
ptg

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Essential
C# 4.0

 Mark Michaelis

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United
States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trade-
marks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Michaelis, Mark.
 Essential C# 4.0 / Mark Michaelis.
 p. cm.
 Includes index.
 ISBN 978-0-321-69469-0 (pbk. : alk. paper)
1. C# (Computer program language) I. Title.
 QA76.73.C154M5237 2010
 005.13’3—dc22

 2009052592

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-69469-0
ISBN-10: 0-321-69469-4
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, March 2010

ptg

To my family: Elisabeth, Benjamin, Hanna, and Abigail.

You have sacrificed a husband and daddy for countless hours of writing,
frequently at times when he was needed most.

 Thanks!

ptg

This page intentionally left blank

ptg

ix

Contents at a Glance

Contents xi
Contents of C# 4.0 Topics xxv
Figures xxvii
Tables xxix
Foreword xxxi
Preface xxxv
Acknowledgments xlvii
About the Author li

1 Introducing C# 1

2 Data Types 31

3 Operators and Control Flow 83

4 Methods and Parameters 149

5 Classes 201

6 Inheritance 269

7 Interfaces 305

8 Value Types 331

9 Well-Formed Types 357

10 Exception Handling 405

11 Generics 421

12 Delegates and Lambda Expressions 469

ptg

Contents of C# 4.0 Topicsx

13 Events 507

14 Collection Interfaces with Standard Query Operators 535

15 LINQ with Query Expressions 589

16 Building Custom Collections 611

17 Reflection, Attributes, and Dynamic Programming 651

18 Multithreading 701

19 Synchronization and More Multithreading Patterns 749

20 Platform Interoperability and Unsafe Code 815

21 The Common Language Infrastructure 843

A Downloading and Installing the C# Compiler and the
CLI Platform 865

B Full Source Code Listings 869

C Concurrent Classes from System. Collections. Concurrent 895

D C# 2.0 Topics 899

E C# 3.0 Topics 903

F C# 4.0 Topics 905

Index 907

ptg

xi

Contents of C# 4.0 Topics xxv
Figures xxvii
Tables xxix
Foreword xxxi
Preface xxxv
Acknowledgments xlvii
About the Author li

1 Introducing C# 1
Hello, World 2

Compiling and Running the Application 3
C# Syntax Fundamentals 4

Type Definition 7
Main 8
Statements and Statement Delimiters 10
Whitespace 11

Working with Variables 12
Data Types 13
Declaring a Variable 14
Assigning a Variable 14
Using a Variable 16

Console Input and Output 16
Getting Input from the Console 16
Writing Output to the Console 18

Comments 20
Managed Execution and the Common Language Infrastructure 23

Contents

ptg

Contentsxii

C# and .NET Versioning 26
Common Intermediate Language and ILDASM 27
Summary 30

2 Data Types 31
Fundamental Numeric Types 32

Integer Types 32
Floating-Point Types (float, double) 33
Decimal Type 34
Literal Values 35

More Fundamental Types 40
Boolean Type (bool) 40
Character Type (char) 41
Strings 43

null and void 51
null 51
The void Nontype 52

Categories of Types 55
Value Types 55
Reference Types 56

Nullable Modifier 57
Conversions between Data Types 58

Explicit Cast 58
Implicit Conversion 62
Type Conversion without Casting 62

Arrays 64
Declaring an Array 65
Instantiating and Assigning Arrays 66
Using an Array 70
Strings as Arrays 76
Common Errors 78

Summary 81

3 Operators and Control Flow 83
Operators 84

Plus and Minus Unary Operators (+, -) 84
Arithmetic Binary Operators (+, -, *, /, %) 85
Parenthesis Operator 92
Assignment Operators (+=, -=, *=, /=, %=) 93
Increment and Decrement Operators (++, --) 94
Constant Expressions (const) 98

ptg

Contents xiii

Introducing Flow Control 98
if Statement 102
Nested if 103

Code Blocks ({}) 105
Scope and Declaration Space 107
Boolean Expressions 109

Relational and Equality Operators 110
Logical Boolean Operators 111
Logical Negation Operator (!) 113
Conditional Operator (?) 113
Null Coalescing Operator (??) 114

Bitwise Operators (<<, >>, |, &, ^, ~) 115
Shift Operators (<<, >>, <<=, >>=) 116
Bitwise Operators (&, |, ^) 117
Bitwise Assignment Operators (&=, |=, ^=) 120
Bitwise Complement Operator (~) 120

Control Flow Statements, Continued 121
The while and do/while Loops 121
The for Loop 124
The foreach Loop 127
The switch Statement 130

Jump Statements 132
The break Statement 132
The continue Statement 135
The goto Statement 137

C# Preprocessor Directives 138
Excluding and Including Code (#if, #elif, #else, #endif) 140
Defining Preprocessor Symbols (#define, #undef) 141
Emitting Errors and Warnings (#error, #warning) 141
Turning Off Warning Messages (#pragma) 142
nowarn:<warn list> Option 143
Specifying Line Numbers (#line) 143
Hints for Visual Editors (#region, #endregion) 144

Summary 145

4 Methods and Parameters 149
Calling a Method 150

Namespace 152
Type Name 154
Scope 155
Method Name 155
Parameters 155

ptg

Contentsxiv

Method Return 155
Statement versus Method Call 156

Declaring a Method 157
Parameter Declaration 159
Method Return Declaration 159

The using Directive 161
Aliasing 164

Returns and Parameters on Main() 165
Parameters 168

Value Parameters 168
Reference Parameters (ref) 170
Output Parameters (out) 171
Parameter Arrays (params) 173

Recursion 176
Method Overloading 179
Optional Parameters 182
Basic Error Handling with Exceptions 186

Trapping Errors 187
Reporting Errors Using a throw Statement 196

Summary 199

5 Classes 201
Declaring and Instantiating a Class 205
Instance Fields 209

Declaring an Instance Field 209
Accessing an Instance Field 210

Instance Methods 211
Using the this Keyword 213
Access Modifiers 220
Properties 222

Declaring a Property 223
Automatically Implemented Properties 225
Naming Conventions 227
Using Properties with Validation 228
Read-Only and Write-Only Properties 230
Access Modifiers on Getters and Setters 231
Properties as Virtual Fields 232
Properties and Method Calls Not Allowed as ref or out

Parameter Values 234
Constructors 236

Declaring a Constructor 237
Default Constructors 239
Object Initializers 239

ptg

Contents xv

Overloading Constructors 241
Constructor Chaining: Calling another

Constructor Using this 243
Static Members 247

Static Fields 248
Static Methods 251
Static Constructors 253
Static Properties 254
Static Classes 255

Extension Methods 256
Encapsulating the Data 258

const 258
readonly 259

Nested Classes 260
Partial Classes 262

Defining a Partial Class 263
Partial Methods 264

Summary 267

6 Inheritance 269
Derivation 270

Casting between Base and Derived Types 272
private Access Modifier 275
protected Access Modifier 276
Extension Methods 278
Single Inheritance 278
Sealed Classes 281

Overriding the Base Class 281
virtual Modifier 282
new Modifier 286
sealed Modifier 291
base Member 291
Constructors 292

Abstract Classes 293
All Classes Derive from System.Object 299
Verifying the Underlying Type with the is Operator 301
Conversion Using the as Operator 302
Summary 303

7 Interfaces 305
Introducing Interfaces 306
Polymorphism through Interfaces 307
Interface Implementation 312

ptg

Contentsxvi

Explicit Member Implementation 314
Implicit Member Implementation 315
Explicit versus Implicit Interface Implementation 316

Converting between the Implementing Class and Its
Interfaces 318

Interface Inheritance 318
Multiple Interface Inheritance 321
Extension Methods on Interfaces 322
Implementing Multiple Inheritance via Interfaces 323
Versioning 326
Interfaces Compared with Classes 328
Summary 329

8 Value Types 331
Structs 332

Initializing structs 336
Using the default Operator 338
Inheritance and Interfaces with Value Types 338

Boxing 339
Enums 346

Type Compatibility between Enums 349
Converting between Enums and Strings 350
Enums as Flags 351

Summary 356

9 Well-Formed Types 357
Overriding object Members 357

Overriding ToString() 358
Overriding GetHashCode() 358
Overriding Equals() 361
Guidelines for Implementing Equality 369

Operator Overloading 369
Comparison Operators (==, !=, <, >, <=, >=) 370
Binary Operators (+, -, *, /, %, &, |, ^, <<, >>) 371
Combining Assignment with Binary Operators (+=, -=, *=, /=, %=, &=…) 373
Conditional Logical Operators (&&, ||) 373
Unary Operators (+, -, !, ~, ++, --, true, false) 373
Conversion Operators 375
Guidelines for Conversion Operators 377

Referencing Other Assemblies 377
Changing the Assembly Target 378
Referencing an Assembly 379
Encapsulation of Types 379

ptg

Contents xvii

Defining Namespaces 382
Namespace Alias Qualifier 384

XML Comments 385
Associating XML Comments with Programming Constructs 386
Generating an XML Documentation File 388

Garbage Collection 390
Weak References 391

Resource Cleanup 393
Finalizers 393
Deterministic Finalization with the using Statement 395
Garbage Collection and Finalization 398
Resource Utilization and Finalization Guidelines 400

Lazy Initialization 400
Summary 403

10 Exception Handling 405
Multiple Exception Types 405
Catching Exceptions 407
General Catch Block 409
Guidelines for Exception Handling 411
Defining Custom Exceptions 414
Summary 419

11 Generics 421
C# without Generics 422
Introducing Generic Types 427

Using a Generic Class 427
Defining a Simple Generic Class 429
Benefits of Generics 430
Type Parameter Naming Guidelines 431
Generic Interfaces and Structs 432
Defining a Constructor and a Finalizer 434
Specifying a Default Value 435
Multiple Type Parameters 436
Arity in Abundance 437
Nested Generic Types 438

Constraints 439
Interface Constraints 442
Base Class Constraints 444
struct/class Constraints 445
Multiple Constraints 446
Constructor Constraints 446
Constraint Inheritance 447

ptg

Contentsxviii

Generic Methods 453
Type Inferencing 454
Specifying Constraints 455

Covariance and Contravariance 457
Enabling Covariance with the out Type Parameter Modifier in C# 4.0 458
Enabling Contravariance with the in Type Parameter Modifier in C# 4.0 460
Support for Parameter Covariance and Contravariance in Arrays 462

Generic Internals 463
Instantiating Generics Based on Value Types 464
Instantiating Generics Based on Reference Types 465

Summary 467

12 Delegates and Lambda Expressions 469
Introducing Delegates 470

Defining the Scenario 470
Delegate Data Types 472
Delegate Internals 473
Defining a Delegate Type 474
Instantiating a Delegate 475

Anonymous Methods 480
System-Defined Delegates: Func<> 483
Lambda Expressions 486

Statement Lambdas 486
Expression Lambdas 489
Outer Variables 495
Expression Trees 498

Summary 506

13 Events 507
Coding the Observer Pattern with Multicast Delegates 508

Defining Subscriber Methods 508
Defining the Publisher 510
Hooking Up the Publisher and Subscribers 511
Invoking a Delegate 512
Check for null 513
Delegate Operators 514
Sequential Invocation 516
Error Handling 519
Method Returns and Pass-by-Reference 522

Events 523
Why Events? 523
Declaring an Event 525
Coding Conventions 526

ptg

Contents xix

Generics and Delegates 528
Customizing the Event Implementation 532

Summary 533

14 Collection Interfaces with Standard Query Operators 535
Anonymous Types and Implicitly Typed Local Variables 536

Anonymous Types 537
Implicitly Typed Local Variables (var) 538
More about Anonymous Types and Implicit Local Variables 540

Collection Initializers 543
What Makes a Class a Collection: IEnumerable<T> 546

foreach with Arrays 546
foreach with IEnumerable<T> 547
Do Not Modify Collections during foreach Iteration 552

Standard Query Operators 552
Filtering with Where() 556
Projecting with Select() 557
Counting Elements with Count() 561
Deferred Execution 562
Sorting with OrderBy() and ThenBy() 566
Performing an Inner Join with Join() 572
Grouping Results with GroupBy() 575
Implementing a One-to-Many Relationship with GroupJoin() 577
Calling SelectMany() 580
More Standard Query Operators 582

Summary 586

15 LINQ with Query Expressions 589
Introducing Query Expressions 590

Projection 592
Filtering 598
Sorting 599
The Let Clause 600
Grouping 602
Query Continuation with into 605

Query Expressions as Method Invocations 608
Summary 609

16 Building Custom Collections 611
More Collection Interfaces 612

IList<T> versus IDictionary<TKey, TValue> 614
IComparable<T> 614
ICollection<T> 616

ptg

Contentsxx

Primary Collection Classes 617
List Collections: List<T> 617
Dictionary Collections: Dictionary<TKey, TValue> 622
Sorted Collections: SortedDictionary<TKey, TValue> and

SortedList<T> 626
Stack Collections: Stack<T> 628
Queue Collections: Queue<T> 629
Linked Lists: LinkedList<T> 629

Providing an Index Operator 630
Returning Null or an Empty Collection 634
Iterators 634

Defining an Iterator 636
Iterator Syntax 636
Yielding Values from an Iterator 637
Iterators and State 639
More Iterator Examples 641
Placing a yield return within a Loop 643
Canceling Further Iteration: yield break 645
Creating Multiple Iterators in a Single Class 648
yield Statement Characteristics 649

Summary 650

17 Reflection, Attributes, and Dynamic Programming 651
Reflection 652

Accessing Metadata Using System.Type 653
Member Invocation 655
Reflection on Generic Types 660

Attributes 663
Custom Attributes 666
Looking for Attributes 667
Initializing an Attribute through a Constructor 668
System.AttributeUsageAttribute 673
Named Parameters 674

Programming with Dynamic Objects 688
Invoking Reflection Using dynamic 689
dynamic Principles and Behaviors 690
Why Dynamic Binding? 694
Static Compilation versus Dynamic Programming 695
Implementing a Custom Dynamic Object 696

Summary 699

ptg

Contents xxi

18 Multithreading 701
Running and Controlling a Separate Thread 706

ContinueWith() 711
Unhandled Exception Handling on Task 715
Canceling a Task 718
Long-Running Tasks 722
Disposing a Task 723

Executing Iterations in Parallel 724
Parallel Exception Handling with System.AggregateException 728
Canceling a Parallel Loop 729

Running LINQ Queries in Parallel 734
Canceling a PLINQ Query 736

Multithreading before .NET Framework 4 738
Asynchronous Operations with System.Threading.Thread 738
Thread Management 740
Thread Pooling 742

Unhandled Exceptions on the AppDomain 744
Summary 746

19 Synchronization and More Multithreading Patterns 749
Synchronization 750

Synchronization Using Monitor 754
Using the lock Keyword 757
Choosing a lock Object 758
Why to Avoid Locking on this, typeof(type), and string 759
Declaring Fields as volatile 760
Using the System.Threading.Interlocked Class 761
Event Notification with Multiple Threads 763
Synchronization Design Best Practices 764
More Synchronization Types 766
Thread Local Storage 774

Timers 778
Asynchronous Programming Model 783

Calling the APM 784
Calling the APM Using TPL 791

Asynchronous Delegate Invocation 797
Passing Data to and from an Alternate Thread 799

Event-Based Asynchronous Pattern (EAP) 801
Background Worker Pattern 804

Establishing the Pattern 807
Exception Handling 808

ptg

Contentsxxii

Windows UI Programming 809
Windows Forms 809
Windows Presentation Foundation (WPF) 811

Summary 814

20 Platform Interoperability and Unsafe Code 815
Platform Invoke 816

Declaring External Functions 817
Parameter Data Types 818
Using ref Rather Than Pointers 819
Using StructLayoutAttribute for Sequential Layout 820
Error Handling 821
Using SafeHandle 823
Calling External Functions 826
Simplifying API Calls with Wrappers 828
Function Pointers Map to Delegates 829
Guidelines 829

Pointers and Addresses 830
Unsafe Code 830
Pointer Declaration 832
Assigning a Pointer 834
Dereferencing a Pointer 837
Accessing the Member of a Referent Type 839

Summary 839

21 The Common Language Infrastructure 843
Defining the Common Language Infrastructure (CLI) 844
CLI Implementations 845
C# Compilation to Machine Code 847
Runtime 849

Garbage Collection 849
Garbage Collection on .NET 850
Type Safety 851
Code Access Security 852
Platform Portability 852
Performance 853

Application Domains 854
Assemblies, Manifests, and Modules 855
Common Intermediate Language (CIL) 858
Common Type System (CTS) 858
Common Language Specification (CLS) 859

ptg

Contents xxiii

Base Class Library (BCL) 860
Metadata 860
Summary 862

A Downloading and Installing the C# Compiler and the CLI
Platform 865

B Full Source Code Listings 869

C Concurrent Classes from System.Collections.Concurrent 895

D C# 2.0 Topics 899

E C# 3.0 Topics 903

F C# 4.0 Topics 905

Index 907

ptg

This page intentionally left blank

ptg

xxv

Contents of C# 4.0 Topics

4 Methods and Parameters
Common Namespaces 153
Optional Parameters 182

9 Well-Formed Types
Generics

Lazy Loading With 401
Use of System.Exception 412
Tuple Generic Types 437

11 Generics
Generics

Enabling Covariance 458
Enabling Contravariance 460
Support for Covariance and Contravariance 462

12 Delegates and Lambda Expressions
System-Defined Delegates: Func 483
Parallel LINQ (PLINQ) 559
Programming with Dynamic Objects 688

18 Multithreading 701
Running Threads 706

Unhandled Exception Handling on Task 715
Canceling Tasks 718

ptg

Contents of C# 4.0 Topicsxxvi

Long-Running Threads 722
Disposing Tasks 723

Executing Iterations in Parallel 724
Parallel Exception Handling with
System.AggregateException 728

Canceling Parallel Loops 729
Running LINQ Queries in Parallel 734
Multithreading, Unhandled Exceptions on AppDomain 744

19 Synchronization and More Multithreading Patterns 749
Monitor Class Synchronization 754
lock Keyword 757
Reset Events 768
ManualResetEvent and Semaphores over AutoReset Event 772
Concurrent Collection Classes 773
Thread Local Storage 774
Calling APMs (Asynchronous Programming

Models) Using TPL (Task Parallel Library) 791
Asynchronous Delegate Invocation 797

ptg

xxvii

Figures

Figure 2.1: Value Types Contain the Data Directly 55
Figure 2.2: Reference Types Point to the Heap 56

Figure 3.1: Corresponding Placeholder Values 115
Figure 3.2: Calculating the Value of an Unsigned Byte 116
Figure 3.3: Calculating the Value of a Signed Byte 116
Figure 3.4: The Numbers 12 and 7 Represented in Binary 118
Figure 3.5: Collapsed Region in Microsoft Visual Studio .NET 145

Figure 4.1: Exception-Handling Program Flow 190

Figure 5.1: Class Hierarchy 204

Figure 6.1: Refactoring into a Base Class 271
Figure 6.2: Working around Multiple Inheritance Using Aggregation 280

Figure 7.1: Working around Single Inheritances with Aggregation and
Interfaces 326

Figure 8.1: Value Types Contain the Data Directly 332
Figure 8.2: Reference Types Point to the Heap 333

Figure 9.1: Identity 362
Figure 9.2: XML Comments as Tips in Visual Studio IDE 386

Figure 12.1: Delegate Types Object Model 474
Figure 12.2: Anonymous Function terminology 486
Figure 12.3: Object Graph of a Lambda Expression 500
Figure 12.4: Object Graph of Unary and Binary Expressions 501

ptg

Figuresxxviii

Figure 13.1: Delegate Invocation Sequence Diagram 517
Figure 13.2: Multicast Delegates Chained Together 518
Figure 13.3: Delegate Invocation with Exception Sequence Diagram 520

Figure 14.1: IEnumerator<T> and IEnumerator Interfaces 548
Figure 14.2: IEnumerator<T> and IEnumerator Interfaces 564
Figure 14.3: Venn Diagram of Inventor and Patent Collections 569

Figure 16.1: Generic Collection Interface Hierarchy 613
Figure 16.2: List<> Class Diagrams 618
Figure 16.3: Dictionary Class Diagrams 622
Figure 16.4: SortedList<> and SortedDictionary<> Class

Diagrams 627
Figure 16.5: Stack<T> Class Diagram 629
Figure 16.6: Queue<T> Class Diagram 629
Figure 16.7: LinkedList<T> and LinkedListNode<T> Class

Diagrams 630
Figure 16.8: Sequence Diagram with yield return 640

Figure 17.1: MemberInfo Derived Classes 660
Figure 17.2: BinaryFormatter Does Not Encrypt Data 683

Figure 18.1: Clock Speeds over Time 702
Figure 18.2: CancellationTokenSource and CancellationToken Class

Diagrams 721

Figure 19.1: APM Parameter Distribution 786
Figure 19.2: Delegate Parameter Distribution to BeginInvoke() and

EndInvoke() 800

Figure 20.1: Pointers Contain the Address of the Data 832

Figure 21.1: Compiling C# to Machine Code 848
Figure 21.2: Assemblies with the Modules and Files They Reference 856

ptg

xxix

Tables

Table 1.1: C# Keywords 5
Table 1.2: C# Comment Types 21
Table 1.3: C# and .NET Versions 26

Table 2.1: Integer Types 32
Table 2.2: Floating-Point Types 33
Table 2.3: decimal Type 34
Table 2.4: Escape Characters 42
Table 2.5: string Static Methods 46
Table 2.6: string Methods 47
Table 2.7: Common Array Coding Errors 79

Table 3.1: Control Flow Statements 99
Table 3.2: Relational and Equality Operators 110
Table 3.3: Conditional Values for the XOR Operator 113
Table 3.4: Preprocessor Directives 139
Table 3.5: Operator Order of Precedence 146

Table 4.1: Common Namespaces 153
Table 4.2: Common Exception Types 193

Table 6.1: Why the New Modifier? 287
Table 6.2: Members of System.Object 299

Table 7.1: Comparing Abstract Classes and Interfaces 328

Table 8.1: Boxing Code in CIL 340

Table 9.1: Accessibility Modifiers 381

ptg

Tablesxxx

Table 12.1: Lambda Expression Notes and Examples 491

Table 14.1: Simpler Standard Query Operators 584
Table 14.2: Aggregate Functions on System.Linq.Enumerable 585

Table 17.1: Deserialization of a New Version Throws an Exception 685

Table 18.1: List of Available TaskContinuationOptions Enums1 712

Table 19.1: Sample Pseudocode Execution 752
Table 19.2: Interlock’s Synchronization-Related Methods 762
Table 19.3: Execution Path with ManualResetEvent Synchronization 770
Table 19.4: Concurrent Collection Classes 773
Table 19.5: Overview of the Various Timer Characteristics 779

Table 21.1: Primary C# Compilers 845
Table 21.2: Common C#-Related Acronyms 862

ptg

xxxi

Foreword

MARK MICHAELIS’S OVERVIEW OF THE C# language has become a standard
reference for developers. In this, its third edition, programmers will find a
thoughtful, well-written guide to the intricacies of one of the world’s most
popular computer languages. Having laid a strong foundation in the ear-
lier editions of this book, Mark adds new chapters that explain the latest
features in both C# and the .NET Framework.

Two of the most important additions to the book cover the latest tools
for parallel programming and the new dynamic features found in C# 4.0.
The addition of dynamic features to the C# language will give developers
access to late-bound languages such as Python and Ruby. Improved sup-
port for COM Interop will allow developers to access Microsoft Office with
an intuitive and easy-to-use syntax that makes these great tools easy to use.
Mark’s coverage of these important topics, along with his explanation of
the latest developments in concurrent development, make this an essential
read for C# developers who want to hone their skills and master the best
and most vital parts of the C# language.

As the community PM for the C# team, I work to stay attuned to the
needs of our community. Again and again I hear the same message: “There
is so much information coming out of Microsoft that I can’t keep up. I need
access to materials that explain the technology, and I need them presented
in a way that I can understand.” Mark Michaelis is a one-man solution to a
C# developer’s search for knowledge about Microsoft’s most recent
technologies.

ptg

Forewordxxxii

I first met Mark at a breakfast held in Redmond, Washington, on a clear,
sunny morning in the summer of 2006. It was an early breakfast, and I like
to sleep in late. But I was told Mark was an active community member, and
so I woke up early to meet him. I’m glad I did. The distinct impression he
made on me that morning has remained unchanged over the years.

Mark is a tall, athletic man originally from South Africa, who speaks in
a clear, firm, steady voice with a slight accent that most Americans would
probably find unidentifiable. He competes in Ironman triathlons and has
the lean, active look that one associates with that sport. Cheerful and opti-
mistic, he nevertheless has a businesslike air about him; one has the sense
that he is always trying to find the best way to fit too many activities into a
limited time frame.

Mark makes frequent trips to the Microsoft campus to participate in
reviews of upcoming technology or to consult on a team’s plans for the
future. Flying in from his home in Spokane, Washington, Mark has clearly
defined agendas. He knows why he is on the campus, gives his all to the
work, and looks forward to heading back home to his family in Spokane.
Sometimes he finds time to fit in a quick meeting with me, and I always
enjoy them. He is cheerful and energetic, and nearly always has something
provocative to say about some new technology or program being devel-
oped by Microsoft.

This brief portrait of Mark tells you a good deal about what you can
expect from this book. It is a focused book with a clear agenda written in a
cheerful, no-nonsense manner. Mark works hard to discover the core parts
of the language that need to be explained and then he writes about them in
the same way that he speaks: with a lucid, muscular prose that is easy to
understand and totally devoid of condescension. Mark knows what his
audience needs to hear and he enjoys teaching.

Mark knows not only the C# language, but also the English language.
He knows how to craft a sentence, how to divide his thoughts into para-
graphs and subsections, and how to introduce and summarize a topic. He
consistently finds clear, easy-to-understand ways to explain complex
subjects.

I read the first edition of Mark’s book cover to cover in just a few eve-
nings of concentrated reading. Like the current volume, it is a delight to

ptg

Foreword xxxiii

read. Mark selects his topics with care, and explains them in the simplest
possible terms. He knows what needs to be included, and what can be left
out. If he wants to explore an advanced topic, he clearly sets it apart from
the rest of the text. He never shows off by first parading his intellect at the
expense of our desire to understand.

A centrally important part of this new edition of the book continues to
be its coverage of LINQ. For many developers the declarative style of pro-
gramming used by LINQ is a new technology that requires developing
new habits and new ways of thinking.

C# 3.0 contained several new features that enable LINQ. A main goal of
the book is to lay out these features in detail. Explaining LINQ and the
technologies that enable it is no easy task, and Mark has rallied all his for-
midable skills as a writer and teacher to lay this technology out for the
reader in clear and easy-to-understand terms.

All the key technologies that you need to know if you want to under-
stand LINQ are carefully explained in this text. These include

• Partial methods

• Automatic properties

• Object initializers

• Collection initializers

• Anonymous types

• Implicit local variables (var)

• Lambdas

• Extension methods

• Expression trees

• IEnumerable<T> and IQueryable<T>

• LINQ query operators

• Query expressions

The march to an understanding of LINQ begins with Mark’s explana-
tions of important C# 2.0 technologies such as generics and delegates. He
then walks you step by step through the transition from delegates to lamb-
das. He explains why lambdas are part of C# 3.0 and the key role they play

ptg

Forewordxxxiv

in LINQ. He also explains extension methods, and the role they play in
implementation of the LINQ query operators.

His coverage of C# 3.0 features culminates in his detailed explanation of
query expressions. He covers the key features of query expressions such as
projections, filtering, ordering, grouping, and other concepts that are cen-
tral to an understanding of LINQ. He winds up his chapter on query
expressions by explaining how they can be converted to the LINQ query
method syntax, which is actually executed by the compiler. By the time
you are done reading about query expressions you will have all the knowl-
edge you need to understand LINQ and to begin using this important tech-
nology in your own programs.

If you want to be a C# developer, or if you want to enhance your C#
programming skills, there is no more useful tool than a well-crafted book
on the subject. You are holding such a book in your hands. A text such as
this can first teach you how the language works, and then live on as a ref-
erence that you use when you need to quickly find answers. For develop-
ers who are looking for ways to stay current on Microsoft’s technologies,
this book can serve as a guide through a fascinating and rapidly changing
landscape. It represents the very best and latest thought on what is fast
becoming the most advanced and most important contemporary
programming language.

—Charlie Calvert
Community Program Manager,
Visual C#, Microsoft
January 2010

ptg

xxxv

Preface

THROUGHOUT THE HISTORY of software engineering, the methodology used
to write computer programs has undergone several paradigm shifts, each
building on the foundation of the former by increasing code organization
and decreasing complexity. This book takes you through these same para-
digm shifts.

The beginning chapters take you through sequential programming
structure, in which statements are written in the order in which they are
executed. The problem with this model is that complexity increases expo-
nentially as the requirements increase. To reduce this complexity, code
blocks are moved into methods, creating a structured programming
model. This allows you to call the same code block from multiple locations
within a program, without duplicating code. Even with this construct,
however, programs quickly become unwieldy and require further abstrac-
tion. Object-oriented programming, discussed in Chapter 5, was the
response. In subsequent chapters, you will learn about additional method-
ologies, such as interface-based programming, LINQ (and the transforma-
tion it makes to the collection API), and eventually rudimentary forms of
declarative programming (in Chapter 17) via attributes.

This book has three main functions.

1. It provides comprehensive coverage of the C# language, going
beyond a tutorial and offering a foundation upon which you can
begin effective software development projects.

ptg

Prefacexxxvi

2. For readers already familiar with C#, this book provides insight into
some of the more complex programming paradigms and provides in-
depth coverage of the features introduced in the latest version of the
language, C# 4.0 and .NET Framework 4.

3. It serves as a timeless reference, even after you gain proficiency with
the language.

The key to successfully learning C# is to start coding as soon as possi-
ble. Don’t wait until you are an “expert” in theory; start writing software
immediately. As a believer in iterative development, I hope this book
enables even a novice programmer to begin writing basic C# code by the
end of Chapter 2.

A number of topics are not covered in this book. You won’t find cover-
age of topics such as ASP.NET, ADO.NET, smart client development, dis-
tributed programming, and so on. Although these topics are relevant to the
.NET Framework, to do them justice requires books of their own. Fortu-
nately, Addison-Wesley’s .NET Development Series provides a wealth of
writing on these topics. Essential C# 4.0 focuses on C# and the types within
the Base Class Library. Reading this book will prepare you to focus on and
develop expertise in any of the areas covered by the rest of the series.

Target Audience for This Book

My challenge with this book was to keep advanced developers awake
while not abandoning beginners by using words such as assembly, link,
chain, thread, and fusion, as though the topic was more appropriate for
blacksmiths than for programmers. This book’s primary audience is expe-
rienced developers looking to add another language to their quiver. How-
ever, I have carefully assembled this book to provide significant value to
developers at all levels.

• Beginners: If you are new to programming, this book serves as a
resource to help transition you from an entry-level programmer to a
C# developer, comfortable with any C# programming task that’s
thrown your way. This book not only teaches you syntax, but also

ptg

Preface xxxvii

trains you in good programming practices that will serve you
throughout your programming career.

• Structured programmers: Just as it’s best to learn a foreign language
through immersion, learning a computer language is most effective
when you begin using it before you know all the intricacies. In this
vein, this book begins with a tutorial that will be comfortable for
those familiar with structured programming, and by the end of Chap-
ter 4, developers in this category should feel at home writing basic
control flow programs. However, the key to excellence for C# devel-
opers is not memorizing syntax. To transition from simple programs
to enterprise development, the C# developer must think natively in
terms of objects and their relationships. To this end, Chapter 5’s
Beginner Topics introduce classes and object-oriented development.
The role of historically structured programming languages such as C,
COBOL, and FORTRAN is still significant but shrinking, so it
behooves software engineers to become familiar with object-oriented
development. C# is an ideal language for making this transition
because it was designed with object-oriented development as one of
its core tenets.

• Object-based and object-oriented developers: C++ and Java programmers,
and many experienced Visual Basic programmers, fall into this cate-
gory. Many of you are already completely comfortable with semico-
lons and curly braces. A brief glance at the code in Chapter 1 reveals
that at its core, C# is similar to the C and C++ style languages that you
already know.

• C# professionals: For those already versed in C#, this book provides a
convenient reference for less frequently encountered syntax. Further-
more, it provides answers to language details and subtleties that are
seldom addressed. Most importantly, it presents the guidelines and
patterns for programming robust and maintainable code. This book
also aids in the task of teaching C# to others. With the emergence of
C# 3.0 and C# 4.0, some of the most prominent enhancements are:
– Implicitly typed variables (see Chapter 2)
– Extension methods (see Chapter 5)
– Partial methods (see Chapter 5)

ptg

Prefacexxxviii

– Anonymous types (see Chapter 11)
– Generics (see Chapter 11)
– Lambda statements and expressions (see Chapter 12)
– Expression trees (see Chapter 12)
– Standard query operators (see Chapter 14)
– Query expressions (see Chapter 15)
– Dynamic programming (Chapter 17)
– Multithreaded programming with the Task Programming Library

(Chapter 18)
– Parallel query processing with PLINQ
– Concurrent collections (Chapter 19)

These topics are covered in detail for those not already familiar with them.
Also pertinent to advanced C# development is the subject of pointers, in
Chapter 21. Even experienced C# developers often do not understand this
topic well.

Features of This Book

Essential C# 4.0 is a language book that adheres to the core C# Language 4.0
Specification. To help you understand the various C# constructs, the book
provides numerous examples demonstrating each feature. Accompanying
each concept are guidelines and best practices, ensuring that code com-
piles, avoids likely pitfalls, and achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are
outlined using mind maps.

Code Samples
The code snippets in most of this text (see sample listing on the next page)
can run on any implementation of the Common Language Infrastructure
(CLI), including the Mono, Rotor, and Microsoft .NET platforms. Platform-
or vendor-specific libraries are seldom used, except when communicating
important concepts relevant only to those platforms (appropriately han-
dling the single-threaded user interface of Windows, for example). Any
code that specifically requires C# 3.0 or 4.0 compliance is called out in the
C# 3.0 and C# 4.0 indexes at the end of the book.

ptg

Preface xxxix

Here is a sample code listing.

Listing 1.17: Commenting Your Code

 }
}

The formatting is as follows.

• Comments are shown in italics.

 /* Display a greeting to the console
 using composite formatting. */

• Keywords are shown in bold.

 static void Main()

• Highlighted code calls out specific code snippets that may have
changed from an earlier listing, or demonstrates the concept
described in the text.

class CommentSamples
{
static void Main()

 {

 string firstName; // Variable for storing the first name
 string lastName; // Variable for storing the last name

single-line comment

 System.Console.WriteLine("Hey you!");

 System.Console.Write /* No new line */ (
 "Enter your first name: ");
 firstName = System.Console.ReadLine();

 System.Console.Write /* No new line */ (
 "Enter your last name: ");
 lastName = System.Console.ReadLine();

 /* Display a greeting to the console
 using composite formatting. */
 System.Console.WriteLine("Your full name is {0} {1}.",
 firstName, lastName);
 // This is the end
 // of the program listing

delimited comment inside statement

delimited comment

ptg

Prefacexl

Highlighting can appear on an entire line or on just a few characters
within a line.

 System.Console.WriteLine(

• Incomplete listings contain an ellipsis to denote irrelevant code that
has been omitted.

 // ...

• Console output is the output from a particular listing that appears fol-
lowing the listing.

• User input for the program appears in italics.

Although it might have been convenient to provide full code samples
that you could copy into your own programs, doing so would detract you
from learning a particular topic. Therefore, you need to modify the code
samples before you can incorporate them into your programs. The core
omission is error checking, such as exception handling. Also, code samples
do not explicitly include using System statements. You need to assume the
statement throughout all samples.

You can find sample code and bonus mateial at intelliTechture.com/
EssentialCSharp and at informit.com/msdotnetseries.

Mind Maps
Each chapter’s introduction includes a mind map, which serves as an out-
line that provides an at-a-glance reference to each chapter’s content. Here
is an example (taken from Chapter 5).

 System.Console.Write /* No new line */ (

 "Your full name is {0} {1}.",

OUTPUT 1.4:

>HeyYou.exe
Hey you!
Enter your first name: Inigo
Enter your last name: Montoya

ptg

Preface xli

The theme of each chapter appears in the mind map’s center. High-level
topics spread out from the core. Mind maps allow you to absorb the flow
from high-level to more detailed concepts easily, with less chance of
encountering very specific knowledge that you might not be looking for.

Helpful Notes
Depending on your level of experience, special code blocks and tabs will
help you navigate through the text.

• Beginner Topics provide definitions or explanations targeted specifi-
cally toward entry-level programmers.

• Advanced Topics enable experienced developers to focus on the
material that is most relevant to them.

• Callout notes highlight key principles in callout boxes so that readers
easily recognize their significance.

• Language Contrast sidebars identify key differences between C# and
its predecessors to aid those familiar with other languages.

Declaring a Property

Naming Conventions

Using Properties with Validation

Read-Only and Write-Only Properties

Access Modifiers on Getters and Setters

Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

Instance
Fields

Declaring an Instance Field
Accessing an Instance Field
Const and readonly Modifiers

Properties

Static Fields
Static Methods

Static Constructors
Static Classes

Partial Classes
Nested Classes

Classes

2

3 Instance Methods

4

5

Static7

Access Modifiers

9 Special Classes
Declaring and Instantiating a Class1

8 Extension Methods

Declaring a Constructor
Default Constructors

Overloading Constructors
Calling one Constructor Using this

Finalizers

Constructors
& Finalizers6

ptg

Prefacexlii

How This Book Is Organized

At a high level, software engineering is about managing complexity, and it
is toward this end that I have organized Essential C# 4.0 Chapters 1–4 intro-
duce structured programming, which enable you to start writing simple
functioning code immediately. Chapters 5–9 present the object-oriented
constructs of C#. Novice readers should focus on fully understanding this
section before they proceed to the more advanced topics found in the
remainder of this book. Chapters 11–13 introduce additional complexity-
reducing constructs, handling common patterns needed by virtually all
modern programs. This leads to dynamic programming with reflection
and attributes, which is used extensively for threading and interoperability
in the chapters that follow.

The book ends with a chapter on the Common Language Infrastructure,
which describes C# within the context of the development platform in
which it operates. This chapter appears at the end because it is not C# spe-
cific and it departs from the syntax and programming style in the rest of
the book. However, this chapter is suitable for reading at any time, perhaps
most appropriately immediately following Chapter 1.

Here is a description of each chapter (in this list, chapter numbers
shown in bold indicate the presence of C# 3.0 or C# 4.0 material).

• Chapter 1—Introducing C#: After presenting the C# HelloWorld pro-
gram, this chapter proceeds to dissect it. This should familiarize read-
ers with the look and feel of a C# program and provide details on how
to compile and debug their own programs. It also touches on the con-
text of a C# program’s execution and its intermediate language.

• Chapter 2—Data Types: Functioning programs manipulate data, and
this chapter introduces the primitive data types of C#. This includes
coverage of two type categories, value types and reference types,
along with conversion between types and support for arrays.

• Chapter 3—Operators and Control Flow: To take advantage of the
iterative capabilities in a computer, you need to know how to include
loops and conditional logic within your program. This chapter also
covers the C# operators, data conversion, and preprocessor
directives.

.

ptg

Preface xliii

• Chapter 4—Methods and Parameters: This chapter investigates the
details of methods and their parameters. It includes passing by value,
passing by reference, and returning data via a parameter. In C# 4.0
default parameter support was added and this chapter explains how
to use them.

• Chapter 5—Classes: Given the basic building blocks of a class, this
chapter combines these constructs together to form fully functional
types. Classes form the core of object-oriented technology by defining
the template for an object.

• Chapter 6—Inheritance: Although inheritance is a programming fun-
damental to many developers, C# provides some unique constructs,
such as the new modifier. This chapter discusses the details of the
inheritance syntax, including overriding.

• Chapter 7—Interfaces: This chapter demonstrates how interfaces are
used to define the “versionable” interaction contract between classes.
C# includes both explicit and implicit interface member implementa-
tion, enabling an additional encapsulation level not supported by
most other languages.

• Chapter 8—Value Types: Although not as prevalent as defining refer-
ence types, it is sometimes necessary to define value types that
behave in a fashion similar to the primitive types built into C#. This
chapter describes how to define structures, while exposing the idio-
syncrasies they may introduce.

• Chapter 9—Well-Formed Types: This chapter discusses more advanced
type definition. It explains how to implement operators, such as + and
casts, and describes how to encapsulate multiple classes into a single
library. In addition, the chapter demonstrates defining namespaces
and XML comments, and discusses how to design classes for garbage
collection.

• Chapter 10—Exception Handling: This chapter expands on the excep-
tion-handling introduction from Chapter 4 and describes how excep-
tions follow a hierarchy that enables creating custom exceptions. It
also includes some best practices on exception handling.

ptg

Prefacexliv

• Chapter 11—Generics: Generics is perhaps the core feature missing
from C# 1.0. This chapter fully covers this 2.0 feature. In addition, C#
4.0 added support for covariance and contravariance—something
covered in the context of generics in this chapter.

• Chapter 12—Delegates and Lambda Expressions: Delegates begin clearly
distinguishing C# from its predecessors by defining patterns for han-
dling events within code. This virtually eliminates the need for writ-
ing routines that poll. Lambda expressions are the key concept that
make C# 3.0’s LINQ possible. This chapter explains how lambda
expressions build on the delegate construct by providing a more ele-
gant and succinct syntax. This chapter forms the foundation for the
new collection API discussed next.

• Chapter 13—Events: Encapsulated delegates, known as events, are a
core construct of the Common Language Runtime. Anonymous
methods, another C# 2.0 feature, are also presented here.

• Chapter 14—Collection Interfaces with Standard Query Operators: The
simple and yet elegantly powerful changes introduced in C# 3.0 begin
to shine in this chapter as we take a look at the extension methods of
the new Enumerable class. This class makes available an entirely new
collection API known as the standard query operators and discussed
in detail here.

• Chapter 15—LINQ with Query Expressions: Using standard query
operators alone results in some long statements that are hard to deci-
pher. However, query expressions provide an alternative syntax that
matches closely with SQL, as described in this chapter.

• Chapter 16—Building Custom Collections: In building custom APIs that
work against business objects, it is sometimes necessary to create cus-
tom collections. This chapter details how to do this, and in the process
introduces contextual keywords that make custom collection build-
ing easier.

• Chapter 17—Reflection, Attributes, and Dynamic Programming: Object-
oriented programming formed the basis for a paradigm shift in pro-
gram structure in the late 1980s. In a similar way, attributes facilitate
declarative programming and embedded metadata, ushering in a
new paradigm. This chapter looks at attributes and discusses how to

ptg

Preface xlv

retrieve them via reflection. It also covers file input and output via the
serialization framework within the Base Class Library. In C# 4.0 a new
keyword, dynamic, was added to the language. This removed all type
checking until runtime, a significant expansion of what can be done
with C#.

• Chapter 18—Multithreading: Most modern programs require the use
of threads to execute long-running tasks while ensuring active
response to simultaneous events. As programs become more sophisti-
cated, they must take additional precautions to protect data in these
advanced environments. Programming multithreaded applications is
complex. This chapter discusses how to work with threads and pro-
vides best practices to avoid the problems that plague multithreaded
applications.

• Chapter 19—Synchronization and Other Multithreading Patterns: Build-
ing on the preceding chapter, this one demonstrates some of the built-
in threading pattern support that can simplify the explicit control of
multithreaded code.

• Chapter 20—Platform Interoperability and Unsafe Code: Given that C# is
a relatively young language, far more code is written in other lan-
guages than in C#. To take advantage of this preexisting code, C#
supports interoperability—the calling of unmanaged code—through
P/Invoke. In addition, C# provides for the use of pointers and direct
memory manipulation. Although code with pointers requires special
privileges to run, it provides the power to interoperate fully with tra-
ditional C-based application programming interfaces.

• Chapter 21—The Common Language Infrastructure: Fundamentally, C#
is the syntax that was designed as the most effective programming
language on top of the underlying Common Language Infrastructure.
This chapter delves into how C# programs relate to the underlying
runtime and its specifications.

• Appendix A—Downloading and Installing the C# Compiler and the CLI Plat-
form: This appendix provides instructions for setting up a C# compiler
and the platform on which to run the code, Microsoft .NET or Mono.

• Appendix B—Full Source Code Listing: In several cases, a full source code
listing within a chapter would have made the chapter too long. To make

ptg

Prefacexlvi

these listings still available to the reader, this appendix includes full list-
ings from Chapters 3, 11, 12, 14, and 17.

• Appendix C—Concurrent Classes from System.Collections.Concur-
rent: This appendix provides overview diagrams of the concurrent
collections that were added in the .NET Framework 4.

• Appendixes D-F: C# 2.0, C# 3.0, C# 4.0 Topics: These appendices pro-
vide a quick reference for any C# 2.0, C# 3.0, or C# 4.0 content. They
are specifically designed to help programmers quickly get up to
speed on C# features.

I hope you find this book to be a great resource in establishing your C#
expertise and that you continue to reference it for the more obscure areas of
C# and its inner workings.

—Mark Michaelis
mark.michaelis.net

ptg

xlvii

Acknowledgments

NO BOOK CAN BE published by the author alone, and I am extremely grate-
ful for the multitude of people who helped me with this one.

The order in which I thank people is not significant, except for those
that come first. By far, my family has made the biggest sacrifice to allow me
to complete this. Benjamin, Hanna, and Abigail often had a Daddy dis-
tracted by this book, but Elisabeth suffered even more so. She was often left
to take care of things, holding the family’s world together on her own. I
would like to say it got easier with each edition but, alas, no; as the kids got
older, life became more hectic, and without me Elisabeth was stretched to
the breaking point virtually all the time. A huge sorry and ginormous
Thank You!

Many technical editors reviewed each chapter in minute detail to ensure
technical accuracy. I was often amazed by the subtle errors these folks still
managed to catch: Paul Bramsman, Kody Brown, Ian Davis, Doug Dechow,
Gerard Frantz, Thomas Heavey, Anson Horton, Brian Jones, Shane
Kercheval, Angelika Langer, Eric Lippert, John Michaelis, Jason Morse,
Nicholas Paldino, Jon Skeet, Michael Stokesbary, Robert Stokesbary, John
Timney, and Stephen Toub.

In particular, Michael was a huge help in editing the technical content
and serving as a sounding board as I was putting the material together, not
to mention his invaluable friendship. I am also especially grateful to the C#
MVPs (Nicholas and John), who know the language in certain areas second
only to those on the C# team.

ptg

Acknowledgmentsxlviii

Eric is no less than amazing. His grasp of the C# vocabulary is truly
astounding and I am very appreciative of his edits, especially when he
pushed for perfection in terminology. His improvements to the C# 3.0
chapters were incredibly significant, and in the second edition my only
regret was that I didn’t have him review all the chapters. However, that
regret is no longer. Eric painstakingly reviewed every Essential C# 4.0 chap-
ter with amazing detail and precision. I am extremely grateful for his con-
tribution to making this book even better than the first two editions.
Thanks, Eric! I can’t imagine anyone better for the job. You deserve all the
credit for raising the bar from good to great.

Like Eric and C#, there are fewer than a handful of people who know
.NET multithreading as well as Stephen Toub. Accordingly, Stephen
focused on the two rewritten multithreading chapters and their new focus
on parallel programming. Stephen’s feedback in combination with the
changes that occurred between Beta editions caused me to ask Stephen to
take a second look after I updated them based on his first review—he
accepted. I truly can’t imagine a better person to do the review. Thanks,
Stephen! Thanks especially for putting up with me as I ramped up on the
new API.

Paul and Robert were key technical reviewers for the second edition,
and they painstakingly recompiled and executed each listing. This was a
big effort and the errors you found were much appreciated, along with
your suggestions.

Thanks to Scott Robertson at UCLA Extension for creating instructional
materials for this book for university adoption.

Thanks to everyone at Addison-Wesley for their patience in working
with me in spite of my frequent focus on everything else except the manu-
script. Thanks to: Olivia Basegio, Sheri Cain, Curt Johnson, Joan Murray,
and Brandon Prebynski.

Joan, thanks also for the weekly telephone calls to keep me on task dur-
ing the second edition—well, for at least making me feel guilty when I
wasn’t on task. Thanks also for your willingness to put up with me for this
third edition. I wish I could say that this time I made it less stressful for
you, but I doubt I did. Thanks!

ptg

Acknowledgments xlix

Thanks to Audrey Doyle. Anyone who can quote The Chicago Manual of
Style has to be the right person to have on your team as the copy editor. The
stuff she noticed and corrected made me wonder whether I am qualified to
use email. Thanks especially for all the formatting help.

Prashant Sridharan, from Microsoft’s Developer Division, was the one
who got me started on this, and he provided me with an incredible jump-
start on the material. Thanks, Prashant!

ptg

This page intentionally left blank

ptg

li

About the Author

Mark Michaelis recently started IntelliTechture, a software engineering
and consulting company with high-end skills in Microsoft VSTS/TFS, Biz-
Talk, SharePoint, and .NET. Mark also serves as a chief software architect
and trainer for IDesign Inc.

Mark holds a BA in philosophy from the University of Illinois and an
MS in computer science from the Illinois Institute of Technology. In 2007,
Mark was recognized as a Microsoft Regional Director. Since 1996, he has
been a Microsoft MVP for C#, Visual Studio Team System, and the Win-
dows SDK. He serves on several Microsoft software design review teams,
including C#, the Connected Systems Division, and VSTS. Mark speaks at
developer conferences and has written numerous articles and books.

When not bonding with his computer, Mark is busy with his family or
training for another triathlon (having completed the Ironman in 2008).
Mark lives in Spokane, Washington, with his wife Elisabeth, and three chil-
dren, Benjamin, Hanna, and Abigail.

ptg

This page intentionally left blank

ptg

1

1
Introducing C#

IS NOW A WELL-ESTABLISHED LANGUAGE that builds on fea-
tures found in its predecessor C-style languages (C, C++, and

Java), making it immediately familiar to many experienced programmers.1

Part of a larger, more complex execution platform called the Common Lan-
guage Infrastructure (CLI), C# is a programming language for building
software components and applications.

This chapter introduces C# using the traditional HelloWorld program.
The chapter focuses on C# syntax fundamentals, including defining an
entry point into the C# program executable. This will familiarize you with

1. It has now been more than ten years since the first C# design meeting.

C#

2

34

5

6 1

Introducing C#

Hello, World Compiling and Running
Managed Execution

C# Syntax
Fundamentals

Keywords
Main
Statements
Whitespace

Working with
Variables

Declaration
Assignment
Use

Console Input
and Output

CommentsSingle Line
Delimited

Common Intermediate
Language and ILDASM

ptg

Chapter 1: Introducing C#2

the C# syntax style and structure, and it will enable you to produce the
simplest of C# programs. Prior to the discussion of C# syntax fundamen-
tals is a summary of managed execution context, which explains how a C#
program executes at runtime. This chapter ends with a discussion of vari-
able declaration, writing and retrieving data from the console, and the
basics of commenting code in C#.

Hello, World

The best way to learn a new programming language is to write code. The
first example is the classic HelloWorld program. In this program, you will
display some text to the screen.

Listing 1.1 shows the complete HelloWorld program; in the following
sections, you will compile the code.

Listing 1.1: HelloWorld in C#2

class HelloWorld

{

static void Main()

 {

 System.Console.WriteLine("Hello. My name is Inigo Montoya.");

 }

}

Those experienced in programming with Java, C, or C++ will immedi-
ately see similarities. Like Java, C# inherits its basic syntax from C and
C++.3 Syntactic punctuation (such as semicolons and curly braces), features
(such as case sensitivity), and keywords (such as class, public, and void)

2. Refer to the movie The Princess Bride if you’re confused about the Inigo Montoya
references.

NOTE

C# is a case-sensitive language: Incorrect case prevents the code from
compiling successfully.

3. When creating C#, the language creators sat down with the specifications for C/C++, liter-
ally crossing out the features they didn’t like and creating a list of the ones they did like.
The group also included designers with strong backgrounds in other languages.

ptg

 Hello, World 3

are familiar to programmers experienced in these languages. Beginners and
programmers from other languages will quickly find these constructs
intuitive.

Compiling and Running the Application
The C# compiler allows any file extension for files containing C# source
code, but .cs is typically used. After saving the source code to a file, devel-
opers must compile it. (Appendix A provides instructions for installing the
compiler.) Because the mechanics of the command are not part of the C#
standard, the compilation command varies depending on the C# compiler
implementation.

If you place Listing 1.1 into a file called HelloWorld.cs, the compilation
command in Output 1.1 will work with the Microsoft .NET compiler
(assuming appropriate paths to the compiler are set up).4

The exact output will vary depending on what version of the compiler
you use.

Running the resultant program, HelloWorld.exe, displays the message
shown in Output 1.2.

The program created by the C# compiler, HelloWorld.exe, is an
assembly. Instead of creating an entire program that can be executed

OUTPUT 1.1:

>csc.exe HelloWorld.cs

Microsoft (R) Visual C# 2008 Compiler version 4.0.20506.1

for Microsoft (R) .NET Framework version 4.0

Copyright (C) Microsoft Corporation. All rights reserved.

4. Compilation using the Mono compiler, an open source compiler sponsored by Novell, is
virtually identical, except that the compiler name is mcs.exe rather than csc.exe.
Although I would very much have liked to place instructions for each platform here, doing
so detracts from the topic of introducing C#. See Appendix A for details on Mono.

OUTPUT 1.2:

>HelloWorld.exe

Hello. My name is Inigo Montoya.

ptg

Chapter 1: Introducing C#4

independently, developers can create a library of code that can be
referenced by another, larger program. Libraries (or class libraries) use the
filename extension .dll, which stands for Dynamic Link Library (DLL). A
library is also an assembly. In other words, the output from a successful C#
compile is an assembly regardless of whether it is a program or a library.

C# Syntax Fundamentals

Once you successfully compile and run the HelloWorld program, you are
ready to start dissecting the code to learn its individual parts. First, con-
sider the C# keywords along with the identifiers that the developer
chooses.

B E G I N N E R T O P I C

Keywords
In order for the compiler to interpret the code, certain words within C#
have special status and meaning. Known as keywords or reserved words,
they provide the concrete syntax that the compiler uses to interpret the
expressions the programmer writes. In the HelloWorld program, class,
static, and void are examples of keywords.

The compiler uses the keywords to identify the structure and organiza-
tion of the code. Because the compiler interprets these words with elevated
significance, you can use keywords only under the specific rules identified
by the language. In other words, programming languages require that
developers place keywords only in certain locations. When programmers
violate these rules, the compiler will issue errors.

Language Contrast: Java—Filename Must Match Class Name

In Java, the filename must follow the name of the class. In C#, this conven-

tion is frequently followed but is not required. In C#, it is possible to have

two classes in one file, and starting with C# 2.0, it’s possible to have a

single class span multiple files.

ptg

 C# Syntax Fundamentals 5

C# Keywords
Table 1.1 shows the C# keywords.

TABLE 1.1: C# Keywords

abstract add* alias* as

ascending* base bool break

by* byte case catch

char checked class const

continue decimal default delegate

descending* do double dynamic*

else enum equals* event

explicit extern false finally

fixed float for foreach

from* get* global* goto

group* if implicit in

int interface internal into*

is join* let* lock

long namespace new null

object on* operator orderby*

out override params partial*

private protected public readonly

ref remove* return sbyte

sealed select* set* short

sizeof stackalloc static string

struct switch this throw

true try typeof uint

* Contextual keyword Continues

ptg

Chapter 1: Introducing C#6

After C# 1.0, no new keywords were introduced to C#. However, some
constructs in these later versions use contextual keywords, which are sig-
nificant only in specific locations. Outside these designated locations, con-
textual keywords have no special significance.5 By this method, all C# 1.0
code is fully compatible with the later standards.6 (Table 1.1 designates
contextual keywords with a *.)

B E G I N N E R T O P I C

Identifiers
In addition to the keywords defined in C#, developers may provide their
own names. Programming languages refer to these names as identifiers
since they identify constructs that the programmer codes. In Listing 1.1,
HelloWorld and Main are examples of identifiers. It is possible to assign a
value to a variable and then refer to it later using its identifier. It is impor-
tant, therefore, that the names the developer assigns are meaningful rather

ulong unchecked unsafe ushort

using value* var* virtual

void volatile where* while

yield*

* Contextual keyword

5. For example, early in the design of C# 2.0, the language designers designated yield as a
keyword, and Microsoft released alpha versions of the C# 2.0 compiler, with yield as a
designated keyword, to thousands of developers. However, the language designers even-
tually determined that by using yield return rather than yield, they could ultimately
avoid adding yield as a keyword because it would have no special significance outside its
proximity to return.

6. There are some rare and unfortunate incompatibilities, such as the following:
• C# 2.0 requiring implementation of IDisposable with the using statement, rather than

simply a Dispose() method
• Some rare generic expressions such as F(G<A,B>(7)); in C# 1.0, that means F((G<A),

(B>7)) and in C# 2.0, that means to call generic method G<A,B> with argument 7 and
pass the result to F

TABLE 1.1: C# Keywords (Continued)

ptg

 C# Syntax Fundamentals 7

than arbitrary. A keen ability to select succinct and indicative names is an
important characteristic of a strong programmer because the resultant
code is easier to understand and reuse. In some rare cases, some identifi-
ers, such as Main, can have a special meaning in the C# language.

A D V A N C E D T O P I C

Keywords
Although it is rare, keywords may be used as identifiers if they include
“@” as a prefix. For example, you could name a local variable @return.
Similarly (although it doesn’t conform to the casing standards of C#
coding standards), it is possible to name a method @throw().

There are also four undocumented reserved keywords in the Microsoft
implementation: __arglist, __makeref, __reftype, and __refvalue.
These are required only in rare interop scenarios and you can ignore them
for all practical purposes.

Type Definition
All code in C# appears within a type definition, and the most common
type definition begins with the keyword class. A class definition is the
section of code that generally begins with class identifier { ... }, as
shown in Listing 1.2.

Listing 1.2: Basic Class Declaration

class HelloWorld

{

 ...

}

The name used for the type (in this case, HelloWorld) can vary, but by
convention, it should begin with a capital letter and a noun. If the name
contains multiple words appended together, then each additional word
should also begin with a capital letter. For this particular example, there-
fore, other possible names are Greetings, HelloInigoMontoya, Hello, or
simply Program. (Program works especially if it is the class that contains
the Main() method described next.) The CLI creators called this type of
casing Pascal casing because of its popularity in the Pascal programming

ptg

Chapter 1: Introducing C#8

language. The alternative, camel casing, follows the same convention,
except that the first letter is lowercase. Examples include quotient, first-
Name, and theDreadPirateRoberts.

Generally, programs contain multiple types, each containing multiple
methods.

Main

B E G I N N E R T O P I C

What Is a Method?
Syntactically, a method in C# is a named block of code introduced by a
method declaration (for example, static void Main()) and followed by
zero or more statements within curly braces. Methods perform computa-
tions and/or actions. Similar to paragraphs in written languages, methods
provide a means of structuring and organizing code so that it is more read-
able. More importantly, methods avoid the need to duplicate code. The
method declaration introduces the method and defines the method name
along with the data passed to and from the method. In Listing 1.3, Main()
followed by { ... } is an example of a C# method.

The location where C# programs begin execution is the Main method,
which begins with static void Main(). When you execute the program
by typing HelloWorld.exe at the command console, the program starts up,
resolves the location of Main, and begins executing the first statement
within Listing 1.3.

Listing 1.3: Breaking Apart HelloWorld

class HelloWorld
{
 static void Main()
 {
 System.Console.WriteLine("Hello, My name is Inigo Montoya");
 }
}

Although the Main method declaration can vary to some degree, static
and the method name, Main, are always required for a program.

Method Declaration
Class
Definition

Main

Statement

ptg

 C# Syntax Fundamentals 9

A D V A N C E D T O P I C

Declaration of the Main Method
Although it is possible to declare the Main method without parameters or
a return type, C# supports specifying either one. Listing 1.4 shows the full
declaration of the Main method.

Listing 1.4: The Main Method, with Parameters and a Return

static int Main(string[] args)

{

 ...

}

The args parameter is an array of strings corresponding to the command-
line arguments. However, the first element of the array is not the program
name but the first command-line parameter to appear after the executable
name, unlike in C and C++. To retrieve the full command used to execute
the program use System.Environment.CommandLine.

The int return from Main is the status code and it indicates the success
of the program’s execution. A return of a nonzero value generally indicates
an error.

The designation of the Main method as static indicates that other
methods may call it directly off the class definition. Without the static
designation, the command console that started the program would need to
perform additional work (known as instantiation) before calling the
method. (Chapter 5 contains an entire section devoted to the topic of static
members.)

Language Contrast: C++/Java—main() Is All Lowercase

Unlike its C-style predecessors, C# uses an uppercase for the Main

method in order to be consistent with the Pascal-based naming conven-

tions of C#.

M

ptg

Chapter 1: Introducing C#10

Placing void prior to Main() indicates that this method does not return
any data (explained further in Chapter 2).

One distinctive C/C++ style characteristic followed by C# is the use of
curly braces for the body of a construct, such as the class or the method.
For example, the Main method contains curly braces that surround its
implementation; in this case, only one statement appears in the method.

Statements and Statement Delimiters
The Main method includes a single statement, System.Console.Write-
Line(), which is used to write a line of text to the console. C# generally
uses a semicolon to indicate the end of a statement, where a statement
comprises one or more actions that the code will perform. Declaring a vari-
able, controlling the program flow, and calling a method are examples of
statements.

A D V A N C E D T O P I C

Statements without Semicolons
Many programming elements in C# end with a semicolon. One example that
does not include the semicolon is a switch statement. Because curly braces
are always included in a switch statement, C# does not require a semicolon
following the statement. In fact, code blocks themselves are considered
statements (they are also composed of statements) and they don’t require
closure using a semicolon. Similarly, there are cases, such as the using
declarative, in which a semicolon occurs at the end but it is not a statement.

Language Contrast: Visual Basic—Line-Based Statements

Some languages are line-based, meaning that without a special annota-

tion, statements cannot span a line. Until Visual Basic 2010, Visual Basic

was an example of a line-based language. It required an underscore at the

end of a line to indicate that a statement spans multiple lines. Starting with

Visual Basic 2010, many cases were introduced where the line continuation

character was optional.

ptg

 C# Syntax Fundamentals 11

Since creation of a newline does not separate statements, you can place
multiple statements on the same line and the C# compiler will interpret the
line to have multiple instructions. For example, Listing 1.5 contains two
statements on a single line that, in combination, display Up and Down on
two separate lines.

Listing 1.5: Multiple Statements on One Line

System.Console.WriteLine("Up");System.Console.WriteLine("Down");

C# also allows the splitting of a statement across multiple lines. Again,
the C# compiler looks for a semicolon to indicate the end of a statement
(see Listing 1.6).

Listing 1.6: Splitting a Single Statement across Multiple Lines

System.Console.WriteLine(

 "Hello. My name is Inigo Montoya.");

In Listing 1.6, the original WriteLine() statement from the HelloWorld
program is split across multiple lines.

Whitespace
The semicolon makes it possible for the C# compiler to ignore whitespace
in code. Apart from a few exceptions, C# allows developers to insert
whitespace throughout the code without altering its semantic meaning. In
Listing 1.5 and Listing 1.6, it didn’t matter whether a newline was inserted
within a statement or between statements, and doing so had no effect on
the resultant executable created by the compiler.

B E G I N N E R T O P I C

What Is Whitespace?
Whitespace is the combination of one or more consecutive formatting
characters such as tab, space, and newline characters. Eliminating all
whitespace between words is obviously significant, as is whitespace
within a quoted string.

ptg

Chapter 1: Introducing C#12

Frequently, programmers use whitespace to indent code for greater
readability. Consider the two variations on HelloWorld, as shown in List-
ing 1.7 and Listing 1.8.

Listing 1.7: No Indentation Formatting

class HelloWorld

{

static void Main()

{

System.Console.WriteLine("Hello Inigo Montoya");

}

}

Listing 1.8: Removing Whitespace

class HelloWorld{static void Main()

{System.Console.WriteLine("Hello Inigo Montoya");}}

Although these two examples look significantly different from the original
program, the C# compiler sees them as identical.

B E G I N N E R T O P I C

Formatting Code with Whitespace
Indenting the code using whitespace is important for greater readability.
As you begin writing code, you need to follow established coding stan-
dards and conventions in order to enhance code readability.

The convention used in this book is to place curly braces on their own
line and to indent the code contained between the curly brace pair. If
another curly brace pair appears within the first pair, all the code within
the second set of braces is also indented.

This is not a uniform C# standard, but a stylistic preference.

Working with Variables

Now that you’ve been introduced to the most basic C# program, it’s time
to declare a local variable. Once a variable is declared, you can assign it a
value, replace that value with a new value, and use it in calculations,

ptg

 Working with Variables 13

output, and so on. However, you cannot change the data type of the vari-
able. In Listing 1.9, string max is a variable declaration.

Listing 1.9: Declaring and Assigning a Variable

B E G I N N E R T O P I C

Local Variables
A variable refers to a storage location by a name that the program can later
assign and modify. Local indicates that the programmer declared the vari-
able within a method.

To declare a variable is to define it, which you do by

1. Specifying the type of data which the variable will contain

2. Assigning it an identifier (name)

Data Types
Listing 1.9 declares a variable with the data type string. Other common
data types used in this chapter are int and char.

• int is the C# designation of an integer type that is 32 bits in size.

• char is used for a character type. It is 16 bits, large enough for
(nonsurrogate) Unicode characters.

The next chapter looks at these and other common data types in more
detail.

class MiracleMax
{
static void Main()

 {

 string max;

 max = "Have fun storming the castle!";

 System.Console.WriteLine(max);
 }
}

data type

variable

ptg

Chapter 1: Introducing C#14

B E G I N N E R T O P I C

What Is a Data Type?
The type of data that a variable declaration specifies is called a data type
(or object type). A data type, or simply type, is a classification of things that
share similar characteristics and behavior. For example, animal is a type. It
classifies all things (monkeys, warthogs, and platypuses) that have animal
characteristics (multicellular, capacity for locomotion, and so on). Simi-
larly, in programming languages, a type is a definition for several items
endowed with similar qualities.

Declaring a Variable
In Listing 1.9, string max is a variable declaration of a string type whose
name is max. It is possible to declare multiple variables within the same
statement by specifying the data type once and separating each identifier
with a comma. Listing 1.10 demonstrates this.

Listing 1.10: Declaring Two Variables within One Statement

string message1, message2;

Because a multivariable declaration statement allows developers to pro-
vide the data type only once within a declaration, all variables will be of
the same type.

In C#, the name of the variable may begin with any letter or an under-
score (_), followed by any number of letters, numbers, and/or under-
scores. By convention, however, local variable names are camel-cased (the
first letter in each word is capitalized, except for the first word) and do not
include underscores.

Assigning a Variable
After declaring a local variable, you must assign it a value before referenc-
ing it. One way to do this is to use the = operator, also known as the simple
assignment operator. Operators are symbols used to identify the function
the code is to perform. Listing 1.11 demonstrates how to use the assign-
ment operator to designate the string values to which the variables max7

and valerie will point.

7. I am not using max to mean the math function here; I’m using it as a variable name.

ptg

 Working with Variables 15

Listing 1.11: Changing the Value of a Variable

class MiracleMax

{

 static void Main()

 {

 string valerie;

 System.Console.WriteLine(max);

 System.Console.WriteLine(valerie);

 System.Console.WriteLine(max);

 }

}

From this listing, observe that it is possible to assign a variable as part of
the variable declaration (as it was for max), or afterward in a separate state-
ment (as with the variable valerie). The value assigned must always be
on the right side.

Running the compiled MiracleMax.exe program produces the code
shown in Output 1.3.

C# requires that developers assign a local variable before accessing it.
Additionally, an assignment returns a value. Therefore, C# allows two
assignments within the same statement, as demonstrated in Listing 1.12.

Listing 1.12: Assignment Returning a Value That Can Be Assigned Again

class MiracleMax

{

 static void Main()

 {

 // ...

 string requirements, max;

 requirements = max = "It would take a miracle.";

 string max = "Have fun storming the castle!";

 valerie = "Think it will work?";

 max = "It would take a miracle.";

OUTPUT 1.3:

>MiracleMax.exe

Have fun storming the castle!

Think it will work?

It would take a miracle.

ptg

Chapter 1: Introducing C#16

 // ...

 }

}

Using a Variable
The result of the assignment, of course, is that you can then refer to the
value using the variable identifier. Therefore, when you use the variable
max within the System.Console.WriteLine(max) statement, the program
displays Have fun storming the castle!, the value of max, on the console.
Changing the value of max and executing the same System.Console.
WriteLine(max) statement causes the new max value, It would take a
miracle., to be displayed.

A D V A N C E D T O P I C

Strings Are Immutable
All data of type string, whether string literals or otherwise, is immutable
(or unmodifiable). For example, it is not possible to change the string "Come
As You Are" to "Come As You Age". A change such as this requires that you
reassign the variable to point to a new location in memory, instead of mod-
ifying the data to which the variable originally referred.

Console Input and Output

This chapter already used System.Console.WriteLine repeatedly for writ-
ing out text to the command console. In addition to being able to write out
data, a program needs to be able to accept data that a user may enter.

Getting Input from the Console
One of the ways to retrieve text that is entered at the console is to use
System.Console.ReadLine(). This method stops the program execution so
that the user can enter characters. When the user presses the Enter key, cre-
ating a newline, the program continues. The output, also known as the
return, from the System.Console.ReadLine() method is the string of text
that was entered. Consider Listing 1.13 and the corresponding output
shown in Output 1.4.

ptg

 Console Input and Output 17

Listing 1.13: Using System.Console.ReadLine()

class HeyYou

{

 static void Main()

 {

 string firstName;

 string lastName;

 System.Console.WriteLine("Hey you!");

 System.Console.Write("Enter your first name: ");

 firstName = System.Console.ReadLine();

 System.Console.Write("Enter your last name: ");

 lastName = System.Console.ReadLine();

 ...

 }

}

After each prompt, this program uses the System.Console.ReadLine()
method to retrieve the text the user entered and assign it to an appropriate
variable. By the time the second System.Console.ReadLine() assignment
completes, firstName contains to the value Inigo and lastName refers to
the value Montoya.

A D V A N C E D T O P I C

System.Console.Read()

In addition to the System.Console.ReadLine() method, there is also a
System.Console.Read() method. However, the data type returned by the
System.Console.Read() method is an integer corresponding to the charac-
ter value read, or –1 if no more characters are available. To retrieve the
actual character, it is necessary to first cast the integer to a character, as
shown in Listing 1.14.

OUTPUT 1.4:

>HeyYou.exe

Hey you!

Enter your first name: Inigo

Enter your last name: Montoya

ptg

Chapter 1: Introducing C#18

Listing 1.14: Using System.Console.Read()

int readValue;

char character;

readValue = System.Console.Read();

character = (char) readValue;

System.Console.Write(character);

The System.Console.Read() method does not return the input until the
user presses the Enter key; no processing of characters will begin, even if
the user types multiple characters before pressing the Enter key.

In C# 2.0, the CLR designers added a new method called System.
Console.ReadKey() which, in contrast to System.Console.Read(), returns
the input after a single keystroke. It allows the developer to intercept the
keystroke and perform actions such as key validation, restricting the char-
acters to numerics.

Writing Output to the Console
In Listing 1.13, you prompt the user for his first and last names using the
method System.Console.Write() rather than System.Console.Write-
Line(). Instead of placing a newline character after displaying the text, the
System.Console.Write() method leaves the current position on the same
line. In this way, any text the user enters will be on the same line as the
prompt for input. The output from Listing 1.13 demonstrates the effect of
System.Console.Write().

The next step is to write the values retrieved using System.Console.
ReadLine() back to the console. In the case of Listing 1.15, the program
writes out the user’s full name. However, instead of using System.Con-
sole.WriteLine() as before, this code will use a slight variation. Output
1.5 shows the corresponding output.

Listing 1.15: Formatting Using System.Console.WriteLine()

class HeyYou

{

 static void Main()

 {

 string firstName;

 string lastName;

ptg

 Console Input and Output 19

 System.Console.WriteLine("Hey you!");

 System.Console.Write("Enter your first name: ");

 firstName = System.Console.ReadLine();

 System.Console.Write("Enter your last name: ");

 lastName = System.Console.ReadLine();

 }

}

Instead of writing out Your full name is followed by another Write
statement for firstName, a third Write statement for the space, and finally
a WriteLine statement for lastName, Listing 1.15 writes out the entire out-
put using composite formatting. With composite formatting, the code first
supplies a format string to define the output format. In this example, the
format string is "Your full name is {0} {1}.". It identifies two indexed
placeholders for data insertion in the string.

Note that the index value begins at zero. Each inserted parameter
(known as a format item) appears after the format string in the order corre-
sponding to the index value. In this example, since firstName is the first
parameter to follow immediately after the format string, it corresponds to
index value 0. Similarly, lastName corresponds to index value 1.

Note that the placeholders within the format string need not appear in
order. For example, Listing 1.16 switches the order of the indexed place-
holders and adds a comma, which changes the way the name is displayed
(see Output 1.6).

Listing 1.16: Swapping the Indexed Placeholders and Corresponding Variables

 firstName, lastName);

 System.Console.WriteLine(

 "Your full name is {0} {1}.", firstName, lastName);

OUTPUT 1.5:

Hey you!

Enter your first name: Inigo

Enter your last name: Montoya

Your full name is Inigo Montoya.

System.Console.WriteLine("Your full name is {1}, {0}",

ptg

Chapter 1: Introducing C#20

In addition to not having the placeholders appear consecutively within
the format string, it is possible to use the same placeholder multiple times
within a format string. Furthermore, it is possible to omit a placeholder. It
is not possible, however, to have placeholders that do not have a corre-
sponding parameter.

Comments

In this section, you will modify the program in Listing 1.15 by adding com-
ments. In no way does this vary the execution of the program; rather, pro-
viding comments within the code makes it more understandable. Listing
1.17 shows the new code, and Output 1.7 shows the corresponding output.

Listing 1.17: Commenting Your Code

OUTPUT 1.6:

Hey you!

Enter your first name: Inigo

Enter your last name: Montoya

Your full name is Montoya, Inigo

class CommentSamples
{
static void Main()

 {

 string firstName; // Variable for storing the first name
 string lastName; // Variable for storing the last name

single-line comment

 System.Console.WriteLine("Hey you!");

 System.Console.Write /* No new line */ (
 "Enter your first name: ");
 firstName = System.Console.ReadLine();

 System.Console.Write /* No new line */ (
 "Enter your last name: ");
 lastName = System.Console.ReadLine();

 /* Display a greeting to the console
 using composite formatting. */

delimited comment inside statement

delimited comment

ptg

 Comments 21

In spite of the inserted comments, compiling and executing the new
program produces the same output as before.

Programmers use comments to describe and explain the code they are
writing, especially where the syntax itself is difficult to understand, or per-
haps a particular algorithm implementation is surprising. Since comments
are pertinent only to the programmer reviewing the code, the compiler
ignores comments and generates an assembly that is devoid of any trace
that comments were part of the original source code.

Table 1.2 shows four different C# comment types. The program in List-
ing 1.17 includes two of these.

OUTPUT 1.7:

Hey you!

Enter your first name: Inigo

Enter your last name: Montoya

Your full name is Inigo Montoya.

TABLE 1.2: C# Comment Types

Comment Type Description Example

Delimited
comments

A forward slash followed by an
asterisk, /*, identifies the beginning
of a delimited comment. To end the
comment use an asterisk followed by
a forward slash: */. Comments of
this form may span multiple lines in
the code file or appear embedded
within a line of code. The asterisks
that appear at the beginning of the
lines but within the delimiters are
simply for formatting.

/*comment*/

Continues

 System.Console.WriteLine("Your full name is {0} {1}.",
 firstName, lastName);
 // This is the end
 // of the program listing
 }
}

ptg

Chapter 1: Introducing C#22

A more comprehensive discussion of the XML comments appears in
Chapter 9, where I discuss the various XML tags that are explicitly part of
the XML standard.

B E G I N N E R T O P I C

Extensible Markup Language (XML)
The Extensible Markup Language (XML) is a simple and flexible text for-
mat frequently used within web applications and for exchanging data
between applications. XML is extensible because included within an XML

Comment Type Description Example

Single-line
comments

Comments may also be declared
with a delimiter comprising two
consecutive forward slash charac-
ters: //. The compiler treats all text
from the delimiter to the end of the
line as a comment. Comments of this
form comprise a single line. It is pos-
sible, however, to place sequential
single-line comments one after
another, as is the case with the last
comment in Listing 1.17.

//comment

XML delimited
comments

Comments that begin with /** and
end with **/ are called XML delim-
ited comments. They have the same
characteristics as regular delimited
comments, except that instead of
ignoring XML comments entirely,
the compiler can place them into a
separate text file. XML delimited
comments were only explicitly
added in C# 2.0, but the syntax is
compatible with C# 1.0.

/**comment**/

XML single-line
comments

XML single-line comments begin
with /// and continue to the end of
the line. In addition, the compiler
can save single-line comments into a
separate file with the XML delimited
comments.

///comment

TABLE 1.2: C# Comment Types (Continued)

ptg

 Managed Execution and the Common Language Infrastructure 23

document is information that describes the data, known as metadata. Here
is a sample XML file.

<?xml version="1.0" encoding="utf-8" ?>

<body>

 <book title="Essential C# 4.0">

 <chapters>

 <chapter title="Introducing C#"/>

 <chapter title="Operators and Control Flow"/>

 ...

 </chapters>

 </book>

</body>

The file starts with a header indicating the version and character encoding
of the XML file. After that appears one main “book” element. Elements
begin with a word in angle brackets, such as <body>. To end an element,
place the same word in angle brackets and add a forward slash to prefix
the word, as in </body>. In addition to elements, XML supports attributes.
title="Essential C# 4.0" is an example of an XML attribute. Note that
the metadata (book title, chapter, and so on) describing the data (“Essential
C# 4.0”, “Operators and Control Flow”) is included in the XML file. This
can result in rather bloated files, but it offers the advantage that the data
includes a description to aid in interpreting the data.

Managed Execution and the Common Language
Infrastructure

The processor cannot directly interpret an assembly. Assemblies consist
mainly of a second language known as the Common Intermediate Lan-
guage (CIL), or IL for short.

NOTE

A third term for CIL is Microsoft IL (MSIL). This book uses the term
CIL because it is the term adopted by the CLI standard. IL is prevalent
in conversation among people writing C# code because they assume
that IL refers to CIL rather than other types of intermediate languages.

ptg

Chapter 1: Introducing C#24

The C# compiler transforms the C# source file into this intermediate
language. An additional step, usually performed at execution time, is
required to change the CIL code into machine code that the processor can
understand. This involves an important element in the execution of a C#
program: the Virtual Execution System (VES). The VES, also casually
referred to as the runtime, compiles CIL code as needed (this process is
known as just-in-time compilation or jitting). The code that executes
under the context of an agent such as the runtime is managed code, and
the process of executing under control of the runtime is managed execu-
tion. It is called managed code because the runtime controls significant
portions of the program’s behavior by managing aspects such as memory
allocation, security, and just-in-time compilation. Code that does not
require the runtime in order to execute is unmanaged code.

The specification for a VES is included in a broader specification known
as the Common Language Infrastructure (CLI) specification.8 An interna-
tional standard, the CLI includes specifications for

• The VES or runtime

• The CIL

• A type system that supports language interoperability, known as the
Common Type System (CTS)

• Guidance on how to write libraries that are accessible from CLI-com-
patible languages (available in the Common Language Specification
[CLS])

NOTE

The term runtime can refer to either execution time or the Virtual Exe-
cution System. To help clarify, this book uses the term execution time to
indicate when the program is executing, and it uses the term runtime
when discussing the agent responsible for managing the execution of
a C# program while it executes.

8. Miller, J., and S. Ragsdale. 2004. The Common Language Infrastructure Annotated Standard.
Boston: Addison-Wesley.

ptg

 Managed Execution and the Common Language Infrastructure 25

• Metadata that enables many of the services identified by the CLI
(including specifications for the layout or file format of assemblies)

• A common programming framework, the Base Class Library (BCL),
which developers in all languages can utilize

Running within the context of a CLI implementation enables support
for a number of services and features that programmers do not need to
code for directly, including the following.

• Language interoperability: interoperability between different source
languages. This is possible because the language compilers translate
each source language to the same intermediate language (CIL).

• Type safety: checks for conversion between types, ensuring that only
conversions between compatible types will occur. This helps prevent
the occurrence of buffer overruns, a leading cause of security
vulnerabilities.

• Code access security: certification that the assembly developer’s code
has permission to execute on the computer.

• Garbage collection: memory management that automatically
de-allocates space for data allocated by the runtime.

• Platform portability: support for potentially running the same assem-
bly on a variety of operating systems. One obvious restriction is that
no platform-dependent libraries are used; therefore, as with Java,
there are inevitably some idiosyncrasies that need to be worked out.

• BCL: provides a large foundation of code that developers can depend
on (in all CLI implementations) so that they do not have to develop
the code themselves.

NOTE

This section gives a brief synopsis of the CLI to familiarize you with
the context in which a C# program executes. It also provides a sum-
mary of some of the terms that appear throughout this book. Chapter
21 is devoted to the topic of the CLI and its relevance to C# develop-
ers. Although the chapter appears last in the book, it does not depend
on any earlier chapters, so if you want to become more familiar with
the CLI, you can jump to it at any time.

ptg

Chapter 1: Introducing C#26

C# and .NET Versioning

Readers will notice that Output 1.1 refers to the “.NET Framework version
4.0.” At the time of this writing, Microsoft had five major releases to the
.NET Framework and only four major C# compiler releases. .NET Frame-
work version 3.0 was an additional set of API libraries released in between
C# compiler releases (and Visual Studio 2005 and 2008 versions). As a
result, the .NET Framework version that corresponded with C# 3.0 was
3.5. With the release of C# 4.0 and the .NET Framework 4.0, the version
numbers are synchronized. Table 1.3 is a brief overview of the C# and
.NET releases.

The majority of all code within this text will work with platforms other
than Microsoft’s as long as the compiler version corresponds to the version
of code required. Although I would very much have liked to provide full

TABLE 1.3: C# and .NET Versions

Comment Type Description

C# 1.0 with .NET
Framework 1.0/1.1
(Visual Studio 2002
and 2003)

The initial release of C#. A language built from the
ground up to support .NET programming.

C# 2.0 with .NET
Framework 2.0
(Visual Studio 2005)

Generics were added to the C# language and the .NET
Framework 2.0 included libraries that supported
generics.

.NET Framework 3.0 An additional set of APIs for distributed communica-
tions (Windows Communication Foundation—WCF),
rich client presentation (Windows Presentation Foun-
dation), workflow (Windows Workflow—WF), and
web authentication (Cardspaces).

C# 3.0 with .NET
Framework 3.5
(Visual Studio 2008)

Added support for LINQ, a significant improvement
to the APIs used for programming collections. The
.NET Framework 3.5 provided libraries that extended
existing APIs to make LINQ possible.

C# 4.0 with .NET
Framework 3.5
(Visual Studio 2010)

Added support for dynamic typing along with signifi-
cant improvements in the API for writing multi-
threaded programs that capitalized on multiple
processors and cores within those processors.

ptg

 Common Intermediate Language and ILDASM 27

details on each C# platform so as not to detract from the focus of learning
C#, I restrict information such as this to Microsoft’s platform, .NET. This is
simply because Microsoft has the predominant (by far) implementation.
Furthermore, translation to another platform is fairly trivial.

Common Intermediate Language and ILDASM

As mentioned in the previous section, the C# compiler converts C# code to
CIL code and not to machine code. The processor can directly understand
machine code, but CIL code needs to be converted before the processor can
execute it. Given an assembly (either a DLL or an executable), it is possible
to view the CIL code using a CIL disassembler utility to deconstruct the
assembly into its CIL representation. (The CIL disassembler is commonly
referred to by its Microsoft-specific filename, ILDASM, which stands for IL
Disassembler.) This program will disassemble a program or its class librar-
ies, displaying the CIL generated by the C# compiler.

The exact command used for the CIL disassembler depends on which
implementation of the CLI is used. You can execute the .NET CIL disas-
sembler from the command line as shown in Output 1.8.

The /text portion is used so that the output appears on the command
console rather than in a new window. Similarly, the Mono disassembler
implementation, which defaults to the command console, is shown in
Output 1.9.

The stream of output that results by executing these commands is a
dump of CIL code included in the HelloWorld.exe program. Note that CIL
code is significantly easier to understand than machine code. For many

OUTPUT 1.8:

>ildasm /text HelloWorld.exe

OUTPUT 1.9:

>monodis HelloWorld.exe

ptg

Chapter 1: Introducing C#28

developers, this may raise a concern because it is easier for programs to be
decompiled and algorithms understood without explicitly redistributing
the source code.

As with any program, CLI-based or not, the only foolproof way of pre-
venting disassembly is to disallow access to the compiled program alto-
gether (for example, only hosting a program on a web site instead of
distributing it out to a user’s machine). However, if decreased accessibility
to the source code is all that is required, there are several obfuscators.
These obfuscators open up the IL code and munge the code so that it does
the same thing but in a way that is much more difficult to understand. This
prevents the casual developer from accessing the code and instead creates
assemblies that are much more difficult and tedious to decompile into
comprehensible code. Unless a program requires a high degree of algo-
rithm security, these obfuscators are generally sufficient.

A D V A N C E D T O P I C

CIL Output for HelloWorld.exe
Listing 1.18 shows the CIL code created by ILDASM.

Listing 1.18: Sample CIL Output

// Microsoft (R) .NET Framework IL Disassembler.

Version 4.0. 21006.1

// Copyright (c) Microsoft Corporation. All rights reserved.

// Metadata version: v4.0. 21006

.assembly extern mscorlib

{

 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)

// .z\V.4..

 .ver 4:0:0:0

}

.assembly HelloWorld

{

 .custom instance void

[mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::.

ctor(int32) = (01 00 08 00 00 00 00 00)

 .custom instance void

[mscorlib]System.Runtime.CompilerServices.RuntimeCompatibilityAttribute::.

ctor() = (01 00 01 00 54 02 16 57 72 61 70 4E 6F 6E 45 78

//T..WrapNonEx

ptg

 Common Intermediate Language and ILDASM 29

63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01) // ceptionThrows.

 .hash algorithm 0x00008004

 .ver 0:0:0:0

}

.module HelloWorld.exe

// MVID: {1C3495D1-2133-41D6-A820-B4731061F3F8}

.imagebase 0x00400000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 // WINDOWS_CUI

.corflags 0x00000001 // ILONLY

// Image base: 0x00160000

// ============ CLASS MEMBERS DECLARATION ================

.class private auto ansi beforefieldinit HelloWorld

 extends [mscorlib]System.Object

{

 .method private hidebysig static void Main() cil managed

 {

 .entrypoint

 // Code size 13 (0xd)

 .maxstack 8

 IL_0000: nop

 IL_0001: ldstr "Hello. My name is Inigo Montoya."

 IL_0006: call void [mscorlib]System.Console::WriteLine(string)

 IL_000b: nop

 IL_000c: ret

 } // end of method HelloWorld::Main

 .method public hidebysig specialname rtspecialname

 instance void .ctor() cil managed

 {

 // Code size 7 (0x7)

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: call instance void [mscorlib]System.Object::.ctor()

 IL_0006: ret

 } // end of method HelloWorld::.ctor

} // end of class HelloWorld

// ==

// *********** DISASSEMBLY COMPLETE ***********************

ptg

Chapter 1: Introducing C#30

The beginning of the listing is the manifest information. It includes not
only the full name of the disassembled module (HelloWorld.exe), but also
all the modules and assemblies it depends on, along with their version
information.

Perhaps the most interesting thing that you can glean from such a list-
ing is how relatively easy it is to follow what the program is doing com-
pared to trying to read and understand machine code (assembler). In the
listing, an explicit reference to System.Console.WriteLine() appears.
There is a lot of peripheral information to the CIL code listing, but if a
developer wanted to understand the inner workings of a C# module (or
any CLI-based program) without having access to the original source code,
it would be relatively easy unless an obfuscator is used. In fact, several free
tools are available (such as Lutz Roeder/Red Gate’s Reflector for .NET)
that can decompile from CIL to C# automatically.

SUMMARY

This chapter served as a rudimentary introduction to C#. It provided a
means of familiarizing you with basic C# syntax. Because of C#’s similarity
to C++ style languages, much of what I presented here might not have
been new material. However, C# and managed code do have some distinct
characteristics, such as compilation down to CIL. Although it is not
unique, another key characteristic is that C# includes full support for
object-oriented programming. Even things such as reading and writing
data to the console are object-oriented. Object orientation is foundational
to C#, and you will see this throughout this book.

The next chapter examines the fundamental data types that are part of
the C# language, and discusses how you can use these data types with
operands to form expressions.

ptg

31

2
Data Types

ROM CHAPTER 1’S HelloWorld program, you got a feel for the C# lan-
guage, its structure, basic syntax characteristics, and how to write the

simplest of programs. This chapter continues to discuss the C# basics by
investigating the fundamental C# types.

Until now, you have worked with only a few primitive data types, with
little explanation. In C#, thousands of types exist, and you can combine
types to create new types. A few types in C#, however, are relatively sim-
ple and are considered the building blocks of all other types. These types
are predefined types or primitives. The C# language’s primitive types
include eight integer types, two binary floating-point types for scientific
calculations and one decimal float for financial calculations, one Boolean

F

2

34

5

6 1

Data Types

Numeric Types
Integer Types
Floating-Point Types
Decimal Type
Literal Values

More Types Boolean Type
Character Type

Strings

null and voidCategories of TypesValue Types
Reference Types

ConversionsExplicit Cast
Implicit Cast

Without Casting

Arrays

Declaring
Instantiating

Assigning
Using

Strings as Arrays

ptg

Chapter 2: Data Types32

type, and a character type. This chapter investigates these primitives, looks
more closely at the string type, and introduces arrays.

Fundamental Numeric Types

The basic numeric types in C# have keywords associated with them. These
types include integer types, floating-point types, and a special floating-
point type called decimal to store large numbers with no representation
error.

Integer Types
There are eight C# integer types. This variety allows you to select a data
type large enough to hold its intended range of values without wasting
resources. Table 2.1 lists each integer type.

Included in Table 2.1 (and in Tables 2.2 and 2.3) is a column for the full
name of each type. All the fundamental types in C# have a short name and a
full name. The full name corresponds to the type as it is named in the Base
Class Library (BCL). This name is the same across all languages and it
uniquely identifies the type within an assembly. Because of the fundamental

TABLE 2.1: Integer Types

Type Size Range (Inclusive) BCL Name Signed

sbyte 8 bits –128 to 127 System.SByte Yes

byte 8 bits 0 to 255 System.Byte No

short 16 bits –32,768 to 32,767 System.Int16 Yes

ushort 16 bits 0 to 65,535 System.UInt16 No

int 32 bits –2,147,483,648 to 2,147,483,647 System.Int32 Yes

uint 32 bits 0 to 4,294,967,295 System.UInt32 No

long 64 bits –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

System.Int64 Yes

ulong 64 bits 0 to 18,446,744,073,709,551,615 System.UInt64 No

ptg

 Fundamental Numeric Types 33

nature of primitive types, C# also supplies keywords as short names or
abbreviations to the full names of fundamental types. From the compiler’s
perspective, both names are exactly the same, producing exactly the same
code. In fact, an examination of the resultant CIL code would provide no
indication of which name was used.

Floating-Point Types (float, double)
Floating-point numbers have varying degrees of precision. If you were to
read the value of a floating-point number to be 0.1, it could very easily be
0.099999999999999999 or 0.1000000000000000001 or some other number
very close to 0.1. Alternatively, a large number such as Avogadro’s num-
ber, 6.02E23, could be off by 9.9E9, which is something also exceptionally
close to 6.02E23, considering its size. The accuracy of a floating-point num-
ber is in proportion to the magnitude of the number it represents. Accu-
racy, therefore, is determined by the number of significant digits, not by a
fixed value such as ±0.01. In other words, absolute precision is a function
of magnitude and significant digits; the number of significant digits tells
you about the relative precision.

C# supports the two floating-point number types listed in Table 2.2.

Binary numbers appear as base 10 (denary) numbers for human read-
ability. The number of bits (binary digits) converts to 15 decimal digits,

Language Contrast: C++—short Data Type

In C/C++, the short data type is an abbreviation for short int. In C#,

short on its own is the actual data type.

TABLE 2.2: Floating-Point Types

Type Size Range (Inclusive) BCL Name Significant Digits

float 32 bits ±1.5 × 10—45 to
±3.4 × 1038

System.Single 7

double 64 bits ±5.0 × 10—324 to
±1.7 × 10308

System.Double 15–16

ptg

Chapter 2: Data Types34

with a remainder that contributes to a sixteenth decimal digit as expressed
in Table 2.2. Specifically, numbers between 1.7 * 10307 and less than 1 * 10308

have only 15 significant digits. However, numbers ranging from 1 * 10308 to
1.7 * 10308 will have 16 significant digits. A similar range of significant dig-
its occurs with the decimal type as well.

Decimal Type
C# contains a numeric type with 128-bit precision (see Table 2.3). This is
suitable for large and precise calculations, frequently financial calculations.

Unlike floating-point numbers, the decimal type maintains exact accu-
racy for all denary numbers within its range. With the decimal type, there-
fore, a value of 0.1 is exactly 0.1. However, while the decimal type has
greater precision than the floating-point types, it has a smaller range. Thus,
conversions from floating-point types to the decimal type may result in
overflow errors. Also, calculations with decimal are slightly slower.

A D V A N C E D T O P I C

Floating-Point Types and Decimals Dissected
Unless they are out of range, decimal numbers represent denary numbers
exactly. In contrast, the floating-point representation of many denary
numbers introduces a rounding error. This is analogous to how 1/3 is not
exact in any finite number of decimal digits and 11/10 is not precise in any
finite number of binary digits. In both cases, we end up with a rounding
error of some kind. The difference between the decimal type and the C#
floating-point types is that the base of a decimal type is a denary and the
base of floating-point types is binary.

TABLE 2.3: decimal Type

Type Size Range (Inclusive) BCL Name Significant Digits

decimal 128 bits 1.0 × 10—28 to
approximately
7.9 × 1028

System.Decimal 28–29

ptg

 Fundamental Numeric Types 35

A decimal is represented by ±N * 10k where

• N, the mantissa, is a positive integer represented by 96 bits.

• k, the exponent, is given by -28 <= k <= 0.

In contrast, a float is any number ±N * 2k where

• N is a positive integer represented by a fixed number of bits (24 for
float and 53 for double).

• k is any integer ranging from -149 to +104 for float and -1075 to +970
for double.

Literal Values
A literal value is a representation of a constant value within source code.
For example, if you want to have System.Console.WriteLine() print out
the integer value 42 and the double value 1.618034 (Phi), you could use
the code shown in Listing 2.1.

Listing 2.1: Specifying Literal Values

System.Console.WriteLine(42);
System.Console.WriteLine(1.618034);

Output 2.1 shows the results of Listing 2.1.

B E G I N N E R T O P I C

Use Caution When Hardcoding Values
The practice of placing a value directly into source code is called hardcod-
ing, because changing the values means recompiling the code. Developers
must carefully consider the choice between hardcoding values within their
code and retrieving them from an external source, such as a configuration
file, so that the values are modifiable without recompiling.

OUTPUT 2.1:

42
1.618034

ptg

Chapter 2: Data Types36

By default, when you specify a literal number with a decimal point, the
compiler interprets it as a double type. Conversely, a literal value with no
decimal point generally defaults to an int, assuming the value is not too
large to be stored in an integer. If the value is too large, then the compiler
will interpret it as a long. Furthermore, the C# compiler allows assignment
to a numeric type other than an int, assuming the literal value is appropri-
ate for the target data type. short s = 42 and byte b = 77 are allowed, for
example. However, this is appropriate only for literal values; b = s is not
appropriate without additional syntax, as discussed in the section Conver-
sions between Data Types, later in this chapter.

As previously discussed in the section Fundamental Numeric Types,
there are many different numeric types in C#. In Listing 2.2, a literal value is
placed within C# code. Since numbers with a decimal point will default to
the double data type, the output, shown in Output 2.2, is 1.61803398874989
(the last digit, 5, is missing), corresponding to the expected accuracy of
a double.

Listing 2.2: Specifying a Literal double

System.Console.WriteLine(1.618033988749895);

To view the intended number with its full accuracy, you must declare
explicitly the literal value as a decimal type by appending an m (or M)
(see Listing 2.3 and Output 2.3).

Listing 2.3: Specifying a Literal decimal

System.Console.WriteLine(1.618033988749895m);

OUTPUT 2.2:

1.61803398874989

OUTPUT 2.3:

1.618033988749895

ptg

 Fundamental Numeric Types 37

Now the output of Listing 2.3 is as expected: 1.618033988749895. Note
that d is for double. The m used to identify a decimal corresponds to its
frequent use in monetary calculations.

You can also add a suffix to a value to explicitly declare a literal as
float or double by using the F and D suffixes, respectively. For integer data
types, the suffixes are U, L, LU, and UL. The type of an integer literal can be
determined as follows.

• Numeric literals with no suffix resolve to the first data type that can
store the value in this order: int, uint, long, and ulong.

• Numeric literals with the suffix U resolve to the first data type that can
store the value in the order uint and then ulong.

• Numeric literals with the suffix L resolve to the first data type that can
store the value in the order long and then ulong.

• If the numeric literal has the suffix UL or LU, it is of type ulong.

Note that suffixes for literals are case-insensitive. However, uppercase
is generally preferred because of the similarity between the lowercase
letter l and the digit 1.

In some situations, you may wish to use exponential notation instead of
writing out several zeroes before or after the decimal point. To use expo-
nential notation, supply the e or E infix, follow the infix character with a
positive or negative integer number, and complete the literal with the
appropriate data type suffix. For example, you could print out Avogadro’s
number as a float, as shown in Listing 2.4 and Output 2.4.

Listing 2.4: Exponential Notation

System.Console.WriteLine(6.023E23f);

OUTPUT 2.4:

6.023E+23

ptg

Chapter 2: Data Types38

B E G I N N E R T O P I C

Hexadecimal Notation
Usually you work with numbers that are represented with a base of 10,
meaning there are ten symbols (0–9) for each digit in the number. If a num-
ber is displayed with hexadecimal notation, then it is displayed with a base
of 16 numbers, meaning 16 symbols are used: 0–9, A–F (lowercase can also
be used). Therefore, 0x000A corresponds to the decimal value 10 and
0x002A corresponds to the decimal value 42. The actual number is the
same. Switching from hexadecimal to decimal or vice versa does not
change the number itself, just the representation of the number.

Each hex digit is four bits, so a byte can represent two hex digits.

In all discussions of literal numeric values so far, I have covered only
base 10 type values. C# also supports the ability to specify hexadecimal
values. To specify a hexadecimal value, prefix the value with 0x and then
use any hexadecimal digit, as shown in Listing 2.5.

Listing 2.5: Hexadecimal Literal Value

// Display the value 42 using a hexadecimal literal.
System.Console.WriteLine(0x002A);

Output 2.5 shows the results of Listing 2.5.

Note that this code still displays 42, not 0x002A.

A D V A N C E D T O P I C

Formatting Numbers As Hexadecimal
To display a numeric value in its hexadecimal format, it is necessary to use
the x or X numeric formatting specifier. The casing determines whether the
hexadecimal letters appear in lower- or uppercase. Listing 2.6 shows an
example of how to do this.

OUTPUT 2.5:

42

ptg

 Fundamental Numeric Types 39

Listing 2.6: Example of a Hexadecimal Format Specifier

// Displays "0x2A"
System.Console.WriteLine("0x{0:X}", 42);

Output 2.6 shows the results.

Note that the numeric literal (42) can be in decimal or hexadecimal form.
The result will be the same.

A D V A N C E D T O P I C

Round-Trip Formatting
By default, System.Console.WriteLine(1.618033988749895); displays
1.61803398874989, with the last digit missing. To more accurately identify
the string representation of the double value it is possible to convert it
using a format string and the round-trip format specifier, R (or r).
string.Format("{0:R}", 1.618033988749895), for example, will return
the result 1.6180339887498949.

The round-trip format specifier returns a string that, if converted back
into a numeric value, will always result in the original value. Listing 2.7,
therefore, will show the numbers are not equal without the round trip
format.

Listing 2.7: Formatting Using the R Format Specifier

// ...
const double number = 1.618033988749895;
double result;
string text;

result = double.Parse(text);

 result != number);

OUTPUT 2.6:

0x2A

text = string.Format("{0}", number);

System.Console.WriteLine("{0}: result != number",

text = string.Format("{0:R}", number);

ptg

Chapter 2: Data Types40

result = double.Parse(text);

 result == number);
// ...

Output 2.7 shows the resultant output.

When assigning text the first time, there is no round-trip format specifier
and, as a result, the value returned by double.Parse(text) is not the same
as the original number value. In contrast, when the round-trip format speci-
fier is used, double.Parse(text) returns the original value.

For those unfamiliar with the == syntax from C-based languages,
result == number returns true if result is equal to number, while result
!= number does the opposite. Both assignment and equality operators are
discussed in the next chapter.

More Fundamental Types

The fundamental types discussed so far are numeric types. C# includes
some additional types as well: bool, char, and string.

Boolean Type (bool)
Another C# primitive is a Boolean or conditional type, bool, which repre-
sents true or false in conditional statements and expressions. Allowable
values are the keywords true and false. The BCL name for bool is
System.Boolean. For example, in order to compare two strings in a case-
insensitive manner, you call the string.Compare() method and pass a
bool literal of true (see Listing 2.8).

Listing 2.8: A Case-Insensitive Comparison of Two Strings

string option;
...
int comparison = string.Compare(option, "/Help", true);

System.Console.WriteLine("{0}: result == number",

OUTPUT 2.7:

True: result != number
True: result == number

ptg

 More Fundamental Types 41

In this case, you make a case-insensitive comparison of the contents of
the variable option with the literal text /Help and assign the result to
comparison.

Although theoretically a single bit could hold the value of a Boolean,
the size of bool is a byte.

Character Type (char)
A char type represents 16-bit characters whose set of possible values corre-
sponds to the Unicode character set. Technically, a char is the same size as
a 16-bit unsigned integer (ushort) with values between 0 and 65,535. How-
ever, char is a unique type in C# and code should treat it as such.

The BCL name for char is System.Char.

B E G I N N E R T O P I C

The Unicode Standard
Unicode is an international standard for representing characters found in
the majority of human languages. It provides computer systems with func-
tionality for building localized applications, applications that display the
appropriate language and culture characteristics for different cultures.

A D V A N C E D T O P I C

16 Bits Is Too Small for All Unicode Characters
Unfortunately, not all Unicode characters are available within a 16-bit
char. When Unicode was first started, its designers believed that 16 bits
would be enough, but as more languages were supported, it was real-
ized that this assumption was incorrect. The cumbersome result is that
some Unicode characters are composed of surrogate char pairs totaling
32 bits.

To enter a literal character type, place the character within single
quotes, as in 'A'. Allowable characters comprise the full range of keyboard
characters, including letters, numbers, and special symbols.

ptg

Chapter 2: Data Types42

Some characters cannot be placed directly into the source code and
instead require special handling. These characters are prefixed with a
backslash (\) followed by a special character code. In combination, the
backslash and special character code are an escape sequence. For example,
'\n' represents a newline, and '\t' represents a tab. Since a backslash
indicates the beginning of an escape sequence, it can no longer identify a
simple backslash; instead, you need to use '\\' to represent a single back-
slash character.

Listing 2.9 writes out one single quote because the character repre-
sented by \' corresponds to a single quote.

Listing 2.9: Displaying a Single Quote Using an Escape Sequence

class SingleQuote
{
 static void Main()
 {
 System.Console.WriteLine('\'');
 }
}

In addition to showing the escape sequence, Table 2.4 includes the
Unicode representation of characters.

TABLE 2.4: Escape Characters

Escape Sequence Character Name Unicode Encoding

\' Single quote \u0027

\" Double quote \u0022

\\ Backslash \u005C

\0 Null \u0000

\a Alert (system beep) \u0007

\b Backspace \u0008

\f Form feed \u000C

\n Line feed (sometimes referred to
as a newline)

\u000A

ptg

 More Fundamental Types 43

You can represent any character using Unicode encoding. To do so, pre-
fix the Unicode value with \u. You represent Unicode characters in hexa-
decimal notation. The letter A, for example, is the hexadecimal value 0x41.
Listing 2.10 uses Unicode characters to display a smiley face (:)), and
Output 2.8 shows the results.

Listing 2.10: Using Unicode Encoding to Display a Smiley Face

System.Console.Write('\u003A');
System.Console.WriteLine('\u0029');

Strings
The fundamental string type in C# is the data type string, whose BCL
name is System.String. The string includes some special characteristics
that may be unexpected to developers familiar with other programming
languages. The characteristics include a string verbatim prefix character, @,
and the fact that a string is immutable.

\r Carriage return \u000D

\t Horizontal tab \u0009

\v Vertical tab \u000B

\uxxxx Unicode character in hex \u0029

\x[n][n][n]n Unicode character in hex (first three
placeholders are options); variable
length version of \uxxxx

\u3A

\Uxxxxxxxx Unicode escape sequence for creat-
ing surrogate pairs

\UD840DC01
()

OUTPUT 2.8:

:)

TABLE 2.4: Escape Characters (Continued)

Escape Sequence Character Name Unicode Encoding

ptg

Chapter 2: Data Types44

Literals

You can enter a literal string into code by placing the text in double quotes
("), as you saw in the HelloWorld program. Strings are composed of charac-
ters, and because of this, escape sequences can be embedded within a string.

In Listing 2.11, for example, two lines of text are displayed. However,
instead of using System.Console.WriteLine(), the code listing shows
System.Console.Write() with the newline character, \n. Output 2.9
shows the results.

Listing 2.11: Using the \n Character to Insert a Newline

class DuelOfWits
{
 static void Main()
 {
 System.Console.Write(
 "\"Truly, you have a dizzying intellect.\"");
 System.Console.Write("\n\"wait 'til I get going!\ "\n");
 }
}

The escape sequence for double quotes differentiates the printed double
quotes from the double quotes that define the beginning and end of the
string.

In C#, you can use the @ symbol in front of a string to signify that a
backslash should not be interpreted as the beginning of an escape
sequence. The resultant verbatim string literal does not reinterpret just the
backslash character. Whitespace is also taken verbatim when using the @
string syntax. The triangle in Listing 2.12, for example, appears in the con-
sole exactly as typed, including the backslashes, newlines, and indenta-
tion. Output 2.10 shows the results.

Without the @ character, this code would not even compile. In fact,
even if you changed the shape to a square, eliminating the backslashes, the
code still would not compile because a newline cannot be placed directly
within a string that is not prefaced with the @ symbol.

OUTPUT 2.9:

"Truly, you have a dizzying intellect."
"Wait 'til I get going!"

ptg

 More Fundamental Types 45

Listing 2.12: Displaying a Triangle Using a Verbatim String Literal

class Triangle
{
 static void Main()
 {

 /\
 / \
 / \
 / \
 /________\
end");
 }
}

The only escape sequence the verbatim string does support is "", which
signifies double quotes and does not terminate the string.

System.Console.Write(@"begin

OUTPUT 2.10:

begin
 /\
 / \
 / \
 / \
 /_________\
end

Language Contrast: C++—String Concatenation at Compile
Time

Unlike C++, C# does not automatically concatenate literal strings. You

cannot, for example, specify a string literal as follows:

"Major Strasser has been shot. " "Round up the usual suspects."

Rather, concatenation requires the use of the addition operator. (If the

compiler can calculate the result at compile time, however, the resultant

CIL code will be a single string.)

ptg

Chapter 2: Data Types46

If the same literal string appears within an assembly multiple times, the
compiler will define the string only once within the assembly and all vari-
ables will refer to the same string. That way, if the same string literal con-
taining thousands of characters was placed multiple times into the code,
the resultant assembly would reflect the size of only one of them.

String Methods

The string type, like the System.Console type, includes several methods.
There are methods, for example, for formatting, concatenating, and com-
paring strings.

The Format() method in Table 2.5 behaves exactly like the Console.
Write() and Console.WriteLine() methods, except that instead of displaying
the result in the console window, string.Format() returns the result.

TABLE 2.5: string Static Methods

Statement Example

static void
string.Format(
 string format,
 ...)

string text, firstName, lastName;
...
text = string.Format("Your full name is {0} {1}.",
 firstName, lastName);
// Display
// "Your full name is <firstName> <lastName>."
System.Console.WriteLine(text);

static void
string.Concat(
 string str0,
 string str1)

string text, firstName, lastName;
...
text = string.Concat(firstName, lastName);
// Display "<firstName><lastName>", notice
// that there is no space between names.
System.Console.WriteLine(text);

static int
string.Compare(
 string str0,
 string str1)

string option;
...
// String comparison in which case matters.
int result = string.Compare(option, "/help");

// Display:
// 0 if equal
// negative if option < /help
// positive if option > /help
System.Console.WriteLine(result);

ptg

 More Fundamental Types 47

All of the methods in Table 2.5 are static. This means that, to call the
method, it is necessary to prefix the method name (for example, Concat)
with the type that contains the method (for example, string). As illus-
trated below, however, some of the methods in the string class are instance
methods. Instead of prefixing the method with the type, instance methods
use the variable name (or some other reference to an instance). Table 2.6
shows a few of these methods, along with an example.

string option;
...
// Case-insensitive string comparison
int result = string.Compare(
 option, "/Help", true);

// Display:
// 0 if equal
// < 0 if option < /help
// > 0 if option > /help
System.Console.WriteLine(result);

TABLE 2.6: string Methods

Statement Example

bool StartsWith(
 string value)
bool EndsWith(
 string value)

string lastName
...
bool isPhd = lastName.EndsWith("Ph.D.");
bool isDr = lastName.StartsWith("Dr.");

string ToLower()
string ToUpper()

string severity = "warning";
// Display the severity in uppercase
System.Console.WriteLine(severity.ToUpper());

string Trim()
string Trim(...)
string TrimEnd()
string TrimStart()

// Remove any whitespace at the start or end.
username = username.Trim();

string Replace(
 string oldValue,
 string newValue)

string filename;
...
// Remove ?'s altogether from the string
filename = filename.Replace("?", "");;

TABLE 2.5: string Static Methods (Continued)

Statement Example

ptg

Chapter 2: Data Types48

New Line

When writing out a new line, the exact characters for the new line will
depend on the operating system on which you are executing. On Microsoft
Windows platforms, the new line is the combination of both the ‘\r’ and
‘\n’ charters, while a single ‘\n’ is used on Unix. One way to overcome
the discrepancy between platforms is simply to use System.Console.
WriteLine() in order to output a blank line. Another approach, virtually
essential when you are not outputting to the console yet still require execu-
tion on multiple platforms, is to use System.Environment.NewLine. In
other words, System.Console.WriteLine("Hello World") and System.
Console.Write("Hello World" + System.Environment.NewLine) are
equivalent.

A D V A N C E D T O P I C

C# Properties
Technically, the Length member referred to in the following section is not
actually a method, as indicated by the fact that there are no parentheses
following its call. Length is a property of string, and C# syntax allows
access to a property as though it were a member variable (known in C# as a
field). In other words, a property has the behavior of special methods
called setters and getters, but the syntax for accessing that behavior is that
of a field.

Examining the underlying CIL implementation of a property reveals
that it compiles into two methods: set_<PropertyName> and get_<Prop-
ertyName>. Neither of these, however, is directly accessible from C# code,
except through the C# property constructs. See Chapter 5 for more detail
on properties.

String Length

To determine the length of a string you use a string member called Length.
This particular member is called a read-only property. As such, it can’t be
set, nor does calling it require any parameters. Listing 2.13 demonstrates
how to use the Length property, and Output 2.11 shows the results.

ptg

 More Fundamental Types 49

Listing 2.13: Using string’s Length Member

class PalindromeLength
{
 static void Main()
 {
 string palindrome;

 System.Console.Write("Enter a palindrome: ");
 palindrome = System.Console.ReadLine();

 System.Console.WriteLine(
 "The palindrome, \"{0}\" is {1} characters.",

 }
}

The length for a string cannot be set directly; it is calculated from the num-
ber of characters in the string. Furthermore, the length of a string cannot
change because a string is immutable.

Strings Are Immutable

The key characteristic of the string type is the fact that it is immutable. A
string variable can be assigned an entirely new value, but for performance
reasons, there is no facility for modifying the contents of a string. It is not
possible, therefore, to convert a string to all uppercase letters. It is trivial
to create a new string that is composed of an uppercase version of the old
string, but the old string is not modified in the process. Consider Listing
2.14 as an example.

Listing 2.14: Error; string Is Immutable

class Uppercase
{
 static void Main()
 {
 string text;

 System.Console.Write("Enter text: ");
 text = System.Console.ReadLine();

 palindrome, palindrome.Length);

OUTPUT 2.11:

Enter a palindrome: Never odd or even
The palindrome, "Never odd or even" is 17 characters.

ptg

Chapter 2: Data Types50

 System.Console.WriteLine(text);
 }
}

Output 2.12 shows the results of Listing 2.14.

At a glance, it would appear that text.ToUpper() should convert the
characters within text to uppercase. However, strings are immutable and,
therefore, text.ToUpper() will make no such modification. Instead,
text.ToUpper() returns a new string that needs to be saved into a variable
or passed to System.Console.WriteLine() directly. The corrected code is
shown in Listing 2.15, and its output is shown in Output 2.13.

Listing 2.15: Working with Strings

class Uppercase
{
 static void Main()
 {
 string text, uppercase;

 System.Console.Write("Enter text: ");
 text = System.Console.ReadLine();

 // Return a new string in uppercase

 System.Console.WriteLine(uppercase);
 }
}

If the immutability of a string is ignored, mistakes similar to those shown
in Listing 2.14 can occur with other string methods as well.

 // UNEXPECTED: Does not convert text to uppercase
 text.ToUpper();

OUTPUT 2.12:

Enter text: This is a test of the emergency broadcast system.
This is a test of the emergency broadcast system.

 uppercase = text.ToUpper();

OUTPUT 2.13:

Enter text: This is a test of the emergency broadcast system.
THIS IS A TEST OF THE EMERGENCY BROADCAST SYSTEM.

ptg

null and void 51

To actually change the value in text, assign the value from ToUpper()
back into text, as in the following:

 text = text.ToUpper();

System.Text.StringBuilder

If considerable string modification is needed, such as when constructing a
long string in multiple steps, you should use the data type System.
Text.StringBuilder rather than string. System.Text.StringBuilder
includes methods such as Append(), AppendFormat(), Insert(), Remove(),
and Replace(), some of which also appear on string. The key difference,
however, is that on System.Text.StringBuilder these methods will
modify the data in the StringBuilder itself, and will not simply return a
new string.

null and void

Two additional keywords relating to types are null and void. null is a
value which indicates that the variable does not refer to any valid object.
void is used to indicate the absence of a type or the absence of any value
altogether.

null
null can also be used as a type of string “literal.” null indicates that a vari-
able is set to nothing. Reference types, pointer types, and nullable value
types can be assigned the value null. The only reference type covered so
far in this book is string; Chapter 5 covers the topic of creating classes
(which are reference types) in detail. For now, suffice it to say that a refer-
ence type contains a reference to a location in memory that is different
from where the actual data resides. Code that sets a variable to null explic-
itly assigns the reference to point at nothing. In fact, it is even possible to
check whether a reference type points to nothing. Listing 2.16 demon-
strates assigning null to a string variable.

Listing 2.16: Assigning null to a String

static void Main()
{
 string faxNumber;

ptg

Chapter 2: Data Types52

 // ...

 // Clear the value of faxNumber.
 faxNumber = null;

 // ...
}

It is important to note that assigning the value null to a reference type
is distinct from not assigning it at all. In other words, a variable that has
been assigned null has still been set, and a variable with no assignment
has not been set and therefore will often cause a compile error if used prior
to assignment.

Assigning the value null to a string is distinctly different from assign-
ing an empty string, "". null indicates that the variable has no value. ""
indicates that there is a value: an empty string. This type of distinction can
be quite useful. For example, the programming logic could interpret a
faxNumber of null to mean that the fax number is unknown, while a
faxNumber value of "" could indicate that there is no fax number.

The void Nontype
Sometimes the C# syntax requires a data type to be specified but no data is
passed. For example, if no return from a method is needed C# allows the
use of void to be specified as the data type instead. The declaration of Main
within the HelloWorld program is an example. Under these circumstances,
the data type to specify is void. The use of void as the return type indicates
that the method is not returning any data and tells the compiler not to
expect a value. void is not a data type per se, but rather an identification of
the fact that there is no data type.

Language Contrast: C++—void Is a Data Type

In C++, void is a data type commonly used as void**. In C#, void is not

considered a data type in the same way. Rather, it is used to identify that a

method does not return a value.

ptg

null and void 53

A D V A N C E D T O P I C

Implicitly Typed Local Variables
Additionally, C# 3.0 includes a contextual keyword, var, for declaring an
implicitly typed local variable. As long as the code initializes a variable at
declaration time with an unambiguous type, C# 3.0 allows for the variable
data type to be implied. Instead of explicitly specifying the data type, an
implicitly typed local variable is declared with the contextual keyword
var, as shown in Listing 2.17.

Listing 2.17: Working with Strings

class Uppercase
{
 static void Main()
 {
 System.Console.Write("Enter text: ");
 var text = System.Console.ReadLine();

 // Return a new string in uppercase
 var uppercase = text.ToUpper();

 System.Console.WriteLine(uppercase);
 }
}

This listing is different from Listing 2.15 in two ways. First, rather than
using the explicit data type string for the declaration, Listing 2.17 uses
var. The resultant CIL code is identical to using string explicitly. How-
ever, var indicates to the compiler that it should determine the data type
from the value (System.Console.ReadLine()) that is assigned within the
declaration.

Language Contrast: Visual Basic—Returning void Is Like
Defining a Subroutine

The Visual Basic equivalent of returning a void in C# is to define a subrou-

tine (Sub/End Sub) rather than a function that returns a value.

ptg

Chapter 2: Data Types54

Second, the variables text and uppercase are not declared without
assignment at declaration time. To do so would result in a compile error.
As mentioned earlier, via assignment the compiler retrieves the data type
of the right-hand side expression and declares the variable accordingly,
just as it would if the programmer specified the type explicitly.

Although using var rather than the explicit data type is allowed, con-
sider avoiding such use when the data type is known—for example, use
string for the declaration of text and uppercase. Not only does this make
the code more understandable, but it also verifies that the data type
returned by the right-hand side expression is the type expected. When
using a var declared variable, the right-hand side data type should be
obvious; if it isn’t, using the var declaration should be avoided.

var support was added to the language in C# 3.0 to support anonymous
types. Anonymous types are data types that are declared on the fly within
a method, rather than through explicit class definitions, as outlined in
Chapter 14 (see Listing 2.18).

Listing 2.18: Implicit Local Variables with Anonymous Types

class Program
{
 static void Main()
 {
 var patent1 =
 new { Title = "Bifocals",
 YearOfPublication = "1784" };
 var patent2 =
 new { Title = "Phonograph",
 YearOfPublication = "1877" };

 System.Console.WriteLine("{0} ({1})",
 patent1.Title, patent1.YearOfPublication);
 System.Console.WriteLine("{0} ({1})",
 patent2.Title, patent1.YearOfPublication);
 }
}

The corresponding output is shown in Output 2.14.

OUTPUT 2.14:

Bifocals (1784)
Phonograph (1784)

ptg

 Categories of Types 55

Listing 2.18 demonstrates the anonymous type assignment to an implicitly
typed (var) local variable. This type of operation provides critical function-
ality with C# 3.0 support for joining (associating) data types or reducing
the size of a particular type down to fewer data elements.

Categories of Types

All types fall into two categories: value types and reference types. The dif-
ferences between the types in each category stem from how they are cop-
ied: Value type data is always copied by value, while reference type data is
always copied by reference.

Value Types
With the exception of string, all the predefined types in the book so far are
value types. Value types contain the value directly. In other words, the vari-
able refers to the same location in memory where the value is stored.
Because of this, when a different variable is assigned the same value, a mem-
ory copy of the original variable’s value is made to the location of the new
variable. A second variable of the same value type cannot refer to the same
location in memory as the first variable. So changing the value of the first
variable will not affect the value in the second. Figure 2.1 demonstrates this.
number1 refers to a particular location in memory that contains the value 42.
After assigning number1 to number2, both variables will contain the value 42.
However, modifying either variable’s value will not affect the other.

Similarly, passing a value type to a method such as Console.Write-
Line() will also result in a memory copy, and any changes to the parameter

Figure 2.1: Value Types Contain the Data Directly

int number1

char letter

float pi

int number2

Stack

42

'A'

3.14F

42

//...

int number1 = 42;

char letter = 'A';

float pi = 3.14F;

int number2 = number1;

//...

ptg

Chapter 2: Data Types56

inside the method will not affect the original value within the calling func-
tion. Since value types require a memory copy, they generally should be
defined to consume a small amount of memory (less than 16 bytes).

Reference Types
Reference types and the variables that refer to them point to the data stor-
age location. Reference types store the reference where the data is located
instead of storing the data directly. Therefore, to access the data the run-
time will read the memory location out of the variable and then jump to
the location in memory that contains the data. The memory area of the data
a reference type points to is the heap (see Figure 2.2).

Figure 2.2: Reference Types Point to the Heap

int number1

char letter

float pi

int number2

string text

StringReader reader

Heap

00 66 00 20 00

00 66 00 72 00
6F 00 6D 00 20

9C 11 C9 78 00
00 00 00 34 12
A6 00 00 00 00
00 33 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

D4 4C C7 78 02

41 00 20 00 63
00 61 00 63 00
6F 00 70 00 68
00 6F 00 6E 00
79 00 20 00 6F
00 66 00 20 00
72 00 61 00 6D

42

'A'

3.14F

42

0x00A61234

0x00A612C0

//...

int number1 = 42;

char letter = 'A';

float pi = 3.14F;

int number2 = number1;

//...

using System.IO;

//...

string text =

"A cacophony of ramblings

from my potpourri of notes";

StringReader reader =

new StringReader(text);

 //...

ptg

 Nullable Modifier 57

A reference type does not require the same memory copy of the data
that a value type does, resulting in circumstances when it is more efficient.
When assigning one reference type variable to another reference type vari-
able, only a memory copy of the address occurs, and as such, the memory
copy required by a reference type is always the size of the address itself.
(A 32-bit processor will copy 32 bits and a 64-bit processor will copy 64
bits, and so on.) Obviously, not copying the data would be faster than a
value type’s behavior if the latter’s data size is large.

Since reference types copy only the address of the data, two different
variables can point to the same data. Furthermore, changing the data
through one variable will change the data for the other variable as well.
This happens both for assignment and for method calls. Therefore, a
method can affect the data of a reference type back at the caller. For this
reason, a key determinant factor in the choice between defining a reference
type or a value type is whether the object is logically like an immutable
value of fixed size, and therefore a value type.

Besides string and any custom classes such as Program, all types dis-
cussed so far are value types. However, most types are reference types.
Although it is possible to define custom value types, it is relatively rare to
do so in comparison to the number of custom reference types.

Nullable Modifier

As I pointed out earlier, value types cannot be assigned null because, by
definition, they can’t contain references, including references to nothing.
However, this presents a problem in the real world, where values are miss-
ing. When specifying a count, for example, what do you enter if the count
is unknown? One possible solution is to designate a “magic” value, such as
0 or int.MaxValue, but these are valid integers. Rather, it is desirable to
assign null to the value type because this is not a valid integer.

To declare variables that can store null you use the nullable modifier, ?.
This feature, which started with C# 2.0, appears in Listing 2.19.

Listing 2.19: Using the Nullable Modifier

static void Main()
{

int? count = null;

ptg

Chapter 2: Data Types58

do
 {
 // ...
 }
 while(count == null);
}

Assigning null to value types is especially attractive in database pro-
gramming. Frequently, value type columns in database tables allow nulls.
Retrieving such columns and assigning them to corresponding fields
within C# code is problematic, unless the fields can contain null as well.
Fortunately, the nullable modifier is designed to handle such a scenario
specifically.

Conversions between Data Types

Given the thousands of types predefined in the various CLI implementa-
tions and the unlimited number of types that code can define, it is impor-
tant that types support conversion from one to another where it makes
sense. The most common operation that results in a conversion is casting.

Consider the conversion between two numerical types: converting
from a variable of type long to a variable of type int. A long type can con-
tain values as large as 9,223,372,036,854,775,808; however, the maximum
size of an int is 2,147,483,647. As such, that conversion could result in a
loss of data—for example, if the variable of type long contains a value
greater than the maximum size of an int. Any conversion that could result
in a loss of magnitude or an exception because the conversion failed
requires an explicit cast. Conversely, a casting operation that will not lose
magnitude and will not throw an exception regardless of the operand
types is an implicit conversion.

Explicit Cast
In C#, you cast using the cast operator. By specifying the type you would
like the variable converted to within parentheses, you acknowledge that if
an explicit cast is occurring, there may be a loss of precision and data, or an
exception may result. The code in Listing 2.20 converts a long to an int
and explicitly tells the system to attempt the operation.

ptg

 Conversions between Data Types 59

Listing 2.20: Explicit Cast Example

With the cast operator, the programmer essentially says to the com-
piler, “Trust me, I know what I am doing. I know that the conversion could
possibly not fit, but I am willing to take the chance.” Making such a choice
will cause the compiler to allow the conversion. However, with an explicit
conversion, there is still a chance that an error, in the form of an exception,
might occur while executing if the data does not convert successfully. It is,
therefore, the programmer’s responsibility to ensure the data will success-
fully convert, or else to provide the necessary error-handling code when it
doesn’t.

A D V A N C E D T O P I C

Checked and Unchecked Conversions
C# provides special keywords for marking a code block to indicate what
should happen if the target data type is too small to contain the assigned
data. By default, if the target data type cannot contain the assigned data,
then the data will overflow truncate during assignment. For an example,
see Listing 2.21.

Listing 2.21: Overflowing an Integer Value

public class Program
{
 public static void Main()
 {
 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);
 }
}

long longNumber = 50918309109;
int intNumber = (int) longNumber;

cast operator

ptg

Chapter 2: Data Types60

Output 2.15 shows the results.

Listing 2.21 writes the value -2147483648 to the console. However, placing
the code within a checked block, or using the checked option when run-
ning the compiler, will cause the runtime to throw an exception of type
System.OverflowException. The syntax for a checked block uses the
checked keyword, as shown in Listing 2.22.

Listing 2.22: A Checked Block Example

public class Program
{
 public static void Main()
 {

 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);

 }
}

Output 2.16 shows the results.

The result is that an exception is thrown if, within the checked block, an
overflow assignment occurs at runtime.

The C# compiler provides a command-line option for changing the
default checked behavior from unchecked to checked. C# also supports an
unchecked block that overflows the data instead of throwing an exception
for assignments within the block (see Listing 2.23).

OUTPUT 2.15:

-2147483648

 checked
 {

 }

OUTPUT 2.16:

Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow at Program.Main() in ...Program.cs:line 12

ptg

 Conversions between Data Types 61

Listing 2.23: An Unchecked Block Example

using System;

public class Program
{
 public static void Main()
 {

 // int.MaxValue equals 2147483647
 int n = int.MaxValue;
 n = n + 1 ;
 System.Console.WriteLine(n);

}
}

Output 2.17 shows the results.

Even if the checked option is on during compilation, the unchecked key-
word in the preceding code will prevent the runtime from throwing an
exception during execution.

You cannot convert any type to any other type simply because you des-
ignate the conversion explicitly using the cast operator. The compiler will
still check that the operation is valid. For example, you cannot convert a
long to a bool. No such cast operator is defined, and therefore, the com-
piler does not allow such a cast.

 unchecked
 {

 }

OUTPUT 2.17:

-2147483648

Language Contrast: Converting Numbers to Booleans

It may be surprising that there is no valid cast from a numeric type to a

Boolean type, since this is common in many other languages. The reason

no such conversion exists in C# is to avoid any ambiguity, such as whether

–1 corresponds to true or false. More importantly, as you will see in the

next chapter, this also reduces the chance of using the assignment opera-

tor in place of the equality operator (avoiding if(x=42){...} when

if(x==42){...} was intended, for example).

ptg

Chapter 2: Data Types62

Implicit Conversion
In other instances, such as going from an int type to a long type, there is no
loss of precision and there will be no fundamental change in the value of the
type. In these cases, code needs only to specify the assignment operator and
the conversion is implicit. In other words, the compiler is able to determine
that such a conversion will work correctly. The code in Listing 2.24 converts
from an int to a long by simply using the assignment operator.

Listing 2.24: Not Using the Cast Operator for an Implicit Cast

int intNumber = 31416;
long longNumber = intNumber;

Even when no explicit cast operator is required (because an implicit
conversion is allowed), it is still possible to include the cast operator (see
Listing 2.25).

Listing 2.25: Using the Cast Operator for an Implicit Cast

int intNumber = 31416;
long longNumber = (long) intNumber;

Type Conversion without Casting
No conversion is defined from a string to a numeric type, so methods such
as Parse() are required. Each numeric data type includes a Parse() func-
tion that enables conversion from a string to the corresponding numeric
type. Listing 2.26 demonstrates this call.

Listing 2.26: Using int.Parse() to Convert a string to a Numeric Data Type

string text = "9.11E-31";
float kgElectronMass = float.Parse(text);

Another special type is available for converting one type to the next. The
type is System.Convert and an example of its use appears in Listing 2.27.

Listing 2.27: Type Conversion Using System.Convert

string middleCText = "278.4375";
double middleC = System.Convert.ToDouble(middleCText);
bool boolean = System.Convert.ToBoolean(middleC);

ptg

 Conversions between Data Types 63

System.Convert supports only a predefined number of types and it is not
extensible. It allows conversion from any primitive type (bool, char, sbyte,
short, int, long, ushort, uint, ulong, float, double, decimal, DateTime,
and string) to any other primitive type.

Furthermore, all types support a ToString() method that can be used
to provide a string representation of a type. Listing 2.28 demonstrates how
to use this method. The resultant output is shown in Output 2.18.

Listing 2.28: Using ToString() to Convert to a string

bool boolean = true;
string text = boolean.ToString();
// Display "True"
System.Console.WriteLine(text);

For the majority of types, the ToString() method will return the name
of the data type rather than a string representation of the data. The string
representation is returned only if the type has an explicit implementation
of ToString(). One last point to make is that it is possible to code custom
conversion methods, and many such methods are available for classes in
the runtime.

A D V A N C E D T O P I C

TryParse()
Starting with C# 2.0 (.NET 2.0), all the numeric primitive types include a
static TryParse() method. (In C# 1.0, only double includes such a method.)
This method is very similar to the Parse() method, except that instead of
throwing an exception if the conversion fails, the TryParse() method
returns false, as demonstrated in Listing 2.29.

Listing 2.29: Using TryParse() in Place of an Invalid Cast Exception

double number;
string input;

OUTPUT 2.18:

True

ptg

Chapter 2: Data Types64

System.Console.Write("Enter a number: ");
input = System.Console.ReadLine();

{
 System.Console.WriteLine(
 "The text entered was not a valid number.");
}

Output 2.19 shows the results of Listing 2.27.

The resultant value the code parses from the input string is returned via
an out parameter—in this case, number.

The key difference between Parse() and TryParse() is the fact that
TryParse() won’t throw an exception if it fails. Frequently, the conversion
from a string to a numeric type depends on a user entering the text. It is
expected, in such scenarios, that the user will enter invalid data that will
not parse successfully. By using TryParse() rather than Parse(), you can
avoid throwing exceptions in expected situations. (The expected situation
in this case is that the user will enter invalid data.)

Arrays

One particular aspect of variable declaration that Chapter 1 didn’t cover is
array declaration. With array declaration, you can store multiple items of
the same type using a single variable and still access them individually
using the index when required. In C#, the array index starts at zero. There-
fore, arrays in C# are zero based.

if (double.TryParse(input, out number))
{
 // Converted correctly, now use number
 // ...
}
else

OUTPUT 2.19:

Enter a number: forty-two
The text entered was not a valid number.

ptg

 Arrays 65

B E G I N N E R T O P I C

Arrays
Arrays provide a means of declaring a collection of data items that are
of the same type using a single variable. Each item within the array is
uniquely designated using an integer value called the index. The first item
in a C# array is accessed using index 0. Programmers should be careful to
specify an index value that is less than the array size. Since C# arrays are
zero based, the index for the last element in an array is one less than the
total number of items in the array.

For beginners, it is helpful sometimes to think of the index as an offset.
The first item is zero away from the start of the array. The second item is
one away from the start of the array—and so on.

Declaring an Array
In C#, you declare arrays using square brackets. First, you specify the ele-
ment type of the array, followed by open and closed square brackets; then
you enter the name of the variable. Listing 2.30 declares a variable called
languages to be an array of strings.

Listing 2.30: Declaring an Array

string[] languages;

Obviously, the first part of the array identifies the data type of the ele-
ments within the array. The square brackets that are part of the declaration
identify the rank, or the number of dimensions, for the array; in this case it
is an array of rank one. These two pieces form the data type for the variable
languages.

Language Contrast: C++ and Java—Array Declaration

The square brackets for an array in C# appear immediately following the

data type instead of after the variable declaration. This keeps all the type

information together instead of splitting it up both before and after the

identifier, as occurs in C++ and Java.

ptg

Chapter 2: Data Types66

Listing 2.30 defines an array with a rank of one. Commas within the
square brackets define additional dimensions. Listing 2.31, for example,
defines a two-dimensional array of cells for a game of chess or tic-tac-toe.

Listing 2.31: Declaring a Two-Dimensional Array

// | |
// ---+---+---
// | |
// ---+---+---
// | |
int[,] cells;

In Listing 2.29, the array has a rank of two. The first dimension could
correspond to cells going across and the second dimension represents cells
going down. Additional dimensions are added, with additional commas,
and the total rank is one more than the number of commas. Note that the
number of items that occur for a particular dimension is not part of the vari-
able declaration. This is specified when creating (instantiating) the array
and allocating space for each element.

Instantiating and Assigning Arrays
Once an array is declared, you can immediately fill its values using a
comma-delimited list of items enclosed within a pair of curly braces.
Listing 2.32 declares an array of strings and then assigns the names of nine
languages within curly braces.

Listing 2.32: Array Declaration with Assignment

string[] languages = { "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

The first item in the comma-delimited list becomes the first item in the
array; the second item in the list becomes the second item in the array, and
so on. The curly brackets are the notation for defining an array literal.

The assignment syntax shown in Listing 2.32 is available only if you
declare and assign the value within one statement. To assign the value
after declaration requires the use of the keyword new as shown in
Listing 2.33.

ptg

 Arrays 67

Listing 2.33: Array Assignment Following Declaration

string[] languages;
languages = new string[]{"C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#" };

Starting in C# 3.0, specifying the data type of the array (string) following
new became optional as long as the data type of items within the array was
compatible—the square brackets are still required.

C# also allows use of the new keyword as part of the declaration
statement, so it allows the assignment and the declaration shown in
Listing 2.34.

Listing 2.34: Array Assignment with new during Declaration

string[] languages = new string[]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

The use of the new keyword tells the runtime to allocate memory for the
data type. It instructs the runtime to instantiate the data type—in this case,
an array.

Whenever you use the new keyword as part of an array assignment, you
may also specify the size of the array within the square brackets. Listing
2.35 demonstrates this syntax.

Listing 2.35: Declaration and Assignment with the new Keyword

string[] languages = new string[9]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

The array size in the initialization statement and the number of ele-
ments contained within the curly braces must match. Furthermore, it is
possible to assign an array but not specify the initial values of the array, as
demonstrated in Listing 2.36.

ptg

Chapter 2: Data Types68

Listing 2.36: Assigning without Literal Values

string[] languages = new string[9];

Assigning an array but not initializing the initial values will still initial-
ize each element. The runtime initializes elements to their default values,
as follows.

• Reference types (such as string) are initialized to null.

• Numeric types are initialized to zero.

• bool is initialized to false.

• char is initialized to '\0'.

Nonprimitive value types are recursively initialized by initializing each
of their fields to their default values.

As a result, it is not necessary to individually assign each element of an
array before using it.

In C# 2.0, it is possible to use the default() operator to determine the
default value of a data type. default() takes a data type as a parameter.
default(int), for example, returns 0 and default(char) returns \0.

Because the array size is not included as part of the variable declaration,
it is possible to specify the size at runtime. For example, Listing 2.37 creates
an array based on the size specified in the Console.ReadLine() call.

Listing 2.37: Defining the Array Size at Runtime

string[] groceryList;
System.Console.Write("How many items on the list? ");
int size = int.Parse(System.Console.ReadLine());

// ...

C# initializes multidimensional arrays similarly. A comma separates the
size of each rank. Listing 2.38 initializes a tic-tac-toe board with no moves.

Listing 2.38: Declaring a Two-Dimensional Array

int[,] cells = int[3,3];

groceryList = new string[size];

ptg

 Arrays 69

Initializing a tic-tac-toe board with a specific position instead could be
done as shown in Listing 2.39.

Listing 2.39: Initializing a Two-Dimensional Array of Integers

int[,] cells = {
 {1, 0, 2},
 {1, 2, 0},
 {1, 2, 1}
 };

The initialization follows the pattern in which there is an array of three
elements of type int[], and each element has the same size; in this exam-
ple, the size is 3. Note that the dimension of each int[] element must be
identical. The declaration shown in Listing 2.40, therefore, is not valid.

Listing 2.40: A Multidimensional Array with Inconsistent Size, Causing an Error

// ERROR: Each dimension must be consistently sized.
int[,] cells = {
 {1, 0, 2, 0},
 {1, 2, 0},
 {1, 2}
 {1}
 };

Representing tic-tac-toe does not require an integer in each position.
One alternative is a separate virtual board for each player, with each board
containing a bool that indicates which positions the players selected. List-
ing 2.41 corresponds to a three-dimensional board.

Listing 2.41: Initializing a Three-Dimensional Array

bool[,,] cells;
cells = new bool[2,3,3]
 {
 // Player 1 moves // X | |
 { {true, false, false}, // ---+---+---
 {true, false, false}, // X | |
 {true, false, true} }, // ---+---+---
 // X | | X

 // Player 2 moves // | | O
 { {false, false, true}, // ---+---+---
 {false, true, false}, // | O |
 {false, true, true} } // ---+---+---
 // | O |
 };

ptg

Chapter 2: Data Types70

In this example, the board is initialized and the size of each rank is
explicitly identified. In addition to identifying the size as part of the new
expression, the literal values for the array are provided. The literal values
of type bool[,,] are broken into two arrays of type bool[,], size 3x3. Each
two-dimensional array is composed of three bool arrays, size 3.

As already mentioned, each dimension in a multidimensional array
must be consistently sized. However, it is also possible to define a jagged
array, which is an array of arrays. Jagged array syntax is slightly different
from that of a multidimensional array, and furthermore, jagged arrays do
not need to be consistently sized. Therefore, it is possible to initialize a
jagged array as shown in Listing 2.42.

Listing 2.42: Initializing a Jagged Array

};

A jagged array doesn’t use a comma to identify a new dimension.
Rather, a jagged array defines an array of arrays. In Listing 2.42, [] is
placed after the data type int[], thereby declaring an array of type int[].

Notice that a jagged array requires an array instance (or null) for each
internal array. In this example, you use new to instantiate the internal ele-
ment of the jagged arrays. Leaving out the instantiation would cause a
compile error.

Using an Array
You access a specific item in an array using the square bracket notation,
known as the array accessor. To retrieve the first item from an array, you
specify zero as the index. In Listing 2.43, the value of the fifth item (using
the index 4 because the first item is index 0) in the languages variable is
stored in the variable language.

Listing 2.43: Declaring and Accessing an Array

string[] languages = new string[9]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",

int[][]cells = {
new int[]{1, 0, 2, 0},
new int[]{1, 2, 0},
new int[]{1, 2},
new int[]{1}

ptg

 Arrays 71

 "Fortran", "Lisp", "J#"};
// Retrieve 3rd item in languages array (Java)
string language = languages[4];

The square bracket notation is also used to store data into an array.
Listing 2.44 switches the order of "C++" and "Java".

Listing 2.44: Swapping Data between Positions in an Array

string[] languages = new string[9]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};
// Save "C++" to variable called language.
string language = languages[3];
// Assign "Java" to the C++ position.
languages[3] = languages[2];
// Assign language to location of "Java".
languages[2] = language;

For multidimensional arrays, an element is identified with an index for
each dimension, as shown in Listing 2.45.

Listing 2.45: Initializing a Two-Dimensional Array of Integers

int[,] cells = {
 {1, 0, 2},
 {0, 2, 0},
 {1, 2, 1}
 };
// Set the winning tic-tac-toe move to be player 1.
cells[1,0] = 1;

Jagged array element assignment is slightly different because it is con-
sistent with the jagged array declaration. The first element is an array
within the array of arrays. The second index specifies the item within the
selected array element (see Listing 2.46).

Listing 2.46: Declaring a Jagged Array

int[][] cells = {
 new int[]{1, 0, 2},
 new int[]{0, 2, 0},
 new int[]{1, 2, 1}
};

// ...
cells[1][0] = 1;

ptg

Chapter 2: Data Types72

Length

You can obtain the length of an array, as shown in Listing 2.47.

Listing 2.47: Retrieving the Length of an Array

Console.WriteLine("There are {0} languages in the array.",

Arrays have a fixed length; they are bound such that the length cannot
be changed without re-creating the array. Furthermore, overstepping the
bounds (or length) of the array will cause the runtime to report an error. This
can occur by accessing (either retrieving or assigning) the array with an index
for which no element exists in the array. Such an error frequently occurs when
you use the array length as an index into the array, as shown in Listing 2.48.

Listing 2.48: Accessing Outside the Bounds of an Array, Throwing an Exception

string languages = new string[9];
...
// RUNTIME ERROR: index out of bounds – should
// be 8 for the last element
languages[4] = languages[9];

languages.Length);

NOTE

The Length member returns the number of items in the array, not the
highest index. The Length member for the languages variable is 9, but
the highest index for the languages variable is 8, because that is how
far it is from the start.

Language Contrast: C++—Buffer Overflow Bugs

Unmanaged C++ does not always check whether you overstep the bounds

on an array. Not only can this be difficult to debug, but making this mistake

can also result in a potential security error called a buffer overrun. In con-

trast, the Common Language Runtime protects all C# (and Managed C++)

code from overstepping array bounds, virtually eliminating the possibility

of a buffer overrun issue in managed code.

ptg

 Arrays 73

It is a good practice to use Length in place of the hardcoded array size.
To use Length as an index, for example, it is necessary to subtract 1 to
avoid an out-of-bounds error (see Listing 2.49).

Listing 2.49: Using Length - 1 in the Array Index

string languages = new string[9];
...
languages[4] = languages[languages.Length - 1];

To avoid overstepping the bounds on an array use a length check to
verify it has a length greater than 0 as well as using Length – 1 in place
of a hardcoded value when accessing the last item in the array (see
Listing 2.49).

Length returns the total number of elements in an array. Therefore, if
you had a multidimensional array such as bool cells[,,] of size 2•3•3,
Length would return the total number of elements, 18.

For a jagged array, Length returns the number of elements in the first
array—a jagged array is an array of arrays, so Length evaluates only the
outside, containing array and returns its element count, regardless of what
is inside the internal arrays.

More Array Methods

Arrays include additional methods for manipulating the elements within
the array. These include Sort(), BinarySearch(), Reverse(), and Clear()
(see Listing 2.50).

Listing 2.50: Additional Array Methods

class ProgrammingLanguages
{
 static void Main()
 {
 string[] languages = new string[]{
 "C#", "COBOL", "Java",
 "C++", "Visual Basic", "Pascal",
 "Fortran", "Lisp", "J#"};

 searchString = "COBOL";

 System.Array.Sort(languages);

ptg

Chapter 2: Data Types74

 System.Console.WriteLine(
 "The wave of the future, {0}, is at index {1}.",
 searchString, index);

 System.Console.WriteLine();
 System.Console.WriteLine("{0,-20}{1,-20}",
 "First Element", "Last Element");
 System.Console.WriteLine("{0,-20}{1,-20}",
 "-------------", "------------");
 System.Console.WriteLine("{0,-20}{1,-20}",
 languages[0], languages[languages.Length-1]);

 System.Console.WriteLine("{0,-20}{1,-20}",
 languages[0], languages[languages.Length-1]);

 // Note this does not remove all items from the array.
 // Rather it sets each item to the type’s default value.

 System.Console.WriteLine("{0,-20}{1,-20}",
 languages[0], languages[languages.Length-1]);
 System.Console.WriteLine(
 "After clearing, the array size is: {0}",
 languages.Length);
 }
}

The results of Listing 2.50 are shown in Output 2.20.

Access to these methods is on the System.Array class. For the most
part, using these methods is self-explanatory, except for two noteworthy
items.

 index = System.Array.BinarySearch(
 languages, searchString);

 System.Array.Reverse(languages);

 System.Array.Clear(languages, 0, languages.Length);

OUTPUT 2.20:

The wave of the future, COBOL, is at index 1.

First Element Last Element
------------- ------------
C# Visual Basic
Visual Basic C#

After clearing, the array size is: 9

ptg

 Arrays 75

• Before using the BinarySearch() method, it is important to sort the
array. If values are not sorted in increasing order, then the incorrect
index may be returned. If the search element does not exist, then the
value returned is negative. (Using the complement operator,
~index, returns the first index, if any, that is larger than the searched
value.)

• The Clear() method does not remove elements of the array and does
not set the length to zero. The array size is fixed and cannot be modi-
fied. Therefore, the Clear() method sets each element in the array to its
default value (false, 0, or null). This explains why Console.Write-
Line() creates a blank line when writing out the array after Clear() is
called.

Array Instance Methods

Like strings, arrays have instance members that are accessed not from the
data type, but directly from the variable. Length is an example of an
instance member because access to Length is through the array variable,
not the class. Other significant instance members are GetLength(), Rank,
and Clone().

Retrieving the length of a particular dimension does not require the
Length property. To retrieve the size of a particular rank, an array includes
a GetLength() instance method. When calling this method, it is necessary
to specify the rank whose length will be returned (see Listing 2.51).

Language Contrast: Visual Basic—Redimensioning Arrays

Visual Basic includes a Redim statement for changing the number of items in

an array. Although there is no equivalent C# specific keyword, there is a

method available in .NET 2.0 that will re-create the array and then copy

all the elements over to the new array. The method is called System.

Array.Resize.

ptg

Chapter 2: Data Types76

Listing 2.51: Retrieving a Particular Dimension’s Size

bool[,,] cells;
cells = new bool[2,3,3];

The results of Listing 2.51 appear in Output 2.21.

Listing 2.51 displays 2 because this is the number of elements in the first
dimension.

It is also possible to retrieve the entire array’s rank by accessing the
array’s Rank member. cells.Rank, for example, will return 3.

By default, assigning one array variable to another copies only the array
reference, not the individual elements of the array. To make an entirely
new copy of the array, use the array’s Clone() method. The Clone()
method will return a copy of the array; changing any of the members of
this new array will not affect the members of the original array.

Strings as Arrays
Variables of type string are accessible like an array of characters. For
example, to retrieve the fourth character of a string called palindrome you
can call palindrome[3]. Note, however, that because strings are immuta-
ble, it is not possible to assign particular characters within a string. C#,
therefore, would not allow palindrome[3]='a', where palindrome is
declared as a string. Listing 2.52 uses the array accessor to determine
whether an argument on the command line is an option, where an option
is identified by a dash as the first character.

Listing 2.52: Looking for Command-Line Options

string[] args;
...
if(args[0][0]=='-')
{
 //This parameter is an option
}

System.Console.WriteLine(cells.GetLength(0)); // Displays 2

OUTPUT 2.21:

2

ptg

 Arrays 77

This snippet uses the if statement, which is covered in Chapter 3. In
addition, it presents an interesting example because you use the array acces-
sor to retrieve the first element in the array of strings, args. Following the
first array accessor is a second one, this time to retrieve the first character of
the string. The code, therefore, is equivalent to that shown in Listing 2.53.

Listing 2.53: Looking for Command-Line Options (Simplified)

string[] args;
...
string arg = args[0];
if(arg[0] == '-')
{
 //This parameter is an option
}

Not only can string characters be accessed individually using the array
accessor, but it is also possible to retrieve the entire string as an array of charac-
ters using the string’s ToCharArray() method. Using this method, you could
reverse the string using the System.Array.Reverse() method, as demon-
strated in Listing 2.54, which determines whether a string is a palindrome.

Listing 2.54: Reversing a String

class Palindrome
{
 static void Main()
 {
 string reverse, palindrome;
 char[] temp;

 System.Console.Write("Enter a palindrome: ");
 palindrome = System.Console.ReadLine();

 // Remove spaces and convert to lowercase
 reverse = palindrome.Replace(" ", "");
 reverse = reverse.ToLower();

 // Convert to an array
 temp = reverse.ToCharArray();

 // Reverse the array
 System.Array.Reverse(temp);

ptg

Chapter 2: Data Types78

 // Convert the array back to a string and
 // check if reverse string is the same.
 if(reverse == new string(temp))
 {
 System.Console.WriteLine("\"{0}\" is a palindrome.",
 palindrome);
 }
 else
 {
 System.Console.WriteLine(
 "\"{0}\" is NOT a palindrome.",
 palindrome);
 }
 }
}

The results of Listing 2.54 appear in Output 2.22.

This example uses the new keyword; this time, it creates a new string
from the reversed array of characters.

Common Errors
This section introduced the three different types of arrays: single-dimen-
sion, multidimensional, and jagged arrays. Several rules and idiosyncra-
sies govern array declaration and use. Table 2.7 points out some of the
most common errors and helps solidify the rules. Readers should consider
reviewing the code in the Common Mistake column first (without looking
at the Error Description and Corrected Code columns) as a way of verify-
ing their understanding of arrays and their syntax.

OUTPUT 2.22:

Enter a palindrome: NeverOddOrEven
"NeverOddOrEven" is a palindrome.

ptg

79

TABLE 2.7: Common Array Coding Errors

Common Mistake Error Description Corrected Code

int numbers[]; The square braces for declaring an array appear
after the data type, not after the variable identi-
fier.

int[] numbers;

int[] numbers;
numbers = {42, 84, 168 };

When assigning an array after declaration, it is
necessary to use the new keyword and then spec-
ify the data type.

int[] numbers;
numbers = new int[]{
 42, 84, 168 }

int[3] numbers =
 { 42, 84, 168 };

It is not possible to specify the array size as part
of the variable declaration.

int[] numbers =
 { 42, 84, 168 };

int[] numbers =
 new int[];

The array size is required at initialization time
unless an array literal is provided.

int[] numbers =
 new int[3];

int[] numbers =
 new int[3]{}

The array size is specified as 3, but there are no
elements in the array literal. The array size must
match the number of elements in the array lit-
eral.

int[] numbers =
 new int[3]
 { 42, 84, 168 };

int[] numbers =
 new int[3];
Console.WriteLine(
 numbers[3]);

Array indexes start at zero. Therefore, the last
item is one less than the array size. (Note that
this is a runtime error, not a compile-time error.)

int[] numbers =
 new int[3];
Console.WriteLine(
 numbers[2]);

Continues

From the Library of Wow! eBook

ptg

80

Common Mistake Error Description Corrected Code

int[] numbers =
 new int[3];
numbers[numbers.Length] =
 42;

Same as previous error: 1 needs to be subtracted
from the Length to access the last element. (Note
that this is a runtime error, not a compile-time
error.)

int[] numbers =
 new int[3];
numbers[numbers.Length-1] =
 42;

int[] numbers;
Console.WriteLine(
 numbers[0]);

numbers has not yet been assigned an
instantiated array, and therefore, it cannot be
accessed.

int[] numbers = {42, 84};
Console.WriteLine(
 numbers[0]);

int[,] numbers =
 { {42},
 {84, 42} };

Multidimensional arrays must be structured
consistently.

int[,] numbers =
 { {42, 168},
 {84, 42} };

int[][] numbers =
 { {42, 84},
 {84, 42} };

Jagged arrays require instantiated arrays to be
specified for the arrays within the array.

int[][] numbers =
 { new int[]{42, 84},
 new int[]{84, 42} };

TABLE 2.7: Common Array Coding Errors (Continued)

From the Library of Wow! eBook

ptg

 Summary 81

SUMMARY

Even for experienced programmers, C# introduces several new program-
ming constructs. For example, as part of the section on data types, this
chapter covered the type decimal that can be used accurately for financial
calculations. In addition, the chapter introduced the fact that the Boolean
type, bool, does not convert implicitly to an integer, thereby preventing
the mistaken use of the assignment operator in a conditional expression.
Other unique characteristics of C# from many of its predecessors are the @
verbatim string qualifier that forces a string to ignore the escape character
and the fact that the string data type is immutable.

To convert data types between each other C# includes the cast operator
in both an explicit and an implicit form. In the following chapters, you will
learn how to define both cast operators on custom types.

This chapter closed with coverage of C# syntax for arrays, along with
the various means of manipulating arrays. For many developers, the syn-
tax can become rather daunting at first, so the section included a list of the
common errors associated with coding arrays.

The next chapter looks at expressions and control flow statements. The
if statement, which appeared a few times toward the end of this chapter,
is discussed as well.

ptg

This page intentionally left blank

ptg

83

3
Operators and Control Flow

N THIS CHAPTER, you will learn about operators and control flow state-
ments. Operators provide syntax for performing different calculations

or actions appropriate for the operands within the calculation. Control
flow statements provide the means for conditional logic within a program
or looping over a section of code multiple times. After introducing the if
control flow statement, the chapter looks at the concept of Boolean expres-
sions, which are embedded within many control flow statements. Included
is mention of how integers will not cast (even explicitly) to bool and the

I

2

34

5

6 1

Operators and
Control Flow

Operators

Arithmetic Binary
Operators

Assignment Operators
Increment and
Decrement Operators
Constant Expressions

Boolean Expressions

Bitwise OperatorsControl Flow
Statements

if
while

do-while
for

foreach
switch

Jump
Statements

break
continue

goto

Preprocessor
Directives

#if, #elif, #else, and #endif
#define and #undef

#error and #warning
#pragma

nowarn:<warn list>
#line

#region/#endregion

ptg

Chapter 3: Operators and Control Flow84

advantages of this restriction. The chapter ends with a discussion of the C#
“preprocessor” and its accompanying directives.

Operators

Now that you have been introduced to the predefined data types (refer to
Chapter 2), you can begin to learn more about how to use these data types
in combination with operators in order to perform calculations. For exam-
ple, you can make calculations on variables that you have declared.

B E G I N N E R T O P I C

Operators
Operators specify operations within an expression, such as a mathematical
expression, to be performed on a set of values, called operands, to produce
a new value or result. For example, in Listing 3.1 there are two operands,
the numbers 4 and 2, that are combined using the subtraction operator, -.
You assign the result to the variable difference.

Listing 3.1: A Simple Operator Example

difference = 4 – 2;

Operators are generally broken down into three categories: unary,
binary, and ternary, corresponding to the number of operands 1, 2, and 3,
respectively. This section covers some of the most basic unary and binary
operators. Introduction to the ternary operator appears later in the chapter.

Plus and Minus Unary Operators (+, -)
Sometimes you may want to change the sign of a numerical variable. In
these cases, the unary minus operator (-) comes in handy. For example,
Listing 3.2 changes the total current U.S. debt to a negative value to indi-
cate that it is an amount owed.

Listing 3.2: Specifying Negative Values1

//National Debt to the Penny

decimal debt = -11719258192538.99M;

Using the minus operator is equivalent to subtracting the operand from zero.

1. As of August 21, 2009, according to www.treasurydirect.gov.

www.treasurydirect.gov

ptg

 Operators 85

The unary plus operator (+) has rarely2 had any effect on a value. It is a
superfluous addition to the C# language and was included for the sake of
symmetry.

Arithmetic Binary Operators (+, -, *, /, %)
Binary operators require two operands in order to process an equation: a
left-hand side operand and a right-hand side operand. Binary operators
also require that the code assign the resultant value to avoid losing it.

The subtraction example in Listing 3.3 is an example of a binary
operator—more specifically, an arithmetic binary operator. The operands
appear on each side of the arithmetic operator and then the calculated
value is assigned. The other arithmetic binary operators are addition (+),
division (/), multiplication (*), and remainder (%; sometimes called the
mod operator).

Listing 3.3: Using Binary Operators

class Division

{

 static void Main()

 {

 int numerator;

 int denominator;

 int quotient;

 int remainder;

 System.Console.Write("Enter the numerator: ");

 numerator = int.Parse(System.Console.ReadLine());

2. The unary + operator is not defined on a short; it is defined on int, uint, long, ulong,
float, double, and decimal. Therefore, using it on a short will convert it to one of these
types as appropriate.

Language Contrast: C++—Operator-Only Statements

Binary operators in C# require an assignment or call; they always return a

new result. Neither operand in a binary operator expression can be modi-

fied. In contrast, C++ will allow a single statement, such as 4+5, to compile

even without an assignment. In C#, call, increment, decrement, and new

object expressions are allowed for operator-only statements.

ptg

Chapter 3: Operators and Control Flow86

 System.Console.Write("Enter the denominator: ");

 denominator = int.Parse(System.Console.ReadLine());

 System.Console.WriteLine(

 "{0} / {1} = {2} with remainder {3}",

 numerator, denominator, quotient, remainder);

 }

}

Output 3.1 shows the results of Listing 3.3.

Note the order of associativity when using binary operators. The binary
operator order is from left to right. In contrast, the assignment operator
order is from right to left. On its own, however, associativity does not spec-
ify whether the division will occur before or after the assignment. The
order of precedence defines this. The precedence for the operators used so
far is as follows:

1. *, /, and %

2. + and -
3. =

Therefore, you can assume that the statement behaves as expected, with
the division and remainder operators occurring before the assignment.

If you forget to assign the result of one of these binary operators, you
will receive the compile error shown in Output 3.2.

 quotient = numerator / denominator;

 remainder = numerator % denominator;

OUTPUT 3.1:

Enter the numerator: 23

Enter the denominator: 3

23 / 3 = 7 with remainder 2.

OUTPUT 3.2:

... error CS0201: Only assignment, call, increment, decrement,

and new object expressions can be used as a statement

ptg

 Operators 87

B E G I N N E R T O P I C

Associativity and Order of Precedence
As with mathematics, programming languages support the concept of asso-
ciativity. Associativity refers to how operands are grouped and, therefore,
the order in which operators are evaluated. Given a single operator that
appears more than once in an expression, the operator associates the first
duple and then the next operand until all operators are evaluated. For exam-
ple, a-b-c associates as (a-b)-c, and not a-(b-c).

Associativity applies only when all the operators are the same. When
different operators appear within a statement, the order of precedence for
those operators dictates which operators are evaluated first. Order of pre-
cedence, for example, indicates that the multiplication operator be evalu-
ated before the plus operator in the expression a+b*c.

Using the Plus Operator with Strings

Operators can also work with types that are not numeric. For example, it is
possible to use the plus operator to concatenate two or more strings, as
shown in Listing 3.4.

Listing 3.4: Using Binary Operators with Non-Numeric Types

class FortyTwo

{

 static void Main()

 {

 short windSpeed = 42;

 System.Console.WriteLine(

 "The original Tacoma Bridge in Washington\nwas"

 + "brought down by a "

 + windSpeed + " mile/hour wind.");

 }

}

Output 3.3 shows the results of Listing 3.4.

OUTPUT 3.3:

The original Tacoma Bridge in Washington

was brought down by a 42 mile/hour wind.

ptg

Chapter 3: Operators and Control Flow88

Because sentence structure varies among languages in different cultures,
developers should be careful not to use the plus operator with strings
that require localization. Composite formatting is preferred (refer to
Chapter 1).

Using Characters in Arithmetic Operations

When introducing the char type in the preceding chapter, I mentioned
that even though it stores characters and not numbers, the char type is an
integral type (“integral” means it is based on an integer). It can partici-
pate in arithmetic operations with other integer types. However, inter-
pretation of the value of the char type is not based on the character stored
within it, but rather on its underlying value. The digit 3, for example,
contains a Unicode value of 0x33 (hexadecimal), which in base 10 is 51.
The digit 4, on the other hand, contains a Unicode value of 0x34, or 52 in
base 10. Adding 3 and 4 in Listing 3.5 results in a hexadecimal value of
0x167, or 103 in base 10, which is equivalent to the letter g.

Listing 3.5: Using the Plus Operator with the char Data Type

int n = '3' + '4';

char c = (char)n;

System.Console.WriteLine(c); // Writes out g.

Output 3.4 shows the results of Listing 3.5.

You can use this trait of character types to determine how far two char-
acters are from one another. For example, the letter f is three characters
away from the letter c. You can determine this value by subtracting the let-
ter c from the letter f, as Listing 3.6 demonstrates.

Listing 3.6: Determining the Character Difference between Two Characters

int distance = 'f' – 'c';

System.Console.WriteLine(distance);

OUTPUT 3.4:

g

ptg

 Operators 89

Output 3.5 shows the results of Listing 3.6.

Special Floating-Point Characteristics

The floating-point types, float and double, have some special characteris-
tics, such as the way they handle precision. This section looks at some spe-
cific examples, as well as some unique floating-point type characteristics.

A float, with seven digits of precision, can hold the value 1,234,567
and the value 0.1234567. However, if you add these two floats together, the
result will be rounded to 1234567, because the decimal portion of the
number is past the seven significant digits that a float can hold. This type
of rounding can become significant, especially with repeated calculations
or checks for equality (see the upcoming Advanced Topic, Unexpected
Inequality with Floating-Point Types).

Note that inaccuracies can occur with a simple assignment, such as dou-
ble number = 140.6F. Since the double can hold a more accurate value than
the float can store, the C# compiler will actually evaluate this expression
to double number = 140.600006103516;. 140.600006103516 is 140.6 as a
float, but not quite 140.6 when represented as a double.

A D V A N C E D T O P I C

Unexpected Inequality with Floating-Point Types
The inaccuracies of floats can be very disconcerting when comparing values
for equality, since they can unexpectedly be unequal. Consider Listing 3.7.

Listing 3.7: Unexpected Inequality Due to Floating-Point Inaccuracies

decimal decimalNumber = 4.2M;

double doubleNumber1 = 0.1F * 42F;

double doubleNumber2 = 0.1D * 42D;

float floatNumber = 0.1F * 42F;

Trace.Assert(decimalNumber != (decimal)doubleNumber1);

// Displays: 4.2 != 4.20000006258488

System.Console.WriteLine(

 "{0} != {1}", decimalNumber, (decimal)doubleNumber1);

OUTPUT 3.5:

3

ptg

Chapter 3: Operators and Control Flow90

Trace.Assert((double)decimalNumber != doubleNumber1);

// Displays: 4.2 != 4.20000006258488

System.Console.WriteLine(

 "{0} != {1}", (double)decimalNumber, doubleNumber1);

Trace.Assert((float)decimalNumber != floatNumber);

// Displays: (float)4.2M != 4.2F

System.Console.WriteLine(

 "(float){0}M != {1}F",

 (float)decimalNumber, floatNumber);

Trace.Assert(doubleNumber1 != (double)floatNumber);

// Displays: 4.20000006258488 != 4.20000028610229

System.Console.WriteLine(

 "{0} != {1}", doubleNumber1, (double)floatNumber);

Trace.Assert(doubleNumber1 != doubleNumber2);

// Displays: 4.20000006258488 != 4.2

System.Console.WriteLine(

 "{0} != {1}", doubleNumber1, doubleNumber2);

Trace.Assert(floatNumber != doubleNumber2);

// Displays: 4.2F != 4.2D

System.Console.WriteLine(

 "{0}F != {1}D", floatNumber, doubleNumber2);

Trace.Assert((double)4.2F != 4.2D);

// Display: 4.19999980926514 != 4.2

System.Console.WriteLine(

 "{0} != {1}", (double)4.2F, 4.2D);

Trace.Assert(4.2F != 4.2D);

// Display: 4.2F != 4.2D

System.Console.WriteLine(

 "{0}F != {1}D", 4.2F, 4.2D);

Output 3.6 shows the results of Listing 3.7.

OUTPUT 3.6:

4.2 != 4.20000006258488

4.2 != 4.20000006258488

(float)4.2M != 4.2F

4.20000006258488 != 4.20000028610229

4.20000006258488 != 4.2

4.2F != 4.2D

4.19999980926514 != 4.2

4.2F != 4.2D

ptg

 Operators 91

The Assert() methods are designed to display a debug dialog whenever
the parameter evaluates to false. However, all of the Assert() statements
in this code listing will evaluate to true. Therefore, in spite of the apparent
equality of the values in the code listing, they are in fact not equivalent due
to the inaccuracies of a float. Furthermore, there is not some compound-
ing rounding error. The C# compiler performs the calculations instead of
the runtime. Even if you simply assign 4.2F rather than a calculation, the
comparisons will remain unequal.

To avoid unexpected results caused by the inaccuracies of floating-
point types, developers should avoid using equality conditionals with
these types. Rather, equality evaluations should include a tolerance. One
easy way to achieve this is to subtract one value (operand) from the other
and then evaluate whether the absolute value of the result is less than the
maximum tolerance. Even better is to use the decimal type in place of the
float type.

You should be aware of some additional unique floating-point charac-
teristics as well. For instance, you would expect that dividing an integer by
zero would result in an error, and it does with precision data types such as
int and decimal. float and double, however, allow for certain special val-
ues. Consider Listing 3.8, and its resultant output, Output 3.7.

Listing 3.8: Dividing a Float by Zero, Displaying NaN

float n=0f;

// Displays: NaN

System.Console.WriteLine(n / 0);

In mathematics, certain mathematical operations are undefined. In C#,
the result of dividing 0F by the value 0 results in “Not a Number,” and all
attempts to print the output of such a number will result in NaN. Similarly,
taking the square root of a negative number (System.Math.Sqrt(-1)) will
result in NaN.

OUTPUT 3.7:

NaN

ptg

Chapter 3: Operators and Control Flow92

A floating-point number could overflow its bounds as well. For exam-
ple, the upper bound of a float type is 3.4E38. Should the number over-
flow that bound, the result would be stored as “positive infinity” and the
output of printing the number would be Infinity. Similarly, the lower
bound of a float type is –3.4E38, and assigning a value below that bound
would result in “negative infinity,” which would be represented by the
string -Infinity. Listing 3.9 produces negative and positive infinity,
respectively, and Output 3.8 shows the results.

Listing 3.9: Overflowing the Bounds of a float

// Displays: -Infinity

System.Console.WriteLine(-1f / 0);

// Displays: Infinity

System.Console.WriteLine(3.402823E+38f * 2f);

Further examination of the floating-point number reveals that it can
contain a value very close to zero, without actually containing zero. If the
value exceeds the lower threshold for the float or double type, then the
value of the number can be represented as “negative zero“ or “positive
zero,“ depending on whether the number is negative or positive, and is
represented in output as -0 or 0.

Parenthesis Operator
Parentheses allow you to group operands and operators so that they are
evaluated together. This is important because it provides a means of over-
riding the default order of precedence. For example, the following two
expressions evaluate to something completely different:

(60 / 10) * 2

60 / (10 * 2)

The first expression is equal to 12; the second expression is equal to 3. In
both cases, the parentheses affect the final value of the expression.

Sometimes the parenthesis operator does not actually change the result,
because the order-of-precedence rules apply appropriately. However, it is

OUTPUT 3.8:

-Infinity

Infinity

ptg

 Operators 93

often still a good practice to use parentheses to make the code more read-
able. This expression, for example:

fahrenheit = (celsius * 9.0 / 5.0) + 32.0;

is easier to interpret confidently at a glance than this one is:

fahrenheit = celsius * 9.0 / 5.0 + 32.0;

Developers should use parentheses to make code more readable, disam-
biguating expressions explicitly instead of relying on operator precedence.

Assignment Operators (+=, -=, *=, /=, %=)
Chapter 1 discussed the simple assignment operator, which places the
value of the right-hand side of the operator into the variable on the left-
hand side. Other assignment operators combine common binary opera-
tor calculations with the assignment operator. Take Listing 3.10, for
example.

Listing 3.10: Common Increment Calculation

int x;

x = x + 2;

In this assignment, first you calculate the value of x + 2 and then you
assign the calculated value back to x. Since this type of operation is rela-
tively frequent, an assignment operator exists to handle both the calcula-
tion and the assignment with one operator. The += operator increments the
variable on the left-hand side of the operator with the value on the right-
hand side of the operator, as shown in Listing 3.11.

Listing 3.11: Using the += Operator

int x;

x += 2;

This code, therefore, is equivalent to Listing 3.10.
Numerous other combination assignment operators exist to provide

similar functionality. You can use the assignment operator in conjunction
with not only addition, but also subtraction, multiplication, division, and
the remainder operators, as Listing 3.12 demonstrates.

ptg

Chapter 3: Operators and Control Flow94

Listing 3.12: Other Assignment Operator Examples

x -= 2;

x /= 2;

x *= 2;

x %= 2;

Increment and Decrement Operators (++, --)
C# includes special operators for incrementing and decrementing coun-
ters. The increment operator, ++, increments a variable by one each time it
is used. In other words, all of the code lines shown in Listing 3.13 are
equivalent.

Listing 3.13: Increment Operator

spaceCount = spaceCount + 1;

spaceCount += 1;

spaceCount++;

Similarly, you can also decrement a variable by one using the decre-
ment operator, --. Therefore, all of the code lines shown in Listing 3.14 are
also equivalent.

Listing 3.14: Decrement Operator

lines = lines - 1;

lines -= 1;

lines--;

B E G I N N E R T O P I C

A Decrement Example in a Loop
The increment and decrement operators are especially prevalent in loops,
such as the while loop described later in the chapter. For example, Listing
3.15 uses the decrement operator in order to iterate backward through
each letter in the alphabet.

Listing 3.15: Displaying Each Character’s ASCII Value in Descending Order

char current;

int asciiValue;

// Set the initial value of current.

ptg

 Operators 95

current='z';

do

{

 // Retrieve the ASCII value of current.

 asciiValue = current;

 System.Console.Write("{0}={1}\t", current, asciiValue);

 // Proceed to the previous letter in the alphabet;

}

while(current>='a');

Output 3.9 shows the results of Listing 3.15.

The increment and decrement operators are used to count how many
times to perform a particular operation. Notice also that in this example, the
increment operator is used on a character (char) data type. You can use incre-
ment and decrement operators on various data types as long as some mean-
ing is assigned to the concept of “next“ or “previous“ for that data type.

Just as with the assignment operator, the increment operator also
returns a value. In other words, it is possible to use the assignment opera-
tor simultaneously with the increment or decrement operator (see Listing
3.16 and Output 3.10).

Listing 3.16: Using the Post-Increment Operator

int count;

int result;

count = 0;

System.Console.WriteLine("result = {0} and count = {1}",

 result, count);

 current--;

OUTPUT 3.9:

z=122 y=121 x=120 w=119 v=118 u=117 t=116 s=115 r=114

q=113 p=112 o=111 n=110 m=109 l=108 k=107 j=106 i=105

h=104 g=103 f=102 e=101 d=100 c=99 b=98 a=97

result = count++;

OUTPUT 3.10:

result = 0 and count = 1

ptg

Chapter 3: Operators and Control Flow96

You might be surprised that result is assigned the value in count before
count is incremented. In other words, result ends up with a value of 0
even though count ends up with a value of 1.

Where you place the increment or decrement operator determines
whether the assigned value should be the value of the operand before or
after the calculation, which affects how the code functions. If you want the
value of result to include the increment (or decrement) calculation, you
need to place the operator before the variable being incremented, as shown
in Listing 3.17.

Listing 3.17: Using the Pre-Increment Operator

int count;
int result;
count = 0;

System.Console.WriteLine("result = {0} and count = {1}",
 result, count);

Output 3.11 shows the results of Listing 3.17.

In this example, the increment operator appears before the operand so
the value returned is the value assigned to the variable after the increment.
If x is 1, then ++x will return 2. However, if a postfix operator is used, x++,
the value returned by the expression will still be 1. Regardless of whether
the operator is postfix or prefix, the resultant value of x will be incre-
mented. The difference between prefix and postfix behavior appears in
Listing 3.18. The resultant output is shown in Output 3.12.

Listing 3.18: Comparing the Prefix and Postfix Increment Operators

class IncrementExample
{
 public static void Main()
 {
 int x;

result = ++count;

OUTPUT 3.11:

result = 1 and count = 1

ptg

 Operators 97

 x = 1;

 // Display 1, 2.

 System.Console.WriteLine("{0}, {1}, {2}", x++, x++, x);

 // x now contains the value 3.

 // Display 4, 5.

 System.Console.WriteLine("{0}, {1}, {2}", ++x, ++x, x);

 // x now contains the value 5.

 // ...

 }

}

As Listing 3.18 demonstrates, where the increment and decrement oper-
ators appear relative to the operand can affect the result returned from the
operator. Pre-increment/decrement operators return the result after incre-
menting/decrementing the operand. Post-increment/decrement operators
return the result before changing the operand. Developers should use
caution when embedding these operators in the middle of a statement.
When in doubt as to what will happen, use these operators independently,
placing them within their own statements. This way, the code is also more
readable and there is no mistaking the intention.

A D V A N C E D T O P I C

Thread-Safe Incrementing and Decrementing
In spite of the brevity of the increment and decrement operators, these
operators are not atomic. A thread context switch can occur during the exe-
cution of the operator and can cause a race condition. You could use a lock
statement to prevent the race condition. However, for simple increments
and decrements a less expensive alternative is to use the thread-safe Incre-
ment() and Decrement() methods from the System.Threading.Inter-
locked class. These methods rely on processor functions for performing fast
thread-safe increments and decrements (see Chapter 19 for more detail).

OUTPUT 3.12:

1, 2, 3

4, 5, 5

ptg

Chapter 3: Operators and Control Flow98

Constant Expressions (const)
The preceding chapter discussed literal values, or values embedded
directly into the code. It is possible to combine multiple literal values in a
constant expression using operators. By definition, a constant expression
is one that the C# compiler can evaluate at compile time (instead of calcu-
lating it when the program runs) because it is composed of constant oper-
ands. For example, the number of seconds in a day can be assigned as a
constant expression whose result can then be used in other expressions.

The const keyword in Listing 3.19 locks the value at compile time. Any
attempt to modify the value later in the code results in a compile error.

Listing 3.19:

Note that even the value assigned to secondsPerWeek is a constant expres-
sion, because the operands in the expression are also constants, so the com-
piler can determine the result.

Introducing Flow Control

Later in this chapter is a code listing (Listing 3.43) that shows a simple way
to view a number in its binary form. Even such a simple program, how-
ever, cannot be written without using control flow statements. Such state-
ments control the execution path of the program. This section discusses
how to change the order of statement execution based on conditional
checks. Later on, you will learn how to execute statement groups repeat-
edly through loop constructs.

A summary of the control flow statements appears in Table 3.1. Note
that the General Syntax Structure column indicates common statement
use, not the complete lexical structure.

// ...
public long Main()
{
 const int secondsPerDay = 60 * 60 * 24;
 const int secondsPerWeek = secondsPerDay * 7;

 // ...
}

Constant

Constant Expression

ptg

99

TABLE 3.1: Control Flow Statements

Statement General Syntax Structure Example

if statement if(boolean-expression)

 embedded-statement

if (input == "quit")

{

 System.Console.WriteLine(

 "Game end");

 return;

}

if(boolean-expression)

 embedded-statement

else

 embedded-statement

if (input == "quit")

{

 System.Console.WriteLine(

 "Game end");

 return;

}

else

 GetNextMove();

while statement while(boolean-expression)

 embedded-statement

while(count < total)

{

 System.Console.WriteLine(

 "count = {0}", count);

 count++;

}

Continues

From the Library of Wow! eBook

ptg

100

Statement General Syntax Structure Example

do while statement do

 embedded-statement

while(boolean-expression);

do

{

 System.Console.WriteLine(

 "Enter name:");

 input =

 System.Console.ReadLine();

}

while(input != "exit");

for statement for(for-initializer;

 boolean-expression;

 for-iterator)

 embedded-statement

for (int count = 1;

 count <= 10;

 count++)

{

 System.Console.WriteLine(

 "count = {0}", count);

}

Foreach statement foreach(type identifier in

 expression)

 embedded-statement

foreach (char letter in email)

{

 if(!insideDomain)

 {

 if (letter == '@')

 {

 insideDomain = true;

 }

 continue;

 }

 System.Console.Write(

 letter);

}

continue statement continue;

TABLE 3.1: Control Flow Statements (Continued)

From the Library of Wow! eBook

ptg

101

Statement General Syntax Structure Example

switch statement switch(governing-type-expression)

{

 ...

 case const-expression:

 statement-list

 jump-statement

 default:

 statement-list

 jump-statement

}

switch(input)

{

 Case "exit":

 case "quit":

 System.Console.WriteLine(

 "Exiting app....");

 break;

 case "restart":

 Reset();

 goto case "start";

 case "start":

 GetMove();

 break;

break statement break; default:

 System.Console.WriteLine(

 input);

 break;

}

goto statement goto identifier;

goto case const-expression;

goto default;

TABLE 3.1: Control Flow Statements (Continued)

From the Library of Wow! eBook

ptg

Chapter 3: Operators and Control Flow102

An embedded-statement in Table 3.1 corresponds to any statement, includ-
ing a code block (but not a declaration statement or a label).

Each C# control flow statement in Table 3.1 appears in the tic-tac-toe3

program found in Appendix B. The program displays the tic-tac-toe board,
prompts each player, and updates with each move.

The remainder of this chapter looks at each statement in more detail.
After covering the if statement, it introduces code blocks, scope, Boolean
expressions, and bitwise operators before continuing with the remaining
control flow statements. Readers who find the table familiar because of C#’s
similarities to other languages can jump ahead to the section titled C# Pre-
processor Directives or skip to the Summary section at the end of the chapter.

if Statement
The if statement is one of the most common statements in C#. It evaluates
a Boolean expression (an expression that returns a Boolean), and if the
result is true, the following statement (or block) is executed. The general
form is as follows:

if(condition)

 consequence

[else

 alternative]

There is also an optional else clause for when the Boolean expression is
false. Listing 3.20 shows an example.

Listing 3.20: if/else Statement Example

class TicTacToe // Declares the TicTacToe class.

{

 static void Main() // Declares the entry point of the program.

 {

 string input;

 // Prompt the user to select a 1- or 2- player game.

 System.Console.Write (

 "1 – Play against the computer\n" +

 "2 – Play against another player.\n" +

 "Choose:"

);

 input = System.Console.ReadLine();

3. Known as noughts and crosses to readers outside the United States.

ptg

 Introducing Flow Control 103

 }

}

In Listing 3.20, if the user enters 1, the program displays "Play against
computer selected.". Otherwise, it displays "Play against another

player.".

Nested if
Sometimes code requires multiple if statements. The code in Listing 3.21
first determines whether the user has chosen to exit by entering a number
less than or equal to 0; if not, it checks whether the user knows the maxi-
mum number of turns in tic-tac-toe.

Listing 3.21: Nested if Statements

1 class TicTacToeTrivia

2 {

3 static void Main()

4 {

5 int input; // Declare a variable to store the input.

6

7 System.Console.Write(

8 "What is the maximum number " +

9 "of turns in tic-tac-toe?" +

10 "(Enter 0 to exit.): ");

11

12 // int.Parse() converts the ReadLine()

13 // return to an int data type.

14 input = int.Parse(System.Console.ReadLine());

15

16 if (input <= 0)

17 // Input is less than or equal to 0.

18 System.Console.WriteLine("Exiting...");

19 else

20 if (input < 9)

21 // Input is less than 9.

22 System.Console.WriteLine(

23 "Tic-tac-toe has more than {0}" +

 if(input=="1")

 // The user selected to play the computer.

 System.Console.WriteLine(

 "Play against computer selected.");

 else

 // Default to 2 players (even if user didn't enter 2).

 System.Console.WriteLine(

 "Play against another player.");

ptg

Chapter 3: Operators and Control Flow104

24 "maximum turns.", input);

25 else

26 if(input>9)

27 // Input is greater than 9.

28 System.Console.WriteLine(

29 "Tic-tac-toe has fewer than {0}" +

30 "maximum turns.", input);

31 else

32 // Input equals 9.

33 System.Console.WriteLine(

34 "Correct, " +

35 "tic-tac-toe has a max. of 9 turns.");

36 }

37 }

Output 3.13 shows the results of Listing 3.21.

Assume the user enters 9 when prompted at line 14. Here is the execution
path:

1. Line 16: Check if input is less than 0. Since it is not, jump to line 20.

2. Line 20: Check if input is less than 9. Since it is not, jump to line 26.

3. Line 26: Check if input is greater than 9. Since it is not, jump to line 33.

4. Line 33: Display that the answer was correct.

Listing 3.21 contains nested if statements. To clarify the nesting, the
lines are indented. However, as you learned in Chapter 1, whitespace does
not affect the execution path. Without indenting and without newlines, the
execution would be the same. The code that appears in the nested if state-
ment in Listing 3.22 is equivalent to Listing 3.21.

Listing 3.22: if/else Formatted Sequentially

if (input < 0)

 System.Console.WriteLine("Exiting...");

else if (input < 9)

 System.Console.WriteLine(

OUTPUT 3.13:

What’s the maximum number of turns in tic-tac-toe? (Enter 0 to exit.): 9

Correct, tic-tac-toe has a max. of 9 turns.

ptg

 Code Blocks ({}) 105

 "Tic-tac-toe has more than {0}" +

 " maximum turns.", input);

else if(input>9)

 System.Console.WriteLine(

 "Tic-tac-toe has less than {0}" +

 " maximum turns.", input);

else

 System.Console.WriteLine(

 "Correct, tic-tac-toe has a maximum of 9 turns.");

Although the latter format is more common, in each situation use the for-
mat that results in the clearest code.

Code Blocks ({})

In the previous if statement examples, only one statement follows if and
else: a single System.Console.WriteLine(), similar to Listing 3.23.

Listing 3.23: if Statement with No Code Block

if(input<9)

With curly braces, however, we can combine statements into a single

calculation in Listing 3.24.

Listing 3.24: if Statement Followed by a Code Block

class CircleAreaCalculator

{

 static void Main()

 {

 double radius; // Declare a variable to store the radius.

 double area; // Declare a variable to store the area.

 System.Console.Write("Enter the radius of the circle: ");

 // double.Parse converts the ReadLine()

 // return to a double.

 radius = double.Parse(System.Console.ReadLine());

 if(radius>=0)

 System.Console.WriteLine("Exiting");

unit called a code block, allowing the execution of multiple statements for
a condition. Take, for example, the highlighted code block in the radius

ptg

Chapter 3: Operators and Control Flow106

 else

 {

 System.Console.WriteLine(

 "{0} is not a valid radius.", radius);

 }

 }

}

Output 3.14 shows the results of Listing 3.24.

In this example, the if statement checks whether the radius is positive. If
so, the area of the circle is calculated and displayed; otherwise, an invalid
radius message is displayed.

Notice that in this example, two statements follow the first if. How-
ever, these two statements appear within curly braces. The curly braces
combine the statements into a code block.

If you omit the curly braces that create a code block in Listing 3.24, only
the statement immediately following the Boolean expression executes con-
ditionally. Subsequent statements will execute regardless of the if state-
ment’s Boolean expression. The invalid code is shown in Listing 3.25.

Listing 3.25: Relying on Indentation, Resulting in Invalid Code

if(radius>=0)

 area = 3.14*radius*radius;

 System.Console.WriteLine(// Logic Error!! Needs code block.

 "The area of the circle is: {0}", area);

In C#, indentation is for code readability only. The compiler ignores it,
and therefore, the previous code is semantically equivalent to Listing 3.26.

 {

 // Calculate the area of the circle.

 area = 3.14*radius*radius;

 System.Console.WriteLine(

 "The area of the circle is: {0}", area);

 }

OUTPUT 3.14:

Enter the radius of the circle: 3

The area of the circle is: 28.26

ptg

 Scope and Declaration Space 107

Listing 3.26: Semantically Equivalent to Listing 3.25

if(radius>=0)

{

 area = 3.14*radius*radius;

}

System.Console.WriteLine(// Error!! Place within code block.

 "The area of the circle is: {0}", area);

Programmers should take great care to avoid subtle bugs such as this, per-
haps even going so far as to always include a code block after a control
flow statement, even if there is only one statement.

Although unusual, it is possible to have a code block that is not lexically
a direct part of a control flow statement. In other words, placing curly braces
on their own (without a conditional or loop, for example) is legal syntax.

A D V A N C E D T O P I C

Math Constants
In Listing 3.25 and Listing 3.26, the value of pi as 3.14 was hardcoded—a
crude approximation at best. There are much more accurate definitions for
pi and E in the System.Math class. Instead of hardcoding a value, code
should use System.Math.PI and System.Math.E.

Scope and Declaration Space

Scope and declaration space are hierarchical contexts bound by a code
block. Scope is the region of source code in which it is legal to refer to an
item by its unqualified name because the name reference is unique and
unambiguous.

The area in which declaring the name is unique is the declaration space.
C# prevents two local variable declarations with the same name from
appearing in the same declaration space. Similarly, it is not possible to
declare two methods with the signature of Main() within the same class
(declaration scope for the method name includes the full signature). The
scope identifies what within a code block an unqualified name refers to;
the declaration scope specifies the region in which declaring something
with the same name will cause a conflict.

ptg

Chapter 3: Operators and Control Flow108

Scope restricts visibility. A local variable, for example, is not visible
outside its defining method. Similarly, code that declares a variable in an
if block makes the variable inaccessible outside the if block (even in the
same method). In Listing 3.27, defining message inside the if statement
restricts its scope to the statement only. To avoid the error, you must
declare the string outside the if statement.

Listing 3.27: Variables Inaccessible Outside Their Scope

class Program
{
 static void Main(string[] args)
 {
 int playerCount;
 System.Console.Write(
 "Enter the number of players (1 or 2):");
 playerCount = int.Parse(System.Console.ReadLine());
 if (playerCount != 1 && playerCount != 2)
 {

 }
 else
 {
 // ...
 }

 }
}

Output 3.15 shows the results of Listing 3.27.

 string message =
 "You entered an invalid number of players.";

 // Error: message is not in scope.
 System.Console.WriteLine(message);

OUTPUT 3.15:

...

...\Program.cs(18,26): error CS0103: The name 'message' does not exist
in the current context

ptg

 Boolean Expressions 109

Declaration space cascades down to child (or embedded) code blocks
within a method. The C# compiler prevents the name of a local variable
declared immediately within a method code block (or as a parameter) from
being reused within a child code block. The declaration space is the parent
code block of a variable, including any child blocks within the parent code
block. From Listing 3.27, because args and playerCount are declared within
the method code block, they cannot be used again within declarations any-
where within the method.

Scope is also bound by the parent code block. The name message
applies only within the if block, not outside it. Similarly, playerCount
refers to the same variable throughout the method following where the
variable is declared—including within both the if and else child blocks.

Boolean Expressions

The portion of the if statement within parentheses is the Boolean expres-
sion, sometimes referred to as a conditional. In Listing 3.28, the Boolean
expression is highlighted.

Listing 3.28: Boolean Expression

{
 // Input is less than 9.
 System.Console.WriteLine(
 "Tic-tac-toe has more than {0}" +
 " maximum turns.", input);
}
// ...

Boolean expressions appear within many control flow statements. The
key characteristic is that they always evaluate to true or false. For input<9
to be allowed as a Boolean expression, it must return a bool. The compiler
disallows x=42, for example, because it assigns x, returning the new value,
instead of checking whether x’s value is 42.

if(input < 9)

ptg

Chapter 3: Operators and Control Flow110

Relational and Equality Operators
Included in the previous code examples was the use of relational opera-
tors. In those examples, relational operators were used to evaluate user
input. Table 3.2 lists all the relational and equality operators.

Language Contrast: C++—Mistakenly Using = in Place of ==

The significant feature of Boolean expressions in C# is the elimination of a

common coding error that historically appeared in C/C++. In C++, Listing

3.29 is allowed.

Listing 3.29: C++, But Not C#, Allows Assignment as a Boolean Expression

if(input=9) // COMPILE ERROR: Allowed in C++, not in C#.

 System.Console.WriteLine(

 "Correct, tic-tac-toe has a maximum of 9 turns.");

Although this appears to check whether input equals 9, Chapter 1

showed that = represents the assignment operator, not a check for equal-

ity. The return from the assignment operator is the value assigned to the

variable—in this case, 9. However, 9 is an int, and as such it does not

qualify as a Boolean expression and is not allowed by the C# compiler.

TABLE 3.2: Relational and Equality Operators

Operator Description Example

< Less than input<9;

> Greater than input>9;

<= Less than or equal to input<=9;

>= Greater than or equal to input>=9;

== Equality operator input==9;

!= Inequality operator input!=9;

ptg

 Boolean Expressions 111

In addition to determining whether a value is greater than or less than
another value, operators are also required to determine equivalency. You
test for equivalence by using equality operators. In C#, the syntax follows
the C/C++/Java pattern with ==. For example, to determine whether
input equals 9 you use input==9. The equality operator uses two equal
signs to distinguish it from the assignment operator, =.

The exclamation point signifies NOT in C#, so to test for inequality you
use the inequality operator, !=.

The relational and equality operators are binary operators, meaning
they compare two operands. More significantly, they always return a Bool-
ean data type. Therefore, you can assign the result of a relational operator
to a bool variable, as shown in Listing 3.30.

Listing 3.30: Assigning the Result of a Relational Operator to a bool

bool result = 70 > 7;

In the tic-tac-toe program (see Appendix B), you use the equality operator
to determine whether a user has quit. The Boolean expression of Listing 3.31
includes an OR (||) logical operator, which the next section discusses in detail.

Listing 3.31: Using the Equality Operator in a Boolean Expression

if (input == "" || input == "quit")

{

 System.Console.WriteLine("Player {0} quit!!", currentPlayer);

 break;

}

Logical Boolean Operators
Logical operators have Boolean operands and return a Boolean result.
Logical operators allow you to combine multiple Boolean expressions to
form other Boolean expressions. The logical operators are ||, &&, and ^,
corresponding to OR, AND, and exclusive OR, respectively.

OR Operator (||)

In Listing 3.31, if the user enters quit or presses the Enter key without typ-
ing in a value, it is assumed that she wants to exit the program. To enable
two ways for the user to resign, you use the logical OR operator, ||.

ptg

Chapter 3: Operators and Control Flow112

The || operator evaluates Boolean expressions and returns a true value
if either one of them is true (see Listing 3.32).

Listing 3.32: Using the OR Operator

if((hourOfTheDay > 23) || (hourOfTheDay < 0))

 System.Console.WriteLine("The time you entered is invalid.");

Note that with the Boolean OR operator, it is not necessary to evaluate
both sides of the expression. Like all operators in C#, the OR operators go
from left to right, so if the left portion of the expression evaluates to true,
then the right portion is ignored. Therefore, if hourOfTheDay has the value
33 then (hourOfTheDay > 23) will return true and the OR operator ignores
the second half of the expression—short-circuiting . Short-circuiting an
expression also occurs with the Boolean AND operator.

AND Operator (&&)

The Boolean AND operator, &&, evaluates to true only if both operands evalu-
ate to true. If either operand is false, the combined expression will return false.

Listing 3.33 displays that it is time for work as long as the current hour
is both greater than 10 and less than 24.4 As you saw with the OR operator,
the AND operator will not always evaluate the right side of the expression.
If the left operand returns false, then the overall result will be false
regardless of the right operand, so the runtime ignores the right operand.

Listing 3.33: Using the AND Operator

if ((10 < hourOfTheDay) && (hourOfTheDay < 24))

 System.Console.WriteLine(

 "Hi-Ho, Hi-Ho, it's off to work we go.");

Exclusive OR Operator (^)

The caret symbol, ^, is the “exclusive OR” (XOR) operator. When applied
to two Boolean operands, the XOR operator returns true only if exactly
one of the operands is true, as shown in Table 3.3.

Unlike the Boolean AND and Boolean OR operators, the Boolean XOR
operator does not short-circuit: It always checks both operands, because the
result cannot be determined unless the values of both operands are known.

4. The typical hours that programmers work.

it

ptg

 Boolean Expressions 113

Logical Negation Operator (!)
Sometimes called the NOT operator, the logical negation operator, !,
inverts a bool data type to its opposite. This operator is a unary operator,
meaning it requires only one operand. Listing 3.34 demonstrates how it
works, and Output 3.16 shows the results.

Listing 3.34: Using the Logical Negation Operator

bool result;

bool valid = false;

// Displays "result = True".

System.Console.WriteLine("result = {0}", result);

To begin, valid is set to false. You then use the negation operator on
valid and assign a new value to result.

Conditional Operator (?)
In place of an if-else statement used to select one of two values, you can
use the conditional operator. The conditional operator is a question mark
(?), and the general format is as follows:

 conditional? consequence: alternative;

The conditional operator is a ternary operator, because it has three
operands: conditional, consequence, and alternative. If the conditional

TABLE 3.3: Conditional Values for the XOR Operator

Left Operand Right Operand Result

True True False

True False True

False True True

False False False

result = !valid;

OUTPUT 3.16:

result = True

ptg

Chapter 3: Operators and Control Flow114

evaluates to true, then the conditional operator returns consequence.
Alternatively, if the conditional evaluates to false, then it returns
alternative.

Listing 3.35 is an example of how to use the conditional operator. The
full listing of this program appears in Appendix B.

Listing 3.35: Conditional Operator

public class TicTacToe

{

 public static string Main()

 {

 // Initially set the currentPlayer to Player 1;

 int currentPlayer = 1;

 // ...

 for (int turn = 1; turn <= 10; turn++)

 {

 // ...

 // Switch players

 }

 }

}

The program swaps the current player. To do this, it checks whether the
current value is 2. This is the conditional portion of the conditional state-
ment. If the result is true, then the conditional operator returns the value 1.
Otherwise, it returns 2. Unlike an if statement, the result of the conditional
operator must be assigned (or passed as a parameter). It cannot appear as
an entire statement on its own.

Use the conditional operator sparingly, because readability is often sac-
rificed and a simple if/else statement may be more appropriate.

Null Coalescing Operator (??)
Starting with C# 2.0, there is a shortcut to the conditional operator when
checking for null. The shortcut is the null coalescing operator, and it eval-
uates an expression for null and returns a second expression if the value
is null.

expression1?? expression2;

 currentPlayer = (currentPlayer == 2) ? 1 : 2;

ptg

 Bitwise Operators (<<, >>, |, &, ^, ~) 115

If the expression (expression1) is not null, then expression1 is
returned. In other words, the null coalescing operator returns expression1
directly unless expression1 evaluates to null, in which case expression2
is returned. Unlike the conditional operator, the null coalescing operator is
a binary operator.

Listing 3.36 is an example of how to use the null coalescing operator.

Listing 3.36: Null Coalescing Operator

string fileName;

// ...

// ...

In this listing, we use the null coalescing operator to set fullName to
“default.txt” if fileName is null. If fileName is not null, fullName is simply
assigned the value of fileName.

Bitwise Operators (<<, >>, |, &, ^, ~)

An additional set of operators that is common to virtually all program-
ming languages is the set of operators for manipulating values in their
binary formats: the bit operators.

B E G I N N E R T O P I C

Bits and Bytes
All values within a computer are represented in a binary format of 1s and 0s,
called binary digits (bits). Bits are grouped together in sets of eight, called
bytes. In a byte, each successive bit corresponds to a value of 2 raised to a
power, starting from 20 on the right, to 27 on the left, as shown in Figure 3.1.

Figure 3.1: Corresponding Placeholder Values

In many instances, particularly when dealing with low-level or system
services, information is retrieved as binary data. In order to manipulate these
devices and services, you need to perform manipulations of binary data.

string fullName = fileName??"default.txt";

0 0 0 0 0 0 0 0

27 26 25 24 23 22 21 20

ptg

Chapter 3: Operators and Control Flow116

As shown in Figure 3.2, each box corresponds to a value of 2 raised to
the power shown. The value of the byte (8-bit number) is the sum of the
powers of 2 of all of the eight bits that are set to 1.

Figure 3.2: Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed
numbers. Signed numbers (long, short, int) are represented using a 2s
complement notation. This is so that addition continues to work when
adding a negative number to a positive number as though both were posi-
tive operands. With this notation, negative numbers behave differently
than positive numbers. Negative numbers are identified by a 1 in the left-
most location. If the leftmost location contains a 1, you add the locations
with 0s rather than the locations with 1s. Each location corresponds to the
negative power of 2 value. Furthermore, from the result, it is also neces-
sary to subtract 1. This is demonstrated in Figure 3.3.

Figure 3.3: Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to –1 and 1111 1111 1111
1001 holds the value –7. 1000 0000 0000 0000 corresponds to the lowest
negative value that a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)
Sometimes you want to shift the binary value of a number to the right or
left. In executing a left shift, all bits in a number’s binary representation are
shifted to the left by the number of locations specified by the operand on the
right of the shift operator. Zeroes are then used to backfill the locations on
the right side of the binary number. A right-shift operator does almost the

0 0 0 0 0 1 1 1

7= 4 + 2 + 1

1 1 1 1 1 0 0 1

-7 = -4 -2 + 0 -1

ptg

 Bitwise Operators (<<, >>, |, &, ^, ~) 117

same thing in the opposite direction. However, if the number is negative,
then the values used to backfill the left side of the binary number are ones
and not zeroes. The shift operators are >> and <<, the right-shift and left-
shift operators, respectively. In addition, there are combined shift and
assignment operators, <<= and >>=.

Consider the following example. Suppose you had the int value -7,
which would have a binary representation of 1111 1111 1111 1111 1111
1111 1111 1001. In Listing 3.37, you right-shift the binary representation
of the number –7 by two locations.

Listing 3.37: Using the Right-Shift Operator

int x;

x = (-7 >> 2); // 11111111111111111111111111111001 becomes

 // 11111111111111111111111111111110

// Write out "x is -2."

System.Console.WriteLine("x = {0}.", x);

Output 3.17 shows the results of Listing 3.37.

Because of the right shift, the value of the bit in the rightmost location has
“dropped off” the edge and the negative bit indicator on the left shifts by
two locations to be replaced with 1s. The result is -2.

Bitwise Operators (&, |, ^)
In some instances, you might need to perform logical operations, such as
AND, OR, and XOR, on a bit-by-bit basis for two operands. You do this via
the &, |, and ^ operators, respectively.

B E G I N N E R T O P I C

Logical Operators Explained
If you have two numbers, as shown in Figure 3.4, the bitwise operations will
compare the values of the locations beginning at the leftmost significant

OUTPUT 3.17:

x = -2.

ptg

Chapter 3: Operators and Control Flow118

value and continuing right until the end. The value of “1” in a location is
treated as “true,”and the value of “0” in a location is treated as “false.”

Figure 3.4: The Numbers 12 and 7 Represented in Binary

Therefore, the bitwise AND of the two values in Figure 3.4 would be the
bit-by-bit comparison of bits in the first operand (12) with the bits in the
second operand (7), resulting in the binary value 000000100, which is 4.
Alternatively, a bitwise OR of the two values would produce 00001111, the
binary equivalent of 15. The XOR result would be 00001011, or decimal 11.

Listing 3.38 demonstrates how to use these bitwise operators. The
results of Listing 3.38 appear in Output 3.18.

Listing 3.38: Using Bitwise Operators

byte and, or, xor;

and = 12 & 7; // and = 4

or = 12 | 7; // or = 15

xor = 12 ^ 7; // xor = 11

System.Console.WriteLine(

 "and = {0} \nor = {1}\nxor = {2}"

 and, or, xor);

In Listing 3.38, the value 7 is the mask; it is used to expose or eliminate spe-
cific bits within the first operand using the particular operator expression.

In order to convert a number to its binary representation, you need to
iterate across each bit in a number. Listing 3.39 is an example of a program

OUTPUT 3.18:

and = 4

or = 15

xor = 11

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 1

12:

7:

ptg

 Bitwise Operators (<<, >>, |, &, ^, ~) 119

that converts an integer to a string of its binary representation. The results
of Listing 3.39 appear in Output 3.19.

Listing 3.39: Getting a String Representation of a Binary Display

public class BinaryConverter

{

 public static void Main()

 {

 const int size = 64;

 ulong value;

 char bit;

 System.Console.Write ("Enter an integer: ");

 // Use long.Parse() so as to support negative numbers

 // Assumes unchecked assignment to ulong.

 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....

 ulong mask = 1ul << size - 1;

 for (int count = 0; count < size; count++)

 {

 bit = ((mask & value) > 0) ? '1': '0';

 System.Console.Write(bit);

 // Shift mask one location over to the right

 mask >>= 1;

 }

 System.Console.WriteLine();

 }

}

Notice that within each iteration of the for loop (discussed shortly), you
use the right-shift assignment operator to create a mask corresponding to
each bit in value. By using the & bit operator to mask a particular bit, you
can determine whether the bit is set. If the mask returns a positive result,
you set the corresponding bit to 1; otherwise, it is set to 0. In this way, you
create a string representing the binary value of an unsigned long.

OUTPUT 3.19:

Enter an integer: 42

00101010

ptg

Chapter 3: Operators and Control Flow120

Bitwise Assignment Operators (&=, |=, ^=)
Not surprisingly, you can combine these bitwise operators with assign-
ment operators as follows: &=, |=, and ̂ =. As a result, you could take a vari-
able, OR it with a number, and assign the result back to the original
variable, which Listing 3.40 demonstrates.

Listing 3.40: Using Logical Assignment Operators

byte and, or, xor;

and = 12;

or = 12;

xor = 12;

System.Console.WriteLine(

 "and = {0} \nor = {1} \nxor = {2}",

 and, or, xor);

The results of Listing 3.40 appear in Output 3.20.

Combining a bitmap with a mask using something like fields &= mask
clears the bits in fields that are not set in the mask. The opposite, fields
&= ~mask, clears out the bits in fields that are set in mask.

Bitwise Complement Operator (~)
The bitwise complement operator takes the complement of each bit in the
operand, where the operand can be an int, uint, long, or ulong. ~1, there-
fore, returns 1111 1111 1111 1111 1111 1111 1111 1110 and ~(1<<31)
returns 0111 1111 1111 1111 1111 1111 1111 1111.

and &= 7; // and = 4

or |= 7; // or = 15

xor ̂ = 7; // xor = 11

OUTPUT 3.20:

and = 4

or = 15

xor = 11

ptg

 Control Flow Statements, Continued 121

Control Flow Statements, Continued

With the additional coverage of Boolean expressions, it’s time to consider
more of the control flow statements supported by C#. As indicated in the
introduction to this chapter, many of these statements will be familiar to
experienced programmers, so you can skim this section for information
specific to C#. Note in particular the foreach loop, as this may be new to
many programmers.

The while and do/while Loops
Until now, you have learned how to write programs that do something
only once. However, one of the important capabilities of the computer is
that it can perform the same operation multiple times. In order to do this,
you need to create an instruction loop. The first instruction loop I will dis-
cuss is the while loop. The general form of the while statement is as
follows:

while(boolean-expression)

 statement

The computer will repeatedly execute statement as long as boolean-
expression evaluates to true. If the expression evaluates to false, then
code execution continues at the instruction following statement. (Note that
statement will continue to execute even if it causes boolean-expression to
be false. It isn’t until the boolean-expression is reevaluated within the
while condition that the loop exits.) The Fibonacci calculator shown in
Listing 3.41 demonstrates the while loop.

Listing 3.41: while Loop Example

class FibonacciCalculator

{

 static void Main()

 {

 decimal current;

 decimal previous;

 decimal temp;

 decimal input;

 System.Console.Write("Enter a positive integer:");

ptg

Chapter 3: Operators and Control Flow122

 // decimal.Parse convert the ReadLine to a decimal.

 input = decimal.Parse(System.Console.ReadLine());

 // Initialize current and previous to 1, the first

 // two numbers in the Fibonacci series.

 current = previous = 1;

 // While the current Fibonacci number in the series is

 // less than the value input by the user.

 System.Console.WriteLine(

 "The Fibonacci number following this is {0}",

 current);

 }

}

A Fibonacci number is a member of the Fibonacci series, which
includes all numbers that are the sum of the previous two numbers in the
series, beginning with 1 and 1. In Listing 3.41, you prompt the user for an
integer. Then you use a while loop to find the Fibonacci number that is
greater than the number the user entered.

B E G I N N E R T O P I C

When to Use a while Loop
The remainder of this chapter considers other types of statements that
cause a block of code to execute repeatedly. The term loop refers to the
block of code that is to be executed within the while statement, since the
code is executed in a “loop” until the exit condition is achieved. It is impor-
tant to understand which loop construct to select. You use a while con-
struct to iterate while the condition evaluates to true. A for loop is used
most appropriately whenever the number of repetitions is known, such as
counting from 0 to n. A do/while is similar to a while loop, except that it
will always loop at least once.

 while(current <= input)

 {

 temp = current;

 current = previous + current;

 previous = temp;

 }

ptg

 Control Flow Statements, Continued 123

The do/while loop is very similar to the while loop except that a do/
while loop is preferred when the number of repetitions is from 1 to n and n
is indeterminate when iterating begins. This pattern occurs most com-
monly when repeatedly prompting a user for input. Listing 3.42 is taken
from the tic-tac-toe program.

Listing 3.42: do/while Loop Example

// Repeatedly request player to move until he

// enter a valid position on the board.

do

{

 valid = false;

 // Request a move from the current player.

 System.Console.Write(

 "\nplayer {O}: Enter move:", currentplayer);

 input = System.Console.ReadLine();

 // Check the current player's input.

 // ...

} while (!valid);

In Listing 3.42, you always initialize valid to false at the beginning of
each iteration, or loop repetition. Next, you prompt and retrieve the num-
ber the user input. Although not shown here, you then check whether the
input was correct, and if it was, you assign valid equal to true. Since the
code uses a do/while statement rather than a while statement, the user
will be prompted for input at least once.

The general form of the do/while loop is as follows:

 do

 statement

 while(boolean-expression);

As with all the control flow statements, the code blocks are not part of
the general form. However, a code block is generally used in place of a sin-
gle statement in order to allow multiple statements.

ptg

Chapter 3: Operators and Control Flow124

The for Loop
Increment and decrement operators are frequently used within a for
loop. The for loop iterates a code block until a specified condition is
reached in a way similar to the while loop. The difference is that the for
loop has built-in syntax for initializing, incrementing, and testing the
value of a counter.

Listing 3.43 shows the for loop used to display an integer in binary
form. The results of this listing appear in Output 3.21.

Listing 3.43: Using the for Loop

public class BinaryConverter
{
 public static void Main()
 {
 const int size = 64;
 ulong value;
 char bit;

 System.Console.Write ("Enter an integer: ");
 // Use long.Parse() so as to support negative numbers
 // Assumes unchecked assignment to ulong.
 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....
 ulong mask = 1ul << size - 1;
 for (int count = 0; count < size; count++)
 {
 bit = ((mask & value) > 0) ? '1': '0';
 System.Console.Write(bit);
 // Shift mask one location over to the right
 mask >>= 1;
 }
 }
}

Listing 3.43 performs a bit mask 64 times, once for each bit in the num-
ber. The for loop declares and initializes the variable count, escapes once
the count reaches 64, and increments the count during each iteration. Each

OUTPUT 3.21:

Enter an integer: -42
11010110

ptg

 Control Flow Statements, Continued 125

expression within the for loop corresponds to a statement. (It is easy to
remember that the separation character between expressions is a semico-
lon and not a comma, because each expression could be a statement.)

You write a for loop generically as follows:

 for(initial; boolean-expression; loop)

 statement

Here is a breakdown of the for loop.

• The initial expression performs operations that precede the first
iteration. In Listing 3.43, it declares and initializes the variable count.
The initial expression does not have to be a declaration of a new
variable. It is possible, for example, to declare the variable beforehand
and simply initialize it in the for loop. Variables declared here, how-
ever, are bound within the scope of the for statement.

• The boolean-expression portion of the for loop specifies an end con-
dition. The loop exits when this condition is false in a manner similar
to the while loop’s termination. The for loop will repeat only as long
as boolean-expression evaluates to true. In the preceding example,
the loop exits when count increments to 64.

• The loop expression executes after each iteration. In the preceding
example, count++ executes after the right shift of the mask (mask >>=
1), but before the Boolean expression is evaluated. During the sixty-
fourth iteration, count increments to 64, causing boolean-expression
to be false and, therefore, terminating the loop. Because each expres-
sion may be thought of as a separate statement, each expression in the
for loop is separated by a semicolon.

• The statement portion of the for loop is the code that executes while
the conditional expression remains true.

If you wrote out each for loop execution step in pseudocode without
using a for loop expression, it would look like this:

1. Declare and initialize count to 0.

2. Verify that count is less than 64.

ptg

Chapter 3: Operators and Control Flow126

3. Calculate bit and display it.

4. Shift the mask.

5. Increment count by one.

6. If count<64, then jump back to line 3.

The for statement doesn’t require any of the elements between paren-
theses. for(;;){ ... } is perfectly valid; although there still needs to be a
means to escape from the loop to avoid executing infinitely. Similarly, the
initial and loop expressions can be a complex expression involving multi-
ple subexpressions, as shown in Listing 3.44.

Listing 3.44: for Loop Using Multiple Expressions

{

 System.Console.Write("{0}{1}{2}\t",

 x, (x>y? '>' : '<'), y);

}

The results of Listing 3.44 appear in Output 3.22.

In this case, the comma behaves exactly as it does in a declaration state-
ment, one that declares and initializes multiple variables. However, pro-
grammers should avoid complex expressions such as this one because they
are difficult to read and understand.

Generically, you can write the for loop as a while loop, as shown here:

 initial;

 while(boolean-expression)

 {

 statement;

 loop;

 }

for(int x=0, y=5; ((x<=5) && (y>=0)); y--, x++)

OUTPUT 3.22:

0<5 1<4 2<3 3>2 4>1 5>0

ptg

 Control Flow Statements, Continued 127

B E G I N N E R T O P I C

Choosing between for and while Loops
Although you can use the two statements interchangeably, generally you
would use the for loop whenever there is some type of counter, and the
total number of iterations is known when the loop is initialized. In con-
trast, you would typically use the while loop when iterations are not based
on a count or when the number of iterations is indeterminate when iterat-
ing commences.

The foreach Loop
The last loop statement within the C# language is foreach. foreach is
designed to iterate through a collection of items, setting a variable to repre-
sent each item in turn. During the loop, operations may be performed on
the item. One feature of the foreach loop is that it is not possible to acci-
dentally miscount and iterate over the end of the collection.

The general form of the foreach statement is as follows:

 foreach(type variable in collection)

 statement;

Here is a breakdown of the foreach statement.

• type is used to declare the data type of the variable for each item
within the collection.

• variable is a read-only variable into which the foreach construct will
automatically assign the next item within the collection. The scope of
the variable is limited to the foreach loop.

• collection is an expression, such as an array, representing multiple
items.

• statement is the code that executes for each iteration within the
foreach loop.

Consider the foreach loop in the context of the simple example shown
in Listing 3.45.

ptg

Chapter 3: Operators and Control Flow128

Listing 3.45: Determining Remaining Moves Using the foreach Loop

class TicTacToe // Declares the TicTacToe class.

{

 static void Main() // Declares the entry point of the program.

 {

 // Hardcode initial board as follows

 // ---+---+---

 // 1 | 2 | 3

 // ---+---+---

 // 4 | 5 | 6

 // ---+---+---

 // 7 | 8 | 9

 // ---+---+---

 char[] cells = {

 '1', '2', '3', '4', '5', '6', '7', '8', '9'

 };

 System.Console.Write(

 "The available moves are as follows: ");

 // Write out the initial available moves

 }

}

Output 3.23 shows the results of Listing 3.45.

When the execution engine reaches the foreach statement, it assigns to the
variable cell the first item in the cells array—in this case, the value '1'. It
then executes the code within the foreach statement block. The if state-
ment determines whether the value of cell is 'O' or 'X'. If it is neither,
then the value of cell is written out to the console. The next iteration then
assigns the next array value to cell, and so on.

 foreach (char cell in cells)

 {

 if (cell != 'O' && cell != 'X')

 {

 System.Console.Write("{0} ", cell);

 }

 }

OUTPUT 3.23:

The available moves are as follows: 1 2 3 4 5 6 7 8 9

ptg

 Control Flow Statements, Continued 129

It is important to note that the compiler prevents modification of the
variable (cell) during the execution of a foreach loop.

B E G I N N E R T O P I C

Where the switch Statement Is More Appropriate
Sometimes you might compare the same value in several continuous if
statements, as shown with the input variable in Listing 3.46.

Listing 3.46: Checking the Player’s Input with an if Statement

// ...

bool valid = false;

// Check the current player's input.

if((input == "1") ||

 (input == "2") ||

 (input == "3") ||

 (input == "4") ||

 (input == "5") ||

 (input == "6") ||

 (input == "7") ||

 (input == "8") ||

 (input == "9"))

{

 // Save/move as the player directed.

 // ...

 valid = true;

}

else if((input == "") || (input == "quit"))

{

 valid = true;

}

else

{

 System.Console.WriteLine(

 "\nERROR: Enter a Value from 1-9."

 + "Push ENTER to quit");

}

// ...

ptg

Chapter 3: Operators and Control Flow130

This code validates the text entered to ensure that it is a valid tic-tac-toe
move. If the value of input were 9, for example, the program would have
to perform nine different evaluations. It would be preferable to jump to the
correct code after only one evaluation. To enable this, you use a switch
statement.

The switch Statement
Given a variable to compare and a list of constant values to compare
against, the switch statement is simpler to read and code than the if state-
ment. The switch statement looks like this:

 switch(test-expression)

 {

 [case option-constant:

 statement

 [default:

 statement]

 }

Here is a breakdown of the switch statement.

• test-expression returns a value that is compatible with the govern-
ing types. Allowable governing data types are sbyte, byte, short,
ushort, int, uint, long, ulong, char, string, and an enum type (cov-
ered in Chapter 8).

• constant is any constant expression compatible with the data type of
the governing type.

• statement is one or more statements to be executed when the govern-
ing type expression equals the constant value. The statement or state-
ments must have no reachable endpoint. In other words, the statement,
or last of the statements if there are more than one, must be a jump
statement such as a break, return, or goto statement. If the switch
statement appears within a loop, then continue is also allowed.

A switch statement should have at least one case statement or a default
statement. In other words, switch(x){} will generate a warning.

Listing 3.47, with a switch statement, is semantically equivalent to the
series of if statements in Listing 3.46.

ptg

 Control Flow Statements, Continued 131

Listing 3.47: Replacing the if Statement with a switch Statement

static bool ValidateAndMove(

 int[] playerPositions, int currentPlayer, string input)

{

 bool valid = false;

 // Check the current player's input.

 switch (input)

 {

 case "1" :

 case "2" :

 case "3" :

 case "4" :

 case "5" :

 case "6" :

 case "7" :

 case "8" :

 case "9" :

 // Save/move as the player directed.

 ...

 valid = true;

 break;

 case "" :

 case "quit" :

 valid = true;

 break;

 default :

 // If none of the other case statements

 // is encountered then the text is invalid.

 System.Console.WriteLine(

 "\nERROR: Enter a value from 1-9."

 + "Push ENTER to quit");

 break;

 }

 return valid;

}

In Listing 3.47, input is the governing type expression. Since input is a
string, all of the constants are strings. If the value of input is 1, 2, ... 9, then
the move is valid and you change the appropriate cell to match that of the
current user’s token (X or O). Once execution encounters a break state-
ment, it immediately jumps to the instruction following the switch
statement.

ptg

Chapter 3: Operators and Control Flow132

The next portion of the switch looks for "" or "quit", and sets valid to
true if input equals one of these values. Ultimately, the default label is
executed if no prior case constant was equivalent to the governing type.

There are several things to note about the switch statement.

• Placing nothing within the switch block will generate a compiler
warning, but the statement will still compile.

• default does not have to appear last within the switch statement.
case statements appearing after default are evaluated.

• When you use multiple constants for one case statement, they should
appear consecutively, as shown in Listing 3.47.

• The compiler requires a jump statement (usually a break).

Jump Statements

It is possible to alter the execution path of a loop. In fact, with jump state-
ments, it is possible to escape out of the loop or to skip the remaining por-
tion of an iteration and begin with the next iteration, even when the
conditional expression remains true. This section considers some of the
ways to jump the execution path from one location to another.

The break Statement
To escape out of a loop or a switch statement, C# uses a break state-
ment. Whenever the break statement is encountered, the execution path

Language Contrast: C++—switch Statement Fall-through

Unlike C++, C# does not allow a switch statement to fall through from one

case block to the next if the case includes a statement. A jump statement

is always required following the statement within a case. The C# founders

believed it was better to be explicit and require the jump statement in favor

of code readability. If programmers want to use a fall-through semantic,

they may do so explicitly with a goto statement, as demonstrated in the

section The goto Statement, later in this chapter.

ptg

 Jump Statements 133

immediately jumps to the first instruction following the loop. Listing 3.48
examines the foreach loop from the tic-tac-toe program.

Listing 3.48: Using break to Escape Once a Winner Is Found

class TicTacToe // Declares the TicTacToe class.

{

 static void Main() // Declares the entry point of the program.

 {

 int winner=0;

 // Stores locations each player has moved.

 int[] playerPositions = {0,0};

 // Hardcoded board position

 // X | 2 | O

 // ---+---+---

 // O | O | 6

 // ---+---+---

 // X | X | X

 playerPositions[0] = 449;

 playerPositions[1] = 28;

 // Determine if there is a winner

 int[] winningMasks = {

 7, 56, 448, 73, 146, 292, 84, 273 };

 // Iterate through each winning mask to determine

 // if there is a winner.

 if ((mask & playerPositions[0]) == mask)

 {

 winner = 1;

 }

 else if ((mask & playerPositions[1]) == mask)

 {

 winner = 2;

 }

 System.Console.WriteLine(

 "Player {0} was the winner", winner);

 }

}

Output 3.24 shows the results of Listing 3.48.

 foreach (int mask in winningMasks)

 {

 break;

 break;

 }

ptg

Chapter 3: Operators and Control Flow134

Listing 3.48 uses a break statement when a player holds a winning posi-
tion. The break statement forces its enclosing loop (or a switch statement)
to cease execution, and the program moves to the next line outside the
loop. For this listing, if the bit comparison returns true (if the board holds
a winning position), the break statement causes execution to jump and dis-
play the winner.

B E G I N N E R T O P I C

Bitwise Operators for Positions
The tic-tac-toe example uses the bitwise operators (Appendix B) to deter-
mine which player wins the game. First, the code saves the positions of
each player into a bitmap called playerPositions. (It uses an array so that
the positions for both players can be saved.)

To begin, both playerPositions are 0. As each player moves, the bit
corresponding to the move is set. If, for example, the player selects cell 3,
shifter is set to 3 – 1. The code subtracts 1 because C# is zero-based and
you need to adjust for 0 as the first position instead of 1. Next, the code
sets position, the bit corresponding to cell 3, using the shift operator
000000000000001 << shifter, where shifter now has a value of 2. Lastly,
it sets playerPositions for the current player (subtracting 1 again to shift
to zero-based) to 0000000000000100. Listing 3.49 uses |= so that previous
moves are combined with the current move.

Listing 3.49: Setting the Bit That Corresponds to Each Player’s Move

int shifter; // The number of places to shift

 // over in order to set a bit.

int position; // The bit which is to be set.

// int.Parse() converts "input" to an integer.

// "int.Parse(input) – 1" because arrays

// are zero-based.

shifter = int.Parse(input) - 1;

// Shift mask of 00000000000000000000000000000001

// over by cellLocations.

OUTPUT 3.24:

Player 1 was the winner

ptg

 Jump Statements 135

position = 1 << shifter;

// Take the current player cells and OR them to set the

// new position as well.

// Since currentPlayer is either 1 or 2,

// subtract one to use currentPlayer as an

// index in a 0-based array.

playerPositions[currentPlayer-1] |= position;

Later in the program, you can iterate over each mask corresponding to
winning positions on the board to determine whether the current player
has a winning position, as shown in Listing 3.48.

The continue Statement
In some instances, you may have a series of statements within a loop. If
you determine that some conditions warrant executing only a portion of
these statements for some iterations, you use the continue statement to
jump to the end of the current iteration and begin the next iteration. The
C# continue statement allows you to exit the current iteration (regardless
of which additional statements remain) and jump to the loop conditional.
At that point, if the loop conditional remains true, the loop will continue
execution.

Listing 3.50 uses the continue statement so that only the letters of the
domain portion of an email are displayed. Output 3.25 shows the results of
Listing 3.50.

Listing 3.50: Determining the Domain of an Email Address

class EmailDomain

{

 static void Main()

 {

 string email;

 bool insideDomain = false;

 System.Console.WriteLine("Enter an email address: ");

 email = System.Console.ReadLine();

 System.Console.Write("The email domain is: ");

 // Iterate through each letter in the email address.

 foreach (char letter in email)

 {

ptg

Chapter 3: Operators and Control Flow136

 if (!insideDomain)

 {

 if (letter == '@')

 {

 insideDomain = true;

 }

 continue;

 }

 System.Console.Write(letter);

 }

 }

}

In Listing 3.50, if you are not yet inside the domain portion of the email
address, you need to use a continue statement to jump to the next charac-
ter in the email address.

In general, you can use an if statement in place of a continue state-
ment, and this is usually more readable. The problem with the continue
statement is that it provides multiple exit points within the iteration, and
this compromises readability. In Listing 3.51, the sample has been rewrit-
ten, replacing the continue statement with the if/else construct to dem-
onstrate a more readable version that does not use the continue statement.

Listing 3.51: Replacing a continue with an if Statement

foreach (char letter in email)

{

 if (insideDomain)

 {

 System.Console.Write(letter);

 }

 else

 {

 if (letter == '@')

 {

 insideDomain = true;

 }

 }

}

OUTPUT 3.25:

Enter an email address:

mark@dotnetprogramming.com

The email domain is: dotnetprogramming.com

ptg

 Jump Statements 137

The goto Statement
With the advent of object-oriented programming and the prevalence of
well-structured code, the existence of a goto statement within C# seems
like an aberration to many experienced programmers. However, C# sup-
ports goto, and it is the only method for supporting fall-through within a
switch statement. In Listing 3.52, if the /out option is set, code execution
jumps to the default case using the goto statement; similarly for/f.

Listing 3.52: Demonstrating a switch with goto Statements

// ...

static void Main(string[] args)

{

 bool isOutputSet = false;

 bool isFiltered = false;

 foreach (string option in args)

 {

 switch (option)

 {

 case "/out":

 isOutputSet = true;

 isFiltered = false;

 case "/f":

 isFiltered = true;

 isRecursive = false;

 default:

 if (isRecursive)

 {

 // Recurse down the hierarchy

 // ...

 }

 else if (isFiltered)

 {

 // Add option to list of filters.

 // ...

 }

 break;

 }

 }

 // ...

}

 goto default;

 goto default;

ptg

Chapter 3: Operators and Control Flow138

Output 3.26 shows the results of Listing 3.52.

As demonstrated in Listing 3.52, goto statements are ugly. In this particu-
lar example, this is the only way to get the desired behavior of a switch state-
ment. Although you can use goto statements outside switch statements,
they generally cause poor program structure and you should deprecate them
in favor of a more readable construct. Note also that you cannot use a goto
statement to jump from outside a switch statement into a label within a
switch statement. More generally, C# prevents using goto into something,
and allows its use only within or out of something. By making this restriction,
C# avoids most of the serious goto abuses available in other languages.

C# Preprocessor Directives

Control flow statements evaluate conditional expressions at runtime. In
contrast, the C# preprocessor is invoked during compilation. The prepro-
cessor commands are directives to the C# compiler, specifying the sections
of code to compile or identifying how to handle specific errors and warn-
ings within the code. C# preprocessor commands can also provide direc-
tives to C# editors regarding the organization of code.

OUTPUT 3.26:

C:\SAMPLES>Generate /out fizbottle.bin /f "*.xml" "*.wsdl"

Language Contrast: C++—Preprocessing

Languages such as C and C++ contain a preprocessor, a separate utility

from the compiler that sweeps over code, performing actions based on

special tokens. Preprocessor directives generally tell the compiler how to

compile the code in a file and do not participate in the compilation process

itself. In contrast, the C# compiler handles preprocessor directives as part

of the regular lexical analysis of the source code. As a result, C# does not

support preprocessor macros beyond defining a constant. In fact, the term

preprocessor is generally a misnomer for C#.

ptg

 C# Preprocessor Directives 139

Each preprocessor directive begins with a hash symbol (#), and all
preprocessor directives must appear on one line. A newline rather than a
semicolon indicates the end of the directive.

A list of each preprocessor directive appears in Table 3.4.

TABLE 3.4: Preprocessor Directives

Statement or
Expression General Syntax Structure Example

#if directive #if preprocessor-expression

 code

#endif

#if CSHARP2

 Console.Clear();

#endif

#elif directive #if preprocessor-expression1

 code

#elif preprocessor-expression2

 code

#endif

#if LINUX

...

#elif WINDOWS

...

#endif

#else directive #if

 code

#else

 code

#endif

#if CSHARP1

...

#else

...

#endif

#define directive #define conditional-symbol #define CSHARP2

#undef directive #undef conditional-symbol #undef CSHARP2

#error directive #error preproc-message #error Buggy

implementation

#warning

directive
#warning preproc-message #warning Needs

code review

#pragma directive #pragma warning #pragma warning

disable 1030

#line directive #line org-line new-line

#line default

#line 467

"TicTacToe.cs"

...

#line default

#region directive #region pre-proc-message

 code

#endregion

#region Methods

 ...

#endregion

ptg

Chapter 3: Operators and Control Flow140

Excluding and Including Code (#if, #elif, #else, #endif)
Perhaps the most common use of preprocessor directives is in controlling
when and how code is included. For example, to write code that could be
compiled by both C# 2.0 and later compilers and the prior version 1.2 com-
pilers, you use a preprocessor directive to exclude C# 2.0-specific code
when compiling with a 1.2 compiler. You can see this in the tic-tac-toe
example and in Listing 3.53.

Listing 3.53: Excluding C# 2.0 Code from a C# 1.x Compiler

#if CSHARP2

System.Console.Clear();

#endif

In this case, you call the System.Console.Clear() method, which is avail-
able only in the 2.0 CLI version and later. Using the #if and #endif prepro-
cessor directives, this line of code will be compiled only if the preprocessor
symbol CSHARP2 is defined.

Another use of the preprocessor directive would be to handle differ-
ences among platforms, such as surrounding Windows- and Linux-specific
APIs with WINDOWS and LINUX #if directives. Developers often use these
directives in place of multiline comments (/*...*/) because they are easier
to remove by defining the appropriate symbol or via a search and replace.
A final common use of the directives is for debugging. If you surround code
with an #if DEBUG, you will remove the code from a release build on most
IDEs. The IDEs define the DEBUG symbol by default in a debug compile and
RELEASE by default for release builds.

To handle an else-if condition, you can use the #elif directive within
the #if directive, instead of creating two entirely separate #if blocks, as
shown in Listing 3.54.

Listing 3.54: Using #if, #elif, and #endif Directives

#if LINUX

...

#elif WINDOWS

...

#endif

ptg

 C# Preprocessor Directives 141

Defining Preprocessor Symbols (#define, #undef)
You can define a preprocessor symbol in two ways. The first is with the
#define directive, as shown in Listing 3.55.

Listing 3.55: A #define Example

#define CSHARP2

The second method uses the define option when compiling for .NET,
as shown in Output 3.27.

Output 3.28 shows the same functionality using the Mono compiler.

To add multiple definitions, separate them with a semicolon. The
advantage of the define complier option is that no source code changes are
required, so you may use the same source files to produce two different
binaries.

To undefine a symbol you use the #undef directive in the same way you
use #define.

Emitting Errors and Warnings (#error, #warning)
Sometimes you may want to flag a potential problem with your code. You
do this by inserting #error and #warning directives to emit an error or
warning, respectively. Listing 3.56 uses the tic-tac-toe sample to warn that
the code does not yet prevent players from entering the same move multi-
ple times. The results of Listing 3.56 appear in Output 3.29.

OUTPUT 3.27:

>csc.exe /define:CSHARP2 TicTacToe.cs

OUTPUT 3.28:

>mcs.exe -define:CSHARP2 TicTacToe.cs

ptg

Chapter 3: Operators and Control Flow142

Listing 3.56: Defining a Warning with #warning

#warning "Same move allowed multiple times."

By including the #warning directive, you ensure that the compiler will
report a warning, as shown in Output 3.29. This particular warning is a
way of flagging the fact that there is a potential enhancement or bug
within the code. It could be a simple way of reminding the developer of a
pending task.

Turning Off Warning Messages (#pragma)
Warnings are helpful because they point to code that could potentially be
troublesome. However, sometimes it is preferred to turn off particular
warnings explicitly because they can be ignored legitimately. C# 2.0 and
later compilers provide the preprocessor #pragma directive for just this
purpose (see Listing 3.57).

Listing 3.57: Using the Preprocessor #pragma Directive to Disable the #warning Directive

#pragma warning disable 1030

Note that warning numbers are prefixed with the letters CS in the compiler
output. However, this prefix is not used in the #pragma warning directive.
The number corresponds to the warning error number emitted by the com-
piler when there is no preprocessor command.

To reenable the warning, #pragma supports the restore option follow-
ing the warning, as shown in Listing 3.58.

Listing 3.58: Using the Preprocessor #pragma Directive to Restore a Warning

#pragma warning restore 1030

OUTPUT 3.29:

Performing main compilation...

...\tictactoe.cs(471,16): warning CS1030: #warning: ’"Same move allowed

multiple times."’

Build complete -- 0 errors, 1 warnings

ptg

 C# Preprocessor Directives 143

In combination, these two directives can surround a particular block of
code where the warning is explicitly determined to be irrelevant.

Perhaps one of the most common warnings to disable is CS1591, as this
appears when you elect to generate XML documentation using the /doc
compiler option, but you neglect to document all of the public items within
your program.

nowarn:<warn list> Option
In addition to the #pragma directive, C# compilers generally support the
nowarn:<warn list> option. This achieves the same result as #pragma,
except that instead of adding it to the source code, you can insert the com-
mand as a compiler option. In addition, the nowarn option affects the entire
compilation, and the #pragma option affects only the file in which it
appears. Turning off the CS1591 warning, for example, would appear on
the command line as shown in Output 3.30.

Specifying Line Numbers (#line)
The #line directive controls on which line number the C# compiler reports
an error or warning. It is used predominantly by utilities and designers
that emit C# code. In Listing 3.59, the actual line numbers within the file
appear on the left.

Listing 3.59: The #line Preprocessor Directive

124 #line 113 "TicTacToe.cs"

125 #warning "Same move allowed multiple times."

126 #line default

Including the #line directive causes the compiler to report the warning
found on line 125 as though it was on line 113, as shown in the compiler
error message shown in Output 3.31.

OUTPUT 3.30:

> csc /doc:generate.xml /nowarn:1591 /out:generate.exe Program.cs

ptg

Chapter 3: Operators and Control Flow144

Following the #line directive with default reverses the effect of all prior
#line directives and instructs the compiler to report true line numbers
rather than the ones designated by previous uses of the #line directive.

Hints for Visual Editors (#region, #endregion)
C# contains two preprocessor directives, #region and #endregion, that are
useful only within the context of visual code editors. Code editors, such as
the one in the Microsoft Visual Studio .NET IDE, can search through
source code and find these directives to provide editor features when writ-
ing code. C# allows you to declare a region of code using the #region
directive. You must pair the #region directive with a matching #endregion
directive, both of which may optionally include a descriptive string follow-
ing the directive. In addition, you may nest regions within one another.

Again, Listing 3.60 shows the tic-tac-toe program as an example.

Listing 3.60: A #region and #endregion Preprocessor Directive

...

#region Display Tic-tac-toe Board

#if CSHARP2

 System.Console.Clear();

#endif

// Display the current board;

border = 0; // set the first border (border[0] = "|")

// Display the top line of dashes.

// ("\n---+---+---\n")

System.Console.Write(borders[2]);

foreach (char cell in cells)

{

 // Write out a cell value and the border that comes after it.

 System.Console.Write(" {0} {1}", cell, borders[border]);

 // Increment to the next border;

OUTPUT 3.31:

Performing main compilation...

.../tictactoe.cs(113,18): warning CS1030: #warning: ’"Same move allowed

multiple times."’

Build complete -- 0 errors, 1 warnings

ptg

 Summary 145

 border++;

 // Reset border to 0 if it is 3.

 if (border == 3)

 {

 border = 0;

 }

}

#endregion Display Tic-tac-toe Board

...

One example of how these preprocessor directives are used is with
Microsoft Visual Studio .NET. Visual Studio .NET examines the code and
provides a tree control to open and collapse the code (on the left-hand side
of the code editor window) that matches the region demarcated by the
#region directives (see Figure 3.5).

SUMMARY

This chapter began with an introduction to the C# operators related to
assignment and arithmetic. Next, you used the operators along with the
const keyword to declare constant expressions. Coverage of all of the C#

Figure 3.5: Collapsed Region in Microsoft Visual Studio .NET

ptg

Chapter 3: Operators and Control Flow146

operators was not sequential, however. Before discussing the relational and
logical comparison operators, the chapter introduced the if statement and
the important concepts of code blocks and scope. To close out the coverage
of operators I discussed the bitwise operators, especially regarding masks.

Operator precedence was discussed earlier in the chapter, but Table 3.5
summarizes the order of precedence across all operators, including several
that are not yet covered.

* Rows appear in order of precedence from highest to lowest.

TABLE 3.5: Operator Order of Precedence*

Category Operators

Primary x.y f(x) a[x] x++ x-- new

typeof(T) checked(x) unchecked(x) default(T)

delegate{} ()

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational and type
testing

< > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Null coalescing ??

Conditional ?:

Assignment = => *= /= %= += -= <<= >>= &= ^= |=

ptg

 Summary 147

Given coverage of most of the operators, the next topic was control flow
statements. The last sections of the chapter detailed the preprocessor direc-
tives and the bit operators, which included code blocks, scope, Boolean
expressions, and bitwise operators.

Perhaps one of the best ways to review all of the content covered in
Chapters 1–3 is to look at the tic-tac-toe program found in Appendix B. By
reviewing the program, you can see one way in which you can combine all
that you have learned into a complete program.

ptg

This page intentionally left blank

ptg

149

4
Methods and Parameters

ROM WHAT YOU HAVE LEARNED about C# programming so far you
should be able to write straightforward programs consisting of a list of

statements, similar to the way programs were created in the 1970s. Pro-
gramming has come a long way since the 1970s; as programs became more
complex, new paradigms were needed to manage that complexity. “Proce-
dural” or “structured” programming provides a construct into which
statements are grouped together to form a unit. Furthermore, with struc-
tured programming, it is possible to pass data to a group of statements and
then have data returned once the statements have executed.

This chapter covers how to group statements together into a method. In
addition, it covers how to call a method, including how to pass data to a
method and receive data from a method.

F

2

34

5

6 1

Methods and
Parameters

Calling
a Method

Namespace

Type Name

Scope

Method Name

Parameters

Method Return

Declaring
a Method

The Using
Directive

Aliasing
Parameters

Value Parameters

Reference Parameters (ref)

Output Parameters (out)

Parameter Arrays (params)
Optional Parameters

Method
Overloading

Exception
Handling

ptg

Chapter 4: Methods and Parameters150

Besides the basics of calling and defining methods, this chapter also
covers some slightly more advanced concepts—namely, recursion and
method overloading, along with some new C# 4 features, namely optional
and named parameters. All method calls discussed so far and through the
end of this chapter are static (a concept which Chapter 5 explores in detail).

Even as early as the HelloWorld program in Chapter 1, you learned
how to define a method. In that example, you defined the Main() method.
In this chapter, you will learn about method creation in more detail,
including the special C# syntax for parameters that pass data to and from a
method (ref) using a single parameter, as well as parameters that only
pass data out from a method (out). Lastly, I will touch on some rudimen-
tary error handling.

Calling a Method

B E G I N N E R T O P I C

What Is a Method?
Up to this point, all of the statements in the programs you have written
have appeared together in one grouping called a Main() method. As pro-
grams become even minimally larger, a single method implementation
quickly becomes difficult to maintain and complex to read through and
understand.

A method is a means of grouping together a sequence of statements to
perform a particular action or compute a particular result. This provides
greater structure and organization for the statements that comprise a pro-
gram. Consider, for example, a Main() method that counts the lines of
source code in a directory. Instead of having one large Main() method, you
can provide a shorter version that allows you to hone in on the details of
each method implementation as necessary. Listing 4.1 shows an example.

Listing 4.1: Grouping Statements into Methods

class LineCount

{

 static void Main()

 {

 int lineCount;

 string files;

ptg

 Calling a Method 151

 DisplayHelpText();

 files = GetFiles();

 lineCount = CountLines(files);

 DisplayLineCount(lineCount);

 }

 // ...

}

Instead of placing all of the statements into Main(), the listing breaks them
into groups called methods. Statements related to displaying the help text,
a group of System.Console.WriteLine() statements, have been moved to
the DisplayHelpText() method. All of the statements used to determine
which files to count appear in the GetFiles() method. To actually count
the files, the code calls the CountLines() method before displaying the
results using the DisplayLineCount() method. With a quick glance, it is
easy to review the code and gain an overview, because the method name
describes the implementation.

A method is always associated with a class, and the class provides a
means of grouping related methods together. Calling a method is concep-
tually the same as sending a message to a class.

Methods can receive data via parameters. Parameters are variables used
for passing data from the caller (the method containing the method call) to
the target method (Write(), WriteLine(), GetFiles(), CountLines(), and
so on). In Listing 4.1, files and lineCount are examples of parameters
passed to the CountLines() and DisplayLineCount() methods. Methods
can also return data back to the caller via a return value (in Listing 4.1, the
GetFiles() method call has a return value that is assigned to files).

To begin, you will reexamine System.Console.Write(), System.Con-
sole.WriteLine(), and System.Console.ReadLine() from Chapter 1. This
time, look at them as examples of method calls in general, instead of looking
at the specifics of printing and retrieving data from the console. Listing 4.2
shows each of the three methods in use.

Listing 4.2: A Simple Method Call

class HeyYou
{
static void Main()

 {

ptg

Chapter 4: Methods and Parameters152

}

The parts of the method call include the namespace, type name, method
name, parameters, and return data type. A period separates each part of a
fully qualified method name.

Namespace
The first item in the method call is the namespace. The namespace is a cat-
egorization mechanism for grouping all types related to a particular func-
tionality. Typically you want an outer namespace to be a company name,
and then a product name, and then the functional area: Micro-

soft.Win32.Networking. The namespace helps to avoid type name colli-
sions. For example, the compiler can distinguish between two types with
the name “Program” as long as each type has a different namespace. The
result is that the Main method in each class could be referred to using
Awl.Windows.Program.Main() or Awl.Console.Program.Main().

System.Collections, System.Collections.Generics, System.IO, and
System.Runtime.Serialization.Formatters are valid names for a
namespace. Namespaces can include periods within their names. This
enables the namespaces to give the appearance of being hierarchical. This
improves human readability only, since the compiler treats all namespaces
at a single level. For example, System.Collections.Generics appears
within the System.Collections namespace hierarchy, but to the compiler
these are simply two entirely different namespaces.

 string firstName;
 string lastName;

 System.Console.WriteLine("Hey you!");

 System.Console.Write("Enter your first name: ");

 firstName = System.Console.ReadLine();

 System.Console.Write("Enter your last name: ");
 lastName = System.Console.ReadLine();

 System.Console.WriteLine("Your full name is {0} {1}.",
 firstName, lastName);
 }

Parameters

Type Name

Namespace Method Name

ptg

 Calling a Method 153

In Listing 4.2, the namespace for the Console type is System. The System
namespace contains the types that enable the programmer to perform
many fundamental programming activities. Virtually all C# programs use
types within the System namespace. Table 4.1 provides a listing of other
common namespaces.

TABLE 4.1: Common Namespaces

Namespace Description

System Contains the definition of fundamental types, conver-
sion between types, mathematics, program invocation,
and environment management.

System.

Collections

Includes types for working with collections of objects.
Collections can generally follow either list or dictionary
type storage mechanisms.

System.

Collections.

Generics

This C# 2.0 added namespace works with strongly
typed collections that depend on generics (type
parameters).

System.Data Contains types used for working with data that is stored
within a database.

System.Drawing Contains types for drawing to the display device and
working with images.

System.IO Contains types for working with files and directories
and provides capabilities for manipulating, loading, and
saving files.

System.Linq Provides classes and interfaces for querying data in col-
lections using a C# 3.0 added API, Language Integrated
Query.

System.Text Includes types for working with strings and various text
encodings, and for converting between those encodings.
This namespace includes a subnamespace called
System.Text.RegularExpressions, which provides
access to regular-expression-related APIs.

System.Threading Handles thread manipulation and multithreaded
programming.

System.

Threading.Tasks

A family of classes for working with Threads that first
appeared in .NET 4.

Continues

ptg

Chapter 4: Methods and Parameters154

It is not always necessary to provide the namespace when calling a
method. For example, if you use a type in the same namespace as the target
method, then the compiler can infer the namespace to be the same as the
caller’s namespace. Later in this chapter, you will see how the using direc-
tive avoids the need for a namespace qualifier as well.

Type Name
Calls to static methods (Chapter 5 covers static versus instance methods)
require the type name qualifier as long as the target method is not within
the same class1 (such as a call from HelloWorld.Main() to Console.Write-
Line()). However, just as with the namespace, C# allows the elimination
of the type name from a method call whenever the method is available on
the containing type. (Examples of method calls such as this appear in List-
ing 4.4.) The type name is unnecessary because the compiler infers the type
from the calling method. If the compiler can make no such inference, the
name must be provided as part of the method call.

At their core, types are a means of grouping together methods and their
associated data. For example, Console is the type name that contains the
Write(), WriteLine(), and ReadLine() methods (among others). All
of these methods are in the same “group” because they belong to the
Console type.

Namespace Description

System.Web A collection of types that enable browser-to-server com-
munication, generally over HTTP. The functionality
within this namespace is used to support a .NET tech-
nology called ASP.NET.

System.Web.

Services

Contains types that send and retrieve data over HTTP
using the Simple Object Access Protocol (SOAP).

System.

Windows.Forms

Includes types for creating rich user interfaces and the
components within them.

System.Xml Contains standards-based support for XML processing.

1. Or base class.

TABLE 4.1: Common Namespaces (Continued)

ptg

 Calling a Method 155

Scope
You already learned that the parent code block bounds declaration and visi-
bility. Scope defines the inferred call context. A method call between two
methods in the same type does not require the type qualifier because an item
may be referred to by its unqualified name if it is in scope. Similarly, calls
between two types in the same namespace do not require the namespace
qualifier because the scope, in this case the namespace, is the same.

Method Name
After specifying which type contains the method you wish to call, it is time
to identify the method itself. C# always uses a period between the type
name and the method name, and a pair of parentheses following the
method name. Between the parentheses must appear any parameters that
the method requires.

Parameters
All methods can have any number of parameters, and each parameter in
C# is of a specific data type. For example, the following method call, used
in Listing 4.2, has three parameters:

 System.Console.WriteLine(

 "Your full name is {1} {0}", lastName, firstName)

The first is a string and the second two are of type object. Although you
pass parameter values of type string for the second two parameters as
well, the compiler allows this because all types, including string, are com-
patible with the data type object.

Method Return
In contrast to System.Console.WriteLine(), System.Console.ReadLine()
in Listing 4.2 does not have any parameters. However, this method
happens to have a method return. The method return is a means of trans-
ferring results from a called method back to the caller. Because System.
Console.ReadLine() has a return, it is possible to assign the return value
to the variable firstName. In addition, it is possible to pass this method
return as a parameter, as shown in Listing 4.3.

ptg

Chapter 4: Methods and Parameters156

Listing 4.3: Passing a Method Return as a Parameter to Another Method Call

class Program

{

 static void Main()

 {

 System.Console.Write("Enter your first name: ");

 System.Console.WriteLine("Hello {0}!",

 }

}

Instead of assigning a variable and then using it in the call to Sys-
tem.Console.WriteLine(), Listing 4.3 calls the System.Console.Read-
Line() method within the call to System.Console.WriteLine(). At
execution time, the System.Console.ReadLine() method executes first
and its return is passed directly into the System.Console.WriteLine()
method, rather than into a variable.

Not all methods return data. Both versions of System.Console.Write()
and System.Console.WriteLine() are examples of such methods. As you
will see shortly, these methods specify a return type of void just as the Hel-
loWorld declaration of Main returned void.

Statement versus Method Call
Listing 4.3 provides a demonstration of the difference between a statement
and a method call. Although System.Console.WriteLine("Hello {0}!",
System.Console.ReadLine()); is a single statement, it contains two
method calls. A statement generally contains one or more expressions, and
in this example, each expression is a method call. Therefore, method calls
form parts of statements.

Although coding multiple method calls in a single statement often
reduces the amount of code, it does not necessarily increase the readability
and seldom offers a significant performance advantage. Developers
should favor readability over brevity.

System.Console.ReadLine());

NOTE

In general, developers should favor readability over brevity. Readabil-
ity is critical to writing code that is self-documenting and, therefore,
more maintainable over time.

ptg

 Declaring a Method 157

Declaring a Method

This section expands on the explanation of declaring a method (such as
Main()) to include any parameter or a return type. Listing 4.4 contains
examples of these concepts, and Output 4.1 shows the results.

Listing 4.4: Declaring a Method

class IntroducingMethods

{

 static void Main()

 {

 string firstName;

 string lastName;

 string fullName;

 System.Console.WriteLine("Hey you!");

 firstName = GetUserInput("Enter your first name: ");

 lastName = GetUserInput("Enter your last name: ");

 fullName = GetFullName(firstName, lastName);

 DisplayGreeting(fullName);

 }

 static string GetUserInput(string prompt)

 {

 System.Console.Write(prompt);

 return System.Console.ReadLine();

 }

 static string GetFullName(string firstName, string lastName)

 {

 return firstName + " " + lastName;

 }

 static void DisplayGreeting(string name)

 {

 System.Console.WriteLine("Your full name is {0}.", name);

 return;

 }

}

OUTPUT 4.1:

Hey you!

Enter your first name: Inigo

Enter your last name: Montoya

Your full name is Inigo Montoya.

ptg

Chapter 4: Methods and Parameters158

Four methods are declared in Listing 4.4. From Main() the code calls
GetUserInput(), followed by a call to GetFullName(). Both of these meth-
ods return a value and take parameters. In addition, the listing calls Dis-
playGreeting(), which doesn’t return any data. No method in C# can exist
outside the confines of an enclosing class. Even the Main method examined
in Chapter 1 must be within a class.

B E G I N N E R T O P I C

Refactoring into Methods
Moving a set of statements into a method instead of leaving them inline
within a larger method is a form of refactoring. Refactoring reduces code
duplication, because you can call the method from multiple places
instead of duplicating the code. Refactoring also increases code readabil-
ity. As part of the coding process, it is a best practice to continually
review your code and look for opportunities to refactor. This involves
looking for blocks of code that are difficult to understand at a glance and
moving them into a method with a name that clearly defines the code’s
behavior. This practice is often preferred over commenting a block of
code, because the method name serves to describe what the implementa-
tion does.

For example, the Main() method that is shown in Listing 4.4 results in
the same behavior as does the Main() method that is shown in Listing 1.15
in Chapter 1. Perhaps even more noteworthy is that although both listings
are trivial to follow, Listing 4.4 is easier to grasp at a glance by just viewing
the Main() method and not worrying about the details of each called
method’s implementation.

Language Contrast: C++/Visual Basic—Global Methods

C# provides no global method support; everything must appear within

a class definition. This is why the Main() method was marked as

static—the C# equivalent of a C++ global and Visual Basic module

method.

ptg

 Declaring a Method 159

Parameter Declaration
Consider the declaration of the DisplayGreeting() and GetFullName()
methods. The text that appears between the parentheses of a method dec-
laration is the parameter list. Each parameter in the parameter list includes
the type of the parameter along with the parameter name. A comma sepa-
rates each parameter in the list.

Behaviorally, parameters are virtually identical to local variables, and
the naming convention of parameters follows accordingly. Therefore,
parameter names are camel case. Also, it is not possible to declare a local
variable (a variable declared inside a method) with the same name as a
parameter of the containing method, because this would create two “local
variables” of the same name.

Method Return Declaration
In addition to GetUserInput() and GetFullName() requiring parameters to
be specified, both of these methods also include a method return. You can
tell there is a method return because a data type appears immediately
before the method name of the method declaration. For both GetUser-
Input() and GetFullName(), the data type is string. Unlike parameters,
only one method return is allowable.

Once a method includes a return data type, and assuming no error
occurs, it is necessary to specify a return statement for each code path (or
set of statements that may execute consecutively) within the method decla-
ration. A return statement begins with the return keyword followed by the
value the method is returning. For example, the GetFullName() method’s
return statement is return firstName + " " + lastName. The C# compiler
makes it imperative that the return type match the type of the data speci-
fied following the return keyword.

Return statements can appear in spots other than at the end of a method
implementation, as long as all code paths include a return if the method
has a return type. For example, an if or switch statement at the beginning
of a method implementation could include a return statement within the
conditional or case statement; see Listing 4.5 for an example.

Listing 4.5: A return Statement before the End of a Method

class Program

{

 static void Main()

ptg

Chapter 4: Methods and Parameters160

 {

 string command;

 //...

 switch(command)

 {

 case "quit":

 return;

 // ...

 }

 // ...

 }

}

A return statement indicates a jump to the end of the method, so no
break is required in a switch statement. Once the execution encounters a
return, the method call will end.

If particular code paths include statements following the return, the com-
piler will issue a warning that indicates that the additional statements will
never execute. In spite of the C# allowance for early returns, code is generally
more readable and easier to maintain if there is a single exit location rather
than multiple returns sprinkled through various code paths of the method.

Specifying void as a return type indicates that there is no return from the
method. As a result, the method does not support assignment to a variable or
use as a parameter type at the call site. Furthermore, the return statement
becomes optional, and when it is specified, there is no value following the
return keyword. For example, the return of Main() in Listing 4.4 is void and
there is no return statement within the method. However, DisplayGreet-
ing() includes a return statement that is not followed by any returned result.

Language Contrast: C++—Header Files

Unlike C++, C# classes never separate the implementation from the declara-

tion. In C# there is no header (.h) file or implementation (.cpp) file. Instead,

declaration and implementation appear together in the same file. Starting

with C# 2.0, it is possible to spread a class across multiple files known as

partial types. However, even then the declaration of a method and the imple-

mentation of that method must remain together. For C# to declare types and

methods inline makes a cleaner and more maintainable language.

ptg

 The using Directive 161

B E G I N N E R T O P I C

Namespaces
Namespaces are an organizational mechanism for all types. They provide
a nested grouping mechanism so that types may be categorized. Develop-
ers will discover related types by examining other types within the same
namespace as the initial type. Additionally, through namespaces, two or
more types may have the same name as long as they are disambiguated by
different namespaces.

The using Directive

It is possible to import types from one namespace into the parent
namespace code block or the entire file if there is no parent code block. As
a result, it would not be necessary for the programmer to fully qualify a
type. To achieve this, the C# programmer includes a using directive, gen-
erally at the top of the file. For example, in Listing 4.6, Console is not pre-
fixed with System. Instead, it includes the using directive, using System, at
the top of the listing.

Listing 4.6: using Directive Example

// The using directive imports all types from the

// specified namespace into the entire file.

class HelloWorld

{

 static void Main()

 {

 // No need to qualify Console with System

 // because of the using directive above.

 }

}

The results of Listing 4.6 appear in Output 4.2.

using System;

 Console.WriteLine("Hello, my name is Inigo Montoya");

OUTPUT 4.2:

Hello, my name is Inigo Montoya

ptg

Chapter 4: Methods and Parameters162

Namespaces are nested. That means that a using directive such as
using System does not enable the omission of System from a method
within a more specific namespace. If code accessed a type within the
System.Text namespace, for example, you would have to either include
an additional using directive for System.Text, or fully qualify the type.
The using directive does not import any nested namespaces. Nested
namespaces, identified by the period in the namespace, need to be
imported explicitly.

Typically, prevalent use of types within a particular namespace results
in a using directive for that namespace, instead of fully qualifying all types
within the namespace. Following this tendency, virtually all files include
the using System directive at the top. Throughout the remainder of this
book, code listings will often omit the using System directive. Other
namespace directives will be included explicitly, however.

One interesting effect of the using System directive is that the string
data type can be identified with varying case: String or string. The

Language Contrast: Java—Wildcards in import Directive

Java allows for importing namespaces using a wildcard such as:

 import javax.swing.*;

In contrast, C# does not support a wildcard using directive, and instead

requires each namespace to be imported explicitly.

Language Contrast: Visual Basic .NET—Project Scope
Imports Directive

Unlike C#, Visual Basic .NET supports the ability to specify the using direc-

tive equivalent, Imports, for an entire project, rather than just for a spe-

cific file. In other words, Visual Basic .NET provides a command-line means

of the using directive that will span an entire compilation.

ptg

 The using Directive 163

former version relies on the using System directive and the latter uses the
string keyword. Both are valid C# references to the System.String data
type, and the resultant CIL code is unaffected by which version is chosen.2

A D V A N C E D T O P I C

Nested using Declaratives
Not only can you have using declaratives at the top of a file, but you also can
include them at the top of a namespace declaration. For example, if a new
namespace, Awl.Michaelis.EssentialCSharp, were declared, it would be
possible to add a using declarative at the top of the namespace declaration
(see Listing 4.7).

Listing 4.7: Specifying the using Directive inside a Namespace Declaration

namespace Awl.Michaelis.EssentialCSharp

{

 class HelloWorld

 {

 static void Main()

 {

 // No need to qualify Console with System

 // because of the using directive above.

 }

 }

}

The results of Listing 4.7 appear in Output 4.3.

The difference between placing the using declarative at the top of a file
rather than at the top of a namespace declaration is that the declarative is

2. I prefer the string keyword, but whichever representation a programmer selects, ideally
code within a project should be consistent.

 using System;

 Console.WriteLine("Hello, my name is Inigo Montoya");

OUTPUT 4.3:

Hello, my name is Inigo Montoya

ptg

Chapter 4: Methods and Parameters164

active only within the namespace declaration. If the code includes a
new namespace declaration above or below the Awl.Michaelis.Essen-
tialCSharp declaration, then the using System directive within a different
namespace would not be active. Code seldom is written this way, espe-
cially given the standard practice of a single type declaration per file.

Aliasing
The using directive also has a provision for aliasing a namespace or type.
An alias is an alternative name that you can use within the text to which
the using directive applies. The two most common reasons for aliasing are
to disambiguate two types that have the same name and to abbreviate
a long name. In Listing 4.8, for example, the CountDownTimer alias is
declared as a means of referring to the type System.Timers.Timer. Simply
adding a using System.Timers directive will not sufficiently enable the
code to avoid fully qualifying the Timer type. The reason is that Sys-
tem.Threading also includes a type called Timer, and therefore, just using
Timer within the code will be ambiguous.

Listing 4.8: Declaring a Type Alias

using System;

class HelloWorld

{

 static void Main()

 {

 // ...

 }

}

Listing 4.8 uses an entirely new name, CountDownTimer, as the alias. It is
possible, however, to specify the alias as Timer, as shown in Listing 4.9.

Listing 4.9: Declaring a Type Alias with the Same Name

using System;

using System.Threading;

using System.Threading;

using CountDownTimer = System.Timers.Timer;

 CountDownTimer timer;

// Declare alias Timer to refer to System.Timers.Timer to

// avoid code ambiguity with System.Threading.Timer

ptg

 Returns and Parameters on Main() 165

class HelloWorld

{

 static void Main()

 {

 // ...

 }

}

Because of the alias directive, “Timer” is not an ambiguous reference. Fur-
thermore, to refer to the System.Threading.Timer type, you will have to
either qualify the type or define a different alias.

Returns and Parameters on Main()

So far, declaration of an executable’s Main() method has been the simplest
declaration possible. You have not included any parameters or return
types in your Main() method declarations. However, C# supports the
ability to retrieve the command-line arguments when executing a pro-
gram, and it is possible to return a status indicator from the Main()
method.

The runtime passes the command-line arguments to Main() using a sin-
gle string array parameter. All you need to do to retrieve the parameters
is to access the array, as demonstrated in Listing 4.10. The purpose of this
program is to download a file whose location is given by a URL. The first
command-line argument identifies the URL, and the optional second argu-
ment is the filename to which to save the file. The listing begins with a
switch statement that evaluates the number of parameters (args.Length)
as follows.

1. If there are zero parameters, display an error indicating that it is
necessary to provide the URL.

2. If there is only one argument, calculate the second argument from the
first argument.

3. The presence of two arguments indicates the user has provided both
the URL of the resource and the download target filename.

using Timer = System.Timers.Timer;

 Timer timer;

ptg

Chapter 4: Methods and Parameters166

Listing 4.10: Passing Command-Line Arguments to Main

using System;

using System.IO;

using System.Net;

class Program

{

 {

 {

 case 0:

 // No URL specified, so display error.

 Console.WriteLine(

 "ERROR: You must specify the "

 + "URL to be downloaded");

 break;

 case 1:

 // No target filename was specified.

 break;

 case 2:

 break;

 }

 if (targetFileName != null)

 {

 WebClient webClient = new WebClient();

 result = 0;

 }

 else

 {

 Console.WriteLine(

 "Downloader.exe <URL> <TargetFileName>");

 result = 1;

 }

 }

 private static string ParseCommandLineArgs(string[] args)

 {

 string targetFileName = null;

 switch (args.Length)

 {

 case 0:

 // No URL specified, so display error.

 Console.WriteLine(

 static int Main(string[] args)

 int result;

 string targetFileName = ParseCommandLineArgs(args);

 switch (args.Length)

 targetFileName = Path.GetFileName(args[0]);

 targetFileName = args[1];

 webClient.DownloadFile(args[0], targetFileName);

 return result;

ptg

 Returns and Parameters on Main() 167

 "ERROR: You must specify the "

 + "URL to be downloaded");

 break;

 case 1:

 // No target filename was specified.

 break;

 case 2:

 break;

 }

 return targetFileName;

 }

}

The results of Listing 4.10 appear in Output 4.4.

If you were successful in calculating the target filename, you would use
it to save the downloaded file. Otherwise, you would display the help text.
The Main() method also returns an int rather than a void. This is optional
for a Main() declaration, but if it is used, the program can return a status
code to a caller, such as a script or a batch file. By convention, a return
other than zero indicates an error.

Although all command-line arguments can be passed to Main() via an
array of strings, sometimes it is convenient to access the arguments from
inside a method other than Main(). The System.Environment.GetCommand-
LineArgs() method returns the command-line arguments array in the
same form that Main(string[] args) passes the arguments into Main().

A D V A N C E D T O P I C

Disambiguate Multiple Main() Methods
If a program includes two classes with Main() methods, it is possible to
specify on the command line which class to use for the Main() declara-
tion. csc.exe includes an /m option to specify the fully qualified class
name of Main().

 targetFileName = Path.GetFileName(args[0]);

 targetFileName = args[1];

OUTPUT 4.4:

>Downloader.exe

ERROR: You must specify the URL to be downloaded

Downloader.exe <URL> <TargetFileName>

ptg

Chapter 4: Methods and Parameters168

B E G I N N E R T O P I C

Call Stack and Call Site
As code executes, methods call more methods that in turn call additional
methods, and so on. In the simple case of Listing 4.4, Main() calls GetUser-
Input(), which in turn calls System.Console.ReadLine(), which in turn
calls even more methods internally. The set of calls within calls within
calls, and so on, is termed the call stack. As program complexity increases,
the call stack generally gets larger and larger as each method calls another
method. As calls complete, however, the call stack shrinks until another
series of methods are invoked. The term for describing the process of
removing calls from the call stack is stack unwinding. Stack unwinding
always occurs in the reverse order of the method calls. The result of
method completion is that execution will return to the call site, which is
the location from which the method was invoked.

Parameters

So far, this chapter’s examples have returned data via the method return.
This section demonstrates the options of returning data via method
parameters and via a variable number of parameters.

B E G I N N E R T O P I C

Matching Caller Variables with Parameter Names
In some of the previous listings, you matched the variable names in the
caller with the parameter names in the callee (target method). This match-
ing is simply for readability; whether names match is entirely irrelevant to
the behavior of the method call.

Value Parameters
By default, parameters are passed by value, which means that the vari-
able’s stack data is copied into the target parameter. For example, in List-
ing 4.11, each variable that Main() uses when calling Combine() will be
copied into the parameters of the Combine() method. Output 4.5 shows the
results of this listing.

ptg

 Parameters 169

Listing 4.11: Passing Variables by Value

class Program

{

 static void Main()

 {

 // ...

 string fullName;

 string driveLetter = "C:";

 string folderPath = "Data";

 string fileName = "index.html";

 fullName = Combine(driveLetter, folderPath, fileName);

 Console.WriteLine(fullName);

 // ...

 }

 static string Combine(

 string driveLetter, string folderPath, string fileName)

 {

 string path;

 path = string.Format("{1}{0}{2}{0}{3}",

 System.IO.Path.DirectorySeparatorChar,

 driveLetter, folderPath, fileName);

 return path;

 }

}

Even if the Combine() method assigns null to driveLetter, folder-
Path, and fileName before returning, the corresponding variables within
Main() will maintain their original values because the variables are copied
when calling a method. When the call stack unwinds at the end of a call,
the copy is thrown away.

A D V A N C E D T O P I C

Reference Types versus Value Types
For the purposes of this section, it is inconsequential whether the parame-
ter passed is a value type or a reference type. The issue is whether the

OUTPUT 4.5:

C:\Data\index.html

ptg

Chapter 4: Methods and Parameters170

target method can assign the caller’s original variable a new value. Since a
copy is made, the caller’s copy cannot be reassigned.

In more detail, a reference type variable contains an address of the
memory location where the data is stored. If a reference type variable is
passed by value, the address is copied from the caller to the method
parameter. As a result, the target method cannot update the caller vari-
able’s address value but it may update the data within the reference type.
Alternatively, if the method parameter is a value type, the value itself is
copied into the parameter, and changing the parameter will not affect the
original caller’s variable.

Reference Parameters (ref)
Consider Listing 4.12, which calls a function to swap two values, and Out-
put 4.6, which shows the results.

Listing 4.12: Passing Variables by Reference

class Program

{

 static void Main()

 {

 // ...

 string first = "first";

 string second = "second";

 System.Console.WriteLine(

 @"first = ""{0}"", second = ""{1}""",

 first, second);

 // ...

 }

 {

 string temp = first;

 first = second;

 second = temp;

 }

}

 Swap(ref first, ref second);

 static void Swap(ref string first, ref string second)

OUTPUT 4.6:

first = "second", second = "first"

ptg

 Parameters 171

The values assigned to first and second are successfully switched,
even though there is no return from the Swap() method. To do this, the
variables are passed by reference. The obvious difference between the call
to Swap() and Listing 4.11’s call to Combine() is the use of the keyword ref
in front of the parameter’s data type. This keyword changes the call type to
be by reference, so the called method can update the original caller’s vari-
able with a new value.

When the called method specifies a parameter as ref, the caller is
required to place ref in front of the variables passed. In so doing, the caller
explicitly recognizes that the target method could reassign any ref param-
eters it receives. Furthermore, it is necessary to initialize variables passed
as ref because target methods could read data from ref parameters with-
out first assigning them. In Listing 4.12, for example, temp is assigned the
value of first, assuming that the variable passed in first was initialized
by the caller. Effectively, a ref parameter is an alias for the variable passed.
In other words, it is essentially giving a parameter name to an existing
variable.

Output Parameters (out)
In addition to passing parameters into a method only (by value) and pass-
ing them in and back out (by reference), it is possible to pass data out only.
To achieve this, code needs to decorate parameter types with the keyword
out, as shown in the GetPhoneButton() method in Listing 4.13 that returns
the phone button corresponding to a character.

Listing 4.13: Passing Variables Out Only

class ConvertToPhoneNumber

{

 static int Main(string[] args)

 {

 char button;

 if(args.Length == 0)

 {

 Console.WriteLine(

 "ConvertToPhoneNumber.exe <phrase>");

 Console.WriteLine(

 "'_' indicates no standard phone button");

 return 1;

ptg

Chapter 4: Methods and Parameters172

 }

 foreach(string word in args)

 {

 foreach(char character in word)

 {

 {

 Console.Write(button);

 }

 else

 {

 Console.Write('_');

 }

 }

 }

 Console.WriteLine();

 return 0;

 }

 {

 bool success = true;

 switch(char.ToLower(character))

 {

 case '1':

 button = '1';

 break;

 case '2': case 'a': case 'b': case 'c':

 button = '2';

 break;

 // ...

 case '-':

 button = '-';

 break;

 default:

 // Set the button to indicate an invalid value

 button = '_';

 success = false;

 break;

 }

 return success;

 }

}

 if(GetPhoneButton(character, out button))

 static bool GetPhoneButton(char character, out char button)

ptg

 Parameters 173

Output 4.7 shows the results of Listing 4.13.

In this example, the GetPhoneButton() method returns true if it can
successfully determine the character’s corresponding phone button. The
function also returns the corresponding button by using the button
parameter which is decorated with out.

Whenever a parameter is marked with out, the compiler will check that
the parameter is set for all code paths within the method that return nor-
mally (without an explicit error). If, for example, the code does not assign
button a value, the compiler will issue an error indicating that the code
didn’t initialize button. Listing 4.13 assigns button to _ because even
though it cannot determine the correct phone button, it is still necessary to
assign a value.

Parameter Arrays (params)
In all the examples so far, the number of parameters is fixed by the target
method declaration. However, sometimes the number of parameters may
vary. Consider the Combine() method from Listing 4.11. In that method,
you passed the drive letter, folder path, and filename. What if the number
of folders in the path was more than one and the caller wanted the method
to join additional folders to form the full path? Perhaps the best option
would be to pass an array of strings for the folders. However, this would
make the calling code a little more complex, because it would be necessary
to construct an array to pass as a parameter.

For a simpler approach, C# provides a keyword that enables the num-
ber of parameters to vary in the calling code instead of being set by the tar-
get method. Before we discuss the method declaration, observe the calling
code declared within Main(), as shown in Listing 4.14.

OUTPUT 4.7:

>ConvertToPhoneNumber.exe CSharpIsGood

274277474663

ptg

Chapter 4: Methods and Parameters174

Listing 4.14: Passing a Variable Parameter List

using System.IO;

class PathEx

{

 static void Main()

 {

 string fullName;

 // ...

 Console.WriteLine(fullName);

 // ...

 Console.WriteLine(fullName);

 // ...

 Console.WriteLine(fullName);

 // ...

 }

 {

 string result = string.Empty;

 foreach (string path in paths)

 {

 result = System.IO.Path.Combine(result, path);

 }

 return result;

 }

}

 // Call Combine() with four parameters

 fullName = Combine(

 Directory.GetCurrentDirectory(),

 "bin", "config", "index.html");

 // Call Combine() with only three parameters

 fullName = Combine(

 Environment.SystemDirectory,

 "Temp", "index.html");

 // Call Combine() with an array

 fullName = Combine(

 new string[] {

 "C:\", "Data",

 "HomeDir", "index.html"});

 static string Combine(params string[] paths)

ptg

 Parameters 175

Output 4.8 shows the results of Listing 4.14.

In the first call to Combine(), four parameters are specified. The second
call contains only three parameters. In the final call, parameters are passed
using an array. In other words, the Combine() method takes a variable
number of parameters, whether separated by a comma or as a single array.

To allow this, the Combine() method

1. Places params immediately before the last parameter in the method
declaration

2. Declares the last parameter as an array

With a parameter array declaration, it is possible to access each param-
eter as a member of the params array. In the Combine() method implemen-
tation, you iterate over the elements of the paths array and call System.
IO.Path.Combine(). This method automatically combines the parts of
the path, appropriately using the platform-specific directory-separator-
character. (PathEx.Combine() is identical to Path.Combine(), except that
PathEx.Combine() handles a variable number of parameters rather than
simply two.)

There are a few notable characteristics of the parameter array.

• The parameter array is not necessarily the only parameter on a
method. However, the parameter array must be the last parameter in
the method declaration. Since only the last parameter may be a param-
eter array, a method cannot have more than one parameter array.

• The caller can specify zero parameters for the parameter array, which
will result in an array of zero items.

OUTPUT 4.8:

C:\Data\mark\bin\config\index.html

C:\WINDOWS\system32\Temp\index.html

C:\Data\HomeDir\index.html

ptg

Chapter 4: Methods and Parameters176

• Parameter arrays are type-safe—the type must match the type
identified by the array.

• The caller can use an explicit array rather than a comma-separated list
of parameters. The resultant CIL code is identical.

• If the target method implementation requires a minimum number of
parameters, then those parameters should appear explicitly within
the method declaration, forcing a compile error instead of relying
on runtime error handling if required parameters are missing. For
example, use int Max(int first, params int[] operands) rather
than int Max(params int[] operands) so that at least one value is
passed to Max().

Using a parameter array, you can pass a variable number of parameters
of the same type into a method. The section Method Overloading, later in
this chapter, discusses a means of supporting a variable number of param-
eters that are not necessarily of the same type.

Recursion

Calling a method recursively or implementing the method using recur-
sion refers to the fact that the method calls itself. This is sometimes the
simplest way to implement a method. Listing 4.15 counts the lines of all the
C# source files (*.cs) in a directory and its subdirectory.

Listing 4.15: Returning All the Filenames, Given a Directory

using System.IO;

public static class LineCounter

{

 // Use the first argument as the directory

 // to search, or default to the current directory.

 public static void Main(string[] args)

 {

 int totalLineCount = 0;

 string directory;

 if (args.Length > 0)

 {

 directory = args[0];

 }

 else

ptg

 Recursion 177

 {

 directory = Directory.GetCurrentDirectory();

 }

 totalLineCount = DirectoryCountLines(directory);

 System.Console.WriteLine(totalLineCount);

 }

 {

 int lineCount = 0;

 foreach (string file in

 Directory.GetFiles(directory, "*.cs"))

 {

 lineCount += CountLines(file);

 }

 foreach (string subdirectory in

 Directory.GetDirectories(directory))

 {

 }

 return lineCount;

 }

 private static int CountLines(string file)

 {

 string line;

 int lineCount = 0;

 FileStream stream =

 new FileStream(file, FileMode.Open);
3

 StreamReader reader = new StreamReader(stream);

 line = reader.ReadLine();

 while(line != null)

 {

 if (line.Trim() != "")

 {

 lineCount++;

 }

 line = reader.ReadLine();

 }

 reader.Close(); // Automatically closes the stream

 return lineCount;

 }

}

 static int DirectoryCountLines(string directory)

 lineCount += DirectoryCountLines(subdirectory);

3. I could improve this code with a using statement, but I have avoided that construct because
I have not yet introduced it.

ptg

Chapter 4: Methods and Parameters178

Output 4.9 shows the results of Listing 4.15.

The program begins by passing the first command-line argument to
DirectoryCountLines(), or by using the current directory if no argument
was provided. This method first iterates through all the files in the current
directory and totals the source code lines for each file. After each file in the
directory, the code processes each subdirectory by passing the subdirec-
tory back into the DirectoryCountLines() method, rerunning the method
using the subdirectory. The same process is repeated recursively through
each subdirectory until no more directories remain to process.

Readers unfamiliar with recursion may find it cumbersome at first.
Regardless, it is often the simplest pattern to code, especially with hierar-
chical type data such as the filesystem. However, although it may be the
most readable, it is generally not the fastest implementation. If perfor-
mance becomes an issue, developers should seek an alternative solution in
place of a recursive implementation. The choice generally hinges on bal-
ancing readability with performance.

B E G I N N E R T O P I C

Infinite Recursion Error
A common programming error in recursive method implementations
appears in the form of a stack overflow during program execution. This
usually happens because of infinite recursion, in which the method con-
tinually calls back on itself, never reaching a point that indicates the end of
the recursion. It is a good practice for programmers to review any method
that uses recursion and verify that the recursion calls are finite.

A common pattern for recursion using pseudocode is as follows:

M(x)

{

 if x is trivial

OUTPUT 4.9:

104

ptg

 Method Overloading 179

 Return the result

 else

 a. Do some work to make the problem smaller

 b. Recursively call M to solve the smaller problem

 c. Compute the result based on a. and b.

 return the result

}

Things go wrong when this pattern is not followed. For example, if you
don’t make the problem smaller or if you don’t handle all possible “small-
est” cases, the recursion never terminates.

Method Overloading

Listing 4.15 called DirectoryCountLines(), which counted the lines of
*.cs files. However, if you want to count code in *.h/*.cpp files or in *.vb
files, DirectoryCountLines() will not work. Instead, you need a method
that takes the file extension, but still keeps the existing method definition
so that it handles *.cs files by default.

All methods within a class must have a unique signature, and C#
defines uniqueness by variation in the method name, parameter data
types, or number of parameters. This does not include method return data
types; defining two methods that have only a different return data type
will cause a compile error. Method overloading occurs when a class has
two or more methods with the same name and the parameter count and/
or data types vary between the overloaded methods.

Method overloading is a type of operational polymorphism. Polymor-
phism occurs when the same logical operation takes on many (“poly”)
forms (“morphisms”) because the data varies. Calling WriteLine() and
passing a format string along with some parameters is implemented differ-
ently than calling WriteLine() and specifying an integer. However, logi-
cally, to the caller, the method takes care of writing the data and it is
somewhat irrelevant how the internal implementation occurs. Listing 4.16
provides an example, and Output 4.10 shows the results.

Listing 4.16: Returning All the Filenames, Given a Directory

using System.IO;

public static class LineCounter

ptg

Chapter 4: Methods and Parameters180

{

 public static void Main(string[] args)

 {

 int totalLineCount;

 if (args.Length > 1)

 {

 }

 if (args.Length > 0)

 {

 }

 else

 {

 }

 System.Console.WriteLine(totalLineCount);

 }

 {

 return DirectoryCountLines(

 Directory.GetCurrentDirectory());

 }

 {

 return DirectoryCountLines(directory, "*.cs");

 }

 string directory, string extension)

 {

 int lineCount = 0;

 foreach (string file in

 Directory.GetFiles(directory, extension))

 {

 lineCount += CountLines(file);

 }

 foreach (string subdirectory in

 Directory.GetDirectories(directory))

 {

 lineCount += DirectoryCountLines(subdirectory);

 }

 return lineCount;

 }

 totalLineCount =

 DirectoryCountLines(args[0], args[1]);

 totalLineCount = DirectoryCountLines(args[0]);

 totalLineCount = DirectoryCountLines();

 static int DirectoryCountLines()

 static int DirectoryCountLines(string directory)

 static int DirectoryCountLines(

ptg

 Method Overloading 181

 private static int CountLines(string file)

 {

 int lineCount = 0;

 string line;

 FileStream stream =

 new FileStream(file, FileMode.Open);
4

 StreamReader reader = new StreamReader(stream);

 line = reader.ReadLine();

 while(line != null)

 {

 if (line.Trim() == "")

 {

 lineCount++;

 }

 line = reader.ReadLine();

 }

 reader.Close(); // Automatically closes the stream

 return lineCount;

 }

}

The effect of method overloading is to provide optional ways to call the
method. As demonstrated inside Main(), you can call the DirectoryCount-
Lines() method with or without passing the directory to search and the
file extension.

Notice that the parameterless implementation of DirectoryCount-
Lines() was changed to call the single-parameter version (int Directory-
CountLines(string directory)). This is a common pattern when
implementing overloaded methods. The idea is that developers implement
only the core logic in one method and all the other overloaded methods
will call that single method. If the core implementation changes, it needs to
be modified in only one location rather than within each implementation.
This pattern is especially prevalent when using method overloading to

4. This code could be improved with a using statement, a construct avoided because it has not
yet been introduced.

OUTPUT 4.10:

>LineCounter.exe .\ *.cs

28

ptg

Chapter 4: Methods and Parameters182

enable optional parameters that do not have compile-time determined
values and so they cannot be specified using optional parameters.

Optional Parameters

Starting with C# 4.0, the language designers added limited support for
optional parameters. By allowing the assignment of a parameter to a con-
stant value as part of the method declaration, it is possible to call a method
without passing every parameter for the method (see Listing 4.17).

Listing 4.17: Methods with Optional Parameters

using System.IO;

public static class LineCounter

{

 public static void Main(string[] args)

 {

 int totalLineCount;

 if (args.Length > 1)

 {

 totalLineCount =

 DirectoryCountLines(args[0], args[1]);

 }

 if (args.Length > 0)

 {

 }

 else

 {

 totalLineCount = DirectoryCountLines();

 }

 System.Console.WriteLine(totalLineCount);

 }

 static int DirectoryCountLines()

 {

 // ...

 }

 totalLineCount = DirectoryCountLines(args[0]);

/*

 static int DirectoryCountLines(string directory)

 { ... }

*/

ptg

 Optional Parameters 183

 {

 int lineCount = 0;

 foreach (string file in

 Directory.GetFiles(directory, extension))

 {

 lineCount += CountLines(file);

 }

 foreach (string subdirectory in

 Directory.GetDirectories(directory))

 {

 lineCount += DirectoryCountLines(subdirectory);

 }

 return lineCount;

 }

 private static int CountLines(string file)

 {

 // ...

 }

}

In Listing 4.17, for example, the DirectoryCountLines() method decla-
ration with a single parameter has been removed (commented out), but the
call from Main() (specifying one parameter) remains. When no extension
parameter is specified in the call, the value assigned to extension within
the declaration (*.cs in this case) is used. This allows the calling code to
not specify a value if desired, and eliminates the additional overload that
would be required in C# 3.0 and earlier. Note that optional parameters
must appear after all required parameters (those that don’t have default
values). Also, the fact that the default value needs to be a constant, com-
pile-time-resolved value, is fairly restrictive. You can’t, for example,
declare a method using

DirectoryCountLines(

 string directory = Environment.CurrentDirectory,

 string extension = "*.cs")

since Environment.CurrentDirectory is not a literal. In contrast, since
default(string) is compile-time-determined, C# 4.0 does allow it for the
default value of an optional parameter.

 static int DirectoryCountLines(

 string directory, string extension = "*.cs")

ptg

Chapter 4: Methods and Parameters184

A second method call feature made available in C# 4.0 was the use of
named parameters. With named parameters it is possible for the caller to
explicitly identify the name of the parameter to be assigned a value, rather
than relying only on parameter order to correlate (see Listing 4.18).

Listing 4.18: Specifying Parameters by Name

class Program

{

 static void Main()

 {

 }

 public void DisplayGreeting(

 string firstName,

 string middleName = default(string),

 string lastName = default(string))

 {

 // ...

 }

}

In Listing 4.18 the call to DisplayGreeting() from within Main()
assigns a value to a parameter by name. Of the two optional parameters
(middleName and lastName), only lastName is specified. For cases where a
method has lots of parameters and many of them are optional (a common
occurrence when accessing Microsoft COM libraries), using the named
parameter syntax is certainly a convenience. However, notice that along
with the convenience comes an impact on the flexibility of the method
interface. In the past (at least from C#), parameter names could be changed
without causing other calling code to no longer compile. With the addition
of named parameters, the parameter name becomes part of the interface
because changing the name would cause code that uses the named param-
eter to no longer compile.

For many experienced C# developers, this is a surprising restriction.
However, the restriction has been imposed as part of the Common Lan-
guage Specification ever since .NET 1.0. Therefore, library developers
should already be following the practice of not changing parameter names

 DisplayGreeting(

 firstName: "Inigo", lastName: "Montoya");

ptg

 Optional Parameters 185

to successfully interoperate with other .NET languages from version to
version. C# 4.0 now imposes the same restriction on parameter name
changes as many other .NET languages already require.

Given the combination of method overloading, optional parameters,
and named parameters, resolving which method to call becomes less
obvious. A call is applicable (compatible) with a method if all parameters
have exactly one corresponding argument (either by name or by position)
that is type-compatible unless the parameter is optional. Although this
restricts the possible number of methods that will be called, it doesn’t
identify a unique method. To further distinguish which method specifi-
cally, the compiler uses only explicitly identified parameters in the caller,
ignoring all optional parameters that were not specified at the caller.
Therefore, if two methods are applicable because one of them has an
optional parameter, the compiler will resolve to the method without the
optional parameter.

A D V A N C E D T O P I C

Method Resolution
At a high level, selection by the compiler governing which method to call
is determined to be whichever applicable method is most specific. There
can be only one method that matches the caller parameters identically, so
this will always take precedence. Assuming there are two applicable meth-
ods, each requiring an implicit conversion, the method that matches the
most derived type will be used. (A method using double will be favored
over a method using object if the caller passes an int. This is because dou-
ble is more specific than object.) If more than one method is applicable
and no unique best method can be determined, then the compiler will
issue an error indicating that the call is ambiguous.

For example, given methods

Method(thing) // Fifth

Method(thing) // Fourth

Method(thing) // Third

Method(thing) // First

ptg

Chapter 4: Methods and Parameters186

a Method(42) call will resolve in ascending order, starting with Method(int
thing) and proceeding up to Method(long thing), and so on, if the former
method does not exist.

The C# specification includes additional rules governing implicit con-
version between byte, ushort, uint, ulong, and the other numeric types,
but in general it is better to use a cast to make the intended target method
more recognizable.

Basic Error Handling with Exceptions

An important aspect of calling methods relates to error handling; specifi-
cally, how to report an error back to the caller. This section examines how
to handle error reporting via a mechanism known as exception handling.

With exception handling, a method is able to pass information about an
error to a calling method without explicitly providing any parameters to
do so. Listing 4.19 contains a slight modification to the HeyYou program
from Chapter 1. Instead of requesting the last name of the user, it prompts
for the user’s age.

Listing 4.19: Converting a string to an int

using System;

class ExceptionHandling

{

 static void Main()

 {

 string firstName;

 string ageText;

 int age;

 Console.WriteLine("Hey you!");

 Console.Write("Enter your first name: ");

 firstName = System.Console.ReadLine();

 }

}

 Console.Write("Enter your age: ");

 ageText = Console.ReadLine();

 age = int.Parse(ageText);

 Console.WriteLine(

 "Hi {0}! You are {1} months old.",

 firstName, age*12);

ptg

 Basic Error Handling with Exceptions 187

Output 4.11 shows the results of Listing 4.19.

The return value from System.Console.ReadLine() is stored in a vari-
able called ageText and is then passed to a method on the int data type,
called Parse(). This method is responsible for taking a string value that
represents a number and converting it to an int type.

B E G I N N E R T O P I C

42 as a String versus 42 as an Integer
C# requires that every value has a well-defined type associated with it.
Therefore, not only is the data value important, but the type associated
with the data is important as well. A string value of 42, therefore, is dis-
tinctly different from an integer value of 42. The string is composed of the
two characters 4 and 2, whereas the int is the number 42.

Given the converted string, the final System.Console.WriteLine()
statement will print the age in months by multiplying the age value by 12.

However, what happens if the user does not enter a valid integer
string? For example, what happens if the user enters “forty-two”? The
Parse() method cannot handle such a conversion. It expects the user to
enter a string that contains only digits. If the Parse() method is sent an
invalid value, it needs some way to report this fact back to the caller.

Trapping Errors
To indicate to the calling method that the parameter is invalid, int.Parse()
will throw an exception. Throwing an exception will halt further execution
in the current program flow and instead will jump into the first code block
within the call stack that handles the exception.

OUTPUT 4.11:

Hey you!
Enter your first name: Inigo
Enter your age: 42
Hi Inigo! You are 504 months old.

ptg

Chapter 4: Methods and Parameters188

Since you have not yet provided any such handling, the program
reports the exception to the user as an unhandled exception. Assuming
there is no registered debugger on the system, the error will appear on the
console with a message such as that shown in Output 4.12.

Obviously, such an error is not particularly helpful. To fix this, it is nec-
essary to provide a mechanism that handles the error, perhaps reporting a
more meaningful error message back to the user.

This is known as catching an exception. The syntax is demonstrated in
Listing 4.20, and the output appears in Output 4.13.

Listing 4.20: Catching an Exception

using System;

class ExceptionHandling

{

 static int Main()

 {

 string firstName;

 string ageText;

 int age;

 int result = 0;

 Console.Write("Enter your first name: ");

 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");

 ageText = Console.ReadLine();

 try

 {

 age = int.Parse(ageText);

 Console.WriteLine(

 "Hi {0}! You are {1} months old.",

OUTPUT 4.12:

Hey you!

Enter your first name: Inigo

Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string was

 not in a correct format.

 at System.Number.ParseInt32(String s, NumberStyles style,

 NumberFormatInfo info)

 at ExceptionHandling.Main()

ptg

 Basic Error Handling with Exceptions 189

 firstName, age*12);

 }

 catch (FormatException)

 {

 Console.WriteLine(

 "The age entered, {0}, is not valid.",

 ageText);

 result = 1;

 }

 catch(Exception exception)

 {

 Console.WriteLine(

 "Unexpected error: {0}", exception.Message);

 result = 1;

 }

 finally

 {

 Console.WriteLine("Goodbye {0}",

 firstName);

 }

 return result;

 }

}

To begin, surround the code that could potentially throw an exception
(age = int.Parse()) with a try block. This block begins with the try key-
word. It is an indication to the compiler that the developer is aware of the
possibility that the code within the block could potentially throw an excep-
tion, and if it does, then one of the catch blocks will attempt to handle the
exception.

One or more catch blocks (or the finally block) must appear immedi-
ately following a try block. The catch block header (see the Advanced
Topic titled Generic catch, later in this chapter) optionally allows you to
specify the data type of the exception, and as long as the data type matches
the exception type, the catch block will execute. If, however, there is no
appropriate catch block, the exception will fall through and go unhandled
as though there were no exception handling.

OUTPUT 4.13:

Enter your first name: Inigo

Enter your age: forty-two

The age entered, forty-two, is not valid.

Goodbye Inigo

ptg

Chapter 4: Methods and Parameters190

The resultant program flow appears in Figure 4.1.
For example, assume the user enters “forty-two” for the age. In this case,

int.Parse() will throw an exception of type System.FormatException, and
control will jump to the set of catch blocks. (System.FormatException

Figure 4.1: Exception-Handling Program Flow

System.Console.Write ("Enter your first name: ");
 firstName = System.Console.ReadLine ();

System.Console.Write ("Enter your age: ");
 ageText = System.Console.ReadLine ();

Try Block:
 age = int.Parse (ageText);
 System.Console.WriteLine (
 "Hi {0}! You are {1} months old.",
 firstName, age*12);

FormatException Catch Block:
 System.Console.WriteLine (
 "The age entered \"{0}\" is not valid .",
 ageText);
 result = 1;

Exception Catch Block:
 System.Console.WriteLine (
 "Unexpected error: {0}",
 exception.Message);
 result = 1;

Finally Block:
 System.Console.WriteLine (
 "Goodbye {0}",
 firstName);

FormatException
exception thrown?

ExceptionYes
exception thrown?

Yes

No

No

Start

Finish

return result;

ptg

 Basic Error Handling with Exceptions 191

indicates that the string was not of the correct format to be parsed
appropriately.) Since the first catch block matches the type of exception that
int.Parse() threw, the code inside this block will execute. If a statement
within the try block throws a different exception, then the second catch
block would execute because (starting in C# 2.0) all exceptions are of type
System.Exception.

If there were no System.FormatException catch block, then the Sys-
tem.Exception catch block would execute even though int.Parse throws
a System.FormatException. This is because a System.FormatException is
also of type System.Exception. (System.FormatException is a more spe-
cific implementation of the generic exception, System.Exception.)

Although the number of catch blocks varies, the order in which you
handle exceptions is significant. Catch blocks must appear from most spe-
cific to least specific. The System.Exception data type is least specific and
therefore it appears last. System.FormatException appears first because it
is the most specific exception that Listing 4.20 handles.

Regardless of whether the code in the try block throws an exception, the
finally block of code will execute. The purpose of the finally block is to
provide a location to place code that will execute regardless of how the
try/catch blocks exit—with or without an exception. Finally blocks are
useful for cleaning up resources regardless of whether an exception is
thrown. In fact, it is possible to have a try block with a finally block and no
catch block. The finally block executes regardless of whether the try block
throws an exception or whether a catch block is even written to handle the
exception. Listing 4.21 demonstrates the try/finally block and Output 4.14
shows the results.

Listing 4.21: Catching an Exception

using System;

class ExceptionHandling

{

 static int Main()

 {

 string firstName;

 string ageText;

 int age;

 int result = 0;

ptg

Chapter 4: Methods and Parameters192

 Console.Write("Enter your first name: ");

 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");

 ageText = Console.ReadLine();

 try

 {

 age = int.Parse(ageText);

 Console.WriteLine(

 "Hi {0}! You are {1} months old.",

 firstName, age*12);

 }

 finally

 {

 Console.WriteLine("Goodbye {0}",

 firstName);

 }

 return result;

 }

}

When this code executes, the finally block executes before printing an
unhandled exception to the console (an unhandled exception dialog may
also appear).

A D V A N C E D T O P I C

Exception Class Inheritance
Starting in C# 2.0, all exceptions derive from System.Exception. Therefore,
they can be handled by the catch(System.Exception exception) block. It

OUTPUT 4.14:

Enter your first name: Inigo

Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string was not in a

correct format.

 at System.Number.StringToNumber(String str, NumberStyles options,

NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)

 at System.Number.ParseInt32(String s, NumberStyles style,

NumberFormatInfo info)

 at ExceptionHandling.Main()

Goodbye Inigo

ptg

 Basic Error Handling with Exceptions 193

is preferable, however, to include a catch block that is specific to the most
derived type (System.FormatException, for example), because then it is
possible to get the most information about an exception and handle it less
generically. In so doing, the catch statement that uses the most derived
type is able to handle the exception type specifically, accessing data related
to the exception thrown, and avoiding conditional logic to determine what
type of exception occurred.

This is why C# enforces that catch blocks appear from most derived to
least derived. For example, a catch statement that catches System.Excep-
tion cannot appear before a statement that catches System.Format Excep-
tion because System.FormatException derives from System.Exception.

A method could throw many exception types. Table 4.2 lists some of the
more common ones within the framework.

TABLE 4.2: Common Exception Types

Exception Type Description

System.Exception A generic exception from which
other exceptions derive.

System.ArgumentException A means of indicating that one of
the parameters passed into the
method is invalid.

System.ArgumentNullException Indicates that a particular parame-
ter is null and that this is not valid
for that parameter.

System.ApplicationException To be avoided. Originally the idea
that you might want to have one
kind of handling for “system”
exceptions and another for “appli-
cation” exceptions, although plausi-
ble, doesn’t actually work well in
the real world.

System.FormatException Indicates that the string format is
not valid for conversion.

System.IndexOutOfRangeException Indicates that an attempt was made
to access an array element that does
not exist.

Continues

ptg

Chapter 4: Methods and Parameters194

A D V A N C E D T O P I C

Generic catch
It is possible to specify a catch block that takes no parameters, as shown in
Listing 4.22.

Listing 4.22: General Catch Blocks

...

try

{

 age = int.Parse(ageText);

 System.Console.WriteLine(

 "Hi {0}! You are {1} months old.",

 firstName, age*12);

}

catch (System.FormatException exception)

Exception Type Description

System.InvalidCastException Indicates that an attempt to convert
from one data type to another was
not a valid conversion.

System.NotImplementedException Indicates that although the method
signature exists, it has not been fully
implemented.

System.NullReferenceException Throws when code tries to find the
object referred to by a reference
(such as a variable) which is null.

System.ArithmeticException Indicates an invalid math operation,
not including divide by zero.

System.ArrayTypeMismatchException Occurs when attempting to store an
element of the wrong type into an
array.

System.StackOverflowException Generally indicates that there is an
infinite loop in which a method is
calling back into itself (known as
recursion).

TABLE 4.2: Common Exception Types (Continued)

ptg

 Basic Error Handling with Exceptions 195

{

 System.Console.WriteLine(

 "The age entered ,{0}, is not valid.",

 ageText);

 result = 1;

}

catch(System.Exception exception)

{

 System.Console.WriteLine(

 "Unexpected error: {0}", exception.Message);

 result = 1;

}

finally

{

 System.Console.WriteLine("Goodbye {0}",

 firstName);

}

...

A catch block with no data type, called a generic catch block, is equivalent
to specifying a catch block that takes an object data type: for instance,
catch(object exception){...}. And since all classes ultimately derive
from object, a catch block with no data type must appear last.

Generic catch blocks are rarely used because there is no way to capture
any information about the exception. In addition, C# doesn’t support the
ability to throw an exception of type object. (Only libraries written in lan-
guages such as C++ allow exceptions of any type.)

The behavior starting in C# 2.0 varies slightly from the earlier C#
behavior. In C# 2.0, if a language allows non-System.Exceptions, the
object of the thrown exception will be wrapped in a System.Runtime.
CompilerServices.RuntimeWrappedException which does derive from
System.Exception. Therefore, all exceptions, whether deriving from
System.Exception or not, will propagate into C# assemblies as derived
from System.Exception.

The result is that System.Exception catch blocks will catch all excep-
tions not caught by earlier blocks, and a general catch block, following a

catch

{

 System.Console.WriteLine(

 "Unexpected error!");

 result = 1;

}

ptg

Chapter 4: Methods and Parameters196

System.Exception catch block, will never be invoked. Because of this,
following a System.Exception catch block with a general catch block in
C# 2.0 or later will result in a compiler warning indicating that the general
catch block will never execute.

Reporting Errors Using a throw Statement
Just as int.Parse() can throw an exception, C# allows developers to throw
exceptions from their code, as demonstrated in Listing 4.23 and Output 4.15.

Listing 4.23: Throwing an Exception

}

using System;
class ThrowingExceptions
{
static void Main()

 {
 try
 {

 Console.WriteLine("Begin executing");
 Console.WriteLine("Throw exception...");

 Console.WriteLine("End executing");
 }

catch (FormatException exception)
 {
 Console.WriteLine(
 "A FormateException was thrown");
 }

catch(Exception exception)
 {
 Console.WriteLine(
 "Unexpected error: {0}", exception.Message);
 }

catch
 {

 Console.WriteLine("Unexpected error!");
 }

 Console.WriteLine(
 "Shutting down...");
 }

throw new Exception("Arbitrary exception");

ptg

 Basic Error Handling with Exceptions 197

As the arrows in Listing 4.23 depict, throwing an exception jumps exe-
cution from where the exception is thrown into the first catch block within
the stack that is compatible with the thrown exception type. In this case, the
second catch block handles the exception and writes out an error message.
In Listing 4.23, there is no final block, so execution falls through to the
System.Console.WriteLine() statement following the try/catch block.

In order to throw an exception, it is necessary to have an instance of an
exception. Listing 4.23 creates an instance using the keyword new followed
by the data type of the exception. Most exception types allow a message as
part of throwing the exception so that when the exception occurs, the mes-
sage can be retrieved.

Sometimes a catch block will trap an exception but be unable to handle
it appropriately or fully. In these circumstances, a catch block can rethrow
the exception using the throw statement without specifying any exception,
as shown in Listing 4.24.

Listing 4.24: Rethrowing an Exception

...

 catch(Exception exception)

 {

 Console.WriteLine(

 "Rethrowing unexpected error: {0}",

 exception.Message);

 throw;

 }

...

Avoid Using Exception Handling to Deal with Expected Situations

Developers should make an effort to avoid throwing exceptions for
expected conditions or normal control flow. For example, developers

OUTPUT 4.15:

Begin executing

Throw exception...

Unexpected error: Arbitrary exception

Shutting down...

ptg

Chapter 4: Methods and Parameters198

should not expect users to enter valid text when specifying their age.5

Therefore, instead of relying on an exception to validate data entered by
the user, developers should provide a means of checking the data before
attempting the conversion. (Better yet, you should prevent the user from
entering invalid data in the first place.) Exceptions are designed specifi-
cally for tracking exceptional, unexpected, and potentially fatal situations.
Using them for an unattended purpose such as expected situations will
cause your code to be hard to read, understand, and maintain.

Additionally, (as with most languages) C# incurs a slight performance
hit when throwing an exception—taking microseconds compared to the
nanoseconds most operations take. This delay is generally not noticeable
in human time—except when the exception goes unhandled. For example,
when executing Listing 4.19 and entering an invalid age the exception is
unhandled and there is a noticeable delay while the runtime searches the
environment to see whether there is a debugger to load. Fortunately, slow
performance when a program is shutting down isn’t generally a factor to
be concerned with.

A D V A N C E D T O P I C

Numeric Conversion with TryParse()
One of the problems with the Parse() method is that the only way to
determine whether the conversion will be successful is to attempt the cast
and then catch the exception if it doesn’t work. Because throwing an
exception is a relatively expensive operation, it is better to attempt the
conversion without exception handling. In the first release of C#, the only
data type that enabled this was a double method called double.Try-
Parse(). However, the CLI added this method to all numeric primitive
types in the CLI 2.0 version. It requires the use of the out keyword
because the return from the TryParse() function is a bool rather than the
converted value. Here is a code listing that demonstrates the conversion
using int.TryParse().

5. In general, developers should expect their users to perform unexpected actions, and there-
fore they should code defensively to handle “stupid user tricks.”

ptg

 Summary 199

...

if (int.TryParse(ageText, out age))

{

 System.Console.WriteLine(

 "Hi {0}! You are {1} months old.", firstName,

 age * 12);

}

else

{

 System.Console.WriteLine(

 "The age entered ,{0}, is not valid.", ageText);

}

...

With the .NET Framework 4, a TryParse() method was also added to
enum types.

With the TryParse() method, it is no longer necessary to include a try/
catch block simply for the purpose of handling the string-to-numeric
conversion.

SUMMARY

This chapter discussed the details of declaring and calling methods. In
many ways, this construct is identical to its declaration in C-like lan-
guages. However, the addition of the keywords out and ref is more like
COM in syntax (the predecessor to CLI technology) than C-like language’s
use of “&”. In addition to method declaration, this chapter introduced
exception handling.

Methods are a fundamental construct that is a key to writing readable
code. Instead of writing large methods with lots of statements, you should
use methods for “paragraphs” within your code, whose lengths target
roughly ten lines or less. The process of breaking large functions into
smaller pieces is one of the ways you can refactor your code to make it
more readable and maintainable.

The next chapter considers the class construct and how it encapsulates
methods (behavior) and fields (data) into a single unit.

ptg

This page intentionally left blank

ptg

201

5
Classes

OU BRIEFLY SAW IN CHAPTER 1 how to declare a new class called
HelloWorld. In Chapter 2, you learned about the built-in primitive

types included with C#. Since you have now also learned about control
flow and how to declare methods, it is time to discuss defining your own

Y

Declaring a Property

Naming Conventions

Using Properties with Validation

Read-Only and Write-Only Properties

Access Modifiers on Getters and Setters

Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

Instance
Fields

Declaring an Instance Field
Accessing an Instance Field
Const and readonly Modifiers

Properties

Static Fields
Static Methods

Static Constructors
Static Classes

Partial Classes
Nested Classes

Classes

2

3 Instance Methods

4

5

Static7

Access Modifiers

9 Special Classes
Declaring and Instantiating a Class1

8 Extension Methods

Declaring a Constructor
Default Constructors

Overloading Constructors
Calling one Constructor Using this

Finalizers

Constructors
& Finalizers6

ptg

Chapter 5: Classes202

types. This is the core construct of any C# program, and the complete
support for classes and the objects created from them is what defines C# as
an object-oriented language.

This chapter introduces you to the basics of object-oriented program-
ming using C#. A key focus is on how to define classes, which are the tem-
plates for objects themselves.

All of the constructs of structured programming from the previous
chapters still apply within object-oriented programming. However, by
wrapping those constructs within classes, you can create larger, more
organized programs that are more maintainable. The transition from struc-
tured, control-flow-based programs to object-oriented programs some-
what revolutionized programming because it provided an extra level of
organization. The result was that smaller programs were simplified some-
what; but more importantly, it was possible to create much larger
programs because the code within those programs was better organized.

One of the key advantages of object-oriented programming is that
instead of creating new programs entirely from scratch, you can assemble
a collection of existing objects from prior work, extending the classes with
new features, adding more classes, and then reassembling everything to
provide new functionality.

Readers unfamiliar with object-oriented programming should read the
Beginner Topic blocks for an introduction. The general text outside the
Beginner Topics focuses on using C# for object-oriented programming
with the assumption that readers are already familiar with object-oriented
methodology.

This chapter delves into how C# supports encapsulation through its
support of constructs such as classes, properties, and access modifiers (we
covered methods in the preceding chapter). The next chapter builds on this
foundation with the introduction of inheritance and the polymorphism
that object-oriented programming enables.

B E G I N N E R T O P I C

Object-Oriented Programming
The key to programming successfully today is in the ability to provide
organization and structure to the implementation of complex requirements

ptg

Chapter 5: Classes 203

fulfilled in larger and larger applications. Object-oriented programming
provides one of the key methodologies in accomplishing this, to the point
that it is difficult for object-oriented programmers to envision transitioning
back to structured programming, except for the most trivial programs.

The most fundamental construct to object-oriented programming is
the class or object itself. These form a programming abstraction, model,
or template of what is often a real-world concept. The class OpticalStor-
ageMedia, for example, may have an Eject() method on it that causes a
CD/DVD to eject from the player. The OpticalStorageMedia class is the
programming abstraction of the real-world object of a CD.

Classes are the foundation for three principal characteristics of object-
oriented programming: encapsulation, inheritance, and polymorphism.

Encapsulation
Encapsulation allows you to hide detail. The detail can still be accessed
when necessary, but by intelligently encapsulating the detail, large pro-
grams are easier to understand, data is protected from inadvertent modifi-
cation, and code is easier to maintain because the effects of a code change
are bound to the scope of the encapsulation. Methods are examples of
encapsulation. Although it is possible to take the code from a method and
embed it directly inline with the caller’s code, refactoring of code into a
method provides encapsulation benefits.

Inheritance
Consider the following example: A DVD is a type of optical media. It has a
specific storage capacity along with the ability to hold a digital movie.
A CD is also a type of optical media, but it has different characteristics. The
copyright implementation on CDs is different from DVD copyright protec-
tion, and the storage capacity is different as well. Both CDs and DVDs are
different from hard drives, USB drives, and floppy drives (remember
those?). All fit into the category of storage media, but each has special char-
acteristics, even for fundamental functions such as the supported filesys-
tems and whether instances of the media are read-only or read-write.

Inheritance in object-oriented programming allows you to form “is a”
relationships between these similar but different items. It is a reasonable
assumption that a DVD “is a” type of storage media and that a CD “is a”
type of storage media, and as such, that each has storage capacity.

ptg

Chapter 5: Classes204

Similarly, CDs and DVDs have “is a” relationships to the optical media
type, which in turn has an “is a” relationship with the storage media type.

If you define classes corresponding to each type of storage media men-
tioned, you will have defined a class hierarchy, which is a series of “is a”
relationships. The base type, from which all storage media derive, could be
the class StorageMedia. As such, CDs, DVDs, hard drives, USB drives, and
floppy drives are types of StorageMedia. However, CDs and DVDs don’t
need to derive from StorageMedia directly. Instead, they can derive from
an intermediate type, OpticalStorageMedia. You can view the class hierar-
chy graphically using a Unified Modeling Language (UML)-like class dia-
gram, as shown in Figure 5.1.

The inheritance relationship involves a minimum of two classes such
that one class is a more general version of the other; in Figure 5.1, Storage-
Media is a more general version of HardDrive. Although the more special-
ized type, HardDrive, is a type of StorageMedia, the reverse is not true; a
StorageMedia type is not necessarily a HardDrive. As Figure 5.1 shows,
inheritance can involve more than two classes.

The more specialized type is the derived type or the subtype. The more
generalized type is the base class or sometimes the super type. Other

Figure 5.1: Class Hierarchy

ptg

Declaring and Instantiating a Class 205

common terms for the classes in an inheritance relationship are parent and
child; the former is the more generalized class.

To derive or inherit from another type is to specialize that type, which
means to customize the base type so that it is geared for a specific purpose.
Similarly, the base type is the generalized implementation of the derived
types.

The key feature of inheritance is that all derived types inherit the mem-
bers of the base type. Often, the implementation of the base members can
be modified, but regardless, the derived type contains the base type’s
members in addition to any other members that the derived type contains
explicitly.

Derived types allow you to organize your classes into a coherent hierar-
chy where the “child” types have greater specificity than their “parent”
types.

Polymorphism
Polymorphism comprises a word meaning “many” and a word meaning
“forms.” In the context of objects, polymorphism means that a single
method or type can have many forms of implementation. Suppose you
have a media player. It follows that the media player could play both CD
music discs and DVDs containing MP3s. However, the exact implementa-
tion of the Play() method will vary depending on the media type. Calling
Play() on a music CD object or Play() on a music DVD will play music in
both cases, because each type understands the intricacies of playing. All
that the media player knows about is the common base type, OpticalStor-
ageMedia, and the fact that it defines the Play() method signature. Poly-
morphism is the principle that a type can take care of the exact details of a
method’s implementation because the method appears on multiple derived
types that each share a common base type (or interface) that also contains
the same method signature.

Declaring and Instantiating a Class

Defining a class involves first specifying the keyword class, followed by
an identifier, as shown in Listing 5.1.

ptg

Chapter 5: Classes206

Listing 5.1: Defining a Class

class Employee

{

}

All code that belongs to the class will appear between the curly braces
following the class declaration. Although not a requirement, generally you
place each class into its own file. This makes it easier to find the code that
defines a particular class, because the convention is to name the file using
the class name.

Once you have defined a new class, you can use that class as though it
were built into the framework. In other words, you can declare a variable
of that type or define a method that takes a parameter of the new class
type. Listing 5.2 demonstrates.

Listing 5.2: Declaring Variables of the Class Type

class Program

{

 static void Main()

 {

 // ...

 {

 {

 // ...

 }

}

B E G I N N E R T O P I C

Objects and Classes Defined
In casual conversation, the terms class and object appear interchangeably.
However, object and class have distinct meanings. A class is a template for
what an object will look like at instantiation time. An object, therefore, is
an instance of a class. Classes are like the mold for what a widget will look

Employee employee1, employee2;

static void IncreaseSalary (Employee employee)

ptg

Declaring and Instantiating a Class 207

like. Objects correspond to widgets created by the mold. The process of
creating an object from a class is instantiation because an object is an
instance of a class.

Now that you have defined a new class type, it is time to instantiate an
object of that type. Mimicking its predecessors, C# uses the new keyword to
instantiate an object (see Listing 5.3).

Listing 5.3: Instantiating a Class

class Program

{

 static void Main()

 {

 Employee employee2;

 IncreaseSalary(employee1);

 }

}

Not surprisingly, the assignment can occur on the same line as the declara-
tion, or on a separate line.

Unlike the primitive types you have worked with so far, there is no literal
way to specify an Employee. Instead, the new operator provides an instruc-
tion to the runtime to allocate memory for an Employee object, instantiate the
object, and return a reference to the instance.

In spite of the explicit operator for allocating memory, there is no such
operator for restoring the memory. Instead, the runtime automatically
reclaims the memory sometime after the object is last accessible but before
the application closes down. The garbage collector is responsible for the
automatic deallocation. It determines which objects are no longer refer-
enced by other active objects and then de-allocates the memory for those
objects. The result is that there is no compile-time-determined location
where the memory will be restored to the system.

In this trivial example, no explicit data or methods are associated with
an Employee and this renders the object essentially useless. The next sec-
tion focuses on adding data to an object.

Employee employee1 = new Employee();

employee2 = new Employee();

ptg

Chapter 5: Classes208

B E G I N N E R T O P I C

Encapsulation Part 1: Objects Group Data with Methods
If you received a stack of index cards with employees’ first names, a stack
of index cards with their last names, and a stack of index cards with their
salaries, the cards would be of little value unless you knew that the cards
were in order in each stack. Even so, the data would be difficult to work
with because determining a person’s full name would require searching
through two stacks. Worse, if you dropped one of the stacks, there would
be no way to reassociate the first name with the last name and the salary.
Instead, you would need one stack of employee cards in which all the data
was grouped on one card. In this way, first names, last names, and salaries
would be encapsulated together.

Language Contrast: C++—delete Operator

Programmers should view the new operator as a call to instantiate an

object, not as a call to allocate memory. Both objects allocated on the

heap and objects allocated on the stack support the new operator,

emphasizing the point that new is not about memory allocation and

whether de-allocation is necessary.

Therefore, and in contrast to C++, C# does avoid the need for the

delete operator or an equivalent. Memory management is a detail that

the runtime manages, allowing the developer to focus more on domain

logic. However, although memory management is handled by the run-

time, there is no implicit mechanism for resource management (database

connections, network ports, and so on). In other words, there is no

 way to program deterministic destruction (the occurrence of

implicit object destruction at a compile-time-defined location in the

code). Fortunately, C# does support explicit, deterministic resource

management via a using statement or nondeterministic cleanup using

finalizers.

implicit

ptg

Instance Fields 209

Outside the object-oriented programming context, to encapsulate
a set of items is to enclose those items within a capsule. Similarly, object-
oriented programming encapsulates methods and data together into
an object. This provides a grouping of all of the class members (the data
and methods within a class) so that they no longer need to be handled
individually. Instead of passing first name, last name, and salary as
three separate parameters to a method, objects enable a call to pass a
reference to an employee object. Once the called method receives the
object reference, it can send a message (it can call a method such as
AdjustSalary(), for example) on the object to perform a particular
operation.

Instance Fields

One of the key aspects of object-oriented design is the grouping of data to
provide structure. This section discusses how to add data to the Employee
class. The general object-oriented term for a variable that stores data
within a class is member variable. This term is well understood in C#, but
the more standard term and the one used in the specification is field,
which is a named unit of storage associated with the containing type.
Instance fields are variables declared at the class level to store data associ-
ated with an object. Hence, association is the relationship between the
field data type and the containing field.

Declaring an Instance Field
In Listing 5.4, Employee has been modified to include three fields: First-
Name, LastName, and Salary.

Listing 5.4: Declaring Fields

class Employee

{

 public string FirstName;

 public string LastName;

 public string Salary;

}

ptg

Chapter 5: Classes210

With these fields added, it is possible to store some fundamental data with
every Employee instance. In this case, you prefix the fields with an access
modifier of public. public on a field indicates that the data within the field
is accessible from classes other than Employee (see the section Access Mod-
ifiers, later in this chapter).

As with local variable declarations, a field declaration includes the data
type to which the field refers. Furthermore, it is possible to assign fields an
initial value at declaration time, as demonstrated with the Salary field in
Listing 5.5.

Listing 5.5: Setting Initial Values of Fields at Declaration Time

class Employee

{

 public string FirstName;

 public string LastName;

}

Accessing an Instance Field
You can set and retrieve the data within fields. However, the fact that the
field does not include a static modifier indicates that it is an instance
field. You can access an instance field only from an instance of the contain-
ing class (an object). You cannot access it from the class directly (without
first creating an instance, in other words).

Listing 5.6 shows an updated look at the Program class and its utiliza-
tion of the Employee class, and Output 5.1 shows the results.

Listing 5.6: Accessing Fields

class Program

{

 static void Main()

 {

 Employee employee1 = new Employee();

 Employee employee2;

 employee2 = new Employee();

public string Salary = "Not enough";

 employee1.FirstName = "Inigo";

 employee1.LastName = "Montoya";

 employee1.Salary = "Too Little";

 IncreaseSalary(employee1);

ptg

Instance Methods 211

 // ...

 }

 static void IncreaseSalary(Employee employee)

 {

 }

}

Listing 5.6 instantiates two Employee objects, as you saw before. Next, it
sets each field, calls IncreaseSalary() to change the salary, and then dis-
plays each field associated with the object referenced by employee1.

Notice that you first have to specify which Employee instance you are
working with. Therefore, the employee1 variable appears as a prefix to the
field name when assigning and accessing the field.

Instance Methods

One alternative to formatting the names in the WriteLine() method call
within Main() is to provide a method in the Employee class that takes care
of the formatting. Changing the functionality to be within the Employee
class rather than a member of Program is consistent with the encapsulation
of a class. Why not group the methods relating to the employee’s full name
with the class that contains the data that forms the name?

Listing 5.7 demonstrates the creation of such a method.

Listing 5.7: Accessing Fields from within the Containing Class

class Employee

{

 public string FirstName;

 public string LastName;

 public string Salary;

 Console.WriteLine(

 "{0} {1}: {2}",

 employee1.FirstName,

 employee1.LastName,

 employee1.Salary);

 employee.Salary = "Enough to survive on";

OUTPUT 5.1:

Inigo Montoya: Enough to survive on

ptg

Chapter 5: Classes212

}

There is nothing particularly special about this method compared to
what you learned in Chapter 4, except that now the GetName() method
accesses fields on the object instead of just local variables. In addition, the
method declaration is not marked with static. As you will see later in this
chapter, static methods cannot directly access instance fields within a class.
Instead, it is necessary to obtain an instance of the class in order to call any
instance member, whether a method or a field.

Given the addition of the GetName() method, you can update
Program.Main() to use the new method, as shown in Listing 5.8 and
Output 5.2.

Listing 5.8: Accessing Fields from Outside the Containing Class

class Program

{

 static void Main()

 {

 Employee employee1 = new Employee();

 Employee employee2;

 employee2 = new Employee();

 employee1.FirstName = "Inigo";

 employee1.LastName = "Montoya";

 employee1.Salary = "Too Little";

 IncreaseSalary(employee1);

 // ...

 }

 // ...

}

 public string GetName()

 {

 return FirstName + " " + LastName;

 }

 Console.WriteLine(

 "{0}: {1}",

 employee1.GetName(),

 employee1.Salary);

OUTPUT 5.2:

Inigo Montoya: Enough to survive on

ptg

Using the this Keyword 213

Using the this Keyword

You can obtain the reference to a class from within instance members that
belong to the class. To indicate explicitly that the field or method accessed
is an instance member of the containing class in C#, you use the keyword
this. this is conceptually an implicit parameter within every instance
method that returns an instance of the object itself.

For example, consider the SetName() method shown in Listing 5.9.

Listing 5.9: Using this to Identify the Field’s Owner Explicitly

class Employee

{

 public string FirstName;

 public string LastName;

 public string Salary;

 public string GetName()

 {

 return FirstName + " " + LastName;

 }

}

This example uses the keyword this to indicate that the fields First-
Name and LastName are instance members of the class.

B E G I N N E R T O P I C

Relying on Coding Style to Avoid Ambiguity
In the SetName() method, you did not have to use the this keyword
because FirstName is obviously different from newFirstName. Consider,
however, if instead of calling the parameter “newFirstName” you called it
“FirstName” (using Pascal case), as shown in Listing 5.10.

 public void SetName(string newFirstName, string newLastName)

 {

 this.FirstName = newFirstName;

 this.LastName = newLastName;

 }

ptg

Chapter 5: Classes214

Listing 5.10: Using this to Avoid Ambiguity

class Employee
{
 public string FirstName;
 public string LastName;
 public string Salary;

 public string GetName()
 {
 return FirstName + " " + LastName;
 }

 // Caution: Parameter names use Pascal case
 public void SetName(string FirstName, string LastName)
 {
 this.FirstName = FirstName;
 this.LastName = LastName;
 }
}

In this example, it is not possible to refer to the FirstName field without
explicitly indicating that the Employee object owns the variable. this acts
just like the employee1 variable prefix used in the Program.Main() method
(see Listing 5.8); it identifies the reference as the one on which SetName()
was called.

Listing 5.10 does not follow the C# naming convention in which para-
meters are declared like local variables, using camel case. This can lead to
subtle bugs because assigning FirstName (intending to refer to the field) to
FirstName (the parameter) will still compile and even run. To avoid this
problem it is a good practice to have a different naming convention for
parameters and local variables than the naming convention for fields.
I demonstrate one such convention later in this chapter.

Language Contrast: Visual Basic—Accessing a Class Instance
with Me

The C# keyword this is identical to the Visual Basic keyword Me.

ptg

Using the this Keyword 215

In Listing 5.9 and Listing 5.10, the this keyword is not used in the
GetName() method—it is optional. However, if local variables or para-
meters exist with the same name as the field (see the SetName() method in
Listing 5.10), then leaving off this would result in accessing the local vari-
able/parameter rather than the field, so this would be required.

You also can use the keyword this to access a class’s methods explic-
itly. this.GetName() is allowed within the SetName() method, for exam-
ple, allowing you to print out the newly assigned name (see Listing 5.11
and Output 5.3).

Listing 5.11: Using this with a Method

class Employee
{
 // ...

 public string GetName()
 {
 return FirstName + " " + LastName;
 }

 public void SetName(string newFirstName, string newLastName)
 {
 this.FirstName = newFirstName;
 this.LastName = newLastName;

 }
}

class Program
{
 static void Main()
 {
 Employee employee = new Employee();

 employee.SetName("Inigo", "Montoya");
 // ...
 }
 // ...
}

 Console.WriteLine("Name changed to '{0}'",
 this.GetName());

ptg

Chapter 5: Classes216

Sometimes it may be necessary to use this in order to pass a reference to
the currently executing object. Consider the Save() method in Listing 5.12.

Listing 5.12: Passing this in a Method Call

class Employee

{

 public string FirstName;

 public string LastName;

 public string Salary;

 public void Save()

 {

 }

}

class DataStorage

{

 // Save an employee object to a file

 // named with the Employee name.

 public static void Store(Employee employee)

 {

 // ...

 }

}

The Save() method calls a method on the DataStorage class, called
Store(). The Store() method, however, needs to be passed the Employee
object that needs to be persisted. This is done using the keyword this,
which passes the instance of the Employee object on which Save() was
called.

A D V A N C E D T O P I C

Storing and Loading with Files
The actual implementation of the Store() method inside DataStorage
involves classes within the System.IO namespace, as shown in Listing 5.13.
Inside Store(), you begin by instantiating a FileStream object that you

OUTPUT 5.3:

Name changed to ’Inigo Montoya’

 DataStorage.Store(this);

ptg

Using the this Keyword 217

associate with a file corresponding to the employee’s full name. The File-
Mode.Create parameter indicates that you want a new file to be created if
there isn’t already one with the <firstname><lastname>.dat name; if the
file exists already, it will be overwritten. Next, you create a StreamWriter
class. The StreamWriter class is responsible for writing text into the
FileStream. You write the data using WriteLine() methods, just as
though writing to the console.

Listing 5.13: Data Persistence to a File

using System;

// IO namespace

using System.IO;

class DataStorage

{

 // Save an employee object to a file

 // named with the Employee name.

 // Error handling not shown.

 public static void Store(Employee employee)

 {

 // Instantiate a FileStream using FirstNameLastName.dat

 // for the filename. FileMode.Create will force

 // a new file to be created or override an

 // existing file.

 FileStream stream = new FileStream(

 employee.FirstName + employee.LastName + ".dat",

 FileMode.Create);
1

 // Create a StreamWriter object for writing text

 // into the FileStream

 StreamWriter writer = new StreamWriter(stream);

 // Write all the data associated with the employee.

 writer.WriteLine(employee.FirstName);

 writer.WriteLine(employee.LastName);

 writer.WriteLine(employee.Salary);

 // Close the StreamWriter and its Stream.

 writer.Close(); // Automatically closes the stream

 }

 // ...

}

1. This code could be improved with a using statement, a construct avoided because it has
not yet been introduced.

ptg

Chapter 5: Classes218

Once the write operations are completed, both the FileStream and the
StreamWriter need to be closed so that they are not left open indefinitely
while waiting for the garbage collector to run. This listing does not include
any error handling, so if an exception is thrown, neither Close() method
will be called.

The load process is similar (see Listing 5.14).

Listing 5.14: Data Retrieval from a File

class Employee

{

 // ...

}

// IO namespace

using System;

using System.IO;

class DataStorage

{

 // ...

 public static Employee Load(string firstName, string lastName)

 {

 Employee employee = new Employee();

 // Instantiate a FileStream using FirstNameLastName.dat

 // for the filename. FileMode.Open will open

 // an existing file or else report an error.

 FileStream stream = new FileStream(

 firstName + lastName + ".dat", FileMode.Open);
2

 // Create a SteamReader for reading text from the file.

 StreamReader reader = new StreamReader(stream);

 // Read each line from the file and place it into

 // the associated property.

 employee.FirstName = reader.ReadLine();

 employee.LastName = reader.ReadLine();

 employee.Salary = reader.ReadLine();

 // Close the StreamReader and its Stream.

 reader.Close(); // Automatically closes the stream

2. This code could be improved with a using statement, a construct avoided because it has
not yet been introduced.

ptg

Using the this Keyword 219

 return employee;

 }

}

class Program

{

 static void Main()

 {

 Employee employee1;

 Employee employee2 = new Employee();

 employee2.SetName("Inigo", "Montoya");

 employee2.Save();

 // Modify employee2 after saving.

 IncreaseSalary(employee2);

 // Load employee1 from the saved version of employee2

 employee1 = DataStorage.Load("Inigo", "Montoya");

 Console.WriteLine(

 "{0}: {1}",

 employee1.GetName(),

 employee1.Salary);

 // ...

 }

 // ...

}

Output 5.4 shows the results.

The reverse of the save process appears in Listing 5.14, which uses a Stream-
Reader rather than a StreamWriter. Again, Close() needs to be called on
both FileStream and StreamReader once the data has been read.

Output 5.4 does not show any salary after “Inigo Montoya:” because
Salary was not set to “Enough to survive on” by a call to IncreaseSal-
ary() until after the call to Save().

OUTPUT 5.4:

Name changed to ’Inigo Montoya’

Inigo Montoya

ptg

Chapter 5: Classes220

Notice in Main() that we can call Save() from an instance of an
employee, but to load a new employee we call DataStorage.Load(). To
load an employee, we generally don’t already have an employee instance
to load into, so an instance method on Employee would be less than ideal.
An alternative to calling Load on DataStorage would be to add a static
Load() method (see the section Static, later in this chapter) to Employee so
that it would be possible to call Employee.Load() (using the Employee
class, not an instance of Employee).

Observe the inclusion of the using System.IO directive at the top of the
listing. This makes each IO class accessible without prefixing it with the
full namespace.

Access Modifiers

When declaring a field earlier in the chapter, you prefixed the field declara-
tion with the keyword public. public is an access modifier that identifies
the level of encapsulation associated with the member it decorates. Five
access modifiers are available: public, private, protected, internal, and
protected internal. This section considers the first two.

B E G I N N E R T O P I C

Encapsulation Part 2: Information Hiding
Besides wrapping data and methods together into a single unit, encapsula-
tion is also about hiding the internal details of an object’s data and
behavior. To some degree, methods do this; from outside a method, all that
is visible to a caller is the method declaration. None of the internal imple-
mentation is visible. Object-oriented programming enables this further,
however, by providing facilities for controlling the extent to which mem-
bers are visible from outside the class. Members that are not visible outside
the class are private members.

In object-oriented programming, encapsulation is the term for not only
grouping data and behavior, but also hiding data within a class (the cap-
sule) so that minimum access about the inner workings of a class is
exposed outside the class. This reduces the chances that callers will modify
the data inappropriately.

ptg

Access Modifiers 221

The purpose of an access modifier is to provide encapsulation. By using
public, you explicitly indicated that it is acceptable that the modified
fields are accessible from outside the Employee class—in other words, that
they are accessible from the Program class, for example.

Consider an Employee class that includes a Password field, however. It
should be possible to call an Employee object and verify the password
using a Logon() method. It should not be possible, however, to access the
Password field on an Employee object from outside the class.

To define a Password field as hidden and inaccessible from outside the
containing class, you use the keyword private for the access modifier, in
place of public (see Listing 5.15). As a result, the Password field is not
intended for access from inside the Program class, for example.

Listing 5.15: Using the private Access Modifier

class Employee

{

 public string FirstName;

 public string LastName;

 public string Salary;

 // ...

}

class Program

{

 static void Main()

 {

 private string Password;

 private bool IsAuthenticated;

 public bool Logon(string password)

 {

 if(Password == password)

 {

 IsAuthenticated = true;

 }

 return IsAuthenticated;

 }

 public bool GetIsAuthenticated()

 {

 return IsAuthenticated;

 }

ptg

Chapter 5: Classes222

 Employee employee = new Employee();

 employee.FirstName = "Inigo";

 employee.LastName = "Montoya";

 // ...

 }

 // ...

}

Although not shown in Listing 5.15, it is possible to decorate a method
with an access modifier of private as well.

Note that if no access modifier is placed on a class member, the declara-
tion will default to private. In other words, members are private by
default and programmers need to specify explicitly that a member is to be
public.

Properties

The preceding section, Access Modifiers, demonstrated how you can use
the private keyword to encapsulate a password, preventing access from
outside the class. This type of encapsulation is often too thorough, how-
ever. For example, sometimes you might need to define fields that external
classes can only read but whose values you can change internally. Alterna-
tively, perhaps you want to allow access to write some data in a class but
you need to be able to validate changes made to the data. Still one more
example is the need to construct the data on the fly.

Traditionally, languages enabled the features found in these examples
by marking fields as private and then providing getter and setter
methods for accessing and modifying the data. The code in Listing 5.16
changes both FirstName and LastName to private fields. Public getter and
setter methods for each field allow their values to be accessed and
changed.

 // Password is private, so it cannot be

 // accessed from outside the class.

 // Console.WriteLine(

 // ("Password = {0}", employee.Password);

ptg

Properties 223

Listing 5.16: Declaring Getter and Setter Methods

class Employee

{

 private string FirstName;

 // FirstName getter

 public string GetFirstName()

 {

 return FirstName;

 }

 // FirstName setter

 public void SetFirstName(string newFirstName)

 {

 if(newFirstName != null && newFirstName != "")

 {

 FirstName = newFirstName;

 }

 }

 private string LastName;

 // LastName getter

 public string GetLastName()

 {

 return LastName;

 }

 // LastName setter

 public void SetLastName(string newLastName)

 {

 if(newLastName != null && newLastName != "")

 {

 LastName = newLastName;

 }

 }

 // ...

}

Unfortunately, this change affects the programmability of the Employee
class. No longer can you use the assignment operator to set data within the
class, nor can you access data without calling a method.

Declaring a Property
Considering the frequency of this type of pattern, the C# designers decided
to provide explicit syntax for it. This syntax is called a property (see Listing
5.17 and Output 5.5).

ptg

Chapter 5: Classes224

Listing 5.17: Defining Properties

class Profgram

{

 static void Main()

 {

 Employee employee = new Employee();

 // Call the FirstName property's setter.

 employee.FirstName = "Inigo";

 // Call the FirstName property's getter.

 System.Console.WriteLine(employee.FirstName);

 }

}

class Employee

{

 // ...

}

 // FirstName property

 public string FirstName

 {

 get

 {

 return _FirstName;

 }

 set

 {

 _FirstName = value;

 }

 }

 private string _FirstName;

 // LastName property

 public string LastName

 {

 get

 {

 return _LastName;

 }

 set

 {

 _LastName = value;

 }

 }

 private string _LastName;

ptg

Properties 225

The first thing to notice in Listing 5.17 is not the property code itself, but
the code within the Program class. Although you no longer have the fields
with the FirstName and LastName identifiers, you cannot see this by
looking at the Program class. The API for accessing an employee’s first and
last names has not changed at all. It is still possible to assign the parts of the
name using a simple assignment operator, for example (employee.First
Name = "Inigo").

The key feature is that properties provide an API that looks program-
matically like a field. In actuality, however, no such fields exist. A prop-
erty declaration looks exactly like a field declaration, but following it are
curly braces in which to place the property implementation. Two optional
parts make up the property implementation. The get part defines the get-
ter portion of the property. It corresponds directly to the GetFirstName()
and GetLastName() functions defined in Listing 5.16. To access the First-
Name property you call employee.FirstName. Similarly, setters (the set
portion of the implementation) enable the calling syntax of the field
assignment:

employee.FirstName = "Inigo";

Property definition syntax uses three contextual keywords. You use the
get and set keywords to identify either the retrieval or the assignment
portion of the property, respectively. In addition, the setter uses the value
keyword to refer to the right side of the assignment operation. When Pro-
gram.Main() calls employee.FirstName = "Inigo", therefore, value is set
to "Inigo" inside the setter and can be used to assign _FirstName. Listing
5.17’s property implementations are the most common. When the getter is
called (such as in Console.WriteLine(employee2.FirstName)), the value
from the field (_FirstName) is returned.

Automatically Implemented Properties
In C# 3.0, property syntax includes a shorthand version. Since a property
with a single backing field that is assigned and retrieved by the get and set

OUTPUT 5.5:

Inigo

ptg

Chapter 5: Classes226

accessors is so trivial and common (see the implementations of FirstName
and LastName), the C# 3.0 compiler allows the declaration of a property
without any accessor implementation or backing field declaration. Listing
5.18 demonstrates the syntax, and Output 5.6 shows the results.

Listing 5.18: Automatically Implemented Properties

class Program

{

 static void Main()

 {

 Employee employee1 =

 new Employee();

 Employee employee2 =

 new Employee();

 // Call the FirstName property's setter.

 employee1.FirstName = "Inigo";

 // Call the FirstName property's getter.

 System.Console.WriteLine(employee1.FirstName);

 // Assign an auto-implemented property

 employee2.Title = "Computer Nerd";

 employee1.Manager = employee2;

 // Print employee1's manager's title.

 System.Console.WriteLine(employee1.Manager.Title);

 }

}

class Employee

{

 // FirstName property

 public string FirstName

 {

 get

 {

 return _FirstName;

 }

 set

 {

 _FirstName = value;

 }

 }

 private string _FirstName;

ptg

Properties 227

 // LastName property

 public string LastName

 {

 get

 {

 return _LastName;

 }

 set

 {

 _LastName = value;

 }

 }

 private string _LastName;

 // ...

 // Title property

 // Manager property

}

Auto-implemented properties provide for a simpler way of writing
properties in addition to reading them. Furthermore, when it comes
time to add something such as validation to the setter, any existing
code that calls the property will not have to change even though the
property declaration will have changed to include an implementation.

Throughout the remainder of the book, I will frequently use this C#
3.0 or later syntax without indicating that it is a C# 3.0 introduced
feature.

Naming Conventions
Because the property name is FirstName, the field name changed from
earlier listings to _FirstName. Other common naming conventions for
the private field that backs a property are _firstName and m_FirstName

 public string Title { get; set; }

 public Employee Manager { get; set; }

OUTPUT 5.6:

Inigo

Computer Nerd

ptg

Chapter 5: Classes228

(a holdover from C++ where the m stands for member variable), as well
as the camel-case convention, just as with local variables.3

Regardless of which naming pattern you use for private fields, the cod-
ing standard for public fields and properties is Pascal case. Therefore, pub-
lic properties should use the LastName and FirstName type patterns.
Similarly, if no encapsulating property is created around a public field,
Pascal case should be used for the field.

Using Properties with Validation
Notice in Listing 5.19 that the Initialize() method of Employee uses the
property rather than the field for assignment as well. Although not
required, the result is that any validation within the property setter will be
invoked both inside and outside the class. Consider, for example, what
would happen if you changed the LastName property so that it checked
value for null or an empty string, before assigning it to _LastName.

Listing 5.19: Providing Property Validation

class Employee

{

 // ...

 public void Initialize(

 string newFirstName, string newLastName)

 {

 // Use property inside the Employee

 // class as well.

 FirstName = newFirstName;

 LastName = newLastName;

 }

 // LastName property

 public string LastName

 {

 get

 {

 return _LastName;

 }

 set

3. I prefer _FirstName because the m in front of the name is unnecessary when compared
with simply _, and by using the same casing as the property, it is possible to have only one
string within the Visual Studio code template expansion tools, instead of having one for
both the property name and the field name.

ptg

Properties 229

 {

 }

 }

 private string _LastName;

 // ...

}

With this new implementation, the code throws an exception if Last-
Name is assigned an invalid value, either from another member of the same
class or via a direct assignment to LastName from inside Program.Main().
The ability to intercept an assignment and validate the parameters by pro-
viding a field-like API is one of the advantages of properties.4

It is a good practice to only access a property-backing field from inside
the property implementation. In other words, always use the property,
rather than calling the field directly. In many cases, this is true even from
code within the same class as the property. If following this practice, when
code such as validation code is added, the entire class immediately takes
advantage of it. (As described later in the chapter, one exception to this
occurs when the field is marked as read-only because then the value can-
not be set once class instantiation completes, even in a property setter.)

Although rare, it is possible to assign a value inside the setter, as Listing
5.19 does. In this case, the call to value.Trim() removes any whitespace
surrounding the new last name value.

 // Validate LastName assignment

 if(value == null)

 {

 // Report error

 throw new ArgumentNullException ();

 }

 else

 {

 // Remove any whitespace around

 // the new last name.

 value = value.Trim();

 if(value == "")

 {

 throw new ArgumentException (

 "LastName cannot be blank.");
4

 }

 else

 _LastName = value;

 }

4. Apologies to Teller, Cher, Sting, Madonna, Bono, Prince, and Liberace, and so on.

ptg

Chapter 5: Classes230

Read-Only and Write-Only Properties
By removing either the getter or the setter portion of a property, you can
change a property’s accessibility. Properties with only a setter are write-
only, which is a relatively rare occurrence. Similarly, providing only a get-
ter will cause the property to be read-only; any attempts to assign a value
will cause a compile error. To make Id read-only, for example, you would
code it as shown in Listing 5.20.

Listing 5.20: Defining a Read-Only Property

class Program

{

 static void Main()

 {

 Employee employee1 = new Employee();

 employee1.Initialize(42);

 }

}

class Employee

{

 public void Initialize(int id)

 {

 }

 // ...

 // Id property declaration

 public string Id

 {

 get

 {

 return _Id;

 }

 }

 private string _Id;

}

 // ERROR: Property or indexer 'Employee.Id'

 // cannot be assigned to -- it is read-only

 employee1.Id = "490";

 // Use field because Id property has no setter,

 // it is read-only.

 _Id = id.ToString();

 // No setter provided.

ptg

Properties 231

Listing 5.20 assigns the field from within the Employee constructor
rather than the property (_Id = id). Assigning via the property causes a
compile error, as it does in Program.Main().

Access Modifiers on Getters and Setters
As previously mentioned, it is a good practice not to access fields from out-
side their properties because doing so circumvents any validation or addi-
tional logic that may be inserted. Unfortunately, C# 1.0 did not allow
different levels of encapsulation between the getter and setter portions of a
property. It was not possible, therefore, to create a public getter and a pri-
vate setter so that external classes would have read-only access to the
property while code within the class could write to the property.

In C# 2.0, support was added for placing an access modifier on either
the get or the set portion of the property implementation (not on both),
thereby overriding the access modifier specified on the property declara-
tion. Listing 5.21 demonstrates how to do this.

Listing 5.21: Placing Access Modifiers on the Setter

class Program

{

 static void Main()

 {

 Employee employee1 = new Employee();

 employee1.Initialize(42);

 }

}

class Employee

{

 public void Initialize(int id)

 {

 }

 // ...

 // ERROR: The property or indexer 'Employee.Id'

 // cannot be used in this context because the set

 // accessor is inaccessible

 employee1.Id = "490";

 // Set Id property

 Id = id.ToString();

ptg

Chapter 5: Classes232

 // Id property declaration

 public string Id

 {

 get

 {

 return _Id;

 }

 // Providing an access modifier is in C# 2.0

 // and higher only

 }

 private string _Id;

}

By using private on the setter, the property appears as read-only to
classes other than Employee. From within Employee, the property appears
as read/write, so you can assign the property within the constructor.
When specifying an access modifier on the getter or setter, take care that
the access modifier is more restrictive than the access modifier on the
property as a whole. It is a compile error, for example, to declare the prop-
erty as private and the setter as public.

Properties as Virtual Fields
As you have seen, properties behave like virtual fields. In some instances,
you do not need a backing field at all. Instead, the property getter returns a
calculated value while the setter parses the value and persists it to some
other member fields (if it even exists). Consider, for example, the Name
property implementation shown in Listing 5.22. Output 5.7 shows the
results.

Listing 5.22: Defining Properties

class Program

{

 static void Main()

 {

 Employee employee1 = new Employee();

 private set

 {

 _Id = value;

 }

 employee1.Name = "Inigo Montoya";

 System.Console.WriteLine(employee1.Name);

ptg

Properties 233

 // ...

 }

}

class Employee

{

 // ...

 // FirstName property

 public string FirstName

 {

 get

 {

 return _FirstName;

 }

 set

 {

 _FirstName = value;

 }

 }

 private string _FirstName;

 // LastName property

 public string LastName

 {

 get

 {

 return _LastName;

 }

 set

 {

 _LastName = value;

 }

 }

 private string _LastName;

 // ...

 // Name property

 public string Name

 {

 get

 {

 return FirstName + " " + LastName;

 }

 set

 {

 // Split the assigned value into

ptg

Chapter 5: Classes234

 // ...

}

The getter for the Name property concatenates the values returned from
the FirstName and LastName properties. In fact, the name value assigned is
not actually stored. When the Name property is assigned, the value on the
right side is parsed into its first and last name parts.

Properties and Method Calls Not Allowed as ref or out Parameter Values
C# allows properties to be used identically to fields, except when they are
passed as ref or out parameter values. ref and out parameter values are
internally implemented by passing the memory address to the target
method. However, because properties can be virtual fields that have no
backing field, or can be read/write-only, it is not possible to pass the
address for the underlying storage. As a result, you cannot pass properties
as ref or out parameter values. The same is true for method calls. Instead,
when code needs to pass a property or method call as a ref or out

 // first and last names.

 string[] names;

 names = value.Split(new char[]{' '});

 if(names.Length == 2)

 {

 FirstName = names[0];

 LastName = names[1];

 }

 else

 {

 // Throw an exception if the full

 // name was not assigned.

 throw new System. ArgumentException (

 string.Format(

 "Assigned value '{0}' is invalid", value));

 }

 }

 }

OUTPUT 5.7:

Inigo Montoya

ptg

Properties 235

parameter value, the code must first copy the value into a variable and
then pass the variable. Once the method call has completed, the code must
assign the variable back into the property.

A D V A N C E D T O P I C

Property Internals
Listing 5.23 shows that getters and setters are exposed as get_FirstName()
and set_FirstName() in the CIL.

Listing 5.23: CIL Code Resulting from Properties

.method public hidebysig specialname instance string

{

 // Code size 12 (0xc)

 .maxstack 1

 .locals init ([0] string CS$1$0000)

 IL_0000: nop

 IL_0001: ldarg.0

 IL_0002: ldfld string Program::_FirstName

 IL_0007: stloc.0

 IL_0008: br.s IL_000a

 IL_000a: ldloc.0

 IL_000b: ret

.method public hidebysig specialname instance void

{

 // Code size 9 (0x9)

 .maxstack 8

 IL_0000: nop

 IL_0001: ldarg.0

 IL_0002: ldarg.1

 IL_0003: stfld string Program::_FirstName

 IL_0008: ret

Just as important to their appearance as regular methods is the fact that
properties are an explicit construct within the CIL, too. As Listing 5.24

get_FirstName() cil managed

} // end of method Program::get_FirstName

set_FirstName(string 'value') cil managed

} // end of method Program::set_FirstName

ptg

Chapter 5: Classes236

shows, the getters and setters are called by CIL properties, which are an
explicit construct within the CIL code. Because of this, languages and
compilers are not restricted to always interpreting properties based on a
naming convention. Instead, CIL properties provide a means for compilers
and code editors to provide special syntax.

Listing 5.24: Properties Are an Explicit Construct in CIL

 .property instance string FirstName()

 {

 .get instance string Program::get_FirstName()

 .set instance void Program::set_FirstName(string)

 } // end of property Program::FirstName

Notice in Listing 5.23 that the getters and setters that are part of the prop-
erty include the specialname metadata. This modifier is what IDEs, such
as Visual Studio, use as a flag to hide the members from IntelliSense.

An automatically implemented property is virtually identical to one for
which you define the backing field explicitly. In place of the manually
defined backing field the C# compiler generates a field with the name <Prop-
ertyName>k_BackingField in IL. This generated field includes an attribute
(see Chapter 17) called System.Runtime.CompilerServices.CompilerGen-
eratedAttribute. Both the getters and the setters are decorated with the
same attribute because they too are generated—with the same implementa-
tion as in Listings 5.23 and 5.24.

Constructors

Now that you have added fields to a class and can store data, you need to
consider the validity of that data. As you saw in Listing 5.3, it is possible to
instantiate an object using the new operator. The result, however, is the
ability to create an employee with invalid data. Immediately following the
assignment of employee, you have an Employee object whose name and sal-
ary are not initialized. In this particular listing, you assigned the uninitial-
ized fields immediately following the instantiation of an employee, but if
you failed to do the initialization, you would not receive a warning from
the compiler. As a result, you could end up with an Employee object with
an invalid name.

ptg

Constructors 237

Declaring a Constructor
To correct this, you need to provide a means of specifying the required
data when the object is created. You do this using a constructor, demon-
strated in Listing 5.25.

Listing 5.25: Defining a Constructor

class Employee

{

 public string FirstName{ get; set; }

 public string LastName{ get; set; }

 public string Salary{ get; set; }

 // ...

}

To define a constructor you create a method with no return type, whose
method name is identical to the class name.

The constructor is the method that the code calls to create an instance of
the object. In this case, the constructor takes the first name and the last
name as parameters, allowing the programmer to specify these names
when instantiating the Employee object. Listing 5.26 is an example of how
to call a constructor.

Listing 5.26: Calling a Constructor

class Program

{

 static void Main()

 {

 Employee employee;

 employee.Salary = "Too Little";

 System.Console.WriteLine(

 "{0} {1}: {2}",

 employee.FirstName,

 employee.LastName,

 // Employee constructor

 public Employee(string firstName, string lastName)

 {

 FirstName = firstName;

 LastName = lastName;

 }

 employee = new Employee("Inigo", "Montoya");

ptg

Chapter 5: Classes238

 employee.Salary);

 }

 // ...

}

Notice that the new operator returns the type of the object being instanti-
ated (even though no return type or return statement was specified explic-
itly in the constructor’s declaration or implementation). In addition, you
have removed the initialization code for the first and last names because
that occurs within the constructor. In this example, you don’t initialize
Salary within the constructor, so the code assigning the salary still
appears.

Developers should take care when using both assignment at declara-
tion time and assignment within constructors. Assignments within the
constructor will occur after any assignments are made when a field is
declared (such as string Salary = "Not enough" in Listing 5.5). There-
fore, assignment within a constructor will override any value assigned at
declaration time. This subtlety can lead to a misinterpretation of the code
by a casual reader whereby he assumes the value after instantiation is
assigned at declaration time. Therefore, it is worth considering a coding
style that does not mix both declaration assignment and constructor
assignment within the same class.

A D V A N C E D T O P I C

Implementation Details of the new Operator
Internally, the interaction between the new operator and the constructor
is as follows. The new operator retrieves memory from the memory man-
ager and then calls the specified constructor, passing the initialized
memory to the constructor. Next, the remainder of the constructor chain
executes, passing around the initialized memory between constructors.
None of the constructors have a return type (behaviorally they all return
void). When execution completes on the constructor chain, the new opera-
tor returns the memory reference, now referring to the memory in its
initialized form.

ptg

Constructors 239

Default Constructors
It is important to note that by adding a constructor explicitly, you can no
longer instantiate an Employee from within Main() without specifying the
first and last names. The code shown in Listing 5.27, therefore, will not
compile.

Listing 5.27: Default Constructor No Longer Available

class Program

{

 static void Main()

 {

 Employee employee;

 // ...

 }

}

If a class has no explicitly defined constructor, then the C# compiler
adds one during compilation. This constructor takes no parameters and is,
therefore, the default constructor by definition. As soon as you add an
explicit constructor to a class, the C# compiler no longer provides a default
constructor. Therefore, with Employee(string firstName, string last-
Name) defined, the default constructor, Employee(), is not added by the
compiler. You could manually add such a constructor, but then you would
again be allowing construction of an Employee without specifying the
employee name.

It is not necessary to rely on the default constructor defined by the com-
piler. It is also possible for programmers to define a default constructor
explicitly, perhaps one that initializes some fields to particular values.
Defining the default constructor simply involves declaring a constructor
that takes no parameters.

Object Initializers
Starting with C# 3.0, the C# language team added functionality to initialize
an object’s accessible fields and properties using an object initializer. The

 // ERROR: No overload for method 'Employee'

 // takes '0' arguments.

 employee = new Employee();

ptg

Chapter 5: Classes240

object initializer consists of a set of member initializers enclosed in curly
braces following the constructor call to create the object. Each member ini-
tializer is the assignment of an accessible field or property name with a
value (see Listing 5.28).

Listing 5.28: Calling an Object Initializer

class Program

{

 static void Main()

 {

 Employee employee1 = new Employee("Inigo", "Montoya")

 { Title = "Computer Nerd", Salary = "Not enough"};

 // ...

 }

}

Notice that the same constructor rules apply even when using an object
initializer. In fact, the resultant CIL is exactly the same as it would be if the
fields or properties were assigned within separate statements immediately
following the constructor call. The order of member initializers in C#
provides the sequence for property and field assignment in the statements
following the constructor call within CIL.

A D V A N C E D T O P I C

Collection Initializers
Using a similar syntax to that of object initializers, collection initializers
were added in C# 3.0. Collection initializers provide support for a similar
feature set with collections. Specifically, a collection initializer allows the
assignment of items within the collection at the time of the collection’s
instantiation. Borrowing on the same syntax used for arrays, the collection
initializer initializes each item within the collection as part of collection
creation. Initializing a list of Employees, for example, involves specifying
each item within curly braces following the constructor call, as Listing 5.29
shows.

ptg

Constructors 241

Listing 5.29: Calling an Object Initializer

class Program

{

 static void Main()

 {

 List<Employee> employees = new List<Employee>()

 {

 new Employee("Inigo", "Montoya"),

 new Employee("Chuck", "McAtee")

 };

 // ...

 }

}

After the assignment of a new collection instance, the compiler-generated
code instantiates each object in sequence and adds them to the collection
via the Add() method.

A D V A N C E D T O P I C

Finalizers
Constructors define what happens during the instantiation process of a
class. To define what happens when an object is destroyed, C# provides
the finalizer construct. Unlike destructors in C++, finalizers do not run
immediately after an object goes out of scope. Rather, the finalizer executes
after an object is last active and before the program shuts down. Specifi-
cally, the garbage collector identifies objects with finalizers during a gar-
bage collection cycle, and instead of immediately deallocating those
objects, it adds them to a finalization queue. A separate thread runs
through each object in the finalization queue and calls the object’s finalizer
before removing it from the queue and making it available for the garbage
collector again. Chapter 9 discusses this process, along with resource
cleanup, in depth.

Overloading Constructors
Constructors can be overloaded—you can have more than one constructor
as long as the number or types of the parameters vary. For example, as

ptg

Chapter 5: Classes242

Listing 5.30 shows, you could provide a constructor that has an employee
ID with first and last names, or even just the employee ID.

Listing 5.30: Overloading a Constructor

class Employee

{

 public Employee(string firstName, string lastName)

 {

 FirstName = firstName;

 LastName = lastName;

 }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Salary { get; set; }

 // ...

}

This enables Program.Main() to instantiate an employee from the first and
last names either by passing in the employee ID only, or by passing both
the names and the IDs. You would use the constructor with both the names
and the IDs when creating a new employee in the system. You would use
the constructor with only the ID to load up the employee from a file or a
database.

 public Employee(

 int id, string firstName, string lastName)

 {

 Id = id;

 FirstName = firstName;

 LastName = lastName;

 }

 public Employee(int id)

 {

 Id = id;

 // Look up employee name...

 // ...

 }

 public int Id { get; set; }

ptg

Constructors 243

Constructor Chaining: Calling another Constructor Using this
Notice in Listing 5.30 that the initialization code for the Employee object is
now duplicated in multiple places and, therefore, has to be maintained in
multiple places. The amount of code is small, but there are ways to elimi-
nate the duplication by calling one constructor from another—constructor
chaining—using constructor initializers. Constructor initializers deter-
mine which constructor to call before executing the implementation of the
current constructor (see Listing 5.31).

Listing 5.31: Calling One Constructor from Another

class Employee

{

 public Employee(string firstName, string lastName)

 {

 FirstName = firstName;

 LastName = lastName;

 }

 {

 Id = id;

 }

 public Employee(int id)

 {

 Id = id;

 // Look up employee name...

 // ...

 }

 public int Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Salary { get; set; }

 // ...

}

 public Employee(

 int id, string firstName, string lastName)

 : this(firstName, lastName)

 // NOTE: Member constructors cannot be

 // called explicitly inline

 // this(id, firstName, lastName);

ptg

Chapter 5: Classes244

To call one constructor from another within the same class (for the same
object instance) C# uses a colon followed by the this keyword followed by
the parameter list on the callee constructor’s declaration. In this case, the
constructor that takes all three parameters calls the constructor that takes
two. Often, the calling pattern is reversed; the constructor with the fewest
parameters calls the constructor with the most parameters, passing
defaults for the parameters that are not known.

B E G I N N E R T O P I C

Centralizing Initialization
Notice that in the Employee(int id) constructor implementation from
Listing 5.31, you cannot call this(firstName, LastName) because no such
parameters exist on this constructor. To enable such a pattern in which all
initialization code happens through one method you must create a sepa-
rate method, as shown in Listing 5.32.

Listing 5.32: Providing an Initialization Method

class Employee

{

 public Employee(string firstName, string lastName)

 {

 int id;

 // Generate an employee ID...

 // ...

 }

 public Employee(int id, string firstName, string lastName)

 {

 }

 public Employee(int id)

 {

 string firstName;

 string lastName;

 Id = id;

 // Look up employee data

 // ...

 Initialize(id, firstName, lastName);

 Initialize(id, firstName, lastName);

ptg

Constructors 245

 }

 // ...

}

In this case, the method is called Initialize() and it takes both the
names and the employee IDs. Note that you can continue to call one con-
structor from another, as shown in Listing 5.31.

A D V A N C E D T O P I C

Anonymous Types
C# 3.0 introduced support for anonymous types. These are data types that
are generated by the compiler (on the fly) rather than through explicit class
definitions. Listing 5.33 shows such a declaration.

Listing 5.33: Implicit Local Variables with Anonymous Types

using System;

class Program

{

 static void Main()

 {

 Initialize(id, firstName, lastName);

private void Initialize(

 int id, string firstName, string lastName)

 {

 Id = id;

 FirstName = firstName;

 LastName = lastName;

 }

 var patent1 =

 new

 {

 Title = "Bifocals",

 YearOfPublication = "1784"

 };

 var patent2 =

 new

 {

 Title = "Phonograph",

 YearOfPublication = "1877"

 };

ptg

Chapter 5: Classes246

 System.Console.WriteLine("{0} ({1})",

 patent1.Title, patent1.YearOfPublication);

 System.Console.WriteLine("{0} ({1})",

 patent2.Title, patent1.YearOfPublication);

 Console.WriteLine();

 Console.WriteLine(patent1);

 Console.WriteLine(patent2);

 Console.WriteLine();

 Console.WriteLine(patent3);

 }

}

The corresponding output is shown in Output 5.8.

Listing 5.33 demonstrates the assignment of an anonymous type to an
implicitly typed (var) local variable.

When the compiler encounters the anonymous type syntax, it generates
a CIL class with properties corresponding to the named values and data
types in the anonymous type declaration. Although there is no available
name in C# for the generated type, it is still statically typed. For example,
the properties of the type are fully accessible. In Listing 5.33, patent1.
Title and patent2.YearOfPublication are called within the Console.
WriteLine() statement. Any attempts to call nonexistent members will

 var patent3 =

 new

 {

 patent1.Title,

 Year = patent1.YearOfPublication

 };

OUTPUT 5.8:

Bifocals (1784)

Phonograph (1877)

{ Title = Bifocals, YearOfPublication = 1784 }

{ Title = Phonograph, YearOfPublication = 1877 }

{ Title = Bifocals, Year = 1784 }

ptg

Static Members 247

result in compile errors. Even IntelliSense in IDEs such as Visual Studio
2008 works with the anonymous type.

In Listing 5.33, member names on the anonymous types are explicitly
identified using the assignment of the value to the name (see Title and
YearOfPublication in patent1 and patent2 assignments). However, if the
value assigned is a property or field, the name will default to the name of
the field or property if not specified explicitly. patent3, for example, is
defined using a property name “Title” rather than an assignment to an
implicit name. As Output 5.8 shows, the resultant property name is deter-
mined by the compiler to match the property from where the value was
retrieved.

Although the compiler allows anonymous type declarations such as the
ones shown in Listing 5.33, you should generally avoid anonymous type
declarations and even the associated implicit typing with var until you are
working with lambda and query expressions that associate data from dif-
ferent types or you are horizontally projecting the data so that for a partic-
ular type, there is less data overall. Until frequent querying of data out of
collections makes explicit type declaration burdensome, it is preferable to
explicitly declare types as outlined in this chapter.

Static Members

The HelloWorld example in Chapter 1 first presented the keyword static;
however, it did not define it fully. This section defines the static keyword
fully.

To begin, consider an example. Assume that the employee Id value
needs to be unique for each employee. One way to accomplish this is to
store a counter to track each employee ID. If the value is stored as an
instance field, however, every time you instantiate an object, a new NextId
field will be created such that every instance of the Employee object would
consume memory for that field. The biggest problem is that each time an
Employee object instantiated, the NextId value on all of the previously
instantiated Employee objects would need to be updated with the next ID
value. What you need is a single field that all Employee object instances
share.

ptg

Chapter 5: Classes248

Static Fields
To define data that is available across multiple instances, you use the
static keyword, as demonstrated in Listing 5.34.

Listing 5.34: Declaring a Static Field

class Employee

{

 public Employee(string firstName, string lastName)

 {

 FirstName = firstName;

 LastName = lastName;

 }

 // ...

 public int Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Salary { get; set; }

 // ...

}

In this example, the NextId field declaration includes the static modifier
and therefore is called a static field. Unlike Id, a single storage location for
NextId is shared across all instances of Employee. Inside the Employee con-
structor, you assign the new Employee object’s Id the value of NextId

Language Contrast: C++/Visual Basic—Global Variables
and Functions

Unlike many of the languages that came before it, C# does not have global

variables or global functions. All fields and methods in C# appear within

the context of a class. The equivalent of a global field or function within the

realm of C# is a static field or function. There is no functional difference

between global variables/functions and C# static fields/methods, except

that static fields/methods can include access modifiers, such as private,

that can limit the access and provide better encapsulation.

 Id = NextId;

 NextId++;

 public static int NextId;

ptg

Static Members 249

immediately before incrementing it. When another Employee class is
created, NextId will be incremented and the new Employee object’s Id field
will hold a different value.

Just as instance fields (nonstatic fields) can be initialized at declaration
time, so can static fields, as demonstrated in Listing 5.35.

Listing 5.35: Assigning a Static Field at Declaration

class Employee

{

 // ...

 // ...

}

Unlike with instance fields, if no initialization for a static field is provided,
the static field will automatically be assigned its default value (0, null,
false, and so on), and it will be possible to access the static field even if it
has never been explicitly assigned.

Nonstatic fields, or instance fields, have a new value for each object to
which they belong. In contrast, static fields don’t belong to the instance,
but rather to the class itself. As a result, you access a static field from out-
side a class via the class name. Consider the new Program class shown in
Listing 5.36 (using the Employee class from Listing 5.34).

Listing 5.36: Accessing a Static Field

using System;

class Program

{

 static void Main()

 {

 Employee employee1 = new Employee(

 "Inigo", "Montoya");

 Employee employee2 = new Employee(

 "Princess", "Buttercup");

 Console.WriteLine(

 "{0} {1} ({2})",

 employee1.FirstName,

 employee1.LastName,

 employee1.Id);

 public static int NextId = 42;

 Employee.NextId = 1000000;

ptg

Chapter 5: Classes250

 Console.WriteLine(

 "{0} {1} ({2})",

 employee2.FirstName,

 employee2.LastName,

 employee2.Id);

 }

 // ...

}

Output 5.9 shows the results of Listing 5.36.

To set and retrieve the initial value of the NextId static field, you use the
class name, Employee, not a variable name. The only time you can elimi-
nate the class name is from within code that appears within the class itself.
In other words, the Employee(...) constructor did not need to use
Employee.NextId because the code appeared within the context of the
Employee class itself, and therefore, the context was already understood
from the scope. In fact, the context is the scope.

Even though you refer to static fields slightly differently than instance
fields, it is not possible to define a static and an instance field with the same
name in the same class. The possibility of mistakenly referring to the
wrong field is high, and therefore, the C# designers decided to prevent
such code. Therefore, overlap in names will introduce conflict within the
declaration space.

B E G I N N E R T O P I C

Data Can Be Associated with Both a Class and an Object
Both classes and objects can have associated data, just as can the molds and
the widgets created from them.

 Console.WriteLine("NextId = {0}", Employee.NextId);

OUTPUT 5.9:

Inigo Montoya (1000000)

Princess Buttercup (1000001)

NextId = 1000002

ptg

Static Members 251

For example, a mold could have data corresponding to the number of
widgets it created, the serial number of the next widget, the current color
of the plastic injected into the mold, and the number of widgets it produces
per hour. Similarly, a widget has its own serial number, its own color, and
perhaps the date and time when the widget was created. Although the
color of the widget corresponds to the color of the plastic within the mold
at the time the widget was created, it obviously does not contain data cor-
responding to the color of the plastic currently in the mold, or the serial
number of the next widget to be produced.

In designing objects, programmers should take care to declare both
fields and methods appropriately as static or instance-based. In general,
you should declare methods that don’t access any instance data as static
methods, and methods that access instance data (where the instance is not
passed in as a parameter) as instance methods. Static fields store data cor-
responding to the class, such as defaults for new instances or the number
of instances that have been created. Instance fields store data associated
with the object.

Static Methods
Just like static fields, you access static methods directly off the class name
(Console.ReadLine(), for example). Furthermore, it is not necessary to
have an instance in order to access the method.

Listing 5.37 provides another example of both declaring and calling a
static method.

Listing 5.37: Defining a Static Method on DirectoryInfo

public static class DirectoryInfoExtension

{

 {

 if (target[target.Length - 1] !=

 Path.DirectorySeparatorChar)

 {

 target += Path.DirectorySeparatorChar;

 }

 if (!Directory.Exists(target))

 {

 public static void CopyTo(

 DirectoryInfo sourceDirectory, string target,

 SearchOption option, string searchPattern)

ptg

Chapter 5: Classes252

 Directory.CreateDirectory(target);

 }

 for (int i = 0; i < searchPattern.Length; i++)

 {

 foreach (string file in

 Directory.GetFiles(

 sourceDirectory.FullName, searchPattern))

 {

 File.Copy(file,

 target + Path.GetFileName(file), true);

 }

 }

 //Copy SubDirectories (recursively)

 if (option == SearchOption.AllDirectories)

 {

 foreach(string element in

 Directory.GetDirectories(

 sourceDirectory.FullName))

 {

 Copy(element,

 target + Path.GetFileName(element),

 searchPattern);

 }

 }

 }

}

 // ...

 DirectoryInfo directory = new DirectoryInfo(".\\Source");

 directory.MoveTo(".\\Root");

 // ...

The DirectoryInfoExtension.Copy() method takes a DirectoryInfo
object and copies the underlying directory structure to a new location.

Because static methods are not referenced through a particular
instance, the this keyword is invalid inside a static method. In addition, it
is not possible to access either an instance field or an instance method
directly from within a static method without a reference to the particular
instance to which the field or method belongs. (Note that Main() is another
example of a static method.)

 DirectoryInfoExtension.CopyTo(

 directory, ".\\Target",

 SearchOption.AllDirectories, "*");

ptg

Static Members 253

One might have expected this method on the System.IO.Directory
class or as an instance method on System.IO.DirectoryInfo. Since neither
exists, Listing 5.37 defines such a method on an entirely new class. In the
section Extension Methods, later in this chapter, we show how to make it
appear as an instance method on DirectoryInfo.

Static Constructors
In addition to static fields and methods, C# also supports static construc-
tors. Static constructors are provided as a means to initialize a class (not
the class instance). Static constructors are not called explicitly; instead, the
runtime calls static constructors automatically upon first access to the
class, whether via calling a regular constructor or accessing a static method
or field on the class. You use static constructors to initialize the static data
within the class to a particular value, mainly when the initial value
involves more complexity than a simple assignment at declaration time.
Consider Listing 5.38.

Listing 5.38: Declaring a Static Constructor

class Employee

{

 static Employee()

 {

 Random randomGenerator = new Random();

 NextId = randomGenerator.Next(101, 999);

 }

 // ...

 public static int NextId = 42;

 // ...

}

Listing 5.38 assigns the initial value of NextId to be a random integer
between 100 and 1,000. Because the initial value involves a method call, the
NextId initialization code appears within a static constructor and not as
part of the declaration.

If assignment of NextId occurs within both the static constructor and
the declaration, it is not obvious what the value will be when initialization
concludes. The C# compiler generates CIL in which the declaration assign-
ment is moved to be the first statement within the static constructor.

ptg

Chapter 5: Classes254

Therefore, NextId will contain the value returned by randomGenera-
tor.Next(101, 999) instead of a value assigned during NextId’s declara-
tion. Assignments within the static constructor, therefore, will take
precedence over assignments that occur as part of the field declaration, as
was the case with instance fields. Note that there is no support for defining
a static finalizer.

A D V A N C E D T O P I C

Favor Static Initialization during Declaration
Static constructors execute before the first access to any member of a class,
whether it is a static field, another static member, or the constructor. In
order to support this, the compiler injects a check into all type static mem-
bers and constructors to ensure that the static constructor runs first.

Without the static constructor, the compiler instead initializes all static
members to their default value and avoids adding the static constructor
check. The result is for static assignment initialization to be called before
accessing any static fields but not necessarily before all static methods or
any instance constructor is invoked. This might provide a performance
improvement if initialization of static members is expensive and not
needed before accessing a static field.

Static Properties
You also can declare properties as static. For example, Listing 5.39 wraps
the data for the next ID into a property.

Listing 5.39: Declaring a Static Property

class Employee

{

 // ...

 public static int NextId

 {

 get

 {

 return _NextId;

 }

 private set

 {

 _NextId = value;

ptg

Static Members 255

 // ...

}

It is almost always better to use a static property rather than a public static
field because public static fields are callable from anywhere whereas a
static property offers at least some level of encapsulation.

Static Classes
Some classes do not contain any instance fields. Consider, for example, a
Math class that has functions corresponding to the mathematical opera-
tions Max() and Min(), as shown in Listing 5.40.

Listing 5.40: Declaring a Static Class

// Static class introduced in C# 2.0

{

 // params allows the number of parameters to vary.

 static int Max(params int[] numbers)

 {

 // Check that there is a least one item in numbers.

 if(numbers.Length == 0)

 {

 throw new ArgumentException(

 "numbers cannot be empty");

 }

 int result;

 result = numbers[0];

 foreach (int number in numbers)

 {

 if(number > result)

 {

 result = number;

 }

 }

 return result;

 }

 // params allows the number of parameters to vary.

 static int Min(params int[] numbers)

 {

 // Check that there is a least one item in numbers.

 if(numbers.Length == 0)

 }

 }

 public static int _NextId = 42;

public static class SimpleMath

ptg

Chapter 5: Classes256

 {

 throw new ArgumentException(

 "numbers cannot be empty");

 }

 int result;

 result = numbers[0];

 foreach (int number in numbers)

 {

 if(number < result)

 {

 result = number;

 }

 }

 return result;

 }

}

This class does not have any instance fields (or methods), and therefore,
creation of such a class would be pointless. Because of this, the class is dec-
orated with the static keyword. The static keyword on a class provides
two facilities. First, it prevents a programmer from writing code that
instantiates the SimpleMath class. Second, it prevents the declaration of any
instance fields or methods within the class. Since the class cannot be
instantiated, instance members would be pointless.

One more distinguishing characteristic of the static class is that the C#
compiler automatically marks it as abstract and sealed within the CIL.
This designates the class as inextensible; in other words, no class can be
derived from it or instantiate it.

Extension Methods

Consider the System.IO.DirectoryInfo class which is used to manipulate
filesystem directories. The class supports functionality to list the files and
subdirectories (DirectoryInfo.GetFiles()) as well as the capability to
move the directory (DirectoryInfo.Move()). One feature it doesn’t sup-
port directly is copy. If you needed such a method you would have to
implement it, as shown earlier in Listing 5.37.

The DirectoryInfoExtension.Copy() method is a standard static method
declaration. However, notice that calling this Copy() method is different from
calling the DirectoryInfo.Move() method. This is unfortunate. Ideally, we

ptg

Extension Methods 257

want to add a method to DirectoryInfo so that, given an instance, we could
call Copy() as an instance method—directory.Copy().

C# 3.0 simulates the creation of an instance method on a different class
via extension methods. To do this we simply change the signature of our
static method so that the first parameter, the data type we are extending, is
prefixed with the this keyword (see Listing 5.41).

Listing 5.41: Static Copy Method for DirectoryInfo

public static class DirectoryInfoExtension

{

 public static void CopyTo(

 SearchOption option, string searchPattern)

 {

 // ...

 }

}

 // ...

 DirectoryInfo directory = new DirectoryInfo(".\\Source");

 // ...

Via this simple addition to C# 3.0, it is now possible to add “instance
methods” to any class, even classes that are not within the same assembly.
The resultant CIL code, however, is identical to what the compiler creates
when calling the extension method as a normal static method.

Extension method requirements are as follows.

• The first parameter corresponds to the type on which the method
extends or operates.

• To designate the extension method, prefix the extended type with the
this modifier.

• To access the method as an extension method, import the extending
type’s namespace via a using directive (or place the extending class in
the same namespace as the calling code).

If the extension method signature matches a signature on the extended
type already (that is, if CopyTo() already existed on DirectoryInfo), the
extension method will never be called except as a normal static method.

this DirectoryInfo sourceDirectory, string target,

 directory.CopyTo(".\\Target",

 SearchOption.AllDirectories, "*");

ptg

Chapter 5: Classes258

Note that specializing a type via inheritance (which I will cover in
Chapter 6) is preferable to using an extension method. Extension methods
do not provide a clean versioning mechanism since the addition of a
matching signature to the extended type will take precedence over the
extension method without warning of the change. The subtlety of this is
more pronounced for extended classes whose source code you don’t con-
trol. Another minor point is that, although development IDEs support
IntelliSense for extension methods, it is not obvious that a method is an
extension method by simply reading through the calling code. In general,
use extension methods sparingly.

Encapsulating the Data

In addition to properties and the access modifiers we looked at earlier in the
chapter, there are several other specialized ways of encapsulating the data
within a class. For instance, there are two more field modifiers. The first is
the const modifier, which you already encountered when declaring local
variables. The second is the capability of fields to be defined as read-only.

const

Just as with const values, a const field contains a compile-time-deter-
mined value that cannot be changed at runtime. Values such as pi make
good candidates for constant field declarations. Listing 5.42 shows an
example of declaring a const field.

Listing 5.42: Declaring a Constant Field

class ConvertUnits

{

 public const float CentimetersPerInch = 2.54F;

 public const int CupsPerGallon = 16;

 // ...

}

Constant fields are static automatically, since no new field instance is
required for each object instance. Declaring a constant field as static
explicitly will cause a compile error.

It is important that the types of values used in public constant expres-
sions are permanent in time. Values such as pi, Avogadro’s number, and

ptg

Encapsulating the Data 259

the circumference of the Earth are good examples. However, values that
could potentially change over time are not. Build numbers, population
counts, and exchange rates would be poor choices for constants.

A D V A N C E D T O P I C

Public Constants Should Be Permanent Values
public constants should be permanent because changing their value will
not necessarily take effect in the assemblies that use it. If an assembly refer-
ences constants from a different assembly, the value of the constant is com-
piled directly into the referencing assembly. Therefore, if the value in the
referenced assembly is changed but the referencing assembly is not recom-
piled, then the referencing assembly will still use the original value, not the
new value. Values that could potentially change in the future should be
specified as readonly instead.

readonly

Unlike const, the readonly modifier is available only for fields (not for
local variables) and it declares that the field value is modifiable only from
inside the constructor or directly during declaration. Listing 5.43 demon-
strates how to declare a readonly field.

Listing 5.43: Declaring a Field As readonly

class Employee

{

 public Employee(int id)

 {

 }

 // ...

 public void SetId(int newId)

 {

 }

 // ...

}

 Id = id;

 public readonly int Id;

 // ERROR: read-only fields cannot be set

 // outside the constructor.

 // Id = newId;

ptg

Chapter 5: Classes260

Unlike constant fields, readonly fields can vary from one instance to
the next. In fact, a readonly field’s value can change from its value during
declaration to a new value within the constructor. Furthermore, readonly
fields occur as either instance or static fields. Another key distinction is
that you can assign the value of a readonly field at execution time rather
than just at compile time.

Using readonly with an array does not freeze the contents of the array.
It freezes the number of elements in the array because it is not possible to
reassign the readonly field to a new instance. However, the elements of the
array are still writeable.

Nested Classes

In addition to defining methods and fields within a class, it is also possible
to define a class within a class. Such classes are nested classes. You use a
nested class when the class makes little sense outside the context of its con-
taining class.

Consider a class that handles the command-line options of a program.
Such a class is generally unique to each program and there is no reason to
make a CommandLine class accessible from outside the class that contains
Main(). Listing 5.44 demonstrates such a nested class.

Listing 5.44: Defining a Nested Class

 public CommandLine(string[] arguments)

 {

 for(int argumentCounter=0;

 argumentCounter<arguments.Length;

 argumentCounter++)

 {

 switch (argumentCounter)

 {

 case 0:

 Action = arguments[0].ToLower();

 break;

 case 1:

 Id = arguments[1];

 break;

class Program

{

 // Define a nested class for processing the command line.

 private class CommandLine

 {

ptg

Nested Classes 261

 case 2:

 FirstName = arguments[2];

 break;

 case 3:

 LastName = arguments[3];

 break;

 }

 }

 }

 public string Action;

 public string Id;

 public string FirstName;

 public string LastName;

 }

 static void Main(string[] args)

 {

 switch (commandLine.Action)

 {

 case "new":

 // Create a new employee

 // ...

 break;

 case "update":

 // Update an existing employee's data

 // ...

 break;

 case "delete":

 // Remove an existing employee's file.

 // ...

 break;

 default:

 Console.WriteLine(

 "Employee.exe " +

 "new|update|delete <id> [firstname] [lastname]");

 break;

 }

 }

}

The nested class in this example is Program.CommandLine. As with all
class members, no containing class identifier is needed from inside the
containing class, so you can simply refer to it as CommandLine.

One unique characteristic of nested classes is the ability to specify pri-
vate as an access modifier for the class itself. Because the purpose of this
class is to parse the command line and place each argument into a separate

 CommandLine commandLine = new CommandLine(args);

ptg

Chapter 5: Classes262

field, Program.CommandLine is relevant only to the Program class in this
application. The use of the private access modifier defines the intended
scope of the class and prevents access from outside the class. You can do
this only if the class is nested.

The this member within a nested class refers to an instance of the
nested class, not the containing class. One way for a nested class to access
an instance of the containing class is if the containing class instance is
explicitly passed, such as via a constructor or method parameter.

Another interesting characteristic of nested classes is that they can
access any member on the containing class, including private members.
The converse to accessing private members is not true, however. It is not
possible for the containing class to access a private member on the nested
class.

Nested classes are rare. Furthermore, treat public nested classes suspi-
ciously; they indicate potentially poor code that is likely to be confusing
and hard to discover.

Partial Classes

Another language feature added in C# 2.0 is partial classes. Partial classes
are portions of a class that the compiler can combine to form a complete
class. Although you could define two or more partial classes within the
same file, the general purpose of a partial class is to allow the splitting of a
class definition across multiple files. Primarily this is useful for tools that

Language Contrast: Java—Inner Classes

Java includes not only the concept of a nested class, but also the concept of

an inner class. Inner classes correspond to objects that are associated with

the containing class instance rather than just a syntactic relationship. In

C#, you can achieve the same structure by including an instance field of a

nested type within the outer class. A factory method or constructor can

ensure a reference to the corresponding instance of the outer class is set

within the inner class instance as well.

ptg

Partial Classes 263

are generating or modifying code. With partial classes, the tools can work
on a file separate from the one the developer is manually coding.

Defining a Partial Class
C# 2.0 (and later) allows declaration of a partial class by prepending a con-
textual keyword, partial, immediately before class, as Listing 5.45 shows.

Listing 5.45: Defining a Partial Class

// File: Program1.cs

partial class Program

{

}

// File: Program2.cs

partial class Program

{

}

In this case, each portion of Program is placed into a separate file, as identi-
fied by the comment. Besides their use with code generators, another com-
mon use of partial classes is to place any nested classes into their own files.
This is in accordance with the coding convention that places each class defi-
nition within its own file. For example, Listing 5.46 places the Program.Com-
mandLine class into a file separate from the core Program members.

Listing 5.46: Defining a Nested Class in a Separate Partial Class

// File: Program.cs

partial class Program

{

 static void Main(string[] args)

 {

 CommandLine commandLine = new CommandLine(args);

 switch (commandLine.Action)

 {

 // ...

 }

 }

}

// File: Program+CommandLine.cs

partial class Program

ptg

Chapter 5: Classes264

{

 // Define a nested class for processing the command line.

 private class CommandLine

 {

 // ...

 }

}

Partial classes do not allow extending compiled classes, or classes in
other assemblies. They are only a means of splitting a class implementa-
tion across multiple files within the same assembly.

Partial Methods
Beginning with C# 3.0, the language designers added the concept of partial
methods, extending the partial class concept of C# 2.0. Partial methods are
allowed only within partial classes, and like partial classes, the primary
purpose is to accommodate code generation.

Consider a code generation tool that generates the Person.Designer.cs
file for the Person class based on a Person table within a database. The tool
will examine the table and create properties for each column in the table.
The problem, however, is that frequently the tool cannot generate any vali-
dation logic that may be required because this logic is based on business
rules that are not embedded into the database table definition. Instead, the
developer of the Person class needs to add the validation logic. It is undesir-
able to modify Person.Designer.cs directly because if the file is regener-
ated (to accommodate an additional column in the database, for example),
the changes would be lost. Instead, the structure of the code for Person
needs to be separated out so that the generated code appears in one file and
the custom code (with business rules) is placed into a separate file unaf-
fected by any regeneration. As we saw in the preceding section, partial
classes are well suited for the task of splitting a file across multiple files.
However, they are not sufficient. Frequently, we also need partial methods.

Partial methods allow for a declaration of a method without requiring
an implementation. However, when the optional implementation is
included, it can be located in one of the sister partial class definitions,
likely in a separate file. Listing 5.47 shows the partial method declaration
and the implementation for the Person class.

ptg

Partial Classes 265

Listing 5.47: Defining a Nested Class in a Separate Partial Class

// File: Person.Designer.cs

public partial class Person

{

 #region Extensibility Method Definitions

 #endregion

 // ...

 public System.Guid PersonId

 {

 // ...

 }

 private System.Guid _PersonId;

 // ...

 public string LastName

 {

 get

 {

 return _LastName;

 }

 set

 {

 if ((_LastName != value))

 {

 _LastName = value;

 }

 }

 }

 private string _LastName;

 // ...

 public string FirstName

 {

 get

 {

 return _FirstName;

 }

 set

 {

 if ((_FirstName != value))

 {

 _FirstName = value;

 }

 }

 partial void OnLastNameChanging(string value);

 partial void OnFirstNameChanging(string value);

 OnLastNameChanging(value);

 OnFirstNameChanging(value);

ptg

Chapter 5: Classes266

 }

 private string _FirstName;

}

// File: Person.cs

partial class Person

{

 partial void OnLastNameChanging(string value)

 {

 if (value == null)

 {

 throw new ArgumentNullException("LastName");

 }

 if(value.Trim().Length == 0)

 {

 throw new ArgumentException(

 "LastName cannot be empty.");

 }

 }

}

In the listing of Person.Designer.cs are declarations for the OnLastName-
Changing() and OnFirstNameChanging() methods. Furthermore, the prop-
erties for the last and first names make calls to their corresponding
changing methods. Even though the declarations of the changing methods
contain no implementation, this code will successfully compile. The key is
that the method declarations are prefixed with the contextual keyword
partial in addition to the class that contains such methods.

In Listing 5.47, only the OnLastNameChanging() method is imple-
mented. In this case, the implementation checks the suggested new Last-
Name value and throws an exception if it is not valid. Notice that the
signatures for OnLastNameChanging() between the two locations match.

It is important to note that a partial method must return void. If the
method didn’t return void and the implementation was not provided,
what would the expected return be from a call to a nonimplemented
method? To avoid any invalid assumptions about the return, the C#
designers decided not to prohibit methods with returns other than void.
Similarly, out parameters are not allowed on partial methods. If a return
value is required, ref parameters may be used.

ptg

Summary 267

In summary, partial methods allow generated code to call methods that
have not necessarily been implemented. Furthermore, if there is no imple-
mentation provided for a partial method, no trace of the partial method
appears in the CIL. This helps keep code size small while keeping flexibil-
ity high.

SUMMARY

This chapter explained C# constructs for classes and object orientation in
C#. This included a discussion of fields, and a discussion of how to access
them on a class instance.

This chapter also discussed the key concept of whether to store data on
a per-instance basis or across all instances of a type. Static data is associ-
ated with the class and instance data is stored on each object.

In addition, the chapter explored encapsulation in the context of access
modifiers for methods and data. The C# construct of properties was intro-
duced, and you saw how to use it to encapsulate private fields.

The next chapter focuses on how to associate classes with each other via
inheritance, and the benefits derived from this object-oriented construct.

ptg

This page intentionally left blank

ptg

269

6
Inheritance

HE PRECEDING CHAPTER DISCUSSED how one class can reference other
classes via fields and properties. This chapter discusses how to use the

inheritance relationship between classes to build class hierarchies.

B E G I N N E R T O P I C

Inheritance Definitions
The preceding chapter provided an overview of inheritance. Here’s a
review of the defined terms.

• Derive/inherit: Specialize a base class to include additional members
or customization of the base class members.

T

2

34

5 1

Inheritance

Derivation
Casting
protected
Single Inheritance
Sealed Classes

Overriding virtual
new
sealed

Abstract ClassesSystem.Object

is Operator

ptg

Chapter 6: Inheritance270

• Derived/sub/child type: The specialized type that inherits the members
of the more general type.

• Base/super/parent type: The general type whose members a derived
type inherits.

Inheritance forms an “is a” relationship. The derived type is always
implicitly also of the base type. Just as a hard drive “is a” storage device,
any other type derived from the storage device type “is a” type of storage
device.

Derivation

It is common to want to extend a given type to add features, such as
behavior and data. The purpose of inheritance is to do exactly that. Given
a Person class, you create an Employee class that additionally contains
EmployeeId and Department properties. The reverse approach may also
occur. Given, for example, a Contact class within a Personal Digital Assis-
tant (PDA), you decide you also can add calendaring support. Toward
this effort, you create an Appointment class. However, instead of redefin-
ing the methods and properties that are common to both classes, you
refactor the Contact class. Specifically, you move the common methods
and properties on Contact into a base class called PdaItem from which
both Contact and Appointment derive, as shown in Figure 6.1.

The common items in this case are Created, LastUpdated, Name, Object-
Key, and the like. Through derivation, the methods defined on the base
class, PdaItem, are accessible from all subclasses of PdaItem.

When defining a derived class, follow the class identifier with a colon
and then the base class, as Listing 6.1 demonstrates.

Listing 6.1: Deriving One Class from Another

public class PdaItem

{

 public string Name { get; set; }

 public DateTime LastUpdated { get; set; }

}

ptg

 Derivation 271

// Define the Contact class as inheriting the PdaItem class

{

 public string Address { get; set; }

 public string Phone { get; set; }

}

Listing 6.2 shows how to access the properties defined in Contact.

Listing 6.2: Using Inherited Methods

public class Program

{

 public static void Main()

 {

 Contact contact = new Contact();

 // ...

 }

}

public class Contact : PdaItem

 contact.Name = "Inigo Montoya";

Figure 6.1: Refactoring into a Base Class

ptg

Chapter 6: Inheritance272

Even though Contact does not directly have a property called Name, all
instances of Contact can still access the Name property from PdaItem and
use it as though it was part of Contact. Furthermore, any additional classes
that derive from Contact will also inherit the members of PdaItem, or any
class from which PdaItem was derived. The inheritance chain has no prac-
tical limit and each derived class will have all the exposed members of its
base class inheritance chain combined (see Listing 6.3).

Listing 6.3: Classes Deriving from Each Other to Form an Inheritance Chain

public class PdaItem : object

{

 // ...

}

public class Appointment : PdaItem

{

 // ...

}

public class Contact : PdaItem

{

 // ...

}

public class Customer : Contact

{

 // ...

}

In other words, although Customer doesn’t derive from PdaItem directly, it
still inherits the members of PdaItem.

In Listing 6.3, PdaItem is shown explicitly to derive from object.
Although C# allows such syntax, it is unnecessary because all classes that
don’t have some other derivation will derive from object, regardless of
whether it is specified.

Casting between Base and Derived Types
As Listing 6.4 shows, because derivation forms an “is a” relationship, a
derived type can always be directly assigned to a base type.

ptg

 Derivation 273

Listing 6.4: Implicit Base Type Casting

public class Program

{

 pulic static void Main()

 {

 // Derived types can be implicitly converted to

 // base types

 Contact contact = new Contact();

 // ...

 // Base types must be cast explicitly to derived types

 // ...

 }

}

The derived type, Contact, is a PdaItem and can be assigned directly to a
PdaItem. This is known as an implicit conversion because no specific oper-
ator is required and the conversion will, on principle, always succeed; it
will not throw an exception.

The reverse, however, is not true. A PdaItem is not necessarily a Contact; it
could be an Appointment or some other undefined, derived type. Therefore,
casting from the base type to the derived type requires an explicit cast, which
at runtime could fail. To perform an explicit cast, identify the target type
within parentheses prior to the original reference, as Listing 6.4 demonstrates.

With the explicit cast, the programmer essentially communicates to the
compiler to trust her, she knows what she is doing, and the C# compiler
allows the conversion as long as the target type is derived from the origi-
nating type. Although the C# compiler allows an explicit conversion at
compile time between potentially compatible types, the CLR will still ver-
ify the explicit cast at execution time, throwing an exception if in fact the
object instance is not of the targeted type.

The C# compiler allows the cast operator even when the type hierarchy
allows an implicit cast. For example, the assignment from contact to item
could use a cast operator as follows:

item = (PdaItem)contact;

or even when no cast is necessary:

contact = (Contact)contact;

 PdaItem item = contact;

 contact = (Contact)item;

ptg

Chapter 6: Inheritance274

B E G I N N E R T O P I C

Casting within the Inheritance Chain
An implicit conversion to a base class does not instantiate a new instance.
Instead, the same instance is simply referred to as the base type and
the capabilities (the accessible members) are those of the base type. It is
just like referring to a CD-ROM drive (CDROM) as a storage device.
Since not all storage devices support an eject operation, a CDROM that
is viewed as a storage device cannot be ejected either, and a call to
storageDevice.Eject() would not compile even though the instantiated
object may have been a CDROM object that supported the Eject() method.

Similarly, casting down from the base class to the derived class simply
begins referring to the type more specifically, expanding the available
operations. The restriction is that the actual instantiated type must be an
instance of the targeted type (or something derived from it).

A D V A N C E D T O P I C

Defining Custom Conversions
Conversion between types is not limited to types within a single
inheritance chain. It is possible to convert between entirely unrelated
types as well. The key is the provision of a conversion operator between
the two types. C# allows types to include either explicit or implicit
conversion operators. Anytime the operation could possibly fail, such as
in a cast from long to int, developers should choose to define an explicit
conversion operator. This warns developers performing the conversion
to do so only when they are certain the conversion will succeed, or else to
be prepared to catch the exception if it doesn’t. They should also use
explicit conversions over an implicit conversion when the conversion
is lossy. Converting from a float to an int, for example, truncates
the decimal, which a return cast (from int back to float) would not
recover.

Listing 6.5 shows implicit and explicit conversion operators for Address
to string and vice versa.

ptg

 Derivation 275

Listing 6.5: Defining Cast Operators

class GPSCoordinates

{

 // ...

 public static implicit operator UTMCoordinates(

 GPSCoordinates coordinates)

 {

 // ...

 }

}

In this case, you have an implicit conversion from GPSCoordinates to
UTMCoordinates. A similar conversion could be written to reverse the
process. Note that an explicit conversion could also be written by replacing
implicit with explicit.

private Access Modifier
All public members of a base class are available to the derived class. How-
ever, private members are not. For example, in Listing 6.6, the private
field, _Name, is not available on Contact.

Listing 6.6: Private Members Are Not Inherited

public class PdaItem

{

 private string _Name;

 // ...

}

public class Contact : PdaItem

{

 // ...

}

public class Program

{

 public static void Main()

 {

 Contact contact = new Contact();

 }

}

 // ERROR: 'PdaItem. _Name' is inaccessible

 // due to its protection level

 contact._Name = "Inigo Montoya";

ptg

Chapter 6: Inheritance276

As part of keeping with the principle of encapsulation, derived classes
cannot access members declared as private.1 This forces the base class
developer to make an explicit choice as to whether a derived class gains
access to a member. In this case, the base class is defining an API in which
_Name can be changed only via the Name property. That way, if validation is
added, the derived class will gain the validation benefit automatically
because it was unable to access _Name directly from the start.

protected Access Modifier
Encapsulation is finer-grained than just public or private, however. It is
possible to define members in base classes that only derived classes can
access. Consider the ObjectKey property shown in Listing 6.7, for example.

Listing 6.7: protected Members Are Accessible Only from Derived Classes

public class Program

{

 public static void Main()

 {

 Contact contact = new Contact();

 contact.Name = "Inigo Montoya";

 }

}

public class PdaItem

{

 {

 get { return _ObjectKey; }

 set { _ObjectKey = value; }

 }

 private Guid _ObjectKey;

 // ...

}

1. Except for the corner case when the derived class is also a nested class of the base class.

 // ERROR: 'PdaItem.ObjectKey' is inaccessible

 // due to its protection level

 contact.ObjectKey = Guid.NewGuid();

 protected Guid ObjectKey

ptg

 Derivation 277

public class Contact : PdaItem

{

 void Save()

 {

 // Instantiate a FileStream using <ObjectKey>.dat

 // for the filename.

 FileStream stream = System.IO.File.OpenWrite(

 void Load(PdaItem pdaItem)

 {

 Contact contact = pdaItem as Contact;

 if(contact != null)

 {

 contact.ObjectKey = ...;

 }

 }

 // ...

 }

}

ObjectKey is defined using the protected access modifier. The result is
that it is accessible outside of PdaItem only from classes that derive from
PdaItem. Contact derives from PdaItem and, therefore, all members of
Contact have access to ObjectKey. Since Program does not derive from
PdaItem, using the ObjectKey property within Program results in a compile
error.

A subtlety shown in the Contact.Load() method is worth noting.
Developers are often surprised that from code within Contact it is not pos-
sible to access the protected ObjectKey of an explicit PdaItem, even though
Contact derives from PdaItem. The reason is that a PdaItem could poten-
tially be an Address, and Contact should not be able to access protected
members of Address. Therefore, encapsulation prevents Contact from
potentially modifying the ObjectKey of an Address. A successful cast to
Contact will bypass the restriction as shown. The governing rule is that
accessing a protected member from a derived class requires compile-time

ObjectKey + ".dat");

 // ERROR: 'pdaItem.ObjectKey' is inaccessible

 // due to its protection level

 pdaItem.ObjectKey = ...;

ptg

Chapter 6: Inheritance278

determination that the protected member is an instance of the derived
class (or one of its subclasses).

Extension Methods
One of the features included with extension methods is the fact that they
too are inherited. If we extend a base class such as PdaItem, all the exten-
sion methods will also be available in the derived classes. However, as
with all extension methods, priority is given to instance methods. If a com-
patible signature appears anywhere within the inheritance chain, this will
take precedence over an extension method.

Requiring extension methods on base types is rare. As with extension
methods in general, if the base type’s code is available, it is preferable to
modify the base type directly. Even in cases where the base type’s code is
unavailable, programmers should consider whether to add extension
methods to an interface that the base type or individual derived types
implement. I cover interfaces and using them with extension methods in
the next chapter.

Single Inheritance
In theory, you can place an unlimited number of classes in an inheritance
tree. For example, Customer derives from Contact, which derives from
PdaItem, which derives from object. However, C# is a single-inheritance
programming language (as is the CIL language to which C# compiles).
This means that a class cannot derive from two classes directly. It is not
possible, for example, to have Contact derive from both PdaItem and
Person.

Language Contrast: C++—Multiple Inheritance

C#’s single inheritance is one of its major differences from C++. It makes for

a significant migration path from programming libraries such as Active Tem-

plate Library (ATL), whose entire approach relies on multiple inheritance.

ptg

 Derivation 279

For the rare cases that require a multiple-inheritance class structure,
one solution is to use aggregation; instead of inheriting the second class,
the class contains an instance of the class. Figure 6.2 shows an example of
this class structure. Aggregation occurs when the association relationship
defines a core part of the containing object. For multiple inheritance, this
involves picking one class as the primary base class (PdaItem) and deriving
a new class (Contact) from that. The second desired base class (Person) is
added as a field in the derived class (Contact). Next, all the nonprivate
members on the field (Person) are redefined on the derived class (Contact)
which then delegates the calls out to the field (Person). Some code duplica-
tion occurs because methods are redeclared; however, this is minimal,
since the real method body is implemented only within the aggregated
class (Person).

In Figure 6.2, Contact contains a private property called InternalPer-
son that is drawn as an association to the Person class. Contact also con-
tains the FirstName and LastName properties but with no corresponding
fields. Instead, the FirstName and LastName properties simply delegate
their calls out to InternalPerson.FirstName and InternalPerson.Last-
Name, respectively. Listing 6.8 shows the resultant code.

Listing 6.8: Working around Single Inheritance Using Aggregation

public class PdaItem

{

 // ...

}

public class Person

{

 // ...

}

public class Contact : PdaItem

{

 private Person InternalPerson { get; set; }

 public string FirstName

 {

 get { return InternalPerson.FirstName; }

 set { InternalPerson.FirstName = value; }

 }

ptg

Chapter 6: Inheritance280

public string LastName

 {

 get { return InternalPerson.LastName; }

 set { InternalPerson.LastName = value; }

 }

 // ...

}

Figure 6.2: Working around Multiple Inheritance Using Aggregation

ptg

 Overriding the Base Class 281

Besides the added complexity of delegation, another drawback is that
any methods added to the field class (Person) will require manual addition
to the derived class (Contact); otherwise, Contact will not expose the
added functionality.

Sealed Classes
To design a class correctly that others can extend via derivation can be a
tricky task which requires testing with examples to verify that the deriva-
tion will work successfully. To avoid unexpected derivation scenarios and
problems you can mark classes as sealed (see Listing 6.9).

Listing 6.9: Preventing Derivation with Sealed Classes

public sealed class CommandLineParser

{

 // ...

}

// ERROR: Sealed classes cannot be derived from

public sealed class DerivedCommandLineParser :

 CommandLineParser

{

 // ...

}

Sealed classes include the sealed modifier, and the result is that they
cannot be derived from. The string type is an example of a type that uses
the sealed modifier to prevent derivation.

Overriding the Base Class

All public and protected members of a base class are inherited in the
derived class. However, sometimes the base class does not have the optimal
implementation of a particular member. Consider the Name property on
PdaItem, for example. The implementation is probably acceptable when
inherited by the Appointment class. For the Contact class, however, the Name
property should return the FirstName and LastName properties combined.
Similarly, when Name is assigned, it should be split across FirstName and
LastName. In other words, the base class property declaration is appropriate

ptg

Chapter 6: Inheritance282

for the derived class, but the implementation is not always valid. There
needs to be a mechanism for overriding the base class implementation with
a custom implementation in the derived class.

virtual Modifier
C# supports overriding on instance methods and properties but not on
fields or any static members. It requires an explicit action within both the
base class and the derived class. The base class must mark each member
for which it allows overriding as virtual. If public or protected members
do not include the virtual modifier, then subclasses will not be able to
override those members.

Listing 6.10 shows an example of property overriding.

Listing 6.10: Overriding a Property

public class PdaItem

{

 // ...

}

public class Contact : PdaItem

{

 {

 get

 {

 return FirstName + " " + LastName;

 }

 set

 {

 string[] names = value.Split(' ');

 // Error handling not shown.

 FirstName = names[0];

 LastName = names[1];

Language Contrast: Java—Virtual Methods by Default

By default, methods in Java are virtual, and they must be explicitly sealed if

nonvirtual behavior is preferred. In contrast, C# defaults to nonvirtual.

 public virtual string Name { get; set; }

 public override string Name

ptg

 Overriding the Base Class 283

 }

 }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 // ...

}

Not only does PdaItem include the virtual modifier on the Name prop-
erty, but also, Contact’s Name property is decorated with the keyword
override. Eliminating virtual would result in an error and omitting
override would cause a warning, as you will see shortly. C# requires the
overriding methods to use the override keyword explicitly.

In other words, virtual identifies a method or property as available for
replacement (overriding) in the derived type.

Overloading a member causes the runtime to call the most derived
implementation (see Listing 6.11).

Listing 6.11: Runtime Calling the Most Derived Implementation of a Virtual Method

public class Program

{

 public static void Main()

 {

 Contact contact;

 PdaItem item;

 contact = new Contact();

 item = contact;

Language Contrast: Java and C++—Implicit Overriding

Unlike with Java and C++, the override keyword is required on the derived

class. C# does not allow implicit overriding. In order to override a method,

both the base class and the derived class members must match and have

corresponding virtual and override keywords. Furthermore, if specify-

ing the override keyword, the derived implementation is assumed to

replace the base class implementation.

ptg

Chapter 6: Inheritance284

 // Set the name via PdaItem variable

 item.Name = "Inigo Montoya";

 // Display that FirstName & LastName

 // properties were set.

 Console.WriteLine("{0} {1}",

 contact.FirstName, contact.LastName);

}

Output 6.1 shows the results of Listing 6.11.

In Listing 6.11, item.Name is called, where item is declared as a PdaItem.
However, the contact’s FirstName and LastName are still set. The rule is
that whenever the runtime encounters a virtual method, it calls the most
derived and overriding implementation of the virtual member. In this
case, the code instantiates a Contact and calls Contact.Name because Con-
tact contains the most derived implementation of Name.

In creating a class, programmers should be careful when choosing to
allow overriding a method, since they cannot control the derived implemen-
tation. Virtual methods should not include critical code because such meth-
ods may never be called if the derived class overrides them. Furthermore,
converting a method from a virtual method to a nonvirtual method could
break derived classes that override the method. This is a code-breaking
change and you should avoid it, especially for assemblies intended for use
by third parties.

Listing 6.12 includes a virtual Run() method. If the Controller pro-
grammer calls Run() with the expectation that the critical Start() and
Stop() methods will be called, he will run into a problem.

Listing 6.12: Carelessly Relying on a Virtual Method Implementation

public class Controller

{

 public void Start()

 {

 // Critical code

OUTPUT 6.1:

Inigo Montoya

ptg

 Overriding the Base Class 285

 }

 public virtual void Run()

 {

 Start();

 Stop();

 }

 public void Stop()

 {

 // Critical code

 }

}

In overriding Run(), a developer could perhaps not call the critical
Start() and Stop() methods. To force the Start()/Stop() expectation, the
Controller programmer should define the class, as shown in Listing 6.13.

Listing 6.13: Forcing the Desirable Run() Semantics

public class Controller

{

 public void Start()

 {

 // Critical code

 }

 private void Run()

 {

 Start();

 InternalRun();

 Stop();

 }

 protected virtual void InternalRun()

 {

 // Default implementation

 }

 public void Stop()

 {

 // Critical code

 }

}

With this new listing, the Controller programmer prevents users from
mistakenly calling InternalRun(), because it is protected. On the other
hand, declaring Run() as public ensures that Start() and Stop() are
invoked appropriately. It is still possible for users to modify the default

ptg

Chapter 6: Inheritance286

implementation of how the Controller executes by overriding the
protected InternalRun() member from within the derived class.

Virtual methods provide default implementations only, implementations
that derived classes could override entirely. However, because of the com-
plexities of inheritance design, it is important to consider (and preferably to
implement) a specific scenario that requires the virtual method definition.

Finally, only instance members can be virtual. The CLR uses the con-
crete type, specified at instantiation time, to determine where to dispatch a
virtual method call, so static virtual methods are meaningless and the
compiler prohibits them.

new Modifier
When an overriding method does not use override, the compiler issues a
warning similar to that shown in Output 6.2 or Output 6.3.

Language Contrast: C++—Dispatch Method Calls during
Construction

In C++, methods called during construction will not dispatch the virtual

method. Instead, during construction, the type is associated with the base

type rather than the derived type, and virtual methods call the base imple-

mentation. In contrast, C# dispatches virtual method calls to the most

derived type. This is consistent with the principle of calling the most

derived virtual member, even if the derived constructor has not completely

executed. Regardless, in C# the situation should be avoided.

OUTPUT 6.2:

warning CS0114: ’<derived method name>’ hides inherited member

’<base method name>’. To make the current member override that

implementation, add the override keyword. Otherwise add the new

keyword.

ptg

 Overriding the Base Class 287

The obvious solution is to add the override modifier (assuming the
base member is virtual). However, as the warnings point out, the new mod-
ifier is also an option. Consider the scenario shown in Table 6.1—a specific
example of the more general problem known as the brittle base class or
fragile base class problem.

OUTPUT 6.3:

warning CS0108: The keyword new is required on '<derived property name>'
because it hides inherited member '<base property name>'

TABLE 6.1: Why the New Modifier?

Activity Code

Programmer A
defines class Person
that includes proper-
ties FirstName and
LastName.

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Programmer B
derives from Person
and defines Contact
with the additional
property, Name. In
addition, he defines
the Program class
whose Main()
method instantiates
Contact, assigns
Name, and then prints
out the name.

public class Contact : Person
{
 public string Name
 {
 get
 {
 return FirstName + " " + LastName;
 }

 set
 {
 string[] names = value.Split(' ');
 // Error handling not shown.
 FirstName = names[0];
 LastName = names[1];
 }
 }
}

Continues

ptg

Chapter 6: Inheritance288

Because Person.Name is not virtual, Programmer A will expect Dis-
play() to use the Person implementation, even if a Person-derived data
type, Contact, is passed in. However, Programmer B would expect Con-
tact.Name to be used in all cases where the variable data type is a Contact.
(Programmer B would have no code where Person.Name was used, since
no Person.Name property existed initially.) To allow the addition of Per-
son.Name without breaking either programmer’s expected behavior, you
cannot assume virtual was intended. Furthermore, since C# requires an
override member to explicitly use the override modifier, some other
semantic must be assumed, instead of allowing the addition of a member
in the base class to cause the derived class to no longer compile.

The semantic is the new modifier, and it hides a redeclared member of
the derived class from the base class. Instead of calling the most derived

Activity Code

Later, Programmer A
adds the Name prop-
erty, but instead of
implementing the
getter as FirstName +
" " + LastName, she
implements it as
LastName + ", " +
FirstName. Further-
more, she doesn’t
define the property
as virtual, and she
uses the property in a
DisplayName()
method.

public class Person
{
 public string Name
 {
 get
 {
 return LastName + ", " + FirstName;
 }

 set
 {

 // Error handling not shown.

 }
 }
 public static void Display(Person person)
 {

 Console.WriteLine(person.Name);
 }
}

TABLE 6.1: Why the New Modifier? (Continued)

string[] names = value.Split(', ');

LastName = names[0];
FirstName = names[1];

// Display <LastName>, <FirstName>

ptg

 Overriding the Base Class 289

member, a member of the base class calls the most derived member in the
inheritance chain prior to the member with the new modifier. If the inheri-
tance chain contains only two classes, then a member in the base class will
behave as though no method was declared on the derived class (if the
derived implementation overrides the base class member). Although the
compiler will report the warning shown in either Output 6.2 or Output 6.3,
if neither override nor new is specified, then new will be assumed, thereby
maintaining the desired version safety.

Consider Listing 6.14, for example. Its output appears in Output 6.4.

Listing 6.14: override versus new Modifier

public class Program

{

 public class BaseClass

 {

 public void DisplayName()

 {

 Console.WriteLine("BaseClass");

 }

 }

 public class DerivedClass : BaseClass

 {

 // Compiler WARNING: DisplayName() hides inherited

 // member. Use the new keyword if hiding was intended.

 public virtual void DisplayName()

 {

 Console.WriteLine("DerivedClass");

 }

 }

 public class SubDerivedClass : DerivedClass

 {

 public override void DisplayName()

 {

 Console.WriteLine("SubDerivedClass");

 }

 }

 public class SuperSubDerivedClass : SubDerivedClass

 {

 public new void DisplayName()

 {

 Console.WriteLine("SuperSubDerivedClass");

 }

 }

ptg

Chapter 6: Inheritance290

 public static void Main()

 {

 SuperSubDerivedClass superSubDerivedClass

 = new SuperSubDerivedClass();

 SubDerivedClass subDerivedClass = superSubDerivedClass;

 DerivedClass derivedClass = superSubDerivedClass;

 BaseClass baseClass = superSubDerivedClass;

 superSubDerivedClass.DisplayName();

 subDerivedClass.DisplayName();

 derivedClass.DisplayName();

 baseClass.DisplayName();

 }

}

These results occur for the following reasons.

• SuperSubDerivedClass: SuperSubDerivedClass.DisplayName() dis-
plays SuperSubDerivedClass because there is no derived class and
hence, no overload.

• SubDerivedClass: SubDerivedClass.DisplayName() is the most
derived member to override a base class’s virtual member. SuperSub-
DerivedClass.DisplayName() is hidden because of its new modifier.

• SubDerivedClass: DerivedClass.DisplayName() is virtual and Sub-
DerivedClass.DisplayName() is the most derived member to over-
ride it. As before, SuperSubDerivedClass.DisplayName() is hidden
because of the new modifier.

• BaseClass: BaseClass.DisplayName() does not redeclare any base
class member and it is not virtual; therefore, it is called directly.

When it comes to the CIL, the new modifier has no effect on what state-
ments the compiler generates. However, a “new” method results in the
generation of the newslot metadata attribute on the method. From the C#

OUTPUT 6.4:

SuperSubDerivedClass

SubDerivedClass

SubDerivedClass

BaseClass

ptg

 Overriding the Base Class 291

perspective, its only effect is to remove the compiler warning that would
appear otherwise.

sealed Modifier
Just as you can prevent inheritance using the sealed modifier on a class,
virtual members may be sealed, too (see Listing 6.15). This prevents a sub-
class from overriding a base class member that was originally declared as
virtual higher in the inheritance chain. The situation arises when a sub-
class B overrides a base class A’s member and then needs to prevent any
further overriding below subclass B.

Listing 6.15: Sealing Members

class A

{

 public virtual void Method()

 {

 }

}

class B : A

{

 {

 }

 }

class C : B

{

 // ERROR: Cannot override sealed members

 // public override void Method()

 // {

 // }

}

In this example, the use of the sealed modifier on class B’s Method() decla-
ration prevents C’s overriding of Method().

base Member
In choosing to override a member, developers often want to invoke the
member on the base class (see Listing 6.16).

Listing 6.16: Accessing a Base Member

public class Address

{

 public string StreetAddress;

 public override sealed void Method()

ptg

Chapter 6: Inheritance292

 public string City;

 public string State;

 public string Zip;

 public override string ToString()

 {

 return string.Format("{0}" + Environment.NewLine +

 "{1}, {2} {3}",

 StreetAddress, City, State, Zip);

 }

}

public class InternationalAddress : Address

{

 public string Country;

 public override string ToString()

 {

 Country;

 }

}

In Listing 6.16, InternationalAddress inherits from Address and imple-
ments ToString(). To call the parent class’s implementation you use the
base keyword. The syntax is virtually identical to this, including support
for using base as part of the constructor (discussed shortly).

Parenthetically, in the Address.ToString() implementation, you are
required to override as well because ToString() is also a member of
object. Any members that are decorated with override are automatically
designated as virtual, so additional child classes may further specialize the
implementation.

Constructors
When instantiating a derived class, the runtime first invokes the base
class’s constructor so that the base class initialization is not circumvented.
However, if there is no accessible (nonprivate) default constructor on the
base class, then it is not clear how to construct the base class and the C#
compiler reports an error.

To avoid the error caused by no accessible default constructor, pro-
grammers need to designate explicitly, in the derived class constructor
header, which base constructor to run (see Listing 6.17).

return base.ToString() + Environment.NewLine +

ptg

 Abstract Classes 293

Listing 6.17: Specifying Which Base Constructor to Invoke

public class PdaItem

{

 public PdaItem(string name)

 {

 Name = name;

 }

 // ...

}

public class Contact : PdaItem

{

 {

 Name = name;

 }

 public string Name { get; set; }

 // ...

}

By identifying the base constructor in the code, you let the runtime know
which base constructor to invoke before invoking the derived class
constructor.

Abstract Classes

Many of the inheritance examples so far have defined a class called
PdaItem that defines the methods and properties common to Contact,
Appointment, and so on, which are type objects that derive from PdaItem.
PdaItem is not intended to be instantiated itself, however. A PdaItem
instance has no meaning by itself; it has meaning only when it is used as a
base class—to share default method implementations across the set of data
types that derive from it. These characteristics are indicative of the need for
PdaItem to be an abstract class rather than a concrete class. Abstract classes
are designed for derivation only. It is not possible to instantiate an abstract
class, except in the context of instantiating a class that derives from it.
Classes that are not abstract and can instead be instantiated directly are
concrete classes.

public Contact(string name) :

 base(name)

ptg

Chapter 6: Inheritance294

B E G I N N E R T O P I C

Abstract Classes
Abstract classes represent abstract entities. Their abstract members define
what an object derived from an abstract entity should contain, but they
don’t include the implementation. Often, much of the functionality within
an abstract class is unimplemented, and before a class can successfully
derive from an abstract class, it needs to provide the implementation for
the abstract methods in its abstract base class.

To define an abstract class, C# requires the abstract modifier to the class
definition, as shown in Listing 6.18.

Listing 6.18: Defining an Abstract Class

// Define an abstract class

{

 public PdaItem(string name)

 {

 Name = name;

 }

 public virtual string Name { get; set; }

}

public class Program

{

 public static void Main()

 {

 PdaItem item;

 // ERROR: Cannot create an instance of the abstract class

 item = new PdaItem("Inigo Montoya");

 }

}

Although abstract classes cannot be instantiated, this restriction is a
minor characteristic of an abstract class. Their primary significance is
achieved when abstract classes include abstract members. An abstract
member is a method or property that has no implementation. Its purpose
is to force all derived classes to provide the implementation.

Consider Listing 6.19.

public abstract class PdaItem

ptg

 Abstract Classes 295

Listing 6.19: Defining Abstract Members

// Define an abstract class

public abstract class PdaItem

{

 public PdaItem(string name)

 {

 Name = name;

 }

 public virtual string Name { get; set; }

}

public class Contact : PdaItem

{

 public override string Name

 {

 get

 {

 return FirstName + " " + LastName;

 }

 set

 {

 string[] names = value.Split(' ');

 // Error handling not shown.

 FirstName = names[0];

 LastName = names[1];

 }

 }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Address { get; set; }

 // ...

}

 public abstract string GetSummary();

 public override string GetSummary()

 {

 return string.Format(

 "FirstName: {0}

 + "LastName: {1}

 + "Address: {2}", FirstName, LastName, Address);

 }

ptg

Chapter 6: Inheritance296

public class Appointment : PdaItem

{

 public Appointment(string name) :

 base(name)

 {

 Name = name;

 }

 public DateTime StartDateTime { get; set; }

 public DateTime EndDateTime { get; set; }

 public string Location { get; set; }

 // ...

 public override string GetSummary()

 {

 return string.Format(

 "Subject: {0}" + Environment.NewLine

 + "Start: {1}" + Environment.NewLine

 + "End: {2}" + Environment.NewLine

 + "Location: {3}",

 Name, StartDateTime, EndDateTime, Location);

 }

}

Listing 6.19 defines the GetSummary() member as abstract, and there-
fore, it doesn’t include any implementation. Then, the code overrides it
within Contact and provides the implementation. Because abstract mem-
bers are supposed to be overridden, such members are automatically vir-
tual and cannot be declared so explicitly. In addition, abstract members
cannot be private because derived classes would not be able to see them.

If you provide no GetSummary() implementation in Contact, the com-
piler will report an error.

Language Contrast: C++—Pure Virtual Functions

C++ allows for the definition of abstract functions using the cryptic notation

=0. These functions are called pure virtual functions in C++. In contrast with

C#, however, C++ does not require the class itself to have any special decla-

ration. Unlike C#’s abstract class modifier, C++ has no class declaration

change when the class includes pure virtual functions.

ptg

 Abstract Classes 297

B E G I N N E R T O P I C

Polymorphism
When the implementation for the same member signature varies between
two or more classes, you have a key object-oriented principle: polymor-
phism. “Poly” meaning “many” and “morph” meaning “form,” polymor-
phism refers to the fact that there are multiple implementations of the
same signature. And since the same signature cannot be used multiple
times within a single class, each implementation of the member signature
occurs on a different class.

The idea behind polymorphism is that the object itself knows best how
to perform a particular operation, and by enforcing common ways to
invoke those operations, polymorphism is also a technique for encourag-
ing code reuse when taking advantages of the commonalities. Given multi-
ple types of documents, each document type class knows best how to
perform a Print() method for its corresponding document type. There-
fore, instead of defining a single print method that includes a switch
statement with the special logic to print each document type, with poly-
morphism you call the Print() method corresponding to the specific type
of document you wish to print. For example, calling Print() on a word
processing document class behaves according to word processing specif-
ics, and calling the same method on a graphics document class will result
in print behavior specific to the graphic. Given the document types,
however, all you have to do to print a document is to call Print(), regard-
less of the type.

Moving the custom print implementation out of a switch statement
offers several maintenance advantages. First, the implementation appears

NOTE

By declaring an abstract member, the abstract class programmer
states that in order to form an “is a” relationship between a con-
crete class and an abstract base class (that is, a PdaItem), it is neces-
sary to implement the abstract members, the members for which
the abstract class could not provide an appropriate default
implementation.

ptg

Chapter 6: Inheritance298

in the context of each document type’s class rather than in a location far
removed; this is in keeping with encapsulation. Second, adding a new doc-
ument type doesn’t require a change to the switch statement. Instead, all
that is necessary is for the new document type class to implement the
Print() signature.

Abstract members are intended to be a way to enable polymorphism.
The base class specifies the signature of the method and the derived class
provides implementation (see Listing 6.20).

Listing 6.20: Using Polymorphism to List the PdaItems

public class Program

{

 public static void Main()

 {

 PdaItem[] pda = new PdaItem[3];

 Contact contact = new Contact("Sherlock Holmes");

 contact.Address = "221B Baker Street, London, England";

 pda[0] = contact;

 Appointment appointment =

 new Appointment("Soccer tournament");

 appointment.StartDateTime = new DateTime(2008, 7, 18);

 appointment.EndDateTime = new DateTime(2008, 7, 19);

 appointment.Location = "Estádio da Machava";

 pda[1] = appointment;

 contact = new Contact("Anne Frank");

 contact.Address =

 "263 Prinsengracht, Amsterdam, Netherlands";

 pda[2] = contact;

 List(pda);

 }

 public static void List(PdaItem[] items)

 {

 // Implemented using polymorphism. The derived

 // type knows the specifics of implementing

 // GetSummary().

 foreach (PdaItem item in items)

 {

 Console.WriteLine("_________________");

ptg

 All Classes Derive from System.Object 299

 Console.WriteLine(item.GetSummary());

 }

 }

}

The results of Listing 6.20 appear in Output 6.5.

In this way, you can call the method on the base class but the implementa-
tion is specific to the derived class.

All Classes Derive from System.Object

Given any class, whether a custom class or one built into the system, the
methods shown in Table 6.2 will be defined.

OUTPUT 6.5:

FirstName: Sherlock

LastName: Holmes

Address: 221B Baker Street, London, England

Subject: Soccer tournament

Start: 7/18/2008 12:00:00 AM

End: 7/19/2008 12:00:00 AM

Location: Estádio da Machava

FirstName: Anne

LastName: Frank

Address: 263 Prinsengracht, Amsterdam, Netherlands

TABLE 6.2: Members of System.Object

Method Name Description

public virtual bool Equals(object o) Returns true if the object supplied
as a parameter is equal in value,
not necessarily in reference, to the
instance.

public virtual int GetHashCode() Returns an integer corresponding
to an evenly spread hash code.
This is useful for collections such
as HashTable collections.

Continues

ptg

Chapter 6: Inheritance300

All of these methods appear on all objects through inheritance; all
classes derive (either directly or via an inheritance chain) from object.
Even literals include these methods, enabling somewhat peculiar-looking
code such as this:

 Console.WriteLine(42.ToString());

Even class definitions that don’t have any explicit derivation from
object derive from object anyway. The two declarations for PdaItem in
Listing 6.21, therefore, result in identical CIL.

Listing 6.21: System.Object Derivation Implied When No Derivation Is Specified Explicitly

public class PdaItem

{

 // ...

}

public class PdaItem : object

{

 // ...

}

public Type GetType() Returns an object of type Sys-
tem.Type corresponding to the
type of the object instance.

public static bool ReferenceEquals(

object a, object b)

Returns true if the two supplied
parameters refer to the same object.

public virtual string ToString() Returns a string representation of
the object instance.

public virtual void Finalize() An alias for the destructor;
informs the object to prepare for
termination. C# prevents calling
this method directly.

protected object MemberwiseClone() Clones the object in question by
performing a shallow copy; refer-
ences are copied, but not the data
within a referenced type.

TABLE 6.2: Members of System.Object (Continued)

ptg

 Verifying the Underlying Type with the is Operator 301

When the object’s default implementation isn’t sufficient, programmers
can override one or more of the three virtual methods. Chapter 9 describes
the details for doing this.

Verifying the Underlying Type with the is Operator

Because C# allows casting down the inheritance chain, it is
sometimes desirable to determine what the underlying type is before
attempting a conversion. Also, checking the type may be necessary for
type-specific actions where polymorphism was not implemented. To
determine the underlying type, C# provides the is operator (see
Listing 6.22).

Listing 6.22: is Operator Determining the Underlying Type

public static void Save(object data)

{

 if (data is string)

 {

 data = Encrypt((string) data);

 }

 // ...

}

Listing 6.22 encrypts the data if the underlying type is a string. This is sig-
nificantly different from encrypting, simply because it successfully casts to
a string since many types support casting to a string, and yet their
underlying type is not a string.

Although this capability is important, you should consider polymor-
phism prior to using the is operator. Polymorphism enables support for
expanding a behavior to other data types without modifying the imple-
mentation that defines the behavior. For example, deriving from a com-
mon base type and then using that type as the parameter to the Save()
method avoids having to check for string explicitly and enables other
data types to support encryption during the save by deriving from the
same base type.

ptg

Chapter 6: Inheritance302

Conversion Using the as Operator

The advantage of the is operator is that it enables verification that a data
item is of a particular type. The as operator goes one step further. It
attempts a conversion to a particular data type and assigns null if the
source type is not inherently (within the inheritance chain) of the target
type. This is significant because it avoids the exception that could result
from casting. Listing 6.23 demonstrates using the as operator.

Listing 6.23: Data Conversion Using the as Operator

object Print(IDocument document)

{

 if(thing != null)

 {

 // Print document...

 }

 else

 {

 }

}

static void Main()

{

 object data;

 // ...

}

By using the as operator, you are able to avoid additional try/catch
handling code if the conversion is invalid, because the as operator pro-
vides a way to attempt a cast without throwing an exception if the cast
fails.

One advantage of the is operator over the as operator is that the latter
cannot successfully determine the underlying type. The latter potentially
casts up or down an inheritance chain, as well as across to types support-
ing the cast operator. Therefore, unlike the as operator, the is operator can
determine the underlying type.

Print(data as Document);

ptg

 Summary 303

SUMMARY

This chapter discussed how to specialize a class by deriving from it and
adding additional methods and properties. This included a discussion
of the private and protected access modifiers that control the level of
encapsulation.

This chapter also investigated the details of overriding the base class
implementation, and alternatively hiding it using the new modifier. To con-
trol overriding, C# provides the virtual modifier, which identifies to the
deriving class developer which members she intends for derivation. For
preventing any derivation altogether you learned about the sealed modi-
fier on the class. Similarly, the sealed modifier on a member prevents fur-
ther overriding from subclasses.

This chapter ended with a brief discussion of how all types derive from
object. Chapter 9 discusses this derivation further, with a look at how
object includes three virtual methods with specific rules and guidelines
that govern overloading. Before you get there, however, you need to con-
sider another programming paradigm that builds on object-oriented pro-
gramming: interfaces. This is the subject of Chapter 7.

ptg

This page intentionally left blank

ptg

305

7
Interfaces

OLYMORPHISM IS AVAILABLE not only via inheritance (as discussed in
the preceding chapter), but also via interfaces. Unlike abstract classes,

interfaces cannot include any implementation. Like abstract classes, how-
ever, interfaces define a set of members that callers can rely on to support a
particular feature.

By implementing an interface, a class defines its capabilities. The inter-
face implementation relationship is a “can do” relationship: The class can
do what the interface requires. The interface defines the contract between
the classes that implement the interface and the classes that use the inter-
face. Classes that implement interfaces define methods with the same sig-
natures as the implemented interfaces. This chapter discusses defining,
implementing, and using interfaces.

P

23

5 1

Interfaces

Polymorphism

Interface
Implementation Explicit

Implicit

Interface
Inheritance

Extension Methods
on Interfaces

4 Versioning

ptg

Chapter 7: Interfaces306

Introducing Interfaces

B E G I N N E R T O P I C

Why Interfaces?
Implemented interfaces are like appliances with wall plugs. The wall plug
is the interface that appliances support in order to receive AC power. An
appliance can use that power in countless ways, but in order to plug into a
wall socket, an appliance must supply a compatible wall plug. What the
appliance does with the power corresponds to how an interface implemen-
tation varies from class to class. The specification that defines a wall plug is
the contract that must be supported in order for an appliance to plug into
the wall plug. Similarly, an interface defines a contract that a class must
support in order to gain the capability that the interface provides.

Consider the following example: An innumerable number of file com-
pression formats are available (.zip, .7-zip, .cab, .lha, .tar, .tar.gz,
.tar.bz2, .bh, .rar, .arj, .arc, .ace, .zoo, .gz, .bzip2, .xxe, .mime, .uue,
and .yenc, just to name a few). If you created classes for each compression
format, you could end up with different method signatures for each com-
pression implementation and no ability for a standard calling convention
across them. Although the method signature could be defined in an
abstract member of a base class, deriving from a common base type uses
up a class’s one and only inheritance, with an unlikely chance of sharing
code across the various compression implementations, thereby making the
potential of a base class implementation useless. The key point, therefore,
is that base classes let you share implementation along with the member
signatures, whereas interfaces allow you to share the member signatures
without the implementation.

Instead of sharing a common base class, each compression class needs
to implement a common interface. Interfaces define the contract that a
class supports in order to interact with the other classes that expect the
interface. Although there are many potential compression algorithms, if all
of them could implement the IFileCompression interface and its Com-
press() and Uncompress() methods, then the code for calling the algo-
rithm on any particular compression class would simply involve a cast to
the IFileCompression interface and a call into the members, regardless of

ptg

Polymorphism through Interfaces 307

which class implemented the methods. The result is polymorphism
because each compression class has the same method signature but indi-
vidual implementations of that signature.

The naming convention for interfaces is to use Pascal case, with an I
prefix. The IFileCompression interface shown in Listing 7.1 is an example
of such a name and interface definition.

Listing 7.1: Defining an Interface

interface IFileCompression

{

 void Compress(string targetFileName, string[] fileList);

 void Uncompress(

 string compressedFileName, string expandDirectoryName);

}

IFileCompression defines the methods a class implements to work with
other compression-related classes. The power of defining the interface con-
cerns the ability to switch among implementations without modifying the
calling code, as long as each compression class implements the IFileCom-
pression interface.

One key characteristic of an interface is that it has no implementation
and no data. Method declarations have a single semicolon in place of curly
braces after the header. Fields (data) cannot appear on an interface. When
an interface requires the derived class to have certain data, it uses a property
rather than a field. Since the property does not contain any implementation
as part of the interface declaration, it doesn’t reference a backing field.

Given that the purpose of the interface is to define the contract among
multiple classes, defining private or protected members would make them
inaccessible to other classes, defeating the purpose of the interface. There-
fore, C# does not allow access modifiers on interface members, and instead
it automatically defines them as public.

Polymorphism through Interfaces

Consider another example (see Listing 7.2): IListable defines the members
a class needs to support in order for the ConsoleListControl class to

ptg

Chapter 7: Interfaces308

display it. As such, any class that implements IListable will have the capa-
bility of using the ConsoleListControl to display itself. The IListable
interface requires a read-only property, ColumnValues.

Listing 7.2: Implementing and Using Interfaces

interface IListable

{

 // Return the value of each column in the row.

}

public abstract class PdaItem

{

 public PdaItem(string name)

 {

 Name = name;

 }

 public virtual string Name{get;set;}

}

class Contact : PdaItem

{

 public Contact(string firstName, string lastName,

 string address, string phone) : base(null)

 {

 FirstName = firstName;

 LastName = lastName;

 Address = address;

 Phone = phone;

 }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Address { get; set; }

 public string Phone { get; set; }

 string[] ColumnValues

 {

 get;

 }

 public string[] ColumnValues

 {

 get

 {

 return new string[]

 {

, IListable

ptg

Polymorphism through Interfaces 309

 public static string[] Headers

 {

 get

 {

 return new string[] {

 "First Name", "Last Name ",

 "Phone ",

 "Address " };

 }

 }

 // ...

}

class Publication

{

 public Publication(string title, string author, int year)

 {

 Title = title;

 Author = author;

 Year = year;

 }

 public string Title { get; set; }

 public string Author { get; set; }

 public int Year { get; set; }

 public static string[] Headers

 {

 FirstName,

 LastName,

 Phone,

 Address

 };

 }

 }

 public string[] ColumnValues

 {

 get

 {

 return new string[]

 {

 Title,

 Author,

 Year.ToString()

 };

 }

 }

: IListable

ptg

Chapter 7: Interfaces310

 get

 {

 return new string[] {

 "Title ",

 "Author ",

 "Year" };

 }

 }

 // ...

}

class Program

{

 public static void Main()

 {

 Contact[] contacts = new Contact[6];

 contacts[0] = new Contact(

 "Dick", "Traci",

 "123 Main St., Spokane, WA 99037",

 "123-123-1234");

 contacts[1] = new Contact(

 "Andrew", "Littman",

 "1417 Palmary St., Dallas, TX 55555",

 "555-123-4567");

 contacts[2] = new Contact(

 "Mary", "Hartfelt",

 "1520 Thunder Way, Elizabethton, PA 44444",

 "444-123-4567");

 contacts[3] = new Contact(

 "John", "Lindherst",

 "1 Aerial Way Dr., Monteray, NH 88888",

 "222-987-6543");

 contacts[4] = new Contact(

 "Pat", "Wilson",

 "565 Irving Dr., Parksdale, FL 22222",

 "123-456-7890");

 contacts[5] = new Contact(

 "Jane", "Doe",

 "123 Main St., Aurora, IL 66666",

 "333-345-6789");

 // Classes are cast implicitly to

 // their supported interfaces

 ConsoleListControl.List(Contact.Headers, contacts);

 Console.WriteLine();

 Publication[] publications = new Publication[3] {

ptg

Polymorphism through Interfaces 311

 new Publication("Celebration of Discipline",

 "Richard Foster", 1978),

 new Publication("Orthodoxy",

 "G.K. Chesterton", 1908),

 new Publication(

 "The Hitchhiker's Guide to the Galaxy",

 "Douglas Adams", 1979)

 };

 ConsoleListControl.List(

 Publication.Headers, publications);

 }

}

class ConsoleListControl

{

 public static void List(string[] headers,

 {

 int[] columnWidths = DisplayHeaders(headers);

 for (int count = 0; count < items.Length; count++)

 {

 DisplayItemRow(columnWidths, values);

 }

 }

 /// <summary>Displays the column headers</summary>

 /// <returns>Returns an array of column widths</returns>

 private static int[] DisplayHeaders(string[] headers)

 {

 // ...

 }

 private static void DisplayItemRow(

 int[] columnWidths, string[] values)

 {

 // ...

 }

}

The results of Listing 7.2 appear in Output 7.1.

 string[] values = items[count].ColumnValues;

OUTPUT 7.1:

First Name Last Name Phone Address

Dick Traci 123-123-1234 123 Main St., Spokane, WA 99037

Andrew Littman 555-123-4567 1417 Palmary St., Dallas, TX 55555

Continues

IListable[] items)

ptg

Chapter 7: Interfaces312

In Listing 7.2, the ConsoleListControl can display seemingly unre-
lated classes (Contact and Publication). A displayable class is defined
simply by whether it implements the required interface. As a result, the
ConsoleListControl.List() method relies on polymorphism to appropri-
ately display whichever set of objects it is passed. Each class has its own
implementation of ColumnValues, and converting a class to IListable still
allows the particular class’s implementation to be invoked.

Interface Implementation

Declaring a class to implement an interface is similar to deriving from a
base class in that the implemented interfaces appear in a comma-separated
list along with the base class (order is not significant between interfaces).
The only difference is that classes can implement multiple interfaces. An
example appears in Listing 7.3.

Listing 7.3: Implementing an Interface

{

 // ...

 #region IComparable Members

 /// <summary>

 ///

 /// </summary>

 /// <param name="obj"></param>

 /// <returns>

 /// Less than zero: This instance is less than obj.

 /// Zero This instance is equal to obj.

 /// Greater than zero This instance is greater than obj.

 /// </returns>

Mary Hartfelt 444-123-4567 1520 Thunder Way, Elizabethton, ↵
PA 44444

John Lindherst 222-987-6543 1 Aerial Way Dr., Monteray, ↵
NH 88888

Pat Wilson 123-456-7890 565 Irving Dr., Parksdale, ↵
FL 22222

Jane Doe 333-345-6789 123 Main St., Aurora, IL 66666

Title Author Year

Celebration of Discipline Richard Foster 1978

Orthodoxy G.K. Chesterton 1908

The Hitchhiker’s Guide to the Galaxy Douglas Adam 1979

public class Contact : PdaItem, IListable, IComparable

ptg

Interface Implementation 313

 {

 int result;

 Contact contact = obj as Contact;

 if (obj == null)

 {

 // This instance is greater than obj.

 result = 1;

 }

 else if (obj != typeof(Contact))

 {

 throw new ArgumentException("obj is not a Contact");

 }

 else if(Contact.ReferenceEquals(this, obj))

 {

 result = 0;

 }

 else

 {

 result = LastName.CompareTo(contact.LastName);

 if (result == 0)

 {

 result = FirstName.CompareTo(contact.FirstName);

 }

 }

 return result;

 }

 #endregion

 #region IListable Members

 {

 get

 {

 return new string[]

 {

 FirstName,

 LastName,

 Phone,

 Address

 };

 }

 }

 #endregion

}

Once a class declares that it implements an interface, all members of the
interface must be implemented. The member implementation may throw a

 public int CompareTo (object obj)

 string[] IListable.ColumnValues

ptg

Chapter 7: Interfaces314

NotImplementedException type exception in the method body, but none-
theless, the method has an implementation from the compiler’s perspective.

One important characteristic of interfaces is that they can never be
instantiated; you cannot use new to create an interface, and therefore, inter-
faces cannot even have constructors or finalizers. Interface instances are
available only from types that implement them. Furthermore, interfaces
cannot include static members. One key interface purpose is polymor-
phism, and polymorphism without an instance of the implementing type
is of little value.

Each interface member behaves like an abstract method, forcing the
derived class to implement the member. Therefore, it is not possible to use
the abstract modifier on interface members explicitly. However, there are
two variations on implementation: explicit and implicit.

Explicit Member Implementation
Explicitly implemented methods are available only by calling through the
interface itself; this is typically achieved by casting an object to the inter-
face. For example, to call IListable.ColumnValues in Listing 7.4, you must
first cast the contact to IListable because of ColumnValues’ explicit
implementation.

Listing 7.4: Calling Explicit Interface Member Implementations

string[] values;

Contact contact1, contact2;

// ...

// ERROR: Unable to call ColumnValues() directly

// on a contact.

// values = contact1.ColumnValues;

// First cast to IListable.

// ...

The cast and the call to ColumnValues occur within the same statement in
this case. Alternatively, you could assign contact2 to an IListable vari-
able before calling ColumnValues.

values = ((IListable)contact2).ColumnValues;

ptg

Interface Implementation 315

To declare an explicit interface member implementation, prefix the
member name with the interface name (see Listing 7.5).

Listing 7.5: Explicit Interface Implementation

{

 // ...

 public int CompareTo(object obj)

 {

 // ...

 }

 #region IListable Members

 {

 get

 {

 return new string[]

 {

 FirstName,

 LastName,

 Phone,

 Address

 };

 }

 }

 #endregion

}

Listing 7.5 implements ColumnValues explicitly, for example, because it
prefixes the property with IListable. Furthermore, since explicit interface
implementations are directly associated with the interface, there is no need
to modify them with virtual, override, or public, and, in fact, these mod-
ifiers are not allowed. The C# compiler assumes these modifiers; other-
wise, the implementation would be meaningless.

Implicit Member Implementation
Notice that CompareTo() in Listing 7.5 does not include the IComparable
prefix; it is implemented implicitly. With implicit member implementa-
tion, it is only necessary for the class member’s signature to match the
interface member’s signature. Interface member implementation does not

public class Contact : PdaItem, IListable , IComparable

 string[] IListable.ColumnValues

ptg

Chapter 7: Interfaces316

require the override keyword or any indication that this member is tied to
the interface. Furthermore, since the member is declared just as any other
class member, code that calls implicitly implemented members can do so
directly, just as it would any other class member:

 result = contact1.CompareTo(contact2);

In other words, implicit member implementation does not require a cast
because the member is not hidden from direct invocation on the imple-
menting class.

Many of the modifiers disallowed on an explicit member implementa-
tion are required or are optional on an implicit implementation. For exam-
ple, implicit member implementations must be public. Furthermore,
virtual is optional depending on whether derived classes may override
the implementation. Eliminating virtual will cause the member to behave
as though it is sealed. Interestingly, override is not allowed because the
interface declaration of the member does not include implementation, so
override is not meaningful.

Explicit versus Implicit Interface Implementation
The key difference between implicit and explicit member interface imple-
mentation is obviously not in the method declaration, but in the visibility
from outside the class. When building a class hierarchy, it’s desirable to
model real-world “is a” relationships—a giraffe is a mammal, for example.
These are “semantic” relationships. Interfaces are often used to model
“mechanism” relationships. A PdaItem “is not a” “comparable”, but it
might well be IComparable. This interface has nothing to do with the
semantic model; it’s a detail of the implementation mechanism. Explicit
interface implementation is a technique for enabling the separation of
mechanism concerns from model concerns. Forcing the caller to convert
the object to an interface such as IComparable before treating the object as
“comparable” explicitly separates out in the code when you are talking to
the model and when you are dealing with its implementation mechanisms.

In general, it is preferable to limit the public surface area of a class to be
“all model” with as little extraneous mechanism as possible. Unfortu-
nately, some mechanisms are unavoidable in .NET. You cannot get a
giraffe’s hash code or convert a giraffe to a string. However, you can get a

ptg

Interface Implementation 317

Giraffe’s hash code (GetHashCode()) and convert it to a string

(ToString()). By using object as a common base class, .NET mixes model
code with mechanism code even if only to a limited extent.

Here are several guidelines that will help you choose between an
explicit and an implicit implementation.

• Is the member a core part of the class functionality?

Consider the ColumnValues property implementation on the Contact
class. This member is not an integral part of a Contact type but a
peripheral member probably accessed only by the ConsoleListCon-
trol class. As such, it doesn’t make sense for the member to be imme-
diately visible on a Contact object, cluttering up what could
potentially already be a large list of members.

Alternatively, consider the IFileCompression.Compress() member.
Including an implicit Compress() implementation on a ZipCompres-
sion class is a perfectly reasonable choice, since Compress() is a core
part of the ZipCompression class’s behavior, so it should be directly
accessible from the ZipCompression class.

• Is the interface member name appropriate as a class member?

Consider an ITrace interface with a member called Dump() that writes
out a class’s data to a trace log. Implementing Dump() implicitly on a
Person or Truck class would result in confusion as to what operation
the method performs. Instead, it is preferable to implement the mem-
ber explicitly so that only from a data type of ITrace, where the
meaning is clearer, can the Dump() method be called. Consider using
an explicit implementation if a member’s purpose is unclear on the
implementing class.

• Is there already a class member with the same name?

Explicit interface member implementation will uniquely distinguish
a member. Therefore, if there is already a method implementation on
a class, a second one can be provided with the same name as long as it
is an explicit interface member.

Much of the decision regarding implicit versus explicit interface mem-
ber implementation comes down to intuition. However, these questions
provide suggestions about what to consider when making your choice.

ptg

Chapter 7: Interfaces318

Since changing an implementation from implicit to explicit results in a
version-breaking change, it is better to err on the side of defining interfaces
explicitly, allowing them to be changed to implicit later on. Furthermore,
since the decision between implicit and explicit does not have to be consis-
tent across all interface members, defining some methods as explicit and
others as implicit is fully supported.

Converting between the Implementing Class and
Its Interfaces

Just as with a derived class and a base type, a conversion from an object to
its implemented interface is an implicit conversion. No cast operator is
required because an instance of the implementing class will always con-
tain all the members in the interface, and therefore, the object will always
cast successfully to the interface type.

Although the conversion will always be successful from the imple-
menting class to the implemented interface, many different classes could
implement a particular interface, so you can never be certain that a down-
ward cast from the interface to the implementing class will be successful.
The result is that converting from an interface to its implementing class
requires an explicit cast.

Interface Inheritance

Interfaces can derive from each other, resulting in an interface that inherits
all the members in its base interfaces. As shown in Listing 7.6, the inter-
faces directly derived from IReadableSettingsProvider are the explicit
base interfaces.

Listing 7.6: Deriving One Interface from Another

interface IReadableSettingsProvider

{

 string GetSetting(string name, string defaultValue);

}

interface ISettingsProvider : IReadableSettingsProvider

{

 void SetSetting(string name, string value);

}

ptg

Interface Inheritance 319

class FileSettingsProvider : ISettingsProvider

{

 #region ISettingsProvider Members

 public void SetSetting(string name, string value)

 {

 // ...

 }

 #endregion

 #region IReadableSettingsProvider Members

 public string GetSetting(string name, string defaultValue)

 {

 // ...

 }

 #endregion

}

In this case, ISettingsProvider derives from IReadableSettingsPro-
vider and, therefore, inherits its members. If IReadableSettingsProvider
also had an explicit base interface, ISettingsProvider would inherit those
members too, and the full set of interfaces in the derivation hierarchy
would simply be the accumulation of base interfaces.

It is interesting to note that if GetSetting() is implemented explicitly, it
must be done using IReadableSettingsProvider. The declaration with
ISettingsProvider in Listing 7.7 will not compile.

Listing 7.7: Explicit Member Declaration without the Containing Interface (Failure)

// ERROR: GetSetting() not available on ISettingsProvider

string ISettingsProvider.GetSetting(

 string name, string defaultValue)

{

 // ...

}

The results of Listing 7.7 appear in Output 7.2.

This output appears in addition to an error indicating that IReadable-
SettingsProvider.GetSetting() is not implemented. The fully qualified

OUTPUT 7.2:

’ISettingsProvider.GetSetting’ in explicit interface declaration

is not a member of interface.

ptg

Chapter 7: Interfaces320

interface member name used for explicit interface member implementa-
tion must reference the interface name in which it was originally declared.

Even though a class implements an interface (ISettingsProvider)
which is derived from a base interface (IReadableSettingsProvider), the
class can still declare an implementation of both interfaces overtly, as
Listing 7.8 demonstrates.

Listing 7.8: Using a Base Interface in the Class Declaration

class FileSettingsProvider : ISettingsProvider,

{

 #region ISettingsProvider Members

 public void SetSetting(string name, string value)

 {

 // ...

 }

 #endregion

 #region IReadableSettingsProvider Members

 public string GetSetting(string name, string defaultValue)

 {

 // ...

 }

 #endregion

}

In this listing, there is no change to the interface’s implementations on the
class, and although the additional interface implementation declaration on
the class header is superfluous, it can provide better readability.

The decision to provide multiple interfaces rather than just one com-
bined interface depends largely on what the interface designer wants to
require of the implementing class. By providing an IReadableSettings-
Provider interface, the designer communicates that implementers are
required only to implement a settings provider that retrieves settings.
They do not have to be able to write to those settings. This reduces the
implementation burden by not imposing the complexities of writing set-
tings as well.

In contrast, implementing ISettingsProvider assumes that there is
never a reason to have a class that can write settings without reading
them. The inheritance relationship between ISettingsProvider and

 IReadableSettingsProvider

ptg

Multiple Interface Inheritance 321

IReadableSettingsProvider, therefore, forces the combined total of both
interfaces on the ISettingsProvider class.

One final but important note: Although inheritance is the correct term,
conceptually it is more accurate to realize that an interface represents a
contract; and one contract is allowed to specify that the provisions of
another contract must also be followed. So, the code ISettingsProvider :
IReadableSettingsProvider conceptually states that the ISettingsPro-
vider contract requires also respecting the IReadableSettingsProvider
contract rather than that the ISettingsProvider “is a kind of” IReadable-
SettingsProvider. That being said, the remainder of the chapter will con-
tinue using the inheritance relationship terminology in accordance with
the standard C# terminology.

Multiple Interface Inheritance

Just as classes can implement multiple interfaces, interfaces can inherit
from multiple interfaces, and the syntax is consistent with class derivation
and implementation, as shown in Listing 7.9.

Listing 7.9: Multiple Interface Inheritance

interface IReadableSettingsProvider

{

 string GetSetting(string name, string defaultValue);

}

interface IWriteableSettingsProvider

{

 void SetSetting(string name, string value);

}

interface ISettingsProvider : IReadableSettingsProvider,

{

}

It is unusual to have an interface with no members, but if implementing
both interfaces together is predominant, it is a reasonable choice for this
case. The difference between Listing 7.9 and Listing 7.6 is that it is now

 IWriteableSettingsProvider

ptg

Chapter 7: Interfaces322

possible to implement IWriteableSettingsProvider without supplying
any read capability. Listing 7.6’s FileSettingsProvider is unaffected, but
if it used explicit member implementation, specifying which interface a
member belongs to changes slightly.

Extension Methods on Interfaces

Perhaps one of the most important features of extension methods is the
fact that they work with interfaces in addition to classes. The syntax is
identical to that of extension methods for classes. The extended type (the
first parameter and the parameter prefixed with this) is the interface that
we extend. Listing 7.10 shows an extension method for IListable(). It is
declared on Listable.

Listing 7.10: Interface Extension Methods

class Program

{

 public static void Main()

 {

 Contact[] contacts = new Contact[6];

 contacts[0] = new Contact(

 "Dick", "Traci",

 "123 Main St., Spokane, WA 99037",

 "123-123-1234");

 // ...

 Console.WriteLine();

 Publication[] publications = new Publication[3] {

 new Publication("Celebration of Discipline",

 "Richard Foster", 1978),

 new Publication("Orthodoxy",

 "G.K. Chesterton", 1908),

 new Publication(

 "The Hitchhiker's Guide to the Galaxy",

 "Douglas Adams", 1979)

 };

 }

}

 // Classes are implicitly converted to

 // their supported interfaces

 contacts.List(Contact.Headers);

 publications.List(Publication.Headers);

ptg

Implementing Multiple Inheritance via Interfaces 323

static class Listable

{

 {

 int[] columnWidths = DisplayHeaders(headers);

 for (int itemCount = 0; itemCount < items.Length; itemCount++)

 {

 string[] values = items[itemCount].ColumnValues;

 DisplayItemRow(columnWidths, values);

 }

 }

 // ...

 count < values.Length; count++)

 {

 Console.Write(

 "{0}{1,-" + columnWidths[count] + "}",

 tab, values[count]);

 {

 tab = "\t";

 }

 }

 Console.WriteLine();

}

Notice that in this example, the extension method is not on for an
IListable parameter (although it could have been), but rather an
IListable[] parameter. This demonstrates that C# allows extension
methods not only on an instance of a particular object, but also on a col-
lection of those objects. Support for extension methods is the foundation
on which LINQ is implemented. IEnumerable is the fundamental inter-
face which all collections implement. By defining extension methods for
IEnumerable, LINQ support was added to all collections. This radically
changed programming with collections of objects, a topic explored in
detail in Chapter 14.

Implementing Multiple Inheritance via Interfaces

As Listing 7.3 demonstrated, a single class can implement any number of
interfaces in addition to deriving from a single class. This feature provides
a possible workaround for the lack of multiple inheritance support in C#

 public static void List(

 this IListable[] items, string[] headers)

ptg

Chapter 7: Interfaces324

classes. The process uses aggregation as described in the preceding chap-
ter, but you can vary the structure slightly by adding an interface to the
mix, as shown in Listing 7.11.

Listing 7.11: Working around Single Inheritance Using Aggregation with Interfaces

public class PdaItem

{

 // ...

}

interface IPerson

{

 string FirstName

 {

 get;

 set;

 }

 string LastName

 {

 get;

 set;

 }

}

public class Person : IPerson

{

 // ...

}

public class Contact : PdaItem, IPerson

{

 private Person Person

 {

 }

 private Person _Person;

 public string FirstName

 {

 }

 get { return _Person; }

 set { _Person = value; }

 get { return _Person.FirstName; }

 set { _Person.FirstName = value; }

ptg

Implementing Multiple Inheritance via Interfaces 325

 public string LastName

 {

 get { return _Person.LastName; }

 set { _Person.LastName = value; }

 }

 // ...

}

IPerson ensures that the signatures between the Person members and
the same members duplicated onto Contact are consistent. The implemen-
tation is still not synonymous with multiple inheritance, however, because
new members added to Person will not be added to Contact.

One possible improvement that works if the implemented members are
methods (not properties) is to define interface extension methods for the
additional functionality “derived” from the second base class. An exten-
sion method on IPerson could provide a method called VerifyCreden-
tials(), for example, and all classes that implement IPerson, even an
IPerson interface that had no members but just extension methods, would
have a default implementation of VerifyCredentials(). What makes this
a viable approach is that polymorphism is still available, as is overriding.
Overriding is supported because any instance implementation of a method
will take priority over an extension method with the equivalent static
signature.

B E G I N N E R T O P I C

Interface Diagramming
Interfaces in a UML-like1 figure take two possible forms. First, you can
show the interface as though it is an inheritance relationship similar to a
class inheritance, as demonstrated in Figure 7.1 between IPerson and
IContact. Alternatively, you can show the interface using a small circle,
often referred to as a lollipop, exemplified by IPerson and IContact in
Figure 7.1.

1. Unified Modeling Language (UML), a standard specification for modeling object design
using graphical notation.

ptg

Chapter 7: Interfaces326

In Figure 7.1, Contact derives from PdaItem and implements IContact.
In addition, it aggregates the Person class, which implements IPerson.
Although the Visual Studio 2005 Class Designer does not support this,
interfaces are sometimes shown as using a derivation-type arrow to a
class. For example, Person could have an arrow to IPerson instead of a
lollipop.

Versioning

When creating a new version of a component or application that other
developers have programmed against, you should not change interfaces.
Because interfaces define a contract between the implementing class and
the class using the interface, changing the interface is changing the con-
tract, which will possibly break any code written against the interface.

Figure 7.1: Working around Single Inheritances with Aggregation and Interfaces

ptg

Versioning 327

Changing or removing a particular interface member signature is obvi-
ously a code-breaking change, as any call to that member will no longer
compile without modification. The same is true when changing public or
protected member signatures on a class. However, unlike with classes, add-
ing members to an interface could also prevent code from compiling with-
out additional changes. The problem is that any class implementing the
interface must do so entirely, and implementations for all members must be
provided. With new interface members, the compiler will require that devel-
opers add new interface members to the class implementing the interface.

The creation of IDistributedSettingsProvider in Listing 7.12 serves
as a good example of extending an interface in a version-compatible way.
Imagine that at first, only the ISettingsProvider interface is defined (as it
was in Listing 7.6). In the next version, however, it is determined that per-
machine settings are required. To enable this, the IDistributedSettings-
Provider interface is created, and it derives from ISettingsProvider.

Listing 7.12: Deriving One Interface from Another

interface IDistributedSettingsProvider : ISettingsProvider

{

 /// <summary>

 /// Get the settings for a particular machine.

 /// </summary>

 /// <param name="machineName">

 /// The machine name the setting is related to</param>

 /// <param name="name">The name of the setting</param>

 /// <param name="defaultValue">

 /// The value returned if the setting is not found.</param>

 /// <returns>The specified setting</returns>

 string GetSetting(

 string machineName, string name, string defaultValue);

 /// <summary>

 /// Set the settings for a particular machine.

 /// </summary>

 /// <param name="machineName">

 /// The machine name the setting is related to.</param>

 /// <param name="name">The name of the setting.</param>

 /// <param name="value">The value to be persisted.</param>

 /// <returns>The specified setting</returns>

 void SetSetting(

 string machineName, string name, string value);

}

ptg

Chapter 7: Interfaces328

The important factor is that programmers with classes that implement
ISettingsProvider can choose to upgrade the implementation to include
IDistributedSettingsProvider, or they can ignore it.

If instead of creating a new interface, the machine-related methods are
added to ISettingsProvider, then classes implementing this interface will
no longer successfully compile with the new interface definition, and
instead a version-breaking change will occur.

Changing interfaces during the development phase is obviously
acceptable, although perhaps laborious if implemented extensively. How-
ever, once an interface is released, it should not be changed. Instead, a
second interface should be created, possibly deriving from the original
interface.

(Listing 7.12 includes XML comments describing the interface mem-
bers, as discussed further in Chapter 9.)

Interfaces Compared with Classes

Interfaces introduce another category of data types. (They are one of the
few categories of types that don’t extend System.Object.2) Unlike classes,
however, interfaces can never be instantiated. An interface instance is
accessible only via a reference to an object that implements the interface. It
is not possible to use the new operator with an interface; therefore, inter-
faces cannot contain any constructors or finalizers. Furthermore, static
members are not allowed on interfaces.

Interfaces are closer to abstract classes, sharing such features as the lack
of instantiation capability. Table 7.1 lists additional comparisons.

2. The others being pointer types and type parameter types.

TABLE 7.1: Comparing Abstract Classes and Interfaces

Abstract Classes Interfaces

Cannot be instantiated indepen-
dently from their derived classes.
Abstract class constructors are called
only by their derived classes.

Cannot be instantiated.

ptg

Summary 329

Given that abstract classes and interfaces have their own sets of advan-
tages and disadvantages, you must make a cost-benefit decision based on
the comparisons in Table 7.1 in order to make the right choice.

SUMMARY

Interfaces are a critical extension of object-oriented programming. They
provide functionality similar to abstract classes but without using up the
single-inheritance option, while constantly supporting derivation from
multiple interfaces.

In C#, the implementation of interfaces can be either explicit or implicit,
depending on whether the implementing class is to expose an interface

Abstract Classes Interfaces

Define abstract member signatures
that base classes must implement.

Implementation of all members of the
interface occurs in the base class. It is
not possible to implement only some
members within the implementing
class.

Are more extensible than interfaces,
without breaking any version com-
patibility. With abstract classes, it is
possible to add additional nonab-
stract members that all derived
classes can inherit.

Extending interfaces with additional
members breaks the version
compatibility.

Can include data stored in fields. Cannot store any data. Fields can be
specified only on the deriving
classes. The workaround for this is
to define properties, but without
implementation.

Allow for (virtual) members that
have implementation and, therefore,
provide a default implementation of
a member to the deriving class.

All members are automatically
virtual and cannot include any
implementation.

Deriving from an abstract class uses
up a subclass’s one and only base
class option.

Although no default implementation
can appear, classes implementing
interfaces can continue to derive from
one another.

TABLE 7.1: Comparing Abstract Classes and Interfaces (Continued)

ptg

Chapter 7: Interfaces330

member directly or only via a conversion to the interface. Furthermore, the
granularity of whether the implementation is explicit or implicit is at the
member level: One member may be implicit while another on the same
interface is explicit.

The next chapter looks at value types and discusses the importance of
defining custom value types; at the same time, the chapter points out the
subtle foibles that they can introduce.

ptg

331

8
Value Types

OU HAVE USED VALUE TYPES throughout this book. This chapter dis-
cusses not only using value types, but also defining custom value

types. There are two categories of value types. The first category is structs.
This chapter discusses how structs enable programmers to define new
value types that behave very similarly to most of the predefined types dis-
cussed in Chapter 2. The key is that any newly defined value types have
their own custom data and methods. The second category of value types is
enums. This chapter discusses how to use enums to define sets of constant
values.

Y

23

1

Value Types

Structs Initializing Structs
Inheritance and Interfaces
with Value Types

BoxingEnums
Converting between

Enumerations and Strings
Enumerations As Flags

ptg

Chapter 8: Value Types332

Structs

B E G I N N E R T O P I C

Categories of Types
All types discussed so far fall into two categories: reference types and value
types. The differences between the types in each category stem from differ-
ences in copying strategies, which in turn results in each type being stored dif-
ferently in memory. To review, this Beginner Topic reintroduces the value
type/reference type discussion to familiarize those who are unfamiliar with it.

Value Types

Value types directly contain their values, as shown in Figure 8.1. The vari-
able name equates to the location in memory where the value is stored.
Because of this, when a different variable is assigned the original variable, a
memory copy of the original variable’s value is made to the location of the
new variable. A second variable of the same value type cannot refer to the
same location in memory as the first variable (again assuming no out or ref
parameter). So, changing the value of the first variable will not affect the
value in the second variable, since value types equate to a specific location in
memory. Consequently, changing the value of one value type cannot affect
the value of any other value type.

Similarly, passing a value type to a method such as Console.WriteLine()
will also result in a memory copy, and any changes to the parameter value
inside the method will not affect the original value within the calling function.
Since value types require a memory copy, they generally should be defined to
consume a small amount of memory (less than 16 bytes approximately).

Figure 8.1: Value Types Contain the Data Directly

int number1

char letter

float pi

int number2

Stack

42

'A'

3.14F

42

//...

int number1 = 42;

char letter = 'A';

float pi = 3.14F;

int number2 = number1;

//...

ptg

 Structs 333

The amount of memory that is required for the value type is fixed at
compile time and will not change at runtime. This fixed size allows value
types to be stored in the area of memory known as the stack.

Reference Types

In contrast, reference types and the variables that refer to them point to the
data storage location (see Figure 8.2). Reference types store the reference
(memory address) where the data is located, instead of representing the
data directly. Therefore, to access the data, the runtime will read the mem-
ory location out of the variable and then dereference it to reach the location
in memory that contains the data. The memory area of the data a reference
type points to is the heap.

Figure 8.2: Reference Types Point to the Heap

int number1

char letter

float pi

int number2

string text

StringReader reader

Heap

00 66 00 20 00

00 66 00 72 00
6F 00 6D 00 20

9C 11 C9 78 00
00 00 00 34 12
A6 00 00 00 00
00 33 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

D4 4C C7 78 02

41 00 20 00 63
00 61 00 63 00
6F 00 70 00 68
00 6F 00 6E 00
79 00 20 00 6F
00 66 00 20 00
72 00 61 00 6D

42

'A'

3.14F

42

0x00A61234

0x00A612C0

//...

int number1 = 42;

char letter = 'A';

float pi = 3.14F;

int number2 = number1;

//...

using System.IO;

//...

string text =

"A cacophony of ramblings

from my potpourri of notes";

StringReader reader =

new StringReader(text);

 //...

ptg

Chapter 8: Value Types334

Dereferencing a reference type to access its value involves an extra hop.
However, a reference type does not require the same memory copy of the
data that a value type does, resulting in circumstances when reference
types are more efficient. When assigning one reference type variable to
another reference type variable, only a memory copy of the address occurs,
and as such, the memory copy required by a reference type is always the
size of the address itself. (A 32-bit processor will copy 32 bits and a 64-bit
processor will copy 64 bits, and so on.) Obviously, not copying the data
would be faster than a value type’s behavior if the data size is large.

Since reference types copy only the address of the data, two different
variables can point to the same data, and changing the data through one
variable will change the data for the other variable as well. This happens
both for assignment and for method calls. Therefore, a method can affect
the data of a reference type back at the caller.

Besides string and object, all the C# primitive types are value types. Fur-
thermore, numerous additional value types are provided within the
framework. It also is possible for developers to define their own value
types that behave like user-defined primitives.

To define a custom value type, you use the same type of structure
as you would to define classes and interfaces. The key difference in
syntax is simply that value types use the keyword struct, as shown in
Listing 8.1.

Listing 8.1: Defining struct

// Use keyword struct to declare a value type.

{

 public Angle(int hours, int minutes, int seconds)

 {

 _Hours = hours;

 _Minutes = minutes;

 _Seconds = seconds;

 }

 public int Hours

 {

 get { return _Hours; }

 }

struct Angle

ptg

 Structs 335

 private int _Hours;

 public int Minutes

 {

 get { return _Minutes; }

 }

 private int _Minutes;

 public int Seconds

 {

 get { return _Seconds; }

 }

 private int _Seconds;

 public Angle Move(int hours, int minutes, int seconds)

 {

 return new Angle(

 Hours + hours,

 Minutes + minutes.

 Seconds + seconds)

 }

}

// Declaring a class - a reference type

// (declaring it as a struct would create a value type

// larger than 16 bytes.)

class Coordinate

{

 public Angle Longitude

 {

 get { return _Longitude; }

 set { _Longitude = value; }

 }

 private Angle _Longitude;

 public Angle Latitude

 {

 get { return _Latitude; }

 set { _Latitude = value; }

 }

 private Angle _Latitude;

}

This listing defines Angle as a value type that stores the hours, minutes,
and seconds of an angle, either longitude or latitude. The resultant C# type
is a struct.

ptg

Chapter 8: Value Types336

Initializing structs
In addition to properties and fields, structs may contain methods and con-
structors. However, default (parameterless) constructors are not allowed.
Sometimes (for instance, when instantiating an array) a value type’s con-
structor will not be called because all array memory is initialized with zeroes
instead. To avoid the inconsistency of default constructors being called only
sometimes, C# prevents explicit definition of default constructors altogether.
Because the compiler’s implementation of an instance field assignment at
declaration time is to place the assignment into the type’s constructor, C# pre-
vents instance field assignment at declaration time as well (see Listing 8.2).

Listing 8.2: Initializing a struct Field within a Declaration, Resulting in an Error

struct Angle

{

 // ...

 // ERROR: Fields cannot be initialized at declaration time

 // int _Hours = 42;

 // ...

}

This does not eliminate the need to initialize the field. In fact, just as
with classes, the compiler will issue a warning on struct fields that remain
uninitialized after instantiation if they also cannot be accessed from out-
side the assembly (because they are decorated with internal or private
modifiers, for example).

Fortunately, C# supports constructors with parameters and they come
with an interesting initialization requirement. They must initialize all
fields within the struct. Failure to do so causes a compile error. The con-
structor in Listing 8.3 that initializes the property rather than the field, for
example, produces a compile error.

NOTE

Although nothing in the language requires it, a good guideline is for
value types to be immutable: Once you have instantiated a value type,
you should not be able to modify the same instance. In scenarios
where modification is desirable, you should create a new instance.
Listing 8.1 supplies a Move() method that doesn’t modify the instance
of Angle, but instead returns an entirely new instance.

ptg

 Structs 337

Listing 8.3: Accessing Properties before Initializing All Fields

 // ERROR: The 'this' object cannot be used before

 // all of its fields are assigned to

 // public Angle(int hours, int minutes, int seconds)

 // {

 // Hours = hours; // Shorthand for this.Hours = hours;

 // Minutes = minutes // Shorthand for this.Minutes = ...;

 // Seconds = seconds // Shorthand for this.Seconds = ...;

 // }

The error reports that methods and properties (Hours implies this.Hours)
are accessed prior to the initialization of all fields. To resolve the issue, you
need to initialize the fields directly, as demonstrated in Listing 8.1.

A D V A N C E D T O P I C

Using new with Value Types
Invoking the new operator on a reference type compiles to the CIL instruc-
tion newobj. new is available to value types as well, but in contrast, the under-
lying CIL instruction is initobj. This instruction initializes the memory
with default values (the equivalent of assigning default(<type>) in C# 2.0).

Unlike classes, structs do not support finalizers. For local variable value
types, memory is allocated on the stack, so there is no need for the garbage
collector to handle the value type’s cleanup and no finalizer is called
before the stack is unwound. For value types that are part of a reference
type, the data is stored on the heap and memory is cleaned up as part of
the reference object’s garbage collection.

Language Contrast: C++—struct Defines Type with Public
Members

In C++, the difference between structs and classes is simply that by

default, a struct’s members are public. C# doesn’t include this subtle dis-

tinction. The contrast is far greater in C#, where struct significantly

changes the memory behavior from that of a class.

ptg

Chapter 8: Value Types338

Using the default Operator
To provide a constructor that didn’t require _Seconds would not avoid the
requirement that _Seconds still required initialization. You can assign the
default value of _Seconds using 0 explicitly or, in C# 2.0, using the default
operator.

Listing 8.4 passes the default value into the Angle constructor that
includes _Seconds. However, the default operator can be used outside the
this constructor call (_Seconds = default(int), for example). It is a way
to specify the value for the default of a particular type.

Listing 8.4: Using the default Operator to Retrieve the Default Value of a Type

// Use keyword struct to declare a value type.

{

 public Angle(int hours, int minutes)

 {

 }

 // ...

}

Inheritance and Interfaces with Value Types
All value types are sealed. In addition, all value types derive from
System.ValueType. This means that the inheritance chain for structs is
always from object to ValueType to the struct.

Value types can implement interfaces, too. Many of those built into the
framework implement interfaces such as IComparable and IFormattable.

ValueType brings with it the behavior of value types, but it does not
include any additional members (all of its members override object’s vir-
tual members). However, as with classes, you can override the virtual
members of System.Object. The rules for overriding are virtually the same
as with reference types (see Chapter 9). However, one difference is that
with value types, the default implementation for GetHashCode() is to for-
ward the call to the first non-null field within the struct. Also, Equals()

struct Angle

 : this(hours, minutes, default(int))

ptg

 Boxing 339

makes significant use of reflection. This leads to the conclusion that if a
value type is frequently used inside collections, especially dictionary-type
collections that use hash codes, the value type should include overrides for
both Equals() and GetHashCode() (see Chapter 9).

Boxing

Because local variable value types directly contain their data, and their
interfaces and System.Object contain references to their data, an impor-
tant question to consider is what happens when a value type is converted
to one of its implemented interfaces or to its root base class, object. The
conversion is known as boxing and it has special behavior. Converting
from a value type that directly refers to its data to a reference type which
points to a location on the heap involves several steps.

1. First, memory is allocated on the heap that will contain the value
type’s data and a little overhead (a SyncBlockIndex and method
table pointer).

2. Next, a memory copy occurs from the value type’s data on the stack,
into the allocated location on the heap.

3. Finally, the object or interface reference is updated to point at the
location on the heap.

The reverse operation is unboxing. By definition, the unbox CIL
instruction simply references the data on the heap; it doesn’t include the
copy from the heap to the stack. In most cases with C#, however, a copy
follows unboxing anyway.

Boxing and unboxing are important to consider because boxing has
some performance and behavioral implications. Besides learning how to
recognize them within C# code, a developer can count the box/unbox
instructions in a particular snippet of code by looking through the CIL.
Each operation has specific instructions, as shown in Table 8.1.

ptg

Chapter 8: Value Types340

When boxing occurs in low volume, the performance concerns are irrel-
evant. However, boxing is sometimes subtle and frequent occurrences can
make a difference with performance. Consider Listing 8.5 and Output 8.1.

Listing 8.5: Subtle Box and Unbox Instructions

class DisplayFibonacci

{

 static void Main()

 {

 int totalCount;

 System.Collections.ArrayList list =

 new System.Collections.ArrayList();

 Console.Write("Enter a number between 2 and 1000:");

 totalCount = int.Parse(Console.ReadLine());

 // Execution-time error:

 // list.Add(0); // Cast to double or 'D' suffix required

 // Whether cast or using 'D' suffix,

 // CIL is identical.

 list.Add((double)0);

 list.Add((double)1);

TABLE 8.1: Boxing Code in CIL

C# Code CIL Code

static void Main()

{

 int number;

 object thing;

 number = 42;

 // Boxing

 thing = number;

 // Unboxing

 number = (int)thing;

return;

}

.method private hidebysig

 static void Main() cil managed

{

 .entrypoint

 // Code size 21 (0x15)

 .maxstack 1

 .locals init ([0] int32 number,

 [1] object thing)

 IL_0000: nop

 IL_0001: ldc.i4.s 42

 IL_0003: stloc.0

 IL_0004: ldloc.0

 IL_000a: stloc.1

 IL_000b: ldloc.1

 IL_0011: stloc.0

 IL_0012: br.s IL_0014

 IL_0014: ret

} // end of method Program::Main

IL_0005: box [mscorlib]System.Int32

IL_000c: unbox.any [mscorlib]System.Int32

ptg

 Boxing 341

 for (int count = 2; count < totalCount; count++)

 {

 list.Add(

 ((double)list[count - 1] +

 (double)list[count - 2]));

 }

 foreach (double count in list)

 {

 Console.Write("{0}, ", count);

 }

 }

}

The code shown in Listing 8.5, when compiled, produces five box and
three unbox instructions in the resultant CIL.

1. The first two box instructions occur in the initial calls to list.Add().
The signature for the ArrayList method is int Add(object value).
As such, any value type passed to this method is boxed.

2. Next are two unbox instructions in the call to Add() within the for
loop. The return from an ArrayList’s index operator is always object
because that is what ArrayList collects. In order to add the two val-
ues, however, you need to cast them back to doubles. This cast back
from an object to a value type is an unbox call.

3. Now you take the result of the addition and place it into the ArrayList
instance, which again results in a box operation. Note that the first two
unbox instructions and this box instruction occur within a loop.

4. In the foreach loop, you iterate through each item in ArrayList and
assign them to count. However, as you already saw, the items within
ArrayList are objects, so assigning them to a double is unboxing
each of them.

OUTPUT 8.1:

Enter a number between 2 and 1000:42

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,

2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,

317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,

14930352, 24157817, 39088169, 63245986, 102334155, 165580141,

ptg

Chapter 8: Value Types342

5. The signature for Console.WriteLine() that is called within the
foreach loop is void Console.Write(string format, object arg).
As a result, each call to it invokes a box operation back from double
and into object.

Obviously, you can easily improve this code by eliminating many of the
boxing operations. Using an object rather than double in the last foreach
loop is one improvement you can make. Another would be to change the
ArrayList data type to a generic collection (see Chapter 11). The point,
however, is that boxing can be rather subtle, so developers need to pay
special attention and notice situations where it could potentially occur
repeatedly and affect performance.

There is another unfortunate runtime-boxing-related problem. If
you wanted to change the initial two Add() calls so that they did not use
a cast (or a double literal), you would have to insert integers into the
array list. Since ints will implicitly cast to doubles, this would appear
to be an innocuous modification. However, the casts to double from
within the for loop, and again in the assignment to count in the
foreach loops, would fail. The problem is that immediately following
the unbox operation is an attempt to perform a memory copy of the int
into a double. You cannot do this without first casting to an int,
because the code will throw an InvalidCastException at execution
time. Listing 8.6 shows a similar error commented out and followed by
the correct cast.

Listing 8.6: Unboxing Must Be to the Underlying Type

 // ...
 int number;
 object thing;
 double bigNumber;

 number = 42;
 thing = number;
 // ERROR: InvalidCastException
 // bigNumber = (double)thing;
 bigNumber = (double)(int)thing;
 // ...

ptg

 Boxing 343

A D V A N C E D T O P I C

Value Types in the lock Statement
C# supports a lock statement for synchronizing code. The statement com-
piles down to System.Threading.Monitor’s Enter() and Exit() methods.
These two methods must be called in pairs. Enter() records the unique ref-
erence argument passed so that when Exit() is called with the same refer-
ence, the lock can be released. The trouble with using value types is the
boxing. Therefore, each time Enter() or Exit() is called, a new value is
created on the heap. Comparing the reference of one copy to the reference
of a different copy will always return false, so you cannot hook up
Enter() with the corresponding Exit(). Therefore, value types in the
lock() statement are not allowed.

Listing 8.7 points out a few more runtime boxing idiosyncrasies and
Output 8.2 shows the results.

Listing 8.7: Subtle Boxing Idiosyncrasies

interface IAngle

{

 void MoveTo(int hours, int minutes, int seconds);

}

struct Angle : IAngle

{

 // ...

 // NOTE: This makes Angle mutable, against the general

 // guideline

 public void MoveTo(int hours, int minutes, int seconds)

 {

 _Hours = hours;

 _Minutes = minutes;

 _Seconds = seconds;

 }

}

class Program

{

 static void Main()

ptg

Chapter 8: Value Types344

 {

 // ...

 Angle angle = new Angle(25, 58, 23);

 object objectAngle = angle; // Box

 Console.Write(((Angle)objectAngle).Hours);

 // Unbox and discard

 ((Angle)objectAngle).MoveTo(26, 58, 23);

 Console.Write(((Angle)objectAngle).Hours);

 // Box, modify, and discard

 ((IAngle)angle).MoveTo(26, 58, 23);

 Console.Write(", " + ((Angle)angle).Hours);

 // Modify heap directly

 ((IAngle)objectAngle).MoveTo(26, 58, 23);

 Console.WriteLine(", " + ((Angle)objectAngle).Hours);

 // ...

 }

}

Listing 8.7 uses the Angle struct and IAngle interface from Listing 8.1. Note
also that the IAngle.MoveTo() interface changes Angle to be mutable. This
brings out some of the idiosyncrasies and, in so doing, demonstrates the
importance of the guideline to make structs immutable.

In the first two lines, you initialize angle and then box it into a variable
called objectAngle. Next, you call move in order to change Hours to 26. How-
ever, as the output demonstrates, no change actually occurs the first time.
The problem is that in order to call MoveTo(), the compiler unboxes object-
Angle and (by definition) makes a copy of the value. Although the stack
value is successfully modified at execution time, this value is discarded and
no change occurs on the heap location referenced by objectAngle.

In the next example, a similar problem occurs in reverse. Instead of call-
ing MoveTo() directly, the value is cast to IAngle. The cast invokes a box
instruction and the runtime copies the angle data to the heap. Next, the
data on the heap is modified directly on the heap before the call returns.

OUTPUT 8.2:

25, 25, 25, 26

ptg

 Boxing 345

The result is that no copy back from the heap to the stack occurs. Instead,
the modified heap data is ready for garbage collection while the data in
angle remains unmodified.

In the last case, the cast to IAngle occurs with the data on the heap
already, so no copy occurs. MoveTo() updates the _Hours value and the
code behaves as desired.

A D V A N C E D T O P I C

Unboxing Avoided
As discussed earlier, the unboxing instruction does not include the copy
back to the stack. Although some languages support the ability to access
value types on the heap directly, this is possible in C# only when the value
type is accessed as a field on a reference type. Since interfaces are reference
types, unboxing and copying can be avoided, when accessing the boxed
value via its interface.

When you call an interface method on a value type, the instance must
be a variable because the method might mutate the value. Since unboxing
produces a managed address, the runtime has a storage location and hence
a variable. As a result, the runtime simply passes that managed address on
an interface and no unboxing operation is necessary.

Listing 8.7 added an interface implementation to the Angle struct. List-
ing 8.8 uses the interface to avoid unboxing.

Listing 8.8: Avoiding Unboxing and Copying

 int number;

 object thing;

 number = 42;

 // Boxing

 thing = number;

 string text = ((IFormattable)thing).ToString(

 "X", null);

 Console.WriteLine(text);

Interfaces are reference types anyway, so calling an interface member
does not even require unboxing. Furthermore, calling a struct’s
ToString() method (that overrides object’s ToString() method) does not

 // No unbox instruction.

ptg

Chapter 8: Value Types346

require an unbox. When compiling, it is clear that a struct’s overriding
ToString() method will always be called because all value types are
sealed. The result is that the C# compiler can instruct a direct call to the
method without unboxing.

Enums

Compare the two code snippets shown in Listing 8.9.

Listing 8.9: Comparing an Integer Switch to an Enum Switch

 int connectionState;

 // ...

 switch (connectionState)

 {

 case 0:

 // ...

 break;

 case 1:

 // ...

 break;

 case 2:

 // ...

 break;

 case 3:

 // ...

 break;

 }

 ConnectionState connectionState;

 // ...

 switch (connectionState)

 {

 case ConnectionState.Connected:

 // ...

 break;

 case ConnectionState.Connecting:

 // ...

 break;

 case ConnectionState.Disconnected:

 // ...

 break;

 case ConnectionState.Disconnecting:

 // ...

 break;

 }

ptg

 Enums 347

Obviously, the difference in terms of readability is tremendous because in
the second snippet, the cases are self-documenting to some degree. How-
ever, the performance at runtime is identical. To achieve this, the second
snippet uses enum values in each case statement.

An enum is a type that the developer can define. The key characteristic
of an enum is that it identifies a compile-time-defined set of possible val-
ues, each value referred to by name, making the code easier to read. You
define an enum using a style similar to that for a class, as Listing 8.10
shows.

Listing 8.10: Defining an Enum

enum ConnectionState
{
 Disconnected,
 Connecting,
 Connected,
 Disconnecting
}

You refer to an enum value by prefixing it with the enum name; to refer to
the Connected value, for example, you use ConnectionState.Connected. You
should not use the enum names within the enum value name, to avoid the
redundancy of something such as ConnectionState.ConnectionStateCon-
nected. By convention, the enum name itself should be singular, unless the
enums are bit flags (discussed shortly).

By default, the first enum value is 0 (technically, it is 0 implicitly con-
verted to the underlying enum type), and each subsequent entry increases
by one. However, you can assign explicit values to enums, as shown in
Listing 8.11.

NOTE

An enum is helpful even for Boolean parameters. For example, a
method call such as SetState(true) is less readable than SetState
(DeviceState.On).

ptg

Chapter 8: Value Types348

Listing 8.11: Defining an Enum Type

enum ConnectionState : short

{

 Disconnected,

 Connecting = 10,

 Connected,

 Joined = Connected,

 Disconnecting

}

Disconnected has a default value of 0, Connecting has been explicitly
assigned 10, and consequently, Connected will be assigned 11. Joined is
assigned 11, the value referred to by Connected. (In this case, you do not
need to prefix Connected with the enum name, since it appears within its
scope.) Disconnecting is 12.

An enum always has an underlying type, which may be int, uint, long,
or ulong, but not char. In fact, the enum type’s performance is equivalent
to that of the underlying type. By default, the underlying value type is int,
but you can specify a different type using inheritance type syntax. Instead
of int, for example, Listing 8.11 uses a short. For consistency, the syntax
emulates that of inheritance, but this doesn’t actually make an inheritance
relationship. The base class for all enums is System.Enum. Furthermore,
these classes are sealed; you can’t derive from an existing enum type to
add additional members.

Successful conversion doesn’t work just for valid enum values. It is pos-
sible to cast 42 into a ConnectionState, even though there is no corre-
sponding ConnectionState enum value. If the value successfully converts
to the underlying type, the conversion will be successful.

The advantage to allowing casting, even without a corresponding enum
value, is that enums can have new values added in later API releases, with-
out breaking earlier versions. Additionally, the enum values provide names
for the known values while still allowing unknown values to be assigned at
runtime. The burden is that developers must code defensively for the possi-
bility of unnamed values. It would be unwise, for example, to replace case
ConnectionState.Disconnecting with default and expect that the only pos-
sible value for the default case was ConnectionState.Disconnecting.
Instead, you should handle the Disconnecting case explicitly and the
Default case should report an error or behave innocuously. As indicated

ptg

 Enums 349

before, however, conversion between the enum and the underlying type, and
vice versa, involves an explicit cast, not an implicit conversion. For example,
code cannot call ReportState(10) where the signature is void Report-

State(ConnectionState state). (The only exception is passing 0 because
there is an implicit conversion from 0 to any enum.) The compiler will per-
form a type check and require an explicit cast if the type is not identical.

Although you can add additional values to an enum in a later version of
your code, you should do this with care. Inserting an enum value in the
middle of an enum will bump the values of all later enums (adding
Flooded or Locked before Connected will change the Connected value, for
example). This will affect the versions of all code that is recompiled against
the new version. However, any code compiled against the old version will
continue to use the old values, making the intended values entirely differ-
ent. Besides inserting an enum value at the end of the list, one way to avoid
changing enum values is to assign values explicitly.

Enums are slightly different from other value types because enums
derive from System.Enum before deriving from System.ValueType.

Type Compatibility between Enums
C# also does not support a direct cast between arrays of two different
enums. However, there is a way to coerce the conversion by casting first to
an array and then to the second enum. The requirement is that both enums
share the same underlying type, and the trick is to cast first to Sys-
tem.Array, as shown at the end of Listing 8.12.

Listing 8.12: Casting between Arrays of Enums

enum ConnectionState1

{

 Disconnected,

 Connecting,

 Connected,

 Disconnecting

}

enum ConnectionState2

{

 Disconnected,

 Connecting,

ptg

Chapter 8: Value Types350

 Connected,

 Disconnecting

}

class Program

{

 static void Main()

 {

 ConnectionState1[] states =

 }

}

This exploits the fact that the CLR’s notion of assignment compatibility is
more lenient than C#’s. (The same trick is possible for illegal conversions,
such as int[] to uint[].) However, use this approach cautiously because
there is no C# specification detailing that this should work across different
CLR implementations.

Converting between Enums and Strings
One of the conveniences associated with enums is the fact that the
ToString() method, which is called by methods such as System.Con-
sole.WriteLine(), writes out the enum value identifier:

 System.Diagnostics.Trace.WriteLine(string.Format(

 "The Connection is currently {0}.",

 ConnectionState.Disconnecting));

The preceding code will write the text in Output 8.3 to the trace buffer.

Conversion from a string to an enum is a little harder to find because it
involves a static method on the System.Enum base class. Listing 8.13 pro-
vides an example of how to do it without generics (see Chapter 11), and
Output 8.4 shows the results.

 (ConnectionState1[])(Array)new ConnectionState2[42];

OUTPUT 8.3:

The Connection is currently Disconnecting.

ptg

 Enums 351

Listing 8.13: Converting a String to an Enum Using Enum.Parse()

ThreadPriorityLevel priority = (ThreadPriorityLevel)Enum.Parse(
 typeof(ThreadPriorityLevel), "Idle");
Console.WriteLine(priority);

The first parameter to Enum.Parse() is the type, which you specify using
the keyword typeof(). This is a compile-time way of identifying the type,
like a literal for the type value (see Chapter 17).

Until .NET Framework 4, there was no TryParse() method, so code prior
to then should include appropriate exception handling if there is a chance
the string will not correspond to an enum value identifier. .NET Framework
4’s TryParse<T>() method uses generics, but the type parameters can be
implied, resulting in the to-enum conversion example shown in Listing 8.14.

Listing 8.14: Converting a String to an Enum Using Enum.TryParse<T>()

System.Threading.ThreadPriorityLevel priority;
if(Enum.TryParse("Idle", out priority))
{
 Console.WriteLine(priority);
}

This conversion offers the advantage that there is no need to use exception
handling if the string doesn’t convert. Instead, code can check the Boolean
result returned from the call to TryParse<T>().

Regardless of whether code uses the “Parse” or “TryParse” approach,
the key caution about converting from a string to an enum is that such a
cast is not localizable. Therefore, developers should use this type of cast
only for messages that are not exposed to users (assuming localization is a
requirement).

Enums as Flags
Many times, developers not only want enum values to be unique, but they
also want to be able to combine them to represent a combinatorial value.

OUTPUT 8.4:

Idle

ptg

Chapter 8: Value Types352

For example, consider System.IO.FileAttributes. This enum, shown in
Listing 8.15, indicates various attributes on a file: read-only, hidden,
archive, and so on. The difference is that unlike the ConnectionState attri-
bute, where each enum value was mutually exclusive, the FileAttributes
enum values can and are intended for combination: A file can be both
read-only and hidden. To support this, each enum value is a unique bit (or
a value that represents a particular combination).

Listing 8.15: Using Enums As Flags

public enum FileAttributes

{

 ReadOnly = 1<<0, // 000000000000001

 Hidden = 1<<1, // 000000000000010

 System = 1<<2, // 000000000000100

 Directory = 1<<4, // 000000000010000

 Archive = 1<<5, // 000000000100000

 Device = 1<<6, // 000000001000000

 Normal = 1<<7, // 000000010000000

 Temporary = 1<<8, // 000000100000000

 SparseFile = 1<<9, // 000001000000000

 ReparsePoint = 1<<10, // 000010000000000

 Compressed = 1<<11, // 000100000000000

 Offline = 1<<12, // 001000000000000

 NotContentIndexed = 1<<13, // 010000000000000

 Encrypted = 1<<14, // 100000000000000

}

Because enums support combined values, the guideline for the enum
name of bit flags is plural.

To join enum values you use a bitwise OR operator, as shown in
Listing 8.16.

Listing 8.16: Using Bitwise OR and AND with Flag Enums

using System;

using System.IO;

public class Program

{

 public static void Main()

 {

 // ...

 string fileName = @"enumtest.txt";

ptg

 Enums 353

 System.IO.FileInfo file =

 new System.IO.FileInfo(fileName);

 file.Attributes = FileAttributes.Hidden |

 FileAttributes.ReadOnly;

 Console.WriteLine("{0} | {1} = {2}",

 FileAttributes.Hidden, FileAttributes.ReadOnly,

 (int)file.Attributes);

 if ((file.Attributes & FileAttributes.Hidden) !=

 FileAttributes.Hidden)

 {

 throw new Exception("File is not hidden.");

 }

 if ((file.Attributes & FileAttributes.ReadOnly) !=

 FileAttributes.ReadOnly)

 {

 throw new Exception("File is not read-only.");

 }

 // ...

}

The results of Listing 8.16 appear in Output 8.5.

Using the bitwise OR operator allows you to set the file to both read-only
and hidden. In addition, you can check for specific settings using the bit-
wise AND operator.

Each value within the enum does not need to correspond to only one
flag. It is perfectly reasonable to define additional flags that correspond to
frequent combinations of values. Listing 8.17 shows an example.

Listing 8.17: Defining Enum Values for Frequent Combinations

enum DistributedChannel

{

 None = 0,

 Transacted = 1,

 Queued = 2,

OUTPUT 8.5:

Hidden | ReadOnly = 3

ptg

Chapter 8: Value Types354

 Encrypted = 4,

 Persisted = 16,

}

Furthermore, flags such as None are appropriate if there is the possibility
that none is a valid value. In contrast, avoid enum values corresponding to
things such as Maximum as the last enum, because Maximum could be inter-
preted as a valid enum value. To check whether a value is included within
an enum use the System.Enum.IsDefined() method.

A D V A N C E D T O P I C

FlagsAttribute

If you decide to use flag-type values, the enum should include FlagsAt-
tribute. The attribute appears in square brackets (see Chapter 17), just
prior to the enum declaration, as shown in Listing 8.18.

Listing 8.18: Using FlagsAttribute

// FileAttributes defined in System.IO.

public enum FileAttributes

{

 ReadOnly = 1<<0, // 000000000000001

 Hidden = 1<<1, // 000000000000010

 // ...

}

using System;

using System.Diagnostics;

using System.IO;

class Program

{

 public static void Main()

 {

 string fileName = @"enumtest.txt";

 FileInfo file = new FileInfo(fileName);

 file.Open(FileMode.Create).Close();

 FileAttributes startingAttributes =

 file.Attributes;

 FaultTolerant =

 Transacted | Queued | Persisted

[Flags] // Decorating an enum with FlagsAttribute.

ptg

 Enums 355

 file.Attributes = FileAttributes.Hidden |

 FileAttributes.ReadOnly;

 Console.WriteLine("\"{0}\" outputs as \"{1}\"",

 file.Attributes.ToString().Replace(",", " |"),

 file.Attributes);

 FileAttributes attributes =

 (FileAttributes) Enum.Parse(typeof(FileAttributes),

 file.Attributes.ToString());

 Console.WriteLine(attributes);

 File.SetAttributes(fileName,

 startingAttributes);

 file.Delete();

 }

}

The results of Listing 8.18 appear in Output 8.6.

The flag documents that the enum values can be combined. Furthermore,
it changes the behavior of the ToString() and Parse() methods. For exam-
ple, calling ToString() on an enum that is decorated with FlagsAttribute
writes out the strings for each enum flag that is set. In Listing 8.18,
file.Attributes.ToString() returns ReadOnly, Hidden rather than the 3
it would have returned without the FileAttributes flag. If two enum val-
ues are the same, the ToString() call would return the first value. As men-
tioned earlier, however, you should use this with caution because it is not
localizable.

Parsing a value from a string to the enum also works. Each enum value
identifier is separated by a comma.

It is important to note that FlagsAttribute does not automatically
assign unique flag values or check that they have unique values. Doing this
wouldn’t make sense, since duplicates and combinations are often desir-
able. Instead, you must assign the values of each enum item explicitly.

OUTPUT 8.6:

"ReadOnly | Hidden" outputs as "ReadOnly, Hidden"

ReadOnly, Hidden

ptg

Chapter 8: Value Types356

SUMMARY

This chapter began with a discussion of how to define custom value types.
One of the key guidelines that emerge is to create immutable value types.
Boxing also was part of the value type discussion.

The idiosyncrasies introduced by boxing are subtle, and the vast major-
ity of them lead to issues at execution time rather than at compile time.
Although it is important to know about these in order to try to avoid them,
in many ways, focused attention on the potential pitfalls overshadows the
usefulness and performance advantages of value types. Programmers
should not be overly concerned about using value types. Value types per-
meate virtually every chapter of this book, and yet the idiosyncrasies do
not. I have staged the code surrounding each issue to demonstrate the con-
cern, but in reality, these types of patterns rarely occur. The key to avoid-
ing most of them is to follow the guideline of not creating mutable value
types; this is why you don’t encounter them within the primitive types.

Perhaps the only issue to occur with some frequency is repetitive box-
ing operations within loops. However, C# 2.0 greatly reduces the chance of
this with the addition of generics, and even without that, performance is
rarely affected enough to warrant avoidance until a particular algorithm
with boxing is identified as a bottleneck.

Furthermore, custom structs (value types) are relatively rare. They
obviously play an important role within C# development, but when com-
pared to the number of classes, custom structs are rare—when custom
structs are required, it is generally in frameworks targeted at interoperat-
ing with managed code or a particular problem space.

In addition to demonstrating structs, this chapter introduced enums.
This is a standard construct available in most programming languages,
and it deserves prominent consideration if you want to improve API
usability and code readability.

The next chapter highlights more guidelines to creating well-formed
types, both structs and otherwise. It begins by looking at overriding the
virtual members of objects and defining operator-overloading methods.
These two topics apply to both structs and classes, but they are somewhat
more critical in completing a struct definition and making it well formed.

ptg

357

9
Well-Formed Types

HE PREVIOUS CHAPTERS covered most of the constructs for defining
classes and structs. However, several details remain concerning

rounding out the type definition with fit-and-finish-type functionality.
This chapter introduces how to put the final touches on a type declaration.

Overriding object Members

Chapter 6 discussed how all types derive from object. In addition, it
reviewed each method available on object and discussed how some of

T

3

2

45

6

7 1

Well-Formed
Types

Overriding object
Members

Operator
Overloading

Referencing Other
Assemblies

Defining
Namespaces

XML
Comments

Associating XML Comments
with Programming Constructs

Generating an XML
Documentation File

Garbage
Collection

Weak References

Resource
Cleanup

Finalizers
Deterministic Finalization
 with the using Statement

Garbage Collection
 and Finalization

Resource Utilization and
Finalization Guidelines

ptg

Chapter 9: Well-Formed Types358

them are virtual. This section discusses the details concerning overloading
the virtual methods.

Overriding ToString()
By default, calling ToString() on any object will return the fully qualified
name of the class. Calling ToString() on a System.IO.FileStream object
will return the string System.IO.FileStream, for example. For some
classes, however, ToString() can be more meaningful. On string, for
example, ToString() returns the string value itself. Similarly, returning a
Contact’s name would make more sense. Listing 9.1 overrides ToString()
to return a string representation of Coordinate.

Listing 9.1: Overriding ToString()

public struct Coordinate

{

 public Coordinate(Longitude longitude, Latitude latitude)

 {

 _Longitude = longitude;

 _Latitude = latitude;

 }

 public Longitude Longitude { get { return _Longitude; } }

 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }

 private readonly Latitude _Latitude;

// ...

 }

Write methods such as Console.WriteLine() call an object’s ToString()
method, so overloading it often outputs more meaningful information
than the default implementation.

Overriding GetHashCode()
Overriding GetHashCode() is more complex than overriding ToString().
Regardless, you should override GetHashCode() when you are overriding
Equals(), and there is a compiler warning to indicate this. Overriding

 public override string ToString()

 {

 return string.Format("{0} {1}", Longitude, Latitude);

 }

ptg

Overriding object Members 359

GetHashCode() is also a good practice when you are using it as a key into a
hash table collection (System.Collections.Hashtable and System.Col-
lections.Generic.Dictionary, for example).

The purpose of the hash code is to efficiently balance a hash table by gener-
ating a number that corresponds to the value of an object. Here are some
implementation principles for a good GetHashCode() implementation.

• Required: Equal objects must have equal hash codes (if a.Equals(b),
then a.GetHashCode() == b.GetHashCode()).

• Required: GetHashCode()’s returns over the life of a particular object
should be constant (the same value), even if the object’s data
changes. In many cases, you should cache the method return to
enforce this.

• Required: GetHashCode() should not throw any exceptions; GetHash-
Code() must always successfully return a value.

• Performance: Hash codes should be unique whenever possible. How-
ever, since hash code returns only an int, there has to be an overlap in
hash codes for objects that have potentially more values than an int
can hold—virtually all types. (An obvious example is long, since
there are more possible long values than an int could uniquely
identify.)

• Performance: The possible hash code values should be distributed
evenly over the range of an int. For example, creating a hash that
doesn’t consider the fact that distribution of a string in Latin-based
languages primarily centers on the initial 128 ASCII characters would
result in a very uneven distribution of string values and would not be
a strong GetHashCode() algorithm.

• Performance: GetHashCode() should be optimized for performance.
GetHashCode() is generally used in Equals() implementations to
short-circuit a full equals comparison if the hash codes are different.
As a result, it is frequently called when the type is used as a key type
in dictionary collections.

• Performance: Small differences between two objects should result in
large differences between hash code values—ideally, a 1-bit differ-
ence in the object results in around 16 bits of the hash code changing,

ptg

Chapter 9: Well-Formed Types360

on average. This helps ensure that the hash table remains balanced no
matter how it is “bucketing” the hash values.

• Security: It should be difficult for an attacker to craft an object that has
a particular hash code. The attack is to flood a hash table with large
amounts of data that all hash to the same value. The hash table imple-
mentation then becomes O(n) instead of O(1), resulting in a possible
denial-of-service attack.

Consider the GetHashCode() implementation for the Coordinate type
shown in Listing 9.2.

Listing 9.2: Implementing GetHashCode()

public struct Coordinate

{

 public Coordinate(Longitude longitude, Latitude latitude)

 {

 _Longitude = longitude;

 _Latitude = latitude;

 }

 public Longitude Longitude { get { return _Longitude; } }

 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }

 private readonly Latitude _Latitude;

 // ...

}

Generally, the key is to use the XOR operator over the hash codes from the
relevant types, and to make sure the XOR operands are not likely to be

 public override int GetHashCode()

 {

 int hashCode = Longitude.GetHashCode();

 // As long as the hash codes are not equal

 if(Longitude.GetHashCode() != Latitude.GetHashCode())

 {

 hashCode ^= Latitude.GetHashCode(); // eXclusive OR

 }

 return hashCode;

 }

ptg

Overriding object Members 361

close or equal—or else the result will be all zeroes. (In those cases where
the operands are close or equal, consider using bitshifts and adds instead.)
The alternative operands, AND and OR, have similar restrictions, but the
restrictions occur more frequently. Applying AND multiple times tends
toward all 0 bits, and applying OR tends toward all 1 bits.

For finer-grained control, split larger-than-int types using the shift
operator. For example, GetHashCode() for a long called value is imple-
mented as follows:

int GetHashCode() { return ((int)value ^ (int)(value >> 32)) };

Also, note that if the base class is not object, then base.GetHashCode()
should be included in the XOR assignment.

Finally, Coordinate does not cache the value of the hash code. Since
each field in the hash code calculation is readonly, the value can’t change.
However, implementations should cache the hash code if calculated val-
ues could change or if a cached value could offer a significant performance
advantage.

Overriding Equals()
Overriding Equals() without overriding GetHashCode() results in a warn-
ing such as that shown in Output 9.1.

Generally, programmers expect overriding Equals() to be trivial, but it
includes a surprising number of subtleties that require careful thought and
testing.

Object Identity versus Equal Object Values

Two references are identical if both refer to the same instance. object, and
therefore, all objects, include a static method called ReferenceEquals()
that explicitly checks for this object identity (see Figure 9.1)

OUTPUT 9.1:

warning CS0659: ’<Class Name>’ overrides Object.Equals(object o) but

does not override Object.GetHashCode()

ptg

Chapter 9: Well-Formed Types362

However, identical reference is not the only type of equality. Two object
instances can also be equal if the values that identify them are equal. Con-
sider the comparison of two ProductSerialNumbers shown in Listing 9.3.

Listing 9.3: Equal

public sealed class ProductSerialNumber

{

 // See Appendix B

}

Figure 9.1: Identity

Equal Value Types

Equal Reference Types

Identical (Equal References)

Heap

Stack

00 66 00 20 00

00 66 00 72 00
6F 00 6D 00 20

9C 11 C9 78 00
00 00 00 34 12
A6 00 00 00 00
00 33 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

D4 4C C7 78 02

41 00 20 00 63
00 61 00 63 00
6F 00 70 00 68
00 6F 00 6E 00
79 00 20 00 6F
00 66 00 20 00
72 00 61 00 6D

D4 4C C7 78 02

42

42

0x00A60289

0x00A64799

0x00A61234

0x00A61234

ptg

Overriding object Members 363

class Program

{

 static void Main()

 {

 ProductSerialNumber serialNumber1 =

 new ProductSerialNumber("PV", 1000, 09187234);

 ProductSerialNumber serialNumber2 = serialNumber1;

 ProductSerialNumber serialNumber3 =

 new ProductSerialNumber("PV", 1000, 09187234);

 // These serial numbers ARE the same object identity.

 if(!ProductSerialNumber.ReferenceEquals(serialNumber1,

 serialNumber2))

 {

 throw new Exception(

 "serialNumber1 does NOT " +

 "reference equal serialNumber2");

 }

 // and, therefore, they are equal

 else if(!serialNumber1.Equals(serialNumber2))

 {

 throw new Exception(

 "serialNumber1 does NOT equal serialNumber2");

 }

 else

 {

 Console.WriteLine(

 "serialNumber1 reference equals serialNumber2");

 Console.WriteLine(

 "serialNumber1 equals serialNumber2");

 }

 // These serial numbers are NOT the same object identity.

 if (ProductSerialNumber.ReferenceEquals(serialNumber1,

 serialNumber3))

 {

 throw new Exception(

 "serialNumber1 DOES reference " +

 "equal serialNumber3");

 }

 // but they are equal (assuming Equals is overloaded).

 else if(!serialNumber1.Equals(serialNumber3) ||

 serialNumber1 != serialNumber3)

 {

 throw new Exception(

 "serialNumber1 does NOT equal serialNumber3");

 }

ptg

Chapter 9: Well-Formed Types364

 Console.WriteLine("serialNumber1 equals serialNumber3");

 Console.WriteLine("serialNumber1 == serialNumber3");

 }

}

The results of Listing 9.3 appear in Output 9.2.

OUTPUT 9.2:

As the last assertion demonstrates with ReferenceEquals(), serial-
Number1 and serialNumber3 are not the same reference. However, the code
constructs them with the same values and both logically associate with the
same physical product. If one instance was created from data in the database
and another was created from manually entered data, you would expect the
instances would be equal and, therefore, that the product would not be
duplicated (reentered) in the database. Two identical references are obvi-
ously equal; however, two different objects could be equal but not reference
equal. Such objects will not have identical object identities, but they may
have key data that identifies them as being equal objects.

Only reference types can be reference equal, thereby supporting the
concept of identity. Calling ReferenceEquals() on value types will always
return false since, by definition, the value type directly contains its data,
not a reference. Even when ReferenceEquals() passes the same variable in
both (value type) parameters to ReferenceEquals(), the result will still be
false because the very nature of value types is that they are copied into
the parameters of the called method. Listing 9.4 demonstrates this behav-
ior. In other words, ReferenceEquals() boxes the value types. Since each
argument is put into a “different box” (location on the stack), they are
never reference equal.

Listing 9.4: Value Types Do Not Even Reference Equal Themselves

public struct Coordinate

{

 public Coordinate(Longitude longitude, Latitude latitude)

 {

serialNumber1 reference equals serialNumber2

serialNumber1 equals serialNumber3

serialNumber1 == serialNumber3

ptg

Overriding object Members 365

 _Longitude = longitude;

 _Latitude = latitude;

 }

 public Longitude Longitude { get { return _Longitude; } }

 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }

 private readonly Latitude _Latitude;

// ...

}

class Program

{

 public void Main()

 {

 //...

 Coordinate coordinate1 =

 new Coordinate(new Longitude(48, 52),

 new Latitude(-2, -20));

 // Value types will never be reference equal.

 if (Coordinate.ReferenceEquals(coordinate1,

 coordinate1))

 {

 throw new Exception(

 "coordinate1 reference equals coordinate1");

 }

 Console.WriteLine(

 "coordinate1 does NOT reference equal itself");

 }

}

In contrast to the definition of Coordinate as a reference type in
Chapter 8, the definition going forward is that of a value type (struct)
because the combination of Longitude and Latitude data is logically
thought of as a value and the size is less than 16 bytes. (In Chapter 8, Coor-
dinate aggregated Angle rather than Longitude and Latitude.) A contrib-
uting factor to declaring Coordinate as a value type is that it is a (complex)
numeric value that has particular operations on it. In contrast, a reference
type such as Employee is not a value that you manipulate numerically, but
rather refers to an object in real life.

ptg

Chapter 9: Well-Formed Types366

Implementing Equals()

To determine whether two objects are equal (they have same identifying
data), you use an object’s Equals() method. The implementation of this
virtual method on object uses ReferenceEquals() to evaluate equality.
Since this implementation is often inadequate, it is necessary to sometimes
override Equals() with a more appropriate implementation.

For objects to equal each other, the expectation is that the identifying
data within them is equal. For ProductSerialNumbers, for example, the
ProductSeries, Model, and Id must be the same; however, for an Employee
object, perhaps comparing EmployeeIds would be sufficient for equality.
To correct object.Equals() implementation, it is necessary to override it.
Value types, for example, override the Equals() implementation to
instead use the fields that the type includes.

The steps for overriding Equals() are as follows.

1. Check for null.

2. Check for reference equality if the type is a reference type.

3. Check for equivalent types.

4. Invoke a typed helper method that can treat the operand as the com-
pared type rather than an object (see the Equals(Coordinate obj)
method in Listing 9.5).

5. Possibly check for equivalent hash codes to short-circuit an extensive,
field-by-field comparison. (Two objects that are equal cannot have
different hash codes.)

6. Check base.Equals() if the base class overrides Equals().

7. Compare each identifying field for equality.

8. Override GetHashCode().

9. Override the == and != operators (see the next section).

Listing 9.5 shows a sample Equals() implementation.

Listing 9.5: Overriding Equals()

public struct Longitude

{

 // ...

}

ptg

Overriding object Members 367

public struct Latitude

{

 // ...

}

public struct Coordinate

{

 public Coordinate(Longitude longitude, Latitude latitude)

 {

 _Longitude = longitude;

 _Latitude = latitude;

 }

 public Longitude Longitude { get { return _Longitude; } }

 private readonly Longitude _Longitude;

 public Latitude Latitude { get { return _Latitude; } }

 private readonly Latitude _Latitude;

 public override bool Equals(object obj)

 {

 // STEP 1: Check for null

 if (obj == null)

 {

 return false;

 }

 // STEP 3: equivalent data types

 if (this.GetType() != obj.GetType())

 {

 return false;

 }

 return Equals((Coordinate)obj);

 }

 public bool Equals(Coordinate obj)

 {

 // STEP 1: Check for null if a reference type

 // (e.g., a reference type)

 // if (obj == null)

 // {

 // return false;

 // }

 // STEP 2: Check for ReferenceEquals if this

 // is a reference type

 // if (ReferenceEquals(this, obj))

 // {

 // return true;

 // }

ptg

Chapter 9: Well-Formed Types368

 // STEP 4: Possibly check for equivalent hash codes

 // if (this.GetHashCode() != obj.GetHashCode())

 // {

 // return false;

 // }

 // STEP 5: Check base.Equals if base overrides Equals()

 // System.Diagnostics.Debug.Assert(

 // base.GetType() != typeof(object));

 // if (!base.Equals(obj))

 // {

 // return false;

 // }

 // STEP 6: Compare identifying fields for equality

 // using an overload of Equals on Longitude.

 return ((Longitude.Equals(obj.Longitude)) &&

 (Latitude.Equals(obj.Latitude)));

 }

 // STEP 7: Override GetHashCode.

 public override int GetHashCode()

 {

 int hashCode = Longitude.GetHashCode();

 hashCode ^= Latitude.GetHashCode(); // Xor (eXclusive OR)

 return hashCode;

 }

}

In this implementation, the first two checks are relatively obvious. Checks
4–6 occur in an overload of Equals() that takes the Coordinate data type
specifically. This way, a comparison of two Coordinates will avoid
Equals(object obj) and its GetType() check altogether.

Since GetHashCode() is not cached and is no more efficient than step 5,
the GetHashCode() comparison is commented out. Similarly, base.Equals()
is not used since the base class is not overriding Equals(). (The assertion
checks that base is not of type object, however it does not check that the
base class overrides Equals(), which is required to appropriately call
base.Equals().) Regardless, since GetHashCode() does not necessarily
return a unique value (it only identifies when operands are different), on its
own it does not conclusively identify equal objects.

ptg

Operator Overloading 369

Like GetHashCode(), Equals() should also never throw any exceptions.
It is valid to compare any object with any other object, and doing so should
never result in an exception.

Guidelines for Implementing Equality
While learning the details for overriding an object’s virtual members, sev-
eral guidelines emerge.

• Equals(), the == operator, and the != operator should be imple-
mented together.

• A type should use the same algorithm within Equals(), ==, and !=
implementations.

• When implementing Equals(), ==, and !=, a type’s GetHashCode()
method should also be implemented.

• GetHashCode(), Equals(), ==, and != should never throw exceptions.

• When implementing IComparable, equality-related methods should
also be implemented.

Operator Overloading

The preceding section looked at overriding Equals() and provided the
guideline that the class should also implement == and !=. The term for
implementing any operator is operator overloading, and this section
describes how to do this, not only for == and !=, but also for other sup-
ported operators.

For example, string provides a + operator that concatenates two
strings. This is perhaps not surprising, because string is a predefined type,
so it could possibly have special compiler support. However, C# provides
for adding + operator support to a class or struct. In fact, all operators are
supported except x.y, f(x), new, typeof, default, checked, unchecked,
delegate, is, as, =, and =>. One particular noteworthy operator that can-
not be implemented is the assignment operator; there is no way to change
the behavior of the = operator.

ptg

Chapter 9: Well-Formed Types370

Comparison Operators (==, !=, <, >, <=, >=)
Once Equals() is overridden, there is a possible inconsistency. Two objects
could return true for Equals() but false for the == operator because ==
performs a reference equality check by default as well. To correct this it is
important to overload the equals (==) and not equals (!=) operators as well.

For the most part, the implementation for these operators can delegate
the logic to Equals(), or vice versa. However, some initial null checks are
required first (see Listing 9.6).

Listing 9.6: Implementing the == and != Operators

public sealed class Coordinate

{

 // ...

 public static bool operator ==(

 Coordinate leftHandSide,

 Coordinate rightHandSide)

 {

 // Check if leftHandSide is null.

 // (operator== would be recursive)

 if (ReferenceEquals(leftHandSide, null))

 {

 // Return true if rightHandSide is also null

 // but false otherwise.

 return ReferenceEquals(rightHandSide, null);

 }

 return (leftHandSide.Equals(rightHandSide));

 }

 public static bool operator !=(

 Coordinate leftHandSide,

 Coordinate rightHandSide)

 {

 return !(leftHandSide == rightHandSide);

 }

}

Note that to perform the null checks, you cannot use an equality check for
null (leftHandSide == null). Doing so would recursively call back into
the method, resulting in a loop until overflowing the stack. To avoid this
you call ReferenceEquals() to check for null.

ptg

Operator Overloading 371

Binary Operators (+, -, *, /, %, &, |, ^, <<, >>)
You can add an Arc to a Coordinate. However, the code so far provides no
support for the addition operator. Instead, you need to define such a
method, as Listing 9.7 shows.

Listing 9.7: Adding an Operator

struct Arc

{

 public Arc(

 Longitude longitudeDifference,

 Latitude latitudeDifference)

 {

 _LongitudeDifference = longitudeDifference;

 _LatitudeDifference = latitudeDifference;

 }

 public Longitude LongitudeDifference

 {

 get

 {

 return _LongitudeDifference;

 }

 }

 private readonly Longitude _LongitudeDifference;

 public Latitude LatitudeDifference

 {

 get

 {

 return _LatitudeDifference;

 }

 }

 private readonly Latitude _LatitudeDifference;

}

struct Coordinate

{

 // ...

 public static Coordinate operator +(

 Coordinate source, Arc arc)

 {

 Coordinate result = new Coordinate(

 new Longitude(

 source.Longitude + arc.LongitudeDifference),

 new Latitude(

 source.Latitude + arc.LatitudeDifference));

 return result;

 }

 }

ptg

Chapter 9: Well-Formed Types372

The +, -, *, /, %, &, |, ^, <<, and >> operators are implemented as binary
static methods where at least one parameter is of the containing type. The
method name is the operator prefixed by the word operator as a keyword.
As shown in Listing 9.8, given the definition of the - and + binary opera-
tors, you can add and subtract an Arc to and from the coordinate.

Note that Longitude and Latitude will also require implementations of
the + operator because they are called by source.Longitude + arc.Longi-
tudeDifference and source.Latitude + arc.LatitudeDifference.

Listing 9.8: Calling the – and + Binary Operators

public class Program

{

 public static void Main()

 {

 Coordinate coordinate1,coordinate2;

 coordinate1 = new Coordinate(

 new Longitude(48, 52), new Latitude(-2, -20));

 Arc arc = new Arc(new Longitude(3), new Latitude(1));

 coordinate2 = coordinate1 + arc;

 Console.WriteLine(coordinate2);

 coordinate2 = coordinate2 - arc;

 Console.WriteLine(coordinate2);

 coordinate2 += arc;

 Console.WriteLine(coordinate2);

 }

}

The results of Listing 9.8 appear in Output 9.3.

OUTPUT 9.3:

For Coordinate, implement the – and + operators to return coordinate
locations after subtracting Arc. This allows you to string multiple opera-
tors and operands together, as in result = coordinate1 + coordinate2 +
coordinate3 – coordinate4;.

51o 52’ 0 E -1o -20’ 0 S

51o 52’ 0 E -1o -20’ 0 S

54o 52’ 0 E 0o -20’ 0 S

ptg

Operator Overloading 373

This works because the result of the first operand (coordinate1 +

coordinate2) is another Coordinate, which you can then add to the next
operand.

In contrast, consider if you provided a – operator that had two Coordi-
nates as parameters and returned a double corresponding to the distance
between the two coordinates. Adding a double to a Coordinate is unde-
fined and, therefore, you could not string operators and operands. Caution
is in order when defining operators that behave this way, because doing so
is counterintuitive.

Combining Assignment with Binary Operators (+=, -=, *=, /=, %=, &=…)
As previously mentioned, there is no support for overloading the assign-
ment operator. However, assignment operators in combination with
binary operators (+=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>=) are effectively
overloaded when overloading the binary operator. Given the definition of
a binary operator without the assignment, C# automatically allows for
assignment in combination with the operator. Using the definition of
Coordinate in Listing 9.7, therefore, you can have code such as:

coordinate += arc;

which is equivalent to the following:

coordinate = coordinate + arc;

Conditional Logical Operators (&&, ||)
Like assignment operators, conditional logical operators cannot be over-
loaded explicitly. However, since the logical operators & and | can be over-
loaded, and the conditional operators comprise the logical operators,
effectively it is possible to overload conditional operators. x && y is pro-
cessed as x & y, where y must evaluate to true. Similarly, x || y is pro-
cessed as x | y only if x is false. To enable support for evaluating a type to
true or false—in an if statement, for example—it is necessary to override
the true/false unary operators.

Unary Operators (+, -, !, ~, ++, --, true, false)
Overloading unary operators is very similar to overloading binary opera-
tors, except that they take only one parameter, also of the containing type.

ptg

Chapter 9: Well-Formed Types374

Listing 9.9 overloads the + and – operators for Longitude and Latitude and
then uses these operators when overloading the same operators in Arc.

Listing 9.9: Overloading the – and + Unary Operators

public struct Latitude

{

 // ...

 }

public struct Longitude

{

 // ...

}

public struct Arc

{

 // ...

 public static Arc operator -(Arc arc)

 {

 // Uses unary – operator defined on

 // Longitude and Latitude

 }

 public static Arc operator +(Arc arc)

 {

 return arc;

 }

}

Just as with numeric types, the + operator in this listing doesn’t have any
effect and is provided for symmetry.

 public static Latitude operator -(Latitude latitude)

 {

 return new Latitude(-latitude.DecimalDegrees);

 }

 public static Latitude operator +(Latitude latitude)

 {

 return latitude;

 }

 public static Longitude operator -(Longitude longitude)

 {

 return new Longitude(-longitude.DecimalDegrees);

 }

 public static Longitude operator +(Longitude longitude)

 {

 return longitude;

 }

return new Arc(-arc.LongitudeDifference,

-arc.LatitudeDifference);

ptg

Operator Overloading 375

Overloading true and false has the additional requirement that they
both be overloaded. The signatures are the same as other operator over-
loads; however, the return must be a bool, as demonstrated in Listing 9.10.

Listing 9.10: Overloading the true and false Operators

public static bool operator false(IsValid item)

{

 // ...

}

public static bool operator true(IsValid item)

{

 // ...

}

You can use types with overloaded true and false operators in if, do,
while, and for controlling expressions.

Conversion Operators
Currently, there is no support in Longitude, Latitude, and Coordinate for
casting to an alternate type. For example, there is no way to cast a double
into a Longitude or Latitude instance. Similarly, there is no support for
assigning a Coordinate using a string. Fortunately, C# provides for the
definition of methods specifically to handle the converting of one type to
another. Furthermore, the method declaration allows for specifying
whether the conversion is implicit or explicit.

A D V A N C E D T O P I C

Cast Operator (())
Implementing the explicit and implicit conversion operators is not techni-
cally overloading the cast operator (()). However, this is effectively what
takes place, so defining a cast operator is common terminology for imple-
menting explicit or implicit conversion.

Defining a conversion operator is similar in style to defining any other
operator, except that the “operator” is the resultant type of the conversion.
Additionally, the operator keyword follows a keyword that indicates
whether the conversion is implicit or explicit (see Listing 9.11).

ptg

Chapter 9: Well-Formed Types376

Listing 9.11: Providing an Implicit Conversion between Latitude and double

public struct Latitude

{

 // ...

 public Latitude(double decimalDegrees)

 {

 _DecimalDegrees = Normalize(decimalDegrees);

 }

 public double DecimalDegrees

 {

 get { return _DecimalDegrees; }

 }

 private readonly double _DecimalDegrees;

 // ...

 public static implicit operator double(Latitude latitude)

 {

 return latitude.DecimalDegrees;

 }

 public static implicit operator Latitude(double degrees)

 {

 return new Latitude(degrees);

 }

 // ...

}

With these conversion operators, you now can convert doubles implic-
itly to and from Latitude objects. Assuming similar conversions exist for
Longitude, you can simplify the creation of a Coordinate object by specify-
ing the decimal degrees portion of each coordinate portion (for example,
coordinate = new Coordinate(43, 172);).

NOTE

When implementing a conversion operator, either the return or the
parameter must be of the enclosing type—in support of encapsulation.
C# does not allow you to specify conversions outside the scope of the
converted type.

ptg

Referencing Other Assemblies 377

Guidelines for Conversion Operators
The difference between defining an implicit and an explicit conversion
operator centers on preventing an unintentional implicit conversion that
results in undesirable behavior. You should be aware of two possible con-
sequences of using the explicit conversion operator. First, conversion oper-
ators that throw exceptions should always be explicit. For example, it is
highly likely that a string will not conform to the appropriate format that a
conversion from string to Coordinate requires. Given the chance of a
failed conversion, you should define the particular conversion operator as
explicit, thereby requiring that you be intentional about the conversion
and that you ensure that the format is correct, or that you provide code to
handle the possible exception. Frequently, the pattern for conversion is
that one direction (string to Coordinate) is explicit and the reverse (Coor-
dinate to string) is implicit.

A second consideration is the fact that some conversions will be lossy.
Converting from a float (4.2) to an int is entirely valid, assuming an
awareness of the fact that the decimal portion of the float will be lost. Any
conversions that will lose data and not successfully convert back to the
original type should be defined as explicit.

Referencing Other Assemblies

Instead of placing all code into one monolithic binary file, C# and the
underlying CLI platform allow you to spread code across multiple assem-
blies. This enables you to reuse assemblies across multiple executables.

B E G I N N E R T O P I C

Class Libraries
The HelloWorld.exe program is one of the most trivial programs you can
write. Real-world programs are more complex, and as complexity increases,
it helps to organize the complexity by breaking programs into multiple
parts. To do this, developers move portions of a program into separate com-
piled units called class libraries or, simply, libraries. Programs then refer-
ence and rely on class libraries to provide parts of their functionality. The

ptg

Chapter 9: Well-Formed Types378

power of this concept is that two programs can rely on the same class
library, thereby sharing the functionality of that class library across the two
programs and reducing the total amount of code needed.

In other words, it is possible to write features once, place them into a
class library, and allow multiple programs to include those features by ref-
erencing the same class library. Later on, when developers fix a bug or add
functionality to the class library, all the programs will have access to the
increased functionality, just because they continue to reference the now
improved class library.

To reuse the code within a different assembly, it is necessary to refer-
ence the assembly when running the C# compiler. Generally, the refer-
enced assembly is a class library, and creating a class library requires a
different assembly target from the default console executable targets you
created thus far.

Changing the Assembly Target
The compiler allows you to create four different assembly types via the
/target option.

• Console executable: This is the default type of assembly, and all compila-
tion thus far has been to a console executable. (Leaving off the /target
option or specifying /target:exe creates a console executable.)

• Class library: Classes that are shared across multiple executables are
generally defined in a class library (/target:library).

• Windows executable: Windows executables are designed to run in the
Microsoft Windows family of operating systems and outside the com-
mand console (/target:winexe).

• Module: In order to facilitate multiple languages within the same
assembly, code can be compiled to a module and multiple modules
can be combined to form an assembly (/target:module).

Assemblies to be shared across multiple applications are generally
compiled as class libraries. Consider, for example, a library dedicated to
functionality around longitude and latitude coordinates. To compile the

ptg

Referencing Other Assemblies 379

Coordinate, Longitude, and Latitude classes into their own library, you
use the command line shown in Output 9.4.

OUTPUT 9.4:

Assuming you use .NET and the C# compiler is in the path, this builds an
assembly library called Coordinates.dll.

Referencing an Assembly
To access code within a different assembly, the C# compiler allows
the developer to reference the assembly on the command line. The option
is /reference (/r is the abbreviation), followed by the list of references.
The Program class listing from Listing 9.8 uses the Coordinate class, and if
you place this into a separate executable, you reference Coordinates.dll
using the .NET command line shown in Output 9.5.

OUTPUT 9.5:

The Mono command line appears in Output 9.6.

OUTPUT 9.6:

Encapsulation of Types
Just as classes serve as an encapsulation boundary for behavior and data,
assemblies provide a similar boundary among groups of types. Develop-
ers can break a system into assemblies and then share those assemblies
with multiple applications or integrate them with assemblies provided by
third parties.

By default, a class without any access modifier is defined as internal.1

The result is that the class is inaccessible from outside the assembly. Even

>csc /target:library /out:Coordinates.dll Coordinate.cs IAngle.cs

Latitude.cs Longitude.cs Arc.cs

Microsoft (R) Visual C# 2010 Compiler version 4.0.20506.1

Copyright (C) Microsoft Corporation. All rights reserved.

csc.exe /R:Coordinates.dll Program.cs

msc.exe /R:Coordinates.dll Program.cs

1. Excluding nested types which are private by default.

ptg

Chapter 9: Well-Formed Types380

though another assembly references the assembly containing the class, all
internal classes within the referenced assemblies will be inaccessible.

Just as private and protected provide levels of encapsulation to mem-
bers within a class C# supports the use of access modifiers at the class level
for control over the encapsulation of the classes within an assembly. The
access modifiers available are public and internal, and in order to expose
a class outside the assembly, the assembly must be marked as public.
Therefore, before compiling the Coordinates.dll assembly, it is necessary
to modify the type declarations as public (see Listing 9.12).

Listing 9.12: Making Types Available Outside an Assembly

public struct Coordinate

{

 // ...

}

public struct Latitude

{

 // ...

}

public struct Longitude

{

 // ...

}

public struct Arc

{

 // ...

}

Similarly, declarations such as class and enum can also be either public or
internal.

A D V A N C E D T O P I C

Additional Class Access Modifiers
You can decorate nested classes with any access modifier available to other
class members (private, for example). However, outside the class scope,
the only available access modifiers are public and internal.

ptg

Referencing Other Assemblies 381

The internal access modifier is not limited to type declarations. It is also
available on type members. Therefore, you can designate a type as public
but mark specific methods within the type as internal so that the mem-
bers are available only from within the assembly. It is not possible for the
members to have a greater accessibility than the type. If the class is
declared as internal, then public members on the type will be accessible
only from within the assembly.

protected internal is another type member access modifier. Members
with an accessibility modifier of protected internal will be accessible
from all locations within the containing assembly and from classes that
derive from the type, even if the derived class is not in the same assembly.
The default state is private, so when you add an access modifier (other
than public), the member becomes slightly more visible. Similarly, adding
two modifiers compounds the effect.

B E G I N N E R T O P I C

Type Member Accessibility Modifiers
The full list of access modifiers appears in Table 9.1.

TABLE 9.1: Accessibility Modifiers

Modifier Description

public Declares that the member is accessible anywhere that the
type is accessible. If the class is internal, the member will
be internally visible. Public members will be accessible
from outside the assembly if the containing type is public.

internal The member is accessible from within the assembly only.

private The member is accessible from within the containing type,
but inaccessible otherwise.

protected The member is accessible within the containing type and
any subtypes derived from it, regardless of assembly.

protected

internal

The member is accessible from anywhere within the con-
taining assembly and from any types derived from the con-
taining type, even if the derived types are within a
different assembly.

ptg

Chapter 9: Well-Formed Types382

Defining Namespaces

As mentioned in Chapter 2, all data types are identified by the combina-
tion of their namespace and their name. In fact, in the CLR there is no such
thing as a “namespace.” The type’s name actually is the fully qualified
type name. For the classes you defined earlier, there was no explicit
namespace declaration. Classes such as these are automatically declared as
members of the default global namespace. It is likely that such classes will
experience a name collision, which occurs when you attempt to define two
classes with the same name. Once you begin referencing other assemblies
from third parties, the likelihood of a name collision increases even
further.

To resolve this, you should place classes into namespaces. For example,
classes outside the System namespace are generally placed into a
namespace corresponding with the company, product name, or both.
Classes from Addison-Wesley, for example, are placed into an Awl or
AddisonWesley namespace, and classes from Microsoft (not System classes)
are located in the Microsoft namespace. You should use the namespace
keyword to create a namespace and to assign a class to it, as shown in
Listing 9.13.

Listing 9.13: Defining a Namespace

// Define the namespace AddisonWesley

 class Program

 {

 // ...

 }

// End of AddisonWesley namespace declaration

All content between the namespace declaration’s curly braces will then
belong within the specified namespace. In Listing 9.13, Program is placed
into the namespace AddisonWesley, making its full name AddisonWesley.
Program.

Like classes, namespaces support nesting. This provides for a hierarchi-
cal organization of classes. All the System classes relating to network APIs

namespace AddisonWesley

{

}

ptg

Defining Namespaces 383

are in the namespace System.Net, for example, and those relating to the
Web are in System.Web.

There are two ways to nest namespaces. The first way is to nest them
within each other (similar to classes), as demonstrated in Listing 9.14.

Listing 9.14: Nesting Namespaces within Each Other

// Define the namespace AddisonWesley

namespace AddisonWesley

{

 class Program

 {

 // ...

 }

 }

// End of AddisonWesley namespace declaration

Such a nesting will assign the Program class to the AddisonWesley.Michaelis.
EssentialCSharp namespace.

The second way is to use the full namespace in a single namespace
declaration in which a period separates each identifier, as shown in
Listing 9.15.

Listing 9.15: Nesting Namespaces Using a Period to Separate Each Identifier

// Define the namespace AddisonWesley.Michaelis.EssentialCSharp

 class Program

 {

 // ...

 }

// End of AddisonWesley namespace declaration

// Define the namespace AddisonWesley.Michaelis

 namespace Michaelis

 {

 // Define the namespace

 // AddisonWesley.Michaelis.EssentialCSharp

 namespace EssentialCSharp

 {

 // Declare the class

 // AddisonWesley.Michaelis.EssentialCSharp.Program

 }

 }

namespace AddisonWesley.Michaelis.EssentialCSharp

{

}

ptg

Chapter 9: Well-Formed Types384

Regardless of whether a namespace declaration follows Listing 9.14,
Listing 9.15, or a combination of the two, the resultant CIL code will be
identical. The same namespace may occur multiple times, in multiple files,
and even across assemblies. For example, with the convention of one-to-
one correlation between files and classes, you can define each class in its
own file and surround it with the appropriate namespace declaration.

Namespace Alias Qualifier
Namespaces on their own deal with the vast majority of naming conflicts
that might arise. However, sometimes (albeit rarely) conflict can arise
because of an overlap in the namespace and class names. To account for
this, the C# 2.0 compiler includes an option for providing an alias with the
/reference option. For example, if the assemblies CoordinatesPlus.dll
and Coordinates.dll have an overlapping type of Arc, you can reference
both assemblies on the command line by assigning one or both references
with a namespace alias qualifier that further distinguishes one class from
the other. The results of such a reference appear in Output 9.7.

OUTPUT 9.7:

However, adding the alias during compilation is not sufficient on its
own. In order to refer to classes in the aliased assembly, it is necessary to
provide an extern directive that declares that the namespace alias qualifier
is provided externally to the source code (see Listing 9.16).

Listing 9.16: Using the extern Alias Directive

// extern must precede all other namespace elements

extern alias CoordPlus;

using System;

// Equivalent also allowed

csc.exe /R:CoordPlus=CoordinatesPlus.dll /R:Coordinates.dll Program.cs

using CoordPlus ::AddisonWesley.Michaelis.EssentialCSharp

// using CoordPlus .AddisonWesley.Michaelis.EssentialCSharp

using global ::AddisonWesley.Michaelis.EssentialCSharp

ptg

XML Comments 385

// Equivalent NOT allowed

// using global.AddisonWesley.Michaelis.EssentialCSharp

public class Program

{

 // ...

}

Once the extern alias for CoordPlus appears, you can reference the
namespace using CoordPlus, followed by either two colons or a period.

To ensure that the lookup for the type occurs in the global namespace,
C# 2.0 allows items to have the global:: qualifier (but not global.
because it could imaginably conflict with a real namespace of global).

XML Comments

Chapter 1 introduced comments. However, you can use XML comments
for more than just notes to other programmers reviewing the source code.
XML-based comments follow a practice popularized with Java. Although
the C# compiler ignores all comments as far as the resultant executable
goes, the developer can use command-line options to instruct the com-
piler2 to extract the XML comments into a separate XML file. By taking
advantage of the XML file generation, the developer can generate docu-
mentation of the API from the XML comments. In addition, C# editors can
parse the XML comments in the code and display them to developers as
distinct regions (for example, as a different color from the rest of the code),
or parse the XML comment data elements and display them to the
developer.

Figure 9.2 demonstrates how an IDE can take advantage of XML
comments to assist the developer with a tip about the code he is trying
to write.

2. The C# standard does not specify whether the C# compiler or a separate utility takes care of
extracting the XML data. However, all mainstream C# compilers include the functionality
via a compile switch instead of within an additional utility.

ptg

Chapter 9: Well-Formed Types386

These coding tips offer significant assistance in large programs, espe-
cially when multiple developers share code. For this to work, however, the
developer obviously must take the time to enter the XML comments
within the code and then direct the compiler to create the XML file. The
next section explains how to accomplish this.

Associating XML Comments with Programming Constructs
Consider the listing of the DataStorage class, as shown in Listing 9.17.

Listing 9.17: Commenting Code with XML Comments

Figure 9.2: XML Comments as Tips in Visual Studio IDE

/// <summary>
/// DataStorage is used to persist and retrieve
/// employee data from the files.
/// </summary>
class DataStorage
{
/// <summary>

 /// Save an employee object to a file
 /// named with the Employee name.
 /// </summary>
 /// <remarks>
 /// This method uses
 /// <seealso cref="System.IO.FileStream"/>
 /// in addition to
 /// <seealso cref="System.IO.StreamWriter"/>

Single-Line XML
Comment

ptg

XML Comments 387

Listing 9.17 uses both XML delimited comments that span multiple lines,
and single-line XML comments where each line requires a separate three-
forward-slash delimiter (///).

Since XML comments are designed to document the API, they are
intended for use only in association with C# declarations, such as the class

 /// </remarks>
 /// <param name="employee">
 /// The employee to persist to a file</param>
 /// <date>January 1, 2000</date>
public static void Store(Employee employee)

 {
 // ...
}

/** <summary>
 * Loads up an employee object
 * </summary>
 * <remarks>
 * This method uses
 * <seealso cref="System.IO.FileStream"/>
 * in addition to
 * <seealso cref="System.IO.StreamReader"/>
 * </remarks>
 * <param name="firstName">
 * The first name of the employee</param>
 * <param name="lastName">
 * The last name of the employee</param>
 * <returns>
 * The employee object corresponding to the names
 * </returns>
 * <date>January 1, 2000</date>**/
public static Employee Load(

 string firstName, string lastName)
 {
 // ...
 }
}

class Program
{
// ...

}

XML Delimited
Comment
 (C# 2.0)

ptg

Chapter 9: Well-Formed Types388

or method shown in Listing 9.17. Any attempt to place an XML comment
inline with the code, unassociated with a declaration, will result in a warn-
ing by the compiler. The compile makes the association simply because the
XML comment appears immediately before the declaration.

Although C# allows any XML tag in comments, the C# standard explic-
itly defines a set of tags to be used. <seealso cref="System.IO.Stream-
Writer"/> is an example of using the seealso tag. This tag creates a link
between the text and the System.IO.StreamWriter class.

Generating an XML Documentation File
The compiler will check that the XML comments are well formed, and will
issue a warning if they are not. To generate the XML file, you need to use
the /doc option when compiling, as shown in Output 9.8.

OUTPUT 9.8:

The /doc option will create an XML file based on the name specified
after the colon. Using the CommentSamples class listed earlier and the com-
piler options listed here, the resultant CommentSamples.XML file appears as
shown in Listing 9.18.

Listing 9.18: Comments.xml

<?xml version="1.0"?>

<doc>

 <assembly>

 <name>DataStorage</name>

 </assembly>

 <members>

 <member name="T:DataStorage">

 <summary>

 DataStorage is used to persist and retrieve

 employee data from the files.

 </summary>

 </member>

 <member name="M:DataStorage.Store(Employee)">

 <summary>

 Save an employee object to a file

>csc /doc:Comments.xml DataStorage.cs

ptg

XML Comments 389

 named with the Employee name.

 </summary>

 <remarks>

 This method uses

 <seealso cref="T:System.IO.FileStream"/>

 in addition to

 <seealso cref="T:System.IO.StreamWriter"/>

 </remarks>

 <param name="employee">

 The employee to persist to a file</param>

 <date>January 1, 2000</date>

 </member>

 <member name="M:DataStorage.Load(

 System.String,System.String)">

 <summary>

 Loads up an employee object

 </summary>

 <remarks>

 This method uses

 <seealso cref="T:System.IO.FileStream"/>

 in addition to

 <seealso cref="T:System.IO.StreamReader"/>

 </remarks>

 <param name="firstName">

 The first name of the employee</param>

 <param name="lastName">

 The last name of the employee</param>

 <returns>

 The employee object corresponding to the names

 </returns>

 <date>January 1, 2000</date>*

 </member>

 </members>

</doc>

The resultant file includes only the amount of metadata that is neces-
sary to associate an element back to its corresponding C# declaration. This
is important to note, because in general, it is necessary to use the XML out-
put in combination with the generated assembly in order to produce any
meaningful documentation. Fortunately, tools such as the free GhostDoc3

and the open source project NDoc4 can generate documentation.

3. See http://submain.com/ to learn more about GhostDoc.
4. See http://ndoc.sourceforge.net to learn more about NDoc.

http://submain.com/
http://ndoc.sourceforge.net

ptg

Chapter 9: Well-Formed Types390

Garbage Collection

Garbage collection is obviously a core function of the runtime. Its purpose
is to restore memory consumed by objects that are no longer referenced.
The emphasis in this statement lies with memory and references. The gar-
bage collector is only responsible for restoring memory; it does not handle
other resources such as database connections, handles (files, windows, and
so on), network ports, and hardware devices such as serial ports. Also, the
garbage collector determines what to clean up based on whether any refer-
ences remain. Implicitly, this means that the garbage collector works with
reference objects and restores memory on the heap only. Additionally, it
means that maintaining a reference to an object will delay the garbage col-
lector from reusing the memory consumed by the object.

A D V A N C E D T O P I C

Garbage Collection in .NET
Many details about the garbage collector pertain to the specific CLI imple-
mentation, and therefore, they could vary. This section discusses the .NET
implementation, since it is the most prevalent.

In .NET, the garbage collector uses a mark-and-compact algorithm. At
the beginning of an iteration, it identifies all root references to objects.
Root references are any references from static variables, CPU registers, and
local variables or parameter instances (and f-reachable objects). Given this
list, the garbage collector is able to walk the tree identified by each root ref-
erence and determine recursively all the objects to which the root refer-
ences point. In this manner, the garbage collector identifies a graph of all
reachable objects.

Instead of enumerating all the inaccessible objects, the garbage collector
performs garbage collection by compacting all reachable objects next to
each other, thereby overwriting any memory consumed by objects that are
inaccessible (and, therefore, are garbage).

Locating and moving all reachable objects requires that the system
maintain a consistent state while the garbage collector runs. To achieve
this, all managed threads within the process halt during garbage collection.

ptg

Garbage Collection 391

This obviously can result in brief pauses in an application, which is
generally insignificant unless a particularly large garbage collection cycle
is necessary. In order to reduce the likelihood of a garbage collection cycle
at an inopportune time, however, the System.GC object includes a Col-
lect() method, which can be called immediately before the critical per-
forming code. This will not prevent the garbage collector from running, but
it will reduce the likelihood that it will run, assuming no intense memory
utilization occurs during the critical performance code.

One perhaps surprising aspect of .NET garbage collection behavior is
that not all garbage is necessarily cleaned up during an iteration. Studies of
object lifetimes reveal that recently created objects are more likely to need
garbage collection than long-standing objects. Capitalizing on this behav-
ior, the .NET garbage collector is generational, attempting to clean up
short-lived objects more frequently than objects that have already sur-
vived a garbage collection iteration. Specifically, there are three genera-
tions of objects. Each time an object survives a garbage collection cycle, it is
moved to the next generation, until it ends up in generation two (counting
starts from zero). The garbage collector then runs more frequently for
objects in generation zero than it does for objects in generation two.

Ultimately, in spite of the trepidation that .NET faced during its early
beta releases when compared with unmanaged code time has shown that
.NET’s garbage collection is extremely efficient. More importantly, the
gains created in development productivity have far outweighed the costs
in development for the few cases where managed code is dropped to opti-
mize particular algorithms.

Weak References
All references discussed so far are strong references because they maintain
an object’s accessibility and they prevent the garbage collector from clean-
ing up the memory consumed by the object. The framework also supports
the concept of weak references, however. Weak references will not pre-
vent garbage collection on an object, but they will maintain a reference so
that if the garbage collector does not clean up the object, it can be reused.

Weak references are designed for objects that are expensive to create
and are too expensive to keep around. Consider, for example, a large list of

ptg

Chapter 9: Well-Formed Types392

objects loaded from a database and displayed to the user. The loading of
this list is potentially expensive, and once the user closes the list, it should
be available for garbage collection. However, if the user requests the list
multiple times, a second expensive load call will always be required. How-
ever, with weak references, it is possible to use code to check whether the
list has not yet been cleaned up, and if not, to rereference the same list. In
this way, weak references serve as a memory cache for objects. Objects
within the cache are retrieved quickly, but if the garbage collector has
recovered the memory of these objects, they will need to be re-created.

Once an object (or collection of objects) is recognized for potential weak
reference consideration, it needs to be assigned to System.WeakReference
(see Listing 9.19).

Listing 9.19: Using a Weak Reference

 // ...

 public FileStream GetData()

 {

 {

 return data;

 }

 else

 {

 // Load data

 // ...

 }

 return data;

 }

 // ...

Given the assignment of WeakReference (Data), you can check for garbage
collection by seeing if the weak reference is set to null. The key in doing
this, however, is to first assign the weak reference to a strong reference
(FileStream data = Data) to avoid the possibility that between checking

 private WeakReference Data;

 FileStream data = (FileStream)Data.Target;

 if (data != null)

 // Create a weak reference

 // to data for use later.

 Data.Target = data;

ptg

Resource Cleanup 393

for null and accessing the data, the garbage collector runs and cleans up
the weak reference. The strong reference obviously prevents the garbage
collector from cleaning up the object, so it must be assigned first (instead of
checking Target for null).

Resource Cleanup

Garbage collection is a key responsibility of the runtime. It is important to
note, however, that the garbage collection relates to memory utilization. It
is not about the cleaning up of file handles, database connection strings,
ports, or other limited resources.

Finalizers
Finalizers allow programmers to write code that will clean up a class’s
resources. However, unlike constructors that are called explicitly using the
new operator, finalizers cannot be called explicitly from within the code.
There is no new equivalent such as a delete operator. Rather, the garbage
collector is responsible for calling a finalizer on an object instance. There-
fore, developers cannot determine at compile time exactly when the final-
izer will execute. All they know is that the finalizer will run sometime
between when an object was last used and before the application shuts
down. (Finalizers will execute barring process termination prior to the nat-
ural closure of the process. For instance, events such as the computer being
turned off or a forced termination of the process will prevent the finalizer
from running.)

The finalizer declaration is identical to the destructor syntax of C#’s
predecessor—namely, C++. As shown in Listing 9.20, the finalizer declara-
tion is prefixed with a tilde before the name of the class.

Listing 9.20: Defining a Finalizer

using System.IO;

class TemporaryFileStream

{

 public TemporaryFileStream()

 {

 _File = new FileInfo(Path.GetTempFileName());

 _Stream = new FileStream(

ptg

Chapter 9: Well-Formed Types394

 File.FullName, FileMode.OpenOrCreate,

 FileAccess.ReadWrite);

 }

 public FileStream Stream

 {

 get { return _Stream; }

 }

 readonly private FileStream _Stream;

 public FileInfo File

 {

 get { return _File; }

 }

 readonly private FileInfo _File =

 new FileInfo(Path.GetTempFileName());

 public void Close()

 {

 if(Stream != null)

 {

 Stream.Close();

 }

 if(File != null)

 {

 File.Delete();

 }

 }

}

Finalizers do not allow any parameters to be passed, and as a result,
finalizers cannot be overloaded. Furthermore, finalizers cannot be called
explicitly. Only the garbage collector can invoke a finalizer. Therefore,
access modifiers on finalizers are meaningless, and as such, they are not
supported. Finalizers in base classes will be invoked automatically as part
of an object finalization call.

Because the garbage collector handles all memory management, finaliz-
ers are not responsible for de-allocating memory. Rather, they are respon-
sible for freeing up resources such as database connections and file

 // Finalizer

 ~TemporaryFileStream()

 {

 Close();

 }

ptg

Resource Cleanup 395

handles, resources that require an explicit activity that the garbage
collector doesn’t know about.

Note that finalizers will execute on their own thread, making their exe-
cution even less determinant. This indeterminacy makes an unhandled
exception within a finalizer (outside of the debugger) difficult to diag-
nose because the circumstances that led to the exception are not clear.
From the user’s perspective, the unhandled exception will be thrown rel-
atively randomly and with little regard for any action the user was per-
forming. For this reason, take care to avoid exceptions within finalizers.
Use defensive programming techniques such as checking for nulls (refer
to Listing 9.20).

Deterministic Finalization with the using Statement
The problem with finalizers on their own is that they don’t support deter-
ministic finalization (the ability to know when a finalizer will run).
Rather, finalizers serve the important role of a backup mechanism for
cleaning up resources if a developer using a class neglects to call the requi-
site cleanup code explicitly.

For example, consider the TemporaryFileStream that not only includes
a finalizer but also a Close() method. The class uses a file resource that
could potentially consume a significant amount of disk space. The devel-
oper using TemporaryFileStream can explicitly call Close() in order to
restore the disk space.

Providing a method for deterministic finalization is important because
it eliminates a dependency on the indeterminate timing behavior of the
finalizer. Even if the developer fails to call Close() explicitly, the finalizer
will take care of the call. The finalizer will run later than if it was called
explicitly, but it will be called.

Because of the importance of deterministic finalization, the Base
Class Library includes a specific interface for the pattern and C# inte-
grates the pattern into the language. The IDisposable interface defines
the details of the pattern with a single method called Dispose(), which
developers call on a resource class to “dispose” of the consumed
resources. Listing 9.21 demonstrates the IDisposable interface and
some code for calling it.

ptg

Chapter 9: Well-Formed Types396

Listing 9.21: Resource Cleanup with IDisposable

using System;

using System.IO

class TemporaryFileStream : IDisposable

{

 public TemporaryFileStream()

 {

 _File = new FileInfo(Path.GetTempFileName());

 _Stream = new FileStream(

 File.FullName, FileMode.OpenOrCreate,

 FileAccess.ReadWrite);

 }

 ~TemporaryFileStream()

 {

 Close();

 }

 public FileStream Stream

 {

 get { return _Stream; }

 }

 readonly private FileStream _Stream;

 public FileInfo File

 {

 get { return _File; }

 }

 readonly private FileInfo _File;

 public void Close()

 {

 if(Stream != null)

 {

 Stream.Close();

 }

 if(File != null)

 {

 File.Delete();

 }

 // Turn off calling the finalizer

 System.GC.SuppressFinalize(this);

 }

 }

 #region IDisposable Members

 public void Dispose()

 {

 Close();

 }

 #endregion

ptg

Resource Cleanup 397

class Program

{

 // ...

 static void Search()

 {

 TemporaryFileStream fileStream =

 new TemporaryFileStream();

 // Use temporary file stream;

 // ...

 // ...

 }

}

The steps for both implementing and calling the IDisposable interface
are relatively simple. However, there are a couple of points you should
not forget. First, there is a chance that an exception will occur between the
time TemporaryFileStream is instantiated and Dispose() is called. If this
happens, Dispose() will not be invoked and the resource cleanup will
have to rely on the finalizer. To avoid this, callers need to implement a
try/finally block. Instead of coding such a block explicitly, C# provides a
using statement expressly for the purpose. The resultant code appears in
Listing 9.22.

Listing 9.22: Invoking the using Statement

class Program

{

 // ...

 static void Search()

 {

 {

 // Use temporary file stream;

 }

 }

}

The resultant CIL code is identical to the code that would be created if there
was an explicit try/finally block, where fileStream.Dispose() is called in

 fileStream.Dispose();

 using (TemporaryFileStream fileStream1 =

 new TemporaryFileStream(),

 fileStream2 = new TemporaryFileStream())

ptg

Chapter 9: Well-Formed Types398

the finally block. The using statement, however, provides a syntax shortcut
for the try/finally block.

Within a using statement, you can instantiate more than one variable
by separating each variable with a comma. The key is that all variables are
of the same type and that they implement IDisposable. To enforce the use
of the same type, the data type is specified only once rather than before
each variable declaration.

Garbage Collection and Finalization
The IDisposable pattern contains one additional important call. Back in
Listing 9.21, the Close() method included a call to System.GC.Suppress-
Finalize() (captured again in Listing 9.23). Its purpose was to remove the
TemporaryFileStream class instance from the finalization (f-reachable)
queue.

Listing 9.23: Suppressing Finalization

 // ...

 public void Close()

 {

 if(Stream != null)

 {

 Stream.Close();

 }

 if(File != null)

 {

 File.Delete();

 }

 // Turn off calling the finalizer

 }

 // ...

The f-reachable queue is a list of all the objects that are ready for
garbage collection and that also have finalization implementations. The
runtime cannot garbage-collect objects with finalizers until after their
finalization methods have been called. However, garbage collection itself
does not call the finalization method. Rather, references to finalization
objects are added to the f-reachable queue, thereby ironically delaying
garbage collection. This is because the f-reachable queue is a list of

 System.GC.SuppressFinalize(this);

ptg

Resource Cleanup 399

“references,” and as such, the objects are not garbage until after their
finalization methods are called and the object references are removed from
the f-reachable queue.

A D V A N C E D T O P I C

Resurrecting Objects
By the time an object’s finalization method is called, all references to the
object have disappeared and the only step before garbage collection is run-
ning the finalization code. However, it is possible to add a reference inad-
vertently for a finalization object back into the root reference’s graph. In so
doing, the rereferenced object is no longer inaccessible, and therefore, it is
not ready for garbage collection. However, if the finalization method for
the object has already run, it will not necessarily be run again unless it is
explicitly marked for finalization (using the GC.ReRegisterFinalize()
method).

Obviously, resurrecting objects like this is peculiar behavior and you
should generally avoid it. Finalization code should be simple and should
focus on cleaning up only the resources that it references.

Language Contrast: C++—Deterministic Destruction

Although finalizers are similar to destructors in C++, the fact that their exe-

cution cannot be determined at compile time makes them distinctly differ-

ent. The garbage collector calls C# finalizers sometime after they were last

used, but before the program shuts down; C++ destructors are automati-

cally called when the object (not a pointer) goes out of scope.

Although running the garbage collector can be a relatively expensive

process, the fact that garbage collection is intelligent enough to delay run-

ning until process utilization is somewhat reduced offers an advantage

over deterministic destructors, which will run at compile-time-defined

locations, even when a processor is in high demand.

ptg

Chapter 9: Well-Formed Types400

Resource Utilization and Finalization Guidelines
When defining classes that manage resources, you should consider the
following.

1. Implement finalize only on objects with resources that are scarce or
expensive. Finalization delays garbage collection.

2. Objects with finalizers should implement IDisposable to support
deterministic finalization.

3. Finalization methods generally invoke the same code called by
IDisposable, perhaps simply calling the Dispose() method.

4. Finalizers should avoid causing any unhandled exceptions.

5. Deterministic finalization methods such as Dispose() and Close()
should call System.GC.SuppressFinalize() so that garbage collec-
tion occurs sooner and resource cleanup is not repeated.

6. Code that handles resource cleanup may be invoked multiple times
and should therefore be reentrant. (For example, it should be possible
to call Close() multiple times.)

7. Resource cleanup methods should be simple and should focus on
cleaning up resources referenced by the finalization instance only.
They should not reference other objects.

8. If a base class implements Dispose(), then the derived implementa-
tion should call the base implementation.

9. Generally, objects should be coded as unusable after Dispose() is
called. After an object has been disposed, methods other than Dis-
pose() (which could potentially be called multiple times) should
throw an ObjectDisposedException().

Lazy Initialization

In this preceding section, we discussed how to deterministically dispose of
an object with a using statement and how the finalization queue will dis-
pose of resources in the event that no deterministic approach is used.

A related pattern is lazy initialization or lazy loading. Using lazy initial-
ization, you can create (or obtain) objects when you need them rather than

ptg

Lazy Initialization 401

beforehand—especially when they were never used. Consider the
FileStream property of Listing 9.24.

Listing 9.24: Lazy Loading a Property

using System.IO;

class DataCache

{

 // ...

 public TemporaryFileStream FileStream

 {

 get

 {

 if (_FileStream == null)

 {

 _FileStream = new TemporaryFileStream();

 }

 return _FileStream;

 }

 }

 private TemporaryFileStream _FileStream = null;

 // ...

}

In the FileStream property, we instantiate the TemporaryFileStream
object only when the getter on the property is called. If the getter is never
invoked, the TemporaryFileStream object would not get instantiated and
we would save whatever execution time such an instantiation would cost.
Obviously, if the instantiation is negligible or inevitable (and postponing
the inevitable is less desirable), then simply assigning it during declaration
or in the constructor makes sense. Deferring the initialization of an object
until it is required is called lazy initialization.

A D V A N C E D T O P I C

Lazy Loading with Generics and Lambda Expressions
Starting with .NET Framework 4.0, a new class was added to the CLR to
assist with lazy initialization: System.Lazy<T>. Listing 9.25 demonstrates
how to use it.

ptg

Chapter 9: Well-Formed Types402

Listing 9.25: Lazy Loading a Property

using System.IO;

class DataCache

{

 // ...

 public string FileStreamName { get; set; }

 public DataCache()

 {

 _FileStream = new Lazy<TemporaryFileStream>(

 () => new TemporaryFileStream(FileStreamName));

 }

 public TemporaryFileStream FileStream

 {

 get

 {

 return _FileStream.Value;

 }

 }

 private Lazy<TemporaryFileStream> _FileStream;

 // ...

}

The System.Lazy<T> class takes a type parameter (T) that identifies what
type the Value property on System.Lazy<T> will return. Instead of
assigning a fully constructed TemporaryFileStream to the _FileStream
field, an instance of Lazy<TemporaryFileStream> is assigned (a light-
weight call), delaying the instantiation of the TemporaryFileStream
itself, until the Value property (and therefore the FileStream property) is
accessed.

If in addition to type parameters (generics) you use delegates, you can
even provide a function for how to initialize an object when the Value
property is accessed. Listing 9.25 demonstrates passing the delegate, a
lambda expression in this case, into the constructor for System.Lazy<T>.

It is important to note that the lambda expression itself, () => new Tem-
poraryFileStream(FileStreamName), does not execute until Value is
called. Rather, the lambda expression provides a means of passing the
instructions for what will happen, but not actually performing those
instructions until explicitly requested.

ptg

Summary 403

SUMMARY

This chapter provided a whirlwind tour of many topics related to building
solid class libraries. All the topics pertain to internal development as well,
but they are much more critical to building robust classes. Ultimately, the
topic is about forming more robust and programmable APIs. In the cate-
gory of robustness fit namespaces and garbage collection. Both of these
items fit in the programmability category, along with the other items cov-
ered: overriding object’s virtual members, operator overloading, and
XML comments for documentation.

Exception handling uses inheritance heavily by defining an exception
hierarchy and enforcing custom exceptions to fit within this hierarchy.
Furthermore, the C# compiler uses inheritance to verify catch block order.
In the next chapter, you will see why inheritance is such a core part of
exception handling.

ptg

This page intentionally left blank

ptg

405

10
Exception Handling

HAPTER 4 DISCUSSED using the try/catch/finally blocks for standard
exception handling. In that chapter, the catch block always caught

exceptions of type System.Exception. This chapter defines some addi-
tional details of exception handling—specifically, details surrounding
additional exception types, defining custom exceptions, and multiple
catch blocks for handling each type. This chapter also details exceptions
because of their reliance on inheritance.

Multiple Exception Types

Listing 10.1 throws a System.ArgumentException, not the System.Excep-
tion type demonstrated in Chapter 4. C# allows code to throw any type
that derives (perhaps indirectly) from System.Exception.

C

2

34

5 1

Exception
Handling

Multiple Exception Types

Catching Exceptions

General Catch BlockGuidelines

Custom Exceptions

ptg

Chapter 10: Exception Handling406

The code for throwing any exception is simply to prefix the exception
instance with the keyword throw. The type of exception used is obviously
the type that best describes the circumstances surrounding the error that
caused the exception.

For example, consider the TextNumberParser.Parse() method in
Listing 10.1.

Listing 10.1: Throwing an Exception

public sealed class TextNumberParser

{

 public static int Parse(string textDigit)

 {

 string[] digitTexts =

 { "zero", "one", "two", "three", "four",

 "five", "six", "seven", "eight", "nine" };

 int result = Array.IndexOf(

 digitTexts, textDigit.ToLower());

 if (result < 0)

 {

 }

 return result;

 }

}

Instead of throwing System.Exception, it is more appropriate to throw
ArgumentException because the type itself indicates what went wrong and
includes special parameters for identifying which parameter was at fault.

Two similar exceptions are ArgumentNullException and NullRefer-
enceException. ArgumentNullException should be thrown for the
inappropriate passing of null arguments. This is a special case of an
invalid parameter exception that would more generally (when it wasn’t
null) be thrown as an ArgumentException or an ArgumentOutOfRange-
Exception. NullReferenceException is generally something that only
the underlying runtime will throw with an attempt to dereference a null
value—to call a member on an object whose value is null. Instead
of causing a NullReferenceException, programmers should check
parameters for null before accessing them and then throw an

 throw new ArgumentException(

 "The argument did not represent a digit",

 "textDigit");

ptg

 Catching Exceptions 407

ArgumentNullException, which can provide more contextual informa-
tion such as the parameter name.

Catching Exceptions

Throwing a particular exception type enables the type itself to identify the
problem. It is not necessary, in other words, to catch the exception and use
a switch statement on the exception message to determine what action to
take in light of the exception. Instead, C# allows for multiple catch blocks,
each targeting a specific exception type, as Listing 10.2 shows.

Listing 10.2: Catching Different Exception Types

using System

public sealed class Program

{

 public static void Main(string[] args)

 {

 try

 {

 // ...

 throw new InvalidOperationException(

 "Arbitrary exception");

 // ...

 }

 catch (NullReferenceException exception)

 {

 // Handle NullReferenceException

 }

 catch (ArgumentException exception)

 {

 // Handle ArgumentException

 }

 catch (InvalidOperationException exception)

 {

 // Handle ApplicationException

 }

 catch (SystemException)

 {

 // Handle SystemException

 }

 catch (Exception exception)

 {

 // Handle Exception

 }

 }

}

ptg

Chapter 10: Exception Handling408

Listing 10.2 has five catch blocks, each handling a different type of
exception. When an exception occurs, the execution will jump to the catch
block with the exception type that most closely matches. The closeness of a
match is determined by the inheritance chain. For example, even though
the exception thrown is of type System.Exception, this “is a” relationship
occurs through inheritance because System.ApplicationException derives
from System.Exception. Since ApplicationException most closely matches

exception instead of the catch(Exception...) block.
Catch blocks must appear in order, from most specific to most general,

to avoid a compile error. For example, moving the catch(Exception ...)
block before any of the other exceptions will result in a compile error, since
all prior exceptions derive from System.Exception at some point in their
inheritance chain.

As shown with the catch (SystemException){ }) block, a named
parameter for the catch block is not required. In fact, a final catch
without even the type parameter is allowable, as you see in the next
section.

Language Contrast: Java—Exception Specifiers

C# has no equivalent for Java’s exception specifiers. With exception specifi-

ers, the Java compiler is able to verify that all possible exceptions thrown

within a function (or a function’s call hierarchy) are either caught or

declared as possibly rethrown. The C# team considered this option and

concluded that the maintenance burden that it imposed was not worth the

perceived benefit. Therefore, it is not necessary to maintain a list of all pos-

sible exceptions throughout a particular call stack, but neither is it feasible

to easily determine the possible exceptions. (As it turns out, this wasn’t

possible for Java either. Calling virtual methods or using late binding, such

as reflection, made it impossible to fully resolve at compile time what

exceptions a method could possibly throw.)

the exception thrown, catch(ApplicationException ...) will catch the

ptg

 General Catch Block 409

General Catch Block

C# requires that any object that code throws must derive from System.Excep-
tion. However, this requirement is not universal to all languages. C/C++, for
example, allows any object type to be thrown, including managed exceptions
that don’t derive from System.Exception. Starting with C# 2.0, all exceptions,
whether deriving from System.Exception or not, will propagate into C#
assemblies as derived from System.Exception. The result is that System
.Exception catch blocks will catch all exceptions not caught by earlier blocks.

C# also supports a general catch block (catch{ }) that behaves identi-
cally to the catch(System.Exception exception) block except that there is
no type or variable name. Also, the general catch block must appear last
within the list of catch blocks. Since the general catch block is identical to
the catch(System.Exception exception) block and the general catch
block must appear last, the compiler issues a warning if both exist within
the same try/catch statement because the general catch block will never be
invoked (see the Advanced Topic, General Catch Blocks in C# 1.0, for more
information on general catch blocks).

A D V A N C E D T O P I C

General Catch Blocks in C# 1.0
In C# 1.0, if a non-System.Exception-derived exception was thrown from
a method call (residing in an assembly not written in C#), the exception
would not be caught by a catch(System.Exception) block. If a different
language throws a string, for example, the exception could go unhandled.
To avoid this, C# includes a catch block that takes no parameters. The term
for such a catch block is general catch block, and Listing 10.3 includes one.

Listing 10.3: Catching Different Exception Types

using System

public sealed class Program

{

 public static void Main()

ptg

Chapter 10: Exception Handling410

 {

 try

 {

 // ...

 throw new InvalidOperationException (

 "Arbitrary exception");

 // ...

 }

 catch (NullReferenceException exception)

 {

 // Handle NullReferenceException

 }

 catch (ArgumentException exception)

 {

 // Handle ArgumentException

 }

 catch (InvalidOperationException exception)

 {

 // Handle ApplicationException

 }

 catch (SystemException exception)

 {

 // Handle SystemException

 }

 catch (Exception exception)

 {

 // Handle Exception

 }

 }

}

The general catch block will catch all exceptions, regardless of whether
they derive from System.Exception, assuming an earlier catch block
does not catch them. The disadvantage of such a block is simply that
there is no exception instance to access and, therefore, no way to know
the appropriate course of action. It wouldn’t even be possible to recog-
nize the unlikely case where such an exception is innocuous. The best
course of action is to handle the exception with some cleanup code before
shutting down the application. The catch block could save any volatile
data, for example, before shutting down the application or rethrowing
the exception.

 catch

 {

 // Any unhandled exception

 }

ptg

 Guidelines for Exception Handling 411

A D V A N C E D T O P I C

Empty Catch Block Internals
The CIL code corresponding to an empty catch block is, in fact, a
catch(object) block. This means that regardless of the type thrown, the
empty catch block will catch it. Interestingly, it is not possible to explicitly
declare a catch(object) exception block within C# code. Therefore, there
is no means of catching a non-System.Exception-derived exception and
having an exception instance to scrutinize.

Ironically, unmanaged exceptions from languages such as C++ generally
result in System.Runtime.InteropServices.SEHException type exceptions,
which derive from the System.Exception type. Therefore, not only can the
unmanaged type exceptions be caught using a general catch block, but the
non-System.Exception-managed types that are thrown can be caught as
well—for instance, types such as string.

Guidelines for Exception Handling

Exception handling provides much-needed structure to the error-handling
mechanisms that preceded it. However, it can still make for some
unwieldy results if used haphazardly. The following guidelines offer some
best practices for exception handling.

• Catch only the exceptions that you can handle.

Generally it is possible to handle some types of exceptions but not
others. For example, opening a file for exclusive read-write access
may throw a System.IO.IOException because the file is already in
use. In catching this type of exception, the code can report to the user
that the file is in use and allow the user the option of canceling the
operation or retrying it. Only exceptions for which there is a known
action should be caught. Other exception types should be left for call-
ers higher in the stack.

• Don’t hide (bury) exceptions you don’t fully handle.

New programmers are often tempted to catch all exceptions and then
continue executing instead of reporting an unhandled exception to
the user. However, this may result in a critical system problem going

ptg

Chapter 10: Exception Handling412

undetected. Unless code takes explicit action to handle an exception
or explicitly determines certain exceptions to be innocuous, catch
blocks should rethrow exceptions instead of catching them and hid-
ing them from the caller. Predominantly, catch(System.Exception)
and general catch blocks should occur higher in the call stack, unless
the block ends by rethrowing the exception.

• Use System.Exception and general catch blocks rarely.

Virtually all exceptions derive from System.Exception. However, the
best way to handle some System.Exceptions is to allow them to go
unhandled or to gracefully shut down the application sooner rather
than later. These exceptions include things such as System.OutOfMem-
oryException and System.StackOverflowException. In CLR 4, such
exceptions were defaulted to nonrecoverable such that catching them
without rethrowing them will cause the CLR to rethrow them any-
way. These exceptions are runtime exceptions that the developer can-
not write code to recover from. Therefore, the best course of action is
to shut down the application—something the runtime will force in
CLR 4. Code prior to CLR 4 should catch such exceptions only to run
cleanup or emergency code (such as saving any volatile data) before
shutting down the application or rethrowing the exception with
throw;.

• Avoid exception reporting or logging lower in the call stack.

Often, programmers are tempted to log exceptions or report exceptions
to the user at the soonest possible location in the call stack. However,
these locations are seldom able to handle the exception fully and they
resort to rethrowing the exception. Such catch blocks should not log the
exception or report it to a user while in the bowels of the call stack. If
the exception is logged and rethrown, the callers higher in the call stack
may do the same, resulting in duplicate log entries of the exception.
Worse, displaying the exception to the user may not be appropriate for
the type of application. (Using System.Console.WriteLine() in a Win-
dows application will never be seen by the user, for example, and dis-
playing a dialog in an unattended command-line process may go
unnoticed and freeze the application.) Logging- and exception-related
user interfaces should be reserved for high up in the call stack.

ptg

 Guidelines for Exception Handling 413

• Use throw; rather than throw <exception object> inside a catch
block.

It is possible to rethrow an exception inside a catch block. For exam-
ple, the implementation of catch(ArgumentNullException excep-
tion) could include a call to throw exception. However, rethrowing
the exception like this will reset the stack trace to the location of the
rethrown call, instead of reusing the original throw point location.
Therefore, unless you are rethrowing with a different exception type
or intentionally hiding the original call stack, use throw; to allow the
same exception to propagate up the call stack.

• Use caution when rethrowing different exceptions.

From inside a catch block, rethrowing a different exception will not
only reset the throw point, it will also hide the original exception. To
preserve the original exception set the new exception’s InnerExcep-
tion property, generally assignable via the constructor. Rethrowing a
different exception should be reserved for the following situations.
1. Changing the exception type clarifies the problem.

For example, in a call to Logon(User user), rethrowing a different
exception type is perhaps more appropriate than propagating
System.IO.IOException when the file with the user list is
inaccessible.

2. Private data is part of the original exception.
In the preceding scenario, if the file path is included in the original
System.IO.IOException, thereby exposing private security infor-
mation about the system, the exception should be wrapped. This
assumes, of course, that InnerException is not set with the origi-
nal exception. (Funnily enough, a very early version of CLR v1
(pre-alpha even) had an exception that said something like “Secu-
rity exception: You do not have permission to determine the path
of c:\temp\foo.txt”.)

3. The exception type is too specific for the caller to handle
appropriately.
For example, instead of throwing an exception specific to a partic-
ular database system, a more generic exception is used so that
database-specific code higher in the call stack can be avoided.

ptg

Chapter 10: Exception Handling414

Defining Custom Exceptions

Once throwing an exception becomes the best course of action, it is prefer-
able to use framework exceptions because they are well established and
understood. Instead of throwing a custom invalid argument exception, for
example, it is preferable to use the System.ArgumentException type. How-
ever, if the developers using a particular API will take special action—the
exception-handling logic will vary to handle a custom exception type, for
instance—it is appropriate to define a custom exception. For example, if a
mapping API receives an address for which the ZIP Code is invalid,
instead of throwing System.ArgumentException, it may be better to throw
a custom InvalidAddressException. The key is whether the caller is likely
to write a specific InvalidAddressException catch block with special han-
dling rather than just a generic System.ArgumentException catch block.

Defining a custom exception simply involves deriving from System.
Exception or some other exception type. Listing 10.4 provides an example.

Listing 10.4: Creating a Custom Exception

class DatabaseException : System.Exception

{

 public DatabaseException(

 System.Data.SqlClient.SQLException exception)

 {

 InnerException = exception;

 // ...

 }

 public DatabaseException(

 System.Data.OracleClient.OracleException exception)

 {

 InnerException = exception;

 // ...

 }

 public DatabaseException()

 {

 // ...

 }

 public DatabaseException(string message)

 {

 // ...

 }

ptg

 Defining Custom Exceptions 415

 public DatabaseException(

 string message, Exception innerException)

 {

 InnerException = innerException;

 // ...

 }

}

This custom exception might be created to wrap proprietary database
exceptions. Since Oracle and SQL Server (for example) each throw differ-
ent exceptions for similar errors, an application could define a custom
exception that standardizes the database-specific exceptions into a com-
mon exception wrapper that the application can handle in a standard man-
ner. That way, whether the application was using an Oracle or a SQL
Server backend database, the same catch block could be used to handle the
error higher up the stack.

The only requirement for a custom exception is that it derives from
System.Exception or one of its descendents. However, there are several
more good practices for custom exceptions.

• All exceptions should use the “Exception” suffix. This way, their
purpose is easily established from the name.

• Generally, all exceptions should include constructors that take no
parameters, a string parameter, and a parameter set of a string and an
inner exception. Furthermore, since exceptions are usually constructed
within the same statement in which they are thrown, any additional
exception data should also be allowed as part of the constructor. (The
obvious exception to creating all these constructors is if certain data is
required and a constructor circumvents the requirements.)

• The inheritance chain should be kept relatively shallow (with fewer
than approximately five levels).

The inner exception serves an important purpose when rethrowing an
exception that is different from the one that was caught. For example, if a
System.Data.SqlClient.SqlException is thrown by a database call but is
caught within the data access layer to be rethrown as a DatabaseExcep-
tion, then the DatabaseException constructor that takes the SqlException

ptg

Chapter 10: Exception Handling416

(or inner exception) will save the original SqlException in the Inner-
Exception property. That way, when requiring additional details about
the original exception, developers can retrieve the exception from the
InnerException property (for example, exception.InnerException).

A D V A N C E D T O P I C

Serializable Exceptions
Serializable objects are objects that the runtime can persist into a
stream—a file stream, for example—and then reinstantiate out of the
stream. In the case of exceptions, this may be necessary for certain distrib-
uted communication technologies. To support serialization, exception dec-
larations should include the System.SerializableAttribute attribute or
they should implement ISerializable. Furthermore, they must include a
constructor that takes System.Runtime.Serialization.Serialization-
Info and System.Runtime.Serialization.StreamingContext. Listing 10.5
shows an example of using System.SerializableAttribute.

Listing 10.5: Defining a Serializable Exception

// Supporting serialization via an attribute

class DatabaseException : System.ApplicationException

{

 // ...

 // Used for deserialization of exceptions

 public DatabaseException(

 {

 //...

 }

}

The preceding DatabaseException example demonstrates both the
attribute and the constructor requirement for making an exception
serializable.

[Serializable]

 SerializationInfo serializationInfo,

 StreamingContext context)

ptg

 Defining Custom Exceptions 417

B E G I N N E R T O P I C

Checked and Unchecked Conversions
As we first discussed in a Chapter 2 Advanced Topic, C# provides special
keywords for marking a code block with instructions to the runtime of what
should happen if the target data type is too small to contain the assigned
data. By default, if the target data type cannot contain the assigned data, then
the data will truncate during assignment. For an example, see Listing 10.6.

Listing 10.6: Overflowing an Integer Value

using System;

public class Program

{

 public static void Main()

 {

 // int.MaxValue equals 2147483647

 int n = int.MaxValue;

 n = n + 1 ;

 System.Console.WriteLine(n);

 }

}

The results of Listing 10.6 appear in Output 10.1.

The code in Listing 10.6 writes the value -2147483648 to the console.
However, placing the code within a checked block or using the checked
option when running the compiler will cause the runtime to throw an
exception of type System.OverflowException. The syntax for a checked
block uses the checked keyword, as shown in Listing 10.7.

Listing 10.7: A Checked Block Example

using System;

public class Program

{

OUTPUT 10.1:

-2147483648

ptg

Chapter 10: Exception Handling418

 public static void Main()

 {

 // int.MaxValue equals 2147483647

 int n = int.MaxValue;

 n = n + 1 ;

 System.Console.WriteLine(n);

 }

}

If the calculation involves only constants, then the calculation will be
checked by default. The results of Listing 10.7 appear in Output 10.2.

In addition, depending on the version of Windows and whether a debug-
ger is installed, a dialog may appear prompting the user to send an error
message to Microsoft, check for a solution, or debug the application. Also,
the location information (Program.cs:line X) will appear only in debug
compilations—compilations using the /Debug option of the Microsoft
csc.exe compiler.

The result is that an exception is thrown if, within the checked block, an
overflow assignment occurs at runtime.

The C# compiler provides a command-line option for changing the
default checked behavior from unchecked to checked. C# also supports an
unchecked block that truncates the data instead of throwing an exception
for assignments within the block (see Listing 10.8).

Listing 10.8: An Unchecked Block Example

using System;

public class Program

{

 public static void Main()

 {

 checked

 {

 }

OUTPUT 10.2:

Unhandled Exception: System.OverflowException: Arithmetic operation

resulted in an overflow. at Program.Main() in ...Program.cs:line 12

 unchecked

 {

ptg

 Summary 419

 // int.MaxValue equals 2147483647

 int n = int.MaxValue;

 n = n + 1 ;

 System.Console.WriteLine(n);

 }

}

The results of Listing 10.8 appear in Output 10.3.

Even if the checked option is on during compilation, the unchecked key-
word in the code in Listing 10.8 will prevent the runtime from throwing an
exception during execution.

There are equivalent checked and unchecked expressions for cases
where statements are not allowed, as is the case in a field initialize, for
example:

 int _Number = unchecked(int.MaxValue + 1);

SUMMARY

Throwing an exception causes a significant performance hit. A single excep-
tion causes lots of runtime stack information to be loaded and processed,
data that would not otherwise be loaded, and it takes a considerable amount
of time. As pointed out in Chapter 4, use exceptions only to handle excep-
tional circumstances; APIs should provide mechanisms to check whether an
exception will be thrown instead of forcing a particular API to be called in
order to determine whether an exception will be thrown.

The next chapter introduces generics, a C# 2.0 feature that significantly
enhances the code written in C# 1.0. In fact, it essentially deprecates any
use of the System.Collections namespace, which was formerly used in
nearly every project.

 }

OUTPUT 10.3:

-2147483648

ptg

This page intentionally left blank

ptg

421

11
Generics

S YOUR PROJECTS BECOME more sophisticated, you will need a better
way to reuse and customize existing software. To facilitate code

reuse, especially the reuse of algorithms, C# includes a feature called
generics. Just as methods are powerful because they can take parameters,
classes that take type parameters have significantly more functionality as
well, and this is what generics enable. Like their predecessor, templates,
generics enable the definition of algorithms and pattern implementations
once, rather than separately for each type. However, C# generics are a
type-safe implementation of templates that differs slightly in syntax and
greatly in implementation from its predecessors in C++ and Java. Note
that generics were added to the runtime and C# with version 2.0.

A

5 Generic Methods 2

34

6

7 1

Generics

C# Without Generics

Nullable Modifier

Generic Types

Using
Defining
Benefits
Naming Guidelines
Interfaces
Structs

Constraints

Interface
Base Class

Struct/Class
Multiple

Constructor

Covariance
Contravariance

Variance

Generic Internals

ptg

Chapter 11: Generics422

C# without Generics

I will begin the discussion of generics by examining a class that does not use
generics. The class is System.Collections.Stack, and its purpose is to rep-
resent a collection of objects such that the last item to be added to the collec-
tion is the first item retrieved from the collection (called last in, first out, or
LIFO). Push() and Pop(), the two main methods of the Stack class, add items
to the stack and remove them from the stack, respectively. The declarations
for the Pop() and Push() methods on the stack class appear in Listing 11.1.

Listing 11.1: The Stack Definition Using a Data Type Object

public class Stack

{

 public virtual object Pop();

 public virtual void Push(object obj);

 // ...

}

Programs frequently use stack type collections to facilitate multiple
undo operations. For example, Listing 11.2 uses the stack class for undo
operations within a program which simulates the Etch A Sketch® game.

Listing 11.2: Supporting Undo in a Program Similar to the Etch A Sketch Game

using System;

using System.Collections;

class Program

{

 // ...

 public void Sketch()

 {

 Stack path = new Stack();

 Cell currentPosition;

 ConsoleKeyInfo key; // New with C# 2.0

 do

 {

 // Etch in the direction indicated by the

 // arrow keys that the user enters.

 key = Move();

 switch (key.Key)

 {

ptg

 C# without Generics 423

 case ConsoleKey.Z:

 // Undo the previous Move.

 if (path.Count >= 1)

 {

 Console.SetCursorPosition(

 currentPosition.X, currentPosition.Y);

 Undo();

 }

 break;

 case ConsoleKey.DownArrow:

 case ConsoleKey.UpArrow:

 case ConsoleKey.LeftArrow:

 case ConsoleKey.RightArrow:

 // SaveState()

 currentPosition = new Cell(

 Console.CursorLeft, Console.CursorTop);

 break;

 default:

 Console.Beep(); // New with C#2.0

 break;

 }

 }

 while (key.Key != ConsoleKey.X); // Use X to quit.

 }

}

public struct Cell

{

 readonly public int X;

 readonly public int Y;

 public Cell(int x, int y)

 {

 X = x;

 Y = y;

 }

}

The results of Listing 11.2 appear in Output 11.1.
Using the variable path, which is declared as a System.Collec-

tions.Stack, you save the previous move by passing a custom type, Cell,
into the Stack.Push() method using path.Push(currentPosition). If the
user enters a Z (or Ctrl+Z), then you undo the previous move by retrieving

 currentPosition = (Cell)path.Pop();

 path.Push(currentPosition);

ptg

Chapter 11: Generics424

it from the stack using a Pop() method, setting the cursor position to be the
previous position, and calling Undo(). (Note that this code uses some CLR
2.0-specific console functions as well.)

Although the code is functional, there is a fundamental drawback in the
System.Collections.Stack class. As shown in Listing 11.1, the Stack class
collects variables of type object. Because every object in the CLR derives
from object, Stack provides no validation that the elements you place into
it are homogenous or are of the intended type. For example, instead of pass-
ing currentPosition, you can pass a string in which X and Y are concate-
nated with a decimal point between them. However, the compiler must
allow the inconsistent data types because in some scenarios, it is desirable.

Furthermore, when retrieving the data from the stack using the Pop()
method, you must cast the return value to a Cell. But if the value returned
from the Pop() method is not a Cell type object, an exception is thrown.
You can test the data type, but splattering such checks builds complexity.
The fundamental problem with creating classes that can work with
multiple data types without generics is that they must use a common base
type, generally object data.

Using value types, such as a struct or an integer, with classes that
use object exacerbates the problem. If you pass a value type to the
Stack.Push() method, for example, the runtime automatically boxes it.

OUTPUT 11.1:

ptg

 C# without Generics 425

Similarly, when you retrieve a value type, you need to explicitly unbox the
data and cast the object reference you obtain from the Pop() method into
a value type. Although the widening operation (cast to a base class) for a
reference type has a negligible performance impact, the box operation for a
value type introduces nontrivial overhead.

To change the Stack class to enforce storage on a particular data type
using the preceding C# programming constructs, you must create a spe-
cialized stack class, as in Listing 11.3.

Listing 11.3: Defining a Specialized Stack Class

public class CellStack

{

 public virtual Cell Pop();

 public virtual void Push(Cell cell);

 // ...

}

Because CellStack can store only objects of type Cell, this solution
requires a custom implementation of the stack methods, which is less than
ideal.

B E G I N N E R T O P I C

Another Example: Nullable Value Types
Chapter 2 introduced the capability of declaring variables that could con-
tain null by using the nullable modifier, ?, when declaring the value type
variable. C# only began supporting this in version 2.0 because the right
implementation required generics. Prior to the introduction of generics,
programmers faced essentially two options.

The first option was to declare a nullable data type for each value type
that needs to handle null values, as shown in Listing 11.4.

Listing 11.4: Declaring Versions of Various Value Types That Store null

struct NullableInt

{

 /// <summary>

 /// Provides the value when HasValue returns true.

 /// </summary>

ptg

Chapter 11: Generics426

 public int Value{ get; set; }

 /// <summary>

 /// Indicates whether there is a value or whether

 /// the value is "null"

 /// </summary>

 public bool HasValue{ get; set; }

 // ...

}

struct NullableGuid

{

 /// <summary>

 /// Provides the value when HasValue returns true.

 /// </summary>

 public Guid Value{ get; set; }

 /// <summary>

 /// Indicates whether there is a value or whether

 /// the value is "null"

 /// </summary>

 public bool HasValue{ get; set; }

 ...

}

...

Listing 11.4 shows implementations for only NullableInt and Nullable-
Guid. If a program required additional nullable value types, you would
have to create a copy with the additional value type. If the nullable imple-
mentation changed (if it supported a cast from a null to the nullable type,
for example), you would have to add the modification to all of the nullable
type declarations.

The second option was to declare a nullable type that contains a Value
property of type object, as shown in Listing 11.5.

Listing 11.5: Declaring a Nullable Type That Contains a Value Property of Type object

struct Nullable

{

 /// <summary>

 /// Provides the value when HasValue returns true.

 /// </summary>

 public object Value{ get; set; }

ptg

 Introducing Generic Types 427

 /// <summary>

 /// Indicates whether there is a value or whether

 /// the value is "null"

 /// </summary>

 public bool HasValue{ get; set; }

 ...

}

Although this option requires only one implementation of a nullable type,
the runtime always boxes value types when setting the Value property.
Furthermore, calls to retrieve data from Nullable.Value will not be
strongly typed, so retrieving the value type will require a cast operation,
which is potentially invalid at runtime.

Neither option is particularly attractive. To deal with dilemmas such as
this, C# 2.0 includes the concept of generics. In fact, the nullable modifier, ?,
uses generics internally.

Introducing Generic Types

Generics provide a facility for creating data structures that are specialized
to handle specific types when declaring a variable. Programmers define
these parameterized types so that each variable of a particular generic
type has the same internal algorithm but the types of data and method sig-
natures can vary based on programmer preference.

To minimize the learning curve for developers, C# designers chose syn-
tax that matched the similar templates concept of C++. In C#, therefore, the
syntax for generic classes and structures uses the same angle bracket nota-
tion to identify the data types on which the generic declaration specializes.

Using a Generic Class
Listing 11.6 shows how you can specify the actual type used by the generic
class. You instruct the path variable to use a Cell type by specifying Cell
within angle bracket notation in both the instantiation and the declaration
expressions. In other words, when declaring a variable (path in this case)
using a generic data type, C# requires the developer to identify the actual
type. An example showing the new Stack class appears in Listing 11.6.

ptg

Chapter 11: Generics428

Listing 11.6: Implementing Undo with a Generic Stack Class

using System;

using System.Collections.Generic;

class Program

{

 // ...

 public void Sketch()

{

 Cell currentPosition;

 ConsoleKeyInfo key; // New with C# 2.0

 do

 {

 // Etch in the direction indicated by the

 // arrow keys entered by the user.

 key = Move();

 switch (key.Key)

 {

 case ConsoleKey.Z:

 // Undo the previous Move.

 if (path.Count >= 1)

 {

 Console.SetCursorPosition(

 currentPosition.X, currentPosition.Y);

 Undo();

 }

 break;

 case ConsoleKey.DownArrow:

 case ConsoleKey.UpArrow:

 case ConsoleKey.LeftArrow:

 case ConsoleKey.RightArrow:

 // SaveState()

 currentPosition = new Cell(

 Console.CursorLeft, Console.CursorTop);

 break;

 default:

 Console.Beep(); // New with C#2.0

 break;

 }

 Stack<Cell> path; // Generic variable declaration

 path = new Stack<Cell>(); // Generic object instantiation

 // No cast required.

 currentPosition = path.Pop();

 // Only type Cell allowed in call to Push().

 path.Push(currentPosition);

ptg

 Introducing Generic Types 429

 } while (key.Key != ConsoleKey.X); // Use X to quit.

 }

}

The results of Listing 11.6 appear in Output 11.2.

In the path declaration shown in Listing 11.6, you declare and create a
new instance of a System.Collections.Generic.Stack<T> class and spec-
ify in angle brackets that the data type used for the path variable is Cell.
As a result, every object added to and retrieved from path is of type Cell.
In other words, you no longer need to cast the return of path.Pop() or
ensure that only Cell type objects are added to path in the Push() method.
Before we examine the generic advantages, the next section introduces the
syntax for generic class definitions.

Defining a Simple Generic Class
Generics allow you to author algorithms and patterns, and reuse the code
for different data types. Listing 11.7 creates a generic Stack<T> class simi-
lar to the System.Collections.Generic.Stack<T> class used in the code
in Listing 11.6. You specify a type parameter identifier or type parameter
(in this case, T) within angle brackets after the class declaration. Instances

OUTPUT 11.2:

ptg

Chapter 11: Generics430

of the generic Stack<T> then collect the type corresponding to the variable
declaration without converting the collected item to type object. The type
parameter T is a placeholder until variable declaration and instantiation,
when the compiler requires the code to specify the type parameter. In
Listing 11.7, you can see that the type parameter will be used for the inter-
nal Items array, the type for the parameter to the Push() method, and the
return type for the Pop() method.

Listing 11.7: Declaring a Generic Class, Stack<T>

public class Stack<T>

{

 private T[] _Items;

 public void Push(T data)

 {

 ...

 }

 public T Pop()

 {

 ...

 }

}

Benefits of Generics
There are several advantages to using a generic class (such as the Sys-
tem.Collections.Generic.Stack<T> class used earlier instead of the orig-
inal System.Collections.Stack type).

1. Generics facilitate a strongly typed programming model, preventing
data types other than those explicitly intended by the members
within the parameterized class. In Listing 11.7, the parameterized
stack class restricts you to the Cell data type for all instances of
Stack<Cell>. (The statement path.Push("garbage") produces a
compile-time error indicating that there is no overloaded method for
System.Collections.Generic.Stack<T>.Push(T) that can work
with the string garbage, because it cannot be converted to a Cell.)

2. Compile-time type checking reduces the likelihood of Invalid-
CastException type errors at runtime.

ptg

 Introducing Generic Types 431

3. Using value types with generic class members no longer causes a cast
to object; they no longer require a boxing operation. (For example,
path.Pop() and path.Push() do not require an item to be boxed
when added or unboxed when removed.)

4. Generics in C# reduce code bloat. Generic types retain the benefits of
specific class versions, without the overhead. (For example, it is no
longer necessary to define a class such as CellStack.)

5. Performance increases because casting from an object is no longer
required, thus eliminating a type check operation. Also, performance
increases because boxing is no longer necessary for value types.

6. Generics reduce memory consumption by avoiding boxing and thus
consuming less memory on the heap.

7. Code becomes more readable because of fewer casting checks and
because of the need for fewer type-specific implementations.

8. Editors that assist coding via some type of IntelliSense® work
directly with return parameters from generic classes. There is no need
to cast the return data for IntelliSense to work.

At their core, generics offer the ability to code pattern implementations
and then reuse those implementations wherever the patterns appear. Pat-
terns describe problems that occur repeatedly within code, and templates
provide a single implementation for these repeating patterns.

Type Parameter Naming Guidelines
Just as when you name a method parameter, you should be as descriptive
as possible when naming a type parameter. Furthermore, to distinguish
the parameter as being a type parameter, its name should include a T pre-
fix. For example, in defining a class such as EntityCollection<TEntity>
you use the type parameter name “TEntity.”

The only time you would not use a descriptive type parameter name is
when the description would not add any value. For example, using “T” in
the Stack<T> class is appropriate, since the indication that “T” is a type
parameter is sufficiently descriptive; the stack works for any type.

In the next section, you will learn about constraints. It is a good practice
to use constraint-descriptive type names. For example, if a type parameter
must implement IComponent, consider a type name of “TComponent.”

ptg

Chapter 11: Generics432

Generic Interfaces and Structs
C# 2.0 supports the use of generics extensively within the C# language,
including interfaces and structs. The syntax is identical to that used by
classes. To define an interface with a type parameter, place the type param-
eter in angle brackets, as shown in the example of IPair<T> in Listing 11.8.

Listing 11.8: Declaring a Generic Interface

interface IPair<T>

{

 T First { get; set; }

 T Second { get; set; }

}

This interface represents pairs of like objects, such as the coordinates of a
point, a person’s genetic parents, or nodes of a binary tree. The type con-
tained in the pair is the same for both items.

To implement the interface, you use the same syntax as you would for a
nongeneric class. However, implementing a generic interface without
identifying the type parameter forces the class to be a generic class, as
shown in Listing 11.9. In addition, this example uses a struct rather than a
class, indicating that C# supports custom generic value types.

Listing 11.9: Implementing a Generic Interface

public struct Pair<T>: IPair<T>

{

 public T First

 {

 get

 {

 return _First;

 }

 set

 {

 _First = value;

 }

 }

 private T _First;

 public T Second

 {

 get

 {

 return _Second;

ptg

 Introducing Generic Types 433

 }

 set

 {

 _Second = value;

 }

 }

 private T _Second;

}

Support for generic interfaces is especially important for collection
classes, where generics are most prevalent. Without generics, developers
relied on a series of interfaces within the System.Collections namespace.
Like their implementing classes, these interfaces worked only with type
object, and as a result, the interface forced all access to and from these col-
lection classes to require a cast. By using generic interfaces, you can avoid
cast operations, because a stronger compile-time binding can be achieved
with parameterized interfaces.

A D V A N C E D T O P I C

Implementing the Same Interface Multiple Times on a Single Class
One side effect of template interfaces is that you can implement the same
interface many times using different type parameters. Consider the ICon-
tainer<T> example in Listing 11.10.

Listing 11.10: Duplicating an Interface Implementation on a Single Class

public interface IContainer<T>

{

 ICollection<T> Items

 {

 get;

 set;

 }

}

public class Person: IContainer<Address>,

 IContainer<Phone>, IContainer<Email>

{

 {

 get{...}

 set{...}

 ICollection<Address> IContainer<Address>.Items

ptg

Chapter 11: Generics434

 }

 {

 get{...}

 set{...}

 }

 {

 get{...}

 set{...}

 }

}

In this example, the Items property appears multiple times using an
explicit interface implementation with a varying type parameter. Without
generics, this is not possible, and instead, the compiler would allow only
one explicit IContainer.Items property.

One possible improvement on Person would be to also implement
IContainer<object> and to have items return the combination of all three
containers (Address, Phone, and Email).

Defining a Constructor and a Finalizer
Perhaps surprisingly, the constructor and destructor on a generic do not
require type parameters in order to match the class declaration (in other
words, not Pair<T>(){...}). In the pair example in Listing 11.11, the con-
structor is declared using public Pair(T first, T second).

Listing 11.11: Declaring a Generic Type’s Constructor

public struct Pair<T>: IPair<T>

{

 public T First

 {

 get{ return _First; }

 set{ _First = value; }

 }

 private T _First;

 public T Second

 ICollection<Phone> IContainer<Phone>.Items

 ICollection<Email> IContainer<Email>.Items

 public Pair(T first, T second)

 {

 _Second = second;

 _Second = second;

 }

ptg

 Introducing Generic Types 435

 {

 get{ return _Second; }

 set{ _Second = value; }

 }

 private T _Second;

}

Specifying a Default Value
Listing 11.1 included a constructor that takes the initial values for both
First and Second, and assigns them to _First and _Second. Since Pair<T>
is a struct, any constructor you provide must initialize all fields. This
presents a problem, however. Consider a constructor for Pair<T> that
initializes only half of the pair at instantiation time.

Defining such a constructor, as shown in Listing 11.12, causes a com-
pile error because the field _Second goes uninitialized at the end of the
constructor. Providing initialization for _Second presents a problem
since you don’t know the data type of T. If it is a reference type, then null
would work, but this would not suffice if T were a value type (unless it
was nullable).

Listing 11.12: Not Initializing All Fields, Causing a Compile Error

public struct Pair<T>: IPair<T>

{

 // ERROR: Field 'Pair<T>._second' must be fully assigned

 // before control leaves the constructor

 // public Pair(T first)

 // {

 // _First = first;

 // }

 // ...

}

To deal with this scenario, C# 2.0 allows a dynamic way to code the
default value of any data type using the default operator, first discussed
in Chapter 8. In Chapter 8, I showed how the default value of int could be
specified with default(int) while the default value of a string uses
default(string) (which returns null, as it would for all reference types).
In the case of T, which _Second requires, you use default(T) (see
Listing 11.13).

ptg

Chapter 11: Generics436

Listing 11.13: Initializing a Field with the default Operator

public struct Pair<T>: IPair<T>

{

 public Pair(T first)

 {

 _First = first;

 }

 // ...

}

The default operator is allowable outside the context of generics; any
statement can use it.

Multiple Type Parameters
Generic types may employ any number of type parameters. The initial
Pair<T> example contains only one type parameter. To enable support
for storing a dichotomous pair of objects, such as a name/value pair, you
need to extend Pair<T> to support two type parameters, as shown in
Listing 11.14.

Listing 11.14: Declaring a Generic with Multiple Type Parameters

interface IPair<TFirst, TSecond>

{

 TFirst First { get; set; }

 TSecond Second { get; set; }

}

public struct Pair<TFirst, TSecond>: IPair<TFirst, TSecond>

{

 public Pair(TFirst first, TSecond second)

 {

 _First = first;

 _Second = second;

 }

 public TFirst First

 {

 get{ return _First; }

 set{ _First = value; }

 }

 private TFirst _First;

 _Second = default(T);

ptg

 Introducing Generic Types 437

 public TSecond Second

 {

 get{ return _Second; }

 set{ _Second = value; }

 }

 private TSecond _Second;

}

When you use the Pair<TFirst, TSecond> class, you supply multiple
type parameters within the angle brackets of the declaration and instantia-
tion statements, and then you supply matching types to the parameters of
the methods when you call them, as shown in Listing 11.15.

Listing 11.15: Using a Type with Multiple Type Parameters

Pair<int, string> historicalEvent =

 new Pair<int, string>(1914,

 "Shackleton leaves for South Pole on ship Endurance");

Console.WriteLine("{0}: {1}",

 historicalEvent.First, historicalEvent.Second);

The number of type parameters, the arity, uniquely distinguishes the
class. Therefore, it is possible to define both Pair<T> and Pair<TFirst,
TSecond> within the same namespace because of the arity variation.

Arity in Abundance
In C# 4.0 the CLR team defined nine new generic types all called Tuple. As
with Pair<...>, it was possible to reuse the same name because of the vari-
ation in arity (each class had a different number of type parameters) as
shown in Listing 11.16.

Listing 11.16: Covariance Using the out Type Parameter Modifier

public class Tuple { ... }

public class Tuple<T1>:

 IStructuralEquatable, IStructuralComparable, IComparable {...}

public class Tuple<T1, T2>: ... {...}

public class Tuple<T1, T2, T3>: ... {...}

public class Tuple<T1, T2, T3, T4>: ... {...}

public class Tuple<T1, T2, T3, T4, T5>: ... {...}

public class Tuple<T1, T2, T3, T4, T5, T6>: ... {...}

public class Tuple<T1, T2, T3, T4, T5, T6, T7>: ... {...}

public class Tuple<T1, T2, T3, T4, T5, T6, T7, TRest>: ... {...}

ptg

Chapter 11: Generics438

The Tuple<…> set of classes was designed for the same purpose as the
Pair<T> and Pair<TFirst, TSecond> classes, except together they can
handle seven type parameters. In fact, using the last Tuple shown in List-
ing 11.16, TRest can be used to store another Tuple, making the potential
limit to the size of the tuple practically unlimited.

Another interesting feature of the tuple set of classes is the Tuple (no
type parameters). This class has eight static create methods for instantiat-
ing the various generic tuple types. Although each generic type could be
instantiated directly using its constructor, the Tuple type’s create methods
allow for implied type parameters. Listing 11.17 shows the difference.

Listing 11.17: Covariance Using the out Type Parameter Modifier

Tuple<string, Contact> keyValuePair;

keyValuePair =

 "555-55-5555", new Contact("Inigo Montoya"));

keyValuePair =

 "555-55-5555", new Contact("Inigo Montoya"));

Obviously, when the Tuple gets large, the number of type parameters to
specify could be cumbersome without the Create() methods.

Nested Generic Types
Type parameters on the containing type will cascade down to the nested
type automatically. If the containing type includes a type parameter T, for
example, then the type T will be available on the nested type as well. If the
nested type includes its own type parameter named T, then this will hide
the type parameter within the containing type and any reference to T in the
nested type will refer to the nested T type parameter. Fortunately, reuse of
the same type parameter name within the nested type will cause a com-
piler warning to prevent accidental overlap (see Listing 11.18).

Listing 11.18: Nested Generic Types

class Container<T, U>

{

 // Nested classes inherit type parameters.

 // Reusing a type parameter name will cause

 // a warning.

Tuple.Create(

new Tuple<string, Contact>(

ptg

 Constraints 439

 class Nested<U>

 {

 {

 }

 }

}

The behavior of making the container’s type parameter available in the
nested type is consistent with nested type behavior in the sense that pri-
vate members of the containing type are also accessible from the nested
type. The rule is simply that a type is available anywhere within the curly
braces within which it appears.

Constraints

Generics support the ability to define constraints on type parameters.
These constraints enforce the types to conform to various rules. Take, for
example, the BinaryTree<T> class shown in Listing 11.19.

Listing 11.19: Declaring a BinaryTree<T> Class with No Constraints

public class BinaryTree<T>

{

 public BinaryTree (T item)

 {

 Item = item;

 }

 public T Item

 {

 get{ return _Item; }

 set{ _Item = value; }

 }

 private T _Item;

 public Pair<BinaryTree<T>> SubItems

 {

 get{ return _SubItems; }

 set{ _SubItems = value; }

 }

 private Pair<BinaryTree<T>> _SubItems;

}

 void Method(T param0, U param1)

ptg

Chapter 11: Generics440

(An interesting side note is that BinaryTree<T> uses Pair<T> internally,
which is possible because Pair<T> is simply another type.)

Suppose you want the tree to sort the values within the Pair<T> value
as it is assigned to the SubItems property. In order to achieve the sorting,
the SubItems set accessor uses the CompareTo() method of the supplied
key, as shown in Listing 11.20.

Listing 11.20: Needing the Type Parameter to Support an Interface

public class BinaryTree<T>
{
 ...
 public Pair<BinaryTree<T>> SubItems
 {
 get{ return _SubItems; }
 set
 {

 }
 }
 private Pair<BinaryTree<T>> _SubItems;
}

At compile time, the type parameter T is generic. When the code is written
as shown, the compiler assumes that the only members available on T are
those inherited from the base type object, since every type has object as
an ancestor. (Only methods such as ToString(), therefore, are available to
the key instance of the type parameter T.) As a result, the compiler displays
a compilation error because the CompareTo() method is not defined on
type object.

 IComparable<T> first;
 // ERROR: Cannot implicitly convert type...
 first = value.First.Item; // Explicit cast required

 if (first.CompareTo(value.Second.Item) < 0)
 {
 // first is less than second.
 ...
 }
 else
 {
 // first and second are the same or
 // second is less than first.
 ...
 }
 _SubItems = value;

ptg

 Constraints 441

You can cast the T parameter to the IComparable<T> interface in order
to access the CompareTo() method, as shown in Listing 11.21.

Listing 11.21: Needing the Type Parameter to Support an Interface or Exception Thrown

public class BinaryTree<T>
{
 ...
 public Pair<BinaryTree<T>> SubItems
 {
 get{ return _SubItems; }
 set
 {
 IComparable<T> first;

 {
 // first is less than second.
 ...
 }
 else
 {
 // second is less than or equal to first.
 ...
 }
 _SubItems = value;
 }
 }
 private Pair<BinaryTree<T>> _SubItems;
}

Unfortunately, however, if you now declare a BinaryTree class variable
and supply a type parameter that does not implement the IComparable<T>
interface, you encounter an execution-time error—specifically, an Invalid-
CastException. This defeats an advantage of generics.

To avoid this exception and instead provide a compile-time error, C#
enables you to supply an optional list of constraints for each type parameter
declared in the generic class. A constraint declares the type parameter char-
acteristics that the generic requires. You declare a constraint using the where
keyword, followed by a “parameter-requirements” pair, where the parame-
ter must be one of those defined in the generic type and the requirements are
to restrict the class or interface from which the type “derives,” the presence
of a default constructor, or a reference/value type restriction.

 first = (IComparable<T>)value.First.Item;

 if (first.CompareTo(value.Second.Item) < 0)

ptg

Chapter 11: Generics442

Interface Constraints
In order to satisfy the sort requirement, you need to use the CompareTo()
method in the BinaryTree class. To do this most effectively, you impose a
constraint on the T type parameter. You need the T type parameter to

Language Contrast: C++—Templates

Generics in C# and the CLR differ from similar constructs in other lan-

guages. Although other languages provide similar functionality, C# is sig-

nificantly more type-safe. Generics in C# are a language feature and a

platform feature—the underlying 2.0 runtime contains deep support for

generics in its engine.

C++ templates differ significantly from C# generics, because C# takes

advantage of the CIL. C# generics are compiled into the CIL, causing spe-

cialization to occur at execution time for each value type only when it is

used, and only once for reference types.

A distinct feature not supported by C++ templates is explicit con-

straints. C++ templates allow you to compile a method call that may or

may not belong to the type parameter. As a result, if the member does not

exist in the type parameter, an error occurs, likely with a cryptic error mes-

sage and referring to an unexpected location in the source code. How-

ever, the advantage of the C++ implementation is that operators (+, -,

and so on) may be called on the type. C# does not support the calling of

operators on the type parameter because operators are static—they can’t

be identified by interfaces or base class constraints.

not when defining it. Because C# generics can declare constraints, the com-

piler can prevent such errors when defining the generic, thereby identifying

invalid assumptions sooner. Furthermore, when declaring a variable of a

generic type, the error will point to the declaration of the variable, not to the

location in the generic implementation where the member is used.

It is interesting to note that Microsoft’s CLI support in C++ includes both

generics and C++ templates because of the distinct characteristics of each.

The problem with the error is that it occurs only when using the template,

ptg

 Constraints 443

implement the IComparable<T> interface. The syntax for this appears in
Listing 11.22.

Listing 11.22: Declaring an Interface Constraint

public class BinaryTree<T>

{

 ...

 public Pair<BinaryTree<T>> SubItems

 {

 get{ return _SubItems; }

 set

 {

 IComparable<T> first;

 {

 // first is less than second

 ...

 }

 else

 {

 // second is less than or equal to first.

 ...

 }

 _SubItems = value;

 }

 }

 private Pair<BinaryTree<T>> _SubItems;

}

Given the interface constraint addition in Listing 11.22, the compiler
ensures that each time you use the BinaryTree class you specify a type
parameter that implements the IComparable<T> interface. Furthermore,
you no longer need to explicitly cast the variable to an IComparable<T>
interface before calling the CompareTo() method. Casting is not even
required to access members that use explicit interface implementation,
which in other contexts would hide the member without a cast. To resolve
what member to call, the compiler first checks class members directly, and
then looks at the explicit interface members. If no constraint resolves the
argument, only members of object are allowable.

 where T: System.IComparable<T>

 // Notice that the cast can now be eliminated.

 first = value.First.Item;

 if (first.CompareTo(value.Second.Item) < 0)

ptg

Chapter 11: Generics444

If you tried to create a BinaryTree<T> variable using System.

Text.StringBuilder as the type parameter, you would receive a compiler
error because StringBuilder does not implement IComparable<T>. The
error is similar to the one shown in Output 11.3.

To specify an interface for the constraint you declare an interface con-
straint. This constraint even circumvents the need to cast in order to call an
explicit interface member implementation.

Base Class Constraints
Sometimes you might want to limit the constructed type to a particular
class derivation. You do this using a base class constraint, as shown in
Listing 11.23.

Listing 11.23: Declaring a Base Class Constraint

public class EntityDictionary<TKey, TValue>

 : System.Collections.Generic.Dictionary<TKey, TValue>

 where TValue : EntityBase

{

 ...

}

In contrast to System.Collections.Generic.Dictionary<TKey, TValue>
on its own, EntityDictionary<TKey, TValue> requires that all TValue
types derive from the EntityBase class. By requiring the derivation, it is
possible to always perform a cast operation within the generic implemen-
tation, because the constraint will ensure that all type parameters derive
from the base and, therefore, that all TValue type parameters used with
EntityDictionary can be implicitly converted to the base.

The syntax for the base class constraint is the same as that for the inter-
face constraint, except that base class constraints must appear first when
multiple constraints are specified. However, unlike interface constraints,

OUTPUT 11.3:

error CS0309: The type ’System.Text.StringBuilder’ must be convertible

to ’System.IComparable<T>’ in order to use it as parameter ’T’ in the

generic type or method ’BinaryTree<T>’

ptg

 Constraints 445

multiple base class constraints are not allowed since it is not possible to
derive from multiple classes. Similarly, base class constraints cannot be
specified for sealed classes or specific structs. For example, C# does not
allow a constraint for a type parameter to be derived from string or Sys-
tem.Nullable<T>.

struct/class Constraints
Another valuable generic constraint is the ability to restrict type parame-
ters to a value type or a reference type. The compiler does not allow speci-
fying System.ValueType as the base class in a constraint. Instead, C#
provides special syntax that works for reference types as well. Instead of
specifying a class from which T must derive, you simply use the keyword
struct or class, as shown in Listing 11.24.

Listing 11.24: Specifying the Type Parameter As a Value Type

public struct Nullable<T> :

 IFormattable, IComparable,

 IComparable<Nullable<T>>, INullable

{

 // ...

}

Because a base class constraint requires a particular base class, using
struct or class with a base class constraint would be pointless, and in fact
could allow for conflicting constraints. Therefore, you cannot use struct
and class constraints with a base class constraint.

There is one special characteristic for the struct constraint. It limits possi-
ble type parameters as being only value types while at the same time prevent-
ing type parameters that are System.Nullable<T> type parameters. Why?
Without this last restriction, it would be possible to define the nonsense type
Nullable<Nullable<T>>, which is nonsense because Nullable<T> on its own
allows a value type variable that supports nulls, so a nullable-nullable type
becomes meaningless. Since the nullable operator (?) is a C# shortcut for
declaring a nullable value type, the Nullable<T> restriction provided by the
struct constraint also prevents code such as the following:

int?? number // Equivalent to Nullable<Nullable<int> if allowed

 where T : struct

ptg

Chapter 11: Generics446

Multiple Constraints
For any given type parameter, you may specify any number of interfaces
as constraints, but no more than one class, just as a class may implement
any number of interfaces but inherit from only one other class. Each new
constraint is declared in a comma-delimited list following the generic type
and a colon. If there is more than one type parameter, each must be pre-
ceded by the where keyword. In Listing 11.25, the EntityDictionary class
contains two type parameters: TKey and TValue. The TKey type parameter
has two interface constraints, and the TValue type parameter has one base
class constraint.

Listing 11.25: Specifying Multiple Constraints

public class EntityDictionary<TKey, TValue>

 : Dictionary<TKey, TValue>

 where TKey : IComparable<TKey>, IFormattable

 where TValue : EntityBase

{

 ...

}

In this case, there are multiple constraints on TKey itself and an additional
constraint on TValue. When specifying multiple constraints on one type
parameter, an AND relationship is assumed. TKey must implement ICom-
parable<TKey> and IFormattable, for example.

Notice there is no comma between each where clause.

Constructor Constraints
In some cases, it is desirable to create an instance of a type parameter
inside the generic class. In Listing 11.26, the New() method for the
EntityDictionary<TKey, TValue> class must create an instance of the
type parameter TValue.

Listing 11.26: Requiring a Default Constructor Constraint

public class EntityBase<TKey>

{

 public TKey Key

 {

 get{ return _Key; }

 set{ _Key = value; }

 }

ptg

 Constraints 447

 private TKey _Key;

}

public class EntityDictionary<TKey, TValue> :

 Dictionary<TKey, TValue>

 where TKey: IComparable<TKey>, IFormattable

{

 // ...

 public TValue New(TKey key)

 {

 newEntity.Key = key;

 Add(newEntity.Key, newEntity);

 return newEntity;

 }

 // ...

}

Because not all objects are guaranteed to have public default constructors,
the compiler does not allow you to call the default constructor on the type
parameter. To override this compiler restriction, you add the text new() after
all other constraints are specified. This text is a constructor constraint, and it
forces the type parameter decorated with the constructor constraint to have
a default constructor. Only the default constructor constraint is available.
You cannot specify a constraint for a constructor with parameters.

Constraint Inheritance
Constraints are inherited by a derived class, but they must be specified
explicitly on the derived class. Consider Listing 11.27.

Listing 11.27: Inherited Constraints Specified Explicitly

class EntityBase<T> where T : IComparable<T>

{

 // ...

}

// ERROR:

// The type 'T' must be convertible to 'System.IComparable<T>'

// in order to use it as parameter 'T' in the generic type or

// method.

 where TValue : EntityBase<TKey>, new()

 TValue newEntity = new TValue();

ptg

Chapter 11: Generics448

// class Entity<T> : EntityBase<T>

// {

// ...

// }

Because EntityBase requires that T implement IComparable<T>, the
Entity class needs to explicitly include the same constraint. Failure to do
so will result in a compile error. This increases a programmer’s awareness
of the constraint in the derived class, avoiding confusion when using the
derived class and discovering the constraint but not understanding where
it comes from.

In contrast, constraints on generic override (or explicit interface) meth-
ods are inherited implicitly and may not be restated (see Listing 11.28).

Listing 11.28: Inherited Constraints Specified Explicitly

class EntityBase<T> where T : IComparable<T>

{

 public virtual void Method<T>(T t)

 where T : IComparable<T>

 {

 // ...

 }

}

class Entity<T> : EntityBase<T>

{

 public virtual void Method<T>(T t)

 // Error: Constraints may not be

 // repeated on overriding members

 where T : IComparable<T>

 {

 // ...

 }

}

In the inheritance case the type parameter on the base class can be addi-
tionally constrained by adding not only the constraints on the base class
(required), but also additional constraints as well. However, overriding
members need to conform to the “interface” defined in the base class
method. Additional constraints could break polymorphism, so they are
not allowed and the type parameter constraints on the override method
are implied.

ptg

 Constraints 449

A D V A N C E D T O P I C

Constraint Limitations
Constraints are appropriately limited to avoid nonsense code. For exam-
ple, you cannot combine a base class constraint with a struct or class con-
straint, nor can you use Nullable<T> on struct constraint type parameters.
Also, you cannot specify constraints to restrict inheritance to special types
such as object, arrays, System.ValueType, System.Enum (enum), Sys-
tem.Delegate, and System.MulticastDelegate.

In some cases, constraint limitations are perhaps more desirable, but
they still are not supported. The following subsections provide some addi-
tional examples of constraints that are not allowed.

Operator Constraints Are Not Allowed
Another restriction on constraints is that you cannot specify a constraint
that a class supports on a particular method or operator, unless that
method or operator is on an interface. Because of this, the generic Add() in
Listing 11.29 does not work.

Listing 11.29: Constraint Expressions Cannot Require Operators

public abstract class MathEx<T>

{

 public static T Add(T first, T second)

 {

 // Error: Operator '+' cannot be applied to

 // operands of type 'T' and 'T'.

 }

}

In this case, the method assumes that the + operator is available on all
types. However, because all types support only the methods of object
(which does not include the + operator), an error occurs. Unfortunately,
there is no way to specify the + operator within a constraint; therefore,
creating an add method in this way is a lot more cumbersome. One rea-
son for this limitation is that there is no way to constrain a type to have a
static method. You cannot, for example, specify static methods on an
interface.

return first + second;

ptg

Chapter 11: Generics450

OR Criteria Are Not Supported
If you supply multiple interfaces or class constraints for a type parameter,
the compiler always assumes an AND relationship between constraints.
For example, where T : IComparable<T>, IFormattable requires that
both IComparable<T> and IFormattable are supported. There is no way to
specify an OR relationship between constraints. Hence, an equivalent of
Listing 11.30 is not supported.

Listing 11.30: Combining Constraints Using an OR Relationship Is Not Allowed

public class BinaryTree<T>

 // Error: OR is not supported.

 where T: System.IComparable<T> || System.IFormattable

{

 ...

}

Supporting this would prevent the compiler from resolving which method
to call at compile time.

Constraints of Type Delegate and Enum Are Not Valid
Readers who are already familiar with C# 1.0 and are reading this chapter
to learn newer features will be familiar with the concept of delegates,
which are covered in Chapter 12. One additional constraint that is not
allowed is the use of any delegate type as a class constraint. For example,
the compiler will output an error for the class declaration in Listing 11.31.

Listing 11.31: Inheritance Constraints Cannot Be of Type System.Delegate

// Error: Constraint cannot be special class 'System.Delegate'

public class Publisher<T>

 where T : System.Delegate

{

 public event T Event;

 public void Publish()

 {

 if (Event != null)

 {

 Event(this, new EventArgs());

 }

 }

}

All delegate types are considered special classes that cannot be specified as
type parameters. Doing so would prevent compile-time validation on the

ptg

 Constraints 451

call to Event() because the signature of the event firing is unknown with
the data types System.Delegate and System.MulticastDelegate. The
same restriction occurs for any enum type.

Constructor Constraints Are Allowed Only for Default Constructors
Listing 11.26 includes a constructor constraint that forces TValue to sup-
port a default constructor. There is no constraint to force TValue to support
a constructor other than the default. For example, it is not possible to make
EntityBase.Key protected and only set it in a TValue constructor that takes
a TKey parameter using constraints alone. Listing 11.32 demonstrates the
invalid code.

Listing 11.32: Constructor Constraints Can Be Specified Only for Default Constructors

 public TValue New(TKey key)

 {

 Add(newEntity.Key, newEntity);

 return newEntity;

 }

One way to circumvent this restriction is to supply a factory interface that
includes a method for instantiating the type. The factory implementing the
interface takes responsibility for instantiating the entity rather than the
EntityDictionary itself (see Listing 11.33).

Listing 11.33: Using a Factory Interface in Place of a Constructor Constraint

public class EntityBase<TKey>

{

 public TKey Key

 {

 get { return _key; }

 set { _key = value; }

 }

 private TKey _key;

}

public class EntityDictionary<TKey, TValue, TFactory> :

 Dictionary<TKey, TValue>

 where TKey : IComparable<T>, IFormattable

 // Error: 'TValue': Cannot provide arguments

 // when creating an instance of a variable type.

 TValue newEntity = null;

 // newEntity = new TValue(key);

 public EntityBase(TKey key)

 {

 Key = key;

 }

ptg

Chapter 11: Generics452

{

 ...

 public TValue New(TKey key)

 {

 Add(newEntity.Key, newEntity);

 return newEntity;

 }

 ...

}

...

A declaration such as this allows you to pass the new key to a TValue con-
structor that takes parameters rather than the default constructor. It no
longer uses the constructor constraint on TValue because TFactory is
responsible for instantiating the order instead of EntityDictionary<...>.
(One modification to the code in Listing 11.33 would be to save a copy of
the factory. This would enable you to reuse the factory instead of reinstan-
tiating it every time.)

A declaration for a variable of type EntityDictionary<TKey, TValue,
TFactory> would result in an entity declaration similar to the Order entity
in Listing 11.34.

Listing 11.34: Declaring an Entity to Be Used in EntityDictionary<...>

public class Order : EntityBase<Guid>

{

 public Order(Guid key) :

 base(key)

 {

 // ...

 }

}

public class OrderFactory : IEntityFactory<Guid, Order>

{

 public Order CreateNew(Guid key)

 {

 return new Order(key);

 }

}

 where TValue : EntityBase<TKey>

 where TFactory : IEntityFactory<TKey, TValue>, new()

 TValue newEntity = new TFactory().CreateNew(key);

public interface IEntityFactory<TKey, TValue>

{

 TValue CreateNew(TKey key);

}

ptg

 Generic Methods 453

Generic Methods

You already learned that it is relatively simple to add a generic method to a
class when the class is a generic. You did this in the generic class examples
so far, and it also works for static methods. Furthermore, you can use
generic classes within a generic class, as you did in earlier BinaryTree list-
ings using the following line of code:

public Pair< BinaryTree<T> > SubItems;

Generic methods are methods that use generics even when the contain-
ing class is not a generic class or the method contains type parameters not
included in the generic class type parameter list. To define generic meth-
ods, you add the type parameter syntax immediately following the
method name, as shown in the MathEx.Max<T> and MathEx.Min<T> exam-
ples in Listing 11.35.

Listing 11.35: Defining Generic Methods

public static class MathEx

{

 public static T Max<T>(T first, params T[] values)

 where T : IComparable<T>

 {

 T maximum = first;

 foreach (T item in values)

 {

 if (item.CompareTo(maximum) > 0)

 {

 maximum = item;

 }

 }

 return maximum;

 }

 public static T Min<T>(T first, params T[] values)

 where T : IComparable<T>

 {

 T minimum = first;

 foreach (T item in values)

 {

 if (item.CompareTo(minimum) < 0)

 {

 minimum = item;

 }

 }

ptg

Chapter 11: Generics454

 return minimum;

 }

}

You use the same syntax on a generic class when the method requires an
additional type parameter not included in the class type parameter list. In
this example, the method is static but C# does not require this.

Note that generic methods, like classes, can include more than one type
parameter. The arity (the number of type parameters) is an additional dis-
tinguishing characteristic of a method signature.

Type Inferencing
The code used to call the Min<T> and Max<T> methods looks like that shown
in Listing 11.36.

Listing 11.36: Specifying the Type Parameter Explicitly

Console.WriteLine(

 MathEx.Max<int>(7, 490));

Console.WriteLine(

 MathEx.Min<string>("R.O.U.S.", "Fireswamp"));

The output to Listing 11.36 appears in Output 11.4.

Not surprisingly, the type parameters, int and string, correspond to
the actual types used in the generic method calls. However, specifying the
type is redundant because the compiler can infer the type from the param-
eters passed to the method. To avoid redundancy, you can exclude the
type parameters from the call. This is known as type inferencing, and an
example appears in Listing 11.37. The output appears in Output 11.5.

Listing 11.37: Inferring the Type Parameter

Console.WriteLine(

 MathEx.Max(7, 490));

Console.WriteLine(

 MathEx.Min("R.O.U.S'", "Fireswamp"));

OUTPUT 11.4:

490

Fireswamp

ptg

 Generic Methods 455

For type inferencing to be successful, the types must match the method
signature. However, starting with C# 3.0, the compiler added an enhance-
ment to imply the type parameter as long as the types were implicitly com-
patible. For example, calling the Max<T> method using MathEx.Max(7.0,
490) will compile successfully. Even though the parameters are not both
the same type (int and double), they will both implicitly convert to dou-
ble, so the method call compiles. You can resolve the error by either cast-
ing explicitly or including the type argument. Also note that you cannot
perform type inferencing purely on the return type. Parameters are
required for type inferencing to be allowed.

Specifying Constraints
The generic method also allows constraints to be specified. For example,
you can restrict a type parameter to implement IComparable<T>. The con-
straint is specified immediately following the method header, prior to the
curly braces of the method block, as shown in Listing 11.38.

Listing 11.38: Specifying Constraints on Generic Methods

public class ConsoleTreeControl

{

 // Generic method Show<T>

 public static void Show<T>(BinaryTree<T> tree, int indent)

 {

 Console.WriteLine("\n{0}{1}",

 "+ --".PadLeft(5*indent, ' '),

 tree.Item.ToString());

 if (tree.SubItems.First != null)

 Show(tree.SubItems.First, indent+1);

 if (tree.SubItems.Second != null)

 Show(tree.SubItems.Second, indent+1);

 }

}

OUTPUT 11.5:

490

Fireswamp

 where T : IComparable<T>

ptg

Chapter 11: Generics456

Notice that the Show<T> implementation itself does not use the ICompara-
ble<T> interface. Recall, however, that the BinaryTree<T> class did require
this (see Listing 11.39).

Listing 11.39: BinaryTree<T> Requiring IComparable<T> Type Parameters

public class BinaryTree<T>

{

 ...

}

Because the BinaryTree<T> class requires this constraint on T, and
because Show<T> uses BinaryTree<T>, Show<T> also needs to supply the
constraint.

A D V A N C E D T O P I C

Casting inside a Generic Method
Sometimes you should be wary of using generics—for instance, when
using it specifically to bury a cast operation. Consider the following
method, which converts a stream into an object:

public static T Deserialize<T>(

 Stream stream, IFormatter formatter)

{

 return (T)formatter.Deserialize(stream);

}

The formatter is responsible for removing data from the stream and con-
verting it to an object. The Deserialize() call on the formatter returns
data of type object. A call to use the generic version of Deserialize()
looks something like this:

string greeting =

 Deserialization.Deserialize<string>(stream, formatter);

The problem with this code is that to the user of the method, Deserial-
ize<T>() appears to be strongly typed. However, a cast operation is still

 where T: System.IComparable<T>

ptg

 Covariance and Contravariance 457

performed implicitly rather than explicitly, as in the case of the nongeneric
equivalent shown here:

string greeting =

 (string)Deserialization.Deserialize(stream, formatter);

A method using an explicit cast is more explicit about what is taking place
than is a generic version with a hidden cast. Developers should use care
when casting in generic methods if there are no constraints to verify cast
validity.

Covariance and Contravariance

If you declare two variables with different type parameters using the
same generic class, the variables are not type-compatible even if they are
assigning from a more specific type to a more generic type—in other
words, they are not covariant. For example, instances of a generic class,
Pair<Contact> and Pair<PdaItem>, are not type-compatible even when
the type parameters are compatible. In other words, the compiler prevents
casting (implicitly or explicitly) Pair<Contact> to Pair<PdaItem>, even
though Contact derives from PdaItem. Similarly, casting Pair<Contact>
to IPair<PdaItem> will also fail (see Listing 11.40).

Listing 11.40: Conversion between Generics with Different Type Parameters

// ...

// Error: Cannot convert type ...

Pair<PdaItem> pair = (Pair<PdaItem>) new Pair<Contact>();

IPair<PdaItem> duple = (IPair<PdaItem>) new Pair<Contact>();

To allow covariance such as this would allow the following (see Listing
11.41).

Listing 11.41: Preventing Covariance Maintains Homogeneity

//...

Address address;

Contact contact1, contact2;

Pair<Contact> contacts

ptg

Chapter 11: Generics458

// Initialize variables...

...

Thus, casting Pair<Contact> to IPair<PdaItem> would appear to allow
Pair<Contact> to contain heterogeneous data rather than just with the
Contact type as the type parameter specified. Although a failure would
still occur at runtime, the compile time validation is preferable.

Similarly, the compiler prevents contravariance, or assigning of types
from more generic to more specific. For example, the following will cause a
compile error:

Pair<Contact> contacts = (IPair<PdaItem>) pdaPair;

Doing so would cause a similar problem to covariance. Items within pda-
Pair could potentially be heterogeneous (addresses and contacts) and con-
straining to all contacts would be invalid.

Enabling Covariance with the out Type Parameter Modifier in C# 4.0
It is important to note that you can define an IReadOnlyPair<T> interface
that doesn’t encounter the covariance problem. The IReadOnlyPair<T>
interfaces would only expose T out of the interface (return parameters or
get property members) and never into it (input parameters or set property
members). In so doing, the covariance problem just described would not
occur (see Listing 11.42).

Listing 11.42: Potentially Possible Covariance

interface IReadOnlyPair<T>

{

 T First { get; }

 T Second { get; }

}

interface IPair<T>

{

 T First { get; set; }

 T Second { get; set; }

}

// Error: Cannot convert type ...

IPair<PdaItem> pdaPair = (IPair<PdaItem>) contacts;

pair.First = address;

ptg

 Covariance and Contravariance 459

public struct Pair<T> : IPair<T>, IReadOnlyPair<T>

{

 // ...

}

class Program

{

 static void Main()

 {

 // Error: Only theoretically possible without

 // the out type parameter modifier

 }

}

By restricting the generic type declaration to only expose data out of the
interface, there is no reason for the compiler to prevent covariance. All
operations on an IReadOnlyPair<PdaItem> instance would convert Con-
tacts (from the original Pair<Contact> object) up to the base class
PdaItem—a perfectly valid conversion.

Support for valid covariance, in which the assigned type only exposed
data out, was added to C# 4 with the out type parameter modifier (see
Listing 11.43).

Listing 11.43: Covariance Using the out Type Parameter Modifier

// ...

{

 T First { get; }

 T Second { get; }

}

interface IPair<T>

{

 T First { get; set; }

 T Second { get; set; }

}

 Pair<Contact> contacts =

 new Pair<Contact>(

 new Contact("Princess Buttercupt"),

 new Contact("Inigo Montoya"));

 IReadOnlyPair<PdaItem> pair = contacts;

 PdaItem pdaItem1 = pair.First;

 PdaItem pdaItem2 = pair.Second;

interface IReadOnlyPair<out T>

ptg

Chapter 11: Generics460

public struct Pair<T> : IPair<T>, IReadOnlyPair<T>

{

 // ...

}

class Program

{

 static void Main()

 {

 // Allowed in C# 4.0

 Pair<Contact> contacts =

 new Pair<Contact>(

 new Contact("Princess Buttercup"),

 new Contact("Inigo Montoya"));

 PdaItem pdaItem1 = pair.First;

 PdaItem pdaItem2 = pair.Second;

 }

}

Modifying the type parameter on the IReadOnlyPair<out T> interface
with out will cause the compiler to verify that indeed, T is used only for
member returns and property getters, never for input parameters or prop-
erty setters. From then on, the compiler will allow any covariant assign-
ments to the interface.

Enabling Contravariance with the in Type Parameter Modifier in C# 4.0
As I mentioned earlier, contravariance is also invalid. A Pair<PdaItem>
could potentially be heterogeneous (containing both an Address and a
Contact), and constraining it to only be Contacts when it contains
Addresses would invalid. However, imagine an IWriteOnlyPair<T> (see
Listing 11.44) such that through this interface only Contacts could be
placed into First and Second. What was already stored within
Pair<PdaItem> would be irrelevant (since IWriteOnlyPair<T> can’t
retrieve it), and assigning an Address directly via the Pair<PdaItem>
would also not affect the validity of what the IWriteOnlyPair<T> allowed.

Listing 11.44: Covariance Using the out Type Parameter Modifier

interface IReadOnlyPair<out T>

{

 //...

}

 IReadOnlyPair<PdaItem> pair = contacts;

ptg

 Covariance and Contravariance 461

interface IWriteOnlyPair<in T>

}

interface IPair<T>

{

 T First { get; set; }

 T Second { get; set; }

}

public struct Pair<T>

 : IPair<T>, IReadOnlyPair<out T>, IWriteOnlyPair<in T>

{

 //...

}

class Program

{

 static void Main()

 {

 // Allowed in C# 4.0

 Pair<Contact> contacts = new Pair<PdaItem>(

 new Address("..."), new Contact("..."));;

 contacts.First = new Contact("Inigo Montoya");

 contacts.Second = new Contact("Princess Buttercup");

 }

}

Since Pair<PdaItem> could safely contain any PdaItem, forcing only Con-
tacts to be inserted would be valid. The invalid operation would occur
only when retrieving items out of the pair, something that IWriteOnly-
Pair<T> does not allow since it has only property setters.

Notice that similar to covariance support, contravariance uses a type
parameter modifier: in, on the IWriteOnlyPair<T> interface. This instructs
the compiler to check that T never appears on a property getter or as an out
parameter on a method, thus enabling contravariance to the interface.

Not surprisingly, the covariance and contravariance type modifiers can
be combined into the same interface. Imagine, for example, the IConvert-
ible<in TSource, out TTarget> interface defined in Listing 11.45.

{

 T First { set; }

 T Second { set; }

 IWriteOnlyPair<Contact> pair = contacts;

ptg

Chapter 11: Generics462

Listing 11.45: Covariance Using the out Type Parameter Modifier

interface IConvertible<in TSource, out TTarget>

{

 TTarget Convert(TSource source);

}

Using this interface with the type parameter modifiers specified would
enable a successful conversion from an IConvertible<PdaItem, Contact>
to an IConvertible<Contact, PdaItem>.

Lastly, notice that the compiler will check validity of the covariance and
contravariance type parameter modifiers throughout the source. Consider
the PairInitializer<in T> interface in Listing 11.46.

Listing 11.46: Covariance Using the out Type Parameter Modifier

// ERROR: Invalid variance, the type parameter 'T' is not

// invariantly valid

interface PairInitializer<in T>

{

 void Initialize(IPair<T> pair);

}

A casual observer may be tempted to think that since IPair<T> is only
an input parameter, restricting T to in on PairInitializer is valid. How-
ever, inside the implementation of Initialize() we would expect to
assign First and Second, thereby introducing the potential of assigning a
value that does not convert to T.

Support for Parameter Covariance and Contravariance in Arrays
Unfortunately, ever since C# 1.0, arrays allowed for covariance and contra-
variance. For example, both PdaItem[] pdaItems = new Contact[] { }
and Contact[] contacts = (Contact[])new PdaItem[] { } are valid
assignments in spite of the negative implications discussed earlier. The
result is that the covariant and contravariant restrictions imposed by the
compiler in C# 2.0 and the loosening of those restrictions in C# 4.0 to
enable valid scenarios do not apply to arrays. As regrettable as this is, the
situation can be avoided. As Chapter 14 describes, a host of interfaces and
collections are available that effectively supersede arrays and enable a
super set of functionality. Support for generics in combination with C# 3.0

ptg

 Generic Internals 463

syntax for initializing arrays (see Collection Initializers in Chapter 14)
eliminates any best practice use of arrays except when required by existing
interfaces. Moving forward, arrays may be treated as deprecated.

Generic Internals

Given the discussions in earlier chapters about the prevalence of objects
within the CLI type system, it is no surprise that generics are also objects.
In fact, the type parameter on a generic class becomes metadata that the
runtime uses to build appropriate classes when needed. Generics, there-
fore, support inheritance, polymorphism, and encapsulation. With gener-
ics, you can define methods, properties, fields, classes, interfaces, and
delegates.

To achieve this, generics require support from the underlying runtime.
So, the addition of generics to the C# language is a feature of both the com-
piler and the platform. To avoid boxing, for example, the implementation
of generics is different for value-based type parameters than for generics
with reference type parameters.

A D V A N C E D T O P I C

CIL Representation of Generics
When a generic class is compiled, it is no different from a regular class. The
result of the compilation is nothing but metadata and CIL. The CIL is
parameterized to accept a user-supplied type somewhere in code. Suppose
you had a simple Stack class declared as shown in Listing 11.47.

Listing 11.47: Stack<T> Declaration

public class Stack<T> where T : IComparable

{

 T[] items;

 // rest of the class here

}

When you compile the class, the generated CIL is parameterized and looks
something like Listing 11.48.

ptg

Chapter 11: Generics464

Listing 11.48: CIL Code for Stack<T>

.class private auto ansi beforefieldinit

 Stack'1<([mscorlib]System.IComparable)T>

 extends [mscorlib]System.Object

{

 ...

}

The first notable item is the '1 that appears following Stack on the second
line. That number is the arity. It declares the number of parameter types
that the generic class will include. A declaration such as EntityDiction-
ary<TKey, TValue> would have an arity of 2.

In addition, the second line of the generated CIL shows the constraints
imposed upon the class. The T type parameter is decorated with an inter-
face declaration for the IComparable constraint.

If you continue looking through the CIL, you will find that the item’s
array declaration of type T is altered to contain a type parameter using
“exclamation point notation,” new to the generics-capable version of the
CIL. The exclamation point denotes the presence of the first type parame-
ter specified for the class, as shown in Listing 11.49.

Listing 11.49: CIL with “Exclamation Point Notation” to Support Generics

.class public auto ansi beforefieldinit

 'Stack'1'<([mscorlib]System.IComparable) T>

 extends [mscorlib]System.Object

{

 ...

}

Beyond the inclusion of the arity and type parameter in the class header
and the type parameter denoted with exclamation points in code, there is
little difference between the CIL generated for a generic class and the CIL
generated for a nongeneric class.

Instantiating Generics Based on Value Types
When a generic type is first constructed with a value type as a type param-
eter, the runtime creates a specialized generic type with the supplied type

 .field private !0[] items

ptg

 Generic Internals 465

parameter(s) placed appropriately in the CIL. Therefore, the runtime cre-
ates new specialized generic types for each new parameter value type.

For example, suppose some code declared a Stack constructed of inte-
gers, as shown in Listing 11.50.

Listing 11.50: Stack<int> Definition

Stack<int> stack;

When using this type, Stack<int>, for the first time, the runtime generates
a specialized version of the Stack class with int substituted for its type
parameter. From then on, whenever the code uses a Stack<int>, the run-
time reuses the generated specialized Stack<int> class. In Listing 11.51,
you declare two instances of a Stack<int>, both using the code already
generated by the runtime for a Stack<int>.

Listing 11.51: Declaring Variables of Type Stack<T>

Stack<int> stackOne = new Stack<int>();

Stack<int> stackTwo = new Stack<int>();

If later in the code, you create another Stack with a different value type
as its type parameter (such as a long or a user-defined struct) the runtime
generates another version of the generic type. The benefit of specialized
value type classes is better performance. Furthermore, the code is able to
avoid conversions and boxing because each specialized generic class
“natively” contains the value type.

Instantiating Generics Based on Reference Types
Generics work slightly differently for reference types. The first time a
generic type is constructed with a reference type, the runtime creates a
specialized generic type with object references substituted for type
parameters in the CIL, not a specialized generic type based on the type
parameter. Each subsequent time a constructed type is instantiated with a
reference type parameter, the runtime reuses the previously generated
version of the generic type, even if the reference type is different from the
first reference type.

ptg

Chapter 11: Generics466

For example, suppose you have two reference types, a Customer class
and an Order class, and you create an EntityDictionary of Customer
types, like so:

EntityDictionary<Guid, Customer> customers;

Prior to accessing this class, the runtime generates a specialized version of
the EntityDictionary class that, instead of storing Customer as the speci-
fied data type, stores object references. Suppose the next line of code cre-
ates an EntityDictionary of another reference type, called Order:

EntityDictionary<Guid, Order> orders =

 new EntityDictionary<Guid, Order>();

Unlike value types, no new specialized version of the EntityDictionary
class is created for the EntityDictionary that uses the Order type. Instead,
an instance of the version of EntityDictionary that uses object references
is instantiated and the orders variable is set to reference it.

To still gain the advantage of type safety, for each object reference
substituted in place of the type parameter, an area of memory for an
Order type is specifically allocated and the pointer is set to that memory
reference.

Suppose you then encountered a line of code to instantiate an Entity-
Dictionary of a Customer type as follows:

customers = new EntityDictionary<Guid, Customer>();

As with the previous use of the EntityDictionary class created with the
Order type, another instance of the specialized EntityDictionary class
(the one based on object references) is instantiated and the pointers con-
tained therein are set to reference a Customer type specifically. This imple-
mentation of generics greatly reduces code bloat by reducing to one the
number of specialized classes created by the compiler for generic classes of
reference types.

Even though the runtime uses the same internal generic type definition
when the type parameter on a generic reference type varies, this behavior
is superseded if the type parameter is a value type. Dictionary<int,

ptg

 Summary 467

Customer>, Dictionary<Guid, Order>, and Dictionary<long, Order> will
require new internal type definitions, for example.

SUMMARY

Generics transformed C# 1.0 coding style. In virtually all cases in which
programmers used object within C# 1.0 code, generics became a better
choice in C# 2.0 and later to the extent that using object in relation to col-
lections, at a minimum, should act as a flag for a possible generics imple-
mentation. The increased type safety, cast avoidance, and reduction of
code bloat offer significant improvements. Similarly, where code tradition-
ally used the System.Collections namespace, System.Collections.

Generics should be selected instead.

Language Contrast: Java—Generics

Sun’s implementation of generics for Java occurs within the compiler

entirely, not within the Java Virtual Machine. Sun did this to ensure that no

updated Java Virtual Machine would need to be distributed because gener-

ics were used.

The Java implementation uses syntax similar to the templates in C++

and the generics in C#, including type parameters and constraints. But

because it does not treat value types differently from reference types, the

unmodified Java Virtual Machine cannot support generics for value types.

As such, generics in Java do not gain the execution efficiency of C#.

Indeed, whenever the Java compiler needs to return data, it injects auto-

matic downcasts from the specified constraint, if one is declared, or the

base Object type if it is not declared. Further, the Java compiler gener-

ates a single specialized type at compile time, which it then uses to

instantiate any constructed type. Finally, because the Java Virtual

Machine does not support generics natively, there is no way to ascertain

the type parameter for an instance of a generic type at execution time,

and other uses of reflection are severely limited.

ptg

Chapter 11: Generics468

Chapter 16 looks at one of the most pervasive generic namespaces, Sys-
tem.Collections.Generic. This namespace is composed almost exclu-
sively of generic types. It provides clear examples of how some types that
originally used objects were then converted to use generics. However,
before we tackle these topics, we will investigate expressions, which provide
a significant C# 3.0 (and later) improvement for working with collections.

ptg

469

12
Delegates and Lambda
Expressions

REVIOUS CHAPTERS DISCUSSED extensively how to create classes
using many of the built-in C# language facilities for object-oriented

development. The objects instantiated from classes encapsulate data and
operations on data. As you create more and more classes, you see common
patterns in the relationships between these classes.

One such pattern is to pass an object that represents a method that the
receiver can invoke. The use of methods as a data type and their support
for publish-subscribe patterns is the focus of this chapter. Both C# 2.0 and
C# 3.0 introduced additional syntax for programming in this area.
Although C# 3.0 supports the previous syntax completely, in many cases
C# 3.0 will deprecate the use of the older-style syntax. However, I have

P

23

4

5 1

Delegates and
Lambda Expressions

Introducing
Delegates

Why Delegates
Delegate As Data Types
Delegate Internals
Instantiating Delegates

Anonymous Methods Statement Lambdas

Expression
Lambdas

Expression Trees

ptg

Chapter 12: Delegates and Lambda Expressions470

placed the earlier syntax into Advanced Topic blocks, which you can
largely ignore unless you require support for an earlier compiler.

Introducing Delegates

Veteran C and C++ programmers have long used method pointers as a
means to pass executable steps as parameters to another method. C#
achieves the same functionality using a delegate, which encapsulates
methods as objects, enabling an indirect method call bound at runtime.
Consider an example of where this is useful.

Defining the Scenario
Although not necessarily efficient, perhaps one of the simplest sort rou-
tines is a bubble sort. Listing 12.1 shows the BubbleSort() method.

Listing 12.1: BubbleSort() Method

static class SimpleSort1

{

 public static void BubbleSort(int[] items)

 {

 int i;

 int j;

 int temp;

 if(items==null)

 {

 return;

 }

 for (i = items.Length - 1; i >= 0; i--)

 {

 for (j = 1; j <= i; j++)

 {

 if (items[j - 1] > items[j])

 {

 temp = items[j - 1];

 items[j - 1] = items[j];

 items[j] = temp;

 }

 }

 }

 }

 // ...

}

ptg

 Introducing Delegates 471

This method will sort an array of integers in ascending order.
However, if you wanted to support the option to sort the integers in

descending order, you would have essentially two options. You could
duplicate the code and replace the greater-than operator with a less-than
operator. Alternatively, you could pass in an additional parameter indicat-
ing how to perform the sort, as shown in Listing 12.2.

Listing 12.2: BubbleSort() Method, Ascending or Descending

class SimpleSort2

{

 public enum SortType

 {

 Ascending,

 Descending

 }

 {

 int i;

 int j;

 int temp;

 if(items==null)

 {

 return;

 }

 for (i = items.Length - 1; i >= 0; i--)

 {

 for (j = 1; j <= i; j++)

 {

 switch (sortOrder)

 {

 {

 temp = items[j - 1];

 items[j - 1] = items[j];

 items[j] = temp;

 }

 break;

 {

 temp = items[j - 1];

 items[j - 1] = items[j];

 public static void BubbleSort(int[] items, SortType sortOrder)

 case SortType.Ascending :

 if (items[j - 1] > items[j])

 case SortType.Descending :

 if (items[j - 1] < items[j])

ptg

Chapter 12: Delegates and Lambda Expressions472

 items[j] = temp;

 }

 break;

 }

 }

 }

 }

 // ...

}

However, this handles only two of the possible sort orders. If you wanted
to sort them alphabetically, randomize the collection, or order them via
some other criterion, it would not take long before the number of Bubble-
Sort() methods and corresponding SortType values would become
cumbersome.

Delegate Data Types
To increase the flexibility (and reduce code duplication), you can pass
in the comparison method as a parameter to the BubbleSort() method.
Moreover, in order to pass a method as a parameter, there needs to be
a data type that can represent that method—in other words, a delegate.
Listing 12.3 includes a modification to the BubbleSort() method that
takes a delegate parameter. In this case, the delegate data type is
ComparisonHandler.

Listing 12.3: BubbleSort() Method with Delegate Parameter

class DelegateSample

{

 // ...

 {

 int i;

 int j;

 int temp;

 if(items==null)

 {

 return;

 }

 if(comparisonMethod == null)

 {

 public static void BubbleSort(

 int[] items, ComparisonHandler comparisonMethod)

ptg

 Introducing Delegates 473

 throw new ArgumentNullException("comparisonMethod");

 }

 for (i = items.Length - 1; i >= 0; i--)

 {

 for (j = 1; j <= i; j++)

 {

 {

 temp = items[j - 1];

 items[j - 1] = items[j];

 items[j] = temp;

 }

 }

 }

 }

 // ...

}

ComparisonHandler is a data type that represents a method for comparing
two integers. Within the BubbleSort() method you then use the instance
of the ComparisonHandler, called comparisonMethod, inside the conditional
expression. Since comparisonMethod represents a method, the syntax to
invoke the method is identical to calling the method directly. In this case,
comparisonMethod takes two integer parameters and returns a Boolean
value that indicates whether the first integer is greater than the second one.

Perhaps more noteworthy than the particular algorithm, the Compari-
sonHandler delegate is strongly typed to return a bool and to accept only
two integer parameters. Just as with any other method, the call to a delegate
is strongly typed, and if the data types do not match up, then the C# com-
piler reports an error. Let us consider how the delegate works internally.

Delegate Internals
C# defines all delegates, including ComparisonHandler, as derived indi-
rectly from System.Delegate, as shown in Figure 12.1.1

The first property is of type System.Reflection.MethodInfo, which I
cover in Chapter 17. MethodInfo describes the signature of a particular
method, including its name, parameters, and return type. In addition to

 if (comparisonMethod(items[j - 1], items[j]))

1. The C# standard doesn’t specify the delegate implementation’s class hierarchy. .NET’s
implementation, however, does derive indirectly from System.Delegate.

ptg

Chapter 12: Delegates and Lambda Expressions474

MethodInfo, a delegate also needs the instance of the object containing
the method to invoke. This is the purpose of the second property, Target.
In the case of a static method, Target corresponds to the type itself.
The purpose of the MulticastDelegate class is the topic of the next
chapter.

It is interesting to note that all delegates are immutable. “Changing” a
delegate involves instantiating a new delegate with the modification
included.

Defining a Delegate Type
You saw how to define a method that uses a delegate, and you learned
how to invoke a call to the delegate simply by treating the delegate
variable as a method. However, you have yet to learn how to declare a del-
egate data type. For example, you have not learned how to define
ComparisonHandler such that it requires two integer parameters and
returns a bool.

Although all delegate data types derive indirectly from System.Delegate,
the C# compiler does not allow you to define a class that derives directly or
indirectly (via System.MulticastDelegate) from System.Delegate. Listing
12.4, therefore, is not valid.

Figure 12.1: Delegate Types Object Model

ptg

 Introducing Delegates 475

Listing 12.4: System.Delegate Cannot Explicitly Be a Base Class

// ERROR: 'ComparisonHandler' cannot

// inherit from special class 'System.Delegate'

public class ComparisonHandler: System.Delegate

{

 // ...

}

In its place, C# uses the delegate keyword. This keyword causes the
compiler to generate a class similar to the one shown in Listing 12.4.
Listing 12.5 shows the syntax for declaring a delegate data type.

Listing 12.5: Declaring a Delegate Data Type

public delegate bool ComparisonHandler (

 int first, int second);

In other words, the delegate keyword is shorthand for declaring a refer-
ence type derived ultimately from System.Delegate. In fact, if the delegate
declaration appeared within another class, then the delegate type, Compar-
isonHandler, would be a nested type (see Listing 12.6).

Listing 12.6: Declaring a Nested Delegate Data Type

class DelegateSample

{

 public delegate bool ComparisonHandler (

 int first, int second);

}

In this case, the data type would be DelegateSample.ComparisonHandler
because it is defined as a nested type within DelegateSample.

Instantiating a Delegate
In this final step of implementing the BubbleSort() method with a
delegate, you will learn how to call the method and pass a delegate
instance—specifically, an instance of type ComparisonHandler. To instanti-
ate a delegate, you need a method that corresponds to the signature of the
delegate type itself. In the case of ComparisonHandler, that method takes
two integers and returns a bool. The name of the method is not significant.
Listing 12.7 shows the code for a greater-than method.

ptg

Chapter 12: Delegates and Lambda Expressions476

Listing 12.7: Declaring a ComparisonHandler-Compatible Method

public delegate bool ComparisonHandler (

 int first, int second);

class DelegateSample

{

 public static void BubbleSort(

 int[] items, ComparisonHandler comparisonMethod)

 {

 // ...

 }

 // ...

}

With this method defined, you can call BubbleSort() and pass the dele-
gate instance that contains this method. Beginning with C# 2.0, you simply
specify the name of the delegate method (see Listing 12.8).

Listing 12.8: Passing a Delegate Instance As a Parameter in C# 2.0

public delegate bool ComparisonHandler (

 int first, int second);

class DelegateSample

{

 public static void BubbleSort(

 int[] items, ComparisonHandler comparisonMethod)

 {

 // ...

 }

 {

 return first > second;

 }

 static void Main()

 {

 int[] items = new int[100];

 Random random = new Random();

 public static bool GreaterThan(int first, int second)

 {

 return first > second;

 }

 public static bool GreaterThan(int first, int second)

ptg

 Introducing Delegates 477

 for (int i = 0; i < items.Length; i++)

 {

 items[i] = random.Next(int.MinValue, int.MaxValue);

 }

 for (int i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

Note that the ComparisonHandler delegate is a reference type, but you
do not necessarily use new to instantiate it. The facility to pass the name
instead of using explicit instantiation is called delegate inference, a new
syntax beginning with C# 2.0. With this syntax, the compiler uses the
method name to look up the method signature and verify that it matches
the method’s parameter type.

A D V A N C E D T O P I C

Delegate Instantiation in C# 1.0
Earlier versions of the compiler require instantiation of the delegate dem-
onstrated in Listing 12.9.

Listing 12.9: Passing a Delegate Instance As a Parameter Prior to C# 2.0

public delegate bool ComparisonHandler (

 int first, int second);

class DelegateSample

{

 public static void BubbleSort(

 int[] items, ComparisonHandler comparisonMethod)

 {

 // ...

 }

 {

 BubbleSort(items, GreaterThan);

 public static bool GreaterThan(int first, int second)

ptg

Chapter 12: Delegates and Lambda Expressions478

 return first > second;

 }

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

 // ...

}

Note that C# 2.0 and later support both syntaxes, but unless you are writ-
ing backward-compatible code, the 2.0 syntax is preferable. Therefore,
throughout the remainder of the book, I will show only the C# 2.0 and later
syntax. (This will cause some of the remaining code not to compile on ver-
sion 1.0 compilers, unless you modify those compilers to use explicit dele-
gate instantiation.)

The approach of passing the delegate to specify the sort order is
significantly more flexible than the approach listed at the beginning of
this chapter. With the delegate approach, you can change the sort order to
be alphabetical simply by adding an alternative delegate to convert integers
to strings as part of the comparison. Listing 12.10 shows a full listing that
demonstrates alphabetical sorting, and Output 12.1 shows the results.

Listing 12.10: Using a Different ComparisonHandler-Compatible Method

using System;

class DelegateSample

{

 BubbleSort(items,

 new ComparisonHandler(GreaterThan));

ptg

 Introducing Delegates 479

 public delegate bool ComparisonHandler(int first, int second);

 public static void BubbleSort(

 int[] items, ComparisonHandler comparisonMethod)

 {

 int i;

 int j;

 int temp;

 for (i = items.Length - 1; i >= 0; i--)

 {

 for (j = 1; j <= i; j++)

 {

 if (comparisonMethod(items[j - 1], items[j]))

 {

 temp = items[j - 1];

 items[j - 1] = items[j];

 items[j] = temp;

 }

 }

 }

 }

 public static bool GreaterThan(int first, int second)

 {

 return first > second;

 }

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer: ");

 items[i] = int.Parse(Console.ReadLine());

 }

 public static bool AlphabeticalGreaterThan(

 int first, int second)

 {

 int comparison;

 comparison = (first.ToString().CompareTo(

 second.ToString()));

 return comparison > 0;

 }

ptg

Chapter 12: Delegates and Lambda Expressions480

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

The alphabetic order is different from the numeric order. Note how simple
it was to add this additional sort mechanism, however, compared to the
process used at the beginning of the chapter.

The only changes to create the alphabetical sort order were the addition
of the AlphabeticalGreaterThan method and then passing that method
into the call to BubbleSort().

Anonymous Methods

C# 2.0 and later include a feature known as anonymous methods. These
are delegate instances with no actual method declaration. Instead, they are
defined inline in the code, as shown in Listing 12.11.

Listing 12.11: Passing an Anonymous Method

class DelegateSample

{

 // ...

 static void Main(string[] args)

 {

 BubbleSort(items, AlphabeticalGreaterThan);

OUTPUT 12.1:

Enter an integer: 1

Enter an integer: 12

Enter an integer: 13

Enter an integer: 5

Enter an integer: 4

1

12

13

4

5

ptg

 Anonymous Methods 481

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

In Listing 12.11, you change the call to BubbleSort() to use an anonymous
method that sorts items in descending order. Notice that no LessThan()
method is specified. Instead, the delegate keyword is placed directly
inline with the code. In this context, the delegate keyword serves as a
means of specifying a type of “delegate literal,” similar to how quotes
specify a string literal.

You can even call the BubbleSort() method directly, without declaring
the comparisonMethod variable (see Listing 12.12).

Listing 12.12: Using an Anonymous Method without Declaring a Variable

class DelegateSample

{

 // ...

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 ComparisonHandler comparisonMethod;

 comparisonMethod =

 delegate(int first, int second)

 {

 return first < second;

 };

 BubbleSort(items, comparisonMethod);

ptg

Chapter 12: Delegates and Lambda Expressions482

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

Note that in all cases, the parameter types and the return type must be
compatible with the ComparisonHandler data type, the delegate type of the
second parameter of BubbleSort().

In summary, C# 2.0 included a new feature, anonymous methods, that
provided a means to declare a method with no name and convert it into a
delegate.

A D V A N C E D T O P I C

Parameterless Anonymous Methods
Compatibility of the method signature with the delegate data type does
not exclude the possibility of no parameter list. Unlike with lambda
expressions, statement lambdas, and expression lambdas (see the next
section), anonymous methods are allowed to omit the parameter list
(delegate { return Console.ReadLine() != ""}, for example). This is
atypical, but it does allow the same anonymous method to appear in
multiple scenarios even though the delegate type may vary. Note,
however, that although the parameter list may be omitted, the return type
will still need to be compatible with that of the delegate (unless an excep-
tion is thrown).

 BubbleSort(items,

 delegate(int first, int second)

 {

 return first < second;

 }

);

ptg

System-Defined Delegates: Func<> 483

System-Defined Delegates: Func<>

.NET 3.5 (C# 3.0) included a series of generic delegates with the names
“Action” and “Func.” System.Func represents delegates that had return
types while System.Action corresponds when no return type occurs.
The signatures for these delegates are shown in Listing 12.13 (although
the in/out type modifiers were not added until C# 4.0, as discussed
shortly).

Listing 12.13: Func and Action Delegate Declarations

public delegate void Action ();

public delegate void Action<in T>(T arg)

public delegate void Action<in T1, in T2>(

 in T1 arg1, in T2 arg2)

public delegate void Action<in T1, in T2, in T3>(

 T1 arg1, T2 arg2, T3 arg3)

public delegate void Action<in T1, in T2, in T3, in T4(

 T1 arg1, T2 arg2, T3 arg3, T4 arg4)

...

public delegate void Action<

 in T1, in T2, in T3, in T4, in T5, in T6, in T7, in T8,

 in T9, in T10, in T11, in T12, in T13, in T14, in T16(

 T1 arg1, T2 arg2, T3 arg3, T4 arg4,

 T5 arg5, T6 arg6, T7 arg7, T8 arg8,

 T9 arg9, T10 arg10, T11 arg11, T12 arg12,

 T13 arg13, T14 arg14, T15 arg15, T16 arg16)

public delegate TResult Func<out TResult>();

public delegate TResult Func<in T, out TResult>(T arg)

public delegate TResult Func<in T1, in T2, out TResult>(

 in T1 arg1, in T2 arg2)

public delegate TResult Func<in T1, in T2, in T3, out TResult>(

 T1 arg1, T2 arg2, T3 arg3)

public delegate TResult Func<in T1, in T2, in T3, in T4,

 out TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)

...

public delegate TResult Func<

 in T1, in T2, in T3, in T4, in T5, in T6, in T7, in T8,

 in T9, in T10, in T11, in T12, in T13, in T14, in T16,

 out TResult>(

 T1 arg1, T2 arg2, T3 arg3, T4 arg4,

 T5 arg5, T6 arg6, T7 arg7, T8 arg8,

 T9 arg9, T10 arg10, T11 arg11, T12 arg12,

 T13 arg13, T14 arg14, T15 arg15, T16 arg16)

ptg

Chapter 12: Delegates and Lambda Expressions484

Since the delegate definitions in Listing 12.13 are generic, it is possible
to use them instead of defining a custom delegate. For example, rather
than declaring the ComparisonHandler delegate type, code could simply
declare ComparisonHandler delegates using Func<int, int, bool>. The
last type parameter of Func is always the return type of the delegate. The
earlier type parameters correspond in sequence to the type of delegate
parameters. In the case of ComparisonHandler, the return is bool (the last
type parameter of the Func declaration) and the type arguments int and
int correspond with the first and second parameters of ComparisonHan-
dler. In many cases, the inclusion of Func delegates in the .NET 3.5 Frame-
work eliminates the necessity to define delegates. You should use
System.Action, or one of the generic versions, for delegates that have no
return (TResult) and that take no parameters.

However, you should still declare delegate types when such a type
would simplify coding with the delegate. For example, continuing to use
the ComparisonHandler provides a more explicit indication of what the
delegate is used for, whereas Func<int, int, bool> provides nothing
more than an understanding of the method signature.

Evaluation about whether to declare a delegate is still meaningful and
includes considerations such as whether the name of the delegate identi-
fier is sufficient for indicating intent, whether the delegate type name
would clarify its use, and whether the use of a .NET 3.5 type will limit the
use of the assembly to .NET 3.5 clients unnecessarily.

Note that even though you can use a generic Func delegate in place of an
explicitly defined delegate, the types are not compatible. You cannot assign
one delegate type to a variable of another delegate type even if the type
parameters match. For example, you cannot assign a ComparisonHandler
variable to a Func<int, int, bool> variable or pass them interchangeably
as parameters even though both represent signatures for a delegate that
takes two int parameters and returns a bool.

However, notice the type parameter modifiers decorating the delegates
in Listing 12.13. These do allow for some degree of casting between them,
thanks to the variance support added in C# 4.0. Consider the following
contravariant example: Because void Action<in T>(T arg) has the in type
parameter decorator, it is possible to assign type Action<string> an object

ptg

System-Defined Delegates: Func<> 485

of type Action<object>. In other words, any methods with a void return
and an object parameter will implicitly cast to the more restrictive
delegate type that only allows parameters of type string. Similarly
with covariance and a Func delegate—since TResult Func<out TResult>()
includes the out type parameter modifier on TResult, it is possible to
implicitly assign a Func<object> variable the value of a Func<string>.
(See Listing 12.14.)

Listing 12.14: Using Variance for Delegates

// Contravariance
Action<object> broadAction =
 delegate(object data)
 {
 Console.WriteLine(data);
 };
Action<string> narrowAction = broadAction;

// Contravariance
Func<string> narrowFunction =
 delegate()
 {
 return Console.ReadLine();
 };
Func<object> broadFunction = narrowFunction;

// Contravariance & Covariance Combined
Func<object, string> func1 =
 delegate(object data)
 {
 return data.ToString();
 };
Func<string, object> func2 = func1;

The last part of the listing combines both variance concepts into a single
example, demonstrating how they can occur simultaneously if both in and
out type parameters are involved.

The need for variance support within these generic delegates was a key
contributing factor for why C# now includes the feature.2

2. The other was support for covariance to IEnumerable<out T>.

ptg

Chapter 12: Delegates and Lambda Expressions486

Lambda Expressions

Introduced in C# 3.0, lambda expressions are a more succinct syntax of
anonymous functions than anonymous methods, where anonymous func-
tions is a general term that includes both lambda expressions and anony-
mous methods. Lambda expressions are themselves broken into two
types: statement lambdas and expression lambdas. Figure 12.2 shows the
hierarchical relationship between the terms.

As mentioned earlier in the context of delegates, all anonymous functions
are immutable.

Statement Lambdas
With statement lambdas, C# 3.0 provides a reduced syntax for anonymous
methods, a syntax that does not include the delegate keyword and adds
the lambda operator, =>. Listing 12.15 shows equivalent functionality to
Listing 12.12, except that Listing 12.15 uses a statement lambda rather than
an anonymous method.

Listing 12.15: Passing a Delegate with a Statement Lambda

class DelegateSample

{

 // ...

Figure 12.2: Anonymous Function Terminology

Anonymous
Function

Lambda
Expression

Anonymous
Method

Expression
Lambda

Statement
Lambda

ptg

 Lambda Expressions 487

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

When reading code that includes a lambda operator, you would replace
the lambda operator with the words go/goes to. For example, you would
read n => { return n.ToString();} as “n goes to return n dot ToString.”
In Listing 12.15, you would read the second BubbleSort() parameter as
“integers first and second go to returning the result of first less than
second.”

As readers will observe, the syntax in Listing 12.15 is virtually identi-
cal to that in Listing 12.12, apart from the changes already outlined. How-
ever, statement lambdas allow for an additional shortcut via type
parameter inference. Rather than explicitly declaring the data type of the
parameters, statement lambdas can omit parameter types as long as the
compiler can infer the types. In Listing 12.16, the delegate data type is
bool ComparisonHandler(int first, int second), so the compiler veri-
fies that the return type is a bool and infers that the input parameters are
both integers (int).

 BubbleSort(items,

 (int first, int second) =>

 {

 return first < second;

 }

);

ptg

Chapter 12: Delegates and Lambda Expressions488

Listing 12.16: Omitting Parameter Types from Statement Lambdas

 // ...

 // ...

In general, statement lambdas do not need parameter types as long as
the compiler can infer the types or can implicitly convert them to the requi-
site expected types. If the types are specified, however, there must be an
exact match for the delegate type. In cases where inference is not possible,
the data type is required, although even when it is not required, you can
specify the data type explicitly to increase readability; once the statement
lambda includes one type, all types are required.

In general, C# requires a lambda expression to have parentheses around
the parameter list regardless of whether the data type is specified. Even
parameterless statement lambdas, representing delegates that have no
input parameters, are coded using empty parentheses (see Listing 12.17).

Listing 12.17: Parameterless Statement Lambdas

using System;

 // ...

 Func<string> getUserInput =

 {

 string input;

 do

 {

 input = Console.ReadLine();

 }

 while(input.Trim().Length==0);

 return input;

 };

 // ...

The exception to the parenthesis rule is that if the compiler can infer the
data type and there is only a single input parameter, the statement lambda
does not require parentheses (see Listing 12.18).

 BubbleSort(items,

 (first, second) =>

 {

 return first < second;

 }

);

() =>

ptg

 Lambda Expressions 489

Listing 12.18: Statement Lambdas with a Single Input Parameter

using System.Collections.Generic;

using System.Diagnostics;

using System.Linq;

 // ...

 IEnumerable<Process> processes = Process.GetProcesses().Where(

 process => { return process.WorkingSet64 > 2^30; });

 // ...

(In Listing 12.18, Where() returns a query for processes that have a physical
memory utilization greater than 1GB.)

Note that back in Listing 12.17, the body of the statement lambda
includes multiple statements inside the statement block (via curly braces).
Although a statement lambda can have any number of statements, typi-
cally a statement lambda uses only two or three statements in its statement
block.

Expression Lambdas
Unlike a statement lambda, which includes a statement block and, there-
fore, zero or more statements, an expression lambda has only an expres-
sion, with no statement block. Listing 12.19 is the same as Listing 12.15,
except that it uses an expression lambda rather than a statement lambda.

Listing 12.19: Passing a Delegate with a Statement Lambda

class DelegateSample

{

 // ...

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 BubbleSort(items, (first, second) => first < second;);

ptg

Chapter 12: Delegates and Lambda Expressions490

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

The difference between a statement and an expression lambda is that
the statement lambda has a statement block on the right side of the lambda
operator, whereas the expression lambda has only an expression (no
return statement or curly braces, for example).

Generally, you would read a lambda operator in an expression lambda in
the same way you would a statement lambda: “go/goes to.” In addition,
“becomes” is sometimes clearer. In cases such as the BubbleSort() call,
where the expression lambda specified is a predicate (returns a Boolean), it is
frequently clearer to replace the lambda operator with “such that.” This
changes the pronunciation of the statement lambda in Listing 12.19 to read
“first and second such that first is less than second.” One of the most common
places for a predicate to appear is in the call to System.Linq.Enumerable()’s
Where() function. In cases such as this, neither “such that” nor “goes to” is
needed. We would read names.Where(name => name.Contains(" ")) as
“names where names dot Contains a space,” for example. One pronunciation
difference between the lambda operator in statement lambdas and in expres-
sion lambdas is that “such that” terminology applies more to expression
lambdas than to statement lambdas since the latter tend to be more complex.

The anonymous function does not have any intrinsic type associated
with it, although implicit conversion is possible for any delegate type as
long as the parameters and return type are compatible. In other words, an
anonymous method is no more a ComparisonHandler type than another
delegate type such as LessThanHandler. As a result, you cannot use the
typeof() operator (see Chapter 17) on an anonymous method, and calling
GetType() is possible only after assigning or casting the anonymous
method to a delegate variable.

Table 12.1 contains additional lambda expression characteristics.

ptg

491

TABLE 12.1: Lambda Expression Notes and Examples

Statement Example

Lambda expressions themselves do not have type. In fact,
there is no concept of a lambda expression in the CLR.
Therefore, there are no members to call directly from
a lambda expression. The . operator on a lambda
expression will not compile, eliminating even the option
of calls to object methods.

// ERROR: Operator '.' cannot be applied to

// operand of type 'lambda expression'

Type type = ((int x) => x).ToString();

Given that a lambda expression does not have an intrinsic
type, it cannot appear to the right of an is operator.

// ERROR: The first operand of an 'is' or 'as'

// operator may not be a lambda expression or

// anonymous method

bool boolean = ((int x) => x) is Func<int, int>;

Although there is no type on the lambda expression on its
own, once assigned or cast, the lambda expression takes on a
type. Therefore, it is common for developers to informally
refer to the type of the lambda expression concerning type
compatibility, for example.

// ERROR: Lambda expression is not compatible with

// Func<int, bool> type.

Func<int, bool> expression = ((int x) => x);

A lambda expression cannot be assigned to an implicitly
typed local variable since the compiler does not know what
type to make the variable given that lambda expressions do
not have type.

// ERROR: Cannot assign lambda expression to an

// implicitly typed local variable

var thing = (x => x);

Continues

From the Library of Wow! eBook

ptg

492

Statement Example

C# does not allow jump statements (break, goto, continue)
inside anonymous functions if the target is outside the
lambda expression. Similarly, you cannot target a jump state-
ment from outside the lambda expression (or anonymous
methods) into the lambda expression.

// ERROR: Control cannot leave the body of an
// anonymous method or lambda expression
string[] args;
Func<string> expression;
switch(args[0])
{
 case "/File":
 expression = () =>
 {
 if (!File.Exists(args[1]))
 {
 break;
 }
 // ...

 };
 // ...
}

Variables introduced within a lambda expression are visible
only within the scope of the lambda expression body.

// ERROR: The name 'first' does not
// exist in the current context
Func<int, int, bool> expression =
 (first, second) => first > second;

TABLE 12.1: Lambda Expression Notes and Examples (Continued)

 return args[1];

 first++;

From the Library of Wow! eBook

ptg

493

Statement Example

The compiler’s flow analysis is unable to detect initialization
of local variables in lambda expressions.

int number;

Func<string, bool> expression =

 text => int.TryParse(text, out number);

if (expression("1"))

{

 // ERROR: Use of unassigned local variable

 System.Console.Write(number);

}

int number;

Func<int, bool> isFortyTwo =

 x => 42 == (number = x);

if (isFortyTwo(42))

{

 // ERROR: Use of unassigned local variable

 System.Console.Write(number);

}

TABLE 12.1: Lambda Expression Notes and Examples (Continued)

From the Library of Wow! eBook

ptg

Chapter 12: Delegates and Lambda Expressions494

A D V A N C E D T O P I C

Lambda Expression and Anonymous Method Internals
Lambda expressions (and anonymous methods) are not an intrinsic con-
struct within the CLR. Rather, the C# compiler generates the implementa-
tion at compile time. Lambda expressions provide a language construct for
an inline-declared delegate pattern. The C# compiler, therefore, generates
the implementation code for this pattern so that the compiler automati-
cally writes the code instead of the developer writing it manually. Given
the earlier listings, therefore, the C# compiler generates CIL code that is
similar to the C# code shown in Listing 12.20.

Listing 12.20: C# Equivalent of CIL Generated by the Compiler for Lambda Expressions

class DelegateSample

{

 // ...

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

 BubbleSort(items,

 DelegateSample.__AnonymousMethod_00000000);

 private static bool __AnonymousMethod_00000000(

 int first, int second)

 {

ptg

 Lambda Expressions 495

}

In this example, an anonymous method is converted into a separately
declared static method that is then instantiated as a delegate and passed as a
parameter.

Outer Variables
Local variables declared outside a lambda expression (including parame-
ters), but captured (accessed) within the lambda expression, are outer vari-
ables of that lambda. this is also an outer variable. Outer variables
captured by anonymous functions live on until after the anonymous func-
tion’s delegate is destroyed. In Listing 12.21, it is relatively trivial to use an
outer variable to count how many times BubbleSort() performs a compar-
ison. Output 12.2 shows the results of this listing.

Listing 12.21: Using an Outer Variable in a Lambda Expression

class DelegateSample

{

 // ...

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 return first < second;

 }

 int comparisonCount=0;

 BubbleSort(items,

 (int first, int second) =>

 {

 comparisonCount++;

 return first < second;

ptg

Chapter 12: Delegates and Lambda Expressions496

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

comparisonCount appears outside the lambda expression and is incremented
inside it. After calling the BubbleSort() method, comparisonCount is printed
out to the console.

As this code demonstrates, the C# compiler takes care of generating CIL
code that shares comparisonCount between the anonymous method and
the call site, even though there is no parameter to pass comparisonCount
within the anonymous delegate, nor within the BubbleSort() method.
Given the sharing of the variable, it will not be garbage-collected until after
the delegate that references it is garbage-collected. In other words, the life-
time of the captured variable is at least as long as that of the longest-lived
delegate object capturing it.

A D V A N C E D T O P I C

Outer Variable CIL Implementation
The CIL code generated by the C# compiler for outer variables is more
complex than the code for a simple anonymous method. Listing 12.22
shows the C# equivalent of the CIL code used to implement outer variables.

 }

);

 Console.WriteLine("Items were compared {0} times.",

 comparisonCount);

OUTPUT 12.2:

Enter an integer:5

Enter an integer:1

Enter an integer:4

Enter an integer:2

Enter an integer:3

5

4

3

2

1

Items were compared 10 times.

ptg

 Lambda Expressions 497

Listing 12.22: C# Equivalent of CIL Code Generated by Compiler for Outer Variables

class DelegateSample

{

 // ...

 ...

 static void Main(string[] args)

 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)

 {

 Console.Write("Enter an integer:");

 items[i] = int.Parse(Console.ReadLine());

 }

 for (i = 0; i < items.Length; i++)

 {

 Console.WriteLine(items[i]);

 }

 }

}

Notice that the captured local variable is never “passed” anywhere and is
never “copied” anywhere. Rather, the captured local variable (compari-
sonCount) is a single variable whose lifetime we have extended by
implementing it as an instance field rather than as a local variable. All ref-
erences to the local variable are rewritten to be references to the field.

 private sealed class __LocalsDisplayClass_00000001

 {

 public int comparisonCount;

 public bool __AnonymousMethod_00000000(

 int first, int second)

 {

 comparisonCount++;

 return first < second;

 }

 }

 LocalsDisplayClass_00000001 locals =

 new __LocalsDisplayClass_00000001();

 locals.comparisonCount=0;

 BubbleSort(items, locals.__AnonymousMethod_00000000);

 Console.WriteLine("Items were compared {0} times.",

 locals.comparisonCount);

ptg

Chapter 12: Delegates and Lambda Expressions498

The generated class, __LocalsDisplayClass, is a closure—a data
structure (class in C#) that contains an expression and the variables
(public fields in C#) necessary to evaluate the expression. The variables
(such as comparisonCount) enable the passing of data from one invoca-
tion of the expression to the next without changing the signature of the
expression.

Expression Trees
Lambda expressions provide a succinct syntax for defining a method inline
within your code. The compiler converts the code so that it is executable and
callable later, potentially passing the delegate to another method. One fea-
ture for which it does not offer intrinsic support, however, is a representation
of the expression as data—data that may be traversed and even serialized.

Using Lambda Expressions As Data

Consider the lambda expression in the following code:

 persons.Where(

 person => person.Name.ToUpper() == "INIGO MONTOYA");

Assuming that persons is an array of Persons, the compiler compiles the
lambda expression to a Func<person, bool> delegate type and then passes
the delegate instance to the Where() method. Code and execution like this
works very well. (The Where() method is an IEnumerable extension method
from the class System.Linq.Enumerable, but this is irrelevant within this
section.)

What if persons was not a Person array, but rather a collection of Per-
son objects sitting on a remote computer, or perhaps in a database? Rather
than returning all items in the persons collection, it would be preferable to
send data describing the expression over the network and have the filter-
ing occur remotely so that only the resultant selection returns over the net-
work. In scenarios such as this, the data about the expression is needed, not
the compiled CIL. The remote computer then compiles or interprets the
expression data.

Interpreting is motivation for adding expression trees to the language.
Lambda expressions that represent data about expressions rather than

ptg

 Lambda Expressions 499

compiled code are expression trees. Since the expression tree represents
data rather than compiled code, it is possible to convert the data to an
alternative format—to convert it from the expression data to SQL code
(SQL is the language generally used to query data from databases) that
executes on a database, for example. The expression tree received by
Where() may be converted into a SQL query that is passed to a database,
for example (see Listing 12.23).

Listing 12.23: Converting an Expression Tree to a SQL where Clause

Recognizing the original Where() call parameter as data, you can see
that it is made up of the following:

• The call to the Person property, Name

• A call to a string method called ToUpper()

• A constant value, "INIGO MONTOYA"

• An equality operator, ==

The Where() method takes this data and converts it to the SQL where
clause by iterating over the data and building a SQL query string. How-
ever, SQL is just one example of what an expression tree may convert to.

Expression Trees Are Object Graphs

The data that an expression tree translates to is an object graph, an object
graph that is represented by System.Linq.Expressions.Expression.
Although an expression tree includes a method that will compile it into a
delegate constructor call (executable CIL code), it is more likely that the
expression tree (data) will be converted into a different format or set of
instructions.

Any lambda expression, for example, is a type of expression that has a
read-only collection of parameters, a return type, and a body—which is
another expression (see Figure 12.3).

 persons.Where(person => person.Name.ToUpper() == "INIGO MONTOYA");

 select * from Person where upper(Name) = 'INIGO MONTOYA';

ptg

Chapter 12: Delegates and Lambda Expressions500

This object graph is the data required to compile the LambdaExpression
into CIL (or to convert some other representation). Similarly, we can create
an object graph for a unary expression or binary expression (see Figure 12.4).

A unary expression (such as count++) is an expression composed of an
Operand (of type Expression) and a Method—the operator. The BinaryEx-
pression, which also derives from Expression, has two expression associ-
ations (Left and Right) in addition to the operator (Method). These object
graphs sufficiently represent these types of expressions. However, there
are another 30 or so expression types, such as NewExpression, Parameter-
Expression, MethodCallExpression, LoopExpression, and so forth.

Figure 12.3: Object Graph of a Lambda Expression

ptg

501

Figure 12.4: Object Graph of Unary and Binary Expressions

From the Library of Wow! eBook

ptg

Chapter 12: Delegates and Lambda Expressions502

Lambda Expressions versus Expression Trees

Both a lambda expression for delegates and a lambda expression for an
expression tree are compiled, and in both cases the syntax of the expres-
sion is verified at compile time with full semantic analysis. The difference,
however, is that a lambda expression is compiled into a delegate in CIL. In
contrast, an expression tree is compiled into a data structure of type
System.Linq.Expressions.Expression.

Let us consider an example that highlights the difference between a
delegate and an expression tree. System.Linq.Enumerable and Sys-

tem.Linq.Queryable are very similar. They each provide virtually identical
extension methods to the collection interfaces they extend (IEnumerable and
IQueryable, respectively). Consider, for example, the Where() method from
Listing 12.23. Given a collection that supports IEnumerable, a call to Where()
could be as follows:

 persons.Where(person => person.Name.ToUpper() ==
 "INIGO MONTOYA");

Conceptually, the Enumerable extension method signature is defined
on IEnumerable<TSource> as follows:

public IEnumerable<TSource> Where<TSource>(
 Func<TSource, bool> predicate);

However, the equivalent Queryable extension on the IQueryable<TSource>
method call is identical, even though the conceptual Where() method signature
(shown) is not:

public IQueryable<TSource> Where<TSource>(
 Expression<Func<TSource, bool>> predicate);

The calling code for the argument is identical because the lambda
expression itself does not have type until it is assigned/cast.

Enumerable’s Where() implementation takes the lambda expression
and converts it to a delegate that the Where() method’s implementation
calls. In contrast, when calling Queryable’s Where(), the lambda expres-
sion is converted to an expression tree so that the compiler converts the
lambda expression into data. The object implementing IQueryable receives

ptg

 Lambda Expressions 503

the expression data and manipulates it. As suggested before, the expression
tree received by Where() may be converted into a SQL query that is passed
to a database.

Examining an Expression Tree

Capitalizing on the fact that lambda expressions don’t have intrinsic type,
assigning a lambda expression to a System.Linq.Expressions.Expres-
sion<TDelegate> creates an expression tree rather than a delegate.

In Listing 12.24, we create an expression tree for the Func<int, int,

bool>. (Recall that Func<int, int, bool> is functionally equivalent to the
ComparisonHandler delegate.) Notice that just the simple act of writing
an expression to the console, Console.WriteLine(expression) (where
expression is of type Expression<TDelegate>), will result in a call to
expression’s ToString() method. However, this doesn’t cause the expres-
sion to be evaluated or even to write out the fully qualified name of
Func<int, int, bool> (as would happen if we used a delegate instance).
Rather, displaying the expression writes out the data (in this case, the expres-
sion code) corresponding to the value of the expression tree.

Listing 12.24: Examining an Expression Tree

using System;
using System.Linq.Expressions;

class Program
{
 static void Main()
 {
 Expression<Func<int, int, bool>> expression;
 expression = (x, y) => x > y;
 Console.WriteLine("-------------{0}-------------",
 expression);
 PrintNode(expression.Body, 0);
 Console.WriteLine();
 Console.WriteLine();
 expression = (x, y) => x * y > x + y;
 Console.WriteLine("-------------{0}-------------",
 expression);
 PrintNode(expression.Body, 0);
 Console.WriteLine();
 Console.WriteLine();
 }

ptg

Chapter 12: Delegates and Lambda Expressions504

 public static void PrintNode(Expression expression,
 int indent)
 {
 if (expression is BinaryExpression)
 PrintNode(expression as BinaryExpression, indent);
 else
 PrintSingle(expression, indent);
 }
 private static void PrintNode(BinaryExpression expression,
 int indent)
 {
 PrintNode(expression.Left, indent + 1);
 PrintSingle(expression, indent);
 PrintNode(expression.Right, indent + 1);
 }
 private static void PrintSingle(
 Expression expression, int indent)
 {
 Console.WriteLine("{0," + indent * 5 + "}{1}",
 "", NodeToString(expression));
 }
 private static string NodeToString(Expression expression)
 {
 switch (expression.NodeType)
 {
 case ExpressionType.Multiply:
 return "*";
 case ExpressionType.Add:
 return "+";
 case ExpressionType.Divide:
 return "/";
 case ExpressionType.Subtract:
 return "-";
 case ExpressionType.GreaterThan:
 return ">";
 case ExpressionType.LessThan:
 return "<";
 default:
 return expression.ToString() +
 " (" + expression.NodeType.ToString() + ")";
 }
 }
}

In Output 12.3, we see that the Console.WriteLine() statements within
Main() print out the body of the expression trees as text.

ptg

 Lambda Expressions 505

The output of the expression as text is due to conversion from the
underlying data of an expression tree—conversion similar to the Print-
Node() and NodeTypeToString() functions, only more comprehensive.
The important point to note is that an expression tree is a collection of data,
and by iterating over the data, it is possible to convert the data to another
format. In the PrintNode() method, Listing 12.24 converts the data to a
horizontal text interpretation of the data. However, the interpretation
could be virtually anything.

Using recursion, the PrintNode() function demonstrates that an
expression tree is a tree of zero or more expression trees. The contained
expression trees are stored in an Expression’s Body property. In addition,
the expression tree includes an ExpressionType property called NodeType
where ExpressionType is an enum for each different type of expression.
There are numerous types of expressions: BinaryExpression, Condition-
alExpression, LambdaExpression (the root of an expression tree), Method-
CallExpression, ParameterExpression, and ConstantExpression are
examples. Each type derives from System.Linq.Expressions.Expression.

Generally, you can use statement lambdas interchangeably with
expression lambdas. However, you cannot convert statement lambdas into
expression trees. You can express expression trees only by using expres-
sion lambda syntax.

OUTPUT 12.3:

------------- (x, y) => x > y -------------
 x (Parameter)
>
 y (Parameter)

------------- (x, y) => (x * y) > (x + y) -------------
 x (Parameter)
 *
 y (Parameter)
>
 x (Parameter)
 +
 y (Parameter)

ptg

Chapter 12: Delegates and Lambda Expressions506

SUMMARY

This chapter began with a discussion of delegates and their use as refer-
ences to methods or callbacks. It introduced a powerful concept for
passing a set of instructions to call in a different location, rather than
immediately, when the instructions are coded.

Following on the heels of a brief look at the C# 2.0 concept of anonymous
methods, the chapter introduced the C# 3.0 concept of lambda expressions,
a syntax which supersedes (although doesn’t eliminate) the C# 2.0 anony-
mous method syntax. Regardless of the syntax, these constructs allow pro-
grammers to assign a set of instructions to a variable directly, without
defining an explicit method that contains the instructions. This provides
significant flexibility for programming instructions dynamically within the
method—a powerful concept that greatly simplifies the programming of
collections through an API known as LINQ, which stands for Language
Integrated Query.

Finally, the chapter ended with the concept of expression trees, and
how they compile into data that represents a lambda expression, rather
than the delegate implementation itself. This is a key feature that enables
such libraries as LINQ to SQL and LINQ to XML, libraries that interpret
the expression tree and use it within contexts other than CIL.

The term lambda expression encompasses both statement lambda and
expression lambda. In other words, both statement lambdas and expression
lambdas are types of lambda expressions.

One thing that the chapter mentioned but did not elaborate on was
multicast delegates. The next chapter investigates multicast delegates in
detail and explains how they enable the publish-subscribe pattern with
events.

ptg

507

13
Events

N THE PRECEDING CHAPTER, you saw how to store a single method inside
an instance of a delegate type and invoke that method via the delegate.

Delegates comprise the building blocks of a larger pattern called publish-
subscribe. The use of delegates and their support for publish-subscribe pat-
terns is the focus of this chapter. Virtually everything described within this
chapter is possible to do using delegates alone. However, the event con-
structs that this chapter focuses on providing additional encapsulation, mak-
ing the publish-subscribe pattern easier to implement and less error-prone.

In the preceding chapter, all delegates were for a single callback (a mul-
tiplicity of one). However, a single delegate variable can reference a series

I

3

2

4

5 1

Events

Why Events?

Coding Conventions

Event Declaration

Generics and
Delegates

Customizing the Event
Implementation

ptg

Chapter 13: Events508

of delegates in which each successive one points to a succeeding delegate
in the form of a chain, sometimes known as a multicast delegate. With a
multicast delegate, you can invoke a method chain via a single method
object, create variables that refer to a method’s chain, and pass the dele-
gates as parameters to pass methods.

The C# implementation of multicast delegates is a common pattern that
would otherwise require significant manual code. Known as the observer
or publish-subscribe pattern, it represents scenarios where notifications
of single events, such as a change in object state, are broadcast to multiple
subscribers.

Coding the Observer Pattern with Multicast Delegates

Consider a temperature control example, where a heater and a cooler are
hooked up to the same thermostat. In order for a unit to turn on and off
appropriately, you notify the unit of changes in temperature. One thermo-
stat publishes temperature changes to multiple subscribers—the heating
and cooling units. The next section investigates the code.1

Defining Subscriber Methods
Begin by defining the Heater and Cooler objects (see Listing 13.1).

Listing 13.1: Heater and Cooler Event Subscriber Implementations

class Cooler

{

 public Cooler(float temperature)

 {

 Temperature = temperature;

 }

 public float Temperature

 {

 get{return _Temperature;}

 set{_Temperature = value;}

 }

 private float _Temperature;

1. In this example, I use the term thermostat because people more commonly think of it in the
context of heating and cooling systems. Technically, however, thermometer would be more
appropriate.

ptg

 Coding the Observer Pattern with Multicast Delegates 509

 public void OnTemperatureChanged(float newTemperature)

 {

 if (newTemperature > Temperature)

 {

 System.Console.WriteLine("Cooler: On");

 }

 else

 {

 System.Console.WriteLine("Cooler: Off");

 }

 }

}

class Heater

{

 public Heater(float temperature)

 {

 Temperature = temperature;

 }

 public float Temperature

 {

 get{return _Temperature;}

 set{_Temperature = value;}

 }

 private float _Temperature;

 public void OnTemperatureChanged(float newTemperature)

 {

 if (newTemperature < Temperature)

 {

 System.Console.WriteLine("Heater: On");

 }

 else

 {

 System.Console.WriteLine("Heater: Off");

 }

 }

}

The two classes are essentially identical, with the exception of the tem-
perature comparison. (In fact, you could eliminate one of the classes if
you used a delegate as a method pointer for comparison within the

ptg

Chapter 13: Events510

OnTemperatureChanged method.) Each class stores the temperature for
when to turn on the unit. In addition, both classes provide an OnTempera-
tureChanged() method. Calling the OnTemperatureChanged() method is
the means to indicate to the Heater and Cooler classes that the tempera-
ture has changed. The method implementation uses newTemperature to
compare against the stored trigger temperature to determine whether to
turn on the device.

The OnTemperatureChanged() methods are the subscriber methods. It is
important that they have the parameters and a return type that matches
the delegate from the Thermostat class, which I will discuss next.

Defining the Publisher
The Thermostat class is responsible for reporting temperature changes to
the heater and cooler object instances. The Thermostat class code appears
in Listing 13.2.

Listing 13.2: Defining the Event Publisher, Thermostat

public class Thermostat

{

 // Define the delegate data type

 public delegate void TemperatureChangeHandler(

 float newTemperature);

 // Define the event publisher

 public TemperatureChangeHandler OnTemperatureChange

 {

 get{ return _OnTemperatureChange;}

 set{ _OnTemperatureChange = value;}

 }

 private TemperatureChangeHandler _OnTemperatureChange;

 public float CurrentTemperature

 {

 get{return _CurrentTemperature;}

 set

 {

 if (value != CurrentTemperature)

 {

 _CurrentTemperature = value;

 }

 }

 }

 private float _CurrentTemperature;

}

ptg

 Coding the Observer Pattern with Multicast Delegates 511

The first member of the Thermostat class is the TemperatureChange-
Handler delegate. Although not a requirement, Thermostat.Tempera-
tureChangeHandler is a nested delegate because its definition is specific to
the Thermostat class. The delegate defines the signature of the subscriber
methods. Notice, therefore, that in both the Heater and the Cooler classes,
the OnTemperatureChanged() methods match the signature of Tempera-
tureChangeHandler.

In addition to defining the delegate type, Thermostat also includes a
property called OnTemperatureChange that is of the OnTemperatureChange
Handler delegate type. OnTemperatureChange stores a list of subscribers.
Notice that only one delegate field is required to store all the subscribers.
In other words, both the Cooler and the Heater classes will receive notifi-
cations of a change in the temperature from this single publisher.

The last member of Thermostat is the CurrentTemperature property.
This sets and retrieves the value of the current temperature reported by the
Thermostat class.

Hooking Up the Publisher and Subscribers
Finally, put all these pieces together in a Main() method. Listing 13.3
shows a sample of what Main() could look like.

Listing 13.3: Connecting the Publisher and Subscribers

class Program

{

 public static void Main()

 {

 Thermostat thermostat = new Thermostat();

 Heater heater = new Heater(60);

 Cooler cooler = new Cooler(80);

 string temperature;

 Console.Write("Enter temperature: ");

 temperature = Console.ReadLine();

 thermostat.CurrentTemperature = int.Parse(temperature);

 }

}

 // Using C# 2.0 or later syntax.

 thermostat.OnTemperatureChange +=

 heater.OnTemperatureChanged;

 thermostat.OnTemperatureChange +=

 cooler.OnTemperatureChanged;

ptg

Chapter 13: Events512

The code in this listing has registered two subscribers (heater.OnTempera-
tureChanged and cooler.OnTemperatureChanged) to the OnTempera-

tureChange delegate by directly assigning them using the += operator. (As
noted in the comment, you need to use the new operator with the Tempera-
tureChangeHandler constructor if you are only using C# 1.0.)

By taking the temperature value the user has entered, you can set the
CurrentTemperature of thermostat. However, you have not yet written
any code to publish the change temperature event to subscribers.

Invoking a Delegate
Every time the CurrentTemperature property on the Thermostat class
changes, you want to invoke the delegate to notify the subscribers (heater
and cooler) of the change in temperature. To do this, modify the Current-
Temperature property to save the new value and publish a notification to
each subscriber. The code modification appears in Listing 13.4.

Listing 13.4: Invoking a Delegate without Checking for null

public class Thermostat

{

 ...

 public float CurrentTemperature

 {

 get{return _CurrentTemperature;}

 set

 {

 {

 // INCOMPLETE: Check for null needed

 }

 }

 }

 private float _CurrentTemperature;

}

Now the assignment of CurrentTemperature includes some special logic to
notify subscribers of changes in CurrentTemperature. The call to notify all
subscribers is simply the single C# statement, OnTemperatureChange(value).

 if (value != CurrentTemperature)

 _CurrentTemperature = value;

 // Call subscribers

 OnTemperatureChange(value);

ptg

 Coding the Observer Pattern with Multicast Delegates 513

This single statement publishes the temperature change to the cooler and
heater objects. Here, you see in practice that the ability to notify multiple sub-
scribers using a single call is why delegates are more specifically known as
multicast delegates.

Check for null
One important event of publishing code is missing from Listing 13.4. If no
subscriber registered to receive the notification, then OnTemperatureChange
would be null and executing the OnTemperatureChange(value) statement
would throw a NullReferenceException. To avoid this, it is necessary to
check for null before firing the event. Listing 13.5 demonstrates how to
do this.

Listing 13.5: Invoking a Delegate

public class Thermostat

{

 ...

 public float CurrentTemperature

 {

 get{return _CurrentTemperature;}

 set

 {

 if (value != CurrentTemperature)

 {

 _CurrentTemperature = value;

 // If there are any subscribers

 // then notify them of changes in

 // temperature

 }

 }

 }

 private float _CurrentTemperature;

}

Instead of checking for null directly, first assign OnTemperatureChange to
a second delegate variable, handlerCopy. This simple modification ensures
that if all OnTemperatureChange subscribers are removed (by a different

 TemperatureChangeHandler localOnChange =

 OnTemperatureChange;

 if(localOnChange != null)

 {

 // Call subscribers

 localOnChange(value);

 }

ptg

Chapter 13: Events514

thread) between checking for null and sending the notification, you will
not fire a NullReferenceException.

One more time: Remember to check the value of a delegate for null
before invoking it.

A D V A N C E D T O P I C

-= Operator for a Delegate Returns a New Instance
Given that a delegate is a reference type, it is perhaps somewhat surpris-
ing that assigning a local variable and then using that local variable is suf-
ficient for making the null check thread-safe. Since localOnChange points
at the same location that OnTemperatureChange points, one would think
that any changes in OnTemperatureChange would be reflected in localOn-
Change as well.

This is not the case, because effectively, any calls to OnTemperatureChange
-= <listener> will not simply remove a delegate from OnTemperatureChange
so that it contains one less delegate than before. Rather, it will assign an
entirely new multicast delegate without having any effect on the original mul-
ticast delegate to which localOnChange also points.

Delegate Operators
To combine the two subscribers in the Thermostat example, you used the
+= operator. This takes the first delegate and adds the second delegate to
the chain so that one delegate points to the next. Now, after the first dele-
gate’s method is invoked, it calls the second delegate. To remove delegates
from a delegate chain, use the -= operator, as shown in Listing 13.6.

Listing 13.6: Using the += and -= Delegate Operators

// ...

Thermostat thermostat = new Thermostat();

Heater heater = new Heater(60);

Cooler cooler = new Cooler(80);

Thermostat.TemperatureChangeHandler delegate1;

Thermostat.TemperatureChangeHandler delegate2;

Thermostat.TemperatureChangeHandler delegate3;

// use Constructor syntax for C# 1.0.

ptg

 Coding the Observer Pattern with Multicast Delegates 515

delegate1 = heater.OnTemperatureChanged;

delegate2 = cooler.OnTemperatureChanged;

Console.WriteLine("Invoke both delegates:");

delegate3 = delegate1;

delegate3(90);

Console.WriteLine("Invoke only delegate2");

delegate3(30);

// ...

The results of Listing 13.6 appear in Output 13.1.

Furthermore, you can also use the + and – operators to combine dele-
gates, as Listing 13.7 shows.

Listing 13.7: Using the + and - Delegate Operators

// ...

Thermostat thermostat = new Thermostat();

Heater heater = new Heater(60);

Cooler cooler = new Cooler(80);

Thermostat.TemperatureChangeHandler delegate1;

Thermostat.TemperatureChangeHandler delegate2;

Thermostat.TemperatureChangeHandler delegate3;

// Note: Use new Thermostat.TemperatureChangeHandler(

// cooler.OnTemperatureChanged) for C# 1.0 syntax.

delegate1 = heater.OnTemperatureChanged;

delegate2 = cooler.OnTemperatureChanged;

Console.WriteLine("Combine delegates using + operator:");

delegate3(60);

Console.WriteLine("Uncombine delegates using - operator:");

delegate3 += delegate2;

delegate3 -= delegate1;

OUTPUT 13.1:

Invoke both delegates:

Heater: Off

Cooler: On

Invoke only delegate2

Cooler: Off

delegate3 = delegate1 + delegate2;

ptg

Chapter 13: Events516

delegate3(60);
// ...

Use of the assignment operator clears out all previous subscribers and
allows you to replace them with new subscribers. This is an unfortunate
characteristic of a delegate. It is simply too easy to mistakenly code an
assignment when, in fact, the += operator is intended. The solution, called
events, appears in the Events section, later in this chapter.

It should be noted that both the + and – operators and their assignment
equivalents, += and -=, are implemented internally using the static meth-
ods System.Delegate.Combine() and System.Delegate.Remove(). Both
methods take two parameters of type delegate. The first method, Com-
bine(), joins the two parameters so that the first parameter points to the
second within the list of delegates. The second, Remove(), searches through
the chain of delegates specified in the first parameter and then removes the
delegate specified by the second parameter.

One interesting thing to note about the Combine() method is that either
or both of the parameters can be null. If one of them is null, then Com-
bine() returns the non-null parameter. If both are null, then Combine()
returns null. This explains why you can call thermostat.OnTempera-
tureChange += heater.OnTemperatureChanged; and not throw an excep-
tion, even if the value of thermostat.OnTemperatureChange is not yet
assigned.

Sequential Invocation
Figure 13.1 highlights the sequential notification of both heater and
cooler.

Although you coded only a single call to OnTemperatureChange(), the
call is broadcast to both subscribers so that from that one call, both cooler
and heater are notified of the change in temperature. If you added more
subscribers, they too would be notified by OnTemperatureChange().

Although a single call, OnTemperatureChange(), caused the notifica-
tion of each subscriber, the subscribers are still called sequentially, not
simultaneously, because a single delegate can point to another delegate
that can, in turn, point to additional delegates.

delegate3 = delegate3 - delegate2;

ptg

 C
o

d
in

g
 th

e
 O

b
se

rve
r P

a
tte

rn
 w

ith
 M

u
ltica

st D
e

le
g

a
te

s
517

_heater : Heater

: Console

_cooler : Cooler

_actor : actor

1 : Main()

2 : Thermostat()

3 : Heater(temperature)

4 : Cooler(temperature)

5 : operator+=

6 : operator+=

7 : Write("Enter temperature:")

7 : ReadLine()

9 : CurrentTemperature(value)

10 : OnTemperatureChange(value)

11 : OnTemperatureChanged(newTemperature)

12 : WriteLine("Heater off")

OnTemperatureChanged(...)

13 : OnTemperatureChanged(newTemperature)

OnTemperatureChanged(...)

14 : WriteLine("Cooler on")

OnTemperatureChange(...)
CurrentTemperature(...)

Thermostat : Thermostat

OnTemperatureChange delegate
TemperatureChangeHandler

Figure 13.1: Delegate Invocation Sequence Diagram

517

« »

From the Library of Wow! eBook

ptg

Chapter 13: Events518

A D V A N C E D T O P I C

Multicast Delegate Internals
To understand how events work, you need to revisit the first examination
of the System.Delegate type internals. Recall that the delegate keyword is
an alias for a type derived from System.MulticastDelegate. In turn, Sys-
tem.MulticastDelegate is derived from System.Delegate, which, for its
part, comprises an object reference and a method pointer (of type Sys-
tem.Reflection.MethodInfo). When you create a delegate, the compiler
automatically employs the System.MulticastDelegate type rather than
the System.Delegate type. The MulticastDelegate class includes an object
reference and method pointer, just like its Delegate base class, but it also
contains a reference to another System.MulticastDelegate object.

When you add a method to a multicast delegate, the MulticastDele-
gate class creates a new instance of the delegate type, stores the object ref-
erence and the method pointer for the added method into the new
instance, and adds the new delegate instance as the next item in a list of
delegate instances. In effect, the MulticastDelegate class maintains a
linked list of Delegate objects. Conceptually, you can represent the ther-
mostat example as shown in Figure 13.2.

Figure 13.2: Multicast Delegates Chained Together

Thermostat

+ event OnTemperatureChange: TemperatureChangeHandler

cooler21 : Heater

OnTemperatureChanged()

heater21 : Heater

OnTemperatureChanged()

cooler11 : Heater

OnTemperatureChanged()

heater1 : Heater

property Temperature : float

property Temperature : float

property Temperature : float

property Temperature : float

OnTemperatureChanged()

TemperatureChangeHandler
0..1

TemperatureChangeHandler

TemperatureChangeHandler

TemperatureChangeHandler

0..1

0..1

0..1

0..1

0..1

0..1

0..1

–+

–+

–+

–+

–+

–+

–+

–+

ptg

 Coding the Observer Pattern with Multicast Delegates 519

When invoking the multicast, each delegate instance in the linked list is
called sequentially. Generally, delegates are called in the order they were
added, but this behavior is not specified within the CLI specification, and
furthermore, it can be overridden. Therefore, programmers should not
depend on an invocation order.

Error Handling
Error handling makes awareness of the sequential notification critical. If
one subscriber throws an exception, later subscribers in the chain do not
receive the notification. Consider, for example, what would happen if you
changed the Heater’s OnTemperatureChanged() method so that it threw an
exception, as shown in Listing 13.8.

Listing 13.8: OnTemperatureChanged() Throwing an Exception

class Program

{

 public static void Main()

 {

 Thermostat thermostat = new Thermostat();

 Heater heater = new Heater(60);

 Cooler cooler = new Cooler(80);

 string temperature;

 // Using C# 2.0 or later syntax.

 thermostat.OnTemperatureChange +=

 heater.OnTemperatureChanged;

 // Using C# 3.0. Change to anonymous method

 // if using C# 2.0

 thermostat.OnTemperatureChange +=

 cooler.OnTemperatureChanged;

 Console.Write("Enter temperature: ");

 temperature = Console.ReadLine();

 thermostat.CurrentTemperature = int.Parse(temperature);

 }

}

 thermostat.OnTemperatureChange +=

 (newTemperature) =>

 {

 throw new ApplicationException();

 };

ptg

Chapter 13: Events520

Figure 13.3 shows an updated sequence diagram.

Even though cooler and heater subscribed to receive messages, the
lambda expression exception terminates the chain and prevents the cooler
object from receiving notification.

To avoid this problem so that all subscribers receive notification,
regardless of the behavior of earlier subscribers, you must manually enu-
merate through the list of subscribers and call them individually. Listing
13.9 shows the updates required in the CurrentTemperature property. The
results appear in Output 13.2.

Listing 13.9: Handling Exceptions from Subscribers

public class Thermostat

{

 // Define the delegate data type

 public delegate void TemperatureChangeHandler(

 float newTemperature);

 // Define the event publisher

 public event TemperatureChangeHandler OnTemperatureChange;

Figure 13.3: Delegate Invocation with Exception Sequence Diagram

heater : Heater cooler : Cooleractor : actor

5 : operator +=

6 : operator +=

3 : CurrentTemperature(value)

10 : OnTemperatureChange(value)

5 : OnTemperatureChanged(newTemperature)

[] throw new NotImplemented Exception ()

thermostat : Thermostat
OnTemperatureChange

: delegate
TemperatureChangeHandler

ptg

 Coding the Observer Pattern with Multicast Delegates 521

 public float CurrentTemperature

 {

 get{return _CurrentTemperature;}

 set

 {

 if (value != CurrentTemperature)

 {

 _CurrentTemperature = value;

 if(OnTemperatureChange != null)

 {

 }

 }

 }

 }

 private float _CurrentTemperature;

}

This listing demonstrates that you can retrieve a list of subscribers from
a delegate’s GetInvocationList() method. Enumerating over each item in
this list returns the individual subscribers. If you then place each invoca-
tion of a subscriber within a try/catch block, you can handle any error con-
ditions before continuing with the enumeration loop. In this sample, even
though the delegate listener throws an exception, cooler still receives noti-
fication of the temperature change.

 foreach(

 TemperatureChangeHandler handler in

 OnTemperatureChange.GetInvocationList())

 {

 try

 {

 handler(value);

 }

 catch(Exception exception)

 {

 Console.WriteLine(exception.Message);

 }

 }

OUTPUT 13.2:

Enter temperature: 45

Heater: On

Error in the application

Cooler: Off

ptg

Chapter 13: Events522

Method Returns and Pass-by-Reference
There is another scenario where it is useful to iterate over the delegate invo-
cation list instead of simply activating a notification directly. This scenario
relates to delegates that either do not return void or have ref or out param-
eters. In the thermostat example so far, the OnTemperatureHandler delegate
had a return type of void. Furthermore, it did not include any parameters
that were ref or out type parameters, parameters that return data to the
caller. This is important because an invocation of a delegate potentially trig-
gers notification to multiple subscribers. If the subscribers return a value, it
is ambiguous which subscriber’s return value would be used.

If you changed OnTemperatureHandler to return an enumeration value,
indicating whether the device was on because of the temperature change,
the new delegate would look like Listing 13.10.

Listing 13.10: Declaring a Delegate with a Method Return

public enum Status

{

 On,

 Off

}

// Define the delegate data type

public delegate Status TemperatureChangeHandler(

 float newTemperature);

All subscriber methods would have to use the same method signature as
the delegate, and therefore, each would be required to return a status
value. Assuming you invoke the delegate in a similar manner as before,
what will the value of status be in Listing 13.11, for example?

Listing 13.11: Invoking a Delegate Instance with a Return

Status status = OnTemperatureChange(value);

Since OnTemperatureChange potentially corresponds to a chain of dele-
gates, status reflects only the value of the last delegate. All other values
are lost entirely.

To overcome this issue, it is necessary to follow the same pattern that
you used for error handling. In other words, you must iterate through

ptg

 Events 523

each delegate invocation list, using the GetInvocationList() method, to
retrieve each individual return value. Similarly, delegate types that use
ref and out parameters need special consideration.

Events

There are two key problems with the delegates as you have used them so
far in this chapter. To overcome these issues, C# uses the keyword event. In
this section, you will see why you would use events, and how they work.

Why Events?
This chapter and the preceding one covered all you need to know about
how delegates work. However, weaknesses in the delegate structure may
inadvertently allow the programmer to introduce a bug. The issues relate
to encapsulation that neither the subscription nor the publication of events
can sufficiently control.

Encapsulating the Subscription

As demonstrated earlier, it is possible to assign one delegate to another
using the assignment operator. Unfortunately, this capability introduces a
common source for bugs. Consider Listing 13.12.

Listing 13.12: Using the Assignment Operator = Rather Than +=

class Program

{

 public static void Main()

 {

 Thermostat thermostat = new Thermostat();

 Heater heater = new Heater(60);

 Cooler cooler = new Cooler(80);

 string temperature;

 // Note: Use new Thermostat.TemperatureChangeHandler(

 // cooler.OnTemperatureChanged) if C# 1.0

 thermostat.OnTemperatureChange =

 heater.OnTemperatureChanged;

 // Bug: assignment operator overrides

 // previous assignment.

 thermostat.OnTemperatureChange =

 cooler.OnTemperatureChanged;

ptg

Chapter 13: Events524

 Console.Write("Enter temperature: ");

 temperature = Console.ReadLine();

 thermostat.CurrentTemperature = int.Parse(temperature);

 }

}

Listing 13.12 is almost identical to Listing 13.6, except that instead of
using the += operator, you use a simple assignment operator. As a result,
when code assigns cooler.OnTemperatureChanged to OnTemperatureChange,
heater.OnTemperatureChanged is cleared out because an entirely new chain is
assigned to replace the previous one. The potential for mistakenly using an
assignment operator, when in fact the += assignment was intended, is so high
that it would be preferable if the assignment operator were not even sup-
ported for objects except within the containing class. It is the purpose of the
event keyword to provide additional encapsulation such that you cannot
inadvertently cancel other subscribers.

Encapsulating the Publication

The second important difference between delegates and events is that
events ensure that only the containing class can trigger an event notifica-
tion. Consider Listing 13.13.

Listing 13.13: Firing the Event from Outside the Events Container

class Program

{

 public static void Main()

 {

 Thermostat thermostat = new Thermostat();

 Heater heater = new Heater(60);

 Cooler cooler = new Cooler(80);

 string temperature;

 // Note: Use new Thermostat.TemperatureChangeHandler(

 // cooler.OnTemperatureChanged) if C# 1.0.

 thermostat.OnTemperatureChange +=

 heater.OnTemperatureChanged;

 thermostat.OnTemperatureChange +=

 cooler.OnTemperatureChanged;

 }

}

 thermostat.OnTemperatureChange(42);

ptg

 Events 525

In Listing 13.13, Program is able to invoke the OnTemperatureChange dele-
gate even though the CurrentTemperature on thermostat did not change.
Program, therefore, triggers a notification to all thermostat subscribers that
the temperature changed, but in reality, there was no change in the ther-
mostat temperature. As before, the problem with the delegate is that there
is insufficient encapsulation. Thermostat should prevent any other class
from being able to invoke the OnTemperatureChange delegate.

Declaring an Event
C# provides the event keyword to deal with both of these problems.
Although seemingly like a field modifier, event defines a new type of
member (see Listing 13.14).

Listing 13.14: Using the event Keyword with the Event-Coding Pattern

public class Thermostat

{

 public float CurrentTemperature

 {

 ...

 }

 private float _CurrentTemperature;

}

 public class TemperatureArgs: System.EventArgs

 {

 public TemperatureArgs(float newTemperature)

 {

 NewTemperature = newTemperature;

 }

 public float NewTemperature

 {

 get{return _newTemperature;}

 set{_newTemperature = value;}

 }

 private float _newTemperature;

 }

 // Define the delegate data type

 public delegate void TemperatureChangeHandler(

 object sender, TemperatureArgs newTemperature);

 // Define the event publisher

 public event TemperatureChangeHandler OnTemperatureChange =

 delegate { };

ptg

Chapter 13: Events526

The new Thermostat class has four changes from the original class. First,
the OnTemperatureChange property has been removed, and instead, OnTem-
peratureChange has been declared as a public field. This seems contrary to
solving the earlier encapsulation problem. It would make more sense to
increase the encapsulation, not decrease it by making a field public. However,
the second change was to add the event keyword immediately before the
field declaration. This simple change provides all the encapsulation needed.
By adding the event keyword, you prevent use of the assignment operator on
a public delegate field (for example, thermostat.OnTemperatureChange =

cooler.OnTemperatureChanged). In addition, only the containing class is able
to invoke the delegate that triggers the publication to all subscribers (for
example, disallowing thermostat.OnTemperatureChange(42) from outside
the class). In other words, the event keyword provides the needed encapsula-
tion that prevents any external class from publishing an event or unsubscrib-
ing previous subscribers they did not add. This resolves the two issues with
plain delegates and is one of the key reasons for the event keyword in C#.

Another potential pitfall with plain delegates was the fact that it was
easy to forget to check for null before invoking the delegate. This resulted
in an unexpected NullReferenceException. Fortunately, the encapsula-
tion that the event keyword provides enables an alternative possibility
during declaration (or within the constructor), as shown in Listing 13.14.
Notice that when declaring the event we assign delegate { }—an empty
delegate representing a collection of zero listeners. By assigning the empty
delegate we can raise the event without checking whether there are any lis-
teners. (The behavior is similar to assigning a variable with an array of zero
items. Doing so allows the invocation of an array member without first
checking whether the variable is null.) Of course, if there is any chance
that the delegate could be reassigned with null, then a check will still be
required. However, because the event keyword restricts assignment to
occur only within the class, any reassignment of the delegate could occur
only from within the class. Assuming null is never assigned, there will be
no need to check for null whenever the code invokes the delegate.

Coding Conventions
All you need to do to gain the desired functionality is to change the origi-
nal delegate variable declaration to a field, and add the event keyword.

ptg

 Events 527

With these two changes, you provide the necessary encapsulation and all
other functionality remains the same. However, an additional change
occurs in the delegate declaration in the code in Listing 13.14. To follow
standard C# coding conventions, you changed OnTemperatureChangeHan-
dler so that the single temperature parameter was replaced with two new
parameters, sender and temperatureArgs. This change is not something
that the C# compiler will enforce, but passing two parameters of these
types is the norm for declaring a delegate intended for an event.

The first parameter, sender, should contain an instance of the class that
invoked the delegate. This is especially helpful if the same subscriber
method registers with multiple events—for example, if the heater.OnTem-
peratureChanged event subscribes to two different Thermostat instances.
In such a scenario, either Thermostat instance can trigger a call to
heater.OnTemperatureChanged. In order to determine which instance of
Thermostat triggered the event, you use the sender parameter from inside
Heater.OnTemperatureChanged().

The second parameter, temperatureArgs, is of type Thermostat.Temper-
atureArgs. Using a nested class is appropriate because it conforms to the
same scope as the OnTemperatureChangeHandler delegate itself. The impor-
tant part about TemperatureArgs, at least as far as the coding convention
goes, is that it derives from System.EventArgs. The only significant prop-
erty on System.EventArgs is Empty and it is used to indicate that there is no
event data. When you derive TemperatureArgs from System.EventArgs,
however, you add an additional property, NewTemperature, as a means to
pass the temperature from the thermostat to the subscribers.

To summarize the coding convention for events: The first argument,
sender, is of type object and it contains a reference to the object that
invoked the delegate. The second argument is of type System.EventArgs
or something that derives from System.EventArgs but contains
additional data about the event. You invoke the delegate exactly as
before, except for the additional parameters. Listing 13.15 shows an
example.

Listing 13.15: Firing the Event Notification

public class Thermostat

{

 ...

ptg

Chapter 13: Events528

 public float CurrentTemperature

 {

 get{return _CurrentTemperature;}

 set

 {

 if (value != CurrentTemperature)

 {

 _CurrentTemperature = value;

 // If there are any subscribers

 // then notify them of changes in

 // temperature

 if(OnTemperatureChange != null)

 {

 // Call subscribers

 }

 }

 }

 }

 private float _CurrentTemperature;

}

You usually specify the sender using the container class (this) because
that is the only class that can invoke the delegate for events.

In this example, the subscriber could cast the sender parameter to
Thermostat and access the current temperature that way, as well as via the
TemperatureArgs instance. However, the current temperature on the
Thermostat instance may change via a different thread. In the case of
events that occur due to state changes, passing the previous value along
with the new value is a frequent pattern used to control what state transi-
tions are allowable.

Generics and Delegates
The preceding section mentioned that the typical pattern for defining dele-
gate data is to specify the first parameter, sender, of type object and the sec-
ond parameter, eventArgs, to be a type deriving from System.EventArgs.
One of the more cumbersome aspects of delegates in C# 1.0 was that you had
to declare a new delegate type whenever the parameters on the handler
change. Every creation of a new derivation from System.EventArgs (a rela-
tively common occurrence) required the declaration of a new delegate data

 OnTemperatureChange(

 this, new TemperatureArgs(value));

ptg

 Events 529

type that uses the new EventArgs derived type. For example, in order to use
TemperatureArgs within the event notification code in Listing 13.15, it is nec-
essary to declare the delegate type TemperatureChangeHandler that has Tem-
peratureArgs as a parameter.

With generics, you can use the same delegate data type in many loca-
tions with a host of different parameter types, and remain strongly typed.
Consider the delegate declaration example shown in Listing 13.16.

Listing 13.16: Declaring a Generic Delegate Type

public delegate void EventHandler<T>(object sender, T e)

 where T : EventArgs;

When you use EventHandler<T>, each class that requires a particular
sender-EventArgs pattern need not declare its own delegate definition.
Instead, they can all share the same one, changing the thermostat example
as shown in Listing 13.17.

Listing 13.17: Using Generics with Delegates

public class Thermostat

{

 public class TemperatureArgs: System.EventArgs

 {

 public TemperatureArgs(float newTemperature)

 {

 NewTemperature = newTemperature;

 }

 public float NewTemperature

 {

 get{return _newTemperature;}

 set{_newTemperature = value;}

 }

 private float _newTemperature;

 }

 // TemperatureChangeHandler no longer needed

 // public delegate void TemperatureChangeHandler(

 // object sender, TemperatureArgs newTemperature);

 // Define the event publisher without using

 // TemperatureChangeHandler

 public event EventHandler<TemperatureArgs>

 OnTemperatureChange;

ptg

Chapter 13: Events530

 public float CurrentTemperature

 {

 ...

 }

 private float _CurrentTemperature;

}

Listing 13.17 assumes, of course, that EventHandler<T> is defined some-
where. In fact, System.EventHandler<T>, as just declared, is included in
the version 2.0 Framework Class Library. Therefore, in the majority of cir-
cumstances when using events in C# 2.0 or later, it is not necessary to
declare a custom delegate data type.

Note that System.EventHandler<T> restricts T to derive from EventArgs
using a constraint, exactly what was necessary to correspond with the gen-
eral convention for the event declaration of C# 1.0.

A D V A N C E D T O P I C

Event Internals
Events restrict external classes from doing anything other than adding
subscribing methods to the publisher via the += operator and then unsub-
scribing using the -= operator. In addition, they restrict classes, other than
the containing class, from invoking the event. To do this the C# compiler
takes the public delegate variable with its event keyword modifier and
declares the delegate as private. In addition, it adds a couple of methods
and two special event blocks. Essentially, the event keyword is a C#
shortcut for generating the appropriate encapsulation logic. Consider the
example in the event declaration shown in Listing 13.18.

Listing 13.18: Declaring the OnTemperatureChange Event

public class Thermostat

{

 // Define the delegate data type

 public delegate void TemperatureChangeHandler(

 object sender, TemperatureArgs newTemperature);

 public event TemperatureChangeHandler OnTemperatureChange

 ...

}

ptg

 Events 531

When the C# compiler encounters the event keyword, it generates CIL
code equivalent to the C# code shown in Listing 13.19.

Listing 13.19: C# Equivalent of the Event CIL Code Generated by the Compiler

public class Thermostat

{

 // Define the delegate data type

 public delegate void TemperatureChangeHandler(

 object sender, TemperatureArgs newTemperature);

}

In other words, the code shown in Listing 13.18 is the C# shorthand that
the compiler uses to trigger the code expansion shown in Listing 13.19.

The C# compiler first takes the original event definition and defines a
private delegate variable in its place. As a result, the delegate becomes
unavailable to any external class, even to classes derived from it.

 // Declaring the delegate field to save the

 // list of subscribers.

 private TemperatureChangeHandler OnTemperatureChange;

 public void add_OnTemperatureChange(

 TemperatureChangeHandler handler)

 {

 System.Delegate.Combine(OnTemperatureChange, handler);

 }

 public void remove_OnTemperatureChange(

 TemperatureChangeHandler handler)

 {

 System.Delegate.Remove(OnTemperatureChange, handler);

 }

 public event TemperatureChangeHandler OnTemperatureChange

 {

 add

 {

 add_OnTemperatureChange(value)

 }

 remove

 {

 remove_OnTemperatureChange(value)

 }

 }

ptg

Chapter 13: Events532

Next, the C# compiler defines two methods, add_OnTemperatureChange()
and remove_OnTemperatureChange(), where the OnTemperatureChange suffix
is taken from the original name of the event. These methods are responsible
for implementing the += and -= assignment operators, respectively. As Listing
13.19 shows, these methods are implemented using the static System.Dele-
gate.Combine() and System.Delegate.Remove() methods, discussed earlier
in the chapter. The first parameter passed to each of these methods is the pri-
vate TemperatureChangeHandler delegate instance, OnTemperatureChange.

Perhaps the most curious part of the code generated from the event
keyword is the last part. The syntax is very similar to that of a property’s
getter and setter methods except that the methods are add and remove. The
add block takes care of handling the += operator on the event by passing
the call to add_OnTemperatureChange(). In a similar manner, the remove
block operator handles the -= operator by passing the call on to
remove_OnTemperatureChange.

It is important to notice the similarities between this code and the code
generated for a property. Readers will recall that the C# implementation of
a property is to create get_<propertyname> and set_<propertyname>, and
then to pass calls to the get and set blocks on to these methods. Clearly,
the event syntax is very similar.

Another important characteristic to note about the generated CIL
code is that the CIL equivalent of the event keyword remains in the CIL.
In other words, an event is something that the CIL code recognizes
explicitly; it is not just a C# construct. By keeping an equivalent event
keyword in the CIL code, all languages and editors are able to provide
special functionality because they can recognize the event as a special
class member.

Customizing the Event Implementation
You can customize the code for += and -= that the compiler generates. Con-
sider, for example, changing the scope of the OnTemperatureChange dele-
gate so that it is protected rather than private. This, of course, would allow
classes derived from Thermostat to access the delegate directly instead of
being limited to the same restrictions as external classes. To enable this, C#
allows the same property as the syntax shown in Listing 13.17. In other
words, C# allows you to define custom add and remove blocks to provide

ptg

 Summary 533

implementation for each aspect of the event encapsulation. Listing 13.20
provides an example.

Listing 13.20: Custom add and remove Handlers

public class Thermostat

{

 public class TemperatureArgs: System.EventArgs

 {

 ...

 }

 // Define the delegate data type

 public delegate void TemperatureChangeHandler(

 object sender, TemperatureArgs newTemperature);

 public float CurrentTemperature

 {

 ...

 }

 private float _CurrentTemperature;

}

In this case, the delegate that stores each subscriber, _OnTemper-
atureChange, was changed to protected. In addition, implementation of
the add block switches around the delegate storage so that the last delegate
added to the chain is the first delegate to receive a notification.

SUMMARY

Now that I have described events, it is worth mentioning that in general,
method pointers are the only cases where it is advisable to work with a

 // Define the event publisher

 public event TemperatureChangeHandler OnTemperatureChange

 {

 add

 {

 System.Delegate.Combine(value, _OnTemperatureChange);

 }

 remove

 {

 System.Delegate.Remove(_OnTemperatureChange, value);

 }

 }

 protected TemperatureChangeHandler _OnTemperatureChange;

ptg

Chapter 13: Events534

delegate variable outside the context of an event. In other words, given the
additional encapsulation features of an event and the ability to customize
the implementation when necessary, the best practice is always to use
events for the observer pattern.

It may take a little practice to be able to code events from scratch with-
out sample code. However, they are a critical foundation to the asynchro-
nous, multithreaded coding of later chapters.

ptg

535

14
Collection Interfaces with
Standard Query Operators

HE MOST SIGNIFICANT FEATURES added in C# 3.0 were in the area of
collections. Extension methods and lambda expressions enabled a far

superior API for working with collections. In fact, in earlier editions of this
book, the chapter on collections came immediately after the chapter on
generics and just before the one on delegates. However, lambda expres-
sions make such a significant impact on collection APIs that it is no longer
possible to cover collections without first covering delegates (the basis of
lambda expressions). Now that you have a solid foundation on lambda
expressions from the preceding chapter, we can delve into the details of
collections, a topic that in this edition spans three chapters.

T

2Collection Interfaces
with Standard Query

Operators

1 Anonymous
Types

Implicit Typed
Local Variables

3 Collection
Initializers4 Collections

5 Standard Query
Operators

Filtering
Projecting

Deffrening Execution
Sorting
More...

Arrays
IEnumerable<T>

ptg

Chapter 14: Collection Interfaces with Standard Query Operators536

 To begin, this chapter introduces anonymous types and collection ini-
tializers, topics which I covered only briefly in a few Advanced Topic sec-
tions in Chapter 5. Next, this chapter covers the various collection
interfaces and how they relate to each other. This is the basis for under-
standing collections, so readers should cover the material with diligence.
The section on collection interfaces includes coverage of the IEnumer-
able<T> extension methods that were added in C# 3.0, which provides the
foundation on which standard query operators are implemented—another
C# 3.0 feature discussed in the chapter.

There are two categories of collection-related classes and interfaces:
those that support generics and those that don’t. This chapter primarily
discusses the generic collection interfaces. You should use collection
classes that don’t support generics only when you are writing components
that need to interoperate with earlier versions of the runtime. This is
because everything that was available in the nongeneric form has a generic
replacement that is strongly typed. For Essential C# 2.0, I called out both the
generic and the nongeneric versions of classes and interfaces. However,
now that we are at C# 4.0, I leave out discussion of the nongeneric types,
which were virtually deprecated in favor of their generic equivalents.
Although the concepts still apply to both forms, I will not explicitly call out
the names of the nongeneric versions.1

Anonymous Types and Implicitly Typed
Local Variables

The changes in C# 3.0 provided a significant improvement for working
with collections of items. What is amazing is that to support this advanced
API, fewer than nine new language enhancements were made. However,
these enhancements are critical to why C# 3.0 was such a marvelous
improvement to the language. Two such enhancements were anonymous
types and implicit local variables.

1. In fact, in Silverlight, the nongeneric collections have been removed.

ptg

 Anonymous Types and Implicitly Typed Local Variables 537

Anonymous Types
Anonymous types are data types that are declared by the compiler, rather
than through the explicit class definitions of Chapter 5. Like anonymous
functions, when the compiler sees an anonymous type, it does the work to
make that class for you and then lets you use it as though you had declared
it explicitly. Listing 14.1 shows such a declaration.

Listing 14.1: Implicit Local Variables with Anonymous Types

using System;

class Program

{

 static void Main()

 {

 Console.WriteLine("{0} ({1})",

 patent1.Title, patent1.YearOfPublication);

 Console.WriteLine("{0} ({1})",

 patent2.Title, patent2.YearOfPublication);

 Console.WriteLine();

 Console.WriteLine(patent1);

 Console.WriteLine(patent2);

 Console.WriteLine();

 Console.WriteLine(patent3);

 }

}

 var patent1 =

 new

 {

 Title = "Bifocals",

 YearOfPublication = "1784"

 };

 var patent2 =

 new

 {

 Title = "Phonograph",

 YearOfPublication = "1877"

 };

 var patent3 =

 new

 {

 patent1.Title,

 // Renamed to show property naming.

 Year = patent1.YearOfPublication

 };

ptg

Chapter 14: Collection Interfaces with Standard Query Operators538

The corresponding output is shown in Output 14.1.

The construct of an anonymous type is implemented entirely by the C#
compiler, with no explicit implementation awareness within the runtime.
Rather, when the compiler encounters the anonymous type syntax, it gen-
erates a CIL class with properties corresponding to the named values and
data types in the anonymous type declaration.

Implicitly Typed Local Variables (var)
Since an anonymous type by definition has no name, it is not possible to
declare a local variable as explicitly being of an anonymous type. Rather,
the local variable’s type is replaced with var. However, by no means
does this indicate that implicitly typed variables are untyped. On the
contrary, they are fully typed to the data type of the value they are
assigned. If an implicitly typed variable is assigned an anonymous type,
the underlying CIL code for the local variable declaration will be of the
type generated by the compiler. Similarly, if the implicitly typed variable
is assigned a string, then its data type in the underlying CIL will be a
string. In fact, there is no difference in the resultant CIL code for implic-
itly typed variables whose assignment is not an anonymous type (such as
string) and those that are declared as type string. If the declaration
statement is string text = "This is a test of the...", the resultant
CIL code will be identical to an implicitly typed declaration, var text =
"This is a test of the...". The compiler determines the data type
of the implicitly typed variable from the data type assigned. In an
explicitly typed local variable with an initializer (string s = "hello";),
the compiler first determines the type of s from the declared type on the

OUTPUT 14.1:

Bifocals (1784)

Phonograph (1784)

{ Title = Bifocals, YearOfPublication = 1784 }

{ Title = Phonograph, YearOfPublication = 1877 }

{ Title = Bifocals, Year = 1784 }

ptg

 Anonymous Types and Implicitly Typed Local Variables 539

left-hand side, then analyzes the right-hand side and verifies that the
expression on the right-hand side is assignable to that type. In an implic-
itly typed local variable, the process is in some sense reversed. First the
right-hand side is analyzed to determine its type, and then the “var” is
logically replaced with that type.

Although there is no available name in C# for the anonymous type, it is
still strongly typed as well. For example, the properties of the type are fully
accessible. In Listing 14.1, patent1.Title and patent2.YearOfPublication
are called within the Console.WriteLine statement. Any attempts to call
nonexistent members will result in compile errors. Even IntelliSense in
IDEs such as Visual Studio 2008 works with the anonymous type.

You should use implicitly typed variable declarations sparingly. Obvi-
ously, for anonymous types, it is not possible to specify the data type, and
the use of var is required. However, for cases where the data type is not an
anonymous type, it is frequently preferable to use the explicit data type. As
is the case generally, you should focus on making the semantics of the code
more readable while at the same time using the compiler to verify that the
resultant variable is of the type you expect. To accomplish this with implic-
itly typed local variables, use them only when the type assigned to the
implicitly typed variable is entirely obvious. For example, in var items =
new Dictionary<string, List<Account>>();, the resultant code is more
succinct and readable. In contrast, when the type is not obvious, such as
when a method return is assigned, developers should favor an explicit
variable type declaration such as the following:

Dictionary<string, List<Account>> dictionary = GetAccounts();

NOTE

Implicitly typed variables should generally be reserved for anony-
mous type declaration rather than used indiscriminately when the
data type is known at compile time, unless the type assigned to the
variable is entirely obvious.

ptg

Chapter 14: Collection Interfaces with Standard Query Operators540

More about Anonymous Types and Implicit Local Variables
In Listing 14.1, member names on the anonymous types are explicitly iden-
tified using the assignment of the value to the name for patent1 and
patent2 (for example, Title = "Phonograph"). However, if the value
assigned is a property or field call, the name may default to the name of the
field or property rather than explicitly specifying the value. patent3, for
example, is defined using a property named “Title” rather than an assign-
ment to an explicit name. As Output 14.1 shows, the resultant property
name is determined, by the compiler, to match the property from where
the value was retrieved.

patent1 and patent2 both have the same property names with the
same data types. Therefore, the C# compiler generates only one data type
for these two anonymous declarations. patent3, however, forces the com-
piler to create a second anonymous type because the property name for the
patent year is different from what it was in patent1 and patent2. Further-
more, if the order of the properties was switched between patent1 and
patent2, then these two anonymous types would also not be type-
compatible. In other words, the requirements for two anonymous types to
be type-compatible within the same assembly are a match in property
names, data types, and order of properties. If these criteria are met, the
types are compatible even if they appear in different methods or classes.
Listing 14.2 demonstrates the type incompatibilities.

Language Contrast: C++/Visual Basic/JavaScript—void*,

Variant, and var

It is important to understand that an implicitly typed variable is not the

equivalent of void* in C++, a Variant in Visual Basic, or var in JavaScript.

In each of these cases, the variable declaration is not very restrictive since

the variable may be reassigned a different type, just as you could in C# with

a variable declaration of type object. In contrast, var is definitively typed

by the compiler, and once established at declaration, the type may not

change, and type checks and member calls are verified at compile time.

ptg

 Anonymous Types and Implicitly Typed Local Variables 541

Listing 14.2: Type Safety and Immutability of Anonymous Types

class Program

{

 static void Main()

 {

 var patent1 =

 new

 {

 };

 var patent2 =

 new

 {

 };

 var patent3 =

 new

 {

 patent1.Title,

 };

 // ERROR: Cannot implicitly convert type

 // 'AnonymousType#1' to 'AnonymousType#2'

 patent1 = patent2;

 // ERROR: Cannot implicitly convert type

 // 'AnonymousType#3' to 'AnonymousType#2'

 patent1 = patent3;

 // ERROR: Property or indexer 'AnonymousType#1.Title'

 // cannot be assigned to -- it is read only'

 patent1.Title = "Swiss Cheese";

 }

}

The resultant two compile errors assert the fact that the types are not com-
patible, so they will not successfully convert from one to the other.

The third compile error is caused by the reassignment of the Title
property. Anonymous types are immutable, so it is a compile error to
change a property on an anonymous type once it has been instantiated.

Although not shown in Listing 14.2, it is not possible to declare a
method with an implicit data type parameter (var). Therefore, instances

 Title = "Bifocals",

 YearOfPublication = "1784"

 YearOfPublication = "1877",

 Title = "Phonograph"

 Year = patent1.YearOfPublication

ptg

Chapter 14: Collection Interfaces with Standard Query Operators542

of anonymous types can only be passed outside the method in which they
are created in only two ways. First, if the method parameter is of type
object, the anonymous type instance may pass outside the method
because the anonymous type will convert implicitly. A second way is to
use method type inference, whereby the anonymous type instance is
passed as a method type parameter that the compiler can successfully
infer. Calling void Method<T>(T parameter) using Function(patent1),
therefore, would succeed, although the available operations on parameter
within Function() are limited to those supported by object.

In spite of the fact that C# allows anonymous types such as the ones
shown in Listing 14.1, it is generally not recommended that you define
them in this way. Anonymous types provide critical functionality with C#
3.0 support for projections, such as joining/associating collections, as we
discuss later in the chapter. However, generally you should reserve anony-
mous type definitions for circumstances where they are required, such as
aggregation of data from multiple types.

A D V A N C E D T O P I C

Anonymous Type Generation
Even though Console.WriteLine()’s implementation is to call ToString(),
notice in Listing 14.1 that the output from Console.WriteLine() is not the
default ToString(), which writes out the fully qualified data type name.
Rather, the output is a list of PropertyName = value pairs, one for each
property on the anonymous type. This occurs because the compiler over-
rides ToString() in the anonymous type code generation, and instead for-
mats the ToString() output as shown. Similarly, the generated type
includes overriding implementations for Equals() and GetHashCode().

The implementation of ToString() on its own is an important reason
that variance in the order of properties causes a new data type to be gener-
ated. If two separate anonymous types, possibly in entirely separate types
and even namespaces, were unified and then the order of properties
changed, changes in the order of properties on one implementation would
have noticeable and possibly unacceptable effects on the others’ ToString()

ptg

 Collection Initializers 543

results. Furthermore, at execution time it is possible to reflect back on a type
and examine the members on a type—even to call one of these members
dynamically (determining at runtime which member to call). A variance in
the order of members on two seemingly identical types could trigger unex-
pected results, and to avoid this, the C# designers decided to generate two
different types.

Collection Initializers

Another feature added to C# in version 3.0 was collection initializers. A
collection initializer allows programmers to construct a collection with an
initial set of members at instantiation time in a manner similar to array
declaration. Without collection initialization, elements had to be explicitly
added to a collection after the collection was instantiated—using some-
thing like System.Collections.Generic.ICollection<T>’s Add() method.
With collection initialization, the Add() calls are generated by the C# com-
plier rather than explicitly coded by the developer. Listing 14.3 shows how
to initialize the collection using a collection initializer instead.

Listing 14.3: Filtering with System.Linq.Enumerable.Where()

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 List<string> sevenWorldBlunders;

 sevenWorldBlunders = new List<string>()

 {

 // Quotes from Ghandi

 "Wealth without work",

 "Pleasure without conscience",

 "Knowledge without character",

 "Commerce without morality",

 "Science without humanity",

 "Worship without sacrifice",

 "Politics without principle"

 };

ptg

Chapter 14: Collection Interfaces with Standard Query Operators544

 Print(sevenWorldBlunders);

 }

 private static void Print<T>(IEnumerable<T> items)

 {

 foreach (T item in items)

 {

 Console.WriteLine(item);

 }

 }

}

The syntax is similar not only to the array initialization, but also to an
object initializer with the curly braces following the constructor. If no
parameters are passed in the constructor, the parentheses following the
data type are optional (as they are with object initializers).

A few basic requirements are needed in order for a collection initializer
to compile successfully. Ideally, the collection type to which a collection ini-
tializer is applied would be of a type that implements System.Collec-
tions.Generic.ICollection<T>. This ensures that the collection includes
an Add() that the compiler-generated code can invoke. However, a relaxed
version of the requirement also exists and simply demands that one or more
Add() methods exist on a type that implements IEnumerable<T>—even if
the collection doesn’t implement ICollection<T>. The Add() methods need
to take parameters that are compatible with the values specified in the col-
lection initializer.

Allowing initializers on collections that don’t support ICollection<T>
was important for two reasons. First, it turns out that the majority of collec-
tions (types that implement IEnumerable<T>) do not also implement
ICollection<T>, thus significantly reducing the usefulness of collection
initializers.

Second, matching on the method name and signature compatibility
with the collection initialize items enables greater diversity in the items ini-
tialized into the collection. For example, the initializer now can support
new DataStore(){ a, {b, c}} as long as there is one Add() method whose
signature is compatible with a and a second Add() method compatible
with b, c.

ptg

 Collection Initializers 545

Note that you cannot have a collection initializer for an anonymous type
since the collection initializer requires a constructor call, and it is impossible
to name the constructor. The workaround is to define a method such as
static List<T> CreateList<T>(T t) { return new List<T>(); }. Method
type inference allows the type parameter to be implied rather than specified
explicitly, and so this workaround successfully allows for the creation of a
collection of anonymous types.

Another approach to initializing a collection of anonymous types is to
use an array initializer. Since it is not possible to specify the data type in
the constructor, array initialization syntax allows for anonymous array ini-
tializers using new[] (see Listing 14.4).

Listing 14.4: Initializing Anonymous Type Arrays

using System;

using System.Collections.Generic;

using System.Linq;

class Program

{

 static void Main()

 {

 new

 {

 TeamName = "France",

 Players = new string[]

 {

 "Fabien Barthez", "Gregory Coupet",

 "Mickael Landreau", "Eric Abidal",

 // ...

 }

 },

 new

 {

 TeamName = "Italy",

 Players = new string[]

 {

 "Gianluigi Buffon", "Angelo Peruzzi",

 "Marco Amelia", "Cristian Zaccardo",

 // ...

 }

 }

 };

 var worldCup2006Finalists = new[]

 {

ptg

Chapter 14: Collection Interfaces with Standard Query Operators546

 Print(worldCup2006Finalists);

 }

 private static void Print<T>(IEnumerable<T> items)

 {

 foreach (T item in items)

 {

 Console.WriteLine(item);

 }

 }

}

The resultant variable is an array of the anonymous type items, which
must be homogenous since it is an array.

What Makes a Class a Collection: IEnumerable<T>

By definition, a collection within .NET is a class that, at a minimum, imple-
ments IEnumerable<T> (technically, it would be the nongeneric type IEnu-
merable). This interface is a key because implementing the methods of
IEnumerable<T> is the minimum implementation requirement needed to
support iterating over the collection.

Chapter 3 showed how to use a foreach statement to iterate over an
array of elements. The syntax is simple and avoids the complication of
having to know how many elements there are. The runtime does not
directly support the foreach statement, however. Instead, the C# compiler
transforms the code as described in this section.

foreach with Arrays
Listing 14.5 demonstrates a simple foreach loop iterating over an array of
integers and then printing out each integer to the console.

Listing 14.5: foreach with Arrays

int[] array = new int[]{1, 2, 3, 4, 5, 6};

foreach (int item in array)

{

 Console.WriteLine(item);

}

ptg

 What Makes a Class a Collection: IEnumerable<T> 547

From this code, the C# compiler creates a CIL equivalent of the for
loop, as shown in Listing 14.6.

Listing 14.6: Compiled Implementation of foreach with Arrays

int number;

int[] tempArray;

int[] array = new int[]{1, 2, 3, 4, 5, 6};

tempArray = array;

for (int counter = 0; (counter < tempArray.Length); counter++)

{

 int item = tempArray[counter];

 Console.WriteLine(item);

}

In this example, note that foreach relies on support for the Length
property and the index operator ([]). With the Length property, the C#
compiler can use the for statement to iterate through each element in the
array.

foreach with IEnumerable<T>
Although the code shown in Listing 14.6 works well on arrays where the
length is fixed and the index operator is always supported, not all types of
collections have a known number of elements. Furthermore, many of the col-
lection classes, including the Stack<T>, Queue<T>, and Dictionary<Tkey,
Tvalue> classes, do not support retrieving elements by index. Therefore, a
more general approach of iterating over collections of elements is needed.
The iterator pattern provides this capability. Assuming you can determine
the first, next, and last elements, knowing the count and supporting retrieval
of elements by index is unnecessary.

The System.Collections.Generic.IEnumerator<T> and nongeneric
System.Collections.IEnumerator interfaces (see Listing 14.8) are designed
to enable the iterator pattern for iterating over collections of elements, rather
than the length-index pattern shown in Listing 14.6. A class diagram of their
relationships appears in Figure 14.1.

ptg

Chapter 14: Collection Interfaces with Standard Query Operators548

IEnumerator, which IEnumerator<T> derives from, includes three
members. The first is bool MoveNext(). Using this method, you can move
from one element within the collection to the next while at the same time
detecting when you have enumerated through every item. The second
member, a read-only property called Current, returns the element cur-
rently in process. Current is overloaded in IEnumerator<T>, providing a
type-specific implementation of it. With these two members on the collec-
tion class, it is possible to iterate over the collection simply using a while
loop, as demonstrated in Listing 14.7. (The Reset() method usually throws
a NotImplementedException and, therefore, should never be called. If you
need to restart an enumeration, just create a fresh enumerator.)

Listing 14.7: Iterating over a Collection Using while

System.Collections.Generic.Stack<int> stack =

 new System.Collections.Generic.Stack<int>();

int number;

// ...

// This code is conceptual, not the actual code.

while (stack.MoveNext())

{

 number = stack.Current;

 Console.WriteLine(number);

}

Figure 14.1: IEnumerator<T> and IEnumerator Interfaces

IDisposable

IEnumerator

Interface

Interface
IEnumerable
Interface

IEnumerable�T�
Generic Interface

IEnumerator�T�
Generic Interface

Methods

Methods

Methods

IEnumerable

Methods

Properties

Properties

IDisposable
IEnumerator

Dispose

Current

Current

MoveNext

Reset

GetEnumerator

GetEnumerator

ptg

 What Makes a Class a Collection: IEnumerable<T> 549

In Listing 14.7, the MoveNext() method returns false when it moves past the
end of the collection. This replaces the need to count elements while looping.

Listing 14.7 uses a System.Collections.Generic.Stack<T> as the col-
lection type. Numerous other collection types exist; this is just one exam-
ple. The key trait of Stack<T> is its design as a last in, first out (LIFO)
collection. It is important to note that the type parameter T identifies the
type of all items within the collection. Collecting one particular type of
object within a collection is a key characteristic of a generic collection. It
is important that the programmer understands the data type within
the collection when adding, removing, or accessing items within the
collection.

This preceding example shows the gist of the C# compiler output, but it
doesn’t actually compile that way because it omits two important details
concerning the implementation: interleaving and error handling.

State Is Shared

The problem with an implementation such as Listing 14.7 is that if two
such loops interleaved each other—one foreach inside another, both
using the same collection—the collection must maintain a state indicator
of the current element so that when MoveNext() is called, the next ele-
ment can be determined. The problem is that one interleaving loop can
affect the other. (The same is true of loops executed by multiple threads.)

To overcome this problem, the collection classes do not support IEnu-
merator<T> and IEnumerator interfaces directly. As shown in Figure 14.1,
there is a second interface, called IEnumerable<T>, whose only method is
GetEnumerator(). The purpose of this method is to return an object that
supports IEnumerator<T>. Instead of the collection class maintaining the
state, a different class, usually a nested class so that it has access to the
internals of the collection, will support the IEnumerator<T> interface and
will keep the state of the iteration loop. The enumerator is like a “cursor”
or a “bookmark” in the sequence. You can have multiple bookmarks, and
moving each of them enumerates over the collection independently of the
other. Using this pattern, the C# equivalent of a foreach loop will look like
the code shown in Listing 14.8.

ptg

Chapter 14: Collection Interfaces with Standard Query Operators550

Listing 14.8: A Separate Enumerator Maintaining State during an Iteration

System.Collections.Generic.Stack<int> stack =

 new System.Collections.Generic.Stack<int>();

int number;

System.Collections.Generic.Stack<int>.Enumerator

 enumerator;

// ...

// If IEnumerable<T> is implemented explicitly,

// then a cast is required.

// ((IEnumerable<int>)stack).GetEnumerator();

enumerator = stack.GetEnumerator();

while (enumerator.MoveNext())

{

 number = enumerator.Current;

 Console.WriteLine(number);

}

Cleaning Up Following Iteration

Since the classes that implement the IEnumerator<T> interface maintain
the state, sometimes you need to clean up the state after it exits the loop
(because either all iterations have completed or an exception is thrown). To
achieve this, the IEnumerator<T> interface derives from IDisposable. Enu-
merators that implement IEnumerator do not necessarily implement IDis-
posable, but if they do, Dispose() will be called as well. This enables the
calling of Dispose() after the foreach loop exits. The C# equivalent of the
final CIL code, therefore, looks like Listing 14.9.

Listing 14.9: Compiled Result of foreach on Collections

System.Collections.Generic.Stack<int> stack =

 new System.Collections.Generic.Stack<int>();

System.Collections.Generic.Stack<int>.Enumerator

 enumerator;

IDisposable disposable;

enumerator = stack.GetEnumerator();

try

{

 int number;

 while (enumerator.MoveNext())

 {

 number = enumerator.Current;

 Console.WriteLine(number);

 }

}

ptg

 What Makes a Class a Collection: IEnumerable<T> 551

finally

{

 // Explicit cast used for IEnumerator<T>.

 disposable = (IDisposable) enumerator;

 disposable.Dispose();

 // IEnumerator will use the as operator unless IDisposable

 // support is known at compile time.

 // disposable = (enumerator as IDisposable);

 // if (disposable != null)

 // {

 // disposable.Dispose();

 // }

}

Notice that because the IDisposable interface is supported by IEnu-
merator<T>, the using statement can simplify the code in Listing 14.9 to
that shown in Listing 14.10.

Listing 14.10: Error Handling and Resource Cleanup with using

System.Collections.Generic.Stack<int> stack =

 new System.Collections.Generic.Stack<int>();

int number;

{

 while (enumerator.MoveNext())

 {

 number = enumerator.Current;

 Console.WriteLine(number);

 }

}

However, recall that the CIL also does not directly support the using key-
word, so in reality, the code in Listing 14.9 is a more accurate C# represen-
tation of the foreach CIL code.

A D V A N C E D T O P I C

foreach without IEnumerable
Technically, the compiler doesn’t require that IEnumerable/IEnumera-
ble<T> be supported in order to iterate over a data type using foreach.

using(

 System.Collections.Generic.Stack<int>.Enumerator<int>

 enumerator = stack.GetEnumerator())

ptg

Chapter 14: Collection Interfaces with Standard Query Operators552

Rather, the compiler uses a concept known as “duck typing” such that if no
IEnumerable/IEnumerable<T> method is found, it looks for the GetEnu-
merator() method to return a type with Current() and MoveNext() meth-
ods. Duck typing involves searching for a method by name rather than
relying on an interface or explicit method call to the method.

Do Not Modify Collections during foreach Iteration
Chapter 3 showed that the compiler prevents assignment of the foreach
variable (number). As is demonstrated in Listing 14.10, an assignment to
number would not be a change to the collection element itself, so the C#
compiler prevents such an assignment altogether.

In addition, neither the element count within a collection nor the items
themselves can generally be modified during the execution of a foreach
loop. If, for example, you called stack.Push(42) inside the foreach loop, it
would be ambiguous whether the iterator should ignore or incorporate
the change to stack—in other words, whether iterator should iterate
over the newly added item or ignore it and assume the same state as when
it was instantiated.

Because of this ambiguity, an exception of type System.InvalidOpera-
tionException is generally thrown upon accessing the enumerator if the
collection is modified within a foreach loop, reporting that the collection
was modified after the enumerator was instantiated.

Standard Query Operators

Besides the methods on System.Object, any type that implements IEnu-
merable<T> has only one method, GetEnumerator(). And yet, it makes
more than 50 methods available to all types implementing IEnumera-
ble<T>, not including any overloading—and this happens without need-
ing to explicitly implement any method except the GetEnumerator()
method. The additional functionality is provided using C# 3.0’s extension
methods and it all resides in the class System.Linq.Enumerable. Therefore,
including the using declarative for System.Linq is all it takes to make these
methods available.

Each method on IEnumerable<T> is a standard query operator; it pro-
vides querying capability over the collection on which it operates. In the

ptg

 Standard Query Operators 553

following sections, we will examine some of the most prominent of these
standard query operators.

Many of the examples will depend on an Inventor and/or Patent class,
both of which are defined in Listing 14.11.

Listing 14.11: Sample Classes for Use with Standard Query Operators

using System;

using System.Collections.Generic;

using System.Linq;

public class Patent

{

 // Title of the published application

 public string Title { get; set; }

 // The date the application was officially published

 public string YearOfPublication { get; set; }

 // A unique number assigned to published applications

 public string ApplicationNumber { get; set; }

 public long[] InventorIds { get; set; }

 public override string ToString()

 {

 return string.Format("{0}({1})",

 Title, YearOfPublication);

 }

}

public class Inventor

{

 public long Id { get; set; }

 public string Name { get; set; }

 public string City { get; set; }

 public string State { get; set; }

 public string Country { get; set; }

 public override string ToString()

 {

 return string.Format("{0}({1}, {2})",

 Name, City, State);

 }

}

class Program

{

ptg

Chapter 14: Collection Interfaces with Standard Query Operators554

 static void Main()

 {

 IEnumerable<Patent> patents = PatentData.Patents;

 Print(patents);

 Console.WriteLine();

 IEnumerable<Inventor> inventors = PatentData.Inventors;

 Print(inventors);

 }

 private static void Print<T>(IEnumerable<T> items)

 {

 foreach (T item in items)

 {

 Console.WriteLine(item);

 }

 }

}

public static class PatentData

{

 public static readonly Inventor[] Inventors = new Inventor[]

 {

 new Inventor(){

 Name="Benjamin Franklin", City="Philadelphia",

 State="PA", Country="USA", Id=1 },

 new Inventor(){

 Name="Orville Wright", City="Kitty Hawk",

 State="NC", Country="USA", Id=2},

 new Inventor(){

 Name="Wilbur Wright", City="Kitty Hawk",

 State="NC", Country="USA", Id=3},

 new Inventor(){

 Name="Samuel Morse", City="New York",

 State="NY", Country="USA", Id=4},

 new Inventor(){

 Name="George Stephenson", City="Wylam",

 State="Northumberland", Country="UK", Id=5},

 new Inventor(){

 Name="John Michaelis", City="Chicago",

 State="IL", Country="USA", Id=6},

 new Inventor(){

 Name="Mary Phelps Jacob", City="New York",

 State="NY", Country="USA", Id=7},

 };

 public static readonly Patent[] Patents = new Patent[]

 {

ptg

 Standard Query Operators 555

 new Patent(){

 Title="Bifocals", YearOfPublication="1784",

 InventorIds=new long[] {1}},

 new Patent(){

 Title="Phonograph", YearOfPublication="1877",

 InventorIds=new long[] {1}},

 new Patent(){

 Title="Kinetoscope", YearOfPublication="1888",

 InventorIds=new long[] {1}},

 new Patent(){

 Title="Electrical Telegraph",

 YearOfPublication="1837",

 InventorIds=new long[] {4}},

 new Patent(){

 Title="Flying machine", YearOfPublication="1903",

 InventorIds=new long[] {2,3}},

 new Patent(){

 Title="Steam Locomotive",

 YearOfPublication="1815",

 InventorIds=new long[] {5}},

 new Patent(){

 Title="Droplet deposition apparatus",

 YearOfPublication="1989",

 InventorIds=new long[] {6}},

 new Patent(){

 Title="Backless Brassiere",

 YearOfPublication="1914",

 InventorIds=new long[] {7}},

 };

}

Listing 14.11 also provides a selection of sample data. Output 14.2 displays
the results.

OUTPUT 14.2:

Bifocals(1784)

Phonograph(1877)

Kinetoscope(1888)

Electrical Telegraph(1837)

Flying machine(1903)

Steam Locomotive(1815)

Droplet deposition apparatus(1989)

Backless Brassiere(1914)

Benjamin Franklin(Philadelphia, PA)

Orville Wright(Kitty Hawk, NC)

Wilbur Wright(Kitty Hawk, NC)

Samuel Morse(New York, NY)

George Stephenson(Wylam, Northumberland)

John Michaelis(Chicago, IL)

Mary Phelps Jacob(New York, NY)

ptg

Chapter 14: Collection Interfaces with Standard Query Operators556

Filtering with Where()
In order to filter out data from a collection, we need to provide a filter
method that returns true or false, indicating whether a particular
element should be included or not. A delegate expression that takes an
argument and returns a Boolean is called a predicate, and a collection’s
Where() method depends on predicates for identifying filter criteria, as
shown in Listing 14.12. (Technically, the result of the Where() method is a
monad which encapsulates the operation of filtering a given sequence
with a given predicate.) The output appears in Output 14.3.

Listing 14.12: Filtering with System.Linq.Enumerable.Where()

using System;

using System.Collections.Generic;

using System.Linq;

class Program

{

 static void Main()

 {

 IEnumerable<Patent> patents = PatentData.Patents;

 Print(patents);

 }

 // ...

}

Notice that the code assigns the output of the Where() call back to
IEnumerable<T>. In other words, the output of IEnumerable<T>.Where()
is a new IEnumerable<T> collection. In Listing 14.12, it is IEnumera-
ble<Patent>.

 patents = patents.Where(

 patent => patent.YearOfPublication.StartsWith("18"));

OUTPUT 14.3:

Phonograph(1877)

Kinetoscope(1888)

Electrical Telegraph(1837)

Steam Locomotive(1815)

ptg

 Standard Query Operators 557

Less obvious is that the Where() expression argument has not necessar-
ily executed at assignment time. This is true for many of the standard
query operators. In the case of Where(), for example, the expression is
passed in to the collection and “saved” but not executed. Instead, execu-
tion of the expression occurs only when it is necessary to begin iterating
over the items within the collection. A foreach loop, for example, such as
the one in Print() (in Listing 14.11), will trigger the expression to be
evaluated for each item within the collection. At least conceptually, the
Where() method should be understood as a means of specifying the query
regarding what appears in the collection, not the actual work involved
with iterating over to produce a new collection with potentially fewer
items.

Projecting with Select()
Since the output from the IEnumerable<T>.Where() method is a new
IEnumerable<T> collection, it is possible to again call a standard query
operator on the same collection. For example, rather than just filtering
the data from the original collection, we could transform the data (see
Listing 14.13).

Listing 14.13: Projection with System.Linq.Enumerable.Select()

using System;

using System.Collections.Generic;

using System.Linq;

class Program

{

 static void Main()

 {

 IEnumerable<Patent> patents = PatentData.Patents;

 IEnumerable<Patent> patentsOf1800 = patents.Where(

 patent => patent.YearOfPublication.StartsWith("18"));

 Print(items);

 }

 // ...

}

 IEnumerable<string> items = patentsOf1800.Select(

 patent => patent.ToString());

ptg

Chapter 14: Collection Interfaces with Standard Query Operators558

In Listing 14.13, we create a new IEnumerable<string> collection. In
this case, it just so happens that adding the Select() call doesn’t change
the output; but this is only because Print()’s Console.WriteLine() call
used ToString() anyway. Obviously, a transform still occurred on each
item from the Patent type of the original collection to the string type of the
items collection.

Consider the example using System.IO.FileInfo in Listing 14.14.

Listing 14.14: Projection with System.Linq.Enumerable.Select() and new

 // ...

 IEnumerable<string> fileList = Directory.GetFiles(

 rootDirectory, searchPattern);

 IEnumerable<FileInfo> files = fileList.Select(

 file => new FileInfo(file));

 // ...

fileList is of type IEnumerable<string>. However, using the projection
offered by Select, we can transform each item in the collection to a
System.IO.FileInfo object.

Lastly, capitalizing on anonymous types, we could create an IEnumera-
ble<T> collection where T is an anonymous type (see Listing 14.15 and
Output 14.4).

Listing 14.15: Projection to an Anonymous Type

 // ...

 IEnumerable<string> fileList = Directory.GetFiles(

 rootDirectory, searchPattern);

 // ...

 var items = fileList.Select(

 file =>

 {

 FileInfo fileInfo = new FileInfo(file);

 return new

 {

 FileName = fileInfo.Name,

 Size = fileInfo.Length

 };

 });

ptg

 Standard Query Operators 559

The output of an anonymous type automatically shows the property
names and their values as part of the generated ToString() method associ-
ated with the anonymous type.

Projection using the Select() method is very powerful. We already
saw how to filter a collection vertically (reducing the number of items in
the collection) using the Where() standard query operator. Now, via the
Select() standard query operator, we can also reduce the collection
horizontally (making fewer columns) or transform the data entirely. In
combination, Where() and Select() provide a means for extracting only
the pieces of the original collection that are desirable for the current
algorithm. These two methods alone provide a powerful collection
manipulation API that would otherwise result in significantly more code
that is less readable.

A D V A N C E D T O P I C

Running LINQ Queries in Parallel
With the abundance of computers having multiple processors and multi-
ple cores within those processors, the ability to easily take advantage of the
additional processing power becomes far more important. To do this, pro-
grams need to be changed to support multiple threads so that work can
happen simultaneously on different CPUs within the computer. Listing
14.16 demonstrates one way to do this using Parallel LINQ (PLINQ).

OUTPUT 14.4:

{ FileName = AssemblyInfo.cs, Size = 1704 }

{ FileName = CodeAnalysisRules.xml, Size = 735 }

{ FileName = CustomDictionary.xml, Size = 199 }

{ FileName = EssentialCSharp.sln, Size = 40415 }

{ FileName = EssentialCSharp.suo, Size = 454656 }

{ FileName = EssentialCSharp.vsmdi, Size = 499 }

{ FileName = EssentialCSharp.vssscc, Size = 256 }

{ FileName = intelliTechture.ConsoleTester.dll, Size = 24576 }

{ FileName = intelliTechture.ConsoleTester.pdb, Size = 30208 }

{ FileName = LocalTestRun.testrunconfig, Size = 1388 }

ptg

Chapter 14: Collection Interfaces with Standard Query Operators560

Listing 14.16: Executing LINQ Queries in Parallel

 // ...

 IEnumerable<string> fileList = Directory.GetFiles(

 rootDirectory, searchPattern);

 file =>

 {

 FileInfo fileInfo = new FileInfo(file);

 return new

 {

 FileName = fileInfo.Name,

 Size = fileInfo.Length

 };

 });

 // ...

As Listing 14.16 shows, the change in code to enable parallel support is
minimal. All that it uses is a .NET Framework 4 introduced standard
query operator, AsParallel(), on the static class System.Linq.Paral-
lelEnumerable. Using this simple extension method, however, the run-
time begins executing over the items within the fileList collection and
returning the resultant objects in parallel. Each parallel operation in this
case isn’t particularly expensive (although it is relative to what other exe-
cution is taking place), but consider CPU-intensive operations such as
encryption or compression. Paralyzing the execution across multiple
CPUs can decrease execution time by a magnitude corresponding to the
number of CPUs.

An important caveat to be aware of (and the reason why AsParallel()
appears in an Advanced Block rather than the standard text) is that parallel
execution can introduce race conditions such that an operation on one
thread can be intermingled with an operation on a different thread, caus-
ing data corruption. To avoid this, synchronization mechanisms are
required on data with shared access from multiple threads in order to force
the operations to be atomic where necessary. Synchronization itself, how-
ever, can introduce deadlocks that freeze the execution, further complicat-
ing the effective parallel programming.

More details on this and additional multithreading topics are covered
in Chapter 18 and Chapter 19.

var items = fileList. AsParallel() .Select(

ptg

 Standard Query Operators 561

Counting Elements with Count()
Another common query performed on a collection of items is to retrieve
the count. To support this LINQ includes the Count() extension method.

Listing 14.17 demonstrates that Count() is overloaded to simply count
all elements (no parameters) or to take a predicate that only counts items
identified by the predicate expression.

Listing 14.17: Counting Items with Count()

using System;

using System.Collections.Generic;

using System.Linq;

class Program

{

 static void Main()

 {

 IEnumerable<Patent> patents = PatentData.Patents;

 }

 // ...

}

In spite of the simplicity of writing the Count() statement, IEnumera-
ble<T> has not changed, so the executed code still involves iterating over
all the items in the collection. Whenever a Count property is directly avail-
able on the collection, it is preferable to use that rather than LINQ’s Count()
method (a subtle difference). Fortunately, ICollection<T> includes the
Count property, so code that calls the Count() method on a collection that
supports ICollection<T> will cast the collection and call Count directly.
However, if ICollection<T> is not supported, Enumerable.Count() will
proceed to enumerate all the items in the collection rather than call the
built-in Count mechanism. If the purpose of checking the count is only to
see whether it is greater than zero (if(patents.Count() > 0){...}), a
preferable approach would be to use the Any() operator (if(pat-
ents.Any()){...}). Any() attempts to iterate over only one of the items in
the collection to return a true result, rather than the entire sequence.

Console.WriteLine("Patent Count: {0}", patents.Count());

Console.WriteLine("Patent Count in 1800s: {0}",

 patents.Count(patent =>

 patent.YearOfPublication.StartsWith("18")));

ptg

Chapter 14: Collection Interfaces with Standard Query Operators562

Deferred Execution
One of the most important concepts to remember when using LINQ is
deferred execution. Consider the code in Listing 14.18 and the correspond-
ing output in Output 14.5.

Listing 14.18: Filtering with System.Linq.Enumerable.Where()

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 IEnumerable<Patent> patents = PatentData.Patents;

 bool result;

 patents = patents.Where(

 patent =>

 {

 if (result =

 patent.YearOfPublication.StartsWith("18"))

 {

 // Side effects like this in a predicate

 // are used here to demonstrate a

 // principle and should generally be

 // avoided.

 Console.WriteLine("\t" + patent);

 }

 return result;

 });

 Console.WriteLine("1. Patents prior to the 1900s are:");

 foreach (Patent patent in patents)

 {

 }

 Console.WriteLine();

 Console.WriteLine(

 "2. A second listing of patents prior to the 1900s:");

 Console.WriteLine(

 " There are {0} patents prior to 1900.",

 patents.Count());

 Console.WriteLine();

 Console.WriteLine(

 "3. A third listing of patents prior to the 1900s:");

 patents = patents.ToArray();

ptg

 Standard Query Operators 563

 Console.Write(" There are ");

 Console.WriteLine("{0} patents prior to 1900.",

 patents.Count());

// ...

Notice that Console.WriteLine("1. Patents prior…) executes before
the lambda expression. This is a very important characteristic to pay atten-
tion to because it is not obvious to those who are unaware of its impor-
tance. In general, predicates should do exactly one thing—evaluate a
condition—and they should not have any side effects (even printing to the
console, as in this example).

To understand what is happening, recall that lambda expressions are
delegates—references to methods—that can be passed around. In the con-
text of LINQ and standard query operators, each lambda expression forms
part of the overall query to be executed.

At the time of declaration, lambda expressions do not execute. It isn’t
until the lambda expressions are invoked that the code within them begins
to execute. Figure 14.2 shows the sequence of operations.

As Figure 14.2 shows, three calls in Listing 14.16 trigger the lambda
expression, and each time it is fairly implicit. If the lambda expression was

OUTPUT 14.5:

1. Patents prior to the 1900s are:

 Phonograph(1877)

 Kinetoscope(1888)

 Electrical Telegraph(1837)

 Steam Locomotive(1815)

2. A second listing of patents prior to the 1900s:

 Phonograph(1877)

 Kinetoscope(1888)

 Electrical Telegraph(1837)

 Steam Locomotive(1815)

 There are 4 patents prior to 1900.

3. A third listing of patents prior to the 1900s:

 Phonograph(1877)

 Kinetoscope(1888)

 Electrical Telegraph(1837)

 Steam Locomotive(1815)

 There are 4 patents prior to 1900.

ptg

564

Figure 14.2: IEnumerator<T> and IEnumerator Interfaces

Program

Where<Patent>

WriteLine

GetEnumerator

Current{get}

MoveNext

WriteLine

Count<Patent>

WriteLine

WriteLine

ToArray<Patent>

Write

Count<Patent>

WriteLine

Main

List Display Triggered

List Display Triggered

List NOT Triggered

Enumerable Console IEnumerable<Patent> IEnumerable<Patent> IEnumerator

List Display Triggered for Item

1

2

3

From the Library of Wow! eBook

ptg

 Standard Query Operators 565

expensive (such as a call to a database) it would be important to minimize
the lambda expression’s execution.

First, the execution is triggered within the foreach loop. As I described
earlier in the chapter, the foreach loop breaks down into a MoveNext() call
and each call results in the lambda expression’s execution for each item in
the original collection. While iterating, the runtime invokes the lambda
expression for each item to determine whether the item satisfies the
predicate.

Second, a call to Enumerable’s Count() (the function) triggers the
lambda expression for each item once more. Again, this is very subtle since
Count (the property) is very common on collections that have not been
queried with a standard query operator.

Third, the call to ToArray() (or ToList(), ToDictionary(), or ToLook-
up()) triggers the lambda expression for each item. However, converting
the collection with one of these “To” methods is extremely helpful. Doing
so returns a collection on which the standard query operator has already
executed. In Listing 14.16, the conversion to an array means that when
Length is called in the final Console.WriteLine(), the underlying object
pointed to by patents is in fact an array (which obviously implements
IEnumerable<T>), and therefore, System.Array’s implementation of
Length is called and not System.Linq.Enumerable’s implementation.
Therefore, following a conversion to one of the collection types returned
by a “To” method, it is generally safe to work with the collection (until
another standard query operator is called). However, be aware that this
will bring the entire result set into memory (it may have been backed by a
database or file before this). Furthermore, the “To” method will snapshot
the underlying data so that no fresh results will be returned upon requery-
ing the “To” method result.

I strongly encourage readers to review the sequence diagram in Figure
14.2 along with the corresponding code and understand the fact that the
deferred execution of standard query operators can result in extremely
subtle triggering of the standard query operators; therefore, developers
should use caution to avoid unexpected calls. The query object represents
the query, not the results. When you ask the query for the results, the
whole query executes (perhaps even again) because the query object

ptg

Chapter 14: Collection Interfaces with Standard Query Operators566

doesn’t know that the results will be the same as they were during a previ-
ous execution (if one existed).

Sorting with OrderBy() and ThenBy()
Another common operation on a collection is to sort it. This involves a call
to System.Linq.Enumerable’s OrderBy(), as shown in Listing 14.19 and
Output 14.6.

Listing 14.19: Ordering with System.Linq.Enumerable.OrderBy()/ThenBy()

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 IEnumerable<Patent> items;

 Patent[] patents = PatentData.Patents;

 items = patents.OrderBy(

 patent => patent.YearOfPublication).ThenBy(

 patent => patent.Title);

 Print(items);

 Console.WriteLine();

 items = patents.OrderByDescending(

 patent => patent.YearOfPublication).ThenByDescending(

 patent => patent.Title);

 Print(items);

// ...

NOTE

To avoid such repeated execution, it is necessary to cache the data that
the executed query retrieves. To do this, you assign the data to a local
collection using one of the “To” method’s collection methods. During
the assignment call of a “To” method, the query obviously executes.
However, iterating over the assigned collection after that will not
involve the query expression any further. In general, if you want the
behavior of an in-memory collection snapshot, it is a best practice to
assign a query expression to a cached collection to avoid unnecessary
iterations.

ptg

 Standard Query Operators 567

The OrderBy() call takes a lambda expression that identifies the key on
which to sort. In Listing 14.19, the initial sort uses the year that the patent
was published.

However, notice that the OrderBy() call takes only a single parameter,
which uses the name keySelector, to sort on. To sort on a second column,
it is necessary to use a different method: ThenBy(). Similarly, code would
use ThenBy() for any additional sorting.

OrderBy() returns an IOrderedEnumerable<T> interface, not an IEnu-
merable<T>. Furthermore, IOrderedEnumerable<T> derives from IEnumer-
able<T>, so all the standard query operators (including OrderBy()) are
available on the OrderBy() return. However, repeated calls to OrderBy()
would undo the work of the previous call such that the end result would
sort by only the keySelector in the final OrderBy() call. As a result, be
careful not to call OrderBy() on a previous OrderBy() call.

Instead, you should specify additional sorting criteria using ThenBy().
Although ThenBy() is an extension method, it is not an extension of IEnu-
merable<T>, but rather IOrderedEnumerable<T>. The method, also defined
on System.Linq.Extensions.Enumerable, is declared as follows:

 public static IOrderedEnumerable<TSource>

 ThenBy<TSource, TKey>(

 this IOrderedEnumerable<TSource> source,

 Func<TSource, TKey> keySelector)

OUTPUT 14.6:

Bifocals (1784)

Steam Locomotive(1815)

Electrical Telegraph(1837)

Phonograph(1877)

Kinetoscope(1888)

Flying machine (1903)

Backless Brassiere(1914)

Droplet deposition apparatus(1989)

Droplet deposition apparatus(1989)

Backless Brassiere(1914)

Flying machine (1903)

Kinetoscope(1888)

Phonograph(1877)

Electrical Telegraph(1837)

Steam Locomotive(1815)

Bifocals (1784)

ptg

Chapter 14: Collection Interfaces with Standard Query Operators568

In summary, use OrderBy() first, followed by zero or more calls to
ThenBy() to provide additional sorting “columns.” The methods OrderBy-
Descending() and ThenByDescending() provide the same functionality
except with descending order. Mixing and matching ascending and
descending methods is not a problem, but if sorting further, use a ThenBy()
call (either ascending or descending).

Two more important notes about sorting: First, the actual sort doesn’t
occur until you begin to access the members in the collection, at which
point the entire query is processed. This occurs because you can’t sort
unless you have all the items to sort; otherwise, you can’t determine
whether you have the first item. The fact that sorting is delayed until you
begin to access the members is due to deferred execution, as I describe
earlier in this chapter. Second, each subsequent call to sort the data
(Orderby() followed by ThenBy() followed by ThenByDescending(), for
example) does involve additional calls to the keySelector lambda expres-
sion of the earlier sorting calls. In other words, a call to OrderBy() will call
its corresponding keySelector lambda expression once you iterate over
the collection. Furthermore, a subsequent call to ThenBy() will again make
calls to OrderBy()’s keySelector.

B E G I N N E R T O P I C

Join Operations
Consider two collections of objects as shown in the Venn diagram in
Figure 14.3.

The left circle in the diagram includes all inventors, and the right circle
contains all patents. Within the intersection, we have both inventors and
patents and a line is formed for each case where there is a match of inven-
tors to patents. As the diagram shows, each inventor may have multiple
patents and each patent can have one or more inventors. Each patent has
an inventor, but in some cases inventors do not yet have patents.

Matching up inventors within the intersection to patents is an inner join.
The result is a collection of inventor-patent pairs in which both patents and
inventions exist for a pair. A left outer join includes all the items within the
left circle regardless of whether they have a corresponding patent. In this

ptg

 Standard Query Operators 569

particular example, a right outer join would be the same as an inner join
since there are no patents without inventors. Furthermore, the designation
of left versus right is arbitrary, so there is really no distinction between left
and outer joins. A full outer join, however, would include records from
both outer sides; it is relatively rare to perform a full outer join.

Another important characteristic in the relationship between inventors
and patents is that it is a many-to-many relationship. Each individual pat-
ent can have one or more inventors (the flying machine’s invention by both
Orville and Wilbur Wright, for example). Furthermore, each inventor can
have one or more patents (Benjamin Franklin’s invention of both bifocals
and the phonograph, for example).

Another common relationship is a one-to-many relationship. For exam-
ple, a company department may have many employees. However, each
employee can belong to only one department at a time. (However, as is
common with one-to-many relationships, adding the factor of time can
transform them into many-to-many relationships. A particular employee
may move from one department to another so that over time, she could
potentially be associated with multiple departments, making another
many-to-many relationship.)

Figure 14.3: Venn Diagram of Inventor and Patent Collections

Inventors Patents

Inner

Right OuterLeft Outer

ptg

Chapter 14: Collection Interfaces with Standard Query Operators570

Listing 14.20 provides a sample listing of Employee and Department
data, and Output 14.7 shows the results.

Listing 14.20: Sample Employee and Department Data

public class Department

{

 public long Id { get; set; }

 public string Name { get; set; }

 public override string ToString()

 {

 return string.Format("{0}", Name);

 }

}

public class Employee

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Title { get; set; }

 public int DepartmentId { get; set; }

 public override string ToString()

 {

 return string.Format("{0} ({1})", Name, Title);

 }

}

public static class CorporateData

{

 public static readonly Department[] Departments =

 new Department[]

 {

 new Department(){

 Name="Corporate", Id=0},

 new Department(){

 Name="Finance", Id=1},

 new Department(){

 Name="Engineering", Id=2},

 new Department(){

 Name="Information Technology",

 Id=3},

 new Department(){

 Name="Research",

 Id=4},

 new Department(){

 Name="Marketing",

 Id=5},

 };

ptg

 Standard Query Operators 571

 public static readonly Employee[] Employees = new Employee[]

 {

 new Employee(){

 Name="Mark Michaelis",

 Title="Chief Computer Nerd",

 DepartmentId = 0},

 new Employee(){

 Name="Michael Stokesbary",

 Title="Senior Computer Wizard",

 DepartmentId=2},

 new Employee(){

 Name="Brian Jones",

 Title="Enterprise Integration Guru",

 DepartmentId=2},

 new Employee(){

 Name="Jewel Floch",

 Title="Bookkeeper Extraordinaire",

 DepartmentId=1},

 new Employee(){

 Name="Robert Stokesbary",

 Title="Expert Mainframe Engineer",

 DepartmentId = 3},

 new Employee(){

 Name="Paul R. Bramsman",

 Title="Programmer Extraordinaire",

 DepartmentId = 2},

 new Employee(){

 Name="Thomas Heavey",

 Title="Software Architect",

 DepartmentId = 2},

 new Employee(){

 Name="John Michaelis",

 Title="Inventor",

 DepartmentId = 4}

 };

}

class Program

{

 static void Main()

 {

 IEnumerable<Department> departments =

 CorporateData.Departments;

 Print(departments);

 Console.WriteLine();

 IEnumerable<Employee> employees =

 CorporateData.Employees;

ptg

Chapter 14: Collection Interfaces with Standard Query Operators572

 Print(employees);

 }

 private static void Print<T>(IEnumerable<T> items)

 {

 foreach (T item in items)

 {

 Console.WriteLine(item);

 }

 }

}

We will use the same data within the following section on joining data.

Performing an Inner Join with Join()
In the world of objects on the client side, relationships between objects are
generally already set up. For example, the relationship between files and
the directories in which they lie are preestablished with the Directory-
Info.GetFiles() method and the FileInfo.Directory method. Fre-
quently, however, this is not the case with data being loaded from
nonobject stores. Instead, the data needs to be joined together so that you
can navigate from one type of object to the next in a way that makes sense
for the data.

Consider the example of employees and company departments. In List-
ing 14.21, we join each employee to his or her department and then list each
employee with his or her corresponding department. Since each employee
belongs to only one (and exactly one) department, the total number of items

OUTPUT 14.7:

Corporate

Finance

Engineering

Information Technology

Research

Marketing

Mark Michaelis (Chief Computer Nerd)

Michael Stokesbary (Senior Computer Wizard)

Brian Jones (Enterprise Integration Guru)

Jewel Floch (Bookkeeper Extraordinaire)

Robert Stokesbary (Expert Mainframe Engineer)

Paul R. Bramsman (Programmer Extraordinaire)

Thomas Heavey (Software Architect)

John Michaelis (Inventor)

ptg

 Standard Query Operators 573

in the list is equal to the total number of employees—each employee appears
only once (each employee is said to be normalized). Output 14.8 follows.

Listing 14.21: An Inner Join Using System.Linq.Enumerable.Join()

using System;

using System.Linq;

// ...

 Department[] departments = CorporateData.Departments;

 Employee[] employees = CorporateData.Employees;

 var items = employees.Join(

 departments,

 employee => employee.DepartmentId,

 department => department.Id,

 (employee, department) => new

 {

 employee.Id,

 employee.Name,

 employee.Title,

 Department = department

 });

 foreach (var item in items)

 {

 Console.WriteLine("{0} ({1})",

 item.Name, item.Title);

 Console.WriteLine("\t" + item.Department);

 }

// ...

OUTPUT 14.8:

Mark Michaelis (Chief Computer Nerd)

 Corporate

Michael Stokesbary (Senior Computer Wizard)

 Engineering

Brian Jones (Enterprise Integration Guru)

 Engineering

Jewel Floch (Bookkeeper Extraordinaire)

 Finance

Robert Stokesbary (Expert Mainframe Engineer)

 Information Technology

Paul R. Bramsman (Programmer Extraordinaire)

 Engineering

Thomas Heavey (Software Architect)

 Engineering

John Michaelis (Inventor)

 Research

ptg

Chapter 14: Collection Interfaces with Standard Query Operators574

The first parameter for Join() has the name inner. It specifies the collec-
tion, departments, that employees joins to. The next two parameters are
lambda expressions that specify how the two collections will connect.
employee => employee.DepartmentId (with a parameter name of outer-
KeySelector) identifies that on each employee the key will be DepartmentId.
The next lambda expression, (department => department.Id) specifies
the Department’s Id property as the key. In other words, for each employee,
join a department where employee.DepartmentId equals department.Id.
The last parameter, the anonymous type, is the resultant item that is
selected. In this case, it is a class with Employee’s Id, Name, and Title as well
as a Department property with the joined department object.

Notice in the output that Engineering appears multiple times—once for
each employee in CorporateData. In this case, the Join() call produces a
Cartesian product between all the departments and all the employees such
that a new record is created for every case where a record exists in both col-
lections and the specified department IDs are the same. This type of join is
an inner join.

The data could also be joined in reverse such that department joins to
each employee so as to list each department-to-employee match. Notice
that the output includes more records than there are departments because
there are multiple employees for each department and the output is a
record for each match. As we saw before, the Engineering department
appears multiple times, once for each employee.

The code in Listing 14.22 and Output 14.9 is similar to that in Listing
14.21, except that the objects, Departments and Employees, are reversed. The
first parameter to Join() is employees, indicating what departments joins
to. The next two parameters are lambda expressions that specify how the
two collections will connect: department => department.Id for depart-
ments and employee => employee.DepartmentId for employees. Just like
before, a join occurs whenever department.Id equals employee.Employ-
eeId. The final anonymous type parameter specifies a class with int Id,
string Name, and Employee Employee properties.

Listing 14.22: Another Inner Join with System.Linq.Enumerable.Join()

using System;

using System.Linq;

ptg

 Standard Query Operators 575

// ...

 Department[] departments = CorporateData.Departments;

 Employee[] employees = CorporateData.Employees;

 var items = departments.Join(

 employees,

 department => department.Id,

 employee => employee.DepartmentId,

 (department, employee) => new

 {

 department.Id,

 department.Name,

 Employee = employee

 });

 foreach (var item in items)

 {

 Console.WriteLine("{0}",

 item.Name);

 Console.WriteLine("\t" + item.Employee);

 }

// ...

Grouping Results with GroupBy()
In addition to ordering and joining a collection of objects, frequently you
might want to group objects with like characteristics together. For the
employee data, you might want to group employees by department,

OUTPUT 14.9:

Corporate

 Mark Michaelis (Chief Computer Nerd)

Finance

 Jewel Floch (Bookkeeper Extraordinaire)

Engineering

 Michael Stokesbary (Senior Computer Wizard)

Engineering

 Brian Jones (Enterprise Integration Guru)

Engineering

 Paul R. Bramsman (Programmer Extraordinaire)

Engineering

 Thomas Heavey (Software Architect)

Information Technology

 Robert Stokesbary (Expert Mainframe Engineer)

Research

 John Michaelis (Inventor)

ptg

Chapter 14: Collection Interfaces with Standard Query Operators576

region, job title, and so forth. Listing 14.23 shows an example of how to do
this using the GroupBy() standard query operator (see Output 14.10 to
view the output).

Listing 14.23: Grouping Items Together Using System.Linq.Enumerable.GroupBy()

using System;

using System.Linq;

// ...

 IEnumerable<Employee> employees = CorporateData.Employees;

 IEnumerable<IGrouping<int, Employee>> groupedEmployees =

 employees.GroupBy((employee) => employee.DepartmentId);

 foreach(IGrouping<int, Employee> employeeGroup in

 groupedEmployees)

 {

 Console.WriteLine();

 foreach(Employee employee in employeeGroup)

 {

 Console.WriteLine("\t" + employee);

 }

 Console.WriteLine(

 "\tCount: " + employeeGroup.Count());

 }

// ...

OUTPUT 14.10:

Mark Michaelis (Chief Computer Nerd)

 Count: 1

Michael Stokesbary (Senior Computer Wizard)

Brian Jones (Enterprise Integration Guru)

Paul R. Bramsman (Programmer Extraordinaire)

Thomas Heavey (Software Architect)

 Count: 4

Jewel Floch (Bookkeeper Extraordinaire)

 Count: 1

Robert Stokesbary (Expert Mainframe Engineer)

 Count: 1

John Michaelis (Inventor)

 Count: 1

ptg

 Standard Query Operators 577

Note that the items output from a GroupBy() call are of type IGroup-
ing<TKey, TElement> which has a property for the key that the query is
grouping on (employee.DepartmentId). However, it does not have a
property for the items within the group. Rather, IGrouping<TKey, TEle-
ment> derives from IEnumerable<T>, allowing for enumeration of the
items within the group using a foreach statement or for aggregating the
data into something such as a count of items (employeeGroup.Count()).

Implementing a One-to-Many Relationship with GroupJoin()
Listing 14.21 and Listing 14.22 are virtually identical. Either Join() call
could have produced the same output just by changing the anonymous
type definition. When trying to create a list of employees, Listing 14.21
provides the correct result. department ends up as a property of each
anonymous type representing the joined employee. However, Listing
14.22 is not optimal. Given support for collections, a preferable repre-
sentation of a department would have a collection of employees rather
than a single anonymous type record for each department-employee
relationship. Listing 14.24 demonstrates; Output 14.11 shows the pre-
ferred output.

Listing 14.24: Creating a Child Collection with System.Linq.Enumerable.
GroupJoin()

using System;

using System.Linq;

// ...

 Department[] departments = CorporateData.Departments;

 Employee[] employees = CorporateData.Employees;

 var items = departments.GroupJoin(

 employees,

 department => department.Id,

 employee => employee.DepartmentId,

 (department, departmentEmployees) => new

 {

 department.Id,

 department.Name,

ptg

Chapter 14: Collection Interfaces with Standard Query Operators578

 Employees = departmentEmployees

 });

 foreach (var item in items)

 {

 Console.WriteLine("{0}",

 item.Name);

 foreach (Employee employee in item.Employees)

 {

 Console.WriteLine("\t" + employee);

 }

 }

// ...

To achieve the preferred result we use System.Linq.Enumerable’s
GroupJoin() method. The parameters are the same as those in Listing
14.21, except for the final anonymous type selected. In Listing 14.21, the
lambda expression is of type Func<Department, IEnumerable<Employee>,
TResult> where TResult is the selected anonymous type. Notice that we
use the second type argument (IEnumerable<Employee>) to project the col-
lection of employees for each department onto the resultant department
anonymous type.

(Readers familiar with SQL will notice that, unlike Join(), GroupJoin()
doesn’t have a SQL equivalent since data returned by SQL is record-based,
and not hierarchical.)

OUTPUT 14.11:

Corporate

 Mark Michaelis (Chief Computer Nerd)

Finance

 Jewel Floch (Bookkeeper Extraordinaire)

Engineering

 Michael Stokesbary (Senior Computer Wizard)

 Brian Jones (Enterprise Integration Guru)

 Paul R. Bramsman (Programmer Extraordinaire)

 Thomas Heavey (Software Architect)

Information Technology

 Robert Stokesbary (Expert Mainframe Engineer)

Research

 John Michaelis (Inventor)

ptg

 Standard Query Operators 579

A D V A N C E D T O P I C

Implementing an Outer Join with GroupJoin()
The earlier inner joins are equi-joins because they are based on an equiva-
lent evaluation of the keys. Records appear in the resultant collection only
if there are objects in both collections. On occasion, however, it is desirable
to create a record even if the corresponding object doesn’t exist. For exam-
ple, rather than leave the Marketing department out from the final depart-
ment list simply because it doesn’t have any employees, it would be
preferable if we included it with an empty employee list. To accomplish
this we perform a left outer join using a combination of both GroupJoin()
and SelectMany() along with DefaultIfEmpty(). This is demonstrated in
Listing 14.25 and Output 14.12.

Listing 14.25: Implementing an Outer Join Using GroupJoin() with SelectMany()

using System;

using System.Linq;

// ...

 Department[] departments = CorporateData.Departments;

 Employee[] employees = CorporateData.Employees;

 var items = departments.GroupJoin(

 employees,

 department => department.Id,

 employee => employee.DepartmentId,

 (department, departmentEmployees) => new

 {

 department.Id,

 department.Name,

 Employees = departmentEmployees

 }).SelectMany(

 departmentRecord =>

 departmentRecord.Employees.DefaultIfEmpty(),

 (departmentRecord, employee) => new

 {

 departmentRecord.Id,

 departmentRecord.Name,

 Employees =

 departmentRecord.Employees

 }).Distinct();

ptg

Chapter 14: Collection Interfaces with Standard Query Operators580

 foreach (var item in items)

 {

 Console.WriteLine("{0}",

 item.Name);

 foreach (Employee employee in item.Employees)

 {

 Console.WriteLine("\t" + employee);

 }

 }

// ...

Calling SelectMany()
On occasion, you may have collections of collections. Listing 14.26 pro-
vides an example of such a scenario. The teams array contains two teams,
each with a string array of players.

Listing 14.26: Calling SelectMany()

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 var worldCup2006Finalists = new[]

 {

 new

 {

 TeamName = "France",

 Players = new string[]

OUTPUT 14.12:

Corporate

 Mark Michaelis (Chief Computer Nerd)

Finance

 Jewel Floch (Bookkeeper Extraordinaire)

Engineering

 Michael Stokesbary (Senior Computer Wizard)

 Brian Jones (Enterprise Integration Guru)

 Paul R. Bramsman (Programmer Extraordinaire)

 Thomas Heavey (Software Architect)

Information Technology

 Robert Stokesbary (Expert Mainframe Engineer)

Research

 John Michaelis (Inventor)

Marketing

ptg

 Standard Query Operators 581

 {

 "Fabien Barthez", "Gregory Coupet",

 "Mickael Landreau", "Eric Abidal",

 "Jean-Alain Boumsong", "Pascal Chimbonda",

 "William Gallas", "Gael Givet",

 "Willy Sagnol", "Mikael Silvestre",

 "Lilian Thuram", "Vikash Dhorasoo",

 "Alou Diarra", "Claude Makelele",

 "Florent Malouda", "Patrick Vieira",

 "Zinedine Zidane", "Djibril Cisse",

 "Thierry Henry", "Franck Ribery",

 "Louis Saha", "David Trezeguet",

 "Sylvain Wiltord",

 }

 },

 new

 {

 TeamName = "Italy",

 Players = new string[]

 {

 "Gianluigi Buffon", "Angelo Peruzzi",

 "Marco Amelia", "Cristian Zaccardo",

 "Alessandro Nesta", "Gianluca Zambrotta",

 "Fabio Cannavaro", "Marco Materazzi",

 "Fabio Grosso", "Massimo Oddo",

 "Andrea Barzagli", "Andrea Pirlo",

 "Gennaro Gattuso", "Daniele De Rossi",

 "Mauro Camoranesi", "Simone Perrotta",

 "Simone Barone", "Luca Toni",

 "Alessandro Del Piero", "Francesco Totti",

 "Alberto Gilardino", "Filippo Inzaghi",

 "Vincenzo Iaquinta",

 }

 }

 };

 IEnumerable<string> players =

 worldCup2006Finalists.SelectMany(

 team => team.Players);

 Print(players);

// ...

The output from this listing has each player’s name displayed on its
own line in the order in which it appears in the code. The difference
between Select() and SelectMany() is the fact that Select() would
return two items, one corresponding to each item in the original collection.

ptg

Chapter 14: Collection Interfaces with Standard Query Operators582

Select() may project out a transform from the original type, but the num-
ber of items would not change. For example, teams.Select(team =>

team.Players) will return an IEnumerable<string[]>.
In contrast, SelectMany() iterates across each item identified by the

lambda expression (the array selected by Select() earlier) and hoists out
each item into a new collection that includes a union of all items within the
child collection. Instead of two arrays of players, SelectMany() combines
each array selected and produces a single collection of all items.

More Standard Query Operators
Listing 14.27 shows code that uses some of the simpler APIs enabled by
Enumerable; Output 14.13 shows the results.

Listing 14.27: More System.Linq.Enumerable Method Calls

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

class Program

{

 static void Main()

 {

 IEnumerable<object> stuff =

 new object[] { new object(), 1, 3, 5, 7, 9,

 "\"thing\"", Guid.NewGuid() };

 Print("Stuff: {0}", stuff);

 IEnumerable<int> even = new int[] { 0, 2, 4, 6, 8 };

 Print("Even integers: {0}", even);

 Print("Odd integers: {0}", odd);

 Print("Union of odd and even: {0}", numbers);

 Print("Intersection with even: {0}",

 {

 throw new Exception("Unexpectedly unequal");

IEnumerable<int> odd = stuff. OfType<int>();

IEnumerable<int> numbers = even. Union(odd);

Print("Union with even: {0}", numbers.Union(even));

Print("Concat with odd: {0}", numbers.Concat(odd));

numbers.Intersect(even));

Print("Distinct: {0}", numbers.Concat(odd).Distinct());

if (!numbers. SequenceEqual(

 numbers.Concat(odd).Distinct()))

ptg

 Standard Query Operators 583

 }

 else

 {

 Console.WriteLine(

 @"Collection ""SequenceEquals""" +

 " collection.Concat(odd).Distinct())");

 }

 }

 private static void Print<T>(

 string format, IEnumerable<T> items)

 {

 StringBuilder text = new StringBuilder();

 {

 text.Append(item + ", ");

 }

 Console.WriteLine(format, text);

 }

 private static void Print<T>(string format, T item)

 {

 Console.WriteLine(format, item);

 }

}

Print("Reverse: {0}", numbers. Reverse());

Print("Average: {0}", numbers. Average());

Print("Sum: {0}", numbers.Sum());

Print("Max: {0}", numbers.Max());

Print("Min: {0}", numbers.Min());

foreach (T item in items.Take(items. Count() -1))

text.Append(items. Last());

OUTPUT 14.13:

Stuff: System.Object, 1, 3, 5, 7, 9, "thing", 24c24a41-ee05-41b9-958e-

50dd12e3981e

Even integers: 0, 2, 4, 6, 8

Odd integers: 1, 3, 5, 7, 9

Union of odd and even: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9

Union with even: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9

Concat with odd: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9

Intersection with even: 0, 2, 4, 6, 8

Distinct: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9

Collection "SequenceEquals"collection.Concat(odd).Distinct())

Reverse: 9, 7, 5, 3, 1, 8, 6, 4, 2, 0

Average: 4.5

Sum: 45

Max: 9

Min: 0

ptg

Chapter 14: Collection Interfaces with Standard Query Operators584

None of the API calls in Listing 14.20 require a lambda expression. Table
14.1 and Table 14.2 describe each method and provide an example.

Included on System.Linq.Enumerable is a collection of aggregate
functions that enumerate the collection and calculate a result. Count is
one example of an aggregate function already shown within the chapter.

TABLE 14.1: Simpler Standard Query Operators

Comment Type Description

OfType<T>() Forms a query over a collection that returns only
the items of a particular type, where the type
is identified in the type parameter of the
OfType<T>() method call.

Union() Combines two collections to form a superset of all
the items in both collections. The final collection
does not include duplicate items even if the same
item existed in both collections to start.

Concat() Combines two collections together to form a
superset of both collections. Duplicate items are
not removed from the resultant collection.
Concat()will preserve the ordering. That is,
concatting {A, B} with {C, D} will produce
{A, B, C, D}.

Intersect() Extracts the collection of items that exist in both
original collections.

Distinct() Filters out duplicate items from a collection so
that each item within the resultant collection is
unique.

SequenceEquals() Compares two collections and returns a Boolean
indicating whether the collections are identical,
including the order of items within the collection.
(This is a very helpful message when testing
expected results.)

Reverse() Reverses the items within a collection so that they
occur in reverse order when iterating over the
collection.

ptg

 Standard Query Operators 585

Note that each method listed in Tables 14.1 and 14.2 will trigger deferred
execution.

A D V A N C E D T O P I C

Queryable Extensions for IQueryable<T>
One virtually identical interface to IEnumerable<T> is IQueryable<T>.
Because IQueryable<T> derives from IEnumerable<T>, it has all the mem-
bers of IEnumerable<T> but only those declared directly (GetEnumerator(),
for example). Extension methods are not inherited, so IQueryable<T>
doesn’t have any of the Enumerable extension methods. However, it has a
similar extending class called System.Linq.Queryable that adds to IQuery-
able<T> virtually all of the same methods that Enumerable added to IEnu-
merable<T>. Therefore, it provides a very similar programming interface.

What makes IQueryable<T> unique is the fact that it enables custom
LINQ providers. A LINQ provider subdivides expressions into their con-
stituent parts. Once divided, the expression can be translated into another
language, serialized for remote execution, injected with an asynchronous
execution pattern, and much more. Essentially, LINQ providers allow for

TABLE 14.2: Aggregate Functions on System.Linq.Enumerable

Comment Type Description

Count() Provides a total count of the number of items within the
collection

Average() Calculates the average value for a numeric key selector

Sum() Computes the sum values within a numeric collection

Max() Determines the maximum value among a collection of
numeric values

Min() Determines the minimum value among a collection of
numeric values

ptg

Chapter 14: Collection Interfaces with Standard Query Operators586

an interception mechanism into a standard collection API, and via this
seemingly limitless functionality, behavior relating to the queries and col-
lection can be injected.

For example, LINQ providers allow for the translation of a query
expression from C# into SQL that is then executed on a remote database.
In so doing, the C# programmer can remain in her primary object-oriented
language and leave the translation to SQL to the underlying LINQ pro-
vider. Through this type of expression, programming languages are able to
span the impedance mismatch between the object-oriented world and the
relational database.

In the case of IQueryable<T>, vigilance regarding deferred execution is
even more critical. Imagine, for example, a LINQ provider that returns
data from a database. Rather than retrieve the data from a database regard-
less of the selection criteria, the lambda expression would provide an
implementation of IQueryable<T> that possibly includes context informa-
tion such as the connection string, but not the data itself. The data retrieval
wouldn’t occur until the call to GetEnumerator() or even MoveNext().
However, the GetEnumerator() call is generally implicit, such as when
iterating over the collection with foreach or calling an Enumerable method
such as Count<T>() or Cast<T>(). Obviously, cases such as this require
developers to be wary of the subtle and repeated calls to any expensive
operation that deferred execution might involve. For example, if calling
GetEnumerator() involves a distributed call over the network to a data-
base, avoid unintentional duplicate calls to iterations with Count() or
foreach.

SUMMARY

After introducing anonymous types, implicit variables, and collection ini-
tializers, this chapter described the internals of how the foreach loop
works and what interfaces are required for its execution. In addition,
developers frequently filter a collection so that there are fewer items and
project the collection so that the items take a different form. Toward that
end, this chapter discussed the details of how to use the standard query

ptg

 Summary 587

operators, common collection APIs on the System.Linq.Enumerable class,
to perform collection manipulation.

In the introduction to standard query operators, we spent a few pages
detailing deferred execution and how developers should take care to avoid
unintentionally reexecuting an expression via a subtle call that enumerates
over the collection contents. The deferred execution and resultant implicit
execution of standard query operators is a significant quality, especially
when the query execution is expensive. Programmers should treat the
query object as the query object, not the results, and expect the query to
execute fully even if it executed already. The query object doesn’t know
that the results will be the same as they were during a previous execution.

Listing 14.25 appeared within an Advanced Topic section because of
the complexity of calling multiple standard query operators one after the
other. Although requirements for similar execution may be common, it is
not necessary to rely on standard query operators directly. C# 3.0 includes
query expressions, a SQL-like syntax for manipulating collections in a way
that is frequently easier to code and read, as I’ll show in the next chapter.

ptg

This page intentionally left blank

ptg

589

15
LINQ with Query Expressions

HE END OF CHAPTER 14 showed a query using standard query opera-
tors for GroupJoin(), SelectMany(), and Distinct(), in addition to

the creation of two anonymous types. The result was a statement that
spanned multiple lines and was fairly complex to comprehend, certainly a
lot more complex than statements typically written in C# 2.0, even though
it appears fully compatible with C# 2.0 syntax. The introduction of stan-
dard query operators facilitated scenarios where such complex statements
were desirable even though the resultant code may be complex and hard
to read. In addition, the queries which standard query operators imple-
mented were functionally very similar to queries generally implemented
in SQL.

T

23

1

Query Expressions

Introducing
Query Expressions

Features

Projection
Filtering
Sorting
Let
Grouping

As Method
Invocations

ptg

Chapter 15: LINQ with Query Expressions590

The culmination of these two factors resulted in the C# language
designers adding a new syntax to C# 3.0: query expressions. With query
expressions, many standard query operator statements are transformed
into more readable code, code that looks very much like SQL.

In this chapter, I introduce the new syntax of query expressions and use
this syntax to explain how to express many of the queries from the preced-
ing chapter.

Introducing Query Expressions

Besides iterating over all the items within a collection, one of the most fre-
quent operations developers perform is filtering the collection so that there
are fewer items to iterate over or projecting the collection so that the items
take a different form. For example, given a collection of files, we could fil-
ter it vertically to create a new collection of only the files with a “.cs” exten-
sion, or only the ten largest files. Alternatively, we could project across the
file collection to create a new collection of paths to the directories the files
are located in and the corresponding directory size. There are many ways
to perform this type of operation, but one of the easiest was introduced in
C# 3.0: query expressions.

Query expressions always begin with a “from clause” and end with a
“select clause” or a “groupby clause”. Each clause is identified by the from,
select, or group contextual keywords, respectively. Listing 15.1 shows a
query expression example and Output 15.1 shows the results.

Listing 15.1: Simple Query Expression

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 static string[] Keywords = {

 "abstract", "add*", "alias*", "as", "ascending*", "base",

 "bool", "break", "by*", "byte", "case", "catch", "char",

 "checked", "class", "const", "continue", "decimal",

 "default", "delegate", "descending*", "do", "double",

 "dynamic*", "else", "enum", "event", "equals*",

 "explicit", "extern", "false", "finally", "fixed",

 "from*", "float", "for", "foreach", "get*", "global*",

ptg

 Introducing Query Expressions 591

 "group*", "goto", "if", "implicit", "in", "int",

 "into*", "interface", "internal", "is", "lock", "long",

 "join*", "let*", "namespace", "new", "null", "object",

 "on*", "operator", "orderby*", "out", "override",

 "params", "partial*", "private", "protected", "public",

 "readonly", "ref", "remove*", "return", "sbyte", "sealed",

 "select*", "set*", "short", "sizeof", "stackalloc",

 "static", "string", "struct", "switch", "this", "throw",

 "true", "try", "typeof", "uint", "ulong", "unchecked",

 "unsafe", "ushort", "using", "value*", "var*", "virtual",

 "void", "volatile", "where*", "while", "yield*"};

 private static void ShowContextualKeywords1()

 {

 foreach (string keyword in selection)

 {

 Console.Write(" " + keyword);

 }

 }

// ...

In this query expression, selection is assigned the collection of C# key-
words but not contextual keywords. The query expression in this example
includes a where clause that filters out the noncontextual keywords.

Developers familiar with SQL will notice that query expressions have a
syntax that is similar to that of SQL so as to be familiar to the thousands of
programmers who know SQL. In spite of the similarities, however, there
are some obvious inconsistencies. The most notable of these is the fact that
rather than starting an expression with select, as SQL so often does, C#
query expressions begin with the contextual keyword from.

 IEnumerable<string> selection = from word in Keywords

 where !word.Contains('*')

 select word;

OUTPUT 15.1:

 abstract as base bool break byte case catch char checked class const

continue decimal default delegate do double else enum event explicit

extern false finally fixed float for foreach goto if implicit in int

interface internal is lock long namespace new null object operator out

override params private protected public readonly ref return sbyte

sealed short sizeof stackalloc static string struct switch this throw

true try typeof uint ulong unchecked unsafe ushort using virtual void

volatile while

ptg

Chapter 15: LINQ with Query Expressions592

The reason for this is to enable IntelliSense, or the ability to predict the
members on the objects being selected. For example, because from appears
first and identifies the string array Keywords as the data source, the code
editor knows that word is of type string. This enables IntelliSense—mem-
ber access (a dot operation) on word will display only the members of
string. If the from clause appeared after the select, then any dot opera-
tions prior to the from clause would not know what the data type of word
was and, therefore, would not be able to display a list of word’s members.
In Listing 15.1, for example, it wouldn’t be possible to predict that Con-
tains() was a possible member of word. word is referred to as a range vari-
able; it represents each item in the collection.

Projection
The output of a query expression is an IEnumerable<T> or IQueryable<T>
collection.1 The data type of T is inferred from the select or groupby
clause. In Listing 15.1, for example, the data type of string is inferred from
select word because word is a string. word’s data type is the type argument
of the IEnumerable<T> collection in the from clause. Since Keywords is a
string array, it implements IEnumerable<string>, and therefore, word is a
string.

The type resulting from an expression which queries a collection of a
certain type is by no means limited to be a sequence of that original type.
Rather, the select clause allows for projection of data into an entirely dif-
ferent type. Consider the query expression in Listing 15.2, and its corre-
sponding output in Output 15.2.

Listing 15.2: Projection Using Query Expressions

using System;

using System.Collections.Generic;

using System.Linq;

using System.IO;

// ...

1. Query expression output is practically always IEnumerable<T>, but theoretically, not nec-
essarily. Nothing is stopping anyone from coming up with an implementation of the query
operators that returns something else. To do so would be somewhat perverse, but there is
no requirement in the language that query operators return IEnumerable<T>.

ptg

 Introducing Query Expressions 593

 static void List1(string rootDirectory, string searchPattern)

 {

 foreach (FileInfo file in files)

 {

 Console.WriteLine(".{0}({1})",

 file.Name, file.LastWriteTime);

 }

 }

// ...

Notice that this query expression returns an IEnumerable<FileInfo>
rather than the IEnumerable<string> data type returned by Sys-

tem.IO.Directory.GetFiles(). The select clause of the query expression
can potentially project out a data type that is different from what was col-
lected by the from clause expression (Directory.GetFiles()).

In fact, projection such as this is the key driving factor for why C# 3.0
includes anonymous types within the language. Via anonymous types, it
becomes possible to select out the exact data you seek without having to
define an explicit type. For example, Listing 15.3 provides output similar
to that in Listing 15.2, but via anonymous types rather than FileInfo.

Listing 15.3: Anonymous Types within Query Expressions

using System;

using System.Collections.Generic;

using System.Linq;

using System.IO;

// ...

 static void List2(string rootDirectory, string searchPattern)

 {

 IEnumerable<FileInfo> files =

 from fileName in Directory.GetFiles(

 rootDirectory, searchPattern)

 select new FileInfo(fileName);

OUTPUT 15.2:

Account.cs(11/22/2007 11:56:11 AM)

Bill.cs(8/10/2007 9:33:55 PM)

Contact.cs(8/19/2007 11:40:30 PM)

Customer.cs(11/17/2007 2:02:52 AM)

Employee.cs(8/17/2007 1:33:22 AM)

Person.cs(10/22/2007 10:00:03 PM)

ptg

Chapter 15: LINQ with Query Expressions594

 foreach (var file in files)

 {

 Console.WriteLine("{0}({1})",

 }

 }

// ...

In this example, the query projects out only the filename and its last file
write time. A projection such as the one in Listing 15.3 makes little differ-
ence when working with something small such as FileInfo. However,
horizontal projection that filters down the amount of data associated with
each item in the collection is extremely powerful when the amount of data
is significant and retrieving it (perhaps from a different computer over the
Internet) is expensive. Rather than retrieving all the data when a query
executes, the use of anonymous types enables the capability of storing and
retrieving only the required data into the collection. Imagine, for example,
a large database that has tables with 30 or more columns. If there were no
anonymous types, developers would be required to either use objects con-
taining unnecessary information or define small, specialized classes useful
only for storing the specific data required. Instead, anonymous types
enable support for types to be defined by the compiler—types that contain
only the data needed for their immediate scenario. Other scenarios can
have a different projection of only the properties needed for that scenario.

B E G I N N E R T O P I C

Deferred Execution with Query Expressions
The topic of deferred execution appeared in the preceding chapter as well.
The same principles also apply to query expressions. Consider again the
assignment of selection in Listing 15.1. The assignment itself does not

 var files =

 from fileName in Directory.GetFiles(

 rootDirectory, searchPattern)

 select new

 {

 Name = fileName,

 LastWriteTime = File.GetLastWriteTime(fileName)

 };

 file.Name, file.LastWriteTime);

ptg

 Introducing Query Expressions 595

execute the query expression. In other words, during the assignment of
selection, word.Contains("*") is not called. Rather, the query expression
saves off the selection criteria to be used when iterating over the collection
identified by the selection variable.

To demonstrate this point, consider Listing 15.4 and the corresponding
output (Output 15.3).

Listing 15.4: Deferred Execution and Query Expressions (Example 1)

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 private static void ShowContextualKeywords2()

 {

 IEnumerable<string> selection = from word in Keywords

 where IsKeyword(word)

 select word;

 foreach (string keyword in selection)

 {

 Console.Write(keyword);

 }

 }

 // Side effect (console output) included in predicate to show

 // deferred execution not as a best practice.

 private static bool IsKeyword(string word)

 {

 if (word.Contains('*'))

 {

 Console.Write(" ");

 return true;

 }

 else

 {

 return false;

 }

 }

// ...

OUTPUT 15.3:

 add* alias* ascending* by* descending* dynamic* equals* from* get*

global* group* into* join* let* on* orderby* partial* remove* select*

set* value* var* where* yield*

ptg

Chapter 15: LINQ with Query Expressions596

Notice that in Listing 15.4, no space is output within the foreach loop. The
space between the contextual keywords is output in the IsKeyword() func-
tion, demonstrating that the IsKeyword() function isn’t called until the
code iterates over selection rather than when selection is assigned.

The point is that although selection is a collection (it is of type IEnu-
merable<T> after all), at the time of assignment everything following the
from clause comprises the selection criteria. Not until we begin to iterate
over selection are the criteria applied.

Consider a second example (see Listing 15.5 and Output 15.4).

Listing 15.5: Deferred Execution and Query Expressions (Example 2)

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 private static void CountContextualKeywords()

 {

 int delegateInvocations = 0;

 Func<string, string> func =

 text=>

 {

 delegateInvocations++;

 return text;

 };

 IEnumerable<string> selection =

 from keyword in Keywords

 where keyword.Contains('*')

 select func(keyword);

 Console.WriteLine(

 "1. delegateInvocations={0}", delegateInvocations);

 // Executing count should invoke func once for

 // each item selected.

 Console.WriteLine(

 "2. Contextual keyword count={0}", selection.Count());

 Console.WriteLine(

 "3. delegateInvocations={0}", delegateInvocations);

 // Executing count should invoke func once for

ptg

 Introducing Query Expressions 597

 // each item selected.

 Console.WriteLine(

 "4. Contextual keyword count={0}", selection.Count());

 Console.WriteLine(

 "5. delegateInvocations={0}", delegateInvocations);

 // Cache the value so future counts will not trigger

 // another invocation of the query.

 List<string> selectionCache = selection.ToList();

 Console.WriteLine(

 "6. delegateInvocations={0}", delegateInvocations);

 // Retrieve the count from the cached collection.

 Console.WriteLine(

 "7. selectionCache count={0}",selectionCache.Count());

 Console.WriteLine(

 "8. delegateInvocations={0}", delegateInvocations);

 }

// ...

Rather than defining a separate method, Listing 15.5 uses an anonymous
method that counts the number of times the method is called.

Three things in the output are remarkable. First, notice that after selec-
tion is assigned, DelegateInvocations remains at zero. At the time of
assignment to selection, no iteration over Keywords is performed. If Key-
words were a property, the property call would run—in other words, the
from clause executes at the time of assignment. However, neither the pro-
jection, the filtering, nor anything after the from clause will execute until
the code iterates over the values within selection. It is as though at the

OUTPUT 15.4:

1. delegateInvocations=0

2. Contextual keyword count=15

3. delegateInvocations=15

4. Contextual keyword count=15

5. delegateInvocations=30

6. delegateInvocations=45

7. selectionCache count=15

8. delegateInvocations=45

ptg

Chapter 15: LINQ with Query Expressions598

time of assignment, selection would more appropriately be called
“query.”

However, once we call Count(), a term such as selection or items that
indicates a container or collection is appropriate because we begin to count
the items within the collection. In other words, the variable selection serves
a dual purpose of saving the query information as well as acting like a con-
tainer from which the data is retrieved.

A second important characteristic to notice is that calling Count() twice
causes func to again be invoked once on each item selected. Since selec-
tion behaves both as a query and as a collection, requesting the count
requires that the query be executed again by iterating over the IEnumera-
ble<string> collection selection refers to and counting the items—return-
ing the most up-to-date results. Similarly, a foreach loop over selection
would trigger func to be called again for each item. The same is true of all
the other extension methods provided via System.Linq.Enumerable.

Filtering
In Listing 15.1, we include a where clause that filters out pure keywords
but not contextual keywords. The where clause filters the collection verti-
cally so that there are fewer items within the collection. The filter criteria
are expressed with a predicate—a lambda expression that returns a bool
such as word.Contains() (as in Listing 15.1) or File.GetLastWrite-
Time(file) < DateTime.Now.AddMonths(-1) (as in Listing 15.6, the output
of which appears in Output 15.5).

Listing 15.6: Anonymous Types within Query Expressions

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

// ...

 static void FindMonthOldFiles(
 string rootDirectory, string searchPattern)
 {
 IEnumerable<FileInfo> files =
 from fileName in Directory.GetFiles(
 rootDirectory, searchPattern)

ptg

 Introducing Query Expressions 599

 select new FileInfo(fileName);

 foreach (FileInfo file in files)
 {
 // As simplification, current directory is
 // assumed to be a subdirectory of
 // rootDirectory
 string relativePath = file.FullName.Substring(
 Environment.CurrentDirectory.Length);
 Console.WriteLine(".{0}({1})",
 relativePath, file.LastWriteTime);
 }
 }

// ...

Sorting
To order the items using a query expression we rely on the orderby clause
(see Listing 15.7).

Listing 15.7: Sorting Using a Query Expression with an orderby Clause

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

// ...
 static void ListByFileSize1(
 string rootDirectory, string searchPattern)
 {
 IEnumerable<string> fileNames =
 from fileName in Directory.GetFiles(
 rootDirectory, searchPattern)

 select fileName;

 where File.GetLastWriteTime(fileName) <
 DateTime.Now.AddMonths(-1)

OUTPUT 15.5:

.\TestData\Bill.cs(8/10/2007 9:33:55 PM)

.\TestData\Contact.cs(8/19/2007 11:40:30 PM)

.\TestData\Employee.cs(8/17/2007 1:33:22 AM)

.\TestData\Person.cs(10/22/2007 10:00:03 PM)

 orderby (new FileInfo(fileName)).Length descending,
 fileName

ptg

Chapter 15: LINQ with Query Expressions600

 foreach (string fileName in fileNames)

 {

 Console.WriteLine("{0}", fileName);

 }

 }

// ...

Listing 15.7 uses the orderby clause to sort the files returned by Direc-
tory.GetFiles() first by file size in descending order and then by file-
name in ascending order. Multiple sort criteria are separated by a comma
such that first the items are ordered by size, and if the size is the same they
are ordered by filename. ascending and descending are contextual key-
words indicating the sort order direction. Specifying the order as ascend-
ing or descending is optional (filename order is absent); if the direction is
omitted, the default is ascending.

The Let Clause
In Listing 15.8, we have a query that is very similar to that in Listing 15.7,
except that the type argument of IEnumerable<T> is FileInfo. One of the
problems with the groupby clause in Listing 15.8 is that in order to evaluate
the size of the file, an instance of FileInfo needs to be available in both the
orderby clause and the select clause.

Listing 15.8: Projecting a FileInfo Collection and Sorting by File Size

using System;

using System.Collections.Generic;

using System.Linq;

using System.IO;

// ...

 static void ListByFileSize2(

 string rootDirectory, string searchPattern)

 {

 IEnumerable<FileInfo> files =

 from fileName in Directory.GetFiles(

 rootDirectory, searchPattern)

 foreach (FileInfo file in files)

 {

 // As simplification, current directory is

 // assumed to be a subdirectory of

 orderby new FileInfo(fileName).Length, fileName

 select new FileInfo(fileName);

ptg

 Introducing Query Expressions 601

 // rootDirectory

 string relativePath = file.FullName.Substring(

 Environment.CurrentDirectory.Length);

 Console.WriteLine(".{0}({1})",

 relativePath, file.Length);

 }

 }

// ...

Unfortunately, although the end result is correct, Listing 15.8 ends up
instantiating a FileInfo object twice for each item in the source collec-
tion. FileInfo is instantiated not only in the select clause, but also when
the orderby clause is evaluated. To avoid unnecessary overhead like
this—overhead that could potentially be expensive—the query expres-
sion syntax includes a let expression, as demonstrated in Listing 15.9.

Listing 15.9: Ordering the Results in a Query Expression

using System;

using System.Collections.Generic;

using System.Linq;

using System.IO;

// ...

 static void ListByFileSize3(

 string rootDirectory, string searchPattern)

 {

 IEnumerable<FileInfo> files =

 from fileName in Directory.GetFiles(

 rootDirectory, searchPattern)

 foreach (FileInfo file in files)

 {

 // As simplification, current directory is

 // assumed to be a subdirectory of

 // rootDirectory

 string relativePath = file.FullName.Substring(

 Environment.CurrentDirectory.Length);

 Console.WriteLine(".{0}({1})",

 relativePath, file.Length);

 }

 }

// ...

 let file = new FileInfo(fileName)

 orderby file.Length, fileName

 select file;

ptg

Chapter 15: LINQ with Query Expressions602

The let clause provides a location to place an expression that is used
throughout the query expression. To place a second let expression, simply
add it as an additional clause to the query after the first from clause but
before the final select/group by clause. No operator is needed to separate
out the expressions.

Grouping
Another common collection scenario is the grouping of items. In SQL, this
generally involves aggregating the items into a summary header or
total—an aggregate value. However, C# is more expressive than this. In
addition to providing aggregate information about each grouping, query
expressions allow for the individual items in the group to form a series of
subcollections to each item in the overall parent list. For example, it is pos-
sible to group the contextual keywords separately from the regular key-
words and automatically associate the individual words within the
keyword type grouping to each other. Listing 15.10 and Output 15.6 dem-
onstrate the query expression.

Listing 15.10: Grouping Together Query Results

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 private static void GroupKeywords1()

 {

 IEnumerable<IGrouping<bool, string>> selection =

 from word in Keywords

 group word by word.Contains('*');

 foreach (IGrouping<bool, string> wordGroup

 in selection)

 {

 Console.WriteLine(Environment.NewLine + "{0}:",

 wordGroup.Key ?

 "Contextual Keywords" : "Keywords");

 foreach (string keyword in wordGroup)

 {

 Console.Write(" " +

 (wordGroup.Key ?

 keyword.Replace("*", null) : keyword));

 }

ptg

 Introducing Query Expressions 603

 }

 }

// ...

There are several things to note in this listing. First, each item in the list
is of type IGrouping<bool, string>. The type parameters of IGroup-
ing<TKey, TElement> are determined by the data type following group
and by—that is, TElement is a string because word is a string. Type
parameter TKey is determined by the data type following by. In this case,
word.Contains() returns a Boolean, so TKey is a bool.

A second characteristic of a query expression’s groupby clause is the
fact that it enables a nested foreach loop via which the code can iterate
over the subcollection mentioned earlier in this section. In Listing 15.10, we
first iterate over the groupings and print out the type of keyword as a
header. Nested within the first iteration is a second foreach loop that
prints each keyword as an item below the header.

Third, we can append a select clause to the end of a groupby clause,
allowing support for projection (see Listing 15.11 and Output 15.7). More
generally, the addition of the select clause is enabled via query continua-
tion—any query body that handles the elements of the first query can be
appended to the first query body.

Listing 15.11: Selecting an Anonymous Type Following the groupby Clause

using System;

using System.Collections.Generic;

OUTPUT 15.6:

Keywords:

 abstract as base bool break byte case catch char checked class const

continue decimal default delegate do double else enum event explicit

extern false finally fixed float for foreach goto if implicit in int

interface internal is lock long namespace new null object operator out

override params private protected public readonly ref return sbyte

sealed short sizeof stackalloc static string struct switch this throw

true try typeof uint ulong unchecked unsafe ushort using virtual void

volatile while

Contextual Keywords:

 add alias ascending by descending dynamic equals from get

global group into join let on orderby partial remove select

set value var where yield

ptg

Chapter 15: LINQ with Query Expressions604

using System.Linq;

// ...

 private static void GroupKeywords1()

 {

 var selection = from groups in keywordGroups

 select new

 {

 IsContextualKeyword = groups.Key,

 Items = groups

 };

 foreach (var wordGroup in selection)

 {

 Console.WriteLine(Environment.NewLine + "{0}:",

 wordGroup.IsContextualKeyword ?

 "Contextual Keywords" : "Keywords");

 {

 Console.Write(" " +

 keyword.Replace("*", null));

 }

 }

 }

// ...

The groupby clause returns a collection of IGrouping<TKey, TElement>
objects—just as the GroupBy() standard query operator did (see Chapter 14).

 IEnumerable<IGrouping<bool, string>> keywordGroups =

 from word in Keywords

 group word by word.Contains('*');

 foreach (var keyword in wordGroup.Items)

OUTPUT 15.7:

Keywords:

 abstract as base bool break byte case catch char checked class const

continue decimal default delegate do double else enum event explicit

extern false finally fixed float for foreach goto if implicit in int

interface internal is lock long namespace new null object operator out

override params private protected public readonly ref return sbyte

sealed short sizeof stackalloc static string struct switch this throw

true try typeof uint ulong unchecked unsafe ushort using virtual void

volatile while

Contextual Keywords:

 add alias ascending by descending dynamic equals from get

global group into join let on orderby partial remove select

set value var where yield

ptg

 Introducing Query Expressions 605

The select clause defines an anonymous type, renaming IGrouping<TKey,
TElement>.Key to be IsContextualKeyword and naming the subcollection
property Items. With this change, the nested foreach uses wordGroup.Items
rather than wordGroup directly, as shown in Listing 15.10. Another
potential property to add to the anonymous type would be the count of
items within the subcollection. However, this is available on wordGroup.
Items.Count(), so the benefit of adding it to the anonymous type directly is
questionable.

Query Continuation with into
Following the groupby query is a second query that projects out an anony-
mous type from the grouping. Rather than write an additional query, you
can extend the query with a query continuation clause using the contextual
keyword into that allows you to name each item returned by the groupby
clause with a range variable (groups in Listing 15.11). The into clause
serves as a generator for additional query commands—specifically, a
select clause, as shown in Listing 15.12.

Listing 15.12: Selecting without the Query Continuation

using System;
using System.Collections.Generic;
using System.Linq;

// ...

 private static void GroupKeywords1()
 {
 var selection =
 from word in Keywords

 // ...

 }

// ...

 group word by word.Contains('*')
 into groups
 select new
 {
 IsContextualKeyword = groups.Key,
 Items = groups
 };

ptg

Chapter 15: LINQ with Query Expressions606

The ability to run additional queries on the results of an existing query
using into is not specific to groupby clauses, but rather is a feature of all
query expressions. Query continuation provides a form of shorthand in
place of writing multiple individual query expressions. The query in List-
ing 15.12 is identical to the one in Listing 15.11, but without using into. In
other words, into shortcuts the need to write a second query using the
results of the first query; it serves as a pipeline operator, combining the
results of the first query with those of the second query.

B E G I N N E R T O P I C

Distinct Members
Often, it is desirable to return only distinct items from within a collec-
tion—all duplicates are combined into a single item. Query expressions
don’t have explicit syntax for distinct members, but the functionality is
available via the query operator Distinct(), as introduced in the preced-
ing chapter. Listing 15.13 demonstrates calling it directly from the query
expression, and Output 15.8 shows the results.

Listing 15.13: Obtaining Distinct Members from a Query Expression

using System;

using System.Collections.Generic;

using System.Linq;

// ...

 public static void ListMemberNames()

 {

 IEnumerable<string> enumerableMethodNames = (

 from method in typeof(Enumerable).GetMembers(

 System.Reflection.BindingFlags.Static |

 System.Reflection.BindingFlags.Public)

 select method.Name).Distinct();

 foreach(string method in enumerableMethodNames)

 {

 Console.Write(" {0},", method);

 }

 }

// ...

ptg

 Introducing Query Expressions 607

In this example, typeof(Enumerable).GetMembers() returns a list of all
the members (methods, properties, and so on) on System.Linq.Enumerable.
However, many of these members are overloaded, sometimes more than
once. Rather than displaying the same member multiple times, Distinct() is
called from the query expression. This eliminates the duplicate names from
the list. (I cover the details of typeof() and GetMembers() in Chapter 17.)

A D V A N C E D T O P I C

Query Expression Compilation
Under the covers, a query expression is a series of method calls to the under-
lying API. The CIL itself does not have any concept of query expressions. In
fact, except for some corner cases with expression trees, there was no change
to the underlying CLR in order to support query expressions. Rather, query
expressions were supported via changes to the C# compiler only.

This worked because the compiler translates the query expression to
method calls. For example, the query expression from Listing 15.1 trans-
lates to a call to System.Linq.Enumerable’s Where() extension method and
becomes Keywords.Where<string>(). The criteria identified by the where
clause are just like they were in the Where() (or FindAll()) method
described in the preceding chapter.

A D V A N C E D T O P I C

Implementing Implicit Execution
The capability of saving the selection criteria into selection (see Listing 15.1)
rather than executing the query at the time of assignment is implemented
through delegates. The compiler translates the query expression to methods

OUTPUT 15.8:

Enumerable methods are: First, FirstOrDefault, Last, LastOrDefault,

Single, SingleOrDefault, ElementAt, ElementAtOrDefault, Repeat, Empty,

Any, All, Count, LongCount, Contains, Aggregate, Sum, Min, Max, Aver-

age, Where, Select, SelectMany, Take, TakeWhile, Skip, SkipWhile, Join,

GroupJoin, OrderBy, OrderByDescending, ThenBy, ThenByDescending,

GroupBy, Concat, Distinct, Union, Intersect, Except, Reverse, Sequence-

Equal, AsEnumerable, ToArray, ToList, ToDictionary, ToLookup,

DefaultIfEmpty, OfType, Cast, Range

ptg

Chapter 15: LINQ with Query Expressions608

on the target (that is, Keywords) that take delegates as parameters. Delegates
are objects that save information about what code to execute when the dele-
gate is called, and since delegates contain only the data regarding what to exe-
cute, they can be stored until a later time when they are executed.

In the case of collections that implement IQueryable<T> (LINQ provid-
ers), the lambda expressions are translated into expression trees. An
expression tree is a hierarchical data structure broken down recursively
into subexpressions. Each subexpression represents a portion of the
lambda expression that is further broken down until each part is the most
fundamental unit that can no longer be broken down. Frequently, expres-
sion trees are then enumerated and reconstructed as the original expres-
sion tree is translated into another language, such as SQL.

Query Expressions as Method Invocations

In spite of the power and relative simplicity associated with query expres-
sions, the CLR and IL do not require any query expression implementa-
tion. Rather, the C# compiler translates query expressions into method
calls. Consider, for example, the query expression from Listing 15.1, a por-
tion of which appears in Listing 15.14.

Listing 15.14: Simple Query Expression

 private static void ShowContextualKeywords1()
 {

 // ...
 }

// ...

After compilation, the expression from Listing 15.14 is converted to an
IEnumerable<T> extension method call from System.Linq.Enumerable, as
shown in Listing 15.15.

Listing 15.15: Query Expression Translated to Standard Query Operator Syntax

 private static void ShowContextualKeywords3()
 {

 IEnumerable<string> selection = from word in Keywords
 where word.Contains('*')
 select word;

ptg

 Summary 609

 // ...

 }

// ...

Furthermore, as discussed in Chapter 14, the lambda expression is trans-
lated to IL corresponding to a delegate invocation.

Moreover, the combination of extension methods and lambda expres-
sions provides a superset of the functionality available through query
expressions. For example, there is no query expression equivalent for
the extension method TakeWhile<T>(Func<T, bool> predicate), which
repeatedly returns items from the collection as long as the predicate
returns true. Not all method invocations can be translated to query
expressions, but the reverse, translating from query expressions to method
expressions, is always possible. Regardless, where translation is possible
in either direction, it is not consistently more understandable. Some que-
ries are better suited for query expressions whereas others are more read-
able as method invocations. I find the general rule is to use query
expressions where possible, but to rely on method invocations otherwise.
Regardless, it is frequently helpful to refactor a complex query into multi-
ple statements or even methods.

SUMMARY

This chapter introduced a new syntax, that of query expressions. Readers
familiar with SQL will immediately see the similarities between query
expressions and SQL. However, query expressions also introduce addi-
tional functionality, such as grouping into a hierarchical set of new objects,
which was unavailable with SQL. All of the functionality of query expres-
sions was already available via standard query operators, but query
expressions frequently provide a simpler syntax for expressing such a
query. Whether through standard query operators or query expression
syntax, however, the end result is a significant improvement in the way
developers are able to code against collection APIs, an improvement that

 IEnumerable<string> selection =

 Keywords.Where(word => word.Contains('*'));

ptg

Chapter 15: LINQ with Query Expressions610

ultimately provides a paradigm shift in the way object-oriented languages
are able to interface with relational databases.

In the next chapter, we continue our discussion of collections: investi-
gating some of the .NET Framework collection types as well as how to
define custom collections.

ptg

611

16
Building Custom Collections

HAPTER 14 COVERED standard query operators, a set of extension
methods on IEnumerable<T> that added a common set of methods to

all collections. However, this did not make all collections the same. There
is still a strong need for different collection types. Some collections are
better suited to searching by key, whereas others are better suited to index

C

Collections

2
Primary
Collection
Classes

List<T>
Dictionary<TKey, TValue>
SortedDictionary<TKey, TValue>
and SortedList<T>
Stack<T>
Queue<T>
LinkedList<T>

1 More Collection
Interfaces

IList<T>
IDictionary<TKey, TValue>
IComparable<T>
ICollection<T>

3 Providing an
Index Operator

4
Returning null
or an Empty
Collection

5 Iterators

Defining
Syntax

yield
State

yield break

ptg

Chapter 16: Building Custom Collections612

retrieval. Similarly, some collections follow a queue behavior of first in,
first out, whereas others are more like a stack, as in last in, last out. The
.NET Framework contains a plethora of different collections suited for the
vast array of scenarios in which collections are needed. This chapter
provides an introduction to many of these collections, along with more
collection interfaces. Furthermore, the chapter introduces how to define
a custom collection that supports standard collection functionality,
such as indexing and foreach iteration via iterators. Iterators not only
encapsulate the internal data structure of the collection classes, but they
also improve control over end-user access and the use of data within
a collection.

Perhaps the most prevalent use of generics in any language is in the
area of collections. Collections deal with sets of like objects and with
managing those objects as a group. This chapter looks at the collection
classes provided with the runtime and how you use them within your
applications. It also covers the various collection interfaces and how
they relate to each other, and it includes a discussion of how to create
custom collections using iterators. This C# 2.0 feature simplifies imple-
mentation of how the foreach statement iterates over the elements in a
collection.

There are two types of collection-related classes: those that support
generics and those that don’t. This chapter primarily discusses the generic
collection classes. Generally, you should use collection classes that don’t
support generics only when writing components that need to interoperate
with earlier versions of the runtime. This is because everything that was
available in the nongeneric form has a generic replacement that is strongly
typed. In this edition, I focus on the generic collections and do not discuss
nongeneric collection types.

More Collection Interfaces

This section delves into the collection-related interfaces to help you under-
stand the common capabilities of all collection classes and where the com-
monalities possibly diverge.

ptg

More Collection Interfaces 613

Figure 16.1 shows the hierarchy of interfaces that make up the collection
classes.

Figure 16.1: Generic Collection Interface Hierarchy

You use these interfaces to establish capabilities such as iterating over a
collection using a foreach loop, indexing into a collection, and determin-
ing the total number of elements in a collection. This section examines
these interfaces, starting at the bottom of Figure 16.1 and moving up.

ptg

Chapter 16: Building Custom Collections614

IList<T> versus IDictionary<TKey, TValue>
In a sense, lists are just the special case of dictionaries where the “key” is
always an integer, and the key set is always a contiguous set of non-negative
integers starting with zero. But that is a strong enough difference that it is
worth having an entirely different class to represent it. When selecting a col-
lection class, the first two interfaces to look for are IList<T> and IDiction-
ary<TKey, TValue>. These interfaces determine whether the collection type
is focused on retrieval via index or retrieval via key. If the type of collection
you are using should be key-centric, use a collection class that implements
the IDictionary<TKey, TValue> interface. Alternatively, the IList<T> inter-
face provides support for element retrieval via index. In other words,
although both of these interfaces require that the indexer be implemented,
the implementations are fundamentally different. In the case of IList<T>,
the parameter passed to the array operator corresponds to the index of the
element being retrieved, the nth element in the list. In the case of the IDic-
tionary<TKey, TValue> interface, the parameter corresponds to the key of a
previously inserted element. When you assign using the key, a new item will
be inserted if one doesn’t already exist for the specified key.

IComparable<T>

Before I discuss the next interface in Figure 16.1, I need to discuss an inter-
face that does not appear in the diagram but is nonetheless important to
both IList<T> and IDictionary<TKey, TValue>. The IComparable<T>
interface is crucial for any sorting operation by classes implementing these
interfaces. For example, if the List<T>.Sort() method is called, you need
a means to compare objects to determine their order. One way to do this is
via the IComparable<T> interface. This interface has one method, Com-
pareTo(). It returns an integer indicating whether the element passed is
greater than, less than, or equal to the current element. For this to work the
key data type needs to implement IComparable<T>.

A D V A N C E D T O P I C

Using IComparer<T> for Sorting
Another way to handle custom sorting is to pass an element that implements
IComparer<T> into the sort method. This interface performs a function similar

ptg

More Collection Interfaces 615

to IComparable<T>, but is not generally supported directly by the element
being collected. For example, consider providing an IComparable<T>.Com-
pareTo() method for Contact. What sort order would be used: age; last
name; country of residence? At issue is the fact that the sort order varies, and
therefore, providing one comparison method directly on the Contact class
would be an arbitrary choice.

A more appropriate solution is to provide a special sort class for each
comparison implementation. Instead of the comparison method perform-
ing a comparison between the sort class instance and a single Contact
instance, it would accept two Contact arguments and it would perform the
comparison between these two instances. Listing 16.1 shows a sample
implementation of a LastName, FirstName comparison.

Listing 16.1: Implementing IComparer<T>

class Contact;

{

 public string FirstName { get; set; }

 }

 public string LastName { get; set; }

}

using System;

using System.Collections.Generic;

class NameComparison : IComparer<Contact>

{

 public int Compare(Contact x, Contact y)

 {

 int result;

 if (Contact.ReferenceEquals(x, y))

 {

 result = 0;

 }

 else

 {

 if (x == null)

 {

 result = 1;

 }

 else if (y == null)

 {

 result = -1;

 }

ptg

Chapter 16: Building Custom Collections616

 else
 {
 result = StringCompare(x.LastName, y.LastName);
 if (result == 0)
 {
 result =
 StringCompare(x.FirstName, y.FirstName);
 }
 }
 }
 return result;
 }

 private static int StringCompare(string x, string y)
 {
 int result;
 if (x == null)
 {
 if (y == null)
 {
 result = 0;
 }
 else
 {
 result = 1;
 }
 }
 else
 {
 result = x.CompareTo(y);
 }
 return result;
 }
}

To use the new Compare() function you pass it to a sort method such as
List<Contact>.Sort(IComparer<Contact> comparer).

ICollection<T>
Both IList<T> and IDictionary<TKey, TValue> implement ICollec-
tion<T>. A collection that does not implement either IList<T> or IDic-
tionary<TKey, TValue> is more than likely going to implement
ICollection<T> (although not necessarily, since collections could
implement the lesser requirement of IEnumerable or IEnumerable<T>).

ptg

Primary Collection Classes 617

ICollection<T> is derived from IEnumerable<T> and includes two
members: Count and CopyTo().

• The Count property returns the total number of elements in the collec-
tion. Initially, it may appear that this would be sufficient to iterate
through each element in the collection using a for loop, but in order
for this to be possible the collection would also need to support
retrieval by index, which the ICollection<T> interface does not
include (although IList<T> does include it).

• The CopyTo() method provides the ability to convert the collection
into an array. The method includes an index parameter so that you
can specify where to insert elements in the target array. Note that to
use the method you must initialize the array target with sufficient
capacity, starting at the index, to contain all the elements in
ICollection<T>.

Primary Collection Classes

There are five key categories of collection classes, and they differ from each
other in terms of how data is inserted, stored, and retrieved. Each generic
class is located in the System.Collections.Generic namespace, and their
nongeneric equivalents are in the System.Collections namespace.

List Collections: List<T>
The List<T> class has properties similar to an array. The key difference is
that these classes automatically expand as the number of elements
increases. (In contrast, an array size is constant.) Furthermore, lists can
shrink via explicit calls to TrimToSize() or Capacity (see Figure 16.2).

These classes are categorized as list collections whose distinguishing
functionality is that each element can be individually accessed by index,
just like an array. Therefore, you can set and access elements in the list col-
lection classes using the index operator, where the index parameter value
corresponds to the position of an element in the collection. Listing 16.2
shows an example, and Output 16.1 shows the results.

ptg

Chapter 16: Building Custom Collections618

Listing 16.2: Using List<T>

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 List<string> list = new List<string>();

Figure 16.2: List<> Class Diagrams

ptg

Primary Collection Classes 619

 // Lists automatically expand as elements

 // are added.

 list.Add("Sneezy");

 list.Add("Happy");

 list.Add("Dopey");

 list.Add("Doc");

 list.Add("Sleepy");

 list.Add("Bashful");

 list.Add("Grumpy");

 list.Sort();

 Console.WriteLine(

 "In alphabetical order {0} is the "

 + "first dwarf while {1} is the last.",

 list[0], list[6]);

 list.Remove("Grumpy");

 }

}

C# is zero-index-based; therefore, index zero in Listing 16.2 corresponds to
the first element and index 6 indicates the seventh element. Retrieving ele-
ments by index does not involve a search. It involves a quick and simple
“jump” operation to a location in memory.

When you use the Add() method, elements maintain the order in which
you added them. Therefore, prior to the call to Sort() in Listing 16.2,
"Sneezy" is first and "Grumpy" is last. Although List<T> supports a Sort()
method, nothing states that all list collections require such a method.

There is no support for automatic sorting of elements as they are added.
In other words, an explicit call to Sort() is required for the elements to be
sorted (items must implement IComparable). To remove an element, you
use the Remove() method.

To search List<T> for a particular element, you use the Contains(),
IndexOf(), LastIndexOf(), and BinarySearch() methods. The first three
methods search through the array, starting at the first element (the last ele-
ment for LastIndexOf()), and examine each element until the equivalent
one is found. The execution time for these algorithms is proportional to the

OUTPUT 16.1:

In alphabetical order Bashful is the first dwarf while Sneezy is the

last.

ptg

Chapter 16: Building Custom Collections620

number of elements searched before a hit occurs. Be aware that the collection
classes do not require that all the elements within the collection are unique.
If two or more elements in the collection are the same, then IndexOf()
returns the first index and LastIndexOf() returns the last index.

BinarySearch() uses a binary search algorithm and requires that the
elements be sorted. A useful feature of the BinarySearch() method is that
if the element is not found, a negative integer is returned. The bitwise com-
plement (~) of this value is the index of the next element larger than the ele-
ment being sought, or the total element count if there is no greater value.
This provides a convenient means to insert new values into the list at the
specific location so as to maintain sorting (see Listing 16.3).

Listing 16.3: Using the Bit Complement of the BinarySearch() Result

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 List<string> list = new List<string>();

 int search;

 list.Add("public");

 list.Add("protected");

 list.Add("private");

 list.Sort();

 search = list.BinarySearch("protected internal");

 if (search < 0)

 {

 list.Insert(~search, "protected internal");

 }

 foreach (string accessModifier in list)

 {

 Console.WriteLine(accessModifier);

 }

 }

}

Beware that if the list is not first sorted, an element will not necessarily
be found, even if it is in the list. The results of Listing 16.3 appear in
Output 16.2.

ptg

Primary Collection Classes 621

A D V A N C E D T O P I C

Finding Multiple Items with FindAll()
Sometimes you must find multiple items within a list and your search criteria
are more complex than looking for specific values. To support this, Sys-
tem.Collections.Generic.List<T> includes a FindAll() method. FindAll()
takes a parameter of type Predicate<T>, which is a reference to a method
called a delegate. Listing 16.4 demonstrates how to use the FindAll() method.

Listing 16.4: Demonstrating FindAll() and Its Predicate Parameter

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 List<int> list = new List<int>();

 list.Add(1);

 list.Add(2);

 list.Add(3);

 list.Add(2);

 {

 Console.WriteLine(number);

 }

 }

 public static bool Even(int value)

 {

 return (value % 2) == 0;

 }

}

In Listing 16.4’s call to FindAll(), you pass a delegate instance, Even().
This method returns true when the integer argument value is even.

OUTPUT 16.2:

private

protected

protected internal

public

 List<int> results = list.FindAll(Even);

 foreach(int number in results)

ptg

Chapter 16: Building Custom Collections622

FindAll() takes the delegate instance and calls into Even() for each item
within the list (this listing uses C# 2.0’s delegate type inferencing). Each
time the return is true, it adds it to a new List<T> instance and then
returns this instance once it has checked each item within list. A complete
discussion of delegates occurs in Chapter 12.

Dictionary Collections: Dictionary<TKey, TValue>
Another category of collection classes is the dictionary classes—specifically,
Dictionary<Tkey, Tvalue> (see Figure 16.3). Unlike the list collections, dic-
tionary classes store name/value pairs. The name functions as a unique key
that can be used to look up the corresponding element in a manner similar to
that of using a primary key to access a record in a database. This adds some
complexity to the access of dictionary elements, but because lookups by key
are efficient operations, this is a useful collection. Note that the key may be
any data type, not just a string or a numeric value.

Figure 16.3: Dictionary Class Diagrams

ptg

Primary Collection Classes 623

One option for inserting elements into a dictionary is to use the Add()
method, passing both the key and the value, as shown in Listing 16.5.

Listing 16.5: Adding Items to a Dictionary<TKey, TValue>

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 Dictionary<Guid,string> dictionary =

 new Dictionary<Guid, string>();

 Guid key = Guid.NewGuid();

 dictionary.Add(key, "object");

 }

}

Listing 16.5 inserts the string "object" using a Guid as its key. If an
element with the same key has already been added, an exception is
thrown.

An alternative is to use the indexer, as shown in Listing 16.6.

Listing 16.6: Inserting Items in a Dictionary<TKey, TValue> Using the Index Operator

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 Dictionary<Guid, string> dictionary =

 new Dictionary<Guid, string>();

 Guid key = Guid.NewGuid();

 dictionary[key] = "object";

 dictionary[key] = "byte";

 }

}

The first thing to observe in Listing 16.6 is that the index operator does
not require an integer. Instead, the index data type is specified by the
first type parameter, TKey, when declaring a Dictionary<TKey, TValue>

ptg

Chapter 16: Building Custom Collections624

variable. In this example, the key data type used is Guid, and the value
data type is string.

The second thing to notice in Listing 16.6 is the reuse of the same index.
In the first assignment, no dictionary element corresponds to key. Instead
of throwing an out-of-bounds exception, as an array would, dictionary col-
lection classes insert a new object. During the second assignment, an ele-
ment with the specified key already exists, so instead of inserting an
additional element, the existing element corresponding to key is updated
from "object" to "byte".

Accessing a value from a dictionary using the index operator ([]) with a
nonexistent key throws an exception of type System.Collections.Generic.
KeyNotFoundException. The ContainsKey() method, however, allows you
to check whether a particular key is used before accessing its value, thereby
avoiding the exception. Also, since the keys are stored in a hash table, the
search is relatively efficient.

By contrast, checking whether there is a particular value in the diction-
ary collections is a time-consuming operation with linear performance
characteristics. To do this you use the ContainsValue() method, which
searches sequentially through each element in the collection.

You remove a dictionary element using the Remove() method, passing
the key, not the element value.

There is no particular order for the dictionary classes. Elements are
arranged into a hash table using hash codes for rapid retrieval (acquired by
calling GetHashCode() on the key). Iterating through a dictionary class
using the foreach loop, therefore, accesses values in no particular order.
Because both the key and the element value are required to add an element
to the dictionary, the data type returned from the foreach loop is KeyVal-
uePair<TKey, TValue> for Dictionary<TKey, TValue>. Listing 16.7 shows
a snippet of code demonstrating the foreach loop with the Diction-
ary<TKey, TValue> collection class. The output appears in Output 16.3.

Listing 16.7: Iterating over Dictionary<TKey, TValue> with foreach

using System;
using System.Collections.Generic;

class Program
{
 static void Main()

ptg

Primary Collection Classes 625

 {

 Dictionary<string,string> dictionary = new

 Dictionary<string,string>();

 int index =0;

 dictionary.Add(index++.ToString(), "object");

 dictionary.Add(index++.ToString(), "byte");

 dictionary.Add(index++.ToString(), "uint");

 dictionary.Add(index++.ToString(), "ulong");

 dictionary.Add(index++.ToString(), "float");

 dictionary.Add(index++.ToString(), "char");

 dictionary.Add(index++.ToString(), "bool");

 dictionary.Add(index++.ToString(), "ushort");

 dictionary.Add(index++.ToString(), "decimal");

 dictionary.Add(index++.ToString(), "int");

 dictionary.Add(index++.ToString(), "sbyte");

 dictionary.Add(index++.ToString(), "short");

 dictionary.Add(index++.ToString(), "long");

 dictionary.Add(index++.ToString(), "void");

 dictionary.Add(index++.ToString(), "double");

 dictionary.Add(index++.ToString(), "string");

 Console.WriteLine("Key Value Hashcode");

 Console.WriteLine("--- ------- --------");

 foreach (KeyValuePair<string, string> i in dictionary)

 {

 Console.WriteLine("{0,-5}{1,-9}{2}",

 i.Key, i.Value, i.Key.GetHashCode());

 }

 }

}

OUTPUT 16.3:

Key Value Hashcode

--- ------- ----------

0 object -842352752

1 byte -842352753

2 uint -842352754

3 ulong -842352755

4 float -842352756

5 char -842352757

6 bool -842352758

7 ushort -842352759

8 decimal -842352744

9 int -842352745

10 sbyte -843401329

11 short -843466865

12 long -843532401

13 void -843597937

14 double -843663473

15 string -843729009

ptg

Chapter 16: Building Custom Collections626

If you want to deal only with keys or only with elements within a diction-
ary class, they are available via the Keys and Values properties. The data type
returned from these properties is of type ICollection<T>. The data returned
by these properties is a reference to the data within the original dictionary
collection, so changes within the dictionary are automatically reflected in the
ICollection type returned by the Keys and Values properties.

Sorted Collections: SortedDictionary<TKey, TValue> and
SortedList<T>

The sorted collection classes (see Figure 16.4) differ from unsorted imple-
mentation collections in that the elements are sorted by key for SortedDic-
tionary<TKey, TValue> and by value for SortedList<T>. (There is also a
nongeneric SortedList implementation.) A foreach iteration of sorted col-
lections returns the elements sorted in key order (see Listing 16.8).

Listing 16.8: Using SortedDictionary<TKey, TValue>

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 SortedDictionary<string,string> sortedDictionary =

 new SortedDictionary<string,string>();

 int index =0;

 sortedDictionary.Add(index++.ToString(), "object");

 // ...

 sortedDictionary.Add(index++.ToString(), "string");

 Console.WriteLine("Key Value Hashcode");

 Console.WriteLine--- ------- ----------");

 foreach (

 KeyValuePair<string, string> i in sortedDictionary)

 {

 Console.WriteLine("{0,-5}{1,-9}{2}",

 i.Key, i.Value, i.Key.GetHashCode());

 }

 }

}

The results of Listing 16.8 appear in Output 16.4.

ptg

Primary Collection Classes 627

Figure 16.4: SortedList<> and SortedDictionary<> Class Diagrams

OUTPUT 16.4:

Key Value Hashcode

--- ------- ----------

0 object -842352752

1 byte -842352753

10 sbyte -843401329

11 short -843466865

12 long -843532401

13 void -843597937

14 double -843663473

15 string -843729009

2 uint -842352754

3 ulong -842352755

4 float -842352756

5 char -842352757

6 bool -842352758

7 ushort -842352759

8 decimal -842352744

9 int -842352745

ptg

Chapter 16: Building Custom Collections628

Note that the elements in the key (not the value) are in alphabetical rather
than numerical order, because the data type of the key is a string, not an
integer.

When inserting or removing elements from a sorted dictionary collec-
tion, maintenance of order within the collection slightly increases execu-
tion time when compared to the straight dictionary classes described
earlier. Behaviorally, there are two internal arrays, one for key retrieval
and one for index retrieval. On a System.Collections.Sorted sorted list,
indexing is supported via the GetByIndex() and SetByIndex() methods.
With System.Collections.Generic.SortedList<TKey, TValue>, the Keys
and Values properties return IList<TKey> and IList<TValue> instances,
respectively. These methods enable the sorted list to behave both as a dic-
tionary and as a list type collection.

Stack Collections: Stack<T>
Chapter 11 discussed the stack collection classes (see Figure 16.5). The
stack collection classes are designed as last in, first out (LIFO) collections.
The two key methods are Push() and Pop().

• Push() places elements into the collection. The elements do not have
to be unique.

• Pop() retrieves and removes elements in the reverse order of how
they were added.

To access the elements on the stack without modifying the stack, you
use the Peek() and Contains() methods. The Peek() method returns the
next element that Pop() will retrieve.

As with most collection classes, you use the Contains() method
to determine whether an element exists anywhere in the stack. As
with all collections, it is also possible to use a foreach loop to iterate
over the elements in a stack. This allows you to access values from
anywhere in the stack. Note, however, that accessing a value via the
foreach loop does not remove it from the stack. Only Pop() provides this
functionality.

ptg

Primary Collection Classes 629

Queue Collections: Queue<T>
Queue collection classes, shown in Figure 16.6, are identical to stack collec-
tion classes, except they follow the ordering pattern of first in, first out
(FIFO). In place of the Pop() and Push() methods are the Enqueue() and
Dequeue() methods. The queue collection behaves like a circular array or
pipe. You place objects into the queue at one end using the Enqueue()
method, and you remove them from the other end using the Dequeue()
method. As with stack collection classes, the objects do not have to be
unique, and queue collection classes automatically increase in size as
required. When data is no longer needed, you recover the capacity using
the TrimToSize() method.

Linked Lists: LinkedList<T>
In addition, System.Collections.Generic supports a linked list collection
that enables both forward and reverse traversal. Figure 16.7 shows the
class diagram. Notice there is no corresponding nongeneric type.

Figure 16.5: Stack<T> Class Diagram Figure 16.6: Queue<T> Class Diagram

ptg

Chapter 16: Building Custom Collections630

Providing an Index Operator

The common collection interfaces provide much of the foundation for
what members are needed when implementing custom collections. How-
ever, there is one more member: the index operator.

The index operator is a pair of square brackets that are generally used
to index into a collection. Not only is this available on each collection type,
but it is also a member that programmers can add to their custom classes.
Listing 16.9 shows an example using Pair<T>.

Listing 16.9: Defining an Index Operator

interface IPair<T>

{

 T First

 {

 get;

 }

Figure 16.7: LinkedList<T> and LinkedListNode<T> Class Diagrams

ptg

Providing an Index Operator 631

 T Second

 {

 get;

 }

}

public enum PairItem

{

 First,

 Second

}

public struct Pair<T> : IPair<T>

{

 public Pair(T first, T second)

 {

 _first = first;

 _second = second;

 }

 public T First

 {

 get{ return _first; }

 private set{ _first = value; }

 }

 private T _first;

 public T Second

 {

 get{ return _second; }

 private set{ _second = value; }

 }

 private T _second;

 switch (index)

 {

 case PairItem.First:

 return First;

 case PairItem.Second:

 return Second;

 default :

 throw new NotImplementedException(

 string.Format(

 T this[PairItem index]

 {

 get;

 }

 public T this[PairItem index]

 {

 get

 {

ptg

Chapter 16: Building Custom Collections632

 "The enum {0} has not been implemented",

 index.ToString()));

 }

 }

 switch (index)

 {

 case PairItem.First:

 First = value;

 break;

 case PairItem.Second:

 Second = value;

 break;

 default:

 throw new NotImplementedException(

 string.Format(

 "The enum {0} has not been implemented",

 index.ToString()));

 }

}

To define an index operator, you must name the member this and fol-
low it with square brackets that identify the parameters. The implementa-
tion is like a property with get and set blocks. As Listing 16.9 shows, the
parameter does not have to be an int, and in fact, the index can take multiple
parameters and can even be overloaded. This example uses an enum to
reduce the likelihood that callers will supply an index for a nonexistent item.

The resultant CIL code the C# compiler creates from an index operator
is a special property called Item that takes an argument. Properties that
accept arguments cannot be created explicitly in C#, so the Item property is
unique in this aspect. This is because any additional member with the
identifier Item, even if it has an entirely different signature, will conflict
with the compiler-created member, and will therefore not be allowed.

A D V A N C E D T O P I C

Assigning the Indexer Property Name Using IndexerName
As indicated earlier, the CIL property name for an indexer defaults to Item.
Using the IndexerNameAttribute you can specify a different name, how-
ever. Listing 16.10, for example, changes the name to "Entry".

 set

 {

 }

 }

ptg

Providing an Index Operator 633

Listing 16.10: Changing the Indexer’s Default Name

 [System.Runtime.CompilerServices.IndexerName("Entry")]

 public T this[params PairItem[] branches]

 {

 // ...

 }

This makes no difference to C# callers of the index, but it specifies the
name for languages that do not support indexers directly.

Compilers consume this attribute and modify the generated CIL code.
The attribute itself does not appear in the CIL output, and therefore, it is
not available via reflection.

A D V A N C E D T O P I C

Defining an Index Operator with Variable Parameters
An index operator can also take a variable parameter list. For example,
Listing 16.11 defines an index operator for BinaryTree<T> discussed in
Chapter 11 (and again in the next section).

Listing 16.11: Defining an Index Operator with Variable Parameters

using System;

using System.Collections.Generic;

public class BinaryTree<T>:

 IEnumerable<T>

{

 // ...

 {

 get

 {

 BinaryTree<T> currentNode = this;

 int totalLevels =

 (branches == null) ? 0 : branches.Length;

 int currentLevel = 0;

 while (currentLevel < totalLevels)

 {

 currentNode = currentNode.SubItems[

 branches[currentLevel]];

 if (currentNode == null)

 public T this[params PairItem[] branches]

ptg

Chapter 16: Building Custom Collections634

 {

 // The binary tree at this location is null.

 throw new IndexOutOfRangeException();

 }

 currentLevel++;

 }

 return currentNode.Value;

 }

 set

 {

 // ...

 }

 }

}

Each item within branches is a PairItem and indicates which branch to
navigate down in the binary tree.

Returning Null or an Empty Collection

When returning an array or collection, you must indicate that there are
zero items by returning either null or a collection instance with no items.
The better choice in general is to return a collection instance with no items.
In so doing, you avoid forcing the caller to check for null before iterating
over the items in the collection. For example, given a zero-size IEnumera-
ble<T> collection, the caller can immediately and safely use a foreach loop
over the collection without concern that the generated call to GetEnumera-
tor() will throw a NullReferenceException.

One of the few times to deviate from this guideline is when null is
intentionally indicating something different from zero items. A null value
for a phone number on a string, for example, may indicate that the phone
number is not set, and an empty string could indicate explicitly that there
is no phone number.

Iterators

Earlier, this chapter went into detail on the internals of the foreach loop. This
section discusses how to use iterators to create your own implementation of

ptg

Iterators 635

the IEnumerator<T> and nongeneric IEnumerator interfaces for custom col-
lections. Iterators provide clean syntax for specifying how to iterate on data in
collection classes, especially using the foreach loop. The iterator allows end-
users of a collection to navigate its internal structure without knowledge of
that structure.

A D V A N C E D T O P I C

Origin of Iterators
In 1972, Barbara Liskov and a team of scientists at MIT began researching
programming methodologies, focusing on user-defined data abstractions.
To prove much of their work, they created a language called CLU that had
a concept called “clusters” (CLU being the first three letters), a predecessor
to the primary data abstraction programmers use today, objects. As part of
their research, the team realized that although they were able to use the
CLU language to abstract some data representation away from end-users
of their types, they consistently found themselves having to reveal the
inner structure of their data in order to allow others to intelligently con-
sume it. Through their consternation came the creation of a language con-
struct called an iterator. (The CLU language offered many insights into
what would eventually be popularized as object-oriented programming.)

If classes want to support iteration using the foreach loop construct,
they must implement the enumerator pattern. As you saw in the earlier
section, in C# the foreach loop construct is expanded by the compiler into
the while loop construct based on the IEnumerator<T> interface that is
retrieved from the IEnumerable<T> interface.

The problem with the enumeration pattern is that it can be cumbersome
to implement manually, because it maintains an internal state machine.
This internal state machine may be simple for a list collection type class,
but for data structures that require recursive traversal, such as binary trees,
the state machine can be quite complicated. To overcome the challenges
and effort associated with implementing this pattern, C# 2.0 included a
construct that makes it easier for a class to dictate how the foreach loop
iterates over its contents.

ptg

Chapter 16: Building Custom Collections636

Defining an Iterator
Iterators are a means to implement methods of a class, and they are syntac-
tic shortcuts for the more complex enumerator pattern. When the C# com-
piler encounters an iterator, it expands its contents into CIL code that
implements the enumerator pattern. As such, there are no runtime depen-
dencies for implementing iterators. Because the C# compiler handles
implementation through CIL code generation, there is no real runtime
performance benefit to using iterators. However, there is a substantial
programmer productivity gain in choosing iterators over manual imple-
mentation of the enumerator pattern. To begin, the next section examines
how an iterator is defined in code.

Iterator Syntax
An iterator provides shorthand implementation of iterator interfaces, the
combination of the IEnumerable<T> and IEnumerator<T> interfaces. List-
ing 16.12 declares an iterator for the generic BinaryTree<T> type by creat-
ing a GetEnumerator() method. Next, you will add support for the iterator
interfaces.

Listing 16.12: Iterator Interfaces Pattern

using System;

using System.Collections.Generic;

public class BinaryTree<T>:

{

 public BinaryTree (T value)

 {

 Value = value;

 }

 #region IEnumerable<T>

 {

 ...

 }

 #endregion IEnumerable<T>

 public T Value

 {

 get{ return _value; }

 set{ _value = value; }

 IEnumerable<T>

 public IEnumerator<T> GetEnumerator()

ptg

Iterators 637

 }

 private T _value;

 public Pair<BinaryTree<T>> SubItems

 {

 get{ return _subItems; }

 set{ _subItems = value; }

 }

 private Pair<BinaryTree<T>> _subItems;

}

public struct Pair<T>

{

 public Pair(T first, T second)

 {

 _first = first;

 _second = second;

 }

 public T First

 {

 get{ return _first; }

 private set{ _first = value; }

 }

 private T _first;

 public T Second

 {

 get{ return _second; }

 private set{ _second = value; }

 }

 private T _second;

}

To begin, add the declaration for the IEnumerator<T> IEnumerable<T>
.GetEnumerator() method.

Yielding Values from an Iterator
Iterators are like functions, but instead of returning values, they yield them.
In the case of BinaryTree<T>, the yield type of the iterator corresponds to the
type parameter, T. If the nongeneric version of IEnumerator is used, then the
return type will instead be object. To correctly implement the iterator pat-
tern, you need to maintain an internal state machine in order to keep track of
where you are while enumerating the collection. In the BinaryTree<T> case,
you track which elements within the tree have already been enumerated and
which are still to come.

ptg

Chapter 16: Building Custom Collections638

Iterators have built-in state machines to keep track of the current and
next elements. The yield return statement returns values each time an
iterator encounters it. Then, when the next iteration starts, the code
begins to execute immediately following the last yield return statement.
In Listing 16.13, you return the C# primitive data type keywords
sequentially.

Listing 16.13: Yielding the C# Keywords Sequentially

using System;

using System.Collections.Generic;

public class CSharpPrimitiveTypes: IEnumerable<string>

{

 public IEnumerator<string> GetEnumerator()

 {

 yield return "object";

 yield return "byte";

 yield return "uint";

 yield return "ulong";

 yield return "float";

 yield return "char";

 yield return "bool";

 yield return "ushort";

 yield return "decimal";

 yield return "int";

 yield return "sbyte";

 yield return "short";

 yield return "long";

 yield return "void";

 yield return "double";

 yield return "string";

 }

 // IEnumerator also required because IEnumerator<T>

 // derives from it.

 System.Collections.IEnumerator

 System.Collections.IEnumerable.GetEnumerator()

 {

 // Invoke IEnumerator<string> GetEnumerator() above

 return GetEnumerator();

 }

}

public class Program

{

 static void Main()

 {

ptg

Iterators 639

 CSharpPrimitiveTypes primitives =

 new CSharpPrimitiveTypes();

 foreach (string primitive in primitives)

 {

 Console.WriteLine(primitive);

 }

 }

}

The results of Listing 16.13 appear in Output 16.5.

The output from this listing is a listing of the C# primitive types.1

Iterators and State
When an iterator is first called in a foreach statement (such as foreach
(string primitive in primitives) in Listing 16.13), its state is initialized
within the enumerator. The iterator maintains its state as long as the
foreach statement at the call site continues to execute. When you yield a
value, process it, and resume the foreach statement at the call site, the iter-
ator continues where it left off the previous time around the loop and

OUTPUT 16.5:

object

byte

uint

ulong

float

char

bool

ushort

decimal

int

sbyte

short

long

void

double

string

1. In alpha versions of the C# 2.0 compiler, yield was a keyword rather than a contextual
keyword. However, such a change could result in an incompatibility between C# 1.0 and
C# 2.0. Instead, yield became a contextual keyword that must appear before return. As a
result, no code-breaking change occurred because C# 1.0 did not allow any text (besides
comments) prior to the return keyword.

ptg

Chapter 16: Building Custom Collections640

continues processing. When the foreach statement at the call site termi-
nates, the iterator’s state is no longer saved. It is always safe to call the iter-
ator again since the generated code never resets the state of the iterator but
instead creates a new one when needed.

Figure 16.8 shows a high-level sequence diagram of what takes place.
Remember that the MoveNext() method appears on the IEnumerator<T>
interface.

Figure 16.8: Sequence Diagram with yield return

...

Program
primitives:

CSharpPrimitiveTypes

GetEnumerator()

enumerator:
Enumerator

Instantiate

yield return "object"

yield return "byte"

MoveNext()

yield return "string"

MoveNext()

Console

WriteLine()

WriteLine()

WriteLine()

MoveNext()

ptg

Iterators 641

In Listing 16.13, the foreach statement at the call site initiates a call to
GetEnumerator() on the CSharpPrimitiveTypes instance called primi-
tives. Given the iterator instance (referenced by iterator), foreach begins
each iteration with a call to MoveNext(). Within the iterator, you yield a
value back to the foreach statement at the call site. After the yield return
statement, the GetEnumerator() method seemingly pauses until the next
MoveNext() request. Back at the call site, the foreach statement displays the
yielded value on the screen. It then loops back around and calls MoveNext()
on the iterator again. Notice that the second time, processing picks up at the
second yield return statement. Once again, the foreach displays on the
screen what CSharpPrimitiveTypes yielded and starts the loop again. This
process continues until there are no more yield return statements within
the iterator. At that point, the foreach loop at the call site terminates.

More Iterator Examples
Before you modify BinaryTree<T>, you must modify Pair<T> to support
the IEnumerable<T> interface using an iterator. Listing 16.14 is an example
that yields each element in Pair<T>.

Listing 16.14: Using yield to Implement BinaryTree<T>

public struct Pair<T>: IPair<T>,

{

 public Pair(T first, T second)

 {

 _first = first;

 _second = second;

 }

 public T First

 {

 get{ return _first; }

 private set{ _first = value; }

 }

 private T _first;

 public T Second

 {

 get{ return _second; }

 private set{ _second = value; }

 }

 IEnumerable<T>

ptg

Chapter 16: Building Custom Collections642

 private T _second;

}

In Listing 16.14, the iteration over the Pair<T> data type loops twice: first
through yield return First, and then through yield return Second.
Each time the yield return statement within GetEnumerator() is encoun-
tered, the state is saved and execution appears to “jump” out of the
GetEnumerator() method context and into the context of the call site.
When the second iteration starts, GetEnumerator() begins to execute again
with the yield return Second statement.

System.Collections.Generic.IEnumerable<T> inherits from System.
Collections.IEnumerable. Therefore, when implementing IEnumera-

ble<T>, it is also necessary to implement IEnumerable. In Listing 16.14, you
do so explicitly, and the implementation simply involves a call to IEnumera-
ble<T>’s GetEnumerator() implementation. This call from IEnumerable.
GetEnumerator() to IEnumerable<T>.GetEnumerator() will always work
because of the type compatibility (via inheritance) between IEnumerable<T>
and IEnumerable. Since the signatures for both GetEnumerator()s are
identical (the return type does not distinguish a signature), one or both
implementations must be explicit. Given the additional type safety offered
by IEnumerable<T>’s version, you implement IEnumerable’s implementa-
tion explicitly.

Listing 16.15 uses the Pair<T>.GetEnumerator() method and displays
"Inigo" and "Montoya" on two consecutive lines.

 #region IEnumerable<T>
 public IEnumerator<T> GetEnumerator()
 {
 yield return First;
 yield return Second;
 }
 #endregion IEnumerable<T>

 #region IEnumerable Members
 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator
 {
 return GetEnumerator();
 }
 #endregion

ptg

Iterators 643

Listing 16.15: Using Pair<T>.GetEnumerator() via foreach

Pair<string> fullname = new Pair<string>("Inigo", "Montoya");

foreach (string name in fullname)

{

 Console.WriteLine(name);

}

Notice that the call to GetEnumerator() is implicit within the foreach loop.

Placing a yield return within a Loop
It is not necessary to hardcode each yield return statement, as you did in
both CSharpPrimitiveTypes and Pair<T>. Using the yield return state-
ment, you can return values from inside a loop construct. Listing 16.16
uses a foreach loop. Each time the foreach within GetEnumerator() exe-
cutes, it returns the next value.

Listing 16.16: Placing yield return Statements within a Loop

public class BinaryTree<T>: IEnumerable<T>

{

 // ...

 #region IEnumerable<T>

 public IEnumerator<T> GetEnumerator()

 {

 // Return the item at this node.

 yield return Value;

 // Iterate through each of the elements in the pair.

 }

 #endregion IEnumerable<T>

 foreach (BinaryTree<T> tree in SubItems)

 {

 if (tree != null)

 {

 // Since each element in the pair is a tree,

 // traverse the tree and yield each

 // element.

 foreach (T item in tree)

 {

 yield return item;

 }

 }

 }

ptg

Chapter 16: Building Custom Collections644

 #region IEnumerable Members

 System.Collections.IEnumerator

 System.Collections.IEnumerable.GetEnumerator()

 {

 return GetEnumerator();

 }

 #endregion

}

In Listing 16.16, the first iteration returns the root element within the
binary tree. During the second iteration you traverse the pair of subele-
ments. If the subelement pair contains a non-null value, then you traverse
into that child node and yield its elements. Note that foreach(T item in
tree) is a recursive call to a child node.

As observed with CSharpPrimitiveTypes and Pair<T>, you can now
iterate over BinaryTree<T> using a foreach loop. Listing 16.17 demon-
strates this, and Output 16.6 shows the results.

Listing 16.17: Using foreach with BinaryTree<string>

// JFK

jfkFamilyTree = new BinaryTree<string>(

 "John Fitzgerald Kennedy");

jfkFamilyTree.SubItems = new Pair<BinaryTree<string>>(

 new BinaryTree<string>("Joseph Patrick Kennedy"),

 new BinaryTree<string>("Rose Elizabeth Fitzgerald"));

// Grandparents (Father's side)

jfkFamilyTree.SubItems.First.SubItems =

 new Pair<BinaryTree<string>>(

 new BinaryTree<string>("Patrick Joseph Kennedy"),

 new BinaryTree<string>("Mary Augusta Hickey"));

// Grandparents (Mother's side)

jfkFamilyTree.SubItems.Second.SubItems =

 new Pair<BinaryTree<string>>(

 new BinaryTree<string>("John Francis Fitzgerald"),

 new BinaryTree<string>("Mary Josephine Hannon"));

foreach (string name in jfkFamilyTree)

{

 Console.WriteLine(name);

}

ptg

Iterators 645

B E G I N N E R T O P I C

struct versus class
An interesting side effect of defining Pair<T> as a struct rather than a
class is that SubItems.First and SubItems.Second cannot be assigned
directly. The following will produce a compile error indicating that Sub-
Items cannot be modified, “because it is not a variable”:

jfkFamilyTree.SubItems.First =

 new BinaryTree<string>("Joseph Patrick Kennedy");

The issue is that SubItems is a property of type Pair<T>, a struct. There-
fore, when the property returns the value, a copy of _SubItems is made,
and assigning First on a copy that is promptly lost at the end of the state-
ment would be misleading. Fortunately, the C# compiler prevents this.

To overcome the issue, don’t assign it (see the approach in Listing
16.17), use class rather than struct for Pair<T>, don’t create a SubItems
property and instead use a field, or provide properties in BinaryTree<T>
that give direct access to _SubItems members.

Canceling Further Iteration: yield break
Sometimes you might want to cancel further iteration. You can do this by
including an if statement so that no further statements within the code
are executed. However, you can also jump back to the call site, causing
MoveNext() to return false. Listing 16.18 shows an example of such a
method.

OUTPUT 16.6:

John Fitzgerald Kennedy

Joseph Patrick Kennedy

Patrick Joseph Kennedy

Mary Augusta Hickey

Rose Elizabeth Fitzgerald

John Francis Fitzgerald

Mary Josephine Hannon

ptg

Chapter 16: Building Custom Collections646

Listing 16.18: Escaping Iteration via yield break

public System.Collections.Generic.IEnumerable<T>

 GetNotNullEnumerator()

{

 yield return Second;

 yield return First;

}

This method cancels the iteration if either of the elements in the Pair<T>
class is null.

A yield break statement is similar to placing a return statement at the
top of a function when it is determined that there is no work to do. It is a way
to exit from further iterations without surrounding all remaining code with
an if block. As such, it allows multiple exits, and therefore, you should use
it with caution because casual reading of the code may miss the early exit.

A D V A N C E D T O P I C

How Iterators Work
When the C# compiler encounters an iterator, it expands the code into the
appropriate CIL for the corresponding enumerator design pattern. In the
generated code, the C# compiler first creates a nested private class to imple-
ment the IEnumerator<T> interface, along with its Current property and a
MoveNext() method. The Current property returns a type corresponding to
the return type of the iterator. Listing 16.14 of Pair<T> contains an iterator
that returns a T type. The C# compiler examines the code contained within
the iterator and creates the necessary code within the MoveNext method and
the Current property to mimic its behavior. For the Pair<T> iterator, the C#
compiler generates roughly equivalent code (see Listing 16.19).

Listing 16.19: C# Equivalent of Compiler-Generated C# Code for Iterators

using System;

using System.Collections.Generic;

 if((First == null) || (Second == null))

 {

 yield break;

 }

ptg

Iterators 647

public class Pair<T> : IPair<T>, IEnumerable<T>

{

 // ...

 // The iterator is expanded into the following

 // code by the compiler

 public virtual IEnumerator<T> GetEnumerator()

 {

 __ListEnumerator result = new __ListEnumerator(0);

 result._Pair = this;

 return result;

 }

 public virtual System.Collections.IEnumerator

 System.Collections.IEnumerable.GetEnumerator()

 {

 return new GetEnumerator();

 }

 private sealed class __ListEnumerator<T> : IEnumerator<T>

 {

 public __ListEnumerator(int itemCount)

 {

 _ItemCount = itemCount;

 }

 Pair<T> _Pair;

 T _Current;

 int _ItemCount;

 public object Current

 {

 get

 {

 return _Current;

 }

 }

 public bool MoveNext()

 {

 switch (_ItemCount)

 {

 case 0:

 _Current = _Pair.First;

 _ItemCount++;

 return true;

 case 1:

 _Current = _Pair.Second;

 _ItemCount++;

ptg

Chapter 16: Building Custom Collections648

 return true;

 default:

 return false;

 }

 }

 }

}

Because the compiler takes the yield return statement and generates cla-
sses that correspond to what you probably would have written manually,
iterators in C# exhibit the same performance characteristics as classes
that implement the enumerator design pattern manually. Although there
is no performance improvement, the programmer productivity gained is
significant.

Creating Multiple Iterators in a Single Class
Previous iterator examples implemented IEnumerable<T>.GetEnumera-
tor(). This is the method that foreach seeks implicitly. Sometimes you
might want different iteration sequences, such as iterating in reverse, fil-
tering the results, or iterating over an object projection other than the
default. You can declare additional iterators in the class by encapsulating
them within properties or methods that return IEnumerable<T> or IEnu-
merable. If you want to iterate over the elements of Pair<T> in reverse, for
example, you provide a GetReverseEnumerator() method, as shown in
Listing 16.20.

Listing 16.20: Using yield return in a Method That Returns IEnumerable<T>

public struct Pair<T>: IEnumerable<T>

{

 ...

 {

 yield return Second;

 yield return First;

 }

 ...

}

public void Main()

{

 Pair<string> game = new Pair<string>("Redskins", "Eagles");

 public IEnumerable<T> GetReverseEnumerator()

ptg

Iterators 649

 {

 Console.WriteLine(name);

 }

}

Note that you return IEnumerable<T>, not IEnumerator<T>. This is differ-
ent from IEnumerable<T>.GetEnumerator(), which returns IEnumerator<T>.
The code in Main() demonstrates how to call GetReverseEnumerator() using
a foreach loop.

yield Statement Characteristics
You can declare the yield return statement only in members that return
an IEnumerator<T> or IEnumerable<T> type, or their nongeneric equiva-
lents. More specifically, you can use yield only in GetEnumerator() meth-
ods that return IEnumerator<T>, or in methods that return IEnumerable<T>
but are not called GetEnumerator().

Methods that include a yield return statement may not have a simple
return. If the method uses the yield return statement, then the C# com-
piler generates the necessary code to maintain the state machine for the
iterator. In contrast, if the method uses the return statement instead of
yield return, the programmer is responsible for maintaining his own
state machine and returning an instance of one of the iterator interfaces.
Further, just as all code paths in a method with a return type must contain
a return statement accompanied by a value (assuming they don’t throw an
exception), all code paths in an iterator must contain a yield return state-
ment if they are to return any data.

Additional restrictions on the yield statement that result in compiler
errors are as follows.

• The yield statement may not appear outside a method, operator, or
property accessor.

• The yield statement may not appear in an anonymous method (see
Chapter 12).

• The yield statement may not appear inside the catch and finally
clauses of the try statement. Furthermore, a yield statement may
appear in a try block only if there is no catch block.

 foreach (string name in game.GetReverseEnumerator())

ptg

Chapter 16: Building Custom Collections650

SUMMARY

The generic collection classes and interfaces made available in C# 2.0 are
universally superior to their nongeneric counterparts; by avoiding boxing
penalties and enforcing type rules at compile time, they are faster and
safer. Unless you are limited to C# 1.0, you should consider the entire
namespace of System.Collections as obsolete (in fact, it has been
excluded from the Silverlight CLR entirely). In other words, don’t go back
and necessarily remove all code that already uses this namespace. Instead,
use System.Collections.Generics for any new code and, over time, con-
sider migrating existing code to use the corresponding generic collections
which contain both the interfaces and the classes for working with collec-
tions of objects.

Providing the System.Collections.Generic namespace is not the only
change that C# 2.0 brought to collections. Another significant addition is
the iterator. Iterators involve a new contextual keyword, yield, that C#
uses to generate underlying CIL code that implements the iterator pattern
used by the foreach loop.

ptg

651

17
Reflection, Attributes, and
Dynamic Programming

TTRIBUTES ARE A MEANS of inserting additional metadata into an
assembly and associating the metadata with a programming con-

struct such as a class, method, or property. This chapter investigates the
details surrounding attributes that are built into the framework, as well as
how to define custom attributes. In order to take advantage of custom
attributes, it is necessary to identify them. This is handled through reflec-
tion. This chapter begins with a look at reflection, including how you can
use it to dynamically bind at runtime and call a member using its name at
compile time. This is frequently performed within tools such as a code gen-
erator. In addition, reflection is used at execution time when the call target
is unknown.

A

2

45

6

7

18
Accessing
Metadata GetType()

typeof()

Member Invocation

3 Reflection on Generics

Custom AttributesAttribute Constructors

Named Parameters

Predefined
Attributes

Dynamic Programming

Reflection,
Attributes, and

Dynamic
Programming

AttributeUsageAttribute
ConditionalAttribute

ObsoleteAttribute
Serialization

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 652

The chapter ends with a discussion of dynamic programming, a feature
added in C# 4.0 that greatly simplifies working with data that is dynamic
and requires execution-time rather than compile-time binding.

Reflection

Using reflection, it is possible to do the following:

• Access the metadata for types within an assembly. This includes con-
structs such as the full type name, member names, and any attributes
decorating the construct.

• Dynamically invoke a type’s member at runtime using the metadata,
rather than a compile-time-defined binding.

Reflection is the process of examining the metadata within an assem-
bly. Traditionally, when code compiles down to a machine language, all
the metadata (such as type and method names) about the code is dis-
carded. In contrast, when C# compiles into the CIL, it maintains most of
the metadata about the code. Furthermore, using reflection, it is possible to
enumerate through all the types within an assembly and search for those
that match certain criteria. You access a type’s metadata through instances
of System.Type, and this object includes methods for enumerating the type
instance’s members. Furthermore, it is possible to invoke those members
on particular objects that are of the examined type.

The facility for reflection enables a host of new paradigms that other-
wise are unavailable. For example, reflection enables you to enumerate
over all the types within an assembly, along with their members, and in the
process create stubs for documentation of the assembly API. You can then
combine the metadata retrieved from reflection with the XML document
created from XML comments (using the/doc switch) to create the API doc-
umentation. Similarly, programmers use reflection metadata to generate
code for persisting (serializing) business objects into a database. It could
also be used in a list control that displays a collection of objects. Given the
collection, a list control could use reflection to iterate over all the proper-
ties of an object in the collection, defining a column within the list for each

ptg

 Reflection 653

property. Furthermore, by invoking each property on each object, the list
control could populate each row and column with the data contained
in the object, even though the data type of the object is unknown at
compile time.

XmlSerializer, ValueType, and DataBinder are a few of the classes in
the framework that use reflection for portions of their implementation
as well.

Accessing Metadata Using System.Type
The key to reading a type’s metadata is to obtain an instance of
System.Type that represents the target type instance. System.Type pro-
vides all the methods for retrieving the information about a type. You can
use it to answer questions such as the following.

• What is the type’s name (Type.Name)?

• Is the type public (Type.IsPublic)?

• What is the type’s base type (Type.BaseType)?

• Does the type support any interfaces (Type.GetInterfaces())?

• Which assembly is the type defined in (Type.Assembly)?

• What are a type’s properties, methods, fields, and so on (Type.Get-
Properties(), Type.GetMethods(), Type.GetFields(), and so on)?

• What attributes decorate a type (Type.GetCustomAttributes())?

There are more such members, but in summary, they all provide infor-
mation about a particular type. The key is to obtain a reference to a type’s
Type object, and the two primary ways to do this are through object.
GetType() and typeof().

Note that the GetMethods() call does not return extension methods.
They are available only as static members on the implementing type.

GetType()

object includes a GetType() member, and therefore, all types include this
function. You call GetType() to retrieve an instance of System.Type corre-
sponding to the original object. Listing 17.1 demonstrates this, using a Type
instance from DateTime. Output 17.1 shows the results.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 654

Listing 17.1: Using Type.GetProperties() to Obtain an Object’s Public Properties

DateTime dateTime = new DateTime();

Type type = dateTime.GetType();
foreach (
 System.Reflection.PropertyInfo property in
 type.GetProperties())
{
 Console.WriteLine(property.Name);
}

After calling GetType(), you iterate over each System.Reflection.
PropertyInfo instance returned from Type.GetProperties() and display
the property names. The key to calling GetType() is that you must have an
object instance. However, sometimes no such instance is available. Static
classes, for example, cannot be instantiated, so there is no way to call
GetType().

typeof()

Another way to retrieve a Type object is with the typeof expression. typeof
binds at compile time to a particular Type instance, and it takes a type
directly as a parameter. Listing 17.2 demonstrates the use of typeof with
Enum.Parse().

OUTPUT 17.1:

Date
Day
DayOfWeek
DayOfYear
Hour
Kind
Millisecond
Minute
Month
Now
UtcNow
Second
Ticks
TimeOfDay
Today
Year

ptg

 Reflection 655

Listing 17.2: Using typeof() to Create a System.Type Instance

using System.Diagnostics;

// ...

 ThreadPriorityLevel priority;

 priority = (ThreadPriorityLevel)Enum.Parse(

 typeof(ThreadPriorityLevel), "Idle");

// ...

Enum.Parse() takes a Type object identifying an enum and then converts
a string to the specific enum value. In this case, it converts "Idle" to
System.Diagnostics.ThreadPriorityLevel.Idle.

Member Invocation
The possibilities with reflection don’t stop with retrieving the metadata.
The next step is to take the metadata and dynamically invoke the members
it references. Consider the possibility of defining a class to represent an
application’s command line. The difficulty with a CommandLineInfo class
such as this has to do with populating the class with the actual command-
line data that started the application. However, using reflection, you can
map the command-line options to property names and then dynamically
set the properties at runtime. Listing 17.3 demonstrates this example.

Listing 17.3: Dynamically Invoking a Member

using System;

using System.Diagnostics;

public partial class Program

{

 public static void Main(string[] args)

 {

 string errorMessage;

 CommandLineInfo commandLine = new CommandLineInfo();

 if (!CommandLineHandler.TryParse(

 args, commandLine, out errorMessage))

 {

 Console.WriteLine(errorMessage);

 DisplayHelp();

 }

 if (commandLine.Help)

 {

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 656

 DisplayHelp();

 }

 else

 {

 if (commandLine.Priority !=

 ProcessPriorityClass.Normal)

 {

 // Change thread priority

 }

 }

 // ...

 }

 private static void DisplayHelp()

 {

 // Display the command-line help.

 }

}

using System;

using System.Diagnostics;

public partial class Program

{

 private class CommandLineInfo

 {

 public bool Help { get; set; }

 public string Out { get; set; }

 public ProcessPriorityClass Priority

 {

 get { return _Priority; }

 set { _Priority = value; }

 }

 private ProcessPriorityClass _Priority =

 ProcessPriorityClass.Normal;

 }

}

using System;

using System.Diagnostics;

using System.Reflection;

public class CommandLineHandler

{

ptg

 Reflection 657

 public static void Parse(string[] args, object commandLine)

 {

 string errorMessage;

 if (!TryParse(args, commandLine, out errorMessage))

 {

 throw new ApplicationException(errorMessage);

 }

 }

 public static bool TryParse(string[] args, object commandLine,

 out string errorMessage)

 {

 bool success = false;

 errorMessage = null;

 foreach (string arg in args)

 {

 string option;

 if (arg[0] == '/' || arg[0] == '-')

 {

 string[] optionParts = arg.Split(

 new char[] { ':' }, 2);

 // Remove the slash|dash

 option = optionParts[0].Remove(0, 1);

 PropertyInfo property =

 commandLine.GetType().GetProperty(option,

 BindingFlags.IgnoreCase |

 BindingFlags.Instance |

 BindingFlags.Public);

 if (property != null)

 {

 if (property.PropertyType == typeof(bool))

 {

 // Last parameters for handling indexers

 property.SetValue(

 commandLine, true, null);

 success = true;

 }

 else if (

 property.PropertyType == typeof(string))

 {

 property.SetValue(

 commandLine, optionParts[1], null);

 success = true;

 }

 else if (property.PropertyType.IsEnum)

 {

 try

 {

 property.SetValue(commandLine,

 Enum.Parse(

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 658

 catch (ArgumentException)

 {

 success = false;

 errorMessage =

 string.Format(

 "The option '{0}' is " +

 "invalid for '{1}'",

 optionParts[1], option);

 }

 }

 else

 {

 success = false;

 errorMessage = string.Format(

 "Data type '{0}' on {1} is not"

 + " supported.",

 property.PropertyType.ToString(),

 commandLine.GetType().ToString());

 }

 }

 else

 {

 success = false;

 errorMessage = string.Format(

 "Option '{0}' is not supported.",

 option);

 }

 }

 }

 return success;

 }

}

Although Listing 17.3 is long, the code is relatively simple. Main()
begins by instantiating a CommandLineInfo class. This type is defined spe-
cifically to contain the command-line data for this program. Each property
corresponds to a command-line option for the program where the com-
mand line is as shown in Output 17.2.

 typeof(ProcessPriorityClass),

 optionParts[1], true),

 null);

 success = true;

 }

OUTPUT 17.2:

Compress.exe /Out:<file name> /Help

 /Priority:RealTime|High|AboveNormal|Normal|BelowNormal|Idle

ptg

 Reflection 659

The CommandLineInfo object is passed to the CommandLineHandler’s
TryParse() method. This method begins by enumerating through each
option and separating out the option name (Help or Out, for example).
Once the name is determined, the code reflects on the CommandLineInfo
object, looking for an instance property with the same name. If the prop-
erty is found, it assigns the property using a call to SetValue() and
specifies the data corresponding to the property type. (For arguments, this
call accepts the object on which to set the value, the new value, and an
additional index parameter that is null unless the property is an indexer.)
This listing handles three property types: Boolean, string, and enum. In the
case of enums, you parse the option value and assign the property the
text’s enum equivalent. Assuming the TryParse() call was successful, the
method exits and the CommandLineInfo object is initialized with the data
from the command line.

Interestingly, in spite of the fact that CommandLineInfo is a private class
nested within Program, CommandLineHandler has no trouble reflecting over
it and even invoking its members. In other words, reflection is able to cir-
cumvent accessibility rules as long as appropriate code access security
(CAS; see chapter 21) permissions are established. If, for example, Out was
private, it would still be possible for the TryParse() method to assign it a
value. Because of this, it would be possible to move CommandLineHandler
into a separate assembly and share it across multiple programs, each with
their own CommandLineInfo class.

In this particular example, you invoke a member on CommandLineInfo
using PropertyInfo.SetValue(). Not surprisingly, PropertyInfo also
includes a GetValue() method for retrieving data from the property. For a
method, however, there is a MethodInfo class with an Invoke() member.
Both MethodInfo and PropertyInfo derive from MemberInfo (although
indirectly), as shown in Figure 17.1.

The CAS permissions are set up to allow private member invocation in
this case because the program runs from the local computer, and by
default, locally installed programs are part of the trusted zone and have
appropriate permissions granted. Programs run from a remote location
will need to be explicitly granted such a right.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 660

Reflection on Generic Types
Just as you can use reflection on nongeneric types, the 2.0 framework
included provisions for reflecting on generic types. Runtime reflection on
generics determines whether a class or method contains a generic type,
and any type parameters or arguments it may include.

Determining the Type of Type Parameters

In the same way that you can use a typeof operator with nongeneric types to
retrieve an instance of System.Type, you can use the typeof operator on type
parameters in a generic type or generic method. Listing 17.4 applies the
typeof operator to the type parameter in the Add method of a Stack class.

Figure 17.1: MemberInfo Derived Classes

ptg

 Reflection 661

Listing 17.4: Declaring the Stack<T> Class

public class Stack<T>

{

 ...

 public void Add(T i)

 {

 ...

 Type t = typeof(T);

 ...

 }

 ...

}

Once you have an instance of the Type object for the type parameter,
you may then use reflection on the type parameter itself to determine its
behavior and tailor the Add method to the specific type more effectively.

Determining Whether a Class or Method Supports Generics

In the System.Type class for CLI 2.0, a handful of methods were added to
determine whether a given type supports generic parameters and argu-
ments. A generic argument is a type parameter supplied when a generic
class is instantiated. You can determine whether a class or method con-
tains generic parameters that have not yet been set by querying the
Type.ContainsGenericParameters Boolean property, as demonstrated in
Listing 17.5.

Listing 17.5: Reflection with Generics

using System;

public class Program

{

 static void Main()

 {

 Type type;

 type = typeof(System.Nullable<>);

 Console.WriteLine(type.ContainsGenericParameters);

 Console.WriteLine(type.IsGenericType);

 type = typeof(System.Nullable<DateTime>);

 Console.WriteLine(!type.ContainsGenericParameters);

 Console.WriteLine(type.IsGenericType);

 }

}

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 662

Output 17.3 shows the results of Listing 17.5.

Type.IsGenericType is a Boolean property that evaluates whether a
type is generic.

Obtaining Type Parameters for a Generic Class or Method

You can obtain a list of generic arguments, or type parameters, from a generic
class by calling the GetGenericArguments() method. The result is an array of
System.Type instances that corresponds to the order in which they are
declared as type parameters of the generic class. Listing 17.6 reflects into a
generic type and obtains each type parameter. Output 17.4 shows the results.

Listing 17.6: Using Reflection with Generic Types

using System;

using System.Collections.Generic;

public partial class Program

{

 public static void Main()

 {

 Stack<int> s = new Stack<int>();

 Type t = s.GetType();

 foreach(Type type in t.GetGenericArguments())

 {

 System.Console.WriteLine(

 "Type parameter: " + type.FullName);

 }

 // ...

 }

}

OUTPUT 17.3:

True

True

True

True

OUTPUT 17.4:

Type parameter: System.Int32

ptg

 Attributes 663

Attributes

Before delving into details on how to program attributes, you should
consider a use case that demonstrates their utility. In the CommandLine-
Handler example in Listing 17.3, you dynamically set a class’s properties
based on the command-line option matching the property name. This
approach is insufficient, however, when the command-line option is an
invalid property name. /?, for example, cannot be supported. Further-
more, this mechanism doesn’t provide any way of identifying which
options are required versus which are optional.

Instead of relying on an exact match between the option name and the
property name, attributes provide a way of identifying additional meta-
data about the decorated construct—in this case, the option that the attri-
bute decorates. With attributes, you can decorate a property as Required
and provide a /? option alias. In other words, attributes are a means of
associating additional data with a property (and other constructs).

Attributes appear within square brackets preceding the construct they
decorate. For example, you can modify the CommandLineInfo class to
include attributes, as shown in Listing 17.7.

Listing 17.7: Decorating a Property with an Attribute

class CommandLineInfo

{

 public bool Help

 {

 get { return _Help; }

 set { _Help = value; }

 }

 private bool _Help;

 public string Out

 {

 get { return _Out; }

 set { _Out = value; }

 }

 private string _Out;

 public System.Diagnostics.ProcessPriorityClass Priority

 {

 get { return _Priority; }

 [CommandLineSwitchAlias("?")]

 [CommandLineSwitchRequired]

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 664

 set { _Priority = value; }

 }

 private System.Diagnostics.ProcessPriorityClass _Priority =

 System.Diagnostics.ProcessPriorityClass.Normal;

}

In Listing 17.7, the Help and Out properties are decorated with attri-
butes. The purpose of these attributes is to allow an alias of/? for/Help,

within the CommandLineHandler.TryParse() method, you enable support
for option aliases and, assuming the parsing was successful, you can check
that all the required switches were specified.

There are two ways to combine attributes on the same construct. You
can either separate the attributes with commas within the same square
brackets, or place each attribute within its own square brackets, as shown
in Listing 17.8.

Listing 17.8: Decorating a Property with Multiple Attributes

 [CommandLineSwitchRequired]

 [CommandLineSwitchAlias("FileName")]

 public string Out

 {

 get { return _Out; }

 set { _Out = value; }

 }

 [CommandLineSwitchRequired,

 CommandLineSwitchAlias("FileName")]

 public string Out

 {

 get { return _Out; }

 set { _Out = value; }

 }

In addition to decorating properties, developers can use attributes to
decorate classes, interfaces, structs, enums, delegates, events, methods,
constructors, fields, parameters, return values, assemblies, type parame-
ters, and modules. For the majority of these, applying an attribute involves
the same square bracket syntax shown in Listing 17.8. However, this syn-
tax doesn’t work for return values, assemblies, and modules.

and to indicate that /Out is a required parameter. The idea is that from

ptg

 Attributes 665

Assembly attributes are used to add additional metadata about the
assembly. Visual Studio’s Project Wizard, for example, generates an
AssemblyInfo.cs file that includes numerous attributes about the assem-
bly. Listing 17.9 is an example of such a file.

Listing 17.9: Assembly Attributes within AssemblyInfo.cs

using System.Reflection;

using System.Runtime.CompilerServices;

using System.Runtime.InteropServices;

// General information about an assembly is controlled

// through the following set of attributes. Change these

// attribute values to modify the information

// associated with an assembly.

[assembly: AssemblyTitle("CompressionLibrary")]

[assembly: AssemblyDescription("")]

[assembly: AssemblyConfiguration("")]

[assembly: AssemblyCompany("Michaelis.net")]

[assembly: AssemblyProduct("CompressionLibrary")]

[assembly: AssemblyCopyright("Copyright © Michaelis.net 2006")]

[assembly: AssemblyTrademark("")]

[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this

// assembly not visible to COM components. If you need to

// access a type in this assembly from COM, set the ComVisible

// attribute to true on that type.

[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project is

exposed to COM

[assembly: Guid("417a9609-24ae-4323-b1d6-cef0f87a42c3")]

// Version information for an assembly consists

// of the following four values:

//

// Major Version

// Minor Version

// Build Number

// Revision

//

// You can specify all the values or you can

// default the Revision and Build Numbers

// by using the '*' as shown below:

// [assembly: AssemblyVersion("1.0.*")]

[assembly: AssemblyVersion("1.0.0.0")]

[assembly: AssemblyFileVersion("1.0.0.0")]

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 666

The assembly attributes define things such as company, product, and
assembly version number. Similar to assembly, identifying an attribute
usage as module requires prefixing it with module:. The restriction on
assembly and module attributes is that they appear after the using directive
but before any namespace or class declarations.

Return attributes, such as the one shown in Listing 17.10, appear before
a method declaration but use the same type of syntax structure.

Listing 17.10: Specifying a Return Attribute

 [return: Description(

 "Returns true if the object is in a valid state.")]

 public bool IsValid()

 {

 // ...

 return true;

 }

In addition to assembly: and return:, C# allows for explicit target
identifications of module:, class:, and method:, corresponding to attri-
butes that decorate the module, class, and method. class: and method:,
however, are optional, as demonstrated earlier.

One of the conveniences of using attributes is that the language takes into
consideration the attribute naming convention, which is to place Attribute
at the end of the name. However, in all the attribute uses in the preceding
listings, no such suffix appears, despite the fact that each attribute used
follows the naming convention. This is because although the full name
(DescriptionAttribute, AssemblyVersionAttribute, and so on) is allowed
when applying an attribute, C# makes the suffix optional. Generally, no such
suffix appears when applying an attribute; it appears only when defining one
or using the attribute inline (such as typeof(DescriptionAttribute)).

Custom Attributes
Defining a custom attribute is relatively trivial. Attributes are objects;
therefore, to define an attribute, you need to define a class. The charac-
teristic that turns a general class into an attribute is that it derives from
System.Attribute. Therefore, you can create a CommandLineSwitchRe-
quiredAttribute class, as shown in Listing 17.11.

ptg

 Attributes 667

Listing 17.11: Defining a Custom Attribute

public class CommandLineSwitchRequiredAttribute : Attribute

{

}

With that simple definition, you now can use the attribute as demon-
strated in Listing 17.7. So far, no code responds to the attribute; therefore,
the Out property that includes the attribute will have no effect on
command-line parsing.

Looking for Attributes
In addition to providing properties for reflecting on a type’s members,
Type includes methods to retrieve the Attributes decorating that type.
Similarly, all the reflection types (PropertyInfo and MethodInfo, for exam-
ple) include members for retrieving a list of attributes that decorate a type.
Listing 17.12 defines a method to return a list of required switches that are
missing from the command line.

Listing 17.12: Retrieving a Custom Attribute

using System;

using System.Collections.Specialized;

using System.Reflection;

public class CommandLineSwitchRequiredAttribute : Attribute

{

 public static string[] GetMissingRequiredOptions(

 object commandLine)

 {

 StringCollection missingOptions = new StringCollection();

 PropertyInfo[] properties =

 commandLine.GetType().GetProperties();

 foreach (PropertyInfo property in properties)

 {

 Attribute[] attributes =

 (Attribute[])property.GetCustomAttributes(

 typeof(CommandLineSwitchRequiredAttribute),

 false);

 if ((attributes.Length > 0) &&

 (property.GetValue(commandLine, null) == null))

 {

 if (property.GetValue(commandLine, null) == null)

 {

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 668

 missingOptions.Add(property.Name);

 }

 }

 return missingOptions.Add(property.Name);

 }

}

The code that checks for an attribute is relatively simple. Given a Prop-
ertyInfo object (obtained via reflection), you call GetCustomAttributes()
and specify the attribute sought, followed by whether to check any over-
loaded methods. (Alternatively, you can call the GetCustomAttributes()
method without the attribute type to return all of the attributes.)

Although it is possible to place code for finding the CommandLine-
SwitchRequiredAttribute attribute within the CommandLineHandler’s
code directly, it makes for better object encapsulation to place the code
within the CommandLineSwitchRequiredAttribute class itself. This is fre-
quently the pattern for custom attributes. What better location to place
code for finding an attribute than in a static method on the attribute
class?

Initializing an Attribute through a Constructor
The call to GetCustomAttributes() returns an array of objects that will
successfully cast to an Attribute array. However, since the attribute in
this example didn’t have any instance members, the only metadata infor-
mation that it provided in the returned attribute was whether it
appeared. Attributes can also encapsulate data, however. Listing 17.13
defines a CommandLineAliasAttribute attribute. This is another custom
attribute, and it provides alias command-line options. For example, you
can provide command-line support for /Help or /? as an abbreviation.
Similarly, /S could provide an alias to /Subfolders that indicates that the
command should traverse all the subdirectories.

To support this, you need to provide a constructor on the attribute. Spe-
cifically, for the alias you need a constructor that takes a string argument.
(Similarly, if you want to allow multiple aliases, you need to define an
attribute that has a params string array for a parameter.)

ptg

 Attributes 669

Listing 17.13: Providing an Attribute Constructor

public class CommandLineSwitchAliasAttribute : Attribute

{

 public string Alias

 {

 get { return _Alias; }

 set { _Alias = value; }

 }

 private string _Alias;

}

class CommandLineInfo

{

 public bool Help

 {

 get { return _Help; }

 set { _Help = value; }

 }

 private bool _Help;

 // ...

}

The only restriction on the constructor is that when applying an attribute to
a construct, only literal values and types (such as typeof(int)) are allowed as
arguments. This is to enable their serialization into the resultant CIL. There-
fore, it is not possible to call a static method when applying an attribute. In
addition, providing a constructor that takes arguments of type System.Date-
Time would be of little value, since there is no System.DateTime literal.

Given the constructor call, the objects returned from PropertyInfo.Get-
CustomAttributes() will be initialized with the specified constructor argu-
ments, as demonstrated in Listing 17.14.

Listing 17.14: Retrieving a Specific Attribute and Checking Its Initialization

PropertyInfo property =

 typeof(CommandLineInfo).GetProperty("Help");

 public CommandLineSwitchAliasAttribute(string alias)

 {

 Alias = alias;

 }

 [CommandLineSwitchAlias("?")]

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 670

CommandLineSwitchAliasAttribute attribute =

 (CommandLineSwitchAliasAttribute)

 property.GetCustomAttributes(

 typeof(CommandLineSwitchAliasAttribute), false)[0];

if(attribute.Alias == "?")

{

 Console.WriteLine("Help(?)");

};

Furthermore, as Listing 17.15 and Listing 17.16 demonstrate, you can
use similar code in a GetSwitches() method on CommandLineAliasAttri-
bute that returns a dictionary collection of all the switches, including those
from the property names, and associate each name with the corresponding
attribute on the command-line object.

Listing 17.15: Retrieving Custom Attribute Instances

using System;

using System.Reflection;

using System.Collections.Generic;

public class CommandLineSwitchAliasAttribute : Attribute

{

 public CommandLineSwitchAliasAttribute(string alias)

 {

 Alias = alias;

 }

 public string Alias

 {

 get { return _Alias; }

 set { _Alias = value; }

 }

 private string _Alias;

 public static Dictionary<string, PropertyInfo> GetSwitches(

 object commandLine)

 {

 PropertyInfo[] properties = null;

 Dictionary<string, PropertyInfo> options =

 new Dictionary<string, PropertyInfo>();

 properties = commandLine.GetType().GetProperties(

 BindingFlags.Public | BindingFlags.NonPublic |

 BindingFlags.Instance);

 foreach (PropertyInfo property in properties)

 {

 options.Add(property.Name.ToLower(), property);

ptg

 Attributes 671

 {

 options.Add(attribute.Alias.ToLower(), property);

 }

 }

 return options;

 }

}

Listing 17.16: Updating CommandLineHandler.TryParse() to Handle Aliases

using System;

using System.Reflection;

using System.Collections.Generic;

public class CommandLineHandler

{

 // ...

 public static bool TryParse(

 string[] args, object commandLine,

 out string errorMessage)

 {

 bool success = false;

 errorMessage = null;

 foreach (string arg in args)

 {

 PropertyInfo property;

 string option;

 if (arg[0] == '/' || arg[0] == '-')

 {

 string[] optionParts = arg.Split(

 new char[] { ':' }, 2);

 option = optionParts[0].Remove(0, 1).ToLower();

 {

 success = SetOption(

 commandLine, property,

 optionParts, ref errorMessage);

 }

 else

 {

 foreach (CommandLineSwitchAliasAttribute attribute in

 property.GetCustomAttributes(

 typeof(CommandLineSwitchAliasAttribute), false))

 Dictionary<string, PropertyInfo> options =

 CommandLineSwitchAliasAttribute.GetSwitches(

 commandLine);

 if (options.TryGetValue(option, out property))

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 672

 success = false;

 errorMessage = string.Format(

 "Option '{0}' is not supported.",

 option);

 }

 }

 }

 return success;

 }

 private static bool SetOption(

 object commandLine, PropertyInfo property,

 string[] optionParts, ref string errorMessage)

 {

 bool success;

 if (property.PropertyType == typeof(bool))

 {

 // Last parameters for handling indexers

 property.SetValue(

 commandLine, true, null);

 success = true;

 }

 else

 {

 if ((optionParts.Length < 2)

 || optionParts[1] == ""

 || optionParts[1] == ":")

 {

 // No setting was provided for the switch.

 success = false;

 errorMessage = string.Format(

 "You must specify the value for the {0} option.",

 property.Name);

 }

 else if (

 property.PropertyType == typeof(string))

 {

 property.SetValue(

 commandLine, optionParts[1], null);

 success = true;

 }

 else if (property.PropertyType.IsEnum)

 {

 success = TryParseEnumSwitch(

 commandLine, optionParts,

 property, ref errorMessage);

 }

ptg

 Attributes 673

 else

 {

 success = false;

 errorMessage = string.Format(

 "Data type '{0}' on {1} is not supported.",

 property.PropertyType.ToString(),

 commandLine.GetType().ToString());

 }

 }

 return success;

 }

}

System.AttributeUsageAttribute

Most attributes are intended to decorate only particular constructs. For
example, it makes no sense to allow CommandLineOptionAttribute to deco-
rate a class or an assembly. Those contexts would be meaningless. To
avoid inappropriate use of an attribute, custom attributes can be decorated
with System.AttributeUsageAttribute. Listing 17.17 (for CommandLine-
OptionAttribute) demonstrates how to do this.

Listing 17.17: Restricting the Constructs an Attribute Can Decorate

[AttributeUsage(AttributeTargets.Property)]

public class CommandLineSwitchAliasAttribute : Attribute

{

 // ...

}

If the attribute is used inappropriately, as it is in Listing 17.18, it will
cause a compile-time error, as Output 17.5 demonstrates.

Listing 17.18: AttributeUsageAttribute Restricting Where to Apply an Attribute

// ERROR: The attribute usage is restricted to properties

[CommandLineSwitchAlias("?")]

class CommandLineInfo

{

}

OUTPUT 17.5:

...Program+CommandLineInfo.cs(24,17): error CS0592: Attribute

’CommandLineSwitchAlias’ is not valid on this declaration type. It is

valid on ’property, indexer’ declarations only.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 674

AttributeUsageAttribute’s constructor takes an AttributesTargets
flag. This enum provides a list of all the possible targets that the runtime
allows an attribute to decorate. For example, if you also allowed Command-
LineSwitchAliasAttribute on a field, you would update the Attribute-
UsageAttribute class as shown in Listing 17.19.

Listing 17.19: Limiting an Attribute’s Usage with AttributeUsageAttribute

// Restrict the attribute to properties and methods

public class CommandLineSwitchAliasAttribute : Attribute

{

 // ...

}

Named Parameters
In addition to restricting what an attribute can decorate, AttributeUsage-
Attribute provides a mechanism for allowing duplicates of the same attri-
bute on a single construct. The syntax appears in Listing 17.20.

Listing 17.20: Using a Named Parameter

public class CommandLineSwitchAliasAttribute : Attribute

{

 // ...

}

The syntax is different from the constructor initialization syntax dis-
cussed earlier. The AllowMultiple parameter is a named parameter, simi-
lar to the name parameter syntax used for optional method parameters
(added in C# 4.0). Named parameters provide a mechanism for setting
specific public properties and fields within the attribute constructor call,
even though the constructor includes no corresponding parameters. The
named attributes are optional designations, but they provide a means of
setting additional instance data on the attribute without providing a con-
structor parameter for the purpose. In this case, AttributeUsageAttribute
includes a public member called AllowMultiple. Therefore, you can set
this member using a named parameter assignment when you use the attri-
bute. Assigning named parameters must occur as the last portion of a con-
structor, following any explicitly declared constructor parameters.

[AttributeUsage(

 AttributeTargets.Field | AttributeTargets.Property)]

[AttributeUsage(AttributeTargets.Property, AllowMultiple=true)]

ptg

 Attributes 675

Named parameters allow for assigning attribute data without provid-
ing constructors for every conceivable combination of which attribute
properties are specified and which are not. Since many of an attribute’s
properties may be optional, this is a useful construct in many cases.

B E G I N N E R T O P I C

FlagsAttribute

Chapter 8 introduced enums and included an Advanced Topic in regard to
FlagsAttribute. This is a framework-defined attribute that targets enums
which represent flag type values. Here is similar text as a Beginner Topic,
starting with the sample code shown in Listing 17.21.

Listing 17.21: Using FlagsAttribute

// FileAttributes defined in System.IO.

public enum FileAttributes

{

 ReadOnly = 1<<0, // 000000000000001

 Hidden = 1<<1, // 000000000000010

 // ...

}

using System;

using System.Diagnostics;

using System.IO;

class Program

{

 public static void Main()

 {

 // ...

 string fileName = @"enumtest.txt";

 FileInfo file = new FileInfo(fileName);

 file.Attributes = FileAttributes.Hidden |

 FileAttributes.ReadOnly;

 Console.WriteLine("\"{0}\" outputs as \"{1}\"",

 file.Attributes.ToString().Replace(",", " |"),

[Flags] // Decorating an enum with FlagsAttribute.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 676

 file.Attributes);

 FileAttributes attributes =

 (FileAttributes)Enum.Parse(typeof(FileAttributes),

 file.Attributes.ToString());

 Console.WriteLine(attributes);

 // ...

 }

}

Output 17.6 shows the results of Listing 17.21.

The flag documents that the enumeration values can be combined. Fur-
thermore, it changes the behavior of the ToString() and Parse() methods.
For example, calling ToString() on an enumeration that is decorated with
FlagsAttribute writes out the strings for each enumeration flag that is set.
In Listing 17.21, file.Attributes.ToString() returns "ReadOnly, Hid-
den" rather than the 3 it would have returned without the FlagsAttribute
flag. If two enumeration values are the same, the ToString() call would
return the first one. As mentioned earlier, however, you should use this
with caution because it is not localizable.

Parsing a value from a string to the enumeration also works, provided
each enumeration value identifier is separated by a comma.

It is important to note that FlagsAttribute does not automatically
assign the unique flag values or check that they have unique values. The
values of each enumeration item still must be assigned explicitly.

Predefined Attributes

The AttributeUsageAttribute attribute has a special characteristic that
you didn’t see in the custom attributes you have created thus far in this
book. This attribute affects the behavior of the compiler, causing the com-
piler to sometimes report an error. Unlike the reflection code you wrote

OUTPUT 17.6:

"ReadOnly | Hidden" outputs as "ReadOnly, Hidden"

ptg

 Attributes 677

earlier for retrieving CommandLineRequiredAttribute and CommandLine-
SwitchAliasAttribute, AttributeUsageAttribute has no runtime code;
instead, it has built-in compiler support.

AttributeUsageAttribute is a predefined attribute. Not only do such
attributes provide additional metadata about the constructs they decorate,
but also the runtime and compiler behave differently in order to facilitate
these attributes’ functionality. Attributes such as AttributeUsageAttri-
bute, FlagsAttribute, ObsoleteAttribute, and ConditionalAttribute are
examples of predefined attributes. They include special behavior that only
the CLI provider or compiler can offer because there are no extension points
for additional noncustom attributes. In contrast, custom attributes are
entirely passive. Listing 17.21 includes a couple of predefined attributes;
Chapter 18 includes a few more.

System.ConditionalAttribute

Within a single assembly, the System.Diagnostics.ConditionalAttri-
bute attribute behaves a little like the #if/#endif preprocessor identifier.
However, instead of eliminating the CIL code from the assembly, Sys-
tem.Diagnostics.ConditionalAttribute will optionally cause the call to
behave like a no-op, an instruction that does nothing. Listing 17.22 demon-
strates the concept, and Output 17.7 shows the results.

Listing 17.22: Using Reflection with Generic Types

#define CONDITION_A

using System;
using System.Diagnostics;

public class Program
{
 public static void Main()
 {
 Console.WriteLine("Begin...");
 MethodA();
 MethodB();
 Console.WriteLine("End...");
 }

 [Conditional("CONDITION_A")]
 static void MethodA()
 {

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 678

 Console.WriteLine("MethodA() executing...");

 }

 [Conditional("CONDITION_B")]

 static void MethodB()

 {

 Console.WriteLine("MethodB() executing...");

 }

}

This example defined CONDITION_A, so MethodA() executed normally.
CONDITION_B, however, was not defined either through #define or by
using the csc.exe /Define option. As a result, all calls to Program.Meth-
odB() from within this assembly will do nothing and don’t even appear in
the code.

Functionally, ConditionalAttribute is similar to placing an #if/
#endif around the method invocation. The syntax is cleaner, however,
because developers create the effect by adding the ConditionalAttribute
attribute to the target method without making any changes to the caller
itself.

Note that the C# compiler notices the attribute on a called method
during compilation, and assuming the preprocessor identifier exists, it
eliminates any calls to the method. Note also that ConditionalAttibute
does not affect the compiled CIL code on the target method itself (besides
the addition of the attribute metadata). Instead, it affects the call site dur-
ing compilation by removing the calls. This further distinguishes Condi-
tionalAttribute from #if/#endif when calling across assemblies.
Because the decorated method is still compiled and included in the target
assembly, the determination of whether to call a method is based not on
the preprocessor identifier in the callee’s assembly, but rather on the
caller’s assembly. In other words, if you create a second assembly that
defines CONDITION_B, any calls to Program.MethodB() from the second
assembly will execute. This is a useful characteristic in many tracing and

OUTPUT 17.7:

Begin...

MethodA() executing...

End...

ptg

 Attributes 679

testing scenarios. In fact, calls to System.Diagnostics.Trace and
System.Diagnostics.Debug use this trait with ConditionalAttributes
on TRACE and DEBUG preprocessor identifiers.

Because methods don’t execute whenever the preprocessor identifier is
not defined, ConditionalAttribute may not be used on methods that
include an out parameter or specify a return other than void. Doing so
causes a compile-time error. This makes sense because possibly none of the
code within the decorated method will execute, so it is unknown what to
return to the caller. Similarly, properties cannot be decorated with
ConditionalAttribute. The AttributeUsage (see the section titled System
.AttributeUsageAttribute, earlier in this chapter) for ConditionalAttri-
bute is AttributeTargets.Class (starting in .NET 2.0) and Attribute-
Targets.Method. This allows the attribute to be used on either a method or
a class. However, the class usage is special because ConditionalAttribute
is allowed only on System.Attribute-derived classes.

When ConditionalAttribute decorates a custom attribute, a feature
started in .NET 2.0, the latter can be retrieved via reflection only if the con-
ditional string is defined in the calling assembly. Without such a condi-
tional string, reflection that looks for the custom attribute will fail to find it.

System.ObsoleteAttribute

As mentioned earlier, predefined attributes affect the compiler’s and/or
the runtime’s behavior. ObsoleteAttribute provides another example of
attributes affecting the compiler’s behavior. The purpose of ObsoleteAt-
tribute is to help with the versioning of code, providing a means of indi-
cating to callers that a particular member or type is no longer current.
Listing 17.23 is an example of ObsoleteAttribute usage. As Output 17.8
shows, any callers that compile code that invokes a member marked
with ObsoleteAttribute will cause a compile-time warning, optionally
an error.

Listing 17.23: Using ObsoleteAttribute

class Program
{
 public static void Main()
 {
 ObsoleteMethod();

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 680

 }

 [Obsolete]

 public static void ObsoleteMethod()

 {

 }

}

In this case, ObsoleteAttribute simply displays a warning. However,
there are two additional constructors on the attribute. One of them, Obso-
leteAttribute(string message), appends the additional message argu-
ment to the compiler’s obsolete message. The best practice for this message
is to provide direction on what replaces the obsolete code. The second,
however, is a bool error parameter that forces the warning to be recorded
as an error instead.

ObsoleteAttribute allows third parties to notify developers of depre-
cated APIs. The warning (not an error) allows the original API to work
until the developer is able to update the calling code.

Serialization-Related Attributes

Using predefined attributes, the framework supports the capacity to serial-
ize objects onto a stream so that they can be deserialized back into objects
at a later time. This provides a means of easily saving a document type
object to disk before shutting down an application. Later on, the document
may be deserialized so that the user can continue to work on it.

In spite of the fact that an object can be relatively complex and can
include links to many other types of objects that also need to be serial-
ized, the serialization framework is easy to use. In order for an object to
be serializable, the only requirement is that it includes a System.Serial-
izableAttribute. Given the attribute, a formatter class reflects over the
serializable object and copies it into a stream (see Listing 17.24).

OUTPUT 17.8:

c:\SampleCode\ObsoleteAttributeTest.cs(24,17): warning CS0612:

Program.ObsoleteMethod()’ is obsolete

ptg

 Attributes 681

Listing 17.24: Saving a Document Using System.SerializableAttribute

using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Binary;

class Program

{

 public static void Main()

 {

 Stream stream;

 Document documentBefore = new Document();

 documentBefore.Title =

 "A cacophony of ramblings from my potpourri of notes";

 Document documentAfter;

 using (stream = File.Open(

 documentBefore.Title + ".bin", FileMode.Create))

 {

 BinaryFormatter formatter =

 new BinaryFormatter();

 }

 using (stream = File.Open(

 documentBefore.Title + ".bin", FileMode.Open))

 {

 BinaryFormatter formatter =

 new BinaryFormatter();

 }

 Console.WriteLine(documentAfter.Title);

 }

}

// Serializable classes use SerializableAttribute.

class Document

{

 public string Title = null;

 public string Data = null;

 public long _WindowHandle = 0;

 formatter.Serialize(stream, documentBefore);

 documentAfter = (Document)formatter.Deserialize(

 stream);

[Serializable]

 [NonSerialized]

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 682

 class Image

 {

 }

 private Image Picture = new Image();

}

Output 17.9 shows the results of Listing 17.24.

Listing 17.24 serializes and deserializes a Document object. Serialization
involves instantiating a formatter (this example uses System.Runtime.
Serialization.Formatters.Binary.BinaryFormatter) and calling Seri-
alization() with the appropriate stream object. Deserializing the object
simply involves a call to the formatter’s Deserialize() method, specifying
the stream that contains the serialized object as an argument. However,
since the return from Deserialize() is of type object, you also need to
cast it specifically to the type that was serialized.

Notice that serialization occurs for the entire object graph (all the items
associated with the serialized object [Document] via a field). Therefore, all
fields in the object graph also must be serializable.

System.NonSerializable. Fields that are not serializable should be
decorated with the System.NonSerializable attribute. This tells the seri-
alization framework to ignore them. The same attribute should appear
on fields that should not be persisted for use case reasons. Passwords
and Windows handles are good examples of fields that should not be
serialized: Windows handles because they change each time a window is
re-created, and passwords because data serialized into a stream is not
encrypted and can easily be accessed. Consider the Notepad view of the
serialized document in Figure 17.2.

Listing 17.24 set the Title field and the resultant *.BIN file includes the
text in plain view.

 [NonSerialized]

OUTPUT 17.9:

A cacophony of ramblings from my potpourri of notes

ptg

 Attributes 683

Providing Custom Serialization. One way to add encryption is to provide
custom serialization. Ignoring the complexities of encrypting and decrypt-
ing, this requires implementing the ISerializable interface in addition to
using SerializableAttribute. The interface requires only the GetObject-
Data() method to be implemented. However, this is sufficient only for seri-
alization. In order to also support deserialization, it is necessary to provide a
constructor that takes parameters of type System.Runtime.Serializa-
tion.SerializationInfo and System.Runtime.Serialization.Streaming-
Context (see Listing 17.25).

Listing 17.25: Implementing System.Runtime.Serialization.ISerializable

using System;

using System.Runtime.Serialization;

[Serializable]

class EncryptableDocument :

 ISerializable

{

 public EncryptableDocument(){ }

 enum Field

 {

 Title,

 Data

 }

 public string Title;

 public string Data;

 public static string Encrypt(string data)

 {

 string encryptedData = data;

 // Key-based encryption . . .

Figure 17.2: BinaryFormatter Does Not Encrypt Data

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 684

 return encryptedData;

 }

 public static string Decrypt(string encryptedData)

 {

 string data = encryptedData;

 // Key-based decryption. . .

 return data;

 }

#region ISerializable Members

 public void GetObjectData(

 SerializationInfo info, StreamingContext context)

 {

 info.AddValue(

 Field.Title.ToString(), Title);

 info.AddValue(

 Field.Data.ToString(), Encrypt(Data));

 }

 public EncryptableDocument(

 SerializationInfo info, StreamingContext context)

 {

 Title = info.GetString(

 Field.Title.ToString());

 Data = Decrypt(info.GetString(

 Field.Data.ToString()));

 }

#endregion

}

Essentially, the System.Runtime.Serialization.SerializationInfo
object is a collection of name/value pairs. When serializing, the GetOb-
ject() implementation calls AddValue(). To reverse the process, you call
one of the Get*() members. In this case, you encrypt and decrypt prior to
serialization and deserialization, respectively.

Versioning the Serialization. One more serialization point deserves
mentioning: versioning. Objects such as documents may be serialized
using one version of an assembly and deserialized using a newer version,
sometimes the reverse. Without paying attention, however, version
incompatibilities can easily be introduced, sometimes unexpectedly.
Consider the scenario shown in Table 17.1.

Surprisingly, even though all you did was to add a new field, deserializing
the original file throws a System.Runtime.Serialization.Serialization

ptg

 Attributes 685

TABLE 17.1: Deserialization of a New Version Throws an Exception

Step Description Code

1 Define a class decorated
with System.Serializ-
ableAttribute.

[Serializable]

class Document

{

public string Title;

 public string Data;

}

2 Add a field or two (public
or private) of any
serializable type.

3 Serialize the object to a file
called *.v1.bin.

Stream stream;

Document documentBefore =

 new Document();

documentBefore.Title =

 "A cacophony of ramblings from my

potpourri of notes";

Document documentAfter;

using (stream = File.Open(

 documentBefore.Title + ".bin",

 FileMode.Create))

{

 BinaryFormatter formatter =

 new BinaryFormatter();

 formatter.Serialize(

 stream, documentBefore);

}

4 Add an additional field to
the serializable class.

[Serializable]

class Document

{

public string Title;

}

5 Deserialize the *v1.bin file
into the new object
(Document) version.

using (stream = File.Open(

 documentBefore.Title + ".bin",

 FileMode.Open))

{

 BinaryFormatter formatter =

 new BinaryFormatter();

 documentAfter =

 (Document)formatter.Deserialize(

 stream);

}

public string Author;

public string Data;

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 686

Exception. This is because the formatter looks for data corresponding to the
new field within the stream. Failure to locate such data throws an exception.

To avoid this, the 2.0 framework and later includes a System.Run-
time.Serialization.OptionalFieldAttribute. When you require back-
ward compatibility, you must decorate serialized fields—even private
ones—with OptionalFieldAttribute (unless, of course, a latter version
begins to require it).

Unfortunately, System.Runtime.Serialization.OptionalFieldAttribute
is not supported in the earlier framework version. Instead, it is necessary
to implement ISerializable, just as you did for encryption, saving and
retrieving only the fields that are available. Assuming the addition of the
Author field, for example, the implementation shown in Listing 17.26 is
required for backward-compatibility support prior to the 2.0 framework.

Listing 17.26: Backward Compatibility Prior to the 2.0 Framework

[Serializable]

public class VersionableDocument : ISerializable

{

 enum Field

 {

 Title,

 Author,

 Data,

 }

 public VersionableDocument()

 {

 }

 public string Title;

 public string Author;

 public string Data;

 #region ISerializable Members

 public void GetObjectData(

 SerializationInfo info, StreamingContext context)

 {

 info.AddValue(Field.Title.ToString(), Title);

 info.AddValue(Field.Author.ToString(), Author);

 info.AddValue(Field.Data.ToString(), Data);

 }

 public VersionableDocument(

ptg

 Attributes 687

 SerializationInfo info, StreamingContext context)

 {

 foreach(SerializationEntry entry in info)

 {

 switch ((Field)Enum.Parse(typeof(Field), entry.Name))

 {

 case Field.Title:

 Title = info.GetString(

 Field.Title.ToString());

 break;

 case Field.Author:

 Author = info.GetString(

 Field.Author.ToString());

 break;

 case Field.Data:

 Data = info.GetString(

 Field.Data.ToString());

 break;

 }

 }

 }

 #endregion

}

Serializing in GetObjectData() simply involves serializing all fields
(assume here that version 1 does not need to open documents from
version 2). On deserialization, however, you can’t simply call Get-
String("Author") because if no such entry exists, it will throw an excep-
tion. Instead, iterate through all the entries that are in info and retrieve
them individually.

A D V A N C E D T O P I C

System.SerializableAttribute and the CIL
In many ways, the serialize attributes behave just like custom attri-
butes. At runtime, the formatter class searches for these attributes, and
if the attributes exist, the classes are formatted appropriately. One of
the characteristics that make System.SerializableAttribute not just a
custom attribute, however, is the fact that the CIL has a special header
notation for serializable classes. Listing 17.27 shows the class header for
the Person class in the CIL.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 688

Listing 17.27: The CIL for SerializableAttribute

 beforefieldinit Person

 extends [mscorlib]System.Object

{

} // end of class Person

In contrast, attributes (including most predefined attributes) generally
appear within a class definition (see Listing 17.28).

Listing 17.28: The CIL for Attributes in General

.class private auto ansi beforefieldinit Person

 extends [mscorlib]System.Object

{

} // end of class Person

In Listing 17.28, CustomAttribute is the full name of the decorating attribute.
SerializableAttribute translates to a set bit within the metadata

tables. This makes SerializableAttribute a pseudoattribute, an attribute
that sets bits or fields in the metadata tables.

Programming with Dynamic Objects

The introduction of dynamic objects in C# 4.0 simplifies a host of program-
ming scenarios and enables several new ones previously not available. At
its core, programming with dynamic objects enables developers to code
operations using a dynamic dispatch mechanism that the runtime will
resolve at execution time, rather than the compiler verifying and binding
to it at compile time.

Why? At a high level, there are many times when objects are inherently
not statically typed. Examples include loading data from an XML/CSV file,
a database table, the Internet Explorer DOM, or COM’s IDispatch inter-
face, or calling code in a dynamic language such as an IronPython object.
C# 4.0’s Dynamic object support provides a common solution for talking to
runtime environments that don’t necessarily have a compile-time-defined

class auto ansi serializable nested private

 .custom instance void CustomAttribute::.ctor() =

 (01 00 00 00)

ptg

 Programming with Dynamic Objects 689

structure. In the initial implementation of dynamic objects in C# 4.0, four
binding methods are available:

1. Using reflection against an underlying CLR type

2. Invoking a custom IDynamicMetaObjectProvider which makes
available a DynamicMetaObject

3. Calling through the IUnknown and IDispatch interfaces of COM

4. Calling type defined by dynamic languages such as IronPython

Of these, we are going to delve into the first two. The principles found
there translate seamlessly to the remaining cases—COM interoperability
and dynamic language interoperability.

Invoking Reflection Using dynamic
One of the key features of reflection is the ability to dynamically find and
invoke a member on a particular type based on an execution time identifica-
tion of the member name or some other quality, such as an attribute (see
Listing 17.3). However, C# 4.0’s addition of dynamic objects provides a sim-
pler way of invoking a member by reflection, assuming compile-time knowl-
edge of the member signature. Again: The restriction is that at compile time
we need to know the member name along with the signature (number of
parameters and whether the specified parameters will be type-compatible
with the signature). Listing 17.29 (with Output 17.10) provides an example.

Listing 17.29: Dynamic Programming Using “Reflection”

using System;

// ...

dynamic data =

 "Hello! My name is Inigo Montoya";

Console.WriteLine(data);

data = (double)data.Length;

data = data*3.5 + 28.6;

if(data == 2.4 + 112 + 26.2)

{

 Console.WriteLine(

 "{0} makes for a long triathlon.", data);

}

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 690

else

{

 data.NonExistentMethodCallStillCompiles()

}

// ...

In this example, there is no explicit code for determining the object
type, finding a particular MemberInfo instance, and then invoking it.
Instead, data is declared as type dynamic and methods are called against it
directly. At compile time, there is no check as to whether the members
specified are available, or even a check regarding what type underlies the
dynamic object. Hence, it is possible at compile time to make any call so
long as the syntax is valid. At compile time, it is irrelevant whether there is
a corresponding member or not.

However, type safety is not abandoned altogether. For standard CLR
types (such as those used in Listing 17.29), the same type checker normally
used at compile time for non-dynamic types is instead invoked at execution
time for the dynamic type. Therefore, at execution time, if in fact no such
member is available, then the call will result in a Microsoft.CSharp.Run-
timeBinder.RuntimeBinderException.

Note again that this is not nearly as flexible as the reflection earlier in
the chapter, although the API is undoubtedly simpler. The key difference
when using a dynamic object is that it is necessary to identify the signature
at compile time, rather than determine things such as the member name at
runtime (like we did when parsing the command-line arguments).

dynamic Principles and Behaviors
Listing 17.29 and the accompanying text reveal several characteristics of
the dynamic data type.

• dynamic is a directive to the compiler to generate code.

dynamic involves an interception mechanism so that when a dynamic
call is encountered by the runtime, it can compile the request to CIL

OUTPUT 17.10:

Hello! My name is Inigo Montoya

140.6 makes for a long triathlon.

ptg

 Programming with Dynamic Objects 691

and then invoke the newly compiled call (see the Advanced Block
titled dynamic Uncovered, later in this chapter).

The principle at work when a type is assigned to dynamic is to
conceptually “wrap” the original type so that no compile-time
validation occurs. Additionally, when a member is invoked at run-
time, the “wrapper” intercepts the call and dispatches it appropri-
ately (or rejects it). Calling GetType() on the dynamic object reveals
the type underlying the dynamic instance—it does not return
dynamic as a type.

• Any type will convert to dynamic.

In Listing 17.29, we successfully cast both a value type (double) and a
reference type (string) to dynamic. In fact, all types can successfully
be converted into a dynamic object. There is an implicit conversion
from any reference type to dynamic. Similarly, there is an implicit
conversion (a boxing conversion) from a value type to dynamic. In
addition, there is an implicit conversion from dynamic to dynamic.
This is perhaps obvious, but with dynamic this is more complicated
than simply copying the “pointer” (address) from one location to
the next.

• Successful conversion from dynamic to an alternate type depends on
support in the underlying type.

Conversion from a dynamic object to a standard CLR type is an
explicit cast (for example, (double)data.Length). Not surprisingly,
if the target type is a value type, then an unboxing conversion is
required. If the underlying type supports the conversion to the target
type, the conversion from dynamic will also succeed.

• The type underlying the dynamic type can change from one assign-
ment to the next.

Unlike the implicitly typed variable (var) which cannot be reassigned
to a different type, dynamic involves an interception mechanism for
compilation before the underlying type’s code is executed. Therefore,
it is possible to successfully swap out the underlying type instance to
an entirely different type. This will result in another interception call
site that will need to be compiled before invocation.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 692

• Verification that the specified signature exists on the underlying type
doesn’t occur until runtime—but it does occur.

As the method call to person.NonExistentMethodCallStillCom-
piles() demonstrates, the compiler makes no verification of opera-
tions on a dynamic type. This is left entirely to the work of the runtime
when the code executes. And if the code never executes, even though
surrounding code does (as in the case with person.NonExistent-
MethodCallStillCompiles()), no verification and binding to the
member will ever occur.

• The return from any dynamic member invocation is a dynamic object
(data = data*3.5 + 28.6).

A call to any member on a dynamic object will return a dynamic
object. Therefore, calls such as data.ToString() will return a dynamic
object rather than the underlying string type. However, at execution
time, when GetType() is called on the dynamic object, the code will
have been compiled, so the compiled type is returned.

• If the member specified does not exist at runtime, the runtime will
throw a Microsoft.CSharp.RuntimeBinder.RuntimeBinderExcep-
tion exception.

If an attempt to invoke a member at execution time does occur, the
runtime will verify that in fact the member call is valid (that the signa-
tures are type-compatible in the case of reflection, for example). If the
method signatures are not compatible, the runtime will throw a
Microsoft.CSharp.RuntimeBinder.RuntimeBinderException.

• dynamic with reflection does not support extension methods.

Just like with reflection using System.Type, reflection using dynamic
does not support extension methods. Invocation of extension meth-
ods is still available on the implementing type (System.Linq.Enumer-
able, for example), just not on the extended type directly.

• At its core, dynamic is a System.Object.

Given that any object will successfully convert to dynamic and
dynamic may be explicitly converted to a different object type,
dynamic behaves like System.Object. Like System.Object, it even
returns null for its default value (default(dynamic)), indicating

ptg

 Programming with Dynamic Objects 693

it is a reference type. The special dynamic behavior of dynamic
that distinguishes it from a System.Object appears only at
invocation time.

A D V A N C E D T O P I C

dynamic Uncovered
ILDASM reveals that within the CIL, the dynamic type is actually a Sys-
tem.Object. In fact, without any invocations, declaration of the dynamic
type is indistinguishable from System.Object. However, the difference is
apparent when invoking a member. In order to invoke the member, the
compiler declares a variable of type System.Runtime.CompilerSer-

vices.CallSite<T>. T varies based on the member signature, but some-
thing simple such as the invocation of ToString() would require
instantiation of the following type: CallSite<Func<CallSite, object,

string>>, and a method call with parameters of CallSite site, object
dynamicTarget, and string result. site is the call site itself, dynamicTar-
get is the object on which the method call is invoked, and result is the
underlying return value from the ToString() method call. Rather than
instantiate CallSite<Func<CallSite _site, object dynamicTarget,

string result>> directly, there is a Create() factory method for instanti-
ating it. (Create() takes a parameter of type Microsoft.CSharp.Runtime-
Binder.CSharpConvertBinder.) Given an instance of the CallSite<T>, the
final step involves a call to CallSite<T>.Target() to invoke the actual
member.

Under the covers at execution time, the framework uses “reflection”
to look up members and to verify that the signatures match. Next, the
runtime builds an expression tree that represents the dynamic expres-
sion as defined by the call site. Once the tree expression is compiled we
have a CIL result that is similar to what the compiler would have gener-
ated. This CIL code is then injected into the call site and the invocation
occurs using a delegate invoke. Since the CIL is now injected at the call
site, the next invocation doesn’t require all the reflection and compila-
tion overhead again.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 694

Why Dynamic Binding?
In addition to reflection, we can define custom types to invoke dynami-
cally. Consider using dynamic invocation to retrieve the values of an XML
element, for example. Rather than using the strongly typed syntax of List-
ing 17.30, using dynamic invocation we could call person.FirstName and
person.LastName.

Listing 17.30: The CIL for Attributes in General

using System;

using System.Xml.Linq;

// ...

XElement person = XElement.Parse(

 @"<Person>

 <FirstName>Inigo</FirstName>

 <LastName>Montoya</LastName>

</Person>");

Console.WriteLine("{0} {1}",

 person.Descendants("FirstName").FirstOrDefault().Value,

 person.Descendants("LastName").FirstOrDefault().Value);

// ...

Although the code in Listing 17.30 is not overly complex, compare it to
Listing 17.31—an alternative approach that uses a dynamically typed
object.

Listing 17.31: The CIL for Attributes in General

using System;

// ...

dynamic person = DynamicXml.Parse(

 @"<Person>

 <FirstName>Inigo</FirstName>

 <LastName>Montoya</LastName>

 </Person>");

 Console.WriteLine("{0} {1}",

 person.FirstName, person.LastName);

// ...

The advantages are clear, but does that mean dynamic programming is
preferable to static compilation?

ptg

 Programming with Dynamic Objects 695

Static Compilation versus Dynamic Programming
In Listing 17.31, we have the same functionality as in Listing 17.30, but
there is one very important difference. Listing 17.30 is entirely statically
typed. This means that at compile time, all types and their member signa-
tures are verified. Method names are required to match, and all parameters
are checked for type compatibility. This is a key feature of C# and some-
thing I have highlighted throughout the book.

In contrast, Listing 17.31 has virtually no statically typed code; the vari-
able person is instead dynamic. As a result, there is no compile-time verifi-
cation that person has a FirstName or LastName property, or any other
members, for that matter. Furthermore, when coding within an IDE, there
is no IntelliSense identifying any members on person.

The loss of typing would seem to result in a significant decrease in func-
tionality. Why is such a possibility even available in C#—a functionality
that was added in C# 4.0, in fact? Let’s examine Listing 17.31 again. Notice
the call to retrieve the "FirstName" element: Element.Descendants("Last-
Name").FirstOrDefault().Value. The listing uses a string ("LastName")
to identify the element name. However, there is no compile-time verifica-
tion that the string is correct. If the casing was inconsistent with the element
name or if there was a space, the compile would still succeed, even though a
NullReferenceException would occur with the call to the Value property.
Furthermore, the compiler makes no verification that the "FirstName" ele-
ment even exists, and if it doesn’t, we would also get the NullReferenceEx-
ception. In other words, in spite of all the type-safety advantages, type
safety doesn’t offer much advantage to accessing the dynamic data stored
within the XML element.

Listing 17.31 is no better than Listing 17.30 when it comes to compile-
time verification of the element retrieval. If there is a case mismatch or if
the FirstName element didn’t exist, there would still be an exception.1

However, compare the call to access the first name in Listing 17.31 (per-
son.FirstName) with the call in Listing 17.30. The call is undoubtedly sig-
nificantly simpler. In summary, there are situations where type safety

1. You cannot use a space in the FirstName property call, but if XML supported spaces in
element names, this would be a potential disadvantage, so let’s ignore this fact.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 696

doesn’t—and likely can’t—make certain checks. And in such cases, being
able to make a dynamic call that is only runtime-verified rather than also
compile-time verified is significantly more readable and succinct. Obvi-
ously, if compile-time verification is possible, statically typed program-
ming is preferred because readable and succinct APIs could accompany it.
However, in the cases where it isn’t effective, C# 4.0 enables simpler code
rather than the purity of type safety.

Implementing a Custom Dynamic Object
Listing 17.31 included a method call to DynamicXml.Parse(...) that was
essentially a factory method call for DynamicXml—a custom type rather
than one built into the CLR Framework. However, DynamicXml doesn’t
implement a FirstName or LastName property. To do so would break the
dynamic support for retrieving data from the XML file at execution time,
rather than compile-time-based implementation of the XML elements. In
other words, DynamicXml does not use reflection for accessing its members,
but rather it dynamically binds to the values based on the XML content.

The key to defining a custom dynamic type is implementation of the Sys-
tem.Dynamic.IDynamicMetaObjectProvider interface. Rather than imple-
menting the interface from scratch, however, the preferred approach is to
derive the custom dynamic type from System.Dynamic.DynamicObject. This
provides default implementation for a host of members and allows you to
override the ones that don’t fit. Listing 17.32 shows the full implementation.

Listing 17.32: Implementing a Custom Dynamic Object

using System;

using System.Dynamic;

using System.Xml.Linq;

public class DynamicXml : DynamicObject

{

 private XElement Element { get; set; }

 public DynamicXml(System.Xml.Linq.XElement element)

 {

 Element = element;

 }

 public static DynamicXml Parse(string text)

 {

 return new DynamicXml(XElement.Parse(text));

ptg

 Programming with Dynamic Objects 697

 }

 public override bool TryGetMember(

 GetMemberBinder binder, out object result)

 {

 bool success = false;

 result = null;

 XElement firstDescendant =

 Element.Descendants(binder.Name).FirstOrDefault();

 if (firstDescendant != null)

 {

 if (firstDescendant.Descendants().Count() > 0)

 {

 result = new DynamicXml(firstDescendant);

 }

 else

 {

 result = firstDescendant.Value;

 }

 success = true;

 }

 return success;

 }

 public override bool TrySetMember(

 SetMemberBinder binder, object value)

 {

 bool success = false;

 XElement firstDescendant =

 Element.Descendants(binder.Name).FirstOrDefault();

 if (firstDescendant != null)

 {

 if (value.GetType() == typeof(XElement))

 {

 firstDescendant.ReplaceWith(value);

 }

 else

 {

 firstDescendant.Value = value.ToString();

 }

 success = true;

 }

 return success;

 }

}

The key dynamic implementation methods for this use case are TryGet-
Member() and the TrySetMember() (assuming you also want to assign the
elements as well). Only these two method implementations are necessary

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 698

to support the invocation of the dynamic getter and setter properties. Fur-
thermore, the implementations are straightforward. First, they examine
the contained XElement, looking for an element with the same name as the
binder.Name—the name of the member invoked. If a corresponding XML
element exists, then the value is retrieved (or set). The return value is set to
true if the element exists and false if it doesn’t. Automatically, a return
value of false will cause the runtime to throw a Microsoft.CSharp.Run-
timeBinder.RuntimeBinderException at the call site of the dynamic mem-
ber invocation.

System.Dynamic.DynamicObject supports additional virtual methods if
additional dynamic invocations are required. Listing 17.33 shows the list
of all the overridable members.

Listing 17.33: Overridable Members on System.Dynamic.DynamicObject

using System.Dynamic;

public class DynamicObject : IDynamicMetaObjectProvider

{

 protected DynamicObject();

 public virtual IEnumerable<string> GetDynamicMemberNames();

 public virtual DynamicMetaObject GetMetaObject(

 Expression parameter);

 public virtual bool TryBinaryOperation(

 BinaryOperationBinder binder, object arg,

 out object result);

 public virtual bool TryConvert(

 ConvertBinder binder, out object result);

 public virtual bool TryCreateInstance(

 CreateInstanceBinder binder, object[] args,

 out object result);

 public virtual bool TryDeleteIndex(

 DeleteIndexBinder binder, object[] indexes);

 public virtual bool TryDeleteMember(

 DeleteMemberBinder binder);

 public virtual bool TryGetIndex(

 GetIndexBinder binder, object[] indexes,

 out object result);

 public virtual bool TryGetMember(

 GetMemberBinder binder, out object result);

 public virtual bool TryInvoke(

 InvokeBinder binder, object[] args, out object result);

 public virtual bool TryInvokeMember(

ptg

 Summary 699

 InvokeMemberBinder binder, object[] args,

 out object result);

 public virtual bool TrySetIndex(

 SetIndexBinder binder, object[] indexes, object value);

 public virtual bool TrySetMember(

 SetMemberBinder binder, object value);

 public virtual bool TryUnaryOperation(

 UnaryOperationBinder binder, out object result);

}

As Listing 17.33 shows there are member implementations for every-
thing—from casts and various operations, through to index invocations. In
addition, there is a method for retrieving all the possible member names:
GetDynamicMemberNames().

SUMMARY

This chapter discussed how to use reflection to read the metadata that is
compiled into the CIL. Using reflection, you saw how to provide a late
binding in which the code to call is defined at execution time rather than at
compile time. Although reflection is entirely feasible for deploying a
dynamic system, it is considerably slower than statically linked (compile-
time), defined code. This tends to make it more prevalent and useful in
development tools.

Reflection also enables the retrieval of additional metadata decorating
various constructs in the form of attributes. Typically, custom attributes
are sought using reflection. It is possible to define your own custom attri-
butes that insert additional metadata of your own choosing into the CIL.
At runtime, it is then possible to retrieve this metadata and use it within
the programming logic.

Many view attributes as a precursor to a concept known as aspect-
oriented programming, in which you add functionality through constructs
such as attributes instead of manually implementing the functionality
wherever it is needed. It will take some time before you see true aspects
within C# (if ever); however, attributes provide a clear steppingstone
in that direction, without forcing a significant risk to the stability of the
language.

ptg

Chapter 17: Reflection, Attributes, and Dynamic Programming 700

Finally, the chapter included a C# 4.0 introduced feature—dynamic
programming using the new type dynamic. This section included a discus-
sion of why static binding, although preferred when the API is strongly
typed, has limitations when working with dynamic data.

The next chapter looks at multithreading, where attributes are used for
synchronization.

ptg

701

18
Multithreading

RIOR TO 2004, increasing computer power primarily involved increas-
ing the power of a single processor. Limits imposed by the physics of

today’s silicon microchip technology have forestalled further increases in
the power of single processors. Figure 18.1 shows the plateau and even a
small drop back, as the threshold of computing power versus heat dissipa-
tion stabilized to more maintainable levels.

In spite of the plateau, computer power continues to grow and Moore’s
Law remains on track as multiple cores (within a single processor) and mul-
tiple processors (the microchips that plug into the motherboard) became
standard on mainline servers, workstations, and now laptops. Microsoft
Windows reflects this available power by showing eight processors on the
Windows Task Manager for a four-core machine with Hyper-Threading.

P

2

34

5

6 1 Parallel.For()
Parallel.ForEach<T>()

Thread
ThreadPool

Multithreading

Parallel Loops

Unhandled Exceptions

Parallel LINQ

Multithreaded
Programming
with Tasks

TPL
Cancellation
Requests

Multithreaded
Programming
before TPL

Canceling
PLINQ Querys

Canceling a Task
Canceling
Parallel Loops

Task Basics
ContinueWith()

Unhandled Exceptions

ptg

Chapter 18: Multithreading702

Although the average computer now comes with multiple processing
units or CPUs, the programs discussed so far use only one of those CPUs at
a time because each program is single-threaded. This chapter and the next
discuss how to write code to take advantage of the processing potential of
multiple processing units in a single computer.

We achieve the additional throughput that multiple processing units
enable by writing multithreaded code, and this involves delving into
the System.Threading and System.Threading.Tasks namespaces. These
namespaces contain the API for manipulating threads.

Figure 18.1: Clock Speeds over Time. (Graph compiled by Herb Sutter. Used with permission.

Original at www.gotw.ca.)

Transistors (000)

Perf/Clock (ILP)

Clock Speed (MHz)
Power (W)

10,000,000

1,000,000

100,000

10,000

Pentium 4

Pentium

386

Dual-Core Itanium 2

1,000

100

10

1

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

www.gotw.ca

ptg

Chapter 18: Multithreading 703

.NET 4 introduced two new sets of APIs for multithreaded program-
ming: the Task Parallel Library (TPL) and Parallel LINQ (PLINQ).
Although the threading API from earlier versions of the framework still
exists and is fully supported, future enhancements will center on the new
APIs and so this chapter focuses on these. However, since prior APIs are
still relevant to those targeting earlier frameworks, one section in this chap-
ter covers multithreading prior to .NET Framework 4. In addition,
the multithreading chapters from the preceding edition of this book (Essen-
tial C# 3.5) are available for download at http://intelliTechture.com/
EssentialCSharp, since much of the material that appeared in earlier
editions is just as relevant and important today as it was then if you do not
have the luxury of targeting only the .NET Framework 4.

Furthermore (albeit unsupported), Microsoft released the Reactive
Extensions to .NET (Rx), a separate download that adds support for TPL
and PLINQ within the .NET 3.5 Framework. Therefore, any references to
.NET Framework 4-introduced capabilities within this chapter and the
next imply similar capabilities within .NET 3.5 given references to the
System.Threading.dll assembly from the Rx library.

B E G I N N E R T O P I C

Thread Basics
A thread is a sequence of instructions that may run concurrently with
other instruction sequences. A program that enables more than one
sequence to execute concurrently is multithreaded. For example, in
order to import a large file while simultaneously allowing a user to click
Cancel, a developer creates an additional thread to perform the import.
By performing the import on a different thread, the user can request
cancellation instead of freezing the user interface until the import
completes.

An operating system simulates multiple threads running concur-
rently via a mechanism known as time slicing. Even with multiple pro-
cessors, there is generally a demand for more threads than there are
processors, and as a result, time slicing occurs. Time slicing is a mecha-
nism whereby the operating system switches execution from one thread

http://intelliTechture.com/

ptg

Chapter 18: Multithreading704

(sequence of instructions) to the next so quickly that it appears the
threads are executing simultaneously. The period of time that the proces-
sor executes a particular thread before switching to another is the time
slice or quantum.

The effect is similar to that of a fiber optic telephone line in which the
fiber optic line represents the processor and each conversation represents a
thread. A (single-mode) fiber optic telephone line can send only one signal
at a time, but many people can hold simultaneous conversations over the
line. The fiber optic channel is fast enough to switch between conversa-
tions so quickly that each conversation appears uninterrupted. Similarly,
each thread of a multithreaded process appears to run continuously with
other threads.

Since a thread is often waiting for various events, such as an I/O
operation, switching to a different thread results in more efficient execu-
tion, because the processor is not idly waiting for the operation to com-
plete. However, switching from one thread to the next does create some
overhead. If there are too many threads, the switching overhead begins
to noticeably affect performance, and adding additional threads will
likely decrease performance further; the processor spends time switch-
ing from one thread to another instead of accomplishing the work of
each thread.

Even readers new to programming will have heard the term multi-
threading, most likely in a conversation about its complexity. In designing
both the C# language and the framework, considerable time was spent on
simplifying the programming API that surrounds multithreaded pro-
gramming. However, considerable complexity remains, not so much in
writing a program that has multiple threads, but in doing so in a manner
that maintains atomicity, avoids deadlocks, and does not introduce execu-
tion uncertainty such as race conditions.

Atomicity
Consider code that transfers money from a bank account. First, the code
verifies whether there are sufficient funds; if there are, the transfer occurs.
If after checking the funds, a different thread removes the funds, an invalid
transfer may occur when execution returns to the initial thread. Control-
ling account access so that only one thread can access the account at a time

ptg

Chapter 18: Multithreading 705

fixes the problem and makes the transfer atomic. A set of operations is
atomic if one of the following two conditions is met:

• The entire set of operations must complete before any operation
appears to have executed.

• The apparent state of the system must return to the state prior to any
operation executing—as though no steps executed.

Returning to the bank transfer example, although composed of multiple
steps, the entire set must be one atomic operation. In the process of per-
forming each step, no interruptions (such as a debit) should occur until the
complete set finishes. And if the complete set does not finish, it should
appear that none did (you can’t debit the money from one account and not
credit it to a second, for example). Identifying and implementing atomicity
is one of the primary complexities of multithreaded programming.

Unfortunately, the complexity increases because the majority of C#
statements are not atomic. Count++, for example, is a simple statement in
C#, but it translates to multiple instructions for the processor.

1. The processor reads the data in Count.

2. The processor calculates the new value.

3. Count is assigned a new value (even this may not be atomic).

After the data is accessed, but before the new value is assigned, a different
thread may modify the original value (perhaps also checking the value
prior to modifying it), creating a race condition because the value in Count
has, for at least one thread’s perspective, changed unexpectedly.

Deadlock
To avoid such race conditions, languages support the ability to restrict
blocks of code to a specified number of threads, generally one. However, if
the order of lock acquisition between threads varies, a deadlock could
occur such that threads freeze, each waiting for the other to release its lock.

For example:

Thread A Thread B

Acquires a lock on a Acquires a lock on b

Requests a lock on b Requests a lock on a

Deadlocks, waiting for b Deadlocks, waiting for a

Time

ptg

Chapter 18: Multithreading706

At this point, each thread is waiting on the other thread before proceeding,
so each thread is blocked, leading to an overall deadlock in the execution
of that code.

Uncertainty
The problem with code that is not atomic or causes deadlocks is that it
depends on the order in which processor instructions across multiple
threads occur. This dependency introduces uncertainty concerning pro-
gram execution. The order in which one instruction will execute rela-
tive to an instruction in a different thread is unknown. Many times, the
code will appear to behave uniformly, but occasionally it will not, and
this is the crux of multithreaded programming. Because such race con-
ditions are difficult to replicate in the laboratory, much of the quality
assurance of multithreaded code depends on long-running stress tests,
specially designed code analysis tools, and a significant investment in
code analysis/reviews.

Running and Controlling a Separate Thread

The operating system implements threads and provides various unman-
aged APIs to create and manage those threads. The CLR wraps these
unmanaged threads and exposes them in managed code via the Sys-
tem.Threading.Tasks.Task class, which represents an asynchronous
operation. However, a Task does not map directly to an unmanaged
thread. Rather, the Task provides a degree of abstraction to the underlying
unmanaged thread construct.

Creating a thread is a relatively expensive operation. Therefore, when-
ever you can reuse a thread between two or more sets of instructions
(rather than re-creating the thread for each set) the overall execution is
potentially more efficient. In .NET Framework 4, instead of creating an
operating system thread each time a Task is created, the Task requests a
thread from the thread pool. The thread pool evaluates whether to create
an entirely new thread or to allocate an existing thread (such as one that
previously finished executing) to the Task request.

ptg

Running and Controlling a Separate Thread 707

By abstracting the concept of a thread into Task, the .NET multi-
threading API reduces the complexities of efficiently managing the
thread—that is, when to create a new operating system thread and when
to reuse an existing one. Similarly, the internal behavior of the Task (via
System.Threading.ThreadPool) manages when to return a thread to the
thread pool for later reuse and when to deallocate the thread and release
any resources it may be consuming.

The work of programming the Task involves assigning the set of
instructions the Task will execute and then starting the Task. Not surpris-
ingly, assigning the instructions is heavily dependent on delegates. Listing
18.1 provides a simple example, and Output 18.1 shows a partial listing of
the results.

Listing 18.1: Starting a Method in a Separate Thread

using System;

public class Program

{

 public static void Main()

 {

 const int repetitions = 10000;

 Task task = new Task(() =>

 {

 for (int count = 0; count < repetitions; count++)

 {

 Console.Write('-');

 }

 });

 task.Start();

 for (int count = 0; count < repetitions; count++)

 {

 Console.Write('.');

 }

 // Wait until the Task completes

 task.Wait();

 }

}

using System.Threading.Tasks;

ptg

Chapter 18: Multithreading708

The code that is to run in a new thread is defined in the delegate (of type
Action in this case) passed to the Task() constructor. This delegate (in the
form of a lambda expression) prints out . to the console repeatedly during
each iteration within a loop. The for loop following the Task declaration is
virtually identical, except that it displays -. The resultant output from the
program is a series of dashes until the thread context switches, at which
time the program displays periods until the next thread switch, and so on.
(On Windows, it is possible to increase the chances of a thread context
switch by using Start /low /b <program.exe> to execute the program.
This will assign the entire process a lower priority, causing its threads to be
interrupted more frequently, and thus causing more frequent thread
switches.) The fact that the output has periods and dashes interleaving
indicates that both for loops were running simultaneously—in parallel.

Notice that following the Task declaration there is a call to Start().
Until this call is executed, the Action specified to Task doesn’t start
executing. Additionally, the call to task.Wait() forces the main thread

OUTPUT 18.1:

...............--

--

--

--

--

---. ..

..

..

..

..

..

...............---

--

--

--

--

---.

..

..

..

..

..

..........--

--

--

-----------------------...............................

..

...

ptg

Running and Controlling a Separate Thread 709

(the one executing the second for loop) to stop and “Wait” until all the
work assigned to task has completed executing.

Similarly, if the work executed in the task returns a result, then any
request for the result will automatically block until the task completes.
Listing 18.2 demonstrates Task<TResult>, which returns a value by execut-
ing a Func<TResult> rather than simply an Action.

Listing 18.2: Returning a Result from a Task<TResult>

using System;

using System.Threading.Tasks;

public class Program

{

 public static void Main()

 {

 () => PiCalculator.Calculate(100));

 foreach (char busySymbol in Utility.BusySymbols())

 {

 if (task.IsCompleted)

 {

 Console.Write('\b');

 break;

 }

 Console.Write(busySymbol);

 }

 Console.WriteLine();

 // Blocks until task completes.

 System.Diagnostics.Trace.Assert(

 task.IsCompleted);

 }

}

public class Utility

{

 public static IEnumerable<char> BusySymbols()

 {

 string busySymbols = @"-\|/-\|/";

 int next = 0;

 while (true)

 {

 yield return busySymbols[next];

 next = (++next) % busySymbols.Length;

Task<string> task = Task.Factory.StartNew<string>(

Console.WriteLine(task.Result);

ptg

Chapter 18: Multithreading710

 yield return '\b';

 }

 }

}

This listing shows that the data type of the task is Task<TResult>
(specifically a string in this case). The generic version of a task includes a
Result property from which to retrieve the value returned by the
Func<TResult> that the Task<TResult> executes.

A second noteworthy characteristic of Listing 18.2 is the fact that there
is no call to task.Start(). Instead, it uses the StartNew() method of the
static Factory property on Task. The result is similar to instantiating the
Task except that the return from Task.Factory.StartNew<TResult>() is
already started. It is rare that using StartNew() won’t suffice unless there
is the need to separate instantiating a Task from scheduling it.

In addition to the IsCompleted property on Task, there are several oth-
ers worth noting:

Status

Status returns a System.Threading.Tasks.TaskStatus enum indicating
the status of the task. Values include Created, WaitingForActivation,
WaitingToRun, Running, WaitingForChildrenToComplete, RanToComple-
tion, Canceled, and Faulted.

IsCompleted

IsCompleted is set to true when a task completes whether it faulted or not.
IsCompleted is true whenever the Status is RanToCompletion, Canceled,
or Faulted.

Id

Id is a unique identifier of the task. This is especially useful in debugging
when trying to work through multithreading problems such as race and
deadlocks.

AsyncState

The Id property is useful for identifying the task—naming it, for example.
Furthermore, AsyncState can track additional data. For example, imagine

ptg

Running and Controlling a Separate Thread 711

a List<T> of values that various tasks are calculating. One way to place the
result into the correct location of the list is to store the list index targeted to
contain the result into the AsyncState property. This way, when the task
completes, the code can index into the list using the AsyncState (first
casting it to an int). (Note that calling List<T>.Add() is not a safe
operation across multiple threads, and calling it will result in a race condi-
tion that is likely to result in data loss.)

Task.CurrentId

Task.CurrentId is a static property on the Task that returns an identifier
for the currently executing Task (the one executing the Task.CurrentId
call). Since the property is static, it is available anywhere and is mostly use-
ful for debugging and diagnostic-type activities.

As discussed within the context of Task cancellation later in the chapter,
additional properties on Task are also available.

ContinueWith()

A Task includes a ContinueWith() method for chaining tasks together
such that as soon as the first one in the chain completes it triggers the
ones that have registered to begin executing after it. Since the Continue-
With() methods return another Task, the chain of work can continue to
be added to.

It is interesting to note that it is possible to add multiple tasks using
ContinueWith() and that such “continue-with” tasks are free to commence
immediately upon completion of the antecedent task—the Task instance
against which the ContinueWith() method was called. Furthermore, when
ContinueWith() is called multiple times on the same antecedent task
instance, all tasks that are added will commence running in parallel when
the antecedent task completes.

The full list of available flags with descriptions from the MSDN Task-
ContinuationOptions documentation appears in Table 18.1. The values
are flags, so they can be combined using the logical OR operator (|).

The items decorated with a star (*) are particularly useful for “register-
ing” for “notifications” of the antecedent task’s behavior. Listing 18.3 dem-
onstrates this.1

ptg

Chapter 18: Multithreading712

1. MSDN .NET Framework Developer Center, http://msdn.microsoft.com/en-us/library/
system.threading.tasks.taskcontinuationoptions(VS.100).aspx.

TABLE 18.1: List of Available TaskContinuationOptions Enums1

Enum Description

None The default continuation option which
indicates continue asynchronously with no
special task options. It specifies that the
continue-with-task should execute “when
the antecedent task completes, regardless of
the task’s final System.Threading.Tasks.
TaskStatus.”

PreferFairness “A hint to a System.Threading.Tasks.
TaskScheduler to schedule a task in as fair a
manner as possible, meaning that tasks
scheduled sooner will be more likely to be
run sooner, and tasks scheduled later will be
more likely to be run later.”

LongRunning “Specifies that a task will be a long-running,
course-grained operation. It provides a hint
to the System.Threading.Tasks.Task-
Scheduler that oversubscription may be
warranted.”

AttachedToParent Specifies that a task is attached to a parent
in the task hierarchy.

NotOnRanToCompletion* Specifies that the continuation task should
not be scheduled if its antecedent ran to
completion. This option is not valid for mul-
titask continuations.

NotOnFaulted* Specifies that the continuation task should
not be scheduled if its antecedent threw an
unhandled exception. This option is not
valid for multitask continuations.

OnlyOnCanceled* Specifies that the continuation task should
be scheduled only if its antecedent was can-
celed. This option is not valid for multitask
continuations.

NotOnCanceled* Specifies that the continuation task should
not be scheduled if its antecedent was can-
celed. This option is not valid for multitask
continuations.

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskcontinuationoptions(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskcontinuationoptions(VS.100).aspx

ptg

Running and Controlling a Separate Thread 713

Listing 18.3: Registering for “Notifications” with ContinueWith()

using System;

using System.Threading.Tasks;

public class Program

{

 public static void Main()

 {

 Task<string> task = Task.Factory.StartNew<string>(

 () => PiCalculator.Calculate(10));

 Task faultedTask = task.ContinueWith(

 (antecedentTask) =>

 {

 Trace.Assert(task.IsFaulted);

 Console.WriteLine("Task State: Faulted");

 },

 TaskContinuationOptions.OnlyOnFaulted);

 Task canceledTask = task.ContinueWith(

 (antecedentTask) =>

 {

 //Trace.Assert(task.IsCanceled);

 Console.WriteLine("Task State: Canceled");

 },

OnlyOnFaulted* Specifies that the continuation task should
be scheduled only if its antecedent threw an
unhandled exception. This option is not
valid for multitask continuations.

OnlyOnRanToCompletion* Specifies that the continuation task should
be scheduled only if its antecedent ran to
completion. This option is not valid for mul-
titask continuations.

ExecuteSynchronously Specifies that the continuation task should
be executed synchronously. With this option
specified, the continuation will be run on the
same thread that causes the antecedent task
to transition into its final state. If the ante-
cedent is already complete when the contin-
uation is created, the continuation will run
on the thread creating the continuation.

* Indicates when to run the task.

TABLE 18.1: List of Available TaskContinuationOptions Enums1 (Continued)

Enum Description

ptg

Chapter 18: Multithreading714

 TaskContinuationOptions.OnlyOnCanceled);

 Task completedTask = task.ContinueWith(

 (antecedentTask) =>

 {

 Trace.Assert(task.IsCompleted);

 Console.WriteLine("Task State: Completed");

 },

TaskContinuationOptions.OnlyOnRanToCompletion);

 completedTask.Wait();

 }

}

In this listing, we effectively register for “events” on the antecedent’s task
so that if the event occurs, the particular “listening” task will begin execut-
ing. This is a powerful capability, especially when using a fire-and-forget
behavior on the task—no Wait()-type behavior is invoked on the task.
Instead, we can just call Start() or Factory.StartNew(), register for the
“notifications,” and then discard the reference to the task. The task will
begin executing asynchronously without any need for follow-up code that
“checks” the status. In this case, we leave the completedTask.Wait() call
so that the program does not exit before the completed output appears (see
Output 18.2).

Even if the task hasn’t finished executing, the program will still exit if no
explicit wait is specified.

The Wait() method is a means of joining tasks back to the calling thread
so that the thread calling Wait() will continue only when the other task (the
instance on which Wait() is called) has completed. Typically, this is neces-
sary because one task is relying on the effects or results of the other task.

Note that we can’t successfully call Wait() on canceledTask or
faultedTask; since the task didn’t and won’t complete the work there is
nothing to wait for. The continuation options in Listing 18.3 happen to be
mutually exclusive, so when the antecedent task runs to completion and

OUTPUT 18.2:

Task State: Completed.

ptg

Running and Controlling a Separate Thread 715

completedTask executes, the runtime cancels the canceledTask and
faultedTask since they will never run. Therefore, calling Wait() or any
of the other task completion methods (Result or Task.WaitAll()) on
either of these tasks will throw an exception indicating that they are no
longer executable.

Next we take a look at the faulted case.

Unhandled Exception Handling on Task
Unlike exception handling on a single thread, we cannot simply wrap
Task.Start() in order to catch an exception within the delegate passed to
the Task because any exception will obviously occur after the task starts.
Exceptions caught and handled within the task execution are also not a
problem since try/catch blocks will work just as they would anywhere.
What does require care is handling unhandled exceptions thrown from a
different thread.

Starting with the CLR 2.0, unhandled exceptions on the finalizer thread,
thread pool threads, and user-created threads will generally bubble up,
triggering the Windows Error Reporting dialog and an application exit as a
way of explicitly identifying that there is likely a problem that needs to be
addressed. All exceptions for which there is a known handling mecha-
nism, therefore, require an explicit catch block or else they will cause the
program to close.

Although bubbling up all unhandled exceptions is an improvement
over the alternative of ignoring them, it still is not ideal. If an exception
occurs for which there is no appropriate handling mechanism within the
Task’s execution, but there is appropriate handling logic outside the
task, it needs to be possible to catch the exception within higher-
level handlers rather than crashing the application. Fortunately, Task
supports this.

The unhandled exception during the Task’s execution will be sup-
pressed until a call to one of the task completion members: Wait(), Result,
Task.WaitAll(), or Task.WaitAny(). Each of these members will throw
any unhandled exceptions that occurred within the task’s execution. List-
ing 18.4 demonstrates the behavior, the output of which is the message,
“ERROR: Error in the application.” demonstrating that indeed an

ptg

Chapter 18: Multithreading716

exception is thrown (see Output 18.3). By placing the task completion
member within a try/catch block, the unhandled exception can be trapped
and addressed if desired.

Listing 18.4: Handling a Task’s Unhandled Exception

using System;

using System.Threading.Tasks;

public class Program

{

 public static void Main()

 {

 Task task = Task.Factory.StartNew(() =>

 {

 throw new ApplicationException();

 });

 try

 {

 task.Wait();

 }

 catch (AggregateException exception)

 {

 foreach (Exception item in

 exception.InnerExceptions)

 {

 Console.WriteLine(

 "ERROR: {0}", item.Message);

 }

 }

 }

}

Listing 18.4 demonstrates how the unhandled framework passes the task’s
unhandled exception back to the main thread. Notice that the data type of
the exception is System.AggregateException—a collection of exceptions
that may throw in connection with the (potential) hierarchy of tasks associ-
ated with the root task. (We discuss System.AggregateException further
in the next major section, Executing Iterations in Parallel.)

OUTPUT 18.3:

ERROR: Error in the application.

ptg

Running and Controlling a Separate Thread 717

A D V A N C E D T O P I C

Task-Related Finalization Exceptions Suppressed during
Application Shutdown
Earlier in this section, I stated that, “unhandled exceptions on the final-
izer thread… will generally bubble up…., triggering the Windows Error
Reporting dialog and an application exit as a way of explicitly identify-
ing that there is likely a problem that needs to be addressed.” Although
relatively rare, one of the exceptions for the general rule happens to be on
Task. It is possible that a Task that completes during the execution of the
program will still have items in the finalization queue when the applica-
tion shuts down. Any Task-based exceptions thrown from the finaliza-
tion queue during application exit will go suppressed. The behavior is set
this way because frequently the effort to handle such an exception is too
complex to offset the likely benign nature of the exception occurring at
application exit.

Another approach for unhandled exceptions that doesn’t require try/catch
is to use a ContinueWith() task. The task parameter on the ContinueWith()
delegate allows for an evaluation of the antecedent task’s Exception property
to check for the exception (see Listing 18.5 and Output 18.4).

Listing 18.5: Unhandled Exceptions Using ContinueWith()

using System;

using System.Diagnostics;

using System.Threading.Tasks;

public class Program

{

 public static void Main()

 {

 bool parentTaskFaulted = false;

 Task task = new Task(() =>

 {

 throw new ApplicationException();

 });

 (parentTask) =>

 {

 parentTaskFaulted = parentTask.IsFaulted;

 }, TaskContinuationOptions.OnlyOnFaulted);

Task faultedTask = task.ContinueWith(

ptg

Chapter 18: Multithreading718

 task.Start();

 Trace.Assert(parentTaskFaulted);

 if (!task.IsFaulted)

 {

 task.Wait();

 }

 else

 {

 Console.WriteLine(

 }

 }

}

Rather than calling task.Wait() and throwing an exception, Listing 18.5
uses a ContinueWith() task and calls continueWithTask.Wait() on this
task to determine that the original task completed. In addition, the call to
task.ContinueWith() passes a TaskContinuationOptions.OnlyOnFaulted
parameter causing this continuation task to execute only if the antecedent
task throws an exception. Without the additional parameter, the code exe-
cution would have been the same as Listing 18.5 because it would have
executed regardless. By specifying the TaskContinuationOptions.Only-
OnFaulted flag, we are able to “register” for the fault “notification.”

Notice that to retrieve the unhandled exception on the original task
we use the Exception property. The result is an output identical to
Output 18.3.

Canceling a Task
One particular functional difference between the .NET 3.5 and earlier
APIs versus the .NET Framework 4 APIs is support for cancellation
requests on threads. The threading API in .NET 3.5 and earlier has little
support for cancellation requests and instead relies on a “rude” inter-
ruption approach. In this approach, the cancellation of a thread is forced
and the target thread has little or no choice about the matter. Calling
thread-abort, unloading the AppDomain, or killing the process are all

faultedTask.Wait();

 "ERROR: {0}", task.Exception.Message);

OUTPUT 18.4:

ERROR: in the application.

ptg

Running and Controlling a Separate Thread 719

examples of “rude” interruption. Such unexpected interruptions as
aborting a thread can potentially occur during execution of a vital code
block, threatening data integrity caused by partial data updates or inad-
equate resource de-allocation. Aborting a thread causes a ThreadAbort-
Exception exception to occur anywhere within the target thread’s
execution. This introduces uncertainty into the thread’s behavior. (To
complicate matters, the target thread’s abort call could be rejected by
handling the ThreadAbortException exception and issuing a reset abort
method call inside the abort-targeted thread—rendering uncertainty in
the abort-issuing thread.) Similarly, if the abort-targeted thread is run-
ning unmanaged code, the ThreadAbortException exception will not
throw until the code returns to managed execution. As a result, except in
rare circumstances, developers should consider the rude interruption
approach a last resort at best.

Of course, the earlier APIs are still fully available in the .NET Frame-
work 4, but the additional PLINQ- and TPL-based APIs support only a
cancellation request approach in which the target Task opts in to the can-
cellation request—a process known as cooperative cancellation. Instead of
one “thread” aborting another, the cancellation API “requests” a Task to
cancel. By checking the cancellation flag—a System.Threading.Cancella-
tionToken—the task targeted for cancellation can respond appropriately
to the cancellation request.

Listing 18.6 demonstrates both the request and the response to the
request. Note that this sample uses a PiCalculator.Calculate()

method that we will delve into further in the Executing Iterations in
Parallel section.

Listing 18.6: Canceling a Task Using CancellationToken

using System;

using System.Diagnostics;

using System.Threading;

using System.Threading.Tasks;

public class Program

{

 public static void Main()

 {

 string stars = "*".PadRight(Console.WindowWidth-1, '*');

ptg

Chapter 18: Multithreading720

 Console.WriteLine("Push ENTER to exit.");

 // Wait for the user's input

 Console.ReadLine();

 Console.WriteLine(stars);

 Console.WriteLine();

 }

 private static void WritePi(

 {

 const int batchSize = 1;

 string piSection = string.Empty;

 int i = 0;

 || i == int.MaxValue)

 {

 piSection = PiCalculator.Calculate(

 batchSize, (i++) * batchSize);

 Console.Write(piSection);

 }

 }

}

After starting the Task, a Console.Read() blocks the main thread. At
the same time, the task continues to execute, calculating the next digit of
pi and printing it out. Once the user presses Enter, the execution
encounters a call to CancellationTokenSource.Cancel(). In Listing
18.6, we split the call to task.Cancel() from the call to task.Wait() and
print out * in between. The purpose of this is to show that quite possibly
an additional iteration will occur before the cancellation token is
observed—hence the additional 2 in Output 18.5 following the stars.
The 2 appears because the CancellationTokenSource.Cancel() doesn’t
rudely stop the Task from executing.

 CancellationTokenSource cancellationTokenSource =

 new CancellationTokenSource();

 Task task = Task.Factory.StartNew(

 () =>

WritePi(cancellationTokenSource.Token),

 cancellationTokenSource.Token);

cancellationTokenSource.Cancel();

task.Wait();

CancellationToken cancellationToken)

 while

 (!cancellationToken.IsCancellationRequested

ptg

Running and Controlling a Separate Thread 721

Rather, the Cancel() call sets the IsCancellationRequested property
on all cancellation tokens copied from CancellationTokenSource.Token.
There are a couple things to note from the previous sentence.

• Cancellation token: A CancellationToken, not a CancellationToken-
Source, is evaluated in the asynchronous task. A CancellationToken
is seemingly similar to the CancellationTokenSource except that the
CancellationToken is for monitoring and responding to a cancella-
tion request while the CancellationTokenSource is for canceling the
task itself (see Figure 18.2).

• Copied: A CancellationToken is a struct, so calling Cancellation-
TokenSource.Token will create a copy of the token. As a result, all
instances of the cancellation token will be thread-safe.

OUTPUT 18.5:

Push ENTER to exit.
3.1415926535897932384626433832795028841971693993751058209749445923078164
062862089986280348253421170679821480865132823066470938446095505822317253
59408128481117450
**
2

Figure 18.2: CancellationTokenSource and CancellationToken Class Diagrams

ptg

Chapter 18: Multithreading722

To monitor the IsCancellationRequested property an instance of the
CancellationToken (retrieved from CancellationTokenSource.Token) is
passed to the parallel task. In Listing 18.6, we then check the IsCancella-
tionRequested property on the CancellationToken parameter after each
digit calculation. If IsCancellationRequested returns true, the while
loop exits.

One other point to note about the CancellationToken is the over-
loaded Register() method. Via this method, you can register an action
that will be invoked whenever the token is canceled. In other words, call-
ing the Register() method subscribes to a listener delegate on the corre-
sponding CancellationTokenSource’s Cancel() (see Listing 18.7 later in
the chapter).

Since canceling before completing is expected behavior in this program,
Listing 18.6 does not throw a System.Threading.Tasks.TaskCanceled-
Exception. Because of this, task.Status will return TaskStatus.RanTo-
Completion—providing no indication that the work of the task was in fact
cancelled. In this example, there is no need for such an indication; how-
ever, TPL does include the capability to do this. If the cancel call were dis-
ruptive in some way—preventing a valid result from returning, for
example—throwing a TaskCanceledException (which derives from Sys-
tem.OperationCanceledException) would be the TPL pattern for report-
ing it. Instead of throwing the exception explicitly, CancellationToken
includes a ThrowIfCancellationRequested() method to report the excep-
tion more easily, assuming an instance of CancellationToken is available.

Throwing the TaskCanceledException on the executing Task results in
an AggregateException throw on Task completion members: task.Wait()
Task.WaitAny(), or task.Result.

This example demonstrates how a long-running operation (calculating pi
almost indefinitely) can monitor for a cancellation request and respond if
one occurs. There are some cases, however, when cancellation can occur
without explicitly coding for it within the target task. (For example, the Par-
allel class discussed later in the chapter offers such a behavior by default.)

Long-Running Tasks
As noted earlier in the chapter, Tasks provide an abstraction over the oper-
ating system threads so that the thread pool can efficiently manage

ptg

Running and Controlling a Separate Thread 723

allocation and de-allocation of the threads. The result is that Tasks use
underlying threads that are a shared resource and it is expected that the
tasks will be cooperative and return the thread in a timely manner so that
other requests can be fulfilled using the same shared resource.

However, if the developer knows that a Task is going to be long-running
and holding on to an underlying thread resource for a long time, the devel-
oper needs to notify the thread pool that it is unlikely to return the shared
thread anytime soon. This allows the thread pool to increase the likelihood
of creating a dedicated thread for the task, rather than pulling one of the
shared threads. To accomplish this, use the TaskCreationOptions.LongRun-
ning option when calling StartNew() as shown in Listing 18.7.

Listing 18.7: Cooperatively Executing Long-Running Tasks

using System.Threading.Tasks;

// ...

 Task task = Task.Factory.StartNew(

 () =>

WritePi(cancellationTokenSource.Token),

// ...

Technically, TaskCreationOptions.LongRunning is actually something
that the scheduler needs to take into consideration. However, since the
default scheduler is the ThreadPoolTaskScheduler by default, it is the
thread pool that takes the long-running parameter into consideration.

Disposing a Task
In the listings that depended on Task so far we generally call the task’s
Wait() method to ensure that the program doesn’t exit before the task has
completed executing. This falls in accordance with the cooperative cancel-
ing approach built into TPL since we don’t close the program before the
task finishes executing. However, what happens if the program does exit
before a task completes?

If the Task is still running when the application begins to exit, the
underlying thread on which the Task relies will be aborted by the CLR.
Therefore, whatever undesirable effects the abort would cause could
potentially occur on application exit. The preferable approach would be

TaskCreationOptions.LongRunning);

ptg

Chapter 18: Multithreading724

cooperative cancellation in which the Task supports cancellation and the
application invokes the cancellation and waits for the task to complete.

Note that Task also supports IDisposable. This is necessary to support
the Wait() functionality. Wait() relies on WaitHandle, and since WaitHan-
dle supports IDisposable, Task also supports IDisposable in accordance
with best practices. However, readers will note that the preceding code
samples do not include a Dispose() call nor do they rely on such a call
implicitly via the using statement. Technically, invoking Dispose() would
be better code, however, so reasonable attempts should generally be made
to do this.

Although instantiations of a task should generally include a corre-
sponding Dispose() call and without it, any call to Wait() could result in a
WaitHandle instance without a Dispose() call, missing this call is not criti-
cal. For example, listings in this chapter don’t include Task.Dispose()
calls, relying instead on an automatic WaitHandle finalizer invocation when
the program exits. In these examples, any call to Dispose() would be incon-
sequential, so it was left off in favor of elucidation. However, technically, it
should be there and developers should generally include it unless the code
becomes ugly such that relying on the finalization queue is an acceptable
trade-off. Although calling Dispose() does reduce pressure on the finaliza-
tion queue later on, unless there is an exorbitant number of Tasks and corre-
sponding WaitHandles, there is not a significant resource consumed by not
calling Dispose() as soon as possible. Therefore, allowing finalize to be
responsible for the resource cleanup is not unreasonable—in cases when a
fire-and-forget invocation pattern is desirable, for example.

Executing Iterations in Parallel

Consider the for loop statement and the following code that uses such a
loop (see Listing 18.8 and the corresponding Output 18.6). The listing calls
a method for calculating a section of pi where the first parameter is the
number of digits (BatchSize) and the digit to start with (i * BatchSize).
The actual calculation is not germane to the discussion, so a full listing
appears in the appendix. However, one characteristic that makes this great
for multithreading is the fact that the calculation can be split into pieces.

ptg

Executing Iterations in Parallel 725

Listing 18.8: For Loop Synchronously Calculating Pi in Sections

using System;

const int TotalDigits = 100;

const int BatchSize = 10;

class Program

{

 void Main()

 {

 string pi = null;

 int iterations = TotalDigits / BatchSize;

 for (int i = 0; i < iterations; i++)

 {

 pi += PiCalculator.Calculate(

 BatchSize, i * BatchSize);

 }

 Console.WriteLine(pi);

 }

}

using System;

class PiCalculator

{

 public static string Calculate(int digits, int startingAt)

 {

 // ...

 }

 // ...

}

The for loop executes each iteration synchronously and sequentially.
However, since the pi calculation algorithm splits the pi calculation into

OUTPUT 18.6:

>3.141592653589793238462643383279502884197169399375105820974944592307816

406286208998628034825342117067982148086513282306647093844609550582231725

359408128481117450284102701938521105559644622948954930381964428810975665

933446128475648233786783165271201909145648566923460348610454326648213393

607260249141273724587006606315588174881520920962829254091715364367892590

360011330530548820466521384146951941511609433057270365759591953092186117

38193261179310511854807446237996274956735188575272489122793818301194912

ptg

Chapter 18: Multithreading726

independent pieces, it is not necessary to complete the pieces sequentially
as long as they are still all appended sequentially. Therefore, imagine if
you could have iterations run simultaneously, overlapping each other
because each processor could take an iteration and execute it in parallel
with other processors executing other iterations. Given the simultaneous
execution of iterations, we could decrease the execution time more and
more based on the number of processors.

Parallel.For()

.NET 4 includes such a parallel for capability through an API on System.
Threading.Tasks.Parallel, as shown in Listing 18.9.

Listing 18.9: For Loop Calculating Pi in Sections in Parallel

using System;

 // ...

class Program
{
 void Main()
 {
 string pi = null;
 int iterations = TotalDigits / BatchSize;
 string[] sections = new string[iterations];

 pi = string.Join("", sections);
 Console.WriteLine(pi);
}

The output for Listing 18.9 is identical to Output 18.6; however, the exe-
cution time is significantly faster (assuming multiple CPUs). The Paral-
lel.For() API is designed to look similar to a standard for loop. The first
parameter is the fromInclusive value, the second is the toExclusive
value, and the last is the Action<int> to perform. When using an expres-
sion statement (with curly brackets) for the action, the code looks similar
to a for loop statement except now each iteration may execute in parallel.

using System.Threading;

 Parallel.For(0, iterations, (i) =>
 {
 sections[i] += PiCalculator.Calculate(
 BatchSize, i * BatchSize);
 });

ptg

Executing Iterations in Parallel 727

As with the for loop, the call to Parallel.For() will not complete until all
iterations are complete. In other words, by the time execution reaches the
string.Join() statement, all sections of pi will have been calculated.

It is important to note that the code for combining the various sections
of pi no longer occurs inside the iteration (action). Since sections of the pi
calculation will very likely not complete sequentially, appending a section
whenever an iteration completes will likely append them out of order.
Even if sequence was not a problem, there is still a potential race condition
because the += operator is not atomic. To address both of these problems,
each section of pi is stored into an array and no two or more iterations will
access a single element within the array simultaneously. Only once all sec-
tions of pi are calculated does string.Join() combine them. In other
words, we postpone concatenating the sections until after the Paral-
lel.For() loop has completed. This avoids any race condition caused by
sections not yet calculated or sections concatenating out of order.

Parallel.ForEach()

Parallel execution of a loop is not limited to the construct of for. Paral-
lel.ForEach() provides similar capabilities for the foreach loop, as
shown in Listing 18.10.

Listing 18.10: Parallel Execution of a foreach Loop

using System;

using System.Collections.Generic;

using System.IO;

class Program

{

 // ...

 static void EncryptFiles(

 string directoryPath, string searchPattern)

 {

 IEnumerable<string> files = Directory.GetFiles(

 directoryPath, searchPattern,

 SearchOption.AllDirectories);

using System.Threading.Tasks;

 Parallel.ForEach(files, (fileName) =>

 {

 Encrypt(fileName);

 });

ptg

Chapter 18: Multithreading728

 }

 // ...

}

In this example, we call a method that encrypts each file within the files
collection and it does so in parallel, executing as many threads as the API
determines is efficient. Efficiency is determined by a “hill climbing” algo-
rithm in which additional threads are created until the overhead of addi-
tional threads begins to decrease overall performance—at which point the
most efficient number of threads is determined (dynamically). The degree
of parallelism corresponds to the number of threads that run simultane-
ously at any particular time.

Parallel Exception Handling with System.AggregateException
While executing the query in parallel, there is the potential for multiple
exceptions—one for each started iteration. Notice, therefore, that if an
exception throws while the loop is executing, the exception type is a Sys-
tem.AggregateException—an exception that contains multiple inner
exceptions. In this way, all exceptions within the loop are handled with a
single try/catch block. The System.Threading.Task namespace uses the
System.AggregateException consistently for grouping together unhan-
dled exceptions because, with parallel operations, there is frequently the
potential for multiple exceptions. Consider the example in Listing 18.11
and its output in Output 18.7.

Listing 18.11: Unhandled Exception Handling for Parallel Iterations

using System;

using System.Collections.Generic;

using System.IO;

class Program

{

 // ...

 static void EncryptFiles(

 string directoryPath, string searchPattern)

 {

 IEnumerable<string> files = Directory.GetFiles(

 directoryPath, searchPattern,

 SearchOption.AllDirectories);

 try

using System.Threading;

ptg

Executing Iterations in Parallel 729

 {

 Parallel.ForEach(files, (fileName) =>

 {

 Encrypt(fileName);

 });

 }

 {

 Console.WriteLine(

 "ERROR: {0}:",

 exception.GetType().Name);

 foreach (Exception item in

 {

 Console.WriteLine(" {0} - {1}",

 item.GetType().Name, item.Message);

 }

 }

 }

 // ...

}

Output 18.7 shows that three exceptions occurred while executing the
Parallel.ForEach<T>(...) loop. However, in the code, there is only one
catch of type System.AggregationException. The UnauthorizedAccessEx-
ceptions were retrieved from the InnerExceptions property on the
AggregationException. With a Parallel.ForEach<T>() loop, each itera-
tion could potentially throw an exception and so the System.Aggregation-
Exception thrown by the method call will contain each of those exceptions
within its InnerExceptions property.

Canceling a Parallel Loop
Unlike a task which requires an explicit call in order to block until it com-
pletes, a parallel loop executes iterations in parallel but still blocks until

catch (AggregateException exception)

exception.InnerExceptions)

OUTPUT 18.7:

ERROR: AggregateException:

 UnauthorizedAccessException - Attempted to perform an unauthorized

operation.

 UnauthorizedAccessException - Attempted to perform an unauthorized

operation.

 UnauthorizedAccessException - Attempted to perform an unauthorized

operation.

ptg

Chapter 18: Multithreading730

the entire Parallel.For() or Parallel.ForEach<T>() loop completes.
Canceling a parallel loop, therefore, generally involves invocation of the
cancellation request from a thread other than the one executing the paral-
lel loop. In Listing 18.12, we invoke Parallel.ForEach<T>() using
Task.Factory.StartNew(). In this manner, not only does the query exe-
cute in parallel, but it also executes asynchronously, allowing the code to
prompt the user to “Push ENTER to exit.”

Listing 18.12: Canceling a Parallel Loop

using System;

using System.Diagnostics;

using System.Threading;

using System.Threading.Tasks;

public class Program

{

 // ...

 static void EncryptFiles(

 string directoryPath, string searchPattern)

 {

 IEnumerable<string> files = Directory.GetFiles(

 directoryPath, searchPattern,

 SearchOption.AllDirectories);

 Console.WriteLine("Push ENTER to exit.");

 Task task = Task.Factory.StartNew(() =>

 {

 try

 {

 Parallel.ForEach(

 (fileName, loopState) =>

 {

 Encrypt(fileName);

 });

 CancellationTokenSource cts =

 new CancellationTokenSource();

 ParallelOptions parallelOptions =

 new ParallelOptions

 { CancellationToken = cts.Token };

 cts.Token.Register(

 () => Console.WriteLine("Cancelling..."));

 files, parallelOptions,

ptg

Executing Iterations in Parallel 731

 }

 catch(OperationCanceledException){}

 });

 // Wait for the user's input

 Console.Read();

 // Cancel the query

 Console.Write(stars);

 task.Wait();

 }

}

The parallel loops use the same cancellation token pattern that Tasks
use. The CancellationTokenSource.Token property is associated with the
parallel loop via overloads on the parallel loops—overloads that take a
System.Threading.ParallelOptions object. This object includes a Token
property of type CancellationTokenSource.

Note that internally the parallel loop case prevents new iterations that
haven’t started yet from commencing via the IsCancellationRequested
property. Existing executing iterations will run to their respective termina-
tion points. Furthermore, calling Cancel() even after all iterations have
completed will still cause the registered cancel event (via cts.Token.Reg-
ister()) to execute.

Also, the only means by which Parallel is able to acknowledge that
the cancellation request has been processed (versus completed success-
fully) is via the OperationCanceledException. Given that cancellation in
this example is an option for the user, the exception is caught and
ignored, allowing the application to display “Canceling . . .” followed by
a line of stars before exiting.

A D V A N C E D T O P I C

Parallel Results and Options
Although uncommon, it is possible to control the maximum degree of par-
allelism via the ParallelOptions parameter on overloads of both the
Parallel.For() and Parallel.ForEach<T>() loops. Although Microsoft
has invested significantly across a wide range of processor counts, to

 cts.Cancel();

ptg

Chapter 18: Multithreading732

determine optimal numbers for the degree of parallelism—at least in the
general case—there are specific cases where the developer knows more
about the specific algorithm or circumstance such that changing the maxi-
mum degree of parallelism makes sense. Circumstances include:

• Setting the value to 1. This can be a means of turning off parallelism in
order to simplify debugging.

• Knowing that the algorithm doesn’t scale beyond a certain upper
bound—for example, if the algorithm is limited by additional hard-
ware constraints such as the number of USB ports that are available.

• If the body of the iteration is blocked for long periods, and creating
additional parallel iterations (possibly also with extended blocking)
will not increase the throughput and instead will cause unnecessary
context switching with little to no progress.

To control the maximum degree of parallel, use the ParallelOptions.Max-
DegreeOfParallelism property.

Additional settings available on an instance of ParallelOptions
include a specific task scheduler (ParallelOptions.TaskScheduler) and
the cancellation token (ParallelOptions.CancellationToken). The task
scheduler has complete control over a Task’s execution, including when, in
what sequence, and on what thread a task executes. For example, if a user
repeatedly clicks Next to proceed to the next screen—and all of the screens
are loaded asynchronously—you may want to execute iterations that load
the data in last in, first out (LIFO) order because the user perhaps only
wants to see the last screen he requested. Alternatively, if the save opera-
tion occurs multiple times, again asynchronously, you probably want to
enter the save requests in first in, first out (FIFO) order to avoid any over-
writing of later changes. The task scheduler provides a means of specifying
how the tasks will execute in relation to each other.

The CancellationToken provides a mechanism to communicate to the
loop that no further iterations should start. Additionally, the body of an
iteration can watch the cancellation token to determine if an early exit from
the iteration is in order. Like a standard for loop, Parallel’s loops also
support the concept of breaking to exit the loop and canceling any further

ptg

Executing Iterations in Parallel 733

iterations. In the context of parallel for execution, however, break identifies
that no new iterations following the breaking iteration should start. All
currently executing iterations will run to completion.

For example, given the following circumstances:

• A total of ten iterations numbered sequentially from 1 to 10

• Iteration 1 has run to completion

• Iterations 3, 5, 7, and 9 are currently executing (remember, the order
of execution is determined by the task scheduler and is not necessar-
ily sequential)

• A break (ParallelLoopState.Break()) executes on iterations 5 and 7
at the conclusion of the parallel loop, iterations 1 through 5, 7, and 9
will complete. Iterations 6 and 8 will not complete (they never even
started before 5 was canceled).

To determine the lowest iteration to execute a break and identify
whether the break prevented one or more iterations from starting, the par-
allel For()/Foreach() method returns a System.Threading.Parallel-
LoopResult object. This result object has the following properties:

• IsCompleted: returns a Boolean indicating whether all iterations
started.

• LowestBreakIteration: identifies the lowest iteration that executed a
break. The value is of type long?, where a value of null indicates no
break statement was encountered.

Returning to the ten-iteration example, the IsCompleted property will
return false and the LowestBreakIteration will return a value of 5. The
C# break statement equivalent is possible using the ParallelLoop-
State.Break() method where the ParallelLoopState is a type parameter
on the Action<int, ParallelLoopState> specified in some of the parallel
For()/Foreach()loop overloads.

In addition to ParallelLoopState.Break() there is also a Parallel-
LoopState.Stop(). The behavior is similar to break except that iterations
that have not yet started, even those prior to the iteration executing the

ptg

Chapter 18: Multithreading734

ParallelLoopState.Stop(), will not be allowed to start. Returning to the
ten-iteration example but replacing the break with a stop (ParallelLoop-
State.Stop()) will vary the results slightly. Instead of iterations 1 through
7 executing through completion, only the odd iterations will run to
completion.

Further overloads on both parallel functions include Func<TLocal> and
Action<TLocal> parameters for handling initialization and final execution
expressions, respectively, for each task used in the parallel loop. Overloads
are available for passing state regarding early exit to be passed between
iterations.

Running LINQ Queries in Parallel

With Listing 18.10, we enumerate over the collection using Paral-
lel.ForEach<T>(). It is also possible to execute LINQ queries in parallel
using the Parallel LINQ API, PLINQ. Consider Listing 18.13.

Listing 18.13: LINQ Select()

using System.Linq;

class Cryptographer

{

 // ...

 public List<string> SynchronousEncrypt(List<string> data)

 {

 return data.Select(

 (item) => Encrypt(item)).ToList();

 }

 // ...

}

In Listing 18.13, we have a LINQ query using the Select() standard query
operator to encrypt each string within the collection.

Consider the same code in Listing 18.14, except that in this listing, the
code encrypts the strings in parallel.

Listing 18.14: Parallel LINQ Select()

using System.Linq;

class Cryptographer

ptg

Running LINQ Queries in Parallel 735

{

 // ...

 public List<string> ParallelEncrypt(List<string> data)

 {

 (item) => Encrypt(item)).ToList();

 }

 // ...

}

As Listing 18.14 shows, the change to enable parallel support is minimal.
All that it uses is a .NET Framework 4-introduced standard query opera-
tor, AsParallel(), on the static class System.Linq.ParallelEnumerable.
Using this simple extension method, the runtime begins executing over
the items within the data collection and encrypting them in parallel. The
result is a completion time that gets noticeably shorter than the synchro-
nous alternative over a significantly sized set when there are multiple
processors.

System.Linq.ParallelEnumerable includes a superset of the query
operators available on System.Linq.Enumerable, resulting in possible per-
formance improvements for all of the predominant query operators
including those used for filtering (Where()), projecting (Select()), joining,
grouping, and aggregating.

Listing 18.15: Parallel LINQ with Standard Query Operators

// ...

parallelGroups;

 OrderBy(item => item).

 // Show the total count of items still

 // matches the original count

 System.Diagnostics.Trace.Assert(

 data.Count == parallelGroups.Sum(

 item => item.Count()));

// ...

As Listing 18.15 shows, invoking the parallel version simply involves a call
to the IEnumerable<T>.AsParallel() extension method. Furthermore, the
result of calling a parallel standard query operator is a parallel enumerator,

 return data.AsParallel().Select(

ParallelQuery<IGrouping<char, string>>

parallelGroups = data.AsParallel().

ptg

Chapter 18: Multithreading736

usually ParallelQuery<T>, which means that further operations on the
result of a PLINQ query will be performed in parallel.

To use PLINQ with query expressions, the process is very similar (see
Listing 18.16).

Listing 18.16: Parallel LINQ with Query Expressions

// ...

 ParallelQuery<IGrouping<char, string>> parallelGroups;

 parallelGroups =

 // Show the total count of items still

 // matches the original count

 System.Diagnostics.Trace.Assert(

 data.Count == parallelGroups.Sum(

 item => item.Count()));

// ...

As you saw in the previous examples, converting a query to execute in par-
allel is simple. There is one significant caveat, however. As we will discuss
in depth in the next chapter, you must take care not to allow multiple
threads to inappropriately access and modify the same memory simulta-
neously. Doing so will cause a race condition.

Just as with parallel for and foreach, PLINQ operations also have the
potential of returning multiple exceptions for the exact same reason
(simultaneous execution of iterations). Fortunately, the mechanism for
catching the exceptions is the same as well; PLINQ exceptions are accessi-
ble via the InnerExceptions property of the AggregateException. There-
fore, wrapping a PLINQ query in a try/catch block with the exception type
of System.AggregateException will successfully handle any exceptions
within each iteration that were unhandled.

Canceling a PLINQ Query
Not surprisingly, the cancellation request pattern is also available on
PLINQ queries. Listing 18.16 (with Output 18.8) provides an example. Like
the parallel loops, canceled PLINQ queries will throw a System.Opera-
tionCanceledException. Also, PLINQ queries block the calling thread
until they complete. Therefore, Listing 18.17 also wraps the query in a task.

 from text in data.AsParallel()

 orderby text

 group text by text[0];

ptg

Running LINQ Queries in Parallel 737

Listing 18.17: Canceling a Parallel Loop

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading;

using System.Threading.Tasks;

public class Program

{

 public static List<string> ParallelEncrypt(

 List<string> data,

 CancellationToken cancellationToken)

 {

 (item) => Encrypt(item)).ToList();

 }

 public static void Main()

 {

 List<string> data = Utility.GetData(1000000).ToList();

 Console.WriteLine("Push ENTER to exit.");

 Task task = Task.Factory.StartNew(() =>

 {

 data = ParallelEncrypt(data, cts.Token);

 } , cts.Token);

 // Wait for the user's input

 Console.Read();

 Console.Write(stars);

 // ...

}

return data.AsParallel().WithCancellation(

cancellationToken).Select(

 CancellationTokenSource cts =

 new CancellationTokenSource();

 cts.Cancel();

 try{task.Wait();}

 catch (AggregateException){} }

OUTPUT 18.8:

ERROR: The operation was canceled.

ptg

Chapter 18: Multithreading738

As with a parallel loop, canceling a PLINQ query requires a Cancella-
tionToken, which is available on a CancellationTokenSource.Token prop-
erty. However, rather than overloading every PLINQ query to support the
cancellation token, the ParallelQuery<T> object returned by IEnumera-
ble’s AsParallel() method includes a WithCancellation() extension
method that simply takes a CancellationToken. As a result, calling Can-
cel() on the CancellationTokenSource object will request the parallel
query to cancel—because it checks the IsCancellationRequested property
on the CancellationToken.

As mentioned, canceling a PLINQ query will throw an exception in
place of returning the complete result. Therefore, all canceled PLINQ que-
ries will need to be wrapped by try{…}/catch(OperationCanceledExcep-
tion){…} blocks to avoid an unhandled exception. Alternatively, as shown
in Listing 18.17, pass the CancellationToken to both ParallelEncrypt()
and as a second parameter on StartNew(). This will cause task.Wait() to
throw an AggregateException whose InnerException property will be set
to a TaskCanceledException.

Multithreading before .NET Framework 4

TPL is a fantastic library covering a multitude of multithreading patterns
with extensibility points to handle even more. However, there is one sig-
nificant drawback to TPL: It is available only for the .NET Framework 4 or
for use with the Rx library in .NET 3.5. In this section, we cover multi-
threading technology before TPL.

Asynchronous Operations with System.Threading.Thread
Listing 18.18 (with Output 18.9) provides an example. Like TPL, there is a
fundamental type, System.Threading.Thread, which is used to control an
asynchronous operation. Like System.Threading.Tasks.Task in TPL,
Thread includes a Start method and a wait equivalent, Join().

Listing 18.18: Starting a Method Using System.Threading.Thread

using System;

public class RunningASeparateThread

using System.Threading;

ptg

Multithreading before .NET Framework 4 739

{

 public const int Repetitions = 1000;

 public static void Main()

 {

 for (int count = 0; count < Repetitions; count++)

 {

 Console.Write('-');

 }

 }

 public static void DoWork()

 {

 for (int count = 0; count < Repetitions; count++)

 {

 Console.Write('.');

 }

 }

}

 ThreadStart threadStart = DoWork;

 Thread thread = new Thread(threadStart);

 thread.Start();

 thread.Join();

OUTPUT 18.9:

................................---

..

..

..

..

......................---

..

..

..

..

.........--

..

...

ptg

Chapter 18: Multithreading740

Like the output of Listing 18.9, which used TPL, Listing 18.18’s code
(see Output 18.9) intersperses . and – in the output. The code that is to exe-
cute in a new thread appears in the DoWork() method. The DoWork()
method outputs a . during each iteration within a loop. Besides the fact
that it contains code for starting another thread, the Main() method is vir-
tually identical in structure to DoWork(), except that it displays -. The
resultant output is due to a series of dashes until the thread context
switches, at which time the program displays periods until the next thread
switch, and so on.2

In order for code to run under the context of a different thread, you
need a delegate of type System.Threading.ThreadStart or System.
Threading.ParameterizedThreadStart (the latter allows for a single
parameter of type object), identifying the code to execute. Given a Thread
instance created using the thread-start delegate constructor, you can start
the thread executing with a call to thread.Start(). (Listing 18.18 shows
the ThreadStart explicitly to identify the delegate type. In general, DoWork
could be passed directly to the thread constructor using C# 2.0’s delegate
inference.) Starting the thread simply involves a call to Thread.Start().
As soon as the DoWork() method begins execution, the call to Thread.
Start() returns and executes the for loop in the Main() method. The
threads are now independent and neither waits for the other. The output
from Listing 18.18 and Listing 18.19 will intermingle the output of each
thread, instead of creating a series of . followed by -.

Thread Management
Threads include a number of methods and properties for managing their
execution.

• Join(): Once threads are started, you can cause a “wait for comple-
tion” with a call to thread.Join(). The calling thread will wait
until the thread instance terminates. The Join() method is over-
loaded to take either an int or a TimeSpan to support a maximum
time to wait for thread completion before continuing execution.

2. As mentioned earlier, it is possible to increase the chances of a thread context switch by
using Start /low /b <program.exe> to execute the program.

ptg

Multithreading before .NET Framework 4 741

• IsBackground: Another thread configuration option is the
thread.IsBackGround property. By default, a thread is a foreground
thread, meaning the process will not terminate until the thread com-
pletes. In contrast, setting the IsBackground property to true will
allow process execution to terminate prior to a thread’s completion.

• Priority: When using the Join() method, you can increase or
decrease the thread’s priority by setting the Priority to a new
ThreadPriority enum value (Lowest, BelowNormal, Normal, Above-
Normal, or Highest).

• ThreadState: A thread’s state is accessible through the ThreadState
property, a more precise reflection of the Boolean IsAlive property.
The ThreadState enum flag values are Aborted, AbortRequested,
Background, Running, Stopped, StopRequested, Suspended, Suspend-
Requested, Unstarted, and WaitSleepJoin. The flag names indicate
activities that may occur on a thread. Two noteworthy methods are
Thread.Sleep() and Abort().

• Thread.Sleep(): Thread.Sleep() is a static method that pauses the
current thread for a period. A single parameter (in milliseconds, or a
TimeSpan) specifies how long the active thread waits before continu-
ing execution. This enables switching to a different thread for a spe-
cific period.

This method is not for accurate timing. Returns can occur hundreds of
milliseconds before or after the specified time.

• Abort(): A thread’s Abort() method causes a ThreadAbortException
to be thrown within the target thread at whatever location the
thread is executing when Abort() is invoked. As already detailed,
aborting a thread introduces uncertainty into the thread’s behavior
and could cause data integrity and resource cleanup problems.
Developers should consider the Abort() method to be a last resort.
Instead, they should rely on threads running to completion and/or
signaling them to escape out of whatever code is running via some
with shared state.

From this list of Thread members, only Join() and ThreadState have Task
equivalents. For the most part, this is because there are generally preferable

ptg

Chapter 18: Multithreading742

equivalents or the behavior of the member is undesirable as a best practice.
For example, aborting a thread may threaten data integrity or inadequate
resource de-allocation, as mentioned earlier in the chapter. Therefore,
given the .NET Framework 4, developers should generally avoid these
members in favor of their task equivalents or alternative patterns entirely.

In summary, the general priority for selecting from the asynchronous
class options is Task, ThreadPool, and Thread. In other words, use TPL, but
if that doesn’t fit, use ThreadPool; if that still doesn’t suffice, use Thread.

One particular Thread member that is likely to crop up more frequently
because there is no Task or ThreadPool equivalent is Thread.Sleep().
Although, if it doesn’t introduce too much unnecessary complexity, con-
sider using a timer in place of Sleep().

Thread Pooling
Regardless of the number of processors, an excess of threads negatively
affects performance. To efficiently manage thread creation, TPL makes
extensive use of CLR’s thread pool, System.Threading.ThreadPool. Most
importantly, the thread pool dynamically determines when to use existing
threads rather than creating new ones. Fortunately, the .NET 3.5 Frame-
work includes a version of the System.Threading.ThreadPool, so it is
available even without TPL.

Accessing threads in ThreadPool is similar to explicit use of the Thread
class except that the invocation is via a static method, QueueUser-
WorkItem() (see Listing 18.19).

Listing 18.19: Using ThreadPool Instead of Instantiating Threads Explicitly

using System;

using System.Threading;

public class Program

{

 public const int Repetitions = 1000;

 public static void Main()

 {

 for (int count = 0; count < Repetitions; count++)

 {

 ThreadPool.QueueUserWorkItem(DoWork, '.');

ptg

Multithreading before .NET Framework 4 743

 Console.Write('-');

 }

 // Pause until the thread completes

 }

 {

 for (int count = 0; count < Repetitions; count++)

 {

 Console.Write(state);

 }

 }

}

The output is similar to Output 18.9, an intermingling of . and -. This pro-
vides more-efficient execution on single- and multiprocessor computers.
The efficiency is achieved by reusing threads over and over, rather than
reconstructing them for every asynchronous call.

Unfortunately, thread pool use is not without its pitfalls. Activities
such as I/O operations and other framework methods that internally use
the thread pool can consume threads as well. Consuming all threads
within the pool can delay execution and, in extreme cases, cause a dead-
lock. Similarly, if the asynchronous code will take a long time to execute,
then it is inappropriate to consume a shared thread from the thread pool
and instead favor explicit Thread instantiation (use TaskCreationOp-
tions.LongRunning given TPL as mentioned earlier).

Unfortunately, another disadvantage with the thread pool is that,
unlike either Thread or Task, the ThreadPool API does not return a han-
dle to the thread or task itself. This prevents the calling thread from con-
trolling it with the thread management functions described earlier in the
chapter. Just monitoring state is not available without explicitly adding a
custom implementation. Assuming these deficiencies are not critical,
developers should consider using the thread pool over explicit thread
creation because of it increased efficiency—at least prior to .NET Frame-
work 4 and TPL; the fact that TPL uses the thread pool internally indi-
cates the significance of using it for the majority of multithreading
scenarios.

 Thread.Sleep(1000);

 public static void DoWork(object state)

ptg

Chapter 18: Multithreading744

Unhandled Exceptions on the AppDomain

To catch all exceptions from a thread (for which appropriate handling is
known), you surround the root code block with a try/catch/finally block,
just as you would for all code within Main(). However, what happens if a
third-party component creates an alternate thread and throws an unhan-
dled exception from that thread? Similarly, what if queued work on the
thread pool throws an exception? A try/catch block in Main() will not
catch an exception on an alternate thread. Furthermore, without access to
any “handle” that invoked the thread (such as a Task) there is no way to
catch any exceptions that it might throw. Even if there was, the code could
never appropriately recover from all possible exceptions and continue exe-
cuting (in fact, this is why in .NET 4.0 exceptions such as System.Stack-
OverflowException, for example, will not be caught and instead will tear
down the application). The general unhandled-exceptions guideline is for
the program to shut down and restart in a clean state instead of behaving
erratically or hanging because of an invalid state.

However, instead of crashing suddenly or ignoring an unhandled
exception entirely if it occurs on an alternate thread, it is often desirable to
save any working data and/or log the exception for error reporting and
future debugging. This requires a mechanism to register for notifications
of unhandled exceptions.

Registering for unhandled exceptions on the main application domain
occurs via an application domain’s UnhandledException event. Listing
18.20 demonstrates that process, and Output 18.10 shows the results.

Listing 18.20: Registering for Unhandled Exceptions

using System;

using System.Threading;

public class Program

{

 public static void Main()

 {

 try

 {

 // Register a callback to

 // receive notifications

 // of any unhandled exception.

 AppDomain.CurrentDomain.UnhandledException

 += OnUnhandledException;

ptg

Unhandled Exceptions on the AppDomain 745

 ThreadPool.QueueUserWorkItem(

 state =>

 {

 throw new Exception(

 "Arbitrary Exception");

 });

 // ...

 // Wait for the unhandled exception to fire

 // ADVANCED: Use ManualResetEvent to avoid

 // timing dependent code.

 Thread.Sleep(10000);

 Console.WriteLine("Still running...");

 }

 finally

 {

 Console.WriteLine("Exiting...");

 }

 }

 public static void ThrowException()

 {

 throw new ApplicationException(

 "Arbitrary exception");

 }

}

 static void OnUnhandledException(

 object sender,

 UnhandledExceptionEventArgs eventArgs)

 {

 Exception exception =

 (Exception)eventArgs.ExceptionObject;

 Console.WriteLine("ERROR ({0}):{1} ---> {2}",

 exception.GetType().Name,

 exception.Message,

 exception.InnerException.Message);

 }

OUTPUT 18.10:

Still running...

Exiting...

ERROR (AggregateException):One or more errors occurred. ---> Arbitrary

Exception

ptg

Chapter 18: Multithreading746

The UnhandledException callback will fire for all unhandled exceptions on
threads within the application domain, including the main thread. This is a
notification mechanism, not a mechanism to catch and process exceptions
so that the application can continue. After the event, the application will
exit. In fact, the unhandled exception will cause the Windows Error dialog
to display (Dr. Watson). And for console applications, the exception will
appear on the console.

Astute readers will note that in Listing 18.20 we use ThreadPool rather
than Task. This is because of the likelihood that the garbage collector will
not have executed on Task before the application begins to shut down and
any exceptions within the finalization will be suppressed rather than going
unhandled. The likelihood of this case in most programs is generally low,
but the best practice to avoid significant unhandled exceptions during
application exit is to support task cancellation to cancel the task and wait
for it to exit before shutting down the application.

SUMMARY

This chapter delved into the details surrounding the creation and manipu-
lation of threads using the .NET Framework 4-introduced Task Parallel
Library or TPL. This library includes new APIs for executing for and
foreach loops such that iterations can potentially run in parallel. Underly-
ing TPL is a new fundamental threading class, System.Threading.
Tasks.Task, the basic threading unit on which all of TPL is based. It pro-
vides the standard multithreaded programming and monitoring activities
and keeps them relatively simple. Given that Task forms the basis for par-
allel loops (Parallel.For() and Parallel.ForEach()), PLINQ, and more,
it is clear that Task and its peer classes also enable a multitude of more
complex threading scenarios—including unhandled exception handling
and Task chaining/notifications—via Task.ContinueWith<T>.

In addition, the chapter demonstrated Parallel LINQ (PLINQ) in which
a single extension method, AsParallel(), transforms all further LINQ
queries to run in parallel. The elegance and simplicity with which this fits
into the framework is superb.

ptg

Summary 747

The chapter closes with a section on multithreaded programming prior
to TPL. The foundational class for this is System.Threading.Thread, and
when appropriate, static methods on ThreadPool provide efficient means
for reusing Threads rather than creating new ones—a relatively inefficient
operation. The priority order for choosing an asynchronous class is Task,
ThreadPool, and Thread, resorting to a Thread.Sleep(), for example,
because neither Task nor ThreadPool offers an equivalent. In making this
evaluation, don’t forget to consider using the Rx library in order to gain
access to TPL and PLINQ within .NET 3.5.

There is one glaring omission from the chapter: synchronization. The
introduction mentioned multithreading problems such as deadlocks and
race conditions, but the chapter never discussed how to avoid them. This is
the topic of the next chapter.

ptg

This page intentionally left blank

ptg

749

19
Synchronization and More
Multithreading Patterns

N THE PRECEDING CHAPTER, we discussed the details of multithreaded
programming using the Task Parallel Library (TPL) and Parallel LINQ

(PLINQ). One topic specifically avoided, however, was thread synchroni-
zation that prevents race conditions while avoiding deadlocks. Thread
synchronization is the topic of this chapter.

We begin with a multithreaded example with no thread synchronization
around shared data—resulting in a race condition in which data integrity is
lost. This serves as the introduction for why we need thread synchronization
followed by myriad mechanisms and best practices for doing it.

The second half of the chapter looks at some additional multithreading
patterns. This is really a continuation of the patterns first introduced in

I

2

34

5

6 1
System.Threading.Interlocked

Synchronization Best Practices

More Synchronization Types

Monitor

Lock

Volatile

Mutex

WaitHandle

Reset EventsMultithreading
Patterns

Synchronization

Thread Local Storage

Timers
Asynchronous
Programming Model

Background
Worker
Pattern

Windows UI
Programming

ptg

Chapter 19: Synchronization and More Multithreading Patterns750

Chapter 18 except that they depend on several of the synchronization tools
introduced in this chapter. In addition, the chapter includes a discussion of
three timers and Windows-based user interface programming.

This entire chapter uses TPL, so the samples cannot be compiled on
frameworks prior to .NET Framework 4. However, unless specifically
identified as a .NET Framework 4 API, the only reason for the .NET Frame-
work 4 restriction is the use of the System.Threading.Tasks.Task class to
execute the asynchronous operation. Modifying the code to instantiate a
System.Threading.Thread and use a Thread.Join() to wait for the thread
to execute will allow the vast majority of samples to compile on earlier
frameworks.

Furthermore (as mentioned in the preceding chapter), Microsoft
released the Reactive Extensions to .NET (Rx), a separate download that
adds support for TPL and PLINQ within the .NET 3.5 framework. This
framework also includes the concurrent and synchronization types intro-
duced in this chapter. For this reason, code listings that depend on Task or
that introduce C# 4.0 synchronization classes are, in fact, available from
.NET 3.5 using the functionality backported to the .NET 3.5 Framework via
Rx and reference to the System.Threading.dll assembly.

Synchronization

Running a new thread is a relatively simple programming task. What makes
multithreaded programming difficult, however, is identifying which data
multiple threads could access simultaneously. The program must synchro-
nize such data to prevent simultaneous access. Consider Listing 19.1.

Listing 19.1: Unsynchronized State

using System;

using System.Threading.Tasks;

class Program

{

 const int _Total = int.MaxValue;

 static long _Count = 0;

 public static void Main()

 {

 Task task = Task.Factory.StartNew(Decrement);

ptg

 Synchronization 751

 // Increment

 for (int i = 0; i < _Total; i++)

 {

 _Count++;

 }

 task.Wait();

 Console.WriteLine("Count = {0}", _Count);

 }

 static void Decrement()

 {

 // Decrement

 for (int i = 0; i < _Total; i++)

 {

 _Count--;

 }

 }

}

One possible result of Listing 19.1 appears in Output 19.1.

The important thing to note about Listing 19.1 is that the output is not 0.
It would have been if Decrement() was called directly (sequentially). How-
ever, when calling Decrement() asynchronously, a race condition occurs
because the individual steps within _Count++ and _Count-- statements
intermingle. (As discussed in the Thread Basics Beginner Topic early in
Chapter 18, a single statement in C# will likely involve multiple steps.)
Consider the sample execution in Table 19.1.

Table 19.1 shows a parallel execution (or a thread context switch) by the
transition of instructions appearing from one column to the other. The
value of _Count after a particular line has completed appears in the last col-
umn. In this sample execution, _Count++ executes twice and _Count--
occurs once. However, the resultant _Count value is 0, not 1. Copying a
result back to _Count essentially wipes out any _Count value changes that
occurred since the read of _Count on the same thread.

OUTPUT 19.1:

Count = 113449949

ptg

Chapter 19: Synchronization and More Multithreading Patterns752

The problem in Listing 19.1 is a race condition, where multiple threads
have simultaneous access to the same data elements. As this sample execu-
tion demonstrates, allowing multiple threads to access the same data ele-
ments likely undermines data integrity, even on a single-processor
computer. To remedy this, the code needs synchronization around the
data. Code or data synchronized for simultaneous access by multiple
threads is thread-safe.

There is one important point to note about atomicity of reading and
writing to variables. The runtime guarantees that a type whose size is no

TABLE 19.1: Sample Pseudocode Execution

Main Thread Decrement Thread Count

.

Copy the value 0 out of _Count. 0

Increment the copied value (0),
resulting in 1.

0

Copy the resultant value (1) into
_Count.

1

Copy the value 1 out of _Count. 1

Copy the value 1 out of
_Count.

1

Increment the copied value (1),
resulting in 2.

1

Copy the resultant value (2) into
_Count.

2

Decrement the copied value
(1), resulting in 0.

2

Copy the resultant value (0)
into _Count.

0

.

ptg

 Synchronization 753

bigger than a native (pointer-size) integer will not be read or written
partially. Assuming a 64-bit operating system, therefore, reads and
writes to a long (64 bits) will be atomic. However, reads and writes to a
128-bit variable such as decimal may not be atomic. Therefore, write
operations to change a decimal variable may be interrupted after copy-
ing only 32 bits, resulting in the reading of an incorrect value, known as
a torn read.

B E G I N N E R T O P I C

Multiple Threads and Local Variables
Note that it is not necessary to synchronize local variables. Local variables
are loaded onto the stack and each thread has its own logical stack. There-
fore, each local variable has its own instance for each method call. By
default, local variables are not shared across method calls; therefore, they
are also not shared among multiple threads.

However, this does not mean local variables are entirely without con-
currency issues since code could easily expose the local variable to multi-
ple threads. A parallel for loop that shares a local variable between
iterations, for example, will expose the variable to concurrent access and a
race condition (see Listing 19.2).

Listing 19.2: Unsynchronized Local Variables

using System;

using System.Threading.Tasks;

class Program

{

 public static void Main()

 {

 int x = 0;

 Parallel.For(0, int.MaxValue, i =>

 {

 x++;

 x--;

 });

 Console.WriteLine("Count = {0}", x);

 }

}

ptg

Chapter 19: Synchronization and More Multithreading Patterns754

In this example, x (a local variable) is accessed within a parallel for loop
and so multiple threads will modify it simultaneously, creating a race con-
dition very similar to Listing 19.1. The output is unlikely to yield the value
0 even though x is incremented and decremented the same number of
times.

Synchronization Using Monitor
To synchronize multiple threads so that they cannot execute particular sec-
tions of code simultaneously, use a monitor to block the second thread
from entering a protected code section before the first thread has exited
that section. The monitor functionality is part of a class called Sys-
tem.Threading.Monitor, and the beginning and end of protected code sec-
tions are marked with calls to the static methods Monitor.Enter() and
Monitor.Exit(), respectively.

Listing 19.3 demonstrates synchronization using the Monitor class
explicitly. As this listing shows, it is important that all code between calls
to Monitor.Enter() and Monitor.Exit() be surrounded with a try/finally
block. Without this, an exception could occur within the protected section
and Monitor.Exit() may never be called, thereby blocking other threads
indefinitely.

Listing 19.3: Synchronizing with a Monitor Explicitly

using System;

using System.Threading;

using System.Threading.Tasks;

class Program

{

 const int _Total = int.MaxValue;

 static long _Count = 0;

 public static void Main()

 {

 Task task = Task.Factory.StartNew(Decrement);

 // Increment

 for (int i = 0; i < _Total; i++)

 readonly static object _Sync = new object();

ptg

 Synchronization 755

 {

 }

 task.Wait();

 Console.WriteLine("Count = {0}", _Count);

 }

 static void Decrement()

 {

 for (int i = 0; i < _Total; i++)

 {

 }

 }

}

The results of Listing 19.3 appear in Output 19.2.

 bool lockTaken = false;

 Monitor.Enter(_Sync, ref lockTaken);

 try

 {

 _Count++;

 }

 finally

 {

 if (lockTaken)

 {

 Monitor.Exit(_Sync);

 } }

 bool lockTaken = false;

 Monitor.Enter(_Sync, ref lockTaken);

 try

 {

 _Count--;

 }

 finally

 {

 if (lockTaken)

 {

 Monitor.Exit(_Sync);

 }

 }

OUTPUT 19.2:

Count = 0

ptg

Chapter 19: Synchronization and More Multithreading Patterns756

Note that calls to Monitor.Enter() and Monitor.Exit() are associated
with each other by sharing the same object reference passed as the parame-
ter (in this case _Sync).

The Monitor.Enter() overload method that takes the lockTaken
parameter was only added to the framework in .NET 4.0. Before that, no
such lockTaken parameter was available and there was no way to
reliably catch an exception that occurred between the Monitor.Enter()
and try block. Placing the try block immediately following the
Monitor.Enter() call was reliable in release code because the JIT
prevented any such asynchronous exception from sneaking in. However,
anything other than a try block immediately following the Moni-
tor.Enter(), including any instructions that the compiler may have
injected within debug code, could prevent the JIT from reliably returning
execution within the try block. Therefore, if an exception did occur, it
would leak the lock (the lock remains acquired) rather than executing the
final block and releasing it—likely causing a deadlock when another
thread tries to acquire the lock.

Monitor also supports a Pulse() method for allowing a thread to
enter the “ready queue,” indicating it is up next for execution. This is
a common means of synchronizing producer-consumer patterns so
that no “consume” occurs until there has been a “produce.” The pro-
ducer thread that owns the monitor (by calling Monitor.Enter()) calls
Monitor.Pulse() to signal the consumer thread (which may already
have called Monitor.Enter()) that an item is available for consumption,
so “get ready.” For a single Pulse() call, only one thread (consumer in
this case) can enter the ready queue. When the producer thread calls
Monitor.Exit(), the consumer thread takes the lock (Monitor.Enter()
completes) and enters the critical section to begin “consuming” the item.
Once the consumer processes the waiting item, it calls Exit(), thus
allowing the producer (currently blocked with Monitor.Enter()) to pro-
duce again. In this example, only one thread can enter the ready queue at
a time, ensuring that there is no “consumption” without “production”
and vice versa.

ptg

 Synchronization 757

Using the lock Keyword
Because of the frequent need for synchronization using Monitor in multi-
threaded code, and the fact that the try/finally block could easily be
forgotten, C# provides a special keyword to handle this locking synchroni-
zation pattern. Listing 19.4 demonstrates the use of the lock keyword, and
Output 19.3 shows the results.

Listing 19.4: Synchronization Using the lock Keyword

using System;

using System.Threading;

using System.Threading.Tasks;

class Program

{

 const int _Total = int.MaxValue;

 static long _Count = 0;

 public static void Main()

 {

 Task task = Task.Factory.StartNew(Decrement);

 // Increment

 for (int i = 0; i < _Total; i++)

 {

 }

 task.Wait();

 Console.WriteLine("Count = {0}", _Count);

 }

 static void Decrement()

 {

 for (int i = 0; i < _Total; i++)

 {

 readonly static object _Sync = new object();

 lock (_Sync)

 {

 _Count++;

 }

 lock (_Sync)

 {

 _Count--;

 }

ptg

Chapter 19: Synchronization and More Multithreading Patterns758

 }

 }

}

By locking the section of code accessing _Count (using either lock or
Monitor), you make the Main() and Decrement() methods thread-safe,
meaning they can be safely called from multiple threads simultaneously.
(Prior to C# 4.0 the concept was the same except the compiler-emitted code
depended on the Monitor.Enter() method without the lockTaken para-
meter and the Monitor.Enter() called was emitted before the try block.)

Synchronization comes at a cost to performance. Listing 19.4, for exam-
ple, takes an order of magnitude longer to execute than Listing 19.1 does,
which demonstrates lock’s relatively slow execution compared to the exe-
cution of incrementing and decrementing the count.

Even when lock is insignificant in comparison with the work it syn-
chronizes, programmers should avoid indiscriminate synchronization in
order to avoid the possibility of deadlocks and unnecessary synchroniza-
tion on multiprocessor computers that could instead be executing code in
parallel. The general best practice for object design is to synchronize muta-
ble static state (there is no need to synchronize something that never
changes) and not any instance data. Programmers who allow multiple
threads to access a particular object must provide synchronization for the
object. Any class that explicitly deals with threads is likely to want to make
instances thread-safe to some extent.

Choosing a lock Object
Whether or not the lock keyword or the Monitor class is explicitly used, it
is crucial that programmers carefully select the lock object.

In the previous examples, the synchronization variable, _Sync, is declared
as both private and read-only. It is declared read-only to ensure that the value
is not changed between calls to Monitor.Enter() and Monitor.Exit(). This
allows correlation between entering and exiting the synchronized block.

OUTPUT 19.3:

Count = 0

ptg

 Synchronization 759

Similarly, the code declares _Sync as private so that no synchronization
block outside the class can synchronize the same object instance, causing
the code to block.

If the data is public, then the synchronization object may be public so that
other classes can synchronize using the same object instance. This makes it
harder to avoid deadlock. Fortunately, the need for this pattern is rare. For
public data, it is preferable to leave synchronization entirely outside the class,
allowing the calling code to take locks with its own synchronization object.

It’s important that the synchronization object not be a value type. If the
lock keyword is used on a value type, then the compiler will report an
error. (In the case of accessing the System.Threading.Monitor class explic-
itly [not via lock], no such error will occur at compile time. Instead, the code
will throw an exception with the call to Monitor.Exit(), indicating there
was no corresponding Monitor.Enter() call.) The issue is that when using a
value type, the runtime makes a copy of the value, places it in the heap (box-
ing occurs), and passes the boxed value to Monitor.Enter(). Similarly, Mon-
itor.Exit() receives a boxed copy of the original variable. The result is that
Monitor.Enter() and Monitor.Exit() receive different synchronization
object instances so that no correlation between the two calls occurs.

Why to Avoid Locking on this, typeof(type), and string
One common pattern is to lock on the this keyword for instance data in a
class, and on the type instance obtained from typeof(type) (for example,
typeof(MyType)) for static data. Such a pattern provides a synchronization
target for all states associated with a particular object instance when this
is used, and all static data for a type when typeof(type) is used. The prob-
lem is that the synchronization target that this (or typeof(type)) points to
could participate in the synchronization target for an entirely different
synchronization block created in an unrelated block of code. In other
words, although only the code within the instance itself can block using
the this keyword, the caller that created the instance can pass that instance
to a synchronization lock.

The result is that two different synchronization blocks that synchronize
two entirely different sets of data could block each other. Although
perhaps unlikely, sharing the same synchronization target could have
an unintended performance impact and, in extreme cases, even cause

ptg

Chapter 19: Synchronization and More Multithreading Patterns760

a deadlock. Instead of locking on this or even typeof(type), it is better to
define a private, read-only field on which no one will block except for the
class that has access to it.

Another lock type to avoid is string due to string interning. If the same
string constant appears within multiple locations it is likely that all loca-
tions will refer to the same instance, making the scope of the lock a lot
greater than expected.

In summary, use a per-synchronization context instance of type object
for the lock target.

A D V A N C E D T O P I C

Avoid Synchronizing with MethodImplAttribute
One synchronization mechanism that was introduced in .NET 1.0 was the
MethodImplAttribute. Used in conjunction with the MethodImplOp-

tions.Synchronized method, this attribute marks a method as synchro-
nized so that only one thread can execute the method at a time. To achieve
this, the just-in-time compiler essentially treats the method as though it
was surrounded by lock(this) or locking on the type in the case of a static
method. Such an implementation means that, in fact, the method and all
other methods on the same class, decorated with the same attribute and
enum parameter, are synchronized, not just each method relative to itself.
In other words, given two or more methods on the same class decorated
with the attribute, only one of them will be able to execute at a time and the
one executing will block all calls by other threads to itself or to any other
method in the class with the same decoration. Furthermore, since the syn-
chronization is on this (or even worse, on the type), it suffers the same det-
riments as lock(this) (or worse, for the static) discussed in the previous
section. As a result, it is a best practice to avoid the attribute altogether.

Declaring Fields as volatile
On occasion, the compiler and/or CPU may optimize code in such a way
that the instructions do not occur in the exact order they are coded, or some
instructions are optimized out. Such optimizations are innocuous when
code executes on one thread. However, with multiple threads, such optimi-
zations may have unintended consequences because the optimizations may

ptg

 Synchronization 761

change the order of execution of a field’s read or write operations relative to
an alternate thread’s access to the same field.

One way to stabilize this is to declare fields using the volatile key-
word. This keyword forces all reads and writes to the volatile field to
occur at the exact location the code identifies instead of at some other loca-
tion that the optimization produces. The volatile modifier identifies that
the field is susceptible to modification by the hardware, operating system,
or another thread. As such, the data is “volatile,” and the keyword
instructs the compilers and runtime to handle it more exactly.

Using the System.Threading.Interlocked Class
The mutual exclusion pattern described so far provides the minimum of
tools for handling synchronization within a process (application domain).
However, synchronization with System.Threading.Monitor is a relatively
expensive operation, and an alternative solution that the processor sup-
ports directly targets specific synchronization patterns.

Listing 19.5 sets _Data to a new value as long as the preceding value
was null. As indicated by the method name, this pattern is the compare/
exchange pattern. Instead of manually placing a lock around behaviorally
equivalent compare and exchange code, the Interlocked.CompareEx-
change() method provides a built-in method for a synchronous operation
that does the same check for a value (null) and swaps the first two param-
eters if the value is equal. Table 19.2 shows other synchronization methods
supported by Interlocked.

Listing 19.5: Synchronization Using System.Threading.Interlocked

class SynchronizationUsingInterlocked

{

 private static object _Data;

 // Initialize data if not yet assigned.

 static void Initialize(object newValue)

 {

 // If _Data is null then set it to newValue.

 Interlocked.CompareExchange(

 ref _Data, newValue, null);

 }

 // ...

}

ptg

Chapter 19: Synchronization and More Multithreading Patterns762

Most of these methods are overloaded with additional data type signa-
tures, such as support for long. Table 19.2 provides the general signatures
and descriptions. For example, the System.Threading namespace does not
include generic method signatures until C# 2.0, although earlier versions
do include nongeneric equivalents.

Note that you can use Increment() and Decrement() in place of the
synchronized ++ and -- operators from Listing 19.5, and doing so will
yield better performance. Also note that if a different thread accessed

TABLE 19.2: Interlock’s Synchronization-Related Methods

Method Signature Description

public static T CompareExchange<T>(

 T location,

 T value,

 T comparand

);

Checks location for the value in
comparand. If the values are equal,
it sets location to value and
returns the original data stored in
location.

public static T Exchange<T>(

 T location,

 T value

);

Assigns location with value and
returns the previous value.

public static int Decrement(

ref int location

);

Decrements location by one. It is
equivalent to the -- operator,
except Decrement() is thread-safe.

public static int Increment(

ref int location

);

Increments location by one. It is
equivalent to the ++ operator,
except Increment() is thread-safe.

public static int Add(

ref int location,

int value

);

Adds value to location and
assigns location the result. It is
equivalent to the += operator.

public static long Read(

ref long location

);

Returns a 64-bit value in a single
atomic operation.

ptg

 Synchronization 763

location using a noninterlocked method, then the two accesses would not
be synchronized correctly.

Event Notification with Multiple Threads
One area where developers often overlook synchronization is when
firing events. The unsafe thread code for publishing an event is similar
to Listing 19.6.

Listing 19.6: Firing an Event Notification

// Not thread-safe

{

 // Call subscribers

 OnTemperatureChanged(

 this, new TemperatureEventArgs(value));

}

This code is valid as long as there is no race condition between this method
and modifying the event. However, the code is not atomic, so multiple
threads could introduce a race condition. It is possible that between the
time when OnTemperatureChange is checked for null and the event is actu-
ally fired, OnTemperatureChange could be set to null, thereby throwing a
NullReferenceException. In other words, if multiple threads could possi-
bly access a delegate simultaneously, it is necessary to synchronize the
assignment and firing of the delegate.

Fortunately, the operators for adding and removing listeners are
thread-safe and static (operator overloading is done with static methods).
To correct Listing 19.6 and make it thread-safe, assign a copy, check the
copy for null, and fire the copy (see Listing 19.7).

Listing 19.7: Thread-Safe Event Notification

// ...

TemperatureChangedHandler localOnChange =

 OnTemperatureChanged;

if(localOnChanged != null)

{

 // Call subscribers

 localOnChanged(

 this, new TemperatureEventArgs(value));

}

// ...

if(OnTemperatureChanged != null)

ptg

Chapter 19: Synchronization and More Multithreading Patterns764

Given that a delegate is a reference type, it is perhaps surprising that
assigning a local variable and then firing with the local variable is suffi-
cient for making the null check thread-safe. Since localOnChange points to
the same location that OnTemperatureChange points to, one would think
that any changes in OnTemperatureChange would be reflected in localOn-
Change as well.

However, this is not the case because any calls to OnTemperatureChange
+= <listener> will not add a new delegate to OnTemperatureChange, but
rather will assign it an entirely new multicast delegate without having any
effect on the original multicast delegate to which localOnChange also
points. This makes the code thread-safe because only one thread will
access the localOnChange instance, and OnTemperatureChange will be an
entirely new instance if listeners are added or removed.

Synchronization Design Best Practices
Along with the complexities of multithreaded programming come several
best practices for handling the complexities.

Avoiding Deadlock

With the introduction of synchronization comes the potential for deadlock.
Deadlock occurs when two or more threads wait for each other to release a
synchronization lock. For example, Thread 1 requests a lock on _Sync1,
and then later requests a lock on _Sync2 before releasing the lock on
_Sync1. At the same time, Thread 2 requests a lock on _Sync2, followed by
a lock on _Sync1, before releasing the lock on _Sync2. This sets the stage for
the deadlock. The deadlock actually occurs if both Thread 1 and Thread 2
successfully acquire their initial locks (_Sync1 and _Sync2, respectively)
before obtaining their second locks.

For a deadlock to occur, four fundamental conditions must be met:

1. Mutual exclusion: One thread (ThreadA) exclusively owns a resource
such that no other thread (ThreadB) can acquire the same resource.

2. Hold and wait: One thread (ThreadA) with a mutual exclusion is wait-
ing to acquire a resource held by another thread (ThreadB).

3. No preemption: The resource held by a thread (ThreadA) cannot be
forcibly removed (ThreadA needs to release its own locked resource).

ptg

 Synchronization 765

4. Circular wait condition: Two or more threads form a circular chain
such that they lock on the same two or more resources and each waits
on the resource held by the next thread in the chain.

Removing any one of these conditions will prevent the deadlock.
A scenario likely to cause a deadlock is when two or more threads

request exclusive ownership on the same two or more synchronization tar-
gets (resources) and the locks are requested in different orders. This is
avoided when developers are careful to ensure that multiple lock acquisi-
tions are always in the same order. Another cause of a deadlock is locks
that are not reentrant. When a lock from one thread can block the same
thread—that is, it is re-requesting the same lock—the lock is not reentrant.
For example, if ThreadA acquires a lock and then re-requests the same lock
but is blocked because the lock is already owned, the lock is not reentrant
and the additional request will deadlock. Therefore, locks that are not
reentrant can occur only with a single thread.

The code generated by the lock keyword (with the underlying Monitor
class) is reentrant. However, as we shall see in the More Synchronization
Types section, there are lock types that are not re-entrant.

When to Provide Synchronization

As already discussed, all static data should be thread-safe. Therefore, syn-
chronization needs to surround static data that is mutable. Generally, this
means that programmers should declare private static variables and then
provide public methods for modifying the data. Such methods should
internally handle the synchronization.

In contrast, instance state is not expected to include synchronization.
Synchronization may significantly decrease performance and increase the
chance of a lock contention or deadlock. With the exception of classes that
are explicitly designed for multithreaded access, programmers sharing
objects across multiple threads are expected to handle their own synchro-
nization of the data being shared.

Avoiding Unnecessary Locking

Without compromising data integrity, programmers should avoid unnec-
essary synchronization where possible. For example, use immutable types

ptg

Chapter 19: Synchronization and More Multithreading Patterns766

between threads so that no synchronization is necessary (this approach has
proven invaluable in functional programming languages such as F#). Sim-
ilarly, avoid locking on operations on thread-safe operations such as sim-
ple reads and writes of an int.

More Synchronization Types
In addition to System.Threading.Monitor and System.Threading.Inter-
locked, several more synchronization techniques are available.

System.Threading.Mutex

System.Threading.Mutex is similar in concept to the System.Thread-
ing.Monitor class (without the Pulse() method support), except that the
lock keyword does not use it and Mutexes can be named so that they sup-
port synchronization across multiple processes. Using the Mutex class, you
can synchronize access to a file or some other cross-process resource. Since
Mutex is a cross-process resource, .NET 2.0 added support to allow for set-
ting the access control via a System.Security.AccessControl.MutexSecu-
rity object. One use for the Mutex class is to limit an application so that it
cannot run multiple times simultaneously, as Listing 19.8 demonstrates.

Listing 19.8: Creating a Single Instance Application

using System;

using System.Threading;

using System.Reflection;

class Program

{

 public static void Main()

 {

 // Indicates whether this is the first

 // application instance

 bool firstApplicationInstance;

 // Obtain the mutex name from the full

 // assembly name.

 string mutexName =

 Assembly.GetEntryAssembly().FullName;

 using(Mutex mutex = new Mutex(false, mutexName,

 out firstApplicationInstance))

 {

ptg

 Synchronization 767

 if(!firstApplicationInstance)

 {

 Console.WriteLine(

 "This application is already running.");

 }

 else

 {

 Console.WriteLine("ENTER to shutdown");

 Console.ReadLine();

 }

 }

 }

}

The results from running the first instance of the application appear in
Output 19.4.

The results of the second instance of the application while the first
instance is still running appear in Output 19.5.

In this case, the application can run only once on the machine, even if it is
launched by different users. To restrict the instances to one per user, prefix
Assembly.GetEntryAssembly().FullName with System.Windows.Forms.

Application.UserAppDataPath.Replace("\\", "+") instead. This
requires a reference to the System.Windows.Forms assembly.

Mutex derives from System.Threading.WaitHandle and, therefore, includes
WaitAll(), WaitAny(), and SignalAndWait() methods, allowing it to acquire
multiple locks automatically (something Monitor does not support).

WaitHandle

The base class for Mutex is a System.Threading.WaitHandle. This is a fun-
damental synchronization class used by the Mutex, EventWaitHandle, and

OUTPUT 19.4:

ENTER to shutdown

OUTPUT 19.5:

This application is already running.

ptg

Chapter 19: Synchronization and More Multithreading Patterns768

Semaphore synchronization classes. The key methods on a WaitHandle
are the WaitOne() methods. These methods block execution until the
WaitHandle instance is signaled or set. The WaitOne() methods include
several overloads allowing for an indefinite wait: void WaitOne(), a milli-
second timed wait; bool WaitOne(int milliseconds); and bool Wait-
One(TimeSpan timeout), a TimeSpan wait. The versions that return a
Boolean will return a value of true whenever the WaitHandle is signaled
before the timeout.

In addition to the WaitHandle instance methods, there are two key static
members: WaitAll() and WaitAny(). Like their instance cousins, the static
members also support timeouts. In addition, they take a collection of Wait-
Handles, in the form of an array, so that they can respond to signals coming
from any within the collection.

One last point to note about WaitHandle is that it contains a handle
(of type SafeWaitHandle) that implements IDisposable. As such, care is
needed to ensure that WaitHandles are disposed when they are no longer
needed.

Reset Events: ManualResetEvent and ManualResetEventSlim

One way to control uncertainty about when particular instructions in a
thread will execute relative to instructions in another thread is with reset
events. In spite of the term events, reset events have nothing to do with C#
delegates and events. Instead, reset events are a way to force code to wait
for the execution of another thread until the other thread signals. These are
especially useful for testing multithreaded code because it is possible to
wait for a particular state before verifying the results.

The reset event types are System.Threading.ManualResetEvent and the
.NET Framework 4–added lightweight, version System.Threading.Manual
ResetEventSlim. (As discussed in the Advanced Topic on page 772, there is
a third type, System.Threading.AutoResetEvent, but programmers should
avoid it in favor of one of the first two.) The key methods on the reset events
are Set() and Wait() (called WaitOne() on ManualResetEvent). Calling the
Wait() method will cause a thread to block until a different thread calls

ptg

 Synchronization 769

Set(), or until the wait period times out. Listing 19.9 demonstrates how this
works, and Output 19.6 shows the results.

Listing 19.9: Waiting for ManualResetEventSlim

using System;

using System.Threading;

using System.Threading.Tasks;

public class Program

{

 static ManualResetEventSlim MainSignaledResetEvent;

 static ManualResetEventSlim DoWorkSignaledResetEvent;

 public static void DoWork()

 {

 Console.WriteLine("DoWork() started....");

 Console.WriteLine("DoWork() ending....");

 }

 public static void Main()

 {

 using(MainSignaledResetEvent =

 new ManualResetEventSlim())

 using (DoWorkSignaledResetEvent =

 new ManualResetEventSlim())

 {

 Console.WriteLine(

 "Application started....");

 Console.WriteLine("Starting task....");

 Task task = Task.Factory.StartNew(DoWork);

 // Block until DoWork() has started.

 DoWorkSignaledResetEvent.Wait();

 Console.WriteLine("Thread executing...");

 MainSignaledResetEvent.Set();

 task.Wait();

 Console.WriteLine("Thread completed");

 Console.WriteLine(

 "Application shutting down....");

 }

 }

}

 DoWorkSignaledResetEvent.Set();

 MainSignaledResetEvent.Wait();

ptg

Chapter 19: Synchronization and More Multithreading Patterns770

Listing 19.9 begins by instantiating and starting a new Task. Table 19.3
shows the execution path in which each column represents a thread. In
cases where code appears on the same row, it is indeterminate which side
executes first.

OUTPUT 19.6:

Application started....

Starting thread....

DoWork() started....

Waiting while thread executes...

DoWork() ending....

Thread completed

Application shutting down....

TABLE 19.3: Execution Path with ManualResetEvent Synchronization

Main() DoWork()

...

Console.WriteLine(

 "Application started....");

Task task = new Task(DoWork);

Console.WriteLine(

 "Starting thread....");

task.Start();

DoWorkSignaledResetEvent.Wait(); Console.WriteLine(

 "DoWork() started....");

DoWorkSignaledResetEvent.Set();

Console.WriteLine(

 "Thread executing...");

MainSignaledResetEvent.Set();

MainSignaledResetEvent.Wait();

task.Wait(); Console.WriteLine(

 "DoWork() ending....");

ptg

 Synchronization 771

Calling a reset event’s Wait() method (for a ManualResetEvent it is
called WaitOne()) blocks the calling thread until another thread signals
and allows the blocked thread to continue. Instead of blocking indefinitely,
Wait()/WaitOne() overrides include a parameter, either in milliseconds or
as a TimeSpan object, for the maximum amount of time to block. When
specifying a timeout period, the return from WaitOne() will be false if the
timeout occurs before the reset event is signaled. ManualResetEvent.
Wait() also includes a version that takes a cancellation token, allowing
cancellation requests as discussed in the preceding chapter.

The difference between ManualResetEventSlim and ManualReset
Event is the fact that the latter uses kernel synchronization by default
whereas the former is optimized to avoid trips to the kernel except as a
last resort. Thus, ManualResetEventSlim is more performant even though
it could possibly use more CPU cycles. Therefore, use ManualResetE-
ventSlim in general unless waiting on multiple events or across pro-
cesses is required.

Notice that reset events implement IDisposable, so they should be dis-
posed when they are no longer needed. In Listing 19.9, we do this via a
using statement. (CancellationTokenSource contains a ManualResetEvent,
which is why it too implements IDisposable.)

Although not exactly the same, System.Threading.Monitor’s Wait()
and Pulse() methods provide similar functionality to reset events in some
circumstances.

Console.WriteLine(
 "Thread completed");

Console.WriteLine(
 "Application exiting....");

TABLE 19.3: Execution Path with ManualResetEvent Synchronization (Continued)

Main() DoWork()

ptg

Chapter 19: Synchronization and More Multithreading Patterns772

A D V A N C E D T O P I C

Favor ManualResetEvent and Semaphores over AutoResetEvent
There is a third reset event, System.Threading.AutoResetEvent, that, like
ManualResetEvent, allows one thread to signal (with a call to Set())
another thread that this first thread has reached a certain location in the
code. The difference is that the AutoResetEvent unblocks only one thread’s
Wait() call because after the first thread passes through the auto-reset
gate, it goes back to locked. With the auto-reset event, however, it is too
easy to mistakenly code the producer thread with more iterations than the
consumer thread. Therefore, it is generally preferred to favor using Moni-
tor’s Wait()/Pulse() pattern or to use a semaphore (if fewer than n
threads can participate in a particular block).

In contrast to an AutoResetEvent, the ManualResetEvent won’t return
to the unsignaled state until Reset() is called explicitly.

Semaphore/SemaphoreSlim and CountdownEvent

Semaphore and SemaphoreSlim have the same performance differences as
ManualResetEvent and ManualResetEventSlim. Unlike ManualResetEvent/
ManualResetEventSlim, which provide a lock (like a gate) that is either
open or closed, semaphores restrict only calls to pass within a critical sec-
tion simultaneously. The semaphore essentially keeps a count on a pool of
resources. When the count reaches zero, it blocks any further access to the
pool until one of the resources is returned, making it available for the next
blocked request that is queued.

CountdownEvent is much like the semaphore except it achieves the oppo-
site synchronization. Rather than protecting further access to a pool of
resources that are all used up, the CountdownEvent allows access only once
the count reaches zero. Consider, for example, a parallel operation that
downloads a multitude of stock quotes. Only when all of the quotes are
downloaded can a particular search algorithm execute. The CountdownEvent
may be used for synchronizing the search algorithm, decrementing as each
stock is downloading and then releasing the search to start once the count
reaches zero.

Notice that SemaphoreSlim and CountdownEvent were introduced with
the .NET Framework 4.

ptg

 Synchronization 773

Concurrent Collection Classes

Another series of classes introduced with the .NET Framework 4 is the
concurrent collection classes. These classes are especially designed to
include built-in synchronization code so that they can support simultane-
ous access by multiple threads without concern for race conditions. A list
of the concurrent collection classes appears in Table 19.4.

* Collection classes that implement IProducerConsumerCollection<T>.

A common pattern enabled by concurrent collections is support for
thread-safe access by producers and consumers. Classes that implement
IProducerConsumerCollection<T> (identified by * in Table 19.4) are spe-
cifically designed to support this. This enables one or more classes to be

TABLE 19.4: Concurrent Collection Classes

Collection Class Description

BlockingCollection<T> Provides a blocking collection that
enables producer/consumer scenarios
in which producers write data into the
collection while consumers read the
data. This class provides a generic
collection type that synchronizes add
and remove operations without con-
cern for the backend storage (whether
a queue, stack, list, etc.). BlockingCol-
lection<T> provides blocking and
bounding support for collections that
implement the IProducerConsumer-
Collection<T> interface.

*ConcurrentBag<T> A thread-safe unordered collection of
T type objects.

ConcurrentDictionary<TKey,

TValue>

A thread-safe dictionary; a collection of
keys and values.

*ConcurrentQueue<T> A thread-safe queue supporting first
in, first out (FIFO) semantics on objects
of type T.

*ConcurrentStack<T> A thread-safe stack supporting first in,
last out (FILO) semantics on objects of
type T.

ptg

Chapter 19: Synchronization and More Multithreading Patterns774

pumping data into the collection while a different set reads it out, remov-
ing it. The order in which data is added and removed is determined by the
individual collection classes that implement the IProducerConsumerCol-
lection<T> interface.

Thread Local Storage
In some cases, using synchronization locks can lead to unacceptable per-
formance and scalability restrictions. In other instances, providing syn-
chronization around a particular data element may be too complex,
especially when it is added after the original coding.

One alternative solution to synchronization is isolation and one method
for implementing isolation is thread local storage. With thread local storage,
each thread has its own dedicated instance of a variable. As a result, there is
no need for synchronization, as there is no point in synchronizing data that
occurs within only a single thread’s context. Two examples of thread local
storage implementations are ThreadLocal<T> and ThreadStaticAttribute.

ThreadLocal<T>

To use thread local storage with the .NET Framework 4 involves declaring
a field (or variable in the case of closure by the complier) of type Thread-
Local<T>. The result is a different instance of the field for each thread as
demonstrated in Listing 19.10 and Output 19.7. Note that a different
instance exists even if the field is static.

Listing 19.10: Using ThreadLocal<T> for Thread Local Storage

using System;

using System.Threading;

class Program

{

 public static double Count

 {

 get { return _Count.Value; }

 set { _Count.Value = value; }

 }

 public static void Main()

 {

 Thread thread = new Thread(Decrement);

 static ThreadLocal<double> _Count =

 new ThreadLocal<double>(() => 0.01134);

ptg

 Synchronization 775

 thread.Start();

 // Increment

 for (double i = 0; i < short.MaxValue; i++)

 {

 Count++;

 }

 thread.Join();

 Console.WriteLine("Main Count = {0}", Count);

 }

 static void Decrement()

 {

 Count = -Count;

 for (double i = 0; i < short.MaxValue; i++)

 {

 Count--;

 }

 Console.WriteLine(

 "Decrement Count = {0}", Count);

 }

}

As Output 19.7 demonstrates, the value of Count for the thread executing
Main() is never decremented by the thread executing Decrement(). For
Main()’s thread the initial value is 0.01134 and the final value is
32767.01134. Decrement() has similar values except they are negative.
Since Count is based on the static field of type ThreadLocal<T>, the thread
running Main() and the thread running Decrement() have independent
values stored in _Count.Value.

ThreadStaticAttribute

Decorating a static field with a ThreadStaticAttribute, as in Listing 19.11,
is a second way to designate a static variable as an instance per thread.
This technique has a caveat over ThreadLocal<T> but it also has the advan-
tage that it is available prior to .NET Framework 4. (Also, since Thread-
Local<T> is based on the ThreadStaticAttribute, it would consume

OUTPUT 19.7:

Decrement Count = -32767.01134

Main Count = 32767.01134

ptg

Chapter 19: Synchronization and More Multithreading Patterns776

less memory and give a slight performance advantage given frequently
enough repeated small iterations.)

Listing 19.11: Using ThreadStaticAttribute for Thread Local Storage

using System;

using System.Threading;

class Program

{

 [ThreadStatic]

 static double _Count = 0.01134;

 public static double Count

 {

 get { return Program._Count; }

 set { Program._Count = value; }

 }

 public static void Main()

 {

 Thread thread = new Thread(Decrement);

 thread.Start();

 // Increment

 for (int i = 0; i < short.MaxValue; i++)

 {

 Count++;

 }

 thread.Join();

 Console.WriteLine("Main Count = {0}", Count);

 }

 static void Decrement()

 {

 for (int i = 0; i < short.MaxValue; i++)

 {

 Count--;

 }

 Console.WriteLine("Decrement Count = {0}", Count);

 }

}

The results of Listing 19.11 appear in Output 19.8.

OUTPUT 19.8:

Decrement Count = -32767

Main Count = 32767.01134

ptg

 Synchronization 777

As in the preceding listing, the value of Count for the thread executing
Main() is never decremented by the thread executing Decrement(). For
Main()’s thread the initial value is a negative _Total and the final value is
0. In other words, with ThreadStaticAttribute the value of Count for each
thread is specific to the thread and not accessible across threads.

Notice that unlike Listing 19.10, the value displayed for the “Decrement
Count” does not have any decimal digits indicating it was never initialized
to 0.01134. Although the value of _Count is assigned during declara-
tion—private double _Count = 0.01134 in this example—only the thread
static instance associated with the thread running the static constructor
will be initialized. In Listing 19.11, only the thread executing Main() will
have a thread local storage variable initialized to 0.01134. The value of
_Count that Decrement() decrements will always be initialized to 0
(default(double) since _Count is an int). Similarly, if a constructor initial-
izes a thread local storage field, only the constructor calling that thread
will initialize the thread local storage instance. For this reason, it is a good
practice to initialize a thread local storage field within the method that
each thread initially calls.

The decision to use thread local storage requires some degree of cost-
benefit analysis. For example, consider using thread local storage for a
database connection. Depending on the database management system,
database connections are relatively expensive, so creating a connection for
every thread could be costly. Similarly, locking a connection so that all
database calls are synchronized places a significantly lower ceiling on scal-
ability. Each pattern has its costs and benefits, and the correct choice
depends largely on the individual implementation.

Another reason to use thread local storage is to make commonly
needed context information available to other methods without explicitly
passing the data via parameters. For example, if multiple methods in the
call stack require user security information you can pass the data using
thread local storage fields instead of as parameters. This keeps APIs
cleaner while still making the information available to methods in a
thread-safe manner. This requires that you ensure that the thread local
data is always set, and it is especially important on Tasks or other thread
pool threads because the underlying threads are reused.

ptg

Chapter 19: Synchronization and More Multithreading Patterns778

Timers

One area where threading issues relating to the user interface may arise
unexpectedly is when using one of the timer classes. The problem is that
when timer notification callbacks fire, the thread may not be the user inter-
face thread, and therefore, it cannot safely access user interface controls
and forms.

Several timer classes are available, including System.Windows.Forms.
Timer, System.Timers.Timer, and System.Threading.Timer. In creating Sys-
tem.Windows.Forms.Timer, the development team designed it specifically for
use within a rich client user interface. Programmers can drag it onto a form as
a nonvisual control and control the behavior from within the Properties win-
dow. Most importantly, it will always safely fire an event from a thread that
can interact with the user interface.

The other two timers are very similar. System.Timers.Timer is a wrapper
for System.Threading.Timer, abstracting and layering on functionality. Spe-
cifically, System.Threading.Timer does not derive from System.Component-
Model.Component, and therefore, you cannot use it as a component within a
component container, something that implements System.Component-

Model.IContainer. Another difference is that System.Threading.Timer
enables the passing of state, an object parameter, from the call to start the
timer and then into the call that fires the timer notification. The remaining
differences are simply in the API usability with System.Timers.Timer sup-
porting a synchronization object and having calls that are slightly more
intuitive. Both System.Timers.Timer and System.Threading.Timer are
designed for use in server-type processes, but System.Timers.Timer

includes a synchronization object to allow it to interact with the UI. Further-
more, both timers use the system thread pool. Table 19.5 provides an overall
comparison of the various timers.

Using System.Windows.Forms.Timer is a relatively obvious choice for
user interface programming. The only caution is that a long-running oper-
ation on the user interface thread may delay the arrival of a timer’s expira-
tion. Choosing between the other two options is less obvious, and
generally, the difference between the two is insignificant. If hosting within
an IContainer is necessary, then System.Timers.Timer is the right choice.
However, if no specific System.Timers.Timer feature is required, then

ptg

 Timers 779

choose System.Threading.Timer by default, simply because it is a slightly
lighter-weight implementation.

Listing 19.12 and Listing 19.13 provide sample code for using System.
Timers.Timer and System.Threading.Timer, respectively. Their code is

TABLE 19.5: Overview of the Various Timer Characteristics

Feature Description
System.
Timers.Timer

System.
Threading.
Timer

System.
Windows.
Forms.Timer

Support for adding and
removing listeners after
the timer is instantiated

Yes No Yes

Supports callbacks on the
user interface thread Yes No Yes

Calls back from threads
obtained from the thread
pool

Yes Yes No

Supports drag-and-drop
in the Windows Forms
Designer

Yes No Yes

Suitable for running in a
multithreaded server
environment

Yes Yes No

Includes support for
passing arbitrary state
from the timer initializa-
tion to the callback

No Yes No

Implements
IDisposable

Yes Yes Yes

Supports on-off callbacks
as well as periodic
repeating callbacks

Yes Yes Yes

Accessible across applica-
tion domain boundaries Yes Yes Yes

Supports IComponent;
hostable in an
IContainer

Yes No Yes

ptg

Chapter 19: Synchronization and More Multithreading Patterns780

very similar, including the fact that both support instantiation within a
using statement because both support IDispose. The output for both list-
ings is identical, and it appears in Output 19.9.

Listing 19.12: Using System.Timers.Timer

using System;

using System.Timers;

using System.Threading;

// Because Timer exists in both the System.Timers and

// System.Threading namespaces, you disambiguate "Timer"

// using an alias directive.

class UsingSystemTimersTimer

{

 private static int _Count=0;

 private static readonly ManualResetEvent _ResetEvent =

 new ManualResetEvent(false);

 private static int _AlarmThreadId;

 public static void Main()

 {

 // Wait for Alarm to fire for the 10th time.

 _ResetEvent.WaitOne();

 }

 if(_Count < 9)

 {

 throw new ApplicationException(

 " _Count < 9");

using Timer = System.Timers.Timer;

 using(Timer timer = new Timer())

 {

 // Initialize Timer

 timer.AutoReset = true;

 timer.Interval = 1000;

 timer.Elapsed +=

 new ElapsedEventHandler(Alarm);

 timer.Start();

 // Verify that the thread executing the alarm

 // Is different from the thread executing Main

 if(_AlarmThreadId ==

 Thread.CurrentThread.ManagedThreadId)

 {

 throw new ApplicationException(

 "Thread Ids are the same.");

 }

ptg

 Timers 781

 };

 Console.WriteLine(

 "(Alarm Thread Id) {0} != {1} (Main Thread Id)",

 _AlarmThreadId,

 Thread.CurrentThread.ManagedThreadId);

 Console.WriteLine(

 "Final Count = {0}", _Count);

 }

 {

 _Count++;

 Console.WriteLine("{0}:- {1}",

 _Count);

 if (_Count >= 9)

 {

 _AlarmThreadId =

 Thread.CurrentThread.ManagedThreadId;

 _ResetEvent.Set();

 }

 }

}

In Listing 19.12, you have using directives for both System.Threading and
System.Timers. This makes the Timer type ambiguous. Therefore, use an
alias to explicitly associate Timer with System.Timers.Timer.

One noteworthy characteristic of System.Threading.Timer is that it
takes the callback delegate and interval within the constructor.

Listing 19.13: Using System.Threading.Timer

using System;

using System.Threading;

class UsingSystemThreadingTimer

{

 private static int _Count=0;

 private static readonly AutoResetEvent _ResetEvent =

 new AutoResetEvent(false);

 private static int _AlarmThreadId;

 public static void Main()

 {

 static void Alarm(

 object sender, ElapsedEventArgs eventArgs)

 eventArgs.SignalTime.ToString("T"),

ptg

Chapter 19: Synchronization and More Multithreading Patterns782

 {

 // Wait for Alarm to fire for the 10th time.

 _ResetEvent.WaitOne();

 }

 // Verify that the thread executing the alarm

 // Is different from the thread executing Main

 if(_AlarmThreadId ==

 Thread.CurrentThread.ManagedThreadId)

 {

 throw new ApplicationException(

 "Thread Ids are the same.");

 }

 if(_Count < 9)

 {

 throw new ApplicationException(

 " _Count < 9");

 };

 Console.WriteLine(

 "(Alarm Thread Id) {0} != {1} (Main Thread Id)",

 _AlarmThreadId,

 Thread.CurrentThread.ManagedThreadId);

 Console.WriteLine(

 "Final Count = {0}", _Count);

 }

 {

 _Count++;

 Console.WriteLine("{0}:- {1}",

 _Count);

 if (_Count >= 9)

 {

 _AlarmThreadId =

 Thread.CurrentThread.ManagedThreadId;

 _ResetEvent.Set();

 }

 }

}

 // Timer(callback, state, dueTime, period)

 using(Timer timer =

 new Timer(Alarm, null, 0, 1000))

 static void Alarm(object state)

 DateTime.Now.ToString("T"),

ptg

 Asynchronous Programming Model 783

You can change the interval or time due after instantiation on Sys-
tem.Threading.Timer via the Change() method. However, you cannot
change the callback listeners after instantiation. Instead, you must create a
new instance.

Asynchronous Programming Model

Multithreaded programming includes the following complexities:

1. Monitoring an asynchronous operation state for completion: This includes
determining when an asynchronous operation has completed, pref-
erably not by polling the thread’s state or by blocking and waiting.

2. Thread pooling: This avoids the significant cost of starting and tearing
down threads. In addition, thread pooling avoids the creation of too
many threads, such that the system spends more time switching
threads than running them.

3. Avoiding deadlocks: This involves preventing the occurrence of dead-
locks while attempting to protect the data from simultaneous access
by two different threads.

4. Providing atomicity across operations and synchronizing data access:
Adding synchronization around groups of operations ensures that
operations execute as a single unit and that they are appropriately
interrupted by another thread. Locking is provided so that two
different threads do not access the data simultaneously.

OUTPUT 19.9:

12:19:36 AM:- 1

12:19:37 AM:- 2

12:19:38 AM:- 3

12:19:39 AM:- 4

12:19:40 AM:- 5

12:19:41 AM:- 6

12:19:42 AM:- 7

12:19:43 AM:- 8

12:19:44 AM:- 9

(Alarm Thread Id) 4 != 1 (Main Thread Id)

Final Count = 9

ptg

Chapter 19: Synchronization and More Multithreading Patterns784

Furthermore, anytime a method is long-running, it is probable that
multithreaded programming is going to be required—invoking the long-
running method asynchronously. As developers write more multi-
threaded code, a common set of scenarios and programming patterns for
handling those scenarios emerges. The key scenarios relate to notifications
of when a thread performing a long-running action completes.

One particularly prominent pattern established is the Asynchronous
Programming Model (APM) pattern. Given a long-running synchronous
method X(), APM uses a BeginX() method to start X() equivalent work
asynchronously and an EndX() method to conclude it. (Henceforth we will
name these methods X, BeginX, and EndX.)

Calling the APM
Listing 19.14 demonstrates the pattern using the System.Net.WebRequest
class to download a Web page. Fulfilling Web requests is a relatively long-
running task since they involve network I/O and they are very likely to go
across the Internet. WebRequest supports the APM pattern with the meth-
ods BeginGetResponse() (BeginX) and EndGetResponse() (EndX)—asyn-
chronous versions of the synchronous GetResponse() (X) method.

Listing 19.14: Calling the APM on WebRequest

using System;

using System.IO;

using System.Net;

using System.Linq;

public class Program

{

 public static void Main(string[] args)

 {

 string url = "http://www.intelliTechture.com";

 if (args.Length > 0)

 {

 url = args[0];

 }

 Console.Write(url);

 WebRequest webRequest = WebRequest.Create(url);

 IAsyncResult asyncResult =

 webRequest.BeginGetResponse(null, null);

ptg

 Asynchronous Programming Model 785

 // Indicate busy using dots

 {

 Console.Write('.');

 }

 // Retrieve the results when finished

 // downloading

 using (StreamReader reader =

 new StreamReader(response.GetResponseStream()))

 {

 int length = reader.ReadToEnd().Length;

 Console.WriteLine(FormatBytes(length));

 }

 }

 static public string FormatBytes(long bytes)

 {

 string[] magnitudes =

 new string[] { "GB", "MB", "KB", "Bytes" };

 long max =

 (long)Math.Pow(1024, magnitudes.Length);

 return string.Format("{1:##.##} {0}",

 magnitudes.FirstOrDefault(

 magnitude =>

 bytes > (max /= 1024))?? "0 Bytes",

 (decimal)bytes / (decimal)max).Trim();

 }

}

The results of Listing 19.14 appear in Output 19.10.

As mentioned, the key aspect of the APM is the pair of BeginX and EndX
methods with well-established signatures. The BeginX returns a System.
IAsyncResult object providing access to the state of the asynchronous call
in order to wait or poll for completion. The EndX method then takes this
return as an input parameter. This pairs up the two methods so that it is

 while (

 !asyncResult.AsyncWaitHandle.WaitOne(100))

 WebResponse response =

 webRequest.EndGetResponse(asyncResult);

OUTPUT 19.10:

http://www.intelliTechture.com.29.36 KB

http://www.intelliTechture.com

ptg

Chapter 19: Synchronization and More Multithreading Patterns786

clear which BeginX method call pairs with which EndX method call. The
nature of the APM requires that for all BeginX invocations there must be
exactly one EndX invocation, so no two calls to EndX for the same IAsyncRe-
sult instance should occur.

In Listing 19.14, we also use the IAsyncResult’s WaitHandle to deter-
mine when the asynchronous method completes. As we iteratively poll the
WaitHandle we print out periods to the console indicating that the down-
load is running. Following that, we call EndGetResponse().

The EndX method serves four purposes. First, calling EndX will block fur-
ther execution until the work requested completes successfully (or errors out
with an exception). Second, if method X returns data, this data is accessible
from the EndX method call. Third, if an exception occurs while performing
the requested work, the exception will be rethrown on the call to EndX, ensur-
ing that the exception is visible to the calling code as though it had occurred
on a synchronous invocation. Finally, if any resource needs cleanup due to
X’s invocation, EndX will be responsible for cleaning up these resources.

APM Signatures

Together, the combination of the BeginX and EndX APM methods should
match the synchronous version of the signature. Therefore, the return param-
eter on EndX should match the return parameters on the X method (Get-
Reponse() in this case). Furthermore, the input parameters on the BeginX
method also need to match. In the case of WebRequest.GetResponse() there
are no parameters, but let’s consider a fictitious synchronous method, bool
TryDoSomething(string url, ref string data, out string[] links). The
parameters map from the synchronous method to the APM methods as
shown in Figure 19.1.

Figure 19.1: APM Parameter Distribution

System.IAsyncResult BeginTryDoSomething(
String url, ref string data, out string[] links,

 System.AsyncCallback callback, object state)

bool EndTryDoSomething (ref string data, out string[] links,
 System.IAyncResult result);

bool TryDosomething(
string url, ref string data, out string[] links)

ptg

 Asynchronous Programming Model 787

All input parameters map to the BeginX method. Similarly, the return
parameter maps to the EndX return parameter. Also, notice that since ref
and out parameters return results, these are included in the EndX method
signature. In contrast, since url is only an input parameter, it is not
included in the EndX method.

Continuation Passing Style (CPS) with AsyncCallback

There are two additional parameters on the BeginX method that were not
included in the synchronous method. These are the callback parameter, a
System.AsyncCallback delegate to be called when the method completes,
and a state parameter of type object. Listing 19.15 demonstrates how
they are used. (The output is the same as Output 19.10).

Listing 19.15: Invoking the APM with Callback and State

using System;

using System.IO;

using System.Net;

using System.Linq;

using System.Threading;

public class Program

{

 public static void Main(string[] args)

 {

 string url = "http://www.intelliTechture.com";

 if (args.Length > 0)

 {

 url = args[0];

 }

 Console.Write(url);

 WebRequest webRequest = WebRequest.Create(url);

 State state = new State(webRequest);

 // Indicate busy using dots

 while (

 !asyncResult.AsyncWaitHandle.WaitOne(100))

 {

 Console.Write('.');

 }

 IAsyncResult asyncResult =

 webRequest.BeginGetResponse(

 GetResponseAsyncCompleted, state);

ptg

Chapter 19: Synchronization and More Multithreading Patterns788

 state.ResetEvent.Wait();

 }

 // Retrieve the results when finished downloading

 {

 Stream stream = response.GetResponseStream();

 StreamReader reader = new StreamReader(stream);

 int length = reader.ReadToEnd().Length;

 Console.WriteLine(FormatBytes(length));

 completedState.ResetEvent.Set();

 completedState.Dispose();

 }

 // ...

}

class WebRequestState : IDisposable

{

 public WebRequestState(WebRequest webRequest)

 {

 WebRequest = webRequest;

 }

 public WebRequest WebRequest { get; private set; }

 private ManualResetEventSlim _ResetEvent =

 new ManualResetEventSlim();

 public ManualResetEventSlim ResetEvent

 { get { return _ResetEvent; } }

 public void Dispose()

 {

 ResetEvent.Dispose();

 GC.SuppressFinalize(this);

 }

}

Notice that in Listing 19.15, we pass data for both of the parameters
on BeginGetResponse(). The first parameter is a delegate of type
System.AsyncCallback that takes a single parameter of type System.AsyncRe-
sult. The AsyncCallback identifies the code that will execute once the

 private static void GetResponseAsyncCompleted(

 IAsyncResult asyncResult)

 State completedState =

 (WebRequestState)asyncResult.AsyncState;

 HttpWebResponse response =

 (HttpWebResponse)completedState.WebRequest

 .EndGetResponse(asyncResult);

ptg

 Asynchronous Programming Model 789

asynchronous call completes. Registering a callback enables a fire-and-forget
calling pattern called continuation passing style (CPS) rather than placing the
EndGetResponse() and Console.WriteLine() code sequentially below
BeginGetResponse(). With CPS we can “register” the code that will execute
upon completion of the asynchronous method. Note that it is still necessary to
call EndGetResponse(), but by placing it in the callback we ensure that it
doesn’t block the main thread while the asynchronous call completes.

Passing State between APM Methods

In addition to the AsyncCallback parameter, there is the state parameter,
which is used to pass additional data to the callback when it executes.
Listing 19.15 includes a WebRequestState class for passing additional data
into the callback, and it includes the WebRequest itself in this case so that
we can use it to call EndGetResponse(). One alternative to the WebRequest-
State class itself would be to use an anonymous method (including a
lambda expression) with closures for the additional data, as shown in
Listing 19.16.

Listing 19.16: Passing State Using Closure on Anonymous Method

using System;

using System.IO;

using System.Net;

using System.Linq;

using System.Threading;

public class Program

{

 public static void Main(string[] args)

 {

 string url = "http://www.intelliTechture.com";

 if (args.Length > 0)

 {

 url = args[0];

 }

 Console.Write(url);

 WebRequest webRequest = WebRequest.Create(url);

 IAsyncResult asyncResult =

 webRequest.BeginGetResponse(

 ManualResetEventSlim resetEvent =

 new ManualResetEventSlim();

ptg

Chapter 19: Synchronization and More Multithreading Patterns790

 Stream stream =

 response.GetResponseStream();

 StreamReader reader =

 new StreamReader(stream);

 int length = reader.ReadToEnd().Length;

 Console.WriteLine(FormatBytes(length));

 },

 // Indicate busy using dots

 while (

 !asyncResult.AsyncWaitHandle.WaitOne(100))

 {

 Console.Write('.');

 }

 }

 // ...

}

Regardless of whether we pass the state via closures or not, notice that
we are using a ManualResetEvent to signal when the AsyncCallback has
completed. This is somewhat peculiar because IAsyncResult includes a
WaitHandle already. The difference, however, is that the IAsyncResult’s
WaitHandle is set when the asynchronous method completes but before the
AsyncCallback executes. If we only blocked on the IAsyncResult’s Wait-
Handle we are likely to exit the program before the AsyncCallback has exe-
cuted. For this reason we use a separate ManualResetEvent.

Resource Cleanup

Another important APM rule is that no resource leaks should occur, even
if the EndX method is mistakenly not called. Since WebRequestState owns
the ManualResetEvent, it specifically owns a resource that requires such

 (completedAsyncResult) =>

 {

 HttpWebResponse response =

 (HttpWebResponse)webRequest.EndGetResponse(

 completedAsyncResult);

 resetEvent.Set();

 resetEvent.Dispose();

 null);

 resetEvent.Wait();

ptg

 Asynchronous Programming Model 791

cleanup. To handle this the state object uses the standard IDisposable pat-
tern with the IDispose() method.

Calling the APM Using TPL
Even though TPL simplifies making an asynchronous call on a long-running
method significantly, it is generally better to use the API-provided APM
methods than to code TPL against the synchronous version. The reason for
this is that the API developer best understands the most efficient threading
code to write, which data to synchronize, and what type of synchronization to
use. Fortunately, there are special methods on TPL’s TaskFactory that are
designed specifically for invoking the APM methods.

APM with TPL and CPS

TPL includes a set of overloads on FromAsync for invoking the APM.
Listing 19.17 provides an example. The same listing expands on the
other APM examples to support downloading of multiple URLs; see
Output 19.11.

Listing 19.17: Using TPL to Call the APM

using System;

using System.IO;

using System.Net;

using System.Linq;

using System.Threading.Tasks;

using System.Collections.Generic;

public class Program

{

 static private object ConsoleSyncObject =

 new object();

 public static void Main(string[] args)

 {

 string[] urls = args;

 if (args.Length == 0)

 {

 urls = new string[]

 {

 "http://www.habitat-spokane.org",

 "http://www.partnersintl.org",

ptg

Chapter 19: Synchronization and More Multithreading Patterns792

 "http://www.iassist.org",

 "http://www.fh.org",

 "http://www.worldvision.org"

 };

 }

 int line = 0;

 Task<WebResponse>[] tasksWithState =

 urls.Select(

 url=>DisplayPageSizeAsync(

 url, line++)).ToArray();

 while (

 !Task.WaitAll(tasksWithState.ToArray(), 50))

 {

 DisplayProgress(tasksWithState);

 }

 Console.SetCursorPosition(0, line);

 }

 private static Task<WebResponse>

 DisplayPageSizeAsync(string url, int line)

 {

 lock (ConsoleSyncObject)

 {

 Console.WriteLine(url);

 }

 WebRequest webRequest = WebRequest.Create(url);

 WebRequestState state =

 new WebRequestState(webRequest, line);

 return task;

 }

 {

 WebRequestState completedState =

 (WebRequestState)asyncResult.AsyncState;

 HttpWebResponse response =

 (HttpWebResponse)completedState.WebRequest

 .EndGetResponse(asyncResult);

 Stream stream =

 response.GetResponseStream();

 using (StreamReader reader =

 new StreamReader(stream))

 Task<WebResponse> task =

 Task<WebResponse>.Factory.FromAsync(

 webRequest.BeginGetResponse,

 GetResponseAsyncCompleted, state);

 private static WebResponse GetResponseAsyncCompleted(

 IAsyncResult asyncResult)

ptg

 Asynchronous Programming Model 793

 {

 int length = reader.ReadToEnd().Length;

 DisplayPageSize(completedState, length);

 }

 return response;

 }

 private static void DisplayProgress(

 IEnumerable<Task<WebResponse>> tasksWithState)

 {

 foreach (

 WebRequestState state in tasksWithState

 .Where(task => !task.IsCompleted)

 .Select(task=>

 (WebRequestState)task.AsyncState))

 {

 DisplayProgress(state);

 }

 }

 private static void DisplayPageSize(

 WebRequestState completedState, int length)

 {

 lock (ConsoleSyncObject)

 {

 Console.SetCursorPosition(

 completedState.ConsoleColumn,

 completedState.ConsoleLine);

 Console.Write(FormatBytes(length));

 completedState.ConsoleColumn +=

 length.ToString().Length;

 }

 }

 private static void DisplayProgress(

 WebRequestState state)

 {

 int left = state.ConsoleColumn;

 int top = state.ConsoleLine;

 lock (ConsoleSyncObject)

 {

 if (left >= Console.BufferWidth -

 int.MaxValue.ToString().Length)

 {

 left = state.Url.Length;

 Console.SetCursorPosition(left, top);

 Console.Write("".PadRight(

 Console.BufferWidth -

 state.Url.Length));

 state.ConsoleColumn = left;

ptg

Chapter 19: Synchronization and More Multithreading Patterns794

 }

 else

 {

 state.ConsoleColumn++;

 }

 Console.SetCursorPosition(left, top);

 Console.Write('.');

 }

 }

 static public string FormatBytes(long bytes)

 {

 string[] magnitudes =

 new string[] { "GB", "MB", "KB", "Bytes" };

 long max =

 (long)Math.Pow(1024, magnitudes.Length);

 return string.Format("{1:##.##} {0}",

 magnitudes.FirstOrDefault(

 magnitude =>

 bytes > (max /= 1024))?? "0 Bytes",

 (decimal)bytes / (decimal)max).Trim();

 }

}

class WebRequestState

{

 public WebRequestState(

 WebRequest webRequest, int line)

 {

 WebRequest = webRequest;

 ConsoleLine = line;

 ConsoleColumn = Url.Length + 1;

 }

 public WebRequestState(WebRequest webRequest)

 {

 WebRequest = webRequest;

 }

 public WebRequest WebRequest { get; private set; }

 public string Url

 {

 get

 {

 return WebRequest.RequestUri.ToString();

 }

 }

 public int ConsoleLine { get; set; }

 public int ConsoleColumn { get; set; }

}

ptg

 Asynchronous Programming Model 795

Connecting a Task with the APM method pair is relatively easy. The over-
load used in Listing 19.17 takes three parameters. First, there is the BeginX
method delegate (webRequest.BeginGetResponse). Next is a delegate that
matches the EndX method. Although the EndX method (webRequest.End
GetResponse) could be used directly, passing a delegate (GetResponse-
AsyncCompleted) and using the CPS allows additional completion activity
to execute. The last parameter is the state parameter similar to what the
BeginX method accepts.

One of the advantages of invoking an APM pair of methods using
TPL is that we don’t have to worry about signaling the conclusion of the
AsyncCallback method. Instead, we monitor the Task for completion.
As a result, WebRequestState no longer needs to contain a Manual-
ResetEventSlim.

Using TPL and ContinueWith() to Call the APM

Another option when calling TaskFactory.FromAsync() is to pass the EndX
method directly and then to use ContinueWith() for any follow-up code.
This approach has the advantage that you can query the continue-with-
Task parameter (see continueWithTask in Listing 19.18) for the result
(continueWithTask.Result) rather than storing a means to access the EndX
method via an async-state object or using closure and an anonymous dele-
gate (we store WebRequest in Listing 19.17).

Listing 19.18: Using TPL to Call the APM Using ContinueWith()

// ...

 {
 lock (ConsoleSyncObject)
 {

OUTPUT 19.11:

http://www.habitat-spokane.org ..9.18 KB ht-
tp://www.partnersintl.org14.74 KB
http://www.iassist.org .17.12 KB http://
www.fh.org35.09 KB
http://www.worldvision.org54.56 KB

 private static Tuple<Task<WebResponse>, WebRequestState>
 DisplayPageSizeAsync(string url, int line)

http://www.habitat-spokane.org
http://www.partnersintl.org
http://www.iassist.org
http://www.fh.org
http://www.worldvision.org

ptg

Chapter 19: Synchronization and More Multithreading Patterns796

 Console.WriteLine(url);

 }

 WebRequest webRequest = WebRequest.Create(url);

 WebRequestState state = new WebRequestState(url, line);

 return new Tuple<

 Task<WebResponse>,WebRequestState>(

 task, state);

 }

// ...

Unfortunately, the ContinueWith() approach includes a caveat as well.
The AsyncState property on a Task returned by ContinueWith() contains
null rather than the state specified in the call to FromAsync(). Accessing
the state outside ContinueWith() will require saving it into an alternate loca-
tion. Listing 19.18 achieves this by placing it into a Tuple<T1, T2> and
returning that.

 Task<WebResponse> task =

 Task<WebResponse>.Factory.FromAsync(

 webRequest.BeginGetResponse,

 webRequest.EndGetResponse, state)

 .ContinueWith(continueWithTask =>

 {

 // Optional since state is available

 // with closure

 WebRequestState completedState =

 (WebRequestState)continueWithTask.AsyncState;

 Stream stream =

 continueWithTask.Result.

 GetResponseStream();

 using (StreamReader reader =

 new StreamReader(stream))

 {

 int length =

 reader.ReadToEnd().Length;

 DisplayPageSize(

 completedState, length);

 }

 return continueWithTask.Result;

 });

ptg

 Asynchronous Delegate Invocation 797

B E G I N N E R T O P I C

Synchronizing Console Using lock
In Listing 19.17, we repeatedly change the location of the console’s cursor
and then proceed to write text to the console. Since multiple threads are
executing that are also writing to the console, possibly changing the cursor
location as well, we need to synchronize changes to the cursor location
with write operations so that together they are atomic.

Listing 19.17 includes a ConsoleSyncObject of type object as the syn-
chronization lock identifier. Using this within a lock construct whenever
we are moving the cursor or writing to the console prevents an interim
update between move and write operations to the console. Notice that
even one-line Console.WriteLine() statements are surrounded with lock.
Although they will be atomic, we don’t want them interrupting a different
block that is not atomic. Therefore, all console changes require the syn-
chronization as long as there are multiple threads of execution.

Asynchronous Delegate Invocation

There is a derivative APM pattern called Asynchronous Delegate Invocation
that leverages special C# compiler-generated code on all delegate data types.
Given a delegate instance of Func<string, int>, for example, there is an APM
pair of methods available on the instance:

System.IAsyncResult BeginInvoke(

 string arg, AsyncCallback callback, object @object)

int EndInvoke(IAsyncResult result)

The result is that you can call any delegate (and therefore any method)
synchronously just by using the C# compiler-generated methods.

Unfortunately, the underlying technology used by the asynchronous del-
egate invocation pattern is an end-of-further-development technology for
distributed programming known as remoting. And although Microsoft still
supports the use of asynchronous delegate invocation and it will continue to
function as it does today for the foreseeable future, the performance

ptg

Chapter 19: Synchronization and More Multithreading Patterns798

characteristics are suboptimal given other approaches—namely Thread,
ThreadPool, and TPL. Therefore, developers should tend to favor one of
these alternatives rather than implementing new development using the
asynchronous delegate invocation API. Further discussion of the pattern is
included in the Advanced Topic text that follows so that developers who
encounter it will understand how it works.

A D V A N C E D T O P I C

Asynchronous Delegate Invocation in Detail
With asynchronous delegate invocation, you do not code using an explicit
reference to Task or Thread. Instead, you use delegate instances and the
compiler-generated BeginInvoke() and EndInvoke() methods—whose
implementation requests threads from the ThreadPool. Consider the code
in Listing 19.19.

Listing 19.19: Asynchronous Delegate Invocation

using System;

public class Program

{

 public static void Main(string[] args)

 {

 Console.WriteLine("Application started....");

 Console.WriteLine("Starting thread....");

 // Display periods as progress bar.

 100, false))

 {

 Console.Write('.');

 }

 Console.WriteLine();

 Console.WriteLine("Thread ending....");

 Func<int,string> workerMethod =

 PiCalculator.Calculate;

 IAsyncResult asyncResult =

 workerMethod.BeginInvoke(500, null, null);

 while(!asyncResult.AsyncWaitHandle.WaitOne(

 Console.WriteLine(

 workerMethod.EndInvoke(asyncResult));

ptg

 Asynchronous Delegate Invocation 799

 Console.WriteLine(

 "Application shutting down....");

 }

}

The results of Listing 19.19 appear in Output 19.12.

Main() begins by assigning a delegate of type Func<string, int> that
is pointing to PiCalculator.Calculate(int digits).

Next, the code calls BeginInvoke(). This method will start the PiCalcula-
tor.Calculate() method on a thread from the thread pool and then return
immediately. This allows other code to run in parallel with the pi calculation.
In this example, we print periods while waiting for the PiCalculator.Calcu-
late() method to complete.

We poll the status of the delegate using IAsyncResult.AsyncWaitHan-
dle.WaitOne() on asyncResult—the same mechanism available on APM.
As a result, the code prints periods to the screen each second during which
the PiCalculator.Calculate() method is executing.

Once the wait handle signals, the code calls EndInvoke(). As with all
APM implementations, it is important to pass to EndInvoke() the same
IAsyncResult reference returned when calling BeginInvoke(). In this
example, EndInvoke() doesn’t block because we poll the thread’s state in
the while loop and call EndInvoke() only after the thread has completed.

Passing Data to and from an Alternate Thread
The example in Listing 19.18 passed an integer and received a string—the
signature of Func<int, string>. The key feature of the asynchronous

OUTPUT 19.12:

Application started....

Starting thread.... ...

Thread ending....

3.1415926535897932384626433832795028841971693993751058209749445923078164

062862089986280348253421170679821480865132823066470938446095505822317253

594081284811174502841027019385211055596446229489549303819644288109756659

334461284756482337867831652712019091456485669234603486104543266482133936

072602491412737245870066063155881748815209209628292540917153643678925903

600113305305488204665213841469519415116094330572703657595919530921861173

8193261179310511854807446237996274956735188575272489122793818301194912

Application shutting down....

ptg

Chapter 19: Synchronization and More Multithreading Patterns800

delegate invocation is the fact that passing data in and out of the target
invocation is trivial; it just lines up with the synchronous method signature
as it did in the APM pattern. Consider a delegate type that includes out
and ref parameters, as shown in Figure 19.2. (Although more common,
this example intentionally doesn’t use Func or Action since generics don’t
allow ref and out modifiers on type parameters.)

The BeginInvoke() method matches the delegate signature except for
the additional AsyncCallback and object parameters. Like the IAsync-
Result return, the additional parameters correspond to the standard APM
parameters specifying a callback and passing state object. Similarly, the
EndInvoke() method matches the original signature except only outgoing
parameters appear. Since object[] data is only incoming, it doesn’t
appear in the EndInvoke() method. Also, since the EndInvoke() method
concludes the asynchronous call, its return matches the original delegate’s
return as well.

Since all delegates include the C# compiler-generated BeginInvoke()
and EndInvoke() methods used by the asynchronous delegate invocation
pattern, invoking any method synchronously—especially given Func and
Action delegates—becomes relatively easy. Furthermore, it makes it sim-
ple for the caller to invoke a method asynchronously regardless of whether
the API programmer explicitly implemented it.

And before TPL, the asynchronous delegate invocation pattern was sig-
nificantly easier than the alternatives, making it a common practice when
an API didn’t provide explicit asynchronous calling patterns. However,
apart from support for .NET 3.5 and earlier frameworks, the advent of TPL

Figure 19.2: Delegate Parameter Distribution to BeginInvoke() and EndInvoke()

System.IAsyncResult UpdateHandler.BeginInvoke(
Object[] data, ref object value, out string text

 AsyncCallback callback, object @object);

delegate bool UpdateHandlerFunc
object[] data, ref object value, out string text);

bool UpdateHandler.EndInvoke(
ref object value, out text);

ptg

 Event-Based Asynchronous Pattern (EAP) 801

diminishes the need for using the asynchronous delegate invocation
approach if it occurs at all.

Event-Based Asynchronous Pattern (EAP)1

Another pattern more typical of higher-level programming than that of the
APM is the Event-based Asynchronous Pattern (EAP). As with APM, API
developers implement EAP for methods that are long-running.

Implementing the EAP pattern in its simplest form involves duplicat-
ing a long-running method signature and appending “Async” to the
method name while removing any outgoing parameters and returns. The
“Async” suffix indicates to callers that this version of the method will exe-
cute synchronously rather than blocking until the work of the method
completes. The elimination of the outgoing parameters is required since
the method will not necessarily complete by the time the call concludes.

For example, consider the signature of an EAP calling convention
string PiCalculator.Calculate(int digits) method:

void PiCalculator.CalculateAsync(int digits)

Unlike APM, the EAP model doesn’t require returning an IAsyncResult
object. However, support for passing arbitrary state is available to the API
implementer through the addition of an object state parameter:

void PiCalculator.CalculateAsync(int digits, object state)

or possibly even a generic version

void PiCalculator.CalculateAsync<T>(int digits, T state)

With .NET Framework 4, a version that takes a CancellationToken would
also be a welcome edition (see Listing 19.20).

Exposing an “Async” method allows the caller to begin execution but
doesn’t, on its own, allow for monitoring it or using CPS. To do this
requires the addition of a completion event and an appropriate EventArgs
implementation to pass back the outgoing results (see Listing 19.20).

1. Concurrent Programming on Windows by Joe Duffy (Addison-Wesley, 2009), pages 421–426.

ptg

Chapter 19: Synchronization and More Multithreading Patterns802

Listing 19.20: Event-Based Asynchronous Pattern

using System;

using System.ComponentModel;

using System.Threading;

using System.Threading.Tasks;

partial class PiCalculation

{

 public void CalculateAsync(

 int digits)

 {

 CalculateAsync(digits, null);

 }

 public void CalculateAsync(

 int digits, object userState)

 {

 CalculateAsync(

 digits, default(CancellationToken),

 userState);

 }

 {

 if (SynchronizationContext.Current == null)

 {

 SynchronizationContext.

 SetSynchronizationContext(

 new SynchronizationContext());

 }

 TaskScheduler scheduler =

 TaskScheduler.

 FromCurrentSynchronizationContext();

 Task<string>.Factory.StartNew(

 () =>

 {

 return PiCalculator.Calculate(digits);

 }, cancelToken)

 .ContinueWith<string>(

 continueTask =>

 {

 CalculateCompleted(

 typeof(PiCalculator),

 new CalculateCompletedEventArgs(

 continueTask.Result,

 continueTask.Exception,

 cancelToken.

 IsCancellationRequested,

 public void CalculateAsync<TState>(

 int digits,

 CancellationToken cancelToken,

 TState userState)

ptg

 Event-Based Asynchronous Pattern (EAP) 803

 userState));

 return continueTask.Result;

 }, scheduler);

 }

 {

 public CalculateCompletedEventArgs(

 string value,

 Exception error,

 bool cancelled,

 object userState) : base(

 error, cancelled, userState)

 {

 Result = value;

 }

 public string Result { get; private set; }

 }

}

In Listing 19.20, this support is provided via the CalculateCompleted
event. Registering for this event will allow the caller to receive a notifica-
tion when the calculation completes. The value of the calculation will be on
the Result property of the CalculateCompletedEventArgs class (which
derives from AsyncCompletedEventArgs). This same class will allow the
caller to check for an error (via the Error property), cancellation (via the
Canceled property), and user state (via the UserState property).

In the past, cancellation support was available in EAP through the
addition of a CancelAsync method, which optionally took an object
objectState parameter. However, with .NET Framework 4, using a Can-
cellationToken would be the preferred approach since it would avoid the
need to save the state.

Frequently with multithreaded operations, not only do you want to be
notified when the thread completes, but you also want the method to pro-
vide an update on the status of the operation. EAP includes support for

 public event

 EventHandler<CalculateCompletedEventArgs>

 CalculateCompleted = delegate { };

 public class CalculateCompletedEventArgs

 : AsyncCompletedEventArgs

ptg

Chapter 19: Synchronization and More Multithreading Patterns804

this by declaring an event of type ProgressChangedEventHandler (or a
derivative thereof given support for variance in C# 4.0) and naming the
event ProgressChanged. This, however, would push the EAP class into the
saving state. To avoid this, developers could also pass a progress listener
into the Async method.

Here are a couple of final points to note about Listing 19.20. First, PiCal-
culation is an instance class rather than a static class. Given that the imple-
mentation relies on coordinating between events and the initial Async
member call, using an instance class lends toward a pattern in which the com-
plexity associated with having multiple invocations and multiple listeners to
the same events is avoided. Without the instance approach, for example, it
would be suboptimal (synchronization would be required at a minimum) to
support a CancelAsync(object state) member because it would be neces-
sary to look up the state–associated invocation. Even worse, progress
change notifications (using the standard signature) would be impossible.

Second, PiCalculation is thread-safe since it doesn’t store any state
information. If support for CancelAsync() or progress monitoring was
added such that state was required, care should be taken to keep the
thread-safe nature of the class.

Background Worker Pattern

Another pattern that provides operation status and the possibility of can-
cellation is the background worker pattern, a specific implementation of
EAP. The .NET Framework 2.0 (or later) includes a BackgroundWorker
class for programming this type of pattern.

Listing 19.21 is an example of this pattern—again calculating pi to the
number of digits specified.

Listing 19.21: Using the Background Worker Pattern

using System;

using System.Threading;

using System.ComponentModel;

using System.Text;

public class PiCalculator

ptg

 Background Worker Pattern 805

{

 public static AutoResetEvent resetEvent =

 new AutoResetEvent(false);

 public static void Main()

 {

 int digitCount;

 Console.Write(

 "Enter the number of digits to calculate:");

 if (int.TryParse(Console.ReadLine(), out digitCount))

 {

 Console.WriteLine("ENTER to cancel");

 // C# 2.0 Syntax for registering delegates

 resetEvent.WaitOne();

 }

 else

 {

 Console.WriteLine(

 "The value entered is an invalid integer.");

 }

 }

 public static BackgroundWorker calculationWorker =

 new BackgroundWorker();

 calculationWorker.DoWork += CalculatePi;

 // Register the ProgressChanged callback

 calculationWorker.ProgressChanged +=

 UpdateDisplayWithMoreDigits;

 calculationWorker.WorkerReportsProgress =

 true;

 // Register a callback for when the

 // calculation completes

 calculationWorker.RunWorkerCompleted +=

 new RunWorkerCompletedEventHandler(

 Complete);

 calculationWorker.

 WorkerSupportsCancellation = true;

 // Begin calculating pi for up to

 // digitCount digits

 calculationWorker.RunWorkerAsync(

 digitCount);

 Console.ReadLine();

 // If cancel is called after the calculation

 // has completed it doesn't matter.

 calculationWorker.CancelAsync();

 // Wait for Complete() to run.

ptg

Chapter 19: Synchronization and More Multithreading Patterns806

 private static void CalculatePi(

 object sender, DoWorkEventArgs eventArgs)

 {

 int digits = (int)eventArgs.Argument;

 StringBuilder pi =

 new StringBuilder("3.", digits + 2);

 calculationWorker.ReportProgress(

 0, pi.ToString());

 // Calculate rest of pi, if required

 if (digits > 0)

 {

 for (int i = 0; i < digits; i += 9)

 {

 // Calculate next i decimal places

 int nextDigit =

 PiDigitCalculator.StartingAt(

 i + 1);

 int digitCount =

 Math.Min(digits - i, 9);

 string ds =

 string.Format("{0:D9}", nextDigit);

 pi.Append(ds.Substring(0, digitCount));

 // Show current progress

 calculationWorker.ReportProgress(

 0, ds.Substring(0, digitCount));

 // Check for cancellation

 if (

 calculationWorker.CancellationPending)

 {

 // Need to set Cancel if you need to

 // distinguish how a worker thread

 // completed

 // i.e., by checking

 // RunWorkerCompletedEventArgs.Cancelled

 eventArgs.Cancel = true;

 break;

 }

 }

 }

 eventArgs.Result = pi.ToString();

 }

 private static void UpdateDisplayWithMoreDigits(

 object sender,

 ProgressChangedEventArgs eventArgs)

ptg

 Background Worker Pattern 807

 {

 string digits = (string)eventArgs.UserState;

 Console.Write(digits);

 }

 static void Complete(

 object sender,

 RunWorkerCompletedEventArgs eventArgs)

 {

 // ...

 }

}

public class PiDigitCalculator

{

 // ...

}

Establishing the Pattern
The process of hooking up the background worker pattern is as follows:

1. Register the long-running method with the BackgroundWorker.
DoWork event. In this example, the long-running task is the call to
CalculatePi().

2. To receive progress or status notifications, hook up a listener to
BackgroundWorker.ProgressChanged and set Background-
Worker.WorkerReportsProgress to true. In Listing 19.8, the
UpdateDisplayWithMoreDigits() method takes care of updating
the display as more digits become available.

3. Register a method (Complete()) with the BackgroundWorker.
RunWorkerCompleted event.

4. Assign the WorkerSupportsCancellation property to support
cancellation. Once this property is assigned the value true,
a call to BackgroundWorker.CancelAsync will set the
DoWorkEventArgs.CancellationPending flag.

5. Within the DoWork-provided method (CalculatePi()), check the
DoWorkEventArgs.CancellationPending property and exit the
method when it is true.

ptg

Chapter 19: Synchronization and More Multithreading Patterns808

6. Once everything is set up, you can start the work by calling Back-
groundWorker.RunWorkerAsync() and providing a state parameter
that is passed to the specified DoWork() method.

When you break it into steps, the background worker pattern is rela-
tively easy to follow and, true to EAP, it provides explicit support for prog-
ress notification. The drawback is that you cannot use it arbitrarily on any
method. Instead, the DoWork() method has to conform to a System.Compo-
nentModel.DoWorkEventHandler delegate, which takes arguments of type
object and DoWorkEventArgs. If this isn’t the case, then a wrapper function
is required—something fairly trivial using anonymous methods. The can-
cellation- and progress-related methods also require specific signatures,
but these are in control of the programmer setting up the background
worker pattern.

Exception Handling
If an unhandled exception occurs while the background worker thread is
executing, then the RunWorkerCompletedEventArgs parameter of the Run-
WorkerCompleted delegate (Completed’s eventArgs) will have an Error
property set with the exception. As a result, checking the Error property
within the RunWorkerCompleted callback in Listing 19.22 provides a means
of handling the exception.

Listing 19.22: Handling Unhandled Exceptions from the Worker Thread

 // ...

 static void Complete(

 object sender, RunWorkerCompletedEventArgs eventArgs)

 {

 Console.WriteLine();

 if (eventArgs.Cancelled)

 {

 Console.WriteLine("Cancelled");

 }

 else if (eventArgs.Error != null)

 {

 // IMPORTANT: check error to retrieve any

 // exceptions.

 Console.WriteLine(

 "ERROR: {0}", eventArgs.Error.Message);

 }

ptg

 Windows UI Programming 809

 else

 {

 Console.WriteLine("Finished");

 }

 resetEvent.Set();

 }

 // ...

It is important that the code check eventArgs.Error inside the RunWorker-
Completed callback. Otherwise, the exception will go undetected; it won’t
even be reported to AppDomain.

Windows UI Programming

One more important threading concept relates to user interface develop-
ment using the System.Windows.Forms and System.Windows namespaces.
The Microsoft Windows suite of operating systems uses a single-threaded,
message-processing-based user interface. This means that only one thread
at a time should access the user interface, and code should marshal any
alternate thread interaction via the Windows message pump.

Windows Forms
When programming against Windows Forms, the process of checking
whether UI invocation is allowable from a thread involves calling a com-
ponent’s InvokeRequired property to determine whether marshalling is
necessary. If InvokeRequired returns true, then marshalling is necessary
and can be implemented via a call to Invoke(). Internally, Invoke() will
check InvokeRequired anyway, but it can be more efficient to do so before-
hand explicitly. Listing 19.23 demonstrates this pattern.

Listing 19.23: Accessing the User Interface via Invoke()

using System;

using System.Drawing;

using System.Threading;

using System.Windows.Forms;

class Program : Form

{

 private System.Windows.Forms.ProgressBar _ProgressBar;

ptg

Chapter 19: Synchronization and More Multithreading Patterns810

 [STAThread]

 static void Main()

 {

 Application.Run(new Program());

 }

 public Program()

 {

 InitializeComponent();

 // Prior to TPL use:

 // ThreadPool.QueueUserWorkItem(state=>Increment());

 Task.Factory.StartNew(Increment);

 }

 void UpdateProgressBar()

 {

 }

 private void Increment()

 {

 for (int i = 0; i < 100; i++)

 {

 UpdateProgressBar();

 Thread.Sleep(100);

 }

 }

 private void InitializeComponent()

 {

 if (_ProgressBar.InvokeRequired)

 {

 MethodInvoker updateProgressBar =

 UpdateProgressBar;

 _ProgressBar.BeginInvoke(updateProgressBar);

 }

 else

 {

 _ProgressBar.Increment(1);

 }

 if (InvokeRequired)

 {

 // Close cannot be called directly from

 // a non-UI thread.

 Invoke(new MethodInvoker(Close));

 }

 else

 {

 Close();

 }

ptg

 Windows UI Programming 811

 _ProgressBar = new ProgressBar();

 SuspendLayout();

 _ProgressBar.Location = new Point(13, 17);

 _ProgressBar.Size = new Size(267, 19);

 ClientSize = new Size(292, 53);

 Controls.Add(this._ProgressBar);

 Text = "Multithreading in Windows Forms";

 ResumeLayout(false);

 }

}

This program displays a window that contains a progress bar that auto-
matically starts incrementing. Once the progress bar reaches 100 percent,
the dialog box closes.

Notice from Listing 19.23 that you have to check InvokeRequired twice,
and then the marshal calls across to the user interface thread if it returns
true. In both cases, the marshalling involves instantiating a MethodIn-
voker delegate that is then passed to Invoke(). Since marshalling across to
another thread could be relatively slow, an asynchronous invocation of the
call is also available via BeginInvoke() and EndInvoke().

Invoke(), BeginInvoke(), EndInvoke(), and InvokeRequired comprise
the members of the System.ComponentModel.ISynchronizeInvoke inter-
face which is implemented by System.Windows.Forms.Control, from
which Windows Forms controls derive.

Windows Presentation Foundation (WPF)
To achieve the same marshalling check on the Windows Presentation
Foundation (WPF) platform involves a slightly different approach. WPF
includes a static member property called Current of type Dispatcher-
Object on the System.Windows.Application class. Calling CheckAccess()
on the dispatcher serves the same function as InvokeRequired on controls
in Windows Forms.

Listing 19.24 demonstrates the approach with a static UIAction object.
Anytime a developer wants to call a method that might interact with the
user interface she simply calls UIAction.Invoke() and passes a delegate
for the UI code she wishes to call. This, in turn, checks the dispatcher to see
if marshalling is necessary and then responds accordingly.

ptg

Chapter 19: Synchronization and More Multithreading Patterns812

Listing 19.24: Safely Invoking User Interface Objects

using System;

using System.Windows;

using System.Windows.Threading;

public static class UIAction

{

 public static void Invoke<T>(

 Action<T> action, T parameter)

 {

 Invoke(() => action(parameter));

 }

 public static void Invoke(Action action)

 {

 DispatcherObject dispatcher =

 Application.Current;

 if (dispatcher == null

 || dispatcher.CheckAccess()

 || dispatcher.Dispatcher == null

)

 {

 action();

 }

 else

 {

 SafeInvoke(action);

 }

 }

 // We want to catch all exceptions here

 // so we can rethrow

 private static void SafeInvoke(Action action)

 {

 Exception exceptionThrown = null;

 Action target = () =>

 {

 try

 {

 action();

 }

 catch (Exception exception)

 {

 exceptionThrown = exception;

 }

 };

 Application.Current.Dispatcher.Invoke(target);

 if (exceptionThrown != null)

 {

 throw exceptionThrown;

ptg

 Windows UI Programming 813

 }

 }

}

One additional feature in the UIAction of Listing 19.24 is the “marshal-
ling” of any exceptions on the UI thread that may have occurred. SafeIn-
voke() wraps all requested delegate calls in a try/catch block and, if an
exception is thrown, it saves the exception off and then rethrows it once
context returns back to the calling thread. In this way, UIAction avoids
throwing unhandled exceptions on the UI thread.

A D V A N C E D T O P I C

Controlling the COM Threading Model with the STAThreadAttribute
With COM, four different apartment-threading models determine the
threading rules relating to calls between COM objects. Fortunately, these
rules—and the complexity that accompanied them—have disappeared
from .NET as long as the program invokes no COM components. The gen-
eral approach to handling COM Interop is to place all .NET components
within the main, single-threaded apartment by decorating a process’s Main
method with the System.STAThreadAttribute. In so doing, it is not neces-
sary to cross apartment boundaries to invoke the majority of COM compo-
nents. Furthermore, apartment initialization does not occur, unless a COM
Interop call is made. The caveat to this approach is that all other threads
(including those of Task) will default to using a Multithreaded Apartment
(MTA). The result is that care needs to be taken when invoking COM com-
ponents from other threads besides the main one.

COM Interop is not necessarily an explicit action by the developer.
Microsoft implemented many of the components within the .NET Frame-
work by creating a runtime callable wrapper (RCW) rather than rewriting
all the COM functionality within managed code. As a result, COM calls
are often made unknowingly. To ensure that these calls are always made
from a single-threaded apartment, it is generally a good practice to decorate
the main method of all Windows Forms executables with the System
.STAThreadAttribute.

ptg

Chapter 19: Synchronization and More Multithreading Patterns814

SUMMARY

We began the chapter with a look at various synchronization mechanisms
and how a variety of classes are available to protect against race condi-
tions. Armed with this knowledge, we were able to delve further into a
variety of additional multithreading patterns, including the following:

• Asynchronous Programming Model (APM): generally exposed by
low-level libraries as a way to call long-running methods
asynchronously.

• Event-Based Asynchronous Patter (EAP): like EAP, but for higher-level
programming. EAP exposes an API for asynchronous programming
that includes support for cancel and progress notifications.

• Background Worker Pattern: An API provided by the Background-
Worker class that allows callers to impose an asynchronous pattern
onto a long-running method even if designers implemented no such
pattern.

Given the multitude of patterns available in addition to those provided
by TPL, it can be somewhat puzzling to know which one to choose. Gener-
ally, it is better to choose an API-provided pattern (APM or EAP, for exam-
ple) rather than using TPL to execute a method asynchronously. However,
in the case of EAP, TPL provides calling support that takes advantage of
EAP, so it is advisable to use the combination if TPL is available. The
choice to use the background worker pattern rather than TPL is a little sub-
tler. Developer preference would be an acceptable determinant as long as
BackgroundWorker provides everything you need. As soon as you require
additional functionality, TPL is better-suited, however. Also, consider
using TPL if all registered listeners (to cancel, progress, and completion)
are made through careful use of anonymous methods and closures as TPL
would likely prove easier to maintain. However, if this is not the case, con-
sider using BackgroundWorker instead as you can easily register members
without relying on closure.

The next chapter investigates another complex .NET technology: that of
marshalling calls out of .NET and into managed code using P/Invoke. In
addition, it introduces a concept known as unsafe code, which C# uses to
access memory pointers directly, as in unmanaged code (for example, C++).

ptg

815

20
Platform Interoperability and
Unsafe Code

HAS GREAT CAPABILITIES, but sometimes it still isn’t sufficient and
you need to escape out of all the safety it provides and step back

into the world of memory addresses and pointers. C# supports this in three
ways. The first way is to go through Platform Invoke (P/Invoke) and calls
into APIs exposed by unmanaged DLLs. The second is through unsafe
code, which enables access to memory pointers and addresses. Frequently,
code uses these features in combination. The third way, which is not cov-
ered in this text, is through COM interoperability.

C#

Platform
Interoperability and

Unsafe Code

1 P/Invoke Declaring
SafeHandle
Calling

Unsafe Code
Pointer Declaration

Dereferencing a Pointer

2 Pointers and Addresses

ptg

Chapter 20: Platform Interoperability and Unsafe Code816

This chapter culminates with a small program that determines whether
the computer is a virtual computer. The code requires that you do the
following.

1. Call into an operating system DLL and request allocation of a portion
of memory for executing instructions.

2. Write some assembler instructions into the allocated area.

3. Inject an address location into the assembler instructions.

4. Execute the assembler code.

Aside from the P/Invoke and unsafe constructs covered here, the final list-
ing demonstrates the full power of C# and the fact that the capabilities of
unmanaged code are still accessible from C# and managed code.

B E G I N N E R T O P I C

What Is a Virtual Computer?
A virtual computer (or virtual machine), also called a guest computer, is
virtualized or emulated through software running on the host operating
system and interacting with the host computer’s hardware. For example,
virtual computer software (such as VMware Workstation and Microsoft
Virtual PC) can be installed on a computer running a recent version of
Windows. Once the software is installed, users can configure a guest com-
puter within the software, boot it, and install an operating system as
though it were a real computer, not just one virtualized with software.

Platform Invoke

Whether a developer is trying to call a library of her existing unmanaged
code, accessing unmanaged code in the operating system not exposed in any
managed API, or trying to achieve maximum performance for a particular
algorithm that performs faster by avoiding the runtime overhead of type
checking and garbage collection, at some point she must call into unmanaged
code. The CLI provides this capability through P/Invoke. With P/Invoke,
you can make API calls into exported functions of unmanaged DLLs.

ptg

 Platform Invoke 817

All of the APIs invoked in this section are Windows APIs. Although
the same APIs are not available on other platforms, developers can still
use P/Invoke for APIs native to their platform, or for calls into their own
DLLs. The guidelines and syntax are the same.

Declaring External Functions
Once the target function is identified, the next step of P/Invoke is to
declare the function with managed code. Just like all regular methods that
belong to a class, you need to declare the targeted API within the context of
a class, but by using the extern modifier. Listing 20.1 demonstrates how to
do this.

Listing 20.1: Declaring an External Method

using System;
using System.Runtime.InteropServices;
class VirtualMemoryManager
{
 [DllImport("kernel32.dll", EntryPoint="GetCurrentProcess")]

}

In this case, the class is VirtualMemoryManager, because it will contain
functions associated with managing memory. (This particular function is
available directly off the System.Diagnostics.Processor class, so there is
no need to declare it in real code.)

extern methods are always static and don’t include any implementa-
tion. Instead, the DllImport attribute, which accompanies the method dec-
laration, points to the implementation. At a minimum, the attribute needs
the name of the DLL that defines the function. The runtime determines the
function name from the method name. However, it is possible to override
this default using the EntryPoint named parameter to provide the func-
tion name. (The .NET platform will automatically attempt calls to the Uni-
code [. . .W] or ASCII [. . .A] API version.)

It this case, the external function, GetCurrentProcess(), retrieves a
pseudohandle for the current process which you will use in the call for vir-
tual memory allocation. Here’s the unmanaged declaration:

 HANDLE GetCurrentProcess();

internal static extern IntPtr GetCurrentProcessHandle();

ptg

Chapter 20: Platform Interoperability and Unsafe Code818

Parameter Data Types
Assuming the developer has identified the targeted DLL and exported
function, the most difficult step is identifying or creating the managed data
types that correspond to the unmanaged types in the external function.1

Listing 20.2 shows a more difficult API.

Listing 20.2: The VirtualAllocEx() API

 LPVOID VirtualAllocEx(
 HANDLE hProcess, // The handle to a process. The
 // function allocates memory within
 // the virtual address space of this
 // process.
 LPVOID lpAddress, // The pointer that specifies a
 // desired starting address for the
 // region of pages that you want to
 // allocate. If lpAddress is NULL,
 // the function determines where to
 // allocate the region.
 SIZE_T dwSize, // The size of the region of memory to
 // allocate, in bytes. If lpAddress
 // is NULL, the function rounds dwSize
 // up to the next page boundary.
 DWORD flAllocationType, // The type of memory allocation.
 DWORD flProtect); // The type of memory allocation.

VirtualAllocEx() allocates virtual memory that the operating system
specifically designates for execution or data. To call it, you also need corre-
sponding definitions in managed code for each data type; although com-
mon in Win32 programming, HANDLE, LPVOID, SIZE_T, and DWORD are
undefined in the CLI managed code. The declaration in C# for Virtual-
AllocEx(), therefore, is shown in Listing 20.3.

Listing 20.3: Declaring the VirtualAllocEx() API in C#

using System;
using System.Runtime.InteropServices;
class VirtualMemoryManager
{
 [DllImport("kernel32.dll")]
 internal static extern IntPtr GetCurrentProcess();

1. One particularly helpful resource for declaring Win32 APIs is www.pinvoke.net. This pro-
vides a great starting point for many APIs, helping to avoid some of the subtle problems
that can arise when coding an external API call from scratch.

www.pinvoke.net

ptg

 Platform Invoke 819

 [DllImport("kernel32.dll", SetLastError = true)]
 private static extern IntPtr VirtualAllocEx(
 IntPtr hProcess,
 IntPtr lpAddress,
 IntPtr dwSize,
 AllocationType flAllocationType,
 uint flProtect);
}

One distinct characteristic of managed code is the fact that primitive
data types such as int do not change size based on the processor. Whether
the processor is 16, 32, or 64 bits, int is always 32 bits. In unmanaged code,
however, memory pointers will vary depending on the processor. There-
fore, instead of mapping types such as HANDLE and LPVOID simply to ints,
you need to map to System.IntPtr, whose size will vary depending on the
processor memory layout. This example also uses an AllocationType
enum, which I discuss in the section Simplifying API Calls with Wrappers,
later in this chapter.

An interesting point to note about Listing 20.3 is that IntPtr is not just
useful for pointers; it is also useful for other things such as quantities.
IntPtr does not just mean “pointer stored in an integer”; it also means
“integer that is the size of a pointer.” An IntPtr need not contain a pointer;
it just needs to contain something the size of a pointer. Lots of things are
the size of a pointer but are nevertheless not pointers.

Using ref Rather Than Pointers
Frequently, unmanaged code uses pointers for pass-by-reference parame-
ters. In these cases, P/Invoke doesn’t require that you map the data type to
a pointer in managed code. Instead, you map the corresponding parame-
ters to ref (or out), depending on whether the parameter is in-out or just
out. In Listing 20.4, lpflOldProtect, whose data type is PDWORD, is an
example that returns the “pointer to a variable that receives the previous
access protection of the first page in the specified region of pages.”

Listing 20.4: Using ref and out Rather Than Pointers

class VirtualMemoryManager
{
 // ...
 [DllImport("kernel32.dll", SetLastError = true)]

ptg

Chapter 20: Platform Interoperability and Unsafe Code820

 static extern bool VirtualProtectEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, uint flNewProtect,

}

In spite of the fact that lpflOldProtect is documented as [out]
(even though the signature doesn’t enforce it), the description goes on to
mention that the parameter must point to a valid variable and not NULL.
The inconsistency is confusing, but common. The guideline is to use ref
rather than out for P/Invoke type parameters since the callee can always
ignore the data passed with ref, but the converse will not necessarily
succeed.

The other parameters are virtually the same as VirtualAllocEx(),
except that the lpAddress is the address returned from VirtualAllocEx().
In addition, flNewProtect specifies the exact type of memory protection:
page execute, page read-only, and so on.

Using StructLayoutAttribute for Sequential Layout
Some APIs involve types that have no corresponding managed type. To call
these requires redeclaration of the type in managed code. You declare the
unmanaged COLORREF struct, for example, in managed code (see Listing 20.5).

Listing 20.5: Declaring Types from Unmanaged Structs

struct ColorRef
{
 public byte Red;
 public byte Green;
 public byte Blue;
 // Turn off warning about not accessing Unused.
 #pragma warning disable 414
 private byte Unused;
 #pragma warning restore 414

 public ColorRef(byte red, byte green, byte blue)
 {
 Blue = blue;
 Green = green;
 Red = red;
 Unused = 0;
 }
}

ref uint lpflOldProtect);

[StructLayout(LayoutKind.Sequential)]

ptg

 Platform Invoke 821

Various Microsoft Windows color APIs use COLORREF to represent RGB col-
ors (levels of red, green, and blue).

The key in this declaration is StructLayoutAttribute. By default, man-
aged code can optimize the memory layouts of types, so layouts may not be
sequential from one field to the next. To force sequential layouts so that a
type maps directly and can be copied bit for bit (blitted) from managed to
unmanaged code and vice versa, you add the StructLayoutAttribute with
the LayoutKind.Sequential enum value. (This is also useful when writing
data to and from filestreams where a sequential layout may be expected.)

Since the unmanaged (C++) definition for struct does not map to the
C# definition, there is not a direct mapping of unmanaged struct to man-
aged struct. Instead, developers should follow the usual C# guidelines
about whether the type should behave like a value or a reference type, and
whether the size is small (approximately less than 16 bytes).

Error Handling
One inconvenient characteristic of Win32 API programming is the fact that
it frequently reports errors in inconsistent ways. For example, some APIs
return a value (0, 1, false, and so on) to indicate an error, and others set an
out parameter in some way. Furthermore, the details of what went wrong
require additional calls to the GetLastError() API and then an additional
call to FormatMessage() to retrieve an error message corresponding to the
error. In summary, Win32 error reporting in unmanaged code seldom
occurs via exceptions.

Fortunately, the P/Invoke designers provided a mechanism for han-
dling this. To enable this, given the SetLastError named parameter of the
DllImport attribute is true, it is possible to instantiate a System.Component-
Model.Win32Exception() that is automatically initialized with the Win32
error data immediately following the P/Invoke call (see Listing 20.6).

Listing 20.6: Win32 Error Handling

class VirtualMemoryManager
{
 [DllImport("kernel32.dll", ", SetLastError = true)]
 private static extern IntPtr VirtualAllocEx(
 IntPtr hProcess,
 IntPtr lpAddress,
 IntPtr dwSize,

ptg

Chapter 20: Platform Interoperability and Unsafe Code822

 AllocationType flAllocationType,
 uint flProtect);

 // ...
 [DllImport("kernel32.dll", SetLastError = true)]
 static extern bool VirtualProtectEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, uint flNewProtect,

 [Flags]
 private enum AllocationType : uint
 {
 // ...
 }

 [Flags]
 private enum ProtectionOptions
 {
 // ...
 }

 [Flags]
 private enum MemoryFreeType
 {
 // ...
 }

 public static IntPtr AllocExecutionBlock(
 int size, IntPtr hProcess)
 {
 IntPtr codeBytesPtr;
 codeBytesPtr = VirtualAllocEx(
 hProcess, IntPtr.Zero,
 (IntPtr)size,
 AllocationType.Reserve | AllocationType.Commit,
 (uint)ProtectionOptions.PageExecuteReadWrite);

 if (codeBytesPtr == IntPtr.Zero)
 {

 }

 uint lpflOldProtect = 0;
 if (!VirtualProtectEx(
 hProcess, codeBytesPtr,
 (IntPtr)size,
 (uint)ProtectionOptions.PageExecuteReadWrite,
 ref lpflOldProtect))
 {

ref uint lpflOldProtect);

 throw new System.ComponentModel.Win32Exception();

 throw new System.ComponentModel.Win32Exception();

ptg

 Platform Invoke 823

 }
 return codeBytesPtr;
 }

 public static IntPtr AllocExecutionBlock(int size)
 {
 return AllocExecutionBlock(
 size, GetCurrentProcessHandle());
 }
}

This enables developers to provide the custom error checking that each
API uses while still reporting the error in a standard manner.

Listing 20.1 and Listing 20.3 declared the P/Invoke methods as internal
or private. Except for the simplest of APIs, wrapping methods in public
wrappers that reduce the complexity of the P/Invoke API calls is a good
guideline that increases API usability and moves toward object-oriented
type structure. The AllocExecutionBlock() declaration in Listing 20.6
provides a good example of this.

Using SafeHandle
Frequently, P/Invoke involves a resource, such as a window handle, that
code needs to clean up after using it. Instead of requiring developers to
remember this and manually code it each time, it is helpful to provide a
class that implements IDisposable and a finalizer. In Listing 20.7, for
example, the address returned after VirtualAllocEx() and VirtualPro-
tectEx() requires a follow-up call to VirtualFreeEx(). To provide built-
in support for this, you define a VirtualMemoryPtr class that derives
from System.Runtime.InteropServices.SafeHandle (this is new in
.NET 2.0).

Listing 20.7: Managed Resources Using SafeHandle

public class VirtualMemoryPtr :
 System.Runtime.InteropServices.SafeHandle
{
 public VirtualMemoryPtr(int memorySize) :
 base(IntPtr.Zero, true)
 {
 ProcessHandle =
 VirtualMemoryManager.GetCurrentProcessHandle();
 MemorySize = (IntPtr)memorySize;

ptg

Chapter 20: Platform Interoperability and Unsafe Code824

 AllocatedPointer =
 VirtualMemoryManager.AllocExecutionBlock(
 memorySize, ProcessHandle);
 Disposed = false;
 }

 public readonly IntPtr AllocatedPointer;
 readonly IntPtr ProcessHandle;
 readonly IntPtr MemorySize;
 bool Disposed;

 public static implicit operator IntPtr(
 VirtualMemoryPtr virtualMemoryPointer)
 {
 return virtualMemoryPointer.AllocatedPointer;
 }

 // SafeHandle abstract member
 public override bool IsInvalid
 {
 get
 {
 return Disposed;
 }
 }

 // SafeHandle abstract member
 protected override bool ReleaseHandle()
 {
 if (!Disposed)
 {
 Disposed = true;
 GC.SuppressFinalize(this);
 VirtualMemoryManager.VirtualFreeEx(ProcessHandle,
 AllocatedPointer, MemorySize);
 }
 return true;
 }
}

System.Runtime.InteropServices.SafeHandle includes the abstract
members IsInvalid and ReleaseHandle(). In the latter, you place your
cleanup code; the former indicates whether the cleanup code has
executed yet.

With VirtualMemoryPtr, you can allocate memory simply by instantiat-
ing the type and specifying the needed memory allocation.

ptg

 Platform Invoke 825

A D V A N C E D T O P I C

Using IDisposable Explicitly in Place of SafeHandle
In C# 1.0, System.Runtime.InteropServices.SafeHandle is not available.
Instead, a custom implementation of IDisposable, as shown in Listing
20.8, is necessary.

Listing 20.8: Managed Resources without SafeHandle but Using IDisposable

public struct VirtualMemoryPtr : IDisposable
{
 public VirtualMemoryPtr(int memorySize)
 {
 ProcessHandle =
 VirtualMemoryManager.GetCurrentProcessHandle();
 MemorySize = (IntPtr)memorySize;
 AllocatedPointer =
 VirtualMemoryManager.AllocExecutionBlock(
 memorySize, ProcessHandle);
 Disposed = false;
 }

 public readonly IntPtr AllocatedPointer;
 readonly IntPtr ProcessHandle;
 readonly IntPtr MemorySize;
 bool Disposed;

 public static implicit operator IntPtr(
 VirtualMemoryPtr virtualMemoryPointer)
 {
 return virtualMemoryPointer.AllocatedPointer;
 }

 #region IDisposable Members
 public void Dispose()
 {
 if (!Disposed)
 {
 Disposed = true;
 GC.SuppressFinalize(this);
 VirtualMemoryManager.VirtualFreeEx(ProcessHandle,
 AllocatedPointer, MemorySize);
 }
 }
 #endregion
}

ptg

Chapter 20: Platform Interoperability and Unsafe Code826

In order for VirtualMemoryPtr to behave with value type semantics, you
need to implement it as a struct. However, the consequence of this is that
there can be no finalizer, since the garbage collector does not manage value
types. This means the developer using the type must remember to clean up
the code. There is no fallback mechanism if he doesn’t.

The second restriction is not to pass or copy the instance outside the
method. This is a common guideline of IDisposable implementing types.
Their scope should be left within a using statement and they should not be
passed as parameters to other methods that could potentially save them
beyond the life of the using scope.

Calling External Functions
Once you declare the P/Invoke functions, you invoke them just as you
would any other class member. The key, however, is that the imported
DLL must be in the path, including the executable directory, so that it can
be successfully loaded. Listing 20.6 and Listing 20.7 provide demonstra-
tions of this. However, they rely on some constants.

Since flAllocationType and flProtect are flags, it is a good practice to
provide constants or enums for each. Instead of expecting the caller to
define these, encapsulation suggests you provide them as part of the API
declaration, as shown in Listing 20.9.

Listing 20.9: Encapsulating the APIs Together

class VirtualMemoryManager
{
 // ...

 /// <summary>
 /// The type of memory allocation. This parameter must
 /// contain one of the following values.
 /// </summary>
 [Flags]
 private enum AllocationType : uint
 {
 /// <summary>
 /// Allocates physical storage in memory or in the
 /// paging file on disk for the specified reserved
 /// memory pages. The function initializes the memory
 /// to zero.
 /// </summary>

ptg

 Platform Invoke 827

 Commit = 0x1000,
 /// <summary>
 /// Reserves a range of the process's virtual address
 /// space without allocating any actual physical
 /// storage in memory or in the paging file on disk.
 /// </summary>
 Reserve = 0x2000,
 /// <summary>
 /// Indicates that data in the memory range specified by
 /// lpAddress and dwSize is no longer of interest. The
 /// pages should not be read from or written to the
 /// paging file. However, the memory block will be used
 /// again later, so it should not be decommitted. This
 /// value cannot be used with any other value.
 /// </summary>
 Reset = 0x80000,
 /// <summary>
 /// Allocates physical memory with read-write access.
 /// This value is solely for use with Address Windowing
 /// Extensions (AWE) memory.
 /// </summary>
 Physical = 0x400000,
 /// <summary>
 /// Allocates memory at the highest possible address.
 /// </summary>
 TopDown = 0x100000,
 }

 /// <summary>
 /// The memory protection for the region of pages to be
 /// allocated.
 /// </summary>
 [Flags]
 private enum ProtectionOptions : uint
 {
 /// <summary>
 /// Enables execute access to the committed region of
 /// pages. An attempt to read or write to the committed
 /// region results in an access violation.
 /// </summary>
 Execute = 0x10,
 /// <summary>
 /// Enables execute and read access to the committed
 /// region of pages. An attempt to write to the
 /// committed region results in an access violation.
 /// </summary>
 PageExecuteRead = 0x20,
 /// <summary>
 /// Enables execute, read, and write access to the
 /// committed region of pages.

ptg

Chapter 20: Platform Interoperability and Unsafe Code828

 /// </summary>
 PageExecuteReadWrite = 0x40,
 // ...
 }

 /// <summary>
 /// The type of free operation
 /// </summary>
 [Flags]
 private enum MemoryFreeType : uint
 {
 /// <summary>
 /// Decommits the specified region of committed pages.
 /// After the operation, the pages are in the reserved
 /// state.
 /// </summary>
 Decommit = 0x4000,
 /// <summary>
 /// Releases the specified region of pages. After this
 /// operation, the pages are in the free state.
 /// </summary>
 Release = 0x8000
 }

 // ...
}

The advantage of enums is that they group together each value. Further-
more, they can limit the scope to nothing else besides these values.

Simplifying API Calls with Wrappers
Whether it is error handling, structs, or constant values, one goal of good
API developers is to provide a simplified managed API that wraps the
underlying Win32 API. For example, Listing 20.10 overloads Virtual-
FreeEx() with public versions that simplify the call.

Listing 20.10: Wrapping the Underlying API

class VirtualMemoryManager
{
 // ...

 [DllImport("kernel32.dll", SetLastError = true)]
 static extern bool VirtualFreeEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, IntPtr dwFreeType);

ptg

 Platform Invoke 829

 public static bool VirtualFreeEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize)
 {
 bool result = VirtualFreeEx(
 hProcess, lpAddress, dwSize,
 (IntPtr)MemoryFreeType.Decommit);
 if (!result)
 {
 throw new System.ComponentModel.Win32Exception();
 }
 return result;
 }
 public static bool VirtualFreeEx(
 IntPtr lpAddress, IntPtr dwSize)
 {
 return VirtualFreeEx(
 GetCurrentProcessHandle(), lpAddress, dwSize);
 }

 [DllImport("kernel32", SetLastError = true)]
 static extern IntPtr VirtualAllocEx(
 IntPtr hProcess,
 IntPtr lpAddress,
 IntPtr dwSize,
 AllocationType flAllocationType,
 uint flProtect);

 // ...
}

Function Pointers Map to Delegates
One last P/Invoke key is that function pointers in unmanaged code map to
delegates in managed code. To set up a Microsoft Windows timer, for
example, you would provide a function pointer that the timer could call
back on, once it had expired. Specifically, you would pass a delegate
instance that matched the signature of the callback.

Guidelines
Given the idiosyncrasies of P/Invoke, there are several guidelines to aid in
the process of writing such code.

• Check that no managed classes already expose the APIs.

• Define API external methods as private or, in simple cases, internal.

ptg

Chapter 20: Platform Interoperability and Unsafe Code830

• Provide public wrapper methods around the external methods that
handle the data type conversions and error handling.

• Overload the wrapper methods and provide a reduced number of
required parameters by inserting defaults for the extern method call.

• Use enum or const to provide constant values for the API as part of the
API’s declaration.

• For all P/Invoke methods that support GetLastError(), be sure to
assign the SetLastError named attribute to true. This allows the
reporting of errors via System.ComponentModel.Win32Exception.

• Wrap resources such as handles into classes that derive from
System.Runtime.InteropServices.SafeHandle or that support
IDisposable.

• Function pointers in unmanaged code map to delegate instances in
managed code. Generally, this requires the declaration of a specific
delegate type that matches the signature of the unmanaged function
pointer.

• Map input/output and output parameters to ref parameters instead
of relying on pointers.

The last bullet implies C#’s support for pointers, described in the next section.

Pointers and Addresses

On occasion, developers will want to be able to access and work with
memory, and with pointers to memory locations, directly. This is neces-
sary for certain operating system interaction as well as with certain types
of time-critical algorithms. To support this, C# requires use of the unsafe
code construct.

Unsafe Code
One of C#’s great features is the fact that it is strongly typed and supports
type checking throughout the runtime execution. What makes this fea-
ture especially great is that it is possible to circumvent this support and
manipulate memory and addresses directly. You would do this when
working with things such as memory-mapped devices, or if you wanted

ptg

 Pointers and Addresses 831

to implement time-critical algorithms. The key is to designate a portion
of the code as unsafe.

Unsafe code is an explicit code block and compilation option, as shown
in Listing 20.11. The unsafe modifier has no effect on the generated CIL
code itself. It is only a directive to the compiler to permit pointer and
address manipulation within the unsafe block. Furthermore, unsafe does
not imply unmanaged.

Listing 20.11: Designating a Method for Unsafe Code

class Program
{

 {
 // ...
 }
}

You can use unsafe as a modifier to the type or to specific members within
the type.

In addition, C# allows unsafe as a statement that flags a code block to
allow unsafe code (see Listing 20.12).

Listing 20.12: Designating a Code Block for Unsafe Code

class Program
{
 static int Main(string[] args)
 {

 {
 // ...
 }
 }
}

Code within the unsafe block can include unsafe constructs such as pointers.

unsafe static int Main(string[] args)

unsafe

NOTE

It is important to note that it is necessary to explicitly indicate to the
compiler that unsafe code is supported.

ptg

Chapter 20: Platform Interoperability and Unsafe Code832

From the command line, this requires the /unsafe switch. For example,
to compile the preceding code, you need to use the command shown in
Output 20.1.

With Visual Studio this may be activated by checking the Allow Unsafe
Code checkbox from the Build tab of the Project Properties window.

You need to use the /unsafe switch because unsafe code opens up the
possibility of buffer overflows and similar possibilities that expose the poten-
tial for security holes. The /unsafe switch includes the ability to directly
manipulate memory and execute instructions that are unmanaged. Requiring
/unsafe, therefore, makes the choice of potential exposure explicit.

Pointer Declaration
Now that you have marked a code block as unsafe, it is time to look at how
to write unsafe code. First, unsafe code allows the declaration of a pointer.
Consider the following example:

byte* pData;

Assuming pData is not null, its value points to a location that contains
one or more sequential bytes; the value of pData represents the memory
address of the bytes. The type specified before the * is the referent type, or
the type located where the value of the pointer refers. In this example,
pData is the pointer and byte is the referent type, as shown in Figure 20.1.

OUTPUT 20.1:

csc.exe /unsafe Program.cs

Figure 20.1: Pointers Contain the Address of the Data

byte* pData

byte[] data

0x0338EE9C –0x0338EE98

–0x0338EE9C

...

...
0x18

0x42

ptg

 Pointers and Addresses 833

Because pointers are simply integers that happen to refer to a memory
address, they are not subject to garbage collection. C# does not allow refer-
ent types other than unmanaged types, which are types that are not refer-
ence types, are not generics, and do not contain reference types. Therefore,
the following is not valid:

string* pMessage

Neither is this:

ServiceStatus* pStatus

where ServiceStatus is defined as shown in Listing 20.13; the problem
again is that ServiceStatus includes a string field.

Listing 20.13: Invalid Referent Type Example

struct ServiceStatus
{
 int State;
 string Description; // Description is a reference type
}

In addition to custom structs that contain only unmanaged types, valid
referent types include enums, predefined value types (sbyte, byte, short,
ushort, int, uint, long, ulong, char, float, double, decimal, and bool),
and pointer types (such as byte**). Lastly, valid syntax includes void*
pointers, which represent pointers to an unknown type.

Language Contrast: C/C++—Pointer Declaration

In C/C++, multiple pointers within the same declaration are declared as follows:

int *p1, *p2;

Notice the * on p2; this makes p2 an int* rather than an int. In contrast,

C# always places the * with the data type:

int* p1, p2;

ptg

Chapter 20: Platform Interoperability and Unsafe Code834

Assigning a Pointer
Once code defines a pointer, it needs to assign a value before accessing it. Just
like reference types, pointers can hold the value null; this is their default
value. The value stored by the pointer is the address of a location. Therefore,
in order to assign it, you must first retrieve the address of the data.

You could explicitly cast an integer or a long into a pointer, but this rarely
occurs without a means of determining the address of a particular data
value at execution time. Instead, you need to use the address operator (&) to
retrieve the address of the value type:

byte* pData = &bytes[0]; // Compile error

The problem is that in a managed environment, data can move, thereby
invalidating the address. The error message is “You can only take the
address of [an] unfixed expression inside a fixed statement initializer.” In
this case, the byte referenced appears within an array and an array is a ref-
erence type (a moveable type). Reference types appear on the heap and are
subject to garbage collection or relocation. A similar problem occurs when
referring to a value type field on a moveable type:

int* a = &"message".Length;

Either way, to assign an address of some data requires the following.

• The data must be classified as a variable.

• The data must be an unmanaged type.

• The variable needs to be classified as fixed, not moveable.

The result is two variables of type int*. The syntax matches that of

declaring multiple arrays in a single statement:

int[] array1, array2;

Pointers are an entirely new category of type. Unlike structs, enums, and

classes, pointers don’t ultimately derive from System.Object and are

not even convertible to System.Object. Instead, they are convertible to

System.IntPtr (which does convert to System.Object).

ptg

 Pointers and Addresses 835

If the data is an unmanaged variable type but is not fixed, then use the
fixed statement to fix a moveable variable.

Fixing Data

To retrieve the address of a moveable data item, it is necessary to fix, or
pin, the data, as demonstrated in Listing 20.14.

Listing 20.14: Fixed Statement

byte[] bytes = new byte[24];
fixed (byte* pData = &bytes[0]) // pData = bytes also allowed
{
 // ...
}

Within the code block of a fixed statement, the assigned data will not
move. In this example, bytes will remain at the same address, at least until
the end of the fixed statement.

The fixed statement requires the declaration of the pointer variable
within its scope. This avoids accessing the variable outside the fixed state-
ment, when the data is no longer fixed. However, it is the programmer’s
responsibility to ensure that he doesn’t assign the pointer to another vari-
able that survives beyond the scope of the fixed statement—possibly in an
API call, for example. Similarly, using ref or out parameters will be prob-
lematic for data that will not survive beyond the method call.

Since a string is an invalid referent type, it would appear invalid to
define pointers to strings. However, as in C++, internally a string is a
pointer to the first character of an array of characters, and it is possible to
declare pointers to characters using char*. Therefore, C# allows declar-
ing a pointer of type char* and assigning it to a string within a fixed
statement. The fixed statement prevents the movement of the string dur-
ing the life of the pointer. Similarly, it allows any moveable type that sup-
ports an implicit conversion to a pointer of another type, given a fixed
statement.

You can replace the verbose assignment of &bytes[0] with the abbrevi-
ated bytes, as shown in Listing 20.15.

ptg

Chapter 20: Platform Interoperability and Unsafe Code836

Listing 20.15: Fixed Statement without Address or Array Indexer

byte[] bytes = new byte[24];
fixed (byte* pData = bytes)
{
 // ...
}

Depending on the frequency and time to execute, fixed statements have
the potential to cause fragmentation in the heap because the garbage col-
lector cannot compact fixed objects. To reduce this problem, the best
practice is to pin blocks early in the execution and to pin fewer large blocks
rather than many small blocks. Unfortunately, this has to be tempered
with pinning as little as possible for as short a time as possible, to minimize
the chance that a collection will happen during the time that the data is
pinned. To some extent, .NET 2.0 reduces the problem, due to some addi-
tional fragmentation-aware code.

Allocating on the Stack

You should use the fixed statement on an array to prevent the garbage col-
lector from moving the data. However, an alternative is to allocate the
array on the call stack. Stack allocated data is not subject to garbage collec-
tion or to the finalizer patterns that accompany it. Like referent types, the
requirement is that the stackalloc data is an array of unmanaged types.
For example, instead of allocating an array of bytes on the heap, you can
place it onto the call stack, as shown in Listing 20.16.

Listing 20.16: Allocating Data on the Call Stack

byte* bytes = stackalloc byte[42];}

Because the data type is an array of unmanaged types, it is possible for
the runtime to allocate a fixed buffer size for the array and then to restore
that buffer once the pointer goes out of scope. Specifically, it allocates
sizeof(T) * E, where E is the array size and T is the referent type. Given
the requirement of using stackalloc only on an array of unmanaged
types, the runtime restores the buffer back to the system simply
by unwinding the stack, eliminating the complexities of iterating over the
f-reachable queue (see Garbage Collection and Finalization in Chapter 9)
and compacting reachable data. Therefore, there is no way to explicitly free
stackalloc data.

ptg

 Pointers and Addresses 837

Note that the stack is a precious resource and, although small, running out
of stack space will result in a program crashing; every effort should be taken
to avoid running out. If a program does run out of stack space, the best thing
that can happen is for the program to shut down/crash immediately. Gener-
ally, programs have less than 1MB of stack space (possibly a lot less). There-
fore, take great care to avoid allocating arbitrarily sized buffers on the stack.

Dereferencing a Pointer
Accessing the data stored in a variable of a type referred to by a pointer
requires that you dereference the pointer, placing the indirection operator
prior to the expression. byte data = *pData;, for example, dereferences
the location of the byte referred to by pData and returns the single byte at
that location.

Using this principle in unsafe code allows the unorthodox behavior of
modifying the “immutable” string, as shown in Listing 20.17. In no way is
this recommended, but it does expose the potential of low-level memory
manipulation.

Listing 20.17: Modifying an Immutable String

string text = "S5280ft";
Console.Write("{0} = ", text);
unsafe // Requires /unsafe switch.
{
 fixed (char* pText = text)
 {
 char* p = pText;
 *++p = 'm';
 *++p = 'i';
 *++p = 'l';
 *++p = 'e';
 *++p = ' ';
 *++p = ' ';
 }
}
Console.WriteLine(text);

The results of Listing 20.17 appear in Output 20.2.

OUTPUT 20.2:

S5280ft = Smile

ptg

Chapter 20: Platform Interoperability and Unsafe Code838

In this case, you take the original address and increment it by the size
of the referent type (sizeof(char)), using the preincrement operator.
Next, you dereference the address using the indirection operator and then
assign the location with a different character. Similarly, using the + and –
operators on a pointer changes the address by the * sizeof(T) operand,
where T is the referent type.

Similarly, the comparison operators (==, !=, <, >, <=, and =>) work to
compare pointers translating effectively to the comparison of address
location values.

One restriction on the dereferencing operator is the inability to derefer-
ence a void*. The void* data type represents a pointer to an unknown type.
Since the data type is unknown, it can’t be dereferenced to another type.
Instead, to access the data referenced by a void*, you must convert it to any
other pointer type variable and then dereference the later type, for example.

You can achieve the same behavior as Listing 20.17 by using the index
operator rather than the indirection operator (see Listing 20.18).

Listing 20.18: Modifying an Immutable with the Index Operator in Unsafe Code

string text;
text = "S5280ft";
Console.Write("{0} = ", text);

Unsafe // Requires /unsafe switch.
{
 fixed (char* pText = text)
 {
 pText[1] = 'm';
 pText[2] = 'i';
 pText[3] = 'l';
 pText[4] = 'e';
 pText[5] = ' ';
 pText[6] = ' ';
 }
}
Console.WriteLine(text);

The results of Listing 20.18 appear in Output 20.3.

OUTPUT 20.3:

S5280ft = Smile

ptg

 Summary 839

Modifications such as those in Listing 20.17 and Listing 20.18 lead to
unexpected behavior. For example, if you reassigned text to "S5280ft"
following the Console.WriteLine() statement and then redisplayed text,
the output would still be Smile because the address of two equal string
literals is optimized to one string literal referenced by both variables. In
spite of the apparent assignment

text = "S5280ft";

after the unsafe code in Listing 20.17, the internals of the string assignment
are an address assignment of the modified "S5280ft" location, so text is
never set to the intended value.

Accessing the Member of a Referent Type
Dereferencing a pointer makes it possible for code to access the members
of the referent type. However, this is possible without the indirection oper-
ator (&). As Listing 20.19 shows, it is possible to directly access a referent
type’s members using the -> operator (that is, a->b is shorthand for
(*a).b).

Listing 20.19: Directly Accessing a Referent Type’s Members

unsafe
{
 Angle angle = new Angle(30, 18, 0);
 Angle* pAngle = ∠
 System.Console.WriteLine("{0}° {1}' {2}\"",

}

The results of Listing 20.19 appear in Output 20.4.

SUMMARY

This chapter’s introduction outlined the low-level access to the underlying
operating system that C# exposes. To summarize this, consider the Main()

 pAngle->Hours, pAngle->Minutes, pAngle->Seconds);

OUTPUT 20.4:

30° 18' 0

ptg

Chapter 20: Platform Interoperability and Unsafe Code840

function listing for determining whether execution is with a virtual com-
puter (see Listing 20.20).

Listing 20.20: Designating a Block for Unsafe Code

using System.Runtime.InteropServices;

class Program
{
 unsafe static int Main(string[] args)
 {
 // Assign redpill
 byte[] redpill = {
 0x0f, 0x01, 0x0d, // asm SIDT instruction
 0x00, 0x00, 0x00, 0x00, // placeholder for an address
 0xc3}; // asm return instruction

 fixed (byte* matrix = new byte[6],
 redpillPtr = redpill)
 {
 // Move the address of matrix immediately
 // following the SIDT instruction of memory.
 (uint)&redpillPtr[3] = (uint)&matrix[0];

 using (VirtualMemoryPtr codeBytesPtr =
 new VirtualMemoryPtr(redpill.Length))
 {
 Marshal.Copy(
 redpill, 0,
 codeBytesPtr, redpill.Length);

 MethodInvoker method =
 (MethodInvoker)Marshal.GetDelegateForFunctionPointer(
 codeBytesPtr, typeof(MethodInvoker));

 method();
 }
 if (matrix[5] > 0xd0)
 {
 Console.WriteLine("Inside Matrix!\n");
 return 1;
 }
 else
 {
 Console.WriteLine("Not in Matrix.\n");
 return 0;
 }

 unsafe
 {

ptg

 Summary 841

 } // fixed

 }
}

The results of Listing 20.20 appear in Output 20.5.

In this case, you use a delegate to trigger execution of the assembler code.
The delegate is declared as follows:

delegate void MethodInvoker();

This book has demonstrated the power, flexibility, consistency, and
fantastic structure of C#. This chapter demonstrated the ability, in spite of
such high-level programming capabilities, to perform very low-level oper-
ations as well.

Before I end the book, the next chapter briefly describes the underlying
execution platform and shifts the focus from the C# language to the
broader platform in which C# programs execute.

 } // unsafe

OUTPUT 20.5:

Inside Matrix!

ptg

This page intentionally left blank

ptg

843

21
The Common Language
Infrastructure

NE OF THE FIRST ITEMS that C# programmers encounter beyond the
syntax is the context under which a C# program executes. This chap-

ter discusses the underpinnings of how C# handles memory allocation and
deallocation, type checking, interoperability with other languages, cross-
platform execution, and support for programming metadata. In other
words, this chapter investigates the Common Language Infrastructure
(CLI) on which C# relies both at compile time and during execution. It cov-
ers the execution engine that governs a C# program at runtime and how C#
fits into a broader set of languages that are governed by the same execution

O

Common
Language

Infrastructure

1 What Is the CLI?

Base Class Library

Common Language
Specification

Common Type System

Common Intermediate
Language

2 CLI Implementations

3 C# CompilationRuntime4
Garbage Collection

Type Safety

Code Access Security

Platform Portability

Performance

5 Components

Metadata

Application Domains

Assemblies

Manifests

Modules

ptg

Chapter 21: The Common Language Infrastructure844

engine. Because of C#’s close ties with this infrastructure, most of the
features that come with the infrastructure are made available to C#.

Defining the Common Language Infrastructure (CLI)

Instead of generating instructions that a processor can interpret directly,
the C# compiler generates instructions in an intermediate language, the
Common Intermediate Language (CIL). A second compilation step
occurs, generally at execution time, converting the CIL to machine code
that the processor can understand. Conversion to machine code is still not
sufficient for code execution, however. It is also necessary for a C# pro-
gram to execute under the context of an agent. The agent responsible for
managing the execution of a C# program is the Virtual Execution System
(VES), generally more casually referred to as the runtime. (Note that the
runtime in this context does not refer to a time, such as execution time;
rather, the runtime—the Virtual Execution System—is an agent responsi-
ble for managing the execution of a C# program.) The runtime is responsi-
ble for loading and running programs and providing additional services
(security, garbage collection, and so on) to the program as it executes.

The specification for the CIL and the runtime is contained within an
international standard known as the Common Language Infrastructure
(CLI). This is a key specification for understanding the context in which a
C# program executes and how it can seamlessly interact with other
programs and libraries, even when they are written in alternate languages.
Note that the CLI does not prescribe the implementation for the standard,
but rather identifies the requirements for how a CLI platform should
behave once it conforms to the standard. This provides CLI implementers
with the flexibility to innovate where necessary, while still providing
enough structure that programs created by one platform can execute on a
different CLI implementation, and even on a different operating system.

NOTE

Note the similarity between these two acronyms and the names they
stand for. Take care to understand these upfront to avoid confusion
later on.

ptg

 CLI Implementations 845

Contained within the CLI standard are specifications for the following:

• The Virtual Execution System (VES, or runtime)

• The Common Intermediate Language (CIL)

• The Common Type System (CTS)

• The Common Language Specification (CLS)

• Metadata

• The framework

This chapter broadens your view of C# to include the CLI, which is critical
to how C# programs operate and interact with programs and with the
operating system.

CLI Implementations

There are currently seven predominant implementations of the CLI
(four of which are from Microsoft), each with an accompanying implemen-
tation of a C# compiler. Table 21.1 describes these implementations.

TABLE 21.1: Primary C# Compilers

Compiler Description

Microsoft
Visual C# .NET
Compiler

Microsoft’s .NET C# compiler is dominant in the
industry, but it is limited to running on the Windows
family of operating systems. You can download it free
as part of the Microsoft .NET Framework SDK from
http://msdn.microsoft.com/en-us/netframework/
default.aspx.

Microsoft
Silverlight

This is a cross-platform implementation of the CLI that runs
on both the Windows family of operating systems and the
Macintosh. Resources for getting started with development
on this platform are available at http://silverlight.net/
getstarted.

Microsoft
Compact
Framework

This is a trimmed-down implementation of the .NET Frame-
work designed to run on PDAs and phones.

Continues

http://msdn.microsoft.com/en-us/netframework/default.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://silverlight.net/getstarted
http://silverlight.net/getstarted

ptg

Chapter 21: The Common Language Infrastructure846

Although none of these platforms and compilers would have any prob-
lems with the source code shown in Chapter 1, note that each CLI and C#
compiler implementation is at a different stage of compliance with the
specifications. For example, some implementations will not compile all the
newer syntax. All implementations, however, are intended to comply with
the ECMA-334 specification for C# 1.01 and the ECMA-335 specification
for the CLI 1.2.2 Furthermore, many implementations include prototype
features prior to the establishment of those features in standards.

Compiler Description

Microsoft XNA This is a CLI implementation for game developers targeting
Xbox and Windows Vista. For more information, see
www.xna.com.

Mono Project The Mono Project is an open source implementation
sponsored by Ximian and designed to provide a Windows-,
Linux-, and Unix-compatible version of the CLI
specification and C# compiler. Source code and binaries are
available at www.go-mono.com.

DotGNU This is focused on creating platform-portable applications
that will run under both the .NET and the DotGNU.
Portable.NET implementations of the CLI. This implemen-
tation is available from www.dotgnu.org. Supported
operating systems include GNU/Linux *BSD, Cygwin/
Mingw32, Mac OS X, Solaris, AIX, and PARISC. DotGNU
and Mono have used portions of each other’s libraries at
various times.

Rotor The Rotor program, also known as the Shared Source CLI, is
an implementation of the CLI that Microsoft developed to
run on Windows, Mac OS X, and FreeBSD. Both the
implementation and the source code are available free at
http://msdn.microsoft.com/en-us/library/ms973880.aspx.
Note that although the source code is available for download,
Microsoft has not licensed Rotor for developing commercial
applications, and instead has targeted it as a learning tool.

1. This is available for free via mail, or via download at www.ecma-international.org/
publications/standards/Ecma-334.htm.

2. This is available for free via mail, or via download at www.ecma-international.org/
publications/standards/Ecma-335.htm.

TABLE 21.1: Primary C# Compilers (Continued)

http://msdn.microsoft.com/en-us/library/ms973880.aspx
www.xna.com
www.go-mono.com
www.dotgnu.org
www.ecma-international.org/publications/standards/Ecma-334.htm
www.ecma-international.org/publications/standards/Ecma-334.htm
www.ecma-international.org/publications/standards/Ecma-335.htm
www.ecma-international.org/publications/standards/Ecma-335.htm

ptg

 C# Compilation to Machine Code 847

C# Compilation to Machine Code

The HelloWorld program listing in Chapter 1 is obviously C# code, and
you compiled it for execution using the C# compiler. However, the proces-
sor still cannot directly interpret compiled C# code. An additional compi-
lation step is required to convert the result of C# compilation into machine
code. Furthermore, the execution requires the involvement of an agent that
adds additional services to the C# program, services that it was not neces-
sary to code for explicitly.

All computer languages define syntax and semantics for programming.
Since languages such as C and C++ compile to machine code, the platform
for these languages is the underlying operating system and machine
instruction set, be it Microsoft Windows, Linux, Unix, or others. Languages
such as C# are different; the underlying platform is the runtime (or VES).

CIL is what the C# compiler produces after compiling. It is termed a
“common intermediate language” (CIL) because an additional step is
required to transform the CIL into something that processors can under-
stand. Figure 21.1 shows the process.

In other words, C# compilation requires two steps:

1. Conversion from C# to CIL by the C# compiler

2. Conversion from CIL to instructions that the processor can execute

The runtime is able to understand CIL statements and compile them to
machine code. Generally, a component within the runtime performs this
compilation from CIL to machine code. This component is the just-in-time
(JIT) compiler, and jitting can occur when the program is installed or exe-
cuted. Most CLI implementations favor execution-time compilation of the
CIL, but the CLI does not specify when the compilation needs to occur. In
fact, the CLI even allows the CIL to be interpreted rather than compiled,
similar to the way many scripting languages work. In addition, .NET
includes a tool called NGEN that enables compilation to machine code prior
to actually running the program. This preexecution-time compilation needs
to take place on the computer on which the program will be executing
because it will evaluate the machine characteristics (processor, memory,
and so on) in order to generate more efficient code. The advantage of using

ptg

Chapter 21: The Common Language Infrastructure848

Figure 21.1: Compiling C# to Machine Code

class HelloWorld
{

static void Main()
 {
 System.Console.WriteLine(
 "Hello. My name is Inigo Montoya");
 }
}

.method private hidebysig static void Main() cil
managed
{
 .entrypoint
 //Code size 11 (0xb)
 .maxstack 8
 IL_0000: ldstr "Hello. My name is Inigo Montoya"
 IL_0005: call void
[mscorlib]System.Console::WriteLine(string)
 IL_000a: ret
} // end of method HelloWorld::Main

00000000 push ebp
00000001 mov ebp,esp
00000003 sub esp,28h
00000006 mov dword ptr [ebp-4],0
0000000d mov dword ptr [ebp-0Ch],0
00000014 cmp dword ptr ds:[001833E0h],0
0000001b je 00000022
0000001d call 75F9C9E0
00000022 mov ecx,dword ptr ds:[01C31418h]
00000028 call dword ptr ds: [03C8E854h]
0000002e nop
0000002f mov esp,ebp
00000031 pop ebp
00000032 ret

Machine Code

C# Code

CIL Code

C# Compiler

Runtime

ptg

 Runtime 849

NGEN at installation (or at any time prior to execution) is that you can reduce
the need for the jitter to run at startup, thereby decreasing startup time.

Runtime

Even after the runtime converts the CIL code to machine code and starts to
execute, it continues to maintain control of its execution. The code that exe-
cutes under the context of an agent such as the runtime is managed code,
and the process of executing under control of the runtime is managed
execution. The control over execution transfers to the data; this makes it
managed data because memory for the data is automatically allocated and
de-allocated by the runtime.

Somewhat inconsistently, the term Common Language Runtime (CLR) is
not technically a generic term that is part of the CLI. Rather, CLR is the
Microsoft-specific implementation of the runtime for the .NET platform.
Regardless, CLR is casually used as a generic term for runtime, and the
technically accurate term, Virtual Execution System, is seldom used outside
the context of the CLI specification.

Because an agent controls program execution, it is possible to inject
additional services into a program, even though programmers did not
explicitly code for them. Managed code, therefore, provides information to
allow these services to be attached. Among other items, managed code
enables the location of metadata about a type member, exception handling,
access to security information, and the capability to walk the stack. The
remainder of this section includes a description of some additional ser-
vices made available via the runtime and managed execution. The CLI
does not explicitly require all of them, but the established CLI platforms
have an implementation of each.

Garbage Collection
Garbage collection is the process of automatically de-allocating memory
based on the program’s needs. This is a significant programming problem
for languages that don’t have an automated system for doing this. Without
the garbage collector, programmers must remember to always free any
memory allocations they make. Forgetting to do so, or doing so repeatedly

ptg

Chapter 21: The Common Language Infrastructure850

for the same memory allocation, introduces memory leaks or corruption
into the program, something exacerbated by long-running programs such
as web servers. Because of the runtime’s built-in support for garbage
collection, programmers targeting runtime execution can focus on adding
program features rather than “plumbing” related to memory management.

It should be noted that the garbage collector only takes responsibility
for handling memory management. It does not provide an automated sys-
tem for managing resources unrelated to memory. Therefore, if an explicit
action to free a resource (other than memory) is required, programmers
using that resource should utilize special CLI-compatible programming
patterns that will aid in the cleanup of those resources (see Chapter 9).

Garbage Collection on .NET
The .NET platform implementation of garbage collection uses a genera-
tional, compacting, mark-and-sweep-based algorithm. It is generational
because objects that have lived for only a short period will be cleaned up
sooner than objects that have already survived garbage collection sweeps
because they were still in use. This conforms to the general pattern of
memory allocation that objects that have been around longer will continue
to outlive objects that have only recently been instantiated.

Language Contrast: C++—Deterministic Destruction

The exact mechanics for how the garbage collector works are not part of

the CLI specification; therefore, each implementation can take a slightly

different approach. (In fact, garbage collection is one item not explicitly

required by the CLI.) One key concept that may take C++ programmers a

little getting used to is that garbage-collected objects are not necessarily

collected deterministically (at well-defined, compile-time-known loca-

tions). In fact, objects can be garbage-collected anytime between when

they are last accessed and when the program shuts down. This includes

collection prior to falling out of scope, or waiting until well after an object

instance is accessible by the code.

ptg

 Runtime 851

Additionally, the .NET garbage collector uses a mark-and-sweep
algorithm. During each garbage collection execution, it marks objects that
are to be de-allocated and compacts together the objects that remain so that
there is no “dirty” space between them. The use of compression to fill in
the space left by de-allocated objects often results in faster instantiation of
new objects (than with unmanaged code), because it is not necessary to
search through memory to locate space for a new allocation. This also
decreases the chance of paging because more objects are located in the
same page, which improves performance as well.

The garbage collector takes into consideration the resources on the
machine and the demand on those resources at execution time. For exam-
ple, if memory on the computer is still largely untapped, the garbage col-
lector is less likely to run and take time to clean up those resources. This is
an optimization rarely taken by platforms and languages that are not
based on garbage collection.

Type Safety
One of the key advantages the runtime offers is checking conversions
between types, or type checking. Via type checking, the runtime prevents
programmers from unintentionally introducing invalid casts that can lead
to buffer overrun vulnerabilities. Such vulnerabilities are one of the most
common means of breaking into a computer system, and having the
runtime automatically prevent these is a significant gain.3 Type checking
provided by the runtime ensures the following.

• Both variables and the data the variables refer to are typed, and the
type of the variable is compatible with the data that it refers to.

• It is possible to locally analyze a type (without analyzing all of the
code in which the type is used) to determine what permissions will be
required to execute that type’s members.

• Each type has a compile-time-defined set of methods and the data
they contain. The runtime enforces rules about what classes can
access those methods and data. Methods marked as “private,” for
example, are accessible only by the containing type.

3. Assuming you are not the unscrupulous type that is looking for such vulnerabilities.

ptg

Chapter 21: The Common Language Infrastructure852

A D V A N C E D T O P I C

Circumventing Encapsulation and Access Modifiers
Given appropriate permissions, it is possible to circumvent encapsulation
and access modifiers via a mechanism known as reflection. Reflection pro-
vides late binding by enabling support for browsing through a type’s
members, looking up the names of particular constructs within an object’s
metadata, and invoking the type’s members.

Code Access Security
The runtime can make security checks as the program executes, allowing
and disallowing the specific types of operations depending on permis-
sions. Permission to execute a specific function is not restricted to authenti-
cation of the user running the program. The runtime also controls
execution based on who created the program and whether she is a trusted
provider. Similarly, you might want to note that Code Access Security
(CAS) also applies security policy based on the location of the code—by
default, code installed on the local machine is more trusted than code from
the LAN, which is much more trusted than code on the Internet. Permis-
sions can be tuned such that partially trusted providers can read and write
files from controlled locations on the disk, but they are prevented from
accessing other locations (such as email addresses from an email program)
for which the provider has not been granted permission. Identification of a
provider is handled by certificates that are embedded into the program
when the provider compiles the code.

Platform Portability
One theoretical feature of the runtime is the opportunity it provides for C#
code and the resultant programs to be platform-portable, capable of running
on multiple operating systems and executing on different CLI implementa-
tions. Portability in this context is not limited to the source code such that
recompiling is necessary. A single CLI module compiled for one platform
should run on any CLI-compatible platform without needing to be recom-
piled. This portability occurs because the work of porting the code lies in the
hands of the runtime implementation rather than the application developer.

The restriction is, of course, that no platform-specific APIs are used.
Because of this restriction, many developers forgo CLI platform-neutral

ptg

 Runtime 853

code in favor of accessing the underlying platform functionality, rather
than writing it all from scratch.

The platform portability offered by .NET, DotGNU, Rotor, and Mono
varies depending on the goals of the platform developers. For obvious rea-
sons, .NET was targeted to run only on the Microsoft series of operating
systems. Rotor, also produced by Microsoft, was primarily designed as a
means for teaching and fostering research into future CLI development. Its
inclusion of support for FreeBSD proves the portability characteristics of
the CLI. Some of the libraries included in .NET (such as WinForms,
ASP.NET, ADO.NET, and more) are not available in Rotor.

DotGNU and Mono were initially targeted at Linux but have since been
ported to many different operating systems. Furthermore, the goal of these
CLIs was to provide a means for porting .NET applications to operating
systems in addition to those controlled by Microsoft. In so doing, there is a
large overlap between the APIs found in .NET and those available in Mono
and DotGNU.

Unfortunately, the variance in the Based Class Library alone (even just
within the Microsoft-developed CLI platforms) makes portability difficult
at best. Perhaps the best option is for Silverlight development to be com-
patible with the full .NET Framework (but the reverse is unlikely to work
unless development is restricted to the set of compatible APIs).

Performance
Many programmers accustomed to writing unmanaged code will correctly
point out that managed environments impose overhead on applications,
no matter how simple. The trade-off is one of increased development pro-
ductivity and reduced bugs in managed code versus runtime performance.
The same dichotomy emerged as programming went from assembler to
higher-level languages such as C, and from structured programming to
object-oriented development. In the vast majority of scenarios, develop-
ment productivity wins out, especially as the speed and reduced price of
hardware surpass the demands of applications. Time spent on architec-
tural design is much more likely to yield big performance gains than the
complexities of a low-level development platform. In the climate of
security holes caused by buffer overruns, managed execution is even more
compelling.

ptg

Chapter 21: The Common Language Infrastructure854

Undoubtedly, certain development scenarios (device drivers, for exam-
ple) may not yet fit with managed execution. However, as managed
execution increases in capability and sophistication, many of these perfor-
mance considerations will likely vanish. Unmanaged execution will then
be reserved for development where precise control or circumvention of the
runtime is deemed necessary.4

Furthermore, the runtime introduces several factors that can contribute
to improved performance over native compilation. For example, because
translation to machine code takes place on the destination machine, the
resultant compiled code matches the processor and memory layout of that
machine, resulting in performance gains generally not leveraged by nonjit-
ted languages. Also, the runtime is able to respond to execution conditions
that direct compilation to machine code rarely takes into account. If, for
example, there is more memory on the box than is required, unmanaged
languages will still de-allocate their memory at deterministic, compile-
time-defined execution points in the code. Alternatively, jit-compiled lan-
guages will need to de-allocate memory only when it is running low or
when the program is shutting down. Even though jitting can add a com-
pile step to the execution process, code efficiencies that a jitter can insert
lead to performance rivaling that of programs compiled directly to
machine code. Ultimately, CLI programs are not necessarily faster than
non-CLI programs, but their performance is competitive.

Application Domains

By introducing a layer between the program and the operating system, it is
possible to implement virtual processes or applications known as applica-
tion domains (app domains). An application domain behaves like an
operating system process in that it offers a level of isolation between other
application domains. For example, an app domain has its own virtual
memory allocation, and communication between application domains
requires distributed communication paradigms, just as it would between
two operating system processes. Similarly, static data is not shared

4. Indeed, Microsoft has indicated that managed development will be the predominant
means of writing applications for its Windows platform in the future, even those applica-
tions that integrate with the operating system.

ptg

 Assemblies, Manifests, and Modules 855

between application domains, so static constructors run for each applica-
tion domain, and assuming a single thread per application domain, there is
no need to synchronize the static data because each application has its own
instance of the data. Furthermore, each application domain has its own
threads, and just like with an operating system process, threads cannot
cross application domain boundaries.

The point of an application domain is that processes are considered rela-
tively expensive. With application domains, you can avoid this additional
expense by running multiple application domains within a single process.
For example, you can use a single process to host a series of web sites. How-
ever, you can isolate the web sites from each other by placing them in their
own application domain. In summary, application domains represent a vir-
tual process on a layer between an operating system process and the threads.

Assemblies, Manifests, and Modules

Included in the CLI is the specification of the CIL output from a source lan-
guage compiler, usually an assembly. In addition to the CIL instructions
themselves, an assembly includes a manifest which is made up of the
following:

• The types that an assembly defines and imports

• Version information about the assembly itself

• Additional files the assembly depends on

• Security permissions for the assembly

The manifest is essentially a header to the assembly, providing all the
information about what an assembly is composed of, along with the infor-
mation that uniquely identifies it.

Assemblies can be class libraries or the executables themselves, and one
assembly can reference other assemblies (which, in turn, can reference more
assemblies), thereby establishing an application composed of many compo-
nents rather than one large, monolithic program. This is an important
feature that modern programming platforms take for granted, because it
significantly improves maintainability and allows a single component to be
shared across multiple programs.

ptg

Chapter 21: The Common Language Infrastructure856

In addition to the manifest, an assembly contains the CIL code within
one or more modules. Generally, the assembly and the manifest are com-
bined into a single file, as was the case with HelloWorld.exe in Chapter 1.
However, it is possible to place modules into their own separate files and
then use an assembly linker (al.exe) to create an assembly file that
includes a manifest that references each module.5 This not only provides
another means of breaking a program into components, but it also enables
the development of one assembly using multiple source languages.

Casually, the terms module and assembly are somewhat interchange-
able. However, the term assembly is predominant for those talking about
CLI-compatible programs or libraries. Figure 21.2 depicts the various
component terms.

5. This is partly because one of the primary CLI IDEs, Visual Studio .NET, lacks functionality
for working with assemblies composed of multiple modules. Current implementations of
Visual Studio .NET do not have integrated tools for building multimodule assemblies, and
when they use such assemblies, IntelliSense does not fully function.

Figure 21.2: Assemblies with the Modules and Files They Reference

Assembly Boundary

File Boundary

Process/Appdomain Boundary

subsystem subsystem

subsystem
subsystem

subsystem

Compress.UI.dll

Program.exe

System.dll

Compress.dll
Compress.
Resource

Compress.Algorithms.Netmodule

ptg

 Assemblies, Manifests, and Modules 857

Note that both assemblies and modules can also reference files such
as resource files that have been localized to a particular language.
Although it is rare, two different assemblies can reference the same
module or file.

In spite of the fact that an assembly can include multiple modules and
files, there is only one version number for the entire group of files and it is
placed in the assembly manifest. Therefore, the smallest versionable
component within an application is the assembly, even if that assembly is
composed of multiple files. If you change any of the referenced files—even
to release a patch—without updating the assembly manifest, you will
violate the integrity of the manifest and the entire assembly itself. As a
result, assemblies form the logical construct of a component or unit of
deployment.

Even though an assembly (the logical construct) could consist of multi-
ple modules, most assemblies contain only one. Furthermore, Microsoft
now provides an ILMerge.exe utility for combining multiple modules and
their manifests into a single file assembly.

Because the manifest includes a reference to all the files an assembly
depends on, it is possible to use the manifest to determine an assem-
bly’s dependencies. Furthermore, at execution time, the runtime needs
to examine only the manifest to determine what files it requires. Only
tool vendors distributing libraries shared by multiple applications
(Microsoft, for example) need to register those files at deployment
time. This makes deployment significantly easier. Often, deployment
of a CLI-based application is referred to as xcopy deployment, after
the Windows xcopy command that simply copies files to a selected
destination.

NOTE

Assemblies form the smallest unit that can be versioned and installed,
not the individual modules that comprise them.

ptg

Chapter 21: The Common Language Infrastructure858

Common Intermediate Language (CIL)

Considering the Common Language Infrastructure (CLI) name, another
important feature of the CIL and the CLI is to support the interaction of multi-
ple languages within the same application (instead of portability of source
code across multiple operating systems). As a result, the CIL is the intermedi-
ate language not only for C#, but also for many other languages, including
Visual Basic .NET, the Java-like language of J#, some incantations of Small-
talk, C++, and a host of others (more than 20 at the time of this writing, includ-
ing versions of COBOL and FORTRAN). Languages that compile to the CIL
are source languages and each has a custom compiler that converts the
source language to the CIL. Once compiled to the CIL, the source language is
insignificant. This powerful feature enables the development of libraries by
different development groups across multiple organizations, without con-
cern for the language choice of a particular group. Thus, the CIL enables
programming language interoperability as well as platform portability.

Common Type System (CTS)

Regardless of the programming language, the resultant program operates
internally on data types; therefore, the CLI includes the Common Type Sys-
tem (CTS). The CTS defines how types are structured and laid out in memory,

Language Contrast: COM DLL Registration

Unlike Microsoft’s COM files of the past, CLI assemblies rarely require any

type of registration. Instead, it is possible to deploy applications by copy-

ing all the files that comprise a program into a particular directory, and then

executing the program.

NOTE

A powerful feature of the CLI is support for multiple languages. This
enables the creation of programs using multiple languages and the
accessibility of libraries written in one language from code written in a
different language.

ptg

 Common Language Specification (CLS) 859

as well as the concepts and behaviors that surround types. It includes type
manipulation directives alongside the information about the data stored
within the type. The CTS standard applies to how types appear and behave at
the external boundary of a language because the purpose of the CTS is to
achieve interoperability between languages. It is the responsibility of the run-
time at execution time to enforce the contracts established by the CTS.

Within the CTS, types are broken down into two categories.

• Values are bit patterns used to represent basic types, such as integers
and characters, as well as more complex data in the form of struc-
tures. Each value type corresponds to a separate type designation not
stored within the bits themselves. The separate type designation
refers to the type definition that provides the meaning of each bit
within the value and the operations that the value supports.

• Objects contain within them the object’s type designation. (This helps
in enabling type checking.) Objects have identity that makes each
instance unique. Furthermore, objects have slots that can store other
types (either values or object references). Unlike values, changing the
contents of a slot does not change the identity of the object.

These two categories of types translate directly to C# syntax that provides
a means of declaring each type.

Common Language Specification (CLS)

Since the language integration advantages provided by the CTS generally
outweigh the costs of implementing it, the majority of source languages
support the CTS. However, there is also a subset of CTS language confor-
mance called the Common Language Specification (CLS). Its focus is
toward library implementations. It targets library developers, providing
them with standards for writing libraries that are accessible from the
majority of source languages, regardless of whether the source languages
using the library are CTS-compliant. It is called the Common Language
Specification because it is intended to also encourage CLI languages to
provide a means of creating interoperable libraries, or libraries that are
accessible from other languages.

ptg

Chapter 21: The Common Language Infrastructure860

For example, although it is perfectly reasonable for a language to
provide support for an unsigned integer, such a type is not included as
part of the CLS. Therefore, developers implementing a class library should
not externally expose unsigned integers because doing so would cause the
library to be less accessible from CLS-compliant source languages that do
not support unsigned integers. Ideally, therefore, any development of
libraries that is to be accessible from multiple languages should conform to
the CLS specification. Note that the CLS is not concerned with types that
are not exposed externally to the assembly.

Note that it is possible to have the compiler issue a warning when you
create an API that is not CLS compliant. To accomplish this, use the assem-
bly attribute System.CLSCompliant and specify a value of true for the
parameter.

Base Class Library (BCL)

In addition to providing a platform in which CIL code can execute, the CLI
also defines a core set of class libraries that programs may employ, called
the Base Class Library (BCL). These libraries provide foundational types
and APIs, allowing the program to interact with the runtime and underly-
ing operating system in a consistent manner. The BCL includes support for
collections, simple file access, some security, fundamental data types
(string, and so on), streams, and the like.

Similarly, there is a Microsoft-specific library called the Framework
Class Library (FCL) that adds to this and includes support for rich client
user interfaces, web user interfaces, database access, distributed communi-
cation, and more.

Metadata

In addition to execution instructions, CIL code includes metadata about the
types and files included in a program. The metadata includes the following:

• Descriptions of each type within a program or class library

• The manifest information containing data about the program itself,
along with the libraries it depends on

ptg

 Metadata 861

• Custom attributes embedded in the code, providing additional
information about the constructs the attributes decorate

The metadata is not a cursory, nonessential add-on to the CIL. Instead,
it forms a core part of the CLI implementation. It provides the representa-
tion and the behavior information about a type and includes location infor-
mation about which assembly contains a particular type definition.
It serves a key role in saving data from the compiler and making it
accessible at execution time to debuggers and the runtime. This data not
only is available in the CIL code, but also is accessible during machine
code execution so that the runtime can continue to make any necessary
type checks.

Metadata provides a mechanism for the runtime to handle a mixture
of native and managed code execution. Also, it increases code and execu-
tion robustness because it smoothes the migration from one library ver-
sion to the next, replacing compile-time-defined binding with a load-
time implementation.

All header information about a library and its dependencies is in a
portion of the metadata known as the manifest. As a result, the manifest
portion of the metadata enables developers to determine a module’s
dependencies, including information about particular versions of the
dependencies and signatures of who created the module. At execution
time, the runtime uses the manifest to determine what dependent libraries
to load, whether the libraries or the main program has been tampered
with, and whether assemblies are missing.

The metadata also contains custom attributes that may decorate the
code. Attributes provide additional metadata about CIL instructions that
are accessible via the program at execution time.

Metadata is available at execution time by a mechanism known as
reflection. With reflection, it is possible to look up a type or its member at
execution time and then invoke that member or determine whether a con-
struct is decorated with a particular attribute. This provides late binding,
determining what code to execute at execution time rather than at compile
time. Reflection can even be used for generating documentation by iterat-
ing through metadata and copying it into a help document of some kind
(see Chapter 17).

ptg

Chapter 21: The Common Language Infrastructure862

SUMMARY

This chapter described many new terms and acronyms that are important
to understanding the context under which C# programs run. The prepon-
derance of three-letter acronyms can be confusing. Table 21.2 provides a
summary list of the terms and acronyms that are part of the CLI.

TABLE 21.2: Common C#-Related Acronyms

Acronym Definition Description

.NET None Microsoft’s implementation of the entire
CLI stack. Includes the CLR, CIL, and
various languages, all of which are
CLS-compliant.

BCL Base Class
Library

The portion of the CLI specification that
defines the collection, threading, console,
and other base classes necessary to build
virtually all programs.

C# None A programming language. Note that
separate from the CLI standard there is a
C# Language Specification, also ratified
by the ECMA and ISO standards bodies.

CIL (IL) Common
Intermediate
Language

The language of the CLI specification that
defines the instructions for the code
executable on implementations of the
CLI. This is sometimes also referred to as
IL or Microsoft IL (MSIL) to distinguish it
from other intermediate languages. (To
indicate that it is a standard broader than
Microsoft, CIL is preferred over MSIL
and even IL.)

CLI Common
Language
Infrastructure

The specification that defines the
intermediate language, base classes, and
behavioral characteristics which enable
implementers to create Virtual Execution
Systems and compilers in which source
languages are interoperable on top of a
common execution environment.

CLR Common
Language
Runtime

Microsoft’s implementation of the
runtime, as defined in the CLI
specification.

ptg

 Summary 863

Acronym Definition Description

CLS Common
Language
Specification

The portion of the CLI specification that
defines the core subset of features which
source languages must support in
order to be executable on runtimes
implemented according to the CLI
specification.

CTS Common Type
System

A standard generally implemented by
CLI-compliant languages that defines the
representation and behavior of types that
the language exposes visibly outside a
module. It includes concepts for how
types can be combined to form new
types.

FCL .NET Framework
Class Library

The class library that comprises
Microsoft’s .NET Framework. It includes
Microsoft’s implementation of the BCL as
well as a large library of classes for such
things as web development, distributed
communication, database access, rich
client user interface development, and a
host of others.

VES
(runtime)

Virtual Execution
System

An agent that manages the execution of a
program that is compiled for the CLI.

TABLE 21.2: Common C#-Related Acronyms (Continued)

ptg

This page intentionally left blank

ptg

865

A
Downloading and Installing
the C# Compiler and the CLI
Platform

O COMPILE AND RUN C# programs, it is necessary to install a version of
the compiler and the CLI platform.

Microsoft’s .NET

The predominant CLI platform is Microsoft .NET and this is the platform
of choice for development on Microsoft Windows.

• The minimum installation that includes the compiler and the .NET
Framework with C# 2.0 syntax support is the redistributable package
for the .NET Framework 2.0 or higher. This is available at http://
msdn.microsoft.com/en-us/netframework/default.aspx.

• For a rich IDE that includes IntelliSense and support for project files,
install a version of the Visual Studio IDE. This includes Visual C#
Express, which is available free at http://lab.msdn.microsoft.com/
express.

T

http://msdn.microsoft.com/en-us/netframework/default.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://lab.msdn.microsoft.com/

ptg

Appendix A: Downloading and Installing the C# Compiler866

For command-line compilation, regardless of a Visual Studio install or
only the runtime, you must set the PATH environment variable to include
the C# compiler, CSC.EXE.

Setting Up the Compiler Path with Microsoft .NET
If Visual Studio .NET is installed on your computer, open the command
prompt from the Start menu by selecting All Programs, Microsoft Visual
Studio .NET, Visual Studio Tools, Visual Studio Command Prompt. This
command prompt places CSC.EXE in the path to be available for execution
from any directory.

Without Visual Studio .NET installed, no special compiler command
prompt item appears in the Start menu. Instead, you need to reference
the full compiler pathname explicitly or add it to the path. The
compiler is located at %Windir%\Microsoft.NET\Framework\<version>,
where <version> is the version of the .NET Framework (v1.0.3705,
v1.1.4322, v2.0.50727, and so on) and %Windir% is the environment
variable that points to the location of the Windows directory. To
add this location to the path use Set PATH=%PATH%;%Windir%\Micro-

soft.NET\Framework\<version>, again substituting the value of <ver-
sion> appropriately. Output A.1 provides an example.

Once the path includes the framework, it is possible to use the .NET C#
compiler, CSC.EXE, without providing the full path to its location.

Mono

For CLI development on platforms other than Microsoft Windows, consider
Mono, which is a platform you can download at www.mono-project.com.
As with the .NET platform, Mono requires the full path to the C# compiler if
it is not already in the search path. The default installation path on Linux is
/usr/lib/mono/<version> and the compiler is gmcs.exe or mcs.exe,

OUTPUT A.1:

Set PATH=%PATH%;%Windir%\Microsoft.NET\Framework\v2.0.50727

www.mono-project.com

ptg

 Mono 867

depending on the version. (If Mono is installed on Microsoft Windows, the
default path is %ProgramFiles%\Mono-<version>\lib\mono\<version>\.)

One option for a Linux version that includes an installation of Mono is
Monoppix. This builds on the CD-bootable Linux distribution known as
Knoppix and is available for download at www.monoppix.com.

Instead of CSC.EXE, the Mono platform’s compiler is MCS.EXE or
GMCS.EXE, depending on the compiler version. Therefore, the command for
compiling HelloWorld.cs is as shown in Output A.2.

Unfortunately, the Linux environment cannot run the resultant binaries
directly; instead, it requires explicit execution of the runtime using
mono.exe, as shown in Output A.3.

OUTPUT A.2:

C:\SAMPLES>msc.exe HelloWorld.cs

OUTPUT A.3:

C:\SAMPLES>mono.exe HelloWorld.exe
Hello. My name is Inigo Montoya.

www.monoppix.com

ptg

This page intentionally left blank

ptg

869

B
Full Source Code Listings

ANY OF THE CHAPTERS in this book have source code spread over
multiple listings. When listings are large, this makes the code diffi-

cult to follow. This appendix includes the code listings as one program,
making the individual listings easier to understand as a whole.

Chapters 3 and 4

Listing B.1: Tic-Tac-Toe

#define CSHARP2

using System;

#pragma warning disable 1030 // Disable user-defined warnings

// The TicTacToe class enables two players to
// play tic-tac-toe.
class TicTacToeGame // Declares the TicTacToeGame class
{
 static void Main() // Declares the entry point to the program
 {
 // Stores locations each player has moved.
 int[] playerPositions = { 0, 0 };

 // Initially set the currentPlayer to Player 1;
 int currentPlayer = 1;

 // Winning player

M

ptg

Appendix B: Full Source Code Listings870

 int winner = 0;

 string input = null;

 // Display the board and
 // prompt the current player
 // for his next move.
 for (int turn = 1; turn <= 10; ++turn)
 {
 DisplayBoard(playerPositions);

 #region Check for End Game
 if (EndGame(winner, turn, input))
 {
 break;
 }
 #endregion Check for End Game

 input = NextMove(playerPositions, currentPlayer);

 winner = DetermineWinner(playerPositions);

 // Switch players
 currentPlayer = (currentPlayer == 2) ? 1 : 2;
 }
 }

 private static string NextMove(int[] playerPositions,
 int currentPlayer)
 {
 string input;

 // Repeatedly prompt the player for a move
 // until a valid move is entered.
 bool validMove;
 do
 {
 // Request a move from the current player.
 System.Console.Write("\nPlayer {0} - Enter move:",
 currentPlayer);
 input = System.Console.ReadLine();
 validMove = ValidateAndMove(playerPositions,
 currentPlayer, input);
 } while (!validMove);

 return input;
 }

ptg

 Chapters 3 and 4 871

 static bool EndGame(int winner, int turn, string input)
 {
 bool endGame = false;
 if (winner > 0)
 {
 System.Console.WriteLine("\nPlayer {0} has won!!!!"
 winner);
 endGame = true;
 }
 else if (turn == 10)
 {
 // After completing the 10th display of the
 // board, exit out rather than prompting the
 // user again.
 System.Console.WriteLine("\nThe game was a tie!");
 endGame = true;
 }
 else if (input == "" || input == "quit")
 {
 // Check if user quit by hitting Enter without
 // any characters or by typing "quit".
 System.Console.WriteLine("The last player quit");
 endGame = true;
 }
 return endGame;
 }

 static int DetermineWinner(int[] playerPositions)
 {
 int winner = 0;

 // Determine if there is a winner
 int[] winningMasks = {
 7, 56, 448, 73, 146, 292, 84, 273};

 foreach (int mask in winningMasks)
 {
 if ((mask & playerPositions[0]) == mask)
 {
 winner = 1;
 break;
 }
 else if ((mask & playerPositions[1]) == mask)
 {
 winner = 2;
 break;
 }
 }

ptg

Appendix B: Full Source Code Listings872

 return winner;
 }

 static bool ValidateAndMove(
 int[] playerPositions, int currentPlayer, string input)
 {
 bool valid = false;

 // Check the current player’s input.
 switch (input)
 {
 case "1":
 case "2":
 case "3":
 case "4":
 case "5":
 case "6":
 case "7":
 case "8":
 case "9":
#warning "Same move allowed multiple times."
 int shifter; // The number of places to shift
 // over in order to set a bit.
 int position; // The bit which is to be set.

 // int.Parse() converts "input" to an integer.
 // "int.Parse(input) – 1" because arrays
 // are zero-based.
 shifter = int.Parse(input) - 1;

 // Shift mask of 00000000000000000000000000000001
 // over by cellLocations.
 position = 1 << shifter;

 // Take the current player cells and OR them
 // to set the new position as well.
 // Since currentPlayer is either 1 or 2 you
 // subtract one to use currentPlayer as an
 // index in a 0-based array.
 playerPositions[currentPlayer - 1] |= position;

 valid = true;
 break;

 case "":
 case "quit":
 valid = true;
 break;

ptg

 Chapters 3 and 4 873

 default:
 // If none of the other case statements
 // is encountered, then the text is invalid.
 System.Console.WriteLine(
 "\nERROR: Enter a value from 1-9. "
 + "Push ENTER to quit");
 break;
 }

 return valid;
 }

 static void DisplayBoard(int[] playerPositions)
 {
 // This represents the borders between each cell
 // for one row.
 string[] borders = {
 "|", "|", "\n---+---+---\n", "|", "|",
 "\n---+---+---\n", "|", "|", ""
 };

 // Display the current board;
 int border = 0; // set the first border (border[0] = "|")

#if CSHARP2
 System.Console.Clear();
#endif

 for (int position = 1;
 position <= 256;
 position <<= 1, border++)
 {
 char token = CalculateToken(
 playerPositions, position);

 // Write out a cell value and the border that
 // comes after it.
 System.Console.Write(" {0} {1}",
 token, borders[border]);
 }
 }

 static char CalculateToken(
 int[] playerPositions, int position)
 {
 // Initialize the players to 'X' and 'O'
 char[] players = {'X', 'O'};

 char token;
 // If player has the position set,

ptg

Appendix B: Full Source Code Listings874

 // then set the token to that player.
 if ((position & playerPositions[0]) == position)
 {
 // Player 1 has that position marked
 token = players[0];
 }
 else if ((position & playerPositions[1]) == position)
 {
 // Player 2 has that position marked
 token = players[1];
 }
 else
 {
 // The position is empty.
 token = ' ';
 }
 return token;
 }

 #line 113 "TicTacToe.cs"
 // Generated code goes here
 #line default
}

Chapter 9

Listing B.2: ProductSerialNumber

public sealed class ProductSerialNumber
{
 public ProductSerialNumber(
 string productSeries, int model, long id)
 {
 ProductSeries = productSeries;
 Model = model;
 Id = id;
 }

 public readonly string ProductSeries;
 public readonly int Model;
 public readonly long Id;

 public override int GetHashCode()
 {
 int hashCode = ProductSeries.GetHashCode();
 hashCode ^= Model; // Xor (eXclusive OR)
 hashCode ^= Id.GetHashCode(); // Xor (eXclusive OR)
 return hashCode;

ptg

 Chapter 9 875

 }

 public override bool Equals(object obj)
 {
 if (obj == null)
 {
 return false;
 }
 if (ReferenceEquals(this, obj))
 {
 return true;
 }
 if (this.GetType() != obj.GetType())
 {
 return false;
 }
 return Equals((ProductSerialNumber)obj);
 }

 public bool Equals(ProductSerialNumber obj)
 {
 // STEP 3: Possibly check for equivalent hash codes
 // if (this.GetHashCode() != obj.GetHashCode())
 // {
 // return false;
 // }

 // STEP 4: Check base.Equals if base overrides Equals()
 // System.Diagnostics.Debug.Assert(
 // base.GetType() != typeof(object));
 // if (base.Equals(obj))
 // {
 // return false;
 // }

 // STEP 1: Check for null
 return ((obj != null)
 // STEP 5: Compare identifying fields for equality.
 && (ProductSeries == obj.ProductSeries) &&
 (Model == obj.Model) &&
 (Id == obj.Id));
 }

 public static bool operator ==(
 ProductSerialNumber leftHandSide,
 ProductSerialNumber rightHandSide)
 {

 // Check if leftHandSide is null.
 // (operator== would be recursive)

ptg

Appendix B: Full Source Code Listings876

 if (ReferenceEquals(leftHandSide, null))
 {
 // Return true if rightHandSide is also null
 // but false otherwise.
 return ReferenceEquals(rightHandSide, null);
 }

 return (leftHandSide.Equals(rightHandSide));
 }

 public static bool operator !=(
 ProductSerialNumber leftHandSide,
 ProductSerialNumber rightHandSide)
 {
 return !(leftHandSide == rightHandSide);
 }
}

Chapter 12

Listing B.3: Binary Tree and Pair

public enum PairItem
{
 First,
 Second
}

interface IPair<T>
{
 T First
 {
 get;
 set;
 }

 T Second
 {
 get;
 set;
 }

 T this[PairItem index]
 {
 get;
 set;

ptg

 Chapter 12 877

 }
}

using System.Collections;
using System.Collections.Generic;

public struct Pair<T> : IPair<T>, IEnumerable<T>
{
 public Pair(T first)
 {
 _First = first;
 _Second = default(T);
 }
 public Pair(T first, T second)
 {
 _First = first;
 _Second = second;
 }
 public T First
 {
 get
 {
 return _First;
 }
 set
 {
 _First = value;
 }
 }
 private T _First;

 public T Second
 {
 get
 {
 return _Second;
 }
 set
 {
 _Second = value;
 }
 }
 private T _Second;

 [System.Runtime.CompilerServices.IndexerName("Entry")]
 public T this[PairItem index]
 {
 get

ptg

Appendix B: Full Source Code Listings878

 {
 switch (index)
 {
 case PairItem.First:
 return First;
 case PairItem.Second:
 return Second;
 default:
 throw new NotImplementedException(
 string.Format(
 "The enum {0} has not been implemented",
 index.ToString()));
 }
 }
 set
 {
 switch (index)
 {
 case PairItem.First:
 First = value;
 break;
 case PairItem.Second:
 Second = value;
 break;
 default:
 throw new NotImplementedException(
 string.Format(
 "The enum {0} has not been implemented",
 index.ToString()));
 }
 }
 }

 #region IEnumerable<T> Members
 public IEnumerator<T> GetEnumerator()
 {
 yield return First;
 yield return Second;
 }
 #endregion

 #region IEnumerable Members
 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
 #endregion

 public IEnumerable<T> GetReverseEnumerator()
 {

ptg

 Chapter 12 879

 yield return Second;
 yield return First;
 }

 // Listing 12.24
 public IEnumerable<T> GetNotNullEnumerator()
 {
 if ((First == null) || (Second == null))
 {
 yield break;
 }
 yield return Second;
 yield return First;
 }
}

using System.Collections;
using System.Collections.Generic;

public interface IBinaryTree<T>
{
 T Item
 {
 get;
 set;
 }
 Pair<IBinaryTree<T>> SubItems
 {
 get;
 set;
 }
}
public class BinaryTree<T> : IEnumerable<T>
{
 public BinaryTree(T value)
 {
 Value = value;
 }

 public T Value
 {
 get { return _Value; }
 set { _Value = value; }
 }
 private T _Value;

 public Pair<BinaryTree<T>> SubItems
 {
 get { return _SubItems; }
 set

ptg

Appendix B: Full Source Code Listings880

 {
 IComparable first;
 first = (IComparable)value.First.Value;

 if (first.CompareTo(value.Second.Value) < 0)
 {
 // first is less than second.
 }
 else
 {
 // first and second are the same or
 // second is less than first.
 }
 _SubItems = value;
 }
 }
 private Pair<BinaryTree<T>> _SubItems;

 public T this[params PairItem[] branches]
 {
 get
 {
 BinaryTree<T> currentNode = this;
 int totalLevels =
 (branches == null) ? 0 : branches.Length;
 int currentLevel = 0;

 while (currentLevel < totalLevels)
 {
 currentNode =
 currentNode.SubItems[branches[currentLevel]];
 if (currentNode == null)
 {
 // The binary tree at this location is null.
 throw new IndexOutOfRangeException();
 }
 currentLevel++;
 }

 return currentNode.Value;
 }
 }
 #region IEnumerable<T>
 // Listing 12.22
 public IEnumerator<T> GetEnumerator()
 {
 // Return the item at this node.
 yield return Value;

 // Iterate through each of the elements in the pair.

ptg

 Chapter 14 881

 foreach (BinaryTree<T> tree in SubItems)
 {
 if (tree != null)
 {
 // Since each element in the pair is a tree,
 // traverse the tree and yield each
 // element.
 foreach (T item in tree)
 {
 yield return item;
 }
 }
 }
 }
 #endregion IEnumerable<T>

 #region IEnumerable Members
 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
 #endregion
}

Chapter 14

Listing B.4: Command-Line Attributes

using System;
using System.Diagnostics;

public partial class Program
{
 public static void Main(string[] args)
 {
 string errorMessage;
 CommandLineInfo commandLine = new CommandLineInfo();
 if (!CommandLineHandler.TryParse(
 args, commandLine, out errorMessage))
 {
 Console.WriteLine(errorMessage);
 DisplayHelp();
 }

 if (commandLine.Help)
 {
 DisplayHelp();
 }

ptg

Appendix B: Full Source Code Listings882

 else
 {
 if (commandLine.Priority !=
 ProcessPriorityClass.Normal)
 {
 // Change thread priority
 }

 }
 // ...

 }

 private static void DisplayHelp()
 {
 // Display the command-line help.
 Console.WriteLine(
 "Thankyou for contacting the help text"); }
}

using System;
using System.Diagnostics;

public partial class Program
{
 private class CommandLineInfo
 {
 [CommandLineSwitchAlias("?")]
 public bool Help
 {
 get { return _Help; }
 set { _Help = value; }
 }
 private bool _Help;

 [CommandLineSwitchRequired]
 [CommandLineSwitchAlias("FileName")]
 public string Out
 {
 get { return _Out; }
 set { _Out = value; }
 }
 private string _Out;

 public ProcessPriorityClass Priority
 {
 get { return _Priority; }
 set { _Priority = value; }
 }

ptg

 Chapter 14 883

 private ProcessPriorityClass _Priority =
 ProcessPriorityClass.Normal;
 }
}

using System;
using System.Diagnostics;
using System.Reflection;

public class CommandLineHandler
{
 public static void Parse(string[] args, object commandLine)
 {
 string errorMessage;
 if (!TryParse(args, commandLine, out errorMessage))
 {
 throw new ApplicationException(errorMessage);
 }
 }

 public static bool TryParse(string[] args, object commandLine,
 out string errorMessage)
 {
 bool success = false;
 errorMessage = null;
 foreach (string arg in args)
 {
 string option;
 if (arg[0] == '/' || arg[0] == '-')
 {
 string[] optionParts = arg.Split(
 new char[] { ':' }, 2);

 // Remove the slash|dash
 option = optionParts[0].Remove(0, 1);
 PropertyInfo property =
 commandLine.GetType().GetProperty(option,
 BindingFlags.IgnoreCase |
 BindingFlags.Instance |
 BindingFlags.Public);
 if (property != null)
 {
 if (property.PropertyType == typeof(bool))
 {
 // Last parameters for handling indexers
 property.SetValue(
 commandLine, true, null);
 success = true;
 }

ptg

Appendix B: Full Source Code Listings884

 else if (
 property.PropertyType == typeof(string))
 {
 property.SetValue(
 commandLine, optionParts[1], null);
 success = true;
 }
 else if (property.PropertyType.IsEnum)
 {
 try
 {
 property.SetValue(commandLine,
 Enum.Parse(
 typeof(ProcessPriorityClass),
 optionParts[1], true),
 null);
 success = true;
 }
 catch (ArgumentException)
 {
 success = false;
 errorMessage =
 string.Format(
 "The option '{0}' is " +
 "invalid for '{1}'",
 optionParts[1], option);
 }
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Data type '{0}' on {1} is not"
 + " supported.",
 property.PropertyType.ToString(),
 commandLine.GetType().ToString());
 }
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Option '{0}' is not supported.",
 option);
 }
 }
 }
 return success;

ptg

 Chapter 14 885

 }
}

using System;
using System.Collections.Specialized;
using System.Reflection;

[AttributeUsage(AttributeTargets.Property, AllowMultiple = false)]
public class CommandLineSwitchRequiredAttribute : Attribute
{
 public static string[] GetMissingRequiredOptions(
 object commandLine)
 {
 StringCollection missingOptions = new StringCollection();
 PropertyInfo[] properties =
 commandLine.GetType().GetProperties();

 foreach (PropertyInfo property in properties)
 {
 Attribute[] attributes =
 (Attribute[])property.GetCustomAttributes(
 typeof(CommandLineSwitchRequiredAttribute),
 false);
 if ((attributes.Length > 0) &&
 (property.GetValue(commandLine, null) == null))
 {
 if (property.GetValue(commandLine, null) == null)
 {
 missingOptions.Add(property.Name);
 }
 }
 }
 string[] results = new string[missingOptions.Count];
 missingOptions.CopyTo(results, 0);
 return results;
 }
}

using System;
using System.Reflection;
using System.Collections.Generic;

[AttributeUsage(AttributeTargets.Property)]
public class CommandLineSwitchAliasAttribute : Attribute
{
 public CommandLineSwitchAliasAttribute(string alias)
 {

ptg

Appendix B: Full Source Code Listings886

 Alias = alias;
 }

 public string Alias
 {
 get { return _Alias; }
 set { _Alias = value; }
 }
 private string _Alias;

 public static Dictionary<string, PropertyInfo> GetSwitches(
 object commandLine)
 {
 PropertyInfo[] properties = null;
 Dictionary<string, PropertyInfo> options =
 new Dictionary<string, PropertyInfo>();

 properties = commandLine.GetType().GetProperties(
 BindingFlags.Public | BindingFlags.NonPublic |
 BindingFlags.Instance);
 foreach (PropertyInfo property in properties)
 {
 options.Add(property.Name.ToLower(), property);
 foreach (CommandLineSwitchAliasAttribute attribute in
 property.GetCustomAttributes(
 typeof(CommandLineSwitchAliasAttribute), false))
 {
 options.Add(attribute.Alias.ToLower(), property);
 }
 }
 return options;
 }
}

using System;
using System.Reflection;
using System.Collections.Generic;

public class CommandLineHandler
{
 // ...

 public static bool TryParse(
 string[] args, object commandLine,
 out string errorMessage)
 {
 bool success = false;
 errorMessage = null;

ptg

 Chapter 14 887

 Dictionary<string, PropertyInfo> options =
 CommandLineSwitchAliasAttribute.GetSwitches(
 commandLine);

 foreach (string arg in args)
 {
 PropertyInfo property;
 string option;
 if (arg[0] == '/' || arg[0] == '-')
 {
 string[] optionParts = arg.Split(
 new char[] { ':' }, 2);
 option = optionParts[0].Remove(0, 1).ToLower();

 if (options.TryGetValue(option, out property))
 {
 success = SetOption(
 commandLine, property,
 optionParts, ref errorMessage);
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Option '{0}' is not supported.",
 option);
 }
 }
 }

 return success;
 }

 private static bool SetOption(
 object commandLine, PropertyInfo property,
 string[] optionParts, ref string errorMessage)
 {
 bool success;

 if (property.PropertyType == typeof(bool))
 {
 // Last parameters for handling indexers
 property.SetValue(
 commandLine, true, null);
 success = true;
 }
 else
 {

 if ((optionParts.Length < 2)

ptg

Appendix B: Full Source Code Listings888

 || optionParts[1] == ""
 || optionParts[1] == ":")
 {
 // No setting was provided for the switch.
 success = false;
 errorMessage = string.Format(
 "You must specify the value for the {0} option.",
 property.Name);
 }
 else if (
 property.PropertyType == typeof(string))
 {
 property.SetValue(
 commandLine, optionParts[1], null);
 success = true;
 }
 else if (property.PropertyType.IsEnum)
 {
 success = TryParseEnumSwitch(
 commandLine, optionParts,
 property, ref errorMessage);
 }
 else
 {
 success = false;
 errorMessage = string.Format(
 "Data type '{0}' on {1} is not supported.",
 property.PropertyType.ToString(),
 commandLine.GetType().ToString());
 }
 }
 return success;
 }
}

Chapter 17

Listing B.5: Virtual Computer Detection Using P/Invoke

using System.Runtime.InteropServices;

class Program
{
 delegate void MethodInvoker();

 unsafe static int Main(string[] args)
 {
 // Assign redpill

ptg

 Chapter 17 889

 byte[] redpill = {
 0x0f, 0x01, 0x0d, // asm SIDT instruction
 0x00, 0x00, 0x00, 0x00, // placeholder for an address
 0xc3}; // asm return instruction

 unsafe
 {
 fixed (byte* matrix = new byte[6],
 redpillPtr = redpill)
 {
 // Move the address of matrix immediately
 // following the SIDT instruction of memory.
 (uint)&redpillPtr[3] = (uint)&matrix[0];

 using (VirtualMemoryPtr codeBytesPtr =
 new VirtualMemoryPtr(redpill.Length))
 {
 Marshal.Copy(
 redpill, 0,
 codeBytesPtr, redpill.Length);

 MethodInvoker method =
 (MethodInvoker)Marshal.GetDelegateForFunctionPointer(
 codeBytesPtr, typeof(MethodInvoker));

 method();
 }
 if (matrix[5] > 0xd0)
 {
 Console.WriteLine("Inside Matrix! \n");
 return 1;
 }
 else
 {
 Console.WriteLine("Not in Matrix. \n");
 return 0;
 }
 } // fixed

 }
}

public class VirtualMemoryPtr :
 System.Runtime.InteropServices.SafeHandle
{
 public VirtualMemoryPtr(int memorySize) :
 base(IntPtr.Zero, true)
 {
 ProcessHandle =

 } // unsafe

ptg

Appendix B: Full Source Code Listings890

 VirtualMemoryManager.GetCurrentProcessHandle();
 MemorySize = (IntPtr)memorySize;
 AllocatedPointer =
 VirtualMemoryManager.AllocExecutionBlock(
 memorySize, ProcessHandle);
 Disposed = false;
 }

 public readonly IntPtr AllocatedPointer;
 readonly IntPtr ProcessHandle;
 readonly IntPtr MemorySize;
 bool Disposed;

 public static implicit operator IntPtr(
 VirtualMemoryPtr virtualMemoryPointer)
 {
 return virtualMemoryPointer.AllocatedPointer;
 }

 // SafeHandle abstract member
 public override bool IsInvalid
 {
 get
 {
 return Disposed;
 }
 }

 // SafeHandle abstract member
 protected override bool ReleaseHandle()
 {
 if (!Disposed)
 {
 Disposed = true;
 GC.SuppressFinalize(this);
 VirtualMemoryManager.VirtualFreeEx(ProcessHandle,
 AllocatedPointer, MemorySize);
 }
 return true;
 }
}

class VirtualMemoryManager
{

 /// <summary>
 /// The type of memory allocation. This parameter must
 /// contain one of the following values.
 /// </summary>

ptg

 Chapter 17 891

 [Flags]
 private enum AllocationType : uint
 {
 /// <summary>
 /// Allocates physical storage in memory or in the
 /// paging file on disk for the specified reserved
 /// memory pages. The function initializes the memory
 /// to zero.
 /// </summary>
 Commit = 0x1000,
 /// <summary>
 /// Reserves a range of the process's virtual address
 /// space without allocating any actual physical
 /// storage in memory or in the paging file on disk.
 /// </summary>
 Reserve = 0x2000,
 /// <summary>
 /// Indicates that data in the memory range specified by
 /// lpAddress and dwSize is no longer of interest. The
 /// pages should not be read from or written to the
 /// paging file. However, the memory block will be used
 /// again later, so it should not be decommitted. This
 /// value cannot be used with any other value.
 /// </summary>
 Reset = 0x80000,
 /// <summary>
 /// Allocates physical memory with read-write access.
 /// This value is solely for use with Address Windowing
 /// Extensions (AWE) memory.
 /// </summary>
 Physical = 0x400000,
 /// <summary>
 /// Allocates memory at the highest possible address.
 /// </summary>
 TopDown = 0x100000,
 }

 /// <summary>
 /// The memory protection for the region of pages to be
 /// allocated.
 /// </summary>
 [Flags]
 private enum ProtectionOptions : uint
 {
 /// <summary>
 /// Enables execute access to the committed region of
 /// pages. An attempt to read or write to the committed
 /// region results in an access violation.
 /// </summary>

ptg

Appendix B: Full Source Code Listings892

 Execute = 0x10,
 /// <summary>
 /// Enables execute and read access to the committed
 /// region of pages. An attempt to write to the
 /// committed region results in an access violation.
 /// </summary>
 PageExecuteRead = 0x20,
 /// <summary>
 /// Enables execute, read, and write access to the
 /// committed region of pages.
 /// </summary>
 PageExecuteReadWrite = 0x40,
 // ...
 }

 /// <summary>
 /// The type of free operation
 /// </summary>
 [Flags]
 private enum MemoryFreeType : uint
 {
 /// <summary>
 /// Decommits the specified region of committed pages.
 /// After the operation, the pages are in the reserved
 /// state.
 /// </summary>
 Decommit = 0x4000,
 /// <summary>
 /// Releases the specified region of pages. After this
 /// operation, the pages are in the free state.
 /// </summary>
 Release = 0x8000
 }

 [DllImport("kernel32.dll", EntryPoint="GetCurrentProcess")]

 [DllImport("kernel32.dll")]
 internal static extern IntPtr GetCurrentProcess();

 [DllImport("kernel32.dll", SetLastError = true)]
 private static extern IntPtr VirtualAllocEx(
 IntPtr hProcess,
 IntPtr lpAddress,
 IntPtr dwSize,
 AllocationType flAllocationType,
 uint flProtect);

 // ...
 [DllImport("kernel32.dll", SetLastError = true)]

internal static extern IntPtr GetCurrentProcessHandle();

ptg

 Chapter 17 893

 static extern bool VirtualProtectEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, uint flNewProtect,
 ref uint lpflOldProtect);

 public static IntPtr AllocExecutionBlock(
 int size, IntPtr hProcess)
 {
 IntPtr codeBytesPtr;
 codeBytesPtr = VirtualAllocEx(
 hProcess, IntPtr.Zero,
 (IntPtr)size,
 AllocationType.Reserve | AllocationType.Commit,
 (uint)ProtectionOptions.PageExecuteReadWrite);

 if (codeBytesPtr == IntPtr.Zero)
 {
 throw new System.ComponentModel.Win32Exception();
 }

 uint lpflOldProtect = 0;
 if (!VirtualProtectEx(
 hProcess, codeBytesPtr,
 (IntPtr)size,
 (uint)ProtectionOptions.PageExecuteReadWrite,
 ref lpflOldProtect))
 {
 throw new System.ComponentModel.Win32Exception();
 }
 return codeBytesPtr;
 }

 public static IntPtr AllocExecutionBlock(int size)
 {
 return AllocExecutionBlock(
 size, GetCurrentProcessHandle());
 }

 [DllImport("kernel32.dll", SetLastError = true)]
 static extern bool VirtualFreeEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize, IntPtr dwFreeType);
 public static bool VirtualFreeEx(
 IntPtr hProcess, IntPtr lpAddress,
 IntPtr dwSize)
 {
 bool result = VirtualFreeEx(
 hProcess, lpAddress, dwSize,
 (IntPtr)MemoryFreeType.Decommit);
 if (!result)

ptg

Appendix B: Full Source Code Listings894

 {
 throw new System.ComponentModel.Win32Exception();
 }
 return result;
 }
 public static bool VirtualFreeEx(
 IntPtr lpAddress, IntPtr dwSize)
 {
 return VirtualFreeEx(
 GetCurrentProcessHandle(), lpAddress, dwSize);
 }

}

ptg

895

C
Concurrent Classes from
System.Collections.Concurrent

HE CONCURRENT CLASSES APPEAR in Figures C.1 through C.6 and are
discussed in Chapter 19.T

A

Figure C.1: System.Collections.Concurrent.ConcurrentQueue,T.

ptg

Appendix C: Concurrent Classes from System.Collections896

B

Figure C.2:

C

Figure C.3:

System.Collections.Concurrent.ConcurrentStack,T.

System.Collections.Concurrent.ConcurrentBag,T.

ptg

Appendix C: Concurrent Classes from System.Collections 897

D

Figure C.4:

E

Figure C.5:

System.Collections.Concurrent.ConcurrentLinkedList,T.

System.Collections.Concurrent.BlockingCollection,T.

ptg

Appendix C: Concurrent Classes from System.Collections898

F

Figure C.6: System.Collections.Concurrent.ConcurrentDictionary,TKey, TValue.

ptg

899

D

C# 2.0 Topics

Topic Title Page Number

access modifiers on getters and setters 231–232

anonymous methods 480–482

associating XML comments with programming constructs 386–388

BackgroundWorker patterns 804–809

constraints 440–457

contextual keywords 6–7

custom collections

building
IComparable<T> interfaces
IDictionary<TKey, TValue> interface
IList<T> interface
iterators
linked lists
primary collections classes
providing index operators
queues
returning null
sorting
stacks

611–612
614–617
614–617
614–617
634–650
629–630
617–630
630–634
629
634
626–628
628

Continues

ptg

Appendix D: C# 2.0 Topics 900

default() operator 68, 338

delegates, events 528–530

dictionary collections 622–626

FindAll() method 621–622

general catch blocks 409–410

generics

constraints

contravariance

covariance

events

internals

methods

types

422–439

439–452

457–463

457–463

528–530

463–467

453–457

427–439

Java, filenames must match class names 4

List<T> class 617–621

namespace alias qualifiers 384–385

nullable modifiers 57–58

numeric conversion with TryParse() method 198–199

partial classes 262–264

reflection on generic types 660–662

SafeHandle, applying 823–824

static properties 254–256

System.Console.ReadKey() method 18

System.Exception catch blocks 195–196

System.Runtime.Serialization.OptionalField-
Attribute

686

Topic Title Page Number

ptg

Appendix D: C# 2.0 Topics 901

System.Threading.Interlocked class methods 762

System.Threading.Mutex 766

TryParse() method 63–64

turning off warning messages (#pragma) 142–143

Topic Title Page Number

ptg

This page intentionally left blank

ptg

903

E

C# 3.0 Topics

Topic Title Page Number

anonymous types 245–246

automatically implemented properties 225–227

collection interfaces

anonymous types and implicitly typed local variables

collection initializers

536–543

543–546

error handling 519–520

extension methods

on interfaces

256–258, 278

322–323

implicitly typed local variables 53–55

Continues

ptg

Appendix E: C# 3.0 Topics 904

LINQ

compiling query expressions

deferred execution with query expressions

distinct members

filtering query expressions

grouping query expressions

implementing implicit execution

Let clause

overview of query expressions

query continuation with into clauses

query expressions

query expressions as method invocations

sorting query expressions

607

593–598

606–607

598–599

602–605

607–608

600–602

590–592

605–606

589–590

608–609

599–600

.NET versioning 26–27

object initializers 239–241

parameterless anonymous methods 482

partial methods 264–267

standard query operators

calling SelectMany() method

counting elements with Count() method

deferred execution

filtering with Where() method

grouping results with GroupBy() method

implementing one-to-many relationships

performing inner joins with Join() method

projecting with Select() method

sorting with OrderBy() method and ThenBy() method

552–586, 582–586

580–582

561

562–566

556–557

575–577

577–580

572–575

557–560

566–572

System.Runtime.CompilerServices.Compiler-
GeneratedAttribute

236

Topic Title Page Number

ptg

905

F

C# 4.0 Topics

Topic Title Page Number

Asynchronous Delegate Invocation 797–798

calling APMs (Asynchronous Programming Models) using TPL
(Task Parallel Library)

791–796

canceling parallel loops 729–734

common namespaces 153–154

concurrent collection classes 773–774

executing iterations in Parallel 724–734

generics

enabling contravariance

enabling covariance

lazy loading with

support for covariance and contravariance

460–462

458–460

401–402

462–463

lock keyword 757

ManualResetEvent and semaphores over AutoReset Event 772

Continues

ptg

Appendix F: C# 4.0 Topics 906

Monitor class synchronization 754–757

multithreading, unhandled exceptions on AppDomain 744–746

optional parameters 182–185

parallel exception handling with System.AggregateException 728–729

Parallel LINQ (PLINQ) 559–560

programming with dynamic objects 688–699

reset events 768–771

running LINQ queries in parallel 734–738

running threads

canceling tasks

disposing tasks

long-running threads

unhandled exception handling on Task

706–738

718–722

723–724

722–723

715–718

System-defined delegates: Func 483–485

thread local storage 774–775

Tuple generic types 437–438

use of System.Exception 412

Topic Title Page Number

ptg

907

Index

16-bit characters, 41
42 as strings versus as inte-

gers, 187

; (semicolons)
statements without, 10–11
whitespace, 11–12

 ~ (bitwise complement)
operator, 120

 # (hash) symbol, 139
 - (minus) operator, 84–92
 + (plus) operator, 84–92
 = (simple assignment) oper-

ator, 14
 _ (underscore), 15
!= (inequality) operator, 110,

370
! (logical notation) operator,

113
% (remainder) operator, 85
&& (AND) operator, 112, 373
' (single quote), 42
() (cast operator), 375–376
* (multiplication) operator,

85
+ (addition) operator, 85,

371–373
++ (increment) operator,

94–97
- - (decrement) operator,

94–97
/ (division) operator, 85

/// (three-forward-slash),
387

< (less than) operator, 110
<= (less than or equal to)

operator, 110
== (equality) operator, 110,

370
> (greater than) operator, 110
>= (greater than or equal to)

operator, 110
? (conditional) operator,

113–114
?? (null coalescing) operator,

114–115
@ symbol, 45
\ (backslash), 42
\n (newline) character, 42, 48
^ (exclusive OR) operator,

112
{} (code blocks), 105–107
|| (OR) operator, 111–112,

373
constraints, 450

A
abstract classes, inheritance,

293–299
abstract members, 294

declaring, 297
accessibility modifiers, 381
accessing

arrays, 70

CAS (Code Access
Security), 659, 852

class instances with Me
keyword, 214

instance fields, 210–211
members, referent types,

839
metadata, reflection,

652–662
security code, 25

access modifiers, 220–222
circumventing, 852
classes, 380–381
on getters and setters,

231–232
private, 275
protected, 276

acronyms, common C#,
862–863

actions, System.Action,
483–484

Active Template Library
(ATL), 278

adding
comments, 20–23
items to Dictionary<TKey,

TValue>, 623
operators, 371–373

addition (+) operator, 85,
371–373

Add() method, 543
addresses, pointers and,

830–839

ptg

Index908

aggregation
multiple inheritance, 280
single inheritance, 279

aliasing, 164–165
qualifiers, namespaces,

384–385
allocating data on call stacks,

836
AllowMultiple parameter,

674
ambiguity, avoiding,

213–217
AND operator (&&), 112, 373
anonymous functions, 486
anonymous methods,

480–482
internals, 494–495
parameterless, 482

anonymous types, 245–246
arrays, initializing, 545–546
collection interfaces,

536–538
generating, 542–543
implicit local variables, 54
projection to, 558
within query expressions,

593
APIs (application program-

ming interfaces)
encapsulation, 826–828
VirtualAllocEx(),

declaring, 818–819
wrappers, simplifying calls

with, 828–829
APMs (Asynchronous Pro-

gramming Models),
783–797

TPL (Task Parallel Library),
calling, 791–796

AppDomain, unhandled
exceptions on, 744–746

applicable calls, 185
applications

domains, CLI (Common
Language
Infrastructure),
854–855

HelloWorld program, 2–4,
28–30

single instance, 766–767
task-related finalization

exceptions suppressed
during shutdown, 717

applying
arrays, 70–76
bitwise operators, 118
characters in arithmetic

operations, 88–89
factory inheritance, 451
FlagsAttribute, 354–355
generic classes, 427–429
lambda expressions as

data, 498–499
post-increment operators,

95
pre-increment operators,

96
SafeHandle, 823–824
strings, 50
StructLayoutAttribute

for sequential layout,
820–821

System.Threading.Interl
ocked class, 761–763

validation to properties,
228–229

variables, 12–16
variance in delegates, 485
weak references, 391–393

ArgumentNullException,
407

arithmetic operators, 85
arrays, 64–80

accessing, 70
anonymous types,

initializing, 545–546
applying, 70–76
assigning, 66–70
common errors, 78–80
declaring, 65–66, 70
errors, 69
foreach loops, 546–547
instance methods, 75–76
instantiation, 66–70
length of, 72
methods, 73–75
parameters, 173–176
redimensioning, 75

strings as, 76–78
support for covariance and

contravariance in,
462–463

as operators, 302
assemblies, 3

attributes, 665
CLI (Common Language

Infrastructure),
855–858

metadata reflection,
652–662

multimode, building,
856n5

referencing, 377–381
targets, modifying, 378–379

Assert() methods, 91
assigning

arrays, 66–70
indexer property names,

632–633
null to strings, 51
pointers, 834–837
variables, 13, 14–16

assignment operators, 92–98
binary operators,

combining, 373
bitwise, 120

associating
data in classes, 250
XML comments with

programming
constructs, 386–388

associativity, order of, 86
Asynchronous Delegate

Invocation, 797–801
asynchronous operations

with
System.Threading.Thr
ead, 738–740

Asynchronous Program-
ming Models,
Se APMs

AsyncState property, 710
ATL (Active Template

Library), 278
atomicity, 704–705, 752
attributes, 663–688

assemblies, 665

ptg

Index 909

command-line, 881–888
constructors, initializing,

668–673
custom, 666–667
FlagsAttribute, 354–355,

675
limiting, 674
metadata reflection,

652–662
predefined, 676–677
return, specifying, 666
searching, 667–668
serialization, 680–682
System.ConditionalAttri

bute, 677–679
System.NonSerializable,

682–683
System.ObsoleteAttribut

e, 679–680
System.Runtime.Serializ

ation.OptionalField
Attribute, 686

ThreadStaticAttribute,
775–777

automatically implemented
properties, 225–227

AutoResetEvent, sema-
phores over, 772

availability of types, 380
Average function, 585
avoiding

ambiguity, 213–217
copying, 345
deadlock, 759, 764–765
equality conditionals, 91
string types, 759–760
synchronization, 760
this type, 759–760
typeof types, 759–760
unboxing, 345
unnecessary locking,

765–766

B
BackgroundWorker class pat-

terns, 804–809
backslash (\), 42
base classes, 204

constraints, 444–445
overriding, 281–293

refactoring, 271
Base Class Library. See BCL
base interfaces, using in class

declarations, 320
base members, 291–292
base types, casting between

derived
types, 272–273

BCL (Base Class Library), 25
CLI (Common Language

Infrastructure), 860
behaviors, dynamic data

type, 690–693
benefits of generics, 430–431
best practices, synchroniza-

tion design, 674
binary operators, 85, 371–373
BinarySearch() method, 75,

620
Binary Tree and Pair, full

source code listings,
876–881

BinaryTree<T> class with no
constraints, declaring,
439

binding, dynamic, 694
bits, 115
bitwise operators, 115–121

assignment, 120
complement (~) operator,

120
blocks

catch, general, 409–410
code blocks, 831
code blocks (), 105–107
System.Exception,

195–196
unchecked, 418

Boolean expressions,
109–115

Boolean types, 40–41
boxing, 339–346
break statements, 132–135
BubbleSort() method,

470–472
buffers

overflow bugs, 72
overruns, 72

building
custom collections, 611–612

multimode assemblies,
856n5

bytes, 115

C
C#

acronyms, 862–863
CLI (Common Language

Infrastructure),
compiling to machine
code, 847–849

compilers
downloading, 865
installing, 865–867

custom collection
interfaces, 612–613

delegate instantiation,
477–480

general catch blocks in,
409–410

LINQ, projection using
query expressions,
592–593

overview of, 1–2
preprocessor directives,

138–145
properties, 48
syntax fundamentals, 4–12
VirtualAllocEx()APIs,

declaring, 818–819
without generics, 422–439

C++
array declaration, 66
buffer overflow bugs, 72
delete operator, 208
deterministic destruction,

399, 850
dispatch method calls

during
construction, 286

global methods, 158
global variables and

functions, 248
header files, 160
implicit overriding, 283
multiple inheritance, 278
operators, errors, 110
pointers, declaring, 833
preprocessing, 138
pure virtual functions, 297

ptg

Index910

C++ (contd.)
struct defines type with

public
members, 337

switch statements, 132
templates, 442
var, 540
Variant, 540
void*, 540
void as data types, 52

calculating
pi, 725
values, 115

callbacks, invoking, 787
caller variables, matching

parameter
names, 168

calling
APMs (Asynchronous

Programming
Models), 784–786,
791–796

applicable, 185
binary operators, 372–373
call sites, 168
constructors, 237,

 243–244
external functions, 826–828
methods, 150–156
object initializers, 240
SelectMany() method,

580–582
stacks, 168

allocating data on, 836
exceptions, 412

wrappers, simplifying
APIs with, 828–829

cancellation
cooperative, 719
parallel loops, 729–734
tasks, 718–722

CancellationToken-
Source.Token
property, 731

CAS (Code Access Security),
659, 852

case sensitivity, 2
casting

between base and derived
types, 272–273

within inheritance chains,
274

inside generic methods,
456–457

cast operator (()), 58, 375–376
catch blocks

general, 409–410
System.Exception,

195–196
catching exceptions,

191–192, 196,
407–408, 411

categories of types, 55–57,
332–339

CD-ROM drives, 274
Cell type, 427
centralizing initialization,

244–245
chains, casting within inheri-

tance, 274
characters

arithmetic operations,
applying, 88–89

escape, 42, 43
newline (\n), 42, 48
Unicode, 41–43

char types, 41
checked conversions, 59–61,

417–419
checking

for null, 513–514
types, 851

child classes, 205
child collections, creating,

578
CIL (Common Intermediate

Language), 23
boxing code in, 340
CLI (Common Language

Infrastructure), 858
dynamic data type, 693
and ILDASM, 27–30
out variable

implementation,
496–498

representation of generics,
463–464

System.SerializableAttr
ibute, 687–688

circular wait condition, 765

class, iterators, 645
classes, 201–202

abstract, inheritance,
293–299

access modifiers, 220–222,
380–381

associated data, 250
BackgroundWorker

patterns, 804–809
base, 204

constraints, 444–445
overriding, 281–293
refactoring, 271

BinaryTree<T>, declaring
with no constraints,
439

concrete, 293
concurrent collection,

773–774
concurrent from

Systems.Collections
.Concurrent, 895–898

ConsoleListControl, 307
constructors, 236–247
declaring, 205–209
defining, 206
definitions, 7
deriving, 270
encapsulation, 258–260
exceptions, inheritance, 192
extension methods,

256–258
generics, 427–429, 661–662
hierarchies, 204, 473n1
inner, 262
instances

fields, 209–211
methods, 211–212

instantiating, 205–209
interfaces

compared with, 328–329
duplicating, 433–434

iterators, creating multiple
in, 648–649

libraries, 377–378, 378
LinkedList<T>, 629
List<T>, 617–621
members, 209
Monitor, synchronization,

754–758

ptg

Index 911

nested, 260–262, 265
object-oriented

programming,
203–205

partial, 262–267
primary collections,

617–630
properties, 222–236
Queue<T>, 629
sealed, 281
SortedDictionary<TKey,

TValue>, 626–628
SortedList<T>, 626–628
Stack, 422, 425
Stack<T>, 628
static, 255
static members, 247–256
System.Threading.Interl

ocked, 761–763
System.Threading.WaitHa

ndle, 768–769
this keyword, 213–220

clauses
into, query continuation

with, 605–606
Let, 600–602
query expressions, 590
where, converting

expression trees to,
499

cleanup, resources, 790–791,
823–824

well-formed types, 393–400
Clear() method, 75
CLI (Common Language

Infrastructure),
1, 24, 843–844

application domains,
854–855

assemblies, 855–858
BCL (Base Class Library),

860
C#, compiling to machine

code, 847–849
CIL (Common

Intermediate
Language), 858

CLS (Common Language
Specification),
859–860

CTS (Common Type
System), 858–859

defining, 844–845
implementation, 845–846
manifests, 855–858
metadata, 860–861
modules, 855–858
P/Invoke, 816–830
runtime, 849–854

CLS (Common Language
Specification), 24

CLI (Common Language
Infrastructure),
859–860

CLU language, 635
clusters, 635
code

access security, 25
Binary Tree and Pair,

876–881
CAS (code access security),

659
CIL, boxing in, 340
command-line attributes,

881–888
comments, 20–23
conventions, events,

526–528
declaration space, 107–109
HelloWorld program, 2–4
invalid, indentation, 106
machine, 844, 847–849
management, 24
multithreading. See

multithreading
paths, 159
P/Invoke, 816–830
ProductSerialNumber,

874–876
pseudocode, executing, 752
reusing, 378
scope, 107–109
styles, avoiding ambiguity,

213–217
Tic-Tac-Toe, 869–874
unsafe, 831–832
values, hardcoding, 35–37
virtual computer detection

using P/Invoke,
888–894

whitespace, formatting,
11–12

Code Access Security (CAS),
659, 852

code blocks (), 105–107
collections

concurrent, 773–774
custom, building, 611–612
dictionary, 622–626
IComparable<T> interfaces,

614–617
IDictionary<TKey,

TValue> interface,
614–617

IList<T> interface,
614–617

index operators, 630–634
initializers, 240–241,

543–546
interfaces, 612–613

anonymous types,
536–538

IEnumerable<T>,
546–552

implicitly typed local
variables, 538–540

with standard query
operators,
535–536

iterators, 634–650
linked lists, 629–630
null, returning, 634
primary collections classes,

617–630
queues, 629
sorting, 626–628
stacks, 628

Collect() method, 391
COM

controlling, 813
DLL registration, 858

combining binary operators
and assignment opera-
tors, 373

command-line
arguments to Main()

methods, passing, 166
attributes, full source code

listings, 881–888
options, 76

ptg

Index912

CommandLineHandler.Try-
Parse() method, 671

comments, 20–23
delimited, 21
single-line, 22
XML, 385–389

common errors, arrays,
78–80

Common Intermediate
Language. See CIL

Common Language Infra-
structure. See CLI

Common Language Specifi-
cation. See CLS

CompareTo() method, 442
ComparisonHandler-Com-

patible method,
478–479

compatibility, types between
enums, 349–350

compilers
C#

downloading, 865
installing, 865–867

extracting XML data, 385n2
compiling

case sensitivity, 2
C# to machine code,

847–849
HelloWorld program, 3–4
JIT (just-in-time) compilers,

848
LINQ query expressions,

607
static compilation versus

dynamic
programming,
695–696

string concatenation, 45
computers, virtual, 816
concatenation of strings

compile time, 45
Concat() standard query

operator, 584
concrete classes, 293
concurrent classes from

Systems.Collections.
Concurrent, 895–898

concurrent collection classes,
773–774

conditional (?) operator,
113–114

conditionals, 109. See also
Boolean expressions

conditions, removing, 765
connecting

publishers, 511–512
subscribers, 511–512

console executable, 378
ConsoleListControl class,

307
consoles, input and output,

16–20
ConsoleSyncObject, 797
constants

expressions, 98
mathematics, 107

const fields, 258–259
constraints

base classes, 444–445
constructors, 446–447, 451
generics, 439–457
inheritance, 447–448, 450
interfaces, 442–444
limitations, 449–452
multiple, 446
struct/class, 445

constructors
attributes, initializing,

668–673
calling, 237, 243–244
classes, 236–247
constraints, 446–447, 451
declaring, 237–238
default, 239
defining, 434–435
inheritance, 292–293
overloading, 241–242
static, 253–254

constructs
metadata reflection,

652–662
programming, associating

XML comments with,
386–388

contextual keywords, 6–7
Continuation Passing Style.

See CPS
continue statements,

135–136

ContinueWith() method,
711–715, 717, 795–796

contravariance, generics,
457–463

control flow, 83–84
statements, 121–132

controlling
COM, 813
threads, 706–738

conventions
code, events, 526–528
naming. See naming

conventions
conversion
as operators, 302
checked, 59–61, 417–419
C# to CIL, 847
customizing, 274
between data types, 58–64
between enums and

strings, 348, 350–351
expression trees to SQL

where clauses, 499
generics to type

parameters, 457
implicit, 62, 273
interfaces between

implementing
classes and, 318

numbers to Booleans, 61
numeric conversion with

TryParse() method,
198–199

operators, 375
guidelines for, 377
implementation, 376

strings, 63
unchecked, 59–61, 417–419

cooperative cancellation,
719

copying, avoiding, 345
Copy() method, 257
CopyTo() method, 617
CountdownEvent, 772
Count() function, 585
counting elements with

Count() method, 561
Count property, 617
covariance, 438

generics, 457–463

ptg

Index 913

IEnumewrable<out T>,
485n2

C pointers, declaring, 833
CPS (Continuation Passing

Style), 787–789
CTS (Common Type

System), 858–859
Current Programming with

Windows, 801n1
custom attributes, 666–667
custom collections

building, 611–612
IComparable<T> interfaces,

614–617
IDictionary<TKey,

TValue> interface,
614–617

IList<T> interface,
614–617

index operators, 630–634
interfaces, 612–613
iterators, 634–650
linked lists, 629–630
null, returning, 634
primary collections classes,

617–630
queues, 629
sorting, 626–628
stacks, 628

custom dynamic object
implementation,
696–699

customizing
conversions, defining, 274
event implementation,

532–533
exceptions, defining,

414–419
LINQ, 585
serialization, 683–684

D
data

allocating on call stacks,
836

to and from an alternate
thread, passing,
799–801

fixing, 835
persistence, 217

retrieval from files, 218
DataStore() method, 545
data types, 13–14, 31–32,

40–57
arrays, 64–80
categories of, 55–57
conversions between,

58–64
delegates, 472–473
dynamic, principles and

behaviors, 690–693
fundamental numeric

types, 32–40
nullable modifiers, 57–58
null keyword, 51–52
parameters, 818–819
short, 33
strings, 43–51
System.Text.

StringBuilder, 51
void keyword, 52–55

deadlock, 705–706, 760
avoiding, 759, 764–765

decimal types, 34–35
declaration space, 107–109
declaring

abstract members, 297
arrays, 65–66, 70
BinaryTree<T> class with

no constraints, 439
classes, 8, 205–209
constant fields, 258
constructors, 237–238
delegates

data types, 475
with method returns, 522

events, 525–526
external functions, 817
fields as volatile,

760–761
finalizers, 393
generics

classes, 430
delegate types, 529
interfaces, 432
multiple type parameters,

436
instance fields, 209–210
interfaces, constraints,

443–444

jagged arrays, 71
Main() method, 9–10
methods, 157–161, 159–160
parameters, 159
pointers, 832–834
properties, 223–225
static constructors, 253–254
static properties, 254
two-dimensional arrays, 68
Type alias, 164
variables, 13, 14

applying anonymous
methods, 481

of the Class Type, 206
VirtualAllocEx() APIs,

818–819
Win32 APIs, 818n1

decorating properties, 663,
664

decrement (- -) operator,
94–97

default constructors, 239
default() operators, 68, 338,

435
default values, specifying,

435–436
deferred execution

with LINQ query
expressions, 593–598

standard query operators,
562–566

defining
abstract classes, 294
abstract members, 295
cast operators, 275, 375
classes, 7, 206
CLI (Common Language

Infrastructure),
844–845

constructors, 434–435
custom conversions, 274
custom exceptions, 414–419
delegates, types, 474–475
enums, 347
finalizers, 393–395, 434–435
generic methods, 453
index operators, 631–632
inheritance, 269–270
interfaces, 307
iterators, 636

ptg

Index914

defining (contd.)
namespaces, well-formed

types, 382–385
nested classes, 260, 265
objects, 206
preprocessor symbols, 141
properties, 224
publishers, events, 510–511
simple generic classes,

429–430
specialized Stack classes,

425
struct, 334
subroutines, 53
subscriber methods,

508–510
types, 7–8

delegates
class hierarchies, 473n1
data types, 472–473
events, 528–530
instantiating, 475–480
internals, 473–474
invoking, 512–513
multicast, 508

coding observer patterns
with, 508–523

internals, 518–519
operators, 514–516
overview of, 470–480
passing, 829
types, defining,

474–475
variance, applying, 485

delete operator, 208
deleting whitespace, 12
delimited comments, 21

XML, 387
delimiters, statements, 10
dereferencing

pointers, 837–839
reference types, 334

deriving
base types, casting

between, 272–273
inheritance, 270–281
one interface from another,

318
preventing, 281

design, synchronization best
practices, 674

destruction, deterministic,
208, 399, 850

detecting virtual computers
using P/Invoke,
888–894

deterministic destruction,
208, 399, 850

deterministic finalization,
395–398

diagrams
interfaces, 325
sequences, 520
Venn, 568

dialog boxes, Windows Error
Reporting, 715

dictionary collections,
622–626

directives
import, wildcards in, 162
preprocessor, C#, 138–145
using, 161–168

disambiguation, multiple
Main() methods, 167

dispatch method calls dur-
ing construction, 286

Dispose() method, 397
disposing tasks, 723–724
distinct members, 606–607
Distinct() standard query

operator, 584
dividing float by zero, 91
division (/) operator, 85
documentation, generating

XML, 388–389
domains, applications,

854–855
double type, 36
do/while loops, 121–123
downloading C# compilers,

865
Duffy, Joe, 801n1
duplicating interfaces,

433–434
dynamic binding, 694
dynamic data type principles

and behaviors, 690–693
dynamic objects

custom implementation,
696–699

programming with,
688–699

reflection, invoking,
689–690

dynamic programming,
static compilation ver-
sus, 695–696

E
EAPs (Event-based Asyn-

chronous Patterns),
801–804

editors, visual hints for,
144–145

Eject() method, 274
emitting errors, 141–142
empty catch block internals,

411
empty collections, return-

ing, 634
enabling Intellisense, 592
encapsulation, 203

APIs, 826–828
circumventing, 852
classes, 258–260
information hiding, 220
objects group data with

methods, 208–209
publication, 524–535
subscriptions, 523–524
of types, 379–380

enums
defining, 347
flags, 351–355
FlagsAttribute, 354–355
string conversion, 350–351
type compatibility

between, 349–350
value types, 346–355

equality conditionals, avoid-
ing, 91

equality (==) operators,
110–111, 370

Equals() method, overrid-
ing, 361–369

errors
arrays, 69, 78–80
emitting, 141–142
handling

C# 3.0, 519–520
P/Invoke, 821–823

infinite recursion, 178

ptg

Index 915

methods, 186–199
operators, 110
reporting, 196
trapping, 187–192

escape sequences, 42
Event-based Asynchronous

Patterns. See EAPs
events, 507–508

code conventions, 526–528
declaring, 525–526
delegates, 528–530
generics, 528–530
implementation,

customizing, 532–533
internals, 530–523
multicast delegates, coding

observer patterns
with, 508–523

notifications
firing, 527–528
with multiple threads,

763–764
overview of, 523–533
publishers, defining,

510–511
reset, 768–771

exceptions
catching, 191–192, 196,

407–408, 411
class inheritance, 192
customizing, defining,

414–419
error handling, 186–199
general catch blocks,

409–410
handling, 405–419

background worker
patterns, 808–809

subscribers, 520
unhandled exception

handling on Task,
715–718

hiding, 411–412
inner, 415
multiple types, 405–407
reports, 412
rethrowing, 197, 413
serializable, 416
throwing, 406–407
types, 193–194

unhandled exceptions on
AppDomain, 744–746

exclusive OR (^) operator,
112

executing
deferred

with LINQ query
expressions,
593–598

standard query
operators, 562–566

implicit execution,
implementing,
607–608

iterations in Parallel,
724–734

management, 23–30
ManualResetEvent

synchronization, 770
pseudocode, 752
threads, 704. See also

multithreading
time, 24
VES (Virtual Execution

System), 844
explicit cast, 58–59
explicit member implemen-

tation, 314–315
exponential notation, 37
exposing Async methods,

810
expressions. See also LINQ

Boolean, 109–115
constants, 98
lambda, 401, 486–505
queries

LINQ, 589–590
PLINQ (Parallel LINQ),

736
trees, 498–505

converting to SQL where
clauses, 499

object graphs, 499–501
viewing, 503–505

typeof, 654–655
Extensible Markup

Language. See XML
extensions

interfaces, 322–323
IQueryable<T>, 585

methods, 256–258, 278
external functions, calling,

826–828
extracting XML data, 385n2

F
factory inheritance, 451
false operator, 373–375
FCL (Framework Class

Library), 860
fields
const, 258–259
instances, 209–211, 249
static, 248–250
virtual, properties as,

232–234
volatile, declaring as,

760–761
filenames, must match class

names (Java), 4
files

data retrieval, 218
header, 160
loading, 216
XML, 22–23, 388–389. See

also XML
filtering

LINQ query expressions,
598–599

with
System.Linq.Enumera
ble.Where(), 562

with Where() methods,
556–557

finalization
deterministic, 395–398
garbage collection and,

398–399
guidelines, 400
task-related, 717

finalizers, 241, 393–395
defining, 434–435

FindAll() method,
621–622

firing event notifications,
527–528

fixing data, 835
flags, enums, 351–355
FlagsAttribute, 354–355,

675

ptg

Index916

floating-point types, 33–34
inequality with, 89–92
special characteristics of, 89

flow. See control flow
foreach loops

with IEnumerable<T>,
547–551

without IEnumerable<T>,
551–552

foreach loops, 127–130
with arrays, 546–547
collections, iterating over,

613
modifying, 552
parallel execution of, 727

for loops, 124–127
format items, 19
Format() method, 46
formatting

code, avoiding ambiguity,
213–217

indentation, 12
Java

lowercase, 9
uppercase, 9

numbers as hexadecimal,
38–39

PLINQ (Parallel LINQ),
736–738

round-trip, 39–40
single instance

applications, 766–767
whitespace, 11–12

Forms, Windows, 809–811
Framework Class Library

(FCL), 860
f-reachable objects, 390
from clause, 590
full outer joins, 569
full source code listings
Binary Tree and Pair,

876–881
command-line attributes,

881–888
ProductSerialNumber,

874–876
Tic-Tac-Toe, 869–874
virtual computer detection

using P/Invoke,
888–894

functions
anonymous, 486
Average, 585
Count(), 585
external

calling, 826–828
declaring, 817

global variables and, 248
Max(), 585
Min(), 585
pointers, passing delegates,

829
pure virtual, 297
Sum(), 585

fundamental numeric types,
32–40

G
garbage collection, 25,

849–851
and finalization, 398–399
well-formed types, 390–393

general catch blocks, 409–410
generating

anonymous types, 542–543
XML documentation files,

388–389
generics, 421

benefits of, 430–431
catch, 194
classes, 427–429
collection interface

hierarchies, 613
constraints, 439–457
contravariance, 457–463
covariance, 457–463
C# without, 422–439
events, 528–530
interfaces, 432–433
internals, 463–467
lazy loading and, 401
methods, 453–457
structs, 432–433
types, 427–439

nested, 438–439
reflection, 660–662
Tuple, 437–438

GetHashCode() method,
overriding, 358–361

GetSummary() member, 296
getters, access modifiers,

231–232
GetType() member, 653–654
GhostDoc, 389n3
global variables and func-

tions, 248
goto statements, 137–138
graphs, objects, 499–501
greater than (>) operator, 110
greater than or equal to (>=)

operator, 110
groupby clause, 590
GroupBy() method, group-

ing results with,
575–577

grouping
LINQ query expressions,

602–605
results with GroupBy()

method, 575–577
statements into methods,

150
GroupJoin() method,

577–580
guidelines

for conversion operators,
377

for exception handling,
411–413

finalization, 400
P/Invoke, 829–830

H
handling

errors
C# 3.0, 519–520
methods, 186–199
P/Invoke, 821–823

exceptions, 405–419
background worker

patterns, 808–809
subscribers, 520
unhandled exception

handling on Task,
715–718

hardcoding values, 35–37
hash symbol (#), 139
header files, 160

ptg

Index 917

heaps, reference types, 333
HelloWorld program, 2–4

CIL output for, 28–30
hexidecimal notation, 38
hiding

exceptions, 411–412
information, 220

hierarchies
classes, 204, 473n1
collections, 613

hints for visual editors,
144–145

hold and wait condition, 764
hooking up background

worker patterns,
807–808

I
ICollection<T> interface,

616–617
IComparable<T> interface,

443, 614–617
IComparer<T> interface,sort-

ing, 614–615
identifiers, 6–7

keywords used as, 7
type parameters, 429

IDictionary<TKey,
TValue> interface,
614–617

IDisposable interface, using
explicitly in place of
SafeHandle, 825–826

Id property, 710
IEnumerable<T>

collections interfaces,
546–552

foreach loops with,
547–551

foreach loops without,
551–552

IEnumewrable<out T>,
covariance, 485n2

if statements, 102–103
followed by code blocks (),

105
ILDASM, CIL and, 27–30
IList<T> interface, 614–617
immutable anonymous

types, 541

immutable strings, 16, 49–51
immutable value types, 336
implementing

CLI (Common Language
Infrastructure),
845–846

conversion operators, 376
custom dynamic objects,

696–699
Equals() method, 366
events, customizing,

532–533
explicit member, 314–315
generic interfaces, 432
GetHashCode() method,

359
implicit execution,

607–608
implicit member, 315–316
interfaces, 308–312,

312–318, 433–434
multiple interface

inheritance, 324–326
new operator, 238
one-to-many relationships,

577–580
outer joins, 579
virtual methods, 283

implicit base type casting,
273

implicit conversion, 62, 273
cast operators, 376

implicit execution, imple-
menting, 607–608

implicitly typed local vari-
ables, 53–55, 538–540

implicit member implemen-
tation, 315–316

implicit overriding, 283
import directive, wildcards

in, 162
incompatibilities, 6n6
increment (++) operator,

94–97
indentation

formatting, 12
invalid code, 106

indexer property names,
assigning, 632–633

index operators, 630–634

items to Dictionary<TKey,
TValue>, adding, 623

indiscriminate synchroniza-
tion, 758

inequality (!=) operator, 110,
370

inequality with floating-
point types, 89–92

inferencing types, 454–455
infinite recursion errors, 178
infinity, negative, 92
information hiding, 220
infrastructure, languages,

23–30. See also CLI
inheritance, 203, 269–270

abstract classes, 293–299
as operators, 302
base classes, overriding,

281–293
chains, casting within, 274
constraints, 447–448, 450
definitions, 269–270
derivation, 270–281
exceptions, classes, 192
factory, 451
interfaces, 318–321
is operators, 301
methods, 271
multiple, 278
multiple interfaces,

321–322, 324–326
polymorphism, 297–299
single, 278–281
System.Object, 299–301
types, 205
value types, 338–339

initializers
collection, 240–241,

543–546
objects, 239–241

initializing
anonymous type arrays,

545–546
attributes through

constructors, 668–673
centralizing, 244–245
jagged arrays, 70
lazy initialization, well-

formed types, 400–402
structs, 336–337

ptg

Index918

initializing (contd.)
three-dimensional arrays,

69
two-dimensional arrays, 69

inner classes, 262
inner exceptions, 415
inner joins, 568

with Join() method,
performing, 572–575

input, consoles, 16–20
installing C# compilers,

865–867
instances

array methods, 75–76
custom attributes,

retrieving, 670
fields, 209–211, 249
methods, 47, 211–212
single applications,

766–767
instantiating, 9

arrays, 66–70
classes, 205–209
delegates, 475–480
generics

based on reference types,
465–467

based on value types,
464–465

integers
types, 32–33
values, overflowing, 59

Intellisense, enabling, 592
interfaces, 305–307

collection, 535–536. See also
collection interfaces

compared with classes,
328–329

constraints, 442–444
conversion between

implementing
classes and, 318

custom collections, 612–613
defining, 307
diagramming, 325
duplicating, 433–434
explicit member

implementation,
314–315

extension methods on,
322–323

generics, 432–433
ICollection<T>, 616–617
IComparable<T>, 443,

614–617
IComparer<T>, 614–615
IDictionary<TKey,

TValue>, 614–617
IDisposable, using

explicitly in place of
SafeHandle, 825–826

IList<T>, 614–617
implementation, 312–318
implicit member

implementation,
315–316

inheritance, 318–321
multiple inheritance,

321–322, 324–326
Parallel.For() API, 726
polymorphism through,

307–312
support, 440
value types, 338–339
versioning, 327–328
VirtualAllocEx(),

declaring, 818–819
Windows UI

programming,
809–813

internals
anonymous methods,

494–495
delegates, 473–474
events, 530–523
generics, 463–467
lambda expressions,

494–495
multicast delegates,

518–519
properties, 235–236

interoperability of lan-
guages, 25

Intersect() standard query
operator, 584

into clauses, query continu-
ation with, 605–606

in type parameter, enabling
contravariance with,
460–462

invalid code, indenting, 106
invalid reference types, 833

invoking
callbacks, 787
delegates, 512–513, 522
members, 655–660
P/Invoke (Platform

Invoke), 816–830
reflection, dynamic objects,

689–690
sequential invocation,

516–517
using statements, 397

IQueryable<T>, 585
IsCompleted property, 710
is operators, 301
items, formatting, 19
iterations
Dictionary<Tkey,

TValue>, 624
executing in Parallel,

724–734
foreach loops, modifying,

552
over foreach loops, 613

iterators
class, 645
classes, creating multiple

in, 648–649
collections, 634–650
defining, 636
examples of, 641–643
overview of, 646–648
and state, 639–641
struct, 645
syntax, 636–637
values, yielding, 637–639
yield break, 645–646
yield statements, 649

J
jagged arrays. See also arrays

declaring, 71
initializing, 70

Java
array declaration, 66
exception specifiers, 408
filenames must match class

names, 4
generics, 467
implicit overriding, 283
inner classes, 262

ptg

Index 919

virtual methods by default,
282

wildcards in import
directive, 162

JavaScript
var, 540
Variant, 540
void*, 540

JIT (just-in-time) compilers,
848

jitting, 24
Join() method, performing

with inner joins,
572–575

joins, 568, 569
jump statements, 132–138
just-in-time (JIT) compilers,

848

K
keywords, 4–6

contextual, 6–7
lock, 757–758
Me, accessing class

instances with, 214
new, 67
null, 51–52
string, 163n2
this, classes, 213–220
used as identifiers, 7
var, 53
void, 52–55
yield, 6n5

Knoppix, 867

L
lambdas

expressions, 401, 486–505
statements, 486–489

languages, 158
accessing class instances

with Me keyword,
214

buffer overflow bugs, 72
CIL (Common

Intermediate
Language), 23

COM DLL registration, 858
delete operator, 208

deterministic destruction,
399, 850

dispatch method calls
during construction,
286

exception specifiers, 408
generics, 467
global variables and

functions, 248
header files, 160
implicit overriding, 283
infrastructure, 23–30
inner classes, 262
interoperability, 25
Java

filename must match
class names, 4

main() is all lowercase, 9
multiple inheritance, 278
operator errors, 110
origin of iterators, 635
preprocessing, 138
project scope Imports

directive, 162
pure virtual functions, 297
redimensioning arrays, 75
returning void, 53
short data types, 33
string concatenation at

compile time, 45
struct defines type with

public members, 337
templates, 442
UML (Unified Modeling

Language), 325n1
virtual methods by default,

282
Visual Basic line-based

statements, 10
void*, 540
void as data types, 52
wildcards in import

directive, 162
last in, first out (LIFO), 422
lazy initialization, well-

formed types, 400–402
left outer joins, 568
length

of arrays, 72
strings, 48–49

less than (<) operator, 110
less than or equal to (<=)

operator, 110
Let clause, 600–602
libraries

class, 378
classes, 377–378

LIFO (last in, first out), 422
limiting

attributes, 674
constraints, 449–452

line-based statements, 10
lines, specifying numbers,

143–144
linked lists, collections,

629–630
LinkedList<T> class, 629
LINQ

customizing, 585
distinct members,

606–607
implicit execution,

implementing,
607–608

Let clause, 600–602
queries

continuation with into
clauses, 605–606

running in parallel,
734–738

query expressions, 589–590
compiling, 607
deferred execution with,

593–598
filtering, 598–599
grouping, 602–605
as method invocations,

608–609
overview of, 590–592
projection using, 592–593
sorting, 599–600

Linux, 867
Liskov, Barbara, 635
List<T> class, 617–621
literals

strings, 44–46
values, 35, 68

loading files, 216
local storage, threads,

774–777

ptg

Index920

local variables, 13
implicitly typed, 53–55,

538–540
multiple threads, 753–753

lock keyword, 757–758
ConsoleSyncObject, 797
objects, selecting, 758–759

locks, avoiding unnecessary,
765–766

lock statements, value types
in, 343

logical Boolean operators,
111–113

logical notation (!) operator,
113

logical operators, 117–118
logs, exceptions, 412
long-running threads,

722–723
loops
for, 124–127
decrement (- -) operators,

94
do/while, 121–123
foreach, 127–130

with arrays, 546–547
with IEnumerable<T>,

547–551
iterating over, 613
modifying, 552
parallel execution of, 727
without

IEnumerable<T>,
551–552

parallel, canceling, 729–734
while, 121–123
yield returns, placing in,

643–645
lowercase, Java, 9

M
machine code, 844, 847–849
Main() method, 8

declarations, 9–10
parameters, 165–168
returns, 165–168

managing
code, 24
execution, 23–30

resources, 823–824
threads, 740–742

manifests, CLI (Common
Language
Infrastructure), 855–858

ManualResetEvent, 768–771
ManualResetEventSLim,

768–771
many-to-many relation-

ships, 569
matching caller variables

with parameter names,
168

mathematics constants, 107
Max() function, 585
Me keyword, accessing class

instances with, 214
members

abstract, 294
base, 291–292
classes, 209
distinct, 606–607
explicit member

implementation,
314–315

GetSummary(), 296
GetType(), 653–654
implicit member

implementation,
315–316

invoking, 655–660
object, overriding,

357–369
private, 220
referent types, accessing,

839
static, 247–256
System.Object, 299–301
variables, 209

messages, turning off warn-
ing (#pragma), 142–143

metadata, 25
CLI (Common Language

Infrastructure),
860–861

reflection, 652–662
methodImpAttribute,

avoiding
synchronization, 760

methods, 149–150

Add(), 543
anonymous, 480–482

internals, 494–495
parameterless, 482

arrays, 73–75
Assert(), 91
BinarySearch(), 75, 620
BubbleSort(), 470–472
calling, 150–156
Clear(), 75
Collect(), 391
CommandLineHandler.TryP

arse(), 671
CompareTo(), 442
ComparisonHandler-

Compatible, 478–479
ContinueWith(), 711–715,

717, 795–796
Copy(), 257
CopyTo(), 617
Count(), counting

elements with, 561
DataStore(), 545
declaring, 157–161
Dispose(), 397
Eject(), 274
Equals(), overriding,

361–369
error handling, 186–199
extension, 256–258
extensions, 278
FindAll(), 621–622
Format(), 46
generics, 453–457

casting inside, 456–457
determining support for,

661–662
GetHashCode(),

overriding, 358–361
GroupBy(), grouping

results with, 575–577
GroupJoin(), 577–580
inheritance, 271
instances, 47, 75–76,

211–212
Join(), performing inner

joins with, 572–575
Main(), 8. See also Main()

method
declarations, 9–10

ptg

Index 921

multiple Main(),
disambiguation, 167

optional parameters,
182–185

OrderBy(), sorting with,
566–572

overloading, 179–182
overview of, 150–152
parameters, 168–176
partial, 264–267
Pop(), 422
Pulse(), 756
Push(), 422
query expressions as

invocations, 608–609
recursion, 176–179
refactoring into, 158
resolution, 185
returns, 155–156, 522–523
Run(), 285
Select(), 557–560, 734
SelectMany(), 580–582
SetName(), 213
starting, 707
static, 251–253
Store(), 216
strings, 46–47
stringStatic, 46
subscriber, defining,

508–510
System.Console.ReadKey(

), 18
System.Console.ReadLine

(), 16
System.Console.Write(),

18–20
System.Threading.Interl

ocked, 762
ThenBy(), sorting with,

566–572
ToString(), overriding,

358
ToUpper(), 50
TryParse(), 63, 198–199
type names, 154
for unsafe code, 831
Where(), filtering with,

556–557
Min() function, 585
minus (-) operator, 84–92

models, APMs (Asynchro-
nous Programming
Models), 783–797

modifiers
access, 220–222, 852
accessibility, 381
new, 286–291
nullable, 57–58
readonly, 259
sealed, 291
virtual, 282–286

modifying
foreach loops, 552
targets, assemblies,

378–379
values, variables, 15

modules, 378
CLI (Common Language

Infrastructure),
855–858

Monitor class synchroniza-
tion, 754–758

Mono compilers, 3n4,
866–867

MTA (Multithreaded Apart-
ment), 813

multicast delegates, 508
coding observer patterns

with, 508–523
internals, 518–519

multidimensional array
errors, 69

multimode assemblies,
building, 856n5

multiple constraints, 446
multiple duplication of inter-

faces, 433–434
multiple exception types,

405–407
multiple inheritance, 278
multiple interface inheri-

tance, 321–322
implementing, 324–326

multiple iterators, creating,
648–649

multiple Main() methods,
disambiguation, 167

multiple threads
event notification with,

763–764

and local variables,
753–753

thread-safe, 752
multiple type parameters,

436
multiplication (*) operator,

85
Multithreaded Apartment

(MTA), 813
multithreading, 701–706

before .NET Framework 4,
738–743

uncertainty, 706
unhandled exceptions on

AppDomain, 744–746
mutual exclusion condition,

764

N
names

indexer property,
assigning, 632–633

parameters, 184, 674–676
type methods, 154

namespaces, 152–154, 161
aliasing, 164–165
alias qualifiers, 384–385
nesting, 383
well-formed types,

defining, 382–385
naming conventions

parameter types, 431
properties, 228–229
types, 7

NDoc, 389n4
negative infinity, 92
nesting

classes, 260–262, 265
delegate data types,

declaring, 475
generic types, 438–439
if statements, 103–105
namespaces, 383
using declaratives, 163

.NET, 865–866
Framework,

multithreading before
version 4, 738–743

garbage collection, 849–850

ptg

Index922

.NET (contd.)
garbage collection in,

390–391
lazy initialization, 401
versioning, 26–27

new keyword, 67
newline (\n) characters, 42,

48
new modifiers, 286–291
new operator

implementation, 238
value types, 337

NGEN tool, 848
no preemption condition,

764
notation

exponential, 37
hexidecimal, 38

notifications, events
firing, 527–528
with multiple threads,

763–764
Novell, 3n4
nowarn:<warn list> option,

143
null

checking for, 513–514
returning, 634

nullable modifiers, 57–58
nullable value types,

425–427
null coalescing (??) operator,

114–115
null keyword, 51–52
numbers

to Booleans, conversion, 61
conversion with

TryParse() method,
198–199

hexidecimal, formatting,
38–39

lines, specifying, 143–144
types, 32–40

O
object members, overrid-

ing, 357–369
object-oriented program-

ming, classes, 203–205

objects
associated data, 250
CTS (Common Type

System), 859
defining, 206
dynamic

implementing custom,
696–699

invoking reflection,
689–690

programming with,
688–699

f-reachable, 390
graphs, 499–501
group data with methods,

208–209
initializers, 239–241
lock, selecting, 758–759
resurrecting, 399–400

observers, 508
patterns, coding multicast

delegates with,
508–523

OfType<T> () standard
query operator, 584

omitting parameter types
from statement
lambdas, 488

one-to-many relationships,
569

implementing, 577–580
operands, 84, 92
operators, 83–84, 84–98

AND (&&), 112, 373
adding, 371–373
addition (+), 85, 371–373
arithmetic, 85
as, 302
assignment, 92–98, 120
binary, 371–373
bitwise, 115–121
bitwise complement (~),

120
cast, 58, 275
cast (), 375–376
conditional (?), 113–114
constraints, 449
conversion, 375, 377
decrement (- -), 94–97
default(), 68, 338, 435

delegates, 514–516
delete, 208
division (/), 85
equality (==), 110–111, 370
errors, 110
exclusive OR (^), 112
false, 373–375
greater than (>), 110
greater than or equal to

(>=), 110
increment (++), 94–97
index, 623, 630–634
inequality (!=), 110, 370
is, 301
less than (<), 110
less than or equal to (<=),

110
logical, 117–118
logical Boolean, 111–113
logical notation (!), 113
minus (-), 84–92
multiplication (*), 85
new

implementation, 238
value types, 337

null coalescing (??),
114–115

OR (||), 111–112, 373, 450
overloading, 369–377
parenthesis, 92–98
plus (+), 84–92
postfix increment, 96
post-increment, 95
precedence, 86
prefix increment, 96
pre-increment, 96
remainder (%), 85
shift, 116–117
simple assignment (=), 14
standard query, 535–536.

See also collection
interfaces; standard
query operators

true, 373–375
unary, 373–375

optional parameters, 182–185
options

command-line, 76
nowarn:<warn list>, 143
parallel, 731–734

ptg

Index 923

OrderBy() method, sorting
with ThenBy() method,
566–572

order of associativity, 86
origin of iterators, 635
OR (||) operator, 111–112,

373
constraints, 450

outer joins, 568
implementing, 579

outer variables, 495–496
out parameter values,

234–235
output

consoles, 16–20
parameters, 171–173

out type parameter, enabling
covariance with,
458–460

overflowing
bounds of a float, 92
integer values, 59

overloading
constructors, 241–242
methods, 179–182
operators, 369–377
System.Threading.Interl

ocked class methods,
762

overriding
base classes, 281–293
Equals() method, 361–369
GetHashCode() method,

358–361
implicit, 283
object members, 357–369
properties, 282
ToString() method, 358

overruns, buffer, 72

P
parallel

exception handling with
System.AggregateExc
eption, 728–729

iterations, executing in,
724–734

loops, canceling, 729–734
results and options,

731–734

Parallel.For() API, 726
Parallel LINQ (PLINQ),

559–560, 703, 736–738
parameterized types, 427
parameterless anonymous

methods, 482
parameterless statement

lambdas, 488
parameters, 149–150
AllowMultiple, 674
arrays, 173–176
data types, 818–819
declaring, 159
Main() method, 165–168
methods, 155, 168–176
named, 184, 674–676
optional, 182–185
output, 171–173
references, 170–171
single input, statement

lambdas with, 489
types, 429, 660–661
in, 460–462
inferring, 454–455
multiple, 436
naming conventions, 431
out, 458–460

values, 168–169
variables, defining index

operators, 633–634
parent classes, 205
parenthesis operator, 92–98
partial classes, 262–267
partial methods, 264–267
pass-by references, 522
passing

anonymous methods,
480–481

command-line arguments
to Main() methods,
166

data to and from an
alternate thread,
799–801

delegates, 486–487,
489–490, 829

states between APM
(Synchronous
Programming Model)
methods, 789–790

paths, code, 159
patterns
BackgroundWorker class,

804–809
EAPs (Event-based

Asynchronous
Patterns), 801–804

observers, coding multicast
delegates with,
508–523

publish-subscribe, 508
performance, 853–854

synchronization, affect on,
758

performing inner joins with
Join() method,
572–575

permanent values, 259
permissions, CAS (code

access security), 659
persistence, data, 217
pi, calculating, 725
P/Invoke (Platform Invoke),

816–830
errors, handling, 821–823
virtual computer detection

using, 888–894
placeholders, 19

values, 115
Platform Invoke. See P/

Invoke
platform portability, 852–853
platforms, 865–867

portability, 25
PLINQ (Parallel LINQ),

559–560, 703, 736–738
plus (+) operator, 84–92
pointers

and addresses, 830–839
assigning, 834–837
declaring, 832–834
dereferencing, 837–839
functions, passing

delegates, 829
polymorphism, 205

inheritance, 297–299
through interfaces,

307–312
pools, threads, 706, 742–743
Pop() method, 422

ptg

Index924

portability
platform, 852–853
platforms, 25

postfix increment operators,
96

post-increment operators,
applying, 95

precedence, operators, 86
predefined attributes,

676–677
predefined types, 31
prefix increment operators,

96
pre-increment operators,

applying, 96
preprocessor directives, C#,

138–145
preventing

covariance maintains
homogeneity, 457

derivation, 281
primary collections classes,

617–630
primitives, 31
principles, dynamic data

type, 690–693
private access modifiers,

275
private members, 220
ProductSerialNumber,

874–876
programming

APMs (Asynchronous
Programming
Models), 783–797

Binary Tree and Pair,
876–881

command-line attributes,
881–888

comments, 20–23
constructs, associating

XML comments with,
386–388

dynamic, static
compilation versus,
695–696

with dynamic objects,
688–699

HelloWorld program,
2–4

object-oriented, classes,
203–205

ProductSerialNumber,
874–876

Tic-Tac-Toe, 869–874
values, hardcoding, 35–37
virtual computer detection

using P/Invoke,
888–894

Windows UI, 809–813
programs

CIL output for, 28–30
HelloWorld, 2–4

projecting
LINQ query expressions,

592–593
with Select() method,

557–560
project scope Imports

directive, 162
properties

attributes, 663, 664
automatically

implemented, 225–227
C#, 48
classes, 222–236
Count, 617
declaring, 223–225
defining, 224
indexer property names,

assigning, 632–633
internals, 235–236
lazy loading, 402
naming conventions,

228–229
overriding, 282
read-only, 230–231
static, 254–256
validation, applying,

228–229
as virtual fields, 232–234
write-only, 230–231

protected access modifiers,
276

pseudocode, executing, 752
publication, encapsulating,

524–535
public constants, 259
publishers

connecting, 511–512

events
defining, 510–511

publish-subscribe patterns,
508

Pulse() method, 756
pure virtual functions, 297
Push() method, 422

Q
qualifiers, aliasing

namespaces,
384–385

quantum, 704
queries. See also LINQ

continuation with into
clauses, 605–606

LINQ, 589–590, 734–738
PLINQ (Parallel LINQ),

559–560, 736–738
standard query operators.

See standard query
operators

queues, collections, 629
Queue<T> class, 629

R
RCW (runtime callable

wrapper), 813
readonly modifiers, 259
read-only properties,

230–231
recursion

infinite recursion errors,
178

methods, 176–179
redimensioning arrays, 75
reentrant (locks), 765
refactoring

base classes, 271
into methods, 158

references
assemblies, 377–381
parameters, 170–171
pass-by, 522
root, 390
strong, 391
types, 56–57, 169–170,

333–336, 465–467
weak, 391–393

ptg

Index 925

referent types, 832
members, accessing, 839

reflection, 652–662
dynamic objects, invoking,

689–690
on generic types, 660–662

ref parameter values,
234–235, 819–820

registering
COM DLL, 858
for unhandled exceptions,

744–745
relational operators, 110–111
relationships

many-to-many, 569
one-to-many, 569, 577–580

remainder (%) operator, 85
removing

conditions, 765
whitespace, 12

reports
errors, 196
exceptions, 412

reserved words, 4. See also
keywords

reset events, 768–771
resolution, methods, 185
resources

cleanup, 393–400, 790–791
managing, 823–824
utilization, 400

results
GroupBy() method,

575–577
parallel, 731–734
tasks, returning, 709

resurrecting objects, 399–400
rethrowing exceptions, 197,

413
retrieving

attributes, 667–668
specific attributes, 669

return attributes, specifying,
666

returning
empty collections, 634
null, 634
task results, 709
void, 53

returns
Main() method, 165–168

methods, 159–160, 522–523
yield returns, placing in

loops, 643–645
return statements, 160
return values, 15
reusing code, 378
Reverse() standard query

operator, 584
reversing strings, 77
right outer joins, 569
root references, 390
round-trip formatting, 39–40
Run() method, 285
running
HelloWorld program, 3–4
LINQ queries in parallel,

734–738
Parallel LINQ (PLINQ)

queries, 559–560
threads, 706–738

canceling tasks, 718–722
disposing tasks, 723–724
long-running threads,

722–723
unhandled exception

handling on Task,
715–718

runtime, 24
arrays, defining array size

at, 68
CLI (Common Language

Infrastructure),
849–854

metadata, reflection,
652–662

virtual methods, 283
runtime callable wrapper

(RCW), 813

S
SafeHandle, applying,

823–824
safety, types, 25, 541, 851
scope, 107–109, 155
sealed classes, 281
sealed modifiers, 291
searching

attributes, 667–668
List<T> class, 619

security
access, 25

CAS (Code Access
Security), 659, 852

select clause, 590
selecting lock objects,

758–759
SelectMany() method, call-

ing, 580–582
Select() method, 734

projecting with, 557–560
SemaphoreSlim, 772
semaphores over

AutoResetEvent, 772
semicolons (;)

statements without, 10–11
whitespace, 11–12

SequenceEquals() standard
query operator, 584

sequences
deferred execution, 565
escape, 42
invocation, 516–517
layout,

StructLayoutAttribu
te for, 820–821

multithreading, 703. See
also multithreading

serialization
attributes, 680–682
customizing, 683–684
exceptions, 416
versioning, 684–687

SetName() method, 213
setters, access modifiers,

231–232
shift operators, 116–117
short data types, 33
shutdown, applications, 717
signatures, APMs (Asyn-

chronous Program-
ming Models), 786–787

Silverlight, 536n1
simple assignment (=) opera-

tors, 14
simple generic classes, defin-

ing, 429–430
simplifying API calls with

wrappers, 828–829
single inheritance, 278–281
single input parameters,

statement lambdas
with, 489

ptg

Index926

single instance applications,
creating, 766–767

single-line comments, 22
single-line XML comments,

386–387
single quote ('), 42
sites, call, 168
sizing

arrays at runtime, 68
types, 752

SortedDictionary<TKey,
TValue> class, 626–628

SortedList<T> class,
626–628

sorting
collections, 626–628
IComparer<T> interface,

614–615
LINQ query expressions,

599–600
with OrderBy() method

and ThenBy() method,
566–572

space, declaring, 107–109
specialized Stack classes,

defining, 425
specializing types, 205
specifiers, exceptions, 408
specifying

constraints, 455
default values, 435–436
line numbers, 143–144
literals, 36
multiple constraints, 446
parameters by name, 184
return attributes, 666

SQL
query expressions, 592
where clauses, converting

expression trees to,
499

Stack class, 422
specialized, defining, 425

stacks
calling, 168, 836
collections, 628
unwinding, 168

Stack<T> class, 628
standard query operators,

552–586, 582–586

collection interfaces with,
535–536. See also
collection interfaces

Count() method,
counting elements
with, 561

deferred execution,
562–566

grouping results with
GroupBy() method,
575–577

implementing one-to-
many relationships,
577–580

performing inner joins
with Join() method,
572–575

Select() method,
projecting with,
557–560

sorting with OrderBy()
method and ThenBy()
method, 566–572

Where() method, filtering
with, 556–557

starting methods, 707
statements, 10
Assert(), 92
break, 132–135
continue, 135–136
control flow, 121–132
delimiters, 10
goto, 137–138
groups into methods, 150
if, 102–103, 105
jump, 132–138
lambdas, 486–489
line-based, 10
lock, 343
versus method calls, 156
nested if, 103–105
return, 160
switch, 130–132, 160
System.Console.Write-

Line(), 10
Throw, 196
using, 217n1, 395–398
without semicolons (;),

10–11
yield, 649

states
APM (Synchronous

Programming Model)
methods, passing
between, 789–790

callbacks, invoking,
787

iterators and, 639–641
unsynchronized, 750

STAThreadAttribute, con-
trolling COM threading
models with, 813

static classes, 255
static compilation versus

dynamic programming,
695–696

static constructors,
253–254

static fields, 248–250
static members, 247–256
static methods, 251–253
static properties, 254–256
Status property, 710
storage, local, 774–777
Store() method, 216
string keyword, 163n2
strings, 43–51

applying, 50
as arrays, 76–78
concatenation at compile

time, 45
conversion, 63
enums, 350–351
immutable, 16, 49–51
length, 48–49
literals, 44–46
methods, 46–47
plus (+) operator, using

with, 87–88
reversing, 77

stringStatic methods, 46
string type, avoiding,

759–760
strong references, 391
struct
class constraints, 445
defining, 334
generics, 432–433
initializing, 336–337
iterators, 645

ptg

Index 927

StructLayoutAttribute for
sequential layout,
applying, 820–821

styles
code, avoiding ambiguity,

213–217
CPS (Continuation Passing

Style), 787–789
subroutines, defining, 53
subscribers

connecting, 511–512
exceptions, handling, 520
methods, defining, 508–510

subscriptions, encapsulating,
523–524

subtypes, 204
Sum() function, 585
super types, 204
support, interfaces, 440
switch statements, 130–132,

160
synchronization

design best practices, 674
lock,

ConsoleSyncObject,
797

methodImpAttribute,
avoiding, 760

Monitor class, 754–758
threads, 750–777
types, 766–774
when to provide, 765

syntax, 1–2
fundamentals, 4–12
iterators, 636–637

System.Action, 483–484
System.ArgumentExcep-

tion, 405
System.AsyncCallback,

787–789
System.AttributeUsageAt-

tribute, 673–674
System.Collections.

Generic.
ICollection<T>, 544

System.Collec-
tions.Generics
namespace, 153

System.Collections
namespace, 153

System.Collection.Stack,
423

System.ConditionalAt-
tribute, 677–679

System.Console.ReadKey()
method, 18

System.Console.Read-
Line() method, 16

System.Console.Write-
Line() statement, 10

System.Console.Write()
method, 18–20

System.Data namespace, 153
System-defined delegates:

Func, 483–485
System.Drawing namespace,

153
System.Exception

catch blocks, 195–196
use of, 412

System.IO namespace, 153
System.Linq.Enumera-

ble.Where(), 562
System.Linq namespace, 153
System.Linq.Queryable,

585
System namespace, 153
System.NonSerializable

attribute, 682–683
System.Object inheritance,

299–301
System.ObsoleteAttrib-

ute, 679–680
System.Runtime.Compil-

erServices.
CompilerGeneratedAt-
tribute, 236

System.Runtime.Serial-
ization.Optional-
FieldAttribute, 686

Systems.Collections.Con-
current, 895–898

System.SerializableAt-
tribute, 687–688

Systems.Timer.Timer, 780
System.Text namespace, 153
System.Text.String-

Builder data type, 51
System.Threading.Inter-

locked class, 761–763

System.Threading.Mutex,
766–767

System.Threading
namespace, 153

System.Threading.Tasks
namespace, 153

System.Threading.Thread,
738–740

System.Threading.Wait-
Handle class, 768–769

System.Type, accessing
metadata, 653–655

System.Web namespace, 154
System.Web.Services

namespace, 154
System.Windows.Forms

namespace, 154
System.Xml namespace, 154

T
targets, modifying assem-

blies, 378–379
Task.CurrentID property,

711
Task Parallel Library (TPL),

703
task-related finalization, 717
tasks

canceling, 718–722
disposing, 723–724
results, returning, 709

templates, C++, 442
text, comments, 20–23
ThenBy() method, sorting

with OrderBy()
method, 566–572

thermostat, 508n1
this keyword, 213–220
this type, avoiding, 759–760
ThreadLocal<T>, 774–775
threads. See also multithread-

ing
controlling, 706–738
data to and from an

alternate, passing,
799–801

local storage, 774–777
long-running, 722–723
managing, 740–742

ptg

Index928

threads (contd.)
multiple. See multiple

threads
overview of, 703–706
pools, 706, 742–743
running, 706–738

canceling tasks, 718–722
disposing tasks, 723–724
long-running threads,

722–723
unhandled exception

handling on Task,
715–718

synchronization, 750–777
thread-safe, 752

incrementing and
decremeting, 96

ThreadStaticAttribute,
775–777

three-dimensional arrays,
initializing, 69

three-forward-slash (///),
387

throwing exceptions,
406–407

Throw statement, 196
Tic-Tac-Toe, 869–874
timers, 778–783
time slices, 704
torn reads, 753
ToString() method, over-

riding, 358
ToUpper() method, 50
TPL (Task Parallel Library),

703
APMs (Asynchronous

Programming
Models), calling,
791–796

trapping errors, 187–192
trees, expressions,

498–505
object graphs, 499–501
viewing, 503–505

troubleshooting arrays, 69,
78–80

true operator, 373–375
TryParse() method, 63

numeric conversion with,
198–199

Tuple generic types, 437–438
turning off warning

messages (#pragma),
142–143

two-dimensional arrays. See
also arrays

declaring, 68
initializing, 69

Type alias, declaring, 164
typeof expressions, 654–655
typeof type, avoiding,

759–760
types

aliasing, 164–165
anonymous, 245–246

collection interfaces,
536–538

implicit local variables,
54

projection to, 558
base, casting between

derived and, 272–273
Boolean, 40–41
categories of, 55–57,

332–339
Cell, 427
char, 41
checking, 851
comments, 21–22
compatibility between

enums, 349–350
conversion without

casting, 62
data, 13–14. See also data

types
delegates, 472–473
parameters, 818–819

decimal, 34–35
definitions, 7–8
delegates, defining,

474–475
encapsulation of, 379–380
enums, defining, 348
exceptions, 193–194
floating-point, 33–34

inequality with, 89–92

special characteristics of,
89

generics, 427–439
nested, 438–439
reflection, 660–662
Tuple, 437–438

inferencing, 454–455
inheritance, 205
integers, 32–33
metadata, reflection,

652–662
multiple exception, 405–407
names, methods, 154
numeric, 32–40
parameterized, 427
parameters, 429
in, 460–462
determining type of,

660–661
multiple, 436
naming conventions, 431
out, 458–460

predefined, 31
references, 56–57, 169–170,

333–336, 465–467
referent, 832, 839
safety, 25, 541, 851
sizes, 752
specializing, 205
string, avoiding, 759–760
synchronization, 766–774
this, avoiding, 759–760
typeof, avoiding, 759–760
underlying

unboxing, 342
verifying, 301

unmanaged, 833
values, 55–56, 169–170, 331,

332
boxing, 339–346
enums, 346–355
inheritance, 338–339
instantiating generics

based on, 464–465
interfaces, 338–339
nullable, 425–427

well-formed, 357. See also
well-formed types

ptg

Index 929

U
UML (Unified Modeling

Language), 204, 325n1
unary operators, 373–375

minus (-), 84–92
plus (+), 84–92

unboxing, 339, 342
avoiding, 345

uncertainty, multithreading,
706

unchecked conversions,
59–61, 417–419

underlying types
unboxing, 342
verifying, 301

underscore (_), 15
unhandled exceptions

on AppDomain, 744–746
handling on Task, 715–718

Unicode characters, 41–43
Unified Modeling Language.

See UML
Union() standard query

operator, 584
unmanaged types, 833
unnecessary locking, avoid-

ing, 765–766
unsafe code, 831–832
unsynchronized states, 750
unwinding stacks, 168
updating CommandLineHan-

dler.TryParse()
method, 671

uppercase, Java, 9
using directive, 161–168
using statements, 217n1,

395–398
utilization of resources, 400

V
validation, applying proper-

ties, 228–229
values

calculating, 115
CTS (Common Type

System), 859
default, specifying,

435–436
hardcoding, 35–37

hexidecimal notation, 38
integers, overflowing, 59
iterators, yielding, 637–639
literals, 35, 68
parameters, 168–169
permanent, 259
placeholders, 115
types, 55–56, 169–170, 331,

332
boxing, 339–346
enums, 346–355
inheritance, 338–339
instantiating generics

based on, 464–465
interfaces, 338–339
nullable, 425–427

variables, modifying, 15
variables

applying, 12–16
assigning, 13, 14–16
declaring, 13, 14

applying anonymous
methods, 481

of the Class Type, 206
implicitly typed local,

53–55
local, 13

implicitly typed, 538–540
multiple threads,

753–753
members, 209
outer, 495–496
parameters, defining index

operators, 633–634
values, modifying, 15

variance, applying
delegates, 485

var keyword, 53
Venn diagrams, 568
verbatim string literals, 44
verifying underlying types,

301
versioning

interfaces, 327–328
.NET, 26–27
serialization, 684–687

VES (Virtual Execution
System), 24, 844

viewing expression trees,
503–505

VirtualAllocEx() APIs,
declaring, 818–819

virtual computers, 816
detection using P/Invoke,

888–894
Virtual Execution System.

See VES
virtual fields, properties as,

232–234
virtual modifiers, 282–286
Visual Basic

accessing class instances
with Me keyword, 214

global methods, 158
global variables and

functions, 248
line-based statements, 10
redimensioning arrays, 75
var, 540
Variant, 540
void*, 540

Visual Basic.NET, project
scope Imports directive,
162

visual editors, hints for,
144–145

Visual Studio, XML com-
ments in, 386

void keyword, 52–55
volatile, declaring fields

as, 760–761

W
weak references, 391–393
well-formed types, 357

accessibility modifiers, 381
assemblies, referencing,

377–381
garbage collection, 390–393
lazy initialization, 400–402
namespaces, defining,

382–385
object members,

overriding, 357–369
operators, overloading,

369–377
resource cleanup, 393–400
XML comments, 385–389

where clauses, converting
expression trees to, 499

ptg

Index930

Where() method, filtering
with, 556–557

while loops, 121–123
whitespace, formatting,

11–12
wildcards in import direc-

tive, 162
Win32 APIs, declaring,

818n1
Windows

Error Reporting dialog box,
715

executable, 378
Forms, 809–811
Presentation Foundation

(WPF), 811–813
UI programming, 809–813

WPF (Windows Presenta-
tion Foundation),
811–813

wrappers
RCW (runtime callable

wrapper), 813
simplifying API calls with,

828–829
write-only properties,

230–231
writing

comments, 20–23
output to consoles, 18–20

www.pinvoke.net, 818n1

X
XML (Extensible Markup

Language), 22–23
comments, 385–389
delimited comments, 22
documentation files,

generating, 388–389

single-line comments, 22
XOR (exclusive OR) opera-

tor, 112

Y
yield break, iterators,

645–646
yielding iterator values,

637–639
yield keyword, 6n5
yield returns, placing in

loops, 643–645
yield statements, 649

www.pinvoke.net

	Contents
	Contents of C# 4.0 Topics
	Figures
	Tables
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 Introducing C#
	Hello, World
	Compiling and Running the Application

	C# Syntax Fundamentals
	Type Definition
	Main
	Statements and Statement Delimiters
	Whitespace

	Working with Variables
	Data Types
	Declaring a Variable
	Assigning a Variable
	Using a Variable

	Console Input and Output
	Getting Input from the Console
	Writing Output to the Console

	Comments
	Managed Execution and the Common Language Infrastructure
	C# and .NET Versioning
	Common Intermediate Language and ILDASM
	Summary

	2 Data Types
	Fundamental Numeric Types
	Integer Types
	Floating-Point Types (float, double)
	Decimal Type
	Literal Values

	More Fundamental Types
	Boolean Type (bool)
	Character Type (char)
	Strings

	null and void
	null
	The void Nontype

	Categories of Types
	Value Types
	Reference Types

	Nullable Modifier
	Conversions between Data Types
	Explicit Cast
	Implicit Conversion
	Type Conversion without Casting

	Arrays
	Declaring an Array
	Instantiating and Assigning Arrays
	Using an Array
	Strings as Arrays
	Common Errors

	Summary

	3 Operators and Control Flow
	Operators
	Plus and Minus Unary Operators (+, -)
	Arithmetic Binary Operators (+, -, *, /, %)
	Parenthesis Operator
	Assignment Operators (+=, -=, *=, /=, %=)
	Increment and Decrement Operators (++, --)
	Constant Expressions (const)

	Introducing Flow Control
	if Statement
	Nested if

	Code Blocks ({})
	Scope and Declaration Space
	Boolean Expressions
	Relational and Equality Operators
	Logical Boolean Operators
	Logical Negation Operator (!)
	Conditional Operator (?)
	Null Coalescing Operator (??)

	Bitwise Operators (<<, >>, |, &, ^, ~)
	Shift Operators (<<, >>, <<=, >>=)
	Bitwise Operators (&, |, ^)
	Bitwise Assignment Operators (&=, |=, ^=)
	Bitwise Complement Operator (~)

	Control Flow Statements, Continued
	The while and do/while Loops
	The for Loop
	The foreach Loop
	The switch Statement

	Jump Statements
	The break Statement
	The continue Statement
	The goto Statement

	C# Preprocessor Directives
	Excluding and Including Code (#if, #elif, #else, #endif)
	Defining Preprocessor Symbols (#define, #undef)
	Emitting Errors and Warnings (#error, #warning)
	Turning Off Warning Messages (#pragma)
	nowarn:<warn list> Option
	Specifying Line Numbers (#line)
	Hints for Visual Editors (#region, #endregion)

	Summary

	4 Methods and Parameters
	Calling a Method
	Namespace
	Type Name
	Scope
	Method Name
	Parameters
	Method Return
	Statement versus Method Call

	Declaring a Method
	Parameter Declaration
	Method Return Declaration

	The using Directive
	Aliasing

	Returns and Parameters on Main()
	Parameters
	Value Parameters
	Reference Parameters (ref)
	Output Parameters (out)
	Parameter Arrays (params)

	Recursion
	Method Overloading
	Optional Parameters
	Basic Error Handling with Exceptions
	Trapping Errors
	Reporting Errors Using a throw Statement

	Summary

	5 Classes
	Declaring and Instantiating a Class
	Instance Fields
	Declaring an Instance Field
	Accessing an Instance Field

	Instance Methods
	Using the this Keyword
	Access Modifiers
	Properties
	Declaring a Property
	Automatically Implemented Properties
	Naming Conventions
	Using Properties with Validation
	Read-Only and Write-Only Properties
	Access Modifiers on Getters and Setters
	Properties as Virtual Fields
	Properties and Method Calls Not Allowed as ref or out Parameter Values

	Constructors
	Declaring a Constructor
	Default Constructors
	Object Initializers
	Overloading Constructors
	Constructor Chaining: Calling another Constructor Using this

	Static Members
	Static Fields
	Static Methods
	Static Constructors
	Static Properties
	Static Classes

	Extension Methods
	Encapsulating the Data
	const
	readonly

	Nested Classes
	Partial Classes
	Defining a Partial Class
	Partial Methods

	Summary

	6 Inheritance
	Derivation
	Casting between Base and Derived Types
	private Access Modifier
	protected Access Modifier
	Extension Methods
	Single Inheritance
	Sealed Classes

	Overriding the Base Class
	virtual Modifier
	new Modifier
	sealed Modifier
	base Member
	Constructors

	Abstract Classes
	All Classes Derive from System.Object
	Verifying the Underlying Type with the is Operator
	Conversion Using the as Operator
	Summary

	7 Interfaces
	Introducing Interfaces
	Polymorphism through Interfaces
	Interface Implementation
	Explicit Member Implementation
	Implicit Member Implementation
	Explicit versus Implicit Interface Implementation

	Converting between the Implementing Class and Its Interfaces
	Interface Inheritance
	Multiple Interface Inheritance
	Extension Methods on Interfaces
	Implementing Multiple Inheritance via Interfaces
	Versioning
	Interfaces Compared with Classes
	Summary

	8 Value Types
	Structs
	Initializing structs
	Using the default Operator
	Inheritance and Interfaces with Value Types

	Boxing
	Enums
	Type Compatibility between Enums
	Converting between Enums and Strings
	Enums as Flags

	Summary

	9 Well-Formed Types
	Overriding object Members
	Overriding ToString()
	Overriding GetHashCode()
	Overriding Equals()
	Guidelines for Implementing Equality

	Operator Overloading
	Comparison Operators (==, !=, <, >, <=, >=)
	Binary Operators (+, -, *, /, %, &, |, ^, <<, >>)
	Combining Assignment with Binary Operators (+=, -=, *=, /=, %=, &=…)
	Conditional Logical Operators (&&, ||)
	Unary Operators (+, -, !, ~, ++, --, true, false)
	Conversion Operators
	Guidelines for Conversion Operators

	Referencing Other Assemblies
	Changing the Assembly Target
	Referencing an Assembly
	Encapsulation of Types

	Defining Namespaces
	Namespace Alias Qualifier

	XML Comments
	Associating XML Comments with Programming Constructs
	Generating an XML Documentation File

	Garbage Collection
	Weak References

	Resource Cleanup
	Finalizers
	Deterministic Finalization with the using Statement
	Garbage Collection and Finalization
	Resource Utilization and Finalization Guidelines

	Lazy Initialization
	Summary

	10 Exception Handling
	Multiple Exception Types
	Catching Exceptions
	General Catch Block
	Guidelines for Exception Handling
	Defining Custom Exceptions
	Summary

	11 Generics
	C# without Generics
	Introducing Generic Types
	Using a Generic Class
	Defining a Simple Generic Class
	Benefits of Generics
	Type Parameter Naming Guidelines
	Generic Interfaces and Structs
	Defining a Constructor and a Finalizer
	Specifying a Default Value
	Multiple Type Parameters
	Arity in Abundance
	Nested Generic Types

	Constraints
	Interface Constraints
	Base Class Constraints
	struct/class Constraints
	Multiple Constraints
	Constructor Constraints
	Constraint Inheritance

	Generic Methods
	Type Inferencing
	Specifying Constraints

	Covariance and Contravariance
	Enabling Covariance with the out Type Parameter Modifier in C# 4.0
	Enabling Contravariance with the in Type Parameter Modifier in C# 4.0
	Support for Parameter Covariance and Contravariance in Arrays

	Generic Internals
	Instantiating Generics Based on Value Types
	Instantiating Generics Based on Reference Types

	Summary

	12 Delegates and Lambda Expressions
	Introducing Delegates
	Defining the Scenario
	Delegate Data Types
	Delegate Internals
	Defining a Delegate Type
	Instantiating a Delegate

	Anonymous Methods
	System-Defined Delegates: Func<>
	Lambda Expressions
	Statement Lambdas
	Expression Lambdas
	Outer Variables
	Expression Trees

	Summary

	13 Events
	Coding the Observer Pattern with Multicast Delegates
	Defining Subscriber Methods
	Defining the Publisher
	Hooking Up the Publisher and Subscribers
	Invoking a Delegate
	Check for null
	Delegate Operators
	Sequential Invocation
	Error Handling
	Method Returns and Pass-by-Reference

	Events
	Why Events?
	Declaring an Event
	Coding Conventions
	Generics and Delegates
	Customizing the Event Implementation

	Summary

	14 Collection Interfaces with Standard Query Operators
	Anonymous Types and Implicitly Typed Local Variables
	Anonymous Types
	Implicitly Typed Local Variables (var)
	More about Anonymous Types and Implicit Local Variables

	Collection Initializers
	What Makes a Class a Collection: I Enumerable<T>
	foreach with Arrays
	foreach with I Enumerable<T>
	Do Not Modify Collections during foreach Iteration

	Standard Query Operators
	Filtering with Where()
	Projecting with Select()
	Counting Elements with Count()
	Deferred Execution
	Sorting with OrderBy() and ThenBy()
	Performing an Inner Join with Join()
	Grouping Results with GroupBy()
	Implementing a One-to-Many Relationship with GroupJoin()
	Calling SelectMany()
	More Standard Query Operators

	Summary

	15 LINQ with Query Expressions
	Introducing Query Expressions
	Projection
	Filtering
	Sorting
	The Let Clause
	Grouping
	Query Continuation with into

	Query Expressions as Method Invocations
	Summary

	16 Building Custom Collections
	More Collection Interfaces
	Ilist<T> versus IDictionary<TKey, TValue>
	IComparable<T>
	ICollection<T>

	Primary Collection Classes
	List Collections: List<T>
	Dictionary Collections: Dictionary<TKey, TValue>
	Sorted Collections: SortedDictionary<TKey, TValue> and SortedList<T>
	Stack Collections: Stack<T>
	Queue Collections: Queue<T>
	Linked Lists: LinkedList<T>

	Providing an Index Operator
	Returning Null or an Empty Collection
	Iterators
	Defining an Iterator
	Iterator Syntax
	Yielding Values from an Iterator
	Iterators and State
	More Iterator Examples
	Placing a yield return within a Loop
	Canceling Further Iteration: yield break
	Creating Multiple Iterators in a Single Class
	yield Statement Characteristics

	Summary

	17 Reflection, Attributes, and Dynamic Programming
	Reflection
	Accessing Metadata Using System.Type
	Member Invocation
	Reflection on Generic Types

	Attributes
	Custom Attributes
	Looking for Attributes
	Initializing an Attribute through a Constructor
	System.AttributeUsageAttribute
	Named Parameters

	Programming with Dynamic Objects
	Invoking Reflection Using dynamic
	dynamic Principles and Behaviors
	Why Dynamic Binding?
	Static Compilation versus Dynamic Programming
	Implementing a Custom Dynamic Object

	Summary

	18 Multithreading
	Running and Controlling a Separate Thread
	ContinueWith()
	Unhandled Exception Handling on Task
	Canceling a Task
	Long-Running Tasks
	Disposing a Task

	Executing Iterations in Parallel
	Parallel Exception Handling with System.AggregateException
	Canceling a Parallel Loop

	Running LINQ Queries in Parallel
	Canceling a PLINQ Query

	Multithreading before .NET Framework 4
	Asynchronous Operations with System.Threading.Thread
	Thread Management
	Thread Pooling

	Unhandled Exceptions on the AppDomain
	Summary

	19 Synchronization and More Multithreading Patterns
	Synchronization
	Synchronization Using Monitor
	Using the Lock Keyword
	Choosing a Lock Object
	Why to Avoid Locking on this, typeof(type), and string
	Declaring Fields as volatile
	Using the System.Threading.Interlocked Class
	Event Notification with Multiple Threads
	Synchronization Design Best Practices
	More Synchronization Types
	Thread Local Storage

	Timers
	Asynchronous Programming Model
	Calling the APM
	Calling the APM Using TPL

	Asynchronous Delegate Invocation
	Passing Data to and from an Alternate Thread

	Event-Based Asynchronous Pattern (EAP)
	Background Worker Pattern
	Establishing the Pattern
	Exception Handling

	Windows UI Programming
	Windows Forms
	Windows Presentation Foundation (WPF)

	Summary

	20 Platform Interoperability and Unsafe Code
	Platform Invoke
	Declaring External Functions
	Parameter Data Types
	Using ref Rather Than Pointers
	Using StructLayoutAttribute for Sequential Layout
	Error Handling
	Using SafeHandle
	Calling External Functions
	Simplifying API Calls with Wrappers
	Function Pointers Map to Delegates
	Guidelines

	Pointers and Addresses
	Unsafe Code
	Pointer Declaration
	Assigning a Pointer
	Dereferencing a Pointer
	Accessing the Member of a Referent Type

	Summary

	21 The Common Language Infrastructure
	Defining the Common Language Infrastructure (CLI)
	CLI Implementations
	C# Compilation to Machine Code
	Runtime
	Garbage Collection
	Garbage Collection on .NET
	Type Safety
	Code Access Security
	Platform Portability
	Performance

	Application Domains
	Assemblies, Manifests, and Modules
	Common Intermediate Language (CIL)
	Common Type System (CTS)
	Common Language Specification (CLS)
	Base Class Library (BCL)
	Metadata
	Summary

	A: Downloading and Installing the C# Compiler and the CLI Platform
	B: Full Source Code Listings
	C: Concurrent Classes from System.Collections.Concurrent
	D: C# 2.0 Topics
	E: C# 3.0 Topics
	F: C# 4.0 Topics
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

