this section is
to be used in conjunction with the explanations provided in Chapter 11. Debugging is a creative
process, and it is done differently by each developer. This worksheet section is, therefore, only
meant to be a summary. It is very likely that your team will need to maintain its own up-to-date
bug list during project development. Table A-10 describes each field in the "Debug notes" section.

Table A-10. Description of "Debug notes" fields
Field Description

Tools used The detailed list of tools used to debug the system.

Summary of
major bugs
found

A summary of the most important bugs found in your system.

System's
fragilities

Every system has its weaknesses. Listing these explicitly will help you, and
others that work on this system, keep an eye out for problems that may be
caused by these fragilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.11 Additional Notes

Use this worksheet section to add any additional details about your embedded system you think
would be helpful for anyone that works on the project or that may need to understand how the
project components are assembled. Depending on your actual system, you may also prefer to
create an additional worksheet section to enter details about other aspects of your embedded
system not covered by the current version of the worksheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.12 Embedded Linux Systems Worksheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Resources
This book refers to external material when appropriate. The following references point to material
that parallels this book or is in the periphery of the issues discussed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1 Online

With the ever-increasing popularity of "embedded Linux," many sites have been created to help
potential users and adopters. Here is a list of such sites in alphabetical order:

All Linux Devices (http://alllinuxdevices.com/)

Contains links to stories and news items related to embedded Linux. Maintained as part of
Internet.com's Linux resources.

Embedded-Linux.de (http://embedded-linux.de/)

German-language site providing updates about the releases of some of the main open
source packages used in embedded Linux systems, such as BusyBox and uClibc.

LinuxAutomation (http://www.linux-automation.de/)

Contains a well-organized set of links to various resources related to the use of Linux in
automation applications. Though the site's main page is in German, a link is provided to an
English version of the same site. Maintained by Robert Schwebel.

LinuxDevices.com (http://www.linuxdevices.com/)

Contains lots of industry-related news items. Also contains articles about open source and
free software community developments, but clearly has a commercial perspective. This site
provides many introductory guides and is frequently updated. Likely the most visible
embedded Linux site around.

Linux Documentation Project (http://www.tldp.org/)

The main repository for HOWTOs, FAQs, and other guides about open source and free
software packages. Probably one of the most important Linux resources given the breadth
and depth of issues covered by its documents. This site is community maintained.

SiliconPenguin.com (http://www.siliconpenguin.com/)

Contains a collection of links to embedded Linux-related material.

uCdot (http://www.ucdot.org/)

A news and community site for uClinux users.

Though this list includes sites that specialize in providing information about embedded Linux,
there are many other sites that provide general Linux information which you may find useful.
Consult Running Linux for such sites.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2 Books

There are quite a few books out there about Linux and about embedded systems in general. Here
are a few titles that you may find useful:

Advanced Programming in the UNIX Environment, by Richard Stevens (Addison Wesley)

Considered by many as the most important Unix programming book available. If you need
to understand how to think and program in the Unix mindset, this is the book you need.
Stevens' books are, in general, highly recommended.

The Art of Designing Embedded Systems, by Jack Ganssle (Newnes Press)

This book's style is different from most other technical books in that it uses a mix of
technical explanations and practical advice about real-life issues. It captures the essence of
the experiences most embedded system designers have in their day-to-day work. Jack
Ganssle has regular columns in Embedded Systems Programming magazine and is a
frequent speaker at embedded systems conferences.

Embedded Systems Design, by Arnold S. Berger (CMP Books)

An introductory text to embedded system design from both the hardware and the software
perspective. If you are not familiar with the process of developing embedded systems, you
will find this book helpful.

Linux Device Drivers, by Alessandro Rubini and Jonathan Corbet (O'Reilly)

The classic text book for understanding how Linux device drivers are developed. Written by
two respected members of the open source and free software community. A must read for
any Linux device driver developer.

Running Linux, by Matt Welsh, Lar Kaufman, Terry Dawson, and Matthias Kalle Dalheimer
(O'Reilly)

This book provides you with all that you need to learn how to install and use Linux without
requiring any prior knowledge of either Linux or Unix. I've owned a copy of this book's first
edition and have come back to it every time I forgot how something was done in Linux. A
terrific book that covers much of the background material required to make the best out of
the use of Linux in embedded systems.

Programming Embedded Systems in C and C++, by Michael Barr (O'Reilly)

This introductory book covers the basics of embedded software development and offers
insight into many of the software tricks used in developing embedded systems.

Understanding the Linux Kernel, by Daniel Bovet and Marco Cesati (O'Reilly)

There have been a number of books on the Linux kernel's internals over the years. This
one is particularily well researched and structured, and has been updated to cover the
current stable version of Linux, 2.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.3 Publications

Though there aren't any embedded Linux-centric publications at the time of this writing, there are
many publications that discuss the use of Linux in embedded systems as part of the other issues
they cover:

Embedded Systems Programming (http://www.embedded.com/mag.html)

The main magazine for embedded software programmers. Contains many very interesting
and in-depth articles about specific issues. Subscription to this magazine is free for
qualified readers. I strongly encourage you to take the time to subscribe to this publication.

Linux Journal (http://www.linuxjournal.com/)

The oldest of the Linux publications and the most well-established. The publishers of Linux
Journal also started an Embedded Linux Journal publication that specialized in covering
the use of Linux in embedded systems, but it was later discontinued. Instead, there is a
regular "Embedded" section in every Linux Journal issue.

Linux Magazine (http://www.linuxmagazine.com/)

Another well-established Linux publication. Covers various aspects of Linux's use in a
range of applications.

Linux Magazine France (http://www.linuxmag-france.org/)

A French-language publication that provides thorough articles about various open source
and free software packages. Articles often provide a lot of programming examples and tips
on how to use and configure various commands and services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.4 Organizations

As discussed in Chapter 1, there are a number of organizations who's activities are relevant to the
use of Linux in embedded systems:

Embedded Linux Consortium (http://www.embedded-linux.org/)

Emblix (http://www.emblix.org/)

Filesystem Hierarchy Standard Group (http://www.pathname.com/fhs/)

Free Software Foundation (http://www.fsf.org/)

Free Standards Group (http://www.freestandards.org/)

Linux Standard Base (http://www.linuxbase.org/)

OpenGroup (http://www.opengroup.org/)

Real-Time Linux Foundation (http://www.realtimelinuxfoundation.org/)

TV Linux Alliance (http://www.tvlinuxalliance.org/)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.5 Linux and Open-Source-Oriented Hardware Projects

FreeIO (http://www.freeio.org/)

FreeIO (Free Hardware Resources for the Free Software Community) is an effort to
develop and distribute hardware schematics and designs under the terms of the GNU GPL.
The web site already hosts a number of hardware designs along with the relevant Linux
drivers.

LART (http://www.lart.tudelft.nl/)

This project's goal is to develop a StrongARM-based embedded board that runs Linux. The
board schematics and lots of extension modules and software are available from the
project's web site.

MyLinux (http://www.azpower.com/mylinux/)

This project aims to develop a SuperH-based PDA-like embedded system that runs Linux.
The project's details along with pictures are available from the project's web site.

Opencores.ORG (http://www.opencores.org/)

A collection of projects that develop Intellectual Property (IP) cores and distribute them
under the terms of the GNU GPL. Quite a few building blocks are already available.

Simputer (http://www.simputer.org/)

An effort to develop an inexpensive reference hardware platform that runs Linux.

TuxScreen (http://www.tuxscreen.net/)

Originally a Philips product, TuxScreen is a StrongARM-based platform that includes a
phone set, a screen, and a full keyboard. Though no more units are available for purchase,
the site includes schematics that may be useful to other projects.

uClinux boards (http://www.uclinux.org/)

One of the first hardware projects specifically aimed at building an embedded system
capable of running Linux. The MMU-less port of Linux originates from this project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. Important Licenses and Notices
The use and distribution of open source and free software is subject to a few well-known and
widely advertised licenses, as we discussed in Chapter 1. There are, nevertheless, some issues
surrounding Linux's licensing that keep resurfacing and seem to cause confusion. These
uncertainties revolve around the fact that the Linux kernel is itself distributed under the terms of
the GNU GPL.

Over time, Linus Torvalds and other kernel developers have helped shed some light on the limits
and reaches of the kernel's licensing. This appendix presents some of the messages published by
Linus and other kernel developers regarding three aspects of the kernel's licensing: the use of
non-GPL applications, the use of binary-only modules, and the general licensing issues
surrounding the kernel's source code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.1 Exclusion of User-Space Applications from Kernel's GPL

To avoid any confusion regarding the status of applications running on top of the Linux kernel,
Linus Torvalds added the following preamble to the kernel's license:

 NOTE! This copyright does *not* cover user programs that use kernel
 services by normal system calls - this is merely considered normal use
 of the kernel, and does *not* fall under the heading of "derived work".
 Also note that the GPL below is copyrighted by the Free Software
 Foundation, but the instance of code that it refers to (the Linux
 kernel) is copyrighted by me and others who actually wrote it.

 Also note that the only valid version of the GPL as far as the kernel
 is concerned is _this_ license (ie v2), unless explicitly otherwise
 stated.

 Linus Torvalds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2 Notices on Binary Kernel Modules

Recurring controversy has erupted over loadable kernel modules not distributed under the terms of the
GPL. Many companies already ship such binary modules and many industry players contend that such
modules are permitted. Yet many Linux kernel developers have come out rather strongly against this
practice. Here are some messages sent to the Linux kernel mailing list by Linus Torvalds and Alan Cox
that provide some insight as to the use of binary modules.

C.2.1 First Posting by Linus in Kernel Interface Thread

From: torvalds@transmeta.com (Linus Torvalds)
Subject: Re: Kernel interface changes (was Re: cdrecord problems on
Date: 1999-02-05 7:13:23

In article <36bab0c7.394438@mail.cloud9.net>,
John Alvord <jalvo@cloud9.net> wrote:
>On Thu, 4 Feb 1999 22:37:06 -0500 (EST), "Theodore Y. Ts'o"
><tytso@MIT.EDU> wrote:
>>
>>And as a result, I've seen more than a few MIT users decide to give up
>>on Linux and move over to NetBSD. I think this is bad, and I'm hoping
>>we can take just a little bit more care in the 2.2 series than we did in
>>the 2.0 series. Is that really too much to ask?

Yes. I think it is. I will strive for binary compatibility for
modules, but I _expect_ that it will be broken. It's just too easy to
have to make changes that break binary-only modules, and I have too
little incentive to try to avoid it.

If people feel this is a problem, I see a few alternatives:
 - don't use stuff with binary-only modules. Just say no.
 - work hard at making a source-version of the thing available (it
 doesn't have to be under the GPL if it's a module, but it has to be
 available as source so that it can be recompiled).
 - don't upgrade
 - drop Linux

>I suggest we treat binary compatibility problems as bugs which need to
>be resolved during the 2.2 lifetime. Even with all care, some changes
>will occur because of mistakes... if we cure them, there will be
>limited impact to users.

It's often not mistakes. Things sometimes have to change, and I
personally do not care for binary-only modules enough to even care. If
people want to use Linux, they have to live with this. In 2.2.x, the
basics may be stable enough that maybe the binary module interface won't
actually change. I don't know. That would be good, but if it is not to
be, then it is not to be.

I _allow_ binary-only modules. I allow them because I think that
sometimes I cannot morally require people to make sources available to
projects like AFS where those sources existed before Linux. HOWEVER,
that does not mean that I have to _like_ AFS as a binary-only module.

Quite frankly, I hope AFS dies a slow and painful death with people
migrating to better alternatives (coda, whatever). Or that somebody
makes an AFS client available in source form, either as a clone or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

makes an AFS client available in source form, either as a clone or
through the original people.

As it is, what has AFS done for me lately? Nothing. So why should I
care?

 Linus

C.2.2 Second Posting by Linus in Kernel Interface Thread

From: torvalds@transmeta.com (Linus Torvalds)
Subject: Re: Kernel interface changes (was Re: cdrecord problems on
Date: 1999-02-07 8:15:24

In article <79g5buspd1@palladium.transmeta.com>,
H. Peter Anvin <hpa@transmeta.com> wrote:
>
>* Linus Torvalds has no interest whatsoever in developing such a
> plug-in ABI. Someone else is welcome to do it.

No, it's even more than that.

I _refuse_ to even consider tying my hands over some binary-only module.

Hannu Savolainen tried to add some layering to make the sound modules
more "portable" among Linux kernel versions, and I disliked it for two
reasons:

 - extra layers decrease readability, and sometimes make for performance
 problems. The readability thing is actually the larger beef I had
 with this: I just don't want to see drivers start using some strange
 wrapper format that has absolutely nothing to do with how they work.

 - I _want_ people to expect that interfaces change. I _want_ people to
 know that binary-only modules cannot be used from release to release.
 I want people to be really really REALLY aware of the fact that when
 they use a binary-only module, they tie their hands.

Note that the second point is mainly psychological, but it's by far the
most important one.

Basically, I want people to know that when they use binary-only modules,
it's THEIR problem. I want people to know that in their bones, and I
want it shouted out from the rooftops. I want people to wake up in a
cold sweat every once in a while if they use binary-only modules.

Why? Because I'm a prick, and I want people to suffer? No.

Because I _know_ that I will eventually make changes that break modules.
And I want people to expect them, and I never EVER want to see an email
in my mailbox that says "Damn you, Linus, I used this binary module for
over two years, and it worked perfectly across 150 kernel releases, and
Linux-5.6.71 broke it, and you had better fix your kernel".

See?

I refuse to be at the mercy of any binary-only module. And that's why I
refuse to care about them - not because of any really technical reasons,
not because I'm a callous bastard, but because I refuse to tie my hands
behind my back and hear somebody say "Bend Over, Boy, Because You Have
It Coming To You".

I allow binary-only modules, but I want people to know that they are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I allow binary-only modules, but I want people to know that they are
only ever expected to work on the one version of the kernel that they
were compiled for. Anything else is just a very nice unexpected bonus if
it happens to work.

And THAT, my friend, is why when somebody complains about AFS, I tell
them to go screw themselves, and not come complaining to me but complain
to the AFS boys and girls. And why I'm not very interested in changing
that.

 Linus

C.2.3 Post by Alan Cox in Kernel Hooks Thread

This is a response to a posting by Theodore Ts'O.

From: Alan Cox <alan@lxorguk.ukuu.org.uk>
Subject: Re: [ANNOUNCE] Generalised Kernel Hooks Interface (GKHI)
Date: 2000-11-09 14:26:33

> Actually, he's been quite specific. It's ok to have binary modules as
> long as they conform to the interface defined in /proc/ksyms.

What is completely unclear is if he has the authority to say that given that
there is code from other people including the FSF merged into the tree.

I've taken to telling folks who ask about binary modules to talk to their legal
department. The whole question is simply to complicated for anyone else to
work on.

Alan

C.2.4 First Post by Linus in Security Hooks License Thread

From: Linus Torvalds <torvalds@transmeta.com>
Subject: Re: [PATCH] make LSM register functions GPLonly exports
Date: 2002-10-17 17:08:19

Note that if this fight ends up being a major issue, I'm just going to
remove LSM and let the security vendors do their own thing. So far

 - I have not seen a lot of actual usage of the hooks
 - seen a number of people who still worry that the hooks degrade
 performance in critical areas
 - the worry that people use it for non-GPL'd modules is apparently real,
 considering Crispin's reply.

I will re-iterate my stance on the GPL and kernel modules:

 There is NOTHING in the kernel license that allows modules to be
 non-GPL'd.

 The _only_ thing that allows for non-GPL modules is copyright law, and
 in particular the "derived work" issue. A vendor who distributes non-GPL
 modules is _not_ protected by the module interface per se, and should
 feel very confident that they can show in a court of law that the code
 is not derived.

 The module interface has NEVER been documented or meant to be a GPL
 barrier. The COPYING clearly states that the system call layer is such a
 barrier, so if you do your work in user land you're not in any way

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 barrier, so if you do your work in user land you're not in any way
 beholden to the GPL. The module interfaces are not system calls: there
 are system calls used to _install_ them, but the actual interfaces are
 not.

 The original binary-only modules were for things that were pre-existing
 works of code, ie drivers and filesystems ported from other operating
 systems, which thus could clearly be argued to not be derived works, and
 the original limited export table also acted somewhat as a barrier to
 show a level of distance.

In short, Crispin: I'm going to apply the patch, and if you as a copyright
holder of that file disagree, I will simply remove all of he LSM code from
the kernel. I think it's very clear that a LSM module is a derived work,
and thus copyright law and the GPL are not in any way unclear about it.

If people think they can avoid the GPL by using function pointers, they
are WRONG. And they have always been wrong.

 Linus

C.2.5 Second Post by Linus in Security Hooks License Thread

From: Linus Torvalds <torvalds@transmeta.com>
Subject: Re: [PATCH] make LSM register functions GPLonly exports
Date: 2002-10-17 17:25:12

On Thu, 17 Oct 2002, Linus Torvalds wrote:
>
> If people think they can avoid the GPL by using function pointers, they
> are WRONG. And they have always been wrong.

Side note: it should be noted that legally the GPLONLY note is nothing but
a strong hint and has nothing to do with the license (and only matters
for the _enforcement_ of said license). The fact is:

 - the kernel copyright requires the GPL for derived works anyway.

 - if a company feels confident that they can prove in court that their
 module is not a derived work, the GPL doesn't matter _anyway_,
 since a copyright license at that point is meaningless and wouldn't
 cover the work regardless of whether we say it is GPLONLY or not.

 (In other words: for provably non-derived works, whatever kernel
 license we choose is totally irrelevant)

So the GPLONLY is really a big red warning flag: "Danger, Will Robinson".

It doesn't have any real legal effect on the meaning of the license
itself, except in the sense that it's another way to inform users about
the copyright license (think of it as a "click through" issue - GPLONLY
forces you to "click through" the fact that the kernel is under the GPL
and thus derived works have to be too).

Clearly "click through" _has_ been considered a legally meaningful thing,
in that it voids the argument that somebody wasn't aware of the license.
It doesn't change what you can or cannot do, but it has some meaning for
whether it could be wilful infringement or just honest mistake.

 Linus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.3 Legal Clarifications About the Kernel by Linus Torvalds

This is a fairly long explanation by Linus Torvalds regarding the kernel's licensing and how this
licensing applies to foreign code:

Feel free to post/add this. I wrote it some time ago for a corporate
lawyer who wondered what the "GPL exception" was. Names and companies
removed not because I think they are ashamed, but because I don't want
people to read too much into them.

 Linus

Date: Fri, 19 Oct 2001 13:16:45 -0700 (PDT)
From: Linus Torvalds <torvalds@transmeta.com>
To: Xxxx Xxxxxx <xxxxx@xxx.xxxx.com>
Subject: Re: GPL, Richard Stallman, and the Linux kernel

[This is not, of course, a legal document, but if you want to forward it
 to anybody else, feel free to do so. And if you want to argue legal
 points with me or point somehting out, I'm always interested. To a
 point ;-]

On Fri, 19 Oct 2001, Xxxx Xxxxxx wrote:
>
> I've been exchanging e-mail with Richard Stallman for a couple of
> weeks about the finer points of the GPL.

I feel your pain.

> I've have spent time pouring through mailing list archives, usenet,
> and web search engines to find out what's already been covered about
> your statement of allowing dynamically loaded kernel modules with
> proprietary code to co-exist with the Linux kernel. So far I've
> been unable to find anything beyond vague statements attributed to
> you. If these issues are addressed somewhere already, please refer
> me.

Well, it really boils down to the equivalent of "_all_ derived modules
have to be GPL'd". An external module doesn't really change the GPL in
that respect.

There are (mainly historical) examples of UNIX device drivers and some
UNIX filesystems that were pre-existing pieces of work, and which had
fairly well-defined and clear interfaces and that I personally could not
really consider any kind of "derived work" at all, and that were thus
acceptable. The clearest example of this is probably the AFS (the Andrew
Filesystem), but there have been various device drivers ported from SCO
too.

> Issue #1
> = = = = = = = =
> Currently the GPL version 2 license is the only license covering the
> Linux kernel. I cannot find any alternative license explaining the
> loadable kernel module exception which makes your position difficult
> to legally analyze.
>
> There is a note at the top of www.kernel.org/pub/linux/kernel/COPYING,
> but that states "user programs" which would clearly not apply to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> but that states "user programs" which would clearly not apply to
> kernel modules.
>
> Could you clarify in writing what the exception precisely states?

Well, there really is no exception. However, copyright law obviously
hinges on the definition of "derived work", and as such anything can
always be argued on that point.

I personally consider anything a "derived work" that needs special hooks
in the kernel to function with Linux (ie it is _not_ acceptable to make a
small piece of GPL-code as a hook for the larger piece), as that obviously
implies that the bigger module needs "help" from the main kernel.

Similarly, I consider anything that has intimate knowledge about kernel
internals to be a derived work.

What is left in the gray area tends to be clearly separate modules: code
that had a life outside Linux from the beginning, and that do something
self-containted that doesn't really have any impact on the rest of the
kernel. A device driver that was originally written for something else,
and that doesn't need any but the standard UNIX read/write kind of
interfaces, for example.

> Issue #2
> = = = = = = = =
> I've found statements attributed to you that you think only 10% of
> the code in the current kernel was written by you. By not being the
> sole copyright holder of the Linux kernel, a stated exception to
> the GPL seems invalid unless all kernel copyright holders agreed on
> this exception. How does the exception cover GPL'd kernel code not
> written by you? Has everyone contributing to the kernel forfeited
> their copyright to you or agreed with the exception?

Well, see above about the lack of exception, and about the fundamental
gray area in _any_ copyright issue. The "derived work" issue is obviously
a gray area, and I know lawyers don't like them. Crazy people (even
judges) have, as we know, claimed that even obvious spoofs of a work that
contain nothing of the original work itself, can be ruled to be "derived".

I don't hold views that extreme, but at the same time I do consider a
module written for Linux and using kernel infrastructures to get its work
done, even if not actually copying any existing Linux code, to be a
derived work by default. You'd have to have a strong case to _not_
consider your code a derived work..

> Issue #3
> = = = = = = = =
> This issue is related to issue #1. Exactly what is covered by the
> exception? For example, all code shipped with the Linux kernel
> archive and typically installed under /usr/src/linux, all code under
> /usr/src/linux except /usr/src/linux/drivers, or just the code in
> the /usr/src/linux/kernel directory?

See above, and I think you'll see my point.

The "user program" exception is not an exception at all, for example, it's
just a more clearly stated limitation on the "derived work" issue. If you
use standard UNIX system calls (with accepted Linux extensions), your
program obviously doesn't "derive" from the kernel itself.

Whenever you link into the kernel, either directly or through a module,
the case is just a _lot_ more muddy. But as stated, by default it's
obviously derived - the very fact that you _need_ to do something as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

obviously derived - the very fact that you _need_ to do something as
fundamental as linking against the kernel very much argues that your
module is not a stand-alone thing, regardless of where the module source
code itself has come from.

> Issue #4
> = = = = = = = =
> This last issue is not so much a issue for the Linux kernel
> exception, but a request for comment.
>
> Richard and I both agree that a "plug-in" and a "dynamically
> loaded kernel module" are effectively the same under the GPL.

Agreed.

The Linux kernel modules had (a long time ago), a more limited interface,
and not very many functions were actually exported. So five or six years
ago, we could believably claim that "if you only use these N interfaces
that are exported from the standard kernel, you've kind of implicitly
proven that you do not need the kernel infrastructure".

That was never really documented either (more of a guideline for me and
others when we looked at the "derived work" issue), and as modules were
more-and-more used not for external stuff, but just for dynamic loading of
standard linux modules that were distributed as part of the kernel anyway,
the "limited interfaces" argument is no longer a very good guideline for
"derived work".

So these days, we export many internal interfaces, not because we don't
think that they would "taint" the linker, but simply because it's useful
to do dynamic run-time loading of modules even with standard kernel
modules that _are_ supposed to know a lot about kernel internals, and are
obviously "derived works"..

> However we disagree that a plug-in for a GPL'd program falls
> under the GPL as asserted in the GPL FAQ found in the answer:
> http://www.gnu.org/licenses/gpl-faq.html#GPLAndPlugins.

I think you really just disagree on what is derived, and what is not.
Richard is very extreme: _anything_ that links is derived, regardless of
what the arguments against it are. I'm less extreme, and I bet you're even
less so (at least you might like to argue so).

> My assertion is that plug-ins are written to an interface, not a
> program. Since interfaces are not GPL'd, a plug-in cannot be GPL'd
> until the plug-in and program are placed together and run. That is
> done by the end user, not the plug-in creator.

I agree, but also disrespectfully disagree ;)

It's an issue of what a "plug-in" is - is it a way for the program to
internally load more modules as it needs them, or is it _meant_ to be a
public, published interface.

For example, the "system call" interface could be considered a "plug-in
interface", and running a user mode program under Linux could easily be
construed as running a "plung-in" for the Linux kernel. No?

And there, I obviously absolutely agree with you 100%: the interface is
published, and it's _meant_ for external and independent users. It's an
interface that we go to great lengths to preserve as well as we can, and
it's an interface that is designed to be independent of kernel versions.

But maybe somebody wrote his program with the intention to dynamically

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But maybe somebody wrote his program with the intention to dynamically
load "actors" as they were needed, as a way to maintain a good modularity,
and to try to keep the problem spaces well-defined. In that case, the
"plug-in" may technically follow all the same rules as the system call
interface, even though the author doesn't intend it that way.

So I think it's to a large degree a matter of intent, but it could
arguably also be considered a matter of stability and documentation (ie
"require recompilation of the plug-in between version changes" would tend
to imply that it's an internal interface, while "documented binary
compatibility across many releases" implies a more stable external
interface, and less of a derived work)

Does that make sense to you?

> I asked Richard to comment on several scenarios involving plug-ins
> explain whether or not they were in violation of the GPL. So far he
> as only addressed one and has effectively admitted a hole. This is
> the one I asked that he's responded to:
> [A] non-GPL'd plug-in writer writes a plug-in for a non-GPL'd
> program. Another author writes a GPL'd program making the
> first author's plug-ins compatible with his program. Are now
> the plug-in author's plug-ins now retroactively required to be
> GPL'd?
>
> His response:
> No, because the plug-in was not written to extend this program.
>
> I find it suspicious that whether or not the GPL would apply to the
> plug-in depends on the mindset of the author.

The above makes no sense if you think of it as a "plug in" issue, but it
makes sense if you think of it as a "derived work" issue, along with
taking "intent" into account.

I know lawyers tend to not like the notion of "intent", because it brings
in another whole range of gray areas, but it's obviously a legal reality.

Ok, enough blathering from me. I'd just like to finish off with a few
comments, just to clarify my personal stand:

 - I'm obviously not the only copyright holder of Linux, and I did so on
 purpose for several reasons. One reason is just because I hate the
 paperwork and other cr*p that goes along with copyright assignments.

 Another is that I don't much like copyright assignments at all: the
 author is the author, and he may be bound by my requirement for GPL,
 but that doesn't mean that he should give his copyright to me.

 A third reason, and the most relevant reason here, is that I want
 people to _know_ that I cannot control the sources. I can write you a
 note to say that "for use XXX, I do not consider module YYY to be a
 derived work of my kernel", but that would not really matter that much.
 Any other Linux copyright holder might still sue you.

 This third reason is what makes people who otherwise might not trust me
 realize that I cannot screw people over. I am bound by the same
 agreement that I require of everybody else, and the only special status
 I really have is a totally non-legal issue: people trust me.

 (Yes, I realize that I probably would end up having more legal status
 than most, even apart from the fact that I still am the largest single
 copyright holder, if only because of appearances)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 copyright holder, if only because of appearances)

 - I don't really care about copyright law itself. What I care about is my
 own morals. Whether I'd ever sue somebody or not (and quite frankly,
 it's the last thing I ever want to do - if I never end up talking to
 lawyers in a professional context, I'll be perfectly happy. No
 disrespect intended) will be entirely up to whether I consider what
 people do to me "moral" or not. Which is why intent matters to me a
 lot - both the intent of the person/corporation doign the infringement,
 and the intent of me and others in issues like the module export
 interface.

 Another way of putting this: I don't care about "legal loopholes" and
 word-wrangling.

 - Finally: I don't trust the FSF. I like the GPL a lot - although not
 necessarily as a legal piece of paper, but more as an intent. Which
 explains why, if you've looked at the Linux COPYING file, you may have
 noticed the explicit comment about "only _this_ particular version of
 the GPL covers the kernel by default".

 That's because I agree with the GPL as-is, but I do not agree with the
 FSF on many other matters. I don't like software patents much, for
 example, but I do not want the code I write to be used as a weapon
 against companies that have them. The FSF has long been discussing and
 is drafting the "next generation" GPL, and they generally suggest that
 people using the GPL should say "v2 or at your choice any later
 version".

 Linux doesn't do that. The Linux kernel is v2 ONLY, apart from a few
 files where the author put in the FSF extension (and see above about
 copyright assignments why I would never remove such an extension).

The "v2 only" issue might change some day, but only after all documented
copyright holders agree on it, and only after we've seen what the FSF
suggests. From what I've seen so far from the FSF drafts, we're not likely
to change our v2-only stance, but there might of course be legal reasons
why we'd have to do something like it (ie somebody challenging the GPLv2
in court, and part of it to be found unenforceable or similar would
obviously mean that we'd have to reconsider the license).

 Linus

PS. Historically, binary-only modules have not worked well under Linux,
quite regardless of any copyright issues. The kernel just develops too
quickly for binary modules to work well, and nobody really supports them.
Companies like RedHat etc tend to refuse to have anything to do with
binary modules, because if something goes wrong there is nothing they can
do about it. So I just wanted to let you know that the _legal_ issue is
just the beginning. Even though you probably don't personally care ;)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

Linley Dolby was the production editor and copyeditor for Building Embedded Linux Systems.
Claire Cloutier, Phil Dangler, Matt Hutchinson, and Darren Kelly provided quality control. Derek Di
Matteo and Jamie Peppard provided production assistance. Lucie Haskins wrote the index.

The image on the cover of Building Embedded Linux Systems is a windmill. Emma Colby
designed the cover of this book, based on a series design by Hanna Dyer and Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. The chapter
opening images are from the Dover Pictorial Archive, Marvels of the New West: A Vivid Portrayal
of the Stupendous Marvels in the Vast Wonderland West of the Missouri River, by William Thayer
(The Henry Bill Publishing Co., 1888), and The Pioneer History of America: A Popular Account of
the Heroes and Adventures, by Augustus Lynch Mason, A.M. (The Jones Brothers Publishing
Company, 1884). This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl
and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\ (backward slash)
: (colon)
- (hyphen)
| (pipe)
; (semicolon) 2nd
\ (slash) 2nd 3rd
~> string
\lib directory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

accelerator control 2nd
access rights 2nd
ad hoc scripts
Ada Core Technologies Inc. (ACT)
Ada for GNU/Linux Team (ALT)
Ada programming language
add_mtd_device() function
addr2line utility
Adeos nanokernel
Advanced RISC Machine [See ARM]
Aegis project
AF_BLUETOOTH socket type
Affix stack
agents 2nd
ahead-of-time (AOT) compiler
ALERT syslog level
ALICE (Automation Light Interface Control Environment) project
allinone binary (embutils)
ALSA (Advanced Linux Sound Architecture)
Anjuta (IDE)
Apache servers 2nd
APIs
 DAQ hardware interfaces
 filesystem access
 low-level services
 Open Sound System
 parallel ports
 PCI bus
 portability
Apple [See also PowerPC][See also PowerPC]
 FireWire trademark
applications [See also system applications][See also system applications]
 coverage analysis
 debugging with gdb
 dynamically linking libraries
 GNU C library usage
 GPL and
 linking proprietary
 linking to C library
 linking to uClibc library
 linking with diet libc
 root filesystem and 2nd
 root privileges and
 worksheet 2nd
ar utility 2nd
ARCH variable (make command) 2nd 3rd
architecture, embedded Linux system 2nd
ARCnet (Attached Resource Computer NETwork) 2nd 3rd
ARM (Advanced RISC Machine) processor
 architecture overview 2nd
 bootloader comparison
 diet libc support
 embedded system survey
 embutils
 GNU toolchain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 kernel considerations 2nd 3rd 4th
 U-Boot and
 UI modules and
ARMBoot project
as (GNU assembler) utility 2nd 3rd
ASCII
 Modbus messaging format
ATA (ARCnet Trade Association)
ATA (AT Attachment)
ATA-ATAPI (IDE) hardware support
ATAPI (ATA Packet Interface)
Attached Resource Computer NETwork (ARCnet) 2nd 3rd
ATV (Automatic Transfer Vehicle)
authentication
authorization, secure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

.bb files

.bbg files
BBT (Bad Block Table) 2nd 3rd
BDM debugger 2nd 3rd 4th
BDM4GDB project
\bin directory 2nd 3rd 4th
BIN_GROUP variable (make command)
BIN_OWNER variable (make command)
binaries
 downloading to flash
 sections for debugging
 strip command
 U-Boot
binutils (binary utilities)
 gcc cautions
 GPL license
 resources
 setting up
 Unix systems and
 version considerations 2nd
BIOS
 interrupt handlers and
 LILO and
 ROM chips and
 system startup process
 TSR program and
Blackdown project 2nd 3rd 4th
blob bootloader 2nd
block devices 2nd
BlueCat (LynuxWorks)
BlueDrekar stack
Bluetooth
 Ericsson blip and
 hardware support
 kernel support options
 unlisted features
BlueZ stack 2nd 3rd
Boa
book resources 2nd
boot configuration
\boot directory
boot scripts 2nd
bootable DOS diskette 2nd
booting
 basics of
 BOOTP/DHCP, TFTP, NFS
 CF devices
 diskless systems
 from DOC
 hard disks and
 network boot 2nd
 RAM disk
 from ROM
 system reboot 2nd
 U-Boot and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bootldr bootloader 2nd
bootloaders [See also specific bootloaders][See also specific bootloaders]2nd [See also specific bootloaders]
[See also specific bootloaders]
 ATA-IDE limitations
 boot configurations
 comparison
 DOS method installation
 example 2nd
 GRUB and DOC devices
 importance of
 installing 2nd
 LILO with disk and CF devices
 minicom constraints
 mounting filesystem
 partitions and
 server setup for network boot
 setting up 2nd
 SPL as
 system startup component
 worksheet
bootm command
BOOTP
 booting with
 GRUB network boot
 network boot 2nd 3rd
 SYSM module and
bootp command
BSD license
 inetd
 strace
 thttpd
 xinetd
.bss section (ELF binary)
build process
 binutils setup
 bootstrap compiler setup 2nd
 C library setup
 compiling kernel image
 configuring kernel
 dependencies and 2nd
 finalizing setup
 kernel headers setup
 overview 2nd
 resources
 uClibc library
build-binutils directory
build-glibc directory
build-tools directory 2nd 3rd
bus master
buses
 CompactPCI support
 GPIB support 2nd
 I<Superscript>2<Default Para Font>C support 2nd
 ISA support
 Linux support
 PC/104 support 2nd
 PCI support 2nd
 PCMCIA support
 support overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VME support 2nd
BusyBox
 dpkg command
 embutils and
 features
 init program
 module dependencies
 ping command
 ps replacement
 readelf command
 setup
 shells 2nd 3rd
 udhcp project
 usage
byte ordering 2nd
bzImage file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C library [See diet libc glibc uClibc]
c++filt utility
C-Kermit terminal emulator 2nd
C99 support 2nd
caching block device 2nd 3rd
CAN (Controller Area Network)
CAN in Automation (CiA) group 2nd 3rd
can4linux project
Canadian Crosses technique
CanFestival project
CANopen protocol 2nd
cat command 2nd
CATS (computer-aided training system)
CC environment variable
CF (CompactFlash)
 booting from
 control module and
 DAQ module and
 features 2nd
 JFSS2 user module and
 LILO and
 popularity of
CFI (Common Flash Interface)
 control module and
 functionality
 kernel configuration
 mapping drivers
 MTD support 2nd
 partitioning
 writing and reading 2nd
CFLAGS variable (make command) 2nd
CGI scripting
char devices 2nd 3rd
chroot() system call
CHRP (Common Hardware Reference Platform)
CiA (CAN in Automation) group 2nd 3rd
clocks_in_mhz environment variable
code [See applications software]
COM20020 chipset
COM90xx chipset
Comedi package 2nd
Comedilib library
command line
 IDEs
 kermit 2nd
 viewing kernel configuration menu
command-daemon (gdb server and)
Common Flash Interface [See CFI]
Common Hardware Reference Platform (CHRP)
communication protocols [See specific protocols]
CompactFlash [See CF]
CompactPCI bus
CompaqÕs bootldr 2nd
compilation [See also cross-compilation Makefiles][See also cross-compilation Makefiles]
 ahead-of-time compilers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 C library cautions
 diet libc
 Electric Fence cautions
 just-in-time compilers
 kernel considerations
 linuxthreads package and
 MTD utilities
 Perl cautions
 rsync utility
 setting up compilers 2nd 3rd
 _start symbol
 telnetd
 TinyLogin
 U-Boot
 uClibc library setup
 udhcp
 warnings during
Comprehensive Perl Archive Network (CPAN) 2nd
compression
 filesystems 2nd 3rd 4th 5th
 gzip command 2nd
 JFFS2 2nd
 kernel configuration
computer-aided training system (CATS)
.config file
 backing up
 generated by kernel
 kernel configuration 2nd
 multiple images
 naming recommendations
 saving manually
CONFIG_FILTER option
CONFIG_FTL option
CONFIG_MTD option
CONFIG_MTD_BLOCK option
CONFIG_MTD_BLOCK_RO option
CONFIG_MTD_CHAR option
CONFIG_MTD_PARTITIONS option
CONFIG_NFTL option
CONFIG_NFTL_RW option
CONFIG_PACKET option
configurability 2nd 3rd
configuration [See also boot configuration dynamic configuration kernel configuration][See also boot
configuration dynamic configuration kernel configuration]
 add-ons
 backing up
 cautions enabling options
 FreSSH constraints
 full compiler setup
 glibc
 GRUB to boot from DOC 2nd
 kernel-supported methods 2nd
 libc.so file
 LILO recommendations
 managing multiple
 microperl
 miniperl
 netkit-base and modifications
 OpenSSH

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 processor and system type
 rsync utility
 saving/restoring
 scripts for 2nd
 setting up
 uClibc
 unlisted features
control daemon
 DAQ module example
 diet libc
 uClibc
control module
 booting from RAM disk
 compacting
 CRAMFS and
 embedded systems 2nd 3rd 4th
 gdb package 2nd
 project workspace
 SYSM module and
Controller Area Network (CAN)
copyright issues
cp command 2nd 3rd 4th
CPAN (Comprehensive Perl Archive Network) 2nd
CRAMFS filesystem
 automatic creation \dev entries
 compression 2nd
 features
 link count and
 OpenSSH and
 RAM disks
 selection guidelines
cramfsck tool
crc32 command
CROSS variable (make command)
cross-compilation
 Apache and 2nd
 considerations
 DHCP package and
 gdb server
 libgcc constraints
 LILO and GRUB
 OpenSSH constraints
 Perl and
 Python
 System V init program
cross-compiling variable (make install command)
CROSS_COMPILE variable (make command) 2nd 3rd
cryptography
cu terminal emulator 2nd 3rd 4th
CUPS print management package
CVS
 coordinating development
 gnat and
 GRUB code
 retrieving code from
 sh-boot and
Cygnus [See Red Hat]
Cygwin environment (Red Hat)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

.da files 2nd
daemons [See also specific daemons][See also specific daemons]
 LTT build
 networking services as
 respawning cautions
 xinetd as
DAQ (data acquisition)
 booting from CF card
 compacting
 control daemon
 disk filesystem over NFTL
 embedded system component 2nd
 erasing DOC devices
 GPIB interface and
 hardware support 2nd
 probe driver output
 project workspace
 SYSM module and
.data section (ELF binary)
databases, system module and 2nd
DCS (Digital Control System)
dd command 2nd 3rd 4th
DDD (IDE)
Debian 2nd 3rd
debugging
 ad hoc methods
 BDM and JTAG interfaces
 filesystem recommendations
 gdb tool
 hardware tools 2nd
 memory debugging
 multibit I/O and
 networking interface 2nd
 performance analysis
 serial lines 2nd
 tracing
 U-Boot ELF binary and
 virtual memory layout
 worksheet
denial-of-access attacks
.depend files
depmod utility
design methodology
DESTDIR variable (make command)
\dev directory 2nd 3rd 4th 5th
\dev entries
 CFI flash devices and
 DOC
 LILO 2nd
 MTD subsystem 2nd
 worksheet
DEVEL_PREFIX variable (uClibc)
DEVEL_TOOL_PREFIX variable (uClibc)
development [See also GNU toolchain][See also GNU toolchain]
 Ada

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 bootloaders and
 diet libc library
 differences for embedded systems
 GNU Java Compiler 2nd
 IDEs 2nd
 Java
 Linux costs
 memory debugging cautions
 open source virtual machines
 Perl
 project workspace
 Python
 setting up host/target systems
 terminal emulators
 tool setup 2nd
 uClibc
 worksheet
development (framework) distributions
device drivers
 CFI flash and
 CIF boards
 DAQ vendor caveats
 Ethernet
 ISA bus
 mapping
 PCI and
 SCSI interface
 self-contained MTD
DeviceNet protocol 2nd
dformat DOS utility 2nd 3rd 4th 5th
DHCP (Dynamic Host Configuration Protocol)
 booting with
 functionality
 GRUB network boot
 network boot 2nd 3rd
 setting up daemon
 SYSM module and
 UI modules and
diet libc
 embutils
 features
 minit
 patch utility
 Python constraints
diff command 2nd
Digital Control System (DCS)
dinfo command 2nd
dir command (gdb)
directories
 binutils
 cautioning overwriting kernels
 confusing similarities
 copying without GNU cp
 downloading kernels into
 GNU toolchain
 mounting on TMPFS 2nd 3rd
 organizing for project
 renaming kernel directory
 root filesystem 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setup recommendations
 sharing directory trees
 storage requirements
 tools directory contents
 uClibc library settings
 version numbers and 2nd
disk devices
 embedded systems
 LILO and
 worksheet
disk filesystem
 definition of
 GIDs and
 over NFTL 2nd 3rd
 over RAM disk
diskboot command 2nd
diskless systems, booting
DiskOnChip [See DOC]
distributions
 criteria for choosing
 defined
 Linux workstations
 PowerPC support
 survey findings
 target systems
 things to avoid
 using
do_gettimeofday() function 2nd
DOC (DiskOnChip)
 cautions using MTD utilities
 embedded system survey
 features
 functionality
 GRUB and
 JFFS2 and 2nd
 LILO cautions
 memory device
 MTD chip driver
 U-Boot and
doc_loadbios utility (MTD) 2nd 3rd 4th
docbbt.txt file 2nd
documentation [See resources]
DOS installation
 DOC and 2nd 3rd
 GRUB bootloader image
 loadlin utility 2nd
DOSTATIC flag 2nd
dpkg (Debian package)
drivers [See device drivers]
DSA keys
dynamic configuration
Dynamic Host Configuration Protocol [See DHCP]
dynamic linking
 Boa 2nd
 BusyBox
 copyright laws and
 gdb command
 glibc package
 glibc setup option 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 libraries
 Python
 rsync
 shared libraries
 thttpd
 uClibc library
 udhcp
 xinetd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Eclipse (IDE)
eCos operating system
EDC (Evans Data Corporation)
einfo utility (MTD)
EISA (Extended ISA) devices
ELC (Embedded Linux Consortium) 2nd 3rd
ELDK (Embedded Linux Development Kit) 2nd
Electric Fence library 2nd
Electromagnetic Interference (EMI)
ELF binary 2nd 3rd
ELJ (Embedded LInux Journal)
ELKS (Embeddable Linux Kernel Subset) project
Embeddable Linux Kernel Subset (ELKS) project
embedded Linux 2nd
Embedded Linux Consortium (ELC) 2nd 3rd
embedded Linux distribution
Embedded Linux Journal (ELJ)
embedded systems [See also host systems target systems][See also host systems target systems]
 booting requirements
 defined
 development worksheet
 examples
 generic architecture
 log file cleanup
 multicomponent example
 networking and 2nd
 size determination 2nd
 survey findings
 time constraints 2nd
 ubiquity of
Embedded Systems Programming (ESP) magazine
Emblix (Japan Embedded Linux Consortium) 2nd
embutils 2nd
EMI (Electromagnetic Interference)
encryption 2nd
environment variables
 automating booting process
 CC
 filesize 2nd 3rd
 gdb constraints
 LD_LIBRARY_PATH 2nd 3rd
 PATH 2nd
 PREFIX 2nd
 saving for U-Boot
 setting with script
 TARGET 2nd
 U-BootÕs 2nd
EPROMs
erase blocks 2nd 3rd
erase command 2nd 3rd 4th
eraseall command 2nd 3rd 4th 5th
erasing
 DOC devices
 DOC install considerations
 MTD devices

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 U-Boot bootloader image
Ericsson blip 2nd
error messages
 bad blocks
 kernel panic
 partition deletion
 SYSM module and
 unrecognizable format
\etc directory
EtherBoot bootloader 2nd
Ethernet
 802.11 as equivalent
 ARCnet and
 considerations using
 EMI and RFI vulnerability
 hardware support
 linked setup
 Modbus protocol and
Eurolinux
Evans Data Corporation (EDC)
exec_prefix variable (make command)
eXecute In Place (XIP)
ext2 filesystem
 data access
 NFTL and 2nd
 power-down reliability
 RAM disks
ext3 journalling filesystem 2nd
Extended ISA (EISA) devices
EXTRAVERSION variable 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Familiar distribution 2nd 3rd
fast infrared (FIR)
FAT filesystem 2nd 3rd
fcp utility (MTD)
fdisk utility 2nd 3rd 4th
FHS (Filesystem Hierarchy Standard) 2nd 3rd
fieldbuses
file command 2nd
files
 copying
 dependency considerations
 header files 2nd
 log file recommendations
 maps file
 patching
 transfer constraints 2nd
filesize environment variable 2nd 3rd
Filesystem Hierarchy Standard Group 2nd
filesystems [See also journalling filesystems root filesystem][See also journalling filesystems root filesystem]
 compression 2nd 3rd 4th 5th
 creating image for RAM disk
 kernel functions
 MTD utilities
 selection guidelines
 updating while mounted
 writing images to flash
FIR (fast infrared)
FireWire [See IEEE1394 standard]
firmware 2nd 3rd
flash chips 2nd 3rd 4th
flash devices [See also specific models][See also specific models]
 blob and
 bootstrapping and
 downloading binary images
 erase blocks
 filesystems and
 hardware worksheet
 JFFS2 and
 JTAG dongles
 RAM location and
 system memory layout
 writing filesystem image
Flash Translation Layer (FTL) 2nd 3rd
floppy disks
foreign code, licensing clarifications
free software community [See open source]
Free Software Foundation (FSF) 2nd 3rd
Free Standards Group (FSG) 2nd
free() function 2nd
FreeIO (Free Hardware Resources for the Free Software Community)
Freshmeat web site
FreSSH package
FTL (Flash Translation Layer) 2nd 3rd
ftl_check utility (MTD)
ftl_format utility (MTD)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ftl_format utility (MTD)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

garbage collection
gasp utility (binutils)
gcc (GNU C compiler)
 binary utility cautions
 code coverage recommendations
 cross-compilation and
 debugging options
 extracting
 gcc component
 gdb and
 gnat constraints
 GPL license
 installing
 resources
 setting up 2nd
 versions 2nd 3rd
gcj [See GNU Java Compiler]
gcov utility 2nd 3rd
gdb (GNU debugger)
 BDM and JTAG debuggers
 building/installing components
 debugging applications
 Electric Fence
 GPL license
 popularity of
gdb stubs
.gdbinit file
General-Purpose Interface Bus (GPIB) 2nd 3rd
get_cycles() function
gettimeofday()
GhostScript package
GID field
gjc (GNU Java Compiler) 2nd
glib package
glibc (GNU C library)
 alternatives
 applications and
 Boa 2nd
 build considerations
 BusyBox and
 compilation cautions
 components in
 delicacy of build
 FPU emulation option
 FreSSH
 GNU toolchain version combinations
 inetd support
 JDK and JRE
 kernel headers and
 LGPL license
 library build options
 linking options 2nd
 linuxthreads 2nd
 microperl and
 Net-SNMP and 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OpenSSH
 package download
 patch utility
 Python considerations
 resources
 root filesystem
 rsync utility
 setting up
 shell script updating
 strace and
 telnetd 2nd
 thttpd
 TinyLogin 2nd
 trace daemon and
 udhcp and
 Unix systems and
 utelnetd 2nd
 version considerations 2nd 3rd 4th
 worksheet
 xinetd support
glibc-encrypt
glibc-linuxthreads
Glimmer (IDE)
gnat (GNU Ada) compiler
GNU C library [See C library]
GNU GPL (General Public License)
 "contamination" 2nd
 binary kernel modules
 Boa and
 BusyBox package
 diet libc licensing
 FSF and 2nd
 kernel license exclusion
 licensing
 Linux code availability
 M-Systems DOC driver
 RTLinux patent and
 udhcp project
 utelnetd
GNU toolchain [See also build process][See also build process]
 BDM/JTAG debuggers and
 binutils setup
 build overview 2nd
 build-tools directory
 C library setup
 component versions
 Cygwin environment
 finalizing setup
 gcc setup 2nd 3rd 4th
 kernel headers setup
 memory for compilation
 overview
 resources
 sharing tools
 Unix systems and
 using
 workspace setup
GNUPro product (Red Hat)
GOAS (Ground Operator Assistant System)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GPIB (General-Purpose Interface Bus) 2nd 3rd
GPL [See GNU GPL]
gprof utility 2nd 3rd 4th
graphical interface (X Window System)
GRUB (GRand Unified Bootloader)
 bootloader image
 comparison
 cross-compilation
 DOC devices and
 features
 version considerations
GTK widget toolkit 2nd
gzip command 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hard real-time system 2nd
hardware support
 ARM processor 2nd
 buses and interfaces
 debugging tools 2nd 3rd
 IBM/Motorola PowerPC 2nd
 industrial grade networking
 input/output
 kernel configuration options
 kernprof and
 Linux and 2nd 3rd
 MIPS processor
 Motorola 68000
 networking
 open source projects 2nd
 processor architectures
 storage
 SuperH
 U-Boot
 x86 processor 2nd
HCI (Host Controller Interface) 2nd
hcidump tool (BlueZ)
hdparm utility
header files 2nd
help command
HelpPC shareware
hexadecimal format
HEYU! project
high-availability
Hitachi SuperH [See SuperH processor]
home automation 2nd
\home directory
Host Controller Interface (HCI) 2nd
host systems
 automatic network configuration
 byte ordering considerations 2nd
 debug setups 2nd
 defined
 development setups
 GNU toolchain 2nd
 installing MTD utilities
 testing connections
 types of
Hot Swap specification (CompactPCI)
HTTP
 SYSM module and
 web content and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I<Superscript>2<Default Para Font>C (Inter-Integrated Circuit) bus 2nd
I/O (input/output)
 generic requirements
 hardware support
 logic analyzers
i386 platform
 embutils
 GNU toolchain
 hardware support
 PCMCIA support
 target build example
i386-linux directory
IAP (Information Access Protocol)
IAS (Information Access Service)
IBM/Motorola PowerPC [See PowerPC]
ICE (In-Circuit Emulator) 2nd
ide commands 2nd
IDE drives [See ATA-ATAPI]
 CF cards and
 CompactFlash devices as
 LILO and 2nd
 U-Boot and
IDEs (integrated development environments)
 availability
 listed
 using
 worksheet
IEEE 1284 standard
IEEE 1394 (Firewire) standard 2nd 3rd 4th
IEEE 488 (GPIB) standard
IEEE 802.11 (wireless) standard 2nd
IETF standard
iminfo command 2nd 3rd
implementation methodology
In-Circuit Emulator (ICE) 2nd
include directory 2nd
index.html files
Industry Standard Architecture (ISA) 2nd
inetd super-server 2nd 3rd
info directory
Infrared Data Association [See IrDA]
init program
 BusyBox init
 kernel and
 Minit 2nd
 respawning cautions
 standard System V init 2nd
 start_kernel() function
 system startup component
Initial Program Loader (IPL) 2nd
initialization [See system initialization]
initramfs (init RAMFS)
initrd mechanism 2nd
INSTALL_MOD_PATH variable (make command)
install_root variable (make install command)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

installation [See also DOS installation][See also DOS installation]
 bootloader image 2nd
 C library
 checking for binutils
 distribution considerations
 DOS method for DOC
 embutils
 full compiler
 gcc
 gdb
 GRUB on DOC
 inetd
 kernel considerations
 MTD utilities
 patch utility
 rsync utility
 strace tool
 U-Boot
 uClibc library
 udhcp 2nd
 visualization tool
INT 18h
INT 19h
Intel [See x86 processors]
Interbus fieldbus
interfaces
 Ada
 CompactFlash access via
 DAQ hardware
 hardware support
International Space Station (ISS)
Internet Software Consortium (ISC)
internet super-servers
 DHCP and
 enabling TFTP service
 inetd
 special daemon
 xinetd 2nd
interpreters
 microperl
 miniperl
 Perl
 Python
interrupt handlers 2nd 3rd
interrupt latency 2nd
intrusions, NFS service and
IP addresses
 automatic configuration and
 control module and
 DAQ modules and
 SYSM module and 2nd
 UI modules and
iPKG (Itsy Package Management System)
IPL (Initial Program Loader) 2nd
IrCOMM layer
IrDA (Infrared Data Association)
 Bluetooth and
 hardware support
 kernel support options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IrLAN
IrLAP (link access protocol) 2nd
IrLMP (link management protocol) 2nd
IrNET
IrOBEX
IrPHY (physical signaling layer)
IrPORT driver (IrDA)
IrTTY driver (IrDA)
ISA (Industry Standard Architecture) 2nd
ISC (Internet Software Consortium)
ISO 11898 standard (CAN)
ISS (International Space Station)
Itsy Package Management System (iPKG)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

J1939 protocol
Japhar project
Java Development Kit (JDK) 2nd
Java programming language
 ALICE project
 background
 Blackdown project
 Motorola 68000 processors and
 PowerPC support
 SuperH processors and
Java Runtime Environment (JRE) 2nd 3rd
Java Virtual Machine (JVM) 2nd
JDK (Java Development Kit) 2nd
JEDEC Solid State Technology Association
JFFS (MTD)
JFFS2 filesystem
 automatic creation \dev entries
 blob and
 compression 2nd
 DOC and 2nd
 erase blocks and
 features 2nd 3rd
 MTD support
 selection guidelines
 storage support
 U-Boot and
jffs2reader utility (MTD)
JFS journalling filesystem
jModbus project
joeq VM project
journalling filesystems
 documentation
 JFFS2 and
 NFTL and 2nd
 power-down reliability and
Journalling Flash File System (JFFS) user module
JRE (Java Runtime Environment) 2nd 3rd
JTAG debugger 2nd 3rd 4th
just-in-time (JIT) compilers
JVM (Java Virtual Machine) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kcomedilib
KDevelop (IDE) 2nd
keepalive signals
kermit utility 2nd 3rd
.kermrc configuration file
KERN_WARNING symbol 2nd
kernel
 ALSA integration
 Applicom cards
 architecture name selection
 ARCnet support
 ATA/IDE support
 binary modules notices
 blob and
 bootstrapping requirements
 building 2nd
 CFI specification support
 compiling
 dealing with failure
 debugging 2nd 3rd 4th
 display support
 DOC driver
 documentation
 embedded Linux and
 failure to boot after updates
 filesystem engines
 functions of
 generic requirements
 GNU toolchain and
 GPL 2nd
 I<Superscript>2<Default Para Font>C
 I/O device support
 importance of
 initrd images
 installing 2nd 3rd 4th
 Kcomedilib
 layered services
 legal clarifications
 LTT and 2nd 3rd
 MontaVista contributions
 Motorola 68000 processors
 MTD and 2nd 3rd
 OS functions
 pointer devices and
 \proc filesystem
 RAM and 2nd
 renaming directory
 root filesystem requirements
 SCSI layer
 secondary kernels under
 selecting 2nd
 system startup component 2nd
 TrueFFS tools
 USB and
 version variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual address space
 watchdog timers
 worksheet
kernel configuration
 building and 2nd
 CFI flash
 considerations
 DOC
 kernel selection and
 MIPS
 MTD subsystem
 rebuilding toolchain and
kernel headers
 build requirement
 configuring
 setup 2nd
kernel panic
 code location
 example
 MTD and
 premature exit and
 reasons for
 sample process
 system reboot and
kernel profiling
Kernel Traffic newsletter
KERNEL_SOURCE variable (uClibc)
kernprof tool
keyboards 2nd
keys 2nd
Kissme project
Kurt project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

L2CAP (Logical Link Control and Adaptation Protocol)
l2ping tool (BlueZ)
LART project 2nd 3rd
ld utility 2nd 3rd 4th
LD_LIBRARY_PATH environment variable 2nd
ldd command
LDFLAGS option (make command)
 linking option 2nd
 Makefile example
 static linking
 strace
 udhcp
LDPS (Linux Development Platform Specification)
LDSHARED variable (configure)
LGPL 2nd
\lib directory 2nd
libc.so file 2nd
libcrypt (cryptography library) 2nd 3rd
libdl (dynamic loading library) 2nd
libgcc (gcc library) 2nd
libm (math library) 2nd 3rd
libraries [See also system libraries][See also system libraries]
 file dependencies and
 installing on root filesystem
 LGPL and
 linking of
 location of shared
 stripping
libutil (login routines library) 2nd
licensing [See also BSD license GNU GPL][See also BSD license GNU GPL]
 Apache
 Blackdown project
 C-Kermit
 diet libc and
 distribution considerations
 exclusion of user-space applications 2nd
 GPL and LGPL
 inetd
 kernel
 Linux and
 Net-SNMP
 OpenSSH
 thttpd
 xinetd
LILO (LInux LOader) bootloader 2nd 3rd
linear variable differential transformers (LVDTs)
Lineo survey findings
linking [See also dynamic linking static linking][See also dynamic linking static linking]
 applications to C library
 considerations for libraries
 diet libc with applications
 miniperl and
 proprietary applications and
 uClibc library and applications
Linux 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Linux Development Platform Specification (LDPS)
Linux distributions [See distributions]
Linux From Scratch project
Linux Journal
 accelerator control example
 CATS example
 resource
 SCADA protocol converter example
 space vehicle control example
Linux kernel [See kernel]
Linux Standard Base (LSB) 2nd
Linux systems [See systems]
Linux Trace Toolkit [See LTT]
Linux workstations 2nd
Linux/RK project
LinuxBIOS bootloader 2nd
LinuxDevices.com 2nd
LinuxPPC support
linuxthreads package
 compiler cautions
 compiling glibc without
 configuring
 library setup
live updates
lm_sensors package
LMbench tool
loadb command
loadlin utility (DOS) 2nd
loads command
lock utility (MTD)
log files
logic analyzers
logical address [See virtual address]
Logical Link Control and Adaptation Protocol (L2CAP)
LonWorks fieldbus
loopback constraints
LPD print management package
LPRng print management package
LSB (Linux Standard Base) 2nd
LSH (SSH implementation)
LTT (Linux Trace Toolkit)
 authorship
 building trace daemon
 features
 MontaVista contributions
 patching the kernel 2nd
 tracing target
 visualization tool
LVDTs (linear variable differential transformers)
LynuxWorks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

M-Systems 2nd 3rd 4th [See also DOC loadlin utility][See also DOC loadlin utility]
M68k processors
 appropriate kernel location
 architecture overview
 bootloader availability
 bootloader comparison
 kernel architecture name
 RedBoot
 UI modules and
Machine Automation Tools LinuxPLC (MAT LPLC) 2nd
main() function
make clean command 2nd
make command [See also LDFLAGS option][See also LDFLAGS option]
 ARCH variable 2nd 3rd 4th 5th
 CFLAGS variable 2nd
 CROSS variable
 CROSS_COMPILE variable 2nd 3rd
 DESTDIR variable
 INSTALL_MOD_PATH variable
 OpenSSH considerations 2nd
 prefix and exec_prefix variables
 PREFIX variable 2nd 3rd
 static linking 2nd
 TARGET_ARCH variable
make config command 2nd
make distclean command
make install command
 C library assumptions
 inetd cautions
 install-root variable
 telnetd cautions
make menuconfig command 2nd 3rd
make oldconfig command 2nd
make xconfig command 2nd
MAKEDEV script (MTD) 2nd 3rd
Makefiles [See also compilation][See also compilation]
 building compiler
 building dependencies
 BusyBox configuration
 controlling creation of
 DHCP and cross-compilation
 diet libc compilation
 example
 gcc modifications for code coverage
 installing MTD utilities
 modifying for process profiling
 modules_install target
 System V init program
 vmlinux target
 zImage target
malloc() function 2nd
man directory
mapping drivers 2nd 3rd
maps file
MAT LPLC (Machine Automation Tools LinuxPLC) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

measuring interrupt latency
medium speed infrared (MIR)
memory [See also RAM][See also RAM]
 C library compilation and
 debugging
 kernel functions
 layout considerations
 Linux workstations
 memory devices
 physical memory map
 swapping
memory management unit [See MMU]
memory technology device [See MTD]
Memory Technology Device Subsystem project
MEMWATCH library
messaging (Modbus formats)
metadata, compression and
microperl build option 2nd
Microwindows
mild time constraints
minicom terminal emulator 2nd 3rd 4th
miniperl build option 2nd 3rd 4th
Minit program 2nd 3rd
MIPS processor
 architecture overview
 bootloader 2nd
 diet libc support
 embutils
 GNU toolchain
 kernel and 2nd
 PMON and 2nd
 U-Boot and
 UI modules and
MIR (medium speed infrared)
MisterHouse project
mkcramfs tool
mke2fs command 2nd
mkfs.jffs utility (MTD)
mkfs.jffs2 utility (MTD) 2nd
mkimage utility 2nd
mknod command 2nd
MMU (memory management unit) 2nd 3rd 4th
\mnt directory
Modbus protocol 2nd
modems, hardware support 2nd
modprobe docprobe command
modules_install target
monitoring, systems 2nd
monitors, bootloaders and 2nd 3rd
MontaVista 2nd 3rd
Motorola [See M68k processors PowerPC]
mounting
 constraints using loopback
 directories on TMPFS 2nd 3rd
 filesystem considerations
 JFFS2 filesystem
 partitions
 root filesystem
mouse, hardware support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MTD (memory technology device)
 blob and
 chip drivers
 DiskOnChip and
 filesystems and
 hardware support
 installing utilities
 kernel and
 Native CFI Flash and
 reprogramming boot storage media
 usage basics
 writing JFFS2 to
mtd_debug utility (MTD)
mtd_info structure
multibit I/O
MyLinux project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Name Switch Service [See NSS]
naming conventions 2nd
NAND flash
 DOC and
 functionality
 JFFS2 and 2nd
 MTD support 2nd
NAND Flash Translation Layer [See NFTL]
nanddump utility (MTD)
nandtest utility (MTD)
nandwrite utility (MTD)
nanokernels
Net-SNMP package
netkit package 2nd
netkit-base package
netkit-rsh package
netkit-telnet package
network adapters
network boot 2nd 3rd
Network Interface Card (NIC)
network login 2nd
networks
 debugging using
 dynamic configuration
 embedded systems and 2nd 3rd
 fieldbuses
 hardware support
 industrial grade
 internet super-servers
 kernel functions and protocols
 remote administration
 secure communication
 web content and HTTP
 worksheet
NFS
 booting with
 debugging recommendations
 mounting root filesystem
 network boot 2nd
 tracing
 writing to flash
NFTL (NAND Flash Translation Layer)
 disk filesystem 2nd 3rd
 DOC devices 2nd 3rd
 features
 journalling filesystems
 MTD support 2nd 3rd
nftl_format command 2nd 3rd 4th 5th 6th
nftldump utility (MTD)
NIC (Network Interface Card)
nm utility (binutils) 2nd
NOR flash devices
notifier_chain_register function
notifier_chain_unregister function
NSS (Name Service Switch)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 glibc 2nd 3rd
 strace
 TinyLogin
 udhcp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

OBEX
objcopy utility (binutils)
objdump utility (binutils) 2nd
Ocan driver project
ODVA (Open DeviceNet Vendor Association)
Open Sound System (OSS)
open source
 ALSA project
 Apache HTTP servers
 BDM debugger
 BlueZ project
 bootloaders listed 2nd
 CAN projects
 CompactPCI bus
 distribution considerations
 embedded Linux
 hardware projects 2nd
 home automation 2nd
 IDEs
 licensing and
 Modbus projects
 movement for
 Net-SNMP
 OpenSSH
 PPC support
 support restrictions
 U-Boot
 virtual machines
Open Source Initiative (OSI)
OpenBT
Opencores project
OpenGroup 2nd
OpenOBEX 2nd
OpenOffice 2nd
OpenSSH 2nd 3rd
OpenSSL 2nd 3rd
\opt directory
oscilloscopes 2nd
OSI (Open Source Initiative)
OSS (Open Sound System)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

PAGE_CACHE_SIZE
panic() function
panic_notifier_list
parallel ports
 hardware support 2nd 3rd
 kernel support options
 process control
partitions
 bootloader image
 CF devices 2nd
 CFI flash and
 creating filesystems in
 DOC 2nd 3rd 4th
 erase blocks
 mounting
 MTD subsystem
patch utility 2nd 3rd 4th
patches
 GRUB interrupt handler
 kernel considerations
 retrieving code by date
 worksheet
patent issues 2nd
PATH environment variable 2nd
PC/104 bus 2nd
PC/104 Consortium
PC/104 single board computer (SBC)
PCI (Peripheral Component Interconnect) bus 2nd 3rd 4th
PCI Industrial Computer ManufacturerÕs Group (PCIMG)
PCMCIA bus
 802.11 cards
 CF cards and
 CompactFlash adapters
 FTL user module and
 hardware support
 LILO and
PDA (Personal Digital Assistant) 2nd
pdisk utility
PDQ print management package
per-process statistics 2nd
performance analysis
 code coverage
 interrupt latency
 kernel profiling
 process profiling 2nd
 system monitoring 2nd
 system profiling
Peripheral Component Interconnect [See PCI]
Perl programming language 2nd 3rd
permissions [See security]
persistent storage 2nd
Personal Digital Assistant (PDA) 2nd
physical address space 2nd
PICMG (PCI Industrial Computer ManufacturerÕs Group)
piconets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ping utility 2nd 3rd
pivot_root() system call
PLCs (programmable logic controllers) 2nd 3rd
PMON (Prom Monitor) bootloader 2nd 3rd
PNP (Plug and Play) devices
pointer devices
portmapper service
PostScript (PS) format 2nd
POTS (plain old telephone system)
POWER (Performance Optimization With Enhanced RISC)
power failure, CompactFlash devices
power-down reliability
 ext2 and
 filesystems and
 JFFS2
 JFFS2 user module
PowerPC (PPC)
 architecture overview 2nd
 bootloader comparison
 diet libc support
 embedded system survey
 embutils
 gdb debugger
 GNU toolchain
 hardware support options
 host build example
 kernel 2nd 3rd 4th
 PCMCIA support
 U-Boot
PowerPC Reference Platform (PReP)
PPCBoot [See U-Boot]
PPR print management package
PREFIX environment variable 2nd
PREFIX variable (make command) 2nd 3rd
PReP (PowerPC Reference Platform)
printenv command 2nd
printf()
printing
 hardware support 2nd
 parallel port I/O
privilege separation user 2nd
\proc directory
\proc filesystem 2nd
process automation 2nd
process profiling
processors
 architecture overview
 bootloader variety and
 configuration options
 constraints below 32 bits
 hardware worksheet
 kernel name selection and
 kernels appropriateness for
 uClibc support
procps package
profile= boot parameter
programmable logic controllers (PLCs) 2nd 3rd
project identification worksheet
project workspace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

protocols [See specific protocols]
ps utility
ptrace() system call 2nd
public-key cryptography
publication resources
Python programming language

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queuing, printers and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

RACSI (Remote ATV Control at ISS)
Radio Frequency Interference (RFI)
RAM (random access memory) [See also memory][See also memory]
 CFI flash and
 flash location and
 generic requirements
 hardware worksheet
 MTD support
 root filesystem and
RAM disks
 booting with
 copying image to flash
 filesystems and 2nd 3rd 4th
ranlib utility (binutils) 2nd
read-only block 2nd
read/write access rights 2nd
readelf utility (binutils) 2nd 3rd
readprofile utility 2nd
real-time Linux
Real-Time Linux Foundation 2nd
Red Hat
 access rights
 crosgcc mailing list
 Cygwin environment
 MIPS support
 overview
 SourceNavigator IDE
 survey findings 2nd
RedBoot bootloader
 comparison
 features
 M68k
 SuperH
reiserfs journalling filesystem 2nd
remote administration 2nd
reset command
resources
 books 2nd
 GNU toolchain 2nd
 online 2nd
 open source projects 2nd
 organizations
 publications
RFC1051 protocol
RFC1201 protocol
RFCOMM protocol
RFCOMMd (BlueZ)
RFI (Radio Frequency Interference)
Roll-Your-Own survey
ROLO (ROmable LOader) bootloader 2nd
ROM
 booting from
 CFI flash and
 hardware worksheet
 MTD support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ROMFS cautions
ROMFS (ROM file system) cautions
\root directory
root filesystem
 basic structure
 bootloaders 2nd
 building 2nd
 C library and
 CRAMFS
 custom applications 2nd
 debugging
 development/production differences
 device files
 disk filesystem over NFTL 2nd
 disk filesystem over RAM disk
 generic requirements
 init program and
 JFFS2 2nd
 kernel and 2nd
 libraries
 live updates
 minit and
 NFS-mounted 2nd 3rd
 selecting filesystem type for
 start_kernel() function
 SYSM module
 system applications
 system initialization
 System V init program
 TMPFS 2nd
 top-level directories
 worksheet
 writing image to flash
root hub (USB) 2nd
root privileges 2nd 3rd
RPC
 inetd and uClibc
 xinetd and
RPM (RPM Package Manager)
RS232 interface
 I/O support
 linked setup
 Modbus protocol and
 terminal emulation and
RSA keys
rsh shell 2nd
rsync utility
RTAI project
 Adeos nanokernel and
 ARM support
 GPL licensing and
 MIPS support
 PowerPC support
 real-time Linux
 software watchdog
RTLinux
 ARM support
 licensing
 PowerPC support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 project
 SuperH support
RTNet
RTU (Modbus messaging format)
run command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S-Record format (Motorola) 2nd
SAE (Society of Automotive Engineers)
saveenv command
SBC (single board computer) 2nd
\sbin directory
SCADA (System Control and Data Acquisition) protocol converter
scripts
 ad hoc updating scripts
 CGI scripting
 creating boot 2nd
 trace helpers
SCSI (Small Computer Systems Interface)
 CF cards and
 fdisk utility
 hardware support 2nd
 IEEE1394 differences
 LILO and 2nd
 U-Boot and
SCSL (Sun Community Source License)
SDP (Service Discovery Protocol)
SDPd (BlueZ)
SDS (Smart Distributed System) protocol 2nd 3rd
Secondary Program Loader (SPL) 2nd
security
 changing permissions
 gdb cautions
 root login cautions
 secure authorization
 secure communication
 worksheet
Sega game console
sensord daemon
serial infrared (SIR)
serial ports
 data loss
 debugging host/target systems 2nd
 embedded system example
 gdb 2nd 3rd
 hardware support 2nd
 limiting access
 modems as
 process control
 serial dongles
 terminal emulators
set remotebaud command (gdb)
set solib-absolute-prefix command (gdb)
setenv command 2nd
SH project 2nd
sh-boot bootloader 2nd 3rd
shadow password support 2nd 3rd 4th 5th
SHARED_LIB_LOADER_PATH variable (uClibc)
Sharp Zaurus
shells
 BusyBox 2nd 3rd
 performing updates 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 rsh shell 2nd
 ssh shell 2nd
.shstrtab section (ELF binary)
Simple Network Management Protocol (SNMP)
Simputer project
Single Unix Specification (SUS) 2nd
SIR (serial infrared)
size utility (binutils)
Small Computer Systems Interface [See SCSI]
SMBus (System Management Bus)
SNMP (Simple Network Management Protocol)
snmpd utility
snmpget utility
SoC (System-on-Chip) 2nd
Society of Automotive Engineers (SAE)
soft real-time system
software
 availability for i386
 distribution considerations
 Linux and 2nd 3rd
 package management tools
 running vs. modifying 2nd
solid state storage media 2nd 3rd
sound, hardware support 2nd
SourceForge project 2nd 3rd 4th
SourceNavigator (IDE)
SPL (Secondary Program Loader) 2nd
spooling system, print process and
spread spectrum frequency hopping
SSH protocol 2nd 3rd
ssh shell 2nd
SSL (Secure Socket Layer) protocol
stab (symbol table)
.stab section (ELF binary) 2nd
.stabstr section (ELF binary) 2nd
_start symbol
start_kernel() function
state machines, control modules and
static linking
 Boa 2nd
 BusyBox
 copyright laws
 diet libc
 DOSTATIC flag 2nd
 embutils
 glibc setup option 2nd
 LDFLAGS option
 libraries and
 microperl
 rsync
 strace and uClibc
 thttpd
 udhcp
 xinetd
statistics 2nd 3rd
stepper motors
STMicroelectronics (SGS-Thomson Microelectronics)
storage devices [See also solid state storage media][See also solid state storage media]
 boot configuration setups

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 build-tools directory cleanup
 disk devices
 DiskOnChip
 embedded systems and
 generic requirements
 hardware support
 hardware worksheet
 initrd images
 linked setup and
 Linux workstations
 log files and
 MTD subsystem
 Native CFI Flash
 persistent storage 2nd
 removable storage setup
 root filesystem
 setting up
 structure for access
 swapping
 worksheet
 writing CRAMFS image
strace tool
stringent time constraints
strings utility (binutils)
strip utility
 binutils package
 ELF binary and
 libraries
 reducing binary sizes
 relocating
 telnetd cautions
.strtab section (ELF binary)
Sun Community Source License (SCSL)
SuperH processor
 appropriate kernel location
 architecture overview 2nd
 bootloader comparison
 GNU toolchain version combinations
 sh-boot and RedBoot
 watchdog timers for
swapping, storage devices and
symbolic debugging [See debugging tools]
symbolic links
 \dev directory
 BusyBox 2nd
 creating to relocated binaries
 embutils
 glibc package 2nd 3rd
 kernel configuration
 OpenSSH
 rsync updating utility
 TinyLogin 2nd
.symtab section (ELF binary)
SYSM (system management) module
 Boa
 compacting
 DAQ module and
 dynamic configurations
 embedded system 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HTTP and
 keepalive signals
 Net-SNMP package
 netkit-base example
 netkit-telnet 2nd
 OpenSSH
 real-time kernels
 thttpd 2nd
 udhcp 2nd
 utelnetd
 xinetd build 2nd
system applications 2nd
system initialization
 panic function registration
 RAM disks and
 root filesystem and
 worksheet
system libraries, installing on root filesystem
System Management Bus (SMBus)
system startup 2nd 3rd
System V init program 2nd 3rd
System-on-Chip (SoC) 2nd
System.map file
SYSTEM_DEVEL_PREFIX variable (uClibc)
systems
 component determination 2nd
 configuration options
 defined
 monitoring 2nd
 multicomponent
 rebooting 2nd
 statistics 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tar command 2nd 3rd
tar-bzip2 file
target command (gdb)
TARGET environment variable 2nd
target remote command
target systems [See also host systems][See also host systems]
 creating
 debugging 2nd 3rd
 defined
 developing
 gdb constraints
 GNU toolchain 2nd
 installing MTD utilities 2nd
 network login
 RAM disks and
 self-hosting 2nd
 TARGET variable
 testing connections
TARGET_ARCH variable (make command)
TARGET_PREFIX variable 2nd
TCP/IP
 embedded system example
 gdb servers 2nd
 host/target debugging setups
 Modbus protocol
 remote management with SNMP
 time constraints and
Telephony Control protocol Specification Binary
Telnet protocol 2nd
telnetd daemon 2nd 3rd
terminal emulators
 background
 C-Kermit
 minicom 2nd
 sending image file to target
 U-Boot and 2nd
 UUCP cu 2nd 3rd 4th
 worksheet
Terminate and Stay Resident (TSR) program
testing
 disabling netkit-base
 host/target connection
.text section (ELF binary)
TFTP (Trivial File Transfer Protocol)
 booting with
 linked setup
 network boot 2nd 3rd 4th
 setting up daemon
 U-Boot image into RAM
tftpboot command
thttpd 2nd 3rd
time constraints 2nd 3rd
timestamps
TinyLogin 2nd
TinyTP (Tiny Transport Protocol)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TiVo system
Tkinter interface
\tmp directory 2nd 3rd
TMPFS, mounting directories 2nd 3rd
top utility
TQM860L board 2nd
trace command
trace daemon
traceanalyze command
tracedump command
traceview command
tracevisualizer command 2nd 3rd
tracing
transducers 2nd
trap daemon (SNMP)
Trivial File Transfer Protocol [See TFTP]
TrueFFS tools (M-Systems)
TuxScreen project
TV Linux Alliance 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U-Boot bootloader
 ARM and
 binary images 2nd
 booting 2nd
 booting from CF devices
 booting with RAM disk
 CF device partitions
 command help
 comparison
 compiling and installing
 emulation constraints
 environment variables
 features
 MIPS and
 PowerPC and
 update cautions
 updating
U-BootÕs environment variables 2nd
UARTs (Universal Asynchronous Receiver-Transmitters) 2nd
uClibc library
 Boa
 BusyBox and
 features
 file dependencies
 FreSSH constraints
 inetd support
 ldd command and
 microperl and
 Net-SNMP and 2nd
 OpenSSH and 2nd
 patch utility
 Python considerations
 rsync utility
 shell script for updates
 strace static link
 telnetd
 thttpd
 TinyLogin 2nd
 udhcp
 utelnetd
 xinetd constraints
uClinux project 2nd
udhcp project (BusyBox)
UI (user interface) module
 as X terminals
 DAQ module and
 dynamic configurations to
 embedded system example 2nd 3rd
 JFFS2 and
 patch utility
 SYSM module and
 system memory layout
UID field
Universal Asynchronous Receiver-Transmitters (UARTs) 2nd
Unix workstations 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unlock utility (MTD)
updating
 live updates
 U-Boot
USB (Universal Serial Bus) interface
 CF cards and
 hardware support 2nd
 IEEE1394 differences
 kernel support options
 LILO and
 Linux I/O device support
 USB dongles
USB-IF (USB Implementers Forum)
USE_SYSTEM_PWD_GRP variable 2nd
USE_SYSTEM_SHADOW variable
user accounts 2nd
\usr directory
utelnetd package
util-linux package
UUCP (Unix to Unix CoPy) cu 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

value-added packages
\var directory 2nd 3rd
VDC (Venture Development Corporation) 2nd
vendor support
 ARM 2nd
 CAN
 CompactPCI bus
 DAQ packages
 distributions and
 I<Superscript>2<Default Para Font>C bus
 independence
 IrDA
 MIPS
 Motorola 68000 processors
 PowerPC architecture
 process control
 VME bus
Venture Development Corporation (VDC) 2nd
versions
 EXTRAVERSION variable
 firmware 2nd 3rd 4th
 kernels 2nd 3rd
 LILO
 naming conventions
 NTFL formatting
 tracking
 worksheet
VFIR (very fast infrared)
vi (IDE)
ViewML
virtual addresses 2nd
virtual machines
visualization tool 2nd 3rd
VME bus 2nd 3rd
vmlinux file
VxWorks (WindRiver) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

watchdog timers 2nd
wear leveling 2nd
web content
Windows workstations
WindowsCE
WinModem 2nd
wireless technologies [See Bluetooth IEEE 802.11 IrDA]
worksheet, embedded Linux systems
workspace 2nd
workstations 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X terminals 2nd
X Window System
 graphical interface
 JDK and JRE
 kernel configuration
 xconfig script
X10 corporation
X10 Power Line Carrier (PLC) protocol 2nd
x86 processor
 architecture overview 2nd
 bootloader comparison 2nd
 bzImage target
 diet libc support
 DiskOnChip devices
 embedded system survey
 GRUB and
 ISA support
 kernel 2nd
 system startup process
xconfig command
XEmacs (IDE)
XFS journalling filesystem
xinetd super-server
 features 2nd
 Red Hat-based
 telnetd and
 TFTP service
XIP (eXecute In Place)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yellow Dog Linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zImage file
zlib compression library 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

