- Essential
. C# 4.0

Mark Michaelis

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ¢ San Francisco
New York e Toronto * Montreal * London ¢ Munich ¢ Paris ®* Madrid

Capetown * Sydney ¢ Tokyo e Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United
States and /or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trade-
marks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

Michaelis, Mark.

Essential C# 4.0 / Mark Michaelis.

. cm.

Includes index.

ISBN 978-0-321-69469-0 (pbk. : alk. paper)
1. C# (Computer program language) I. Title.

QA76.73.C154M5237 2010

005.13'3—dc22

2009052592

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-69469-0

ISBN-10: 0-321-69469-4

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, March 2010

To my family: Elisabeth, Benjamin, Hanna, and Abigail.

You have sacrificed a husband and daddy for countless hours of writing,
frequently at times when he was needed most.

Thanks!

This page intentionally left blank

Contents at a Glance

Y

O 0O N oV &~ W N

Contents xi

Contents of C# 4.0 Topics xxv
Figures xxvii

Tables xxix

Foreword — xxxi

Preface xxxv
Acknowledgments xlvii
About the Author li

Introducing C# 1

Data Types 31

Operators and Control Flow 83
Methods and Parameters 149
Classes 201

Inheritance 269

Interfaces 305

Value Types 331
Well-Formed Types 357

10 Exception Handling 4o5

11 Generics 421

12 Delegates and Lambda Expressions

469

Contents of C# 4.0 Topics

13 Events 507

14 Collection Interfaces with Standard Query Operators 535
15 LINQ with Query Expressions 589

16 Building Custom Collections 611

17 Reflection, Attributes, and Dynamic Programming 651
18 Multithreading 701

19 Synchronization and More Multithreading Patterns 749
20 Platform Interoperability and Unsafe Code 815

21 The Common Language Infrastructure 843

A Downloading and Installing the C# Compiler and the
CLI Platform 865

Full Source Code Listings 869

Concurrent Classes from System. Collections. Concurrent 895
C# 2.0 Topics 899

C# 3.0 Topics 903

C# 4.0 Topics 905

m m O O W

Index 907

Contents

Contents of C# 4.0 Topics xxv
Figures xxvii

Tables xxix

Foreword — xxxi

Preface xxxv
Acknowledgments xlvii
About the Author i

1 Introducing C# 1
Hello, World 2
Compiling and Running the Application 3
C# Syntax Fundamentals 4
Type Definition 7
Main 8
Statements and Statement Delimiters 10
Whitespace 11
Working with Variables 12
Data Types 13
Declaring a Variable 14
Assigning a Variable 14
Using a Variable 16
Console Input and Output 16
Getting Input from the Console 16
Writing Output to the Console 18
Comments 20
Managed Execution and the Common Language Infrastructure 23

Xi

xii Contents

C# and .NET Versioning 26
Common Intermediate Language and ILDASM 27
Summary 30

2 DataTypes 31

Fundamental Numeric Types 32
Integer Types 32
Floating-Point Types (float, double) 33
Decimal Type 34
Literal Values 35
More Fundamental Types 40
Boolean Type (bool) 40
Character Type (char) 41
Strings 43
null and void 51
null 51
The void Nontype 52
Categories of Types 55
Value Types 55
Reference Types 56
Nullable Modifier 57

Conversions between Data Types 58
Explicit Cast 58
Implicit Conversion 62
Type Conversion without Casting 62
Arrays 64
Declaring an Array 65
Instantiating and Assigning Arrays 66
Using an Array 70
Strings as Arrays 76
Common Errors 78
Summary 81

3 Operators and Control Flow 83

Operators 84
Plus and Minus Unary Operators (+, -) 84
Arithmetic Binary Operators (+, -, *, /,%) 85
Parenthesis Operator 92
Assignment Operators (+=, -=, *=, /=,%=) 93
Increment and Decrement Operators (++, --) 94
Constant Expressions (const) 98

Contents

Introducing Flow Control 98
if Statement 102
Nested if 103

Code Blocks ({}) 105

Scope and Declaration Space 107

Boolean Expressions 109
Relational and Equality Operators 110
Logical Boolean Operators 111
Logical Negation Operator (1) 113
Conditional Operator (?) 113
Null Coalescing Operator (??) 114
Bitwise Operators (<<, >>, |, & *,~) 115
Shift Operators (<<, >>, <<=, >>=) 116
Bitwise Operators (&, |, ~) 117
Bitwise Assignment Operators (&=, |=,~=) 120
Bitwise Complement Operator (~) 120
Control Flow Statements, Continued 121
The while and do/while Loops 121
The for Loop 124
The foreach Loop 127
The switch Statement 130
Jump Statements 132
The break Statement 132
The continue Statement 135
The goto Statement 137
C# Preprocessor Directives 138
Excluding and Including Code (#1if, #elif, #else, #endif) 140
Defining Preprocessor Symbols (#define, #undef) 141
Emitting Errors and Warnings (#error, #warning) 141
Turning Off Warning Messages (#pragma) 142
nowarn:<warn List> Option 143
Specifying Line Numbers (#Line) 143
Hints for Visual Editors (#region, #endregion) 144
Summary 145

Methods and Parameters 149

Calling a Method 150
Namespace 152
Type Name 154
Scope 155
Method Name 155
Parameters 155

xiii

xiv

Contents

Method Return 155
Statement versus Method Call 156
Declaring a Method 157
Parameter Declaration 159
Method Return Declaration 159
The using Directive 161
Aliasing 164
Returns and Parameters on Main() 165
Parameters 168
Value Parameters 168
Reference Parameters (ref) 170
Output Parameters (out) 171
Parameter Arrays (params) 173
Recursion 176
Method Overloading 179
Optional Parameters 182
Basic Error Handling with Exceptions 186
Trapping Errors 187
Reporting Errors Using a throw Statement 196
Summary 199

Classes 201

Declaring and Instantiating a Class 205
Instance Fields 209
Declaring an Instance Field 209
Accessing an Instance Field 210
Instance Methods 211
Using the this Keyword 213
Access Modifiers 220

Properties 222
Declaring a Property 223
Automatically Implemented Properties 225
Naming Conventions 227
Using Properties with Validation 228
Read-Only and Write-Only Properties 230
Access Modifiers on Getters and Setters 231
Properties as Virtual Fields 232
Properties and Method Calls Not Allowed as ref or out

Parameter Values 234

Constructors 236
Declaring a Constructor 237
Default Constructors 239
Object Initializers 239

Contents

Overloading Constructors 241
Constructor Chaining: Calling another
Constructor Using this 243
Static Members 247
Static Fields 248
Static Methods 251
Static Constructors 253
Static Properties 254
Static Classes 255
Extension Methods 256
Encapsulating the Data 258
const 258
readonly 259
Nested Classes 260
Partial Classes 262
Defining a Partial Class 263
Partial Methods 264
Summary 267

Inheritance 269

Derivation 270
Casting between Base and Derived Types 272
private Access Modifier 275
protected Access Modifier 276
Extension Methods 278
Single Inheritance 278
Sealed Classes 281

Overriding the Base Class 281
virtual Modifier 282
new Modifier 286
sealed Modifier 291
base Member 291
Constructors 292

Abstract Classes 293

All Classes Derive from System.Object 299

Verifying the Underlying Type with the is Operator 301
Conversion Using the as Operator 302

Summary 303

Interfaces 305

Introducing Interfaces 306
Polymorphism through Interfaces 307
Interface Implementation 312

XV

Xvi Contents

Explicit Member Implementation 314

Implicit Member Implementation 315

Explicit versus Implicit Interface Implementation 316
Converting between the Implementing Class and Its

Interfaces 318

Interface Inheritance 318
Multiple Interface Inheritance 321
Extension Methods on Interfaces 322
Implementing Multiple Inheritance via Interfaces 323
Versioning 326
Interfaces Compared with Classes 328
Summary 329

8 Value Types 331

Structs 332
Initializing structs 336
Using the default Operator 338
Inheritance and Interfaces with Value Types 338
Boxing 339
Enums 346
Type Compatibility between Enums 349
Converting between Enums and Strings 350
Enums as Flags 351
Summary 356

9 Well-Formed Types 357

Overriding object Members 357
Overriding ToString() 358
Overriding GetHashCode () 358
Overriding Equals() 361
Guidelines for Implementing Equality 369
Operator Overloading 369
Comparison Operators (==, !=,<,>,<=,>=) 370
Binary Operators (+, -, %, /, %, &, |, ~, <<, >>) 371
Combining Assignment with Binary Operators (+=, -=, *=, /=, %=, &=...) 373
Conditional Logical Operators (&&, | |) 373
Unary Operators (+, -, !, ~, ++, --, true, false) 373
Conversion Operators 375
Guidelines for Conversion Operators 377
Referencing Other Assemblies 377
Changing the Assembly Target 378
Referencing an Assembly 379
Encapsulation of Types 379

10

11

Contents

Defining Namespaces 382
Namespace Alias Qualifier 384
XML Comments 385
Associating XML Comments with Programming Constructs 386
Generating an XML Documentation File 388
Garbage Collection 390
Weak References 391
Resource Cleanup 393
Finalizers 393
Deterministic Finalization with the using Statement 395
Garbage Collection and Finalization 398
Resource Utilization and Finalization Guidelines 400
Lazy Initialization 400
Summary 403

Exception Handling 405

Multiple Exception Types 405
Catching Exceptions 407

General Catch Block 409

Guidelines for Exception Handling 411
Defining Custom Exceptions 414
Summary 419

Generics 421

C# without Generics 422
Introducing Generic Types 427
Using a Generic Class 427
Defining a Simple Generic Class 429
Benefits of Generics 430
Type Parameter Naming Guidelines 431
Generic Interfaces and Structs 432
Defining a Constructor and a Finalizer 434
Specifying a Default Value 435
Multiple Type Parameters 436
Arity in Abundance 437
Nested Generic Types 438
Constraints 439
Interface Constraints 442
Base Class Constraints 444
struct/class Constraints 445
Multiple Constraints 446
Constructor Constraints 446
Constraint Inheritance 447

xvii

xviii Contents

Generic Methods 453
Type Inferencing 454
Specifying Constraints 455
Covariance and Contravariance 457
Enabling Covariance with the out Type Parameter Modifier in C# 4.0 458
Enabling Contravariance with the in Type Parameter Modifier in C# 4.0 460
Support for Parameter Covariance and Contravariance in Arrays 462
Generic Internals 463
Instantiating Generics Based on Value Types 464
Instantiating Generics Based on Reference Types 465
Summary 467

12 Delegates and Lambda Expressions 469

Introducing Delegates 470

Defining the Scenario 470

Delegate Data Types 472

Delegate Internals 473

Defining a Delegate Type 474

Instantiating a Delegate 475
Anonymous Methods 480
System-Defined Delegates: Func<> 483

Lambda Expressions 486
Statement Lambdas 486
Expression Lambdas 489
Outer Variables 495
Expression Trees 498

Summary 506

13 Events s5o7

Coding the Observer Pattern with Multicast Delegates 508

Defining Subscriber Methods 508

Defining the Publisher 510

Hooking Up the Publisher and Subscribers 511

Invoking a Delegate 512

Check for null 513

Delegate Operators 514

Sequential Invocation 516

Error Handling 519

Method Returns and Pass-by-Reference 522
Events 523

Why Events? 523

Declaring an Event 525

Coding Conventions 526

Contents XixX

Generics and Delegates 528
Customizing the Event Implementation 532

Summary 533

14 Collection Interfaces with Standard Query Operators 535

Anonymous Types and Implicitly Typed Local Variables 536
Anonymous Types 537
Implicitly Typed Local Variables (var) 538
More about Anonymous Types and Implicit Local Variables 540
Collection Initializers 543
What Makes a Class a Collection: IEnumerable<T> 546
foreach with Arrays 546
foreach with IEnumerable<T> 547
Do Not Modify Collections during foreach Iteration 552
Standard Query Operators 552
Filtering with Where() 556
Projecting with Select() 557
Counting Elements with Count() 561
Deferred Execution 562
Sorting with OrderBy () and ThenBy () 566
Performing an Inner Join with Join() 572
Grouping Results with GroupBy () 575
Implementing a One-to-Many Relationship with GroupJoin() 577
Calling SelectMany() 580
More Standard Query Operators 582
Summary 586

15 LINQ with Query Expressions 589

Introducing Query Expressions 590

Projection 592

Filtering 598

Sorting 599

The Let Clause 600

Grouping 602

Query Continuation with into 605
Query Expressions as Method Invocations 608
Summary 609

16 Building Custom Collections 611

More Collection Interfaces 612
IList<T> versus IDictionary<TKey, TValue> 614
IComparable<T> 614
ICollection<T> 616

17

Contents

Primary Collection Classes 617
List Collections: List<T> 617

Dictionary Collections: Dictionary<TKey, TValue> 622
Sorted Collections: SortedDictionary<TKey, TValue> and

SortedList<T> 626

Stack Collections: Stack<T> 628

Queue Collections: Queue<T> 629

Linked Lists: LinkedList<T> 629
Providing an Index Operator 630
Returning Null or an Empty Collection 634
Iterators 634

Defining an Iterator 636

Iterator Syntax 636

Yielding Values from an Iterator 637

Iterators and State 639

More Iterator Examples 641

Placing a yield return withina Loop 643

Canceling Further Iteration: yield break 645

Creating Multiple Iterators in a Single Class 648

yield Statement Characteristics 649
Summary 650

Reflection, Attributes, and Dynamic Programming

Reflection 652
Accessing Metadata Using System.Type 653
Member Invocation 655
Reflection on Generic Types 660
Attributes 663
Custom Attributes 666
Looking for Attributes 667
Initializing an Attribute through a Constructor 668
System.AttributeUsageAttribute 673
Named Parameters 674
Programming with Dynamic Objects 688
Invoking Reflection Using dynamic 689
dynamic Principles and Behaviors 690
Why Dynamic Binding? 694
Static Compilation versus Dynamic Programming 695
Implementing a Custom Dynamic Object 696
Summary 699

651

Contents

18 Multithreading 701

Running and Controlling a Separate Thread 706
ContinueWith() 711
Unhandled Exception Handling on Task 715
Canceling a Task 718
Long-Running Tasks 722
Disposing a Task 723
Executing Iterations in Parallel 724
Parallel Exception Handling with System.AggregateException 728
Canceling a Parallel Loop 729
Running LINQ Queries in Parallel 734
Canceling a PLINQ Query 736
Multithreading before NET Framework 4 738
Asynchronous Operations with System. Threading. Thread 738
Thread Management 740
Thread Pooling 742
Unhandled Exceptions on the AppDomain 744

Summary 746

19 Synchronization and More Multithreading Patterns 749

Synchronization 750
Synchronization Using Monitor 754
Using the Lock Keyword 757
Choosing a Lock Object 758
Why to Avoid Locking on this, typeof(type), and string 759
Declaring Fields as volatile 760
Using the System. Threading. Interlocked Class 761
Event Notification with Multiple Threads 763
Synchronization Design Best Practices 764
More Synchronization Types 766
Thread Local Storage 774
Timers 778
Asynchronous Programming Model 783
Calling the APM 784
Calling the APM Using TPL 791
Asynchronous Delegate Invocation 797
Passing Data to and from an Alternate Thread 799
Event-Based Asynchronous Pattern (EAP) 801

Background Worker Pattern 804
Establishing the Pattern 807
Exception Handling 808

XXii

Contents

Windows UI Programming 809

Windows Forms 809

Windows Presentation Foundation (WPF) 811
Summary 814

20 Platform Interoperability and Unsafe Code 815

21

Platform Invoke 816
Declaring External Functions 817
Parameter Data Types 818
Using ref Rather Than Pointers 819
Using StructLayoutAttribute for Sequential Layout 820
Error Handling 821
Using SafeHandle 823
Calling External Functions 826
Simplifying API Calls with Wrappers 828
Function Pointers Map to Delegates 829
Guidelines 829
Pointers and Addresses 830
Unsafe Code 830
Pointer Declaration 832
Assigning a Pointer 834
Dereferencing a Pointer 837
Accessing the Member of a Referent Type 839
Summary 839

The Common Language Infrastructure 843

Defining the Common Language Infrastructure (CLI) 844
CLI Implementations 845
C# Compilation to Machine Code 847
Runtime 849

Garbage Collection 849

Garbage Collection on .NET 850

Type Safety 851

Code Access Security 852

Platform Portability 852

Performance 853
Application Domains 854
Assemblies, Manifests, and Modules 855
Common Intermediate Language (CIL) 858
Common Type System (CTS) 858
Common Language Specification (CLS) 859

Contents
Base Class Library (BCL) 860

Metadata 860
Summary 862

Downloading and Installing the C# Compiler and the CLI
Platform 865

Full Source Code Listings 869

Concurrent Classes from System.Collections.Concurrent 895
C# 2.0 Topics 899

C# 3.0 Topics 903

C# 4.0 Topics 905

Index 907

XXiii

This page intentionally left blank

Contents of C# 4.0 Topics

4 Methods and Parameters

Common Namespaces 153
Optional Parameters 182

9 Well-Formed Types
Generics
Lazy Loading With 401
Use of System.Exception 412
Tuple Generic Types 437

11 Generics

Generics
Enabling Covariance 458
Enabling Contravariance 460
Support for Covariance and Contravariance 462

12 Delegates and Lambda Expressions

System-Defined Delegates: Func 483
Parallel LINQ (PLINQ) 559
Programming with Dynamic Objects 688

18 Multithreading 701

Running Threads 706
Unhandled Exception Handling on Task 715
Canceling Tasks 718

XXV

XXVi Contents of C# 4.0 Topics

Long-Running Threads 722
Disposing Tasks 723
Executing Iterations in Parallel 724
Parallel Exception Handling with
System.AggregateException 728
Canceling Parallel Loops 729
Running LINQ Queries in Parallel 734
Multithreading, Unhandled Exceptions on AppDomain 744

19 Synchronization and More Multithreading Patterns 749
Monitor Class Synchronization 754
lock Keyword 757
Reset Events 768
ManualResetEvent and Semaphores over AutoReset Event 772
Concurrent Collection Classes 773
Thread Local Storage 774
Calling APMs (Asynchronous Programming
Models) Using TPL (Task Parallel Library) 791
Asynchronous Delegate Invocation 797

Figures

FIGURE 2.1:
FIGURE 2.2:

FIGURE 3.1:
FIGURE 3.2:
FIGURE 3.3:
FIGURE 3.4:
FIGURE 3.5:

FIGURE 4.1:

FIGURE 5.1:

FIGURE 6.1:
FIGURE 6.2:

FIGURE 7.1:

FIGURE 8.1:
FIGURE 8.2:

FIGURE 9.1:
FIGURE 9.2:

FIGURE 12.1:
FIGURE 12.2:
FIGURE 12.3:
FIGURE 12.4:

Value Types Contain the Data Directly 55
Reference Types Point to the Heap 56

Corresponding Placeholder Values 115

Calculating the Value of an Unsigned Byte 116
Calculating the Value of a Signed Byte 116

The Numbers 12 and 7 Represented in Binary 118
Collapsed Region in Microsoft Visual Studio NET 145
Exception-Handling Program Flow 190

Class Hierarchy 204

Refactoring into a Base Class 271

Working around Multiple Inheritance Using Aggregation 280

Working around Single Inheritances with Aggregation and

Interfaces 326

Value Types Contain the Data Directly 332
Reference Types Point to the Heap 333

Identity 362
XML Comments as Tips in Visual Studio IDE 386

Delegate Types Object Model 474

Anonymous Function terminology 486

Object Graph of a Lambda Expression 500

Object Graph of Unary and Binary Expressions 501

XXVii

XXViii

Figures

FIGURE 13.1:
FIGURE 13.2:
FIGURE 13.3:

FIGURE 14.1:
FIGURE 14.2:
FIGURE 14.3:

FIGURE 16.1:
FIGURE 16.2:
FIGURE 16.3:
FIGURE 16.4:

FIGURE 16.5:
FIGURE 16.6:
FIGURE 16.7:
FIGURE 16.8:

FIGURE 17.1:
FIGURE 17.2:

FIGURE 18.1:
FIGURE 18.2:

FIGURE 19.1:

FIGURE 19.2:

FIGURE 20.1:

FIGURE 21.1:
FIGURE 21.2:

Delegate Invocation Sequence Diagram 517
Multicast Delegates Chained Together 518
Delegate Invocation with Exception Sequence Diagram 520

IEnumerator<T> and IEnumerator Interfaces 548
IEnumerator<T> and IEnumerator Interfaces 564
Venn Diagram of Inventor and Patent Collections 569

Generic Collection Interface Hierarchy 613
List<> Class Diagrams 618

Dictionary Class Diagrams 622
SortedList<> and SortedDictionary<> Class
Diagrams 627

Stack<T> Class Diagram 629

Queue<T> Class Diagram 629
LinkedList<T> and LinkedListNode<T> Class
Diagrams 630

Sequence Diagram with yield return 640

MemberInfo Derived Classes 660
BinaryFormatter Does Not Encrypt Data 683

Clock Speeds over Time 702
Cancel lationTokenSource and CancellationToken Class
Diagrams 721

APM Parameter Distribution 786

Delegate Parameter Distribution to BeginInvoke() and
EndInvoke() 800

Pointers Contain the Address of the Data 832

Compiling C# to Machine Code 848
Assemblies with the Modules and Files They Reference 856

Tables

TaBLE 1.1: C# Keywords 5
TABLE 1.2: C# Comment Types 21
TaBLE 1.3: C#and .NET Versions 26

TABLE 2.1: [nteger Types 32

TABLE 2.2: Floating-Point Types 33

TABLE 2.3: decimal Type 34

TABLE 2.4: Escape Characters 42

TABLE 2.5: string Static Methods 46

TABLE 2.6: string Methods 47

TABLE 2.7: Common Array Coding Errors 79

TaBLE 3.1: Control Flow Statements 99

TABLE 3.2: Relational and Equality Operators 110

TasLE 3.3: Conditional Values for the XOR Operator 113
TABLE 3.4: Preprocessor Directives 139

TABLE 3.5: Operator Order of Precedence 146

TABLE 4.1: Common Namespaces 153
TABLE 4.2: Common Exception Types 193

TABLE 6.1: Why the New Modifier? 287
TABLE 6.2: Members of System.Object 299

TaBLE 7.1: Comparing Abstract Classes and Interfaces 328
TABLE 8.1: Boxing Code in CIL 340

TABLE 9.1: Accessibility Modifiers 381

XXiX

XXX

Tables

TABLE 12.1:

TABLE 14.1:
TABLE 14.2:

TABLE 17.1:

TABLE 18.1:

TABLE 19.1:
TABLE 19.2:
TABLE 19.3:
TABLE 19.4:
TABLE 19.5:

TABLE 21.1:
TABLE 21.2:

Lambda Expression Notes and Examples 491

Simpler Standard Query Operators 584
Aggregate Functions on System.Ling.Enumerable 585

Deserialization of a New Version Throws an Exception 685
List of Available TaskContinuationOptions Enumsl 712

Sample Pseudocode Execution 752

Interlock’s Synchronization-Related Methods 762
Execution Path with ManualResetEvent Synchronization 770
Concurrent Collection Classes 773

Overview of the Various Timer Characteristics 779

Primary C# Compilers 845
Common C#-Related Acronyms 862

Foreword

MARK MICHAELIS'S OVERVIEW OF THE C# language has become a standard
reference for developers. In this, its third edition, programmers will find a
thoughtful, well-written guide to the intricacies of one of the world’s most
popular computer languages. Having laid a strong foundation in the ear-
lier editions of this book, Mark adds new chapters that explain the latest
features in both C# and the .NET Framework.

Two of the most important additions to the book cover the latest tools
for parallel programming and the new dynamic features found in C# 4.0.
The addition of dynamic features to the C# language will give developers
access to late-bound languages such as Python and Ruby. Improved sup-
port for COM Interop will allow developers to access Microsoft Office with
an intuitive and easy-to-use syntax that makes these great tools easy to use.
Mark’s coverage of these important topics, along with his explanation of
the latest developments in concurrent development, make this an essential
read for C# developers who want to hone their skills and master the best
and most vital parts of the C# language.

As the community PM for the C# team, I work to stay attuned to the
needs of our community. Again and again I hear the same message: “There
is so much information coming out of Microsoft that I can’t keep up. I need
access to materials that explain the technology, and I need them presented
in a way that I can understand.” Mark Michaelis is a one-man solution to a
C# developer’s search for knowledge about Microsoft’'s most recent
technologies.

XXXi

XXXii

Foreword

I first met Mark at a breakfast held in Redmond, Washington, on a clear,
sunny morning in the summer of 2006. It was an early breakfast, and I like
to sleep in late. But I was told Mark was an active community member, and
so I woke up early to meet him. I'm glad I did. The distinct impression he
made on me that morning has remained unchanged over the years.

Mark is a tall, athletic man originally from South Africa, who speaks in
a clear, firm, steady voice with a slight accent that most Americans would
probably find unidentifiable. He competes in Ironman triathlons and has
the lean, active look that one associates with that sport. Cheerful and opti-
mistic, he nevertheless has a businesslike air about him; one has the sense
that he is always trying to find the best way to fit too many activities into a
limited time frame.

Mark makes frequent trips to the Microsoft campus to participate in
reviews of upcoming technology or to consult on a team’s plans for the
future. Flying in from his home in Spokane, Washington, Mark has clearly
defined agendas. He knows why he is on the campus, gives his all to the
work, and looks forward to heading back home to his family in Spokane.
Sometimes he finds time to fit in a quick meeting with me, and I always
enjoy them. He is cheerful and energetic, and nearly always has something
provocative to say about some new technology or program being devel-
oped by Microsoft.

This brief portrait of Mark tells you a good deal about what you can
expect from this book. It is a focused book with a clear agenda written in a
cheerful, no-nonsense manner. Mark works hard to discover the core parts
of the language that need to be explained and then he writes about them in
the same way that he speaks: with a lucid, muscular prose that is easy to
understand and totally devoid of condescension. Mark knows what his
audience needs to hear and he enjoys teaching.

Mark knows not only the C# language, but also the English language.
He knows how to craft a sentence, how to divide his thoughts into para-
graphs and subsections, and how to introduce and summarize a topic. He
consistently finds clear, easy-to-understand ways to explain complex
subjects.

I read the first edition of Mark’s book cover to cover in just a few eve-
nings of concentrated reading. Like the current volume, it is a delight to

Foreword

read. Mark selects his topics with care, and explains them in the simplest
possible terms. He knows what needs to be included, and what can be left
out. If he wants to explore an advanced topic, he clearly sets it apart from
the rest of the text. He never shows off by first parading his intellect at the
expense of our desire to understand.

A centrally important part of this new edition of the book continues to
be its coverage of LINQ. For many developers the declarative style of pro-
gramming used by LINQ is a new technology that requires developing
new habits and new ways of thinking.

C# 3.0 contained several new features that enable LINQ. A main goal of
the book is to lay out these features in detail. Explaining LINQ and the
technologies that enable it is no easy task, and Mark has rallied all his for-
midable skills as a writer and teacher to lay this technology out for the
reader in clear and easy-to-understand terms.

All the key technologies that you need to know if you want to under-
stand LINQ are carefully explained in this text. These include

e Partial methods

* Automatic properties

* Object initializers

e Collection initializers

* Anonymous types
 Implicit local variables (var)
* Lambdas

e Extension methods

* Expression trees

e IEnumerable<T> and IQueryable<T>
* LINQ query operators

* Query expressions

The march to an understanding of LINQ begins with Mark’s explana-
tions of important C# 2.0 technologies such as generics and delegates. He
then walks you step by step through the transition from delegates to lamb-
das. He explains why lambdas are part of C# 3.0 and the key role they play

XXXiii

XXXiV

Foreword

in LINQ. He also explains extension methods, and the role they play in
implementation of the LINQ query operators.

His coverage of C# 3.0 features culminates in his detailed explanation of
query expressions. He covers the key features of query expressions such as
projections, filtering, ordering, grouping, and other concepts that are cen-
tral to an understanding of LINQ. He winds up his chapter on query
expressions by explaining how they can be converted to the LINQ query
method syntax, which is actually executed by the compiler. By the time
you are done reading about query expressions you will have all the knowl-
edge you need to understand LINQ and to begin using this important tech-
nology in your own programs.

If you want to be a C# developer, or if you want to enhance your C#
programming skills, there is no more useful tool than a well-crafted book
on the subject. You are holding such a book in your hands. A text such as
this can first teach you how the language works, and then live on as a ref-
erence that you use when you need to quickly find answers. For develop-
ers who are looking for ways to stay current on Microsoft’s technologies,
this book can serve as a guide through a fascinating and rapidly changing
landscape. It represents the very best and latest thought on what is fast
becoming the most advanced and most important contemporary
programming language.

—Charlie Calvert
Community Program Manager,
Visual C#, Microsoft
January 2010

Preface

THROUGHOUT THE HISTORY of software engineering, the methodology used
to write computer programs has undergone several paradigm shifts, each
building on the foundation of the former by increasing code organization
and decreasing complexity. This book takes you through these same para-
digm shifts.

The beginning chapters take you through sequential programming
structure, in which statements are written in the order in which they are
executed. The problem with this model is that complexity increases expo-
nentially as the requirements increase. To reduce this complexity, code
blocks are moved into methods, creating a structured programming
model. This allows you to call the same code block from multiple locations
within a program, without duplicating code. Even with this construct,
however, programs quickly become unwieldy and require further abstrac-
tion. Object-oriented programming, discussed in Chapter 5, was the
response. In subsequent chapters, you will learn about additional method-
ologies, such as interface-based programming, LINQ (and the transforma-
tion it makes to the collection API), and eventually rudimentary forms of
declarative programming (in Chapter 17) via attributes.

This book has three main functions.

1. It provides comprehensive coverage of the C# language, going
beyond a tutorial and offering a foundation upon which you can
begin effective software development projects.

XXXV

XXXVi

Preface

2. For readers already familiar with C#, this book provides insight into
some of the more complex programming paradigms and provides in-
depth coverage of the features introduced in the latest version of the
language, C# 4.0 and .NET Framework 4.

3. Itserves as a timeless reference, even after you gain proficiency with
the language.

The key to successfully learning C# is to start coding as soon as possi-
ble. Don’t wait until you are an “expert” in theory; start writing software
immediately. As a believer in iterative development, I hope this book
enables even a novice programmer to begin writing basic C# code by the
end of Chapter 2.

A number of topics are not covered in this book. You won't find cover-
age of topics such as ASPNET, ADO.NET, smart client development, dis-
tributed programming, and so on. Although these topics are relevant to the
NET Framework, to do them justice requires books of their own. Fortu-
nately, Addison-Wesley’s .NET Development Series provides a wealth of
writing on these topics. Essential C# 4.0 focuses on C# and the types within
the Base Class Library. Reading this book will prepare you to focus on and
develop expertise in any of the areas covered by the rest of the series.

Target Audience for This Book

My challenge with this book was to keep advanced developers awake
while not abandoning beginners by using words such as assembly, link,
chain, thread, and fusion, as though the topic was more appropriate for
blacksmiths than for programmers. This book’s primary audience is expe-
rienced developers looking to add another language to their quiver. How-
ever, | have carefully assembled this book to provide significant value to
developers at all levels.

* Beginners: If you are new to programming, this book serves as a
resource to help transition you from an entry-level programmer to a
C# developer, comfortable with any C# programming task that’s
thrown your way. This book not only teaches you syntax, but also

Preface

trains you in good programming practices that will serve you
throughout your programming career.

Structured programmers: Just as it’s best to learn a foreign language
through immersion, learning a computer language is most effective
when you begin using it before you know all the intricacies. In this
vein, this book begins with a tutorial that will be comfortable for
those familiar with structured programming, and by the end of Chap-
ter 4, developers in this category should feel at home writing basic
control flow programs. However, the key to excellence for C# devel-
opers is not memorizing syntax. To transition from simple programs
to enterprise development, the C# developer must think natively in
terms of objects and their relationships. To this end, Chapter 5’s
Beginner Topics introduce classes and object-oriented development.
The role of historically structured programming languages such as C,
COBOL, and FORTRAN is still significant but shrinking, so it
behooves software engineers to become familiar with object-oriented
development. C# is an ideal language for making this transition
because it was designed with object-oriented development as one of
its core tenets.

Object-based and object-oriented developers: C++ and Java programmers,
and many experienced Visual Basic programmers, fall into this cate-
gory. Many of you are already completely comfortable with semico-
lons and curly braces. A brief glance at the code in Chapter 1 reveals
that at its core, C# is similar to the C and C++ style languages that you
already know.

C# professionals: For those already versed in C#, this book provides a
convenient reference for less frequently encountered syntax. Further-
more, it provides answers to language details and subtleties that are
seldom addressed. Most importantly, it presents the guidelines and
patterns for programming robust and maintainable code. This book
also aids in the task of teaching C# to others. With the emergence of
C# 3.0 and C# 4.0, some of the most prominent enhancements are:

— Implicitly typed variables (see Chapter 2)

— Extension methods (see Chapter 5)

— Partial methods (see Chapter 5)

XXXVii

XXXViii

Preface

— Anonymous types (see Chapter 11)

— Generics (see Chapter 11)

— Lambda statements and expressions (see Chapter 12)

— Expression trees (see Chapter 12)

— Standard query operators (see Chapter 14)

— Query expressions (see Chapter 15)

— Dynamic programming (Chapter 17)

— Multithreaded programming with the Task Programming Library
(Chapter 18)

— Parallel query processing with PLINQ

— Concurrent collections (Chapter 19)

These topics are covered in detail for those not already familiar with them.
Also pertinent to advanced C# development is the subject of pointers, in
Chapter 21. Even experienced C# developers often do not understand this
topic well.

Features of This Book

Essential C# 4.0 is a language book that adheres to the core C# Language 4.0
Specification. To help you understand the various C# constructs, the book
provides numerous examples demonstrating each feature. Accompanying
each concept are guidelines and best practices, ensuring that code com-
piles, avoids likely pitfalls, and achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are
outlined using mind maps.

Code Samples

The code snippets in most of this text (see sample listing on the next page)
can run on any implementation of the Common Language Infrastructure
(CLI), including the Mono, Rotor, and Microsoft .NET platforms. Platform-
or vendor-specific libraries are seldom used, except when communicating
important concepts relevant only to those platforms (appropriately han-
dling the single-threaded user interface of Windows, for example). Any
code that specifically requires C# 3.0 or 4.0 compliance is called out in the
C# 3.0 and C# 4.0 indexes at the end of the book.

Preface XXXiX
Here is a sample code listing.

LisTING 1.17: Commenting Your Code

class CommentSamples

{

static void Main()

{

single-line comment
r A N
string firstName; // Variable for storing the first name

string lastName; // Variable for storing the Llast name

System.Console.WriteLine("Hey you!");

delimited comment inside statement
AL

System.Console.Write’/* No new Line */‘(
"Enter your first name: ");
firstName = System.Console.ReadlLine();

System.Console.Write /* No new line */ (
"Enter your last name: ");
lastName = System.Console.ReadLine();

/* Display a greeting to the console
using composite formatting. */
System.Console.WriteLine("Your full name is {0} {1}.",
firstName, lastName);
// This is the end
// of the program listing

delimited comment

The formatting is as follows.

¢ Comments are shown in italics.

/* Display a greeting to the console
using composite formatting. */

* Keywords are shown in bold.
static void Main()

* Highlighted code calls out specific code snippets that may have
changed from an earlier listing, or demonstrates the concept
described in the text.

xl

Preface

System.Console.Write /* No new Line */ (

Highlighting can appear on an entire line or on just a few characters
within a line.

System.Console.WriteLine(
"Your full name is {0} {1}.",

* Incomplete listings contain an ellipsis to denote irrelevant code that
has been omitted.

// ..

* Console output is the output from a particular listing that appears fol-
lowing the listing.

OUTPUT 1.4:

>HeyYou.exe

Hey you!

Enter your first name: Inigo
Enter your last name: Montoya

* User input for the program appears in italics.

Although it might have been convenient to provide full code samples
that you could copy into your own programs, doing so would detract you
from learning a particular topic. Therefore, you need to modify the code
samples before you can incorporate them into your programs. The core
omission is error checking, such as exception handling. Also, code samples
do not explicitly include using System statements. You need to assume the
statement throughout all samples.

You can find sample code and bonus mateial at intelliTechture.com/
Essential CSharp and at informit.com/msdotnetseries.

Mind Maps

Each chapter’s introduction includes a mind map, which serves as an out-
line that provides an at-a-glance reference to each chapter’s content. Here
is an example (taken from Chapter 5).

Preface

@ Declaring and Instantiating a Class

Partial Classes @ Special Classes
Nested Classes

Instance Declaring an Instance Field
Fields Accessing an Instance Field
Const and readonly Modifiers

' Extension Methods

Static Fields
Static Methods @ Static
Static Constructors

Classes
Static Classes

@ Instance Methods

@ Access Modifiers

Declaring a Constructor

Default Constructors Constructors
i Finalizer .
Overloading Constructors & alizers Declaring a Property
Calling one Constructor Using this . Naming Conventions
Finalizers @ Properties

Using Properties with Validation

Read-Only and Write-Only Properties

Access Modifiers on Getters and Setters

Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

The theme of each chapter appears in the mind map’s center. High-level
topics spread out from the core. Mind maps allow you to absorb the flow
from high-level to more detailed concepts easily, with less chance of
encountering very specific knowledge that you might not be looking for.

Helpful Notes
Depending on your level of experience, special code blocks and tabs will
help you navigate through the text.

* Beginner Topics provide definitions or explanations targeted specifi-
cally toward entry-level programmers.

* Advanced Topics enable experienced developers to focus on the
material that is most relevant to them.

¢ Callout notes highlight key principles in callout boxes so that readers
easily recognize their significance.

* Language Contrast sidebars identify key differences between C# and
its predecessors to aid those familiar with other languages.

xli

xlii

Preface

How This Book Is Organized

At a high level, software engineering is about managing complexity, and it
is toward this end that I have organized Essential C# 4.0. Chapters 1-4 intro-
duce structured programming, which enable you to start writing simple
functioning code immediately. Chapters 5-9 present the object-oriented
constructs of C#. Novice readers should focus on fully understanding this
section before they proceed to the more advanced topics found in the
remainder of this book. Chapters 11-13 introduce additional complexity-
reducing constructs, handling common patterns needed by virtually all
modern programs. This leads to dynamic programming with reflection
and attributes, which is used extensively for threading and interoperability
in the chapters that follow.

The book ends with a chapter on the Common Language Infrastructure,
which describes C# within the context of the development platform in
which it operates. This chapter appears at the end because it is not C# spe-
cific and it departs from the syntax and programming style in the rest of
the book. However, this chapter is suitable for reading at any time, perhaps
most appropriately immediately following Chapter 1.

Here is a description of each chapter (in this list, chapter numbers
shown in bold indicate the presence of C# 3.0 or C# 4.0 material).

* Chapter 1—Introducing C#: After presenting the C# HelloWorld pro-
gram, this chapter proceeds to dissect it. This should familiarize read-
ers with the look and feel of a C# program and provide details on how
to compile and debug their own programs. It also touches on the con-
text of a C# program’s execution and its intermediate language.

* Chapter 2—Data Types: Functioning programs manipulate data, and
this chapter introduces the primitive data types of C#. This includes
coverage of two type categories, value types and reference types,
along with conversion between types and support for arrays.

e Chapter 3—Operators and Control Flow: To take advantage of the
iterative capabilities in a computer, you need to know how to include
loops and conditional logic within your program. This chapter also
covers the C# operators, data conversion, and preprocessor
directives.

Preface xliii

Chapter 4—Methods and Parameters: This chapter investigates the
details of methods and their parameters. It includes passing by value,
passing by reference, and returning data via a parameter. In C# 4.0
default parameter support was added and this chapter explains how
to use them.

Chapter 5—Classes: Given the basic building blocks of a class, this
chapter combines these constructs together to form fully functional
types. Classes form the core of object-oriented technology by defining
the template for an object.

Chapter 6—Inheritance: Although inheritance is a programming fun-
damental to many developers, C# provides some unique constructs,
such as the new modifier. This chapter discusses the details of the
inheritance syntax, including overriding.

Chapter 7—Interfaces: This chapter demonstrates how interfaces are
used to define the “versionable” interaction contract between classes.
C# includes both explicit and implicit interface member implementa-
tion, enabling an additional encapsulation level not supported by
most other languages.

Chapter 8—Value Types: Although not as prevalent as defining refer-
ence types, it is sometimes necessary to define value types that
behave in a fashion similar to the primitive types built into C#. This
chapter describes how to define structures, while exposing the idio-
syncrasies they may introduce.

Chapter 9—Well-Formed Types: This chapter discusses more advanced
type definition. It explains how to implement operators, such as + and
casts, and describes how to encapsulate multiple classes into a single
library. In addition, the chapter demonstrates defining namespaces
and XML comments, and discusses how to design classes for garbage
collection.

Chapter 10—Exception Handling: This chapter expands on the excep-
tion-handling introduction from Chapter 4 and describes how excep-
tions follow a hierarchy that enables creating custom exceptions. It
also includes some best practices on exception handling.

xliv

Preface

Chapter 11—Generics: Generics is perhaps the core feature missing
from C# 1.0. This chapter fully covers this 2.0 feature. In addition, C#
4.0 added support for covariance and contravariance—something
covered in the context of generics in this chapter.

Chapter 12—Delegates and Lambda Expressions: Delegates begin clearly
distinguishing C# from its predecessors by defining patterns for han-
dling events within code. This virtually eliminates the need for writ-
ing routines that poll. Lambda expressions are the key concept that
make C# 3.0’s LINQ possible. This chapter explains how lambda
expressions build on the delegate construct by providing a more ele-
gant and succinct syntax. This chapter forms the foundation for the
new collection API discussed next.

Chapter 13—Events: Encapsulated delegates, known as events, are a
core construct of the Common Language Runtime. Anonymous
methods, another C# 2.0 feature, are also presented here.

Chapter 14—-Collection Interfaces with Standard Query Operators: The
simple and yet elegantly powerful changes introduced in C# 3.0 begin
to shine in this chapter as we take a look at the extension methods of
the new Enumerable class. This class makes available an entirely new
collection API known as the standard query operators and discussed
in detail here.

Chapter 15—LINQ with Query Expressions: Using standard query
operators alone results in some long statements that are hard to deci-
pher. However, query expressions provide an alternative syntax that
matches closely with SQL, as described in this chapter.

Chapter 16—Building Custom Collections: In building custom APIs that
work against business objects, it is sometimes necessary to create cus-
tom collections. This chapter details how to do this, and in the process
introduces contextual keywords that make custom collection build-
ing easier.

Chapter 17—Reflection, Attributes, and Dynamic Programming: Object-
oriented programming formed the basis for a paradigm shift in pro-
gram structure in the late 1980s. In a similar way, attributes facilitate
declarative programming and embedded metadata, ushering in a
new paradigm. This chapter looks at attributes and discusses how to

Preface

retrieve them via reflection. It also covers file input and output via the
serialization framework within the Base Class Library. In C#4.0 anew
keyword, dynamic, was added to the language. This removed all type
checking until runtime, a significant expansion of what can be done
with C#.

Chapter 18—Multithreading: Most modern programs require the use
of threads to execute long-running tasks while ensuring active
response to simultaneous events. As programs become more sophisti-
cated, they must take additional precautions to protect data in these
advanced environments. Programming multithreaded applications is
complex. This chapter discusses how to work with threads and pro-
vides best practices to avoid the problems that plague multithreaded
applications.

Chapter 19—Synchronization and Other Multithreading Patterns: Build-
ing on the preceding chapter, this one demonstrates some of the built-
in threading pattern support that can simplify the explicit control of
multithreaded code.

Chapter 20—Platform Interoperability and Unsafe Code: Given that C#is
a relatively young language, far more code is written in other lan-
guages than in C#. To take advantage of this preexisting code, C#
supports interoperability—the calling of unmanaged code—through
P/Invoke. In addition, C# provides for the use of pointers and direct
memory manipulation. Although code with pointers requires special
privileges to run, it provides the power to interoperate fully with tra-
ditional C-based application programming interfaces.

Chapter 21—The Common Language Infrastructure: Fundamentally, C#
is the syntax that was designed as the most effective programming
language on top of the underlying Common Language Infrastructure.
This chapter delves into how C# programs relate to the underlying
runtime and its specifications.

Appendix A—Downloading and Installing the C# Compiler and the CLI Plat-
form: This appendix provides instructions for setting up a C# compiler
and the platform on which to run the code, Microsoft .NET or Mono.
Appendix B—Full Source Code Listing: In several cases, a full source code
listing within a chapter would have made the chapter too long. To make

xlv

xlvi Preface

these listings still available to the reader, this appendix includes full list-
ings from Chapters 3, 11, 12, 14, and 17.

o Appendix C—Concurrent Classes from System.Collections.Concur-
rent: This appendix provides overview diagrams of the concurrent
collections that were added in the .NET Framework 4.

o Appendixes D-F: C# 2.0, C# 3.0, C# 4.0 Topics: These appendices pro-
vide a quick reference for any C# 2.0, C# 3.0, or C# 4.0 content. They
are specifically designed to help programmers quickly get up to
speed on C# features.

I'hope you find this book to be a great resource in establishing your C#
expertise and that you continue to reference it for the more obscure areas of
C# and its inner workings.

—Mark Michaelis
mark.michaelis.net

Acknowledgments

NO BOOK CAN BE published by the author alone, and I am extremely grate-
ful for the multitude of people who helped me with this one.

The order in which I thank people is not significant, except for those
that come first. By far, my family has made the biggest sacrifice to allow me
to complete this. Benjamin, Hanna, and Abigail often had a Daddy dis-
tracted by this book, but Elisabeth suffered even more so. She was often left
to take care of things, holding the family’s world together on her own. I
would like to say it got easier with each edition but, alas, no; as the kids got
older, life became more hectic, and without me Elisabeth was stretched to
the breaking point virtually all the time. A huge sorry and ginormous
Thank You!

Many technical editors reviewed each chapter in minute detail to ensure
technical accuracy. I was often amazed by the subtle errors these folks still
managed to catch: Paul Bramsman, Kody Brown, Ian Davis, Doug Dechow,
Gerard Frantz, Thomas Heavey, Anson Horton, Brian Jones, Shane
Kercheval, Angelika Langer, Eric Lippert, John Michaelis, Jason Morse,
Nicholas Paldino, Jon Skeet, Michael Stokesbary, Robert Stokesbary, John
Timney, and Stephen Toub.

In particular, Michael was a huge help in editing the technical content
and serving as a sounding board as I was putting the material together, not
to mention his invaluable friendship. I am also especially grateful to the C#
MVPs (Nicholas and John), who know the language in certain areas second
only to those on the C# team.

xlvii

xlviii

Acknowledgments

Eric is no less than amazing. His grasp of the C# vocabulary is truly
astounding and I am very appreciative of his edits, especially when he
pushed for perfection in terminology. His improvements to the C# 3.0
chapters were incredibly significant, and in the second edition my only
regret was that I didn’t have him review all the chapters. However, that
regret is no longer. Eric painstakingly reviewed every Essential C# 4.0 chap-
ter with amazing detail and precision. I am extremely grateful for his con-
tribution to making this book even better than the first two editions.
Thanks, Eric! I can’t imagine anyone better for the job. You deserve all the
credit for raising the bar from good to great.

Like Eric and C#, there are fewer than a handful of people who know
NET multithreading as well as Stephen Toub. Accordingly, Stephen
focused on the two rewritten multithreading chapters and their new focus
on parallel programming. Stephen’s feedback in combination with the
changes that occurred between Beta editions caused me to ask Stephen to
take a second look after I updated them based on his first review—he
accepted. I truly can’t imagine a better person to do the review. Thanks,
Stephen! Thanks especially for putting up with me as I ramped up on the
new APL

Paul and Robert were key technical reviewers for the second edition,
and they painstakingly recompiled and executed each listing. This was a
big effort and the errors you found were much appreciated, along with
your suggestions.

Thanks to Scott Robertson at UCLA Extension for creating instructional
materials for this book for university adoption.

Thanks to everyone at Addison-Wesley for their patience in working
with me in spite of my frequent focus on everything else except the manu-
script. Thanks to: Olivia Basegio, Sheri Cain, Curt Johnson, Joan Murray,
and Brandon Prebynski.

Joan, thanks also for the weekly telephone calls to keep me on task dur-
ing the second edition—well, for at least making me feel guilty when I
wasn’t on task. Thanks also for your willingness to put up with me for this
third edition. I wish I could say that this time I made it less stressful for
you, but I doubt I did. Thanks!

Acknowledgments

Thanks to Audrey Doyle. Anyone who can quote The Chicago Manual of
Style has to be the right person to have on your team as the copy editor. The
stuff she noticed and corrected made me wonder whether I am qualified to
use email. Thanks especially for all the formatting help.

Prashant Sridharan, from Microsoft’s Developer Division, was the one
who got me started on this, and he provided me with an incredible jump-

start on the material. Thanks, Prashant!

xlix

This page intentionally left blank

About the Author

Mark Michaelis recently started IntelliTechture, a software engineering
and consulting company with high-end skills in Microsoft VSTS/TFES, Biz-
Talk, SharePoint, and .NET. Mark also serves as a chief software architect
and trainer for IDesign Inc.

Mark holds a BA in philosophy from the University of Illinois and an
MS in computer science from the Illinois Institute of Technology. In 2007,
Mark was recognized as a Microsoft Regional Director. Since 1996, he has
been a Microsoft MVP for C#, Visual Studio Team System, and the Win-
dows SDK. He serves on several Microsoft software design review teams,
including C#, the Connected Systems Division, and VSTS. Mark speaks at
developer conferences and has written numerous articles and books.

When not bonding with his computer, Mark is busy with his family or
training for another triathlon (having completed the Ironman in 2008).
Mark lives in Spokane, Washington, with his wife Elisabeth, and three chil-
dren, Benjamin, Hanna, and Abigail.

This page intentionally left blank

s 1

Introducing C#

” IS NOW A WELL-ESTABLISHED LANGUAGE that builds on fea-
tures found in its predecessor C-style languages (C, C++, and

Java), making it immediately familiar to many experienced programmers.

1

Part of a larger, more complex execution platform called the Common Lan-

guage Infrastructure (CLI), C# is a programming language for building

software components and applications.

Common Intermediate

Language and ILDASM @ Hello, World

Compiling and Running

Single Line (8) Comments

Introducing C#

Managed Execution

Delimited

@ Console Input
and Output

@ C# Syntax Keywords

Fundamentals |Main
Statements
| Whitespace

Working with Declaration

Variables

Assignment
Use

This chapter introduces C# using the traditional HelloWorld program.

The chapter focuses on C# syntax fundamentals, including defining an

entry point into the C# program executable. This will familiarize you with

1. Ithas now been more than ten years since the first C# design meeting.

2

Chapter 1: Introducing C#

the C# syntax style and structure, and it will enable you to produce the
simplest of C# programs. Prior to the discussion of C# syntax fundamen-
tals is a summary of managed execution context, which explains how a C#
program executes at runtime. This chapter ends with a discussion of vari-
able declaration, writing and retrieving data from the console, and the
basics of commenting code in C#.

Hello, World

The best way to learn a new programming language is to write code. The
first example is the classic HelloWorld program. In this program, you will
display some text to the screen.

Listing 1.1 shows the complete HelloWorld program; in the following
sections, you will compile the code.

LISTING 1.1: HelloWorldin C#?

class HelloWorld
{
static void Main()

{

System.Console.WriteLine("Hello. My name is Inigo Montoya.");

}
)

"s NOTE

C# is a case-sensitive language: Incorrect case prevents the code from
compiling successfully.

Those experienced in programming with Java, C, or C++ will immedi-
ately see similarities. Like Java, C# inherits its basic syntax from C and
C++.3 Syntactic punctuation (such as semicolons and curly braces), features
(such as case sensitivity), and keywords (such as class, public, and void)

2. Refer to the movie The Princess Bride if you're confused about the Inigo Montoya
references.

3. When creating C#, the language creators sat down with the specifications for C/C++, liter-
ally crossing out the features they didn’t like and creating a list of the ones they did like.
The group also included designers with strong backgrounds in other languages.

Hello, World

are familiar to programmers experienced in these languages. Beginners and
programmers from other languages will quickly find these constructs
intuitive.

Compiling and Running the Application
The C# compiler allows any file extension for files containing C# source
code, but . cs is typically used. After saving the source code to a file, devel-
opers must compile it. (Appendix A provides instructions for installing the
compiler.) Because the mechanics of the command are not part of the C#
standard, the compilation command varies depending on the C# compiler
implementation.

If you place Listing 1.1 into a file called HelloWorld. cs, the compilation
command in Output 1.1 will work with the Microsoft .NET compiler
(assuming appropriate paths to the compiler are set up).*

OuTpPuUT 1.1:

>csc.exe HellolWlorld-.cs

Microsoft (R) Visual C# 2008 Compiler version 4.0.2050k-1
for Microsoft (R) .NET Framework version 4.0

Copyright (C) Microsoft Corporation. All rights reserved.

The exact output will vary depending on what version of the compiler
you use.

Running the resultant program, HelloWorld.exe, displays the message
shown in Output 1.2.

OuTPUT 1.2:

>HellolWlorld-exe
Hello. My name is Inigo Montoya-

The program created by the C# compiler, HelloWorld.exe, is an
assembly. Instead of creating an entire program that can be executed

4. Compilation using the Mono compiler, an open source compiler sponsored by Novell, is
virtually identical, except that the compiler name is mcs.exe rather than csc.exe.
Although I would very much have liked to place instructions for each platform here, doing
so0 detracts from the topic of introducing C#. See Appendix A for details on Mono.

3

4

Chapter 1: Introducing C#

independently, developers can create a library of code that can be
referenced by another, larger program. Libraries (or class libraries) use the
filename extension .d11, which stands for Dynamic Link Library (DLL). A
library is also an assembly. In other words, the output from a successful C#
compile is an assembly regardless of whether it is a program or a library.

Language Contrast: Java—Filename Must Match Class Name

In Java, the filename must follow the name of the class. In C#, this conven-
tion is frequently followed but is not required. In C#, it is possible to have
two classes in one file, and starting with C# 2.0, it’s possible to have a
single class span multiple files.

C# Syntax Fundamentals

Once you successfully compile and run the HelloWorld program, you are
ready to start dissecting the code to learn its individual parts. First, con-
sider the C# keywords along with the identifiers that the developer
chooses.

BEGINNER TOPIC

Keywords

In order for the compiler to interpret the code, certain words within C#
have special status and meaning. Known as keywords or reserved words,
they provide the concrete syntax that the compiler uses to interpret the
expressions the programmer writes. In the HelloWorld program, class,
static, and void are examples of keywords.

The compiler uses the keywords to identify the structure and organiza-
tion of the code. Because the compiler interprets these words with elevated
significance, you can use keywords only under the specific rules identified
by the language. In other words, programming languages require that
developers place keywords only in certain locations. When programmers
violate these rules, the compiler will issue errors.

C# Syntax Fundamentals m

C# Keywords
Table 1.1 shows the C# keywords.

TaBLE 1.1: C# Keywords

abstract add* alias* as
ascending* base bool break
by* byte case catch
char checked class const
continue decimal default delegate
descending* do double dynamic*
else enum equals* event
explicit extern false finally
fixed float for foreach
from* get* global* goto
group* if implicit in

int interface internal into*

is join* let* lock
long namespace new null
object on* operator orderby*
out override params partial*
private protected public readonly
ref remove* return sbyte
sealed select* set* short
sizeof stackalloc static string
struct switch this throw
true try typeof uint

* Contextual keyword

Continues

Chapter 1: Introducing C#

TABLE 1.1: C# Keywords (Continued)

ulong unchecked unsafe ushort
using value* var* virtual
void volatile where* while
yield*

* Contextual keyword

After C# 1.0, no new keywords were introduced to C#. However, some
constructs in these later versions use contextual keywords, which are sig-
nificant only in specific locations. Outside these designated locations, con-
textual keywords have no special significance.® By this method, all C# 1.0
code is fully compatible with the later standards.® (Table 1.1 designates
contextual keywords with a *.)

BEGINNER TOPIC

Identifiers

In addition to the keywords defined in C#, developers may provide their
own names. Programming languages refer to these names as identifiers
since they identify constructs that the programmer codes. In Listing 1.1,
HelloWorld and Main are examples of identifiers. It is possible to assign a
value to a variable and then refer to it later using its identifier. It is impor-
tant, therefore, that the names the developer assigns are meaningful rather

5. For example, early in the design of C# 2.0, the language designers designated yield as a
keyword, and Microsoft released alpha versions of the C# 2.0 compiler, with yield as a
designated keyword, to thousands of developers. However, the language designers even-
tually determined that by using yield return rather than yield, they could ultimately
avoid adding yield as a keyword because it would have no special significance outside its
proximity to return.
6. There are some rare and unfortunate incompatibilities, such as the following:
® C#2.0 requiring implementation of IDisposable with the using statement, rather than
simply a Dispose() method

® Some rare generic expressions such as F(G<A,B>(7)); in C# 1.0, that means F ((G<A),
(B>7)) and in C# 2.0, that means to call generic method G<A, B> with argument 7 and
pass the result to F

C# Syntax Fundamentals

than arbitrary. A keen ability to select succinct and indicative names is an
important characteristic of a strong programmer because the resultant
code is easier to understand and reuse. In some rare cases, some identifi-
ers, such as Main, can have a special meaning in the C# language.

ADVANCED TOPIC

Keywords

Although it is rare, keywords may be used as identifiers if they include
“@” as a prefix. For example, you could name a local variable @return.
Similarly (although it doesn’t conform to the casing standards of C#
coding standards), it is possible to name a method @throw().

There are also four undocumented reserved keywords in the Microsoft
implementation: __arglist, __makeref, _ reftype, and __refvalue.
These are required only in rare interop scenarios and you can ignore them
for all practical purposes.

Type Definition

All code in C# appears within a type definition, and the most common
type definition begins with the keyword class. A class definition is the
section of code that generally begins with class identifier { ... }, as
shown in Listing 1.2.

LisTING 1.2: Basic Class Declaration

class HelloWorld
{

}

The name used for the type (in this case, HelloWorld) can vary, but by
convention, it should begin with a capital letter and a noun. If the name
contains multiple words appended together, then each additional word
should also begin with a capital letter. For this particular example, there-
fore, other possible names are Greetings, HelloInigoMontoya, Hello, or
simply Program. (Program works especially if it is the class that contains
the Main() method described next.) The CLI creators called this type of
casing Pascal casing because of its popularity in the Pascal programming

8

Chapter 1: Introducing C#

language. The alternative, camel casing, follows the same convention,
except that the first letter is lowercase. Examples include quotient, first-
Name, and theDreadPirateRoberts.

Generally, programs contain multiple types, each containing multiple
methods.

BEGINNER TOPIC

What Is a Method?

Syntactically, a method in C# is a named block of code introduced by a
method declaration (for example, static void Main()) and followed by
zero or more statements within curly braces. Methods perform computa-
tions and/or actions. Similar to paragraphs in written languages, methods
provide a means of structuring and organizing code so that it is more read-
able. More importantly, methods avoid the need to duplicate code. The
method declaration introduces the method and defines the method name
along with the data passed to and from the method. In Listing 1.3, Main()
followed by { ... }isanexample of a C# method.

The location where C# programs begin execution is the Main method,
which begins with static void Main(). When you execute the program
by typing HelloWorld.exe at the command console, the program starts up,
resolves the location of Main, and begins executing the first statement
within Listing 1.3.

LisTING 1.3: Breaking Apart HelloWorld

class HelloWorld

{
static void Main() }Method Declaration Main
{ Class
System.Console.WriteLine("Hello, My name is Inigo Montoya"); Definition
(. J
hd
} ¥ Statement

Although the Main method declaration can vary to some degree, static
and the method name, Main, are always required for a program.

C# Syntax Fundamentals

ADVANCED TOPIC

Declaration of the Main Method
Although it is possible to declare the Main method without parameters or
a return type, C# supports specifying either one. Listing 1.4 shows the full
declaration of the Main method.

LISTING 1.4: The Main Method, with Parameters and a Return

static int Main(string[] args)

{
)

The args parameter is an array of strings corresponding to the command-
line arguments. However, the first element of the array is not the program
name but the first command-line parameter to appear after the executable
name, unlike in C and C++. To retrieve the full command used to execute
the program use System.Environment.CommandLine.

The int return from Main is the status code and it indicates the success
of the program’s execution. A return of a nonzero value generally indicates

an error.

Language Contrast: C++/Java—main() Is All Lowercase

Unlike its C-style predecessors, C# uses an uppercase M for the Main
method in order to be consistent with the Pascal-based naming conven-
tions of C#.

The designation of the Main method as static indicates that other
methods may call it directly off the class definition. Without the static
designation, the command console that started the program would need to
perform additional work (known as instantiation) before calling the
method. (Chapter 5 contains an entire section devoted to the topic of static
members.)

10

Chapter 1: Introducing C#

Placing void prior to Main() indicates that this method does not return
any data (explained further in Chapter 2).

One distinctive C/C++ style characteristic followed by C# is the use of
curly braces for the body of a construct, such as the class or the method.
For example, the Main method contains curly braces that surround its
implementation; in this case, only one statement appears in the method.

Statements and Statement Delimiters

The Main method includes a single statement, System.Console.Write-
Line(), which is used to write a line of text to the console. C# generally
uses a semicolon to indicate the end of a statement, where a statement
comprises one or more actions that the code will perform. Declaring a vari-
able, controlling the program flow, and calling a method are examples of
statements.

Language Contrast: Visual Basic—Line-Based Statements

Some languages are line-based, meaning that without a special annota-
tion, statements cannot span a line. Until Visual Basic 2010, Visual Basic
was an example of a line-based language. It required an underscore at the
end of a line to indicate that a statement spans multiple lines. Starting with
Visual Basic 2010, many cases were introduced where the line continuation
character was optional.

ADVANCED TOPIC

Statements without Semicolons

Many programming elements in C# end with a semicolon. One example that
does not include the semicolon is a switch statement. Because curly braces
are always included in a switch statement, C# does not require a semicolon
following the statement. In fact, code blocks themselves are considered
statements (they are also composed of statements) and they don’t require
closure using a semicolon. Similarly, there are cases, such as the using
declarative, in which a semicolon occurs at the end but it is not a statement.

C# Syntax Fundamentals

Since creation of a newline does not separate statements, you can place
multiple statements on the same line and the C# compiler will interpret the
line to have multiple instructions. For example, Listing 1.5 contains two
statements on a single line that, in combination, display Up and Down on
two separate lines.

LisTING 1.5: Multiple Statements on One Line

System.Console.WriteLine("Up");System.Console.WriteLine("Down");

C# also allows the splitting of a statement across multiple lines. Again,
the C# compiler looks for a semicolon to indicate the end of a statement
(see Listing 1.6).

LisTING 1.6: Splitting a Single Statement across Multiple Lines

System.Console.WriteLine(
"Hello. My name is Inigo Montoya.");

In Listing 1.6, the original WriteLine() statement from the HelloWorld
program is split across multiple lines.

Whitespace

The semicolon makes it possible for the C# compiler to ignore whitespace
in code. Apart from a few exceptions, C# allows developers to insert
whitespace throughout the code without altering its semantic meaning. In
Listing 1.5 and Listing 1.6, it didn’t matter whether a newline was inserted
within a statement or between statements, and doing so had no effect on
the resultant executable created by the compiler.

BEGINNER TOPIC

What Is Whitespace?
Whitespace is the combination of one or more consecutive formatting
characters such as tab, space, and newline characters. Eliminating all
whitespace between words is obviously significant, as is whitespace
within a quoted string.

11

12 Chapter 1: Introducing C#

Frequently, programmers use whitespace to indent code for greater
readability. Consider the two variations on HelloWorld, as shown in List-
ing 1.7 and Listing 1.8.

LisTING 1.7: No Indentation Formatting

class HelloWorld

{

static void Main()

{

System.Console.WriteLine("Hello Inigo Montoya");
}

}

LisTING 1.8: Removing Whitespace

class HelloWorld{static void Main()
{System.Console.WriteLine("Hello Inigo Montoya");}}

Although these two examples look significantly different from the original
program, the C# compiler sees them as identical.

BEGINNER TOPIC

Formatting Code with Whitespace

Indenting the code using whitespace is important for greater readability.
As you begin writing code, you need to follow established coding stan-
dards and conventions in order to enhance code readability.

The convention used in this book is to place curly braces on their own
line and to indent the code contained between the curly brace pair. If
another curly brace pair appears within the first pair, all the code within
the second set of braces is also indented.

This is not a uniform C# standard, but a stylistic preference.

Working with Variables

Now that you’ve been introduced to the most basic C# program, it’s time
to declare a local variable. Once a variable is declared, you can assign it a
value, replace that value with a new value, and use it in calculations,

Working with Variables 13

output, and so on. However, you cannot change the data type of the vari-
able. In Listing 1.9, string max is a variable declaration.

LiIsTING 1.9: Declaring and Assigning a Variable

class MiracleMax

{

static void Main()

data type

[l

string max;
—\—

variable
max = "Have fun storming the castle!";

System.Console.WriteLine(max);

BEGINNER TOPIC

Local Variables
A variable refers to a storage location by a name that the program can later
assign and modify. Local indicates that the programmer declared the vari-
able within a method.

To declare a variable is to define it, which you do by

1. Specifying the type of data which the variable will contain

2. Assigning it an identifier (name)

Data Types
Listing 1.9 declares a variable with the data type string. Other common
data types used in this chapter are int and char.

* intis the C# designation of an integer type that is 32 bits in size.

* charis used for a character type. It is 16 bits, large enough for
(nonsurrogate) Unicode characters.

The next chapter looks at these and other common data types in more
detail.

14

Chapter 1: Introducing C#

BEGINNER TOPIC

What Is a Data Type?

The type of data that a variable declaration specifies is called a data type
(or object type). A data type, or simply type, is a classification of things that
share similar characteristics and behavior. For example, animal is a type. It
classifies all things (monkeys, warthogs, and platypuses) that have animal
characteristics (multicellular, capacity for locomotion, and so on). Simi-
larly, in programming languages, a type is a definition for several items
endowed with similar qualities.

Declaring a Variable

In Listing 1.9, string max is a variable declaration of a string type whose
name is max. It is possible to declare multiple variables within the same
statement by specifying the data type once and separating each identifier
with a comma. Listing 1.10 demonstrates this.

LisTING 1.10: Declaring Two Variables within One Statement

string messagel, message2;

Because a multivariable declaration statement allows developers to pro-
vide the data type only once within a declaration, all variables will be of
the same type.

In C#, the name of the variable may begin with any letter or an under-
score (_), followed by any number of letters, numbers, and/or under-
scores. By convention, however, local variable names are camel-cased (the
first letter in each word is capitalized, except for the first word) and do not
include underscores.

Assigning a Variable

After declaring a local variable, you must assign it a value before referenc-
ing it. One way to do this is to use the = operator, also known as the simple
assignment operator. Operators are symbols used to identify the function
the code is to perform. Listing 1.11 demonstrates how to use the assign-
ment operator to designate the string values to which the variables max’

and valerie will point.

7. Iam not using max to mean the math function here; I'm using it as a variable name.

Working with Variables 15

LisTING 1.11: Changing the Value of a Variable

class MiracleMax

{

static void Main()

{

string valerie;
string max = "Have fun storming the castle!";

valerie = "Think it will work?";

System.Console.WriteLine(max);
System.Console.WritelLine(valerie);

max = "It would take a miracle.";
System.Console.WriteLine(max);

From this listing, observe that it is possible to assign a variable as part of
the variable declaration (as it was for max), or afterward in a separate state-
ment (as with the variable valerie). The value assigned must always be
on the right side.

Running the compiled MiracleMax.exe program produces the code
shown in Output 1.3.

OuTPUT 1.3:

>MiracleMax-exe

Have fun storming the castle!
Think it will work?

It would take a miracle.

C# requires that developers assign a local variable before accessing it.
Additionally, an assignment returns a value. Therefore, C# allows two
assignments within the same statement, as demonstrated in Listing 1.12.

LISTING 1.12: Assignment Returning a Value That Can Be Assigned Again

class MiracleMax

{
static void Main()
{
/.
string requirements, max;
requirements = max = "It would take a miracle.";

16

Chapter 1: Introducing C#

Y72y
}
X

Using a Variable

The result of the assignment, of course, is that you can then refer to the
value using the variable identifier. Therefore, when you use the variable
max within the System.Console.WritelLine(max) statement, the program
displays Have fun storming the castle!, the value of max, on the console.
Changing the value of max and executing the same System.Console.
WriteLine(max) statement causes the new max value, It would take a
miracle., to be displayed.

ADVANCED TOPIC

Strings Are Inmutable

All data of type string, whether string literals or otherwise, is immutable
(or unmodifiable). For example, it is not possible to change the string "Come
As You Are" to "Come As You Age". A change such as this requires that you
reassign the variable to point to a new location in memory, instead of mod-
ifying the data to which the variable originally referred.

Console Input and Output

This chapter already used System.Console.WritelLine repeatedly for writ-
ing out text to the command console. In addition to being able to write out
data, a program needs to be able to accept data that a user may enter.

Getting Input from the Console

One of the ways to retrieve text that is entered at the console is to use
System.Console.ReadLine(). This method stops the program execution so
that the user can enter characters. When the user presses the Enter key, cre-
ating a newline, the program continues. The output, also known as the
return, from the System.Console.ReadLine() method is the string of text
that was entered. Consider Listing 1.13 and the corresponding output
shown in Output 1.4.

Console Input and Output

LisTING 1.13: Using System.Console.ReadLine()

class HeyYou

{
static void Main()
{
string firstName;
string lastName;
System.Console.WriteLine("Hey you!");
System.Console.Write("Enter your first name: ");
firstName = System.Console.ReadlLine();
System.Console.Write("Enter your last name: ");
lastName = System.Console.ReadlLine();
}
}
OuTPUT 1.4:

>HeyYou.exe

Hey you!

Enter your first name: Inigo
Enter your last name: Montoya

After each prompt, this program uses the System.Console.ReadLine()
method to retrieve the text the user entered and assign it to an appropriate
variable. By the time the second System.Console.ReadlLine() assignment
completes, firstName contains to the value Inigo and lastName refers to
the value Montoya.

ADVANCED TOPIC

System.Console.Read()

In addition to the System.Console.ReadLine() method, there is also a
System.Console.Read() method. However, the data type returned by the
System.Console.Read() method is an integer corresponding to the charac-
ter value read, or -1 if no more characters are available. To retrieve the
actual character, it is necessary to first cast the integer to a character, as
shown in Listing 1.14.

17

18

Chapter 1: Introducing C#

LISTING 1.14: Using System.Console.Read()

int readvalue;

char character;

readValue = System.Console.Read();
character = (char) readValue;
System.Console.Write(character);

The System.Console.Read() method does not return the input until the
user presses the Enter key; no processing of characters will begin, even if
the user types multiple characters before pressing the Enter key.

In C# 2.0, the CLR designers added a new method called System.
Console.ReadKey () which, in contrast to System.Console.Read(), returns
the input after a single keystroke. It allows the developer to intercept the
keystroke and perform actions such as key validation, restricting the char-
acters to numerics.

Writing Output to the Console

In Listing 1.13, you prompt the user for his first and last names using the
method System.Console.Write() rather than System.Console.Write-
Line(). Instead of placing a newline character after displaying the text, the
System.Console.Write() method leaves the current position on the same
line. In this way, any text the user enters will be on the same line as the
prompt for input. The output from Listing 1.13 demonstrates the effect of
System.Console.Write().

The next step is to write the values retrieved using System.Console.
ReadLine() back to the console. In the case of Listing 1.15, the program
writes out the user’s full name. However, instead of using System.Con-
sole.WriteLine() as before, this code will use a slight variation. Output
1.5 shows the corresponding output.

LisTING 1.15: Formatting Using System.Console.WriteLine()

class HeyYou
{
static void Main()
{
string firstName;
string lastName;

Console Input and Output

System.Console.WriteLine("Hey you!");

System.Console.Write("Enter your first name: ");
firstName = System.Console.ReadlLine();

System.Console.Write("Enter your last name: ");
lastName = System.Console.ReadlLine();

System.Console.WriteLine(
"Your full name is {@} {1}.", firstName, lastName);

OuTpPUT 1.5:

Hey you!

Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Inigo Montoya-

Instead of writing out Your full name is followed by another Write
statement for firstName, a third Write statement for the space, and finally
a Writeline statement for lastName, Listing 1.15 writes out the entire out-
put using composite formatting. With composite formatting, the code first
supplies a format string to define the output format. In this example, the
format string is "Your full name is {@} {1}.".Itidentifies two indexed
placeholders for data insertion in the string.

Note that the index value begins at zero. Each inserted parameter
(known as a format item) appears after the format string in the order corre-
sponding to the index value. In this example, since firstName is the first
parameter to follow immediately after the format string, it corresponds to
index value 0. Similarly, 1astName corresponds to index value 1.

Note that the placeholders within the format string need not appear in
order. For example, Listing 1.16 switches the order of the indexed place-
holders and adds a comma, which changes the way the name is displayed
(see Output 1.6).

LISTING 1.16: Swapping the Indexed Placeholders and Corresponding Variables

System.Console.WriteLine("Your full name is {1}, {e}",
firstName, lastName);

19

20 Chapter 1: Introducing C#

OuTPUT 1.6:

Hey you!

Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Montoya- Inigo

In addition to not having the placeholders appear consecutively within
the format string, it is possible to use the same placeholder multiple times
within a format string. Furthermore, it is possible to omit a placeholder. It
is not possible, however, to have placeholders that do not have a corre-

sponding parameter.

Comments

In this section, you will modify the program in Listing 1.15 by adding com-
ments. In no way does this vary the execution of the program; rather, pro-
viding comments within the code makes it more understandable. Listing
1.17 shows the new code, and Output 1.7 shows the corresponding output.

LisTING 1.17: Commenting Your Code

class CommentSamples

{

static void Main()

{

single-line comment
r A N
string firstName; // Variable for storing the first name

string lastName; // Variable for storing the Llast name

System.Console.WriteLine("Hey you!");

delimited comment inside statement
A

System.Console.wr‘iter/* No new Line */\(
"Enter your first name: ");
firstName = System.Console.ReadlLine();

System.Console.Write /* No new Line */ (
"Enter your last name: ");
lastName = System.Console.ReadlLine();

/* Display a greeting to the console

using composite formatting. */ }dehm“ed comment

System.Console.WriteLine("Your full name is {0} {1}."

firstName, lastName);
// This is the end
// of the program listing

Comments

OuTPUT 1.7:

Hey you!

Enter your first name: Inigo

Enter your last name:

Montoya

Your full name is Inigo Montoya-

In spite of the inserted comments, compiling and executing the new

program produces the same output as before.

Programmers use comments to describe and explain the code they are

writing, especially where the syntax itself is difficult to understand, or per-

haps a particular algorithm implementation is surprising. Since comments

are pertinent only to the programmer reviewing the code, the compiler

ignores comments and generates an assembly that is devoid of any trace

that comments were part of the original source code.

Table 1.2 shows four different C# comment types. The program in List-

ing 1.17 includes two of these.

TaBLE 1.2: C# Comment Types

of a delimited comment. To end the
comment use an asterisk followed by
a forward slash: */. Comments of
this form may span multiple lines in
the code file or appear embedded
within a line of code. The asterisks
that appear at the beginning of the
lines but within the delimiters are
simply for formatting.

Comment Type Description Example
Delimited A forward slash followed by an /*comment*/
comments asterisk, /*, identifies the beginning

Continues

21

22 Chapter 1: Introducing C#

TABLE 1.2: C# Comment Types (Continued)

Comment Type Description Example
Single-line Comments may also be declared //comment
comments with a delimiter comprising two

consecutive forward slash charac-
ters: //. The compiler treats all text
from the delimiter to the end of the
line as a comment. Comments of this
form comprise a single line. It is pos-
sible, however, to place sequential
single-line comments one after
another, as is the case with the last
comment in Listing 1.17.

XML delimited Comments that begin with /** and /**comment**/

comments end with **/ are called XML delim-
ited comments. They have the same
characteristics as regular delimited
comments, except that instead of
ignoring XML comments entirely,
the compiler can place them into a
separate text file. XML delimited
comments were only explicitly
added in C# 2.0, but the syntax is
compatible with C# 1.0.

XML single-line XML single-line comments begin ///comment
comments with /// and continue to the end of

the line. In addition, the compiler

can save single-line comments into a

separate file with the XML delimited

comments.

A more comprehensive discussion of the XML comments appears in
Chapter 9, where I discuss the various XML tags that are explicitly part of
the XML standard.

BEGINNER TOPIC

Extensible Markup Language (XML)

The Extensible Markup Language (XML) is a simple and flexible text for-
mat frequently used within web applications and for exchanging data
between applications. XML is extensible because included within an XML

Managed Execution and the Common Language Infrastructure

document is information that describes the data, known as metadata. Here

is a sample XML file.
<?xml version="1.0" encoding="utf-8" ?>
<body>
<book title="Essential C# 4.0">
<chapters>
<chapter title="Introducing C#"/>
<chapter title="Operators and Control Flow"/>
</chapters>
</book>
</body>

The file starts with a header indicating the version and character encoding
of the XML file. After that appears one main “book” element. Elements
begin with a word in angle brackets, such as <body>. To end an element,
place the same word in angle brackets and add a forward slash to prefix
the word, as in </body>. In addition to elements, XML supports attributes.
title="Essential C# 4.0" is an example of an XML attribute. Note that
the metadata (book title, chapter, and so on) describing the data (“Essential
C# 4.0”, “Operators and Control Flow”) is included in the XML file. This
can result in rather bloated files, but it offers the advantage that the data
includes a description to aid in interpreting the data.

Managed Execution and the Common Language
Infrastructure

The processor cannot directly interpret an assembly. Assemblies consist
mainly of a second language known as the Common Intermediate Lan-
guage (CIL), or IL for short.

"« NOTE

A third term for CIL is Microsoft IL (MSIL). This book uses the term
CIL because it is the term adopted by the CLI standard. IL is prevalent
in conversation among people writing C# code because they assume
that IL refers to CIL rather than other types of intermediate languages.

23

24

Chapter 1: Introducing C#

The C# compiler transforms the C# source file into this intermediate
language. An additional step, usually performed at execution time, is
required to change the CIL code into machine code that the processor can
understand. This involves an important element in the execution of a C#
program: the Virtual Execution System (VES). The VES, also casually
referred to as the runtime, compiles CIL code as needed (this process is
known as just-in-time compilation or jitting). The code that executes
under the context of an agent such as the runtime is managed code, and
the process of executing under control of the runtime is managed execu-
tion. It is called managed code because the runtime controls significant
portions of the program’s behavior by managing aspects such as memory
allocation, security, and just-in-time compilation. Code that does not
require the runtime in order to execute is unmanaged code.

"= NOTE

The term runtime can refer to either execution time or the Virtual Exe-
cution System. To help clarify, this book uses the term execution time to
indicate when the program is executing, and it uses the term runtime
when discussing the agent responsible for managing the execution of
a C# program while it executes.

The specification for a VES is included in a broader specification known
as the Common Language Infrastructure (CLI) specification.®> An interna-
tional standard, the CLI includes specifications for

e The VES or runtime

e The CIL

* A type system that supports language interoperability, known as the
Common Type System (CTS)

¢ Guidance on how to write libraries that are accessible from CLI-com-

patible languages (available in the Common Language Specification
[CLS])

8. Miller, J., and S. Ragsdale. 2004. The Common Language Infrastructure Annotated Standard.
Boston: Addison-Wesley.

Managed Execution and the Common Language Infrastructure

* Metadata that enables many of the services identified by the CLI
(including specifications for the layout or file format of assemblies)

* A common programming framework, the Base Class Library (BCL),
which developers in all languages can utilize

Running within the context of a CLI implementation enables support
for a number of services and features that programmers do not need to
code for directly, including the following.

* Language interoperability: interoperability between different source
languages. This is possible because the language compilers translate
each source language to the same intermediate language (CIL).

 Type safety: checks for conversion between types, ensuring that only
conversions between compatible types will occur. This helps prevent
the occurrence of buffer overruns, a leading cause of security
vulnerabilities.

* Code access security: certification that the assembly developer’s code
has permission to execute on the computer.

* Garbage collection: memory management that automatically
de-allocates space for data allocated by the runtime.

e Platform portability: support for potentially running the same assem-
bly on a variety of operating systems. One obvious restriction is that
no platform-dependent libraries are used; therefore, as with Java,
there are inevitably some idiosyncrasies that need to be worked out.

e BCL: provides a large foundation of code that developers can depend
on (in all CLI implementations) so that they do not have to develop
the code themselves.

"= NOTE

This section gives a brief synopsis of the CLI to familiarize you with
the context in which a C# program executes. It also provides a sum-
mary of some of the terms that appear throughout this book. Chapter
21 is devoted to the topic of the CLI and its relevance to C# develop-
ers. Although the chapter appears last in the book, it does not depend
on any earlier chapters, so if you want to become more familiar with
the CLI, you can jump to it at any time.

26

Chapter 1: Introducing C#

C# and .NET Versioning

Readers will notice that Output 1.1 refers to the “.NET Framework version
4.0.” At the time of this writing, Microsoft had five major releases to the
NET Framework and only four major C# compiler releases. NET Frame-
work version 3.0 was an additional set of API libraries released in between
C# compiler releases (and Visual Studio 2005 and 2008 versions). As a
result, the .NET Framework version that corresponded with C# 3.0 was
3.5. With the release of C# 4.0 and the .INET Framework 4.0, the version
numbers are synchronized. Table 1.3 is a brief overview of the C# and
.NET releases.

TaBLE 1.3: C# and .NET Versions

Comment Type

Description

C# 1.0 with NET
Framework 1.0/1.1
(Visual Studio 2002
and 2003)

The initial release of C#. A language built from the
ground up to support .NET programming.

C# 2.0 with NET
Framework 2.0
(Visual Studio 2005)

Generics were added to the C# language and the NET
Framework 2.0 included libraries that supported
generics.

NET Framework 3.0

An additional set of APIs for distributed communica-
tions (Windows Communication Foundation—WCEF),
rich client presentation (Windows Presentation Foun-
dation), workflow (Windows Workflow—WF), and
web authentication (Cardspaces).

C# 3.0 with NET
Framework 3.5
(Visual Studio 2008)

Added support for LINQ, a significant improvement
to the APIs used for programming collections. The
NET Framework 3.5 provided libraries that extended
existing APIs to make LINQ possible.

C# 4.0 with NET
Framework 3.5
(Visual Studio 2010)

Added support for dynamic typing along with signifi-
cant improvements in the API for writing multi-
threaded programs that capitalized on multiple
processors and cores within those processors.

The majority of all code within this text will work with platforms other
than Microsoft’s as long as the compiler version corresponds to the version
of code required. Although I would very much have liked to provide full

Common Intermediate Language and ILDASM

details on each C# platform so as not to detract from the focus of learning
C#, I restrict information such as this to Microsoft’s platform, .NET. This is
simply because Microsoft has the predominant (by far) implementation.
Furthermore, translation to another platform is fairly trivial.

Common Intermediate Language and ILDASM

As mentioned in the previous section, the C# compiler converts C# code to
CIL code and not to machine code. The processor can directly understand
machine code, but CIL code needs to be converted before the processor can
execute it. Given an assembly (either a DLL or an executable), it is possible
to view the CIL code using a CIL disassembler utility to deconstruct the
assembly into its CIL representation. (The CIL disassembler is commonly
referred to by its Microsoft-specific filename, ILDASM, which stands for IL
Disassembler.) This program will disassemble a program or its class librar-
ies, displaying the CIL generated by the C# compiler.

The exact command used for the CIL disassembler depends on which
implementation of the CLI is used. You can execute the .NET CIL disas-
sembler from the command line as shown in Output 1.8.

OuTpPUT 1.8:

>ildasm /text HelloWorld.exe

The /text portion is used so that the output appears on the command
console rather than in a new window. Similarly, the Mono disassembler
implementation, which defaults to the command console, is shown in
Output 1.9.

OuTPUT 1.9:

>monodis HellolWlorld-exe

The stream of output that results by executing these commands is a
dump of CIL code included in the HelloWorld. exe program. Note that CIL
code is significantly easier to understand than machine code. For many

27

28

Chapter 1: Introducing C#

developers, this may raise a concern because it is easier for programs to be
decompiled and algorithms understood without explicitly redistributing
the source code.

As with any program, CLI-based or not, the only foolproof way of pre-
venting disassembly is to disallow access to the compiled program alto-
gether (for example, only hosting a program on a web site instead of
distributing it out to a user’s machine). However, if decreased accessibility
to the source code is all that is required, there are several obfuscators.
These obfuscators open up the IL code and munge the code so that it does
the same thing but in a way that is much more difficult to understand. This
prevents the casual developer from accessing the code and instead creates
assemblies that are much more difficult and tedious to decompile into
comprehensible code. Unless a program requires a high degree of algo-
rithm security, these obfuscators are generally sufficient.

ADVANCED TOPIC

CIL Output for HelloWorld. exe
Listing 1.18 shows the CIL code created by ILDASM.

LisTING 1.18: Sample CIL Output

// Microsoft (R) .NET Framework IL Disassembler.
Version 4.0. 21006.1
// Copyright (c) Microsoft Corporation. All rights reserved.

// Metadata version: v4.0. 21006
.assembly extern mscorlib
{

.publickeytoken = (B7 7A 5C 56 19 34 E© 89)
// .z\V.4..

.ver 4:0:0:0
}

.assembly HelloWorld
{

.custom instance void
[mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::.
ctor(int32) = (01 00 08 00 00 00 00 00)

.custom instance void
[mscorlib]System.Runtime.CompilerServices.RuntimeCompatibilityAttribute::.
ctor() = (01 00 01 00 54 02 16 57 72 61 70 4E 6F 6E 45 78
//T..WrapNonEx

Common Intermediate Language and ILDASM

63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01) // ceptionThrows.
.hash algorithm 0x00008004
.ver 0:0:0:0
}
.module HelloWorld.exe
// MVID: {1C3495D1-2133-41D6-A820-B4731061F3F8}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000001 // ILONLY
// Image base: 0x00160000

.class private auto ansi beforefieldinit HelloWorld
extends [mscorlib]System.Object

.method private hidebysig static void Main() cil managed
{

.entrypoint

// Code size 13 (oxd)

.maxstack 8

IL_0000: nop

IL_0001: ldstr "Hello. My name is Inigo Montoya."

IL_0006: call void [mscorlib]System.Console::WriteLine(string)

IL_000b: nop
IL_@00c: ret
} // end of method HelloWorld::Main

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed
{
// Code size 7 (ox7)
.maxstack 8
IL_0000: 1ldarg.o
IL_0001: call instance void [mscorlib]System.Object::.ctor()
IL_0006: ret
} // end of method HelloWorld::.ctor

} // end of class HelloWorld

//

m 29

30

Chapter 1: Introducing C#

The beginning of the listing is the manifest information. It includes not
only the full name of the disassembled module (HelloWorld.exe), but also
all the modules and assemblies it depends on, along with their version
information.

Perhaps the most interesting thing that you can glean from such a list-
ing is how relatively easy it is to follow what the program is doing com-
pared to trying to read and understand machine code (assembler). In the
listing, an explicit reference to System.Console.WritelLine() appears.
There is a lot of peripheral information to the CIL code listing, but if a
developer wanted to understand the inner workings of a C# module (or
any CLI-based program) without having access to the original source code,
it would be relatively easy unless an obfuscator is used. In fact, several free
tools are available (such as Lutz Roeder/Red Gate’s Reflector for .NET)
that can decompile from CIL to C# automatically.

SUMMARY

This chapter served as a rudimentary introduction to C#. It provided a
means of familiarizing you with basic C# syntax. Because of C#’s similarity
to C++ style languages, much of what I presented here might not have
been new material. However, C# and managed code do have some distinct
characteristics, such as compilation down to CIL. Although it is not
unique, another key characteristic is that C# includes full support for
object-oriented programming. Even things such as reading and writing
data to the console are object-oriented. Object orientation is foundational
to C#, and you will see this throughout this book.

The next chapter examines the fundamental data types that are part of
the C# language, and discusses how you can use these data types with
operands to form expressions.

s 2

Data Types

ROM CHAPTER 1’S HelloWorld program, you got a feel for the C# lan-
F guage, its structure, basic syntax characteristics, and how to write the
simplest of programs. This chapter continues to discuss the C# basics by
investigating the fundamental C# types.

Declaring
Instantiating Integer Types
Assigning @ Arrays @ Numeric Types [Fioating-Point Types
Using Decimal Type
Strings as Arrays Literal Values

Explicit Cast | (5) Conversions (2) More Types | Boolean Type
Implicit Cast Data Types Character Type
Without Casting Strings

Vaius Types| (@ Categories of Types (@ null and void

Reference Types

Until now, you have worked with only a few primitive data types, with
little explanation. In C#, thousands of types exist, and you can combine
types to create new types. A few types in C#, however, are relatively sim-
ple and are considered the building blocks of all other types. These types
are predefined types or primitives. The C# language’s primitive types
include eight integer types, two binary floating-point types for scientific
calculations and one decimal float for financial calculations, one Boolean

31

32

Chapter 2: Data Types

type, and a character type. This chapter investigates these primitives, looks
more closely at the string type, and introduces arrays.

Fundamental Numeric Types

The basic numeric types in C# have keywords associated with them. These
types include integer types, floating-point types, and a special floating-
point type called decimal to store large numbers with no representation
error.

Integer Types

There are eight C# integer types. This variety allows you to select a data
type large enough to hold its intended range of values without wasting
resources. Table 2.1 lists each integer type.

TABLE 2.1: Integer Types

Type Size Range (Inclusive) BCL Name Signed
sbyte 8 bits -128 to 127 System.SByte Yes
byte 8 bits 0 to 255 System.Byte No
short 16 bits -32,768 to 32,767 System.Intl6 Yes
ushort 16bits 0 to 65,535 System.UIntl6 No
int 32bits —2,147,483,648 t0 2,147,483,647 System.Int32 Yes
uint 32bits 0 to 4,294,967,295 System.UInt32 No

long 64 bits -9,223,372,036,854,775,808 to System.Int64 Yes
9,223,372,036,854,775,807

ulong 64 bits 0 to 18,446,744,073,709,551,615 System.UInt6e4 No

Included in Table 2.1 (and in Tables 2.2 and 2.3) is a column for the full
name of each type. All the fundamental types in C# have a short name and a
full name. The full name corresponds to the type as it is named in the Base
Class Library (BCL). This name is the same across all languages and it
uniquely identifies the type within an assembly. Because of the fundamental

Fundamental Numeric Types

nature of primitive types, C# also supplies keywords as short names or
abbreviations to the full names of fundamental types. From the compiler’s
perspective, both names are exactly the same, producing exactly the same
code. In fact, an examination of the resultant CIL code would provide no
indication of which name was used.

Language Contrast: C++—short Data Type

In C/C++, the short data type is an abbreviation for short int. In C#,
short on its own is the actual data type.

Floating-Point Types (float, double)

Floating-point numbers have varying degrees of precision. If you were to
read the value of a floating-point number to be 0.1, it could very easily be
0.099999999999999999 or 0.1000000000000000001 or some other number
very close to 0.1. Alternatively, a large number such as Avogadro’s num-
ber, 6.02E23, could be off by 9.9E9, which is something also exceptionally
close to 6.02E23, considering its size. The accuracy of a floating-point num-
ber is in proportion to the magnitude of the number it represents. Accu-
racy, therefore, is determined by the number of significant digits, not by a
tixed value such as +0.01. In other words, absolute precision is a function
of magnitude and significant digits; the number of significant digits tells
you about the relative precision.

C# supports the two floating-point number types listed in Table 2.2.

TABLE 2.2: Floating-Point Types

Type Size Range (Inclusive) BCL Name Significant Digits
float 32bits +1.5x 107 to System.Single 7

+3.4 x 103
double 64 bits +5.0 x 1073 to System.Double 15-16

£1.7 x 10°%

Binary numbers appear as base 10 (denary) numbers for human read-
ability. The number of bits (binary digits) converts to 15 decimal digits,

33

34

Chapter 2: Data Types

with a remainder that contributes to a sixteenth decimal digit as expressed
in Table 2.2. Specifically, numbers between 1.7 * 10°”” and less than 1 * 10°%
have only 15 significant digits. However, numbers ranging from 1 * 10°® to
1.7 * 10°% will have 16 significant digits. A similar range of significant dig-
its occurs with the decimal type as well.

Decimal Type
C# contains a numeric type with 128-bit precision (see Table 2.3). This is
suitable for large and precise calculations, frequently financial calculations.

TABLE 2.3: decimal Type

Type Size Range (Inclusive) BCL Name Significant Digits
decimal 128 bits 1.0 x 1072 to System.Decimal 28-29
approximately
7.9 x 10%®

Unlike floating-point numbers, the decimal type maintains exact accu-
racy for all denary numbers within its range. With the decimal type, there-
fore, a value of 0.1 is exactly 0.1. However, while the decimal type has
greater precision than the floating-point types, it has a smaller range. Thus,
conversions from floating-point types to the decimal type may result in
overflow errors. Also, calculations with decimal are slightly slower.

ADVANCED TOPIC

Floating-Point Types and Decimals Dissected

Unless they are out of range, decimal numbers represent denary numbers
exactly. In contrast, the floating-point representation of many denary
numbers introduces a rounding error. This is analogous to how 1/3 is not
exact in any finite number of decimal digits and 11/10 is not precise in any
finite number of binary digits. In both cases, we end up with a rounding
error of some kind. The difference between the decimal type and the C#
floating-point types is that the base of a decimal type is a denary and the
base of floating-point types is binary.

Fundamental Numeric Types

A decimal is represented by +N * 10k where

* N, the mantissa, is a positive integer represented by 96 bits.

* k, the exponent, is given by -28 <= k <= @.
In contrast, a float is any number N * 2k where

° Nis a positive integer represented by a fixed number of bits (24 for
float and 53 for double).

* kisany integer ranging from -149 to +104 for float and -1075 to +970
for double.

Literal Values

A literal value is a representation of a constant value within source code.
For example, if you want to have System.Console.WriteLine() print out
the integer value 42 and the double value 1.618034 (Phi), you could use
the code shown in Listing 2.1.

LISTING 2.1: Specifying Literal Values

System.Console.WriteLine(42);
System.Console.WriteLine(1.618034);

Output 2.1 shows the results of Listing 2.1.

OuTPUT 2.1:

42
1-b18034

BEGINNER TOPIC

Use Caution When Hardcoding Values

The practice of placing a value directly into source code is called hardcod-
ing, because changing the values means recompiling the code. Developers
must carefully consider the choice between hardcoding values within their
code and retrieving them from an external source, such as a configuration
tile, so that the values are modifiable without recompiling.

36

Chapter 2: Data Types

By default, when you specify a literal number with a decimal point, the
compiler interprets it as a double type. Conversely, a literal value with no
decimal point generally defaults to an int, assuming the value is not too
large to be stored in an integer. If the value is too large, then the compiler
will interpret it as a long. Furthermore, the C# compiler allows assignment
to a numeric type other than an int, assuming the literal value is appropri-
ate for the target data type. short s = 42 and byte b = 77 are allowed, for
example. However, this is appropriate only for literal values; b = s is not
appropriate without additional syntax, as discussed in the section Conver-
sions between Data Types, later in this chapter.

As previously discussed in the section Fundamental Numeric Types,
there are many different numeric types in C#. In Listing 2.2, a literal value is
placed within C# code. Since numbers with a decimal point will default to
the double data type, the output, shown in Output 2.2,is 1.61803398874989
(the last digit, 5, is missing), corresponding to the expected accuracy of
a double.

LISTING 2.2: Specifying a Literal double

System.Console.WriteLine(1.618033988749895);

OuTPUT 2.2:

1-61603398874989

To view the intended number with its full accuracy, you must declare
explicitly the literal value as a decimal type by appending an m (or M)
(see Listing 2.3 and Output 2.3).

LisTING 2.3: Specifying a Literal decimal

System.Console.WriteLine(1.618033988749895m);

OuTPUT 2.3:

1-616033988749895

Fundamental Numeric Types

Now the output of Listing 2.3 is as expected: 1.618033988749895. Note
that d is for double. The m used to identify a decimal corresponds to its
frequent use in monetary calculations.

You can also add a suffix to a value to explicitly declare a literal as
float or double by using the F and D suffixes, respectively. For integer data
types, the suffixes are U, L, LU, and UL. The type of an integer literal can be
determined as follows.

* Numeric literals with no suffix resolve to the first data type that can
store the value in this order: int, uint, long, and ulong.

* Numeric literals with the suffix U resolve to the first data type that can
store the value in the order uint and then ulong.

* Numeric literals with the suffix L resolve to the first data type that can
store the value in the order long and then ulong.

¢ If the numeric literal has the suffix UL or LU, it is of type ulong.

Note that suffixes for literals are case-insensitive. However, uppercase
is generally preferred because of the similarity between the lowercase
letter [and the digit 1.

In some situations, you may wish to use exponential notation instead of
writing out several zeroes before or after the decimal point. To use expo-
nential notation, supply the e or E infix, follow the infix character with a
positive or negative integer number, and complete the literal with the
appropriate data type suffix. For example, you could print out Avogadro’s
number as a float, as shown in Listing 2.4 and Output 2.4.

LISTING 2.4: Exponential Notation

System.Console.WritelLine(6.023E23f);

OUTPUT 2.4:

b-023E+23

37

38

Chapter 2: Data Types

BEGINNER TOPIC

Hexadecimal Notation

Usually you work with numbers that are represented with a base of 10,
meaning there are ten symbols (0-9) for each digit in the number. If a num-
ber is displayed with hexadecimal notation, then it is displayed with a base
of 16 numbers, meaning 16 symbols are used: 0-9, A-F (lowercase can also
be used). Therefore, 0x000A corresponds to the decimal value 10 and
0x002A corresponds to the decimal value 42. The actual number is the
same. Switching from hexadecimal to decimal or vice versa does not
change the number itself, just the representation of the number.

Each hex digit is four bits, so a byte can represent two hex digits.

In all discussions of literal numeric values so far, I have covered only
base 10 type values. C# also supports the ability to specify hexadecimal
values. To specify a hexadecimal value, prefix the value with @x and then
use any hexadecimal digit, as shown in Listing 2.5.

LisTING 2.5: Hexadecimal Literal Value

// Display the value 42 using a hexadecimal Literal.
System.Console.WriteLine(@x002A);

Output 2.5 shows the results of Listing 2.5.

OuTPUT 2.5:

42

Note that this code still displays 42, not 8x@02A.

ADVANCED TOPIC

Formatting Numbers As Hexadecimal

To display a numeric value in its hexadecimal format, it is necessary to use
the x or X numeric formatting specifier. The casing determines whether the
hexadecimal letters appear in lower- or uppercase. Listing 2.6 shows an
example of how to do this.

Fundamental Numeric Types 39

LisTING 2.6: Example of a Hexadecimal Format Specifier

// Displays "6x2A"
System.Console.WriteLine("0x{0:X}", 42);

Output 2.6 shows the results.

OuTPUT 2.6:

Ox2A

Note that the numeric literal (42) can be in decimal or hexadecimal form.
The result will be the same.

ADVANCED TOPIC

Round-Trip Formatting

By default, System.Console.WritelLine(1.618033988749895); displays
1.61803398874989, with the last digit missing. To more accurately identify
the string representation of the double value it is possible to convert it
using a format string and the round-trip format specifier, R (or r).
string.Format("{@:R}", 1.618033988749895), for example, will return
the result 1.6180339887498949.

The round-trip format specifier returns a string that, if converted back
into a numeric value, will always result in the original value. Listing 2.7,
therefore, will show the numbers are not equal without the round trip
format.

LISTING 2.7: Formatting Using the R Format Specifier

/] ...

const double number = 1.618033988749895;
double result;

string text;

text = string.Format("{@}", number);

result = double.Parse(text);

System.Console.WriteLine("{@}: result != number",
result != number);

text = string.Format("{@:R}", number);

40

Chapter 2: Data Types

result = double.Parse(text);

System.Console.WriteLine("{@}: result == number",
result == number);

/] ...

Output 2.7 shows the resultant output.

OuTPUT 2.7:
True: result != number
True: result == number

When assigning text the first time, there is no round-trip format specifier
and, as a result, the value returned by double.Parse(text) is not the same
as the original number value. In contrast, when the round-trip format speci-
fier is used, double.Parse(text) returns the original value.

For those unfamiliar with the == syntax from C-based languages,
result == number returns true if result is equal to number, while result
= number does the opposite. Both assignment and equality operators are
discussed in the next chapter.

More Fundamental Types

The fundamental types discussed so far are numeric types. C# includes
some additional types as well: bool, char, and string.

Boolean Type (bool)

Another C# primitive is a Boolean or conditional type, bool, which repre-
sents true or false in conditional statements and expressions. Allowable
values are the keywords true and false. The BCL name for bool is
System.Boolean. For example, in order to compare two strings in a case-
insensitive manner, you call the string.Compare() method and pass a
bool literal of true (see Listing 2.8).

LiSTING 2.8: A Case-Insensitive Comparison of Two Strings

string option;

int comparison = string.Compare(option, "/Help", true);

More Fundamental Types

In this case, you make a case-insensitive comparison of the contents of
the variable option with the literal text /Help and assign the result to
comparison.

Although theoretically a single bit could hold the value of a Boolean,
the size of bool is a byte.

Character Type (char)
A char type represents 16-bit characters whose set of possible values corre-
sponds to the Unicode character set. Technically, a char is the same size as
a 16-bit unsigned integer (ushort) with values between 0 and 65,535. How-
ever, char is a unique type in C# and code should treat it as such.

The BCL name for char is System.Char.

BEGINNER TOPIC

The Unicode Standard

Unicode is an international standard for representing characters found in
the majority of human languages. It provides computer systems with func-
tionality for building localized applications, applications that display the
appropriate language and culture characteristics for different cultures.

ADVANCED TOPIC

16 Bits Is Too Small for All Unicode Characters

Unfortunately, not all Unicode characters are available within a 16-bit
char. When Unicode was first started, its designers believed that 16 bits
would be enough, but as more languages were supported, it was real-
ized that this assumption was incorrect. The cumbersome result is that
some Unicode characters are composed of surrogate char pairs totaling
32 bits.

To enter a literal character type, place the character within single
quotes, asin 'A’. Allowable characters comprise the full range of keyboard
characters, including letters, numbers, and special symbols.

41

42 Chapter 2: Data Types

Some characters cannot be placed directly into the source code and
instead require special handling. These characters are prefixed with a
backslash (\) followed by a special character code. In combination, the
backslash and special character code are an escape sequence. For example,
"\n' represents a newline, and '\t' represents a tab. Since a backslash
indicates the beginning of an escape sequence, it can no longer identify a
simple backslash; instead, you need to use '\\" to represent a single back-
slash character.

Listing 2.9 writes out one single quote because the character repre-
sented by \' corresponds to a single quote.

LisTING 2.9: Displaying a Single Quote Using an Escape Sequence

class SingleQuote

{ static void Main()
{
System.Console.WriteLine('\"");
¥
}

In addition to showing the escape sequence, Table 2.4 includes the
Unicode representation of characters.

TABLE 2.4: Escape Characters

Escape Sequence Character Name Unicode Encoding
\' Single quote \uee27
\" Double quote \uee22
\\ Backslash \ueesC
\@ Null \uoeoe
\a Alert (system beep) \ueoo7
\b Backspace \uoees
\f Form feed \ueeec
\n Line feed (sometimes referred to \UGORA
as a newline)

More Fundamental Types

TABLE 2.4: Escape Characters (Continued)

Escape Sequence Character Name Unicode Encoding
\r Carriage return \ueeeD

\t Horizontal tab \u0ee9

\v Vertical tab \ueoeB

\UXXXX Unicode character in hex \ue029
\x[n][n][n]n Unicode character in hex (first three \u3A

placeholders are options); variable
length version of \uxxxx

AUXXXXXXXX Unicode escape sequence for creat- \UD84eDCo1
ing surrogate pairs (%)

You can represent any character using Unicode encoding. To do so, pre-
fix the Unicode value with \u. You represent Unicode characters in hexa-
decimal notation. The letter A, for example, is the hexadecimal value @x41.
Listing 2.10 uses Unicode characters to display a smiley face (:)), and
Output 2.8 shows the results.

LiSTING 2.10: Using Unicode Encoding to Display a Smiley Face

System.Console.Write('\u@e3A');
System.Console.WriteLine('\u0029");

OuTPUT 2.8:

$)

Strings

The fundamental string type in C# is the data type string, whose BCL
name is System.String. The string includes some special characteristics
that may be unexpected to developers familiar with other programming
languages. The characteristics include a string verbatim prefix character, @,
and the fact that a string is immutable.

43

44

Chapter 2: Data Types

Literals
You can enter a literal string into code by placing the text in double quotes
("), as you saw in the HelloWorld program. Strings are composed of charac-
ters, and because of this, escape sequences can be embedded within a string.
In Listing 2.11, for example, two lines of text are displayed. However,
instead of using System.Console.WriteLine(), the code listing shows
System.Console.Write() with the newline character, \n. Output 2.9
shows the results.

LIsTING 2.11: Using the \n Character to Insert a Newline

class DuelOfWits

{
static void Main()
{
System.Console.Write(
"\"Truly, you have a dizzying intellect.\"");
System.Console.Write("\n\"wait 'til I get going!\ "\n");
¥
X
OUuTPUT 2.9:

"Truly. you have a dizzying intellect."
"Wait 'til I get going!"™

The escape sequence for double quotes differentiates the printed double
quotes from the double quotes that define the beginning and end of the
string.

In C#, you can use the @ symbol in front of a string to signify that a
backslash should not be interpreted as the beginning of an escape
sequence. The resultant verbatim string literal does not reinterpret just the
backslash character. Whitespace is also taken verbatim when using the @
string syntax. The triangle in Listing 2.12, for example, appears in the con-
sole exactly as typed, including the backslashes, newlines, and indenta-
tion. Output 2.10 shows the results.

Without the @ character, this code would not even compile. In fact,
even if you changed the shape to a square, eliminating the backslashes, the
code still would not compile because a newline cannot be placed directly
within a string that is not prefaced with the @ symbol.

More Fundamental Types 45

LISTING 2.12: Displaying a Triangle Using a Verbatim String Literal

class Triangle

{
static void Main()
{
System.Console.Write(@"begin
/\
/ \
/ \
/ \
/ \
end");
}
}
OuTPUT 2.10:
begin
/\
/ N\
/ \
/ \
/ \
end

The only escape sequence the verbatim string does support is "*, which
signifies double quotes and does not terminate the string.

Language Contrast: C++— String Concatenation at Compile
Time

Unlike C++, C# does not automatically concatenate literal strings. You
cannot, for example, specify a string literal as follows:

"Major Strasser has been shot. " "Round up the usual suspects."

Rather, concatenation requires the use of the addition operator. (If the
compiler can calculate the result at compile time, however, the resultant
CIL code will be a single string.)

46

Chapter 2: Data Types

If the same literal string appears within an assembly multiple times, the
compiler will define the string only once within the assembly and all vari-
ables will refer to the same string. That way, if the same string literal con-
taining thousands of characters was placed multiple times into the code,

the resultant assembly would reflect the size of only one of them.

String Methods

The string type, like the System.Console type, includes several methods.
There are methods, for example, for formatting, concatenating, and com-

paring strings.

The Format() method in Table 2.5 behaves exactly like the Console.
Write() and Console.WriteLine() methods, except that instead of displaying

the result in the console window, string.Format() returns the result.

TABLE 2.5: string Static Methods

Statement

Example

static void
string.Format(
string format,

string text, firstName, lastName;

text = string.Format("Your full name is {0} {1}.",
firstName, lastName);

// Display

// "Your full name is <firstName> <lastName>.

System.Console.WriteLine(text);

static void

string.Concat(
string stro,
string stril)

string text, firstName, lastName;

text = string.Concat(firstName, lastName);
// Display "<firstName><lastName>", notice
// that there is no space between names.
System.Console.WriteLine(text);

static int

string.Compare(
string stro,
string stril)

string option;

)).String comparison in which case matters.
int result = string.Compare(option, "/help");

// Display:

// 0 if equal

// negative if option < /help
// positive if option > /help
System.Console.WriteLine(result);

More Fundamental Types

TABLE 2.5: string Static Methods (Continued)

Statement Example

string option;

// Case-insensitive string comparison
int result = string.Compare(
option, "/Help", true);

// Display:
// 0 if equal
// < @ if option < /help

// > @ 1if option > /help
System.Console.WriteLine(result);

All of the methods in Table 2.5 are static. This means that, to call the
method, it is necessary to prefix the method name (for example, Concat)
with the type that contains the method (for example, string). As illus-
trated below, however, some of the methods in the string class are instance
methods. Instead of prefixing the method with the type, instance methods
use the variable name (or some other reference to an instance). Table 2.6
shows a few of these methods, along with an example.

TABLE 2.6: string Methods

Statement Example
bool StartsWith(string lastName
string value) ce
bool EndsWith(bool isPhd = lastName.EndsWith("Ph.D.");
string value) bool isDr = lastName.StartsWith("Dr.");
string ToLower() string severity = "warning";
string ToUpper() // Display the severity in uppercase
System.Console.WriteLine(severity.ToUpper());
string Trim() // Remove any whitespace at the start or end.
string Trim(...) username = username.Trim();

string TrimEnd()
string TrimStart()

string Replace(string filename;
string oldValue, ..
string newValue) // Remove ?'s altogether from the string
filename = filename.Replace("?", "");;

47

48

Chapter 2: Data Types

New Line

When writing out a new line, the exact characters for the new line will
depend on the operating system on which you are executing. On Microsoft
Windows platforms, the new line is the combination of both the ‘\r’ and
‘\n’ charters, while a single “\n’ is used on Unix. One way to overcome
the discrepancy between platforms is simply to use System.Console.
WritelLine() in order to output a blank line. Another approach, virtually
essential when you are not outputting to the console yet still require execu-
tion on multiple platforms, is to use System.Environment.NewLine. In
other words, System.Console.WriteLine("Hello World") and System.
Console.Write("Hello World" + System.Environment.NewlLine) are
equivalent.

ADVANCED TOPIC

C# Properties

Technically, the Length member referred to in the following section is not
actually a method, as indicated by the fact that there are no parentheses
following its call. Length is a property of string, and C# syntax allows
access to a property as though it were a member variable (known in C#as a
field). In other words, a property has the behavior of special methods
called setters and getters, but the syntax for accessing that behavior is that
of a field.

Examining the underlying CIL implementation of a property reveals
that it compiles into two methods: set_<PropertyName> and get_<Prop-
ertyName>. Neither of these, however, is directly accessible from C# code,
except through the C# property constructs. See Chapter 5 for more detail
on properties.

String Length

To determine the length of a string you use a string member called Length.
This particular member is called a read-only property. As such, it can’t be
set, nor does calling it require any parameters. Listing 2.13 demonstrates
how to use the Length property, and Output 2.11 shows the results.

More Fundamental Types

LisTING 2.13: Using string’s Length Member

class PalindromeLength

{
static void Main()
{
string palindrome;
System.Console.Write("Enter a palindrome: ");
palindrome = System.Console.ReadLine();
System.Console.WriteLine(
"The palindrome, \"{0}\" is {1} characters.",
palindrome, palindrome.Length);
}
}
OuTPUT 2.11:

Enter a palindrome: Never odd or even
The palindrome. "Never odd or even" is 17 characters-.

The length for a string cannot be set directly; it is calculated from the num-
ber of characters in the string. Furthermore, the length of a string cannot
change because a string is immutable.

Strings Are Inmutable

The key characteristic of the string type is the fact that it is immutable. A
string variable can be assigned an entirely new value, but for performance
reasons, there is no facility for modifying the contents of a string. It is not
possible, therefore, to convert a string to all uppercase letters. It is trivial
to create a new string that is composed of an uppercase version of the old
string, but the old string is not modified in the process. Consider Listing
2.14 as an example.

LISTING 2.14: Error; string |s Immutable

class Uppercase

{

static void Main()

{

string text;

System.Console.Write("Enter text: ");
text = System.Console.ReadLine();

49

50 Chapter 2: Data Types

// UNEXPECTED: Does not convert text to uppercase
text.ToUpper();

System.Console.WriteLine(text);

Output 2.12 shows the results of Listing 2.14.

OuTPUT 2.12:

Enter text: This is a test of the emergency broadcast system.
This is a test of the emergency broadcast system.

At a glance, it would appear that text.ToUpper() should convert the
characters within text to uppercase. However, strings are immutable and,
therefore, text.ToUpper() will make no such modification. Instead,
text.ToUpper() returns a new string that needs to be saved into a variable
or passed to System.Console.WriteLine() directly. The corrected code is
shown in Listing 2.15, and its output is shown in Output 2.13.

LISTING 2.15: Working with Strings

class Uppercase

{
static void Main()
{
string text, uppercase;
System.Console.Write("Enter text: ");
text = System.Console.ReadLine();
// Return a new string in uppercase
uppercase = text.ToUpper();
System.Console.WriteLine(uppercase);
}
}
OuTPUT 2.13:

Enter text: This is a test of the emergency broadcast system.
THIS IS A TEST OF THE EMERGENCY BROADCAST SYSTEM.

If the immutability of a string is ignored, mistakes similar to those shown
in Listing 2.14 can occur with other string methods as well.

null and void

To actually change the value in text, assign the value from ToUpper()
back into text, as in the following;:
text = text.ToUpper();

System. Text.StringBuilder

If considerable string modification is needed, such as when constructing a
long string in multiple steps, you should use the data type System.
Text.StringBuilder rather than string. System.Text.StringBuilder
includes methods such as Append(), AppendFormat (), Insert(), Remove(),
and Replace(), some of which also appear on string. The key difference,
however, is that on System.Text.StringBuilder these methods will
modify the data in the StringBuilder itself, and will not simply return a
new string.

null and void

Two additional keywords relating to types are null and void. null is a
value which indicates that the variable does not refer to any valid object.
void is used to indicate the absence of a type or the absence of any value
altogether.

null
null can also be used as a type of string “literal.” null indicates that a vari-

able is set to nothing. Reference types, pointer types, and nullable value
types can be assigned the value null. The only reference type covered so
far in this book is string; Chapter 5 covers the topic of creating classes
(which are reference types) in detail. For now, suffice it to say that a refer-
ence type contains a reference to a location in memory that is different
from where the actual data resides. Code that sets a variable to null explic-
itly assigns the reference to point at nothing. In fact, it is even possible to
check whether a reference type points to nothing. Listing 2.16 demon-
strates assigning null to a string variable.

LISTING 2.16: Assigning null to a String

static void Main()

{

string faxNumber;

51

52

Chapter 2: Data Types

/...

// Clear the value of faxNumber.
faxNumber = null;

/...

It is important to note that assigning the value null to a reference type
is distinct from not assigning it at all. In other words, a variable that has
been assigned null has still been set, and a variable with no assignment
has not been set and therefore will often cause a compile error if used prior
to assignment.

Assigning the value null to a string is distinctly different from assign-

ing an empty string, "". null indicates that the variable has no value.
indicates that there is a value: an empty string. This type of distinction can
be quite useful. For example, the programming logic could interpret a
faxNumber of null to mean that the fax number is unknown, while a

faxNumber value of "" could indicate that there is no fax number.

The void Nontype

Sometimes the C# syntax requires a data type to be specified but no data is
passed. For example, if no return from a method is needed C# allows the
use of void to be specified as the data type instead. The declaration of Main
within the HelloWorld program is an example. Under these circumstances,
the data type to specify is void. The use of void as the return type indicates
that the method is not returning any data and tells the compiler not to
expect a value. void is not a data type per se, but rather an identification of
the fact that there is no data type.

Language Contrast: C++—void Is a Data Type

In C++, void is a data type commonly used as void**. In C#, void is not
considered a data type in the same way. Rather, it is used to identify that a
method does not return a value.

null and void

Language Contrast: Visual Basic—Returning void Is Like
Defining a Subroutine

The Visual Basic equivalent of returning a void in C# is to define a subrou-
tine (Sub/End Sub) rather than a function that returns a value.

ADVANCED TOPIC

Implicitly Typed Local Variables

Additionally, C# 3.0 includes a contextual keyword, var, for declaring an
implicitly typed local variable. As long as the code initializes a variable at
declaration time with an unambiguous type, C# 3.0 allows for the variable
data type to be implied. Instead of explicitly specifying the data type, an
implicitly typed local variable is declared with the contextual keyword
var, as shown in Listing 2.17.

LISTING 2.17: Working with Strings

class Uppercase

{
static void Main()
{
System.Console.Write("Enter text: ");
var text = System.Console.ReadLine();
// Return a new string in uppercase
var uppercase = text.ToUpper();
System.Console.WriteLine(uppercase);
}
}

This listing is different from Listing 2.15 in two ways. First, rather than
using the explicit data type string for the declaration, Listing 2.17 uses
var. The resultant CIL code is identical to using string explicitly. How-
ever, var indicates to the compiler that it should determine the data type
from the value (System.Console.ReadLine()) that is assigned within the
declaration.

53

54

Chapter 2: Data Types

Second, the variables text and uppercase are not declared without
assignment at declaration time. To do so would result in a compile error.
As mentioned earlier, via assignment the compiler retrieves the data type
of the right-hand side expression and declares the variable accordingly,
just as it would if the programmer specified the type explicitly.

Although using var rather than the explicit data type is allowed, con-
sider avoiding such use when the data type is known—for example, use
string for the declaration of text and uppercase. Not only does this make
the code more understandable, but it also verifies that the data type
returned by the right-hand side expression is the type expected. When
using a var declared variable, the right-hand side data type should be
obvious; if it isn’t, using the var declaration should be avoided.

var support was added to the language in C# 3.0 to support anonymous
types. Anonymous types are data types that are declared on the fly within
a method, rather than through explicit class definitions, as outlined in
Chapter 14 (see Listing 2.18).

LiSTING 2.18: Implicit Local Variables with Anonymous Types

class Program
{
static void Main()
{
var patentl =
new { Title = "Bifocals",
YearOfPublication = "1784" };
var patent2 =
new { Title = "Phonograph",
YearOfPublication = "1877" };

System.Console.WriteLine("{0} ({1})",
patentl.Title, patentl.YearOfPublication);

System.Console.WriteLine("{0} ({1})",
patent2.Title, patentl.YearOfPublication);

The corresponding output is shown in Output 2.14.

OUTPUT 2.14:

Bifocals (1784)
Phonograph (1L784)

Categories of Types

Listing 2.18 demonstrates the anonymous type assignment to an implicitly
typed (var) local variable. This type of operation provides critical function-
ality with C# 3.0 support for joining (associating) data types or reducing
the size of a particular type down to fewer data elements.

Categories of Types

All types fall into two categories: value types and reference types. The dif-
ferences between the types in each category stem from how they are cop-
ied: Value type data is always copied by value, while reference type data is
always copied by reference.

Value Types
With the exception of string, all the predefined types in the book so far are
value types. Value types contain the value directly. In other words, the vari-
able refers to the same location in memory where the value is stored.
Because of this, when a different variable is assigned the same value, a mem-
ory copy of the original variable’s value is made to the location of the new
variable. A second variable of the same value type cannot refer to the same
location in memory as the first variable. So changing the value of the first
variable will not affect the value in the second. Figure 2.1 demonstrates this.
number1l refers to a particular location in memory that contains the value 42.
After assigning number1 to number2, both variables will contain the value 42.
However, modifying either variable’s value will not affect the other.
Similarly, passing a value type to a method such as Console.Write-
Line() will also result in a memory copy, and any changes to the parameter

/]
int numbert ——» 42 int numberl = 42;
char letter = 'A';
char letter——> A’ '
float pi——> 3.14F float pi = 3.14F;
int number2——» 42 int number2 = numberil;
: /]
E Stack
\

FIGURE 2.1: Value Types Contain the Data Directly

55

56

Chapter 2: Data Types

inside the method will not affect the original value within the calling func-
tion. Since value types require a memory copy, they generally should be
defined to consume a small amount of memory (less than 16 bytes).

Reference Types

Reference types and the variables that refer to them point to the data stor-
age location. Reference types store the reference where the data is located
instead of storing the data directly. Therefore, to access the data the run-
time will read the memory location out of the variable and then jump to
the location in memory that contains the data. The memory area of the data
a reference type points to is the heap (see Figure 2.2).

int numbert ——» 42 //...
char letter——» 'A’ int numberl = 42;
float pi——>» 3.14F char letter = 'A';
int number2——» 42 float pi = 3.14F;
string text——> 0x00A61234 int number2 = numberl;
StringReader reader——>» 0x00A612C0 - //...
v .
using System.IO;
A
00 66 00 20 09 s
_/\ . _
00 66 00 72 00 string text
6F 00 6D 00 20 "A cacophony of ramblings

oC 11 C9 78 08 from my potpourri of notes";

00 00 00 34 12 StringReader reader =
A6 00 00 00 00
00 33 00 00 00 |«—
Heap 00 00 00 00 00 /e
00 00 00 00 00
00 00 00 00 00

new StringReader(text);

D4 4C C7 78 02

41 00 20 00 63
00 61 00 63 00
6F 00 70 00 68
00 6F 00 6E 00
79 00 20 00 6F
00 66 00 20 00
72 00 61 00 6D

\‘_/\

FiIGURE 2.2: Reference Types Point to the Heap

Nullable Modifier

A reference type does not require the same memory copy of the data
that a value type does, resulting in circumstances when it is more efficient.
When assigning one reference type variable to another reference type vari-
able, only a memory copy of the address occurs, and as such, the memory
copy required by a reference type is always the size of the address itself.
(A 32-bit processor will copy 32 bits and a 64-bit processor will copy 64
bits, and so on.) Obviously, not copying the data would be faster than a
value type’s behavior if the latter’s data size is large.

Since reference types copy only the address of the data, two different
variables can point to the same data. Furthermore, changing the data
through one variable will change the data for the other variable as well.
This happens both for assignment and for method calls. Therefore, a
method can affect the data of a reference type back at the caller. For this
reason, a key determinant factor in the choice between defining a reference
type or a value type is whether the object is logically like an immutable
value of fixed size, and therefore a value type.

Besides string and any custom classes such as Progranm, all types dis-
cussed so far are value types. However, most types are reference types.
Although it is possible to define custom value types, it is relatively rare to
do so in comparison to the number of custom reference types.

Nullable Modifier

As I pointed out earlier, value types cannot be assigned null because, by
definition, they can’t contain references, including references to nothing.
However, this presents a problem in the real world, where values are miss-
ing. When specifying a count, for example, what do you enter if the count
is unknown? One possible solution is to designate a “magic” value, such as
@ or int.MaxValue, but these are valid integers. Rather, it is desirable to
assign null to the value type because this is not a valid integer.

To declare variables that can store null you use the nullable modifier, ?.
This feature, which started with C# 2.0, appears in Listing 2.19.

LISTING 2.19: Using the Nullable Modifier

static void Main()

{

int? count = null;

57

58

Chapter 2: Data Types

do
{
Y/
¥
while(count == null);
¥

Assigning null to value types is especially attractive in database pro-
gramming. Frequently, value type columns in database tables allow nulls.
Retrieving such columns and assigning them to corresponding fields
within C# code is problematic, unless the fields can contain null as well.
Fortunately, the nullable modifier is designed to handle such a scenario
specifically.

Conversions between Data Types

Given the thousands of types predefined in the various CLI implementa-
tions and the unlimited number of types that code can define, it is impor-
tant that types support conversion from one to another where it makes
sense. The most common operation that results in a conversion is casting.

Consider the conversion between two numerical types: converting
from a variable of type long to a variable of type int. A long type can con-
tain values as large as 9,223,372,036,854,775,808; however, the maximum
size of an int is 2,147,483,647. As such, that conversion could result in a
loss of data—for example, if the variable of type long contains a value
greater than the maximum size of an int. Any conversion that could result
in a loss of magnitude or an exception because the conversion failed
requires an explicit cast. Conversely, a casting operation that will not lose
magnitude and will not throw an exception regardless of the operand
types is an implicit conversion.

Explicit Cast

In C#, you cast using the cast operator. By specifying the type you would
like the variable converted to within parentheses, you acknowledge that if
an explicit cast is occurring, there may be a loss of precision and data, or an
exception may result. The code in Listing 2.20 converts a long to an int
and explicitly tells the system to attempt the operation.

Conversions between Data Types

LISTING 2.20: Explicit Cast Example

long longNumber = 50918309109;
int intNumber = (int) longNumber;

cast operator

With the cast operator, the programmer essentially says to the com-
piler, “Trust me, I know what I am doing. I know that the conversion could
possibly not fit, but I am willing to take the chance.” Making such a choice
will cause the compiler to allow the conversion. However, with an explicit
conversion, there is still a chance that an error, in the form of an exception,
might occur while executing if the data does not convert successfully. It is,
therefore, the programmer’s responsibility to ensure the data will success-
tully convert, or else to provide the necessary error-handling code when it
doesn’t.

ADVANCED TOPIC

Checked and Unchecked Conversions

C# provides special keywords for marking a code block to indicate what
should happen if the target data type is too small to contain the assigned
data. By default, if the target data type cannot contain the assigned data,
then the data will overflow truncate during assignment. For an example,
see Listing 2.21.

LisTING 2.21: Overflowing an Integer Value

public class Program

{

public static void Main()

{
// int.MaxValue equals 2147483647
int n = int.MaxValue;
n=n+1;
System.Console.WriteLine(n);

¥

59

60 Chapter 2: Data Types

Output 2.15 shows the results.

OuTPUT 2.15:

-2147483k48

Listing 2.21 writes the value -2147483648 to the console. However, placing
the code within a checked block, or using the checked option when run-
ning the compiler, will cause the runtime to throw an exception of type
System.OverflowException. The syntax for a checked block uses the
checked keyword, as shown in Listing 2.22.

LISTING 2.22: A Checked Block Example

public class Program

{
public static void Main()
{
checked
{
// int.MaxValue equals 2147483647
int n = int.MaxValue;
n=n+1;
System.Console.WriteLine(n);
}
¥
}

Output 2.16 shows the results.

OuTPUT 2.16:

Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow at Program.Main() in ...Program.cs:line 12

The result is that an exception is thrown if, within the checked block, an
overflow assignment occurs at runtime.

The C# compiler provides a command-line option for changing the
default checked behavior from unchecked to checked. C# also supports an
unchecked block that overflows the data instead of throwing an exception
for assignments within the block (see Listing 2.23).

Conversions between Data Types

LisTING 2.23: An Unchecked Block Example

using System;

public class Program

{
public static void Main()
{
unchecked
{
// int.MaxValue equals 2147483647
int n = int.MaxValue;
n=n+1;
System.Console.WriteLine(n);
)
¥
}

Output 2.17 shows the results.

OuTPUT 2.17:

-21l47483kL48

Even if the checked option is on during compilation, the unchecked key-
word in the preceding code will prevent the runtime from throwing an
exception during execution.

You cannot convert any type to any other type simply because you des-
ignate the conversion explicitly using the cast operator. The compiler will
still check that the operation is valid. For example, you cannot convert a
long to a bool. No such cast operator is defined, and therefore, the com-
piler does not allow such a cast.

Language Contrast: Converting Numbers to Booleans

It may be surprising that there is no valid cast from a numeric type to a
Boolean type, since this is common in many other languages. The reason
no such conversion exists in C# is to avoid any ambiguity, such as whether
—1 corresponds to true or false. More importantly, as you will see in the
next chapter, this also reduces the chance of using the assignment opera-
tor in place of the equality operator (avoiding if(x=42){...} when
if(x==42){...} was intended, for example).

61

62

Chapter 2: Data Types

Implicit Conversion

In other instances, such as going from an int type to a long type, there is no
loss of precision and there will be no fundamental change in the value of the
type. In these cases, code needs only to specify the assignment operator and
the conversion is implicit. In other words, the compiler is able to determine
that such a conversion will work correctly. The code in Listing 2.24 converts
from an int to a long by simply using the assignment operator.

LISTING 2.24: Not Using the Cast Operator for an Implicit Cast

int intNumber = 31416;
long longNumber = intNumber;

Even when no explicit cast operator is required (because an implicit
conversion is allowed), it is still possible to include the cast operator (see
Listing 2.25).

LISTING 2.25: Using the Cast Operator for an Implicit Cast

int intNumber = 31416;
long longNumber = (long) intNumber;

Type Conversion without Casting

No conversion is defined from a string to a numeric type, so methods such
as Parse() are required. Each numeric data type includes a Parse() func-
tion that enables conversion from a string to the corresponding numeric
type. Listing 2.26 demonstrates this call.

LISTING 2.26: Using int.Parse() to Convert a string to a Numeric Data Type

string text = "9.11E-31";
float kgElectronMass = float.Parse(text);

Another special type is available for converting one type to the next. The
type is System.Convert and an example of its use appears in Listing 2.27.

LISTING 2.27: Type Conversion Using System.Convert

string middleCText = "278.4375";
double middleC = System.Convert.ToDouble(middleCText);
bool boolean = System.Convert.ToBoolean(middleC);

Conversions between Data Types

System.Convert supports only a predefined number of types and it is not
extensible. It allows conversion from any primitive type (bool, char, sbyte,
short, int, long, ushort, uint, ulong, float, double, decimal, DateTime,
and string) to any other primitive type.

Furthermore, all types support a ToString() method that can be used
to provide a string representation of a type. Listing 2.28 demonstrates how
to use this method. The resultant output is shown in Output 2.18.

LISTING 2.28: Using ToString() to Convertto a string

bool boolean = true;

string text = boolean.ToString();
// Display "True"
System.Console.WriteLine(text);

OuTPUT 2.18:

True

For the majority of types, the ToString() method will return the name
of the data type rather than a string representation of the data. The string
representation is returned only if the type has an explicit implementation
of ToString(). One last point to make is that it is possible to code custom
conversion methods, and many such methods are available for classes in
the runtime.

ADVANCED TOPIC

TryParse()
Starting with C# 2.0 (NET 2.0), all the numeric primitive types include a

static TryParse() method. (In C# 1.0, only double includes such a method.)
This method is very similar to the Parse() method, except that instead of
throwing an exception if the conversion fails, the TryParse() method
returns false, as demonstrated in Listing 2.29.

LISTING 2.29: Using TryParse() in Place of an Invalid Cast Exception

double number;
string input;

63

64

Chapter 2: Data Types

System.Console.Write("Enter a number: ");
input = System.Console.ReadLine();
if (double.TryParse(input, out number))

{

// Converted correctly, now use number

I oo
}
else
{

System.Console.WriteLine(

"The text entered was not a valid number.");

}

Output 2.19 shows the results of Listing 2.27.

OuTPUT 2.19:

Enter a number: forty-two
The text entered was not a valid number.

The resultant value the code parses from the input string is returned via
an out parameter—in this case, number.

The key difference between Parse() and TryParse() is the fact that
TryParse() won't throw an exception if it fails. Frequently, the conversion
from a string to a numeric type depends on a user entering the text. It is
expected, in such scenarios, that the user will enter invalid data that will
not parse successfully. By using TryParse() rather than Parse(), you can
avoid throwing exceptions in expected situations. (The expected situation
in this case is that the user will enter invalid data.)

Arrays

One particular aspect of variable declaration that Chapter 1 didn’t cover is
array declaration. With array declaration, you can store multiple items of
the same type using a single variable and still access them individually
using the index when required. In C#, the array index starts at zero. There-
fore, arrays in C# are zero based.

Arrays

BEGINNER TOPIC

Arrays
Arrays provide a means of declaring a collection of data items that are
of the same type using a single variable. Each item within the array is
uniquely designated using an integer value called the index. The first item
in a C# array is accessed using index 0. Programmers should be careful to
specify an index value that is less than the array size. Since C# arrays are
zero based, the index for the last element in an array is one less than the
total number of items in the array.

For beginners, it is helpful sometimes to think of the index as an offset.
The first item is zero away from the start of the array. The second item is
one away from the start of the array—and so on.

Declaring an Array

In C#, you declare arrays using square brackets. First, you specify the ele-
ment type of the array, followed by open and closed square brackets; then
you enter the name of the variable. Listing 2.30 declares a variable called
languages to be an array of strings.

LisTING 2.30: Declaring an Array

string[] languages;

Obviously, the first part of the array identifies the data type of the ele-
ments within the array. The square brackets that are part of the declaration
identify the rank, or the number of dimensions, for the array; in this case it
is an array of rank one. These two pieces form the data type for the variable
languages.

Language Contrast: C++ and Java—Array Declaration

The square brackets for an array in C# appear immediately following the
data type instead of after the variable declaration. This keeps all the type
information together instead of splitting it up both before and after the
identifier, as occurs in C++ and Java.

65

66

Chapter 2: Data Types

Listing 2.30 defines an array with a rank of one. Commas within the
square brackets define additional dimensions. Listing 2.31, for example,
defines a two-dimensional array of cells for a game of chess or tic-tac-toe.

LisTING 2.31: Declaring a Two-Dimensional Array

// [
J] mmpmm e
// [
[/ mm et
// [

int[,] cells;

In Listing 2.29, the array has a rank of two. The first dimension could
correspond to cells going across and the second dimension represents cells
going down. Additional dimensions are added, with additional commas,
and the total rank is one more than the number of commas. Note that the
number of items that occur for a particular dimension is not part of the vari-
able declaration. This is specified when creating (instantiating) the array
and allocating space for each element.

Instantiating and Assigning Arrays

Once an array is declared, you can immediately fill its values using a
comma-delimited list of items enclosed within a pair of curly braces.
Listing 2.32 declares an array of strings and then assigns the names of nine
languages within curly braces.

LISTING 2.32: Array Declaration with Assignment

string[] languages = { "C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal",
"Fortran", "Lisp", "J#"};

The first item in the comma-delimited list becomes the first item in the
array; the second item in the list becomes the second item in the array, and
so on. The curly brackets are the notation for defining an array literal.

The assignment syntax shown in Listing 2.32 is available only if you
declare and assign the value within one statement. To assign the value
after declaration requires the use of the keyword new as shown in
Listing 2.33.

Arrays 67

LISTING 2.33: Array Assignment Following Declaration

string[] languages;

languages = new string[]{"C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal",
"Fortran", "Lisp", "J#" };

Starting in C# 3.0, specifying the data type of the array (string) following
new became optional as long as the data type of items within the array was
compatible—the square brackets are still required.

C# also allows use of the new keyword as part of the declaration
statement, so it allows the assignment and the declaration shown in
Listing 2.34.

LISTING 2.34: Array Assignment with new during Declaration

string[] languages = new string[]{
"C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal",
"Fortran", "Lisp", "J#"};

The use of the new keyword tells the runtime to allocate memory for the
data type. It instructs the runtime to instantiate the data type—in this case,
an array.

Whenever you use the new keyword as part of an array assignment, you
may also specify the size of the array within the square brackets. Listing
2.35 demonstrates this syntax.

LisTING 2.35: Declaration and Assignment with the new Keyword

string[] languages = new string[9]{
"C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal",
"Fortran", "Lisp", "J#"};

The array size in the initialization statement and the number of ele-
ments contained within the curly braces must match. Furthermore, it is
possible to assign an array but not specify the initial values of the array, as
demonstrated in Listing 2.36.

68 Chapter 2: Data Types

LISTING 2.36: Assigning without Literal Values

string[] languages = new string[9];

Assigning an array but not initializing the initial values will still initial-
ize each element. The runtime initializes elements to their default values,

as follows.

* Reference types (such as string) are initialized to null.
* Numeric types are initialized to zero.
* bool is initialized to false.

e charisinitialized to '\0".

Nonprimitive value types are recursively initialized by initializing each
of their fields to their default values.

As a result, it is not necessary to individually assign each element of an
array before using it.

In C# 2.0, it is possible to use the default() operator to determine the
default value of a data type. default() takes a data type as a parameter.
default(int), for example, returns @ and default(char) returns \e.

Because the array size is not included as part of the variable declaration,
it is possible to specify the size at runtime. For example, Listing 2.37 creates
an array based on the size specified in the Console.ReadLine() call.

LisTING 2.37: Defining the Array Size at Runtime

string[] grocerylList;

System.Console.Write("How many items on the list? ");
int size = int.Parse(System.Console.ReadlLine());
grocerylList = new string[size];

/...

C# initializes multidimensional arrays similarly. A comma separates the
size of each rank. Listing 2.38 initializes a tic-tac-toe board with no moves.

LISTING 2.38: Declaring a Two-Dimensional Array

int[,] cells = int[3,3];

Arrays

Initializing a tic-tac-toe board with a specific position instead could be
done as shown in Listing 2.39.

LISTING 2.39: Initializing a Two-Dimensional Array of Integers

int[,] cells = {
{1, o, 2},
{1, 2, e},
{1, 2, 1}
1

The initialization follows the pattern in which there is an array of three
elements of type int[], and each element has the same size; in this exam-
ple, the size is 3. Note that the dimension of each int[] element must be
identical. The declaration shown in Listing 2.40, therefore, is not valid.

LISTING 2.40: A Multidimensional Array with Inconsistent Size, Causing an Error

// ERROR: Each dimension must be consistently sized.
int[,] cells = {
{1, o, 2, o},
{1, 2, e},
{1, 2}
{1}
¥

Representing tic-tac-toe does not require an integer in each position.
One alternative is a separate virtual board for each player, with each board
containing a bool that indicates which positions the players selected. List-
ing 2.41 corresponds to a three-dimensional board.

LISTING 2.41: Initializing a Three-Dimensional Array

bool[,,] cells;
cells = new bool[2,3,3]

{
// Player 1 moves /x| |
{ {true, false, false}, /AT
{true, false, false}, /7 X | /
{true, false, true} }, /) -t
/7ox ol x
// Player 2 moves // | Jo
{ {false, false, true}, A
{false, true, false}, // | o]
{false, true, true} } /) et
// [o]

s

69

70

Chapter 2: Data Types

In this example, the board is initialized and the size of each rank is
explicitly identified. In addition to identifying the size as part of the new
expression, the literal values for the array are provided. The literal values
of type bool[, ,] are broken into two arrays of type bool[,], size 3x3. Each
two-dimensional array is composed of three bool arrays, size 3.

As already mentioned, each dimension in a multidimensional array
must be consistently sized. However, it is also possible to define a jagged
array, which is an array of arrays. Jagged array syntax is slightly different
from that of a multidimensional array, and furthermore, jagged arrays do
not need to be consistently sized. Therefore, it is possible to initialize a
jagged array as shown in Listing 2.42.

LISTING 2.42: Initializing a Jagged Array

int[][]cells = {
new int[]{1, o, 2, @},
new int[]{1, 2, @},
new int[]{1, 2},
new int[]{1}

3

A jagged array doesn’t use a comma to identify a new dimension.
Rather, a jagged array defines an array of arrays. In Listing 2.42, [] is
placed after the data type int[], thereby declaring an array of type int[].

Notice that a jagged array requires an array instance (or null) for each
internal array. In this example, you use new to instantiate the internal ele-
ment of the jagged arrays. Leaving out the instantiation would cause a
compile error.

Using an Array

You access a specific item in an array using the square bracket notation,
known as the array accessor. To retrieve the first item from an array, you
specify zero as the index. In Listing 2.43, the value of the fifth item (using
the index 4 because the first item is index 0) in the languages variable is
stored in the variable language.

LISTING 2.43: Declaring and Accessing an Array

string[] languages = new string[9]{
"C#", "COBOL", "Java",
"C++", "Visual Basic", "Pascal",

Arrays

"Fortran", "Lisp", "J#"};
// Retrieve 3rd item in languages array (Java)
string language = languages[4];

The square bracket notation is also used to store data into an array.
Listing 2.44 switches the order of "C++" and "Java".

LISTING 2.44: Swapping Data between Positions in an Array

string[] languages = new string[9]{
"c#", "CoBoL", "Java",
"C++", "Visual Basic", "Pascal",
"Fortran", "Lisp", "J#"};
// Save "C++" to variable called language.
string language = languages[3];
// Assign "Java" to the C++ position.
languages[3] = languages[2];
// Assign language to location of "Java".
languages[2] = language;

For multidimensional arrays, an element is identified with an index for
each dimension, as shown in Listing 2.45.

LISTING 2.45: Initializing a Two-Dimensional Array of Integers

int[,] cells = {
{1, o, 2},
{e, 2, o},
{1, 2, 1}
¥
// Set the winning tic-tac-toe move to be player 1.
cells[1,0] = 1;

Jagged array element assignment is slightly different because it is con-
sistent with the jagged array declaration. The first element is an array
within the array of arrays. The second index specifies the item within the
selected array element (see Listing 2.46).

LISTING 2.46: Declaring a Jagged Array

int[][] cells = {
new int[]{1, o, 2},
new int[]{o, 2, 0},
new int[]{1, 2, 1}
s

cells[1][0] = 1;
/...

71

72

Chapter 2: Data Types

Length
You can obtain the length of an array, as shown in Listing 2.47.

LISTING 2.47: Retrieving the Length of an Array

Console.WritelLine("There are {0} languages in the array.",
languages.Length);

Arrays have a fixed length; they are bound such that the length cannot
be changed without re-creating the array. Furthermore, overstepping the
bounds (or length) of the array will cause the runtime to report an error. This
can occur by accessing (either retrieving or assigning) the array with an index
for which no element exists in the array. Such an error frequently occurs when
you use the array length as an index into the array, as shown in Listing 2.48.

LISTING 2.48: Accessing Outside the Bounds of an Array, Throwing an Exception

string languages = new string[9];

// RUNTIME ERROR: index out of bounds - should
// be 8 for the lLast element
languages[4] = languages[9];

"= NOTE

The Length member returns the number of items in the array, not the
highest index. The Length member for the 1anguages variable is 9, but
the highest index for the languages variable is 8, because that is how
far it is from the start.

Language Contrast: C++ — Buffer Overflow Bugs

Unmanaged C++ does not always check whether you overstep the bounds
on an array. Not only can this be difficult to debug, but making this mistake
can also result in a potential security error called a buffer overrun. In con-
trast, the Common Language Runtime protects all C# (and Managed C++)
code from overstepping array bounds, virtually eliminating the possibility
of a buffer overrun issue in managed code.

Arrays 73

It is a good practice to use Length in place of the hardcoded array size.
To use Length as an index, for example, it is necessary to subtract 1 to
avoid an out-of-bounds error (see Listing 2.49).

LISTING 2.49: Using Length - 1in the Array Index

string languages = new string[9];

languages[4] = languages[languages.Length - 1];

To avoid overstepping the bounds on an array use a length check to
verify it has a length greater than 0 as well as using Length - 1 in place
of a hardcoded value when accessing the last item in the array (see
Listing 2.49).

Length returns the total number of elements in an array. Therefore, if
you had a multidimensional array such as bool cells[,,] of size 233,
Length would return the total number of elements, 18.

For a jagged array, Length returns the number of elements in the first
array—a jagged array is an array of arrays, so Length evaluates only the
outside, containing array and returns its element count, regardless of what
is inside the internal arrays.

More Array Methods

Arrays include additional methods for manipulating the elements within
the array. These include Sort (), BinarySearch(), Reverse(), and Clear()
(see Listing 2.50).

LISTING 2.50: Additional Array Methods

class ProgramminglLanguages

{

static void Main()

{
string[] languages = new string[]{
"c#", "coBoL", "Java",
"C++", "Visual Basic", "Pascal",
"Fortran", "Lisp", "J#"};

System.Array.Sort(languages);

searchString = "COBOL";

74

Chapter 2: Data Types

index = System.Array.BinarySearch(
languages, searchString);
System.Console.WritelLine(

"The wave of the future, {0}, is at index {1}.",
searchString, index);

System.Console.WriteLine();
System.Console.WriteLine("{0,-20}{1,-20}",
"First Element", "Last Element");
System.Console.WriteLine("{0,-20}{1,-20}",

System.Console.WriteLine("{0,-20}{1,-20}",
languages[@], languages[languages.Length-1]);

System.Array.Reverse(languages);
System.Console.WriteLine("{0@,-20}{1,-20}",
languages[@], languages[languages.lLength-1]);

// Note this does not remove all items from the array.
// Rather it sets each item to the type’s default value.
System.Array.Clear(languages, 0, languages.lLength);
System.Console.WriteLine("{0,-20}{1,-20}",

languages[@], languages[languages.lLength-1]);
System.Console.WriteLine(

"After clearing, the array size is: {o}",

languages.Length);

The results of Listing 2.50 are shown in Output 2.20.

OuTPUT 2.20:

The wave of the future. COBOL. is at index 1.

First Element Last Element
C# Visual Basic
Visual Basic C#

After clearing. the array size is: 9

Access to these methods is on the System.Array class. For the most
part, using these methods is self-explanatory, except for two noteworthy
items.

Arrays

 Before using the BinarySearch() method, it is important to sort the
array. If values are not sorted in increasing order, then the incorrect
index may be returned. If the search element does not exist, then the
value returned is negative. (Using the complement operator,
~index, returns the first index, if any, that is larger than the searched
value.)

* The Clear() method does not remove elements of the array and does
not set the length to zero. The array size is fixed and cannot be modi-
fied. Therefore, the Clear () method sets each element in the array to its
default value (false, 0, or null). This explains why Console.Write-

Line() creates a blank line when writing out the array after Clear() is
called.

Language Contrast: Visual Basic—Redimensioning Arrays

Visual Basic includes a Redim statement for changing the number of items in
an array. Although there is no equivalent C# specific keyword, there is a
method available in .NET 2.0 that will re-create the array and then copy
all the elements over to the new array. The method is called System.
Array.Resize.

Array Instance Methods

Like strings, arrays have instance members that are accessed not from the
data type, but directly from the variable. Length is an example of an
instance member because access to Length is through the array variable,
not the class. Other significant instance members are GetLength(), Rank,
and Clone().

Retrieving the length of a particular dimension does not require the
Length property. To retrieve the size of a particular rank, an array includes
a GetLength() instance method. When calling this method, it is necessary
to specify the rank whose length will be returned (see Listing 2.51).

75

76

Chapter 2: Data Types

LISTING 2.51: Retrieving a Particular Dimension’s Size

bool[,,] cells;
cells = new bool[2,3,3];
System.Console.WriteLine(cells.GetLength(®)); // Displays 2

The results of Listing 2.51 appear in Output 2.21.

OuTpPUT 2.21:

2

Listing 2.51 displays 2 because this is the number of elements in the first
dimension.

It is also possible to retrieve the entire array’s rank by accessing the
array’s Rank member. cells.Rank, for example, will return 3.

By default, assigning one array variable to another copies only the array
reference, not the individual elements of the array. To make an entirely
new copy of the array, use the array’s Clone() method. The Clone()
method will return a copy of the array; changing any of the members of
this new array will not affect the members of the original array.

Strings as Arrays

Variables of type string are accessible like an array of characters. For
example, to retrieve the fourth character of a string called palindrome you
can call palindrome[3]. Note, however, that because strings are immuta-
ble, it is not possible to assign particular characters within a string. C#,
therefore, would not allow palindrome[3]='a', where palindrome is
declared as a string. Listing 2.52 uses the array accessor to determine
whether an argument on the command line is an option, where an option
is identified by a dash as the first character.

LISTING 2.52: Looking for Command-Line Options

string[] args;

i%iéﬂ“gS[e] [e]=="-")
{

//This parameter 1is an option

}

Arrays

This snippet uses the if statement, which is covered in Chapter 3. In
addition, it presents an interesting example because you use the array acces-
sor to retrieve the first element in the array of strings, args. Following the
first array accessor is a second one, this time to retrieve the first character of
the string. The code, therefore, is equivalent to that shown in Listing 2.53.

LISTING 2.53: Looking for Command-Line Options (Simplified)

string[] args;

string arg = args[0];
if(arg[@] == '-")
{

//This parameter is an option

}

Not only can string characters be accessed individually using the array
accessor, but it is also possible to retrieve the entire string as an array of charac-
ters using the string’s ToCharArray () method. Using this method, you could
reverse the string using the System.Array.Reverse() method, as demon-
strated in Listing 2.54, which determines whether a string is a palindrome.

LISTING 2.54: Reversing a String

class Palindrome
{
static void Main()
{
string reverse, palindrome;
char[] temp;

System.Console.Write("Enter a palindrome: ");
palindrome = System.Console.ReadLine();

// Remove spaces and convert to lLowercase
reverse = palindrome.Replace(" ", "");
reverse = reverse.ToLower();

// Convert to an array
temp = reverse.ToCharArray();

// Reverse the array
System.Array.Reverse(temp);

77

78

Chapter 2: Data Types

// Convert the array back to a string and
// check if reverse string is the same.
if(reverse == new string(temp))
{
System.Console.WriteLine("\"{@}\" is a palindrome.",
palindrome);

}
else
{
System.Console.WriteLine(
"\"{@}\" is NOT a palindrome.",
palindrome);
}

The results of Listing 2.54 appear in Output 2.22.

OuTPUT 2.22:

Enter a palindrome: NeverOddOrEven
"Never0ddOrEven™ is a palindrome.

This example uses the new keyword; this time, it creates a new string
from the reversed array of characters.

Common Errors

This section introduced the three different types of arrays: single-dimen-
sion, multidimensional, and jagged arrays. Several rules and idiosyncra-
sies govern array declaration and use. Table 2.7 points out some of the
most common errors and helps solidify the rules. Readers should consider
reviewing the code in the Common Mistake column first (without looking
at the Error Description and Corrected Code columns) as a way of verify-
ing their understanding of arrays and their syntax.

6.

TABLE 2.7: Common Array Coding Errors

Common Mistake

Error Description

Corrected Code

int numbers[];

The square braces for declaring an array appear
after the data type, not after the variable identi-
fier.

int[] numbers;

int[] numbers;

numbers = {42, 84, 168 };

When assigning an array after declaration, it is
necessary to use the new keyword and then spec-
ify the data type.

int[] numbers;
numbers = new int[]{
42, 84, 168 }

int[3] numbers =
{ 42, 84, 168 };

It is not possible to specify the array size as part
of the variable declaration.

int[] numbers =
{ 42, 84, 168 };

int[] numbers =
new int[];

The array size is required at initialization time
unless an array literal is provided.

int[] numbers =
new int[3];

int[] numbers =
new int[3]{}

The array size is specified as 3, but there are no
elements in the array literal. The array size must
match the number of elements in the array lit-
eral.

int[] numbers =
new int[3]
{ 42, 84, 168 };

int[] numbers =
new int[3];

Console.WriteLine(
numbers[3]);

Array indexes start at zero. Therefore, the last
item is one less than the array size. (Note that
this is a runtime error, not a compile-time error.)

int[] numbers =
new int[3];

Console.WriteLine(
numbers[2]);

From the Library of Wow! eBook

Continues

08

TaBLE 2.7: Common Array Coding Errors (Continued)

Common Mistake

Error Description

Corrected Code

int[] numbers =
new int[3];
numbers[numbers.Length] =
42;

Same as previous error: 1 needs to be subtracted
from the Length to access the last element. (Note
that this is a runtime error, not a compile-time
error.)

int[] numbers =
new int[3];
numbers[numbers.Length-1] =
42;

int[] numbers;
Console.WriteLine(
numbers[0]);

numbers has not yet been assigned an
instantiated array, and therefore, it cannot be
accessed.

int[] numbers = {42, 84};
Console.WriteLine(
numbers[0]);

int[,] numbers =

{ {42},
{84, 42} };

Multidimensional arrays must be structured
consistently.

int[,] numbers =
{ {42, 168},
{84, 42} };

int[][] numbers =
{ {42, 84},
{84, 42} };

Jagged arrays require instantiated arrays to be
specified for the arrays within the array.

int[][] numbers =
{ new int[]{42, 84},
new int[]{84, 42} };

From the Library of Wow! eBook

Summary

SUMMARY

Even for experienced programmers, C# introduces several new program-
ming constructs. For example, as part of the section on data types, this
chapter covered the type decimal that can be used accurately for financial
calculations. In addition, the chapter introduced the fact that the Boolean
type, bool, does not convert implicitly to an integer, thereby preventing
the mistaken use of the assignment operator in a conditional expression.
Other unique characteristics of C# from many of its predecessors are the @
verbatim string qualifier that forces a string to ignore the escape character
and the fact that the string data type is immutable.

To convert data types between each other C# includes the cast operator
in both an explicit and an implicit form. In the following chapters, you will
learn how to define both cast operators on custom types.

This chapter closed with coverage of C# syntax for arrays, along with
the various means of manipulating arrays. For many developers, the syn-
tax can become rather daunting at first, so the section included a list of the
common errors associated with coding arrays.

The next chapter looks at expressions and control flow statements. The
if statement, which appeared a few times toward the end of this chapter,
is discussed as well.

81

This page intentionally left blank

= 3

Operators and Control Flow

N THIS CHAPTER, you will learn about operators and control flow state-

ments. Operators provide syntax for performing different calculations
or actions appropriate for the operands within the calculation. Control
flow statements provide the means for conditional logic within a program
or looping over a section of code multiple times. After introducing the if
control flow statement, the chapter looks at the concept of Boolean expres-
sions, which are embedded within many control flow statements. Included
is mention of how integers will not cast (even explicitly) to bool and the

#if, #elif, #else, and #endif
#define and #undef - —
#error and #warning Arithmetic Binary

#oragma | (6) Preprocessor (1) Operators Operators
howarn<warn list> Directives Assignment Operators

T Increment and
- |-ne Decrement Operators
#region/#endregion Constant Expressions

T oar | Jum
break P Operators and} @ Boolean Expressions

continue Statements
— goto| Control Flow
if
while Control Flow @ Bitwise Operators
do-while Statements
for
foreach
switch

83

84

Chapter 3: Operators and Control Flow

advantages of this restriction. The chapter ends with a discussion of the C#
“preprocessor” and its accompanying directives.

Operators

Now that you have been introduced to the predefined data types (refer to
Chapter 2), you can begin to learn more about how to use these data types
in combination with operators in order to perform calculations. For exam-
ple, you can make calculations on variables that you have declared.

BEGINNER TOPIC

Operators

Operators specify operations within an expression, such as a mathematical
expression, to be performed on a set of values, called operands, to produce
a new value or result. For example, in Listing 3.1 there are two operands,
the numbers 4 and 2, that are combined using the subtraction operator, -.
You assign the result to the variable difference.

LisTING 3.1: A Simple Operator Example

difference = 4 - 2;

Operators are generally broken down into three categories: unary,
binary, and ternary, corresponding to the number of operands 1, 2, and 3,
respectively. This section covers some of the most basic unary and binary
operators. Introduction to the ternary operator appears later in the chapter.

Plus and Minus Unary Operators (+, -)

Sometimes you may want to change the sign of a numerical variable. In
these cases, the unary minus operator (-) comes in handy. For example,
Listing 3.2 changes the total current U.S. debt to a negative value to indi-
cate that it is an amount owed.

LisTING 3.2: Specifying Negative Values®

//National Debt to the Penny
decimal debt = -11719258192538.99M;

Using the minus operator is equivalent to subtracting the operand from zero.

1. Asof August 21, 2009, according to www.treasurydirect.gov.

www.treasurydirect.gov

Operators

The unary plus operator (+) has rarely2 had any effect on a value. Itis a
superfluous addition to the C# language and was included for the sake of
symmetry.

Arithmetic Binary Operators (+, -, *, /, %)

Binary operators require two operands in order to process an equation: a
left-hand side operand and a right-hand side operand. Binary operators
also require that the code assign the resultant value to avoid losing it.

Language Contrast: C++—Operator-Only Statements

Binary operators in C# require an assignment or call; they always return a
new result. Neither operand in a binary operator expression can be modi-
fied. In contrast, C++ will allow a single statement, such as 4+5, to compile
even without an assignment. In C#, call, increment, decrement, and new
object expressions are allowed for operator-only statements.

The subtraction example in Listing 3.3 is an example of a binary
operator—more specifically, an arithmetic binary operator. The operands
appear on each side of the arithmetic operator and then the calculated
value is assigned. The other arithmetic binary operators are addition (+),
division (/), multiplication (*), and remainder (% sometimes called the

mod operator).

LisTING 3.3: Using Binary Operators

class Division
{
static void Main()
{
int numerator;
int denominator;
int quotient;
int remainder;

System.Console.Write("Enter the numerator: ");
numerator = int.Parse(System.Console.ReadlLine());

2. The unary + operator is not defined on a short; it is defined on int, uint, long, ulong,
float, double, and decimal. Therefore, using it on a short will convert it to one of these
types as appropriate.

85

86 Chapter 3: Operators and Control Flow

System.Console.Write("Enter the denominator: ");
denominator = int.Parse(System.Console.ReadLine());

quotient = numerator / denominator;
remainder = numerator % denominator;

System.Console.WriteLine(
"{0} / {1} = {2} with remainder {3}",
numerator, denominator, quotient, remainder);

Output 3.1 shows the results of Listing 3.3.

OutpuT 3.1:

Enter the numerator: 23
Enter the denominator: 3
23 / 3 = 7 with remainder 2.

Note the order of associativity when using binary operators. The binary
operator order is from left to right. In contrast, the assignment operator
order is from right to left. On its own, however, associativity does not spec-
ify whether the division will occur before or after the assignment. The
order of precedence defines this. The precedence for the operators used so
far is as follows:

1. *,/,and %
2. +and -
3. =

Therefore, you can assume that the statement behaves as expected, with
the division and remainder operators occurring before the assignment.

If you forget to assign the result of one of these binary operators, you
will receive the compile error shown in Output 3.2.

OuTPUT 3.2:

error (S0201: Only assignment. call. increment. decrementa
and new object expressions can be used as a statement

Operators

BEGINNER TOPIC

Associativity and Order of Precedence

As with mathematics, programming languages support the concept of asso-
ciativity. Associativity refers to how operands are grouped and, therefore,
the order in which operators are evaluated. Given a single operator that
appears more than once in an expression, the operator associates the first
duple and then the next operand until all operators are evaluated. For exam-
ple, a-b-c associates as (a-b)-c,and not a- (b-c).

Associativity applies only when all the operators are the same. When
different operators appear within a statement, the order of precedence for
those operators dictates which operators are evaluated first. Order of pre-
cedence, for example, indicates that the multiplication operator be evalu-
ated before the plus operator in the expression a+b*c.

Using the Plus Operator with Strings

Operators can also work with types that are not numeric. For example, it is
possible to use the plus operator to concatenate two or more strings, as
shown in Listing 3.4.

LisTING 3.4: Using Binary Operators with Non-Numeric Types

class FortyTwo

{
static void Main()
{
short windSpeed = 42;
System.Console.WriteLine(
"The original Tacoma Bridge in Washington\nwas"
+ "brought down by a "
+ windSpeed + " mile/hour wind.");
}
}

Output 3.3 shows the results of Listing 3.4.

OuTPUT 3.3:

The original Tacoma Bridge in Washington
was brought down by a 42 mile/hour wind-.

87

88

Chapter 3: Operators and Control Flow

Because sentence structure varies among languages in different cultures,
developers should be careful not to use the plus operator with strings
that require localization. Composite formatting is preferred (refer to
Chapter 1).

Using Characters in Arithmetic Operations

When introducing the char type in the preceding chapter, I mentioned
that even though it stores characters and not numbers, the char type is an
integral type (“integral” means it is based on an integer). It can partici-
pate in arithmetic operations with other integer types. However, inter-
pretation of the value of the char type is not based on the character stored
within it, but rather on its underlying value. The digit 3, for example,
contains a Unicode value of 8x33 (hexadecimal), which in base 10 is 51.
The digit 4, on the other hand, contains a Unicode value of 8x34, or 52 in
base 10. Adding 3 and 4 in Listing 3.5 results in a hexadecimal value of
@x167, or 103 in base 10, which is equivalent to the letter g.

LIsTING 3.5: Using the Plus Operator with the char Data Type

int n = '3" + '4";
char c = (char)n;
System.Console.WritelLine(c); // Writes out g.

Output 3.4 shows the results of Listing 3.5.

OuTPUT 3.4:

9

You can use this trait of character types to determine how far two char-
acters are from one another. For example, the letter f is three characters
away from the letter c. You can determine this value by subtracting the let-
ter c from the letter f, as Listing 3.6 demonstrates.

LisTING 3.6: Determining the Character Difference between Two Characters

int distance = 'f' - 'c';
System.Console.WriteLine(distance);

Operators
Output 3.5 shows the results of Listing 3.6.

OuTpUT 3.5:

3

Special Floating-Point Characteristics

The floating-point types, float and double, have some special characteris-
tics, such as the way they handle precision. This section looks at some spe-
cific examples, as well as some unique floating-point type characteristics.

A float, with seven digits of precision, can hold the value 1,234,567
and the value 0.1234567. However, if you add these two floats together, the
result will be rounded to 1234567, because the decimal portion of the
number is past the seven significant digits that a float can hold. This type
of rounding can become significant, especially with repeated calculations
or checks for equality (see the upcoming Advanced Topic, Unexpected
Inequality with Floating-Point Types).

Note that inaccuracies can occur with a simple assignment, such as dou-
ble number = 140.6F. Since the double can hold a more accurate value than
the float can store, the C# compiler will actually evaluate this expression
to double number = 140.600006103516;. 140.600006103516 is 140.6 as a
float, but not quite 140.6 when represented as a double.

ADVANCED TOPIC

Unexpected Inequality with Floating-Point Types
The inaccuracies of floats can be very disconcerting when comparing values
for equality, since they can unexpectedly be unequal. Consider Listing 3.7.

LisTING 3.7: Unexpected Inequality Due to Floating-Point Inaccuracies

decimal decimalNumber = 4.2M;
double doubleNumberl = @.1F * 42F;
double doubleNumber2 = 0.1D * 42D;
float floatNumber = 0.1F * 42F;

Trace.Assert(decimalNumber != (decimal)doubleNumberl);
// Displays: 4.2 != 4.20000006258488
System.Console.WritelLine(

"{e} '= {1}", decimalNumber, (decimal)doubleNumberl);

90 Chapter 3: Operators and Control Flow

Trace.Assert((double)decimalNumber != doubleNumberl);
// Displays: 4.2 != 4.20000006258488
System.Console.WriteLine(

"{e} != {1}", (double)decimalNumber, doubleNumberl);

Trace.Assert((float)decimalNumber != floatNumber);
// Displays: (float)4.2M != 4.2F
System.Console.WriteLine(

"(float){eIM != {1}F",

(float)decimalNumber, floatNumber);

Trace.Assert(doubleNumberl != (double)floatNumber);
// Displays: 4.20000006258488 != 4.20000028610229
System.Console.WriteLine(

"{e} != {1}", doubleNumberl, (double)floatNumber);

Trace.Assert(doubleNumberl != doubleNumber2);
// Displays: 4.20000006258488 != 4.2
System.Console.WriteLine(

"{e} != {1}", doubleNumberl, doubleNumber2);

Trace.Assert(floatNumber != doubleNumber2);
// Displays: 4.2F != 4.2D
System.Console.WritelLine(

"{o}F != {1}D", floatNumber, doubleNumber2);

Trace.Assert((double)4.2F != 4.2D);
// Display: 4.19999980926514 != 4.2
System.Console.WriteLine(

"{e} !'= {1}", (double)4.2F, 4.2D);

Trace.Assert(4.2F != 4.2D);
// Display: 4.2F != 4.2D
System.Console.WriteLine(

"{8}F != {1}D", 4.2F, 4.2D);

Output 3.6 shows the results of Listing 3.7.

OUTPUT 3.6:

4.2 != 4.2000000L258488

4.2 != 4.2000000b258488

(float)4.2M !'= L4.2F

-20000006258488 !'= 4.20000028kL10229
-2000000L258488 != 4.2

£ -

.2F != 4.2D
.1999998092k514 != 4.2
.2F != 4.2D

Operators

The Assert() methods are designed to display a debug dialog whenever
the parameter evaluates to false. However, all of the Assert() statements
in this code listing will evaluate to true. Therefore, in spite of the apparent
equality of the values in the code listing, they are in fact not equivalent due
to the inaccuracies of a float. Furthermore, there is not some compound-
ing rounding error. The C# compiler performs the calculations instead of
the runtime. Even if you simply assign 4. 2F rather than a calculation, the
comparisons will remain unequal.

To avoid unexpected results caused by the inaccuracies of floating-
point types, developers should avoid using equality conditionals with
these types. Rather, equality evaluations should include a tolerance. One
easy way to achieve this is to subtract one value (operand) from the other
and then evaluate whether the absolute value of the result is less than the
maximum tolerance. Even better is to use the decimal type in place of the
float type.

You should be aware of some additional unique floating-point charac-
teristics as well. For instance, you would expect that dividing an integer by
zero would result in an error, and it does with precision data types such as
int and decimal. float and double, however, allow for certain special val-
ues. Consider Listing 3.8, and its resultant output, Output 3.7.

LisTING 3.8: Dividing a Float by Zero, Displaying NaN

float n=0f;
// Displays: NaN
System.Console.WriteLine(n / 0);

OuTpPUT 3.7:

NaN

In mathematics, certain mathematical operations are undefined. In C#,
the result of dividing OF by the value 0 results in “Not a Number,” and all
attempts to print the output of such a number will result in NaN. Similarly,
taking the square root of a negative number (System.Math.Sqrt(-1)) will
result in NaN.

91

92

Chapter 3: Operators and Control Flow

A floating-point number could overflow its bounds as well. For exam-
ple, the upper bound of a float type is 3.4E38. Should the number over-
flow that bound, the result would be stored as “positive infinity” and the
output of printing the number would be Infinity. Similarly, the lower
bound of a float type is -3.4E38, and assigning a value below that bound
would result in “negative infinity,” which would be represented by the
string -Infinity. Listing 3.9 produces negative and positive infinity,
respectively, and Output 3.8 shows the results.

LisTING 3.9: Overflowing the Bounds of a float

// Displays: -Infinity
System.Console.WriteLine(-1f / 0);

// Displays: Infinity
System.Console.WriteLine(3.402823E+38f * 2f);

OuTpPUT 3.8:

-Infinity
Infinity

Further examination of the floating-point number reveals that it can
contain a value very close to zero, without actually containing zero. If the
value exceeds the lower threshold for the float or double type, then the
value of the number can be represented as “negative zero” or “positive
zero,” depending on whether the number is negative or positive, and is
represented in output as -0 or 0.

Parenthesis Operator

Parentheses allow you to group operands and operators so that they are
evaluated together. This is important because it provides a means of over-
riding the default order of precedence. For example, the following two
expressions evaluate to something completely different:

(60 / 10) * 2
60 / (10 * 2)

The first expression is equal to 12; the second expression is equal to 3. In

both cases, the parentheses affect the final value of the expression.
Sometimes the parenthesis operator does not actually change the result,

because the order-of-precedence rules apply appropriately. However, it is

Operators 93

often still a good practice to use parentheses to make the code more read-
able. This expression, for example:

fahrenheit = (celsius * 9.0 / 5.0) + 32.0;
is easier to interpret confidently at a glance than this one is:
fahrenheit = celsius * 9.0 / 5.0 + 32.0;
Developers should use parentheses to make code more readable, disam-

biguating expressions explicitly instead of relying on operator precedence.

Assignment Operators (+=, -=, *=, /=, %=)

Chapter 1 discussed the simple assignment operator, which places the
value of the right-hand side of the operator into the variable on the left-
hand side. Other assignment operators combine common binary opera-
tor calculations with the assignment operator. Take Listing 3.10, for
example.

LisTING 3.10: Common Increment Calculation

int x;
X =X + 2;

In this assignment, first you calculate the value of x + 2 and then you
assign the calculated value back to x. Since this type of operation is rela-
tively frequent, an assignment operator exists to handle both the calcula-
tion and the assignment with one operator. The += operator increments the
variable on the left-hand side of the operator with the value on the right-
hand side of the operator, as shown in Listing 3.11.

LisTING 3.11: Using the += Operator

int x;
X += 2;

This code, therefore, is equivalent to Listing 3.10.

Numerous other combination assignment operators exist to provide
similar functionality. You can use the assignment operator in conjunction
with not only addition, but also subtraction, multiplication, division, and
the remainder operators, as Listing 3.12 demonstrates.

9%

Chapter 3: Operators and Control Flow

LisTING 3.12: Other Assignment Operator Examples

X 2
X 2
X *= 2;
X 2

Increment and Decrement Operators (++, --)

C# includes special operators for incrementing and decrementing coun-
ters. The increment operator, ++, increments a variable by one each time it
is used. In other words, all of the code lines shown in Listing 3.13 are
equivalent.

LisTING 3.13: Increment Operator

spaceCount = spaceCount + 1;
spaceCount += 1;
spaceCount++;

Similarly, you can also decrement a variable by one using the decre-
ment operator, - -. Therefore, all of the code lines shown in Listing 3.14 are
also equivalent.

LisTING 3.14: Decrement Operator

lines = lines - 1;
lines -= 1;
lines--;

BEGINNER TOPIC

A Decrement Example in a Loop

The increment and decrement operators are especially prevalent in loops,
such as the while loop described later in the chapter. For example, Listing
3.15 uses the decrement operator in order to iterate backward through
each letter in the alphabet.

LisTING 3.15: Displaying Each Character’s ASCIl Value in Descending Order

char current;
int asciivalue;

// Set the initial value of current.

current="z";
do

// Retrieve the ASCII value of current.
asciiValue = current;

System.Console.Write("{@}={1}\t", current, asciiValue);

// Proceed to the previous letter in the alphabet;

current--;

}

while(current>='a');

Operators

Output 3.9 shows the results of Listing 3.15.

OuTPUT 3.9:

z=1l2e y=121 x=120 w=119 v=118 u=117
9=113 p=1l2 0=111 n=110 m=109 1=108
h=104 g=103 f=102 e=101 d=100 c=q9

The increment and decrement operators are used to count how many
times to perform a particular operation. Notice also that in this example, the
increment operator is used on a character (char) data type. You can use incre-
ment and decrement operators on various data types as long as some mean-

t=11k
k=107
b=98

s=115
j=10k
a=97

r=114
i=105

ing is assigned to the concept of “next” or “previous” for that data type.

Just as with the assignment operator, the increment operator also
returns a value. In other words, it is possible to use the assignment opera-
tor simultaneously with the increment or decrement operator (see Listing

3.16 and Output 3.10).

LISTING 3.16: Using the Post-Increment Operator

int count;

int result;

count = 0;

result = count++;

System.Console.WriteLine("result = {0} and count

result, count);

{1}")

OuTPUT 3.10:

result = 0 and count = 1

95

96

Chapter 3: Operators and Control Flow

You might be surprised that result is assigned the value in count before
count is incremented. In other words, result ends up with a value of @
even though count ends up with a value of 1.

Where you place the increment or decrement operator determines
whether the assigned value should be the value of the operand before or
after the calculation, which affects how the code functions. If you want the
value of result to include the increment (or decrement) calculation, you
need to place the operator before the variable being incremented, as shown
in Listing 3.17.

LISTING 3.17: Using the Pre-Increment Operator

int count;

int result;

count = 0;

result = ++count;

System.Console.WriteLine("result = {0} and count = {1}",
result, count);

Output 3.11 shows the results of Listing 3.17.

OuTPUT 3.11:

result = 1 and count = 1

In this example, the increment operator appears before the operand so
the value returned is the value assigned to the variable after the increment.
If x is 1, then ++x will return 2. However, if a postfix operator is used, x++,
the value returned by the expression will still be 1. Regardless of whether
the operator is postfix or prefix, the resultant value of x will be incre-
mented. The difference between prefix and postfix behavior appears in
Listing 3.18. The resultant output is shown in Output 3.12.

LisTING 3.18: Comparing the Prefix and Postfix Increment Operators

class IncrementExample

{

public static void Main()

{

int x;

Operators

X = 1;

// Display 1, 2.

System.Console.WriteLine("{0}, {1}, {2}", Xx++, X++, X);
// X now contains the value 3.

// Display 4, 5.

System.Console.WriteLine("{0}, {1}, {2}", ++x, ++x, X);
// X now contains the value 5.

/..

OuTPUT 3.12:

1. 2+ 3
42 5. 5

As Listing 3.18 demonstrates, where the increment and decrement oper-
ators appear relative to the operand can affect the result returned from the
operator. Pre-increment/decrement operators return the result after incre-
menting /decrementing the operand. Post-increment/decrement operators
return the result before changing the operand. Developers should use
caution when embedding these operators in the middle of a statement.
When in doubt as to what will happen, use these operators independently,
placing them within their own statements. This way, the code is also more
readable and there is no mistaking the intention.

ADVANCED TOPIC

Thread-Safe Incrementing and Decrementing

In spite of the brevity of the increment and decrement operators, these
operators are not atomic. A thread context switch can occur during the exe-
cution of the operator and can cause a race condition. You could use a lock
statement to prevent the race condition. However, for simple increments
and decrements a less expensive alternative is to use the thread-safe Incre-
ment() and Decrement() methods from the System.Threading.Inter-
locked class. These methods rely on processor functions for performing fast
thread-safe increments and decrements (see Chapter 19 for more detail).

97

98

Chapter 3: Operators and Control Flow

Constant Expressions (const)
The preceding chapter discussed literal values, or values embedded
directly into the code. It is possible to combine multiple literal values in a
constant expression using operators. By definition, a constant expression
is one that the C# compiler can evaluate at compile time (instead of calcu-
lating it when the program runs) because it is composed of constant oper-
ands. For example, the number of seconds in a day can be assigned as a
constant expression whose result can then be used in other expressions.
The const keyword in Listing 3.19 locks the value at compile time. Any
attempt to modify the value later in the code results in a compile error.

LISTING 3.19:

/...
public long Main()
{

Constant Expression

const int secondsPerDay = 60 * 60 * 24;
const int secondsPerWeek = secondsPerDay * 7;

Constant
/).

Note that even the value assigned to secondsPerWeek is a constant expres-
sion, because the operands in the expression are also constants, so the com-
piler can determine the result.

Introducing Flow Control

Later in this chapter is a code listing (Listing 3.43) that shows a simple way
to view a number in its binary form. Even such a simple program, how-
ever, cannot be written without using control flow statements. Such state-
ments control the execution path of the program. This section discusses
how to change the order of statement execution based on conditional
checks. Later on, you will learn how to execute statement groups repeat-
edly through loop constructs.

A summary of the control flow statements appears in Table 3.1. Note
that the General Syntax Structure column indicates common statement

use, not the complete lexical structure.

66

TaBLE 3.1: Control Flow Statements

Statement

General Syntax Structure

Example

if statement

if(boolean-expression)
embedded-statement

if (input == "quit")

System.Console.WritelLine(
"Game end");

return;
}
if(boolean-expression) if (input == "quit")
embedded-statement {
else System.Console.WriteLine(
embedded-statement "Game end");
return;
else
GetNextMove();

while statement

while(boolean-expression)
embedded-statement

while(count < total)

System.Console.WritelLine(
"count = {@}", count);
count++;

From the Library of Wow! eBook

Continues

00T

TaBLE 3.1: Control Flow Statements (Continued)

Statement

General Syntax Structure

Example

do while statement

do
embedded-statement
while(boolean-expression);

do

System.Console.WritelLine(
"Enter name:");

input =
System.Console.ReadLine();

while(input != "exit");

for statement

for(for-initializer;
boolean-expression;
for-iterator)
embedded-statement

for (int count = 1;
count <= 10;
count++)

System.Console.WritelLine(
"count = {@}", count);

}

Foreach statement

foreach(type identifier in
expression)
embedded-statement

continue statement

continue;

foreach (char Lletter in email)
if(!insideDomain)
if (letter == '@')
; insideDomain = true;

continue;

System.Console.Write(
Letter);

From the Library of Wow! eBook

101

TaBLE 3.1: Control Flow Statements (Continued)

}
break statement break;
goto statement goto identifier;

goto case const-expression;

goto default;

Statement General Syntax Structure Example
switch statement switch(governing-type-expression) switch(input)
{
Case "exit":
case const-expression: case "quit":
statement-1list System.Console.WritelLine(
jump-statement "Exiting app....");
default: break;
statement-1list case "restart”:
jump-statement Reset();

goto case "start";

case "start"”:
GetMove();
break;

default:

System.Console.WriteLine(
input);

break;

From the Library of Wow! eBook

102

Chapter 3: Operators and Control Flow

An embedded-statement in Table 3.1 corresponds to any statement, includ-
ing a code block (but not a declaration statement or a label).

Each C# control flow statement in Table 3.1 appears in the tic-tac-toe’
program found in Appendix B. The program displays the tic-tac-toe board,
prompts each player, and updates with each move.

The remainder of this chapter looks at each statement in more detail.
After covering the if statement, it introduces code blocks, scope, Boolean
expressions, and bitwise operators before continuing with the remaining
control flow statements. Readers who find the table familiar because of C#'s
similarities to other languages can jump ahead to the section titled C# Pre-
processor Directives or skip to the Summary section at the end of the chapter.

if Statement

The if statement is one of the most common statements in C#. It evaluates
a Boolean expression (an expression that returns a Boolean), and if the
result is true, the following statement (or block) is executed. The general
form is as follows:

if(condition)
consequence

[else
alternative]

There is also an optional else clause for when the Boolean expression is
false. Listing 3.20 shows an example.

LisTING 3.20: if/else Statement Example

class TicTacToe // Declares the TicTacToe class.

{
static void Main() // Declares the entry point of the program.
{

string input;

// Prompt the user to select a 1- or 2- player game.
System.Console.Write (

"1 - Play against the computer\n" +

"2 - Play against another player.\n" +

"Choose:"
)s

input = System.Console.ReadlLine();

3. Known as noughts and crosses to readers outside the United States.

Introducing Flow Control

if(input=="1")
// The user selected to play the computer.
System.Console.WriteLine(
"Play against computer selected.");
else
// Default to 2 players (even 1if user didn't enter 2).
System.Console.WritelLine(
"Play against another player.");

In Listing 3.20, if the user enters 1, the program displays "Play against
computer selected.". Otherwise, it displays "Play against another
player.".

Nested if

Sometimes code requires multiple if statements. The code in Listing 3.21
first determines whether the user has chosen to exit by entering a number
less than or equal to ©; if not, it checks whether the user knows the maxi-
mum number of turns in tic-tac-toe.

LISTING 3.21: Nested if Statements

1 class TicTacToeTrivia

2 A

3 static void Main()

4 {

5 int input; // Declare a variable to store the input.
6

7 System.Console.Write(

8 "What is the maximum number " +

9 "of turns in tic-tac-toe?" +

10 "(Enter © to exit.): ");

11

12 // int.Parse() converts the ReadlLine()

13 // return to an int data type.

14 input = int.Parse(System.Console.ReadlLine());
15

16 if (input <= 9)

17 // Input is less than or equal to @.
18 System.Console.WriteLine("Exiting...");
19 else

20 if (input < 9)

21 // Input is less than 9.

22 System.Console.WriteLine(

23 "Tic-tac-toe has more than {0}" +

103

104 Chapter 3: Operators and Control Flow

24 "maximum turns.", input);

25 else

26 if(input>9)

27 // Input 1is greater than 9.

28 System.Console.WritelLine(

29 "Tic-tac-toe has fewer than {0}" +
30 "maximum turns.", input);

31 else

32 // Input equals 9.

33 System.Console.WriteLine(

34 "Correct, " +

35 "tic-tac-toe has a max. of 9 turns.");
36}

37 }

Output 3.13 shows the results of Listing 3.21.

OuTPUT 3.13:

What's the maximum number of turns in tic-tac-toe? (Enter O to exit.): 9
Correct. tic-tac-toe has a max. of 9 turns.

Assume the user enters 9 when prompted at line 14. Here is the execution
path:

1. Line 16: Check if input is less than 0. Since it is not, jump to line 20.
2. Line 20: Check if input is less than 9. Since it is not, jump to line 26.
3. Line 26: Check if input is greater than 9. Since it is not, jump to line 33.

4. Line 33: Display that the answer was correct.

Listing 3.21 contains nested if statements. To clarify the nesting, the
lines are indented. However, as you learned in Chapter 1, whitespace does
not affect the execution path. Without indenting and without newlines, the
execution would be the same. The code that appears in the nested if state-
ment in Listing 3.22 is equivalent to Listing 3.21.

LISTING 3.22: if/else Formatted Sequentially

if (input < @)
System.Console.WriteLine("Exiting...");

else if (input < 9)
System.Console.WriteLine(

Code Blocks ({})

"Tic-tac-toe has more than {0}" +
" maximum turns.", input);
else if(input>9)
System.Console.WriteLine(
"Tic-tac-toe has less than {0}" +
" maximum turns.", input);
else
System.Console.WriteLine(
"Correct, tic-tac-toe has a maximum of 9 turns.");

Although the latter format is more common, in each situation use the for-
mat that results in the clearest code.

Code Blocks ({})

In the previous if statement examples, only one statement follows if and
else: asingle System.Console.WritelLine(), similar to Listing 3.23.

LisTING 3.23: if Statement with No Code Block

if(input<9)
System.Console.WriteLine("Exiting");

With curly braces, however, we can combine statements into a single
unit called a code block, allowing the execution of multiple statements for
a condition. Take, for example, the highlighted code block in the radius
calculation in Listing 3.24.

LISTING 3.24: if Statement Followed by a Code Block

class CircleAreaCalculator

{

static void Main()

{
double radius; // Declare a variable to store the radius.
double area; // Declare a variable to store the area.

System.Console.Write("Enter the radius of the circle: ");
// double.Parse converts the ReadlLine()
// return to a double.

radius = double.Parse(System.Console.ReadlLine());

if(radius>=0)

105

Chapter 3: Operators and Control Flow

{
// Calculate the area of the circle.
area = 3.14*radius*radius;
System.Console.WriteLine(
"The area of the circle is: {@}", area);
b
else
{
System.Console.WritelLine(
"{0} is not a valid radius.", radius);
¥
}
}

Output 3.14 shows the results of Listing 3.24.

OuTPUT 3.14:

Enter the radius of the circle: 3
The area of the circle is: 28.2k

In this example, the if statement checks whether the radius is positive. If
so, the area of the circle is calculated and displayed; otherwise, an invalid
radius message is displayed.

Notice that in this example, two statements follow the first if. How-
ever, these two statements appear within curly braces. The curly braces
combine the statements into a code block.

If you omit the curly braces that create a code block in Listing 3.24, only
the statement immediately following the Boolean expression executes con-
ditionally. Subsequent statements will execute regardless of the if state-
ment’s Boolean expression. The invalid code is shown in Listing 3.25.

LISTING 3.25: Relying on Indentation, Resulting in Invalid Code

if(radius>=0)
area = 3.14*radius*radius;
System.Console.WriteLine(// Logic Error!! Needs code block.
"The area of the circle is: {@}", area);

In C#, indentation is for code readability only. The compiler ignores it,
and therefore, the previous code is semantically equivalent to Listing 3.26.

Scope and Declaration Space

LISTING 3.26: Semantically Equivalent to Listing 3.25

if(radius>=0)

{
area = 3.14*radius*radius;
¥
System.Console.WriteLine(// Error!! Place within code block.

"The area of the circle is: {@}", area);

Programmers should take great care to avoid subtle bugs such as this, per-
haps even going so far as to always include a code block after a control
flow statement, even if there is only one statement.

Although unusual, it is possible to have a code block that is not lexically
a direct part of a control flow statement. In other words, placing curly braces
on their own (without a conditional or loop, for example) is legal syntax.

ADVANCED TOPIC

Math Constants

In Listing 3.25 and Listing 3.26, the value of pi as 3.14 was hardcoded—a
crude approximation at best. There are much more accurate definitions for
pi and E in the System.Math class. Instead of hardcoding a value, code
should use System.Math.PI and System.Math.E.

Scope and Declaration Space

Scope and declaration space are hierarchical contexts bound by a code
block. Scope is the region of source code in which it is legal to refer to an
item by its unqualified name because the name reference is unique and
unambiguous.

The area in which declaring the name is unique is the declaration space.
C# prevents two local variable declarations with the same name from
appearing in the same declaration space. Similarly, it is not possible to
declare two methods with the signature of Main() within the same class
(declaration scope for the method name includes the full signature). The
scope identifies what within a code block an unqualified name refers to;
the declaration scope specifies the region in which declaring something
with the same name will cause a conflict.

107

108

Chapter 3: Operators and Control Flow

Scope restricts visibility. A local variable, for example, is not visible
outside its defining method. Similarly, code that declares a variable in an
if block makes the variable inaccessible outside the if block (even in the
same method). In Listing 3.27, defining message inside the if statement
restricts its scope to the statement only. To avoid the error, you must
declare the string outside the if statement.

LisTING 3.27: Variables Inaccessible Outside Their Scope

class Program

{
static void Main(string[] args)
{
int playerCount;
System.Console.Write(
"Enter the number of players (1 or 2):");
playerCount = int.Parse(System.Console.ReadLine());
if (playerCount != 1 &&% playerCount != 2)
{
string message =
"You entered an invalid number of players.";
}
else
{
/] ...
}
// Error: message is not in scope.
System.Console.WriteLine(message);
}
}

Output 3.15 shows the results of Listing 3.27.

OuTPUT 3.15:

«..\Program.cs(l8.2k): error CSD103: The name 'message' does not exist
in the current context

Boolean Expressions

Declaration space cascades down to child (or embedded) code blocks
within a method. The C# compiler prevents the name of a local variable
declared immediately within a method code block (or as a parameter) from
being reused within a child code block. The declaration space is the parent
code block of a variable, including any child blocks within the parent code
block. From Listing 3.27, because args and playercCount are declared within
the method code block, they cannot be used again within declarations any-
where within the method.

Scope is also bound by the parent code block. The name message
applies only within the if block, not outside it. Similarly, playerCount
refers to the same variable throughout the method following where the
variable is declared—including within both the if and else child blocks.

Boolean Expressions

The portion of the if statement within parentheses is the Boolean expres-
sion, sometimes referred to as a conditional. In Listing 3.28, the Boolean
expression is highlighted.

LISTING 3.28: Boolean Expression

if(input < 9)

{
// Input is less than 9.
System.Console.WriteLine(
"Tic-tac-toe has more than {0}" +
" maximum turns.", input);
}
/...

Boolean expressions appear within many control flow statements. The
key characteristic is that they always evaluate to true or false. For input<9
to be allowed as a Boolean expression, it must return a bool. The compiler
disallows x=42, for example, because it assigns x, returning the new value,
instead of checking whether x’s value is 42.

109

110

Chapter 3: Operators and Control Flow

Language Contrast: C++— Mistakenly Using = in Place of ==

The significant feature of Boolean expressions in C# is the elimination of a
common coding error that historically appeared in C/C++. In C++, Listing
3.29 is allowed.

LISTING 3.29: C++, But Not C#, Allows Assignment as a Boolean Expression

if(input=9) // COMPILE ERROR: Allowed in C++, not in C#.
System.Console.WritelLine(
"Correct, tic-tac-toe has a maximum of 9 turns.");

Although this appears to check whether input equals 9, Chapter 1
showed that = represents the assignment operator, not a check for equal-
ity. The return from the assignment operator is the value assigned to the
variable—in this case, 9. However, 9 is an int, and as such it does not
qualify as a Boolean expression and is not allowed by the C# compiler.

Relational and Equality Operators

Included in the previous code examples was the use of relational opera-
tors. In those examples, relational operators were used to evaluate user
input. Table 3.2 lists all the relational and equality operators.

TABLE 3.2: Relational and Equality Operators

Operator Description Example

< Less than input<9;
> Greater than input>9;
<= Less than or equal to input<=9;
>= Greater than or equal to input>=9;
== Equality operator input==9;

= Inequality operator input!=9;

Boolean Expressions 111

In addition to determining whether a value is greater than or less than
another value, operators are also required to determine equivalency. You
test for equivalence by using equality operators. In C#, the syntax follows
the C/C++/Java pattern with ==. For example, to determine whether
input equals 9 you use input==9. The equality operator uses two equal
signs to distinguish it from the assignment operator, =.

The exclamation point signifies NOT in C#, so to test for inequality you
use the inequality operator, !=.

The relational and equality operators are binary operators, meaning
they compare two operands. More significantly, they always return a Bool-
ean data type. Therefore, you can assign the result of a relational operator
to a bool variable, as shown in Listing 3.30.

LisTING 3.30: Assigning the Result of a Relational Operator to a bool

bool result = 70 > 7;

In the tic-tac-toe program (see Appendix B), you use the equality operator
to determine whether a user has quit. The Boolean expression of Listing 3.31
includes an OR (| |) logical operator, which the next section discusses in detail.

LisTING 3.31: Using the Equality Operator in a Boolean Expression

if (input == "" || input == "quit")

{
System.Console.WritelLine("Player {@} quit!!", currentPlayer);
break;

}

Logical Boolean Operators

Logical operators have Boolean operands and return a Boolean result.
Logical operators allow you to combine multiple Boolean expressions to
form other Boolean expressions. The logical operators are ||, &, and *,
corresponding to OR, AND, and exclusive OR, respectively.

OR Operator (| |)

In Listing 3.31, if the user enters quit or presses the Enter key without typ-
ing in a value, it is assumed that she wants to exit the program. To enable
two ways for the user to resign, you use the logical OR operator, | |.

112

Chapter 3: Operators and Control Flow

The | | operator evaluates Boolean expressions and returns a true value
if either one of them is true (see Listing 3.32).

LisTING 3.32: Using the OR Operator

if((hourOfTheDay > 23) || (hourOfTheDay < 0))
System.Console.WriteLine("The time you entered is invalid.");

Note that with the Boolean OR operator, it is not necessary to evaluate
both sides of the expression. Like all operators in C#, the OR operators go
from left to right, so if the left portion of the expression evaluates to true,
then the right portion is ignored. Therefore, if hourOfTheDay has the value
33 then (hourOfTheDay > 23) will return true and the OR operator ignores
the second half of the expression—short-circuiting it. Short-circuiting an
expression also occurs with the Boolean AND operator.

AND Operator (88)
The Boolean AND operator, &&, evaluates to true only if both operands evalu-
ate to true. If either operand is false, the combined expression will return false.
Listing 3.33 displays that it is time for work as long as the current hour
is both greater than 10 and less than 24.* As you saw with the OR operator,
the AND operator will not always evaluate the right side of the expression.
If the left operand returns false, then the overall result will be false
regardless of the right operand, so the runtime ignores the right operand.

LisTING 3.33: Using the AND Operator

if ((10 < hourOfTheDay) && (hourOfTheDay < 24))
System.Console.WriteLine(
"Hi-Ho, Hi-Ho, it's off to work we go.");

Exclusive OR Operator (")
The caret symbol, #, is the “exclusive OR” (XOR) operator. When applied
to two Boolean operands, the XOR operator returns true only if exactly
one of the operands is true, as shown in Table 3.3.

Unlike the Boolean AND and Boolean OR operators, the Boolean XOR
operator does not short-circuit: It always checks both operands, because the
result cannot be determined unless the values of both operands are known.

4. The typical hours that programmers work.

Boolean Expressions 113

TaBLE 3.3: Conditional Values for the XOR Operator

Left Operand Right Operand Result
True True False
True False True
False True True
False False False

Logical Negation Operator (!)

Sometimes called the NOT operator, the logical negation operator, !,
inverts a bool data type to its opposite. This operator is a unary operator,
meaning it requires only one operand. Listing 3.34 demonstrates how it
works, and Output 3.16 shows the results.

LISTING 3.34: Using the Logical Negation Operator

bool result;

bool valid = false;

result = lvalid;

// Displays "result = True".
System.Console.WriteLine("result = {@}", result);

OuTPUT 3.16:

result = True

To begin, valid is set to false. You then use the negation operator on
valid and assign a new value to result.

Conditional Operator (?)

In place of an if-else statement used to select one of two values, you can
use the conditional operator. The conditional operator is a question mark
(?), and the general format is as follows:

conditional? consequence: alternative;

The conditional operator is a ternary operator, because it has three
operands: conditional, consequence, and alternative. If the conditional

114

Chapter 3: Operators and Control Flow

evaluates to true, then the conditional operator returns consequence.
Alternatively, if the conditional evaluates to false, then it returns
alternative.

Listing 3.35 is an example of how to use the conditional operator. The
full listing of this program appears in Appendix B.

LisTiING 3.35: Conditional Operator

public class TicTacToe

{

public static string Main()

{
// Initially set the currentPlayer to Player 1;

int currentPlayer = 1;
/..

for (int turn = 1; turn <= 10; turn++)

{
/..

// Switch players
currentPlayer = (currentPlayer == 2) ? 1 : 2;

The program swaps the current player. To do this, it checks whether the
current value is 2. This is the conditional portion of the conditional state-
ment. If the result is true, then the conditional operator returns the value 1.
Otherwise, it returns 2. Unlike an if statement, the result of the conditional
operator must be assigned (or passed as a parameter). It cannot appear as
an entire statement on its own.

Use the conditional operator sparingly, because readability is often sac-
rificed and a simple if/else statement may be more appropriate.

Null Coalescing Operator (??)

Starting with C# 2.0, there is a shortcut to the conditional operator when
checking for null. The shortcut is the null coalescing operator, and it eval-
uates an expression for null and returns a second expression if the value
is null.

expressionl?? expression2;

Bitwise Operators (<<, >>, |, & *, ~) 115

If the expression (expressionl) is not null, then expressionl is
returned. In other words, the null coalescing operator returns expressionl
directly unless expression1 evaluates to null, in which case expression2
is returned. Unlike the conditional operator, the null coalescing operator is
a binary operator.

Listing 3.36 is an example of how to use the null coalescing operator.

LisTING 3.36: Null Coalescing Operator

string fileName;

/...

string fullName = fileName??"default.txt";
/] ...

In this listing, we use the null coalescing operator to set fullName to
“default.txt” if fileName is null. If fileName is not null, fullName is simply
assigned the value of fileName.

Bitwise Operators (<<, >>, |, & *, ~)

An additional set of operators that is common to virtually all program-
ming languages is the set of operators for manipulating values in their
binary formats: the bit operators.

BEGINNER TOPIC

Bits and Bytes

All values within a computer are represented in a binary format of 1s and 0s,
called binary digits (bits). Bits are grouped together in sets of eight, called
bytes. In a byte, each successive bit corresponds to a value of 2 raised to a
power, starting from 2% on the right, to 27 on the left, as shown in Figure 3.1.

ojofojoj0O0j0O]0O]O

27 20 2 2t 28 22 20 2
FIGURE 3.1: Corresponding Placeholder Values

In many instances, particularly when dealing with low-level or system
services, information is retrieved as binary data. In order to manipulate these
devices and services, you need to perform manipulations of binary data.

116

Chapter 3: Operators and Control Flow

As shown in Figure 3.2, each box corresponds to a value of 2 raised to
the power shown. The value of the byte (8-bit number) is the sum of the
powers of 2 of all of the eight bits that are set to 1.

ojofojo|oj|t1ty|1|1

7=4 + 2 + 1

FiGUure 3.2: Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed
numbers. Signed numbers (long, short, int) are represented using a 2s
complement notation. This is so that addition continues to work when
adding a negative number to a positive number as though both were posi-
tive operands. With this notation, negative numbers behave differently
than positive numbers. Negative numbers are identified by a 1 in the left-
most location. If the leftmost location contains a 1, you add the locations
with Os rather than the locations with 1s. Each location corresponds to the
negative power of 2 value. Furthermore, from the result, it is also neces-
sary to subtract 1. This is demonstrated in Figure 3.3.

1111|111]0]0]1

7=-4 -2 +0 -1
FiGure 3.3: Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to -1 and 1111 1111 1111
1001 holds the value —7. 1000 0000 0000 0000 corresponds to the lowest
negative value that a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)

Sometimes you want to shift the binary value of a number to the right or
left. In executing a left shift, all bits in a number’s binary representation are
shifted to the left by the number of locations specified by the operand on the
right of the shift operator. Zeroes are then used to backfill the locations on
the right side of the binary number. A right-shift operator does almost the

Bitwise Operators (<<, >>, |, & *, ~)

same thing in the opposite direction. However, if the number is negative,
then the values used to backfill the left side of the binary number are ones
and not zeroes. The shift operators are >> and <<, the right-shift and left-
shift operators, respectively. In addition, there are combined shift and
assignment operators, <<=and >>=.

Consider the following example. Suppose you had the int value -7,
which would have a binary representation of 1111 1111 1111 1111 1111
1111 1111 1001. In Listing 3.37, you right-shift the binary representation
of the number -7 by two locations.

LisTING 3.37: Using the Right-Shift Operator

int x;

x = (-7 >> 2); // 11111111111111111111111111111001 becomes
// 11111111111111111111111111111116

// Write out "x is -2."

System.Console.WriteLine("x = {0}.", X);

Output 3.17 shows the results of Listing 3.37.

OuTPUT 3.17:

x = -2.

Because of the right shift, the value of the bit in the rightmost location has
“dropped off” the edge and the negative bit indicator on the left shifts by
two locations to be replaced with 1s. The result is -2.

Bitwise Operators (&, |, *)

In some instances, you might need to perform logical operations, such as
AND, OR, and XOR, on a bit-by-bit basis for two operands. You do this via
the &, |, and ~ operators, respectively.

BEGINNER TOPIC

Logical Operators Explained
If you have two numbers, as shown in Figure 3.4, the bitwise operations will
compare the values of the locations beginning at the leftmost significant

117

118

Chapter 3: Operators and Control Flow

value and continuing right until the end. The value of “1” in a location is
treated as “true,”and the value of “0” in a location is treated as “false.”

122 (0OfO0O|JO|Of1T (1T [OfO

FIGURE 3.4: The Numbers 12 and 7 Represented in Binary

Therefore, the bitwise AND of the two values in Figure 3.4 would be the
bit-by-bit comparison of bits in the first operand (12) with the bits in the
second operand (7), resulting in the binary value 800000100, which is 4.
Alternatively, a bitwise OR of the two values would produce 00001111, the
binary equivalent of 15. The XOR result would be 00001011, or decimal 11.

Listing 3.38 demonstrates how to use these bitwise operators. The
results of Listing 3.38 appear in Output 3.18.

LisTING 3.38: Using Bitwise Operators

byte and, or, xor;
and = 12 & 7; // and = 4
or =12 | 7; // or = 15
xor = 12 ~ 7; // xor = 11
System.Console.WritelLine(
"and = {0} \nor = {1}\nxor = {2}"
and, or, xor);

OuTpPUT 3.18:

and = 4
or = 15
xor = 11

In Listing 3.38, the value 7 is the mask; it is used to expose or eliminate spe-

cific bits within the first operand using the particular operator expression.
In order to convert a number to its binary representation, you need to

iterate across each bit in a number. Listing 3.39 is an example of a program

Bitwise Operators (<<, >>, |, & *, ~) 119

that converts an integer to a string of its binary representation. The results
of Listing 3.39 appear in Output 3.19.

LisTING 3.39: Getting a String Representation of a Binary Display

public class BinaryConverter
{
public static void Main()
{
const int size = 64;
ulong value;
char bit;

System.Console.Write ("Enter an integer: ");

// Use long.Parse() so as to support negative numbers
// Assumes unchecked assignment to ulong.

value = (ulong)long.Parse(System.Console.ReadLine());

// Set initial mask to 10e....

ulong mask = 1ul << size - 1;

for (int count = @; count < size; count++)

{
bit = ((mask & value) > 9@) ? '1': '0';
System.Console.Write(bit);
// Shift mask one location over to the right
mask >>= 1;

}

System.Console.WriteLine();

OuTPUT 3.19:

Enter an integer: 42
00000000D0D0D0D0D0D0OD0000000000000000000000000000000000000L0L0L0

Notice that within each iteration of the for loop (discussed shortly), you
use the right-shift assignment operator to create a mask corresponding to
each bit in value. By using the & bit operator to mask a particular bit, you
can determine whether the bit is set. If the mask returns a positive result,
you set the corresponding bit to 1; otherwise, it is set to . In this way, you
create a string representing the binary value of an unsigned long.

120

Chapter 3: Operators and Control Flow

Bitwise Assignment Operators (&=, | =, =)

Not surprisingly, you can combine these bitwise operators with assign-
ment operators as follows: &=, | =, and ~=. As a result, you could take a vari-
able, OR it with a number, and assign the result back to the original
variable, which Listing 3.40 demonstrates.

LisTING 3.40: Using Logical Assignment Operators

byte and, or, xor;
and = 12;
and &= 7; // and = 4

2;
7; // or = 15

xor "= 7; // xor = 11
System.Console.WriteLine(
"and = {0} \nor = {1} \nxor = {2}",
and, or, xor);

The results of Listing 3.40 appear in Output 3.20.

OuTPUT 3.20:

and = 4
or = 15
xor = 11

Combining a bitmap with a mask using something like fields &= mask
clears the bits in fields that are not set in the mask. The opposite, fields
&= ~mask, clears out the bits in fields that are set in mask.

Bitwise Complement Operator (~)
The bitwise complement operator takes the complement of each bit in the

operand, where the operand can be an int, uint, long, or ulong. ~1, there-
fore, returns 1111 1111 1111 1111 1111 1111 1111 1110 and ~(1<<31)
returns 0111 1111 1111 1111 1111 1111 1111 1111.

Control Flow Statements, Continued

Control Flow Statements, Continued

With the additional coverage of Boolean expressions, it’s time to consider
more of the control flow statements supported by C#. As indicated in the
introduction to this chapter, many of these statements will be familiar to
experienced programmers, so you can skim this section for information
specific to C#. Note in particular the foreach loop, as this may be new to
many programmers.

The while and do/while Loops

Until now, you have learned how to write programs that do something
only once. However, one of the important capabilities of the computer is
that it can perform the same operation multiple times. In order to do this,
you need to create an instruction loop. The first instruction loop I will dis-
cuss is the while loop. The general form of the while statement is as
follows:

while(boolean-expression)
statement

The computer will repeatedly execute statement as long as boolean-
expression evaluates to true. If the expression evaluates to false, then
code execution continues at the instruction following statement. (Note that
statement will continue to execute even if it causes boolean-expression to
be false. It isn’t until the boolean-expression is reevaluated within the
while condition that the loop exits.) The Fibonacci calculator shown in
Listing 3.41 demonstrates the while loop.

LISTING 3.41: while Loop Example

class FibonacciCalculator
{
static void Main()
{
decimal current;
decimal previous;
decimal temp;
decimal input;

System.Console.Write("Enter a positive integer:");

121

122

Chapter 3: Operators and Control Flow

// decimal.Parse convert the ReadlLine to a decimal.
input = decimal.Parse(System.Console.ReadlLine());

// Initialize current and previous to 1, the first
// two numbers in the Fibonacci series.
current = previous = 1;

// While the current Fibonacci number in the series 1is
// less than the value input by the user.
while(current <= input)

temp = current;
current = previous + current;
previous = temp;

System.Console.WriteLine(
"The Fibonacci number following this is {e}",
current);

A Fibonacci number is a member of the Fibonacci series, which
includes all numbers that are the sum of the previous two numbers in the
series, beginning with 1 and 1. In Listing 3.41, you prompt the user for an
integer. Then you use a while loop to find the Fibonacci number that is
greater than the number the user entered.

BEGINNER TOPIC

When to Use awhile Loop

The remainder of this chapter considers other types of statements that
cause a block of code to execute repeatedly. The term loop refers to the
block of code that is to be executed within the while statement, since the
code is executed in a “loop” until the exit condition is achieved. It is impor-
tant to understand which loop construct to select. You use a while con-
struct to iterate while the condition evaluates to true. A for loop is used
most appropriately whenever the number of repetitions is known, such as
counting from 0 to n. A do/while is similar to a while loop, except that it
will always loop at least once.

Control Flow Statements, Continued

The do/while loop is very similar to the while loop except that a do/
while loop is preferred when the number of repetitions is from 1 to n and n
is indeterminate when iterating begins. This pattern occurs most com-
monly when repeatedly prompting a user for input. Listing 3.42 is taken
from the tic-tac-toe program.

LISTING 3.42: do/while Loop Example

// Repeatedly request player to move until he
// enter a valid position on the board.

do

{

valid = false;

// Request a move from the current player.
System.Console.Write(

"\nplayer {0}: Enter move:", currentplayer);
input = System.Console.ReadlLine();

// Check the current player's input.
[/ ..

} while (!valid);

In Listing 3.42, you always initialize valid to false at the beginning of
each iteration, or loop repetition. Next, you prompt and retrieve the num-
ber the user input. Although not shown here, you then check whether the
input was correct, and if it was, you assign valid equal to true. Since the
code uses a do/while statement rather than a while statement, the user
will be prompted for input at least once.

The general form of the do/while loop is as follows:

do
statement
while(boolean-expression);

As with all the control flow statements, the code blocks are not part of
the general form. However, a code block is generally used in place of a sin-
gle statement in order to allow multiple statements.

123

124

Chapter 3: Operators and Control Flow

The for Loop
Increment and decrement operators are frequently used within a for
loop. The for loop iterates a code block until a specified condition is
reached in a way similar to the while loop. The difference is that the for
loop has built-in syntax for initializing, incrementing, and testing the
value of a counter.

Listing 3.43 shows the for loop used to display an integer in binary
form. The results of this listing appear in Output 3.21.

LisTING 3.43: Using the for Loop

public class BinaryConverter
{
public static void Main()
{
const int size = 64;
ulong value;
char bit;

System.Console.Write ("Enter an integer: ");

// Use long.Parse() so as to support negative numbers
// Assumes unchecked assignment to ulong.

value = (ulong)long.Parse(System.Console.ReadLine());

// Set initial mask to 1e0....

ulong mask = 1ul << size - 1;

for (int count = @; count < size; count++)

{
bit = ((mask & value) > 9) ? '"1': '@';
System.Console.Write(bit);
// Shift mask one location over to the right
mask >>= 1;

OuTpPUT 3.21:

Enter an integer: -4i2
111:1:121212322%123212122321223212222223212122122121211211010110

Listing 3.43 performs a bit mask 64 times, once for each bit in the num-
ber. The for loop declares and initializes the variable count, escapes once
the count reaches 64, and increments the count during each iteration. Each

Control Flow Statements, Continued 125

expression within the for loop corresponds to a statement. (It is easy to
remember that the separation character between expressions is a semico-
lon and not a comma, because each expression could be a statement.)

You write a for loop generically as follows:

for(initial; boolean-expression; Loop)
statement

Here is a breakdown of the for loop.

* The initial expression performs operations that precede the first
iteration. In Listing 3.43, it declares and initializes the variable count.
The initial expression does not have to be a declaration of a new
variable. It is possible, for example, to declare the variable beforehand
and simply initialize it in the for loop. Variables declared here, how-
ever, are bound within the scope of the for statement.

* The boolean-expression portion of the for loop specifies an end con-
dition. The loop exits when this condition is false in a manner similar
to the while loop’s termination. The for loop will repeat only as long
as boolean-expression evaluates to true. In the preceding example,
the loop exits when count increments to 64.

* The loop expression executes after each iteration. In the preceding
example, count++ executes after the right shift of the mask (mask >>=
1), but before the Boolean expression is evaluated. During the sixty-
fourth iteration, count increments to 64, causing boolean-expression
to be false and, therefore, terminating the loop. Because each expres-
sion may be thought of as a separate statement, each expression in the
for loop is separated by a semicolon.

* The statement portion of the for loop is the code that executes while
the conditional expression remains true.

If you wrote out each for loop execution step in pseudocode without
using a for loop expression, it would look like this:

1. Declare and initialize count to 0.

2. Verify that count is less than 64.

126

Chapter 3: Operators and Control Flow

Calculate bit and display it.
Shift the mask.

Increment count by one.

ARSI

If count<64, then jump back to line 3.

The for statement doesn’t require any of the elements between paren-
theses. for(;;){ ... }is perfectly valid; although there still needs to be a
means to escape from the loop to avoid executing infinitely. Similarly, the
initial and loop expressions can be a complex expression involving multi-
ple subexpressions, as shown in Listing 3.44.

LISTING 3.44: for Loop Using Multiple Expressions

for(int x=0, y=5; ((x<=5) && (y>=0)); y--, X++)

{
System.Console.Write("{@}{1}{2}\t",

X, (x>y? '>' 1 '<"), y);

The results of Listing 3.44 appear in Output 3.22.

OuTPUT 3.22:

0<5 1<y 2<3 3>e 4>L 5>0

In this case, the comma behaves exactly as it does in a declaration state-
ment, one that declares and initializes multiple variables. However, pro-
grammers should avoid complex expressions such as this one because they
are difficult to read and understand.

Generically, you can write the for loop as a while loop, as shown here:

initial;
while(boolean-expression)
{

statement;

Loop;
}

Control Flow Statements, Continued

BEGINNER TOPIC

Choosing between for and while Loops

Although you can use the two statements interchangeably, generally you
would use the for loop whenever there is some type of counter, and the
total number of iterations is known when the loop is initialized. In con-
trast, you would typically use the while loop when iterations are not based
on a count or when the number of iterations is indeterminate when iterat-
ing commences.

The foreach Loop
The last loop statement within the C# language is foreach. foreach is
designed to iterate through a collection of items, setting a variable to repre-
sent each item in turn. During the loop, operations may be performed on
the item. One feature of the foreach loop is that it is not possible to acci-
dentally miscount and iterate over the end of the collection.

The general form of the foreach statement is as follows:

foreach(type variable in collection)
statement;

Here is a breakdown of the foreach statement.

* type is used to declare the data type of the variable for each item
within the collection.

* variableisaread-only variable into which the foreach construct will
automatically assign the next item within the collection. The scope of
the variable is limited to the foreach loop.

* collection is an expression, such as an array, representing multiple
items.

* statement is the code that executes for each iteration within the
foreach loop.

Consider the foreach loop in the context of the simple example shown
in Listing 3.45.

127

128

Chapter 3: Operators and Control Flow

LISTING 3.45: Determining Remaining Moves Using the foreach Loop

class TicTacToe // Declares the TicTacToe class.

{

static void Main() // Declares the entry point of the program.

{

// Hardcode initial board as follows
Y R

char[] cells = {
'1', '2', '3', '4', 's', '6', '7', '8', 'O
¥

System.Console.Write(
"The available moves are as follows: ");

// Write out the 1initial available moves
foreach (char cell in cells)

{ if (cell != '0" &&% cell != 'X")
{
System.Console.Write("{0} ", cell);
}
X

Output 3.23 shows the results of Listing 3.45.

OuTPUT 3.23:

The available moves are as follows: 1 2 3 4 5k 7889

When the execution engine reaches the foreach statement, it assigns to the
variable cell the first item in the cells array—in this case, the value '1". It
then executes the code within the foreach statement block. The if state-
ment determines whether the value of cell is '0"' or 'X'. If it is neither,
then the value of cell is written out to the console. The next iteration then
assigns the next array value to cell, and so on.

Control Flow Statements, Continued 129

It is important to note that the compiler prevents modification of the
variable (cell) during the execution of a foreach loop.

BEGINNER TOPIC

Where the switch Statement Is More Appropriate
Sometimes you might compare the same value in several continuous if
statements, as shown with the input variable in Listing 3.46.

LisTING 3.46: Checking the Player’s Input with an if Statement
/...

bool valid = false;

// Check the current player's input.

if((input == "1") ||
(input =
(input ==
(input ==
(input ==
(input == "
(input ==
(input ==
(input ==

Qw N uawN

I
I
I
I
I
I
I
)

— O~

// Save/move as the player directed.
/.

valid = true;

}
else if((input == "") || (input == "quit"))
{
valid = true;
}
else
{
System.Console.WriteLine(
"\nERROR: Enter a Value from 1-9."
+ "Push ENTER to quit");
}

/...

130

Chapter 3: Operators and Control Flow

This code validates the text entered to ensure that it is a valid tic-tac-toe

move. If the value of input were 9, for example, the program would have
to perform nine different evaluations. It would be preferable to jump to the
correct code after only one evaluation. To enable this, you use a switch
statement.

The switch Statement

Given a variable to compare and a list of constant values to compare
against, the switch statement is simpler to read and code than the if state-
ment. The switch statement looks like this:

switch(test-expression)
{
[case option-constant:
statement
[default:
statement]

}

Here is a breakdown of the switch statement.

° test-expressionreturns a value that is compatible with the govern-

ing types. Allowable governing data types are sbyte, byte, short,
ushort, int, uint, long, ulong, char, string, and an enum type (cov-
ered in Chapter 8).

* constant is any constant expression compatible with the data type of

the governing type.

* statement is one or more statements to be executed when the govern-

ing type expression equals the constant value. The statement or state-
ments must have no reachable endpoint. In other words, the statement,
or last of the statements if there are more than one, must be a jump
statement such as a break, return, or goto statement. If the switch
statement appears within a loop, then continue is also allowed.

A switch statement should have at least one case statement or a default

statement. In other words, switch(x){} will generate a warning.

Listing 3.47, with a switch statement, is semantically equivalent to the

series of if statements in Listing 3.46.

Control Flow Statements, Continued

LisTING 3.47: Replacing the if Statement with a switch Statement

static bool ValidateAndMove(
int[] playerPositions, int currentPlayer, string input)

{

bool valid = false;

// Check the current player's input.
switch (input)
{
case "1"
case "2"
case "3"
case "4" :
case "5"
case "6"
case "7"
case "8"
case "9" :
// Save/move as the player directed.

valid = true;
break;
case ""
case "quit" :
valid = true;
break;
default :
// If none of the other case statements
// 1s encountered then the text is invalid.
System.Console.WriteLine(
"\NnERROR: Enter a value from 1-9."
+ "Push ENTER to quit");
break;

return valid;

}

In Listing 3.47, input is the governing type expression. Since input is a
string, all of the constants are strings. If the value of inputis 1, 2, ... 9, then
the move is valid and you change the appropriate cell to match that of the
current user’s token (X or O). Once execution encounters a break state-
ment, it immediately jumps to the instruction following the switch

statement.

131

132 Chapter 3: Operators and Control Flow

The next portion of the switch looks for "" or "quit", and sets valid to
true if input equals one of these values. Ultimately, the default label is
executed if no prior case constant was equivalent to the governing type.

There are several things to note about the switch statement.

¢ Placing nothing within the switch block will generate a compiler
warning, but the statement will still compile.

 default does not have to appear last within the switch statement.
case statements appearing after default are evaluated.

* When you use multiple constants for one case statement, they should
appear consecutively, as shown in Listing 3.47.

¢ The compiler requires a jump statement (usually a break).

Language Contrast: C++—switch Statement Fall-through

Unlike C++, C# does not allow a switch statement to fall through from one
case block to the next if the case includes a statement. A jump statement
is always required following the statement within a case. The C# founders
believed it was better to be explicit and require the jump statement in favor
of code readability. If programmers want to use a fall-through semantic,
they may do so explicitly with a goto statement, as demonstrated in the
section The goto Statement, later in this chapter.

Jump Statements

It is possible to alter the execution path of a loop. In fact, with jump state-
ments, it is possible to escape out of the loop or to skip the remaining por-
tion of an iteration and begin with the next iteration, even when the
conditional expression remains true. This section considers some of the
ways to jump the execution path from one location to another.

The break Statement
To escape out of a loop or a switch statement, C# uses a break state-
ment. Whenever the break statement is encountered, the execution path

Jump Statements

immediately jumps to the first instruction following the loop. Listing 3.48

examines the foreach loop from the tic-tac-toe program.

LISTING 3.48: Using break to Escape Once a Winner Is Found

class TicTacToe // Declares the TicTacToe class.

{

static void Main() // Declares the entry point of the program.

{

int winner=0;
// Stores locations each player has moved.
int[] playerPositions = {0,0};

// Hardcoded board position
// X 2]o
VZZEEEE SRR EES

playerPositions[@] = 449;
playerPositions[1] = 28;

// Determine if there is a winner
int[] winningMasks = {
7, 56, 448, 73, 146, 292, 84, 273 };

// Iterate through each winning mask to determine
// if there is a winner.
foreach (int mask in winningMasks)
{
if ((mask & playerPositions[@]) == mask)
{
winner = 1;
break;

}
else if ((mask & playerPositions[1]) == mask)

{
winner = 2;
break;

System.Console.WriteLine(
"Player {0} was the winner", winner);

Output 3.24 shows the results of Listing 3.48.

133

134

Chapter 3: Operators and Control Flow

OUTPUT 3.24:

Player 1 was the winner

Listing 3.48 uses a break statement when a player holds a winning posi-
tion. The break statement forces its enclosing loop (or a switch statement)
to cease execution, and the program moves to the next line outside the
loop. For this listing, if the bit comparison returns true (if the board holds
a winning position), the break statement causes execution to jump and dis-
play the winner.

BEGINNER TOPIC

Bitwise Operators for Positions

The tic-tac-toe example uses the bitwise operators (Appendix B) to deter-
mine which player wins the game. First, the code saves the positions of
each player into a bitmap called playerPositions. (It uses an array so that
the positions for both players can be saved.)

To begin, both playerPositions are 0. As each player moves, the bit
corresponding to the move is set. If, for example, the player selects cell 3,
shifterissetto3 - 1. The code subtracts 1 because C# is zero-based and
you need to adjust for 0 as the first position instead of 1. Next, the code
sets position, the bit corresponding to cell 3, using the shift operator
000000000000001 << shifter, where shifter now has a value of 2. Lastly,
it sets playerPositions for the current player (subtracting 1 again to shift
to zero-based) to 000PEEELV000V100. Listing 3.49 uses |= so that previous
moves are combined with the current move.

LISTING 3.49: Setting the Bit That Corresponds to Each Player’s Move

int shifter; // The number of places to shift
// over 1in order to set a bit.
int position; // The bit which is to be set.

// int.Parse() converts "input" to an integer.
// "int.Parse(input) - 1" because arrays

// are zero-based.

shifter = int.Parse(input) - 1;

// Shift mask of ©000000OLOOOOOO 1
// over by celllocations.

Jump Statements

position = 1 << shifter;

// Take the current player cells and OR them to set the
// new position as well.

// Since currentPlayer is either 1 or 2,

// subtract one to use currentPlayer as an

// index in a ©-based array.
playerPositions[currentPlayer-1] |= position;

Later in the program, you can iterate over each mask corresponding to
winning positions on the board to determine whether the current player
has a winning position, as shown in Listing 3.48.

The continue Statement
In some instances, you may have a series of statements within a loop. If
you determine that some conditions warrant executing only a portion of
these statements for some iterations, you use the continue statement to
jump to the end of the current iteration and begin the next iteration. The
C# continue statement allows you to exit the current iteration (regardless
of which additional statements remain) and jump to the loop conditional.
At that point, if the loop conditional remains true, the loop will continue
execution.

Listing 3.50 uses the continue statement so that only the letters of the
domain portion of an email are displayed. Output 3.25 shows the results of
Listing 3.50.

LiSTING 3.50: Determining the Domain of an Email Address

class EmailDomain

{

static void Main()

{
string email;
bool insideDomain = false;
System.Console.WriteLine("Enter an email address: ");

email = System.Console.ReadLine();
System.Console.Write("The email domain is: ");

// Iterate through each letter in the email address.
foreach (char letter in email)

{

135

136 Chapter 3: Operators and Control Flow

if (!insideDomain)

{ if (letter == '@')
{
insideDomain = true;
}
continue;
}
System.Console.Write(letter);
¥
¥
}
OuTPUT 3.25:

Enter an email address:
markddotnetprogramming.com
The email domain is: dotnetprogramming.com

In Listing 3.50, if you are not yet inside the domain portion of the email
address, you need to use a continue statement to jump to the next charac-
ter in the email address.

In general, you can use an if statement in place of a continue state-
ment, and this is usually more readable. The problem with the continue
statement is that it provides multiple exit points within the iteration, and
this compromises readability. In Listing 3.51, the sample has been rewrit-
ten, replacing the continue statement with the if/else construct to dem-
onstrate a more readable version that does not use the continue statement.

LisTING 3.51: Replacing a continue with an if Statement

foreach (char letter in email)

{
if (insideDomain)
{
System.Console.Write(letter);
¥
else
{
if (letter == '@")
{
insideDomain = true;
¥
¥

Jump Statements 137

The goto Statement

With the advent of object-oriented programming and the prevalence of
well-structured code, the existence of a goto statement within C# seems
like an aberration to many experienced programmers. However, C# sup-
ports goto, and it is the only method for supporting fall-through within a
switch statement. In Listing 3.52, if the /out option is set, code execution
jumps to the default case using the goto statement; similarly for/f.

LiISTING 3.52: Demonstrating a switch with goto Statements

/] ...
static void Main(string[] args)

{
bool isOutputSet = false;

bool isFiltered = false;

foreach (string option in args)

{
switch (option)
{
case "/out":
isOutputSet = true;
isFiltered = false;
goto default;
case "/f":
isFiltered = true;
isRecursive = false;
goto default;
default:
if (isRecursive)
{
// Recurse down the hierarchy
/..
}
else if (isFiltered)
{
// Add option to Llist of filters.
/..
}
break;
}
¥
/! ...

138

Chapter 3: Operators and Control Flow

Output 3.26 shows the results of Listing 3.52.

OuTPUT 3.26:

C:\SAMPLES>Generate /out fizbottle-.bin /f "%.xml™ "%x.wsdl"

As demonstrated in Listing 3.52, goto statements are ugly. In this particu-
lar example, this is the only way to get the desired behavior of a switch state-
ment. Although you can use goto statements outside switch statements,
they generally cause poor program structure and you should deprecate them
in favor of a more readable construct. Note also that you cannot use a goto
statement to jump from outside a switch statement into a label within a
switch statement. More generally, C# prevents using goto into something,
and allows its use only within or out of something. By making this restriction,
C# avoids most of the serious goto abuses available in other languages.

Ci# Preprocessor Directives

Control flow statements evaluate conditional expressions at runtime. In
contrast, the C# preprocessor is invoked during compilation. The prepro-
cessor commands are directives to the C# compiler, specifying the sections
of code to compile or identifying how to handle specific errors and warn-
ings within the code. C# preprocessor commands can also provide direc-
tives to C# editors regarding the organization of code.

Language Contrast: C++—Preprocessing

Languages such as C and C++ contain a preprocessor, a separate utility
from the compiler that sweeps over code, performing actions based on
special tokens. Preprocessor directives generally tell the compiler how to
compile the code in a file and do not participate in the compilation process
itself. In contrast, the C# compiler handles preprocessor directives as part
of the regular lexical analysis of the source code. As a result, C# does not
support preprocessor macros beyond defining a constant. In fact, the term
preprocessor is generally a misnomer for C#.

Each preprocessor directive begins with a hash symbol (#), and all
preprocessor directives must appear on one line. A newline rather than a

C# Preprocessor Directives

semicolon indicates the end of the directive.

A list of each preprocessor directive appears in Table 3.4.

TABLE 3.4: Preprocessor Directives

Statement or
Expression

General Syntax Structure

Example

#if directive

#if preprocessor-expression
code

#if CSHARP2

Console.Clear();

t#tendif ttendif
#elif directive #if preprocessor-expressionl #if LINUX
code cee
#telif preprocessor-expression2 #elif WINDOWS
code cee
#tendif t#tendif
#else directive #if #if CSHARP1
code cee
ttelse ttelse
code N
#endif #tendif

#define directive

#tdefine conditional-symbol

#define CSHARP2

#undef directive

#tundef conditional-symbol

t#tundef CSHARP2

#terror directive

#error preproc-message

#error Buggy
implementation

#warning
directive

#warning preproc-message

#warning Needs
code review

#pragma directive

#pragma warning

#pragma warning
disable 1030

#1line directive

#line org-line new-line

#line default

#line 467
"TicTacToe.cs"

#line default

#region directive

#region pre-proc-message
code
#endregion

#region Methods

t#tendregion

139

140

Chapter 3: Operators and Control Flow

Excluding and Including Code (#if, #elif, #else, #tendif)

Perhaps the most common use of preprocessor directives is in controlling
when and how code is included. For example, to write code that could be
compiled by both C# 2.0 and later compilers and the prior version 1.2 com-
pilers, you use a preprocessor directive to exclude C# 2.0-specific code
when compiling with a 1.2 compiler. You can see this in the tic-tac-toe
example and in Listing 3.53.

LisTING 3.53: Excluding C# 2.0 Code from a C# 1.x Compiler

#if CSHARP2
System.Console.Clear();
#endif

In this case, you call the System.Console.Clear() method, which is avail-
able only in the 2.0 CLI version and later. Using the #if and #endif prepro-
cessor directives, this line of code will be compiled only if the preprocessor
symbol CSHARP2 is defined.

Another use of the preprocessor directive would be to handle differ-
ences among platforms, such as surrounding Windows- and Linux-specific
APIs with WINDOWS and LINUX #if directives. Developers often use these
directives in place of multiline comments (/*. . . */) because they are easier
to remove by defining the appropriate symbol or via a search and replace.
A final common use of the directives is for debugging. If you surround code
with an #if DEBUG, you will remove the code from a release build on most
IDEs. The IDEs define the DEBUG symbol by default in a debug compile and
RELEASE by default for release builds.

To handle an else-if condition, you can use the #elif directive within
the #if directive, instead of creating two entirely separate #if blocks, as
shown in Listing 3.54.

LISTING 3.54: Using #1if, #telif, and #endif Directives

#if LINUX
#elif WINDOWS

#endif

C# Preprocessor Directives

Defining Preprocessor Symbols (#define, #undef)
You can define a preprocessor symbol in two ways. The first is with the
#define directive, as shown in Listing 3.55.

LISTING 3.55: A #define Example

#tdefine CSHARP2

The second method uses the define option when compiling for .NET,
as shown in Output 3.27.

OuTPUT 3.27:

>csc.exe /define:CSHARPZ2 TicTacToe-.cs

Output 3.28 shows the same functionality using the Mono compiler.

OuTPUT 3.28:

>mcs.exe -define:CSHARPZ2 TicTacToe.cs

To add multiple definitions, separate them with a semicolon. The
advantage of the define complier option is that no source code changes are
required, so you may use the same source files to produce two different
binaries.

To undefine a symbol you use the #undef directive in the same way you
use #define.

Emitting Errors and Warnings (#error, #warning)

Sometimes you may want to flag a potential problem with your code. You
do this by inserting #error and #warning directives to emit an error or
warning, respectively. Listing 3.56 uses the tic-tac-toe sample to warn that
the code does not yet prevent players from entering the same move multi-
ple times. The results of Listing 3.56 appear in Output 3.29.

141

142

Chapter 3: Operators and Control Flow

LISTING 3.56: Defining a Warning with #warning

#warning "Same move allowed multiple times."

OuTPUT 3.29:

Performing main compilation...
...\tictactoe.cs(4?1.1k): warning CS1030: #warning: '"Same move allowed
multiple times."'

Build complete -- O errorsa 1 warnings

By including the #warning directive, you ensure that the compiler will
report a warning, as shown in Output 3.29. This particular warning is a
way of flagging the fact that there is a potential enhancement or bug
within the code. It could be a simple way of reminding the developer of a
pending task.

Turning Off Warning Messages (#pragma)

Warnings are helpful because they point to code that could potentially be
troublesome. However, sometimes it is preferred to turn off particular
warnings explicitly because they can be ignored legitimately. C# 2.0 and
later compilers provide the preprocessor #pragma directive for just this
purpose (see Listing 3.57).

LisTING 3.57: Using the Preprocessor #pragma Directive to Disable the #warning Directive

#pragma warning disable 1030

Note that warning numbers are prefixed with the letters CS in the compiler
output. However, this prefix is not used in the #pragma warning directive.
The number corresponds to the warning error number emitted by the com-
piler when there is no preprocessor command.

To reenable the warning, #pragma supports the restore option follow-
ing the warning, as shown in Listing 3.58.

LisTING 3.58: Using the Preprocessor #pragma Directive to Restore a Warning

#pragma warning restore 1030

C# Preprocessor Directives 143

In combination, these two directives can surround a particular block of
code where the warning is explicitly determined to be irrelevant.

Perhaps one of the most common warnings to disable is CS1591, as this
appears when you elect to generate XML documentation using the /doc
compiler option, but you neglect to document all of the public items within
your program.

nowarn:<warn list> Option

In addition to the #pragma directive, C# compilers generally support the
nowarn:<warn list> option. This achieves the same result as #pragma,
except that instead of adding it to the source code, you can insert the com-
mand as a compiler option. In addition, the nowarn option affects the entire
compilation, and the #pragma option affects only the file in which it
appears. Turning off the CS1591 warning, for example, would appear on
the command line as shown in Output 3.30.

OuTPUT 3.30:

> csc /docigenerate-xml /nowarn:1591 /out:generate.exe Program.cs

Specifying Line Numbers (#1ine)

The #1ine directive controls on which line number the C# compiler reports
an error or warning. It is used predominantly by utilities and designers
that emit C# code. In Listing 3.59, the actual line numbers within the file
appear on the left.

LisTING 3.59: The #1ine Preprocessor Directive

124 #line 113 "TicTacToe.cs"
125 t#warning "Same move allowed multiple times."
126 #line default

Including the #line directive causes the compiler to report the warning
found on line 125 as though it was on line 113, as shown in the compiler
error message shown in Output 3.31.

144

Chapter 3: Operators and Control Flow

OuTPUT 3.31:

Performing main compilation...
.../tictactoe.cs(113.18): warning (S1030: #warning: '"Same move allowed
multiple times."'

Build complete -- O errorsa 1 warnings

Following the #1ine directive with default reverses the effect of all prior
#line directives and instructs the compiler to report true line numbers
rather than the ones designated by previous uses of the #1ine directive.

Hints for Visual Editors (#region, #endregion)

C# contains two preprocessor directives, #region and #endregion, that are
useful only within the context of visual code editors. Code editors, such as
the one in the Microsoft Visual Studio .NET IDE, can search through
source code and find these directives to provide editor features when writ-
ing code. C# allows you to declare a region of code using the #region
directive. You must pair the #region directive with a matching #endregion
directive, both of which may optionally include a descriptive string follow-
ing the directive. In addition, you may nest regions within one another.

Again, Listing 3.60 shows the tic-tac-toe program as an example.

LISTING 3.60: A #tregion and #endregion Preprocessor Directive

#tregion Display Tic-tac-toe Board

#if CSHARP2
System.Console.Clear();
#tendif

// Display the current board;
border = 0; // set the first border (border[0] = "[")

// Display the top line of dashes.

System.Console.Write(borders[2]);
foreach (char cell in cells)

{

// Write out a cell value and the border that comes after it.
System.Console.Write(" {0} {1}", cell, borders[border]);

// Increment to the next border;

Summary 145

border++;

// Reset border to @ if it 1is 3.
if (border == 3)
{
border = 0;
}
}

t#tendregion Display Tic-tac-toe Board

One example of how these preprocessor directives are used is with
Microsoft Visual Studio .NET. Visual Studio .NET examines the code and
provides a tree control to open and collapse the code (on the left-hand side
of the code editor window) that matches the region demarcated by the
#region directives (see Figure 3.5).

FiIGUurE 3.5: Collapsed Region in Microsoft Visual Studio .NET

SUMMARY

This chapter began with an introduction to the C# operators related to
assignment and arithmetic. Next, you used the operators along with the
const keyword to declare constant expressions. Coverage of all of the C#

146

m Chapter 3: Operators and Control Flow

operators was not sequential, however. Before discussing the relational and
logical comparison operators, the chapter introduced the if statement and
the important concepts of code blocks and scope. To close out the coverage
of operators I discussed the bitwise operators, especially regarding masks.

Operator precedence was discussed earlier in the chapter, but Table 3.5
summarizes the order of precedence across all operators, including several
that are not yet covered.

TABLE 3.5: Operator Order of Precedence*

Category Operators

Primary x.y f(x) a[x] x++ X-- new
typeof(T) checked(x) unchecked(x) default(T)
delegate{} O

Unary + - !~ ++x --x (T)x
Multiplicative /%

Additive + -

Shift << >

Relational and type < > <= >= 1is as
testing

Equality == I=

Logical AND &

Logical XOR ~

Logical OR |

Conditional AND &&

Conditional OR |

Null coalescing ??

Conditional ?:

Assignment = => *= /= %= 4= -= K= >>= &= "= |=

* Rows appear in order of precedence from highest to lowest.

Summary

Given coverage of most of the operators, the next topic was control flow
statements. The last sections of the chapter detailed the preprocessor direc-
tives and the bit operators, which included code blocks, scope, Boolean
expressions, and bitwise operators.

Perhaps one of the best ways to review all of the content covered in
Chapters 1-3 is to look at the tic-tac-toe program found in Appendix B. By
reviewing the program, you can see one way in which you can combine all
that you have learned into a complete program.

147

This page intentionally left blank

= 4

Methods and Parameters

ROM WHAT YOU HAVE LEARNED about C# programming so far you
F should be able to write straightforward programs consisting of a list of
statements, similar to the way programs were created in the 1970s. Pro-
gramming has come a long way since the 1970s; as programs became more
complex, new paradigms were needed to manage that complexity. “Proce-
dural” or “structured” programming provides a construct into which
statements are grouped together to form a unit. Furthermore, with struc-
tured programming, it is possible to pass data to a group of statements and
then have data returned once the statements have executed.
This chapter covers how to group statements together into a method. In
addition, it covers how to call a method, including how to pass data to a
method and receive data from a method.

[Namespace
@ Exception @ Calling Type Name
Handling a Method [Scope

Method Name
Parameters
Method Return

@ Declaring
a Method

@ Method
Overloading Methods and

Parameters

Value Parameters
Reference Parameters (ref) @ Parameters
Output Parameters (out)

Parameter Arrays (params)
Optional Parameters

@ The Using
Directive

149

150

Chapter 4: Methods and Parameters

Besides the basics of calling and defining methods, this chapter also
covers some slightly more advanced concepts—namely, recursion and
method overloading, along with some new C# 4 features, namely optional
and named parameters. All method calls discussed so far and through the
end of this chapter are static (a concept which Chapter 5 explores in detail).

Even as early as the HelloWorld program in Chapter 1, you learned
how to define a method. In that example, you defined the Main() method.
In this chapter, you will learn about method creation in more detail,
including the special C# syntax for parameters that pass data to and from a
method (ref) using a single parameter, as well as parameters that only
pass data out from a method (out). Lastly, I will touch on some rudimen-
tary error handling.

Calling a Method

BEGINNER TOPIC

What Is a Method?

Up to this point, all of the statements in the programs you have written
have appeared together in one grouping called a Main() method. As pro-
grams become even minimally larger, a single method implementation
quickly becomes difficult to maintain and complex to read through and
understand.

A method is a means of grouping together a sequence of statements to
perform a particular action or compute a particular result. This provides
greater structure and organization for the statements that comprise a pro-
gram. Consider, for example, a Main() method that counts the lines of
source code in a directory. Instead of having one large Main () method, you
can provide a shorter version that allows you to hone in on the details of
each method implementation as necessary. Listing 4.1 shows an example.

LISTING 4.1: Grouping Statements into Methods

class LineCount
{
static void Main()

{

int lineCount;
string files;

Calling a Method

DisplayHelpText();

files = GetFiles();

lineCount = CountLines(files);
DisplayLineCount(lineCount);

Instead of placing all of the statements into Main(), the listing breaks them
into groups called methods. Statements related to displaying the help text,
a group of System.Console.WriteLine() statements, have been moved to
the DisplayHelpText() method. All of the statements used to determine
which files to count appear in the GetFiles() method. To actually count
the files, the code calls the CountLines() method before displaying the
results using the DisplayLineCount() method. With a quick glance, it is
easy to review the code and gain an overview, because the method name
describes the implementation.

A method is always associated with a class, and the class provides a
means of grouping related methods together. Calling a method is concep-
tually the same as sending a message to a class.

Methods can receive data via parameters. Parameters are variables used
for passing data from the caller (the method containing the method call) to
the target method (Write(), WriteLine(), GetFiles(), CountLines(), and
so on). In Listing 4.1, files and lineCount are examples of parameters
passed to the CountLines() and DisplaylLineCount() methods. Methods
can also return data back to the caller via a return value (in Listing 4.1, the
GetFiles() method call has a return value that is assigned to files).

To begin, you will reexamine System.Console.Write(), System.Con-
sole.WriteLine(), and System.Console.ReadLine() from Chapter 1. This
time, look at them as examples of method calls in general, instead of looking
at the specifics of printing and retrieving data from the console. Listing 4.2
shows each of the three methods in use.

LISTING 4.2: A Simple Method Call

class HeyYou

{

static void Main()

{

151

152

Chapter 4: Methods and Parameters

string firstName;
string lastName;

System.Console.WriteLine("Hey you!");

Namespace Method Name Parameters
AL

r)
System.Console.Write("Enter your first name: ");

Type Name

firstName = System.Console.ReadlLine();

System.Console.Write("Enter your last name: ");
lastName = System.Console.ReadLine();

System.Console.WriteLine("Your full name is {@} {1}.",
firstName, lastName);

The parts of the method call include the namespace, type name, method
name, parameters, and return data type. A period separates each part of a
tully qualified method name.

Namespace
The first item in the method call is the namespace. The namespace is a cat-
egorization mechanism for grouping all types related to a particular func-
tionality. Typically you want an outer namespace to be a company name,
and then a product name, and then the functional area: Micro-
soft.Win32.Networking. The namespace helps to avoid type name colli-
sions. For example, the compiler can distinguish between two types with
the name “Program” as long as each type has a different namespace. The
result is that the Main method in each class could be referred to using
Awl.Windows.Program.Main() or Awl.Console.Program.Main().
System.Collections, System.Collections.Generics, System.IO, and
System.Runtime.Serialization.Formatters are valid names for a
namespace. Namespaces can include periods within their names. This
enables the namespaces to give the appearance of being hierarchical. This
improves human readability only, since the compiler treats all namespaces
at a single level. For example, System.Collections.Generics appears
within the System.Collections namespace hierarchy, but to the compiler
these are simply two entirely different namespaces.

In Listing 4.2, the namespace for the Console type is System. The System
namespace contains the types that enable the programmer to perform
many fundamental programming activities. Virtually all C# programs use
types within the System namespace. Table 4.1 provides a listing of other
common namespaces.

Calling a Method

TABLE 4.1: Common Namespaces

Namespace Description

System Contains the definition of fundamental types, conver-
sion between types, mathematics, program invocation,
and environment management.

System. Includes types for working with collections of objects.

Collections Collections can generally follow either list or dictionary
type storage mechanisms.

System. This C# 2.0 added namespace works with strongly

Collections. typed collections that depend on generics (type

Generics parameters).

System.Data

Contains types used for working with data that is stored
within a database.

System.Drawing

Contains types for drawing to the display device and
working with images.

System.IO

Contains types for working with files and directories
and provides capabilities for manipulating, loading, and
saving files.

System.Ling

Provides classes and interfaces for querying data in col-
lections using a C# 3.0 added API, Language Integrated
Query.

System.Text

Includes types for working with strings and various text
encodings, and for converting between those encodings.
This namespace includes a subnamespace called
System.Text.RegularExpressions, which provides
access to regular-expression-related APIs.

System.Threading

Handles thread manipulation and multithreaded
programming.

System.
Threading.Tasks

A family of classes for working with Threads that first
appeared in .NET 4.

Continues

153

154 Chapter 4: Methods and Parameters

TABLE 4.1: Common Namespaces (Continued)

Namespace Description

System.Web A collection of types that enable browser-to-server com-
munication, generally over HTTP. The functionality
within this namespace is used to support a .NET tech-

nology called ASP.NET.
System.Web. Contains types that send and retrieve data over HTTP
Services using the Simple Object Access Protocol (SOAP).
System. Includes types for creating rich user interfaces and the
Windows.Forms components within them.
System.Xml Contains standards-based support for XML processing.

It is not always necessary to provide the namespace when calling a
method. For example, if you use a type in the same namespace as the target
method, then the compiler can infer the namespace to be the same as the
caller’s namespace. Later in this chapter, you will see how the using direc-
tive avoids the need for a namespace qualifier as well.

Type Name

Calls to static methods (Chapter 5 covers static versus instance methods)
require the type name qualifier as long as the target method is not within
the same class! (such as a call from HelloWorld.Main() to Console.Write-
Line()). However, just as with the namespace, C# allows the elimination
of the type name from a method call whenever the method is available on
the containing type. (Examples of method calls such as this appear in List-
ing 4.4.) The type name is unnecessary because the compiler infers the type
from the calling method. If the compiler can make no such inference, the
name must be provided as part of the method call.

At their core, types are a means of grouping together methods and their
associated data. For example, Console is the type name that contains the
Write(), WriteLine(), and ReadlLine() methods (among others). All
of these methods are in the same “group” because they belong to the
Console type.

1. Orbase class.

Calling a Method

Scope

You already learned that the parent code block bounds declaration and visi-
bility. Scope defines the inferred call context. A method call between two
methods in the same type does not require the type qualifier because an item
may be referred to by its unqualified name if it is in scope. Similarly, calls
between two types in the same namespace do not require the namespace
qualifier because the scope, in this case the namespace, is the same.

Method Name

After specifying which type contains the method you wish to call, it is time
to identify the method itself. C# always uses a period between the type
name and the method name, and a pair of parentheses following the
method name. Between the parentheses must appear any parameters that
the method requires.

Parameters

All methods can have any number of parameters, and each parameter in
C# is of a specific data type. For example, the following method call, used
in Listing 4.2, has three parameters:

System.Console.WriteLine(
"Your full name is {1} {@}", lastName, firstName)

The first is a string and the second two are of type object. Although you
pass parameter values of type string for the second two parameters as
well, the compiler allows this because all types, including string, are com-
patible with the data type object.

Method Return

In contrast to System.Console.WriteLine(), System.Console.ReadLine()
in Listing 4.2 does not have any parameters. However, this method
happens to have a method return. The method return is a means of trans-
ferring results from a called method back to the caller. Because System.
Console.ReadLine() has a return, it is possible to assign the return value
to the variable firstName. In addition, it is possible to pass this method
return as a parameter, as shown in Listing 4.3.

155

156 Chapter 4: Methods and Parameters

LISTING 4.3: Passing a Method Return as a Parameter to Another Method Call

class Program

{
static void Main()
{
System.Console.Write("Enter your first name: ");
System.Console.WriteLine("Hello {@}!",
System.Console.ReadLine());
}
}

Instead of assigning a variable and then using it in the call to Sys-
tem.Console.WriteLine(), Listing 4.3 calls the System.Console.Read-
Line() method within the call to System.Console.WriteLine(). At
execution time, the System.Console.ReadlLine() method executes first
and its return is passed directly into the System.Console.WriteLine()
method, rather than into a variable.

Not all methods return data. Both versions of System.Console.Write()
and System.Console.WriteLine() are examples of such methods. As you
will see shortly, these methods specify a return type of void just as the Hel -
loWorld declaration of Main returned void.

Statement versus Method Call

Listing 4.3 provides a demonstration of the difference between a statement
and a method call. Although System.Console.WriteLine("Hello {@}!",
System.Console.ReadLine()); is a single statement, it contains two
method calls. A statement generally contains one or more expressions, and
in this example, each expression is a method call. Therefore, method calls
form parts of statements.

Although coding multiple method calls in a single statement often
reduces the amount of code, it does not necessarily increase the readability
and seldom offers a significant performance advantage. Developers
should favor readability over brevity.

"= NOTE

In general, developers should favor readability over brevity. Readabil-
ity is critical to writing code that is self-documenting and, therefore,
more maintainable over time.

Declaring a Method 157

Declaring a Method

This section expands on the explanation of declaring a method (such as
Main()) to include any parameter or a return type. Listing 4.4 contains
examples of these concepts, and Output 4.1 shows the results.

LISTING 4.4: Declaring a Method

class IntroducingMethods

{

static void Main()

{
string firstName;
string lastName;
string fullName;
System.Console.WriteLine("Hey you!");
firstName = GetUserInput("Enter your first name: ");
lastName = GetUserInput("Enter your last name: ");
fullName = GetFullName(firstName, lastName);
DisplayGreeting(fullName);

¥

static string GetUserInput(string prompt)

{
System.Console.Write(prompt);
return System.Console.ReadLine();

¥

static string GetFullName(string firstName, string lastName)

{
return firstName + " " + lastName;

¥

static void DisplayGreeting(string name)

{
System.Console.WriteLine("Your full name is {@}.", name);
return;

}

}
OUTPUT 4.1:
Hey you!

Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Inigo Montoya-

158

Chapter 4: Methods and Parameters

Four methods are declared in Listing 4.4. From Main() the code calls
GetUserInput(), followed by a call to GetFullName(). Both of these meth-
ods return a value and take parameters. In addition, the listing calls Dis-
playGreeting(), which doesn’t return any data. No method in C# can exist
outside the confines of an enclosing class. Even the Main method examined
in Chapter 1 must be within a class.

Language Contrast: C++/Visual Basic—Global Methods

C# provides no global method support; everything must appear within
a class definition. This is why the Main() method was marked as
static—the C# equivalent of a C++ global and Visual Basic module
method.

BEGINNER TOPIC

Refactoring into Methods

Moving a set of statements into a method instead of leaving them inline
within a larger method is a form of refactoring. Refactoring reduces code
duplication, because you can call the method from multiple places
instead of duplicating the code. Refactoring also increases code readabil-
ity. As part of the coding process, it is a best practice to continually
review your code and look for opportunities to refactor. This involves
looking for blocks of code that are difficult to understand at a glance and
moving them into a method with a name that clearly defines the code’s
behavior. This practice is often preferred over commenting a block of
code, because the method name serves to describe what the implementa-
tion does.

For example, the Main() method that is shown in Listing 4.4 results in
the same behavior as does the Main () method that is shown in Listing 1.15
in Chapter 1. Perhaps even more noteworthy is that although both listings
are trivial to follow, Listing 4.4 is easier to grasp at a glance by just viewing
the Main() method and not worrying about the details of each called
method’s implementation.

Declaring a Method

Parameter Declaration

Consider the declaration of the DisplayGreeting() and GetFullName()
methods. The text that appears between the parentheses of a method dec-
laration is the parameter list. Each parameter in the parameter list includes
the type of the parameter along with the parameter name. A comma sepa-
rates each parameter in the list.

Behaviorally, parameters are virtually identical to local variables, and
the naming convention of parameters follows accordingly. Therefore,
parameter names are camel case. Also, it is not possible to declare a local
variable (a variable declared inside a method) with the same name as a
parameter of the containing method, because this would create two “local
variables” of the same name.

Method Return Declaration

In addition to GetUserInput() and GetFullName() requiring parameters to
be specified, both of these methods also include a method return. You can
tell there is a method return because a data type appears immediately
before the method name of the method declaration. For both GetUser-
Input() and GetFullName(), the data type is string. Unlike parameters,
only one method return is allowable.

Once a method includes a return data type, and assuming no error
occurs, it is necessary to specify a return statement for each code path (or
set of statements that may execute consecutively) within the method decla-
ration. A return statement begins with the return keyword followed by the
value the method is returning. For example, the GetFullName() method’s

return statement is return firstName + + lastName. The C# compiler
makes it imperative that the return type match the type of the data speci-
fied following the return keyword.

Return statements can appear in spots other than at the end of a method
implementation, as long as all code paths include a return if the method
has a return type. For example, an if or switch statement at the beginning
of a method implementation could include a return statement within the

conditional or case statement; see Listing 4.5 for an example.

LISTING 4.5: A return Statement before the End of a Method

class Program

{

static void Main()

159

160 Chapter 4: Methods and Parameters

{

string command;
/).
switch(command)
{
case "quit":
return;
/..

A return statement indicates a jump to the end of the method, so no
break is required in a switch statement. Once the execution encounters a
return, the method call will end.

If particular code paths include statements following the return, the com-
piler will issue a warning that indicates that the additional statements will
never execute. In spite of the C# allowance for early returns, code is generally
more readable and easier to maintain if there is a single exit location rather
than multiple returns sprinkled through various code paths of the method.

Specifying void as a return type indicates that there is no return from the
method. As a result, the method does not support assignment to a variable or
use as a parameter type at the call site. Furthermore, the return statement
becomes optional, and when it is specified, there is no value following the
return keyword. For example, the return of Main() in Listing 4.4 is void and
there is no return statement within the method. However, DisplayGreet-
ing() includes a return statement that is not followed by any returned result.

Language Contrast: C++—Header Files

Unlike C++, C# classes never separate the implementation from the declara-
tion. In C# there is no header (. h) file or implementation (. cpp) file. Instead,
declaration and implementation appear together in the same file. Starting
with C# 2.0, it is possible to spread a class across multiple files known as
partial types. However, even then the declaration of a method and the imple-
mentation of that method must remain together. For C# to declare types and
methods inline makes a cleaner and more maintainable language.

The using Directive
BEGINNER TOPIC

Namespaces

Namespaces are an organizational mechanism for all types. They provide
a nested grouping mechanism so that types may be categorized. Develop-
ers will discover related types by examining other types within the same
namespace as the initial type. Additionally, through namespaces, two or
more types may have the same name as long as they are disambiguated by
different namespaces.

The using Directive

It is possible to import types from one namespace into the parent
namespace code block or the entire file if there is no parent code block. As
a result, it would not be necessary for the programmer to fully qualify a
type. To achieve this, the C# programmer includes a using directive, gen-
erally at the top of the file. For example, in Listing 4.6, Console is not pre-
fixed with System. Instead, it includes the using directive, using System, at
the top of the listing.

LISTING 4.6: using Directive Example

// The using directive imports all types from the
// specified namespace into the entire file.
using System;

class HelloWorld

{
static void Main()
{
// No need to qualify Console with System
// because of the using directive above.
Console.WriteLine("Hello, my name is Inigo Montoya");
}
}

The results of Listing 4.6 appear in Output 4.2.

OUTPUT 4.2:

Hello- my name is Inigo Montoya

161

162

Chapter 4: Methods and Parameters

Namespaces are nested. That means that a using directive such as
using System does not enable the omission of System from a method
within a more specific namespace. If code accessed a type within the
System.Text namespace, for example, you would have to either include
an additional using directive for System.Text, or fully qualify the type.
The using directive does not import any nested namespaces. Nested
namespaces, identified by the period in the namespace, need to be
imported explicitly.

Language Contrast: Java—Wildcards in import Directive

Java allows for importing namespaces using a wildcard such as:
import javax.swing.*;

In contrast, C# does not support a wildcard using directive, and instead
requires each namespace to be imported explicitly.

Language Contrast: Visual Basic .NET—Project Scope
Imports Directive

Unlike C#, Visual Basic .NET supports the ability to specify the using direc-
tive equivalent, Imports, for an entire project, rather than just for a spe-
cific file. In other words, Visual Basic .NET provides a command-line means
of the using directive that will span an entire compilation.

Typically, prevalent use of types within a particular namespace results
in a using directive for that namespace, instead of fully qualifying all types
within the namespace. Following this tendency, virtually all files include
the using System directive at the top. Throughout the remainder of this
book, code listings will often omit the using System directive. Other
namespace directives will be included explicitly, however.

One interesting effect of the using System directive is that the string
data type can be identified with varying case: String or string. The

The using Directive

former version relies on the using System directive and the latter uses the
string keyword. Both are valid C# references to the System.String data
type, and the resultant CIL code is unaffected by which version is chosen.?

ADVANCED TOPIC

Nested using Declaratives

Not only can you have using declaratives at the top of a file, but you also can
include them at the top of a namespace declaration. For example, if a new
namespace, Awl.Michaelis.EssentialCSharp, were declared, it would be
possible to add a using declarative at the top of the namespace declaration
(see Listing 4.7).

LISTING 4.7: Specifying the using Directive inside a Namespace Declaration

namespace Awl.Michaelis.EssentialCSharp

{

using System;

class HelloWorld

{
static void Main()
{
// No need to qualify Console with System
// because of the using directive above.
Console.WriteLine("Hello, my name is Inigo Montoya");
}
}

The results of Listing 4.7 appear in Output 4.3.

OUTPUT 4.3:

Hello- my name is Inigo Montoya

The difference between placing the using declarative at the top of a file
rather than at the top of a namespace declaration is that the declarative is

2. Iprefer the string keyword, but whichever representation a programmer selects, ideally
code within a project should be consistent.

163

164

Chapter 4: Methods and Parameters

active only within the namespace declaration. If the code includes a
new namespace declaration above or below the Awl.Michaelis.Essen-
tialCSharp declaration, then the using System directive within a different
namespace would not be active. Code seldom is written this way, espe-
cially given the standard practice of a single type declaration per file.

Aliasing

The using directive also has a provision for aliasing a namespace or type.
An alias is an alternative name that you can use within the text to which
the using directive applies. The two most common reasons for aliasing are
to disambiguate two types that have the same name and to abbreviate
along name. In Listing 4.8, for example, the CountDownTimer alias is
declared as a means of referring to the type System.Timers.Timer. Simply
adding a using System.Timers directive will not sufficiently enable the
code to avoid fully qualifying the Timer type. The reason is that Sys-
tem.Threading also includes a type called Timer, and therefore, just using
Timer within the code will be ambiguous.

LisTING 4.8: Declaring a Type Alias

using System;
using System.Threading;
using CountDownTimer = System.Timers.Timer;

class HelloWorld
{

static void Main()

CountDownTimer timer;

/e

Listing 4.8 uses an entirely new name, CountDownTimer, as the alias. It is
possible, however, to specify the alias as Timer, as shown in Listing 4.9.

LISTING 4.9: Declaring a Type Alias with the Same Name

using System;
using System.Threading;

// Declare alias Timer to refer to System.Timers.Timer to
// avoid code ambiguity with System.Threading.Timer

Returns and Parameters on Main()

using Timer = System.Timers.Timer;

class HelloWorld

{
static void Main()
{
Timer timer;
/..
}
}

Because of the alias directive, “Timer” is not an ambiguous reference. Fur-
thermore, to refer to the System.Threading.Timer type, you will have to
either qualify the type or define a different alias.

Returns and Parameters on Main()

So far, declaration of an executable’s Main() method has been the simplest
declaration possible. You have not included any parameters or return
types in your Main() method declarations. However, C# supports the
ability to retrieve the command-line arguments when executing a pro-
gram, and it is possible to return a status indicator from the Main()
method.

The runtime passes the command-line arguments to Main() using a sin-
gle string array parameter. All you need to do to retrieve the parameters
is to access the array, as demonstrated in Listing 4.10. The purpose of this
program is to download a file whose location is given by a URL. The first
command-line argument identifies the URL, and the optional second argu-
ment is the filename to which to save the file. The listing begins with a
switch statement that evaluates the number of parameters (args.Length)
as follows.

1. If there are zero parameters, display an error indicating that it is
necessary to provide the URL.

2. If there is only one argument, calculate the second argument from the
tirst argument.

3. The presence of two arguments indicates the user has provided both
the URL of the resource and the download target filename.

165

166 Chapter 4: Methods and Parameters

LISTING 4.10: Passing Command-Line Arguments to Main

using System;
using System.IO;
using System.Net;

class Program

{

static int Main(string[] args)

{

int result;
string targetFileName = ParseCommandLineArgs(args);

switch (args.Length)

{
case 0:
// No URL specified, so display error.
Console.WritelLine(
"ERROR: You must specify the "
+ "URL to be downloaded");
break;
case 1:
// No target filename was specified.
targetFileName = Path.GetFileName(args[0]);
break;
case 2:
targetFileName = args[1];
break;
¥
if (targetFileName != null)
{
WebClient webClient = new WebClient();
webClient.DownloadFile(args[@], targetFileName);
result = 9;
}
else
{
Console.WritelLine(
"Downloader.exe <URL> <TargetFileName>");
result = 1;
}

return result;

private static string ParseCommandLineArgs(string[] args)
{
string targetFileName = null;
switch (args.Length)
{
case 0:
// No URL specified, so display error.
Console.WritelLine(

Returns and Parameters on Main()

"ERROR: You must specify the "
+ "URL to be downloaded");
break;
case 1:
// No target filename was specified.
targetFileName = Path.GetFileName(args[0]);

break;
case 2:

targetFileName = args[1];
break;

}

return targetFileName;

}
¥

The results of Listing 4.10 appear in Output 4.4.

OUTPUT 4.4:

>Downloader-exe
ERROR: You must specify the URL to be downloaded
Downloader.exe <URL> <TargetFileName>

If you were successful in calculating the target filename, you would use
it to save the downloaded file. Otherwise, you would display the help text.
The Main() method also returns an int rather than a void. This is optional
for a Main() declaration, but if it is used, the program can return a status
code to a caller, such as a script or a batch file. By convention, a return
other than zero indicates an error.

Although all command-line arguments can be passed to Main() via an
array of strings, sometimes it is convenient to access the arguments from
inside a method other than Main(). The System.Environment.GetCommand-
LineArgs() method returns the command-line arguments array in the
same form that Main(string[] args) passes the arguments into Main().

ADVANCED TOPIC

Disambiguate Multiple Main() Methods

If a program includes two classes with Main() methods, it is possible to
specify on the command line which class to use for the Main() declara-
tion. csc.exe includes an /m option to specify the fully qualified class
name of Main().

167

168

Chapter 4: Methods and Parameters

BEGINNER TOPIC

Call Stack and Call Site

As code executes, methods call more methods that in turn call additional
methods, and so on. In the simple case of Listing 4.4, Main() calls GetUser-
Input(), which in turn calls System.Console.ReadLine(), which in turn
calls even more methods internally. The set of calls within calls within
calls, and so on, is termed the call stack. As program complexity increases,
the call stack generally gets larger and larger as each method calls another
method. As calls complete, however, the call stack shrinks until another
series of methods are invoked. The term for describing the process of
removing calls from the call stack is stack unwinding. Stack unwinding
always occurs in the reverse order of the method calls. The result of
method completion is that execution will return to the call site, which is
the location from which the method was invoked.

Parameters

So far, this chapter’s examples have returned data via the method return.
This section demonstrates the options of returning data via method
parameters and via a variable number of parameters.

BEGINNER TOPIC

Matching Caller Variables with Parameter Names

In some of the previous listings, you matched the variable names in the
caller with the parameter names in the callee (target method). This match-
ing is simply for readability; whether names match is entirely irrelevant to
the behavior of the method call.

Value Parameters

By default, parameters are passed by value, which means that the vari-
able’s stack data is copied into the target parameter. For example, in List-
ing 4.11, each variable that Main() uses when calling Combine() will be
copied into the parameters of the Combine () method. Output 4.5 shows the
results of this listing.

Parameters 169

LISTING 4.11: Passing Variables by Value

class Program

{

static void Main()

{
/..
string fullName;
string driveletter = "C:";
string folderPath = "Data";
string fileName = "index.html";
fullName = Combine(driveLetter, folderPath, fileName);
Console.WriteLine(fullName);
/..

¥

static string Combine(
string drivelLetter, string folderPath, string fileName)

{
string path;
path = string.Format("{1}{0}{2}{0}{3}",
System.IO.Path.DirectorySeparatorcChar,
driveLetter, folderPath, fileName);
return path;
}
}
OUTPUT 4.5:

C:\Datalindex-html

Even if the Combine() method assigns null to driveLetter, folder-
Path, and fileName before returning, the corresponding variables within
Main() will maintain their original values because the variables are copied
when calling a method. When the call stack unwinds at the end of a call,

the copy is thrown away.

ADVANCED TOPIC

Reference Types versus Value Types
For the purposes of this section, it is inconsequential whether the parame-
ter passed is a value type or a reference type. The issue is whether the

170

Chapter 4: Methods and Parameters

target method can assign the caller’s original variable a new value. Since a
copy is made, the caller’s copy cannot be reassigned.

In more detail, a reference type variable contains an address of the
memory location where the data is stored. If a reference type variable is
passed by value, the address is copied from the caller to the method
parameter. As a result, the target method cannot update the caller vari-
able’s address value but it may update the data within the reference type.
Alternatively, if the method parameter is a value type, the value itself is
copied into the parameter, and changing the parameter will not affect the
original caller’s variable.

Reference Parameters (ref)
Consider Listing 4.12, which calls a function to swap two values, and Out-
put 4.6, which shows the results.

LISTING 4.12: Passing Variables by Reference

class Program

{

static void Main()

{
/..
string first = "first";
string second = "second";
Swap(ref first, ref second);
System.Console.WriteLine(

@"first = ""{0}"", second = ""{1}""",
first, second);

/..

}

static void Swap(ref string first, ref string second)

{
string temp = first;
first = second;
second = temp;

¥

¥
OUTPUT 4.6:

first = "second™. second = "first"”

Parameters

The values assigned to first and second are successfully switched,
even though there is no return from the Swap() method. To do this, the
variables are passed by reference. The obvious difference between the call
to Swap() and Listing 4.11’s call to Combine() is the use of the keyword ref
in front of the parameter’s data type. This keyword changes the call type to
be by reference, so the called method can update the original caller’s vari-
able with a new value.

When the called method specifies a parameter as ref, the caller is
required to place ref in front of the variables passed. In so doing, the caller
explicitly recognizes that the target method could reassign any ref param-
eters it receives. Furthermore, it is necessary to initialize variables passed
as ref because target methods could read data from ref parameters with-
out first assigning them. In Listing 4.12, for example, temp is assigned the
value of first, assuming that the variable passed in first was initialized
by the caller. Effectively, a ref parameter is an alias for the variable passed.
In other words, it is essentially giving a parameter name to an existing
variable.

Output Parameters (out)

In addition to passing parameters into a method only (by value) and pass-
ing them in and back out (by reference), it is possible to pass data out only.
To achieve this, code needs to decorate parameter types with the keyword
out, as shown in the GetPhoneButton() method in Listing 4.13 that returns
the phone button corresponding to a character.

LISTING 4.13: Passing Variables Out Only

class ConvertToPhoneNumber
{
static int Main(string[] args)

{

char button;

if(args.Length == @)
{
Console.WriteLine(
"ConvertToPhoneNumber.exe <phrase>");
Console.WriteLine(
_' indicates no standard phone button");
return 1;

171

172 Chapter 4: Methods and Parameters

¥
foreach(string word in args)
{
foreach(char character in word)
{
if(GetPhoneButton(character, out button))
{
Console.Write(button);
}
else
{
Console.Write('_");
}
}
¥
Console.WriteLine();
return 0;
¥
static bool GetPhoneButton(char character, out char button)
{
bool success = true;
switch(char.ToLower(character))
{
case '1':
button = '1';
break;
case '2': case 'a': case 'b': case 'c':
button = '2°';
break;
Y/
case '-':
button = '-';
break;
default:
// Set the button to indicate an invalid value
button = '_";
success = false;
break;
¥
return success;
}

Parameters

Output 4.7 shows the results of Listing 4.13.

OUTPUT 4.7:

>ConvertToPhoneNumber.exe CSharpIsGood
274277474kkL3

In this example, the GetPhoneButton() method returns true if it can
successfully determine the character’s corresponding phone button. The
function also returns the corresponding button by using the button
parameter which is decorated with out.

Whenever a parameter is marked with out, the compiler will check that
the parameter is set for all code paths within the method that return nor-
mally (without an explicit error). If, for example, the code does not assign
button a value, the compiler will issue an error indicating that the code
didn’t initialize button. Listing 4.13 assigns button to _ because even
though it cannot determine the correct phone button, it is still necessary to
assign a value.

Parameter Arrays (params)

In all the examples so far, the number of parameters is fixed by the target
method declaration. However, sometimes the number of parameters may
vary. Consider the Combine() method from Listing 4.11. In that method,
you passed the drive letter, folder path, and filename. What if the number
of folders in the path was more than one and the caller wanted the method
to join additional folders to form the full path? Perhaps the best option
would be to pass an array of strings for the folders. However, this would
make the calling code a little more complex, because it would be necessary
to construct an array to pass as a parameter.

For a simpler approach, C# provides a keyword that enables the num-
ber of parameters to vary in the calling code instead of being set by the tar-
get method. Before we discuss the method declaration, observe the calling
code declared within Main(), as shown in Listing 4.14.

173

174 Chapter 4: Methods and Parameters

LISTING 4.14: Passing a Variable Parameter List

using System.IO;

class PathEx
{
static void Main()

{
string fullName;

/..

// Call Combine() with four parameters

fullName = Combine(
Directory.GetCurrentDirectory(),
"bin", "config", "index.html");

Console.WriteLine(fullName);

/o

// Call Combine() with only three parameters
fullName = Combine(
Environment.SystemDirectory,
"Temp", "index.html");

Console.WriteLine(fullName);

/o

// Call Combine() with an array
fullName = Combine(
new string[] {
"C:\", "Data",
"HomeDir", "index.html"});
Console.WriteLine(fullName);

/.
}

static string Combine(params string[] paths)
{
string result = string.Empty;
foreach (string path in paths)
{
result = System.IO.Path.Combine(result, path);

}

return result;

Parameters 175
Output 4.8 shows the results of Listing 4.14.

OUTPUT 4.8:

C:\Data\mark\bin\config\index.html
C:\WINDOWS\system32\Temp\index-html
C:\Data\HomeDir\index-.html

In the first call to Combine(), four parameters are specified. The second
call contains only three parameters. In the final call, parameters are passed
using an array. In other words, the Combine() method takes a variable
number of parameters, whether separated by a comma or as a single array.

To allow this, the Combine () method

1. Places params immediately before the last parameter in the method
declaration

2. Declares the last parameter as an array

With a parameter array declaration, it is possible to access each param-
eter as a member of the params array. In the Combine () method implemen-
tation, you iterate over the elements of the paths array and call System.
I0.Path.Combine(). This method automatically combines the parts of
the path, appropriately using the platform-specific directory-separator-
character. (PathEx.Combine() is identical to Path.Combine(), except that
PathEx.Combine() handles a variable number of parameters rather than
simply two.)

There are a few notable characteristics of the parameter array.

* The parameter array is not necessarily the only parameter on a
method. However, the parameter array must be the last parameter in
the method declaration. Since only the last parameter may be a param-
eter array, a method cannot have more than one parameter array.

¢ The caller can specify zero parameters for the parameter array, which
will result in an array of zero items.

176

Chapter 4: Methods and Parameters

¢ Parameter arrays are type-safe—the type must match the type

identified by the array.

 The caller can use an explicit array rather than a comma-separated list

of parameters. The resultant CIL code is identical.

¢ If the target method implementation requires a minimum number of

parameters, then those parameters should appear explicitly within
the method declaration, forcing a compile error instead of relying
on runtime error handling if required parameters are missing. For
example, use int Max(int first, params int[] operands) rather
than int Max(params int[] operands) so that at least one value is
passed to Max().

Using a parameter array, you can pass a variable number of parameters

of the same type into a method. The section Method Overloading, later in
this chapter, discusses a means of supporting a variable number of param-
eters that are not necessarily of the same type.

Recursion

Calling a method recursively or implementing the method using recur-
sion refers to the fact that the method calls itself. This is sometimes the
simplest way to implement a method. Listing 4.15 counts the lines of all the
C# source files (*. cs) in a directory and its subdirectory.

LISTING 4.15: Returning All the Filenames, Given a Directory

using System.IO;

public static class LineCounter
{
// Use the first argument as the directory
// to search, or default to the current directory.
public static void Main(string[] args)
{
int totalLineCount = 0;
string directory;
if (args.Length > 0)
{
directory = args[0];

}

else

Recursion 177

directory = Directory.GetCurrentDirectory();
}
totalLineCount = DirectoryCountLines(directory);
System.Console.WritelLine(totallLineCount);

}

static int DirectoryCountLines(string directory)
{
int lineCount = 0;
foreach (string file in
Directory.GetFiles(directory, "*.cs"))

lineCount += CountLines(file);

foreach (string subdirectory in
Directory.GetDirectories(directory))

lineCount += DirectoryCountLines(subdirectory);

return lineCount;

private static int CountLines(string file)
{
string line;
int lineCount = 0;
FileStream stream =
new FileStream(file, FileMode.Open);3
StreamReader reader = new StreamReader(stream);
line = reader.ReadlLine();

while(line != null)

{
if (line.Trim() = "")
{

lineCount++;

}

line = reader.ReadLine();

reader.Close(); // Automatically closes the stream
return lineCount;

3. Icould improve this code with a using statement, but I have avoided that construct because
I have not yet introduced it.

178

Chapter 4: Methods and Parameters

Output 4.9 shows the results of Listing 4.15.

OUTPUT 4.9:

104

The program begins by passing the first command-line argument to
DirectoryCountLines(), or by using the current directory if no argument
was provided. This method first iterates through all the files in the current
directory and totals the source code lines for each file. After each file in the
directory, the code processes each subdirectory by passing the subdirec-
tory back into the DirectoryCountLines() method, rerunning the method
using the subdirectory. The same process is repeated recursively through
each subdirectory until no more directories remain to process.

Readers unfamiliar with recursion may find it cumbersome at first.
Regardless, it is often the simplest pattern to code, especially with hierar-
chical type data such as the filesystem. However, although it may be the
most readable, it is generally not the fastest implementation. If perfor-
mance becomes an issue, developers should seek an alternative solution in
place of a recursive implementation. The choice generally hinges on bal-
ancing readability with performance.

BEGINNER TOPIC

Infinite Recursion Error

A common programming error in recursive method implementations
appears in the form of a stack overflow during program execution. This
usually happens because of infinite recursion, in which the method con-
tinually calls back on itself, never reaching a point that indicates the end of
the recursion. It is a good practice for programmers to review any method
that uses recursion and verify that the recursion calls are finite.

A common pattern for recursion using pseudocode is as follows:

M(x)
{

if x is trivial

Method Overloading

Return the result
else
a. Do some work to make the problem smaller
b. Recursively call M to solve the smaller problem
c. Compute the result based on a. and b.
return the result

}

Things go wrong when this pattern is not followed. For example, if you
don’t make the problem smaller or if you don’t handle all possible “small-
est” cases, the recursion never terminates.

Method Overloading

Listing 4.15 called DirectoryCountLines(), which counted the lines of
*. ¢s files. However, if you want to count code in *.h/*. cpp files or in *.vb
tiles, DirectoryCountLines() will not work. Instead, you need a method
that takes the file extension, but still keeps the existing method definition
so that it handles *. cs files by default.

All methods within a class must have a unique signature, and C#
defines uniqueness by variation in the method name, parameter data
types, or number of parameters. This does not include method return data
types; defining two methods that have only a different return data type
will cause a compile error. Method overloading occurs when a class has
two or more methods with the same name and the parameter count and/
or data types vary between the overloaded methods.

Method overloading is a type of operational polymorphism. Polymor-
phism occurs when the same logical operation takes on many (“poly”)
forms (“morphisms”) because the data varies. Calling WriteLine() and
passing a format string along with some parameters is implemented differ-
ently than calling WriteLine() and specifying an integer. However, logi-
cally, to the caller, the method takes care of writing the data and it is
somewhat irrelevant how the internal implementation occurs. Listing 4.16
provides an example, and Output 4.10 shows the results.

LISTING 4.16: Returning All the Filenames, Given a Directory

using System.IO;

public static class LineCounter

179

180 Chapter 4: Methods and Parameters

{

public static void Main(string[] args)

{

int totalLineCount;

if (args.Length > 1)

{
totalLineCount =
DirectoryCountLines(args[@], args[1]);
}
if (args.Length > @)
{
totalLineCount = DirectoryCountLines(args[0]);
}
else
{
totalLineCount = DirectoryCountLines();
}
System.Console.WritelLine(totallLineCount);
}
static int DirectoryCountLines()
{
return DirectoryCountLines(
Directory.GetCurrentDirectory());
}
static int DirectoryCountLines(string directory)
{
return DirectoryCountLines(directory, "*.cs");
}

static int DirectoryCountLines(
string directory, string extension)

int lineCount = 0;

foreach (string file in
Directory.GetFiles(directory, extension))
lineCount += CountLines(file);

foreach (string subdirectory in

Directory.GetDirectories(directory))

lineCount += DirectoryCountLines(subdirectory);

return lineCount;

Method Overloading

private static int CountLines(string file)
{
int lineCount = 0;
string line;
FileStream stream =
new FileStream(file, FileMode.Open);*
StreamReader reader = new StreamReader(stream);
line = reader.ReadlLine();
while(line != null)
{
if (line.Trim() == "")
{
lineCount++;
}
line = reader.ReadLine();

}

reader.Close(); // Automatically closes the stream
return lineCount;

OUTPUT 4.10:

>LineCounter.exe -\ Xx.cs
28

The effect of method overloading is to provide optional ways to call the
method. As demonstrated inside Main(), you can call the DirectoryCount-
Lines() method with or without passing the directory to search and the
tile extension.

Notice that the parameterless implementation of DirectoryCount-
Lines () was changed to call the single-parameter version (int Directory-
CountLines(string directory)). This is a common pattern when
implementing overloaded methods. The idea is that developers implement
only the core logic in one method and all the other overloaded methods
will call that single method. If the core implementation changes, it needs to
be modified in only one location rather than within each implementation.
This pattern is especially prevalent when using method overloading to

4. This code could be improved with a using statement, a construct avoided because it has not
yet been introduced.

181

182

Chapter 4: Methods and Parameters

enable optional parameters that do not have compile-time determined
values and so they cannot be specified using optional parameters.

Optional Parameters

Starting with C# 4.0, the language designers added limited support for
optional parameters. By allowing the assignment of a parameter to a con-
stant value as part of the method declaration, it is possible to call a method
without passing every parameter for the method (see Listing 4.17).

LISTING 4.17: Methods with Optional Parameters

using System.IO;

public static class LineCounter

{
public static void Main(string[] args)
{
int totallLineCount;
if (args.Length > 1)
{
totalLineCount =
DirectoryCountLines(args[@], args[1]);
}
if (args.Length > 0)
{
totalLineCount = DirectoryCountLines(args[0]);
}
else
{
totalLineCount = DirectoryCountLines();
¥
System.Console.WriteLine(totallLineCount);
}
static int DirectoryCountLines()
{
/! ...
}
/*
static int DirectoryCountLines(string directory)
{ ...}

*/

Optional Parameters

static int DirectoryCountLines(
string directory, string extension = "*.cs")

int lineCount = 0;
foreach (string file in
Directory.GetFiles(directory, extension))

lineCount += CountLines(file);

foreach (string subdirectory in
Directory.GetDirectories(directory))

{
lineCount += DirectoryCountLines(subdirectory);
¥
return lineCount;
¥
private static int CountLines(string file)
{
/] ...
}

In Listing 4.17, for example, the DirectoryCountLines () method decla-
ration with a single parameter has been removed (commented out), but the
call from Main() (specifying one parameter) remains. When no extension
parameter is specified in the call, the value assigned to extension within
the declaration (*.cs in this case) is used. This allows the calling code to
not specify a value if desired, and eliminates the additional overload that
would be required in C# 3.0 and earlier. Note that optional parameters
must appear after all required parameters (those that don’t have default
values). Also, the fact that the default value needs to be a constant, com-
pile-time-resolved value, is fairly restrictive. You can’t, for example,
declare a method using

DirectoryCountLines(
string directory = Environment.CurrentDirectory,
string extension = "*.cs")

since Environment.CurrentDirectory is not a literal. In contrast, since
default(string) is compile-time-determined, C# 4.0 does allow it for the
default value of an optional parameter.

183

184

Chapter 4: Methods and Parameters

A second method call feature made available in C# 4.0 was the use of
named parameters. With named parameters it is possible for the caller to
explicitly identify the name of the parameter to be assigned a value, rather
than relying only on parameter order to correlate (see Listing 4.18).

LISTING 4.18: Specifying Parameters by Name

class Program

{
static void Main()
{
DisplayGreeting(
firstName: "Inigo", lastName: "Montoya");
}

public void DisplayGreeting(
string firstName,
string middleName = default(string),
string lastName = default(string))

/] ...

In Listing 4.18 the call to DisplayGreeting() from within Main()
assigns a value to a parameter by name. Of the two optional parameters
(middleName and lastName), only lastName is specified. For cases where a
method has lots of parameters and many of them are optional (a common
occurrence when accessing Microsoft COM libraries), using the named
parameter syntax is certainly a convenience. However, notice that along
with the convenience comes an impact on the flexibility of the method
interface. In the past (at least from C#), parameter names could be changed
without causing other calling code to no longer compile. With the addition
of named parameters, the parameter name becomes part of the interface
because changing the name would cause code that uses the named param-
eter to no longer compile.

For many experienced C# developers, this is a surprising restriction.
However, the restriction has been imposed as part of the Common Lan-
guage Specification ever since .NET 1.0. Therefore, library developers
should already be following the practice of not changing parameter names

Optional Parameters

to successfully interoperate with other .NET languages from version to
version. C# 4.0 now imposes the same restriction on parameter name
changes as many other .NET languages already require.

Given the combination of method overloading, optional parameters,
and named parameters, resolving which method to call becomes less
obvious. A call is applicable (compatible) with a method if all parameters
have exactly one corresponding argument (either by name or by position)
that is type-compatible unless the parameter is optional. Although this
restricts the possible number of methods that will be called, it doesn’t
identify a unique method. To further distinguish which method specifi-
cally, the compiler uses only explicitly identified parameters in the caller,
ignoring all optional parameters that were not specified at the caller.
Therefore, if two methods are applicable because one of them has an
optional parameter, the compiler will resolve to the method without the
optional parameter.

ADVANCED TOPIC

Method Resolution

At a high level, selection by the compiler governing which method to call
is determined to be whichever applicable method is most specific. There
can be only one method that matches the caller parameters identically, so
this will always take precedence. Assuming there are two applicable meth-
ods, each requiring an implicit conversion, the method that matches the
most derived type will be used. (A method using double will be favored
over a method using object if the caller passes an int. This is because dou-
ble is more specific than object.) If more than one method is applicable
and no unique best method can be determined, then the compiler will
issue an error indicating that the call is ambiguous.

For example, given methods

Method(thing) // Fifth
Method(thing) // Fourth
Method(thing) // Third
Method(thing) // First

185

186

Chapter 4: Methods and Parameters

aMethod(42) call will resolve in ascending order, starting with Method (int
thing) and proceeding up to Method(long thing), and so on, if the former
method does not exist.

The C# specification includes additional rules governing implicit con-
version between byte, ushort, uint, ulong, and the other numeric types,
but in general it is better to use a cast to make the intended target method
more recognizable.

Basic Error Handling with Exceptions

An important aspect of calling methods relates to error handling; specifi-
cally, how to report an error back to the caller. This section examines how
to handle error reporting via a mechanism known as exception handling.

With exception handling, a method is able to pass information about an
error to a calling method without explicitly providing any parameters to
do so. Listing 4.19 contains a slight modification to the HeyYou program
from Chapter 1. Instead of requesting the last name of the user, it prompts
for the user’s age.

LISTING 4.19: Converting a stringtoan int

using System;

class ExceptionHandling
{
static void Main()
{
string firstName;
string ageText;
int age;

Console.WriteLine("Hey you!");

Console.Write("Enter your first name: ");
firstName = System.Console.ReadLine();

Console.Write("Enter your age: ");
ageText = Console.ReadLine();
age = int.Parse(ageText);

Console.WriteLine(
"Hi {@}! You are {1} months old.",
firstName, age*12);

Basic Error Handling with Exceptions

Output 4.11 shows the results of Listing 4.19.

OuTPUT 4.11:

Hey you!

Enter your first name: Inigo
Enter your age: ug

Hi Inigo! VYou are 504 months old-.

The return value from System.Console.ReadLine() is stored in a vari-
able called ageText and is then passed to a method on the int data type,
called Parse(). This method is responsible for taking a string value that
represents a number and converting it to an int type.

BEGINNER TOPIC

42 as a String versus 42 as an Integer

C# requires that every value has a well-defined type associated with it.
Therefore, not only is the data value important, but the type associated
with the data is important as well. A string value of 42, therefore, is dis-
tinctly different from an integer value of 42. The string is composed of the
two characters 4 and 2, whereas the int is the number 42.

Given the converted string, the final System.Console.WritelLine()
statement will print the age in months by multiplying the age value by 12.

However, what happens if the user does not enter a valid integer
string? For example, what happens if the user enters “forty-two”? The
Parse() method cannot handle such a conversion. It expects the user to
enter a string that contains only digits. If the Parse() method is sent an
invalid value, it needs some way to report this fact back to the caller.

Trapping Errors

To indicate to the calling method that the parameter is invalid, int.Parse()
will throw an exception. Throwing an exception will halt further execution
in the current program flow and instead will jump into the first code block
within the call stack that handles the exception.

187

188

Chapter 4: Methods and Parameters

Since you have not yet provided any such handling, the program
reports the exception to the user as an unhandled exception. Assuming
there is no registered debugger on the system, the error will appear on the
console with a message such as that shown in Output 4.12.

OUTPUT 4.12:

Hey you!
Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string was
not in a correct format.
at System.Number.ParseInt32(String s. NumberStyles style-
NumberFormatInfo info)
at ExceptionHandling-Main()

Obviously, such an error is not particularly helpful. To fix this, it is nec-
essary to provide a mechanism that handles the error, perhaps reporting a
more meaningful error message back to the user.

This is known as catching an exception. The syntax is demonstrated in
Listing 4.20, and the output appears in Output 4.13.

LISTING 4.20: Catching an Exception

using System;

class ExceptionHandling
{
static int Main()
{
string firstName;
string ageText;
int age;
int result = 0;

Console.Write("Enter your first name: ");
firstName = Console.ReadlLine();

Console.Write("Enter your age: ");
ageText = Console.ReadLine();

try
{
age = int.Parse(ageText);
Console.WriteLine(
"Hi {@}! You are {1} months old.",

Basic Error Handling with Exceptions

firstName, age*12);

}
catch (FormatException)
{
Console.WritelLine(
"The age entered, {0}, is not valid.",
ageText);
result = 1;
¥
catch(Exception exception)
{
Console.WritelLine(
"Unexpected error: {0}", exception.Message);
result = 1;
¥
finally
{
Console.WriteLine("Goodbye {0}",
firstName);
¥
return result;
¥
¥
OUTPUT 4.13:

Enter your first name: Inigo

Enter your age: forty-two

The age entered. forty-twoa. is not valid-.
Goodbye Inigo

To begin, surround the code that could potentially throw an exception
(age = int.Parse()) with a try block. This block begins with the try key-
word. It is an indication to the compiler that the developer is aware of the
possibility that the code within the block could potentially throw an excep-
tion, and if it does, then one of the catch blocks will attempt to handle the
exception.

One or more catch blocks (or the finally block) must appear immedi-
ately following a try block. The catch block header (see the Advanced
Topic titled Generic catch, later in this chapter) optionally allows you to
specify the data type of the exception, and as long as the data type matches
the exception type, the catch block will execute. If, however, there is no
appropriate catch block, the exception will fall through and go unhandled
as though there were no exception handling.

189

190 "@m Chapter 4: Methods and Parameters

System.Console.Write ("Enter your first name: ");
firstName = System.Console.ReadlLine ();

System.Console.Write ("Enter your age: ");
ageText = System.Console.ReadLine ();

Try Block:
age = int.Parse (ageText);
System.Console.WriteLine (
"Hi {@}! You are {1} months old.",
firstName, age*12);

A 4

FormatException Catch Block:
System.Console.WriteLine (

— "The age entered \"{0}\" is not valid .",
ageText);

result = 1;

FormatException
exception thrown?

Exception Catch Block:
System.Console.WriteLine (Yes
1 "Unexpected error: {0}",
exception.Message);
result = 1;

Exception
exception thrown?

Y
Finally Block:

Ly System.Console.WriteLine (
"Goodbye {0}",
firstName);

Y

return result;

Y
(Finish)

FIGURE 4.1: Exception-Handling Program Flow

The resultant program flow appears in Figure 4.1.

For example, assume the user enters “forty-two” for the age. In this case,
int.Parse() will throw an exception of type System.FormatException, and
control will jump to the set of catch blocks. (System.FormatException

Basic Error Handling with Exceptions

indicates that the string was not of the correct format to be parsed
appropriately.) Since the first catch block matches the type of exception that
int.Parse() threw, the code inside this block will execute. If a statement
within the try block throws a different exception, then the second catch
block would execute because (starting in C# 2.0) all exceptions are of type
System.Exception.

If there were no System.FormatException catch block, then the Sys-
tem.Exception catch block would execute even though int.Parse throws
a System.FormatException. This is because a System.FormatException is
also of type System.Exception. (System.FormatException is a more spe-
cific implementation of the generic exception, System.Exception.)

Although the number of catch blocks varies, the order in which you
handle exceptions is significant. Catch blocks must appear from most spe-
cific to least specific. The System.Exception data type is least specific and
therefore it appears last. System.FormatException appears first because it
is the most specific exception that Listing 4.20 handles.

Regardless of whether the code in the try block throws an exception, the
finally block of code will execute. The purpose of the finally block is to
provide a location to place code that will execute regardless of how the
try/catch blocks exit—with or without an exception. Finally blocks are
useful for cleaning up resources regardless of whether an exception is
thrown. In fact, it is possible to have a try block with a finally block and no
catch block. The finally block executes regardless of whether the try block
throws an exception or whether a catch block is even written to handle the
exception. Listing 4.21 demonstrates the try/finally block and Output 4.14
shows the results.

LiSTING 4.21: Catching an Exception

using System;

class ExceptionHandling
{
static int Main()
{
string firstName;
string ageText;
int age;
int result = 0;

191

192 Chapter 4: Methods and Parameters

Console.Write("Enter your first name: ");
firstName = Console.ReadlLine();

Console.Write("Enter your age: ");
ageText = Console.ReadlLine();

try
{
age = int.Parse(ageText);
Console.WriteLine(
"Hi {@}! You are {1} months old.",
firstName, age*12);
}
finally
{
Console.WriteLine("Goodbye {0}",
firstName);
}
return result;
¥
}
OUTPUT 4.14:

Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exception: System-.FormatException: Input string was not in a
correct format.

at System-Number.StringToNumber(String str. NumberStyles optionsa
NumberBuffer& number. NumberFormatInfo info. Boolean parseDecimal)

at System-Number.ParseInt32(String s- NumberStyles stylea
NumberFormatInfo info)

at ExceptionHandling-Main()
Goodbye Inigo

When this code executes, the finally block executes before printing an
unhandled exception to the console (an unhandled exception dialog may
also appear).

ADVANCED TOPIC

Exception Class Inheritance
Starting in C# 2.0, all exceptions derive from System.Exception. Therefore,
they can be handled by the catch(System.Exception exception) block. It

Basic Error Handling with Exceptions

is preferable, however, to include a catch block that is specific to the most
derived type (System.FormatException, for example), because then it is
possible to get the most information about an exception and handle it less
generically. In so doing, the catch statement that uses the most derived
type is able to handle the exception type specifically, accessing data related
to the exception thrown, and avoiding conditional logic to determine what
type of exception occurred.

This is why C# enforces that catch blocks appear from most derived to
least derived. For example, a catch statement that catches System.Excep-
tion cannot appear before a statement that catches System.Format Excep-
tion because System.FormatException derives from System.Exception.

A method could throw many exception types. Table 4.2 lists some of the
more common ones within the framework.

TABLE 4.2: Common Exception Types

Exception Type Description

System.Exception A generic exception from which
other exceptions derive.

System.ArgumentException A means of indicating that one of
the parameters passed into the
method is invalid.

System.ArgumentNullException Indicates that a particular parame-
ter is null and that this is not valid
for that parameter.

System.ApplicationException To be avoided. Originally the idea
that you might want to have one
kind of handling for “system”
exceptions and another for “appli-
cation” exceptions, although plausi-
ble, doesn’t actually work well in
the real world.

System.FormatException Indicates that the string format is
not valid for conversion.

System.IndexOutOfRangeException Indicates that an attempt was made
to access an array element that does
not exist.

Continues

193

194 Chapter 4: Methods and Parameters

TABLE 4.2: Common Exception Types (Continued)

Exception Type Description

System.InvalidCastException Indicates that an attempt to convert
from one data type to another was
not a valid conversion.

System.NotImplementedException Indicates that although the method
signature exists, it has not been fully
implemented.

System.NullReferenceException Throws when code tries to find the

object referred to by a reference
(such as a variable) which is null.

System.ArithmeticException Indicates an invalid math operation,
not including divide by zero.

System.ArrayTypeMismatchException Occurs when attempting to store an
element of the wrong type into an
array.

System.StackOverflowException Generally indicates that there is an

infinite loop in which a method is
calling back into itself (known as
recursion).

ADVANCED TOPIC

Generic catch
It is possible to specify a catch block that takes no parameters, as shown in
Listing 4.22.

LISTING 4.22: General Catch Blocks

try
{
age = int.Parse(ageText);
System.Console.WriteLine(
"Hi {@}! You are {1} months old.",
firstName, age*12);
}

catch (System.FormatException exception)

Basic Error Handling with Exceptions

{
System.Console.WriteLine(
"The age entered ,{0}, is not valid.",
ageText);
result = 1;
}
catch(System.Exception exception)
{
System.Console.WriteLine(
"Unexpected error: {0}", exception.Message);
result = 1;
}
catch
{
System.Console.WriteLine(
"Unexpected error!");
result = 1;
)
finally
{
System.Console.WriteLine("Goodbye {0}",
firstName);

A catch block with no data type, called a generic catch block, is equivalent
to specifying a catch block that takes an object data type: for instance,
catch(object exception){...}. And since all classes ultimately derive
from object, a catch block with no data type must appear last.

Generic catch blocks are rarely used because there is no way to capture
any information about the exception. In addition, C# doesn’t support the
ability to throw an exception of type object. (Only libraries written in lan-
guages such as C++ allow exceptions of any type.)

The behavior starting in C# 2.0 varies slightly from the earlier C#
behavior. In C# 2.0, if a language allows non-System.Exceptions, the
object of the thrown exception will be wrapped in a System.Runtime.
CompilerServices.RuntimeWrappedException which does derive from
System.Exception. Therefore, all exceptions, whether deriving from
System.Exception or not, will propagate into C# assemblies as derived
from System.Exception.

The result is that System.Exception catch blocks will catch all excep-
tions not caught by earlier blocks, and a general catch block, following a

195

196

Chapter 4: Methods and Parameters

System.Exception catch block, will never be invoked. Because of this,
following a System.Exception catch block with a general catch block in
C# 2.0 or later will result in a compiler warning indicating that the general
catch block will never execute.

Reporting Errors Using a throw Statement
Just as int.Parse() can throw an exception, C# allows developers to throw
exceptions from their code, as demonstrated in Listing 4.23 and Output 4.15.

LisTING 4.23: Throwing an Exception

using System;
class ThrowingExceptions

{
static void Main()
{
try
{
Console.WriteLine("Begin executing");
Console.WriteLine("Throw exception...");
throw new Exception("Arbitrary exception");
Console.WriteLine("End executing");
}
catch (FormatException exception)
{
Console.WritelLine(
"A FormateException was thrown");

\ }

catch(Exception exception)

{

Console.WritelLine(

"Unexpected error: {@}", exception.Message);

}
catch
{

Console.WritelLine("Unexpected error!");
}

Console.WriteLine(
"Shutting down...");

Basic Error Handling with Exceptions

OUTPUT 4.15:

Begin executing

Throw exception...

Unexpected error: Arbitrary exception
Shutting down...

As the arrows in Listing 4.23 depict, throwing an exception jumps exe-
cution from where the exception is thrown into the first catch block within
the stack that is compatible with the thrown exception type. In this case, the
second catch block handles the exception and writes out an error message.
In Listing 4.23, there is no final block, so execution falls through to the
System.Console.WriteLine() statement following the try/catch block.

In order to throw an exception, it is necessary to have an instance of an
exception. Listing 4.23 creates an instance using the keyword new followed
by the data type of the exception. Most exception types allow a message as
part of throwing the exception so that when the exception occurs, the mes-
sage can be retrieved.

Sometimes a catch block will trap an exception but be unable to handle
it appropriately or fully. In these circumstances, a catch block can rethrow
the exception using the throw statement without specifying any exception,
as shown in Listing 4.24.

LISTING 4.24: Rethrowing an Exception

catch(Exception exception)

{
Console.WritelLine(
"Rethrowing unexpected error: {0}",
exception.Message);
throw;
}

Avoid Using Exception Handling to Deal with Expected Situations
Developers should make an effort to avoid throwing exceptions for
expected conditions or normal control flow. For example, developers

197

198

Chapter 4: Methods and Parameters

should not expect users to enter valid text when specifying their age.’
Therefore, instead of relying on an exception to validate data entered by
the user, developers should provide a means of checking the data before
attempting the conversion. (Better yet, you should prevent the user from
entering invalid data in the first place.) Exceptions are designed specifi-
cally for tracking exceptional, unexpected, and potentially fatal situations.
Using them for an unattended purpose such as expected situations will
cause your code to be hard to read, understand, and maintain.

Additionally, (as with most languages) C# incurs a slight performance
hit when throwing an exception—taking microseconds compared to the
nanoseconds most operations take. This delay is generally not noticeable
in human time—except when the exception goes unhandled. For example,
when executing Listing 4.19 and entering an invalid age the exception is
unhandled and there is a noticeable delay while the runtime searches the
environment to see whether there is a debugger to load. Fortunately, slow
performance when a program is shutting down isn’t generally a factor to
be concerned with.

ADVANCED TOPIC

Numeric Conversion with TryParse()

One of the problems with the Parse() method is that the only way to
determine whether the conversion will be successful is to attempt the cast
and then catch the exception if it doesn’t work. Because throwing an
exception is a relatively expensive operation, it is better to attempt the
conversion without exception handling. In the first release of C#, the only
data type that enabled this was a double method called double.Try-
Parse(). However, the CLI added this method to all numeric primitive
types in the CLI 2.0 version. It requires the use of the out keyword
because the return from the TryParse() function is a bool rather than the
converted value. Here is a code listing that demonstrates the conversion
using int.TryParse().

5. In general, developers should expect their users to perform unexpected actions, and there-
fore they should code defensively to handle “stupid user tricks.”

Summary

if (int.TryParse(ageText, out age))

{
System.Console.WriteLine(
"Hi {@}! You are {1} months old.", firstName,
age * 12);
}
else
{
System.Console.WriteLine(
"The age entered ,{0}, is not valid.", ageText);

With the .NET Framework 4, a TryParse() method was also added to
enum types.

With the TryParse() method, it is no longer necessary to include a try/
catch block simply for the purpose of handling the string-to-numeric
conversion.

SUMMARY

This chapter discussed the details of declaring and calling methods. In
many ways, this construct is identical to its declaration in C-like lan-
guages. However, the addition of the keywords out and ref is more like
COM in syntax (the predecessor to CLI technology) than C-like language’s
use of “&”. In addition to method declaration, this chapter introduced
exception handling.

Methods are a fundamental construct that is a key to writing readable
code. Instead of writing large methods with lots of statements, you should
use methods for “paragraphs” within your code, whose lengths target
roughly ten lines or less. The process of breaking large functions into
smaller pieces is one of the ways you can refactor your code to make it
more readable and maintainable.

The next chapter considers the class construct and how it encapsulates
methods (behavior) and fields (data) into a single unit.

199

This page intentionally left blank

B 5

Classes

OU BRIEFLY SAW IN CHAPTER 1 how to declare a new class called
Y HelloWorld. In Chapter 2, you learned about the built-in primitive
types included with C#. Since you have now also learned about control
flow and how to declare methods, it is time to discuss defining your own

@ Declaring and Instantiating a Class

Partial Classes @ Special Classes
Nested Classes

‘ Extension Methods

Instance Declaring an Instance Field
Fields Accessing an Instance Field
Const and readonly Modifiers

Static Fields

Static Methods @ Static
Static Constructors
~_Static Classes]|

Classes

@ Instance Methods

@ Access Modifiers

Declaring a Constructor

Default Constructors Constructors

Overloading Constructors & Finalizers

Calling one Constructor Using this
Finalizers

Declaring a Property

@ Properties Naming Conventions
\ Using Properties with Validation

Read-Only and Write-Only Properties
Access Modifiers on Getters and Setters
Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

201

202

Chapter 5: Classes

types. This is the core construct of any C# program, and the complete
support for classes and the objects created from them is what defines C# as
an object-oriented language.

This chapter introduces you to the basics of object-oriented program-
ming using C#. A key focus is on how to define classes, which are the tem-
plates for objects themselves.

All of the constructs of structured programming from the previous
chapters still apply within object-oriented programming. However, by
wrapping those constructs within classes, you can create larger, more
organized programs that are more maintainable. The transition from struc-
tured, control-flow-based programs to object-oriented programs some-
what revolutionized programming because it provided an extra level of
organization. The result was that smaller programs were simplified some-
what; but more importantly, it was possible to create much larger
programs because the code within those programs was better organized.

One of the key advantages of object-oriented programming is that
instead of creating new programs entirely from scratch, you can assemble
a collection of existing objects from prior work, extending the classes with
new features, adding more classes, and then reassembling everything to
provide new functionality.

Readers unfamiliar with object-oriented programming should read the
Beginner Topic blocks for an introduction. The general text outside the
Beginner Topics focuses on using C# for object-oriented programming
with the assumption that readers are already familiar with object-oriented
methodology.

This chapter delves into how C# supports encapsulation through its
support of constructs such as classes, properties, and access modifiers (we
covered methods in the preceding chapter). The next chapter builds on this
foundation with the introduction of inheritance and the polymorphism
that object-oriented programming enables.

BEGINNER TOPIC

Object-Oriented Programming
The key to programming successfully today is in the ability to provide
organization and structure to the implementation of complex requirements

Chapter 5: Classes

fulfilled in larger and larger applications. Object-oriented programming
provides one of the key methodologies in accomplishing this, to the point
that it is difficult for object-oriented programmers to envision transitioning
back to structured programming, except for the most trivial programs.

The most fundamental construct to object-oriented programming is
the class or object itself. These form a programming abstraction, model,
or template of what is often a real-world concept. The class OpticalStor-
ageMedia, for example, may have an Eject() method on it that causes a
CD/DVD to eject from the player. The OpticalStorageMedia class is the
programming abstraction of the real-world object of a CD.

Classes are the foundation for three principal characteristics of object-
oriented programming: encapsulation, inheritance, and polymorphism.

Encapsulation
Encapsulation allows you to hide detail. The detail can still be accessed

when necessary, but by intelligently encapsulating the detail, large pro-
grams are easier to understand, data is protected from inadvertent modifi-
cation, and code is easier to maintain because the effects of a code change
are bound to the scope of the encapsulation. Methods are examples of
encapsulation. Although it is possible to take the code from a method and
embed it directly inline with the caller’s code, refactoring of code into a
method provides encapsulation benefits.

Inheritance
Consider the following example: A DVD is a type of optical media. It has a

specific storage capacity along with the ability to hold a digital movie.
A CDis also a type of optical media, but it has different characteristics. The
copyright implementation on CDs is different from DVD copyright protec-
tion, and the storage capacity is different as well. Both CDs and DVDs are
different from hard drives, USB drives, and floppy drives (remember
those?). All fit into the category of storage media, but each has special char-
acteristics, even for fundamental functions such as the supported filesys-
tems and whether instances of the media are read-only or read-write.
Inheritance in object-oriented programming allows you to form “is a”
relationships between these similar but different items. It is a reasonable
assumption that a DVD “is a” type of storage media and that a CD “is a”
type of storage media, and as such, that each has storage capacity.

203

204

Chapter 5: Classes

Similarly, CDs and DVDs have “is a” relationships to the optical media
type, which in turn has an “is a” relationship with the storage media type.

If you define classes corresponding to each type of storage media men-
tioned, you will have defined a class hierarchy, which is a series of “is a”
relationships. The base type, from which all storage media derive, could be
the class StorageMedia. As such, CDs, DVDs, hard drives, USB drives, and
floppy drives are types of StorageMedia. However, CDs and DVDs don’t
need to derive from StorageMedia directly. Instead, they can derive from
an intermediate type, OpticalStorageMedia. You can view the class hierar-
chy graphically using a Unified Modeling Language (UML)-like class dia-
gram, as shown in Figure 5.1.

FIGURE 5.1: Class Hierarchy

The inheritance relationship involves a minimum of two classes such
that one class is a more general version of the other; in Figure 5.1, Storage-
Media is a more general version of HardDrive. Although the more special-
ized type, HardDrive, is a type of StorageMedia, the reverse is not true; a
StorageMedia type is not necessarily a HardDrive. As Figure 5.1 shows,
inheritance can involve more than two classes.

The more specialized type is the derived type or the subtype. The more
generalized type is the base class or sometimes the super type. Other

Declaring and Instantiating a Class

common terms for the classes in an inheritance relationship are parent and
child; the former is the more generalized class.

To derive or inherit from another type is to specialize that type, which
means to customize the base type so that it is geared for a specific purpose.
Similarly, the base type is the generalized implementation of the derived
types.

The key feature of inheritance is that all derived types inherit the mem-
bers of the base type. Often, the implementation of the base members can
be modified, but regardless, the derived type contains the base type’s
members in addition to any other members that the derived type contains
explicitly.

Derived types allow you to organize your classes into a coherent hierar-
chy where the “child” types have greater specificity than their “parent”

types.

Polymorphism

Polymorphism comprises a word meaning “many” and a word meaning
“forms.” In the context of objects, polymorphism means that a single
method or type can have many forms of implementation. Suppose you
have a media player. It follows that the media player could play both CD
music discs and DVDs containing MP3s. However, the exact implementa-
tion of the Play() method will vary depending on the media type. Calling
Play() on a music CD object or Play() on a music DVD will play music in
both cases, because each type understands the intricacies of playing. All
that the media player knows about is the common base type, OpticalStor-
ageMedia, and the fact that it defines the Play() method signature. Poly-
morphism is the principle that a type can take care of the exact details of a
method’s implementation because the method appears on multiple derived
types that each share a common base type (or interface) that also contains
the same method signature.

Declaring and Instantiating a Class

Defining a class involves first specifying the keyword class, followed by
an identifier, as shown in Listing 5.1.

205

206 Chapter 5: Classes

LISTING 5.1: Defining a Class

class Employee

{
}

All code that belongs to the class will appear between the curly braces
following the class declaration. Although not a requirement, generally you
place each class into its own file. This makes it easier to find the code that
defines a particular class, because the convention is to name the file using
the class name.

Once you have defined a new class, you can use that class as though it
were built into the framework. In other words, you can declare a variable
of that type or define a method that takes a parameter of the new class
type. Listing 5.2 demonstrates.

LisTING 5.2: Declaring Variables of the Class Type

class Program

{
static void Main()
{
Employee employeel, employee2;
/..
{

static void IncreaseSalary (Employee employee)
{
/..
}
}

BEGINNER TOPIC

Objects and Classes Defined

In casual conversation, the terms class and object appear interchangeably.
However, object and class have distinct meanings. A class is a template for
what an object will look like at instantiation time. An object, therefore, is
an instance of a class. Classes are like the mold for what a widget will look

Declaring and Instantiating a Class

like. Objects correspond to widgets created by the mold. The process of
creating an object from a class is instantiation because an object is an
instance of a class.

Now that you have defined a new class type, it is time to instantiate an
object of that type. Mimicking its predecessors, C# uses the new keyword to
instantiate an object (see Listing 5.3).

LisTING 5.3: Instantiating a Class

class Program

{
static void Main()
{
Employee employeel = new Employee();
Employee employee2;
employee2 = new Employee();
IncreaseSalary(employeel);
}
X

Not surprisingly, the assignment can occur on the same line as the declara-
tion, or on a separate line.

Unlike the primitive types you have worked with so far, there is no literal
way to specify an Employee. Instead, the new operator provides an instruc-
tion to the runtime to allocate memory for an Employee object, instantiate the
object, and return a reference to the instance.

In spite of the explicit operator for allocating memory, there is no such
operator for restoring the memory. Instead, the runtime automatically
reclaims the memory sometime after the object is last accessible but before
the application closes down. The garbage collector is responsible for the
automatic deallocation. It determines which objects are no longer refer-
enced by other active objects and then de-allocates the memory for those
objects. The result is that there is no compile-time-determined location
where the memory will be restored to the system.

In this trivial example, no explicit data or methods are associated with
an Employee and this renders the object essentially useless. The next sec-
tion focuses on adding data to an object.

207

208

Chapter 5: Classes

Language Contrast: C++—delete Operator

Programmers should view the new operator as a call to instantiate an
object, not as a call to allocate memory. Both objects allocated on the
heap and objects allocated on the stack support the new operator,
emphasizing the point that new is not about memory allocation and
whether de-allocation is necessary.

Therefore, and in contrast to C++, C# does avoid the need for the
delete operator or an equivalent. Memory management is a detail that
the runtime manages, allowing the developer to focus more on domain
logic. However, although memory management is handled by the run-
time, there is no implicit mechanism for resource management (database
connections, network ports, and so on). In other words, there is no
implicit way to program deterministic destruction (the occurrence of
implicit object destruction at a compile-time-defined location in the
code). Fortunately, C# does support explicit, deterministic resource
management via a using statement or nondeterministic cleanup using
finalizers.

BEGINNER TOPIC

Encapsulation Part 1: Objects Group Data with Methods

If you received a stack of index cards with employees’ first names, a stack
of index cards with their last names, and a stack of index cards with their
salaries, the cards would be of little value unless you knew that the cards
were in order in each stack. Even so, the data would be difficult to work
with because determining a person’s full name would require searching
through two stacks. Worse, if you dropped one of the stacks, there would
be no way to reassociate the first name with the last name and the salary.
Instead, you would need one stack of employee cards in which all the data
was grouped on one card. In this way, first names, last names, and salaries
would be encapsulated together.

Instance Fields

Outside the object-oriented programming context, to encapsulate
a set of items is to enclose those items within a capsule. Similarly, object-
oriented programming encapsulates methods and data together into
an object. This provides a grouping of all of the class members (the data
and methods within a class) so that they no longer need to be handled
individually. Instead of passing first name, last name, and salary as
three separate parameters to a method, objects enable a call to pass a
reference to an employee object. Once the called method receives the
object reference, it can send a message (it can call a method such as
AdjustSalary(), for example) on the object to perform a particular
operation.

Instance Fields

One of the key aspects of object-oriented design is the grouping of data to
provide structure. This section discusses how to add data to the Employee
class. The general object-oriented term for a variable that stores data
within a class is member variable. This term is well understood in C#, but
the more standard term and the one used in the specification is field,
which is a named unit of storage associated with the containing type.
Instance fields are variables declared at the class level to store data associ-
ated with an object. Hence, association is the relationship between the
field data type and the containing field.

Declaring an Instance Field
In Listing 5.4, Employee has been modified to include three fields: First-
Name, LastName, and Salary.

LISTING 5.4: Declaring Fields

class Employee

{
public string FirstName;
public string LastName;
public string Salary;

}

209

210

Chapter 5: Classes

With these fields added, it is possible to store some fundamental data with
every Employee instance. In this case, you prefix the fields with an access
modifier of public. public on a field indicates that the data within the field
is accessible from classes other than Employee (see the section Access Mod-
ifiers, later in this chapter).

As with local variable declarations, a field declaration includes the data
type to which the field refers. Furthermore, it is possible to assign fields an
initial value at declaration time, as demonstrated with the Salary field in
Listing 5.5.

LISTING 5.5: Setting Initial Values of Fields at Declaration Time

class Employee
{
public string FirstName;
public string LastName;
public string Salary = "Not enough";

}

Accessing an Instance Field
You can set and retrieve the data within fields. However, the fact that the
field does not include a static modifier indicates that it is an instance
field. You can access an instance field only from an instance of the contain-
ing class (an object). You cannot access it from the class directly (without
tirst creating an instance, in other words).

Listing 5.6 shows an updated look at the Program class and its utiliza-
tion of the Employee class, and Output 5.1 shows the results.

LISTING 5.6: Accessing Fields

class Program
{
static void Main()
{
Employee employeel = new Employee();
Employee employee2;
employee2 = new Employee();

employeel.FirstName = "Inigo";
employeel.LastName = "Montoya";
employeel.Salary = "Too Little";
IncreaseSalary(employeel);

Instance Methods

Console.WriteLine(
"{e} {1}: {2}",
employeel.FirstName,
employeel.LastName,
employeel.Salary);

/..
}
static void IncreaseSalary(Employee employee)
{
employee.Salary = "Enough to survive on";
}
}
OuTPUT 5.1:

Inigo Montoya: Enough to survive on

Listing 5.6 instantiates two Employee objects, as you saw before. Next, it
sets each field, calls IncreaseSalary() to change the salary, and then dis-
plays each field associated with the object referenced by employee1.

Notice that you first have to specify which Employee instance you are
working with. Therefore, the employeel variable appears as a prefix to the
field name when assigning and accessing the field.

Instance Methods

One alternative to formatting the names in the WriteLine() method call
within Main() is to provide a method in the Employee class that takes care
of the formatting. Changing the functionality to be within the Employee
class rather than a member of Program is consistent with the encapsulation
of a class. Why not group the methods relating to the employee’s full name
with the class that contains the data that forms the name?

Listing 5.7 demonstrates the creation of such a method.

LISTING 5.7: Accessing Fields from within the Containing Class

class Employee

{
public string FirstName;
public string LastName;
public string Salary;

211

212

Chapter 5: Classes

public string GetName()
{

return FirstName + + LastName;

}
}

There is nothing particularly special about this method compared to
what you learned in Chapter 4, except that now the GetName() method
accesses fields on the object instead of just local variables. In addition, the
method declaration is not marked with static. As you will see later in this
chapter, static methods cannot directly access instance fields within a class.
Instead, it is necessary to obtain an instance of the class in order to call any
instance member, whether a method or a field.

Given the addition of the GetName() method, you can update
Program.Main() to use the new method, as shown in Listing 5.8 and
Output 5.2.

LisTING 5.8: Accessing Fields from Outside the Containing Class

class Program

{
static void Main()
{
Employee employeel = new Employee();
Employee employee2;
employee2 = new Employee();
employeel.FirstName = "Inigo";
employeel.LastName = "Montoya";
employeel.Salary = "Too Little";
IncreaseSalary(employeel);
Console.WriteLine(
"{e}: {1}",
employeel.GetName(),
employeel.Salary);
/.
}
// .
}
OUTPUT 5.2:

Inigo Montoya: Enough to survive on

Using the this Keyword 213

Using the this Keyword

You can obtain the reference to a class from within instance members that
belong to the class. To indicate explicitly that the field or method accessed
is an instance member of the containing class in C#, you use the keyword
this. this is conceptually an implicit parameter within every instance
method that returns an instance of the object itself.

For example, consider the SetName () method shown in Listing 5.9.

LisTING 5.9: Using this to Identify the Field’s Owner Explicitly

class Employee

{
public string FirstName;
public string LastName;
public string Salary;

public string GetName()

{

return FirstName + " " + LastName;

}

public void SetName(string newFirstName, string newLastName)
{

this.FirstName = newFirstName;

this.LastName = newlLastName;

This example uses the keyword this to indicate that the fields First-
Name and LastName are instance members of the class.

BEGINNER TOPIC

Relying on Coding Style to Avoid Ambiguity

In the SetName() method, you did not have to use the this keyword
because FirstName is obviously different from newFirstName. Consider,
however, if instead of calling the parameter “newFirstName” you called it
“FirstName” (using Pascal case), as shown in Listing 5.10.

214 Chapter 5: Classes

LISTING 5.10: Using this to Avoid Ambiguity

class Employee

{
public string FirstName;
public string LastName;
public string Salary;

public string GetName()
{

return FirstName + " " + LastName;

}

// Caution: Parameter names use Pascal case
public void SetName(string FirstName, string LastName)
{

this.FirstName = FirstName;

this.LastName = LastName;

In this example, it is not possible to refer to the FirstName field without
explicitly indicating that the Employee object owns the variable. this acts
just like the employeel variable prefix used in the Program.Main() method
(see Listing 5.8); it identifies the reference as the one on which SetName()
was called.

Listing 5.10 does not follow the C# naming convention in which para-
meters are declared like local variables, using camel case. This can lead to
subtle bugs because assigning FirstName (intending to refer to the field) to
FirstName (the parameter) will still compile and even run. To avoid this
problem it is a good practice to have a different naming convention for
parameters and local variables than the naming convention for fields.
I demonstrate one such convention later in this chapter.

Language Contrast: Visual Basic—Accessing a Class Instance
with Me

The C# keyword this is identical to the Visual Basic keyword Me.

Using the this Keyword

In Listing 5.9 and Listing 5.10, the this keyword is not used in the
GetName () method—it is optional. However, if local variables or para-
meters exist with the same name as the field (see the SetName () method in
Listing 5.10), then leaving off this would result in accessing the local vari-
able/parameter rather than the field, so this would be required.

You also can use the keyword this to access a class’s methods explic-
itly. this.GetName() is allowed within the SetName() method, for exam-
ple, allowing you to print out the newly assigned name (see Listing 5.11
and Output 5.3).

LISTING 5.11: Using this with a Method

class Employee

{

/..

public string GetName()

{
return FirstName + " " + LastName;

¥

public void SetName(string newFirstName, string newLastName)

{
this.FirstName = newFirstName;
this.LastName = newLastName;
Console.WriteLine("Name changed to '{@}'",

this.GetName());
¥

class Program

{

static void Main()

{
Employee employee = new Employee();
employee.SetName("Inigo", "Montoya");
Y/

¥

// .

215

216 Chapter 5: Classes

OuTPUT 5.3:

Name changed to 'Inigo Montoya'

Sometimes it may be necessary to use this in order to pass a reference to
the currently executing object. Consider the Save () method in Listing 5.12.

LISTING 5.12: Passing this in a Method Call

class Employee

{
public string FirstName;
public string LastName;
public string Salary;

public void Save()

{
DataStorage.Store(this);

}
}

class DataStorage
{
// Save an employee object to a file
// named with the Employee name.
public static void Store(Employee employee)
{
/..
}
}

The Save() method calls a method on the DataStorage class, called
Store(). The Store() method, however, needs to be passed the Employee
object that needs to be persisted. This is done using the keyword this,
which passes the instance of the Employee object on which Save() was
called.

ADVANCED TOPIC

Storing and Loading with Files

The actual implementation of the Store() method inside DataStorage
involves classes within the System.I0namespace, as shown in Listing 5.13.
Inside Store(), you begin by instantiating a FileStream object that you

Using the this Keyword 217

associate with a file corresponding to the employee’s full name. The File-
Mode.Create parameter indicates that you want a new file to be created if
there isn’t already one with the <firstname><lastname>.dat name; if the
file exists already, it will be overwritten. Next, you create a StreamiWriter
class. The StreamWriter class is responsible for writing text into the
FileStream. You write the data using WritelLine() methods, just as
though writing to the console.

LisTING 5.13: Data Persistence to a File

using System;
// IO namespace
using System.IO;

class DataStorage
{
// Save an employee object to a file
// named with the Employee name.
// Error handling not shown.
public static void Store(Employee employee)
{
// Instantiate a FileStream using FirstNamelLastName.dat
// for the filename. FileMode.Create will force
// a new file to be created or override an
// existing file.
FileStream stream = new FileStream(
employee.FirstName + employee.lLastName + ".dat",
FileMode.Create);?

// Create a StreamWriter object for writing text
// into the FileStream
StreamWriter writer = new StreamWriter(stream);

// Write all the data associated with the employee.
writer.WriteLine(employee.FirstName);
writer.WriteLine(employee.LastName);
writer.WriteLine(employee.Salary);

// Close the Streamwriter and its Stream.
writer.Close(); // Automatically closes the stream

/o

1. This code could be improved with a using statement, a construct avoided because it has
not yet been introduced.

218

Chapter 5: Classes

Once the write operations are completed, both the FileStream and the
StreamWriter need to be closed so that they are not left open indefinitely
while waiting for the garbage collector to run. This listing does not include
any error handling, so if an exception is thrown, neither Close() method
will be called.

The load process is similar (see Listing 5.14).

LISTING 5.14: Data Retrieval from a File

class Employee

{
/.

// IO namespace
using System;
using System.IO;

class DataStorage

{
/o

public static Employee Load(string firstName, string lastName)

{

Employee employee = new Employee();

// Instantiate a FileStream using FirstNamelLastName.dat
// for the filename. FileMode.Open will open
// an existing file or else report an error.
FileStream stream = new FileStream(
firstName + lastName + ".dat", FileMode.Open);?

// Create a SteamReader for reading text from the file.
StreamReader reader = new StreamReader(stream);

// Read each Line from the file and place it into
// the associated property.

employee.FirstName = reader.ReadLine();
employee.LastName = reader.ReadlLine();
employee.Salary = reader.ReadLine();

// Close the StreamReader and its Stream.
reader.Close(); // Automatically closes the stream

2. This code could be improved with a using statement, a construct avoided because it has
not yet been introduced.

Using the this Keyword m 219

return employee;

class Program

{

static void Main()

{
Employee employeel;

Employee employee2 = new Employee();
employee2.SetName("Inigo", "Montoya");
employee2.Save();

// Modify employee2 after saving.
IncreaseSalary(employee2);

// Load employeel from the saved version of employee2
employeel = DataStorage.Load("Inigo", "Montoya");

Console.WriteLine(
"{e}: {1}",
employeel.GetName(),
employeel.Salary);

/...

Output 5.4 shows the results.

OuTPUT 5.4:

Name changed to 'Inigo Montoya'
Inigo Montoya

The reverse of the save process appears in Listing 5.14, which uses a Stream-
Reader rather than a Streamwriter. Again, Close() needs to be called on
both FileStreamand StreamReader once the data has been read.

Output 5.4 does not show any salary after “Inigo Montoya:” because
Salary was not set to “Enough to survive on” by a call to IncreaseSal-
ary () until after the call to Save().

220

Chapter 5: Classes

Notice in Main() that we can call Save() from an instance of an
employee, but to load a new employee we call DataStorage.Load(). To
load an employee, we generally don’t already have an employee instance
to load into, so an instance method on Employee would be less than ideal.
An alternative to calling Load on DataStorage would be to add a static
Load () method (see the section Static, later in this chapter) to Employee so
that it would be possible to call Employee.Load() (using the Employee
class, not an instance of Employee).

Observe the inclusion of the using System.IO directive at the top of the
listing. This makes each IO class accessible without prefixing it with the
full namespace.

Access Modifiers

When declaring a field earlier in the chapter, you prefixed the field declara-
tion with the keyword public. public is an access modifier that identifies
the level of encapsulation associated with the member it decorates. Five
access modifiers are available: public, private, protected, internal, and
protected internal. This section considers the first two.

BEGINNER TOPIC

Encapsulation Part 2: Information Hiding

Besides wrapping data and methods together into a single unit, encapsula-
tion is also about hiding the internal details of an object’s data and
behavior. To some degree, methods do this; from outside a method, all that
is visible to a caller is the method declaration. None of the internal imple-
mentation is visible. Object-oriented programming enables this further,
however, by providing facilities for controlling the extent to which mem-
bers are visible from outside the class. Members that are not visible outside
the class are private members.

In object-oriented programming, encapsulation is the term for not only
grouping data and behavior, but also hiding data within a class (the cap-
sule) so that minimum access about the inner workings of a class is
exposed outside the class. This reduces the chances that callers will modify
the data inappropriately.

Access Modifiers 221

The purpose of an access modifier is to provide encapsulation. By using
public, you explicitly indicated that it is acceptable that the modified
fields are accessible from outside the Employee class—in other words, that
they are accessible from the Program class, for example.

Consider an Employee class that includes a Password field, however. It
should be possible to call an Employee object and verify the password
using a Logon() method. It should not be possible, however, to access the
Password field on an Employee object from outside the class.

To define a Password field as hidden and inaccessible from outside the
containing class, you use the keyword private for the access modifier, in
place of public (see Listing 5.15). As a result, the Password field is not
intended for access from inside the Program class, for example.

LISTING 5.15: Using the private Access Modifier

class Employee

{
public string FirstName;
public string LastName;
public string Salary;
private string Password;
private bool IsAuthenticated;

public bool Logon(string password)

{
if(Password == password)
{
IsAuthenticated = true;
}
return IsAuthenticated;
¥
public bool GetIsAuthenticated()
{
return IsAuthenticated;
}
/]

class Program

{

static void Main()

{

222

Chapter 5: Classes

Employee employee = new Employee();

employee.FirstName = "Inigo";
employee.LastName = "Montoya";
/7.

// Password 1is private, so it cannot be

// accessed from outside the class.

// Console.WritelLine(

// ("Password = {0}", employee.Password);

Although not shown in Listing 5.15, it is possible to decorate a method
with an access modifier of private as well.

Note that if no access modifier is placed on a class member, the declara-
tion will default to private. In other words, members are private by
default and programmers need to specify explicitly that a member is to be
public.

Properties

The preceding section, Access Modifiers, demonstrated how you can use
the private keyword to encapsulate a password, preventing access from
outside the class. This type of encapsulation is often too thorough, how-
ever. For example, sometimes you might need to define fields that external
classes can only read but whose values you can change internally. Alterna-
tively, perhaps you want to allow access to write some data in a class but
you need to be able to validate changes made to the data. Still one more
example is the need to construct the data on the fly.

Traditionally, languages enabled the features found in these examples
by marking fields as private and then providing getter and setter
methods for accessing and modifying the data. The code in Listing 5.16
changes both FirstName and LastName to private fields. Public getter and
setter methods for each field allow their values to be accessed and
changed.

Properties

LISTING 5.16: Declaring Getter and Setter Methods

class Employee

{

private string FirstName;
// FirstName getter
public string GetFirstName()
{
return FirstName;
¥
// FirstName setter
public void SetFirstName(string newFirstName)

{ if(newFirstName != null && newFirstName != "")
{
FirstName = newFirstName;
}
}

private string LastName;
// LastName getter
public string GetLastName()
{
return LastName;
¥
// LastName setter
public void SetLastName(string newlLastName)

{
if(newLastName != null && newLastName != "")
{
LastName = newlLastName;
}
}
/.

Unfortunately, this change affects the programmability of the Employee
class. No longer can you use the assignment operator to set data within the
class, nor can you access data without calling a method.

Declaring a Property
Considering the frequency of this type of pattern, the C# designers decided
to provide explicit syntax for it. This syntax is called a property (see Listing
5.17 and Output 5.5).

223

224 Chapter 5: Classes

LisTING 5.17: Defining Properties

class Profgram

{
static void Main()
{
Employee employee = new Employee();
// Call the FirstName property's setter.
employee.FirstName = "Inigo";
// Call the FirstName property's getter.
System.Console.WriteLine(employee.FirstName);
}
}

class Employee

{
// FirstName property

public string FirstName

{
get

{

return _FirstName;

_FirstName = value;

}

private string _FirstName;

// LastName property
public string LastName

{
get
{
return _LastName;
}
set
{
_LastName = value;
}
}
private string _LastName;
/).

Properties

OuTPUT 5.5:

Inigo

The first thing to notice in Listing 5.17 is not the property code itself, but
the code within the Program class. Although you no longer have the fields
with the FirstName and LastName identifiers, you cannot see this by
looking at the Program class. The API for accessing an employee’s first and
last names has not changed at all. It is still possible to assign the parts of the
name using a simple assignment operator, for example (employee.First
Name = "Inigo").

The key feature is that properties provide an API that looks program-
matically like a field. In actuality, however, no such fields exist. A prop-
erty declaration looks exactly like a field declaration, but following it are
curly braces in which to place the property implementation. Two optional
parts make up the property implementation. The get part defines the get-
ter portion of the property. It corresponds directly to the GetFirstName()
and GetLastName() functions defined in Listing 5.16. To access the First-
Name property you call employee.FirstName. Similarly, setters (the set
portion of the implementation) enable the calling syntax of the field
assignment:

employee.FirstName = "Inigo";

Property definition syntax uses three contextual keywords. You use the
get and set keywords to identify either the retrieval or the assignment
portion of the property, respectively. In addition, the setter uses the value
keyword to refer to the right side of the assignment operation. When Pro-
gram.Main() calls employee.FirstName = "Inigo", therefore, value is set
to "Inigo" inside the setter and can be used to assign _FirstName. Listing
5.17’s property implementations are the most common. When the getter is
called (such as in Console.WriteLine(employee2.FirstName)), the value
from the field (_FirstName) is returned.

Automatically Implemented Properties
In C# 3.0, property syntax includes a shorthand version. Since a property
with a single backing field that is assigned and retrieved by the get and set

225

226

Chapter 5: Classes

accessors is so trivial and common (see the implementations of FirstName
and LastName), the C# 3.0 compiler allows the declaration of a property
without any accessor implementation or backing field declaration. Listing
5.18 demonstrates the syntax, and Output 5.6 shows the results.

LisTING 5.18: Automatically Implemented Properties

class Program
{
static void Main()
{
Employee employeel =
new Employee();
Employee employee2 =
new Employee();

// Call the FirstName property's setter.
employeel.FirstName = "Inigo";

// Call the FirstName property's getter.
System.Console.WriteLine(employeel.FirstName);

// Assign an auto-implemented property
employee2.Title = "Computer Nerd";
employeel.Manager = employee2;

// Print employeel's manager's title.
System.Console.WriteLine(employeel.Manager.Title);
}
}

class Employee

{
// FirstName property
public string FirstName

{
get

{

return _FirstName;

_FirstName = value;

}

private string _FirstName;

Properties

// LastName property
public string LastName

{
get
{
return _LastName;
}
set
{
_LastName = value;
}
}
private string _LastName;
/] ...

// Title property
public string Title { get; set; }

// Manager property
public Employee Manager { get; set; }

OuTPUT 5.6:

Inigo
Computer Nerd

Auto-implemented properties provide for a simpler way of writing
properties in addition to reading them. Furthermore, when it comes
time to add something such as validation to the setter, any existing
code that calls the property will not have to change even though the
property declaration will have changed to include an implementation.

Throughout the remainder of the book, I will frequently use this C#
3.0 or later syntax without indicating that it is a C# 3.0 introduced
feature.

Naming Conventions

Because the property name is FirstName, the field name changed from
earlier listings to _FirstName. Other common naming conventions for
the private field that backs a property are _firstName and m_FirstName

227

228

Chapter 5: Classes

(a holdover from C++ where the m stands for member variable), as well
as the camel-case convention, just as with local variables.?

Regardless of which naming pattern you use for private fields, the cod-
ing standard for public fields and properties is Pascal case. Therefore, pub-
lic properties should use the LastName and FirstName type patterns.
Similarly, if no encapsulating property is created around a public field,
Pascal case should be used for the field.

Using Properties with Validation

Notice in Listing 5.19 that the Initialize() method of Employee uses the
property rather than the field for assignment as well. Although not
required, the result is that any validation within the property setter will be
invoked both inside and outside the class. Consider, for example, what
would happen if you changed the LastName property so that it checked
value for null or an empty string, before assigning it to _LastName.

LISTING 5.19: Providing Property Validation

class Employee
{
/..
public void Initialize(
string newFirstName, string newLastName)

{
// Use property inside the Employee
// class as well.
FirstName = newFirstName;
LastName = newLastName;
}

// LastName property
public string LastName
{

get

{

return _LastName;

}

set

3. I prefer _FirstName because the m in front of the name is unnecessary when compared
with simply _, and by using the same casing as the property, it is possible to have only one
string within the Visual Studio code template expansion tools, instead of having one for
both the property name and the field name.

Properties

{
// Validate LastName assignment
if(value == null)
// Report error
throw new ArgumentNullException ();
}
else
{
// Remove any whitespace around
// the new Llast name.
value = value.Trim();
if(value == "")
{
throw new ArgumentException (
"LastName cannot be blank.");*
¥
else
_LastName = value;
}
}
}
private string _LastName;
/).

}

With this new implementation, the code throws an exception if Last-
Name is assigned an invalid value, either from another member of the same
class or via a direct assignment to LastName from inside Program.Main().
The ability to intercept an assignment and validate the parameters by pro-
viding a field-like API is one of the advantages of properties.

It is a good practice to only access a property-backing field from inside
the property implementation. In other words, always use the property,
rather than calling the field directly. In many cases, this is true even from
code within the same class as the property. If following this practice, when
code such as validation code is added, the entire class immediately takes
advantage of it. (As described later in the chapter, one exception to this
occurs when the field is marked as read-only because then the value can-
not be set once class instantiation completes, even in a property setter.)

Although rare, it is possible to assign a value inside the setter, as Listing
5.19 does. In this case, the call to value.Trim() removes any whitespace
surrounding the new last name value.

4. Apologies to Teller, Cher, Sting, Madonna, Bono, Prince, and Liberace, and so on.

229

230

Chapter 5: Classes

Read-Only and Write-Only Properties

By removing either the getter or the setter portion of a property, you can
change a property’s accessibility. Properties with only a setter are write-
only, which is a relatively rare occurrence. Similarly, providing only a get-
ter will cause the property to be read-only; any attempts to assign a value
will cause a compile error. To make Id read-only, for example, you would
code it as shown in Listing 5.20.

LiSTING 5.20: Defining a Read-Only Property

class Program

{
static void Main()
{
Employee employeel = new Employee();
employeel.Initialize(42);
// ERROR: Property or indexer 'Employee.Id’
// cannot be assigned to -- it is read-only
employeel.Id = "490";
}
}
class Employee
{
public void Initialize(int id)
{
// Use field because Id property has no setter,
// it 1is read-only.
_Id = id.ToString();
}
/7 ..

// Id property declaration
public string Id

{
get
{
return _Id;
}
// No setter provided.
}

private string _Id;

Properties

Listing 5.20 assigns the field from within the Employee constructor
rather than the property (_Id = id). Assigning via the property causes a
compile error, as it does in Program.Main().

Access Modifiers on Getters and Setters

As previously mentioned, it is a good practice not to access fields from out-
side their properties because doing so circumvents any validation or addi-
tional logic that may be inserted. Unfortunately, C# 1.0 did not allow
different levels of encapsulation between the getter and setter portions of a
property. It was not possible, therefore, to create a public getter and a pri-
vate setter so that external classes would have read-only access to the
property while code within the class could write to the property.

In C# 2.0, support was added for placing an access modifier on either
the get or the set portion of the property implementation (not on both),
thereby overriding the access modifier specified on the property declara-
tion. Listing 5.21 demonstrates how to do this.

LisTING 5.21: Placing Access Modifiers on the Setter

class Program

{

static void Main()

{
Employee employeel = new Employee();
employeel.Initialize(42);
// ERROR: The property or indexer 'Employee.Id'
// cannot be used in this context because the set
// accessor 1s inaccessible
employeel.Id = "490";

class Employee
{
public void Initialize(int id)
{
// Set Id property
Id = id.ToString();

/...

231

232

Chapter 5: Classes

// Id property declaration
public string Id

{
get
{
return _Id;
}
// Providing an access modifier is in C# 2.0
// and higher only
private set
{
_Id = value;
X
}

private string _Id;

By using private on the setter, the property appears as read-only to
classes other than Employee. From within Employee, the property appears
as read/write, so you can assign the property within the constructor.
When specifying an access modifier on the getter or setter, take care that
the access modifier is more restrictive than the access modifier on the
property as a whole. It is a compile error, for example, to declare the prop-
erty as private and the setter as public.

Properties as Virtual Fields

As you have seen, properties behave like virtual fields. In some instances,
you do not need a backing field at all. Instead, the property getter returns a
calculated value while the setter parses the value and persists it to some
other member fields (if it even exists). Consider, for example, the Name
property implementation shown in Listing 5.22. Output 5.7 shows the

results.

LISTING 5.22: Defining Properties

class Program

{

static void Main()

{
Employee employeel = new Employee();

employeel.Name = "Inigo Montoya";
System.Console.WriteLine(employeel.Name);

Properties 233

// ..

class Employee

{
/o

// FirstName property
public string FirstName

{
get

{

return _FirstName;

_FirstName = value;

}

private string _FirstName;

// LastName property
public string LastName

{
get
{
return _LastName;
}
set
{
_LastName = value;
}
}
private string _LastName;
/] ...

// Name property
public string Name
{

get

{

return FirstName + + LastName;
set

// Split the assigned value into

234

Chapter 5: Classes

// first and last names.

string[] names;

names = value.Split(new char[]{' '});
if(names.Length == 2)

{
FirstName = names[©O];
LastName = names[1];
}
else
{
// Throw an exception if the full
// name was not assigned.
throw new System. ArgumentException (
string.Format(
"Assigned value '{@}' is invalid", value));
¥
}
}
/..
}
OuTPUT 5.7:

Inigo Montoya

The getter for the Name property concatenates the values returned from
the FirstName and LastName properties. In fact, the name value assigned is
not actually stored. When the Name property is assigned, the value on the
right side is parsed into its first and last name parts.

Properties and Method Calls Not Allowed as ref or out Parameter Values
C# allows properties to be used identically to fields, except when they are
passed as ref or out parameter values. ref and out parameter values are
internally implemented by passing the memory address to the target
method. However, because properties can be virtual fields that have no
backing field, or can be read/write-only, it is not possible to pass the
address for the underlying storage. As a result, you cannot pass properties
as ref or out parameter values. The same is true for method calls. Instead,
when code needs to pass a property or method call as a ref or out

Properties

parameter value, the code must first copy the value into a variable and
then pass the variable. Once the method call has completed, the code must
assign the variable back into the property.

ADVANCED TOPIC

Property Internals
Listing 5.23 shows that getters and setters are exposed as get_FirstName()
and set_FirstName() in the CIL.

LisTING 5.23: CIL Code Resulting from Properties

.method public hidebysig specialname instance string
get_FirstName() cil managed
{
// Code size 12 (@xc)
.maxstack 1
.locals init ([@] string CS$1$0000)
IL_0000: nop
IL_0001: 1ldarg.o

IL_0002: 1ldfld string Program::_FirstName
IL_0007: stloc.o
IL_00e8: br.s IL_000a

IL_@00a: 1ldloc.o
IL_0@00b: ret
} // end of method Program::get_FirstName

.method public hidebysig specialname instance void
set_FirstName(string 'value') cil managed

{
// Code size 9 (0x9)
.maxstack 8
IL_0000: nop
IL_0001: 1ldarg.o
IL_0002: 1ldarg.1
IL_0003: stfld string Program::_FirstName
IL_0008: ret
} // end of method Program::set_FirstName

Just as important to their appearance as regular methods is the fact that
properties are an explicit construct within the CIL, too. As Listing 5.24

235

236

Chapter 5: Classes

shows, the getters and setters are called by CIL properties, which are an
explicit construct within the CIL code. Because of this, languages and
compilers are not restricted to always interpreting properties based on a
naming convention. Instead, CIL properties provide a means for compilers
and code editors to provide special syntax.

LiSTING 5.24: Properties Are an Explicit Construct in CIL

.property instance string FirstName()
{
.get instance string Program::get_FirstName()
.set instance void Program::set_FirstName(string)
} // end of property Program::FirstName

Notice in Listing 5.23 that the getters and setters that are part of the prop-
erty include the specialname metadata. This modifier is what IDEs, such
as Visual Studio, use as a flag to hide the members from IntelliSense.

An automatically implemented property is virtually identical to one for
which you define the backing field explicitly. In place of the manually
defined backing field the C# compiler generates a field with the name <Prop-
ertyName>k_BackingField in IL. This generated field includes an attribute
(see Chapter 17) called System.Runtime.CompilerServices.CompilerGen-
eratedAttribute. Both the getters and the setters are decorated with the
same attribute because they too are generated—with the same implementa-
tion as in Listings 5.23 and 5.24.

Constructors

Now that you have added fields to a class and can store data, you need to
consider the validity of that data. As you saw in Listing 5.3, it is possible to
instantiate an object using the new operator. The result, however, is the
ability to create an employee with invalid data. Immediately following the
assignment of employee, you have an Employee object whose name and sal-
ary are not initialized. In this particular listing, you assigned the uninitial-
ized fields immediately following the instantiation of an employee, but if
you failed to do the initialization, you would not receive a warning from
the compiler. As a result, you could end up with an Employee object with
an invalid name.

Constructors

Declaring a Constructor

To correct this, you need to provide a means of specifying the required
data when the object is created. You do this using a constructor, demon-
strated in Listing 5.25.

LISTING 5.25: Defining a Constructor

class Employee
{
// Employee constructor
public Employee(string firstName, string lastName)
{
FirstName = firstName;
LastName = lastName;

}
public string FirstName{ get; set; }

public string LastName{ get; set; }
public string Salary{ get; set; }

/o

To define a constructor you create a method with no return type, whose
method name is identical to the class name.

The constructor is the method that the code calls to create an instance of
the object. In this case, the constructor takes the first name and the last
name as parameters, allowing the programmer to specify these names
when instantiating the Employee object. Listing 5.26 is an example of how

to call a constructor.

LISTING 5.26: Calling a Constructor

class Program
{
static void Main()
{
Employee employee;
employee = new Employee("Inigo", "Montoya");
employee.Salary = "Too Little";

System.Console.WriteLine(
"{e} {1}: {2}",
employee.FirstName,
employee.LastName,

238

Chapter 5: Classes

employee.Salary);

Notice that the new operator returns the type of the object being instanti-
ated (even though no return type or return statement was specified explic-
itly in the constructor’s declaration or implementation). In addition, you
have removed the initialization code for the first and last names because
that occurs within the constructor. In this example, you don’t initialize
Salary within the constructor, so the code assigning the salary still
appears.

Developers should take care when using both assignment at declara-
tion time and assignment within constructors. Assignments within the
constructor will occur after any assignments are made when a field is
declared (such as string Salary = "Not enough" in Listing 5.5). There-
fore, assignment within a constructor will override any value assigned at
declaration time. This subtlety can lead to a misinterpretation of the code
by a casual reader whereby he assumes the value after instantiation is
assigned at declaration time. Therefore, it is worth considering a coding
style that does not mix both declaration assignment and constructor
assignment within the same class.

ADVANCED TOPIC

Implementation Details of the new Operator

Internally, the interaction between the new operator and the constructor
is as follows. The new operator retrieves memory from the memory man-
ager and then calls the specified constructor, passing the initialized
memory to the constructor. Next, the remainder of the constructor chain
executes, passing around the initialized memory between constructors.
None of the constructors have a return type (behaviorally they all return
void). When execution completes on the constructor chain, the new opera-
tor returns the memory reference, now referring to the memory in its
initialized form.

Constructors 239

Default Constructors

It is important to note that by adding a constructor explicitly, you can no
longer instantiate an Employee from within Main() without specifying the
tirst and last names. The code shown in Listing 5.27, therefore, will not
compile.

LISTING 5.27: Default Constructor No Longer Available

class Program

{
static void Main()
{
Employee employee;
// ERROR: No overload for method 'Employee’
// takes '@' arguments.
employee = new Employee();
/..
}
}

If a class has no explicitly defined constructor, then the C# compiler
adds one during compilation. This constructor takes no parameters and is,
therefore, the default constructor by definition. As soon as you add an
explicit constructor to a class, the C# compiler no longer provides a default
constructor. Therefore, with Employee(string firstName, string last-
Name) defined, the default constructor, Employee(), is not added by the
compiler. You could manually add such a constructor, but then you would
again be allowing construction of an Employee without specifying the
employee name.

It is not necessary to rely on the default constructor defined by the com-
piler. It is also possible for programmers to define a default constructor
explicitly, perhaps one that initializes some fields to particular values.
Defining the default constructor simply involves declaring a constructor
that takes no parameters.

Object Initializers
Starting with C# 3.0, the C# language team added functionality to initialize
an object’s accessible fields and properties using an object initializer. The

240

Chapter 5: Classes

object initializer consists of a set of member initializers enclosed in curly
braces following the constructor call to create the object. Each member ini-
tializer is the assignment of an accessible field or property name with a
value (see Listing 5.28).

LisTING 5.28: Calling an Object Initializer

class Program

{
static void Main()
{
Employee employeel = new Employee("Inigo", "Montoya")
{ Title = "Computer Nerd", Salary = "Not enough"};
/).
}
}

Notice that the same constructor rules apply even when using an object
initializer. In fact, the resultant CIL is exactly the same as it would be if the
fields or properties were assigned within separate statements immediately
following the constructor call. The order of member initializers in C#
provides the sequence for property and field assignment in the statements
following the constructor call within CIL.

ADVANCED TOPIC

Collection Initializers

Using a similar syntax to that of object initializers, collection initializers
were added in C# 3.0. Collection initializers provide support for a similar
feature set with collections. Specifically, a collection initializer allows the
assignment of items within the collection at the time of the collection’s
instantiation. Borrowing on the same syntax used for arrays, the collection
initializer initializes each item within the collection as part of collection
creation. Initializing a list of Employees, for example, involves specifying
each item within curly braces following the constructor call, as Listing 5.29
shows.

Constructors

LisTING 5.29: Calling an Object Initializer

class Program

{
static void Main()
{
List<Employee> employees = new List<Employee>()
{
new Employee("Inigo", "Montoya"),
new Employee("Chuck", "McAtee")
¥
/..
}
}

After the assignment of a new collection instance, the compiler-generated
code instantiates each object in sequence and adds them to the collection
via the Add () method.

ADVANCED TOPIC

Finalizers

Constructors define what happens during the instantiation process of a
class. To define what happens when an object is destroyed, C# provides
the finalizer construct. Unlike destructors in C++, finalizers do not run
immediately after an object goes out of scope. Rather, the finalizer executes
after an object is last active and before the program shuts down. Specifi-
cally, the garbage collector identifies objects with finalizers during a gar-
bage collection cycle, and instead of immediately deallocating those
objects, it adds them to a finalization queue. A separate thread runs
through each object in the finalization queue and calls the object’s finalizer
before removing it from the queue and making it available for the garbage
collector again. Chapter 9 discusses this process, along with resource
cleanup, in depth.

Overloading Constructors
Constructors can be overloaded—you can have more than one constructor
as long as the number or types of the parameters vary. For example, as

241

242 Chapter 5: Classes

Listing 5.30 shows, you could provide a constructor that has an employee
ID with first and last names, or even just the employee ID.

LisTING 5.30: Overloading a Constructor

class Employee

{

public Employee(string firstName, string lastName)

{

FirstName = firstName;
LastName = lastName;

}

public Employee(
int id, string firstName, string lastName)

{
Id = id;
FirstName = firstName;
LastName = lastName;

}

public Employee(int id)

{
Id = id;
// Look up employee name. ..
V/ARTE:

¥

public int Id { get; set; }

public string FirstName { get; set; }
public string LastName { get; set; }
public string Salary { get; set; }

/...

This enables Program.Main() to instantiate an employee from the first and
last names either by passing in the employee ID only, or by passing both
the names and the IDs. You would use the constructor with both the names
and the IDs when creating a new employee in the system. You would use
the constructor with only the ID to load up the employee from a file or a
database.

Constructors

Constructor Chaining: Calling another Constructor Using this

Notice in Listing 5.30 that the initialization code for the Employee object is
now duplicated in multiple places and, therefore, has to be maintained in
multiple places. The amount of code is small, but there are ways to elimi-
nate the duplication by calling one constructor from another—constructor
chaining—using constructor initializers. Constructor initializers deter-
mine which constructor to call before executing the implementation of the
current constructor (see Listing 5.31).

LisTING 5.31: Calling One Constructor from Another

class Employee

{
public Employee(string firstName, string lastName)
{
FirstName = firstName;
LastName = lastName;
¥

public Employee(
int id, string firstName, string lastName)
: this(firstName, lastName)

Id = id;

public Employee(int id)

{
Id = id;

// Look up employee name. ..
/]

// NOTE: Member constructors cannot be
// called explicitly inline
// this(id, firstName, LastName);

public int Id { get; set; }

public string FirstName { get; set; }
public string LastName { get; set; }
public string Salary { get; set; }

/...

243

244

Chapter 5: Classes

To call one constructor from another within the same class (for the same
object instance) C# uses a colon followed by the this keyword followed by
the parameter list on the callee constructor’s declaration. In this case, the
constructor that takes all three parameters calls the constructor that takes
two. Often, the calling pattern is reversed; the constructor with the fewest
parameters calls the constructor with the most parameters, passing
defaults for the parameters that are not known.

BEGINNER TOPIC

Centralizing Initialization

Notice that in the Employee(int id) constructor implementation from
Listing 5.31, you cannot call this(firstName, LastName) because no such
parameters exist on this constructor. To enable such a pattern in which all
initialization code happens through one method you must create a sepa-
rate method, as shown in Listing 5.32.

LISTING 5.32: Providing an Initialization Method

class Employee

{
public Employee(string firstName, string lastName)
{
int id;
// Generate an employee ID...
/) ...
Initialize(id, firstName, lastName);
}
public Employee(int id, string firstName, string lastName)
{
Initialize(id, firstName, lastName);
¥

public Employee(int id)
{
string firstName;
string lastName;
Id = id;

// Look up employee data
// ..

Constructors 245

Initialize(id, firstName, lastName);

}

private void Initialize(
int id, string firstName, string lastName)

{
Id = id;
FirstName = firstName;
LastName = lastName;

¥

// .

In this case, the method is called Initialize() and it takes both the
names and the employee IDs. Note that you can continue to call one con-
structor from another, as shown in Listing 5.31.

ADVANCED TOPIC

Anonymous Types

C# 3.0 introduced support for anonymous types. These are data types that
are generated by the compiler (on the fly) rather than through explicit class
definitions. Listing 5.33 shows such a declaration.

LisTING 5.33: Implicit Local Variables with Anonymous Types

using System;

class Program
{
static void Main()
{
var patentl =
new
{
Title = "Bifocals",
YearOfPublication = "1784"
¥
var patent2 =
new
{
Title = "Phonograph",
YearOfPublication = "1877"
¥

246

Chapter 5: Classes

var patent3 =
new
{
patentl.Title,
Year = patentl.YearOfPublication
¥

System.Console.WriteLine("{0} ({1})",
patentl.Title, patentl.YearOfPublication);

System.Console.WriteLine("{0} ({1})",
patent2.Title, patentl.YearOfPublication);

Console.WriteLine();
Console.WriteLine(patentl);
Console.WriteLine(patent2);

Console.WriteLine();
Console.WriteLine(patent3);

The corresponding output is shown in Output 5.8.

OuTPUT 5.8:

Bifocals (1784)
Phonograph (1877)

{ Title = Bifocals. YearOfPublication = 1784 }
{ Title = Phonograph. YearOfPublication = 1877 }
{ Title = Bifocals. Year = 1784 1}

Listing 5.33 demonstrates the assignment of an anonymous type to an
implicitly typed (var) local variable.

When the compiler encounters the anonymous type syntax, it generates
a CIL class with properties corresponding to the named values and data
types in the anonymous type declaration. Although there is no available
name in C# for the generated type, it is still statically typed. For example,
the properties of the type are fully accessible. In Listing 5.33, patent1l.
Title and patent2.YearOfPublication are called within the Console.
WriteLine() statement. Any attempts to call nonexistent members will

Static Members

result in compile errors. Even IntelliSense in IDEs such as Visual Studio
2008 works with the anonymous type.

In Listing 5.33, member names on the anonymous types are explicitly
identified using the assignment of the value to the name (see Title and
YearOfPublicationin patentl and patent2 assignments). However, if the
value assigned is a property or field, the name will default to the name of
the field or property if not specified explicitly. patent3, for example, is
defined using a property name “Title” rather than an assignment to an
implicit name. As Output 5.8 shows, the resultant property name is deter-
mined by the compiler to match the property from where the value was
retrieved.

Although the compiler allows anonymous type declarations such as the
ones shown in Listing 5.33, you should generally avoid anonymous type
declarations and even the associated implicit typing with var until you are
working with lambda and query expressions that associate data from dif-
ferent types or you are horizontally projecting the data so that for a partic-
ular type, there is less data overall. Until frequent querying of data out of
collections makes explicit type declaration burdensome, it is preferable to
explicitly declare types as outlined in this chapter.

Static Members

The HelloWorld example in Chapter 1 first presented the keyword static;
however, it did not define it fully. This section defines the static keyword
fully.

To begin, consider an example. Assume that the employee Id value
needs to be unique for each employee. One way to accomplish this is to
store a counter to track each employee ID. If the value is stored as an
instance field, however, every time you instantiate an object, a new NextId
tield will be created such that every instance of the Employee object would
consume memory for that field. The biggest problem is that each time an
Employee object instantiated, the NextId value on all of the previously
instantiated Employee objects would need to be updated with the next ID
value. What you need is a single field that all Employee object instances
share.

247

248

Chapter 5: Classes

Language Contrast: C++/Visual Basic—Global Variables
and Functions

Unlike many of the languages that came before it, C# does not have global
variables or global functions. All fields and methods in C# appear within
the context of a class. The equivalent of a global field or function within the
realm of C# is a static field or function. There is no functional difference
between global variables/functions and C# static fields/methods, except
that static fields/methods can include access modifiers, such as private,
that can limit the access and provide better encapsulation.

Static Fields
To define data that is available across multiple instances, you use the
static keyword, as demonstrated in Listing 5.34.

LISTING 5.34: Declaring a Static Field

class Employee
{
public Employee(string firstName, string lastName)
{
FirstName = firstName;
LastName = lastName;
Id = NextId;
NextId++;

/o

public static int NextId;

public int Id { get; set; }

public string FirstName { get; set; }
public string LastName { get; set; }
public string Salary { get; set; }

/...

In this example, the NextId field declaration includes the static modifier
and therefore is called a static field. Unlike Id, a single storage location for
NextId is shared across all instances of Employee. Inside the Employee con-
structor, you assign the new Employee object’s Id the value of NextId

Static Members

immediately before incrementing it. When another Employee class is
created, NextId will be incremented and the new Employee object’s Id field
will hold a different value.

Just as instance fields (nonstatic fields) can be initialized at declaration
time, so can static fields, as demonstrated in Listing 5.35.

LISTING 5.35: Assigning a Static Field at Declaration

class Employee

{
/..
public static int NextId = 42;
Ve

}

Unlike with instance fields, if no initialization for a static field is provided,
the static field will automatically be assigned its default value (0, null,
false, and so on), and it will be possible to access the static field even if it
has never been explicitly assigned.

Nonstatic fields, or instance fields, have a new value for each object to
which they belong. In contrast, static fields don’t belong to the instance,
but rather to the class itself. As a result, you access a static field from out-
side a class via the class name. Consider the new Program class shown in
Listing 5.36 (using the Employee class from Listing 5.34).

LISTING 5.36: Accessing a Static Field

using System;

class Program
{
static void Main()

{
Employee.NextId = 1000000;

Employee employeel = new Employee(
"Inigo", "Montoya");

Employee employee2 = new Employee(
"Princess", "Buttercup");

Console.WriteLine(
"{e} {1} ({2hH",
employeel.FirstName,
employeel.LastName,
employeel.Id);

249

250

Chapter 5: Classes

Console.WriteLine(
"{ey {1} ({21)",
employee2.FirstName,
employee2.LastName,
employee2.1d);

Console.WriteLine("NextId = {@0}", Employee.NextId);

/...

Output 5.9 shows the results of Listing 5.36.

OuTPUT 5.9:

Inigo Montoya (1000000)
Princess Buttercup (1000001)
NextId = 1000002

To set and retrieve the initial value of the NextId static field, you use the
class name, Employee, not a variable name. The only time you can elimi-
nate the class name is from within code that appears within the class itself.
In other words, the Employee(...) constructor did not need to use
Employee.NextId because the code appeared within the context of the
Employee class itself, and therefore, the context was already understood
from the scope. In fact, the context is the scope.

Even though you refer to static fields slightly differently than instance
tields, it is not possible to define a static and an instance field with the same
name in the same class. The possibility of mistakenly referring to the
wrong field is high, and therefore, the C# designers decided to prevent
such code. Therefore, overlap in names will introduce conflict within the
declaration space.

BEGINNER TOPIC

Data Can Be Associated with Both a Class and an Object
Both classes and objects can have associated data, just as can the molds and
the widgets created from them.

Static Members

For example, a mold could have data corresponding to the number of
widgets it created, the serial number of the next widget, the current color
of the plastic injected into the mold, and the number of widgets it produces
per hour. Similarly, a widget has its own serial number, its own color, and
perhaps the date and time when the widget was created. Although the
color of the widget corresponds to the color of the plastic within the mold
at the time the widget was created, it obviously does not contain data cor-
responding to the color of the plastic currently in the mold, or the serial
number of the next widget to be produced.

In designing objects, programmers should take care to declare both
fields and methods appropriately as static or instance-based. In general,
you should declare methods that don’t access any instance data as static
methods, and methods that access instance data (where the instance is not
passed in as a parameter) as instance methods. Static fields store data cor-
responding to the class, such as defaults for new instances or the number
of instances that have been created. Instance fields store data associated
with the object.

Static Methods
Just like static fields, you access static methods directly off the class name
(Console.ReadLine(), for example). Furthermore, it is not necessary to
have an instance in order to access the method.

Listing 5.37 provides another example of both declaring and calling a
static method.

LisTING 5.37: Defining a Static Method on DirectoryInfo

public static class DirectoryInfoExtension

{
public static void CopyTo(

DirectoryInfo sourceDirectory, string target,
SearchOption option, string searchPattern)

if (target[target.Length - 1] !=
Path.DirectorySeparatorChar)

{

target += Path.DirectorySeparatorChar;

¥
if (!Directory.Exists(target))

{

251

252 Chapter 5: Classes

Directory.CreateDirectory(target);

}
for (int i = ©; i < searchPattern.Length; i++)
{
foreach (string file in
Directory.GetFiles(
sourceDirectory.FullName, searchPattern))
{
File.Copy(file,
target + Path.GetFileName(file), true);
}
}
//Copy SubDirectories (recursively)
if (option == SearchOption.AllDirectories)
{

foreach(string element in
Directory.GetDirectories(
sourceDirectory.FullName))

{
Copy(element,
target + Path.GetFileName(element),
searchPattern);
¥
¥
¥
¥
/..

DirectoryInfo directory = new DirectoryInfo(".\\Source");
directory.MoveTo(".\\Root");
DirectoryInfoExtension.CopyTo(

directory, ".\\Target",

SearchOption.AllDirectories, "*");

/e

The DirectoryInfoExtension.Copy() method takes a DirectoryInfo
object and copies the underlying directory structure to a new location.

Because static methods are not referenced through a particular
instance, the this keyword is invalid inside a static method. In addition, it
is not possible to access either an instance field or an instance method
directly from within a static method without a reference to the particular
instance to which the field or method belongs. (Note that Main() is another
example of a static method.)

Static Members

One might have expected this method on the System.IO.Directory
class or as an instance method on System.I0.DirectoryInfo. Since neither
exists, Listing 5.37 defines such a method on an entirely new class. In the
section Extension Methods, later in this chapter, we show how to make it
appear as an instance method on DirectoryInfo.

Static Constructors

In addition to static fields and methods, C# also supports static construc-
tors. Static constructors are provided as a means to initialize a class (not
the class instance). Static constructors are not called explicitly; instead, the
runtime calls static constructors automatically upon first access to the
class, whether via calling a regular constructor or accessing a static method
or field on the class. You use static constructors to initialize the static data
within the class to a particular value, mainly when the initial value
involves more complexity than a simple assignment at declaration time.
Consider Listing 5.38.

LisTING 5.38: Declaring a Static Constructor

class Employee

{
static Employee()
{
Random randomGenerator = new Random();
NextId = randomGenerator.Next(101, 999);
¥
[/ ..
public static int NextId = 42;
/..
¥

Listing 5.38 assigns the initial value of NextId to be a random integer
between 100 and 1,000. Because the initial value involves a method call, the
NextId initialization code appears within a static constructor and not as
part of the declaration.

If assignment of NextId occurs within both the static constructor and
the declaration, it is not obvious what the value will be when initialization
concludes. The C# compiler generates CIL in which the declaration assign-
ment is moved to be the first statement within the static constructor.

253

254

Chapter 5: Classes

Therefore, NextId will contain the value returned by randomGenera-
tor.Next(101, 999) instead of a value assigned during NextId’s declara-
tion. Assignments within the static constructor, therefore, will take
precedence over assignments that occur as part of the field declaration, as
was the case with instance fields. Note that there is no support for defining
a static finalizer.

ADVANCED TOPIC

Favor Static Initialization during Declaration
Static constructors execute before the first access to any member of a class,
whether it is a static field, another static member, or the constructor. In
order to support this, the compiler injects a check into all type static mem-
bers and constructors to ensure that the static constructor runs first.
Without the static constructor, the compiler instead initializes all static
members to their default value and avoids adding the static constructor
check. The result is for static assignment initialization to be called before
accessing any static fields but not necessarily before all static methods or
any instance constructor is invoked. This might provide a performance
improvement if initialization of static members is expensive and not
needed before accessing a static field.

Static Properties
You also can declare properties as static. For example, Listing 5.39 wraps
the data for the next ID into a property.

LisTING 5.39: Declaring a Static Property

class Employee

{
/7 ...
public static int NextId
{
get
{
return _NextId;
)
private set
{

_NextId = value;

Static Members 255

}

¥
public static int NextId = 42;

/o
}

It is almost always better to use a static property rather than a public static
tield because public static fields are callable from anywhere whereas a
static property offers at least some level of encapsulation.

Static Classes

Some classes do not contain any instance fields. Consider, for example, a
Math class that has functions corresponding to the mathematical opera-
tions Max () and Min(), as shown in Listing 5.40.

LIsTING 5.40: Declaring a Static Class

// Static class introduced in C# 2.0
public static class SimpleMath
{
// params allows the number of parameters to vary.
static int Max(params int[] numbers)
{
// Check that there is a least one item in numbers.
if(numbers.Length == @)
{
throw new ArgumentException(
"numbers cannot be empty");

}

int result;
result = numbers[0];
foreach (int number in numbers)
{

if(number > result)

{

result = number;

}

}

return result;

}

// params allows the number of parameters to vary.
static int Min(params int[] numbers)
{
// Check that there 1is a least one item in numbers.
if(numbers.Length == @)

256

Chapter 5: Classes

throw new ArgumentException(
"numbers cannot be empty");

}

int result;
result = numbers[0];
foreach (int number in numbers)

{
if(number < result)
{

result = number;

¥

}

return result;

¥
}

This class does not have any instance fields (or methods), and therefore,
creation of such a class would be pointless. Because of this, the class is dec-
orated with the static keyword. The static keyword on a class provides
two facilities. First, it prevents a programmer from writing code that
instantiates the SimpleMath class. Second, it prevents the declaration of any
instance fields or methods within the class. Since the class cannot be
instantiated, instance members would be pointless.

One more distinguishing characteristic of the static class is that the C#
compiler automatically marks it as abstract and sealed within the CIL.
This designates the class as inextensible; in other words, no class can be
derived from it or instantiate it.

Extension Methods

Consider the System.I0.DirectoryInfo class which is used to manipulate
tilesystem directories. The class supports functionality to list the files and
subdirectories (DirectoryInfo.GetFiles()) as well as the capability to
move the directory (DirectoryInfo.Move()). One feature it doesn’t sup-
port directly is copy. If you needed such a method you would have to
implement it, as shown earlier in Listing 5.37.

The DirectoryInfoExtension.Copy() method is a standard static method
declaration. However, notice that calling this Copy () method is different from
calling the DirectoryInfo.Move() method. This is unfortunate. Ideally, we

Extension Methods 257

want to add a method to DirectoryInfo so that, given an instance, we could
call Copy () as an instance method—directory.Copy().

C# 3.0 simulates the creation of an instance method on a different class
via extension methods. To do this we simply change the signature of our
static method so that the first parameter, the data type we are extending, is
prefixed with the this keyword (see Listing 5.41).

LISTING 5.41: Static Copy Method for DirectoryInfo

public static class DirectoryInfoExtension
{
public static void CopyTo(
this DirectoryInfo sourceDirectory, string target,
SearchOption option, string searchPattern)

{
/).
}
}
[/ ..
DirectoryInfo directory = new DirectoryInfo(".\\Source");
directory.CopyTo(".\\Target",
SearchOption.AllDirectories, "*");
Ve

Via this simple addition to C# 3.0, it is now possible to add “instance
methods” to any class, even classes that are not within the same assembly.
The resultant CIL code, however, is identical to what the compiler creates
when calling the extension method as a normal static method.

Extension method requirements are as follows.

¢ The first parameter corresponds to the type on which the method
extends or operates.

* To designate the extension method, prefix the extended type with the
this modifier.

* To access the method as an extension method, import the extending
type’s namespace via a using directive (or place the extending class in
the same namespace as the calling code).

If the extension method signature matches a signature on the extended
type already (that is, if CopyTo() already existed on DirectoryInfo), the
extension method will never be called except as a normal static method.

258

Chapter 5: Classes

Note that specializing a type via inheritance (which I will cover in
Chapter 6) is preferable to using an extension method. Extension methods
do not provide a clean versioning mechanism since the addition of a
matching signature to the extended type will take precedence over the
extension method without warning of the change. The subtlety of this is
more pronounced for extended classes whose source code you don’t con-
trol. Another minor point is that, although development IDEs support
IntelliSense for extension methods, it is not obvious that a method is an
extension method by simply reading through the calling code. In general,
use extension methods sparingly.

Encapsulating the Data

In addition to properties and the access modifiers we looked at earlier in the
chapter, there are several other specialized ways of encapsulating the data
within a class. For instance, there are two more field modifiers. The first is
the const modifier, which you already encountered when declaring local
variables. The second is the capability of fields to be defined as read-only.

const

Just as with const values, a const field contains a compile-time-deter-
mined value that cannot be changed at runtime. Values such as pi make
good candidates for constant field declarations. Listing 5.42 shows an
example of declaring a const field.

LISTING 5.42: Declaring a Constant Field

class ConvertUnits

{
public const float CentimetersPerInch = 2.54F;
public const int CupsPerGallon = 16;
/7 ...

}

Constant fields are static automatically, since no new field instance is
required for each object instance. Declaring a constant field as static
explicitly will cause a compile error.

It is important that the types of values used in public constant expres-
sions are permanent in time. Values such as pi, Avogadro’s number, and

Encapsulating the Data

the circumference of the Earth are good examples. However, values that
could potentially change over time are not. Build numbers, population
counts, and exchange rates would be poor choices for constants.

ADVANCED TOPIC

Public Constants Should Be Permanent Values

public constants should be permanent because changing their value will
not necessarily take effect in the assemblies that use it. If an assembly refer-
ences constants from a different assembly, the value of the constant is com-
piled directly into the referencing assembly. Therefore, if the value in the
referenced assembly is changed but the referencing assembly is not recom-
piled, then the referencing assembly will still use the original value, not the
new value. Values that could potentially change in the future should be
specified as readonly instead.

readonly

Unlike const, the readonly modifier is available only for fields (not for
local variables) and it declares that the field value is modifiable only from
inside the constructor or directly during declaration. Listing 5.43 demon-
strates how to declare a readonly field.

LisTING 5.43: Declaring a Field As readonly

class Employee

{
public Employee(int id)
{
Id = id;
¥
/..

public readonly int Id;
public void sSetId(int newId)

{
// ERROR: read-only fields cannot be set
// outside the constructor.
// Id = newId;

}

/).

259

260

Chapter 5: Classes

Unlike constant fields, readonly fields can vary from one instance to
the next. In fact, a readonly field’s value can change from its value during
declaration to a new value within the constructor. Furthermore, readonly
fields occur as either instance or static fields. Another key distinction is
that you can assign the value of a readonly field at execution time rather
than just at compile time.

Using readonly with an array does not freeze the contents of the array.
It freezes the number of elements in the array because it is not possible to
reassign the readonly field to a new instance. However, the elements of the
array are still writeable.

Nested Classes

In addition to defining methods and fields within a class, it is also possible
to define a class within a class. Such classes are nested classes. You use a
nested class when the class makes little sense outside the context of its con-
taining class.

Consider a class that handles the command-line options of a program.
Such a class is generally unique to each program and there is no reason to
make a CommandLine class accessible from outside the class that contains
Main(). Listing 5.44 demonstrates such a nested class.

LISTING 5.44: Defining a Nested Class

class Program
{
// Define a nested class for processing the command Line.
private class CommandLine
{
public CommandLine(string[] arguments)
{
for(int argumentCounter=0;
argumentCounter<arguments.Length;

argumentCounter++)
{
switch (argumentCounter)
{
case 0:
Action = arguments[@].ToLower();
break;
case 1:

Id = arguments[1];
break;

Nested Classes

case 2:
FirstName = arguments[2];
break;

case 3:
LastName = arguments[3];
break;

}
}
public string Action;
public string Id;
public string FirstName;
public string LastName;

}

static void Main(string[] args)

{

CommandLine commandLine = new CommandLine(args);

switch (commandLine.Action)

{

case "new :
// Create a new employee
[/ ..
break;
case "update":
// Update an existing employee's data
/..
break;
case "delete":
// Remove an existing employee's file.
/..
break;
default:
Console.WriteLine(
"Employee.exe
"new|update|delete <id> [firstname] [lastname]");
break;

+

The nested class in this example is Program.CommandLine. As with all
class members, no containing class identifier is needed from inside the
containing class, so you can simply refer to it as CommandLine.

One unique characteristic of nested classes is the ability to specify pri-
vate as an access modifier for the class itself. Because the purpose of this
class is to parse the command line and place each argument into a separate

261

262

Chapter 5: Classes

field, Program.CommandLine is relevant only to the Program class in this
application. The use of the private access modifier defines the intended
scope of the class and prevents access from outside the class. You can do
this only if the class is nested.

The this member within a nested class refers to an instance of the
nested class, not the containing class. One way for a nested class to access
an instance of the containing class is if the containing class instance is
explicitly passed, such as via a constructor or method parameter.

Another interesting characteristic of nested classes is that they can
access any member on the containing class, including private members.
The converse to accessing private members is not true, however. It is not
possible for the containing class to access a private member on the nested
class.

Nested classes are rare. Furthermore, treat public nested classes suspi-
ciously; they indicate potentially poor code that is likely to be confusing
and hard to discover.

Language Contrast: Java—Inner Classes

Java includes not only the concept of a nested class, but also the concept of
an inner class. Inner classes correspond to objects that are associated with
the containing class instance rather than just a syntactic relationship. In
C#, you can achieve the same structure by including an instance field of a
nested type within the outer class. A factory method or constructor can
ensure a reference to the corresponding instance of the outer class is set
within the inner class instance as well.

Partial Classes

Another language feature added in C# 2.0 is partial classes. Partial classes
are portions of a class that the compiler can combine to form a complete
class. Although you could define two or more partial classes within the
same file, the general purpose of a partial class is to allow the splitting of a
class definition across multiple files. Primarily this is useful for tools that

Partial Classes

are generating or modifying code. With partial classes, the tools can work
on a file separate from the one the developer is manually coding.

Defining a Partial Class
C# 2.0 (and later) allows declaration of a partial class by prepending a con-
textual keyword, partial, immediately before class, as Listing 5.45 shows.

LISTING 5.45: Defining a Partial Class

// File: Programl.cs
partial class Program
{

}

// File: Program2.cs
partial class Program
{

}

In this case, each portion of Program is placed into a separate file, as identi-
tied by the comment. Besides their use with code generators, another com-
mon use of partial classes is to place any nested classes into their own files.
This is in accordance with the coding convention that places each class defi-
nition within its own file. For example, Listing 5.46 places the Program.Com-
mandLine class into a file separate from the core Program members.

LisTING 5.46: Defining a Nested Class in a Separate Partial Class

// File: Program.cs
partial class Program
{
static void Main(string[] args)

{

CommandLine commandLine = new CommandLine(args);

switch (commandLine.Action)
{
/]
}
¥
¥

// File: Program+CommandLine.cs
partial class Program

263

264

Chapter 5: Classes

{

// Define a nested class for processing the command Line.
private class CommandLine
{
/7.
}
}

Partial classes do not allow extending compiled classes, or classes in
other assemblies. They are only a means of splitting a class implementa-
tion across multiple files within the same assembly.

Partial Methods

Beginning with C# 3.0, the language designers added the concept of partial
methods, extending the partial class concept of C# 2.0. Partial methods are
allowed only within partial classes, and like partial classes, the primary
purpose is to accommodate code generation.

Consider a code generation tool that generates the Person.Designer.cs
tile for the Person class based on a Person table within a database. The tool
will examine the table and create properties for each column in the table.
The problem, however, is that frequently the tool cannot generate any vali-
dation logic that may be required because this logic is based on business
rules that are not embedded into the database table definition. Instead, the
developer of the Person class needs to add the validation logic. It is undesir-
able to modify Person.Designer.cs directly because if the file is regener-
ated (to accommodate an additional column in the database, for example),
the changes would be lost. Instead, the structure of the code for Person
needs to be separated out so that the generated code appears in one file and
the custom code (with business rules) is placed into a separate file unaf-
fected by any regeneration. As we saw in the preceding section, partial
classes are well suited for the task of splitting a file across multiple files.
However, they are not sufficient. Frequently, we also need partial methods.

Partial methods allow for a declaration of a method without requiring
an implementation. However, when the optional implementation is
included, it can be located in one of the sister partial class definitions,
likely in a separate file. Listing 5.47 shows the partial method declaration
and the implementation for the Person class.

Partial Classes

LisTING 5.47: Defining a Nested Class in a Separate Partial Class

// File: Person.Designer.cs
public partial class Person

{

#iregion Extensibility Method Definitions
partial void OnLastNameChanging(string value);
partial void OnFirstNameChanging(string value);

#endregion
/] ...
public System.Guid PersonId
{
/] ...
}
private System.Guid _Personld;
/] ...
public string LastName
{
get
{
return _LastName;
}
set
{
if ((_LastName != value))
{
OnLastNameChanging(value);
_LastName = value;
¥
}
}
private string _LastName;
/...
public string FirstName
{
get
{
return _FirstName;
}
set
{
if ((_FirstName != value))
{
OnFirstNameChanging(value);
_FirstName = value;
¥

265

266

Chapter 5: Classes

}

private string _FirstName;

// File: Person.cs
partial class Person

{
partial void OnLastNameChanging(string value)
{
if (value == null)
{
throw new ArgumentNullException("LastName");
¥
if(value.Trim().Length == 0)
{
throw new ArgumentException(
"LastName cannot be empty.");
}
}
}

In the listing of Person.Designer.cs are declarations for the OnLastName-
Changing() and OnFirstNameChanging() methods. Furthermore, the prop-
erties for the last and first names make calls to their corresponding
changing methods. Even though the declarations of the changing methods
contain no implementation, this code will successfully compile. The key is
that the method declarations are prefixed with the contextual keyword
partial in addition to the class that contains such methods.

In Listing 5.47, only the OnLastNameChanging() method is imple-
mented. In this case, the implementation checks the suggested new Last-
Name value and throws an exception if it is not valid. Notice that the
signatures for OnLastNameChanging() between the two locations match.

It is important to note that a partial method must return void. If the
method didn’t return void and the implementation was not provided,
what would the expected return be from a call to a nonimplemented
method? To avoid any invalid assumptions about the return, the C#
designers decided not to prohibit methods with returns other than void.
Similarly, out parameters are not allowed on partial methods. If a return
value is required, ref parameters may be used.

Summary

In summary, partial methods allow generated code to call methods that
have not necessarily been implemented. Furthermore, if there is no imple-
mentation provided for a partial method, no trace of the partial method
appears in the CIL. This helps keep code size small while keeping flexibil-
ity high.

SUMMARY

This chapter explained C# constructs for classes and object orientation in
C#. This included a discussion of fields, and a discussion of how to access
them on a class instance.

This chapter also discussed the key concept of whether to store data on
a per-instance basis or across all instances of a type. Static data is associ-
ated with the class and instance data is stored on each object.

In addition, the chapter explored encapsulation in the context of access
modifiers for methods and data. The C# construct of properties was intro-
duced, and you saw how to use it to encapsulate private fields.

The next chapter focuses on how to associate classes with each other via
inheritance, and the benefits derived from this object-oriented construct.

267

This page intentionally left blank

s 6

Inheritance

T HE PRECEDING CHAPTER DISCUSSED how one class can reference other
classes via fields and properties. This chapter discusses how to use the
inheritance relationship between classes to build class hierarchies.

] L Casting
@|s Operator @Derlvatlon protected

Single Inheritance
Sealed Classes

@ Overriding | virtual
new
sealed

@ System.Object @ Abstract Classes

BEGINNER TOPIC

Inheritance Definitions
The preceding chapter provided an overview of inheritance. Here’s a
review of the defined terms.

¢ Derive/inherit: Specialize a base class to include additional members
or customization of the base class members.

269

270

Chapter 6: Inheritance

e Derived/sub/child type: The specialized type that inherits the members
of the more general type.

* Base/super/parent type: The general type whose members a derived
type inherits.

Inheritance forms an “is a” relationship. The derived type is always
implicitly also of the base type. Just as a hard drive “is a” storage device,
any other type derived from the storage device type “is a” type of storage
device.

Derivation

It is common to want to extend a given type to add features, such as
behavior and data. The purpose of inheritance is to do exactly that. Given
a Person class, you create an Employee class that additionally contains
EmployeeId and Department properties. The reverse approach may also
occur. Given, for example, a Contact class within a Personal Digital Assis-
tant (PDA), you decide you also can add calendaring support. Toward
this effort, you create an Appointment class. However, instead of redefin-
ing the methods and properties that are common to both classes, you
refactor the Contact class. Specifically, you move the common methods
and properties on Contact into a base class called PdaItem from which
both Contact and Appointment derive, as shown in Figure 6.1.

The common items in this case are Created, LastUpdated, Name, Object-
Key, and the like. Through derivation, the methods defined on the base
class, PdaItem, are accessible from all subclasses of PdaItem.

When defining a derived class, follow the class identifier with a colon
and then the base class, as Listing 6.1 demonstrates.

LISTING 6.1: Deriving One Class from Another

public class PdaItem

{
public string Name { get; set; }

public DateTime LastUpdated { get; set; }
}

Derivation

// Define the Contact class as inheriting the PdaItem class
public class Contact : PdaItem

{
public string Address { get; set; }
public string Phone { get; set; }

}

Listing 6.2 shows how to access the properties defined in Contact.

LISTING 6.2: Using Inherited Methods

public class Program

{
public static void Main()
{
Contact contact = new Contact();
contact.Name = "Inigo Montoya";
/] ...
¥
¥

FIGURE 6.1: Refactoringinto a Base Class

271

272

Chapter 6: Inheritance

Even though Contact does not directly have a property called Name, all
instances of Contact can still access the Name property from PdaItem and
use it as though it was part of Contact. Furthermore, any additional classes
that derive from Contact will also inherit the members of PdaItem, or any
class from which PdaItem was derived. The inheritance chain has no prac-
tical limit and each derived class will have all the exposed members of its
base class inheritance chain combined (see Listing 6.3).

LiSTING 6.3: Classes Deriving from Each Other to Form an Inheritance Chain

public class Pdaltem : object
{

/] ...
}

public class Appointment : Pdaltem

/...

public class Contact : PdaItem

/...

public class Customer : Contact

/...

In other words, although Customer doesn’t derive from PdaItem directly, it
still inherits the members of PdaItem.

In Listing 6.3, PdaItem is shown explicitly to derive from object.
Although C# allows such syntax, it is unnecessary because all classes that
don’t have some other derivation will derive from object, regardless of
whether it is specified.

Casting between Base and Derived Types
As Listing 6.4 shows, because derivation forms an “is a” relationship, a
derived type can always be directly assigned to a base type.

Derivation

LISTING 6.4: Implicit Base Type Casting

public class Program
{
pulic static void Main()
{
// Derived types can be implicitly converted to
// base types
Contact contact = new Contact();
PdaItem item = contact;
/] ...

// Base types must be cast explicitly to derived types
contact = (Contact)item;

/] ...

The derived type, Contact, is a PdaItem and can be assigned directly to a
PdaItem. This is known as an implicit conversion because no specific oper-
ator is required and the conversion will, on principle, always succeed; it
will not throw an exception.

The reverse, however, is not true. A PdaItemis not necessarily a Contact; it
could be an Appointment or some other undefined, derived type. Therefore,
casting from the base type to the derived type requires an explicit cast, which
at runtime could fail. To perform an explicit cast, identify the target type
within parentheses prior to the original reference, as Listing 6.4 demonstrates.

With the explicit cast, the programmer essentially communicates to the
compiler to trust her, she knows what she is doing, and the C# compiler
allows the conversion as long as the target type is derived from the origi-
nating type. Although the C# compiler allows an explicit conversion at
compile time between potentially compatible types, the CLR will still ver-
ify the explicit cast at execution time, throwing an exception if in fact the
object instance is not of the targeted type.

The C# compiler allows the cast operator even when the type hierarchy
allows an implicit cast. For example, the assignment from contact to item
could use a cast operator as follows:

item = (PdaItem)contact;

or even when no cast is necessary:

contact = (Contact)contact;

273

274

Chapter 6: Inheritance

BEGINNER TOPIC

Casting within the Inheritance Chain
An implicit conversion to a base class does not instantiate a new instance.
Instead, the same instance is simply referred to as the base type and
the capabilities (the accessible members) are those of the base type. It is
just like referring to a CD-ROM drive (CDROM) as a storage device.
Since not all storage devices support an eject operation, a CDROM that
is viewed as a storage device cannot be ejected either, and a call to
storageDevice.Eject() would not compile even though the instantiated
object may have been a CDROM object that supported the Eject () method.
Similarly, casting down from the base class to the derived class simply
begins referring to the type more specifically, expanding the available
operations. The restriction is that the actual instantiated type must be an
instance of the targeted type (or something derived from it).

ADVANCED TOPIC

Defining Custom Conversions
Conversion between types is not limited to types within a single
inheritance chain. It is possible to convert between entirely unrelated
types as well. The key is the provision of a conversion operator between
the two types. C# allows types to include either explicit or implicit
conversion operators. Anytime the operation could possibly fail, such as
in a cast from long to int, developers should choose to define an explicit
conversion operator. This warns developers performing the conversion
to do so only when they are certain the conversion will succeed, or else to
be prepared to catch the exception if it doesn’t. They should also use
explicit conversions over an implicit conversion when the conversion
is lossy. Converting from a float to an int, for example, truncates
the decimal, which a return cast (from int back to float) would not
recover.

Listing 6.5 shows implicit and explicit conversion operators for Address
to string and vice versa.

Derivation

LisTING 6.5: Defining Cast Operators

class GPSCoordinates

{
/o

public static implicit operator UTMCoordinates(
GPSCoordinates coordinates)

/o

In this case, you have an implicit conversion from GPSCoordinates to
UTMCoordinates. A similar conversion could be written to reverse the
process. Note that an explicit conversion could also be written by replacing
implicit with explicit.

private Access Modifier

All public members of a base class are available to the derived class. How-
ever, private members are not. For example, in Listing 6.6, the private
field, Name, is not available on Contact.

LISTING 6.6: Private Members Are Not Inherited

public class PdaItem
{

private string _Name;
/..
X

public class Contact : PdaItem

{
/o

public class Program

{

public static void Main()

{
Contact contact = new Contact();
// ERROR: 'PdaItem. _Name' 1is inaccessible
// due to 1its protection Llevel
contact._Name = "Inigo Montoya";

}

275

276

Chapter 6: Inheritance

As part of keeping with the principle of encapsulation, derived classes
cannot access members declared as private.' This forces the base class
developer to make an explicit choice as to whether a derived class gains
access to a member. In this case, the base class is defining an API in which
_Name can be changed only via the Name property. That way, if validation is
added, the derived class will gain the validation benefit automatically
because it was unable to access _Name directly from the start.

protected Access Modifier

Encapsulation is finer-grained than just public or private, however. It is
possible to define members in base classes that only derived classes can
access. Consider the ObjectKey property shown in Listing 6.7, for example.

LISTING 6.7: protected Members Are Accessible Only from Derived Classes

public class Program

{
public static void Main()
{
Contact contact = new Contact();
contact.Name = "Inigo Montoya";
// ERROR: 'PdaItem.ObjectKey' is inaccessible
// due to its protection Llevel
contact.ObjectKey = Guid.NewGuid();
¥
}

public class PdaItem

{
protected Guid ObjectKey

{
get { return _ObjectKey; }

set { _ObjectKey = value; }

}
private Guid _ObjectKey;

/..

1. Except for the corner case when the derived class is also a nested class of the base class.

Derivation

public class Contact : PdaItem

{
void Save()
{
// Instantiate a FileStream using <ObjectKey>.dat
// for the filename.
FileStream stream = System.IO.File.OpenWrite(
ObjectKey + ".dat");
void Load(PdaItem pdaItem)
{
// ERROR: 'pdaItem.ObjectKey' is inaccessible
// due to its protection Llevel
pdaItem.ObjectKey = ...;
Contact contact = pdaItem as Contact;
if(contact != null)
{
contact.ObjectKey = ...;
}
}
// .
}
}

ObjectKey is defined using the protected access modifier. The result is
that it is accessible outside of PdaItem only from classes that derive from
PdaItem. Contact derives from PdaItem and, therefore, all members of
Contact have access to ObjectKey. Since Program does not derive from
PdaItem, using the ObjectKey property within Program results in a compile
error.

A subtlety shown in the Contact.Load() method is worth noting.
Developers are often surprised that from code within Contact it is not pos-
sible to access the protected ObjectKey of an explicit PdaItem, even though
Contact derives from PdaItem. The reason is that a PdaItem could poten-
tially be an Address, and Contact should not be able to access protected
members of Address. Therefore, encapsulation prevents Contact from
potentially modifying the ObjectKey of an Address. A successful cast to
Contact will bypass the restriction as shown. The governing rule is that
accessing a protected member from a derived class requires compile-time

277

278

Chapter 6: Inheritance

determination that the protected member is an instance of the derived
class (or one of its subclasses).

Extension Methods

One of the features included with extension methods is the fact that they
too are inherited. If we extend a base class such as PdaItem, all the exten-
sion methods will also be available in the derived classes. However, as
with all extension methods, priority is given to instance methods. If a com-
patible signature appears anywhere within the inheritance chain, this will
take precedence over an extension method.

Requiring extension methods on base types is rare. As with extension
methods in general, if the base type’s code is available, it is preferable to
modify the base type directly. Even in cases where the base type’s code is
unavailable, programmers should consider whether to add extension
methods to an interface that the base type or individual derived types
implement. I cover interfaces and using them with extension methods in
the next chapter.

Single Inheritance

In theory, you can place an unlimited number of classes in an inheritance
tree. For example, Customer derives from Contact, which derives from
PdaItem, which derives from object. However, C# is a single-inheritance
programming language (as is the CIL language to which C# compiles).
This means that a class cannot derive from two classes directly. It is not
possible, for example, to have Contact derive from both PdaItem and

Person.

Language Contrast: C++— Multiple Inheritance

C#’s single inheritance is one of its major differences from C++. It makes for
a significant migration path from programming libraries such as Active Tem-
plate Library (ATL), whose entire approach relies on multiple inheritance.

Derivation

For the rare cases that require a multiple-inheritance class structure,
one solution is to use aggregation; instead of inheriting the second class,
the class contains an instance of the class. Figure 6.2 shows an example of
this class structure. Aggregation occurs when the association relationship
defines a core part of the containing object. For multiple inheritance, this
involves picking one class as the primary base class (PdaItem)and deriving
a new class (Contact) from that. The second desired base class (Person) is
added as a field in the derived class (Contact). Next, all the nonprivate
members on the field (Person) are redefined on the derived class (Contact)
which then delegates the calls out to the field (Person). Some code duplica-
tion occurs because methods are redeclared; however, this is minimal,
since the real method body is implemented only within the aggregated
class (Person).

In Figure 6.2, Contact contains a private property called InternalPer-
son that is drawn as an association to the Person class. Contact also con-
tains the FirstName and LastName properties but with no corresponding
fields. Instead, the FirstName and LastName properties simply delegate
their calls out to InternalPerson.FirstName and InternalPerson.Last-
Name, respectively. Listing 6.8 shows the resultant code.

LISTING 6.8: Working around Single Inheritance Using Aggregation

public class PdaItem
{

[/ ..
}

public class Person
{

/) ..
}

public class Contact : PdaItem
{

private Person InternalPerson { get; set; }

public string FirstName

{
get { return InternalPerson.FirstName; }
set { InternalPerson.FirstName = value; }

279

280 Chapter 6: Inheritance

public string LastName

{
get { return InternalPerson.LastName; }
set { InternalPerson.LastName = value; }
}
[/ ..

FIGURE 6.2: Working around Multiple Inheritance Using Aggregation

Overriding the Base Class

Besides the added complexity of delegation, another drawback is that
any methods added to the field class (Person) will require manual addition
to the derived class (Contact); otherwise, Contact will not expose the
added functionality.

Sealed Classes

To design a class correctly that others can extend via derivation can be a
tricky task which requires testing with examples to verify that the deriva-
tion will work successfully. To avoid unexpected derivation scenarios and
problems you can mark classes as sealed (see Listing 6.9).

LISTING 6.9: Preventing Derivation with Sealed Classes

public sealed class CommandLineParser
{

[/ ..
}

// ERROR: Sealed classes cannot be derived from
public sealed class DerivedCommandLineParser :
CommandLineParser
{
/..
}

Sealed classes include the sealed modifier, and the result is that they
cannot be derived from. The string type is an example of a type that uses
the sealed modifier to prevent derivation.

Overriding the Base Class

All public and protected members of a base class are inherited in the
derived class. However, sometimes the base class does not have the optimal
implementation of a particular member. Consider the Name property on
PdaItem, for example. The implementation is probably acceptable when
inherited by the Appointment class. For the Contact class, however, the Name
property should return the FirstName and LastName properties combined.
Similarly, when Name is assigned, it should be split across FirstName and
LastName. In other words, the base class property declaration is appropriate

281

282

Chapter 6: Inheritance

for the derived class, but the implementation is not always valid. There
needs to be a mechanism for overriding the base class implementation with
a custom implementation in the derived class.

virtual Modifier

C# supports overriding on instance methods and properties but not on
fields or any static members. It requires an explicit action within both the
base class and the derived class. The base class must mark each member
for which it allows overriding as virtual. If public or protected members
do not include the virtual modifier, then subclasses will not be able to
override those members.

Language Contrast: Java—Virtual Methods by Default

By default, methods in Java are virtual, and they must be explicitly sealed if
nonvirtual behavior is preferred. In contrast, C# defaults to nonvirtual.

Listing 6.10 shows an example of property overriding.

LISTING 6.10: Overriding a Property

public class PdaItem

! public virtual string Name { get; set; }
/...
}
public class Contact : Pdaltem
{
public override string Name
{
get
{
return FirstName + " " + LastName;
}
set
{

string[] names = value.Split(' ');
// Error handling not shown.
FirstName = names[0];

LastName = names[1];

Overriding the Base Class 283

}

public string FirstName { get; set; }
public string LastName { get; set; }

/...

Not only does PdaItem include the virtual modifier on the Name prop-
erty, but also, Contact’s Name property is decorated with the keyword
override. Eliminating virtual would result in an error and omitting
override would cause a warning, as you will see shortly. C# requires the
overriding methods to use the override keyword explicitly.

In other words, virtual identifies a method or property as available for
replacement (overriding) in the derived type.

Language Contrast: Java and C++— Implicit Overriding

Unlike with Java and C++, the override keyword is required on the derived
class. C# does not allow implicit overriding. In order to override a method,
both the base class and the derived class members must match and have
corresponding virtual and override keywords. Furthermore, if specify-
ing the override keyword, the derived implementation is assumed to
replace the base class implementation.

Overloading a member causes the runtime to call the most derived
implementation (see Listing 6.11).

LISTING 6.11: Runtime Calling the Most Derived Implementation of a Virtual Method

public class Program

{

public static void Main()

{

Contact contact;
PdaItem item;

contact = new Contact();
item = contact;

284 Chapter 6: Inheritance

// Set the name via PdaItem variable
item.Name = "Inigo Montoya";

// Display that FirstName & LastName

// properties were set.

Console.WriteLine("{0} {1}",
contact.FirstName, contact.LastName);

Output 6.1 shows the results of Listing 6.11.

OuTPUT 6.1:

Inigo Montoya

In Listing 6.11, item.Name is called, where itemis declared as a PdaItem.
However, the contact’s FirstName and LastName are still set. The rule is
that whenever the runtime encounters a virtual method, it calls the most
derived and overriding implementation of the virtual member. In this
case, the code instantiates a Contact and calls Contact.Name because Con-
tact contains the most derived implementation of Name.

In creating a class, programmers should be careful when choosing to
allow overriding a method, since they cannot control the derived implemen-
tation. Virtual methods should not include critical code because such meth-
ods may never be called if the derived class overrides them. Furthermore,
converting a method from a virtual method to a nonvirtual method could
break derived classes that override the method. This is a code-breaking
change and you should avoid it, especially for assemblies intended for use
by third parties.

Listing 6.12 includes a virtual Run() method. If the Controller pro-
grammer calls Run() with the expectation that the critical Start() and
Stop() methods will be called, he will run into a problem.

LISTING 6.12: Carelessly Relying on a Virtual Method Implementation

public class Controller

{
public void Start()

{
// Critical code

}

}

public virtual void Run()

{

}

Start();
Stop();

public void Stop()

{
}

// Critical code

Overriding the Base Class

In overriding Run(), a developer could perhaps not call the critical
Start() and Stop() methods. To force the Start()/Stop() expectation, the
Controller programmer should define the class, as shown in Listing 6.13.

LISTING 6.13: Forcing the Desirable Run() Semantics

public class Controller

{

public void Start()

{ // Critical code

}

private void Run()

{
Start();
InternalRun();
Stop();

}

protected virtual void InternalRun()

{
// Default implementation

}
public void Stop()
{
// Critical code
}

With this new listing, the Controller programmer prevents users from
mistakenly calling InternalRun(), because it is protected. On the other
hand, declaring Run() as public ensures that Start() and Stop() are
invoked appropriately. It is still possible for users to modify the default

285

286

Chapter 6: Inheritance

implementation of how the Controller executes by overriding the
protected InternalRun() member from within the derived class.

Virtual methods provide default implementations only, implementations
that derived classes could override entirely. However, because of the com-
plexities of inheritance design, it is important to consider (and preferably to
implement) a specific scenario that requires the virtual method definition.

Language Contrast: C++—Dispatch Method Calls during
Construction

In C++, methods called during construction will not dispatch the virtual
method. Instead, during construction, the type is associated with the base
type rather than the derived type, and virtual methods call the base imple-
mentation. In contrast, C# dispatches virtual method calls to the most
derived type. This is consistent with the principle of calling the most
derived virtual member, even if the derived constructor has not completely
executed. Regardless, in C# the situation should be avoided.

Finally, only instance members can be virtual. The CLR uses the con-
crete type, specified at instantiation time, to determine where to dispatch a
virtual method call, so static virtual methods are meaningless and the
compiler prohibits them.

new Modifier
When an overriding method does not use override, the compiler issues a
warning similar to that shown in Output 6.2 or Output 6.3.

OUTPUT 6.2:

warning CSO0llY4: '<derived method name>' hides inherited member
'<base method name>'. To make the current member override that
implementation. add the override keyword. Otherwise add the new
keyword.

Overriding the Base Class

OuUTPUT 6.3:

warning CSO0108: The keyword new is required on '<derived property name>'
because it hides inherited member '<base property name>'

The obvious solution is to add the override modifier (assuming the
base member is virtual). However, as the warnings point out, the new mod-
ifier is also an option. Consider the scenario shown in Table 6.1—a specific
example of the more general problem known as the brittle base class or
fragile base class problem.

TABLE 6.1: Why the New Modifier?

Activity Code
Programmer A public class Person
defines class Person {
that includes proper- public string FirstName { get; set; }
ties FirstName and public string LastName { get; set; }
LastName.
}
Programmer B public class Contact : Person
derives from Person {
and defines Contact public string Name
with the additional {
property, Name. In
addition, he defines get
the Program class {
whose Main() return FirstName + " " + LastName;
method instantiates }
Contact, assigns
Name, and then prints set
out the name. {
string[] names = value.Split(' ');
// Error handling not shown.
FirstName = names[9];
LastName = names[1];
}
}
}

Continues

287

Chapter 6: Inheritance

TABLE 6.1: Why the New Modifier? (Continued)

Activity Code
Later, Programmer A
adds the Name prop- public class Person
erty, but instead of {
1mplemenjc1ng the public string Name
getterasFirstName + {
" " + LastName, she
implements it as get
LastName + ", " + {
FirstName. Further- return LastName + ", " + FirstName;
more, she doesn’t }
define the property
as virtual, and she set
uses the property in a {
DisplayName() . _ Sh(r
method. string[] names = value.Split(', ');
// Error handling not shown.
LastName = names[0];
FirstName = names[1];
}
}
public static void Display(Person person)
{
// Display <LastName>, <FirstName>
Console.WriteLine(person.Name);
}
}

Because Person.Name is not virtual, Programmer A will expect Dis-
play() to use the Person implementation, even if a Person-derived data
type, Contact, is passed in. However, Programmer B would expect Con-
tact.Name to be used in all cases where the variable data type is a Contact.
(Programmer B would have no code where Person.Name was used, since
no Person.Name property existed initially.) To allow the addition of Per-
son.Name without breaking either programmer’s expected behavior, you
cannot assume virtual was intended. Furthermore, since C# requires an
override member to explicitly use the override modifier, some other
semantic must be assumed, instead of allowing the addition of a member
in the base class to cause the derived class to no longer compile.

The semantic is the new modifier, and it hides a redeclared member of
the derived class from the base class. Instead of calling the most derived

Overriding the Base Class 289

member, a member of the base class calls the most derived member in the
inheritance chain prior to the member with the new modifier. If the inheri-
tance chain contains only two classes, then a member in the base class will
behave as though no method was declared on the derived class (if the
derived implementation overrides the base class member). Although the
compiler will report the warning shown in either Output 6.2 or Output 6.3,
if neither override nor new is specified, then new will be assumed, thereby
maintaining the desired version safety.
Consider Listing 6.14, for example. Its output appears in Output 6.4.

LISTING 6.14: override versus new Modifier

public class Program

{
public class BaseClass
{
public void DisplayName()
{
Console.WriteLine("BaseClass");
}
}
public class DerivedClass : BaseClass
{
// Compiler WARNING: DisplayName() hides inherited
// member. Use the new keyword if hiding was intended.
public virtual void DisplayName()
{
Console.WriteLine("DerivedClass");
}
}
public class SubDerivedClass : DerivedClass
{
public override void DisplayName()
{
Console.WriteLine("SubDerivedClass");
}
}
public class SuperSubDerivedClass : SubDerivedClass
{
public new void DisplayName()
{
Console.WriteLine("SuperSubDerivedClass");
}

290

Chapter 6: Inheritance

public static void Main()
{
SuperSubDerivedClass superSubDerivedClass
= new SuperSubDerivedClass();

SubDerivedClass subDerivedClass = superSubDerivedClass;
DerivedClass derivedClass = superSubDerivedClass;
BaseClass baseClass = superSubDerivedClass;

superSubDerivedClass.DisplayName();
subDerivedClass.DisplayName();
derivedClass.DisplayName();
baseClass.DisplayName();

OUTPUT 6.4:

SuperSubDerived(Class
SubDerived(Class
SubDerivedClass
Base(Class

These results occur for the following reasons.

e SuperSubDerivedClass: SuperSubDerivedClass.DisplayName() dis-
plays SuperSubDerivedClass because there is no derived class and
hence, no overload.

e SubDerivedClass: SubDerivedClass.DisplayName() is the most
derived member to override a base class’s virtual member. SuperSub-
DerivedClass.DisplayName() is hidden because of its new modifier.

e SubDerivedClass: DerivedClass.DisplayName() is virtual and Sub-
DerivedClass.DisplayName() is the most derived member to over-
ride it. As before, SuperSubDerivedClass.DisplayName() is hidden
because of the new modifier.

* BaseClass:BaseClass.DisplayName() does not redeclare any base
class member and it is not virtual; therefore, it is called directly.

When it comes to the CIL, the new modifier has no effect on what state-
ments the compiler generates. However, a “new” method results in the
generation of the newslot metadata attribute on the method. From the C#

Overriding the Base Class

perspective, its only effect is to remove the compiler warning that would
appear otherwise.

sealed Modifier

Just as you can prevent inheritance using the sealed modifier on a class,
virtual members may be sealed, too (see Listing 6.15). This prevents a sub-
class from overriding a base class member that was originally declared as
virtual higher in the inheritance chain. The situation arises when a sub-
class B overrides a base class A’s member and then needs to prevent any
further overriding below subclass B.

LISTING 6.15: Sealing Members

class A
{
public virtual void Method()
{
}
}
class B : A
{
public override sealed void Method()
{
}
}

class C : B
{
// ERROR: Cannot override sealed members
// public override void Method()
/1 A4
//}

In this example, the use of the sealed modifier on class B’s Method () decla-
ration prevents C’s overriding of Method ().

base Member
In choosing to override a member, developers often want to invoke the
member on the base class (see Listing 6.16).

LISTING 6.16: Accessing a Base Member

public class Address

{
public string StreetAddress;

291

292

Chapter 6: Inheritance

public string City;
public string State;
public string Zip;

public override string ToString()

{ return string.Format("{0}" + Environment.NewLine +
"{1}, {2} {3}",
StreetAddress, City, State, Zip);
}
}
public class InternationalAddress : Address
{
public string Country;
public override string ToString()
{
return base.ToString() + Environment.NewlLine +
Country;
}
}

In Listing 6.16, InternationalAddress inherits from Address and imple-
ments ToString(). To call the parent class’s implementation you use the
base keyword. The syntax is virtually identical to this, including support
for using base as part of the constructor (discussed shortly).

Parenthetically, in the Address.ToString() implementation, you are
required to override as well because ToString() is also a member of
object. Any members that are decorated with override are automatically
designated as virtual, so additional child classes may further specialize the
implementation.

Constructors
When instantiating a derived class, the runtime first invokes the base
class’s constructor so that the base class initialization is not circumvented.
However, if there is no accessible (nonprivate) default constructor on the
base class, then it is not clear how to construct the base class and the C#
compiler reports an error.

To avoid the error caused by no accessible default constructor, pro-
grammers need to designate explicitly, in the derived class constructor
header, which base constructor to run (see Listing 6.17).

Abstract Classes

LisTING 6.17: Specifying Which Base Constructor to Invoke

public class PdaItem

{ public PdaItem(string name)
{
Name = name;
¥
/! ...
}

public class Contact : PdaItem

iublic Contact(string name) :
base(name)
{
Name = name;
}
public string Name { get; set; }
/! ...
}

By identifying the base constructor in the code, you let the runtime know
which base constructor to invoke before invoking the derived class
constructor.

Abstract Classes

Many of the inheritance examples so far have defined a class called
PdaItem that defines the methods and properties common to Contact,
Appointment, and so on, which are type objects that derive from PdaItem.
PdaItem is not intended to be instantiated itself, however. A PdaItem
instance has no meaning by itself; it has meaning only when it is used as a
base class—to share default method implementations across the set of data
types that derive from it. These characteristics are indicative of the need for
PdaItemtobe an abstract class rather than a concrete class. Abstract classes
are designed for derivation only. It is not possible to instantiate an abstract
class, except in the context of instantiating a class that derives from it.
Classes that are not abstract and can instead be instantiated directly are
concrete classes.

293

294

Chapter 6: Inheritance
BEGINNER TOPIC

Abstract Classes

Abstract classes represent abstract entities. Their abstract members define
what an object derived from an abstract entity should contain, but they
don’t include the implementation. Often, much of the functionality within
an abstract class is unimplemented, and before a class can successfully
derive from an abstract class, it needs to provide the implementation for
the abstract methods in its abstract base class.

To define an abstract class, C# requires the abstract modifier to the class
definition, as shown in Listing 6.18.

LisTING 6.18: Defining an Abstract Class

// Define an abstract class
public abstract class PdaItem

{
public PdaItem(string name)
{
Name = name;
¥

public virtual string Name { get; set; }

}

public class Program

{
public static void Main()
{
PdaItem item;
// ERROR: Cannot create an instance of the abstract class
item = new PdaItem("Inigo Montoya");
}
¥

Although abstract classes cannot be instantiated, this restriction is a
minor characteristic of an abstract class. Their primary significance is
achieved when abstract classes include abstract members. An abstract
member is a method or property that has no implementation. Its purpose
is to force all derived classes to provide the implementation.

Consider Listing 6.19.

Abstract Classes

LISTING 6.19: Defining Abstract Members

// Define an abstract class
public abstract class PdaItem

{

public PdaItem(string name)

{

Name

name;

public virtual string Name { get; set; }
public abstract string GetSummary();

public class Contact : PdaItem

{

public override string Name

{
get

{

set

return FirstName + + LastName;

string[] names = value.Split(' ');
// Error handling not shown.
FirstName = names[0];

LastName = names[1];

public string FirstName { get; set; }
public string LastName { get; set; }
public string Address { get; set; }

public override string GetSummary()

return string.Format(
"FirstName: {0}

{
¥
¥
¥
/...

"LastName: {1}
"Address: {2}", FirstName, LastName, Address);

295

296

Chapter 6: Inheritance

public class Appointment : Pdaltem
{
public Appointment(string name) :
base(name)
{
Name = name;

}

public DateTime StartDateTime { get; set; }
public DateTime EndDateTime { get; set; }
public string Location { get; set; }

/! ...
public override string GetSummary()
{
return string.Format(

"Subject: {@}" + Environment.NewLine

+ "Start: {1}" + Environment.NewLine

+ "End: {2}" + Environment.NewlLine

+ "Location: {3}",

Name, StartDateTime, EndDateTime, Location);
¥

Listing 6.19 defines the GetSummary() member as abstract, and there-
fore, it doesn’t include any implementation. Then, the code overrides it
within Contact and provides the implementation. Because abstract mem-
bers are supposed to be overridden, such members are automatically vir-
tual and cannot be declared so explicitly. In addition, abstract members
cannot be private because derived classes would not be able to see them.

Language Contrast: C++—Pure Virtual Functions

C++ allows for the definition of abstract functions using the cryptic notation
=0. These functions are called pure virtual functions in C++. In contrast with
C#, however, C++ does not require the class itself to have any special decla-
ration. Unlike C#’s abstract class modifier, C++ has no class declaration
change when the class includes pure virtual functions.

If you provide no GetSummary() implementation in Contact, the com-
piler will report an error.

Abstract Classes

"= NOTE

By declaring an abstract member, the abstract class programmer
states that in order to form an “is a” relationship between a con-
crete class and an abstract base class (that is, a PdaItem), it is neces-
sary to implement the abstract members, the members for which
the abstract class could not provide an appropriate default
implementation.

BEGINNER TOPIC

Polymorphism

When the implementation for the same member signature varies between
two or more classes, you have a key object-oriented principle: polymor-
phism. “Poly” meaning “many” and “morph” meaning “form,” polymor-
phism refers to the fact that there are multiple implementations of the
same signature. And since the same signature cannot be used multiple
times within a single class, each implementation of the member signature
occurs on a different class.

The idea behind polymorphism is that the object itself knows best how
to perform a particular operation, and by enforcing common ways to
invoke those operations, polymorphism is also a technique for encourag-
ing code reuse when taking advantages of the commonalities. Given multi-
ple types of documents, each document type class knows best how to
perform a Print() method for its corresponding document type. There-
fore, instead of defining a single print method that includes a switch
statement with the special logic to print each document type, with poly-
morphism you call the Print () method corresponding to the specific type
of document you wish to print. For example, calling Print() on a word
processing document class behaves according to word processing specif-
ics, and calling the same method on a graphics document class will result
in print behavior specific to the graphic. Given the document types,
however, all you have to do to print a document is to call Print(), regard-
less of the type.

Moving the custom print implementation out of a switch statement
offers several maintenance advantages. First, the implementation appears

297

298

Chapter 6: Inheritance

in the context of each document type’s class rather than in a location far
removed; this is in keeping with encapsulation. Second, adding a new doc-
ument type doesn’t require a change to the switch statement. Instead, all
that is necessary is for the new document type class to implement the
Print() signature.

Abstract members are intended to be a way to enable polymorphism.
The base class specifies the signature of the method and the derived class
provides implementation (see Listing 6.20).

LISTING 6.20: Using Polymorphism to List the PdaItems

public class Program

{

public static void Main()

{
PdaItem[] pda = new PdaItem[3];
Contact contact = new Contact("Sherlock Holmes");
contact.Address = "221B Baker Street, London, England";
pda[@] = contact;
Appointment appointment =

new Appointment("Soccer tournament");
appointment.StartDateTime = new DateTime(2008, 7, 18);
appointment.EndDateTime = new DateTime(2008, 7, 19);
appointment.Location = "Estadio da Machava";
pda[1l] = appointment;
contact = new Contact("Anne Frank");
contact.Address =
"263 Prinsengracht, Amsterdam, Netherlands";

pda[2] = contact;
List(pda);

¥

public static void List(PdaItem[] items)

{
// Implemented using polymorphism. The derived
// type knows the specifics of implementing
// GetSummary().
foreach (Pdaltem item in items)

{

Console.WriteLine(" ")

All Classes Derive from System.Object 299

Console.WriteLine(item.GetSummary());

The results of Listing 6.20 appear in Output 6.5.

OUTPUT 6.5:

FirstName: Sherlock
LastName: Holmes
Address: 221B Baker Street. London. England

Subject: Soccer tournament
Start: 7/18/2008 1.2:00:00 AM
End: ?/19/2008 12:00:00 AM
Location: Estddio da Machava

FirstName: Anne
LastName: Frank
Address: 2k3 Prinsengracht. Amsterdam. Netherlands

In this way, you can call the method on the base class but the implementa-
tion is specific to the derived class.

All Classes Derive from System.Object

Given any class, whether a custom class or one built into the system, the
methods shown in Table 6.2 will be defined.

TABLE 6.2: Members of System.Object

Method Name Description

public virtual bool Equals(object o) Returns true if the object supplied
as a parameter is equal in value,
not necessarily in reference, to the
instance.

public virtual int GetHashCode() Returns an integer corresponding
to an evenly spread hash code.
This is useful for collections such
as HashTable collections.

Continues

300 Chapter 6: Inheritance

TABLE 6.2: Members of System.0Object (Continued)

public Type GetType() Returns an object of type Sys-
tem.Type corresponding to the
type of the object instance.

public static bool ReferenceEquals(Returns true if the two supplied
object a, object b) parameters refer to the same object.
public virtual string ToString() Returns a string representation of

the object instance.

public virtual void Finalize() An alias for the destructor;
informs the object to prepare for
termination. C# prevents calling
this method directly.

protected object MemberwiseClone() Clones the object in question by
performing a shallow copy; refer-
ences are copied, but not the data
within a referenced type.

All of these methods appear on all objects through inheritance; all
classes derive (either directly or via an inheritance chain) from object.
Even literals include these methods, enabling somewhat peculiar-looking
code such as this:

Console.WriteLine(42.ToString());

Even class definitions that don’t have any explicit derivation from
object derive from object anyway. The two declarations for PdaItem in
Listing 6.21, therefore, result in identical CIL.

LISTING 6.21: System.Object Derivation Implied When No Derivation Is Specified Explicitly

public class PdaItem
{

/] ...
}

public class Pdaltem : object
{

/...
}

Verifying the Underlying Type with the is Operator

When the object’s default implementation isn’t sufficient, programmers
can override one or more of the three virtual methods. Chapter 9 describes
the details for doing this.

Verifying the Underlying Type with the is Operator

Because C# allows casting down the inheritance chain, it is
sometimes desirable to determine what the underlying type is before
attempting a conversion. Also, checking the type may be necessary for
type-specific actions where polymorphism was not implemented. To
determine the underlying type, C# provides the is operator (see
Listing 6.22).

LISTING 6.22: is Operator Determining the Underlying Type

public static void Save(object data)

{
if (data is string)
{
data = Encrypt((string) data);
X
/! ...
}

Listing 6.22 encrypts the data if the underlying type is a string. This is sig-
nificantly different from encrypting, simply because it successfully casts to
a string since many types support casting to a string, and yet their
underlying type is not a string.

Although this capability is important, you should consider polymor-
phism prior to using the is operator. Polymorphism enables support for
expanding a behavior to other data types without modifying the imple-
mentation that defines the behavior. For example, deriving from a com-
mon base type and then using that type as the parameter to the Save()
method avoids having to check for string explicitly and enables other
data types to support encryption during the save by deriving from the
same base type.

301

302

Chapter 6: Inheritance

Conversion Using the as Operator

The advantage of the is operator is that it enables verification that a data
item is of a particular type. The as operator goes one step further. It
attempts a conversion to a particular data type and assigns null if the
source type is not inherently (within the inheritance chain) of the target
type. This is significant because it avoids the exception that could result
from casting. Listing 6.23 demonstrates using the as operator.

LISTING 6.23: Data Conversion Using the as Operator

object Print(IDocument document)

{

if(thing != null)
{

// Print document...

static void Main()
{
object data;

/...

Print(data as Document);

}

By using the as operator, you are able to avoid additional try/catch
handling code if the conversion is invalid, because the as operator pro-
vides a way to attempt a cast without throwing an exception if the cast
fails.

One advantage of the is operator over the as operator is that the latter
cannot successfully determine the underlying type. The latter potentially
casts up or down an inheritance chain, as well as across to types support-
ing the cast operator. Therefore, unlike the as operator, the is operator can
determine the underlying type.

Summary

SUMMARY

This chapter discussed how to specialize a class by deriving from it and
adding additional methods and properties. This included a discussion
of the private and protected access modifiers that control the level of
encapsulation.

This chapter also investigated the details of overriding the base class
implementation, and alternatively hiding it using the new modifier. To con-
trol overriding, C# provides the virtual modifier, which identifies to the
deriving class developer which members she intends for derivation. For
preventing any derivation altogether you learned about the sealed modi-
fier on the class. Similarly, the sealed modifier on a member prevents fur-
ther overriding from subclasses.

This chapter ended with a brief discussion of how all types derive from
object. Chapter 9 discusses this derivation further, with a look at how
object includes three virtual methods with specific rules and guidelines
that govern overloading. Before you get there, however, you need to con-
sider another programming paradigm that builds on object-oriented pro-
gramming: interfaces. This is the subject of Chapter 7.

303

This page intentionally left blank

 /

Interfaces

OLYMORPHISM IS AVAILABLE not only via inheritance (as discussed in
P the preceding chapter), but also via interfaces. Unlike abstract classes,
interfaces cannot include any implementation. Like abstract classes, how-
ever, interfaces define a set of members that callers can rely on to support a
particular feature.

By implementing an interface, a class defines its capabilities. The inter-
face implementation relationship is a “can do” relationship: The class can
do what the interface requires. The interface defines the contract between
the classes that implement the interface and the classes that use the inter-
face. Classes that implement interfaces define methods with the same sig-
natures as the implemented interfaces. This chapter discusses defining,
implementing, and using interfaces.

Extension Methods .
on Interfaces @ Polymorphism

@ Versioning

Interface
Inheritance

@ Interface
Implementation [Explicit
Implicit

305

306

Chapter 7: Interfaces

Introducing Interfaces

BEGINNER TOPIC

Why Interfaces?
Implemented interfaces are like appliances with wall plugs. The wall plug
is the interface that appliances support in order to receive AC power. An
appliance can use that power in countless ways, but in order to plug into a
wall socket, an appliance must supply a compatible wall plug. What the
appliance does with the power corresponds to how an interface implemen-
tation varies from class to class. The specification that defines a wall plug is
the contract that must be supported in order for an appliance to plug into
the wall plug. Similarly, an interface defines a contract that a class must
support in order to gain the capability that the interface provides.

Consider the following example: An innumerable number of file com-
pression formats are available (.zip, .7-zip, .cab, .lha, .tar, .tar.gz,
.tar.bz2, .bh, .rar, .arj, .arc, .ace, .zoo, .gz, .bzip2, .xxe, .mime, . uue,
and .yenc, just to name a few). If you created classes for each compression
format, you could end up with different method signatures for each com-
pression implementation and no ability for a standard calling convention
across them. Although the method signature could be defined in an
abstract member of a base class, deriving from a common base type uses
up a class’s one and only inheritance, with an unlikely chance of sharing
code across the various compression implementations, thereby making the
potential of a base class implementation useless. The key point, therefore,
is that base classes let you share implementation along with the member
signatures, whereas interfaces allow you to share the member signatures
without the implementation.

Instead of sharing a common base class, each compression class needs
to implement a common interface. Interfaces define the contract that a
class supports in order to interact with the other classes that expect the
interface. Although there are many potential compression algorithms, if all
of them could implement the IFileCompression interface and its Com-
press() and Uncompress() methods, then the code for calling the algo-
rithm on any particular compression class would simply involve a cast to
the IFileCompression interface and a call into the members, regardless of

Polymorphism through Interfaces

which class implemented the methods. The result is polymorphism
because each compression class has the same method signature but indi-
vidual implementations of that signature.

The naming convention for interfaces is to use Pascal case, with an I
prefix. The IFileCompression interface shown in Listing 7.1 is an example
of such a name and interface definition.

LISTING 7.1: Defining an Interface

interface IFileCompression
{
void Compress(string targetFileName, string[] filelList);
void Uncompress(
string compressedFileName, string expandDirectoryName);

IFileCompression defines the methods a class implements to work with
other compression-related classes. The power of defining the interface con-
cerns the ability to switch among implementations without modifying the
calling code, as long as each compression class implements the IFileCom-
pression interface.

One key characteristic of an interface is that it has no implementation
and no data. Method declarations have a single semicolon in place of curly
braces after the header. Fields (data) cannot appear on an interface. When
an interface requires the derived class to have certain data, it uses a property
rather than a field. Since the property does not contain any implementation
as part of the interface declaration, it doesn’t reference a backing field.

Given that the purpose of the interface is to define the contract among
multiple classes, defining private or protected members would make them
inaccessible to other classes, defeating the purpose of the interface. There-
fore, C# does not allow access modifiers on interface members, and instead
it automatically defines them as public.

Polymorphism through Interfaces

Consider another example (see Listing 7.2): IListable defines the members
a class needs to support in order for the ConsolelListControl class to

307

308

Chapter 7: Interfaces

display it. As such, any class that implements IListable will have the capa-
bility of using the ConsoleListControl to display itself. The IListable
interface requires a read-only property, Columnvalues.

LISTING 7.2: Implementing and Using Interfaces

interface IListable

{
// Return the value of each column in the row.
string[] ColumnValues

{
get;

public abstract class PdaItem

{
public PdaItem(string name)
{
Name = name;
¥

public virtual string Name{get;set;}

}

class Contact : PdalItem, IListable
{

public Contact(string firstName, string lastName,
string address, string phone) : base(null)

{
FirstName = firstName;
LastName = lastName;
Address = address;
Phone = phone;

}

public string FirstName { get; set; }
public string LastName { get; set; }
public string Address { get; set; }
public string Phone { get; set; }

public string[] ColumnValues

{
get

{

return new stringl[]

{

Polymorphism through Interfaces

FirstName,
LastName,
Phone,
Address
¥
)
¥
public static string[] Headers
{
get
{
return new string[] {
"First Name", "Last Name "
"Phone "y
"Address "}
¥
¥
VAR

class Publication : IListable
{
public Publication(string title, string author, int year)
{
Title = title;
Author = author;
Year = year;

public string Title { get; set; }
public string Author { get; set; }
public int Year { get; set; }

public string[] ColumnValues

{
get
{
return new stringl[]
{
Title,
Author,
Year.ToString()
s
}
¥

public static string[] Headers

{

309

310 Chapter 7: Interfaces

get
{
return new string[] {
"Title ",
"Author ",
"Year" };

/...

class Program
{
public static void Main()
{

Contact[] contacts = new Contact[6];

contacts[@] = new Contact(
"Dick", "Traci",
"123 Main St., Spokane, WA 99037",
"123-123-1234");

contacts[1] = new Contact(
"Andrew", "Littman",
"1417 Palmary St., Dallas, TX 55555",
"555-123-4567");

contacts[2] = new Contact(
"Mary", "Hartfelt",
"1520 Thunder Way, Elizabethton, PA 44444",
"444-123-4567");

contacts[3] = new Contact(
"John", "Lindherst",
"1 Aerial Way Dr., Monteray, NH 88888",
"222-987-6543");

contacts[4] = new Contact(
"Pat", "Wilson",
"565 Irving Dr., Parksdale, FL 22222",
"123-456-7890");

contacts[5] = new Contact(
"Jane", "Doe",
"123 Main St., Aurora, IL 66666",
"333-345-6789");

// Classes are cast implicitly to
// their supported interfaces
ConsolelListControl.List(Contact.Headers, contacts);

Console.WriteLine();

Publication[] publications = new Publication[3] {

Polymorphism through Interfaces 311

new Publication("Celebration of Discipline",
"Richard Foster", 1978),

new Publication("Orthodoxy",
"G.K. Chesterton", 1908),

new Publication(
"The Hitchhiker's Guide to the Galaxy",
"Douglas Adams", 1979)

s

ConsolelListControl.List(
Publication.Headers, publications);

class ConsolelListControl

{
public static void List(string[] headers, IListable[] items)
{
int[] columnWidths = DisplayHeaders(headers);
for (int count = @; count < items.Length; count++)
{
string[] values = items[count].ColumnValues;
DisplayItemRow(columnWidths, values);
}
}
/// <summary>Displays the column headers</summary>
/// <returns>Returns an array of column widths</returns>
private static int[] DisplayHeaders(string[] headers)
{
Y2
}
private static void DisplayItemRow(
int[] columnWidths, string[] values)
{
/.
}
}

The results of Listing 7.2 appear in Output 7.1.

OuTPUT 7.1:
First Name Last Name Phone Address
Dick Traci 123-123-1234%4 123 Main St-. Spokane. WA 99037
Andrew Littman 555-123-4567 1417 Palmary St.. Dallas. TX 55555

Continues

312

Chapter 7: Interfaces

Mary Hartfelt 444-123-4567 1520 Thunder Way. Elizabethtona o
PA uuyyuy

John Lindherst 222-987-k543 1 Aerial Way Dr.. Monteray. o
NH 88888

Pat Wilson 123-45k-7890 5k5 Irving Dr.. Parksdale. .
FL 22222

Jane Doe 333-345-E789 123 Main St.. Aurora. IL bkkkk
Title Author Year
Celebration of Discipline Richard Foster 1978
Orthodoxy G.K. Chesterton 1908

The Hitchhiker's Guide to the Galaxy Douglas Adam 1979

In Listing 7.2, the ConsolelListControl can display seemingly unre-
lated classes (Contact and Publication). A displayable class is defined
simply by whether it implements the required interface. As a result, the
ConsolelListControl.List() method relies on polymorphism to appropri-
ately display whichever set of objects it is passed. Each class has its own
implementation of ColumnValues, and converting a class to IListable still
allows the particular class’s implementation to be invoked.

Interface Implementation

Declaring a class to implement an interface is similar to deriving from a
base class in that the implemented interfaces appear in a comma-separated
list along with the base class (order is not significant between interfaces).
The only difference is that classes can implement multiple interfaces. An
example appears in Listing 7.3.

LISTING 7.3: Implementing an Interface

public class Contact : PdaItem, IListable, IComparable

{
/...

#region IComparable Members
/// <summary>

/77

/// </summary>

/// <param name="obj"></param>
/// <returns>

/// Less than zero: This 1instance 1is less than obj.
/// Zero This instance 1is equal to obj.
/// Greater than zero This instance 1is greater than obj.

/// </returns>

Interface Implementation 313

public int CompareTo (object obj)
{

int result;
Contact contact = obj as Contact;

if (obj == null)

{
// This instance is greater than obj.
result = 1;
¥
else if (obj != typeof(Contact))
{
throw new ArgumentException("obj is not a Contact");
¥
else if(Contact.ReferencekEquals(this, obj))
{
result = 9;
¥
else
{
result = LastName.CompareTo(contact.LastName);
if (result == @)
{
result = FirstName.CompareTo(contact.FirstName);
¥
¥
return result;
¥
#endregion

#region IListable Members
string[] IListable.ColumnValues

{
get
{
return new string[]
{
FirstName,
LastName,
Phone,
Address
s
¥
¥
#endregion

}

Once a class declares that it implements an interface, all members of the
interface must be implemented. The member implementation may throw a

314

Chapter 7: Interfaces

NotImplementedException type exception in the method body, but none-
theless, the method has an implementation from the compiler’s perspective.

One important characteristic of interfaces is that they can never be
instantiated; you cannot use new to create an interface, and therefore, inter-
faces cannot even have constructors or finalizers. Interface instances are
available only from types that implement them. Furthermore, interfaces
cannot include static members. One key interface purpose is polymor-
phism, and polymorphism without an instance of the implementing type
is of little value.

Each interface member behaves like an abstract method, forcing the
derived class to implement the member. Therefore, it is not possible to use
the abstract modifier on interface members explicitly. However, there are
two variations on implementation: explicit and implicit.

Explicit Member Implementation

Explicitly implemented methods are available only by calling through the
interface itself; this is typically achieved by casting an object to the inter-
face. For example, to call IListable.ColumnValues in Listing 7.4, you must
first cast the contact to IListable because of ColumnValues’ explicit

implementation.

LisTING 7.4: Calling Explicit Interface Member Implementations

string[] values;
Contact contactl, contact2;

/...

// ERROR: Unable to call ColumnValues() directly
// on a contact.
// values = contactl.ColumnValues;

// First cast to IListable.
values = ((IListable)contact2).ColumnValues;
/] ...

The cast and the call to ColumnValues occur within the same statement in
this case. Alternatively, you could assign contact2 to an IListable vari-
able before calling Columnvalues.

Interface Implementation

To declare an explicit interface member implementation, prefix the
member name with the interface name (see Listing 7.5).

LisTING 7.5: Explicit Interface Implementation

public class Contact : PdaItem, IListable, IComparable

{
/o

public int CompareTo(object obj)
{

/..
¥

#region IListable Members
string[] IListable.ColumnValues

{
get
{
return new string[]
{
FirstName,
LastName,
Phone,
Address
s
}
}
#endregion
}

Listing 7.5 implements ColumnValues explicitly, for example, because it
prefixes the property with IListable. Furthermore, since explicit interface
implementations are directly associated with the interface, there is no need
to modify them with virtual, override, or public, and, in fact, these mod-
ifiers are not allowed. The C# compiler assumes these modifiers; other-
wise, the implementation would be meaning]less.

Implicit Member Implementation

Notice that CompareTo() in Listing 7.5 does not include the IComparable
prefix; it is implemented implicitly. With implicit member implementa-
tion, it is only necessary for the class member’s signature to match the
interface member’s signature. Interface member implementation does not

315

316

Chapter 7: Interfaces

require the override keyword or any indication that this member is tied to
the interface. Furthermore, since the member is declared just as any other
class member, code that calls implicitly implemented members can do so
directly, just as it would any other class member:

result = contactl.CompareTo(contact2);

In other words, implicit member implementation does not require a cast
because the member is not hidden from direct invocation on the imple-
menting class.

Many of the modifiers disallowed on an explicit member implementa-
tion are required or are optional on an implicit implementation. For exam-
ple, implicit member implementations must be public. Furthermore,
virtual is optional depending on whether derived classes may override
the implementation. Eliminating virtual will cause the member to behave
as though it is sealed. Interestingly, override is not allowed because the
interface declaration of the member does not include implementation, so
override is not meaningful.

Explicit versus Implicit Interface Implementation

The key difference between implicit and explicit member interface imple-
mentation is obviously not in the method declaration, but in the visibility
from outside the class. When building a class hierarchy, it’s desirable to
model real-world “is a” relationships—a giraffe is a mammal, for example.
These are “semantic” relationships. Interfaces are often used to model

/a7

“mechanism” relationships. A PdaItem “is not a” “comparable”, but it
might well be IComparable. This interface has nothing to do with the
semantic model; it’s a detail of the implementation mechanism. Explicit
interface implementation is a technique for enabling the separation of
mechanism concerns from model concerns. Forcing the caller to convert
the object to an interface such as IComparable before treating the object as
“comparable” explicitly separates out in the code when you are talking to
the model and when you are dealing with its implementation mechanisms.

In general, it is preferable to limit the public surface area of a class to be
“all model” with as little extraneous mechanism as possible. Unfortu-
nately, some mechanisms are unavoidable in .NET. You cannot get a

giraffe’s hash code or convert a giraffe to a string. However, you can get a

Interface Implementation 317

Giraffe’s hash code (GetHashCode()) and convert it to a string
(ToString()). By using object as a common base class, .NET mixes model
code with mechanism code even if only to a limited extent.

Here are several guidelines that will help you choose between an
explicit and an implicit implementation.

o Is the member a core part of the class functionality?

Consider the Columnvalues property implementation on the Contact
class. This member is not an integral part of a Contact type but a
peripheral member probably accessed only by the ConsolelListCon-
trol class. As such, it doesn’t make sense for the member to be imme-
diately visible on a Contact object, cluttering up what could
potentially already be a large list of members.
Alternatively, consider the IFileCompression.Compress () member.
Including an implicit Compress() implementation on a ZipCompres-
sion class is a perfectly reasonable choice, since Compress () is a core
part of the ZipCompression class’s behavior, so it should be directly
accessible from the ZipCompression class.

o Is the interface member name appropriate as a class member?
Consider an ITrace interface with a member called Dump () that writes
out a class’s data to a trace log. Implementing Dump () implicitly on a
Person or Truck class would result in confusion as to what operation
the method performs. Instead, it is preferable to implement the mem-
ber explicitly so that only from a data type of ITrace, where the
meaning is clearer, can the Dump () method be called. Consider using
an explicit implementation if a member’s purpose is unclear on the
implementing class.

o Is there already a class member with the same name?
Explicit interface member implementation will uniquely distinguish
a member. Therefore, if there is already a method implementation on
a class, a second one can be provided with the same name as long as it
is an explicit interface member.

Much of the decision regarding implicit versus explicit interface mem-
ber implementation comes down to intuition. However, these questions
provide suggestions about what to consider when making your choice.

318

Chapter 7: Interfaces

Since changing an implementation from implicit to explicit results in a
version-breaking change, it is better to err on the side of defining interfaces
explicitly, allowing them to be changed to implicit later on. Furthermore,
since the decision between implicit and explicit does not have to be consis-
tent across all interface members, defining some methods as explicit and
others as implicit is fully supported.

Converting between the Implementing Class and
Its Interfaces

Just as with a derived class and a base type, a conversion from an object to
its implemented interface is an implicit conversion. No cast operator is
required because an instance of the implementing class will always con-
tain all the members in the interface, and therefore, the object will always
cast successfully to the interface type.

Although the conversion will always be successful from the imple-
menting class to the implemented interface, many different classes could
implement a particular interface, so you can never be certain that a down-
ward cast from the interface to the implementing class will be successful.
The result is that converting from an interface to its implementing class
requires an explicit cast.

Interface Inheritance

Interfaces can derive from each other, resulting in an interface that inherits
all the members in its base interfaces. As shown in Listing 7.6, the inter-
faces directly derived from IReadableSettingsProvider are the explicit
base interfaces.

LISTING 7.6: Deriving One Interface from Another

interface IReadableSettingsProvider

{
string GetSetting(string name, string defaultValue);

}

interface ISettingsProvider : IReadableSettingsProvider

{

void SetSetting(string name, string value);

}

Interface Inheritance 319

class FileSettingsProvider : ISettingsProvider
{
#tregion ISettingsProvider Members
public void SetSetting(string name, string value)
{
/..
}

ttendregion

#tregion IReadableSettingsProvider Members
public string GetSetting(string name, string defaultValue)
{
/.
}

t#tendregion

In this case, ISettingsProvider derives from IReadableSettingsPro-
vider and, therefore, inherits its members. If IReadableSettingsProvider
also had an explicit base interface, ISettingsProvider would inherit those
members too, and the full set of interfaces in the derivation hierarchy
would simply be the accumulation of base interfaces.

It is interesting to note that if GetSetting() is implemented explicitly, it
must be done using IReadableSettingsProvider. The declaration with
ISettingsProvider in Listing 7.7 will not compile.

LIsTING 7.7: Explicit Member Declaration without the Containing Interface (Failure)

// ERROR: GetSetting() not available on ISettingsProvider
string ISettingsProvider.GetSetting(
string name, string defaultValue)
{
Y/
}

The results of Listing 7.7 appear in Output 7.2.

OuTPUT 7.2:

'ISettingsProvider.GetSetting' in explicit interface declaration
is not a member of interface.

This output appears in addition to an error indicating that IReadable-
SettingsProvider.GetSetting() is not implemented. The fully qualified

320

Chapter 7: Interfaces

interface member name used for explicit interface member implementa-
tion must reference the interface name in which it was originally declared.

Even though a class implements an interface (ISettingsProvider)
which is derived from a base interface (IReadableSettingsProvider), the
class can still declare an implementation of both interfaces overtly, as
Listing 7.8 demonstrates.

LisTING 7.8: Using a Base Interface in the Class Declaration

class FileSettingsProvider : ISettingsProvider,
IReadableSettingsProvider
{
t#tregion ISettingsProvider Members
public void SetSetting(string name, string value)
{
/..
}

ttendregion

t#iregion IReadableSettingsProvider Members
public string GetSetting(string name, string defaultValue)
{
/.
}

ttendregion

In this listing, there is no change to the interface’s implementations on the
class, and although the additional interface implementation declaration on
the class header is superfluous, it can provide better readability.

The decision to provide multiple interfaces rather than just one com-
bined interface depends largely on what the interface designer wants to
require of the implementing class. By providing an IReadableSettings-
Provider interface, the designer communicates that implementers are
required only to implement a settings provider that retrieves settings.
They do not have to be able to write to those settings. This reduces the
implementation burden by not imposing the complexities of writing set-
tings as well.

In contrast, implementing ISettingsProvider assumes that there is
never a reason to have a class that can write settings without reading
them. The inheritance relationship between ISettingsProvider and

Multiple Interface Inheritance

IReadableSettingsProvider, therefore, forces the combined total of both
interfaces on the ISettingsProvider class.

One final but important note: Although inheritance is the correct term,
conceptually it is more accurate to realize that an interface represents a
contract; and one contract is allowed to specify that the provisions of
another contract must also be followed. So, the code ISettingsProvider :
IReadableSettingsProvider conceptually states that the ISettingsPro-
vider contract requires also respecting the IReadableSettingsProvider
contract rather than that the ISettingsProvider “is a kind of” IReadable-
SettingsProvider. That being said, the remainder of the chapter will con-
tinue using the inheritance relationship terminology in accordance with
the standard C# terminology.

Multiple Interface Inheritance

Just as classes can implement multiple interfaces, interfaces can inherit
from multiple interfaces, and the syntax is consistent with class derivation
and implementation, as shown in Listing 7.9.

LISTING 7.9: Multiple Interface Inheritance

interface IReadableSettingsProvider

{
string GetSetting(string name, string defaultValue);

}

interface IWriteableSettingsProvider

{

void SetSetting(string name, string value);

}

interface ISettingsProvider : IReadableSettingsProvider,
IWriteableSettingsProvider

{

}

It is unusual to have an interface with no members, but if implementing
both interfaces together is predominant, it is a reasonable choice for this
case. The difference between Listing 7.9 and Listing 7.6 is that it is now

321

322

Chapter 7: Interfaces

possible to implement IWriteableSettingsProvider without supplying
any read capability. Listing 7.6’s FileSettingsProvider is unaffected, but
if it used explicit member implementation, specifying which interface a
member belongs to changes slightly.

Extension Methods on Interfaces

Perhaps one of the most important features of extension methods is the
fact that they work with interfaces in addition to classes. The syntax is
identical to that of extension methods for classes. The extended type (the
first parameter and the parameter prefixed with this) is the interface that
we extend. Listing 7.10 shows an extension method for IListable(). It is
declared on Listable.

LiIsTING 7.10: Interface Extension Methods

class Program
{
public static void Main()
{
Contact[] contacts = new Contact[6];
contacts[@] = new Contact(
"Dick", "Traci",
"123 Main St., Spokane, WA 99037",
"12